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12345Abstract: Performing a primary analysis, such as principal component analysis (PCA) may increase 
accuracy and reliability of developed pedotransfer functions (PTFs). This study focuses on the use-
fulness of the soil penetration resistance (PR) and principal components (PCs) as new inputs along 
with the others to develop the PTFs for estimating the soil water retention curve (SWRC) using a 
multi-objective group method of data handling (mGMDH). The Brooks and Corey (1964) SWRC 
model was used to give a description of the water retention curves and its parameters were deter-
mined from experimental SWRC data. To select eight PCs, PCA was applied to all measured or 
calculated variables. Penetration resistance, organic matter (OM), aggregates mean weight diameter 
(MWD), saturated hydraulic conductivity (Ks), macro porosity (Mp), micro porosity (Mip) and eight 
selected PCs were used as predictors to estimate the Brooks and Corey model parameters by mGM-
DH. Using PR or OM, Ks and MWD, improved the estimation of SWRC in some cases. Using the 
predicted PR can be useful in the estimation of SWRC. Using either the MP and Mip or the eight 
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PCs significantly improved the PTFs accuracy and reliability. It would be very useful to apply PCA 
on the original variables as a primary analysis to develop parametric PTFs.

Keywords: Multi-objective group method of data handling; pedotransfer function; principal com-
ponent analysis; Parametric estimation

INTRODUCTION

Pedotransfer functions (PTFs) are functional relationships that transfer easily, 
routinely, or cheaply measured properties (e.g. soil texture, structure and organic 
matter content) into missing soil properties (e.g. soil water retention curve,  

Notation
BD bulk density MWD aggregates mean weight diameter
C clay OM organic matter
PR Penetration resistance PC1-PC20 principal component 1 - principal 

component 20
c1M  intercept of first domain of 

Millan’s model
PTF1 – PTF4 pedotransfer function 1 - pedotransfer 

function 4
c2M intercept of second domain 

of Millan’s model
PTF1 – PTF4 pedotransfer function 1 - pedotransfer 

function 4
CI Cone index RMSE root mean squared error
D Bi mass fractal dimension of 

Bird’s model
R2 coefficient of determination

dc M cutoff of the whole domain 
in Millan’s model

S Sand

dg geometric mean of particle 
diameter

Se2B variance of mass of aggregates for 
Bartoli’s model 

D1M fractal dimension of first 
domain in Millan’s model

Se2M variance of cumulative mass of parti-
cles for Millan’s model

D2M fractal dimension of second 
domain in Millan’s model

sg geometric standard deviation of parti-
cle diameter

IME integrated mean error Si silt 
IRMSE integrated root mean squared 

error
TP total porosity

Ks saturated hydraulic 
conductivity

θs saturated water content 

Md median diameter θr residual water content
MGN Morgan-Granger-Newbold α reverse of air entry value
Mip micro porosity λ pore size distribution index
Mp macro porosity

saturated hydraulic conductivity, etc.) [6]. Many attempts have been made 
to correlate the parameters of the soil hydraulic models of Brooks and Corey 
[8] [9, 10] and van Genuchten [51] [55] to basic soil properties. The studies 
include grouping soil into classes [30], developing alternative methods to derive 
or fit the PTFs [22, 40], finding the most influential soil attributes as predictors 
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[19, 44, 47] and finally using state-of-the-art techniques to develop PTFs [29]. 
About using state-of-the-art techniques regression trees technique has been used 
to estimate water retention by Pachepsky, et al. [31]. Nemes, et al. [25] and 
Nemes, et al. [27] used k-Nearest Neighbor technique to estimate water reten-
tion. Twarakavi, et al. [48] used support vector machines to derive a new set of 
PTFs and found that all the support vector machines-based PTFs performed bet-
ter than the Rosetta PTF program. Jana and Mohanty [17] used Bayesian neural 
networks to predict the soil water retention. 

The soil hydraulic properties are necessary in many fields such as hydrol-
ogy and agronomy [46]. Also, water flow and solute transport models need 
hydraulic properties for accurate simulations [32]. In spite of many attempts that 
have been made to develop parametric PTFs [9, 10, 36, 38, 55], accurate predic-
tion of SWRC remains a challenging object in soil physics.

Predicting some of the soil physical or chemical properties and using them 
as inputs for the parametric PTFs, along with performing some primary analysis 
could be helpful in raising the accuracy and reliability of the developed PTFs. In 
the light of the high spatial variability of penetration resistance (PR), it is diffi-
cult to collect data measured with an adequate accuracy [53]. Moreover, the soil 
databases are frequently devoid of PR values, which may be useful to predict 
SWRC [29]. On the other hand, some researchers such as To and Kay [45] and 
Bayat, et al. [3] used regression and artificial neural networks, respectively to 
estimate PR from the readily available soil data. The question of how reliable it 
is to apply the published PTFs to predict PR and then, using it as an input for the 
parametric PTFs, remains unanswered.

Many researchers have encountered the problem of multi-collinearity by 
using parametric PTFs [40, 43]. Van den Berg, et al. [50] suggested that it could 
be caused by interdependency among the input variables. Principal component 
analysis (PCA) can solve the problem of multi-collinearity [14] among the pre-
dictor variables. It is expected that using principal components (PCs) as predic-
tors can improve the accuracy and reliability of estimates.

This paper is a part of Ph. D. thesis presented by Bayat, et al. [3]. Several 
parts of the research have been published previously. The indicated paper and 
other reported parts of the research are complementary of one another. Frac-
tal parameters were used to estimate water retention through the Brooks and 
Corey [7] model by Bayat, et al. [2] (parametric method) using multi-objective 
group method of data handling and artificial neural networks (ANN). Also, frac-
tal parameters have been used as predictors to develop point PTFs using ANNs 
with adding penetration resistance and principal components to the input param-
eters [4, 5]. More recently Neyshaburi, et al. [28] developed PTFs (point meth-
od) to estimate the soil water retention using fractal parameters and multi-ob-
jective group method of data handling. The new feature of this article was using 
multi-objective group method of data handling for the point estimation of water 
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content and comparing its results with those of the PTFs developed by ANNs. 
But, the effect of the principal components and the penetration resistance in the 
estimation of the parameters of the Brooks and Corey [7] model has not been 
reported so far. Therefore, this research is designated to complete the previously 
reported researches by using penetration resistance and principal components as 
inputs to estimate the parameters of the Brooks and Corey [7] model. Then, in 
order to be able to compare the results, the same data set was used in this study.

The objectives of the present work aimed at investigating: (i) the utility of 
applying PCA on original variables and using PCs as predictors to estimate the 
Brooks and Corey water retention parameters, and (ii) the efficiency of the pre-
dicted PR to improve the parametric PTFs.

MATERIALS AND METHODS

Sampling and Measurements

In this study a data set of 148 samples were used to develop the PTFs 
in order to estimate the Brooks and Corey model parameters. The study are-
as representing a wide range of the soil properties were two provinces of Iran: 
Hamedan, 124 data (east of Iran) and Guilan, 24 data (north of Iran). This study 
is a resumption of the research in which PTFs were developed by ANNs and 
a multi-objective group method of data handling (mGMDH) to predict the 
Brooks and Corey water retention parameters [2] and all of the data were taken 
from Bayat, et al. [2], Bayat, et al. [4], Bayat, et al. [5]. Therefore, the details of 
all measurements for the soil properties are given in the cited papers and supple-
mentary materials, and we do not repeat them here. The mineralogical compo-
sition of the clay were greatly (2:1 clay types) vermiculites and illite for Guilan 
[11] and Hamedan [16] provinces, respectively.

Penetration resistance (PR) was measured in -100 kPa matric potential, 
only on 24 core samples (5.5 cm in diameter and a height of 4.0 cm) collected 
from Guilan province. For the other 124 samples collected from Hamedan prov-
ince, PR was estimated using the PTF that had been developed by Bayat, et al. 
[3] using BD, TP, θ and relative saturation, that are usually available in many 
databases. Bayat, et al. [3] developed several PTFs to estimate PR. We describe 
the PTFs used in this study. A data set of 293 data from Hamedan province, Iran, 
was divided into training and validation groups. The first set of relative satura-
tion (θv TP-1), BD and θm served as inputs to ANNS in order to predict PR, and 
the second group used for it’s validation. The RMSE and coefficient of correla-
tion of PR prediction were 202.2 kPa and 0.80, respectively.

The Brooks and Corey [8] model was used to give a description of the water 
retention curves: 
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where  is the volumetric water content at the matric suction h and S is 
the degree of saturation. The parameters to be determined are: the residual  
( rθ ), saturated ( sθ ) water contents (m3 m-3), the inverse of the air entry pres-
sure α  (1 cm-1), and the pore size distribution index λ  (-). The model parame-
ters were estimated with the RETC program [52] using experimental soil water 
retention data.

Because some of the parameters exhibited non-normal distributions, the 
following transformations were made: ln (α), ln (λ), log (Ks) and log (PR).

Principal Component Analysis
Principal component analysis was applied to all measured and calculated 

variables and 8 PCs were selected to be used as inputs in the PTFs. Detailed 
information about the application of principal component analysis and selecting 
8 PCs was given in Bayat, et al. [4] and supplementary materials. 

Developing PTFs

We followed the procedure by Minasny and McBratney [22], who developed 
“neuropath” software to create PTFs, in developing mGMDH models. 100 data 
were selected randomly for development and remaining 48 data were used for val-
idation. The PTFs were developed using a multi-objective group method of data 
handling (mGMDH) technique [24] to estimate θr, θs, α and λ in the Eq. 1. 

The parameters were predicted by the combination of mGMDH and boot-
strap method [13] using 50 bootstrap data sets. Details are given in Bayat, et al. 
[4] and supplementary materials. 

The mGMDH algorithm uses multi-objective optimization. The mGMDH 
algorithms are given in detail by Atashkari, et al. [1] and Nariman-Zadeh, et 
al. [24]. Genetic algorithms have been used in a multi-objective GMDH neural 
network for each neuron searching its optimal set of connections with the pre-
ceding layer [1]. For the multi-objective optimization evolutionary algorithms 
were applied. The training and testing mean square errors were two objective 
functions which determined to be minimized in order to find the most accurate 
and reliable PTFs. In order to perform the mGMDH algorithm, a program was 
written in MATLAB (The MathWorks, Natick, MA).*6

* The models would be available upon requesting from corresponding author.
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Four primary PTFs (from Step 1 to Step 4) were developed before creating 
the PTF1. Detailed information about the aforementioned four steps is given in 
the earlier study [2] and supplementary materials. In this paper we focus on the 
effect of PR, MWD, OM, Ks, Mp, Mip, and PCs in the estimation of SWRC.

For each parameter in Eq. 1 four PTFs were developed using various input 
variables including PCs. To our knowledge no one has used the estimated PR 
to predict SWRC parameters. Then, PR was used as a new predictor to devel-
op PTF1, along with the inputs in the previous steps (from Step 1 to Step 4). 
Therefore, to make the inputs clear for each PTF, they were shown in the related 
tables. PTF2 was built by using OM, MWD, and Ks as new inputs. If the addi-
tion of an input significantly improved the reliability of the PTF, it was used as 
an input in all of the following steps; if not, it was not used as a predictor in the 
following steps (it was also applied to develop PTF1-PTF4). To develop PTF3, 
Mp and Mip were included in the list of inputs. To develop PTF4, eight selected 
PCs were used as new inputs. 

Since Mp and Mip were calculated from the 4 kPa water retention, a ques-
tion would rise about using it towards fitting a SWRC model or calculating pore 
size distribution index λ, rather than estimating them. The answer is that the 
SWRC models and/or λ cannot be fitted or calculated by using only one point of 
the water retention data. Instead, it’s using could improve the SWRC estimation 
substantially.

Evaluation Criteria

In this study the accuracy and reliability of each PTF refer to the precision 
of the estimations for the development and validation data sets, respectively. 
The improvement of each PTF performance in comparison with the previous 
one has been evaluated using the evaluation criteria. The coefficient of determi-
nation (R2), the root mean square error (RMSE) [57], and the Morgan-Grang-
er-Newbold (MGN) test [12] have been used to evaluate the accuracy and reli-
ability of PTFs. Detailed information about the MGN test is given in the Bayat, 
et al. [4] and supplementary materials. The MGN values for significant differ-
ences for accuracy and reliability are 1.99 and 2.01, respectively. It means that if 
the calculated MGN values are greater than the aforesaid values, the difference 
between two PTFs would be significant.

To evaluate the overall performance of the developed PTFs, the estimated 
parameters of Eq. 1 for each step were used to compute the volumetric water 
contents corresponding to the experimental values of matric suctions. These 
water contents were compared with the experimental ones on an individual 
basis (i.e. curve by curve) by computing the integral mean error, IME (m3 m-3) 
and the integral root mean square error, IRMSE (m3 m-3). The differences were 
calculated with the numerical quadrature of the following integrals [43]:
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where h is the matric suction (kPa) and pθ  and  are the PTF predicted 
and the measured water contents at that potential. Limits a and b define the pF 
range over which the experimental curve is measured.

RESULTS AND DISCUSSION
The statistics of the soil properties for the development and validation of 

data sets are shown in Table 1. Since both data sets were selected randomly, 
their parameter ranges were the same and the t-test demonstrated their similarity.

TABLE 1. STATISTICS OF THE SOIL PHYSICAL PROPERTIES FOR THE 
DEVELOPMENT AND VALIDATION OF DATA SETS.

Variable

Development data set [n=100] Validation data set [n=48]
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OM*) % 1.26 0.98 0.07 6.02 1.16 1.02 0.23 6.81
Ks cm hour-1 7.85 13.13 0.02 98.85 6.89 10.55 0.01 61.27
PR kPa 549.9 585.4 46.3 3793.3 501.1 379.7 60.2 1932.2
BD Mg m-3 1.42 0.16 0.90 1.75 1.45 0.15 1.05 1.77
Mp m3 m-3 0.11 0.08 0.00 0.24 0.09 0.07 0.00 0.25
Mip m3 m-3 0.40 0.12 0.14 0.67 0.40 0.12 0.14 0.66
C % 23.72 9.69 5.24 55.37 25.77 10.26 9.58 53.64
Si % 45.67 12.33 12.95 70.96 44.47 13.58 16.08 69.36
S % 30.61 17.64 2.15 81.63 29.76 19.33 1.23 73.37
MWD mm 1.68 1.61 0.15 5.82 1.28 1.22 0.22 5.48

*) Refer to the notation list for the variables description.

The results of PCA are shown in Table 2 and the discussion concerning 
them is given in the Bayat, et al. [4] and supplementary materials. The coeffi-
cients of the parameters show their effect on each PC (Table 3). 
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TABLE 2. THE FIRST EIGHT PRINCIPAL COMPONENTS OF ALL ORIGINAL 
VARIABLES.

Principal component Eigenvalues proportion Cumulative proportion
% %

PC1 *) 13.07 39.62 39.62
PC2 5.32 16.13 55.75
PC3 3.37 10.21 65.96
PC4 2.10 6.37 72.33
PC5 1.84 5.59 77.92
PC6 1.33 4.02 81.94
PC7 1.27 3.83 85.77
PC8 0.94 2.85 88.62

*) Refer to the notation list for the variables description.

Saturated Water Content ( )

Table 4 depicts the four developed PTFs to predict θs using the input vari-
ables including PR and PCs.

PTF1. By going over the step 1-4 of the previous study [2] only addition 
of detailed information of PSD (sg and Md) to the basic soil properties could 
improve the estimation of θs. Therefore, attributed to PTF1 was compared with 
the PTF with input variables of C, TP, BD, sg and Md. In line with the MGN val-
ue no significant improvement occurred when the PR was included in the list of 
inputs (Table 4). It can be estimated that PR did not improve the θs because high 
water PR content was relatively insensitive to soil structural parameters [23], 
and therefore PR could not differentiate the structural effects on θs. The indicat-
ed finding is similar to the one reported by Pachepsky, et al. [29], who found 
that PR did not lead to a significant improvement in θs estimates. 

TABLE 3. COEFFICIENT OF EACH STANDARDIZED VARIABLE IN THE PCS.

Soil 
properties PCs

1 2 3 4 5 6 7 8
OM*) [%] 0.018 -0.139 0.062 0.173 0.023 0.094 0.120 0.032

log Ks
[log. cm 
h-1] -0.038 -0.066 0.040 -0.138 0.178 0.267 0.075 -0.162

TP [m3 m-3] 0.044 -0.110 0.027 0.048 0.016 0.165 0.258 0.250
log CI [log. kPa] 0.024 0.056 0.036 0.295 -0.104 -0.267 -0.081 -0.152
BD [Mg m-3] -0.031 0.142 -0.012 0.032 -0.008 -0.207 -0.181 -0.134
Mp [m3 m-3] -0.041 -0.009 0.020 -0.297 0.123 0.136 0.070 -0.199
Mip [m3 m-3] 0.054 -0.062 0.006 0.210 -0.069 0.008 0.118 0.276
DmY - 0.074 0.013 -0.001 -0.072 0.012 0.055 -0.007 -0.085
Se2Y - -0.049 -0.074 -0.170 -0.060 -0.053 -0.085 -0.064 -0.007
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Soil 
properties PCs

1 2 3 4 5 6 7 8
c Bi [g µmD-3] 0.071 0.038 0.062 -0.059 -0.002 0.032 -0.098 0.112
D Bi - 0.070 0.044 0.065 -0.034 0.034 0.084 0.022 -0.057
Se2Bi - -0.067 0.029 0.051 0.034 0.016 0.043 0.008 0.123
c1M [g µmD1-3] 0.064 0.066 0.087 -0.091 0.043 0.051 -0.111 0.077
c2M [µmD2-3] 0.073 -0.013 -0.011 -0.046 -0.063 -0.027 -0.099 0.119
dc M [µm] 0.074 0.013 0.021 -0.067 -0.033 0.030 -0.049 0.051
D1M - 0.009 0.121 0.157 -0.011 0.094 0.084 -0.018 0.010
D2M - 0.073 -0.026 -0.048 -0.020 -0.030 -0.011 0.016 -0.128
Se2M - -0.053 -0.080 -0.149 -0.023 -0.068 -0.072 -0.072 -0.022
dg [mm] -0.063 0.028 0.108 0.045 -0.030 -0.026 -0.047 0.320
sg - -0.003 0.046 0.114 0.250 0.100 0.078 0.404 -0.388
Clay [%] 0.067 0.052 0.063 -0.096 0.029 0.072 -0.125 0.070
Silt [%] 0.048 -0.087 -0.140 -0.015 -0.107 -0.100 0.004 -0.014
Sand [%] -0.070 0.033 0.064 0.063 0.059 0.030 0.065 -0.028
Md [µm] -0.060 0.036 0.109 0.020 -0.009 -0.007 -0.076 0.375
MWD [mm] 0.001 -0.077 0.042 0.211 0.090 0.145 -0.440 -0.209
DmT - -0.002 0.146 -0.139 -0.017 -0.109 0.106 0.152 0.101
Se2T - 0.003 -0.129 0.146 -0.034 0.122 -0.194 -0.192 -0.171
AR [cmDn] -0.021 -0.068 0.161 -0.093 -0.156 -0.150 0.153 0.317
DnR - 0.020 0.129 -0.130 0.031 0.007 -0.066 0.218 -0.055
Se2R - -0.016 -0.007 -0.124 0.120 -0.050 0.479 -0.078 0.082
kmB [g cm-Dm] 0.000 0.062 -0.108 0.063 0.400 -0.052 -0.087 0.323
DmB - 0.027 -0.021 -0.124 0.109 0.393 -0.059 -0.024 0.202
Se2B - 0.017 -0.056 -0.008 -0.097 0.224 -0.350 0.266 -0.014

*) Refer to the notation list for the variables description.

TABLE 4. DEVELOPMENT AND VALIDATION RESULTS AND ERROR STATISTICS 
OF ΘS ESTIMATES MADE WITH DISTINCT INPUTS BY MGMDH PTF2.

Variables selected by mGMDH MGNb) RMSE R2 θs
 a)

 

m3 m-3

Development
C, TP, BD, sg, Md, logPR 0.47 0.026 0.881 PTF1

S, Si, C, TP, BD, dg, sg 0.94 0.028 0.870 PTF2
Si, C, TP, BD, sg, Mp, Mip 2.38 0.023 0.908 PTF3

S, C, TP, sg, PC1, PC3, PC4, 
PC5, PC7, PC8

0.32 0.026 0.883 PTF4

Validation
0.70 0.033 0.842 PTF1
1.54 0.035 0.823 PTF2
1.31 0.029 0.880 PTF3
2.33 0.029 0.887 PTF4

a) Refer to the notation list for the variables description.
b) MGN values for significant differences (P < 0.05) for accuracy and reliability are 1.99 and 2.01 respectively.
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PTF2. Using OM, Ks and MWD did not lead to a significant improve-
ment either (Table 4). It could result from the inter dependencies between these 
parameters and the other input variables (e.g. correlation between BD and OM) 
[35] or the pronounced effect of OM, Ks and MWD on water retention at matric 
suctions other than 0 kPa (e.g. θFC or θr) [18]. Mayr and Jarvis [21], also found 
that OM was excluded as a predictor for θs by regression technique. Starks, et al. 
[42] also reported that using Ks improved the water retention estimates at some 
sites, but deteriorated the estimates at some other sites.

PTF3. Using the Mp and Mip caused an improvement, even though it was 
not significant in the case of PTF reliability (Table 4). This is in agreement with 
many authors who successfully used water contents at one or two matric suc-
tions to predict SWRC [34, 39, 56].

PTF4. A significant improvement of the PTF reliability occurred when 8 
selected PCs were included in the list of inputs (Table 4). Using original var-
iables themselves did not lead to a significant improvement of PTF reliability, 
whereas using PCs values did. This may explain the complexity of the soil sys-
tem that is difficult to capture even by the mGMDH technique. It could be the 
reason why Schaap and Bouten [37] could not estimate θs from basic soil prop-
erties by ANNs. However, Ungaro, et al. [49] found the simplest structure of 
GMDH network for θs. 

Residual Water Content ( )

Table 5 depicts the five developed PTFs to predict θr using input variables 
including PR and PCs.

TABLE 5. DEVELOPMENT AND VALIDATION RESULTS AND ERROR 
STATISTICS OF ΘR ESTIMATES MADE WITH DISTINCT INPUTS BY MGMDH 

PTF1 AND PTF2.

Variables selected by mGMDH MGN b) RMSE R2 θr
 a)

m3 m-3

Development
S, Si, C, TP, C2M, dcM, D1M, D2M, Se2M, logPR 0.34 0.017 0.562 PTF1
Si, C, TP, BD, C1M, C2M, dcM, D1M, Se2M, OM 0.34 0.017 0.563 PTF2
S, Si, C, TP, C1M, C2M, dcM, D1M, Se2M, Mp, 
Mip

0.99 0.016 0.603 PTF3

Si, C, TP, C1M, dcM, D1M, Se2M, PC1, PC2, PC3 0.32 0.017 0.560 PTF4
PC1, PC2, PC3, PC4, PC6, PC9, PC11, PC12, 
PC13, PC14, PC17, PC20

7.14 0.011 0.820 PTF5

Validation
0.95 0.018 0.481 PTF1
0.10 0.016 0.597 PTF2
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Variables selected by mGMDH MGN b) RMSE R2 θr
 a)

0.09 0.016 0.584 PTF3
0.22 0.017 0.549 PTF4
7.98 0.008 0.912 PTF5

a) Refer to the notation list for the variables description.
b) MGN values for significant differences (P < 0.05) for accuracy and reliability are 1.99 and 2.01 

respectively.

PTF1 and PTF2. Since in the step 1-4 of the previous study (Bayat et al., 
2011) only addition of fractal parameters of Millan’s model (C2M, dcM, D1M, 
D2M and Se2M) to the basic soil properties could improve the estimation of θr 
therefore, attributed to PTF1 was compared with the PTF with input variables 
of S, Si, C, TP, C2M, dcM, D1M, D2M and Se2M. According to the MGN value 
no significant improvement occurred when the PR or OM, Ks and MWD were 
included in the list of inputs (Table 5).

PTF3. No significant improvement occurred when Mp and Mip were 
included in the list of inputs (Table 5). In physical terms this may suggest that 
the θr dominated by hygroscopic water, depends only on the micropores size 
distribution, whereas the threshold suction between Mp and Mip is 4 kPa, that 
could improve the estimation of θs and water content at lower suctions, but 
which did not improve θr estimates.

PTF4. No significant improvement occurred when 8PCs were included in 
the list of inputs (Table 5). It could result from the fact that no significant cor-
relation was found between θr and 8PCs (data is not shown). Also, poor corre-
lation of the θr with other soil physical properties was reported by Luckner, et 
al. [20] and Tietje and Tapkenhinrichs [43]. We thought it might be in the light 
of the complexity of the relationship between θr and soil physical properties or 
PCs, thus using more related variables such as clay mineralogy may help to 
solve the problem. Since, the estimation of θr was not improved, using different 
input variables in various PTFs then, we decided to estimate θr using 20 PCs, 
explaining 99.48% of the total variation of original variables.

PTF5. Only twenty PCs, were used as predictors (without any other orig-
inal variable), and caused a highly significant improvement of PTF accuracy 
and reliability (Table 5). Particular features of the soil properties may affect θr 
in such a way that they could not be recognized by using original variables as 
inputs. Nevertheless, PCA could put these features in some PCs that explain 
a high percentage of the total variance, and using them as predictors increased 
development and validation R2 from 0.543 and 0.608 to 0.82 and 0.912, respec-
tively, which are quite high. Some of the values of R2 for θr estimates found in 
the literature are 0.722 [55], 0.41 [38], 0.791 [46], 0.68 [49] and 0.599 [41].
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Reverse of Air Entry Value ( )

Table 6 depicts the three developed PTFs to predict α using input variables 
including PR.

TABLE 6. DEVELOPMENT AND VALIDATION RESULTS AND ERROR 
STATISTICS OF LN Α ESTIMATES MADE WITH DISTINCT INPUTS BY MGMDH 

PTF1.

Variables selected by mGMDH MGN b) RMSE R2 ln α a)

ln. cm-1

Development
TP, BD, S, Si, C, Se2B, logPR 0.29 1.876 0.449 PTF1
TP, S, Si, Se2B, OM, logKs, MWD 0.94 1.768 0.511 PTF2
TP, BD, S, Se2B, Mp,Mip 9.83 0.988 0.847 PTF3

Validation
0.05 1.868 0.490 PTF1
0.54 1.780 0.512 PTF2
8.24 0.962 0.866 PTF3

a) Refer to the notation list for the variables description.
b) MGN values for significant differences (P < 0.05) for accuracy and reliability are 1.99 and 2.01 

respectively.

PTF1. In the step 1-4 of the previous study [2] only TP, BD, S, Si, C and 
Se2B were selected as input variables to estimate the α. Therefore, attributed 
to PTF1 was compared with the PTF with those input variables. According to 
the MGN value no significant improvement occurred when PR was included in 
the list of inputs (Table 6). A reason could be that PR was predicted from other 
soil physical properties (e.g. TP, BD) and they had been included in the list of 
inputs. It is conjectured that the mGMDH procedure, in effect, used TP and BD 
values to estimate PR, and these estimates had improved estimates of α, thus 
using PR as another input did not induce further improvement.

PTF2. No significant improvement of PTF accuracy and reliability occurred 
when OM, Ks and MWD were included in the list of inputs (Table 6).

Selecting OM, Ks and MWD in the equation to estimate α explains that 
there are correlations between α and the indicated parameters, the correlations, 
nevertheless, are not strong enough to induce a significant improvement.

PTF3. A highly significant improvement was achieved when Mp and Mip 
were included in the list of inputs (Table 6). Air entry values were in the range 
between 0.125 and 607 kPa for 70 % of samples and the threshold between 
Mp and Mip is 4 kPa. It is inferred from the literature [26, 34] that when water 
content at a matric suction is used to estimate water content at other matric suc-
tions, the closer the two points are the more accurate the estimates. Therefore 



41PARAMETRIC ESTIMATION OF WATER RETENTION USING MGMDH METHOD…

the closeness of 4 kPa with air entry values could explain the highly significant 
effect of Mp and Mip on the α estimates. Using 8PCs did not induce a signifi-
cant improvement. This is the reason why results have not been shown.

PORE SIZE DISTRIBUTION INDEX (Λ)

Table 7 depicts the four developed PTFs to predict λ using input variables 
including PR and PCs.

TABLE 7. DEVELOPMENT AND VALIDATION RESULTS AND ERROR 
STATISTICS OF LN Λ ESTIMATES MADE WITH DISTINCT INPUTS BY MGMDH 

PTF1.

Variables selected by mGMDH MGN b) RMSE R2 ln λ a)

-
Development

S, Si, C, TP, BD, logPR 0.73 0.378 0.395 PTF1
S, Si, C, TP, BD, logKs, MWD 0.28 0.386 0.371 PTF2
S, C, TP, BD, Mp, Mip 2.67 0.333 0.531 PTF3
S, Si, C, TP, Mp, Mip, PC1, PC2, PC3, PC4, PC6, PC7 2.12 0.296 0.629 PTF4

Validation
0.83 0.375 0.360 PTF1
0.42 0.385 0.330 PTF2
2.05 0.334 0.493 PTF3
1.47 0.298 0.606 PTF4

a) Refer to the notation list for the variables description.
b) MGN values for significant differences (P < 0.05) for accuracy and reliability are 1.99 and 2.01 

respectively.

PTF1. In the step 1-4 of the previous study [2] only basic soil properties 
were selected as input variables to estimate the pore size distribution index. 
Therefore, attributed to PTF1 was compared with the PTF with input variables 
of S, Si, C, TP and BD. Using PR improved the PTF accuracy and reliability, 
however its effect was not significant in line with the MGN value (Table 7). It 
could result from the correlations between PR and the basic soil physical prop-
erties [15] or the error in the PR estimates. It is suggested that using the PR 
measured values can improve the λ estimates.

PTF2. No significant improvement was achieved by the inclusion of OM, 
Ks and MWD in the list of inputs (Table 7). The situation is similar to that point-
ed out by Vereecken, et al. [54] who found that OM and Ks were not selected in 
the regression to estimate λ.
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PTF3. A significant improvement of the estimates occurred when Mp and 
Mip were included in the list of inputs (Table 7). This suggests that λ has been 
strongly influenced by the pore size distribution. Water content at one or two mat-
ric suctions have been successfully used to estimate the WRC [26, 29, 33, 38, 39].

PTF4. A significant improvement of PTF accuracy was achieved when 8PCs 
were included in the list of inputs; however the improvement of PTF reliability 
was not significant (Table 7). This suggests that applying PCA on the original 
variables and using PCs as predictors to estimate λ was very useful. Neverthe-
less using most of original variables did not induce a significant improvement, 
whereas using PCs did.

The effect of each input variable on the PTF estimated water content has 
been evaluated by IRMSE and IME (Table 8). 

TABLE 8. THE COMPARISON OF THE PTF ESTIMATED AND MEASURED 
WATER CONTENTS FOR EACH STEP.

Validation Development
R2 IRMSE IME R2 IRMSE IME a)

0.944 0.0618 -0.0193 0.949 0.0677 -0.0210 Step4 b)

0.946 0.0581 -0.0155 0.947 0.0691 -0.0228 PTF1
0.948 0.0637 -0.0150 0.957 0.0782 -0.0115 PTF2
0.984 0.0472 -0.0062 0.985 0.0482 -0.0063 PTF3
0.986 0.0364 -0.0106 0.987 0.0355 -0.0045 PTF4

a) Refer to the notation list for the variables description.
b) Results of the step4 in the study of Bayat, et al. [2].

Using the predicted PR led to a small improvement of the reliability. It 
shows that using the predicted PR can be useful in the estimation of SWRC and 
further investigation is needed. Using OM, Ks and MWD did not improve the 
water content estimates, whereas Mp and Mip or 8PCs did. The most reliable 
and accurate water contents estimates were achieved when 8PCs were included 
in the list of inputs, and using 8 PCs considerably improved the PTFs. 

The comparison of the accuracy and reliability of the PTFs which were 
developed in this study and by Bayat, et al. [2], Bayat, et al. [5], Bayat, et al. [4] 
and Neyshaburi, et al. [28] is shown in Fig. 1.
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CONCLUSION

1. Using the predicted PR or OM, Ks and MWD improved the estimation of 
the Brooks and Corey water retention parameters in some cases but they did not 
induce a significant improvement in the water content estimates. 

2. Using either the Mp and Mip or the 8 PCs significantly improved the 
PTF accuracy and reliability, and they improved the water content estimates. 
This suggest that using direct information on pore size distribution could be use-
ful to develop parametric PTFs. 

3. Applying PCA on the original variables could be used as a primary anal-
ysis to develop parametric PTFs. 

4. Overall, using PCs, Mp and Mip (if available) as inputs along with the 
basic soil properties, provide better water retention estimates. 
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