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Generalization of some extremal problems
on non-overlapping domains with free poles

Abstract. Some results related to extremal problems with free poles on
radial systems are generalized. They are obtained by applying the known
methods of geometric function theory of complex variable. Sufficiently good
numerical results for γ are obtained.

1. Introduction. In geometric function theory of complex variable ex-
tremal problems on non-overlapping domains form the well-known clas-
sic direction. In the paper [1] Lavrent’ev posed and solved a problem of
maximizing the product of conformal radii of two non-overlapping simply
connected domains. Topics connected with the study of problems on non-
overlapping domains was developed in papers [1]–[21]. This paper summa-
rizes some results obtained in [5], [2].

Let N, R be the set of natural and real numbers, respectively, C be
the complex plane, C = C ∪ {∞} be the one point compactification and
R+ = (0,∞).

Let r(B, a) be an inner radius of a domain B ⊂ C with respect to a point
a ∈ B (see [6], [13], [3]) and χ(t) = 1

2(t+ t−1).
Let n ∈ N. A set of points An :=

{
ak ∈ C : k = 1, n

}
is called n-radial

system if |ak| ∈ R+, k = 1, n, and 0 = arg a1 < arg a2 < . . . < arg an < 2π.
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Denote
Pk(An) := {w : arg ak < argw < arg ak+1},
θk := arg ak, an+1 := a1, θn+1 := 2π,

αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n.

This work is based on application of separating transformation developed
in [4]–[6]. For specific use of this method we consider a special system of

conformal mappings. By ζ = πk(w) = −i
(
e−iθkw

) 1
αk , k = 1, n we denote

unique branch of multi-valued analytic function πk(w) performing univalent
and conformal mapping Pk(An) onto the right half plane Re ζ > 0.

For an arbitrary n-radial system of points An = {ak} and γ ∈ R+ we
assume that

L(γ)(An) :=
n∏
k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]1− 1
2
γα2

k

·
n∏
k=1

|ak|1+ 1
4
γ(αk+αk−1),

L(0)(An) :=

n∏
k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]
· |ak|.

The class of n-radial systems of points for which L(γ)(An) =1 (L(0)(An) =1)
automatically includes all systems with n different points located on the unit
circle.

The main purpose of this work is to obtain exact upper estimates for the
functionals

(1) Jn(γ) = rγ (B0, 0)
n∏
k=1

r (Bk, ak) ,

In(γ) = [r (B0, 0) r (B∞,∞)]γ
n∏
k=1

r (Bk, ak) ,

where γ ∈ R+, An = {ak}nk=1 is n-radial system of points, a0 = 0, and
{Bk}nk=0 is a system of non-overlapping domains (i.e. Bp ∩Bj = ∅ if p 6= j)
such that ak ∈ Bk, k = 0, n.

2. Main results.

Theorem 1. Let n ∈ N, n ≥ 2 and γ ∈ (0, 1]. Then for any n-radial
system of points An = {ak}nk=1 such that L(γ) (An) = 1 and any system of
non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 1, n, a0 = 0 ∈ B0 we have
the inequality

(2) Jn(γ) ≤ 4n+ γ
nγ

γ
nnn

(n2 − γ)n+ γ
n

(
n−√γ
n+
√
γ

)2
√
γ

.
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Equality in (2) is achieved when ak and Bk, k = 0, n are, respectively, poles
and circular domains of the quadratic differential

Q(w)dw2 = −(n2 − γ)wn + γ

w2(wn − 1)2
dw2.

Theorem 2. Let n ∈ N, n ≥ 2 and γ = 1
2 . Then for any n-radial system

of points An = {ak}nk=1 such that L(0) (An) = 1 and any system of non-
overlapping domains Bk, B0, B∞, ak ∈ Bk ⊂ C, k = 1, n, a0 = 0 ∈ B0 ⊂ C,
a∞ =∞ ∈ B∞ ⊂ C we have the inequality

(3) [r (B0, 0) r (B∞,∞)]
1
2

n∏
k=1

r (Bk, ak) ≤
22n+ 1

n

(n2 − 2)
1
n

+n
2

(
n−
√

2

n+
√

2

)√2

.

Equality in (3) is achieved, when ak and Bk are, respectively, poles and
circular domains of the quadratic differential

Q(w)dw2 = −w
2n + wn(2n2 − 2) + 1

w2(wn − 1)2
dw2.

Theorem 3. Let γ ∈ (0; γ0
2 ], γ0

2 = 1.1, ε = 0.25. Then for any 2-radial
system of points A2 = {ak}2k=1 such that L(γ)(A2) = 1, 1− ε < |ak| < 1 + ε,
k = 1, 2 and any system of non-overlapping domains {Bk}2k=0, ak ∈ Bk,
k = 0, 2, a0 = 0 ∈ B0, we have the inequality

rγ(B0, 0)
2∏

k=1

r(Bk, ak) ≤ rγ (D0, 0)
2∏

k=1

r (Dk, dk) ,

where Dk, dk, k = 0, 2, d0 = 0, are circular domains and poles of the
quadratic differential

Q(w)dw2 = −(4− γ)w2 + γ

w2(w2 − 1)2
dw2.

Proof of Theorem 1. We use the method due to Bakhtin [2]–[3] and prop-
erties of separating transformation (see [4]–[7], [3], [8]). We make separating
transformation of domains {Bk}nk=1. Suppose

Pk := Pk(An) := {w ∈ C\{0} : θk < argw < θk+1}.

Consider the introduced system of functions ζ = πk(w) = −i
(
e−iθkw

) 1
αk ,

k = 1, n.
Let Ω

(1)
k , k = 1, n be a domain of the plane Cζ obtained by combining

the connected component πk(Bk
⋂
P k) containing a point πk(ak), with its

symmetrical reflection with respect to the imaginary axis.
By Ω

(2)
k , k = 1, n, we denote the domain of the plane Cζ , obtained by

combining the connected component πk(Bk+1
⋂
P k), containing the point
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πk(ak+1), with its symmetrical reflection with respect to the imaginary axis,
Bn+1 := B1, πn(an+1) := πn(a1).

Besides, by Ω
(0)
k we denote the domain of Cζ , obtained by combining the

connected component πk(B0
⋂
P k), containing the point ζ = 0, with its

symmetrical reflection with respect to the imaginary axis. Denote πk(ak) :

= ω
(1)
k , πk(ak+1) := ω

(2)
k , k = 1, n, πn(an+1) := ω

(2)
n .

The definition of πk implies that

|πk(w)− ω(1)
k | ∼

1

αk
|ak|

1
αk
−1 · |w − ak|, w → ak, w ∈ Pk,

|πk(w)− ω(2)
k | ∼

1

αk
|ak+1|

1
αk
−1 · |w − ak+1|, w → ak+1, w ∈ Pk,

|πk(w)| ∼ |w|
1
αk , w → 0, w ∈ Pk.

Then, using results of papers [4]–[7], [3], we obtain the inequalities

(4) r (Bk, ak) ≤

r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
1
αk
|ak|

1
αk
−1 · 1

αk−1
|ak|

1
αk−1

−1


1
2

,

k = 1, n, Ω
(2)
0 := Ω(2)

n , ω
(2)
0 := ω(2)

n ,

(5) r (B0, 0) ≤

[
n∏
k=1

rα
2
k

(
Ω

(0)
k , 0

)] 1
2

.

Repeating arguments given in [3] in the proof of Theorem 5.2.1 and taking
into account introduced sets of domains {Pk}nk=1, functions {πk}nk=1 and
numbers {θk}nk=1, we obtain the following inequality for the investigated
functional (1):

(6)

Jn(γ) ≤
n∏
k=1

[
r
(

Ω
(0)
k , 0

)]α2k
2
γ
·
n∏
k=1

r
(

Ω
(2)
k−1, ω

(2)
k−1

)
r
(

Ω
(1)
k , ω

(1)
k

)
1

αk−1·αk |ak|
1

αk−1
−1 · |ak|

1
αk
−1


1
2

=

n∏
k=1

αk ·
n∏
k=1

|ak|

|akak+1|
1

2αk

×

[
n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

) n∏
k=1

r
(

Ω
(1)
k , ω

(1)
k

)
r
(

Ω
(2)
k , ω

(2)
k

)] 1
2

.

Expression in parentheses of the last formula in (6) is a product of the func-

tional rβ
2
(

Ω
(0)
k , 0

)
r
(

Ω
(1)
k , ω

(1)
k

)
r
(

Ω
(2)
k , ω

(2)
k

)
on triples of domains

(
Ω

(0)
k ,

Ω
(1)
k ,Ω

(2)
k

)
of the plane Cζ .
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It is known [15] that the functional

Y3(σ1, σ2, σ3) =
rσ1(D1, d1) · rσ2(D2, d2) · rσ3(D3, d3)

|d1 − d2|σ1+σ2−σ3 · |d1 − d3|σ1−σ2+σ3 · |d2 − d3|−σ1+σ2+σ3
,

σk ∈ R+, dk ∈ Dk ⊂ C, Dk ∩ Dp = ∅, k = 1, 2, 3, p = 1, 2, 3, k 6= p, is
invariant under all conformal automorphisms of the complex plane C.

With this relation in mind, the following estimate holds:

Jn(γ) ≤

(
n∏
k=1

αk

)
·
n∏
k=1

|ak|

|akak+1|
1

2αk

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2

×

[
n∏
k=1

|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k

] 1
2

.

Note that |ω(1)
k | = |ak|

1
αk , |ω(2)

k | = |ak+1|
1
αk , |ω(1)

k − ω
(2)
k | = |ak|

1
αk +

|ak+1|
1
αk .

Taking into account these equalities, we obtain

Jn(γ) ≤

(
n∏
k=1

αk

)
·
n∏
k=1

|ak|

|akak+1|
1

2αk

×

(
n∏
k=1

|ω(1)
k − ω

(2)
k |

)(
n∏
k=1

|ω(1)
k · ω

(2)
k |

|ω(1)
k − ω

(2)
k |

) γα2k
2

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2

= 2n ·

(
n∏
k=1

αk

)
·
n∏
k=1

χ

(∣∣∣∣ akak+1

∣∣∣∣ 1
2αk

)
|ak|

× 2
− γ

2

n∑
k=1

αk

[
n∏
k=1

χ

(∣∣∣∣ akak+1

∣∣∣∣ 1
2αk

)]− γα2k
2
(

n∏
k=1

∣∣∣∣ak+1

ak

∣∣∣∣
) γα2k

2

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2
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= 2
n− γ

2

n∑
k=1

α2
k ·

(
n∏
k=1

αk

)
·
n∏
k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]1− γα
2
k

2

×
n∏
k=1

|ak|1+ 1
4
γ(αk+αk−1)

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2

= 2
n− γ

2

n∑
k=1

α2
k ·

(
n∏
k=1

αk

)
· L(γ) (An)

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2

.

For each k = 1, n we can easily define conformal automorphism ζ = Tk(z) of

complex numbers of the plane C such that Tk(0) = 0, Tk
(
ω

(s)
k

)
= (−1)s · i,

G
(q)
k := Tk

(
Ω

(q)
k

)
, k = 1, n, s = 1, 2, q = 0, 1, 2.

Then 
n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k


1
2

=


n∏
k=1

rα
2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)
22−γα2

k


1
2

.

Then using results of [3], [15], we obtain

Jn(γ) ≤ 2
n− γ

2

n∑
k=1

α2
k ·

(
n∏
k=1

αk

)
· L(γ) (An)

×
n∏
k=1

r
α2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)
22−γα2

k


1
2

= 2
n− γ

2

n∑
k=1

α2
k

(
n∏
k=1

αk

)
· L(γ)(An) · 2

−n+ γ
2

n∑
k=1

α2
k
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×

[
n∏
k=1

rα
2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)] 1
2

≤

(
n∏
k=1

αk

)
· L(γ)(An) ·

[
n∏
k=1

rα
2
kγ
(
G

(0)
k , 0

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)] 1
2

.

Following the paper [15], we have

(7) Jn(γ) ≤ γ−
n
2

[
n∏
k=1

Ψ (βk)

]1/2

,

where Ψ(β) = 2β
2+6 · ββ2+2(2− β)−

1
2

(2−β)2 · (2 + β)−
1
2

(2+β)2 , β ∈ [0, 2].
Similarly to [5], we consider the next extremal problem:

n∏
k=1

Ψ(βk)→ sup;

n∑
k=1

βk = 2
√
γ, βk = αk

√
γ, 0 < βk ≤ 2.

Necessary conditions have the form

Ψ′(βk)

Ψ(βk)
=

−λ
n∏
k=1

Ψ(βk)

, k = 1, n.

We will show that all βk are equal. We investigate behavior of the function
F (β) = Ψ′(β)

Ψ(β) = 2β ln(2β)+ 2
β +(2−β) ln(2−β)−(2+β) ln(2+β) on interval

β ∈ [0, 2]. It is strictly decreasing on the interval (0;β0], β0 ∈ (1.32; 1.33)
and increasing on [β0; 2). Then we use the method of the proof of Theorem 4
[5] and obtain that unique solution of the extremal problem is the point
( 2
n , . . . ,

2
n). Estimates (4), (5), (7) yield inequality (2) of Theorem 1. The

case of equality is verified directly and Theorem 1 is proved. �

Dubinin proved Theorem 1 if γ = 1 and for any distinct points ak that
lie on the unit circle and any non-overlapping domains Bk (see [5], [8]).

Proof of Theorem 2. We retain all notation for separating transforma-
tion of domains introduced in the proof of Theorem 1 for domains Bk,
k = 0, n. By Ω

(∞)
k we denote the domain of plane Cζ , obtained by com-

bining the connected component πk(B∞
⋂
Ek) containing the point ζ =∞

with its symmetrical reflection with respect to the imaginary axis. The

family
{

Ω
(∞)
k

}n
k=1

is a result of separating transformation of an arbitrary

domain B∞,∞ ∈ B∞ ⊂ C with respect to the families {Pk}nk=1 and {πk}nk=1
at the point ζ =∞.
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By Theorem 2 in [5] we have

(8) r(B∞,∞) ≤

[
n∏
k=1

rα
2
k

(
Ω

(∞)
k ,∞

)] 1
2

.

Using (4), (5), (8), we obtain

[r (B0, 0) r (B∞,∞)]
1
2

n∏
k=1

r (Bk, ak) ≤ 2n ·

(
n∏
k=1

αk

)
· L(0)(An)

×

 n∏
k=1

rα
2
kγ
(

Ω
(0)
k , 0

)
· rα2

kγ
(

Ω
(∞)
k ,∞

)
·
r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
∣∣∣ω(1)
k − ω

(2)
k

∣∣∣2


1
2

.

Theorem 6 in [5] gives

(9)
[r (B0, 0) r (B∞,∞)]α

2
kγ · r (B1, a1) r (B2, a2)

|a1 − a2|2
≤ Ψ(β)

= β2β2 · |1− β|−(1−β)2 · (1 + β)−(1+β)2 , 0 < β ≤
√

2.

Inequality (9) was obtained by Dubinin using the results of Kolbina [15].
Similarly to [5], we consider the extremal problem:

n∏
k=1

Ψ(βk)→ sup;
n∑
k=1

βk =
√

2.

We introduce a function F (β) = Ψ′(β)
Ψ(β) . Calculations show that this

function is decreasing on the interval (0;β0] and increases on [β0;
√

2),
0.85 < β0 < 1. Further, as in the proof of Theorem 6 in [5], we verify
that the unique solution of the extremal problem is the point (

√
2
n , . . . ,

√
2
n ).

Estimates (4), (5), (8), (9) yield the inequality (3) of Theorem 2. The case
of equality is verified directly. Theorem 2 is proved. �

Proof of Theorem 3. The proof is based on application of separating
transformation, developed in details in [6]. According to the conditions
of Theorem 3, a0 = 0, 1− ε < |ak| < 1 + ε, k = 1, 2. Assume

0 = arg a1 < arg a2 < 2π.

Let α1 := 1
π · (arg a2− arg a1), α2 := 1

π · (2π− arg a2), Pk := {w : arg ak <

argw < arg ak+1}, k = 1, 2, arg a3 = 2π, P0 := P2, P3 := P1.
The family of two symmetrical domains {D(1)

k ;D
(2)
k−1} with respect to

the imaginary axis is called a result of separating transformation of the
domain Bk.
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Further, as in Theorem 5.2.1 in [3], using the separating transformation
we obtain

(10) J2(γ) ≤ L(γ)(A2)

[
2∏

k=1

α2
kr
γ·α2

k(D0, 0) · r(D1, 1) · r(D2,−1)

] 1
2

.

We will prove that for α0 ≥ 2√
γ , α0 = max{α1, α2} extremal configura-

tions different than those referred in Theorem 3 do not exist. For this we
find a value of the functional (see Theorem 5.2.3 in [3])

J0
2 (γ) = rγ(D0, 0) ·

2∏
k=1

r(Dk, dk) = 4 · (γ)
γ
2

(1− γ
4 )

2+
γ
2
·
(

1−
√
γ

2

1+
√
γ

2

)2
√
γ

if γ = 1.1. We have that J0
2 (1.1) ≈ 0.8315.

Denote r(B0, 0) = r0, r(B1, a1) = r1, r(B2, a2) = r2. The Lavrent’ev’s
theorem [17] gives r0r1 < |a1|2, r0r2 < |a2|2, r2

0r1r2 < |a1|2|a2|2 =⇒ r1r2 <
|a1|2|a1|2

r20
.

Then rγ(B0, a0) ·
2∏

k=1

r(Bk, ak) = rγ0 ·
2∏

k=1

r(Bk, ak) ≤ rγ0 ·
|a1|2·|a2|2

r20
≤

J0
2 (γ) ⇒ r0 ≥

(
|a1|2·|a2|2
J0
2 (γ)

) 1
2−γ

. If r0 ≥
(
|a1|2·|a2|2
J0
2 (γ)

) 1
2−γ , then the extremal

configurations do not exist. Consider the case r0 ≤
(
|a1|2·|a2|2
J0
2 (γ)

) 1
2−γ

.

J2(γ) ≤ rγ0 |a1 − a2|2 = rγ0

(
(|a1| − |a2|)2 + 4|a1| · |a2| sin2(2− α0)

π

2

)
≤
(
|a1| · |a2|
J0

2 (γ)

) γ
2−γ
·
(

(|a1| − |a2|)2 + 4|a1| · |a2| sin2(2− α0)
π

2

)
≤ J0

2 (1.1).

Substituting ε = 0.25, γ = 1.1, n = 2, |a1| = 1 − ε, |a2| = 1 + ε,
J0

2 (1.1) = 0.8315 in the last inequality, we obtain

(11) (1 + ε)
1.1

2−1,1

(
4ε2 + 4(1 + ε) sin2

(
2− 2√

1.1

)
π

2

)
≤ J0

2 (1.1)1+ 1.1
2−1.1 .

Performing calculations of right and left sides of the inequality (11), we
have 0.6085 < 0.6663. From this it follows that if ε = 0.25, then inequality
(11) is true. Hence J = J2(1.1)

J0
2 (1.1)

≤ 0.7316
0.8315 = 0.8798 < 1, i.e. if α0 > 2√

γ ,

J2(γ) < J0
2 (γ) then the maximum value of the functional J2(γ) for such

domains is not attained. Then α0 ≤ 2√
γ and we can apply inequality (10).

Using a result obtained in the proof of Theorem 4 in [5], we can write the
following inequality

J2(γ) ≤ 1√
γ ·
[

2∏
k=1

2σ
2
k+6 · σσ

2
k+2

k · (2− σk)−
1
2

(2−σk)2(2 + σk)
− 1

2
(2+σk)2

] 1
2

,
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where σk =
√
γ · αk. Consider the function

Ψ(σ) = 2σ
2+6 · σσ2+2 · (2− σ)−

1
2

(2−σ)2(2 + σ)−
1
2

(2+σ)2 ,

σ ∈ [0, 2] and we will conduct detailed investigation of its graph on this
interval (see Fig.1).

Ψ(σ) is logarithmically convex on interval [0;x0], x0 ≈ 1.32. On [0;x1],
x1 ≈ 1.05 the function increases from Ψ(0) = 0 to Ψ(x1) ≈ 0.9115, and it
decreases on interval [x1;x2], x2 ≈ 1.6049 to Ψ(x2) ≈ 0.86, and on [x2; 2] it
increases to Ψ(2) = 1. x3 ≈ 1.9, Ψ(x3) = Ψ(x1) ≈ 0.9115.

Figure 1.

Using equality σ1 + σ2 = 2
√
γ, we will prove that Ψ(σ1) · Ψ(σ2) ≤

(Ψ(x1))2 ≈ 0.8308. For σ ∈ [0;x0] we make appropriate conclusion from
the logarithmic convexity of the function Ψ(σ). For σ2 ∈ [x0;x3] from
properties of the graph of the function Ψ(σ), we have Ψ(σ2) ≤ Ψ(x1) and
Ψ(σ1) ≤ Ψ(x1) and thus Ψ(σ1) ·Ψ(σ2) ≤ (Ψ(x1))2.

If σ2 ∈ [x3; 2] then Ψ(σ2) < Ψ(2) = 1, Ψ(σ1) < Ψ(0, 2)� 0.4, and hence
Ψ(σ1) ·Ψ(σ2) < 0, 4 < (Ψ(x1))2. So, J2(γ) ≤ J0

2 (γ). Inequality (11) is true
and Theorem 3 is proved. �
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