Linearly-invariant families and generalized Meixner-Pollaczek polynomials

Abstract. The extremal functions $f_{0}(z)$ realizing the maxima of some functionals (e.g. $\max \left|a_{3}\right|$, and $\max \arg f^{\prime}(z)$) within the so-called universal linearly invariant family U_{α} (in the sense of Pommerenke [10]) have such a form that $f_{0}^{\prime}(z)$ looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials $P_{n}^{\lambda}(x ; \theta, \psi)$ of a real variable x as coefficients of

$$
G^{\lambda}(x ; \theta, \psi ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{i \psi}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta, \psi) z^{n},|z|<1,
$$

where the parameters λ, θ, ψ satisfy the conditions: $\lambda>0, \theta \in(0, \pi)$, $\psi \in \mathbb{R}$. In the case $\psi=-\theta$ we have the well-known (MP) polynomials. The cases $\psi=\pi-\theta$ and $\psi=\pi+\theta$ leads to new sets of polynomials which we call quasi-Meixner-Pollaczek polynomials and strongly symmetric MeixnerPollaczek polynomials. If $x=0$, then we have an obvious generalization of the Gegenbauer polynomials.

The properties of (GMP) polynomials as well as of some families of holomorphic functions $|z|<1$ defined by the Stieltjes-integral formula, where the function $z G^{\lambda}(x ; \theta, \psi ; z)$ is a kernel, will be discussed.

1. Linearly-invariant families of holomorphic functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots, \quad z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

[^0]in the unit disk $\mathbb{D}=\{z:|z|<1\}$ were introduced by Pommerenke in [10], and then were intensively studied by several authors (e.g. [14], [15] and [17]).

A family \mathfrak{M} of holomorphic functions of the form (1.1) is linearly-invariant if it satisfies two conditions:
(a) $f^{\prime}(z) \neq 0$ for any z in \mathbb{D} (local univalence),
(b) for any linear fractional transformation

$$
\phi(z)=e^{i \theta} \frac{z+a}{1+\bar{a} z}, \quad a, z \in \mathbb{D}, \quad \theta \in \mathbb{R}
$$

of \mathbb{D} onto itself, the function

$$
\Lambda[f](z)=F(z)=\frac{f(\phi(z))-f(\phi(0))}{f^{\prime}(\phi(0)) \phi^{\prime}(0)}=z+\ldots \in \mathfrak{M}
$$

The order of the linearly-invariant family \mathfrak{M} is defined as

$$
\operatorname{ord} \mathfrak{M}=\sup _{f \in \mathfrak{M}}\left|a_{2}(f)\right|
$$

Universal invariant family U_{α} is defined as

$$
U_{\alpha}=\bigcup_{\operatorname{ord} \mathfrak{M} \leq \alpha} \mathfrak{M} .
$$

It is well known that $\alpha \geq 1$ and $U_{1} \equiv S^{c}=$ the class of convex univalent functions in \mathbb{D}, and the familiar class S of all univalent functions is strictly included in U_{2}. Moreover, for every $\alpha>1$, the class U_{α} contains functions which are infinitely valent in \mathbb{D} [10], for example:

$$
\begin{aligned}
f_{0}(z) & \left.=\frac{1}{2 i \gamma}\left[\left(\frac{1+z}{1-z}\right)^{i \gamma}-1\right)\right] \\
f_{0}^{\prime}(z) & =\frac{1}{(1+z)^{1-i \gamma}(1-z)^{1+i \gamma}}, \quad \gamma=\sqrt{\alpha^{2}-1}
\end{aligned}
$$

Another example of such a function was presented in [15]:

$$
\begin{equation*}
f_{0}(z)=\frac{1}{\left(e^{i t_{2}}-e^{i t_{1}}\right) i \sqrt{\alpha^{2}-1}}\left[\left(\frac{1-z e^{i t_{1}}}{1-z e^{i t_{2}}}\right)^{i \sqrt{\alpha^{2}-1}}-1\right], t_{1} \neq t_{2}+2 k \pi \tag{1.2}
\end{equation*}
$$

for which

$$
\begin{equation*}
f_{0}^{\prime}(z)=\frac{1}{\left(1-z e^{i t_{1}}\right)^{1-i \sqrt{\alpha^{2}-1}}\left(1-z e^{i t_{2}}\right)^{1+i \sqrt{\alpha^{2}-1}}} . \tag{1.3}
\end{equation*}
$$

Functions of the form (1.2) appear to be extremal for the long lasting problems:

$$
\max _{f \in U_{\alpha}}\left|a_{3}\right| \text { and } \max _{f \in U_{\alpha}}\left|\arg f^{\prime}(z)\right|
$$

recently solved by Starkov [14], [15], who proved that the extremal function for $\max \left|a_{3}\right|$ is of the form (1.2) with $t_{1}=\theta, t_{2}=-\theta$, where

$$
e^{i \theta}=\sqrt{\frac{\left(3-\alpha^{2}\right)+3 i \sqrt{\alpha^{2}-1}}{\alpha \sqrt{\alpha^{2}+3}}}, f \in U_{\alpha}([14])
$$

However, the extremal function f_{0} for $\max _{f \in U_{\alpha}^{\prime}}\left|\arg f^{\prime}(z)\right|$ is of the form (1.2) with

$$
\begin{aligned}
& t_{1}=\pi-\arctan \frac{1}{\alpha}-\arctan \frac{r}{\alpha} \\
& t_{2}=-\pi+\arcsin \frac{1}{\alpha}-\arcsin \frac{r}{\alpha}, r=|z|<1, t_{1} \neq-t_{2}([15]) .
\end{aligned}
$$

We see that the extremal function for $\max _{f \in U_{\alpha}}\left|a_{3}\right|$ has a special form leading to (MP) polynomials, but the extremal function for $\max _{f \in U_{\alpha}}\left|\arg f^{\prime}(z)\right|$ leads to (GMP) polynomials, defined below.
2. Comparing (1.3) with the generating function for Meixner-Pollaczek polynomials $P_{n}^{\lambda}(x ; \theta)([2])$:

$$
G^{\lambda}(x ; \theta,-\theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{-i \theta}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta) z^{n}, \quad z \in \mathbb{D},
$$

where $\lambda>0, \theta \in(0, \pi), x \in \mathbb{R}$, we are motivated to introduce the generalized Meixner-Pollaczek (GMP) polynomials $P_{n}^{\lambda}(x ; \theta, \psi)$ of variable $x \in \mathbb{R}$ and parameters $\lambda>0, \theta \in(0, \pi), \psi \in \mathbb{R}$ via the generating function

$$
\begin{equation*}
G^{\lambda}(x ; \theta, \psi ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{i \psi}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta, \psi) z^{n} \tag{2.1}
\end{equation*}
$$

$z \in \mathbb{D}$. Of course, we have $P_{n}^{\lambda}(x ; \theta,-\theta)=P_{n}^{\lambda}(x ; \theta)$. We will find the threeterm recurrence relation, the explicite formula, the hypergeometric representation and the difference equation for (GMP) polynomials $P_{n}^{\lambda}(x ; \theta, \psi)$.
Theorem 2.1. (i) The polynomials $P_{n}^{\lambda}=P_{n}^{\lambda}(x ; \theta, \psi)$ satisfy the three-term recurrence relation:

$$
\begin{align*}
P_{-1}^{\lambda}= & 0, \tag{2.2}\\
P_{0}^{\lambda}= & 1, \\
n P_{n}^{\lambda}= & {\left[(\lambda-i x) e^{i \theta}+(\lambda+i x) e^{i \psi}+(n-1)\left(e^{i \theta}+e^{i \psi}\right)\right] P_{n-1}^{\lambda} } \\
& -\left[(2 \lambda+n-2) e^{i(\theta+\psi)}\right] P_{n-2}^{\lambda}, n \geq 1 .
\end{align*}
$$

(ii) The polynomials $P_{n}^{\lambda}(x ; \theta, \psi)$ are given by the formula:

$$
\begin{equation*}
P_{n}^{\lambda}(x ; \theta, \psi)=e^{i n \theta} \sum_{j=0}^{n} \frac{(\lambda+i x)_{j}(\lambda-i x)_{n-j}}{j!(n-j)!} e^{i j(\psi-\theta)}, \quad n \in \mathbb{N} \cup\{0\} . \tag{2.3}
\end{equation*}
$$

(iii) The polynomials $P_{n}^{\lambda}(x ; \theta, \psi)$ have the hypergeometric representation

$$
\begin{equation*}
n!P_{n}^{\lambda}(x ; \theta, \psi)=(2 \lambda)_{n} e^{i n \theta} F\left(-n, \lambda+i x, 2 \lambda ; 1-\frac{e^{i \psi}}{e^{i \theta}}\right) . \tag{2.4}
\end{equation*}
$$

(iiii) Let $y(x)=P_{n}^{\lambda}(x ; \theta, \psi)$. The function $y(x)$ satisfies the following difference equation

$$
\begin{align*}
e^{i \theta}(\lambda-i x) y(x+i)+\left[i x\left(e^{i \theta}+e^{i \psi}\right)\right. & \left.-(n+\lambda)\left(e^{i \theta}-e^{i \psi}\right)\right] y(x) \\
& -e^{i \psi}(\lambda+i x) y(x-i)=0 . \tag{2.5}
\end{align*}
$$

Proof. (i) We differentiate the formula (2.1) with respect to z and after multiplication by $\left(1-z e^{i \theta}\right)\left(1-z e^{i \psi}\right)$ we compare the coefficients at the power z^{n-1}.
(ii) The Cauchy product for the power series

$$
\left(1-z e^{i \theta}\right)^{-(\lambda-i x)}=\sum_{n=0}^{\infty} \frac{(\lambda-i x)_{n} e^{i n \theta}}{n!} z^{n}
$$

and

$$
\left(1-z e^{i \psi}\right)^{-(\lambda+i x)}=\sum_{n=0}^{\infty} \frac{(\lambda+i x)_{n} e^{i n \psi}}{n!} z^{n}
$$

gives (2.3).
(iii) We apply the formula from ([4], vol. 1, p. 82):
$(1-s)^{a-c}(1-s+s z)^{-a}=\sum_{n=0}^{\infty} \frac{(c)_{n}}{n!} F(-n, a ; c ; z) s^{n}, \quad|s|<1,|s(1-z)|<1$,
with $s=z e^{i \theta}, a=\lambda+i x, c=2 \lambda, z=1-e^{i(\psi-\theta)}$ and obtain

$$
\begin{aligned}
\left(1-z e^{i \theta}\right)^{-(\lambda-i x)} & \left(1-z e^{i \psi}\right)^{-(\lambda+i x)} \\
& =\sum_{n=0}^{\infty} \frac{z^{n} e^{i n \theta}(2 \lambda)_{n}}{n!} F\left(-n, \lambda+i x, 2 \lambda ; 1-e^{i(\psi-\theta)}\right)
\end{aligned}
$$

Comparing the coefficients at the power z^{n}, we get (2.4).
(iiii) Putting $(x+i)$ and $(x-i)$ instead of x into the generating function (2.1), we find that

$$
\begin{aligned}
& y(x+i)=\sum_{k=0}^{n-1} P_{k}^{\lambda}(x ; \theta, \psi)\left[e^{i(n-k) \theta}-e^{i[(n-k-1) \theta+\psi]}\right]+P_{n}^{\lambda} \\
& y(x-i)=\sum_{k=0}^{n-1} P_{k}^{\lambda}(x ; \theta, \psi)\left[e^{i(n-k) \psi}-e^{i[(n-k-1) \psi+\theta]}\right]+P_{n}^{\lambda}
\end{aligned}
$$

which implies that

$$
\begin{align*}
e^{i \theta}(\lambda & -i x) y(x+i)-e^{i \psi}(\lambda+i x) y(x-i) \\
= & \left(e^{i \theta}-e^{i \psi}\right) \sum_{k=0}^{n-1} P_{k}^{\lambda}(x ; \theta, \psi)\left[(\lambda-i x) e^{i(n-k) \theta}+(\lambda+i x) e^{i(n-k) \psi}\right] \tag{2.6}\\
& +\left[e^{i \theta}(\lambda-i x)-e^{i \psi}(\lambda+i x)\right] P_{n}^{\lambda} .
\end{align*}
$$

Differentiation of the generating function (2.1) with respect to z and comparison of the coefficients at z^{n-1} yields:

$$
n P_{n}^{\lambda}(x ; \theta, \psi)=\sum_{k=0}^{n-1} P_{k}^{\lambda}(x ; \theta, \psi)\left[(\lambda-i x) e^{i(n-k) \theta}+(\lambda+i x) e^{i(n-k) \psi}\right]
$$

which together with (2.6) gives (2.5).
The first four polynomials P_{n}^{λ} are given by the formulas:

Corollary 1.

$$
\begin{aligned}
P_{0}^{\lambda}= & 1, \\
P_{1}^{\lambda}= & i x\left(e^{i \psi}-e^{i \theta}\right)+\lambda\left(e^{i \theta}+e^{i \psi}\right), \\
2 P_{2}^{\lambda}= & -x^{2}\left(e^{i \psi}-e^{i \theta}\right)^{2}+i x(2 \lambda+1)\left(e^{2 i \psi}-e^{2 i \theta}\right)+\lambda\left[(1+\lambda) e^{2 i \psi}\right. \\
& \left.+2 \lambda e^{i(\psi+\theta)}+(1+\lambda) e^{2 i \theta}\right], \\
6 P_{3}^{\lambda}= & i x^{3}\left[3 e^{i \theta} e^{i \psi}\left(e^{i \psi}-e^{i \theta}\right)-\left(e^{3 i \psi}-e^{3 i \theta}\right)\right] \\
& +3(1+\lambda) x^{2}\left[e^{i \theta} e^{i \psi}\left(e^{i \psi}+e^{i \theta}\right)\right. \\
& \left.-\left(e^{3 i \psi}+e^{3 i \theta}\right)\right]++i x\left[3 \lambda^{2} e^{i \theta} e^{i \psi}\left(e^{i \psi}-e^{i \theta}\right)\right. \\
& \left.+\left(3 \lambda^{2}+6 \lambda+2\right)\left(e^{3 i \psi}-e^{3 i \theta}\right)\right] \\
& +\lambda(1+\lambda)\left[3 \lambda e^{i \theta} e^{i \psi}\left(e^{i \psi}+e^{i \theta}\right)+(\lambda+2)\left(e^{3 i \psi}+e^{3 i \theta}\right)\right], \\
24 P_{4}^{\lambda}= & x^{4}\left[\left(e^{i \psi}-e^{i \theta}\right)^{4}+4 e^{2 i \psi} e^{2 i \theta}\right]+2 i x^{3}(2 \lambda+3)\left(e^{2 i \psi}-e^{2 i \theta}\right)\left(e^{i \psi}+e^{i \theta}\right)^{2} \\
& +x^{2}\left[-\left(6 \lambda^{2}+18 \lambda+11\right)\left(e^{4 i \psi}+e^{4 i \theta}\right)+4(3 \lambda+2) e^{i \psi} e^{i \theta}\left(e^{2 i \psi}+e^{2 i \theta}\right)\right. \\
& \left.+6\left(2 \lambda^{2}+2 \lambda+1\right) e^{2 i \psi} e^{2 i \theta}\right]+2 i x\left(e^{2 i \psi}-e^{2 i \theta}\right)\left[\left(4 \lambda^{3}+9 \lambda^{2}+11 \lambda+3\right)\right. \\
& \left.\times\left(e^{2 i \psi}+e^{2 i \theta}\right)+2 \lambda(2 \lambda+3) e^{i \psi} e^{i \theta}\right] \\
& +\lambda(1+\lambda)\left[(\lambda+2)(\lambda+3)\left(e^{4 i \psi}+e^{4 i \theta}\right)\right. \\
& \left.+4 \lambda(\lambda+2) e^{i \psi} e^{i \theta}\left(e^{2 i \psi}+e^{2 i \theta}\right)+6 \lambda(\lambda+1) e^{2 i \psi} e^{2 i \theta}\right] .
\end{aligned}
$$

The four special cases of $P_{n}^{\lambda}(x ; \theta, \psi)$ corresponding to the choice:
(a) $\psi=-\theta$,
(b) $\psi=\pi-\theta$,
(c) $\psi=\pi+\theta$,
(d) $\psi=\theta$
lead to some interesting families of polynomials. Namely, we define:
(a) $G^{\lambda}(x ; \theta,-\theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{-i \theta}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta) z^{n}, z \in \mathbb{D}$, and of course $P_{n}^{\lambda}(x ; \theta)$ are the well-known (MP) polynomials of variable $x \in \mathbb{R}$ with parameters $\lambda>0, \theta \in(0, \pi)$;
(b) $G^{\lambda}(x ; \theta, \pi-\theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1+z e^{-i \theta}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} Q_{n}^{\lambda}(x ; \theta) z^{n}, z \in \mathbb{D}$,
where $Q_{n}^{\lambda}(x ; \theta)$ we call quasi-Meixner-Pollaczek (QMP) polynomials;
(c) $G^{\lambda}(x ; \theta, \pi+\theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1+z e^{i \theta}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} S_{n}^{\lambda}(x ; \theta) z^{n}, z \in \mathbb{D}$, where $S_{n}^{\lambda}(x ; \theta)$ we call strongly symmetric Meixner-Pollaczek (SSMP) polynomials.

Observe that the special cases: $i^{-n} Q_{n}^{\lambda}(x ; 0)$ and $S_{n}^{\lambda}\left(x ; \frac{\pi}{2}\right)$ represent symmetric (MP) polynomials studied in [1], [6], [8] and [9].
(d) $G^{\lambda}(x ; \theta, \theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{2 \lambda}}=\sum_{n=0}^{\infty} H_{n}^{\lambda}(\theta) z^{n}, \quad z \in \mathbb{D}$,
where $H_{n}^{\lambda}(\theta)=\frac{(2 \lambda)_{n}}{n!} e^{i n \theta}$.
From Theorem 2.1 we have as the corollaries the following formulas for the polynomials
$P_{n}^{\lambda}(x ; \theta)=P_{n}^{\lambda}(x ; \theta,-\theta), Q_{n}^{\lambda}(x ; \theta)=P_{n}^{\lambda}(x ; \theta, \pi-\theta), S_{n}^{\lambda}(x ; \theta)=P_{n}^{\lambda}(x ; \theta, \pi+\theta)$.
Corollary 2. (i) The (MP) polynomials $P_{n}^{\lambda}(x ; \theta)$ satisfy the three-term recurrence relation:

$$
\begin{aligned}
P_{-1}^{\lambda}(x ; \theta) & =0 \\
P_{0}^{\lambda}(x ; \theta) & =1 \\
n P_{n}^{\lambda}(x ; \theta) & =2[x \sin \theta+(n-1+\lambda) \cos \theta] P_{n-1}^{\lambda}(x ; \theta) \\
& -(2 \lambda+n-2) P_{n-2}^{\lambda}(x ; \theta), \quad n \geq 1
\end{aligned}
$$

(ii) The polynomials $P_{n}^{\lambda}(x ; \theta)$ are given by the formula:

$$
P_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \sum_{j=0}^{n} \frac{(\lambda+i x)_{j}(\lambda-i x)_{n-j}}{j!(n-j)!} e^{-2 i j \theta}, \quad n \in \mathbb{N} \cup\{0\}
$$

(iii) The polynomials $P_{n}^{\lambda}(x ; \theta)$ have the hypergeometric representation

$$
P_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \frac{(2 \lambda)_{n}}{n!} F\left(-n, \lambda+i x, 2 \lambda ; 1-e^{-2 i \theta}\right)
$$

(iiii) The polynomials $y(x)=P_{n}^{\lambda}(x ; \theta)$ satisfy the following difference equation
$e^{i \theta}(\lambda-i x) y(x+i)+2 i[x \cos \theta-(n+\lambda) \sin \theta] y(x)-e^{-i \theta}(\lambda+i x) y(x-i)=0$.
Corollary 3. (i) The (QMP) polynomials $Q_{n}^{\lambda}=Q_{n}^{\lambda}(x ; \theta)$ satisfy the threeterm recurrence relation:

$$
\begin{aligned}
Q_{-1}^{\lambda} & =0 \\
Q_{0}^{\lambda} & =1 \\
n Q_{n}^{\lambda} & =2 i[(\lambda+n-1) \sin \theta-x \cos \theta] Q_{n-1}^{\lambda}+(2 \lambda+n-2) Q_{n-2}^{\lambda}, \quad n \geq 1
\end{aligned}
$$

(ii) The polynomials $Q_{n}^{\lambda}=Q_{n}^{\lambda}(x ; \theta)$ are given by the formula:

$$
Q_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \sum_{j=0}^{n}(-1)^{j} \frac{(\lambda+i x)_{j}(\lambda-i x)_{n-j}}{j!(n-j)!} e^{-2 i j \theta}, \quad n \in \mathbb{N} \cup\{0\} .
$$

(iii) The polynomials $Q_{n}^{\lambda}=Q_{n}^{\lambda}(x ; \theta)$ have the hypergeometric representation

$$
Q_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \frac{(2 \lambda)_{n}}{n!} F\left(-n, \lambda+i x, 2 \lambda ; 1+e^{-2 i \theta}\right) .
$$

(iiii) The polynomials $y(x)=Q_{n}^{\lambda}(x ; \theta)$ satisfy the following difference equation
$e^{i \theta}(\lambda-i x) y(x+i)-2[x \sin \theta+(n+\lambda) \cos \theta] y(x)+e^{-i \theta}(\lambda+i x) y(x-i)=0$.
Corollary 4. (i) The (SSMP) polynomials $S_{n}^{\lambda}=S_{n}^{\lambda}(x ; \theta)$ satisfy the threeterm recurrence relation:

$$
\begin{aligned}
S_{-1}^{\lambda} & =0 \\
S_{0}^{\lambda} & =1 \\
n S_{n}^{\lambda} & =-2 i x e^{i \theta} S_{n-1}^{\lambda}+(2 \lambda+n-2) e^{2 i \theta} S_{n-2}^{\lambda}, \quad n \geq 1
\end{aligned}
$$

(ii) The polynomials $S_{n}^{\lambda}=S_{n}^{\lambda}(x ; \theta)$ are given by the formula:

$$
S_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \sum_{j=0}^{n}(-1)^{j} \frac{(\lambda+i x)_{j}(\lambda-i x)_{n-j}}{j!(n-j)!}, \quad n \in \mathbb{N} \cup\{0\} .
$$

(iii) The polynomials $S_{n}^{\lambda}=S_{n}^{\lambda}(x ; \theta)$ have the hypergeometric representation

$$
S_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \frac{(2 \lambda)_{n}}{n!} F(-n, \lambda+i x, 2 \lambda ; 2) .
$$

(iiii) The polynomials $y(x)=S_{n}^{\lambda}(x ; \theta)$ satisfy the following difference equation

$$
(\lambda-i x) y(x+i)-2(n+\lambda) y(x)+(\lambda+i x) y(x-i)=0 .
$$

Theorem 2.2. The polynomials $Q_{n}^{\lambda}(x ; \theta)$ are orthogonal on $(-\infty,+\infty)$ with the weight

$$
w_{\theta}^{\lambda}(x)=\frac{1}{2 \pi} e^{2 \theta x}|\Gamma(\lambda+i x)|^{2} \text { if } \lambda>0 \text { and } \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

and

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{2 \theta x}|\Gamma(\lambda+i x)|^{2} Q_{n}^{\lambda}(x ; \theta) \overline{Q_{m}^{\lambda}(x ; \theta)} d x=\delta_{m n} \frac{\Gamma(n+2 \lambda)}{(2 \cos \theta)^{2 \lambda} n!} .
$$

In the proof we use the following lemmas.
Lemma 1 ([4], vol. I p. 12). If $\alpha>0$ and $p>0$, then

$$
\int_{0}^{+\infty} u^{\alpha-1} e^{-p u} e^{-i q u} d u=\Gamma(\alpha)\left(p^{2}+q^{2}\right)^{-\frac{\alpha}{2}} e^{-i \alpha \arctan \left(\frac{p}{q}\right)}
$$

Lemma 2 ([11]). Let $F(s)$ and $G(s)$ be Mellin transforms of $f(x)$ and $g(x)$, i.e.

$$
F(s)=\int_{0}^{+\infty} f(x) x^{s-1} d x, \quad G(s)=\int_{0}^{+\infty} g(x) x^{s-1} d x
$$

Then the following formula (Parseval's identity) holds:

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) G(1-s) d s=\int_{0}^{+\infty} f(x) g(x) d x .
$$

Corollary 5. If $f(x)=x^{2(\lambda+j)} e^{-x^{2}}$ and $g(x)=x^{2(\lambda+k)-1} e^{-x^{2}}$, then

$$
F(s)=\Gamma\left(\lambda+j+\frac{s}{2}\right), G(s)=\Gamma\left(\lambda+k+\frac{s-1}{2}\right) .
$$

Lemma 3. For any $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \lambda>0, j, k=1,2, \ldots$ we have

$$
I=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}(\lambda+i x)_{j}(\lambda-i x)_{k}|\Gamma(\lambda+i x)|^{2} e^{2 \theta x} d x=\frac{e^{i(j-k) \theta} \Gamma(2 \lambda+k+j)}{(2 \cos \theta)^{2 \lambda+k+j}}
$$

Proof. Putting $x=\frac{t}{2}$ and next $i t=s$ we have:

$$
\begin{aligned}
I & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(\lambda+i \frac{t}{2}\right)_{j}\left(\lambda-i \frac{t}{2}\right)_{k}\left|\Gamma\left(\lambda+i \frac{t}{2}\right)\right|^{2} e^{\theta t} d t \\
& =\frac{1}{4 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\lambda+\frac{s}{2}\right)_{j}\left(\lambda-\frac{s}{2}\right)_{k}\left|\Gamma\left(\lambda+\frac{s}{2}\right)\right|^{2} e^{-i \theta s} d s,
\end{aligned}
$$

where we use the well-known formula for Pochammer symbol: $(a)_{j}=\frac{\Gamma(a+j)}{\Gamma(a)}$, $j=1,2, \ldots$.
Lemma 4. For arbitrary polynomial $Q_{n}^{\lambda}(x ; \theta), \lambda>0, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; k, n=$ $1,2, \ldots$ we have
$J=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{2 \theta x}(\lambda-i x)_{k}|\Gamma(\lambda+i x)|^{2} Q_{n}^{\lambda}(x ; \theta) d x=\frac{e^{i n \theta} \Gamma(2 k+\lambda) e^{-i \theta k}}{(2 \cos \theta)^{2 \lambda+k}}(-k)_{n}$.

Proof. Using hypergeometric representation for $Q_{n}^{\lambda}(x ; \theta)$ we can write

$$
\begin{aligned}
Q_{n}^{\lambda}(x ; \theta) & =\frac{e^{i n \theta}(2 \lambda)_{n}}{n!} F\left(-n, \lambda+i x ; 2 \lambda ; 1+e^{-2 i \theta}\right) \\
& =\frac{e^{i n \theta}(2 \lambda)_{n}}{n!} \sum_{j=0}^{n} \frac{(-n)_{j}(\lambda+i x)_{j}}{(2 \lambda)_{j} j!}\left(1+e^{-2 i \theta}\right)^{j} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
J= & \frac{e^{i n \theta}(2 \lambda)_{n}}{n!} \sum_{j=0}^{n} \frac{(-n)_{j}\left(1+e^{-2 i \theta}\right)^{j}}{(2 \lambda)_{j} j!} \cdot I \quad \text { (by Lemma 3) } \\
= & \frac{e^{i n \theta}(2 \lambda)_{n}}{n!} e^{-i k \theta} \Gamma(2 \lambda+k) \frac{1}{\left(4 \cos ^{2} \theta\right)^{\frac{2 \lambda+k}{2}}} \\
& \times \sum_{j=0}^{n} \frac{(-n)_{j}(2 \lambda+k)_{j}}{(2 \lambda)_{j} j!}\left(\frac{1+e^{-2 i \theta}}{\left(4 \cos ^{2} \theta\right)^{\frac{1}{2}} \cdot e^{-i \theta}}\right)^{j} \\
= & \frac{e^{i n \theta}(2 \lambda)_{n} \Gamma(2 \lambda+k) e^{-i k \theta}}{n!(2 \cos \theta)^{2 \lambda+k}} \cdot F(-n ; 2 \lambda+k ; 2 \lambda ; 1) .
\end{aligned}
$$

Using the well-known formula:

$$
F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)},
$$

we obtain

$$
\begin{equation*}
J=\frac{e^{i(n-k) \theta} \Gamma(2 \lambda+k)}{n!(2 \cos \theta)^{2 \lambda+k}} \cdot(-k)_{n} . \tag{2.7}
\end{equation*}
$$

Proof of Theorem 2.2. Let $m \leq n$. Observe that $(-k)_{n}=0$ if $k<n$. Therefore by (2.7)

$$
J=\frac{\Gamma(2 \lambda+n)(-n)_{n}}{n!(2 \cos \theta)^{2 \lambda+n}}, \quad \text { if } \quad k=n
$$

and

$$
J=0, \quad \text { if } \quad k<n .
$$

Using hypergeometric representation for $Q_{n}^{\lambda}(x ; \theta)$ we can write

$$
Q_{n}^{\lambda}(x ; \theta)=\frac{e^{i n \theta}(2 \lambda)_{n}}{n!} \sum_{j=0}^{n} \frac{(-n)_{j}\left(1+e^{-2 i \theta}\right)^{j}}{(2 \lambda)_{j} j!}(\lambda+i x)_{j}=\sum_{j=0}^{n} A_{j}(\lambda+i x)_{j} .
$$

Therefore

$$
\int_{-\infty}^{+\infty} Q_{n}^{\lambda}(x ; \theta) \overline{Q_{m}^{\lambda}(x ; \theta)} w_{\theta}^{\lambda}(x) d x=\delta_{n m} \overline{A_{n}} \frac{\Gamma(2 \lambda+n)(-n)_{n}}{n!(2 \cos \theta)^{2 \lambda+n}},
$$

where

$$
\overline{A_{n}}=\frac{(-n)_{n}\left(1+e^{2 i \theta}\right)^{n}}{(2 \lambda)_{n} n!} \cdot \frac{e^{-i n \theta(2 \lambda)_{n}}}{n!}
$$

which ends the proof after some obvious simplifications.
Remark 1. In the case $x=0$ we can obtain "more pleasant" sets of "polynomials":

$$
\begin{aligned}
Q_{n}^{\lambda}(0 ; \theta) & =Q_{n}^{\lambda}(\theta), \\
S_{n}^{\lambda}(0, \theta) & =S_{n}^{\lambda}(\theta), \quad \theta \in[0, \pi], \lambda>0 .
\end{aligned}
$$

for which one can prove the following.
Theorem 2.3. The function $y=y(\theta)=Q_{n}^{\lambda}(\theta)=Q_{n}^{\lambda}(0 ; \theta), \lambda>0$ satisfies the following second order differential equation:

$$
\cos \theta\left(Q_{n}^{\lambda}\right)^{\prime \prime}-2 \lambda \sin \theta\left(Q_{n}^{\lambda}\right)^{\prime}+n(n+2 \lambda) \cos \theta Q_{n}^{\lambda}=0
$$

In particular, if $\lambda=1$ we have:

$$
\cos \theta\left(Q_{n}^{1}\right)^{\prime \prime}-2 \sin \theta\left(Q_{n}^{1}\right)^{\prime}+n(n+2) \cos \theta Q_{n}^{1}=0
$$

Theorem 2.4. The sets of functions $Q_{2 k}^{\lambda}(\theta)$ and $Q_{2 k-1}^{\lambda}(\theta)$ form (separately) the orthogonal systems with the weight function $w^{\lambda}(\theta)=\cos ^{2 \lambda} \theta, \theta \in$ $[0, \pi], \lambda>0$.
3. The generating function for (MP) polynomials allows us to define the generalization of the well-known class \mathbb{T} of holomorphic function (1.1) which are typically-real in $\mathbb{D}(\operatorname{Im} f(z) \cdot \operatorname{Im} z \geq 0, z \in \mathbb{D})$ and have the following integral representation

$$
f(z)=\int_{0}^{\pi} \frac{z}{\left(1-z e^{i \theta}\right)\left(1-z e^{-i \theta}\right)} d \mu(\theta)
$$

where μ is a probability measure on $[0, \pi]$ (e.g. [3], [5], [12], [13]).
Namely, we are going to study the extremal problems within the class $\mathbb{T}(\lambda, \tau), \lambda>0, \tau \in \mathbb{R}$ of holomorphic functions f of the form (1.1) given by the following integral representation

$$
f(z)=\int_{0}^{\pi} \frac{z}{\left(1-z e^{i \theta}\right)^{\lambda-i \tau}\left(1-z e^{-i \theta}\right)^{\lambda+i \tau}} d \mu(\theta),
$$

where μ is a probability measure on $[0, \pi]$.
We have in particular $\mathbb{T}(\lambda, 0)=\mathbb{T}(\lambda)$ (e.g. [16], [7]) and $\mathbb{T}(1,0)=\mathbb{T}(\lambda, \tau)$. In parallel way we are going to study the extremal problems within the classes $\mathbf{T}(\lambda, \tau)$ and $\mathcal{T}(\lambda, \tau), \lambda>0, \tau \in \mathbb{R}$ of holomorphic functions of the form (1.1) which have the integral representation

$$
f(z)=\int_{0}^{\pi} \frac{z}{\left(1-z e^{i \theta}\right)^{\lambda-i \tau}\left(1+z e^{-i \theta}\right)^{\lambda+i \tau}} d \mu(\theta)
$$

and

$$
f(z)=\int_{0}^{\pi} \frac{z}{\left(1-z e^{i \theta}\right)^{\lambda-i \tau}\left(1+z e^{i \theta}\right)^{\lambda+i \tau}} d \mu(\theta)
$$

where μ is a probability measure on $[0, \pi]$.
The classes $\mathbb{T}(\lambda, \tau), \mathbf{T}(\lambda, \tau)$ and $\mathcal{T}(\lambda, \tau)$ differ pretty much, for instance all coefficients a_{k} of $f \in \mathbb{T}(\lambda, \tau)$ are real, however the odd coefficients of $f \in \mathbb{T}(\lambda, \tau)$ are real and even coefficients of $f \in \mathbf{T}(\lambda, \tau)$ are purely imaginary.

In special case $\tau=0, \lambda=1$, i.e. $\mathbf{T}=\mathbf{T}(1,0)$, we are able to find explicitly the radius of local univalence and the radius of univalence of \mathbf{T} which differ from the corresponding values in the class $\mathbb{T}=\mathbb{T}(1,0)$.

The classes $\mathbb{T}(0, \tau), \mathbf{T}(0, \tau)$ and $\mathcal{T}(0, \tau)$ appear to be of special interest when $\lambda \rightarrow 0^{+}$.

The same remarks concern also the sets of polynomials

$$
S^{0}(x, \theta)=\lim _{\lambda \rightarrow 0^{+}} S^{\lambda}(x, \theta) \text { and } Q^{0}(x, \theta)=\lim _{\lambda \rightarrow 0^{+}} Q^{\lambda}(x, \theta)
$$

which generalize the special symmetric Pollaczek polynomials [1].
Remark 2. Due to definition (2.1) of the polynomials $P_{n}^{\lambda}(\tau ; \theta, \psi), \tau \in \mathbb{R}$, $\theta \in(0, \pi), \psi \in \mathbb{R}$ we can as well consider the extremal problems for more general class of the holomorphic function f of the form (1.1) which have the integral representation

$$
f(z)=\iint_{\Delta} z G^{\lambda}(\tau ; \theta, \psi ; z) d \mu(\theta, \psi)
$$

where μ is a probability measure on $\Delta=(0, \pi) \times \mathbb{R}$.

References

[1] Araaya, T. K., The symmetric Meixner-Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
[2] Chihara, T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] Duren, P. L., Univalent Functions, Springer, New York, 1983.
[4] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
[5] Golusin, G., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, no. 26, Amer. Math. Soc., Providence, R.I., 1969.
[6] Ismail, M., On sieved ultraspherical polynomials I: Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), 1093-1113.
[7] Kiepiela, K., Naraniecka, I., Szynal, J., The Gegenbauer polynomials and typically real functions, J. Comp. Appl. Math 153 (2003), 273-282.
[8] Koekoek, R., Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Delft University of Technology, 1998.
[9] Koornwinder, T. H., Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (4) (1989), 767-769.
[10] Pommerenke, Ch., Linear-invariant Familien analytischer Funktionen, Mat. Ann. 155 (1964), 108-154.
[11] Poularikas, A. D., The Mellin Transform, The Handbook of Formulas and Tables for Signal Processing, CRC Press LLC, Boca Raton, 1999.
[12] Robertson, M. S., On the coefficients of typically-real functions, Bull. Amer. Math. Soc. 41 (1935), 565-572.
[13] Rogosinski, W. W., Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93-121.
[14] Starkov, V. V., The estimates of coefficients in locally-univalent family U_{α}^{\prime}, Vestnik Lenin. Gosud. Univ. 13 (1984), 48-54 (Russian).
[15] Starkov, V. V., Linear-invariant families of functions, Dissertation, Ekatirenburg, 1989, 1-287 (Russian).
[16] Szynal, J., An extension of typically-real functions, Ann. Univ. Mariae CurieSkłodowska, Sect. A 48 (1994), 193-201.
[17] Szynal, J., Waniurski, J., Some problems for linearly invariant families, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 30 (1976), 91-102.

Iwona Naraniecka
Department of Mathematics
Faculty of Economics
Maria Curie-Skłodowska University
20-031 Lublin
Poland
e-mail: inaraniecka@gmail.com
Jan Szynal
University of Economics and Innovation in Lublin
20-209 Lublin
Poland
e-mail: jan.szynal3@gmail.com
Anna Tatarczak
Department of Mathematics
Faculty of Economics
Maria Curie-Skłodowska University
20-031 Lublin
Poland
e-mail: antatarczak@gmail.com
Received September 28, 2012

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C70, 42C05, 33C45.
 Key words and phrases. Typically-real functions, univalent functions, local univalence, orthogonal polynomials, Meixner-Pollaczek polynomials.

