doi: 10.17951/a.2017.71.2.79

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXI, NO. 2, 2017

SECTIO A

79 - 89

ANDRZEJ WALENDZIAK

On branchwise commutative pseudo-BCH algebras

ABSTRACT. Basic properties of branches of pseudo-BCH algebras are described. Next, the concept of a branchwise commutative pseudo-BCH algebra is introduced. Some conditions equivalent to branchwise commutativity are given. It is proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.

1. Introduction. In 1966, Imai and Iséki ([9, 13]) introduced BCK and BCI algebras. In 1983, Hu and Li ([8]) defined BCH algebras. It is known that BCK and BCI algebras are contained in the class of BCH algebras. In [11, 12], Iorgulescu introduced many interesting generalizations of BCI and BCK algebras (see also [10]).

In 2001, Georgescu and Iorgulescu ([7]) defined pseudo-BCK algebras as an extension of BCK algebras. In 2008, Dudek and Jun ([1]) introduced pseudo-BCI algebras as a natural generalization of BCI algebras and of pseudo-BCK algebras. These algebras have also connections with other algebras of logic such as pseudo-MV algebras and pseudo-BL algebras defined by Georgescu and Iorgulescu in [5] and [6], respectively. Recently, Walendziak ([14]) introduced pseudo-BCH algebras as an extension of BCH algebras. In [15, 16], he studied ideals in such algebras.

 $^{2010\} Mathematics\ Subject\ Classification.\ 03G25,\ 06F35.$

 $Key\ words\ and\ phrases.$ (Pseudo-)BCK/BCI/BCH-algebra, atom, branch, branchwise commutativity.

In this paper we consider branches of pseudo-BCH algebras and introduce the concept of a branchwise commutative pseudo-BCH algebra. We show that every such algebra is a pseudo-BCI algebra. We also give some conditions equivalent to branchwise commutativity. Finally, we obtain a system of identities defining the class of branchwise commutative pseudo-BCH algebras.

2. Preliminaries. We recall that an algebra $\mathfrak{X} = (X; *, 0)$ of type (2, 0) is called a *BCH algebra* if it satisfies the following axioms:

```
(BCH-1) x * x = 0;

(BCH-2) (x * y) * z = (x * z) * y;

(BCH-3) x * y = y * x = 0 \Longrightarrow x = y.
```

A BCH algebra \mathfrak{X} is said to be a BCI algebra if it satisfies the identity

(BCI)
$$((x*y)*(x*z))*(z*y) = 0.$$

A BCK algebra is a BCI algebra \mathfrak{X} satisfying the law 0 * x = 0.

Definition 2.1 ([1]). A pseudo-BCI algebra is a structure $\mathfrak{X} = (X; \leq, *, \diamond, 0)$, where " \leq " is a binary relation on the set X, "*" and " \diamond " are binary operations on X and " \circ " is an element of X, satisfying the axioms:

```
 \begin{array}{ll} (\text{pBCI-1}) & (x*y) \diamond (x*z) \leqslant z * y, \quad (x \diamond y) * (x \diamond z) \leqslant z \diamond y; \\ (\text{pBCI-2}) & x*(x \diamond y) \leqslant y, \quad x \diamond (x*y) \leqslant y; \\ (\text{pBCI-3}) & x \leqslant x; \\ (\text{pBCI-4}) & x \leqslant y, \ y \leqslant x \Longrightarrow x = y; \\ (\text{pBCI-5}) & x \leqslant y \Longleftrightarrow x * y = 0 \Longleftrightarrow x \diamond y = 0. \end{array}
```

A pseudo-BCI algebra $\mathfrak X$ is called a pseudo-BCK algebra if it satisfies the identities

```
(pBCK) 0 * x = 0 \diamond x = 0.
```

Definition 2.2 ([14]). A pseudo-BCH algebra is an algebra $\mathfrak{X} = (X; *, \diamond, 0)$ of type (2, 2, 0) satisfying the axioms:

```
(pBCH-1) x * x = x \diamond x = 0;

(pBCH-2) (x * y) \diamond z = (x \diamond z) * y;

(pBCH-3) x * y = y \diamond x = 0 \Longrightarrow x = y;

(pBCH-4) x * y = 0 \Longleftrightarrow x \diamond y = 0.
```

We define a binary relation \leq on X by

$$x \leqslant y \iff x * y = 0 \iff x \diamond y = 0.$$

Throughout this paper \mathfrak{X} will denote a pseudo-BCH algebra.

Example 2.3 ([14], Example 4.12). Let $X = \{0, a, b, c, d\}$. Define binary operations * and \diamond on X by the following tables:

Then $\mathfrak{X} = (X; *, \diamond, 0)$ is a pseudo-BCH algebra.

Let $\mathfrak{X} = (X; *, \diamond, 0)$ be a pseudo-BCH algebra satisfying (pBCK), and let $(G; \cdot, 1)$ be a group. Denote $Y = G - \{1\}$ and suppose that $X \cap Y = \emptyset$. Define the binary operations * and \diamond on $X \cup Y$ by

(1)
$$x * y = \begin{cases} x * y & \text{if } x, y \in X \\ xy^{-1} & \text{if } x, y \in Y \text{ and } x \neq y \\ 0 & \text{if } x, y \in Y \text{ and } x = y \\ y^{-1} & \text{if } x \in X, y \in Y \\ x & \text{if } x \in Y, y \in X \end{cases}$$

and

(2)
$$x \diamond y = \begin{cases} x \diamond y & \text{if } x, y \in X \\ y^{-1}x & \text{if } x, y \in Y \text{ and } x \neq y \\ 0 & \text{if } x, y \in Y \text{ and } x = y \\ y^{-1} & \text{if } x \in X, y \in Y \\ x & \text{if } x \in Y, y \in X. \end{cases}$$

Then $(X \cup Y; *, \diamond, 0)$ is a pseudo-BCH algebra (see [15]).

Example 2.4. Consider the set $X = \{0, a, b, c\}$ with the operation * defined by the following table:

By simple calculation we can get that $\mathfrak{X}=(X;*,0)$ is a BCH algebra. Let \mathfrak{G} be the group of all permutations of $\{1,2,3\}$. We have $G=\{i,d,e,f,g,h\}$, where $i=(1),\ d=(12),\ e=(13),\ f=(23),\ g=(123),\ and\ h=(132).$ Applying (1) and (2), we obtain the following tables:

*	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	0	0	d	e	f	h	g
b	b	a	0	a	d	e	f	h	g
c	c	a	a	0	d	e	f	h	g
d	d	d	d	d	0	h	g	e	f
e	e	e	e	e	g	0	h	f	d
f	f	f	f	f	h	g	0	d	e
g	g	g	g	g	e	f	d	0	h
h	h	h	h	h	f	d	d e	g	0

and

Then $(\{0, a, b, c, d, e, f, g, h\}; *, \diamond, 0)$ is a pseudo-BCH algebra.

From [14] it follows that in any pseudo-BCH algebra \mathfrak{X} , for all $x,y\in X,$ we have:

- (P1) $x \leqslant x$,
- $(P2) \quad x \leqslant y, \ y \leqslant x \Longrightarrow x = y,$
- (P3) $x * (x \diamond y) \leqslant y$ and $x \diamond (x * y) \leqslant y$,
- (P4) $x \leq 0 \Longrightarrow x = 0$,
- $(P5) \quad x * 0 = x \diamond 0 = x,$
- $(P6) \quad 0 * x = 0 \diamond x,$
- $(P7) \quad x \leqslant y \Longrightarrow 0 * x = 0 \diamond y,$
- (P8) $0*(x*y) = (0*x) \diamond (0*y),$
- (P9) $0*(x\diamond y) = (0*x)*(0*y).$

Remark. By Theorem 3.4 of [14], a pseudo-BCH algebra is a pseudo-BCI algebra if and only if it satisfies the following implication:

$$(*) x \leqslant y \Longrightarrow (x * z \leqslant y * z, x \diamond z \leqslant y \diamond z).$$

Proposition 2.5. For a pseudo-BCH algebra \mathfrak{X} the following conditions are equivalent:

- (a) \mathfrak{X} is a pseudo-BCI algebra,
- (b) \mathfrak{X} satisfies axiom (pBCI-1),
- (c) \mathfrak{X} satisfies condition (*).

Proof. The equivalence of (a) and (c) follows from the above remark.

- $(a) \Longrightarrow (b)$ is obvious.
- (b) \Longrightarrow (a): By assumption, \mathfrak{X} satisfies (pBCI-1) and (pBCI-5). The axioms (pBCI-2)–(pBCI-4) follow from the properties (P1)–(P3).
- **3. Atoms and branches.** An element a of \mathfrak{X} is called an atom if $x \leq a$ implies x = a for all $x \in X$, that is, a is a minimal element of $(X; \leq)$. Let us denote by $A(\mathfrak{X})$ the set of all atoms of \mathfrak{X} . By (P4), $0 \in A(\mathfrak{X})$.

Proposition 3.1 ([14], Propositions 4.1 and 4.2). Let \mathfrak{X} be a pseudo-BCH-algebra and let $a \in X$. Then the following conditions are equivalent:

- (i) a is an atom,
- (ii) $x \diamond (x * a) = a$ for all $x \in X$,
- (iii) $0 \diamond (0 * a) = a$,
- (iv) $x * (x \diamond a) = a$ for all $x \in X$,
- $(\mathbf{v}) \quad 0 * (0 \diamond a) = a.$

Proposition 3.2 ([14], Proposition 4.3). Let \mathfrak{X} be a pseudo-BCH algebra and let $a \in X$. Then a is an atom if and only if there is an element $x \in X$ such that a = 0 * x.

As a consequence of Proposition 3.2, we obtain

Corollary 3.3. For every $x \in X$, we have $0 * x \in A(\mathfrak{X})$.

For $x \in X$, set

$$\overline{x} = 0 \diamond (0 * x).$$

By (P6), $\overline{x} = 0 * (0 * x) = 0 \diamond (0 \diamond x) = 0 * (0 \diamond x)$. Note that the map $\varphi(x) = 0 * (0 * x)$ was introduced in [17] for BZ algebras (such algebras are a generalization of BCI algebras). Different properties of this map were used in many papers (for example, [18], [2] and [3]).

Proposition 3.4 ([14], Proposition 4.4). Let \mathfrak{X} be a pseudo-BCH algebra. For any $x, y \in X$ we have:

- (i) $\overline{x*y} = \overline{x}*\overline{y}$,
- (ii) $\overline{x \diamond y} = \overline{x} \diamond \overline{y}$,
- (iii) $\overline{\overline{x}} = \overline{x}$.

For BZ algebras, (iii) was proved in [17]. In [14], the set $\{x \in X : x = \overline{x}\}$ is called the *centre* of \mathfrak{X} and it is denoted by Cen \mathfrak{X} . We conclude from Proposition 3.1 that Cen $\mathfrak{X} = A(\mathfrak{X})$. Then $A(\mathfrak{X}) = \{\overline{x} : x \in X\}$. By Proposition 3.4, $A(\mathfrak{X})$ is a subalgebra of \mathfrak{X} .

For any pseudo-BCH algebra \mathfrak{X} , we set

$$K(\mathfrak{X}) = \{ x \in X : 0 \leqslant x \}.$$

From Corollary 4.19 of [14] it follows that $K(\mathfrak{X})$ is a subalgebra of \mathfrak{X} .

Observe that

$$A(\mathfrak{X}) \cap K(\mathfrak{X}) = \{0\}.$$

Indeed, $0 \in A(\mathfrak{X}) \cap K(\mathfrak{X})$ and if $x \in A(\mathfrak{X}) \cap K(\mathfrak{X})$, then x = 0 * (0 * x) = 0 * 0 = 0.

Lemma 3.5. Let $x, y \in X$. If $x * y \in K(\mathfrak{X})$, then y * x, $x \diamond y$, $y \diamond x \in K(\mathfrak{X})$.

Proof. Let $x * y \in K(\mathfrak{X})$. Then 0 * (x * y) = 0. We deduce from (P8) that $(0 * x) \diamond (0 * y) = 0$, and hence $0 * x \leq 0 * y$. Since $0 * x, 0 * y \in A(\mathfrak{X})$ (see Corollary 3.3), we have 0 * x = 0 * y. Consequently,

$$0 * (y * x) = (0 * y) \diamond (0 * x) = (0 * y) \diamond (0 * y) = 0,$$

that is, 0 * (y * x) = 0. Applying (P9), we also deduce that $0 * (x \diamond y) = 0$ and $0 * (y \diamond x) = 0$. Therefore, $y * x, x \diamond y, y \diamond x \in K(\mathfrak{X})$.

For any element a of a pseudo-BCH-algebra \mathfrak{X} , we define a subset $\mathrm{V}(a)$ of X as

$$V(a) = \{x \in X : a \le x\}.$$

Note that $V(a) \neq \emptyset$, because $a \leq a$ gives $a \in V(a)$. Furthermore, $V(0) = K(\mathfrak{X})$. If $a \in A(\mathfrak{X})$, then the set V(a) is called a *branch* of \mathfrak{X} determined by element a.

Example 3.6. Let $\mathfrak{X} = (\{0, a, b, c, d\}; *, \diamond, 0)$ be the pseudo-BCH algebra given in Example 2.3. It is easily seen that $A(\mathfrak{X}) = \{0, d\}$ and \mathfrak{X} has two branches $V(0) = \{0, a, b, c\}$ and $V(d) = \{d\}$.

Example 3.7. Let $\mathfrak{X} = (\{0, a, b, c, d, e, f, g, h\}; *, \diamond, 0)$ be the pseudo-BCH algebra from Example 2.4. Obviously, $A(\mathfrak{X}) = \{0, d, e, f, g, h\}$. The algebra \mathfrak{X} has the following branches: $V(0) = \{0, a, b, c\}$, $V(d) = \{d\}$, $V(e) = \{e\}$, $V(f) = \{f\}$, $V(g) = \{g\}$, $V(h) = \{h\}$.

Proposition 3.8 ([14], Proposition 4.23). Let \mathfrak{X} be a pseudo-BCH algebra. Then:

- (i) $X = \bigcup \{V(a) : a \in A(\mathfrak{X})\}.$
- (ii) if $a, b \in A(\mathfrak{X})$ and $a \neq b$, then $V(a) \cap V(b) = \emptyset$.

Proposition 3.9. Two elements x, y are in the same branch of \mathfrak{X} if and only if $x * y \in K(\mathfrak{X})$ (or equivalently, $x \diamond y \in K(\mathfrak{X})$).

Proof. If x and y are in the same branch V(a), then $a \le x$ and $a \le y$. By (P6) and (P7), 0 * x = 0 * a = 0 * y. Applying (P8), we obtain $0 * (x * y) = (0 * x) \diamond (0 * y) = 0$. Thus $0 \le x * y$, that is, $x * y \in K(\mathfrak{X})$.

Conversely, suppose that $x * y \in K(\mathfrak{X})$ and $x \in V(a)$, $y \in V(b)$ for some $a, b \in A(\mathfrak{X})$. Hence $a \leq x$ and $b \leq y$. Using (P6) and (P7), we get 0*a = 0*x and 0*b = 0*y. Therefore, $a = \overline{x}$ and $b = \overline{y}$. From Proposition 3.4 we have $\overline{x*y} = \overline{x}*\overline{y} = a*b$ and $\overline{y \diamond x} = b \diamond a$. Since $x*y \in K(\mathfrak{X})$ and also $y \diamond x \in K(\mathfrak{X})$ (see Lemma 3.5) we conclude that $\overline{x*y} = \overline{y} \diamond \overline{x} = 0$. Therefore, $a*b = b \diamond a = 0$ which gives a = b. So x and y are in the same branch. \square

Proposition 3.10. Comparable elements of \mathfrak{X} are in the same branch.

Proof. Let $x, y \in X$ and let $x \leq y$. Then $x * y = 0 \in K(\mathfrak{X})$. By Proposition 3.9, x and y are in the same branch.

Proposition 3.11. *If elements* x *and* y *are comparable, then* x * y, y * x, $x \diamond y$, $y \diamond x \in K(\mathfrak{X})$.

Proof. From Propositions 3.10 and 3.9 we see that $x * y \in K(\mathfrak{X})$ and hence $y * x, x \diamond y, y \diamond x \in K(\mathfrak{X})$ by Lemma 3.5.

4. Branchwise commutativity. A pseudo-BCH algebra \mathfrak{X} is said to be *commutative* if for all $x, y \in X$, it satisfies the following identities:

$$(3) x * (x \diamond y) = y * (y \diamond x),$$

$$(4) x \diamond (x * y) = y \diamond (y * x).$$

Proposition 4.1. Every commutative pseudo-BCH algebra is a pseudo-BCK algebra.

Proof. Let \mathfrak{X} be a commutative pseudo-BCH algebra. First observe that \mathfrak{X} satisfies (pBCK). Let $x \in X$. Applying (pBCH-1), (P5) and (P3), we obtain

$$0 = x * x = x * (x \diamond 0) = 0 * (0 \diamond x) \leq x.$$

Then $0 * x = 0 \diamond x = 0$, that is, (pBCK) holds.

Now we show that \mathfrak{X} satisfies (pBCI-1). Let $x, y \in X$. We have

$$((x * y) \diamond (x * z)) * (z * y) = ((x \diamond (x * z)) * y) * (z * y) \quad [by (pBCH-2)]$$

$$= ((z \diamond (z * x)) * y) * (z * y) \quad [by (4)]$$

$$= ((z * y) * (z * y)) \diamond (z * x) \quad [by (pBCH-2)]$$

$$= 0 \diamond (z * x) \quad [by (pBCH-1)]$$

$$= 0 \quad [by (pBCK)]$$

and hence $(x*y) \diamond (x*z) \leqslant (z*y)$. Similarly, $(x \diamond y) * (x \diamond z) \leqslant z \diamond y$. Thus (pBCI-1) holds in \mathfrak{X} . We conclude from Proposition 2.5 that \mathfrak{X} is a pseudo-BCI algebra, and finally that it is a pseudo-BCK algebra.

Corollary 4.2. Commutative pseudo-BCH algebras coincide with commutative pseudo-BCK algebras.

In [4], G. Dymek introduced the notion of branchwise commutative pseudo-BCI algebras. Following [4], we say that a pseudo-BCH algebra \mathfrak{X} is branchwise commutative if identities (3) and (4) hold for x and y belonging to the same branch. Clearly, any commutative pseudo-BCH algebra is branchwise commutative.

Remark. Note that the pseudo-BCH algebra from Example 2.4 is branchwise commutative but it is not commutative, since $d \diamond (d * a) = 0 \neq d = a \diamond (a * d)$.

The algebra given in Example 2.3 is not branchwise commutative. Indeed, $a*(a\diamond c)=a$ but $c*(c\diamond a)=0$.

Proposition 4.3 ([4], Theorem 3.2). A pseudo-BCI algebra $(X; \leq, *, \diamond, 0)$ is branchwise commutative if and only if for all $x, y \in X$, satisfies the following condition:

(BC)
$$x \leqslant y \Longrightarrow x = y \diamond (y * x) = y * (y \diamond x).$$

Lemma 4.4. If \mathfrak{X} satisfies (BC), then \mathfrak{X} is a pseudo-BCI algebra.

Proof. Let $x, y \in X$ and $x \leq y$. We have

$$\begin{aligned} (x*z) \diamond (y*z) &= ((y \diamond (y*x))*z)*(y*z) & \quad [\text{since } x = y \diamond (y*x)] \\ &= ((y*z) \diamond (y*x))*(y*z) & \quad [\text{by (pBCH-2)}] \\ &= ((y*z)*(y*z)) \diamond (y*x) & \quad [\text{by (pBCH-2)}] \\ &= 0 \diamond (y*x) & \quad [\text{by (pBCH-1)}]. \end{aligned}$$

Since elements x and y are comparable, by Proposition 3.11, $y * x \in K(\mathfrak{X})$. Therefore, $0 \diamond (y * x) = 0$, and hence $(x * z) \diamond (y * z) = 0$. Consequently, $x * z \leq y * z$. Similarly, $x \diamond z \leq y \diamond z$. From Proposition 2.5 it follows that \mathfrak{X} is a pseudo-BCI algebra.

As a consequence of the above lemma and Proposition 4.3, we obtain:

Proposition 4.5. If a pseudo-BCH algebra satisfies (BC), then it is branchwise commutative.

Theorem 4.6. Any branchwise commutative pseudo-BCH algebra is a pseudo-BCI algebra.

Proof. Let \mathfrak{X} be a brachwise commutative pseudo-BCH algebra. Let $x, y \in X$ and $x \leq y$. Then x * y = 0. By Proposition 3.10, elements x and y are in the same branch. Since \mathfrak{X} is brachwise commutative, we obtain

$$y \diamond (y * x) = x \diamond (x * y) = x \diamond 0 = x.$$

Similarly, we prove that $x = y * (y \diamond x)$. Thus condition (BC) holds in \mathfrak{X} . From Lemma 4.4 we conclude that \mathfrak{X} is a pseudo-BCI algebra.

Corollary 4.7. Branchwise commutative pseudo-BCH algebras coincide with branchwise commutative pseudo-BCI algebras.

As a consequence of Corollary 4.7, all results holding for branchwise commutative pseudo-BCI algebras also hold for brachwise commutative pseudo-BCH algebras. We recall some of these results:

Proposition 4.8 ([4]). Let \mathfrak{X} be a branchwise commutative pseudo-BCH/BCI algebra. Then:

(i) for all $x, y \in X$, we have

$$(5) x \diamond (x * y) = y \diamond (y * (x \diamond (x * y))),$$

(6)
$$x * (x \diamond y) = y * (y \diamond (x * (x \diamond y))).$$

(ii) for all x and y belonging to the same branch,

$$(7) x * y = x * (y \diamond (y * x)),$$

(8)
$$x \diamond y = x \diamond (y * (y \diamond x)).$$

(iii) each branch of \mathfrak{X} is a semilattice with respect to the operation \land defined by $x \land y = y \diamond (y * x) = y * (y \diamond x)$.

Theorem 4.9. Let \mathfrak{X} be a pseudo-BCH algebra. The following are equivalent:

- (a) \mathfrak{X} is branchwise commutative,
- (b) \mathfrak{X} satisfies (BC),
- (c) \mathfrak{X} satisfies (5) and (6),
- (d) the identities (7) and (8) hold for all x and y belonging to the same branch of \mathfrak{X} ,
- (e) each branch of \mathfrak{X} is a semilattice with respect to the operation \wedge defined by $x \wedge y = y \diamond (y * x) = y * (y \diamond x)$.

Proof. Let \mathfrak{X} be a branchwise commutative pseudo-BCH algebra. Then, by Theorem 4.6, \mathfrak{X} is a branchwise commutative pseudo-BCI algebra. From Propositions 4.3 and 4.8 we deduce that (a) implies (b), (c), (d) and (e).

- (c) \Longrightarrow (b): Let $x, y \in X$ and $x \leq y$. Then x * y = 0. From (5) we see that $x = y \diamond (y * x)$. Similarly, from (6) we get $x = y * (y \diamond x)$. Therefore, (BC) holds in \mathfrak{X} .
- (d) \Longrightarrow (b): Suppose that $x \leqslant y$. By Proposition 3.10, elements x and y are in the same branch. Putting x * y = 0 in (7) and $x \diamond y = 0$ in (8), we get $0 = x * (y \diamond (y * x)) = x \diamond (y * (y \diamond x))$. Hence $x \leqslant y \diamond (y * x)$ and $x \leqslant y * (y \diamond x)$. Applying (P3), we have $y \diamond (y * x) \leqslant x$ and $y * (y \diamond x) \leqslant x$. Thus $x = y \diamond (y * x) = y * (y \diamond x)$. Consequently, \mathfrak{X} satisfies (BC).
- (e) \Longrightarrow (b): If $x \le y$, then x, y are in the same branch and, by (e), $x = x \land y = y \diamond (y * x) = y * (y \diamond x)$. Therefore, we obtain (b).

(b)
$$\Longrightarrow$$
 (a) follows from Proposition 4.5.

In [4], Dymek obtained an axiomatization of branchwise commutative pseudo-BCI algebras. We give an alternative axiomatization of such algebras.

Theorem 4.10. An algebra $\mathfrak{X} = (X; *, \diamond, 0)$ of type (2, 2, 0) is a branchwise commutative pseudo-BCH algebra if and only if it satisfies the following identities:

- $(A1) \quad x * 0 = x = x \diamond 0,$
- (A2) $(x * y) \diamond z = (x \diamond z) * y$,
- (A3) $(x \diamond (x * y)) \diamond y = 0 = (x * (x \diamond y)) * y,$
- (A4) $x \diamond (x * y) = y \diamond (y * (x \diamond (x * y))),$
- (A5) $x * (x \diamond y) = y * (y \diamond (x * (x \diamond y))).$

Proof. If \mathfrak{X} is a branchwise commutative pseudo-BCH algebra, then, obviously, the identities (A1)–(A5) hold for all $x, y \in X$. Conversely, suppose that \mathfrak{X} satisfies (A1)–(A5). Putting y=0 in (A3) and applying (A1), we obtain (pBCH-1). To prove (pBCH-3), let x*y=y*x=0. Using (A1) and (A4), we get

$$x = x \diamond 0 = x \diamond (x * y) = y \diamond (y * (x \diamond (x * y))) = y \diamond (y * x) = y \diamond 0 = y,$$

that is, (pBCH-3) holds in \mathfrak{X} . We now prove that

$$x * y = 0 \iff x \diamond y = 0.$$

If x * y = 0, then $(x \diamond 0) \diamond y = 0$ by (A3), and hence $x \diamond y = 0$. Thus x * y = 0 implies $x \diamond y = 0$, and analogously, $x \diamond y = 0$ entails x * y = 0. Therefore $\mathfrak X$ satisfies (pBCH-4), and finally, it is a pseudo-BCH algebra. Moreover, $\mathfrak X$ is branchwise commutative by Theorem 4.9.

Remark. From Theorem 3.11 of [4] we see that the variety of all branchwise commutative pseudo-BCH/BCI algebras is weakly regular.

References

- Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187–190.
- [2] Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387–404.
- [3] Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCC-algebras, Algebra Colloquium 18 (Special) (2011), 899–914.
- [4] Dymek, G., On two classes of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl. 31 (2011), 217–230.
- [5] Georgescu, G., Iorgulescu, A., Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961–968.
- [6] Georgescu, G., Iorgulescu, A., Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.
- [7] Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.
- [8] Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320.
- [9] Imai, Y., Iséki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19–22.

- [10] Iorgulescu A., Algebras of Logic as BCK-Algebras, Bucharest 2008.
- [11] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353–406.
- [12] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407–456.
- [13] Iséki, K., An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26–29.
- [14] Walendziak, A., $Pseudo\mbox{-}BCH\mbox{-}algebras$, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1–15.
- [15] Walendziak, A., On ideals of pseudo-BCH-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A **70** (2016), 81–91.
- [16] Walendziak, A., Strong ideals and horizontal ideals in pseudo-BCH-algebras, Ann. Univ. Paedagog. Crac. Stud. Math. 15 (2016), 15–25.
- [17] Zhang, X., Ye, R., *BZ-algebra and group*, J. of Mathematical and Physical Sciences **29** (1995), 223–233.
- [18] Zhang, X., Wang, Y., Dudek, W. A., *T-ideals in BZ-algebras and T-type BZ-algebras*, Indian J. Pure Appl. Math. **34** (2003), 1559–1570.

Andrzej Walendziak Institute of Mathematics and Physics Faculty of Science Siedlce University of Natural Sciences and Humanities 3 Maja 54, PL-08110 Siedlce Poland e-mail: walent@interia.pl

Received December 1, 2016