UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA

GRZEGORZ DYMEK

On pseudo-BCI-algebras

Abstract. The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.

1. Introduction. Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are (pseudo-)MV-algebras, (pseudo-)BL-algebras, (pseudo-)BCK-algebras, (pseudo-)BCI-algebras and others. They are strongly connected with logic. For example, BCI-algebras introduced in [8] have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an extension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a non-commutative version of the BCI-logic (see [5] for details). These algebras have also connections with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras. More about those algebras the reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2 we give the necessary material needed in the sequel and also some new results concerning p-semisimple part and branches of pseudo-BCI-algebras. In Section 3 we consider normal pseudo-BCI-algebras, that is, pseudo-BCI-algebras X, which are the sum of their pseudo-BCK-part $K(X)$ and p-semisimple part

[^0]$M(X)$. We illustrate this notion by interesting examples and give some characterizations of it. In this section we also construct a new pseudo-BCI-algebra being the sum of a pseudo-BCK-algebra and a p-semisimple pseudo-BCI-algebra (Theorem 3.4). Finally, in Section 4 we study extensions of pseudo-BCI-algebras.
2. Preliminaries. A pseudo-BCI-algebra is a structure $(X ; \leq, \rightarrow, \sim, 1)$, where \leq is a binary relation on a set X, \rightarrow and \leadsto are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have
(a1) $x \rightarrow y \leq(y \rightarrow z) \leadsto(x \rightarrow z), \quad x \leadsto y \leq(y \sim z) \rightarrow(x \sim z)$,
(a2) $x \leq(x \rightarrow y) \leadsto y, \quad x \leq(x \sim y) \rightarrow y$,
(a3) $x \leq x$,
(a4) if $x \leq y$ and $y \leq x$, then $x=y$,
(a5) $x \leq y$ iff $x \rightarrow y=1$ iff $x \leadsto y=1$.
It is obvious that any pseudo-BCI-algebra $(X ; \leq, \rightarrow, \sim, 1)$ can be regarded as a universal algebra $(X ; \rightarrow, \sim, 1)$ of type $(2,2,0)$. Note that every pseudo-BCI-algebra satisfying $x \rightarrow y=x \leadsto y$ for all $x, y \in X$ is a BCIalgebra.

Every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK-algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called proper.

Throughout this paper we will often use X to denote a pseudo-BCIalgebra. Any pseudo-BCI-algebra X satisfies the following, for all $x, y, z \in$ X,
(b1) if $1 \leq x$, then $x=1$,
(b2) if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ and $y \sim z \leq x \leadsto z$,
(b3) if $x \leq y$ and $y \leq z$, then $x \leq z$,
(b4) $x \rightarrow(y \sim z)=y \leadsto(x \rightarrow z)$,
(b5) $x \leq y \rightarrow z$ iff $y \leq x \leadsto z$,
(b6) $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y), \quad x \sim y \leq(z \sim x) \sim(z \sim y)$,
(b7) if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $z \leadsto x \leq z \leadsto y$,
(b8) $1 \rightarrow x=1 \sim x=x$,
(b9) $((x \rightarrow y) \sim y) \rightarrow y=x \rightarrow y, \quad((x \sim y) \rightarrow y) \leadsto y=x \sim y$,
(b10) $x \rightarrow y \leq(y \rightarrow x) \sim 1, \quad x \sim y \leq(y \sim x) \rightarrow 1$,
(b11) $(x \rightarrow y) \rightarrow 1=(x \rightarrow 1) \leadsto(y \leadsto 1), \quad(x \leadsto y) \leadsto 1=(x \leadsto 1) \rightarrow$ $(y \rightarrow 1)$,
(b12) $x \rightarrow 1=x \sim 1$.
If $(X ; \leq, \rightarrow, \sim, 1)$ is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), $(X ; \leq)$ is a poset with 1 as a maximal element. Note that a pseudo-BCI-algebra has also other maximal elements.

Proposition 2.1 ([4]). The structure $(X ; \leq, \rightarrow, \leadsto, 1)$ is a pseudo-BCIalgebra if and only if the algebra $(X ; \rightarrow, \sim, 1)$ of type $(2,2,0)$ satisfies the following identities and quasi-identity:
(i) $(x \rightarrow y) \sim[(y \rightarrow z) \leadsto(x \rightarrow z)]=1$,
(ii) $(x \sim y) \rightarrow[(y \sim z) \rightarrow(x \sim z)]=1$,
(iii) $1 \rightarrow x=x$,
(iv) $1 \sim x=x$,
(v) $x \rightarrow y=1 \quad \& \quad y \rightarrow x=1 \Rightarrow x=y$.

Example $2.2([4])$. Let $X=\{a, b, c, d, e, f, 1\}$ and define binary operations \rightarrow and \leadsto on X by the following tables:

\rightarrow	a	b	c	d	e	f	1
a	1	d	e	b	c	a	a
b	c	1	a	e	d	b	b
c	e	a	1	c	b	d	d
d	b	e	d	1	a	c	c
e	d	c	b	a	1	e	e
f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1

\sim	a	b	c	d	e	f	1
a	1	c	b	e	d	a	a
b	d	1	e	a	c	b	b
c	b	e	1	c	a	d	d
d	e	a	d	1	b	c	c
e	c	d	a	b	1	e	e
f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1

Then $(X ; \rightarrow, \leadsto, 1)$ is a (proper) pseudo-BCI-algebra. Observe that it is not a pseudo-BCK-algebra because $a \not \leq 1$.

Example 2.3 ([9]). Let $Y_{1}=(-\infty, 0]$ and let \leq be the usual order on Y_{1}. Define binary operations \rightarrow and \leadsto on Y_{1} by

$$
\begin{aligned}
& x \rightarrow y= \begin{cases}0 & \text { if } x \leq y, \\
\frac{2 y}{\pi} \arctan \left(\ln \left(\frac{y}{x}\right)\right) & \text { if } y<x,\end{cases} \\
& x \leadsto y=\left\{\begin{array}{lll}
0 & \text { if } x \leq y \\
y e^{-\tan \left(\frac{\pi x}{2 y}\right)} & \text { if } & y<x
\end{array}\right.
\end{aligned}
$$

for all $x, y \in Y_{1}$. Then $\left(Y_{1} ; \leq, \rightarrow, \sim, 0\right)$ is a pseudo-BCK-algebra, and hence it is a nonproper pseudo-BCI-algebra.

Example 2.4 ([3]). Let $Y_{2}=\mathbb{R}^{2}$ and define binary operations \rightarrow and \leadsto and a binary relation \leq on Y_{2} by

$$
\begin{aligned}
&\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=\left(x_{2}-x_{1},\left(y_{2}-y_{1}\right) e^{-x_{1}}\right) \\
&\left(x_{1}, y_{1}\right) \\
&\left(x_{2}, y_{2}\right)=\left(x_{2}-x_{1}, y_{2}-y_{1} e^{x_{2}-x_{1}}\right) \\
&\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Leftrightarrow\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=(0,0)=\left(x_{1}, y_{1}\right) \leadsto\left(x_{2}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Y_{2}$. Then $\left(Y_{2} ; \leq, \rightarrow, \sim,(0,0)\right)$ is a proper pseudo-BCI-algebra. Notice that Y_{2} is not a pseudo-BCK-algebra because there exists $(x, y)=(1,1) \in Y_{2}$ such that $(x, y) \not \leq(0,0)$.

Example 2.5 ([3]). Let Y be the direct product of pseudo-BCI-algebras Y_{1} and Y_{2} from Examples 2.3 and 2.4, respectively. Then Y is a proper pseudo-BCI-algebra, where $Y=(-\infty, 0] \times \mathbb{R}^{2}$ and binary operations \rightarrow and
\leadsto and binary relation \leq are defined on Y by

$$
\begin{aligned}
&\left(x_{1}, y_{1}, z_{1}\right) \rightarrow\left(x_{2}, y_{2}, z_{2}\right)= \\
&= \begin{cases}\left(0, y_{2}-y_{1},\left(z_{2}-z_{1}\right) e^{-y_{1}}\right) & \text { if } x_{1} \leq x_{2}, \\
\left(\frac{2 x_{2}}{\pi} \arctan \left(\ln \left(\frac{x_{2}}{x_{1}}\right)\right), y_{2}-y_{1},\left(z_{2}-z_{1}\right) e^{-y_{1}}\right) & \text { if } x_{2}<x_{1},\end{cases} \\
&\left(x_{1}, y_{1}, z_{1}\right) \leadsto\left(x_{2}, y_{2}, z_{2}\right)= \\
&= \begin{cases}\left(0, y_{2}-y_{1}, z_{2}-z_{1} e^{y_{2}-y_{1}}\right) & \text { if } x_{1} \leq x_{2}, \\
\left(x_{2} e^{-\tan \left(\frac{\pi x_{1}}{2 x_{2}}\right)}, y_{2}-y_{1}, z_{2}-z_{1} e^{y_{2}-y_{1}}\right) & \text { if } x_{2}<x_{1},\end{cases} \\
&\left(x_{1}, y_{1}, z_{1}\right) \leq\left(x_{2}, y_{2}, z_{2}\right) \Leftrightarrow x_{1} \leq x_{2} \text { and } y_{1}=y_{2} \text { and } z_{1}=z_{2} .
\end{aligned}
$$

Notice that Y is not a pseudo-BCK-algebra because there exists $(x, y, z)=$ $(0,1,1) \in Y$ such that $(x, y, z) \not \leq(0,0,0)$.

For any pseudo-BCI-algebra $(X ; \rightarrow, \leadsto, 1)$ the set

$$
K(X)=\{x \in X: x \leq 1\}
$$

is a subalgebra of X (called pseudo-BCK-part of X). Then $(K(X) ; \rightarrow, \sim, 1)$ is a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-BCK-algebra if and only if $X=K(X)$.

It is easily seen that for the pseudo-BCI-algebras X, Y_{1}, Y_{2} and Y from Examples 2.2, 2.3, 2.4 and 2.5, respectively, we have $K(X)=\{f, 1\}$, $K\left(Y_{1}\right)=Y_{1}, K\left(Y_{2}\right)=\{(0,0)\}$ and $K(Y)=\{(x, 0,0): x \leq 0\}$.

We will denote by $M(X)$ the set of all maximal elements of X and call it the p-semisimple part of X. Obviously, $1 \in M(X)$. Notice that $M(X) \cap$ $K(X)=\{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and, by the fact that a is maximal, $a=1$. Moreover, observe that 1 is the only maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra X, $M(X)=\{1\}$. In [2] and [3] there is shown that $M(X)=\{x \in X: x=$ $(x \rightarrow 1) \rightarrow 1\}$ and it is a subalgebra of X.

Observe that for the pseudo-BCI-algebras X, Y_{1}, Y_{2} and Y from Examples 2.2, 2.3, 2.4 and 2.5, respectively, we have $M(X)=\{a, b, c, d, e, 1\}, M\left(Y_{1}\right)=$ $\{0\}, M\left(Y_{2}\right)=Y_{2}$ and $M(Y)=\{(0, y, z): y, z \in \mathbb{R}\}$.

Proposition 2.6. Let X be a pseudo-BCI-algebra. Then

$$
M(X)=\{x \rightarrow 1: x \in X\}
$$

Proof. We know that

$$
M(X)=\{x \in X: x=(x \rightarrow 1) \rightarrow 1\}
$$

Since, by (b9) and (b12), for any $x \in X$,

$$
x \rightarrow 1=((x \rightarrow 1) \rightarrow 1) \rightarrow 1
$$

we get that $x \rightarrow 1 \in M(X)$ for any $x \in X$. Hence,

$$
\{x \rightarrow 1: x \in X\} \subseteq M(X)
$$

Now, let $a \in M(X)$. Then, $a=(a \rightarrow 1) \rightarrow 1$. Putting $x=a \rightarrow 1 \in X$ we obtain that $a=x \rightarrow 1$ for some $x \in X$ and also

$$
M(X) \subseteq\{x \rightarrow 1: x \in X\}
$$

Therefore, $M(X)=\{x \rightarrow 1: x \in X\}$.
Let X be a pseudo-BCI-algebra. For any $a \in X$ we define a subset $V(a)$ of X as follows

$$
V(a)=\{x \in X: x \leq a\}
$$

Note that $V(a)$ is non-empty, because $a \leq a$ gives $a \in V(a)$. Notice also that $V(a) \subseteq V(b)$ for any $a, b \in X$ such that $a \leq b$.

If $a \in M(X)$, then the set $V(a)$ is called a branch of X determined by element a. The following facts are proved in [3]: (1) branches determined by different elements are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic union of branches, (3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y_{1} from Example 2.3 has only one branch (as the pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.2 has six branches: $V(a)=\{a\}, V(b)=\{b\}, V(c)=\{c\}, V(d)=\{d\}, V(e)=\{e\}$ and $V(1)=\{f, 1\}$. Every $\{(x, y)\}$ is a branch of the pseudo-BCI-algebra Y_{2} from Example 2.4, where $(x, y) \in Y_{2}$. For the pseudo-BCI-algebra Y from Example 2.5 the sets $V\left(\left(0, a_{1}, a_{2}\right)\right)=\left\{\left(x, a_{1}, a_{2}\right) \in Y: x \leq 0\right\}$, where $\left(0, a_{1}, a_{2}\right) \in M(X)$, are branches of Y.
Proposition 2.7 ([2]). Let X be a pseudo-BCI-algebra and let $x \in X$ and $a, b \in M(X)$. If $x \in V(a)$, then $x \rightarrow b=a \rightarrow b$ and $x \sim b=a \sim b$.

Proposition 2.8 ([2]). Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:
(i) x and y belong to the same branch of X,
(ii) $x \rightarrow y \in K(X)$,
(iii) $x \leadsto y \in K(X)$.

Proposition 2.9 ([3]). Let X be a pseudo-BCI-algebra and let $x, y \in X$. If x and y belong to the same branch of X, then $x \rightarrow 1=x \sim 1=y \rightarrow 1=$ $y \leadsto 1$.

We have the following proposition.
Proposition 2.10. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:
(i) x and y belong to the same branch of X,
(ii) $x \rightarrow y \in K(X)$,
(iii) $x \leadsto y \in K(X)$,
(iv) $x \rightarrow 1=x \leadsto 1=y \rightarrow 1=y \leadsto 1$.

Proof. Let $x, y \in X$. By Propositions 2.8 and 2.9 and (b12) it is sufficient to prove that if $x \rightarrow 1=y \rightarrow 1$, then $x \rightarrow y \in K(X)$, that is, (iv) \Rightarrow (ii). Assume that $x \rightarrow 1=y \rightarrow 1$. Then, by (b11) and (b12), we have $(x \rightarrow y) \rightarrow 1=(x \rightarrow 1) \leadsto(y \rightarrow 1)=1$, which means that $x \rightarrow y \leq 1$. Hence, $x \rightarrow y \in K(X)$ and the proof is complete.

We also have the following proposition.
Proposition 2.11. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:
(i) x and y belong to the same branch of X,
(ii) $x \rightarrow a=y \rightarrow a$ for all $a \in M(X)$,
(ii') $x \leadsto a=y \leadsto a$ for all $a \in M(X)$,
(iii) $x \rightarrow a \leq y \rightarrow a$ for all $a \in M(X)$,
(iii') $x \leadsto a \leq y \leadsto a$ for all $a \in M(X)$.
Proof. (i) \Rightarrow (ii): Assume that $x, y \in V(b)$ for some $b \in M(X)$. Then for any $a \in M(X)$, by Proposition 2.7 , we get $x \rightarrow a=b \rightarrow a=y \rightarrow a$, that is, (ii) holds.
(ii) \Rightarrow (i): If $x \rightarrow a=y \rightarrow a$ for all $a \in M(X)$, then putting $a=1$ we get $x \rightarrow 1=y \rightarrow 1$. Now, by Proposition 2.10 , we obtain (i).
(ii) \Rightarrow (iii): Obvious.
(iii) \Rightarrow (ii): Let $x \rightarrow a \leq y \rightarrow a$ for all $a \in M(X)$. Then, since $x \rightarrow a \in$ $M(X)$ by Proposition 2.7, we have that $x \rightarrow a=y \rightarrow a$ for all $a \in M(X)$.

Similarly, we can prove the equivalences (i) \Leftrightarrow (ii') \Leftrightarrow (iii').
Proposition 2.12. Let X be a pseudo-BCI-algebra and let $x \in X$ and $a \in M(X)$. Then the following are equivalent:
(i) $x \in V(a)$,
(ii) $x \rightarrow b=a \rightarrow b$ for all $b \in M(X)$,
(iii) $x \leadsto b=a \leadsto b$ for all $b \in M(X)$.

Proof. (i) \Rightarrow (ii): Follows by Proposition 2.7.
(ii) \Rightarrow (i): Let $x \in X$ and $a \in M(X)$. Assume that $x \rightarrow b=a \rightarrow b$ for all $b \in M(X)$. Putting $b=1$ we get $x \rightarrow 1=a \rightarrow 1$. Hence, by Proposition 2.10, x and a are in the same branch of X, that is, $x \in V(a)$.
(i) \Leftrightarrow (iii): Analogous.

Let $(X ; \rightarrow, \sim, 1)$ be a pseudo-BCI-algebra. Then X is p-semisimple if it satisfies for all $x \in X$,

$$
\text { if } x \leq 1, \text { then } x=1
$$

Note that if X is a p-semisimple pseudo-BCI-algebra, then $K(X)=\{1\}$. Hence, if X is a p-semisimple pseudo-BCK-algebra, then $X=\{1\}$. Moreover, as it is proved in [3], $M(X)$ is a p-semisimple pseudo-BCI-subalgebra of X and X is p-semisimple if and only if $X=M(X)$.

It is not difficult to see that the pseudo-BCI-algebras X, Y_{1} and Y from Examples 2.2, 2.3 and 2.5, respectively, are not p-semisimple, and the pseudo-BCI-algebra Y_{2} from Example 2.4 is a p-semisimple algebra.
Proposition 2.13 ([3]). Let X be a pseudo-BCI-algebra. Then, for all $a, b, x, y \in X$, the following are equivalent:
(i) X is p-semisimple,
(ii) $(x \rightarrow y) \leadsto y=x=(x \sim y) \rightarrow y$,
(iii) $(x \rightarrow 1) \sim 1=x=(x \sim 1) \rightarrow 1$,
(iv) if $x \rightarrow a=x \rightarrow b$, then $a=b$,
(v) if $x \leadsto a=x \sim b$, then $a=b$,
(vi) if $a \rightarrow x=b \rightarrow x$, then $a=b$,
(vii) if $a \leadsto x=b \leadsto x$, then $a=b$.
3. Normal pseudo-BCI-algebras. A pseudo-BCI-algebra X is called normal if $X=K(X) \cup M(X)$. Otherwise, it is called non-normal.

Remark. Every pseudo-BCK-algebra and every p-semisimple pseudo-BCIalgebra are normal.

A pseudo-BCI-algebra X is called strongly normal if X is normal and $K(X) \neq\{1\}$ and $M(X) \neq\{1\}$.

Example 3.1. It is easy to see that the pseudo-BCI-algebra X from Example 2.2 is strongly normal, and the pseudo-BCI-algebra Y from Example 2.5 is non-normal.

Theorem 3.2. Let X be a pseudo-BCI-algebra. Then the following are equivalent:
(i) X is normal,
(ii) $((x \rightarrow 1) \rightarrow 1) \rightarrow x \in\{x, 1\}$ for any $x \in X$,
(iii) $((x \rightarrow 1) \rightarrow 1) \leadsto x \in\{x, 1\}$ for any $x \in X$.

Proof. (i) \Rightarrow (ii): Let X be normal. Then $X=K(X) \cup M(X)$. Let $x \in X$. If $x \in K(X)$, then

$$
((x \rightarrow 1) \rightarrow 1) \rightarrow x=1 \rightarrow x=x \in\{x, 1\}
$$

If $x \in M(X)$, then

$$
((x \rightarrow 1) \rightarrow 1) \rightarrow x=x \rightarrow x=1 \in\{x, 1\}
$$

(ii) \Rightarrow (i): Let $((x \rightarrow 1) \rightarrow 1) \rightarrow x \in\{x, 1\}$ for any $x \in X$. Take $z \in X$. If $((z \rightarrow 1) \rightarrow 1) \rightarrow z=z$, then, by (b9), $\mathrm{b}(11)$ and (b12),

$$
\begin{aligned}
z \rightarrow 1 & =(((z \rightarrow 1) \rightarrow 1) \rightarrow z) \rightarrow 1 \\
& =(((z \rightarrow 1) \rightarrow 1) \rightarrow 1) \leadsto(z \rightarrow 1) \\
& =(z \rightarrow 1) \leadsto(z \rightarrow 1) \\
& =1
\end{aligned}
$$

Hence, $z \leq 1$, that is, $z \in K(X)$. If $((z \rightarrow 1) \rightarrow 1) \rightarrow z=1$, then, $(z \rightarrow 1) \rightarrow 1 \leq z$. Hence and by (a2) and (b12),

$$
z=(z \rightarrow 1) \rightarrow 1
$$

which means that $z \in M(X)$. Hence, $X=K(X) \cup M(X)$, that is, it is normal.
(i) \Leftrightarrow (iii): Analogously.

In next theorem we construct some strongly normal pseudo-BCI-algebra. But first, we prove the following lemma.

Lemma 3.3. Let X be a pseudo-BCI-algebra. Then
(i) for any $x \in X$ and $y \in K(X)$,

$$
\begin{aligned}
& (x \rightarrow y) \rightarrow(x \rightarrow 1)=1=((x \rightarrow 1) \rightarrow(x \rightarrow y)) \rightarrow 1, \\
& (x \rightarrow y) \leadsto(x \rightarrow 1)=1=((x \rightarrow 1) \leadsto(x \rightarrow y)) \rightarrow 1, \\
& (x \leadsto y) \leadsto(x \leadsto 1)=1=((x \leadsto 1) \leadsto(x \leadsto y)) \rightarrow 1, \\
& (x \leadsto y) \rightarrow(x \leadsto 1)=1=((x \leadsto 1) \rightarrow(x \leadsto y)) \rightarrow 1,
\end{aligned}
$$

(ii) for any $x \in K(X)$ and $a \in M(X)$,

$$
x \rightarrow a=a=x \leadsto a=(a \rightarrow x) \rightarrow 1=(a \leadsto x) \rightarrow 1,
$$

(iii) if $X=K(X) \cup M(X)$, then $a \rightarrow x=a \rightarrow 1=a \leadsto x$ for any $a \in M(X) \backslash\{1\}$ and $x \in K(X)$.

Proof. (i) Let $x \in X$ and $y \in K(X)$. By (b1) and (b6), $(x \rightarrow y) \rightarrow(x \rightarrow$ $1)=1$. Then, by $(\mathrm{b} 10), 1=(x \rightarrow y) \rightarrow(x \rightarrow 1) \leq((x \rightarrow 1) \rightarrow(x \rightarrow y)) \rightarrow$ 1. Hence, by (b1),

$$
(x \rightarrow y) \rightarrow(x \rightarrow 1)=1=((x \rightarrow 1) \rightarrow(x \rightarrow y)) \rightarrow 1
$$

Next, by (b4), (b11) and (b12) we have

$$
\begin{aligned}
(x \rightarrow y) \leadsto(x \rightarrow 1) & =x \rightarrow((x \rightarrow y) \leadsto 1) \\
& =x \rightarrow((x \rightarrow 1) \sim(y \rightarrow 1)) \\
& =x \rightarrow((x \rightarrow 1) \leadsto 1) \\
& =(x \rightarrow 1) \leadsto(x \rightarrow 1) \\
& =1 .
\end{aligned}
$$

Now, it is easy to see that

$$
(x \rightarrow y) \leadsto(x \rightarrow 1)=1=((x \rightarrow 1) \leadsto(x \rightarrow y)) \rightarrow 1
$$

Similarly, we can prove other equations of (i).
(ii) Let $x \in K(X)$ and $a \in M(X)$. From Proposition 2.12 we immediately have that

$$
x \rightarrow a=a=x \leadsto a .
$$

Moreover, by (b10) and (b12), $a=x \rightarrow a \leq((a \rightarrow x) \rightarrow 1$ and $a=x \leadsto$ $a \leq((a \sim x) \rightarrow 1$. Since $a \in M(X)$, we get (ii).
(iii) Let $X=K(X) \cup M(X), a \in M(X) \backslash\{1\}$ and $x \in K(X)$. By (ii), $(a \rightarrow x) \rightarrow 1=a \neq 1$. Hence, $a \rightarrow x \notin K(X)$, that is, $a \rightarrow x \in M(X) \backslash\{1\}$. Then, $(a \rightarrow 1) \rightarrow(a \rightarrow x) \in M(X)$. But, by (i), $(a \rightarrow x) \rightarrow(a \rightarrow$ $1)=1=((a \rightarrow 1) \rightarrow(a \rightarrow x)) \rightarrow 1$. Thus, $a \rightarrow x \leq a \rightarrow 1$ and $(a \rightarrow 1) \rightarrow(a \rightarrow x)=1$, that is, also $a \rightarrow 1 \leq a \rightarrow x$. Therefore, $a \rightarrow x=a \rightarrow 1$. Similarly, we prove that $a \leadsto x=a \rightarrow 1$.

Remark. Note that the assumption $X=K(X) \cup M(X)$ in Lemma 3.3 (iii) is valid. Indeed, let Y be the pseudo-BCI-algebra from Example 2.5. We know that $K(Y)=\{(x, 0,0): x \leq 0\}$ and $M(Y)=\{(0, y, z): y, z \in \mathbb{R}\}$. Then for $x<0$ and $a_{1}, a_{2} \in \mathbb{R}$ we have

$$
\begin{aligned}
\left(0, a_{1}, a_{2}\right) \rightarrow(x, 0,0)=\left(0, a_{1}, a_{2}\right) \leadsto(x, 0,0) & =\left(x,-a_{1},-a_{2} e^{-a_{1}}\right) \\
& \neq\left(0, a_{1}, a_{2}\right) \rightarrow(0,0,0) \\
& =\left(0,-a_{1},-a_{2} e^{-a_{1}}\right)
\end{aligned}
$$

Theorem 3.4. Let Y be a pseudo-BCK-algebra, Z be a (proper) p-semisimple pseudo-BCI-algebra and $Y \cap Z=\{1\}$. Then there exists a unique pseudo-BCI-algebra X such that $X=Y \cup Z, K(X)=Y$ and $M(X)=Z$.

Proof. First, the operations on Y and Z we denote by the same symbols \rightarrow and \leadsto. Define on $X=Y \cup Z$ binary operations \mapsto and \curvearrowright as follows

$$
x \mapsto y= \begin{cases}x \rightarrow y & \text { if } x, y \in Y \text { or } x, y \in Z \\ y & \text { if } x \in Y \text { and } y \in Z \backslash\{1\}, \\ x \rightarrow 1 & \text { if } x \in Z \backslash\{1\} \text { and } y \in Y\end{cases}
$$

and

$$
x \curvearrowright y= \begin{cases}x \leadsto y & \text { if } x, y \in Y \text { or } x, y \in Z \\ y & \text { if } x \in Y \text { and } y \in Z \backslash\{1\} \\ x \leadsto 1 & \text { if } x \in Z \backslash\{1\} \text { and } y \in Y .\end{cases}
$$

We show that $(X ; \mapsto, \curvearrowright, 1)$ is a pseudo-BCI-algebra. We check the conditions (i)-(v) of Proposition 2.1. Since Y and Z are pseudo-BCI-algebras, we only need checking these conditions for the elements which are not all in Y and not all in Z. Particularly, (iii) and (iv) are satisfied. Now, we prove (v). Let $x \in Y$ and $y \in Z$. Assume that $x \mapsto y=1=y \mapsto x$. Then, $y=x \mapsto y=1$. This means that $x=1 \mapsto x=1$, that is, $x=y=1$. Thus, (v) is satisfied. Next, we show the identity (i). Let $x, x_{1}, x_{2} \in Y$ and $y, y_{1}, y_{2} \in Z$. Then
(1) $\left(x \mapsto y_{1}\right) \curvearrowright\left[\left(y_{1} \mapsto y_{2}\right) \curvearrowright\left(x \mapsto y_{2}\right)\right]=y_{1} \leadsto\left[\left(y_{1} \rightarrow y_{2}\right) \leadsto y_{2}\right]=$ $y_{1} \leadsto y_{1}=1$
(2) $\left(y_{1} \mapsto x\right) \curvearrowright\left[\left(x \mapsto y_{2}\right) \curvearrowright\left(y_{1} \mapsto y_{2}\right)\right]=\left(y_{1} \rightarrow 1\right) \leadsto\left[y_{2} \leadsto\left(y_{1} \rightarrow\right.\right.$ $\left.\left.y_{2}\right)\right]=\left(y_{1} \rightarrow 1\right) \leadsto\left(y_{1} \rightarrow 1\right)=1$,
(3) $\left(y_{1} \mapsto y_{2}\right) \curvearrowright\left[\left(y_{2} \mapsto x\right) \curvearrowright\left(y_{1} \mapsto x\right)\right]=\left(y_{1} \rightarrow y_{2}\right) \leadsto\left[\left(y_{2} \rightarrow 1\right) \sim\right.$ $\left.\left(y_{1} \rightarrow 1\right)\right]=1$
(4) $\left(y \mapsto x_{1}\right) \curvearrowright\left[\left(x_{1} \mapsto x_{2}\right) \curvearrowright\left(y \mapsto x_{2}\right)\right]=(y \rightarrow 1) \curvearrowright\left[\left(x_{1} \rightarrow x_{2}\right) \curvearrowright\right.$ $(y \rightarrow 1)]=(y \rightarrow 1) \sim(y \rightarrow 1)=1$,
(5) $\left(x_{1} \mapsto y\right) \curvearrowright\left[\left(y \mapsto x_{2}\right) \curvearrowright\left(x_{1} \mapsto x_{2}\right)\right]=y \curvearrowright\left[(y \rightarrow 1) \curvearrowright\left(x_{1} \rightarrow\right.\right.$ $\left.\left.x_{2}\right)\right]=y \curvearrowright[(y \rightarrow 1) \sim 1]=y \leadsto y=1$,
(6) $\left(x_{1} \mapsto x_{2}\right) \curvearrowright\left[\left(x_{2} \mapsto y\right) \curvearrowright\left(x_{1} \mapsto y\right)\right]=\left(x_{1} \rightarrow x_{2}\right) \curvearrowright(y \sim y)=$ $y \leadsto y=1$.

Thus, (i) is also satisfied. Similarly we can prove (ii). Therefore, $(X ; \mapsto, \curvearrowright$, 1) is a pseudo-BCI-algebra.

Now, note that $x \mapsto 1=x \rightarrow 1$ for every $x \in X$. This means that $x \mapsto 1=1$ if and only if $x \rightarrow 1=1$, and $(x \mapsto 1) \mapsto 1=x$ if and only if $(x \rightarrow 1) \rightarrow 1=x$. Hence, $K(X)=Y$ and $M(X)=Z$.

Finally, we show uniqueness of pseudo-BCI-algebra $(X ; \mapsto, \curvearrowright, 1)$. Let $(X ; \rightarrow, \rightarrow, 1)$ be a pseudo-BCI-algebra such that $X=Y \cup Z, K(X)=Y$ and $M(X)=Z$. If $x, y \in Y$ or $x, y \in Z$, then

$$
x \mapsto y=x \rightarrow y=x \mapsto y \quad \text { and } \quad x \leftrightarrow y=x \leadsto y=x \curvearrowright y .
$$

If $x \in Y$ and $y \in Z \backslash\{1\}$, then, by Lemma 3.3,

$$
x \mapsto y=y=x \mapsto y \quad \text { and } \quad x \leftrightarrow y=y=x \curvearrowright y .
$$

If $x \in Z \backslash\{1\}$ and $y \in Y$, then, again by Lemma 3.3,

$$
x \mapsto y=x \mapsto 1=x \rightarrow 1=x \mapsto y
$$

and

$$
x \leftrightarrow y=x \leftrightarrow 1=x \leadsto 1=x \curvearrowright y \text {. }
$$

Therefore, $(X ; \mapsto, \leftrightarrow, 1)=(X ; \mapsto, \curvearrowright, 1)$.
Remark. Notice that a pseudo-BCI-algebra X constructed in Theorem 3.4 is strongly normal.

Example 3.5. Take the following pseudo-BCK-algebra $Y=\{\alpha, \beta, \gamma, 1\}$ equipped with the operations \rightarrow and \leadsto given by the following tables (see [6]):

\rightarrow	α	β	γ	1
α	1	1	1	1
β	β	1	1	1
γ	β	β	1	1
1	α	β	γ	1

\leadsto	α	β	γ	1
α	1	1	1	1
β	γ	1	1	1
γ	α	β	1	1
1	α	β	γ	1

and the following p-semisimple pseudo-BCI-algebra $Z=\{a, b, c, d, e, 1\}$ equipped with the operations \rightarrow and \sim given by the following tables (see [4]):

\rightarrow	a	b	c	d	e	1
a	1	d	e	b	c	a
b	c	1	a	e	d	b
c	e	a	1	c	b	d
d	b	e	d	1	a	c
e	d	c	b	a	1	e
1	a	b	c	d	e	1

\leadsto	a	b	c	d	e	1
a	1	c	b	e	d	a
b	d	1	e	a	c	b
c	b	e	1	c	a	d
d	e	a	d	1	b	c
e	c	d	a	b	1	e
1	a	b	c	d	e	1

Then, using Theorem 3.4, we can construct the new pseudo-BCI-algebra $(X ; \mapsto, \curvearrowright, 1)$ such that $X=Y \cup Z$ and the operations \mapsto and \curvearrowright are as follows:

\mapsto	α	β	γ	a	b	c	d	e	1
α	1	1	1	a	b	c	d	e	1
β	β	1	1	a	b	c	d	e	1
γ	β	β	1	a	b	c	d	e	1
a	a	a	a	1	d	e	b	c	a
b	b	b	b	c	1	a	e	d	b
c	d	d	d	e	a	1	c	b	d
d	c	c	c	b	e	d	1	a	c
e	e	e	e	d	c	b	a	1	e
1	α	β	γ	a	b	c	d	e	1

and

\curvearrowright	α	β	γ	a	b	c	d	e	1
α	1	1	1	a	b	c	d	e	1
β	γ	1	1	a	b	c	d	e	1
γ	α	β	1	a	b	c	d	e	1
a	a	a	a	1	c	b	e	d	a
b	b	b	b	d	1	e	a	c	b
c	d	d	d	b	e	1	c	a	d
d	c	c	c	e	a	d	1	b	c
e	e	e	e	c	d	a	b	1	e
1	α	β	γ	a	b	c	d	e	1

Obviously, $K(X)=Y$ and $M(X)=Z$, that is, X is strongly normal.
4. Extensions of pseudo-BCI-algebras. Let X and X^{*} be pseudo-BCIalgebras. If X is a subalgebra of X^{*}, then X^{*} is called an extension of X. If X^{*} is p-semisimple (respectively, strongly normal, non-normal), then X^{*} is called a p-semisimple (respectively, strongly normal, non-normal) extension of X. If $\left|X^{*} \backslash X\right|=1$, then X^{*} is called a simple extension of X.

First, we show some simple lemma. Consider the map $p: X \rightarrow X$ such that

$$
p(x)=x \rightarrow 1
$$

for all $x \in X$. Obviously, $p(x)=x \leadsto 1$ for all $x \in X$. Note that $\operatorname{Im}(p)=$ $M(X), \operatorname{Ker}(p)=K(X)$ and if X is p-semisimple, then p is surjective.

Lemma 4.1. Let X be a p-semisimple pseudo-BCI-algebra. Then, for all $a \in X$, maps $f_{a}^{\rightarrow}, f_{a}^{\sim}, g_{a}, g_{a}^{\leadsto}: X \rightarrow X$ such that

$$
\begin{aligned}
& f_{a} \rightarrow(x)=x \rightarrow a, \\
& f_{a}^{\sim}(x)=x \leadsto a, \\
& g_{a}(x)=a \rightarrow x, \\
& g_{a}^{\sim}(x)=a \leadsto x
\end{aligned}
$$

for all $x \in X$, are injective. Moreover, $g_{a}^{\vec{~}}$ and g_{a}^{\leadsto} are also surjective.
Proof. Since X is p-semisimple, immediately by Proposition 2.13, $f_{a}^{\rightarrow}, f_{a}^{\leadsto}$, $g_{a}^{\vec{a}}, g_{a}^{\sim}$ are injective. Moreover, for all $x \in X$, by (b 4) we have

$$
\begin{aligned}
\left(g_{a} \circ f_{a}^{\sim}\right)(x) & =g_{a}(x \leadsto a)=a \rightarrow(x \leadsto a) \\
& =x \leadsto(a \rightarrow a)=x \leadsto 1 \\
& =p(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(g_{a}^{\leadsto} \circ f_{a}^{\rightarrow}\right)(x) & =g_{a}^{\leadsto}(x \rightarrow a)=a \sim(x \rightarrow a) \\
& =x \rightarrow(a \leadsto a)=x \rightarrow 1 \\
& =p(x)
\end{aligned}
$$

Hence, since p is surjective, maps $g_{a}^{\vec{a}}$ and g_{a}^{\leadsto} are surjective.
Remark. Note that $g_{a} \circ f_{a}^{\sim}=g_{a}^{\leadsto} \circ f_{a}$ and the map p can be decomposed into an injection and a bijection.

Theorem 4.2. Let X be a p-semisimple pseudo-BCI-algebra. Then
(i) there is no p-semisimple simple extension of X if $|X| \geq 2$,
(ii) there is a unique strongly normal simple extension of X,
(iii) there is no non-normal simple extension of X.

Proof. (i) Let X be a p-semisimple pseudo-BCI-algebra and $|X| \geq 2$. Assume that $X^{*}=X \cup\left\{x_{0}\right\}$ is a p-semisimple extension of X. Since $|X| \geq 2$, we can take $x \in X \backslash\{1\}$. Now, take the map $g_{x}^{\vec{~}}: X^{*} \rightarrow X^{*}$. By Lemma 4.1 we have $g_{x}\left(X^{*}\right)=X^{*}$ and $g_{x}(X)=X$. Note that $g_{x}\left(x_{0}\right) \in X$. Indeed, if $g_{x}^{\vec{x}}\left(x_{0}\right) \in X^{*} \backslash X=\left\{x_{0}\right\}$, then $x \rightarrow x_{0}=x_{0}=1 \rightarrow x_{0}$ and by Proposition 2.13, $x=1$, which is impossible. Hence, $g_{x}\left(x_{0}\right) \in X$. Thus, $g_{x}^{\vec{x}}\left(X^{*}\right)=g_{x}^{\vec{~}}(X) \cup\left\{g_{x}^{\vec{x}}\left(x_{0}\right)\right\}=X$ and we have a contradiction.
(ii) First, there is a unique (pseudo-)BCK-algebra $B_{0}=\{0,1\}$ in which the operation \rightarrow is as follows

\rightarrow	0	1
0	1	1
1	0	1

Now, it is sufficient to take a pseudo-BCI-algebra $X^{*}=B_{0} \cup X$ as in Theorem 3.4. Obviously, X^{*} is the unique strongly normal simple extension of X.
(iii) It follows from (i) and the fact that for any pseudo-BCI-algebra Y we have $K(Y)=\{1\}$ if and only if $M(Y)=Y$.

Corollary 4.3. If X is a p-semisimple pseudo-BCI-algebra such that $|X| \geq$ 3, then X is not a simple extension of any pseudo-BCI-algebra.

For arbitrary pseudo-BCI-algebras we have the following theorem.
Theorem 4.4 ([4]). Any pseudo-BCI-algebra has a simple extension.
Remark. Note that for a pseudo-BCI-algebra X a new element of its simple extension X^{*} constructed in [4] belongs to $K(X)$. This means that if X is strongly normal (respectively, non-normal), then also X^{*} is strongly normal (respectively, non-normal).

References

[1] Dudek, W. A., Jun, Y. B., Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
[2] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90.
[3] Dymek, G., p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
[4] Dymek, G., On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187.
[5] Dymek, G., Kozanecka-Dymek, A., Pseudo-BCI-logic, Bull. Sect. Logic Univ. Łódż 42 (2013), 33-42.
[6] Halaš, R., Kühr, J., Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
[7] Iorgulescu, A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008.
[8] Iséki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[9] Jun, Y. B., Kim, H. S., Neggers, J., On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.

Grzegorz Dymek

Institute of Mathematics and Computer Science
The John Paul II Catholic University of Lublin
Konstantynów 1H
20-708 Lublin
Poland
e-mail: gdymek@o2.pl
Received September 9, 2014

[^0]: 2010 Mathematics Subject Classification. 03G25, 06F35.
 Key words and phrases. Pseudo-BCI-algebra, normal pseudo-BCI-algebra, extension of pseudo-BCI-algebra.

