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Abstract. Two-parameters extension of the family of typically-real func-
tions is studied. The definition is obtained by the Stjeltjes integral formula.
The kernel function in this definition serves as a generating function for some
family of orthogonal polynomials generalizing Chebyshev polynomials of the
second kind. The results of this paper concern the exact region of local uni-
valence, bounds for the radius of univalence, the coefficient problems within
the considered family as well as the basic properties of obtained orthogonal
polynomials.

1. Introduction. Let H(D) denote the class of holomorphic functions in
the unit disk D = {z : |z| < 1}. The class of typically-real functions
in H(D) is denoted by TR. This class is characterized by the condition
Im z · Im f(z) ≥ 0, z ∈ D, and has the integral representation:

(1) TR =

{
f : f(z) =

∫ π

0

z

(1− zeiθ)(1− ze−iθ)
dµ(θ), µ ∈ P[0,π]

}
,

where P[0,π] denotes the set of probability measures on [0, π], and was stud-
ied by many authors, e.g. [2], [6], [7], [9], [11].

From the above representation we see that the class TR is closely con-
nected with the generating function Ψ for the Chebyshev polynomials of
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the second kind, Un(x), x = cos θ, θ ∈ [0, π], namely:

Ψ(eiθ; z) =
1

(1− zeiθ)(1− ze−iθ)
=

+∞∑
n=0

Un(x)zn, z ∈ D,

where

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ, θ ∈ [0, π], n = 0, 1, . . . .

An important role in the extremal problems for univalent function as well
as for TR plays the Koebe function

k(1)(z) = zΨ(1; z) =
z

(1− z)2
= z · 1F0

[
2

; z

]
, z ∈ D,

where 1F0 is the hypergeometric series. Studying the q-extension of the
above formula and of the Löwner differential equation, Gasper [3] observed
the important role of the q-Koebe function:

k(q)(z) =
z

(1− z)(1− qz)
= z · 1Φ0

[
q2

; q, z

]
, z ∈ D, q ∈ [−1, 1],

where by rΦs we denote the basic hypergeometric series [4]:

rΦs

[
a1, . . . , ar
b1, . . . , bs

; q, z

]
=
∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n

[
(−1)nq(

n
2)
]1+s−r zn

(q; q)n
, z ∈ D,

where in general q ∈ (−1, 1) and

(a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n . . . (ar; q)n,

r, s ∈ N0 = {0, 1, 2, . . .}, and (a; q)n is the q-shifted factorial defined by

(a; q)n =
n−1∏
k=0

(
1− aqk

)
, n ∈ N, (a, q)0 = 1.

(In the situations which we consider below the cases q = ±1 will be allowed
as well.)

The form of k(q)(z) gives us the motivation for studying the “more sym-
metric” (p, q)-Koebe function:

(2) k(p,q)(z) =
z

(1− pz)(1− qz)
= z · 1Φ0

[
q2

p2 ;
q

p
, pz

]
, z ∈ D,

where (p, q) ∈ ∆ = {(p, q) : −1 ≤ q ≤ p ≤ 1}, and the class of holomorphic
functions T (p,q) in D is defined below. In what follows we assume pq 6= 0.
The case p = 0 or q = 0 is easy and can be treated separately. We omit it.
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The form of the (p, q)-Koebe function and the kernel function in the
integral representation formula (1) for the class TR suggest the study of the
following class of functions:

(3)
T (p,q) =

{
f : f(z) = z + a2z

2 + · · · ∈ H(D) :

f(z) =

∫ π

−π

z

(1− pzeiθ)(1− qze−iθ)
dµ(θ), µ ∈ P[−π,π]

}
,

where P[−π,π] denotes the set of probability measures on [−π, π]. Observe
that contrary to TR the coefficients of f ∈ T (p,q) are not real in general.

Remark. We observe two important special cases of T (p,q):

• T (1,1) = TR,
• T (1,0) = T (0,−1) = co(Sc) = co

(
S∗(12)

)
, where Sc denotes the class

of convex univalent function in D, and S∗(12) denotes the class of
1
2 -starlike functions in D.

The class T (1,−1) is of special interest and will be studied elsewhere. We
denote

k(p,q)(θ; z) =
z

(1− pzeiθ)(1− qze−iθ)
= z

∞∑
n=0

Un(p, q; eiθ)zn,

z ∈ D, (p, q) ∈ ∆, θ ∈ [−π, π].
This paper consists of two parts. In the first part we observe a few prop-

erties of k(p,q)(z) given by (2) and solve some extremal problems within the
class T (p,q), namely: the coefficients problem, the sharp bound for |f(z)|,
the exact domain of local univalence and the bound for the radius of uni-
valence. In the second part we prove some properties of the “polynomials”
Un(p, q, eiθ) and related “polynomials” Tn(p, q, eiθ). These results extend
and generalize the corresponding ones for the class TR (the case p = q = 1),
as well as for co(SC) (p = 1, q = 0) and for T (1,q) which has been studied in
[5]. The results for the “polynomials” Un(p, q; eiθ) and Tn(p, q; eiθ) extend
known results for classical Chebyshev polynomials of the second and first
kind. In what follows we assume pq 6= 0, because if p = 0 or q = 0, then the
result follows from general cases, taking the limit (p→ 0 or q → 0).

2. Statements of the results – the class T (p,q). When studying the
extremal problems for T (p,q), especially coefficient problems, we meet “the
trigonometric polynomials” Un(p, q; eiθ) which are defined by the generating
function

(4) Ψ(p,q)(eiθ; z) =
1

(1− pzeiθ)(1− qze−iθ)
=

∞∑
n=0

Un(p, q; eiθ)zn, z ∈ D,
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θ ∈ [−π, π], (p, q) ∈ ∆, where

U0(p, q; e
iθ) = 1, U1(p, q; e

iθ) = peiθ + qe−iθ,

Un(p, q; eiθ) =
pn+1ei(n+1)θ − qn+1e−i(n+1)θ

peiθ − qe−iθ
, n ≥ 2.

(5)

The function k(p,q)(z) is of course starlike in D. But moreover, we have
the following result, which is sharp if pq > 0.

Proposition 1. The function k(p,q)(z) is α-starlike in D with

α = α(p, q) =
1

2

(
1− |p|
1 + |p|

+
1− |q|
1 + |q|

)
,

and convex in the disk |z| < rc(p, q), where

rc(p, q) =
2

t+
√
t2 − 4|p||q|

and t =
|p|+|q|+

√
|p|2+|q|2+34|p||q|

2 .

Proof. We recall that f ∈ H(D) is α-starlike in D if and only if

Re
zf

′
(z)

f(z)
> α, z ∈ D, 0 ≤ α < 1,

and convex in D if and only if

Re

(
1 +

zf
′′
(z)

f ′(z)

)
> 0, z ∈ D.

We find that
zk

′(p,q)(z)

k(p,q)(z)
= 1 +

pz

1− pz
+

qz

1− qz
,

1 +
zk

′′(p,q)(z)

k′(p,q)(z)
=

1 + pz

1− pz
+

1 + qz

1− qz
− 1 + pqz2

1− pqz2
.

Using obvious inequality

1− r
1 + r

≤ Re
1 + z

1− z
≤ 1 + r

1− r
, |z| = r < 1,

we find that

Re
zk

′(p,q)(z)

k(p,q)(z)
=

1

2
Re

1 + pz

1− pz
+

1

2
Re

1 + qz

1− qz
≥ 1

2

1− |p|
1 + |p|

+
1

2

1− |q|
1 + |q|

, z ∈ D,

and

Re

{
1 +

zk
′′(p,q)(z)

k′(p,q)(z)

}
≥ 1− |p|r

1 + |p|r
+

1− |q|r
1 + |q|r

− 1 + |p||q|r2

1− |p||q|r2
.
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The last expression is positive if 0 < r < rc(p, q), where rc(p, q) is the last
positive root of the equation

|p|2|q|2r4 − |p||q|r3(|p|+ |q|)− 6|p||q|r2 − (|p|+ |q|)r + 1 = 0.

The substitution 1
r + |p||q|r = t gives the result. �

Proposition 2. If f ∈ T (p,q), then we have the following sharp bound

|an| ≤

{
|p|n−|q|n
|p|−|q| if |p| 6= |q|
n|p|n−1 if |p| = |q|.

The extremal functions have the form:

k(p,q)(0; z) if pq > 0 and k(p,q)
(π

2
; z
)

if pq < 0.

Proof.

|an| =
∣∣∣∣∫ π

−π
Un−1(p, q; e

iθ)dµ(θ)

∣∣∣∣ ≤ ∫ π

−π

∣∣∣pneinθ − qne−inθ
peiθ − qe−iθ

∣∣∣dµ(θ)

=

∫ π

−π
|pn−1ei(n−1)θ + pn−1qei(n−3)θ + . . .

+ pqn−3e−i(n−3)θ + qne−i(n−1)θ|dµ(θ)

≤ |p|
n − |q|n

|p| − |q|
= Un−1(|p|, |q|; 1). �

Proposition 3. For any f ∈ T (p,q) and z = reit ∈ D, we have the sharp
bound:

|f(z)| ≤ r

(1− |p|r)(1− |q|r)
.

The extremal functions have the form: k(p,q)(0; r) if p > 0 and q > 0;
k(p,q)(0;−r) if p < 0 and q < 0; k(p,q)(π2 ; r) if p > 0 and q < 0.

This result follows directly from the integral representation (3) and the
triangle inequality.

Remark. Observe that if |p| < 1 and |q| < 1, then f ∈ T (p,q) is bounded.

The set of local univalence for TR has been found in [2], [7] and has lens-
shape bounded by two arcs of the symmetric circles. For the class T (p,q) this
set is more complicated. Moreover, the method of calculations is completely
different.

Theorem 1. Let f ∈ T (p,q), (p, q) ∈ ∆, z = reit ∈ D and

A =
{

2(p− q)2 + 4pq sin2 t
} 1

2 .
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The equation of the boundary in polar coordinates z = r(t)eit of the set
D′(T (p,q)) of the local univalence is given by the formula:

r = r(t) =

{
1 if A < 1− pq

2√
A2+4pq+A

if A ≥ 1− pq.

In the proof we will use the following practical result of Koczan and
Szapiel [6].

Lemma 1. Denote

K =

{
f(z) ∈ H(D) : f(z) =

∫ b

a
S(z, θ)dµ(θ), z ∈ D, µ ∈ P[a, b]

}
,

where S(z, ·) is holomorphic in D and S(·, θ) is continuous in [a, b], and P[a,b]
denotes the set of probability measures on [a, b]. The set of local univalence
is given by the formula

D′(K) =
⋂
f∈K
{f ′(z) 6= 0} =

{
z ∈ D :

∣∣∣∣∆a≤θ1<θ2≤b arg
d

dz
S(z, θ)

∣∣∣∣ < π

}
.

Proof. For f ∈ T (p,q) we have

d

dz
S(z, θ) =

d

dz
k(p,q)(eiθ; z) =

1
z2
− pq

[(1z + pqz)− (peiθ + qe−iθ)]2

and

arg

[
d

dz
k(p,q)(eiθ; z)

]
= arg

(
1

z2
− pq

)
−2 arg

[(
1

z
+ pqz

)
−
(
peiθ + qe−iθ

)]
.

Let us put z = reit, r ∈ (0, 1), t ∈ [−π, π], and z0 = x0 + iy0 = 1
z + pqz, and

consider the ellipse:

(6)
E : w = w(θ) = u+ iv

= [x0 − (p+ q) cos θ] + i[y0 − (p− q) sin θ], θ ∈ [−π, π],

where

(7) x0 =
1

r
(1 + pqr2) cos t, y0 = −(1− pqr2)

r
sin t.

Denoting

ψ(θ) := arg

[
d

dz
w(θ)

]
= arctan

y0 − (p− q) sin θ

x0 − (p+ q) cos θ
,

we see that the problem

∆−π≤θ1<θ2≤π arg
d

dz
k(p,q)(eiθ; z)

is equivalent to the problem of finding

max
−π≤θ≤π

ψ(θ)− min
−π≤θ≤π

ψ(θ).
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From the geometrical point of view this is nothing else but finding the
biggest angle with the vertex at the origin in which lies the ellipse E given
by (6).

The equations of the tangent lines (v = mu) from the origin to E have
the form

v = m1u, v = m2u, m1 = tanα1, m2 = tanα2,

where m1 and m2 are the roots of the equation:

(8) {x20 − (p+ q)2}m2 − 2x0y0m+ {y20 − (p− q)2} = 0.

Using the formula

tan(α2 − α1) =

∣∣∣∣ m2 −m1

1 +m1m2

∣∣∣∣
and the fact that

|∆ arg[k(p,q)(eiθ; z)]′| = 2|maxψ −minψ| = 2|α2 − α1|,

we see that the equation of the boundary of D′(z) is given by the condition
m1m2 = −1 or

(9)
y20 − (p− q)2

x20 − (p+ q)2
= −1 or x20 + y20 = 2(p2 + q2).

The equation (9) with notation (7) is equivalent to

p2q2r4 − 2{p2 + q2 − pq cos 2t}r2 + 1 = 0

or
(pqr2 +Ar − 1)(pqr2 −Ar − 1) = 0

where

(10) A2 = {2(p− q)2 + 4pq · sin2 t}.

One can verify that the expression

(pqr2 −Ar − 1)

is negative for r ∈ (0, 1). Therefore, the equation r = r(t) of the boundary
of D′(z) is given by the equation

(11) pqr2 +Ar − 1 = 0 if r(t) ≤ 1 and r = 1 elsewhere.

Because r(−t) = r(t) one can consider only the case t ∈ [0, π]. The solution
of (11) is less than 1, if A ≥ 1− pq and is given by the formula

(12) r = r(t) =
1

2pq
(
√
A2 + 4pq −A),

(if A < 1− pq we put r(t) = 1).
The inequality A ≥ 1− pq is equivalent to

(13) 4pq sin2 t ≥ (1− pq)2 − 2(p− q)2.
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We have to consider two cases: (α) pq > 0 and (β) pq < 0.
(α) pq > 0, (p, q) ∈ ∆.
Inequality (13) holds for any t ∈ [0, π] if

(1− pq)2 − 2(p− q)2 ≤ 0

and then r = r(t); and does not hold for any t ∈ [0, π] if

(1− pq)2 − 2(p− q)2 ≥ 4pq

and then r = 1. If

0 ≤ (1− pq)2 − 2(p− q)2 ≤ 4pq

then (13) holds if t ∈ [t0, π − t0], where

t0 = arcsin

{
(1− pq)2 − 2(p− q)2

4pq

} 1
2

.

Therefore, in this case the equation of the boundary of D′(z) is

(14) r =

{
r(t) if t ∈ [0, t0] ∪ [π − t0, π],

1 if t ∈ [t0, π − t0].

Denote: q1(p) =
√
2p−1
p−
√
2
, q2(p) = −

√
2p+1

p+
√
2

.

A simple analysis shows that for any t ∈ [0, π]: In the case: (α) pq > 0,
(p, q) ∈ ∆, we have:

r = r(t) if q ≤ q1(p), p ∈ [−1, 0] ∪
[

1√
2
, 1

]
;

r = 1 if q2 ≤ q ≤ p, p ∈ [1−
√

2, 0] or 0 ≤ q ≤ p, p ∈ [0,
√

2− 1]

or 0 ≤ q ≤ −q1(p), p ∈
[√

2− 1,
1√
2

]
.

In an analogous way one can prove that for any t ∈ [0, π] in the case:
(β) pq < 0, (p, q) ∈ ∆, we have:

r = 1 if q1(p) ≤ q ≤ 0 for p ∈ [0,
√

2− 1]

and

r = r(t) if − q1(p) ≤ q ≤ 0 for p ∈
[

1√
2
, 1

]
or − 1 ≤ q ≤ q2(p) for p ∈ [0, 1].

In the part of triangle ∆ which is not mentioned above we have the equality
(14). �

From the above consideration we come to the following conclusion about
the radius of local univalence of T (p,q).
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Theorem 2. The sharp value of the radius r(p,q)0 of local univalence of the
class T (p,q) is given by the formula:

(15) r
(p,q)
0 =


√
2√

p2+q2+|p+q|
if (p, q) ∈ D1 ∪D2 ∪D3 ∪D4,

√
2√

p2+q2+(p−q)
if (p, q) ∈ D5 ∪D6,

1 if (p, q) ∈ ∆ \
⋃6
k=1Dk,

where the sets Dj , j = 1, 2, . . . , 6 are defined as follows:

D1 =

{
(p, q) :

√
2− 1 ≤ p ≤ 1√

2
,

√
2p− 1

p−
√

2
≤ q ≤ p

}
,

D2 =

{
(p, q) :

1√
2
≤ p ≤ 1, 0 ≤ q ≤ p

}
,

D3 =
{

(p, q) : −1 ≤ p ≤ 1−
√

2, −1 ≤ q ≤ p
}
,

D4 =

{
(p, q) : 1−

√
2 ≤ p ≤ 0, −1 ≤ q ≤ −

√
2p− 1

p+
√

2

}
,

D5 =

{
(p, q) : 0 ≤ p ≤ 1/

√
2, −1 ≤ q ≤ 1−

√
2p

p−
√

2

}
,

D6 =

{
(p, q) :

1√
2
≤ p ≤ 1, −1 ≤ q ≤ 0

}
.

The extremal functions are:
(α) if (p, q) ∈ D1 ∪D2 ∪D3 ∪D4

f0(z) =
1

2

(
z

(1− pzeiθ)(1− qze−iθ)
+

z

(1 + pze−iθ)(1 + qzeiθ)

)
at z = ±ir0,

where cos θ = |p+q|√
2(p2+q2)

, sin θ = − (p−q)√
2(p2+q2)

.

(β) if (p, q) ∈ D5 ∪D6

f0(z) =
1

2

(
z

(1− pzeiθ)(1− qze−iθ)
+

z

(1− pze−iθ)(1− qzeiθ)

)
at z = ±r0,

where cos θ = |p+q|√
2(p2+q2)

, sin θ = (p−q)√
2(p2+q2)

.

Proof. The radius r(p,q)0 of the biggest disk with the center at the origin
which is contained in D′(z) for any t ∈ [−π, π] is the radius of local univa-
lence of the class T (p,q). Finding the maximal value of r(t) given by (12),
which is attained for t = 0 if pq < 0 and for t = π

2 if pq > 0 we find (15).
The form of the extremal functions follows from (7) and (8). �
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Remark. To find the exact value of the radius of univalence r(p,q)u of the
class T (p,q), we meet some technical difficulties. However, we can prove some
bound from below (the bound from above is evident).

Theorem 3. The radius of univalence r(p,q)u of the class T (p,q) satisfies the
inequality

r
(p,q)
0 ≥ r(p,q)u ≥ r̂(p,q)

where r̂(p,q) is the unique root of the equation

(16) 1− |p||q|r2 = 2r2
(
|p|
√

1− q2r2 + |q|
√

1− p2r2
)2
.

Proof. We will use the sufficient condition for univalence: Re f ′(z) > 0.
From (3) we have for f ∈ T (p,q),

f ′(z) =

∫ π

−π

1− pqz2

(1− pzeiθ)2(1− qze−iθ)2
dµ(θ) =

∫ π

−π
[k(p,q)(eiθ; z)]′dµ(θ).

We see that Re f ′(z) > 0 if and only if | arg[k(p,q)(eiθ; z)]′| < π
2 .

Putting z = reit, r ∈ (0, 1), t ∈ [−π, π], we find that

arg[k(p,q)(eiθ; z)]′ =

{
− arctan

pqr2 sin 2t

1− pqr2cos2t
+ 2 arctan

pr sin(t+ θ)

1− pr cos(t+ θ)

+ 2 arctan
qr sin(t− θ)

1− qr cos(t− θ)

}
.

Because

max(min)−π≤ϕ≤π arctan
τ sinϕ

1− τ cosϕ
= ± |τ |√

1− τ2
, |τ | < 1,

we conclude that

| arg[k(p,q)(eiθ; z)]′| < arctan
|p||q|r2√
1− p2q2r2

+ 2

(
arctan

|p|r√
1− p2r2

+ arctan
|q|r√

1− q2r2

)
= arcsin |p||q|r2 + 2(arcsin |p|r + arcsin |q|r),

because arctan τ√
1−τ2 = arcsin τ . Using the formula

arcsinx+ arcsin y = η arcsin(x
√

1− y2 + y
√

1− x2) + επ,

where

η = 1, ε = 0, if and only if xy < 0 or x2 + y2 ≤ 1,

η = −1, ε = −1, if and only if x2 + y2 > 1, x < 0, y < 0,

η = −1, ε = 1, if and only if x2 + y2 > 1, x > 0, y > 0,
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we come to the conclusion that

| arg[k(p,q)(eiθ; z)]′| < π

2

if and only if

1− |p||q|r2 > 2r2
(
|p|
√

1− q2r2 + |q|
√

1− p2r2
)2
,

which ends the proof. �

Observe that by formula (16) we have r̂(1,1) =
√
2
4 = 0.35 . . .; which is not

sharp (r̂(1,1) =
√

2− 1) [2], however r̂(1,0) =
√
2
2 is the exact value, [10].

3. Statements of the results – the “polynomials” Un(p, q; e
iθ) and

Tn(p, q; e
iθ). In this chapter we collect some properties of the polynomials

Un(p, q; eiθ) which are defined by the generating function (4) or explicit
formulas (5). We can observe, moreover, that the “polynomials” Un(p, q; eiθ)
can be expressed via classical Chebyshev polynomials of the second kind
Un(x), where the variable x is now complex and has a special form. Namely,
putting in the generating function (4) instead of z the value z√

pq , pq 6= 0 and
comparing the result with the generating function for Un(x), we conclude
that

(17) Un(p, q; eiθ) = (
√
pq)nUn

(
peiθ + qe−iθ

2
√
pq

)
, pq 6= 0.

As we see, if θ ∈ [−π, π], then the variable

ω(θ) =
peiθ + qe−iθ

2
√
pq

is describing an ellipse E with semi-axes: a =
∣∣∣ (p+q)2
√
pq

∣∣∣ and b =
∣∣∣ (p−q)2
√
pq

∣∣∣.
Using the representation (5) and (17) after same calculations, we can get

the following basic results for the “polynomials” Un(p, q; eiθ).

Theorem 4. (a) The “trigonometric polynomials” Un(p, q; eiθ) satisfy the
three-term recurrence relation

Un+2(p, q; e
iθ)− (peiθ + qe−iθ)Un+1(p, q; e

iθ) + pqUn(p, q; eiθ) = 0,

n = 0, 1, . . . ,

U0(p, q; e
iθ) = 1, U1(p, q; e

iθ) = peiθ + qe−iθ.

(b) The function y(θ) = Un(p, q; eiθ) satisfies the following differential equa-
tion of the second order:

y
′′
(θ)(peiθ − qe−iθ) + 2i(peiθ + qe−iθ)y

′
(θ) + n(n+ 2)(peiθ − qe−iθ)y(θ) = 0.
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(c) The “polynomials” Un(p, q; eiθ) satisfy the “quasi-Rodrigues formula”

Un(p, q; eiθ)=
1

[(n+1)i]n
· 1

peiθ − qe−iθ
[
pn+1ei(n+1)θ−(−1)nqn+1e−i(n+1)θ

](n)
.

(d) The “polynomials” Un(p, q; eiθ), satisfy the following orthogonality rela-
tion:∫
E
Un(p, q; eiθ)Um(p, q; eiθ)ρ(θ)dθ =

{
0 if m 6= n,
π
4pq

(
p2(n+1) + q2(n+1)

)
if m = n,

where ρ(θ) = −1
2i
√
pq (pe−iθ − qeiθ).

Proof. (a) and (b) follow directly from (5) by obvious calculations and
differentiation from formula (5).

We verify directly the property (c) and for the property (d) we have∫
E
Un(p, q; eiθ)Um(p, q; eiθ)ρ(θ)dω

=

∫ π

−π
Un(p, q; eiθ)Um(p, q; eiθ)

1

2i
√
pq

(pe−iθ − qeiθ)
(peiθ − qe−iθ

2
√
pq

)
idθ

=
1

4pq

∫ π

−π

pn+1ei(n+1)θ − qn+1e−i(n+1)θ

peiθ − qe−iθ
· p

m+1e−i(m+1)θ − qm+1ei(m+1)θ

pe−iθ − qeiθ

× (pe−iθ − qeiθ)(peiθ − qe−iθ)dθ

=
1

4pq

∫ π

−π
(pn+m+2ei(n−m)θ − pn+1qm+1ei(n+m+2)θ − pm+1qn+1e−i(n+m+2)θ

+ qn+m+2ei(m−n)θ)dθ =

{
0 if m 6= n,
π
4pq

(
p2(n+1) + q2(n+1)

)
if m = n.

�

Remark. One can observe that the“trigonometric polynomials” Un(p, q;eiθ)
can be considered as the boundary values for z = eiθ of the following sym-
metric Laurent polynomials:

Un(p, q; z) = pnzn+ pn−1qzn−2+ pn−2q2zn−4+ · · ·+ pqn−1
1

zn−2
+
qn

zn
, z 6= 0

Un(p, q; z) = Un

(
p, q;

q

pz

)
.

Remark. Together with the Un(p, q; eiθ) “polynomials” one can consider
the related family of “trigonometric polynomials”

Tn(p, q; eiθ) =
1

2
(pneinθ + qne−inθ),

which for p = q = 1 and θ ∈ [−π, π], give the Chebyshev polynomials of the
first kind.
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As the classical Chebyshev polynomials Un(x) and Tn(x) are connected
by several relations [1], [8] the “polynomials” Un(p, q; eiθ) and Tn(p, q; eiθ)
are connected as well by some relations, for example:

Un(p, q; eiθ) =
−2i

(n+ 1)(peiθ − qe−iθ)
T

′
n+1(p, q; e

iθ).

T
′′
n (p, q; eiθ) + n2 · Tn(p, q; eiθ) = 0.

1

2
(n2 − 1)(pn+1ei(n+1)θ + qn+1e−i(n+1)θ)

+ (n− 1)Un(peiθ + qe−iθ) + n2 · Tn(p, q; eiθ) = 0.

T 2
n(p, q; eiθ) =

1

4
U2
n−1(p, q; e

iθ) · (peiθ − qe−iθ)2 + pnqn.

T2n(p, q; eiθ) =
1

2
U2
n−1(p, q; e

iθ) · (peiθ − qe−iθ)2 + 2pnqn.

Tn(p, q; eiθ) = 2[(peiθ − qe−iθ) · Un(p, q; eiθ)]
′
.
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