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On pseudo-BCI-algebras

Abstract. The notion of normal pseudo-BCI-algebras is studied and some
characterizations of it are given. Extensions of pseudo-BCI-algebras are also
considered.

1. Introduction. Among many algebraic structures, algebras of logic form
important class of algebras. Examples of these are (pseudo-)MV-algebras,
(pseudo-)BL-algebras, (pseudo-)BCK-algebras, (pseudo-)BCI-algebras and
others. They are strongly connected with logic. For example, BCI-algebras
introduced in [8] have connections with BCI-logic being the BCI-system
in combinatory logic which has application in the language of functional
programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an ex-
tension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some
extension of a non-commutative version of the BCI-logic (see [5] for details).
These algebras have also connections with other algebras of logic such as
pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras. More
about those algebras the reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2 we give the
necessary material needed in the sequel and also some new results concern-
ing p-semisimple part and branches of pseudo-BCI-algebras. In Section 3
we consider normal pseudo-BCI-algebras, that is, pseudo-BCI-algebras X,
which are the sum of their pseudo-BCK-part K(X) and p-semisimple part
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M(X). We illustrate this notion by interesting examples and give some
characterizations of it. In this section we also construct a new pseudo-
BCI-algebra being the sum of a pseudo-BCK-algebra and a p-semisimple
pseudo-BCI-algebra (Theorem 3.4). Finally, in Section 4 we study exten-
sions of pseudo-BCI-algebras.

2. Preliminaries. A pseudo-BCI-algebra is a structure (X;≤,→,;, 1),
where ≤ is a binary relation on a set X, → and ; are binary operations on
X and 1 is an element of X such that for all x, y, z ∈ X, we have

(a1) x→ y ≤ (y → z) ; (x→ z), x; y ≤ (y ; z)→ (x; z),
(a2) x ≤ (x→ y) ; y, x ≤ (x; y)→ y,
(a3) x ≤ x,
(a4) if x ≤ y and y ≤ x, then x = y,
(a5) x ≤ y iff x→ y = 1 iff x; y = 1.
It is obvious that any pseudo-BCI-algebra (X;≤,→,;, 1) can be re-

garded as a universal algebra (X;→,;, 1) of type (2, 2, 0). Note that every
pseudo-BCI-algebra satisfying x → y = x ; y for all x, y ∈ X is a BCI-
algebra.

Every pseudo-BCI-algebra satisfying x ≤ 1 for all x ∈ X is a pseudo-
BCK-algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra
will be called proper.

Throughout this paper we will often use X to denote a pseudo-BCI-
algebra. Any pseudo-BCI-algebra X satisfies the following, for all x, y, z ∈
X,

(b1) if 1 ≤ x, then x = 1,
(b2) if x ≤ y, then y → z ≤ x→ z and y ; z ≤ x; z,
(b3) if x ≤ y and y ≤ z, then x ≤ z,
(b4) x→ (y ; z) = y ; (x→ z),
(b5) x ≤ y → z iff y ≤ x; z,
(b6) x→ y ≤ (z → x)→ (z → y), x; y ≤ (z ; x) ; (z ; y),
(b7) if x ≤ y, then z → x ≤ z → y and z ; x ≤ z ; y,
(b8) 1→ x = 1 ; x = x,
(b9) ((x→ y) ; y)→ y = x→ y, ((x; y)→ y) ; y = x; y,

(b10) x→ y ≤ (y → x) ; 1, x; y ≤ (y ; x)→ 1,
(b11) (x → y) → 1 = (x → 1) ; (y ; 1), (x ; y) ; 1 = (x ; 1) →

(y → 1),
(b12) x→ 1 = x; 1.
If (X;≤,→,;, 1) is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and

(b1), (X;≤) is a poset with 1 as a maximal element. Note that a pseudo-
BCI-algebra has also other maximal elements.

Proposition 2.1 ([4]). The structure (X;≤,→,;, 1) is a pseudo-BCI-
algebra if and only if the algebra (X;→,;, 1) of type (2, 2, 0) satisfies the
following identities and quasi-identity:
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(i) (x→ y) ; [(y → z) ; (x→ z)] = 1,
(ii) (x; y)→ [(y ; z)→ (x; z)] = 1,
(iii) 1→ x = x,
(iv) 1 ; x = x,
(v) x→ y = 1 & y → x = 1 ⇒ x = y.

Example 2.2 ([4]). Let X = {a, b, c, d, e, f, 1} and define binary operations
→ and ; on X by the following tables:

→ a b c d e f 1
a 1 d e b c a a
b c 1 a e d b b
c e a 1 c b d d
d b e d 1 a c c
e d c b a 1 e e
f a b c d e 1 1
1 a b c d e f 1

; a b c d e f 1
a 1 c b e d a a
b d 1 e a c b b
c b e 1 c a d d
d e a d 1 b c c
e c d a b 1 e e
f a b c d e 1 1
1 a b c d e f 1

Then (X;→,;, 1) is a (proper) pseudo-BCI-algebra. Observe that it is not
a pseudo-BCK-algebra because a � 1.

Example 2.3 ([9]). Let Y1 = (−∞, 0] and let ≤ be the usual order on Y1.
Define binary operations → and ; on Y1 by

x→ y =

{
0 if x ≤ y,
2y
π arctan(ln( yx)) if y < x,

x; y =

{
0 if x ≤ y,
ye
− tan(πx

2y
)

if y < x

for all x, y ∈ Y1. Then (Y1;≤,→,;, 0) is a pseudo-BCK-algebra, and hence
it is a nonproper pseudo-BCI-algebra.

Example 2.4 ([3]). Let Y2 = R2 and define binary operations → and ;

and a binary relation ≤ on Y2 by

(x1, y1)→ (x2, y2) = (x2 − x1, (y2 − y1)e−x1),
(x1, y1) ; (x2, y2) = (x2 − x1, y2 − y1ex2−x1),

(x1, y1) ≤ (x2, y2)⇔ (x1, y1)→ (x2, y2) = (0, 0) = (x1, y1) ; (x2, y2)

for all (x1, y1), (x2, y2) ∈ Y2. Then (Y2;≤,→,;, (0, 0)) is a proper pseudo-
BCI-algebra. Notice that Y2 is not a pseudo-BCK-algebra because there
exists (x, y) = (1, 1) ∈ Y2 such that (x, y) � (0, 0).

Example 2.5 ([3]). Let Y be the direct product of pseudo-BCI-algebras
Y1 and Y2 from Examples 2.3 and 2.4, respectively. Then Y is a proper
pseudo-BCI-algebra, where Y = (−∞, 0]×R2 and binary operations→ and
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; and binary relation ≤ are defined on Y by

(x1, y1, z1)→ (x2, y2, z2) =

=

{
(0, y2 − y1, (z2 − z1)e−y1) if x1 ≤ x2,
(2x2π arctan(ln(x2x1 )), y2 − y1, (z2 − z1)e

−y1) if x2 < x1,

(x1, y1, z1) ; (x2, y2, z2) =

=

{
(0, y2 − y1, z2 − z1ey2−y1) if x1 ≤ x2,
(x2e

− tan(
πx1
2x2

)
, y2 − y1, z2 − z1ey2−y1) if x2 < x1,

(x1, y1, z1) ≤ (x2, y2, z2)⇔ x1 ≤ x2 and y1 = y2 and z1 = z2.

Notice that Y is not a pseudo-BCK-algebra because there exists (x, y, z) =
(0, 1, 1) ∈ Y such that (x, y, z) � (0, 0, 0).

For any pseudo-BCI-algebra (X;→,;, 1) the set

K(X) = {x ∈ X : x ≤ 1}

is a subalgebra of X (called pseudo-BCK-part of X). Then (K(X);→,;, 1)
is a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-
BCK-algebra if and only if X = K(X).

It is easily seen that for the pseudo-BCI-algebras X, Y1, Y2 and Y
from Examples 2.2, 2.3, 2.4 and 2.5, respectively, we have K(X) = {f, 1},
K(Y1) = Y1, K(Y2) = {(0, 0)} and K(Y ) = {(x, 0, 0) : x ≤ 0}.

We will denote by M(X) the set of all maximal elements of X and call
it the p-semisimple part of X. Obviously, 1 ∈M(X). Notice that M(X) ∩
K(X) = {1}. Indeed, if a ∈ M(X) ∩ K(X), then a ≤ 1 and, by the fact
that a is maximal, a = 1. Moreover, observe that 1 is the only maximal
element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra X,
M(X) = {1}. In [2] and [3] there is shown that M(X) = {x ∈ X : x =
(x→ 1)→ 1} and it is a subalgebra of X.

Observe that for the pseudo-BCI-algebrasX, Y1, Y2 and Y from Examples
2.2, 2.3, 2.4 and 2.5, respectively, we have M(X) = {a, b, c, d, e, 1}, M(Y1) =
{0}, M(Y2) = Y2 and M(Y ) = {(0, y, z) : y, z ∈ R}.

Proposition 2.6. Let X be a pseudo-BCI-algebra. Then

M(X) = {x→ 1 : x ∈ X}.

Proof. We know that

M(X) = {x ∈ X : x = (x→ 1)→ 1}.

Since, by (b9) and (b12), for any x ∈ X,

x→ 1 = ((x→ 1)→ 1)→ 1,
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we get that x→ 1 ∈M(X) for any x ∈ X. Hence,

{x→ 1 : x ∈ X} ⊆M(X).

Now, let a ∈ M(X). Then, a = (a → 1) → 1. Putting x = a → 1 ∈ X we
obtain that a = x→ 1 for some x ∈ X and also

M(X) ⊆ {x→ 1 : x ∈ X}.
Therefore, M(X) = {x→ 1 : x ∈ X}. �

Let X be a pseudo-BCI-algebra. For any a ∈ X we define a subset V (a)
of X as follows

V (a) = {x ∈ X : x ≤ a}.
Note that V (a) is non-empty, because a ≤ a gives a ∈ V (a). Notice also
that V (a) ⊆ V (b) for any a, b ∈ X such that a ≤ b.

If a ∈ M(X), then the set V (a) is called a branch of X determined by
element a. The following facts are proved in [3]: (1) branches determined by
different elements are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic
union of branches, (3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y1 from Example 2.3 has only one branch (as the
pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.2 has
six branches: V (a) = {a}, V (b) = {b}, V (c) = {c}, V (d) = {d}, V (e) = {e}
and V (1) = {f, 1}. Every {(x, y)} is a branch of the pseudo-BCI-algebra
Y2 from Example 2.4, where (x, y) ∈ Y2. For the pseudo-BCI-algebra Y
from Example 2.5 the sets V ((0, a1, a2)) = {(x, a1, a2) ∈ Y : x ≤ 0}, where
(0, a1, a2) ∈M(X), are branches of Y .

Proposition 2.7 ([2]). Let X be a pseudo-BCI-algebra and let x ∈ X and
a, b ∈M(X). If x ∈ V (a), then x→ b = a→ b and x; b = a; b.

Proposition 2.8 ([2]). Let X be a pseudo-BCI-algebra and let x, y ∈ X.
The following are equivalent:

(i) x and y belong to the same branch of X,
(ii) x→ y ∈ K(X),

(iii) x; y ∈ K(X).

Proposition 2.9 ([3]). Let X be a pseudo-BCI-algebra and let x, y ∈ X. If
x and y belong to the same branch of X, then x → 1 = x ; 1 = y → 1 =
y ; 1.

We have the following proposition.

Proposition 2.10. Let X be a pseudo-BCI-algebra and let x, y ∈ X. The
following are equivalent:

(i) x and y belong to the same branch of X,
(ii) x→ y ∈ K(X),

(iii) x; y ∈ K(X),
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(iv) x→ 1 = x; 1 = y → 1 = y ; 1.

Proof. Let x, y ∈ X. By Propositions 2.8 and 2.9 and (b12) it is sufficient
to prove that if x → 1 = y → 1, then x → y ∈ K(X), that is, (iv) ⇒
(ii). Assume that x → 1 = y → 1. Then, by (b11) and (b12), we have
(x → y) → 1 = (x → 1) ; (y → 1) = 1, which means that x → y ≤ 1.
Hence, x→ y ∈ K(X) and the proof is complete. �

We also have the following proposition.

Proposition 2.11. Let X be a pseudo-BCI-algebra and let x, y ∈ X. The
following are equivalent:

(i) x and y belong to the same branch of X,
(ii) x→ a = y → a for all a ∈M(X),
(ii’) x; a = y ; a for all a ∈M(X),
(iii) x→ a ≤ y → a for all a ∈M(X),
(iii’) x; a ≤ y ; a for all a ∈M(X).

Proof. (i) ⇒ (ii): Assume that x, y ∈ V (b) for some b ∈ M(X). Then for
any a ∈ M(X), by Proposition 2.7, we get x → a = b → a = y → a, that
is, (ii) holds.

(ii) ⇒ (i): If x → a = y → a for all a ∈ M(X), then putting a = 1 we
get x→ 1 = y → 1. Now, by Proposition 2.10, we obtain (i).

(ii) ⇒ (iii): Obvious.
(iii) ⇒ (ii): Let x → a ≤ y → a for all a ∈ M(X). Then, since x → a ∈

M(X) by Proposition 2.7, we have that x→ a = y → a for all a ∈M(X).
Similarly, we can prove the equivalences (i) ⇔ (ii’) ⇔ (iii’). �

Proposition 2.12. Let X be a pseudo-BCI-algebra and let x ∈ X and
a ∈M(X). Then the following are equivalent:

(i) x ∈ V (a),
(ii) x→ b = a→ b for all b ∈M(X),
(iii) x; b = a; b for all b ∈M(X).

Proof. (i) ⇒ (ii): Follows by Proposition 2.7.
(ii) ⇒ (i): Let x ∈ X and a ∈ M(X). Assume that x → b = a → b for

all b ∈M(X). Putting b = 1 we get x→ 1 = a→ 1. Hence, by Proposition
2.10, x and a are in the same branch of X, that is, x ∈ V (a).

(i) ⇔ (iii): Analogous. �

Let (X;→,;, 1) be a pseudo-BCI-algebra. Then X is p-semisimple if it
satisfies for all x ∈ X,

if x ≤ 1, then x = 1.

Note that if X is a p-semisimple pseudo-BCI-algebra, then K(X) = {1}.
Hence, if X is a p-semisimple pseudo-BCK-algebra, then X = {1}. More-
over, as it is proved in [3], M(X) is a p-semisimple pseudo-BCI-subalgebra
of X and X is p-semisimple if and only if X =M(X).
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It is not difficult to see that the pseudo-BCI-algebras X, Y1 and Y
from Examples 2.2, 2.3 and 2.5, respectively, are not p-semisimple, and
the pseudo-BCI-algebra Y2 from Example 2.4 is a p-semisimple algebra.

Proposition 2.13 ([3]). Let X be a pseudo-BCI-algebra. Then, for all
a, b, x, y ∈ X, the following are equivalent:

(i) X is p-semisimple,
(ii) (x→ y) ; y = x = (x; y)→ y,
(iii) (x→ 1) ; 1 = x = (x; 1)→ 1,
(iv) if x→ a = x→ b, then a = b,
(v) if x; a = x; b, then a = b,
(vi) if a→ x = b→ x, then a = b,
(vii) if a; x = b; x, then a = b.

3. Normal pseudo-BCI-algebras. A pseudo-BCI-algebra X is called
normal if X = K(X) ∪M(X). Otherwise, it is called non-normal.

Remark. Every pseudo-BCK-algebra and every p-semisimple pseudo-BCI-
algebra are normal.

A pseudo-BCI-algebra X is called strongly normal if X is normal and
K(X) 6= {1} and M(X) 6= {1}.

Example 3.1. It is easy to see that the pseudo-BCI-algebra X from Ex-
ample 2.2 is strongly normal, and the pseudo-BCI-algebra Y from Example
2.5 is non-normal.

Theorem 3.2. Let X be a pseudo-BCI-algebra. Then the following are
equivalent:

(i) X is normal,
(ii) ((x→ 1)→ 1)→ x ∈ {x, 1} for any x ∈ X,
(iii) ((x→ 1)→ 1) ; x ∈ {x, 1} for any x ∈ X.

Proof. (i)⇒ (ii): Let X be normal. Then X = K(X)∪M(X). Let x ∈ X.
If x ∈ K(X), then

((x→ 1)→ 1)→ x = 1→ x = x ∈ {x, 1}.
If x ∈M(X), then

((x→ 1)→ 1)→ x = x→ x = 1 ∈ {x, 1}.
(ii) ⇒ (i): Let ((x → 1) → 1) → x ∈ {x, 1} for any x ∈ X. Take z ∈ X.

If ((z → 1)→ 1)→ z = z, then, by (b9), b(11) and (b12),

z → 1 = (((z → 1)→ 1)→ z)→ 1

= (((z → 1)→ 1)→ 1) ; (z → 1)

= (z → 1) ; (z → 1)

= 1
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Hence, z ≤ 1, that is, z ∈ K(X). If ((z → 1) → 1) → z = 1, then,
(z → 1)→ 1 ≤ z. Hence and by (a2) and (b12),

z = (z → 1)→ 1,

which means that z ∈ M(X). Hence, X = K(X) ∪M(X), that is, it is
normal.

(i) ⇔ (iii): Analogously. �

In next theorem we construct some strongly normal pseudo-BCI-algebra.
But first, we prove the following lemma.

Lemma 3.3. Let X be a pseudo-BCI-algebra. Then
(i) for any x ∈ X and y ∈ K(X),

(x→ y)→ (x→ 1) = 1 = ((x→ 1)→ (x→ y))→ 1,

(x→ y) ; (x→ 1) = 1 = ((x→ 1) ; (x→ y))→ 1,

(x; y) ; (x; 1) = 1 = ((x; 1) ; (x; y))→ 1,

(x; y)→ (x; 1) = 1 = ((x; 1)→ (x; y))→ 1,

(ii) for any x ∈ K(X) and a ∈M(X),

x→ a = a = x; a = (a→ x)→ 1 = (a; x)→ 1,

(iii) if X = K(X) ∪ M(X), then a → x = a → 1 = a ; x for any
a ∈M(X)\{1} and x ∈ K(X).

Proof. (i) Let x ∈ X and y ∈ K(X). By (b1) and (b6), (x → y) → (x →
1) = 1. Then, by (b10), 1 = (x→ y)→ (x→ 1) ≤ ((x→ 1)→ (x→ y))→
1. Hence, by (b1),

(x→ y)→ (x→ 1) = 1 = ((x→ 1)→ (x→ y))→ 1.

Next, by (b4), (b11) and (b12) we have

(x→ y) ; (x→ 1) = x→ ((x→ y) ; 1)

= x→ ((x→ 1) ; (y → 1))

= x→ ((x→ 1) ; 1)

= (x→ 1) ; (x→ 1)

= 1.

Now, it is easy to see that

(x→ y) ; (x→ 1) = 1 = ((x→ 1) ; (x→ y))→ 1.

Similarly, we can prove other equations of (i).
(ii) Let x ∈ K(X) and a ∈M(X). From Proposition 2.12 we immediately

have that
x→ a = a = x; a.
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Moreover, by (b10) and (b12), a = x → a ≤ ((a → x) → 1 and a = x ;

a ≤ ((a; x)→ 1. Since a ∈M(X), we get (ii).
(iii) Let X = K(X) ∪M(X), a ∈ M(X)\{1} and x ∈ K(X). By (ii),

(a→ x)→ 1 = a 6= 1. Hence, a→ x /∈ K(X), that is, a→ x ∈M(X)\{1}.
Then, (a → 1) → (a → x) ∈ M(X). But, by (i), (a → x) → (a →
1) = 1 = ((a → 1) → (a → x)) → 1. Thus, a → x ≤ a → 1 and
(a → 1) → (a → x) = 1, that is, also a → 1 ≤ a → x. Therefore,
a→ x = a→ 1. Similarly, we prove that a; x = a→ 1. �

Remark. Note that the assumption X = K(X)∪M(X) in Lemma 3.3 (iii)
is valid. Indeed, let Y be the pseudo-BCI-algebra from Example 2.5. We
know that K(Y ) = {(x, 0, 0) : x ≤ 0} and M(Y ) = {(0, y, z) : y, z ∈ R}.
Then for x < 0 and a1, a2 ∈ R we have

(0, a1, a2)→ (x, 0, 0) = (0, a1, a2) ; (x, 0, 0) = (x,−a1,−a2e−a1)
6= (0, a1, a2)→ (0, 0, 0)

= (0,−a1,−a2e−a1).

Theorem 3.4. Let Y be a pseudo-BCK-algebra, Z be a (proper) p-semi-
simple pseudo-BCI-algebra and Y ∩ Z = {1}. Then there exists a unique
pseudo-BCI-algebra X such that X = Y ∪ Z, K(X) = Y and M(X) = Z.

Proof. First, the operations on Y and Z we denote by the same symbols
→ and ;. Define on X = Y ∪ Z binary operations 7→ and y as follows

x 7→ y =

 x→ y if x, y ∈ Y or x, y ∈ Z,
y if x ∈ Y and y ∈ Z\{1},
x→ 1 if x ∈ Z\{1} and y ∈ Y

and

xy y =

 x; y if x, y ∈ Y or x, y ∈ Z,
y if x ∈ Y and y ∈ Z\{1},
x; 1 if x ∈ Z\{1} and y ∈ Y.

We show that (X; 7→,y, 1) is a pseudo-BCI-algebra. We check the condi-
tions (i)–(v) of Proposition 2.1. Since Y and Z are pseudo-BCI-algebras,
we only need checking these conditions for the elements which are not all
in Y and not all in Z. Particularly, (iii) and (iv) are satisfied. Now, we
prove (v). Let x ∈ Y and y ∈ Z. Assume that x 7→ y = 1 = y 7→ x. Then,
y = x 7→ y = 1. This means that x = 1 7→ x = 1, that is, x = y = 1.
Thus, (v) is satisfied. Next, we show the identity (i). Let x, x1, x2 ∈ Y and
y, y1, y2 ∈ Z. Then

(1) (x 7→ y1) y [(y1 7→ y2) y (x 7→ y2)] = y1 ; [(y1 → y2) ; y2] =
y1 ; y1 = 1,

(2) (y1 7→ x) y [(x 7→ y2) y (y1 7→ y2)] = (y1 → 1) ; [y2 ; (y1 →
y2)] = (y1 → 1) ; (y1 → 1) = 1,
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(3) (y1 7→ y2) y [(y2 7→ x) y (y1 7→ x)] = (y1 → y2) ; [(y2 → 1) ;
(y1 → 1)] = 1,

(4) (y 7→ x1) y [(x1 7→ x2) y (y 7→ x2)] = (y → 1) y [(x1 → x2) y
(y → 1)] = (y → 1) ; (y → 1) = 1,

(5) (x1 7→ y) y [(y 7→ x2) y (x1 7→ x2)] = y y [(y → 1) y (x1 →
x2)] = y y [(y → 1) ; 1] = y ; y = 1,

(6) (x1 7→ x2) y [(x2 7→ y) y (x1 7→ y)] = (x1 → x2) y (y ; y) =
y ; y = 1.

Thus, (i) is also satisfied. Similarly we can prove (ii). Therefore, (X; 7→,y,
1) is a pseudo-BCI-algebra.

Now, note that x 7→ 1 = x → 1 for every x ∈ X. This means that
x 7→ 1 = 1 if and only if x → 1 = 1, and (x 7→ 1) 7→ 1 = x if and only if
(x→ 1)→ 1 = x. Hence, K(X) = Y and M(X) = Z.

Finally, we show uniqueness of pseudo-BCI-algebra (X; 7→,y, 1). Let
(X;�,#, 1) be a pseudo-BCI-algebra such that X = Y ∪ Z, K(X) = Y
and M(X) = Z. If x, y ∈ Y or x, y ∈ Z, then

x� y = x→ y = x 7→ y and x# y = x; y = xy y.

If x ∈ Y and y ∈ Z\{1}, then, by Lemma 3.3,

x� y = y = x 7→ y and x# y = y = xy y.

If x ∈ Z\{1} and y ∈ Y , then, again by Lemma 3.3,

x� y = x� 1 = x→ 1 = x 7→ y

and

x# y = x# 1 = x; 1 = xy y.

Therefore, (X;�,#, 1) = (X; 7→,y, 1). �

Remark. Notice that a pseudo-BCI-algebra X constructed in Theorem 3.4
is strongly normal.

Example 3.5. Take the following pseudo-BCK-algebra Y = {α, β, γ, 1}
equipped with the operations→ and ; given by the following tables (see [6]):

→ α β γ 1
α 1 1 1 1
β β 1 1 1
γ β β 1 1
1 α β γ 1

; α β γ 1
α 1 1 1 1
β γ 1 1 1
γ α β 1 1
1 α β γ 1
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and the following p-semisimple pseudo-BCI-algebra Z = {a, b, c, d, e, 1}
equipped with the operations→ and ; given by the following tables (see [4]):

→ a b c d e 1
a 1 d e b c a
b c 1 a e d b
c e a 1 c b d
d b e d 1 a c
e d c b a 1 e
1 a b c d e 1

; a b c d e 1
a 1 c b e d a
b d 1 e a c b
c b e 1 c a d
d e a d 1 b c
e c d a b 1 e
1 a b c d e 1

Then, using Theorem 3.4, we can construct the new pseudo-BCI-algebra
(X; 7→,y, 1) such that X = Y ∪ Z and the operations 7→ and y are as
follows:

7→ α β γ a b c d e 1
α 1 1 1 a b c d e 1
β β 1 1 a b c d e 1
γ β β 1 a b c d e 1
a a a a 1 d e b c a
b b b b c 1 a e d b
c d d d e a 1 c b d
d c c c b e d 1 a c
e e e e d c b a 1 e
1 α β γ a b c d e 1

and
y α β γ a b c d e 1
α 1 1 1 a b c d e 1
β γ 1 1 a b c d e 1
γ α β 1 a b c d e 1
a a a a 1 c b e d a
b b b b d 1 e a c b
c d d d b e 1 c a d
d c c c e a d 1 b c
e e e e c d a b 1 e
1 α β γ a b c d e 1

Obviously, K(X) = Y and M(X) = Z, that is, X is strongly normal.

4. Extensions of pseudo-BCI-algebras. Let X and X∗ be pseudo-BCI-
algebras. If X is a subalgebra of X∗, then X∗ is called an extension of X. If
X∗ is p-semisimple (respectively, strongly normal, non-normal), then X∗ is
called a p-semisimple (respectively, strongly normal, non-normal) extension
of X. If |X∗\X| = 1, then X∗ is called a simple extension of X.

First, we show some simple lemma. Consider the map p : X → X such
that

p(x) = x→ 1
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for all x ∈ X. Obviously, p(x) = x ; 1 for all x ∈ X. Note that Im(p) =
M(X), Ker(p) = K(X) and if X is p-semisimple, then p is surjective.

Lemma 4.1. Let X be a p-semisimple pseudo-BCI-algebra. Then, for all
a ∈ X, maps f→a , f

;
a , g

→
a , g

;
a : X → X such that

f→a (x) = x→ a,

f;a (x) = x; a,

g→a (x) = a→ x,

g;a (x) = a; x

for all x ∈ X, are injective. Moreover, g→a and g;a are also surjective.

Proof. Since X is p-semisimple, immediately by Proposition 2.13, f→a , f;a ,
g→a , g;a are injective. Moreover, for all x ∈ X, by (b4) we have

(g→a ◦ f;a )(x) = g→a (x; a) = a→ (x; a)

= x; (a→ a) = x; 1

= p(x)

and

(g;a ◦ f→a )(x) = g;a (x→ a) = a; (x→ a)

= x→ (a; a) = x→ 1

= p(x)

Hence, since p is surjective, maps g→a and g;a are surjective. �

Remark. Note that g→a ◦f;a = g;a ◦f→a and the map p can be decomposed
into an injection and a bijection.

Theorem 4.2. Let X be a p-semisimple pseudo-BCI-algebra. Then
(i) there is no p-semisimple simple extension of X if |X| ≥ 2,
(ii) there is a unique strongly normal simple extension of X,
(iii) there is no non-normal simple extension of X.

Proof. (i) Let X be a p-semisimple pseudo-BCI-algebra and |X| ≥ 2. As-
sume that X∗ = X ∪ {x0} is a p-semisimple extension of X. Since |X| ≥ 2,
we can take x ∈ X\{1}. Now, take the map g→x : X∗ → X∗. By Lemma 4.1
we have g→x (X∗) = X∗ and g→x (X) = X. Note that g→x (x0) ∈ X. In-
deed, if g→x (x0) ∈ X∗\X = {x0}, then x → x0 = x0 = 1 → x0 and by
Proposition 2.13, x = 1, which is impossible. Hence, g→x (x0) ∈ X. Thus,
g→x (X∗) = g→x (X) ∪ {g→x (x0)} = X and we have a contradiction.

(ii) First, there is a unique (pseudo-)BCK-algebra B0 = {0, 1} in which
the operation → is as follows

→ 0 1
0 1 1
1 0 1
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Now, it is sufficient to take a pseudo-BCI-algebra X∗ = B0 ∪X as in The-
orem 3.4. Obviously, X∗ is the unique strongly normal simple extension
of X.

(iii) It follows from (i) and the fact that for any pseudo-BCI-algebra Y
we have K(Y ) = {1} if and only if M(Y ) = Y . �

Corollary 4.3. If X is a p-semisimple pseudo-BCI-algebra such that |X| ≥
3, then X is not a simple extension of any pseudo-BCI-algebra.

For arbitrary pseudo-BCI-algebras we have the following theorem.

Theorem 4.4 ([4]). Any pseudo-BCI-algebra has a simple extension.

Remark. Note that for a pseudo-BCI-algebra X a new element of its simple
extension X∗ constructed in [4] belongs to K(X). This means that if X is
strongly normal (respectively, non-normal), then also X∗ is strongly normal
(respectively, non-normal).
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