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This paper is dedicated to the memory of Professor Jan Krzyż

Abstract. Various derivative estimates for functions of exponential type in
a half-plane are proved in this paper. The reader will also find a related
result about functions analytic in a quadrant. In addition, the paper contains
a result about functions analytic in a strip. Our main tool in this study is
the Schwarz–Pick theorem from the geometric theory of functions. We also
use the Phragmén–Lindelöf principle, which is of course standard in such
situations.

1. Introduction and statement of results.

1.1. An inequality for rational functions. By a result of Bernstein [2,
p. 339], if f is a polynomial of degree at most n such that |f(z)| ≤ 1 for
|z| = 1, then

(1) |f ′(z)| ≤ n |z|n−1 (|z| > 1),

where |f ′(z)| = n |z|n−1 at any point z with |z| > 1 only if f(z) ≡ eiγ zn

for some real γ. Recently [6, Theorem 1], we have obtained the following
analogous result for rational functions which have all their poles inside the
unit disk.

2000 Mathematics Subject Classification. 30A10, 30C10, 30C80, 30D15, 41A17.
Key words and phrases. Bernstein’s inequality, functions of exponential type in a half-

-plane, rational functions, Schwarz–Pick theorem.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235271342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


150 M. A. Qazi and Q. I. Rahman

Theorem A. Let f be a function analytic (holomorphic) in {z ∈ C : |z| >
ρ0} for some ρ0 in (0 , 1), and let |f(z)| ≤ 1 for |z| = 1. Suppose, in
addition, that, for some n ∈ {±1,±2, . . .}, the function f(z)/zn tends to a
finite limit L as |z| → ∞ and let

Rn :=

√
1 +

1

n2
+

1

|n|
.

Then

(2) |f ′(z)| ≤ |n|Rn−1 (|z| = R ≥ Rn),

and

(3) |f ′(z)| ≤ Rn

R2 − 1
+

1

4
n2Rn−2 (R2 − 1) (1 < |z| = R < Rn).

The bound in (2) is attained for any z with |z| ≥ Rn only if f(z) ≡ eiγ zn for
some γ ∈ R. Inequality (3) is also sharp and in fact for each R ∈ (1 , Rn).

One may look at Theorem A as an extension of the above-mentioned
result of Bernstein. Of course, (2) is somewhat more restrictive on |z| than
(1) but the class of functions to which (2) applies is much wider.

1.2. The role of the Schwarz–Pick theorem. The proof of Theorem A
was based on a classical result of G. Pick, also known as the invariant form
of Schwarz’s Lemma (see [1, p. 3], [4, p. 41] or [5, § 6.2]). It says that if φ
is holomorphic with |φ(z)| ≤ 1 for |z| < 1, then

(4) (1− |z|2)|φ′(z)|+ |φ(z)|2 ≤ 1 (|z| < 1).

It is easily checked that in (4), the equality holds at any given point ζ of
the open unit disk for

φ(z) :=
(z − ζ) + a(ζz − 1)

a(z − ζ) + (ζz − 1)
(|a| < 1)

and also for any constant of modulus 1.
It was the late Professor Jan Krzyż who first pointed out to one of us

(see the footnote in [8, p. 317]), the relevance of (4) to a problem about
the coefficients of polynomials. The possibility of applying (4) to obtain
inequalities for rational functions does not seem to have been considered
before. Novel or not, we find the approach as being a natural one, since the
estimates it enabled us to obtain are sharp.

Once we were convinced about the relevance of Pick’s result to inequalities
for rational functions, we spent some time looking for its known extensions
and analogues. We did not come across any that we could use but we our-
selves figured out (see [6, p. 74]) the following related proposition involving
the first and the second order derivatives. This result may have been known
to specialists. We state it here as a lemma since we shall need it later in
the paper.
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Lemma 1. Let φ be holomorphic in the open unit disk and |φ(z)| ≤ 1
therein. Then

(5)
1

2!

∣∣∣(1− |z|2)2 φ′′(z)− 2
(
1− |z|2

)
zφ′(z)

∣∣∣+ |φ(z)|2 ≤ 1 (|z| < 1).

In (5), equality holds at any given point ζ of the open unit disk for

φ(z) :=
a(1− ζz)2 + (z − ζ)2

(1− ζz)2 + a(z − ζ)2
(0 < |a| < 1)

and also for any constant of modulus 1.

Lately, we have used (4) to prove the following result [7, Theorem 1].

Proposition 1. Let g be holomorphic in the open upper half-plane and
|g(z)| ≤ 1 therein. Then

(6) 2y |g′(z)|+ |g(z)|2 ≤ 1 (y := =z > 0).

At any given point z0 = x0 + iy0 with =z0 = y0 > 0, inequality (6) becomes
an equality for

g(z) :=
z − z0 + a (z − z0)
a (z − z0) + z − z0

(0 < |a| < 1)

and also for any constant of modulus 1.

We see inequality (6) more as an analogue of (4) than a consequence of
it.

In [7], inequality (6) was applied to obtain an extension of Theorem A
to functions of exponential type in a half-plane, stated below as Theorem
B. In order to help the reader understand its relationship to Theorem A,
we find it desirable to mention certain facts about functions of exponential
type. This will also provide a perspective for the new results presented
here. However, we need to start with the Phragmén–Lindelöf principle for
functions analytic in an angle.

1.3. Functions analytic in an angle and the maximum principle.
Let f be holomorphic in the angle A(θ1 , θ2) := {z = r eiθ : r > 0 , θ1 <
θ < θ2}, where θ2 − θ1 < 2π. Such a function may not be bounded inside
A if it is bounded on the boundary. Take for example f(z) := ez

4
. It is

an entire function and so holomorphic in the angle A(−π/4 , π/4). Now,
note that |f(z)| = 1 at every point of the boundary but f(x) = ex

4 →∞ as
x→∞. This is because the function f(z) := ez

4
grows too rapidly inside the

angle. Actually, there is a generalization of the maximum principle due to
Phragmén and Lindelöf which says that a holomorphic function is bounded
inside the angle if it is bounded on the boundary and its growth is not too
rapid. It plays an important role in the study of functions holomorphic in
an angle and may be stated as follows. For its proof we refer the reader to
[9, Theorem 1.6.14].
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Lemma 2. Let g be analytic in the angle

A(θ0 − α , θ0 + α) := {z = r eiθ : r > 0 , |θ − θ0| < α} , 0 < α < π ,

and continuous on A(θ0 − α , θ0 + α). Suppose that |g(z)| ≤ M on the
boundary of the angle, and that, for some µ < π/(2α) and a sequence
r1, . . . , rn, . . . tending to infinity, the estimate g(rn eiθ) = O

(
er
µ
n
)

holds uni-
formly with respect to θ. Then |g(z)| ≤M throughout A(θ0 − α , θ0 + α).

1.4. Functions of exponential type. A function f , holomorphic in an
unbounded region D, like a half-plane or more generally an angle, is said to
be of exponential type τ in D if for every ε > 0, there exists a constant K
depending on ε, but not on z, such that

(7) |f(z)| < K e(τ+ε)|z| (z ∈ D) .

In the case where D = C, a function f satisfying (7) is called an entire
function of exponential type τ .

An entire function of exponential type τ is clearly of exponential type τ
in every angle {z = r eiθ : |θ − θ0| < α} , 0 < α < π.

For an entire function f let M(r) := max|z|=r |f(z)|, r > 0. Then f is
said to be of order ρ if

lim sup
r→∞

log logM(r)

log r
= ρ .

A constant has order 0, by convention. The type of an entire function f of
positive finite order ρ is defined to be lim supr→∞ r

−ρ logM(r). Any entire
function of order less than 1 is of exponential type τ for every τ ≥ 0 and so
is any entire function of order 1 type at most τ .

To characterize the dependence of the growth of a function f of exponen-
tial type τ in an angle {z = r eiθ : |θ− θ0| < α}, 0 < α < π on the direction
in which z tends to infinity, Phragmén and Lindelöf introduced the function

(8) hf (θ) := lim sup
r→∞

log |f(r eiθ)|
r

(θ0 − α < θ < θ0 + α) ,

called the indicator function of f . It is known that unless hf (θ) ≡ −∞,
hf (θ) is continuous in θ0−α < θ < θ0 +α and that if θ0−α < θ < θ+ π <
θ0 + α, then

(9) hf (θ) + hf (θ + π) ≥ 0 .

If f is an entire function of order 1 type τ then for all θ, hf (θ) ≤ τ and so,
by (9), hf (θ) ≥ −τ . For these and many other properties of the indicator
function, see [3, Chapter 5].

The following lemma [3, Theorem 6.2.4] serves as a basic tool in the study
of functions of exponential type. It is not a direct consequence of Lemma 2,
but can be deduced from it, as we shall show.
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Lemma 3. Let f be a function of exponential type in the open upper half-
-plane such that hf (π/2) ≤ c. Furthermore, let f be continuous in the
closed upper half-plane and suppose that |f(x)| ≤M on the real axis. Then

(10) |f(x+ iy)| < M ecy (−∞ < x <∞, y > 0)

unless f(z) ≡M eiγ e−icz for some real γ.

Proof. Since f is of exponential type, there exist positive constants A and
B such that |f(z)| ≤ A eB|z| for all z in the open upper half-plane. Let
g(z) := eiCz f(z), where C > c. Then |g(x)| = |f(x)| ≤ M on the real axis.
Besides,

|g(iy)| = e−Cy |f(iy)| → 0 as y →∞ .

Hence, there exists a number M1 such that |g(iy)| ≤ M1 for all y ≥ 0 and
besides |f(iy1)| = M1 for some y1 > 0. Since |g(z)| ≤ A e(B+|C|)|z| for
=z > 0, we may apply Lemma 2 to g, taking θ0 = π/4 and α = π/4, to
conclude that |g(z)| ≤ max {M , M1} for all z in the first quadrant. When
Lemma 2 is applied to g taking θ0 = 3π/4 and α = π/4, it shows that
|g(z)| ≤ max {M , M1} for all z in the second quadrant. Thus, |g(z)| ≤
max {M , M1} for all z in the upper half-plane. However, if M1 was larger
than M , then the maximum of |g(z)| in the closed upper half-plane would
be attained at z = iy1, which is possible only if g is a constant of modulus
M1. This is obviously not the case since |g(z)| = |f(z)| ≤ M on the real
axis. Thus |g(z)| ≤ M for all z in the upper half-plane, which implies
that |f(z)| ≤ M eCy for y := =z > 0. In particular, for any given point
z0 = x0 + iy0 of the open upper half-plane, |f(z0)| ≤M eCy0 for any C > c.
Hence |f(z0)| ≤ M ecy0 and so |f(z)| ≤ M ecy for all z in the upper half-
plane. Equality at any point z0 = x0 + iy0 of the open upper half-plane
would mean that the maximum modulus of the function eicz f(z), which is
holomorphic in the open upper half-plane, is attained at an interior point
and so the function would be a constant of modulus M . It follows that
|f(z)| < M ecy for all y > 0 unless f(z) ≡M eiγ e−icz for some real γ. �

We are now ready to state the analogue (extension) of Theorem A we had
alluded to, towards the end of § 1.2. Note that if f satisfies the conditions
of Theorem A, then the function f(e−iz) satisfies the conditions of Theorem
B with c = n.

Theorem B. Let f be a function of exponential type in the open upper
half-plane such that

hf

(π
2

)
:= lim sup

y→∞

log |f(iy)|
|y|

≤ c .

Suppose, in addition, that f is continuous in the closed upper half-plane and
that |f(x)| ≤ M for all real x. If c 6= 0, then, for any w ∈ C, other than
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0, we have

(11) |f ′(z)+(1+w) ic f(z)| ≤

{
M |w| |c| ecy if y := =z ≥ 1/(|w| |c|) ,

M 1+|w|2 c2 y2
2y ecy if 0 < y < 1/(|w| |c|) .

If c = 0, then

(12) |f ′(z)| ≤ 1

2y
M (y > 0).

The first inequality in (11), which holds for y ≥ 1/(|w| |c|), becomes an
equality for f(z) := M eiγ e−icz, γ ∈ R. Its proof shows that for any other
function satisfying the conditions of Theorem B, it (the first inequality in
(11)) is strict for any z with =z ≥ 1/(|w| |c|).

Let c 6= 0, w 6= 0 and let ζ = ξ + iη be any point of the open upper
half-plane such that −1 < wcη < 1. Then, with

b := η
1 + wcη

1− wcη
> 0 ,

the function

f(z) := M eiγ e−ic(z−ξ)
(z − ξ)− ib

(z − ξ) + ib
(γ ∈ R)

satisfies the conditions of Theorem B and by a straightforward calculation,
we find that

f ′(ζ) + (1 + w) i c f(ζ) = −M i eiγ ecη
{

2b

(η + b)2
− wc η − b

η + b

}
= −M i eiγ ecη

(
1 + w2c2η2

2η

)
,

which shows that the second inequality in (11) is sharp at least for real w.
In order to see that (12) is also sharp, we may take any point ζ = ξ + iη

of the open upper half-plane and consider the function

f(z) := M eiγ
z − ζ
z − ζ

.

It satisfies the conditions of Theorem B with c = 0. Besides, a simple
calculation shows that for this function |f ′(ζ)| = M/(2η).

Here we shall prove some further results about functions of exponential
type in a half-plane, involving higher order derivatives. We shall also con-
sider functions holomorphic in an angle of opening 2α for any α ∈ (0 , π)
and functions holomorphic in a strip.
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1.5. Statement of results. Let f be of exponential type in the open
upper half-plane H. Is the derivative f ′ also of exponential type in H?
“Not necessarily so” is the answer to this question. To see this, let

ϕn(z) :=
z − (n+ i e−e

n
)

z − (n− i e−en)
(n = 1, 2, . . .).

Then |ϕn(z)| ≤ 1 in the closed upper half-plane H for all n. Now let

f(z) :=
6

π2
e−icz

∞∑
n=1

1

n2
ϕn(z) .

It is clear that |f(z)| ≤ ec=z for =z ≥ 0 and that

f ′(z) =
6

π2
e−icz

{
−ic

∞∑
n=1

1

n2
z − (n+ i e−e

n
)

z − (n− i e−en)
+

∞∑
n=1

1

n2
2ie−e

n

(z − n+ i e−en)2

}
.

Clearly, for m = 1, 2, . . ., we have∣∣∣∣∣
∞∑
n=1

1

n2
2ie−e

n

(z − n+ i e−en)2

∣∣∣∣∣
z=m+i e−em

=

∣∣∣∣∣∣∣∣−i
ee
m

2m2
+
∞∑
n=1,
n 6=m

1

n2
2ie−e

n

(m− n+ i e−em + i e−en)2

∣∣∣∣∣∣∣∣ ≥
1

2m2
ee
m − π2

3

and ∣∣∣∣∣−ic
∞∑
n=1

1

n2
z − (n+ i e−e

n
)

z − (n− i e−en)

∣∣∣∣∣
z=m+i e−em

≤ |c| π
2

6
.

Hence ∣∣f ′ (m+ i e−e
m)∣∣ ≥ 6

π2
ec e
−em

{
1

2m2
ee
m − π2

6
(|c|+ 2)

}
,

which shows that f ′ is far from being of exponential type in the open upper
half-plane although |f(z)| ≤ ec=z for any z in the closed upper half-plane.
This example underscores the interest of the following result implied by
Theorem B.

Lemma 4. Let f be analytic in the open upper half-plane H and suppose
that |f(z)| ≤ ec=z for all z ∈ H. Then f ′ is of exponential type c in the
half-plane Hy0 := {z : =z > y0} for any y0 > 0.

In fact, it follows from (11) that for any z in Hy0 , |f ′(z)| ≤ |c| ecy if
y0 ≥ 1/|c|, whereas |f ′(z)| ≤ y−10 ecy if y0 < 1/|c|.

In Theorem 1, we present an upper bound for |f (k)(z)| at any given point
z of the open upper half-plane.
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Theorem 1. Let f be a function of exponential type in the open upper half-
-plane such that hf (π/2) ≤ c 6= 0. Suppose, in addition, that f is continu-
ous in the closed upper half-plane and that |f(x)| ≤M for all real x. Then,
for k = 1, 2, 3, . . ., we have

(13) |f (k)(z)| ≤

M |c|
kecy if y := =z ≥ k/|c| ,

M
(
k2+c2y2

2ky

)k
ecy if 0 < y < k/|c| .

How good is this bound? For k = 1, it is the best point-wise bound. The
example f(z) := M e−icz shows that for any k ≥ 2 we can say the same for
points z with =z ≥ k/|c|.

If k ≥ 2 and 0 < y ≤ k/|c| then, by (13), we have∣∣∣f (k)(x+ iy)
∣∣∣ ≤M (

k2 + c2y2

2ky

)k
ecy ∼M

(
k

2

)k 1

yk
ecy as y ↓ 0 .

Here, we only claim that the dependence of the bound on y is the right one.
To see this, let ξ + iη be any point with η > 0 and consider the function

f(z) := M e−ic(z−ξ)
(
z − ξ − iη

z − ξ + iη

)k
= M (z − ξ − iη)k · e−ic(z−ξ)

(z − ξ + iη)k
.

Using Leibnitz’ rule to calculate f (k)(z) and then putting z = ξ + iη, we
find that∣∣∣f (k)(ξ + iη)

∣∣∣ = M
k!

2k
1

ηk
ecη

= M

(
k

2

)k 1

ηk
ecη e−k (2πk)1/2eδ/(12k) , 0 < δ < 1 ,

by Stirling’s formula.
In the next theorem we consider two special differential operators.

Theorem 2. Let f be a function of exponential type in the open upper half-
-plane such that hf (π/2) ≤ c 6= 0. Suppose, in addition, that f is contin-
uous in the closed upper half-plane and that |f(x)| ≤ M for all real x.
Finally, for y := =z > 0, let

Λj [f(z)] :=

{
y2f ′′(z)− iyf ′(z) + icy{2yf ′(z)− if(z)} if j = 1 ,

y2f ′′(z)− iyf ′(z) + 2icy2 {f ′(z) + i (c/2) f(z)} if j = 2 .

Then

(14) |Λ1[f(z)]| ≤

{
Mc2y2ecy if y ≥ 1/|c| ,
M 1+c4y4

2 ecy if 0 < y < 1/|c|



The Schwarz–Pick theorem and its applications 157

and

(15) |Λ2[f(z)]| ≤

{
M |c|yecy if y ≥ 1/|c| ,
M 1+c2y2

2 ecy if 0 < y < 1/|c| .

The example f(z) := M e−icz shows that the upper bound for |Λ1[f(z)]|,
given in (14), is sharp for y := =z ≥ 1/|c|. The same can be said about the
upper bound for |Λ2[f(z)]| given in (15).

If a function f satisfies the conditions of Theorem 2 and 0 < y ≤ 1/|c|,
then by inequalities (14) and (15), we have

|Λ1[f(x+ iy)]| ≤ M

2
ecy +

M

2
c4y4 ecy =

M

2
ecy +O(y4) as y ↓ 0

and

|Λ2[f(x+ iy)]| ≤ M

2
ecy +

M

2
c2y2 ecy =

M

2
ecy +O(y2) as y ↓ 0 ,

respectively. On the other hand,

f(z) := M e−ic(z−ξ)
(
z − ξ − iη

z − ξ + iη

)2

, η > 0

satisfies the conditions of Theorem 2 and for this function

|Λ1[f(ξ + iη)]| = |Λ2[f(ξ + iη)]| = M

2
ecη .

2. An auxiliary result. For the proof of Theorem 2 we need the following
result which is to be compared with (6).

Lemma 5. Let g be holomorphic in the open upper half-plane and |g(z)| ≤ 1
therein. Then

(16) 2
∣∣y2 g′′(z)− iy g′(z)

∣∣+ |g(z)|2 ≤ 1 (y := =z > 0).

Example 1. For any z0 with y0 := =z0 > 0 and any a such that 0 < |a| < 1,
let

B(z) :=

(
z − z0
z − z0

)2

and g(z) :=
a+B(z)

1 + aB(z)
.

Then

B′(z) = 2
z − z0
z − z0

2 i y0
(z − z0)2

and g′(z) =
(1− |a|2)B′(z)
(1 + aB(z))2

so that
g′(z0) = 0 .

Furthermore,

B′′(z) = 2

(
2 i y0

(z − z0)2

)2

+ 2
z − z0
z − z0

−4 i y0
(z − z0)3
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and

g′′(z) =
(
1− |a|2

){ B′′(z)(
1 + aB(z)

)2 − 2 a

(
B′(z)

)2(
1 + aB(z)

)3
}

so that

g′′(z0) = −
(
1− |a|2

) 1

2 y20
.

Hence

2
∣∣y20 g′′(z0)− i y0 g

′(z0)
∣∣+ |g(z0)|2 =

∣∣− (1− |a|2)∣∣+ |a|2 = 1 ,

which shows that inequality (16) becomes an equality for the function

g(z) :=
a+

(
z−z0
z−z0

)2
1 + a

(
z−z0
z−z0

)2 =
(z − z0)2 + a (z − z0)2

a (z − z0)2 + (z − z0)2

when z = z0. Of course, the equality holds also for any constant of modu-
lus 1.

Proof of Lemma 5. The function

φ(ζ) := g

(
1 + ζ

1− ζ
i

)
is holomorphic in the open unit disk |ζ| < 1 and |φ(ζ)| ≤ 1 therein. In order
to prove (16), we shall apply Lemma 1 to φ for which we need to calculate
φ′(ζ) and φ′′(ζ). Note that

φ′(ζ) =
2 i

(1− ζ)2
g′
(

1 + ζ

1− ζ
i

)
and

φ′′(ζ) =

(
2i

(1− ζ)2

)2

g′′
(

1 + ζ

1− ζ
i

)
+

4i

(1− ζ)3
g′
(

1 + ζ

1− ζ
i

)
.

Hence, by (5), we obtain

1

2

∣∣∣∣(1− |ζ|2)2{ −4

(1− ζ)4
g′′
(

1 + ζ

1− ζ
i

)
+

4i

(1− ζ)3
g′
(

1 + ζ

1− ζ
i

)}
−2
(
1− |ζ|2

)
ζ

2i

(1− ζ)2
g′
(

1 + ζ

1− ζ
i

)∣∣∣∣+

∣∣∣∣g(1 + ζ

1− ζ
i

)∣∣∣∣2 ≤ 1 (|ζ| < 1) .

This leads us to the inequality

2
1

|1− ζ|4

∣∣∣∣(1− |ζ|2)2g′′(1 + ζ

1− ζ
i

)
− i(1− |ζ|2)

(
1− ζ − ζ + |ζ|2

)
g′
(

1 + ζ

1− ζ
i

)∣∣∣∣
+

∣∣∣∣g(1 + ζ

1− ζ
i

)∣∣∣∣2 ≤ 1 (|ζ| < 1) .
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Now set

z :=
1 + ζ

1− ζ
i so that ζ =

z − i

z + i
.

Hence

1− ζ =
2 i

z + i
and

1− ζ − ζ + |ζ|2 = 1− ζ − ζ (1− ζ) = (1− ζ)(1− ζ)

= |1− ζ|2 =
4

|z + i|2
.

The preceding inequality can therefore be written as
1

8

∣∣∣(|z + i|2 − |z − i|2
)2
g′′(z)− 4 i

(
|z + i|2 − |z − i|2

)
g′(z)

∣∣∣+ |g(z)|2 ≤ 1 .

Now, in order to obtain (16), it suffices to note that

|z + i|2 − |z − i|2 = (z + i)(z − i)− (z − i)(z + i) = 2 i (z − z)
= 4=z = 4 y . �

3. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Taking w = −1 in (11), we see that (13) holds for
k = 1. For a proof by induction, let us assume that (13) holds for k = j,
i.e.

(17) |f (j)(z)| ≤

M |c|
jecy if y := =z ≥ j/|c|

M
(
j2+c2y2

2jy

)j
ecy if 0 < y < j/|c| .

It suffices to show that if (17) holds, then we must necessarily have

(18) |f (j+1)(z)| ≤

M |c|
j+1ecy if y := =z ≥ (j + 1)/|c|

M
(
(j+1)2+c2y2

2(j+1)y

)j+1
ecy if 0 < y < (j + 1)/|c| .

If 0 < η < (j + 1)/|c|, then 0 < η j/(j + 1) < j/|c| and so by the second
inequality in (17), we have∣∣∣∣f (j)(x+ i

j

j + 1
η

)∣∣∣∣ ≤M (
j2 + c2η2j2/(j + 1)2

2ηj2/(j + 1)

)j
exp

(
c

j

j + 1
η

)
= M

(
1 + c2η2/(j + 1)2

2η/(j + 1)

)j
exp

(
c

j

j + 1
η

)
.

Since η − ηj/(j + 1) = η/(j + 1) < 1/|c|, we may apply (11) with w = −1,
to the function

f (j)
(
z + i

j

j + 1
η

)
,
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to conclude that∣∣∣f (j+1)(x+ iη)
∣∣∣ ≤ sup

x∈R

∣∣∣∣f (j)(x+ i
j

j + 1
η

)∣∣∣∣1 + c2η2/(j + 1)2

2η/(j + 1)
exp

(
c

1

j + 1
η

)
.

Combining the two preceding inequalities, we obtain∣∣∣f (j+1)(x+ iη)
∣∣∣ ≤ ((j + 1)2 + c2η2

2(j + 1)η

)j+1

ecη
(

0 < η <
j + 1

|c|

)
,

which is the same as the second inequality in (18).
It is left to the reader to verify that the first inequality in (17) implies

the first inequality in (18). �

Proof of Theorem 2. Without loss of generality we may suppose that
M = 1. Suppose, in addition, that f(z) is not of the form eiγ e−icz for any
real γ. Then, in view of Lemma 3, |f(x+ iy)| < ecy for all y > 0. Applying
(16) to the function g(z) := eicz f(z), we see that

(19) 2|y2f ′′(z) + iy(2cy − 1)f ′(z)− cy(cy − 1)f(z)| e−cy + |f(z)|2e−2cy ≤ 1

for y := =z > 0. Therefore, under the same restriction on y, we have

2|y2f ′′(z)+iy(2cy−1)f ′(z)+cyf(z)| ≤ ecy−ecy
(
e−cy |f(z)|

)2
+2c2y2|f(z)| .

Now, note that

ecy − e−cy|f(z)|2 + 2c2y2|f(z)| < 2c2y2 ecy

if and only if

e−cy
(
e2cy − |f(z)|2

)
< 2c2y2 (ecy − |f(z)|) (y > 0).

Since ecy−|f(z)| > 0 for y > 0, the preceding inequality holds if and only if

e−cy (ecy + |f(z)|) < 2c2y2 ,

that is, if and only if
|f(z)| < ecy (2c2y2 − 1) .

Once again, because |f(z)| < ecy for y > 0, this latter inequality is certainly
satisfied for y ≥ 1/|c|. Thus, if y ≥ 1/|c|, then

2|y2f ′′(z) + iy(2cy − 1)f ′(z) + cyf(z)| < 2c2y2 ecy ,

which completes the proof of the first part of (14). We have in fact proved
that the inequality is strict unless f(z) is of the form M eiγ e−icz for some
real γ.

Now let 0 < y < 1/|c|. In order to prove the second part of (14), we set

Ψ1(y ; t) := 1 + 2c2y2t− t2

and write (19) in the form

2|y2f ′′(z) + iy(2cy − 1)f ′(z) + cyf(z)| ≤ ecy Ψ1

(
y ; e−cy|f(z)|

)
.
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Let us suppose that f(z) 6≡ eiγe−icz for any real γ. Then t := e−cy|f(z)| <
1 for =z = y > 0 and we need to determine how large the continuous func-
tion Ψ1(y ; t) can be if t belongs to [0 , 1). Clearly, Ψ1(y ; t) is maximized
for t = c2y2 and Ψ1(y ; t) ≤ 1 + c4y4 for 0 ≤ t < 1. Hence

|Λ1[f(x+ iy)]| ≤ 1 + c4y4

2
ecy

(
0 < y <

1

|c|

)
.

In order to prove (15), we define

Ψ2(y ; t) := 1 + 2|c|yt− t2 ,
where t varies in [0 , 1] and y is a parameter. Clearly, (19) can be written
as

2|y2f ′′(z)− iyf ′(z) + 2icy2{f ′(z) + i
c

2
f(z)}| ≤ Ψ2(y ; e−cy|f(z)|)

and therefore, we look for the largest value that Ψ2(y , t) can take if y is a
given positive number and t varies in [0 , 1]. If y ≥ 1/|c|, then

∂

∂t
Ψ2(y ; t) > 0 for 0 ≤ t < 1

and so Ψ2(y ; t) < Ψ2(y ; 1) for any t in [0 , 1). Since t = e−cy |f(z)| < 1
for y := =z > 0, unless f(z) ≡ eiγ e−icz for some γ ∈ R, it follows that if f
satisfies the conditions of Theorem 2 with M = 1 and f(z) 6≡ eiγ e−icz for
any γ ∈ R, then

|y2f ′′(z)− iyf ′(z) + 2icy2{f ′(z) + i
c

2
f(z)}| < |c||y| ecy

(
y ≥ 1

|c|

)
.

The proof of the second part of (15) is left to the reader. �

4. Two other unbounded regions.

4.1. Functions analytic in an angle of opening < 2π. Let g be a
function of exponential type in the open right half-plane such that hg(0) ≤ c.
Suppose, in addition, that g is continuous in the closed right half-plane and
that |g(z)| ≤ M on the imaginary axis. If c 6= 0, then Theorem B may be
applied to the function f(z) := g(−iz) to conclude that

(20) |g′(z)| ≤

{
M |c|ecx if x := <z ≥ 1/|c| ,
M 1+c2x2

2x ecx if 0 < x < 1/|c| .

Now, let f(ζ) be a function analytic in A(−α , α), where the reader may
refer back to §1.3 for the definition of A(θ1 , θ2). Suppose, in addition, that

(21) |f(ζ)| < A eB |ζ|
π/(2α)

, A > 0, B > 0 (ζ ∈ A(−α , α))

and that

(22) lim sup
ξ→∞

log |f(ξ)|
ξπ/(2α)

≤ c .
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Furthermore, let f be continuous on A(−α , α) and let
∣∣f (ρ e±iα

)∣∣ ≤M .
Taking that branch of z2α/π which associates with the point z = r eiθ

of the open right half-plane the point ζ = ρ eiϕ of A(−α , α), let g(z) :=

f(z2α/π). Then, g is a function of exponential type in the open right half-
-plane and hg(0) ≤ c. Besides, g is continuous in the closed right half-plane
and |g(z)| ≤ M on the imaginary axis. Hence, if c 6= 0, then (20) holds for
the function g(z) := f(z2α/π), which means that∣∣∣∣dζdz

∣∣∣∣ |f ′(ζ)| = |g′(z)| ≤

{
M |c|ecx if x := <z ≥ 1/|c| ,
M 1+c2x2

2x ecx if 0 < x < 1/|c| .

Thus

2α

π
|z|(

2α
π )−1

∣∣∣f ′ (z 2α
π

)∣∣∣ ≤ {M |c|ecx if x := <z ≥ 1/|c| ,
M 1+c2x2

2x ecx if 0 < x < 1/|c| .

Since z2α/π = ρ eiϕ, as stipulated above, we have

|z| = ρπ/(2α) and x = ρ
π
2α cos

(πϕ
2α

)
.

Hence, the following result holds.

Theorem 3(a). Let f(ζ) be analytic in A(−α , α) for some α < π. Suppose
that (21) holds and that (22) is satisfied for some c 6= 0. Suppose, in
addition, that f is continuous on A(−α , α) and that

∣∣f (r e±iα
)∣∣ ≤ 1.

Then, at any point ζ = ρ eiϕ of A(−α , α), we have

(23)
∣∣f ′ (ζ)

∣∣≤


π
2α |c|ρ

π
2α
−1 exp

(
cρ

π
2α cos πϕ2α

)
if ρ

π
2α cos π ϕ2α ≥

1
|c| ,

π
2α

1+c2ρ
π
α cos2 πϕ

2α

2ρ cos πϕ
2α

exp
(
cρ

π
2α cos πϕ2α

)
if 0 <ρ

π
2α cos π ϕ2α <

1
|c| .

Proposition 1 implies that if g is holomorphic in the open right half-plane
and |g(z)| ≤ 1 therein, then

2x|g′(z)|+ |g(z)|2 ≤ 1 (x := <z > 0) .

Hence, if f(ζ) is holomorphic in A(−α , α) and |f(ζ)| ≤ 1 therein, then
applying the preceding inequality to the function g(z) := f(z2α/π), we obtain
the following result, which may be seen as the Schwarz–Pick theorem for an
angle.

Proposition 2. Let f be holomorphic in the angle A(−α , α) and |f(ζ)| ≤ 1
therein. Then

(24)
4α

π
ρ
(

cos
πϕ

2α

) ∣∣f ′ (ζ)
∣∣+ |f (ζ)|2 ≤ 1

(
ζ = ρ eiϕ ∈ A(−α , α)

)
.
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Let g be holomorphic and of exponential type in the open right half-
-plane such that hg(0) ≤ 0. Furthermore, let g be continuous in the closed
right half-plane and suppose that |g(z)| ≤ 1 on the imaginary axis. Then,
Lemma 3 implies that |g(z)| < 1 in the open right half-plane unless g(z) ≡
eiγ for some real γ. This may be applied to g(z) := f(z2α/π) to conclude
that if f satisfies all the conditions of Theorem 3(a) except that (22) holds
with c = 0, then |f(ζ)| ≤ 1 for all ζ ∈ A(−α , α). We thus obtain the
following supplement to Theorem 3(a).

Theorem 3(b). Let f(ζ) be analytic in A(−α , α) for some α < π. Sup-
pose that (21) is satisfied and that (22) holds with c = 0. In addition, let f
be continuous on A(−α , α) and suppose that

∣∣f (r e±iα
)∣∣ ≤ 1. Then (24)

holds.

In view of this result, inequality (24) can be seen as a counterpart of (23).
The following result is obtained on combining Proposition 2 with Lemma 2.

Corollary 1. Let f(ζ) be analytic in the angle A(−α , α) , 0 < α < π and
continuous on A(−α , α). Suppose that |f(ζ)| ≤ 1 on the boundary of the
angle, and that, for some µ < 2, |f(ζ)| < A eB|ζ|

µ
, A > 0 , B > 0 for all

ζ ∈ A(−α , α). Then (24) holds.

Here, µ = 2 is inadmissible as the example f(ζ) := eζ
2

shows.
Inequality (24) takes a particularly simple form in the case where α =

π/4. In that case, the angle A(−α , α) is a quadrant – a case that has some
special significance.

Corollary 2. Let f be holomorphic in the angle A(−π/4 , π/4) and |f(ζ)|
≤ 1 therein. Then

(25) ρ (cos 2ϕ)
∣∣f ′ (ζ)

∣∣+ |f (ζ)|2 ≤ 1
(
ζ = ρ eiϕ ∈ A(−π/4 , π/4)

)
.

Remark. Inequality (25) is sharp. Given any point

ζ0 = ρ0 eiϕ0 ∈ A(−π/4 , π/4)

and any number a ∈ C such that 0 ≤ |a| < 1, the function

(26) f(ζ) =
ζ2 − ζ20 + a

(
ζ2 + ζ

2
0

)
a
(
ζ2 − ζ20

)
+
(
ζ2 + ζ

2
0

)
satisfies all the conditions of Corollary 2. Clearly, f(ζ0) = a. Besides, it is
a matter of simple verification that

|f ′(ζ0)| =
1

ρ0 cos 2ϕ0
(1− |a|2) .



164 M. A. Qazi and Q. I. Rahman

In order to be helpful to the reader we wish to point out that ζ20 lies in
the open right half-plane and so does ζ2. Since −ζ20 is the reflection of ζ20
in the imaginary axis, the number

ζ2 − ζ20
ζ2 + ζ

2
0

lies in the open unit disk. Now, writing

ζ2 − ζ20 + a
(
ζ2 + ζ

2
0

)
a
(
ζ2 − ζ20

)
+
(
ζ2 + ζ

2
0

) =

ζ2−ζ20
ζ2+ζ

2
0

+ a

a
ζ2−ζ20
ζ2+ζ

2
0

+ 1
,

where |a| < 1, we see that the function f(ζ) of (26) cannot have any singu-
larities in A(−π/4 , π/4).

4.2. Functions analytic in a strip. Proposition 1 also leads us to the
following result which can be seen as the Schwarz–Pick theorem for a strip.
Similar results involving higher order derivatives can also be proved, but we
shall not do that here.

Proposition 3. Let f(ζ) be analytic in the vertical strip

S(−b , b) := {ζ = ξ + i η : −b < ξ < b}
such that |f(ζ)| ≤ 1 for all ζ ∈ S(−b , b). Then

(27)
4b

π
cos
( π

2b
ξ
)
|f ′(ζ)|+ |f(ζ)|2 ≤ 1 (ζ ∈ S(−b , b)) .

Given any a ∈ C, 0 ≤ |a| ≤ 1 and any point ζ0 = ξ0 + i η0 ∈ S(−b , b), let

f(ζ) :=
e−i

π
2b
ζ − e−i

π
2b
ζ0 + a

(
e−i

π
2b
ζ + ei

π
2b
ζ0
)

a
(

e−i
π
2b
ζ − e−i

π
2b
ζ0
)

+ e−i
π
2b
ζ + ei

π
2b
ζ0
.

It is easily checked that f satisfies the conditions of Proposition 3. Besides,

f(ζ0) = a and f ′(ζ0) = −i
π

4b
(1− |a|2) e−i

π
2b
ξ0 sec

( π
2b
ξ0

)
so that

4b

π
cos
( π

2b
ξ0

)
|f ′(ζ0)|+ |f(ζ0)|2 = 1 .

Hence (27) is sharp.

Proof. As the point ζ = ξ + i η describes the straight line

{ζ = ξ + i η : ξ ∈ (−b , b) , −∞ < η <∞}

in the ζ-plane, the point z = e−i(
π
2b
ζ−π

2 ) in the z-plane describes the ray{
z = r ei θ : θ =

π

2

(
1− ξ

b

)
, 0 < r <∞

}
,
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where r is an increasing function of η. For z in the open upper half-plane,
let log z = ln |z|+ i arg z, where 0 < arg z < π. Then, there is a one-to-one
correspondence between the point z of the open upper half-plane and the
point

(28) ζ = i
2b

π
log z + b

of S(−b , b). Since f is analytic in the strip S(−b , b) and |f(ζ)| ≤ 1 therein,
the function

g(z) := f

(
i
2b

π
log z + b

)
is analytic in the open upper half-plane and |g(z)| ≤ 1 therein. Proposition 1
applies and shows that

(29)
4b

π
y e−

π
2b
η

∣∣∣∣f ′(i
2b

π
log z + b

)∣∣∣∣+

∣∣∣∣f (i
2b

π
log z + b

)∣∣∣∣2 ≤ 1 (=z > 0) .

Clearly,

y := =z = =
{

e−i(
π
2b
ζ−π

2 )
}

= <
{

e−
iπ
2b

(ξ+iη)
}

= e
π
2b
η cos

( π
2b
ξ
)
.

Hence, in view of (28), inequality (29) is equivalent to (27). �

Corollary 3. As in Proposition 3, let f be analytic in the vertical strip
S(−b , b) wherein |f(ζ)| ≤ A ee

B|η|
for some A > 0 and some B < π/(2b).

Also let f be continuous on the closure |<ζ| ≤ b of S(−b , b) and suppose
that |f(ζ)| ≤ 1 on its boundary ξ = <ζ = ±b. Then (27) holds. Here,
B = π/(2b) is inadmissible.

Proof. The result is obvious if f ≡ 0 and so let f be not identically zero.
In view of Proposition 3, we need to prove that if f is analytic in S(−b , b),
wherein |f(ζ)| ≤ A ee

B|η|
, A > 0 , B < π/2b and |f(ξ)| ≤ 1 for ξ = ±b, then

|f(ζ)| ≤ 1 for |ξ| ≤ b. For this let us consider the function

F (ζ) := f(ζ) e−δe
−iCζ

, δ > 0 , B < C <
π

2b

in the half-strip S+(−b , b) := {ζ = ξ + iη : |ξ| < b , η ≥ 0}. Then

|F (ζ)| ≤ A ee
Bη
∣∣∣e−δe−iC(ξ+iη)

∣∣∣ = A ee
Bη

e−δe
Cη cosCξ ≤ A e−{δ(cosCb)eCη−eBη}

and so, for any ε > 0, there exists a number ηε such that |F (ζ)| < 1 for
all ζ ∈ S+(−b , b) such that η = =ζ > ηε. Hence, if |F (ξ)| ≤ M for
−b ≤ ξ ≤ b, then |F (ζ)| ≤ max{1 , M} for all ζ in S+(−b , b). Applying
this to the function F (z), we conclude that |F (ζ)| ≤ max{1 , M} for all
ζ such that |<ζ| ≤ b and =ζ ≤ 0. Thus |F (ζ)| ≤ max{1 , M} for all
ζ ∈ S(−b , b). However, M cannot be larger than 1 since otherwise the
maximum of |F (ζ)| over S(−b , b) would be attained at an interior point
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and F would be a constant 6≡ 0 and |f(iη)| e−eBη would tend to ∞ with η,
which would be a contradiction. Thus,

|f(ζ)| ≤
∣∣∣eδe−iCζ

∣∣∣ (
ζ ∈ S(−b , b)

)
.

Since this is true for any δ > 0, we must have |f(ζ)| ≤ 1 for all ζ ∈ S(−b , b).
The conclusion does not hold if B is allowed to be π/(2b). In fact, if

f(ζ) := exp
(

e−i
π
2b
ζ
)

then |f (±b+ iη) | = 1 for −∞ < η < ∞ whereas f (iη) = exp
(

e
π
2b
η
)
→ ∞

as η →∞. �

Remark. Proposition 3 says in particular that if φ(z) is analytic in the
vertical strip −1 < x := <z < 1 and |φ(z)| ≤ 1 therein, then

(30)
4

π
cos
(π

2
x
)
|φ′(z)|+ |φ(z)|2 ≤ 1 (|z| < 1).

Comparing this with (4), we see that here the condition on φ is more re-
strictive, but the conclusion is stronger. To be sure about the conclusion
being stronger, we need to check that

4

π
cos
(π

2
x
)
≥ 1− (x2 + y2) = 1− |z|2 (|z| < 1).

In fact, we shall show that

x2 +
4

π
cos

π

2
x ≥ 1 (−1 ≤ x ≤ 1) .

It is known that (sin θ)/θ > 2/π for 0 < θ < π/2 and so

x− sin
π

2
x < 0 for 0 < x < 1 .

Consequently

d

dx

(
x2 +

4

π
cos

π

2
x

)
= 2

(
x− sin

π

2
x
)
< 0 for 0 < x < 1 ,

which implies that

x2 +
4

π
cos

π

2
x ≥

[
x2 +

4

π
cos

π

2
x

]
x=1

= 1 (−1 ≤ x ≤ 1) .

The following result is a special case of (30).

Corollary 4. Let φ(z) be analytic in the vertical strip −1 < x := <z < 1
and let |φ(z)| ≤ 1 therein. Furthermore, let φ(z) :=

∑∞
k=0 akz

k be the
Maclaurin expansion of φ(z) in the open unit disk. Then

4

π
|a1|+ |a0|2 ≤ 1 .
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