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The degree of approximation by Hausdorff means
of a conjugate Fourier series

Abstract. The purpose of this paper is to analyze the degree of approxi-
mation of a function f that is a conjugate of a function f belonging to the
Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

1. Introduction. The sequence of partial sums sn(x) for a conjugate series
of the Fourier series of function f converges at the point x to the number
f(x) = − 1

2π

∫ π
0
f(x+t)−f(x−t)

tan(t/2) dt if the function f at the point x satisfies the
Lipschitz condition |f(x± t)−f(x)| < Ctα for α ∈ (0, 1]. The main focus of
our analysis relates to the speed with which the mentioned instance occurs.
If we assume the degree of approximation supx∈R |sn(x) − f(x)|, then the
following question arises: does the sequence (n + 1)α supx∈R |sn(x)− f(x)|
continue to be a bounded sequence? Our analysis is conducted using certain
regular methods.

Several studies have been conducted on the degree of approximation of
a function by different summability means of its Fourier series. For the
first time in 1981, Qureshi [9] discussed the degree of approximation of the
conjugate of a function belonging to a Lipschitz class by Nörlund means of
conjugate Fourier series. He proved the following:
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Theorem 1.1. Let f be a 2π-periodic function and Lebesgue integrable and
let

f(x) =
∞∑
n=1

(bn cosnx− an sinnx).

Let {Pn} be a sequence of positive constants such that Pn = p0+. . .+pn →∞
if n → ∞ and tn(x) = (pns0(x) + pn−1s1(x) + . . . + p0sn(x))/Pn. If {Pn}
satisfies the conditions n|pn| < |Pn| and

∑n
k=1 k|pk − pk−1| < C|Pn|, then

the degree of approximation of the function f(x) is given by |f(x)− tn(x)| =
O( 1

Pn

∑n
k=1

pk
k1+α

), where f ∈ Lipα for α ∈ (0, 1] and {sn(x)} is the sequence
of partial sums of a conjugate series of the Fourier series of f .

The problem of the degree of approximation of a function belonging to
Lipα was the subject of many studies, including the recently published
works of Lal and Mishra [6], [7].

In the first part of this paper, we formulate and prove the variant of the
theorem discussed by Lal [6]. The obtained results (Theorem 2.1) will be
applied in the analysis of the degree of approximation for certain Hausdorff
methods. To the best of our knowledge, no one has investigated the speed of
convergence of the Hölder summation method. Theorem 2.7 of the Hölder
method is the first remarkable result of our work based on Theorem 2.1.

In the second part of this paper, we prove that the generalization of the
obtained results, with respect to the entire class of Hausdorff methods of
a conjugate Fourier series, is impossible. This result, as the second instru-
mental finding of our research, is interesting because the generalization with
respect to the entire class of Hausdorff methods of a Fourier series is possi-
ble (cf. [10]). A counterexample formulated as Theorem 2.8 proves that the
hypothesis presented in the work by Lal and Mishra [7] is false when the
parameter of α is limited to the range (0, 1

2 ].
An infinite matrix C = [cmn], m,n = 0, 1, . . . is called a regular ma-

trix (method) if it transforms any convergent sequence into a convergent
sequence with the same limit.

In 1911, Toeplitz presented the following equivalent conditions for regu-
larity [11].

Theorem 1.2. The matrix C = [cmn] is regular if and only if

T1) ∀n ≥ 0 lim
m→∞

cmn = 0;

T2) lim
m→∞

∞∑
n=0

cmn = 1;

T3) ∃M > 0 ∀m ≥ 0

∞∑
n=0

|cmn| < M .

In 1921, Hausdorff [2] proved the following:
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Theorem 1.3. Given the sequence (µn)∞n=1, define

∆pµn =

p∑
i=0

(
p

i

)
(−1)iµn+i.

Then the matrix Λ with elements

(1.1) λmn =


(
m

n

)
∆m−nµn for n ≤ m,

0 for n > m

is regular if and only if µn is the moment sequence

(1.2) µn =

∫ 1

0
xndχ(x),

where χ is a real, bounded variation function defined on the interval [0, 1]
satisfying the conditions

(1.3) χ(0+) = χ(0) = 0 and χ(1) = 1.

A sequence µn that satisfies the conditions (1.2) is known as a moment
sequence, while a sequence that satisfies both conditions (1.2) and (1.3)
is known as a Hausdorff moment sequence. The matrix Λ in (1.1) that
satisfies both (1.2) and (1.3) is known as a Hausdorff matrix (method). A
real sequence sn is considered to be summable by the Hausdorff matrix
(method) if there exists a function χ that satisfies the conditions (1.2) and
(1.3) so that the sequence

(1.4) vm =
∞∑
n=0

λmnsn

with λm,n defined as in (1.1) is convergent. For the proof of the above
theorems, see the work by Hardy [1].

Since 1921, the Hausdorff theorem has been subject to numerous studies
and generalizations. In 1933, the theorem was proved within the framework
of three-index matrices by Hildebrandt and Schoenberg [3]. Kęska [5] proved
the theorem for multi-index Hausdorff matrices. Jakimovski [4] presented
a variant of the Hausdorff theorem that extended to the space of sequences
of functions.

Let f be a 2π-periodic function and Lebesgue integrable on [−π, π]. The
Fourier series of f at a point x is defined by

(1.5) f(x) ∼ a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx),

where an = 1
π

∫ π
−π f(u) cosnudu and bn = 1

π

∫ π
−π f(u) sinnudu.
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The conjugate series of a Fourier series (1.5) of f is given by

(1.6)
∞∑
n=0

(an sinnx− bn cosnx),

with n-th partial sums sn(x).
The degree of approximation of a function f : R→ R by a trigonometric

polynomial pn(x) of order n is defined by

(1.7) ||pn − f ||∞ = sup
x∈R
|pn(x)− f(x)|.

In 2004, Lal [6] proved the following theorem:

Theorem 1.4. Let T = (ank) be a lower triangular matrix with finite norms
and

(1.8)
n∑
k=0

ank
k + 1

= O

(
1

n+ 1

)
.

If f : R → R is a 2π periodic function, Lebesgue integrable on [−π, π] and
almost Lipα (there is a constant Mf > 0 and ∀x ∈ R there is a subset Ax ⊂
[0, π/2] of measure zero such that t ∈ [0, π/2]−Ax implies |f(x+2t)−f(x−
2t)| = Mf t

α), then the degree of approximation of its conjugate function f
by matrix Cesàro product means vn =

∑n
k=0 ankσk of the conjugate series

(1.6) satisfies, for n = 0, 1, 2, . . .,

(1.9) ||vn − f ||∞ =

O
(

1
(n+1)α

)
for α < 1

O
(

log(n+1)
n+1

)
for α = 1,

where

σk =
1

k + 1

k∑
r=0

sr, sr(x)− f = (1/π)

∫ π/2

0

cos(2r + 1)tdt

sin t
,

f(x) = (−1/π)
∫ π/2

0 Ψ(t) cot tdt and Ψ(t) = f(x+ 2t)− f(x− 2t).

2. The degree of approximation by Hausdorff means of a conju-
gate Fourier series. We first formulate a variant of Theorem 1.4.

Theorem 2.1. Let f be a 2π-periodic function and Lebesgue integrable on
[−π, π], which satisfies the Lipschitz condition for 0 < α < 1

(2.1) |f(x± t)− f(x)| = O(tα) ∀t ∈ [0, π], x ∈ R.
Let Ψx(t) = f(x+t)−f(x−t), A = [cnk] be a regular matrix, which satisfies
the condition

(2.2)
n∑
k=0

|cnk|
(k + 1)α

= O

(
1

(n+ 1)α

)
.
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Let C1 denote the Cesàro method of order 1. Let sn(x) denote the n-th
partial sum of conjugate series of the Fourier series of f . Then for 0 < α <
1 we obtain

(2.3) ||AC1(sn)− f ||∞ = O

(
1

(n+ 1)α

)
,

where

(2.4) f(x) = − 1

2π

∫ π

0
Ψx(t)

dt

tan(t/2)
.

Proof. By virtue of results of [8] and based on the assertion in (2.1) we
may conclude that

(2.5) |an(x)| = |C1(sn(x))− f(x)| ≤ G

(n+ 1)α
.

Let

bm(x) = A(C1(sn(x)))− f(x) = A(C1(sn(x))− f(x)) =
m∑
n=0

cmnan(x),

where A = [cmn]. Then (m+ 1)αbm(x) = (m+ 1)α
∑m

n=0 cmnan(x) and

(2.6)

|(m+ 1)αbm(x)| ≤ (m+ 1)α
m∑
n=0

|cmn||an(x)|

≤ G
m∑
n=0

|cmn|
(m+ 1)α

(n+ 1)α
≤ G1.

This is a consequence of (2.2). �

Definition 2.2. A moment sequence µn is known as a right-shifting se-
quence of moments if there exists µ∗0 ∈ R such that the sequence (µ∗0, µ

∗
1 =

µ0,. . . , µ∗k+1 = µk, . . .) is a moment sequence (1.2).

Corollary 2.3. A matrix Λ = [λnk], where λnk =
(
n
k

)
∆n−kµk for n ≥ k ≥

0 and 0 for others, generated on the basis of a right-shifting sequence of
moments µn, fulfils the condition (2.2).

Proof. We have

(n+ 1)α
n∑
k=0

∣∣∣∣ λnk
(k + 1)α

∣∣∣∣ =
1

(n+ 1)1−α

n∑
k=0

(k + 1)1−α
(
n+ 1

k + 1

)
|∆n−kµk|.

We know that the sequence (µ∗0, µ
∗
1 = µ0,. . . , µ∗k+1 = µk, . . . ) is a moment

sequence. Applying Theorem 204 [1], we obtain

(2.7) µ∗l = µ∗+l − µ
∗−
l ,where ∀ l, p ≥ 0 ∆pµ∗±l ≥ 0.
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Then,

(n+ 1)α
n∑
k=0

∣∣∣∣ λnk
(k + 1)α

∣∣∣∣ =
1

(n+ 1)1−α

n∑
k=0

(k + 1)1−α
(
n+ 1

k + 1

)
|∆n−kµ∗k+1|

≤ 1

(n+ 1)1−α

n∑
k=0

(k + 1)1−α
(
n+ 1

k + 1

)
∆n−kµ∗+k+1

+
1

(n+ 1)1−α

n∑
k=0

(k + 1)1−α
(
n+ 1

k + 1

)
∆n−kµ∗−k+1

≤
n+1∑
l=1

(
n+ 1

l

)
∆n+1−lµ∗+l +

n+1∑
l=1

(
n+ 1

l

)
∆n+1−lµ∗−l

=
n+1∑
l=0

(
n+ 1

l

)
∆n+1−lµ∗+l +

n+1∑
l=0

(
n+ 1

l

)
∆n+1−lµ∗−l

−∆n+1µ∗+0 −∆n+1µ∗−0 .

After considering

n+1∑
l=0

(
n+ 1

l

)
∆n+1−lµ∗±l = µ∗±0

(see p. 252 [1]) and ∆n+1µ∗±0 ≥ 0 (which follows from (2.7)), we obtain

(n+ 1)α
∑n

k=0

∣∣∣ λnk
(k+1)α

∣∣∣ ≤ H. �

Example 1. The Hausdorff moment sequence µn = 1
(q+1)n , which generates

the Euler method (E, q), is a right-shifting sequence of moments because
∆nµ∗0 = (1 + q)∆nµ0 ≥ 0 for µ∗0 = (1 + q).

Example 2. The Hausdorff moment sequence µn = 1
(n+1) , which generates

the Cesàro method C1, is not a right-shifting sequence of moments.

Proof. If µn is a right-shifting sequence of moments, then there exists
such a µ∗0 that makes the sequence (µ∗0, µ

∗
1 = µ0,. . . , µ∗k+1 = µk, . . . ) a

sequence of moments. It is important to observe that the sequences ∆nµ∗±0
must be positive and decreasing with n, which follows from the relationship
∆n+1µ∗±0 −∆n+2µ∗±0 = ∆n+1µ∗±1 and (2.7). Moreover,

(2.8) −
n∑
i=1

(−1)i
(
n

i

)
1/i =

n∑
i=1

1/i,
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which follows from
(
n+1
i

)
=
(
n
i

)
+
(
n
i−1

)
and

(
n
i−1

)
1
i =

(
n+1
i

)
1

n+1 . After
considering (2.8), we can calculate

∆nµ∗0 =

n∑
i=0

(−1)i
(
n

i

)
µ∗i = µ∗0 +

n∑
i=1

(−1)i
(
n

i

)
µi−1

= µ∗0 +

n∑
i=1

(−1)i
(
n

i

)
1/i = µ∗0 −

n∑
i=1

1/i.

Thus, the sequence ∆nµ∗0 cannot be convergent, which is a contradiction.
�

Remark 2.4. However, the Cesàro method C1 satisfies condition (2.2).

Proof.

lim
n→∞

(n+ 1)α

n+ 1

n∑
k=0

1/(k + 1)α = lim
n→∞

1/(n+ 1)α

(n+ 1)1−α − n1−α

= lim
n→∞

1/(n+ 1)

1− (n/(n+ 1))1−α = lim
n→∞

1/(1 + n)2

(1− α)(n/(n+ 1))−α1/(n+ 1)2

=
1

1− α
.

�

Remark 2.5. The Cesàro method Cs for s ∈ N fulfils equation (2.2).

Proof. Cs is a matrix method generated by the Hausdorff moment sequence
µsn = s!

(n+1)(n+2)···(n+s) . Recall that

(2.9)
s!

(n+ 1)(n+ 2) · · · (n+ s)
= s

s−1∑
j=0

(
s−1
j

)
(−1)j

(n+ 1 + j)
.

We prove (2.2). Let λsnk be the Cesàro method Cs. Applying (2.9), we
obtain

λsnk =

(
n

k

)
∆n−kµsk =

(
n

k

)
∆n−ks

s−1∑
j=0

(
s−1
j

)
(−1)j

k + 1 + j

= s
s−1∑
j=0

(
s− 1

j

)
(−1)j

(
n

k

)
∆n−k 1

k + 1 + j

= s
s−1∑
j=0

(
s− 1

j

)
(−1)j

(
n

k

)
∆n−kµ1

k+j .

For j = 0, the matrix Cj = [cjnk], where cjnk =
(
n
k

)
∆n−kµ1

k+j is the Cesàro C1

method that satisfies (2.2), which follows from Remark 2.4. For j > 0, the
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method Cj is the matrix generated on the basis of the right-shifting sequence
of moments µ1

k+j . Therefore, Cj satisfies the condition (2.2) for j > 0, which

follows from Corollary 2.3. Thus,
∑n

k=0
|λsnk|

(k+1)α = O
(

1
(n+1)α

)
. �

Remark 2.6. Let A be a Hölder method Hs for s ∈ N , where Hs is the
Hausdorff matrix, which is generated by the Hausdorff moment sequence
µH

s

n = 1
(n+1)s . Therefore, A satisfies the condition (2.3) in Theorem 2.1.

Proof. Every Hausdorff matrix Λ may be formulated as a product of ma-
trices δµδ, where δnk = (−1)k

(
n
k

)
for n ≥ k ≥ 0 and 0 for n < k. The matrix

µ is a diagonal matrix with elements of the main diagonal µH
s

n = 1
(n+1)s in

the case of Hölder’s s-th order method. Because δ−1 = δ, the Hausdorff
matrix for the Hs method may be formulated as follows:

ΛH
s

= δµH
s
δ = δµH

1 · · ·µH1
δ = δµH

1
δ · · · δµH1

δ = ΛH
1 · · ·ΛH1

.

Because Hölder’s first order method is identical to Cesàro’s first order
method, and in view of Remark 2.4 and the inequalities in (2.5) and (2.6),
we obtain (2.3). �

In view of Theorem 2.1 and Remark 2.6, we obtain the following:

Theorem 2.7. Let f be a 2π periodic function and Lebesgue integrable on
[−π, π], which satisfies Lipschitz condition (2.1). If 0 < α < 1 and r ∈ N ,
then

||Hr(sn)− f ||∞ = O

(
1

(n+ 1)α

)
.

Based on Corollary 2.3, we conclude that the product of the Cesàro C1

method and Hausdorff matrix A, generated on the basis of a right-shifting
sequence of moments, fulfils the condition (2.3). As a result, a question
arises: can the Cesàro C1 method be extended to any of the Hausdorff B
matrices so that condition (2.3) is still fulfilled? Based on the case of α ∈
(0, 1/2], we prove that such a generalization is not possible. For the purpose
of this proof, A is the Euler method (E, 1) and B is the Hausdorff method
generated by the function χ(x) = xβ for 0 < β < α, which satisfies the
assumptions in (1.3). The details are formulated in the following theorem:

Theorem 2.8. We define the function f , which is 2π periodic, Lebesgue in-
tegrable on [0, 2π] and satisfies the Lipschitz condition (2.1) for α ∈ (0, 1/2]:

f(x) =

{
sinα x−2kπ

2 if x ∈ [2kπ, (2k + 1)π)

− sin x−2kπ
2 if x ∈ [(2k − 1)π, 2kπ)

k ∈ Z.

Let sn(x) represent the n-th partial sum of a conjugate series of the Fourier
series of f at a point x and f be defined by (2.4). Then, there exists a class
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of Hausdorff methods L = {Λ} such that

∀Λ ∈ L lim
n→∞

(n+ 1)α ess sup
x∈[0,2π]

|Λ(sn(x)− f(x))| = +∞.

Note that Rhoades, Ozkoklu and Albayrak [10] proved the following the-
orem:

Theorem 2.9. Let f be a 2π-periodic function and Lebesgue integrable on
[−π, π], and let it belong to the Lipschitz class Lipα for 0 < α < 1. Let
sn(x) represent the n-th partial sum of series of the Fourier series of f at
a point x. Then,

∃M > 0∀n ≥ 0 (n+ 1)α sup
x∈[0,2π]

|Λ(sn(x)− f(x))| < M.

We return to Theorem 2.8.

Proof. For the purpose of the following proof, α ∈ (0, 1/2] is fixed. We
define Λ = Λβ ∗ (E, 1), where (E, 1) is the Euler method and Λβ is the
Hausdorff method generated by the function χ(x) = xβ and satisfying the
assumption

(2.10) 0 < β < α.

We know that the sequence

zn(x0) = sn(x0)− f(x0) =
1

π

∫ π

0
Ψx0(t)

cos(n+ 1/2)tdt

2 sin(t/2)
dt

tends to zero with respect to n.
Note that
n∑
k=0

(
n

k

)
cos(k + 1/2)t

2 sin(t/2)

=
n∑
k=0

(
n

k

)
(cost+i sint)k+1−(cost−i sint)k+1−(cost+i sint)k+(cost−i sint)k

8i sin2(t/2)

=
(cos t−1+i sin t)(cos t+1+i sin t)n−(cos t+1−i sin t)n(cos t−1−i sin t)

8i sin2(t/2)

=
2n cosn(t/2)

4i sin(t/2)
[(− sin(t/2) + i cos(t/2))(cos(t/2) + i sin(t/2))n

+ (sin(t/2) + i cos(t/2))(cos(t/2)− i sin(t/2))n]

=
2n−1 cosn(t/2) cos (n+1)t

2

sin(t/2)
.
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Denoting the Euler (E,1) matrix summability transform of zn(x0) by wn(x0),
we obtain

wn(x0) =
1

2n

n∑
k=0

(
n

k

)
zk(x0) =

1

2π

∫ π

0
Ψx0(t)

cosn(t/2) cos (n+1)
2 t

sin(t/2)
dt.

Assume that

(2.11) x0 ∈

(
0,

(
απ

8s(1 + α)(n+ 1)2

) 1
1−α
)
, s ≥ 3, α ∈ (0, 1/2].

A direct calculation provides

Ψx0(t) =


sinα x0+t

2 − sinα x0−t
2 if t ∈ [0, x0]

sinα x0+t
2 + sin x0−t

2 if t ∈ (x0, π − x0)
− sin x0+t−2π

2 + sin x0−t
2 if t ∈ [π − x0, π]

for t ∈ [0, π].
Let

w1
n(x0) =

∫ x0

0

(
sinα

x0 + t

2
− sinα

x0 − t
2

)
cosn(t/2) cos n+1

2 t

sin(t/2)
dt,

w2
n(x0) =

∫ π−x0

x0

(
sinα

x0 + t

2
+ sin

x0 − t
2

)
cosn(t/2) cos n+1

2 t

sin(t/2)
dt,

w3
n(x0) =

∫ π

π−x0

(
− sin

x0 + t− 2π

2
+ sin

x0 − t
2

)
cosn(t/2) cos n+1

2 t

sin(t/2)
dt.

It is clear that

(2.12) w1
0(x0) ≥ 0,

(2.13) w3
n(x0) ≥ 0 for n = 0, n = 4r − 1, n = 4r, r ∈ N.

Note that if 0 < y < x < 1 and b = [1/α], then

(x− y)
(
x1/α−1 + yx1/α−2 + y2x1/α−3 + . . .+ yb−1x1/α−b + ybx1/α−(b+1)

)
=
(
x1/α − y1/α

)
−
(
yb+1x1/α−(b+1) − y1/α

)
,

where yb+1x1/α−(b+1) − y1/α ≤ 0.
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Let x = sinα
(
x0+t

2

)
and y = sinα

(
x0−t

2

)
for t ∈ (0, x0), n ≥ 1, s ≥ 3. Then

sinα
(
x0+t

2

)
− sinα

(
x0−t

2

)
sin(t/2)

≥
sin
(
x0+t

2

)
− sin

(
x0−t

2

)
sin(t/2)

∑b+1
j=1(sinα

(
x0+t

2 )
)1/α−j

(sinα
(
x0−t

2 )
)j−1

=
2 cos(x0/2)∑b+1

j=1(sinα(x0+t
2 ))1/α−j(sinα(x0−t2 ))j−1

≥ 2 cos(x0/2)

(b+ 1) sin1−α(x0+t
2

) ≥ 2 cos(x0/2)

(1 + 1/α) απ
8s(1+α)(n+1)2

≥ 192 cos(x0/2)

π
.

This follows from (2.11).
Therefore,

(2.14)

∀n ≥ 1 w1
n(x0) ≥ 192

π
cosn+1(x0/2)

∫ x0

0
cos

(
n+ 1

2
t

)
dt

=
384

π(n+ 1)
cosn+1(x0/2) sin

(
n+ 1

2
x0

)
≥ 384

π(n+ 1)
cosn+1(x0/2) sin

(
n+ 1

4
x0

)
.

If n = 4r − 1 or n = 4r − 2, then

(2.15)

w3
n(x0) =

∫ π

π−x0

2 cos(t/2) sin(x0/2)

sin(t/2)
cosn(t/2) cos

(
n+ 1

2
t

)
dt

≥
2 cos π−x02 sin(x0/2)

sin π−x0
2

cosn
π − x0

2

2

n+ 1

[
sin

(
n+ 1

2
π

)
− sin

(n+ 1)(π − x0)

2

]
≥ − 16

n+ 1
cosn+1(x0/2) sin

(n+ 1)x0

4
.

Therefore,

(2.16) ∀n ≥ 0 w1
n(x0) + w3

n(x0) ≥ 0.

This follows from (2.11), (2.12), (2.13), (2.14) and (2.15).
A direct calculation provides

(2.17) ∃q′ > 0 w2
n(x0) > q′ for 0 ≤ n ≤ 3.
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If n = 1, then

w2
1(x0) =

∫ π−x0

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos
t

2
cos tdt

=

∫ π/2

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos
t

2
cos tdt

+

∫ π−x0

π/2

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos
t

2
cos tdt = C1 + C2,

where

C1 ≥
∫ π/2

x0

cos t
2

(
2 cos2 t

2 − 1
)

sin1/2
(
t
2

) dt−
∫ π/2

0
cos

t

2

(
1− 2 sin2 t

2

)
dt > 2.69−0.32

and

C2 ≥
√

2

∫ π

π/2
cos

t

2

(
1− 2 sin2 t

2

)
dt > −0.4.

If n = 2, then

w2
2(x0) =

∫ π−x0

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos2 t

2
cos

3t

2
dt

=

∫ π/3

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos2 t

2
cos

3t

2
dt

+

∫ π−x0

π/3

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos2 t

2
cos

3t

2
dt = C1 + C2,

where

C1 ≥
∫ π/3

x0

1

sin1−α t
2

cos2 t

2
cos

3t

2
dt−

∫ π/3

x0

cos2 t

2
cos

3t

2
dt > 2− 0.7

and

C2 ≥ 2

∫ π

π/3
cos2 t

2
cos

3t

2
> −0.8.

If n = 3, then

w2
3(x0) =

∫ π−x0

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos3 t

2
cos 2tdt

=

∫ π/4

x0

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos3 t

2
cos 2tdt

+

∫ 3π/4

π/4

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos3 t

2
cos 2tdt

+

∫ π−x0

3π/4

sinα
(
x0
2 + t

2

)
+ sin

(
x0
2 −

t
2

)
sin t

2

cos3 t

2
cos 2tdt=C1 + C2 + C3,
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where

C1 ≥
∫ π/4

x0

1

sin1/2( t2)
cos3 t

2
cos 2tdt−

∫ π/4

x0

cos3 t

2
cos 2tdt > 1.9− 0.5,

C2 ≥
∫ 3π/4

π/4

sinα(x02 + t
2)

sin t
2

cos3 t

2
cos 2tdt ≥

∫ 3π/4

π/4

cos3 t
2 cos 2t

sin π
8

dt > −0.97

and C3 > 0.
Now we consider n ≥ 4.

We define

(2.18) Inm=

[∫ π
m(n+1)

π
(m+1)(n+1)

+

∫ π
(n+1)

(1+ m
m+1

)

π
(n+1)

(1+m−1
m

)

]
sinα t+x0

2

sin(t/2)
cosn(t/2) cos

(n+1)t

2
dt,

where 1 ≤ m ≤ s− 1,

(2.19) Ins =

[∫ π
s(n+1)

x0

+

∫ 3π
(n+1)

π
(n+1)

(1+ s−1
s

)

]
sinα t+x0

2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt,

(2.20) Jnl =

[∫ π(p+l+1)
2p(n+1)

π(p+l)
2p(n+1)

+

∫ π(3p−l)
2p(n+1)

π(3p−l−1)
2p(n+1)

]
sinα t+x0

2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt

for p ≥ 2 and 0 ≤ l ≤ p− 2.
Note that

Inm ≥
2

n+ 1

(
cos

π(2m− 1)

2m(n+ 1)

)n sinα
(
x0
2 + π(2m−1)

2m(n+1)

)
sin π(2m−1)

2m(n+1)

×

sin π(2m−1)
2m(n+1)

sin π
2m(n+1)

sinα
(
x0
2 + π

2m(n+1)

)
sinα

(
x0
2 + π(2m−1)

2m(n+1)

) − 1

(sin
π

2m
− sin

π

2(m+ 1)

)
.

This follows from (2.18).
We can prove that

(2.21)
sin
(
x0
2 + π

2m(n+1)

)
sin
(
x0
2 + π(2m−1)

2m(n+1)

)
is non-increasing with respect to x0 ∈ (0, π/2).

After considering cot π
2m(n+1) ≥ (2m− 1) cot π(2m−1)

2m(n+1) , we can prove that

(2.22)
sin π(2m−1)

2m(n+1)

sin π
2m(n+1)

is non-decreasing with respect to n for m ∈ {1, . . . , s}.
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Furthermore,

(2.23)
sinα

(
x0
2 + π(2m−1)

2m(n+1)

)
sin π(2m−1)

2m(n+1)

is non-increasing with respect to m. In view of (2.21), (2.22) and (2.23),
the following inequality is satisfied:

(2.24)

Inm ≥
(

cos
π(2s− 1)

2s(n+ 1)

)n sinα
(
x0
2 + π(2s−1)

2s(n+1)

)
sin π(2s−1)

2s(n+1)

×

(sin π(2m−1)
10m

sin π
10m

)1−α

− 1

 2

n+ 1

(
sin

π

2m
− sin

π

2(m+ 1)

)
.

We define

(2.25) Hα
m =

(sin π(2m−1)
10m

sin π
10m

)1−α

− 1

(sin
π

2m
− sin

π

2(m+ 1)

)
.

We estimate

(2.26)

Ins ≥
2

n+ 1

(
cos

π(2s− 1)

2s(n+ 1)

)n sinα
(
x0
2 + π(2s−1)

2s(n+1)

)
sin π(2s−1)

2s(n+1)

×

(sin π(2s−1)
10s

sin π
10s

)1−α (
sin

π

2s
− sin

π

40s

)
−
(

1 + sin
π

2s

) ,
which follows from (2.11), (2.19), (2.21) and (2.22).

The mapping (2.20) can be estimated in similar ways, namely

(2.27)

Jnl ≥ cosn
π(3p− l − 1)

4p(n+ 1)

[
sin

π(p+ l + 1)

4p
− sin

π(p+ l)

4p

]

× 2

(n+ 1)
(

sin π(3p−l−1)
4(n+1)p

)1−α

 sin π(p+l+1)
4p(n+1)

sin π(3p−l−1)
4p(n+1)

α−1

− 1


for p ≥ 2 and l = 0, 1, . . . , p− 2.

Note that

(2.28) cosn
π(3p− l − 1)

4p(n+ 1)
is increasing with respect to n.
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In view of (2.27) and (2.28), we obtain

(2.29)

Jnl ≥
2

n+ 1

[
sin

π(p+ l + 1)

4p
− sin

π(p+ l)

4p

]

×

(
cos π(3p−l−1)

20p

)4

(
sin π(3p−l−1)

20p

)1−α

sin π(3p−l−1)
20p

sin π(p+l+1)
20p

1−α

− 1


for l = 0, 1, . . . , p− 2.

We fix p = 5 and s = 18. We investigate the inequality (2.26) and let

(2.30)

În18 =
2

n+ 1

(
cos

π(2 · 18− 1)

2 · 18(n+ 1)

)n sinα
(
x0
2 + π(2·18−1)

2·18(n+1)

)
sin π(2·18−1)

2·18(n+1)

×

(sin π(2·18−1)
10·18

sin π
10·18

)1−α (
sin

π

2 · 18
− sin

π

40 · 18

)
− sin

π

2 · 18

 .
Then

(2.31)
sin π

2·18 − sin π
40·18

sin π
2·18

> 0.949.

After considering that cosn π(2s−1)
2s(n+1) is increasing with respect to n, we obtain

(2.32) În18 ≥
2

n+ 1

0.45√
0.573

[√
32.85 · 0.0828− 0.0873

]
>

2

n+ 1
· 0.23.

This follows from (2.22), (2.30) and (2.31).
The remaining part of the inequality (2.26) shall be denoted as

(2.33) Ǐn18 = − 2

n+ 1

(
cos

π(2 · 18− 1)

2 · 18(n+ 1)

)n (sin
(
x0
2 + π(2·18−1)

2·18(n+1)

))α
sin π(2·18−1)

2·18(n+1)

.

In view of inequality (2.29), we obtain

(2.34)

3∑
l=0

Jnl ≥
3∑
l=0

2

n+ 1

[
sin

π(6 + l)

20
− sin

π(5 + l)

20

] (cos π(14−l)
100

)4

√
sin π(14−l)

100

×


√√√√sin π(14−l)

100

sin π(6+l)
100

− 1

 > 2

n+ 1
0.1064.

Hence,

(2.35) În18 +
3∑
l=0

Jnl >
2

n+ 1
0.3364.
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This is true as a result of (2.32).
We can calculate that

(2.36)
17∑
m=2

Hα
m > 1.02 for α ≤ 1

2
.

We estimate

(2.37)
17∑
m=2

Inm ≥
2

n+ 1
cosn

π(2 · 18− 1)

2 · 18(n+ 1)

(
sin
(
x0
2 + π(2·18−1)

2·18(n+1)

))α
sin π(2·18−1)

2·18(n+1)

1.02.

This follows from (2.24), (2.25) and (2.36). After considering that the map-
ping

sinα x0+t
2

sin(t/2)
cosn(t/2)

is positive and increasing with respect to t ∈
[
π(2p−1)
2p(n+1) ,

π(2p+1)
2p(n+1)

]
, we can

estimate∫ 3π
n+1

x0

sinα t+x0
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt =

∫ π
s(n+1)

x0

+

∫ 3π
n+1

π(2s−1)
(n+1)s

+
s−1∑
m=2

(∫ π
m(n+1)

π
(m+1)(n+1)

+

∫ π(2m+1)
(m+1)(n+1)

π(2m−1)
m(n+1)

)
+

p−2∑
l=0

(∫ π(p+l+1)
2p(n+1)

π(p+l)
2p(n+1)

+

∫ π(3p−l)
2p(n+1)

π(3p−l−1)
2p(n+1)

)

+

(∫ π
n+1

π(2p−1)
2p(n+1)

+

∫ π(2p+1)
2p(n+1)

π
n+1

)
≥ Ins +

s−1∑
m=2

Inm +

p−2∑
l=0

Jnl .

Therefore,

(2.38)

∀n ≥ 4 ∀α ∈ (0, 1/2] ∀x0 ∈

(
0,

(
πα

8 · 18(1 + α)(n+ 1)2

) 1
1−α
)

∫ 3π
n+1

x0

sinα t+x0
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt

≥ 2

n+ 1

[
0.3364 + 0.02 cosn

π(2 · 18− 1)

2 · 18(n+ 1)
sinα−1 π(2 · 18− 1)

2 · 18(n+ 1)

]
for p = 5 and s = 18. This follows from (2.33), (2.35) and (2.37).

We estimate the following integral for n ≥ 4:

(2.39)

∫ 3π
n+1

x0

sin x0−t
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt

≥ − 2

n+ 1
+

∫ 3π
n+1

π
n+1

sin x0−t
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt.
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After considering that the sequence
sin
(

π
a(n+1)2

− bπ
n+1

)
sin bπ

n+1

is decreasing with re-

spect to n for a ∈ N and b ∈ [1
2 ,

4
3 ], we divide the interval [ π

n+1 ,
3π
n+1 ] so

that

(2.40)
∫ 3π

n+1

π
n+1

sin x0−t
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt ≥ 2

n+ 1
0.752.

In view of (2.39) and (2.40), the following condition is satisfied:

(2.41)

∀n ≥ 4 ∀α ∈ (0, 1/2] ∀x0 ∈

(
0,

(
πα

8 · 18(1 + α)(n+ 1)2

) 1
1−α
)

∫ 3π
n+1

x0

sin x0−t
2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt ≥ −0.248

2

n+ 1
.

Note that

(2.42)

∀n ≥ 4 ∀α ∈ (0, 1/2] ∀x0 ∈

(
0,

(
πα

8 · 18(1 + α)(n+ 1)2

) 1
1−α
)

∫ 3π
n+1

x0

sinα t+x0
2 + sin x0−t

2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt

≥ 0.04

n+ 1
cosn

π(2 · 18− 1)

2 · 18(n+ 1)
sinα−1 π(2 · 18− 1)

2 · 18(n+ 1)
,

which follows from (2.38) and (2.41).
If n ≥ 4, then the function

sinα x0+t
2 + sin x0−t

2

sin(t/2)

is positive and decreasing with respect to t ∈ [ 3π
n+1 , π − x0]. Therefore,

(2.43)
∫ π−x0

3π
n+1

sinα x0+t
2 + sin x0−t

2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt ≥ 0.

In view of (2.42) and (2.43), we obtain

(2.44)

∀n ≥ 4 ∀α ∈ (0, 1/2] ∀x0 ∈

(
0,

(
απ

8 · 18(1 + α)(n+ 1)2

) 1
1−α
)

∫ π−x0

x0

sinα x0+t
2 + sin x0−t

2

sin(t/2)
cosn(t/2) cos

(n+ 1)t

2
dt

≥ 0.04

n+ 1
cosn

π(2 · 18− 1)

2 · 18(n+ 1)
sinα−1 π(2 · 18− 1)

2 · 18(n+ 1)
.
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In view of (2.16), (2.17) and (2.44), we obtain

(2.45)
∃q > 0 ∀n ≥ 0 ∀α ∈ (0, 1/2] ∀x0 ∈

0,

(
απ 1

1+α

8 · 18(n+ 1)2

) 1
1−α


(n+ 1)wn(x0) > q.

Let Λβ be a Hausdorff matrix with elements λβmn =
(
m
n

)
∆m−nµβn, where

µβn =
∫ 1

0 x
ndxβ for β ∈ (0, α). Because the function xβ increases with

respect to x ∈ [0, 1], the following inequality is fulfilled:

(2.46) ∆m−nµβn =

∫ 1

0
xn(1− x)m−ndxβ ≥ 0.

Denoting the Λβ matrix transform of wn(x0) by vβm(x0), we obtain

vβm(x0) =

m∑
n=0

λβmnwn(x0),where x0 ∈

0,

(
απ 1

1+α

8 · 18(m+ 1)2

) 1
1−α
 .

We fix a real number µβ−1. Then

vβm(x0) =
1

m+ 1

m∑
n=0

(
m+ 1

n+ 1

)
∆m−nµβn(n+ 1)wn(x0)

≥ q

m+ 1

m∑
n=0

(
m+ 1

n+ 1

)
∆m−nµβn

for x0 ∈

(
0,

(
απ 1

1+α

8·18(m+1)2

) 1
1−α
)

, this follows from (2.45) and (2.46). There-

fore,

(2.47)

∀m ≥ 0 ess sup
x∈[0,2π]

|Λsn(x)− f(x)|

≥ ess sup

x0∈

0,

(
απ 1

1+α

8·18(m+1)2

) 1
1−α


|vβm(x0)|

≥ q

m+ 1

m∑
n=0

(
m+ 1

n+ 1

)
∆m−nµβn.
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Note that for m ≥ 0, the following condition is fulfilled:

(2.48)

q

m+ 1

m∑
n=0

(
m+ 1

n+ 1

)
∆m−nµβn

=
q

m+ 1

(
−∆m+1µβ−1 + ∆m+1µβ−1 +

m∑
n=0

(
m+ 1

n+ 1

)
∆m−nµβn

)
=

q

m+ 1

(
−∆m+1µβ−1 + µβ−1

)
.

For the purpose of the following proof we show that

(2.49) ∀α ∈
(

0,
1

2

]
1

(m+ 2)1−α − (m+ 1)1−α ≥ (m+ 2)α,

and

(2.50) −∆m+2µβ−1 − (−∆m+1µβ−1) = ∆m+1µβ0 ≥ 0.

Note that

(2.51) ∆m+1µβ0 =

m+1∏
j=1

j

β + j
.

This follows from (2.46). We estimate

(2.52) (m+ 1)α ess sup
x∈[0,2π]

|vβm(x)| ≥ q(m+ 1)α

m+ 1
(−∆m+1µβ−1 + µβ−1).

This follows from (2.48).
We calculate

(2.53)

lim
m→∞

−∆m+1µβ−1

(m+ 1)1−α = lim
m→∞

−∆m+2µβ−1 + ∆m+1µβ−1

(m+ 2)1−α − (m+ 1)1−α

≥ lim
m→∞

∆m+1µβ0 (m+ 2)α = lim
m→∞

e
ln
[
(m+2)α∆m+1µβ0

]

= lim
m→∞

e

[
ln(m+2)α+ln

∏m+1
j=1

j/β
1+j/β

]

= lim
m→∞

exp

ln(m+ 2)α

∑m+1
j=1 ln j/β

1+j/β

ln(m+ 2)α
+ 1

 .
This is a consequence of (2.49), (2.50) and (2.51).

Furthermore,

(2.54) lim
m→∞

∑m+1
j=1 ln j/β

1+j/β

ln(m+ 2)α
= lim

m→∞

ln (m+2)/β
1+(m+2)/β

ln
(
m+3
m+2

)α = −β
α
> −1.
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This follows from (2.10). In view of (2.53) and (2.54), we obtain

(2.55) lim
m→∞

−1

(m+ 1)1−α∆m+1µβ−1 = +∞.

In view of (2.47), (2.52) and (2.55), our proof is complete. �

References

[1] Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
[2] Hausdorff, F., Summationsmethoden und Momentfolgen, Math. Z. 9 (1921), I: 74–

109, II: 280–289.
[3] Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment

problem for a finite interval in one or several dimensions, Ann. of Math. 34 (1933),
317–328.

[4] Jakimovski, A., The sequence-to-function analogues to Hausdorff transformations,
Bulletin of the Research Council of Israel vol. 8, 1959 (1960).

[5] Kęska, S., A variant of the Hausdorff theorem for multi-index matrices II, Linear
Algebra Appl. 327 (2001), 17–26.

[6] Lal, S., Approximation of conjugates of almost Lipschitz functions by matrix Cesàro
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