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Eccentric distance sum index
for some classes of connected graphs

Abstract. In this paper we show some properties of the eccentric distance
sum index which is defined as follows ξd(G) =

∑
v∈V (G)D(v)ε(v). This index

is widely used by chemists and biologists in their researches. We present a
lower bound of this index for a new class of graphs.

1. Introduction. In this paper we will be considering simple and con-
nected graphs. We will start with a few definitions. Let G = (V (G), E(G))
be a simple connected graph of order n = |V (G)| and size m = |E(G)|.

For a vertex v ∈ V (G), we denote a set of neighbours of v by N(v).
Degree is denoted by deg(v) and defined as deg(v) = |N(v)|. Vertex of
degree equal to 1 is called a pendant vertex. For vertices u, v ∈ V (G), we
define a distance d(u, v) as the length of the shortest path between u and v.
What is more, D(v) denotes the sum of all distances from the vertex v. The
eccentricity ε(v) of a vertex v is the maximum of distances between v and
all other vertices. The minimum eccentricity over all vertices is denoted by
rad(G) and called the radius of the graph G, while the maximum eccentricity
is denoted by diam(G) and called the diameter of the graph G.

Let Kn be a complete graph and Pn be a path on n vertices. For graphs
G and H we denote the join operation by G +H and by G ∪H we mean
a disjoint sum of those graphs.

2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C40, 05C90.
Key words and phrases. Adjacent eccentric distance sum, diameter, distance, eccen-

tricity, radius, Wiener index.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235271343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


26 H. Bielak and K. Broniszewska

A vertex in a graph is called a cutpoint when the number of components
in a graph increases after removal of this vertex. Graph which is connected,
nontrivial and has no cutpoints is called nonseparable graph. A block of
a graph G is a maximal nonseparable subgraph of G. A cactus is a connected
graph, each of whose block is isomorphic to a cycle or a path of order 2.
A spanning tree of a connected graph G is a subtree of G which includes all
of the vertices of G. Not defined notations one can find in [1].

The eccentric distance sum index is defined as follows:

ξd(G) =
∑

v∈V (G)

D(v)ε(v).

The eccentric distance sum index was introduced in 2002 by Gupta, Singh
and Madana [2]. The authors showed that this graph invariant can be
used for predicting some biological and physical properties. It has a vast
potential in quantitative structure-activity relationship. Some structure-
activity studies using the eccentric distance sum index were proved [2] to
be better than the corresponding values obtained using the Wiener index of
a graph defined in 1947 [6] as:

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑
v∈V (G)

D(v).

The eccentric distance sum index properties were studied recently. Yu,
Feng and Ilić [7] described the extremal tree with respect to the eccentric
distance sum index among all n-vertex trees. They proved it also for uni-
cyclic graphs. Hua, Xu, Wen [4] gave then a short and unified proof of their
results.

Ilić, Yu and Feng [5] showed also some lower and upper bounds for the
eccentric distance sum index in terms of the Wiener index, degree distance
and some other graph invariants.

2. Eccentric distance sum index for cacti and some other classes
of connected graphs. In this section there is a research done for lower
bound of the eccentric distance sum index for some generalization of cacti.
In Theorem 2.1 we present an interesting result of Hua, Xu and Wen [4] for
cacti.

Theorem 2.1 (Hua, Xu and Wen [4]). Let G be a cactus with n ≥ 4 vertices
and k2 ≥ 0 cycles. Then ξd(G) ≥ 4n2−9n−4k2+5, with the equality if and
only if G ∼= Catn,k2, where Catn,k2 is the cactus obtained by introducing k2
independent edges among pendant vertices of n-vertex star K1,n−1.

Lemma 2.2. Let G be a graph of order n and size m. If rad(G) ≥ 2, then

ξd(G) ≥ 4n(n− 1)− 4m

with equality holding if and only if rad(G) = 2.
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Proof. By the definition of the eccentric distance sum index:

ξd(G) ≥ 2
∑

v∈V (G)

D(v) = 2

( ∑
v∈V (G)

deg(v) +
∑

v∈V (G)

∑
u∈V (G)\N(v)

d(v, u)

)

≥ 2

( ∑
v∈V (G)

deg(v) +
∑

v∈V (G)

∑
u∈V (G)\N(v)

2

)

= 2

[ ∑
v∈V (G)

deg(v) +
∑

v∈V (G)

2(n− deg(v)− 1)

]

= 2

[
2n(n− 1)−

∑
v∈V (G)

deg(v)

]
= 4n(n− 1)− 4m. �

Let us now consider another graph structure than cactus. Let n, k2, k3
be integers with k2, k3 ≥ 0 and n ≥ 2k2 + 3k3 + 1. Let Gn,k2,k3 be a class of
connected graphs of order n consisting of blocks: k2 cycles with no chords,
k3 cycles with one chord and paths P2. Some examples are presented in
Figure 1 (note that we have ξd(G5) = ξd(G6) = 191).

Figure 1. Graphs from the class Gn,k2,k3 with n = 7, k2 = 1
and k3 = 1. Values of the eccentric distance sum index:
ξd(G1) = 126, ξd(G2) = 174, ξd(G3) = 175, ξd(G4) = 189,
ξd(G5) = 191, ξd(G6) = 191, ξd(G7) = 195, ξd(G8) = 196,
ξd(G9) = 197, ξd(G10) = 217, ξd(G11) = 254, ξd(G12) = 255,
ξd(G13) = 264, ξd(G14) = 286 .



28 H. Bielak and K. Broniszewska

For this class of graphs we present the lower bound of the eccentric dis-
tance sum index and it is an extended result of Theorem 2.1. The idea of
the proof is based on the proof of Theorem 2.1.

Theorem 2.3. Let n, k2, k3 be integers with k2, k3 ≥ 0 and n ≥ 2k2+3k3+1.
Let G ∈ Gn,k2,k3 be a graph of order n ≥ 5. Then

ξd(G) ≥ 4n2 − 9n− 8k3 − 4k2 + 5

with the equality if and only if G ∼= Ĝn,k2,k3, where

Ĝn,k2,k3 = K1 + (k3P3 ∪ k2P2 ∪ (n− 1− 2k2 − 3k3)K1).

Proof. We are considering a graph G from a class Gn,k2,k3 .
Let Si be the set of vertices with eccentricity equal to i and ni = |Si|.

Let us consider first n1 > 0. Let v be a vertex with ε(v) = 1. Then each
vertex u ∈ V (G)\{v} is adjacent to v. As n ≥ 5 and G ∈ Gn,k2,k3 , then G
can only be a graph obtained by introducing k3 independent paths P3 and
k2 independent paths P2 among pendant vertices of a star K1,n−1. That is
G ∼= Ĝn,k2,k3 . An example of this graph you can see in Figure 2.

Figure 2. An example of a graph Ĝn,k2,k3 with n = 16,
k2 = 3 and k3 = 2.

Since n1 = 1, we have the following result:

ξd(Ĝn,k2,k3) = (n− 1) (for a vertex v with ε(v) = 1)

+ 4(k2 + k3)(2(n− 3) + 2) (for vertices v with deg(v) = 2)

+ 2k3(2(n− 4) + 3) (for vertices v with deg(v) = 3)
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+ 2(n− 1− 3k3 − 2k2)(2(n− 2) + 1) (for vertices v with deg(v) = 1)

= 4n2 − 9n− 8k3 − 4k2 + 5.

Let us now consider the case where G ∈ Gn,k2,k3 with n1 = 0. Here
we have ε(v) ≥ 2 for every vertex v in a graph. By Lemma 2.2 we have
ξd(G) ≥ 4n(n− 1)− 4m.

By the structure of the graph we have m = n− 1+ 2k3 + k2, where n− 1
is the number of edges in a spanning tree of our graph and 2k3 + k2 is the
sum of edges which do not belong to this spanning tree.

The result is as follows:

ξd(G)− ξd(Ĝn,k2,k3) ≥ [4n(n− 1)− 4m]− [4n2 − 9n− 8k3 − 4k2 + 5]

= [4n(n− 1)− 4(n− 1 + 2k3 + k2)]

− [4n2 − 9n− 8k3 − 4k2 + 5]

= n− 1 > 0.

This completes the proof. �

Theorem 2.3 cannot be expanded for n = 4 with k3 = 1 since in this case
ξd(K1 + (P2 ∪K1)) = 29, but ξd(K2 + 2K1) = 22.

Remark 2.4. After applying k3 = 0 in Theorem 2.3, we immediately get
the result of Theorem 2.1 for n ≥ 5.

In Theorem 2.5 we will give a lower bound for ξd(G) for the class of
graphs defined below.

Let p, q be positive integers, where q ≥ p ≥ 1 and let kp, kp+1, . . . , kq
be a sequence of integers, where ki ≥ 0 for p ≤ i ≤ q; kp, kq ≥ 1 and
n = 1 +

∑q
i=p kii. Let G be a class of connected graphs of order n with ki

blocks isomorphic to K1 + Pi, p ≤ i ≤ q. Numbers p, q are the lengths of
the shortest and the longest paths Pi, respectively. This class is audited in
the next theorem.

Theorem 2.5. Let G ∈ G be a graph of order n ≥ 5. Then

ξd(G) ≥ 4n2 − 9n+ 5− 4

q∑
i=p

ki(i− 1)

with the equality if and only if G ∼= K1 +
⋃q

i=p kiPi, where n = 1+
∑q

i=p kii
and p, q are the lengths of the shortest and the longest paths Pi, respectively.

Proof. For our graph G the number of vertices with eccentricity equal to
one (denoted by n1) is n1 ≤ 1 as n ≥ 5.
Case 1. If ε(v) = 1 for a vertex v in G, then every vertex u ∈ V (G)\{v} is
adjacent to v. Now we know that in this situation G can only be a graph
isomorphic to K1 +

⋃q
i=p kiPi.
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Now we will show how to compute ξd(K1+
⋃q

i=p kiPi). There is only one
vertex v for which ε(v) = 1 and it is clear that D(v) = n − 1. For every
other vertex u in G we have ε(u) ≥ 2. Each introduced path Pi has two
“ends” (every “end” of the path has exactly two vertices at the distance
equal to one and it has the distance equal to two to every other vertex)
and (i − 2) internal vertices of Pi (every internal vertex has exactly three
vertices at the distance equal to one).

Note that the number of pendant vertices is n− 1−
∑q

i=p iki. So, this is
what we have:

ξd
(
K1 +

q⋃
i=p

kiPi

)
= n− 1 (for vertex v with ε(v) = 1)

+ 2 · 2 · (2 · (n− 3) + 2)

q∑
i=p

ki (for “ends” of paths)

+ 2 · (2 · (n− 4) + 3)

q∑
i=p

(i− 2)ki (for internal vertices in paths)

+ 2 · (2 · (n− 2) + 1)

(
n−1−

q∑
i=p

iki

)
(for vertices with degree 1)

= n− 1 + (8n− 16)

q∑
i=p

ki + (4n− 10)

q∑
i=p

iki

− 2(4n− 10)

q∑
i=p

ki + (4n− 6)(n− 1)− (4n− 6)

q∑
i=p

iki

= (n− 1)(4n− 5) + (8n− 16− 8n+ 20)

q∑
i=p

ki

+ (4n− 10− 4n+ 6)

q∑
i=p

iki

= 4n2 − 9n+ 5 + 4

q∑
i=p

ki − 4

q∑
i=p

iki

= 4n2 − 9n+ 5− 4

q∑
i=p

ki(i− 1).
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Case 2. Let us now consider the case when n1 = 0. In this case we have
ε(v) ≥ 2 for every vertex v in G. By Lemma 2.2 we have

ξd(G) ≥ 4n(n− 1)− 4m.

We also have m = n− 1 +
∑q

i=p ki(i− 1). Hence

ξd(G)− ξd
(
K1+

q⋃
i=p

kiPi

)
≥ [4n(n− 1)− 4m]

−
[
4n2 − 9n+ 5− 4

q∑
i=p

ki(i− 1)

]

=

[
4n(n− 1)− 4

(
n− 1 +

q∑
i=p

ki(i− 1)

)]

−
[
4n2 − 9n+ 5− 4

q∑
i=p

ki(i− 1)

]
= n− 1 > 0.

This is the end of the proof. �

3. Conclusions. In this paper we presented a lower bound for the eccentric
distance sum index for some generalization of cacti. This result extends the
result of Hua, Xu and Wen [4] for cacti. There remains an open problem of
how to order graphs in a class by the values of the eccentric distance sum
index. Note that Gn,k2,k3 cannot be ordered by ξd(G) for n = 7, k2 = 1,
k3 = 1.

In the future we will study the problem mentioned above for n > 7.
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