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ABSTRACT  

In this paper a concept of symmetry in the parameter space of the parameter dependent 
Hamiltonians is considered. The three different ways of realization of this symmetry is 
introduced. The example of analysis of this kind of symmetries is made in case of spherical 
harmonic oscillator. Some consequences of this symmetry for the electric type transition 
amplitudes of the electromagnetic nuclear radiation is shown. 

1. INTRODUCTION  

One of the most important topics of nuclear physics, and generally of the many-
body problems, is an idea of intrinsic frame. The fixed-body frame can be defined as 
the frame which is attached to a nucleus. Description in an intrinsic frame is very 
useful because it leads to separation of the bulk degrees of freedom which are 
connected with external motion, like rotation or translations, from intrinsic motion, 
as for example nuclear vibrations. A rather general definition of fixed-body frame is 
described by Biedenharn and Louck [1]. Another idea of intrinsic frame is based on 
a separation of various types of quantum motions. It was successfully analyzed by 
Eckart in molecular physics [2]. However, it was proved by Guichardet [3] that both 
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kinds of motion, i.e., rotation and vibration, cannot be, in general, separated exactly. 
From the technical point of view calculations in intrinsic frame are more effective, 
however, there are some complications coming from lack of uniqueness of 
transformations from the laboratory frame to the intrinsic frame [4, 5, 6, 7]. 

In this paper we consider implications of some specific symmetries which we 
consider in the intrinsic frame. 

2. INTRINSIC SYMMETRY IN A SPACE OF PARAMETERS  

A classical definition of symmetry operations base on an idea of invariance of 
a Hamiltonian, in a global sense. The operators which leave invariant the Hamiltonian 

 furnish the symmetry group which are understood as automorphisms  
of space of quantum states . The invariance condition can be written as:  

  (1) 

Existing of this kind of regularities in the structure of a Hamiltonian is a very 
valuable feature because it leads to some statements about properties of this 
Hamiltonian. But one can discern not only these classical symmetries but also some 
other regularities in the structure of the Hamiltonian. 

For a class of Hamiltonians, or operators in general, which possess dependence on 
a set of parameters modelling a physical system, one can find symmetries which are 
related to the space of these parameters. A typical example of Hamiltonians of this kind 
can be found in the mean field theories. The standard problem considered in this theory 
is analysing of the mean field Hamiltonian dependent on some deformation parameters.  

For illustration of this idea let us consider a set of parameters  belonging to 
a given domain . These parameters allow to model the physical system by 
a family of Hamiltonians . Let us consider the group  which is a subgroup of 
the full group of automorphisms of the parameter space , i.e. . 
Due to the spectral theorem, the Hamiltonian (we assume only the discrete spectrum 
here) can be described as follows:  

  (2) 

where the operator  is the projection operator  

  (3) 

and the states  are parameter dependent eigenstates of the Hamiltonian. In 
this case, one can find a kind of symmetries, but not in respect to the variables of 
the model but in the parameter space .  
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Because the parameters  are not the variables (degrees of freedom) of this 
model, the Hamiltonian  should be understood as an operator valued function of 
the parameters . For this reason the action of elements of the group  on the 
Hamiltonian is not that for operators but it coincides with this for functions:  

  (4) 

This kind of transformations change both: the projection operators  

  (5) 

and the eigenvalues  

  (6) 

independently. 
Naturally these symmetries do not lead to the same conclusions as the global 

symmetries related to the variables of the physical system. They rather show the 
structure of the Hamiltonian while changing the parameters .  

The symmetry in the parameter space can be realized in three different ways.  
1. Case 1. The group  is a symmetry group of the 

eigenenergies as functions of the parameters , but it is not the symmetry 
group for the projection operators :  

  (7) 

In this case, we can expect the same energy spectra for each configuration of the 
parameters  which differ by any transformation , i.e. the energy 
spectrum of the physical system described in this way is the same for  and . 
It has to be noted that though these spectra are the same, the corresponding 
states/eigenvectors of both energy bands are different.  

2. Case 2. The group  is the symmetry group of the 
projection operators but it is not the symmetry group of the corresponding 
eigenenergies:  

  (8) 

In this case, any transformation of the eigensolutions by an arbitrary 
element of the group  gives the vector belonging to the same 
eigenspace. The action of the symmetry group  is closed within the 
eigenspace as it is observed for standard type of the Hamiltonian 
symmetries.  

3. Case 3. In the third case, the group  is the common symmetry group for 
eigenspaces and eigenvalues. Such group can be understood as the global 
symmetry group acting in the parameter space of the full Hamiltonian, 

.  



72 A. PĘDRAK, A. GÓŹDŹ, A.A. GUSEV, S.I. VINITSKY  

  (9) 

  (10) 

  (11) 

In this case the periodical behavior, with respect to the elements of the group 
, can be seen in both: eigenenergies and projection operators.  

 
Searching for these kinds of symmetries is not easy. In a natural way, it can be 

done only in the last case because in this case we do not need to decompose the 
Hamiltonian according to the spectral theorem. On the other hand, if the symmetries 
in the parameter space are already known, they allow to simplify calculations of 
expressions related to this Hamiltonian. Usually, it is sufficient to solve the required 
problem on the subset of  consisted of representative of the orbits constructed 
with respect to the action of the symmetry group . The solutions for the other 
values of the parameters  can be obtained by acting with the elements of the 
group  on the required solutions got for the representatives of the constructed 
orbits. 

The next section contains a simple example of analysis of symmetry on the 
parameters space. 

3. EXAMPLE  

The problem we are going to consider in this section is the parameters space 
symmetry in a case of a schematic model represented by the spherical harmonic 
oscillations. Let us assume the Hamiltonian of spherical harmonic oscillator, where 
the mass parameter  and the stiffness parameter  form the space of 
parameters .  

  (12) 

The eigensolutions for this Hamiltonian are well known and can be written as 
[8]:  

   
  (13) 

  (14) 

The functions  are the generalized Laguerre polynomials, the constants  
and  are defined as:  
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  (15) 

The subgroup of automorphisms considered in this example is the group of 
scaling transformations. The action of an element of this group in the space of 
parameters  is:  

  (16) 

The action of this group on the eigensolutions of the harmonic oscillator can be 
directly calculated and expressed in the following form:  

   

  (17) 

   

   
The first and the second case described in the previous section can be now 

written as:  
1. The first case one can find by taking :  

  (18) 

2. The second case is obtained by assuming   

  (19) 

3. The third case corresponds to the trivial symmetry group consisted of the 
identity operation . 

An interesting question is to analyse implications of an action of the scaling 
group in the parameter space onto the electromagnetic transition amplitudes. 
According to Bohr and Mottelson [9] the transition amplitude of a photon, of a given 
multipole type, is proportional to the difference of energies between the final and the 
initial state raised to the appropriate power and multiplied by the reduced transition 
probability. More explicitly the formula is given by:  

  (20) 

where the reduced transition probability is obtained by means of the Wigner-
Eckart theorem:  
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  (21) 

The single-particle Hamiltonian (12) can describe a system of independent 
nucleons moving in the potential of harmonic oscillator. Let us consider only the 
transition of the electric type. The schematic multipole transition operator can be 
written in the simple form:  

  (22) 

Using the previous formulae, we can obtain the following scaling dependence of 
the matrix elements of the multipole transition operators:  

  (23) 

It implies that the scaled reduced probabilities and the amplitudes can be 
expressed as:  

  

 (24) 

 (25) 

 
The special cases of symmetries in the parametric space considered earlier we 

obtain by the appropriate substitution of the scaling group parameters:  
1. The first case is obtained for   

  (26) 

2. The second case is obtained for   

  (27) 

The previous outcomes allow to conclude that changing the parameters of the 
scaling group which acts in the two dimensional space built from the pairs of 
numbers representing the mass and the stiffness parameters, leads to the scaling of 
the electric transitions amplitudes. The two cases of symmetry, described earlier, 
give the coefficients which are some powers of the scaling group parameters and 
which become the scaling factors of these amplitudes. 

The results of the above analysis lead to a possibility of obtaining of all 
harmonic oscillators from the single Hamiltonian (12) taken as a pattern. This 
pattern can be obtained by fixing the parameters  and . After this 
procedure every spherical harmonic oscillator Hamiltonian can be described as an 
appropriate scaling of this standard/pattern oscillator. Obviously, this example is 
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trivial, but using it we want to present, in a clear way, the idea of symmetry in the 
parametric space. 

On the other hand, using the appropriate experimental data one can try to check 
if a given nuclear system has this kind of symmetry. Assume that two given nuclear 
energy bands fulfil the scaling properties as we found for the harmonic oscillator. In 
general, we need two conditions to measure the scaling parameters. It is sufficient to 
find the ratio of measured eigenenergy  of the second band and the 
corresponding energy  from the pattern oscillator spectrum using the 
formula (17):  

  (28) 

This condition is sufficient to get the scaling parameter (only one is needed) in 
both special cases of symmetry (Case 1., Case 2.) considered earlier. However, in 
general, this ratio is not sufficient to get both parameters of the scaling group. Note 
that for our schematic model this ratio does not depend on quantum numbers  and 

. 
To find the second condition, the next step is to calculate/measure a similar ratio 

for the transition amplitudes (25):  

   

  (29) 

Using equations (28) and (29) one can get the group parameters  and . The 
values of the constants  and  allow to describe the new oscillator as an appropriate 
scaling of the pattern oscillator. Having both parameters, one can describe properties 
of the second band if we know the structure of the first band. 

In the special cases Case 1. defined by  or Case 2. determined by , 
the new oscillator is related to the pattern oscillator as it is described in the cases 
Case 1. and Case 2. It is worth to note that all properties of any harmonic oscillator 
can be described by scaling of the appropriate expressions/properties found for the 
standard/pattern oscillator. 

The above idea gives a possibility of existence of the so-called similar bands. In 
this context, the two bands are similar if properties of the other band can be obtained 
by applying the symmetry group (acting in the parameter space) on the properties of 
the first band. This leads to the characteristic relations among energy spectra of both 
bands and also some relations among transition probabilities within/between both 
bands. 

Naturally the toy-model of spherical harmonic oscillator introduces very simple 
relations between the standard/pattern oscillator and any arbitrary harmonic 
oscillator Hamiltonian. Application of this idea to more realistic cases implies much 
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more complex relations between the pattern and the corresponding model obtained 
for other parameters  

The idea of symmetry in the space of parameters of a physical model belongs to 
the partial symmetries approach. Theses symmetries should be understood as a kind 
of relations connecting some specific features of a physical system driven by the 
parameters of this physical model. The tools required for analysis of symmetry in 
the parameters space are not well developed. But, as we show in this paper, this type 
of symmetry is an interesting idea which can be applied for qualitative, sometimes 
quantitative, analysis for some quantum systems. 
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