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On the zeros of polynomials
and analytic functions

Abstract. For a polynomial of degree n, we have obtained some results,
which generalize and improve upon the earlier well known results (under cer-
tain conditions). A similar result is also obtained for analytic function.

1. Introduction and statement of results. The following theorem is
due to Pellet ([6], [5, p. 128]).

Theorem A. Let q(z) = a0 + a1z + . . . + apz
p + . . . + anz

n, ap 6= 0, be
a polynomial of degree n. If the polynomial

Qp(z) = |a0|+ |a1|z + . . .+ |ap−1|zp−1 − |ap|zp + |ap+1|zp+1 + . . .+ |an|zn,
has two positive zeros r and R, r < R, then q(z) has exactly p zeros in the
disc

|z| ≤ r
and no zero in the annular ring

r < |z| < R.

The next result is due to Jayal, Labelle and Rahman [4].
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Theorem B. Let p(z) =
∑n

v=0 avz
v be a polynomial of degree n such that

an ≥ an−1 ≥ . . . ≥ a1 ≥ a0.
Then p(z) has all its zeros in

(1) |z| ≤ an − a0 + |a0|
|an|

.

Gardner and Govil [1] improved Theorem B as follows.

Theorem C. Let p(z) =
∑n

v=0 avz
v be a polynomial of degree n such that

an ≥ an−1 ≥ . . . ≥ a1 ≥ a0.
Then p(z) has all its zeros in the annular ring

(2)
|a0|

an − a0 + |an|
≤ |z| ≤ an − a0 + |a0|

|an|
.

Recently Jain [3] proved the following result for the upper bound involving
coefficients of the polynomial.

Theorem D. Let q(z) = a0 + a1z + . . .+ ap−1z
p−1 + apz

p + . . .+ anz
n, be

a polynomial of degree n such that ap 6= ap−1 for some p ∈ {1, 2, . . . , n}. Set

M =Mp :=

n∑
j=p+1

|aj − aj−1|+ |an| (1 ≤ p ≤ n− 1), Mn := |an|

and

m = mp :=

p−1∑
j=1

|aj − aj−1| (2 ≤ p ≤ n), m1 := 0.

Suppose that
p

M

|ap − ap−1|
p+ 1

< 1

and that

|a0|+m
p

M

|ap − ap−1|
p+ 1

<
( p
M

)p( |ap − ap−1|
p+ 1

)p+1

.

Then q(z) has at least p zeros in

|z| < p

M

|ap − ap−1|
p+ 1

.

Jain [3] again, in the same paper proved the following.

Theorem E. Let q(z) = a0 + a1z + . . .+ ap−1z
p−1 + apz

p + . . .+ anz
n, be

a polynomial of degree n such that ap 6= ap−1 for some p ∈ {1, 2, . . . , n− 1},

|arg ak − β| ≤ α ≤
π

2
,
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k = 0, 1, 2 . . . , n, for some real β and α and

|an| ≥ |an−1| ≥ . . . ≥ |a1| ≥ |a0|.

Let

L = Lp := |an|+ (|an| − |ap|) cosα+
n∑

j=p+1

(|aj |+ |aj−1|) sinα

and

l = lp := (|αp−1|−|a0|) cosα+
p−1∑
j=1

(|aj |+|aj−1|) sinα (2 ≤ p ≤ n−1), l1 := 0.

Suppose that

|a0|+ l
p

L

|ap − ap−1|
p+ 1

<

(
p

L

)p( |ap − ap−1|
p+ 1

)p+1

.

Then q(z) has at least p zeros in

|z| < p

L

|ap − ap−1|
p+ 1

.

In this paper, firstly we prove the following.

Theorem 1. Let q(z) = a0+a1z+a2z
2+ . . .+ap−1z

p−1+apz
p+ . . .+anz

n

be a polynomial of degree n such that ap 6= ap−1 for some p ∈ {1, 2, . . . , n},
with coefficients aj, j = 0, 1, 2, . . . , n, satisfying

(3) an ≥ an−1 ≥ . . . ≥ ap > ap−1 ≥ . . . ≥ a1 ≥ a0

and

(4)
(
p

M1

)p(ap − ap−1
p+ 1

)p+1

> |a0|+
p

M1

(
ap − ap−1
p+ 1

)
(ap−1 − a0)

where M1 = an + |an| − ap.
Then q(z) has at least p zeros in

(5)
|a0|

an − a0 + ρn1 |an|
≤ |z| < ρ1 =

p

(|an| − an + ap)

(ap − ap−1)
(p+ 1)

.

Remark 1. In Theorem 1, we have

M1 = |an|+ an − ap

for 1 ≤ p ≤ (n− 1) and M1 = |an| for p = n. The value M1 = |an|+an−ap
serves the purpose for 1 ≤ p ≤ n (see also equality (1.6) of Jain [3]).

For the case p = n, in Theorem 1, we have the following.
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Corollary 1. Let q(z) = a0 + a1z + . . .+ anz
n be a polynomial of degree n

such that

(6) an > an−1 ≥ an−2 ≥ . . . ≥ a1 ≥ a0,

and

(7)
(

n

|an|

)n(an − an−1
n+ 1

)n+1

> |a0|+
n

n+ 1

(
an − an−1
|an|

)
(an−1 − a0)

then q(z) has all its zeros in

(8)
|a0|

an − a0 + ρn2 |an|
≤ |z| < ρ2 =

n

n+ 1

(an − an−1)
|an|

.

Remark 2. Corollary 1 is a refinement of Theorem B due to Joyal, Labelle
and Rahman [4] as well as Theorem C due to Gardner and Govil [1] under
the conditions (6) and (7).

As it can be shown easily from (8) and (2) that

n

n+ 1

(an − an−1)
|an|

<
an − a0 + |a0|

|an|
is always true.

And also
|a0|

an − a0 + ρn2 |an|
>

|a0|
an + |an| − a0

for

ρ2 =
n

n+ 1

an − an−1
|an|

.

Remark 3. If we take a0 > 0, then Corollary 1 gives a refinement of a result
due to Jain [3, Corollary 1].

Instead of proving Theorem 1, we prove the following result. Theorem 1
can be proved in a similar way as the next result (Theorem 2) except the
only change that is in Theorem 1 p ∈ {1, 2, . . . , n}.

Theorem 2. Let q(z) = a0 + a1z + . . . + ap−1z
p−1 + apz

p + . . . anz
n be

a polynomial of degree n such that ap 6= ap−1 for some p ∈ {1, . . . , n − 1},
with the coefficients aj, j = 0, 1, . . . , n, for some K ≥ 1, satisfying

(9) Kan ≥ an−1 ≥ . . . ≥ ap > ap−1 ≥ . . . ≥ a1 ≥ a0
and

(10)
(
p

M2

)p(ap − ap−1
p+ 1

)p+1

> |a0|+
p

M2

(
ap − ap−1
p+ 1

)
(ap−1 − a0),

where

(11) M2 = K(an + |an|)− ap.
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Then q(z) has at least p zeros in

(12)
|a0|

Kan + (K − 1)|an| − a0 + ρn3 |an|
≤ |z| ≤ ρ3 =

p

M2

(ap − ap−1)
p+ 1

where we assume that ρ3 < 1.

For the case a0 > 0, we have the following.

Corollary 2. Let q(z) = a0+a1z+a2z
2+ . . .+ap−1z

p−1+apz
p+ . . .+anz

n

be a polynomial of degree n, with the condition ap 6= ap−1 and for some
p ∈ {1, 2, . . . , n− 1}, K ≥ 1 satisfying

(13) Kan ≥ an−1 ≥ . . . ≥ ap > ap−1 ≥ . . . ≥ a0 > 0

and

(14)
(
p

M3

)p(ap − ap−1
p+ 1

)p+1

> a0 +
p

M3

(
ap − ap−1
p+ 1

)
(ap−1 − a0),

where

(15) M3 = 2Kan − ap.
Then q(z) has at least p zeros in

(16)
a0

(2K − 1 + ρn4 )an − a0
≤ |z| < ρ4 =

p

p+ 1

(ap − ap−1)
(2Kan − ap)

.

Remark 4. As ap−ap−1

2Kan−ap < 1 (by (13)), we have p
p+1

(
ap−ap−1

2Kan−ap

)
= ρ4 < 1.

For the polynomials with complex coefficients, we have been able to prove
the following.

Theorem 3. Let q(z) = a0 + a1z + . . . + ap−1z
p−1 + apz

p + . . . + anz
n be

a polynomial of degree n such that ap 6= ap−1 for some p ∈ {1, 2, . . . , n− 1},
for some real β and α

|arg aj − β| ≤ α ≤
π

2
, j = 0, 1, . . . , n,

and for some K ≥ 1,

(17) K|an| ≥ |an−1| ≥ . . . ≥ |a1| ≥ |a0|
and

(18)
(
p

M4

)p( |ap − ap−1|
p+ 1

)p+1

> |a0|+
p

M4

|ap − ap−1|
(p+ 1)

m′

where

(19)

M4 = K|an|+ (K|an| − |ap|) cosα+ (K|an|+ |an−1|) sinα

+
n−1∑
j=p+1

(|aj |+ |aj−1|) sinα,
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(20) m′ = (|ap−1| − |a0|) cosα+

p−1∑
j=1

(|aj |+ |aj−1|) sinα.

Then q(z) has at least p zeros in

(21) |z| < ρ5 =
p

p+ 1

(|ap − ap−1|)
M4

.

Remark 5. In the case K = 1, the above theorem reduces to Theorem E
due to Jain [3].

Remark 6. ρ5 < 1, as can be verified by using (19), (17) and Lemma 1.

Now we turn to the study of zeros of an analytic function. In this direc-
tion, we have been able to prove the following.

Theorem 4. Let the function f(z) =
∑∞

j=0 ajz
j ( 6≡ 0) be analytic in |z| ≤

ρ6, for some p ∈ N such that
ap−1
ap

< 2 +
1

p
. Assume that

(22) a0 ≥ a1 ≥ . . . ≥ ap−1 > ap ≥ ap+1 ≥ . . .

and

(23)
(
p

ap

)p(ap−1 − ap
p+ 1

)p+1

> |a0|+
p

ap

(
ap−1 − ap
p+ 1

)
(a0 − ap−1).

Then the function f(z) has at least p zeros in

(24) |z| < ρ6 =
p

p+ 1

(
ap−1 − ap

ap

)
.

2. Lemma. For the proof of the theorems, we need the following lemma.

Lemma 1. If aj is any complex number with

|arg aj − β| ≤ α ≤
π

2
,

for certain real β and α, then

|aj − aj−1| ≤ ||aj | − |aj−1|| cosα+ (|aj |+ |aj−1|) sinα.

This lemma is due to Govil and Rahman (proof of Theorem 2 of [2]).

3. Proofs of Theorems.

Proof of Theorem 2. Consider
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(25)

g(z) = (1− z)q(z)
= (1− z)(a0 + a1z + . . .+ ap−1z

p−1 + apz
p + . . .+ anz

n)

= a0 +

p−1∑
j=1

(aj − aj−1)zj + (ap − ap−1)zp

+

n∑
j=p+1

(aj − aj−1)zj − anzn+1.

= φ(z) + ψ(z),

where

φ(z) = a0 +

p−1∑
j=1

(aj − aj−1)zj ,

and

ψ(z) = (ap − ap−1)zp +
n∑

j=p+1

(aj − aj−1)zj − anzn+1.

Now for |z| = ρ3 (ρ3 < 1 (as assumed)) and p ≤ n− 1,

|ψ(z)| ≥ |ap − ap−1|ρp3 −

{
n∑

j=p+1

|aj − aj−1|ρj3 + |an|ρ
n+1
3

}

≥ (ap − ap−1)ρp3 − ρ
p+1
3

{
|an|ρn−p3 + |an − an−1|ρn−p3

+

n−1∑
j=p+1

|aj − aj−1|ρj−(p+1)
3

}

≥ (ap − ap−1)ρp3 − ρ
p+1
3

{
|an|+ |Kan − an−1|

+ (K − 1)|an|+
n−1∑
j=p+1

|aj − aj−1|

}

= (ap − ap−1)ρp3 − ρ
p+1
3

{
|an|+Kan − an−1

+ (K − 1)|an|+ an−1 − ap
}

= (ap − ap−1)ρp3 − ρ
p+1
3 {K(an + |an|)− ap}

=

(
p

M2

)p(ap − ap−1
p+ 1

)p+1
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> |a0|+
p

M2

(
ap − ap−1
p+ 1

)
(ap−1 − a0) by (10).

= |a0|+ ρ3(ap−1 − a0).

Thus for |z| = ρ3,

(26) |ψ(z)| > |a0|+ ρ3(ap−1 − a0).

On the other hand, for |z| = ρ3,

(27)
|φ(z)| ≤ |a0|+

p−1∑
j=1

|aj − aj−1|ρj3

≤ |a0|+ ρ3(ap−1 − a0).

From (26) and (27) it follows that |ψ(z)| > |φ(z)| for |z| = ρ3. By Rouche’s
theorem, g(z) = φ(z)+ψ(z) and ψ(z) has same number of zeros in |z| < ρ3.
But ψ(z) has at least p zeros in |z| < ρ3. Therefore g(z) and hence q(z) has
at least p zeros in

|z| < ρ3.

This proves one part of Theorem 2.
Now it remains to prove that there are no zeros of q(z) in

|z| < |a0|
Kan + (K − 1)|an| − a0 + ρn3 |an|

.

Let

(28)
g(z) = (1− z)q(z) = a0 +

n∑
j=1

(aj − aj−1)zj − anzn+1

= a0 + h(z).

Now for |z| = ρ3, (ρ3 < 1) we have

max
|z|=ρ3

|h(z)| ≤
n∑
j=1

|aj − aj−1|ρj3 + |an|ρ
n+1
3

≤ ρ3

{
|an − an−1|+

n−1∑
j=1

|aj − aj−1|+ |an|ρn3

}
≤ ρ3{|Kan − an−1 + an −Kan|+ an−1 − a0 + |an|ρn3}
≤ ρ3{Kan + (K − 1)|an| − a0 + ρn3 |an|}.

Since h(0) = 0, h(z) is analytic in |z| ≤ ρ3, by Schwarz lemma we have

|h(z)| ≤ {Kan + (K − 1)|an| − a0 + ρn3 |an|}|z|
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if |z| ≤ ρ3. Now from (28) we see that for |z| ≤ ρ3,
|g(z)| ≥ |a0| − |h(z)|

≥ |a0| − {Kan + (K − 1)|an| − a0 + ρn3 |an|}|z|
> 0,

if

|z| < |a0|
Kan + (K − 1)|an| − a0 + ρn3 |an|

.

This proves the theorem completely. �

Proof of Theorem 3. Consider the polynomial

(29)

g(z) = (1− z)q(z)

= a0 +

p−1∑
j=1

(aj − aj−1)zj + (ap − ap−1)zp

+

n∑
j=p+1

(aj − aj−1)zj − anzn+1

= φ(z) + ψ(z),

where

φ(z) = a0 +

p−1∑
j=1

(aj − aj−1)zj

and

ψ(z) = (ap − ap−1)zp +
n∑

j=p+1

(aj − aj−1)zj − anzn+1.

Now for |z| = ρ5 (ρ5 < 1),

|ψ(z)| ≥ |ap − ap−1|ρp5 − ρ
p+1
5

{
|an|ρn−p5 +

n∑
j=p+1

|aj − aj−1|ρj−(p+1)
5

}

≥ |ap − ap−1|ρp5 − ρ
p+1
5

{
|an|+

n∑
j=p+1

|aj − aj−1|

}

= |ap − ap−1|ρp5 − ρ
p+1
5

{
|an|+ |an − an−1|+

n−1∑
j=p+1

|aj − aj−1|

}

= |ap − ap−1|ρp5 − ρ
p+1
5

{
|an|+ |Kan − an−1 + an −Kan|

+
n−1∑
j=p+1

|aj − aj−1|

}
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≥ |ap − ap−1|ρp5 − ρ
p+1
5

{
|an|+ |Kan − an−1|+ (K − 1)|an|

+

n−1∑
j=p+1

|aj − aj−1|

}

≥ |ap − ap−1|ρp5 − ρ
p+1
5

{
K|an|+ (K|an| − |an−1|) cosα

+ (K|an|+ |an−1|) sinα+
n−1∑
j=p+1

[(|aj | − |aj−1|) cosα

+ (|aj |+ |aj−1|) sinα]
}

(by Lemma 1)

= |ap − ap−1|ρp5 − ρ
p+1
5

{
K|an|+ (K|an| − |ap|) cosα

+ (K|an|+ |an−1|) sinα+
n−1∑
j=p+1

(|aj |+ |aj−1|) sinα
}

= |ap − ap−1|ρp5 − ρ
p+1
5 M4

=

(
p

M4

)p( |ap − ap−1|
p+ 1

)p+1

, (by definition of M4).

Thus on |z| = ρ5,

(30)

|ψ(z)| ≥
(
p

M4

)p( |ap − ap−1|
p+ 1

)p+1

> |a0|+
p

M4

(
|ap − ap−1|
p+ 1

)
m′

= |a0|+ ρ5m
′ (by (18)).

Now for |z| = ρ5,

|φ(z)| ≤ |a0|+
p−1∑
j=1

|aj − aj−1|ρj5 ≤ |a0|+ ρ5

p−1∑
j=1

|aj − aj−1|

≤ |a0|+ ρ5

{ p−1∑
j=1

(|aj | − |aj−1|) cosα+

p−1∑
j=1

(|aj |+ |aj−1|) sinα
}

= |a0|+ ρ5

{
(|ap−1| − |a0|) cosα+

p−1∑
j=1

(|aj |+ |aj−1|) sinα
}

= |a0|+ ρ5m
′ (by (20)).
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Thus for |z| = ρ5,

(31) |φ(z)| ≤ |a0|+ ρ5m
′.

From (30) and (31), we see that on |z| = ρ5, |φ(z)| < |ψ(z)|, thereby
implying by Rouche’s theorem that g(z) = φ(z) + ψ(z) and ψ(z) have the
same number of zeros in |z| < ρ5. Since ψ(z) has at least p zeros in |z| < ρ5,
this implies that g(z) and hence q(z) has at least p zeros in |z| < ρ5 =
p

p+ 1

|ap − ap−1|
M4

.

Thus the proof of Theorem 3 is completed. �

Proof of Theorem 4. It is clear that limj→∞ aj = 0. Consider

(32)

F (z) = (z − 1)f(z)

= − a0 + (a0 − a1)z + (a1 − a2)z2 + . . .+ (ap−1 − ap)zp + . . .

= φ(z) + ψ(z),

where

φ(z) = − a0 +
p−1∑
j=1

(aj−1 − aj)zj

and

ψ(z) = (ap−1 − ap)zp +
∞∑

j=p+1

(aj−1 − aj)zj

Now for |z| = ρ6 (ρ6 < 1, by hypothesis for ap−1

ap
< 2 + 1

p),

|ψ(z)| ≥ |ap−1 − ap|ρp6 − ρ
p+1
6

{ ∞∑
j=p+1

|aj−1 − aj |ρj−(p+1)
6

}

≥ (ap−1 − ap)ρp6 − ρ
p+1
6

{ ∞∑
j=p+1

|aj−1 − aj |

}
= (ap−1 − ap)ρp6 − ρ

p+1
6 ap

=

(
p

ap

)p(ap−1 − ap
p+ 1

)p+1

> |a0|+ ρ6(a0 − ap−1) (by (23)).

Thus for |z| = ρ6,

(33) |ψ(z)| > |a0|+ ρ6(a0 − ap−1).
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Now for |z| = ρ6 (ρ6 < 1)

|φ(z)| ≤ |a0|+
p−1∑
j=1

|aj−1 − aj |ρj6

≤ |a0|+ ρ6

p−1∑
j=1

|aj−1 − aj |

= |a0|+ ρ6(a0 − ap−1).
Now the remaining proof of the Theorem 4 follows on the same lines of
Theorem 3.

Acknowledgment. The authors are grateful to the referee for valuable
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