doi: 10.17951/a.2018.72.1.13

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXII, NO. 1, 2018 SECTIO A

13 - 18

ANNA BEDNARSKA

On almost polynomial structures from classical linear connections

ABSTRACT. Let $\mathcal{M}f_m$ be the category of *m*-dimensional manifolds and local diffeomorphisms and let *T* be the tangent functor on $\mathcal{M}f_m$. Let \mathcal{V} be the category of real vector spaces and linear maps and let \mathcal{V}_m be the category of *m*-dimensional real vector spaces and linear isomorphisms. Let *w* be a polynomial in one variable with real coefficients. We describe all regular covariant functors $F: \mathcal{V}_m \to \mathcal{V}$ admitting $\mathcal{M}f_m$ -natural operators \tilde{P} transforming classical linear connections ∇ on *m*-dimensional manifolds *M* into almost polynomial *w*-structures $\tilde{P}(\nabla)$ on $F(T)M = \bigcup_{x \in M} F(T_xM)$.

1. Introduction. All manifolds considered in the paper are assumed to be Hausdorff, finite dimensional, second countable, without boundaries and smooth (i.e. of class C^{∞}). Maps between manifolds are assumed to be of class C^{∞} .

The category of *m*-dimensional manifolds and local diffeomorphisms is denoted by $\mathcal{M}f_m$. The category of vector bundles and vector bundle homomorphisms between them is denoted by \mathcal{VB} . The category of *m*-dimensional real vector spaces and linear isomorphisms is denoted by \mathcal{V}_m . The category of finite dimensional real vector spaces and linear maps is denoted by \mathcal{V} .

Let w be a polynomial in one variable. A tensor field P of type (1,1) on a manifold N is called an almost polynomial w-structure on N if w(P) = 0(i.e. $w(P_{|x}) = 0$ for any $x \in N$).

²⁰¹⁰ Mathematics Subject Classification. 58A20, 58A32.

 $Key\ words\ and\ phrases.$ Classical linear connection, almost polynomial structure, Weil bundle, natural operator.

In the present paper we solve the following problem.

Problem 1. Let w be a polynomial in one variable with real coefficients. We characterize all covariant regular functors $F: \mathcal{V}_m \to \mathcal{V}$ admitting $\mathcal{M}f_m$ natural operators \tilde{P} transforming classical linear connections ∇ on m-maniintoalmostpolynomial w-structures folds M $P(\nabla)$ on $F(T)M = \bigcup_{x \in M} F(T_xM)$, where $T \colon \mathcal{M}f_m \to \mathcal{VB}$ denotes the tangent functor on the category $\mathcal{M}f_m$.

If $w(t) = t^2 + 1$, then we reobtain the result from [5] on the characterization of covariant regular functors $F: \mathcal{V}_m \to \mathcal{V}$ admitting $\mathcal{M}f_m$ -natural operators \tilde{J} transforming classical linear connections ∇ on *m*-manifolds M into almost complex structures $J(\nabla)$ on F(T)M.

If $w(t) = t^2 - 1$, then we characterize covariant regular functors $F: \mathcal{V}_m \to \mathcal{V}_m$ \mathcal{V} admitting $\mathcal{M}f_m$ -natural operators \tilde{J} transforming classical linear connections ∇ on *m*-manifolds M into almost para-complex structures $J(\nabla)$ on F(T)M.

2. Basic definitions. The concept of natural bundles and natural operators can be found in the fundamental monograph [3].

Let $F: \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor. The regularity of the functor F means that F transforms smoothly parametrized families of isomorphisms into smoothly parametrized families of linear maps. Let $T: \mathcal{M}f_m \to$ \mathcal{VB} be the tangent functor sending any *m*-dimensional manifold M into the tangent bundle TM of M and any $\mathcal{M}f_m$ -map $\varphi \colon M_1 \to M_2$ into the tangent map $T\varphi: TM_1 \to TM_2$. Applying F to fibers T_xM of TM, one can define a natural vector bundle F(T) of order 1 over *m*-manifolds by

$$F(T)M = \bigcup_{x \in M} F(T_xM) \text{ and } F(T)\varphi = \bigcup_{x \in M} F(T_x\varphi) \colon F(T)M_1 \to F(T)M_2$$

for any *m*-manifold *M* and any $\mathcal{M}f_m$ -map $\varphi: M_1 \to M_2$ between *m*manifolds M_1 and M_2 . In particular, if F is the identity functor, then F(T) = T.

A classical linear connection on an *m*-manifold M is an \mathbb{R} -bilinear map $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ such that:

- $\begin{array}{ll} (1) \ \, \nabla_{f_1X_1+f_2X_2}Y = f_1\nabla_{X_1}Y + f_2\nabla_{X_2}Y \\ (2) \ \, \nabla_X(Y_1+Y_2) = \nabla_XY_1 + \nabla_XY_2 \end{array}$
- (3) $\nabla_X(fY) = Xf \cdot Y + f \cdot \nabla_X Y$,

where X, X₁, X₂, Y, Y₁, Y₂ $\in \mathfrak{X}(M)$ are any vector fields on M and $f, f_1, f_2 \colon M \to \mathbb{R}$ are any smooth functions on M. Equivalently, a classical linear connection on M is a right invariant decomposition $TLM = H^{\nabla} \oplus$ VLM of the tangent bundle TLM of LM, where LM is the principal bundle with the structural group GL(m) of linear frames over M and VLM is the vertical bundle of LM, see [2].

Let $w(t) = t^m + a_{m-1}t^{m-1} + \cdots + a_1t + a_0$ be the polynomial in one variable with real coefficients a_{m-1}, \ldots, a_0 .

A polynomial w-structure on a real vector space W is a linear endomorphism $P: W \to W$ such that $w(P) = P^m + a_{m-1}P^{m-1} + \dots + a_1P + a_0I = 0$, where P^k denotes the composition $\underbrace{P \circ \dots \circ P}_{k\text{-times}}$ and I denotes the identity

map on W.

An almost polynomial w-structure on manifold N is a tensor field $\tilde{P}: TN \to TN$ on N of type (1,1) (affinor) such that $P_x: T_xN \to T_xN$ is a polynomial w-structure on T_xN for any $x \in N$. In other words, an almost polynomial w-structure is a tensor field P of type (1,1) on manifold N satisfying a polynomial equation $P^m + a_{m-1}P^{m-1} + \cdots + a_1P + a_0I = 0$, where a_{m-1}, \ldots, a_0 are real numbers, at every point of N.

The general concept of natural operators can be found in the fundamental monograph [3]. In particular, we have the following definition.

Definition 1. Let $F: \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor. An $\mathcal{M}f_m$ natural operator transforming classical linear connections ∇ on *m*-manifolds M into almost polynomial *w*-structures $\tilde{P}(\nabla): TF(T)M \to TF(T)M$ on F(T)M is an $\mathcal{M}f_m$ -invariant family $\tilde{P}: Q \rightsquigarrow (AwS)F(T)$ of operators

$$P: Q(M) \to (AwS)(F(T)M)$$

for *m*-manifolds M, where Q(M) is the set of classical linear connections on M and (AwS)(F(T)M) is the set of almost polynomial *w*-structures on F(T)M. The invariance of \tilde{P} means that if $\nabla_1 \in Q(M_1)$ and $\nabla_2 \in Q(M_2)$ are φ -related by an embedding $\varphi \colon M_1 \to M_2$ (i.e. if φ is (∇, ∇_1) affine embedding), then $\tilde{P}(\nabla_1)$ and $\tilde{P}(\nabla_2)$ are $F(T)\varphi$ -related (i.e. $TF(T)\varphi \circ \tilde{P}(\nabla_1) = \tilde{P}(\nabla_2) \circ TF(T)\varphi$).

Let $F: \mathcal{V}_m \to \mathcal{V}$ be as above. A \mathcal{V}_m -canonical polynomial *w*-structure on $V \oplus FV$ is a \mathcal{V}_m -invariant system *P* of polynomial *w*-structures

$$P\colon V\oplus FV\to V\oplus FV$$

on vector spaces $V \oplus FV$ for *m*-dimensional real vector spaces *V*. The invariance of *P* means that $(\varphi \oplus F\varphi) \circ P = P \circ (\varphi \oplus F\varphi)$ for any linear isomorphism $\varphi \colon V_1 \to V_2$ between *m*-dimensional vector spaces.

3. The main result. The main result of the present note is the following theorem.

Theorem 1. Let $F: \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor and w be a polynomial in one variable with real coefficients. The following conditions are equivalent:

- (i) There exists an $\mathcal{M}f_m$ -natural operator $P: Q \rightsquigarrow (AwS)F(T)$.
- (ii) There exists a \mathcal{V}_m -canonical polynomial w-structure P on $V \oplus FV$.

A. Bednarska

Proof. $(i) \Rightarrow (ii)$. Let $\tilde{P}: Q \rightsquigarrow (AwS)F(T)$ be an $\mathcal{M}f_m$ -natural operator in question. Let V be an m-dimensional vector space from the category \mathcal{V}_m and let ∇^V be the \mathcal{V}_m -canonical torsion free flat classical linear connection on V. Then the almost polynomial w-structure $\tilde{P}(\nabla^V): TF(T)V \rightarrow$ TF(T)V on F(T)V restricts to the polynomial w-structure

$$P := \tilde{P}(\nabla^V)_{0_0_V} \colon T_{0_0_V}F(T)V \to T_{0_0_V}F(T)V$$

on the tangent space $T_{0_{0_V}}F(T)V$ of F(T)(V) at $0_{0_V} \in F(T)V$, where 0_V is the zero in V and 0_{0_V} is the zero in $F(T)_{0_V}V$. Since $TV = V \oplus V$, we have $F(T)V = V \oplus FV$. Therefore $T_{0_{0_V}}F(T)V = V \oplus FV$ modulo above identifications. So,

$$P\colon V\oplus FV\to V\oplus FV$$

is the polynomial w-structure on $V \oplus FV$ for any \mathcal{V}_m -object V. Because of the canonical character of the construction of P, the structure P is \mathcal{V}_m canonical.

 $(ii) \Rightarrow (i)$. Suppose $P: V \oplus FV \to V \oplus FV$ is a \mathcal{V}_m -canonical polynomial w-structure. Let $\nabla \in Q(M)$ be a classical linear connection on an m-manifold M. Let $v \in F(T)_x M$, $x \in M$. Since F(T) is of order 1, $F(T)M = LM[F(T)_0\mathbb{R}^m]$ (the associated space). Then ∇ -decomposition $TLM = H^{\nabla} \oplus VLM$ induces (in obvious way) ∇ -decomposition $TF(T)M = \tilde{H}^{\nabla} \oplus VF(T)M$. Then we have the identification

$$T_v F(T)M = \tilde{H}_v^{\nabla} \oplus V_v F(T)M \cong T_x M \oplus F(T)_x M = T_x M \oplus F(T_x M)$$

canonically depending on ∇ , where the equality is the connection decomposition, the identification \cong is the usual one (namely, $\tilde{H}_v^{\nabla} = T_x M$ modulo the tangent of the projection of F(T)M and $V_v F(T)M = T_v(F(T)_x M) =$ $F(T)_x M$ modulo the standard identification) and the second equality is by the definition of F(T)M. We define $\tilde{P}(\nabla)_{|v}: T_v F(T)M \to T_v F(T)M$ by

$$\tilde{P}(\nabla)_{|_{V}} := P \colon T_{x}M \oplus F(T_{x}M) \to T_{x}M \oplus F(T_{x}M)$$

modulo the above identification $T_v F(T)M \cong T_x M \oplus F(T_x M)$. Then $\tilde{P}(\nabla): TF(T)M \to TF(T)M$ is an almost polynomial w-structure on F(T)M. By the canonical character of $\tilde{P}(\nabla)$, the resulting family $\tilde{P}: Q \rightsquigarrow (AwS)F(T)$ is an $\mathcal{M}f_m$ -natural operator. \Box

4. An application to para-complex structures. Let $w(t) = t^2 - 1$. Let *J* be a polynomial *w*-structure on a vector space *W*. Then $W = W_+ \oplus W_-$, where $W_{\pm} = \{v \in W : J(v) = \pm v\}$. If additionally dim $(W_+) = \dim(W_-)$, then *J* is called a para-complex structure on *W*, see [6].

An almost para-complex structure on a manifold N is an affinor $J: TN \to TN$ on N such that $J_x: T_xN \to T_xN$ is a para-complex structure on T_xN for any $x \in N$. In other words, an almost para-complex structure is a smooth

(1, 1)-tensor field on the manifold N of even dimension m, if the following conditions are satisfied:

- (1) $J^2 = id_{TN}$
- (2) for each point $x \in N$, the eigenspaces T_x^+N and T_x^-N of J_x (the value of J at x) are both $\frac{m}{2}$ -dimensional subspaces of the tangent space T_xN at x, [1], [7].

Corollary 1. Let $F: \mathcal{V}_m \to \mathcal{V}$ be a regular covariant functor. The following conditions are equivalent:

- (a) There is an $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (APC)F(T)$ transforming classical linear connections ∇ on m-manifolds M into almost para-complex structures $\tilde{J}(\nabla)$ on F(T)M.
- (b) There exists a \mathcal{V}_m -canonical para-complex structure J on $V \oplus FV$.

Proof. This is a simple consequence of Theorem 1.

Lemma 1. Let p be a positive integer. Let $F: \mathcal{V}_m \to \mathcal{V}$ be a covariant regular functor given by $FV = V \times \cdots \times V$ ((p-1) times of V) and $F\varphi = \varphi \times \cdots \times \varphi$ ((p-1) times of φ). If p is even, there is a \mathcal{V}_m -canonical para-complex structure on $V \oplus FV$.

Proof. If p is even, we have the \mathcal{V}_m -canonical para-complex structure on $V \times \cdots \times V$ (p times of V). Namely, we have the $\frac{p}{2}$ copies of the canonical para-complex structure on $V \times V$ given by $(v, w) \to (v, -w)$.

A Weil algebra A is a finite dimensional, commutative, associative and unital algebra of the form $A = \mathbb{R} \times N$, where N is the ideal of all nilpotent elements of A.

Lemma 2 (Lemma 5.1 in [4]). Let A be a p-dimensional Weil algebra and let T^A be the corresponding Weil functor. For any classical linear connection ∇ on an m-manifold M, we have the base-preserving fibred diffeomorphism $I^A_{\nabla}: T^A M \to TM \otimes \mathbb{R}^{p-1}$ canonically depending on ∇ .

We see that $TM \otimes \mathbb{R}^{p-1} = TM \times_M \cdots \times_M TM$ ((p-1) times of TM) = F(T)M, where $F: \mathcal{V}_m \to \mathcal{V}$, $FV = V \times \cdots \times V$ ((p-1) times of V), $F\varphi = \varphi \times \cdots \times \varphi$ ((p-1) times of $\varphi)$. So, from Corollary 1, Lemma 1 and Lemma 2 we obtain

Proposition 1. Let A be a Weil algebra. If A is even dimensional, there exists an $\mathcal{M}f_m$ -natural operator $\tilde{J}: Q \rightsquigarrow (APC)T^A$ sending classical linear connections ∇ on m-manifolds M into almost para-complex structures $\tilde{J}(\nabla)$ on $T^A M$.

References

 Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1) (1985), 81–98.

- [2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, Interscience Publisher, New York–London, 1963.
- [3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [4] Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319–324.
- [5] Kurek, J., Mikulski, W. M., On almost complex structures from classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 71 (1) (2017), 55–60.
- [6] Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517–2519.
- [7] Libermann, P., Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1954), 27–120.

Anna Bednarska Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: bednarska@hektor.umcs.lublin.pl

Received April 25, 2018