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                                                  “Human beings are members of a whole, 

                                                   In creation of one essence and soul. 

                                                   If one member is afflicted with pain, 

                                                   Other members uneasy will remain. 

                                                   If you have no sympathy for human pain, 

                                                   The name of human you cannot retain.” 

                                                             (Persian poem by Sa’adi Shirazi, 13th century) 
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Overview 

This thesis consists of two chapters. In chapter A, microseismic events in the 

mining area Schlema-Alberoda in south-west Saxony (Germany) are located 

and investigated based on a seismic imaging approach. In chapter B, the 

located events are used as seismic sources and through a passive seismic 

imaging technique, some crustal structures in this area are imaged. 

The Schlema-Alberoda uranium mine was in operation until the end of 1990, 

and since then the mine pits and openings are under a controlled flood. This 

mine is located in a fault zone (Gera-Jàchymov) and many large and small 

scale faults dip into the bed rocks. This area is seismologically active and many 

earthquakes occurred during the last centuries before the start of mining 

operation in 1946. The mine seismicity was monitored over the last decades, 

during the mining operations and also afterward during the flooding phase. 

Many seismic events (mostly microseismic) occurred in the area over this 

period of time. The local seismic network in Schlema-Alberoda is still 

monitoring the seismicity of the area.  

The aim of monitoring and analyzing seismicity in mining areas is to forecast 

ground motions and possible subsidence damage, as well as scientific studies 

on induced seismicity. For instance, in Schlema-Alberoda up to 6 meters of 

subsidence occurred during the mining activities (Penzel and Wallner, 2004) 

and this phenomenon can also occur after the end of mining operations.       

In mining seismicity investigations, the event location accuracy is of great 

importance because even moderate uncertainties in the results (e.g. to an 

extent of hundreds of meters) can crucially affect interpretations.  Previously, 

different localization methods were applied to locate seismic events in 

Schlema-Alberoda (see Künzel, 2013). In the present study, in order to 



 

 

 

investigate the nature of seismicity, as well as the long-term role of mining-

induced and triggered seismicity, a migration-based localization algorithm is 

developed to locate the recorded microseismic events. These events occurred 

during the last years after the end of mining operations (flooding phase). The 

localization method can be described as propagating the recorded P-wave 

primary arrivals at different stations back in depth and time to determine the 

spatial coordinates of the hypocenter and origin time of the event. To assess 

the accuracy of the localization results, a homogeneous and a 3-D velocity 

model are used in the migration algorithm and some of the located events are 

compared to the previous localization results of the same events as determined 

by Wismut GmbH. 

In 2012, a 3-D active reflection seismic survey was conducted in Schlema-

Alberoda and the resulting seismic image indicated many details about the 

subsurface structures (Hloušek et al., 2015). In the current study, the located 

hypocenters are compared to the 3-D reflection seismic image to determine 

possible correlations between the seismicity and reflectivity of the crustal 

structures. The velocity model used in the localization procedure is identical 

to the one used in the 3-D active seismic survey so that a direct comparison 

between the spatial location of the reflectors and the located hypocentres is 

meaningful. 

The localization results are also compared to the geological information of the 

area collected through the investigations during mining operation. Based on 

this information, the nature of current microseismicity in the area is inspected 

and the findings are compared to a previous study. 

Imaging faults and fractures can provide useful information for investigating 

the seismicity in Schlema-Alberoda. Besides that, another point of interest for 

imaging crustal structures in this area is the possibility of exploiting 

geothermal energy. Based on the investigations and measurements in the area 



 

 

 

(Korobko and Grebenkin, 1960), the rocks are expected to attain temperatures 

higher than 150 oC in a depth of ~5 km. Using existing faults and fractures as 

natural hydraulic paths and heat exchangers is very favorable for geothermal 

energy exploitation. But those structures must be precisely imaged in order to 

evaluate the feasibility of using them in a geothermal project.  

Imaging crustal structures in Schlema-Alberoda is challenging because the 

subsurface consists of heterogeneous crystalline rocks and the structures are 

dipping at steep angles. Through the 3-D active seismic survey, Hloušek et al. 

(2015) attempted to image a major fault along with other structures. This fault 

is the Roter Kamm which can be potentially used for geothermal energy 

exploitation in Schlema-Alberoda. Even though many reflectors and structures 

are imaged in that survey, the extension of the Roter Kamm could not be 

properly imaged.  

The use of natural seismic sources for imaging subsurface structures (passive 

seismic imaging) is an alternative technique to the conventional seismic 

imaging methods in which artificial seismic sources are used for generating 

body waves. In some cases, passive seismic methods are advantageous to active 

seismic methods and can result in a more detailed image of the crustal 

structures.   

The microseismic events in Schlema-Alberoda which are located with high 

precision through the migration-based approach, are proper seismic sources 

for a passive seismic imaging survey. Moreover, the hypocenters are located in 

a favorable position with respect to the illumination angle of the dipping 

structures, thus very useful for imaging these structures. In this study, the 

located events are used to image local crustal structures in the area, with a 

focus on the Roter Kamm. The imaging procedure is performed by 3-D 

coherency migration and only P-wave secondary arrivals are used in this 

approach. The final image is then compared to the results of the 



 

 

 

aforementioned active seismic survey in the area. The 3-D velocity model used 

in the passive imaging procedure is identical to the one used for locating the 

events and in the active 3-D seismic survey, thus the two images (passive and 

active) can be compared directly. This comparison is done in order to evaluate 

the results and functionality of the passive imaging approach. 
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A.   Application of Kirchhoff prestack depth migration 

for locating microseismic events  

 

A-1 Introduction 

Small magnitude seismic events, which can be detected and recorded only by 

a local seismic network are called “microseismic events” or 

“microearthquakes”. These events occur frequently, but they are scarcely 

noticeable because of their very small magnitude. In geophysical literature, 

there is no explicit standard for the magnitude below which seismic events 

are categorized as microseismic events. Nevertheless, seismic events with a 

magnitude smaller than 1 in local magnitude scale (ML) are called as 

microseismic events (or microearthquakes) in most seismological texts. 

Different natural or artificial processes may cause microseismic events. The 

most dominant natural cause of these events are small-scale tectonic 

movements occurring along fractures and faults. 

Microseismic events stimulated by human activities are generally connected 

to changes in load, volume or pore pressure and consequently result in a 

disturbance in the mechanical state of the corresponding subsurface 

structures (McGarr et al., 2002). The term “stimulated seismic events” refers 

to either “induced” or “triggered” events where, respectively, the changes in 

stress due to human activities is comparable to, or much less than the natural 

shear stress within the subsurface (e.g. McGarr and Simpson, 1997; Gupta, 

2002). Mining operations, fluid injections into subsurface, underground fluid 
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removal and filling artificial water reservoirs and dams are the most common 

activities which cause stimulated microseismic events. 

Fluid injection, which is a common operation in geothermal fields and 

hydrocarbon reservoirs, is a well-known source of induced and triggered 

microseismicity. Monitoring this phenomenon is very important and useful 

for characterizing geothermic and hydrocarbon reservoirs and evaluating the 

progression of hydraulic fracturing (see Shapiro, 2008). 

Another source of stimulated microseismicity is mining operations where 

mass removals and excavations disturb the mechanical balance of the forces 

loaded on subsurface structures. The resulting accumulated stress can be 

released along the preexisting faults or may create new fractures. In mining 

areas, using explosives is a common operation for removing rock masses and 

the explosions can also be recorded by a local seismic network. Nevertheless, 

it must be noted that explosions are not stimulated seismic events 

themselves, however they may trigger accumulated stress in local subsurface 

structures. Mine seismicity had been recognized as an important 

phenomenon by the end of 19th century. The first observatory for monitoring 

mine seismicity was established in 1908 and operated until the end of 1930s 

in the Ruhr coal basin in Bochum (Germany). Some examples of stimulated 

seismicity in mining areas are discussed by McGarr et al. (2002). Gibowicz 

and Kijko (1994) comprehensively discuss mine seismicity and the involved 

mechanisms. 

Although seismicity in mining areas is usually restricted to microseismic 

events, or so called “mining tremors”, in some cases large triggered events 

can also occur as a consequence of mining operations (e.g. Fernandez and Van 

der Heever, 1984; Gibowicz, 1979). The largest seismic event in a mining area 

occurred in 1989 in the Werra mining region in Germany (former East 
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Germany) with the magnitude of mb=5.5, which caused destruction on the 

surface as well as in a deep area of 6 km2. This event was stimulated by rough 

short- and large-period pore pressure changes within the crustal structures 

(Knoll, 1990).   

In this chapter some of the recorded microseismic events which occurred in 

an abandoned mining area are located and compared to the results of a 

recently obtained 3D reflection seismic image of the area in order to 

investigate the causes of microseismicity in the vicinity of the mine.  

 

A-2 study area 

The Schlema-Alberoda uranium mine located in Schneeberg (Saxony, 

Germany) was a large vein-type uranium deposit (figure A.1). In this area, 

the history of uranium mining dates back to the end of 18th century when the 

main aim of mining operation was to extract silver and cobalt. At the time, 

uranium was a byproduct. As a large uranium mine, Schlema-Alberoda was 

in production under the SDAG (Sowjetisch-Deutsche Aktiengeselschaft) 

Wismut from 1946 to 1990. The total production over 45 years from this mine 

was about 80,000 tons of ore from a total excavated volume of 45x107 m3. The 

excavations caused large-area subsidence in most of the area above the mine, 

which at some points is more than 5.5 m (Hiller and Schuppan, 2008).  

At the end phase of the mining operations in Schlema-Alberoda, the results 

of intensive and comprehensive investigations showed that the orebody has 

been almost fully excavated to a reasonable economic level (Hiller and 

Schuppan, 2008). Monitoring the seismicity of the mine started during 

mining activities. The mine was allowed to flood after the end of the mining 

operations and the seismic network installed over the mining area by Wismut 
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GmbH (formerly SDAG Wismut) still monitors seismic events in this region. 
 

Figure A.1: Study area in Gauss-Krüger coordinate system. The blue solid box shows 
the local Cartesian coordinate system used in this study. The dashed yellow box refers 
to figure 3 (recording network). The solid black and red lines show the location of the 

profile shown in figure 2 and the surface extent of the Roter Kamm fault, respectively.  



 

 

11 

  

A-2-1 Geology 

The geological properties of Schlema-Alberoda is described in detail by Hiller 

and Schuppan (2008). The surface elevation in the mining area is between 

320 m and 520 m above sea level. This mine is a part of the ore complex 

Schneeberg-Schlema-Alberoda, positioned north-east of the Bohemian 

massif. The area itself is located at the nearly perpendicular intersection of 

two major tectonic structures, the Lössnitz-Zwönitz syncline and the Gera-

Jàchymov fault zone with NE-SW and NW-SE extension respectively. One of 

the most important tectonic elements in this area is the Roter Kamm fault 

(figures A.1 and 2). The Roter Kamm is a vein structure located north-east of 

the Schlema-Alberoda uranium deposit, separating it from the Schneeberg 

bismuth-cobalt-silver-uranium deposit. The fault plane has a 50-70o dipping 

angle towards the north-east (figure A.2) and its vertical displacement varies 

from a maximum of 580 m to a minimum of less than 100 m at the north-

western part of the fault. 

The dominant geological features in this area are granitic plutons. 

Furthermore, the south-eastern part of the mine is formed by gneiss and 

crystalline schists. In north-east, the adjacent synclinorium is composed of 

phyllites and green schists which form long folding structures. The 

Ordovician-Silurian-Devonian rocks at the core of Lössnitz-Zwönitz syncline 

are folded into Ordovician schist wings. The top of the granite dips towards 

the north-east and it is covered by the Lössnitz-Zwönitz syncline at the 

central part of the investigation area. Figure A.2 shows a vertical geological 

profile of the area with the faults which were known and mapped during 

mining operations. 
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Figure A.2: A vertical geological section of the investigation area (Wallner et al., 2009). 
The location of this section is indicated by the solid black line in figure 1. The border 

of the mine is marked by the dashed line and the projected hypocenter area is shown 
by the white dashed ellipse. The thick blue lines represent the known part of the faults 
and the thin lines show the geological estimation of the fault plane extensions. For 
simplification, not all known faults are plotted in this figure. Mining took place along 
the uranium-rich ore body marked in blue which is a Silurian-Devonian complex of 

phyllites and schist. 
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A-2-2 Seismicity 

Schneeberg is a seismologically active region and historic observations show 

that seismic events occurred in this area prior to the mining operation. Over 

100 earthquakes are documented from sixteenth century until 1940s in 

Schneeberg with intensity levels between III and VI in MSK scale (Grünthal, 

1988; Leydecker, 2007).  

The documented earthquakes which occurred in the region prior to the 

mining activities and during the last centuries are focused in space and time. 

With the exception of some single events, most of them occurred in form of 

swarms. More than 50% of these earthquakes belong directly to the Gera-

Jàchymov fault zone (Grünthal, 1988; Leydecker, 2007). Around half of the 

documented events in this region occurred between 1900 and 1908, though 

most of these events do not correlate spatially to local seismic events that 

occurred outside of this time period. Thus, the historic trend of the events 

does not show any distinctive feature of the seismicity in the area (Künzel, 

2013) other than the possibility of stress release along the Gera-Jàchymov 

fault zone. Nevertheless, within the historical observations, no major seismic 

event was documented within the mine itself. A few events occurred between 

1908 and 1913 in the south-eastern vicinity of the mine (Leydecker, 2007) 

indicating stress release in the area was already occurring before the start of 

the mining operation. However, any tectonic movement within the Gera- 

Jàchymov fault zone can affect the seismicity of the Schlema-Alberoda 

mining area (Künzel, 2013). 

During the mining operations many seismic events also occurred within the 

Schlema-Alberoda mine. A relatively large magnitude event (ML = 2.9) 

occurred in 1979 which caused deformations in mine pits and openings, as 

well as cracks and fissures in underground concrete supporting systems. 
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Geomechanical analysis showed that this event was the result of an 

inhomogeneous stress state within the granitic body as a consequence of 

intensive excavations and mass removal (Petschat, 1986; Hiller and 

Schuppan, 2008). After the end of the mining operations, while the mine 

allowed to flood from 1991, over 2000 seismic events have been recorded up 

until now by the local seismic network in Schlema-Alberoda with local 

magnitudes mostly less than 0.5. 

The aforementioned studies provide a general overview about the history of 

natural and stimulated seismicity in the region, however precise seismic 

observations are a prerequisite for studying the causes of the current 

seismicity in more detail. 

 

A-3 Earthquake location 

The initial step in any earthquake investigation is to locate the hypocenter, 

e.g. the spatial coordinates of the point source from which the energy is 

released. One of the classical methods for earthquake location is the 

triangulation (circle) method which approximates the spatial coordinates of 

the hypocenter using P- and S-wave arrival times at 3 or more stations and 

the ratio between P- and S-wave velocities. Furthermore, the origin time of 

the event can be determined by a graphical method called “Wadati diagram” 

(Wadati, 1933) in which the P- and S-wave travel time differences are plotted 

versus P-wave arrival times at several stations. 

Many methods for locating seismic events require the detection and picking 

of P- and S-wave travel times as well as the polarization of incident angles at 

each station. Roberts et al. (1989) show a method of locating earthquakes 

using recorded data from a 3-component single station based on the 
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polarization of the direct P-wave on vertical and horizontal components. In 

this method, an assumption of the S- and P-wave velocity is a prerequisite. 

Oye and Roth (2003) propose an automated location technique with focus on 

microseismic events with high main signal frequencies (150-400 Hz) based 

on analyzing particle motion on vertical and horizontal components. 

A well-known and widely used time inversion method for locating local 

earthquakes is the Geiger method, which can locate the hypocenter and 

origin time of an event using only the P-wave arrival times at several stations 

and the P-wave velocity model of the area (Geiger, 1910). In this method, 

starting with an initial assumption of the hypocenter location and origin time 

of the event, P-wave travel times are calculated and compared to the observed 

travel times on the recorded seismograms. The initial assumed location and 

origin time are then corrected using the derivatives of arrival time function 

to reduce the differences between the calculated and observed arrival times 

(residuals). This procedure continues iteratively until the residuals are 

minimized.  

In addition to the conventional earthquake location methods, seismic 

migration is an effective approach for locating seismic events. Migration-

based location methods are especially effective and precise for locating 

microseismic events. Trojanowski and Eisner (2016) review and compare 

different location methods which detect and locate seismic events using full-

waveform migration. Some migration-based earthquake location methods are 

mentioned in section A-6-1. 
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A-4 Data 

 

A-4-1 Events and recording network 

The data used in this study are seismograms of 135 microseismic events 

recorded by a local seismic network (operated by Wismut GmbH) between 

1998 and 2012. The recording network consists of 56 stations, including 54 

surface stations equipped with 4.5 Hz one-component (vertical) geophones 

and two borehole stations equipped with hydrophones. The digital recording 

sampling interval is one millisecond. The stations are densely distributed 

over the area above the Schlema-Alberoda uranium mine. The largest 

distance between two neighboring stations does not exceed 600 meters, 

making the network suitable to monitor local microseismicity (figure A.3). 

The events used in this study range in magnitude from -1.30 to 0.90 in 

moment magnitude scale (according to Wismut GmbH). 
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Figure A.3: Investigation area with seismic stations used to locate the events (after 
Hassani et al., 2018). The surface stations are marked by a triangle and the two 
borehole stations are indicated by a circle. The borehole stations 109 and 150 are 
situated at a depth of 527m and 645 m below sea level, respectively.  The local 
Cartesian coordinate system (in meters) used in the location procedure is shown by 

diagonal lines. The area where the investigated events are located is shown by the 
dashed ellipse. The red dashed line refers to the position of the profile shown in figure 
2. 
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A-4-2 Data preprocessing 

For the event location method used in this study (section A-6), the accuracy 

of the P-wave arrival time picks is one of the key factors in the precision of 

the localization results. In order to maximize the picking accuracy, two filters 

are applied to reduce the noise level and sharpen P-wave first breaks. First, 

a band-pass 1-170 Hz Butterworth filter is applied to reduce the high 

frequency background noise and a notch filter at 50 Hz is used to eliminate 

electricity network noise. Also, those traces on which the P-wave arrival was 

not completely clear were eliminated to increase the precision of location 

procedure.  

Figure A.4 shows an example of a raw trace and the applied filters. Errors in 

first breaks can happen as a result of filtering, such as a phase shift and 

ringing artifacts which may occur as a consequence of Butterworth bandpass 

filter. Therefore, to avoid possible errors in interpreting arrival times, the 

first breaks are picked from the filtered traces but always compared to the 

original waveforms. An example of vertical component waveforms recorded 

by a subset of 25 stations (23 surface and 2 borehole hydrophone stations) for 

a selected seismic event is shown in figure A.5. Due to the less attenuated 

high frequencies at depth, the traces recorded by the borehole hydrophones 

contain higher frequencies in comparison to those recorded by the surface 

geophones. The manually picked P-wave arrival times used for the location 

procedure are also shown. 
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Figure A.4: An example of the applied filters; the recorded trace (a), after applying 

Butterworth bandpass filter (0-170 Hz) (b), after applying notch filter at 50 Hz (c), 
frequency spectrum of the unfiltered trace with the applied filters coefficient (the red 
curve) (d), frequency spectrum of the filtered trace (e).
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Figure A.5: Vertical component waveforms of a microseismic event recorded by 25 

stations (after Hassani et al., 2018). Note that stations 109 and 150 are borehole 

hydrophones. The manually picked P-wave first arrivals are shown in red. The stations 

are ordered according to their distance to the hypocenter.  
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A-5 Seismic migration 

A-5-1 Overview  

In reflection seismic imaging, migration maps reflected phases to the correct 

position from where they are originated. In particular, migration suppresses 

diffractions and corrects the position errors and slope of dipping reflectors. 

Migration can be conducted in either the time or depth domain where the 

resulted image will be a time or depth section of the subsurface, respectively. 

Time migration is much faster and cost effective in comparison to depth 

migration, but in the case of large lateral velocity variations, time migration 

results in errors in the position and shape of reflectors in the final image. 

However, since depth migration is sensitive to the accuracy of the velocity 

model, if the velocity model is inaccurate, time migration can lead to a more 

reliable image than depth migration. Despite (generally) less accuracy, time 

migration is a very effective way to obtain an initial interpretation of the 

crustal structures.  

In addition, migration can be performed before stacking the data (prestack 

migration) or after stacking the data (poststack migration). Stacking seismic 

data is a step in data processing which simulates a zero-offset section where 

sources and receivers are assumed to be at the same position (see Yilmaz, 

2001). Poststack migration is performed on stacked data, i.e. zero-offset 

section, and is much faster than prestack migration, but it has some 

disadvantages. For instance, post stack migration results have a poor 

resolution in the case of dipping reflectors and it does not function correctly 

for diffractions.  

The advantage of the chosen migration method depends on target structures, 

aim of the imaging procedure, demanded resolution and costs of the survey. 
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Time migration leaves diffractions (e.g. at the edges of reflectors) in a 

hyperbolic shape, therefore in the case of earthquake location, since the 

hypocenter is treated as a point diffractor, time migration is not an effective 

way of imaging.  

Among various methods of migration, the focus in this study is on the 

Kirchhoff Prestack Depth Migration (KPSDM). 

A-5-2 Kirchhoff Prestack Depth Migration 

A fundamental technique in migrating seismic data is diffraction summation, 

which is based on Huygens principle of the superposition of a continuum of 

secondary point sources’ zero-offset responses. This initial and simple 

technique belongs to the age of manual seismic imaging and does not account 

for the parameters which can affect the intensity of reflected amplitudes and 

the accuracy of the final image, especially when dealing with complex 

geological structures. 

Kirchhoff migration is an improved version of the diffraction summation 

technique which considers spherical spreading of the wavefield, wavelet 

shaping factor and the directivity of the recorded wavefield at each receiver 

position by weighting the recorded amplitudes.  

KPSDM is based on the Kirchhoff integral solution for the scalar wave 

equation (Schneider, 1978). In 3-D Cartesian space, consider a shot 

𝑆(𝑥′, 𝑦′, 𝑧′) with wavefield 𝑢 recorded by receiver 𝑟(𝑥, 𝑦, 𝑧). The image value 𝐼 

for a subsurface point 𝑚(𝑥, 𝑦, 𝑧)  is calculated by the weighted surface 

integration of the wavefield along diffraction surfaces:  
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𝐼(𝑚) =
−1

2𝜋
∫ ∫ 𝑤(𝑚, 𝑟)

𝜕

𝜕𝑡
𝑢(𝑟, 𝑡𝑠 + 𝑡𝑟)𝑑𝑟           

 

𝐴

[1] 

 

In this equation, 𝑡𝑠 and 𝑡𝑟  are the travel times from the image point to the 

source and receiver respectively, and 𝑤 is the weighting factor which takes 

the geometrical spreading and wavefield directivity at the receivers into 

account. The time derivative of the recorded wavefield (𝜕𝑢 𝜕𝑡⁄ ) accounts for 

amplitude and phase corrections which (in 3-D migration) are proportional to 

frequency and a 90 degrees phase shift, respectively. The wavefield 

summation is conducted along the diffraction surface (𝑡𝑠 + 𝑡𝑅) which is called 

the “migration operator”.   

Following from equation [1], KPSDM is the summation of amplitudes over 

the records of source-receiver pairs. In a physical point of view, this can be 

described as smearing the amplitudes along the two-way traveltime (TWT) 

isochrones (wavefield back propagation). 

The principle of the KPSDM is illustrated in figure A.6. The back propagated 

amplitude of each source-receiver pair is weighted with respect to the 

wavefield directivity (obliquity). Reflected wavefields are angle-dependent 

and most of the reflected energy from a point in depth will be recorded by 

receivers at near offsets to the depth point. Therefore, the recorded wavefield 

at the receivers with smaller offsets to the image point should have more 

contribution in constructing the image. Thus the recorded amplitudes are 

weighted proportional to the cosine of the wavefield incidence angle. For 

instance, comparing the wavefield recorded by receivers R4 and R7, the 

incidence angle of the ray coming from the diffraction point K is ∝ and 𝛽, 

respectively, where ∝< 𝛽. Therefore, the recorded reflection pulse at R4 gets 

a larger weighting factor during the migration and contributes more to the 
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image point at depth (note the thickness of the TWT isochrones in figure A.6). 

This discrimination is advantageous, especially when the primary P-wave 

reflections are used for imaging. 

 

Figure A.6: Principle of KPSDM in 2-D. a) The reflected wavefield from the diffraction 
point K (in (b)) is recorded by the receivers. The integration operates over the 
diffraction curve D (migration operator). b) The recorded amplitudes are smeared into 
the depth over TWT isochrones and intersect at the position of the diffraction point K. 

The thickness of the TWT isochrones is proportional to the weighting factor. The 
asterisk shows the position of the source and the triangles are the receivers. The blue 
and green isochrones correspond to the receivers R4 and R7 respectively. For more 
details see text.
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A-6 Locating microseismic events in the Schlema-Alberoda 

A-6-1 Migration-based earthquake location 

Besides classical earthquake location methods, various approaches based on 

seismic migration techniques, which are usually applied to reflection seismic 

data, have been implemented to locate seismic events. For example the use 

of reverse time migration is discussed by McMechan et al. (1985). Kao and 

Shan (2004) use absolute values of traces recorded at several stations to 

locate seismic events. In this method, traveltime calculations are based on 

the velocity of the phase with maximum amplitude (e.g. S-wave for local 

events). Through a so called “brightness function”, the mean of the observed 

amplitudes (samples) at different stations is assigned to the corresponding 

point in depth at a specific time with respect to the velocity. A defined 

threshold of the overlap of the maximum amplitudes in depth determines 

whether a point is the source an event. The uncertainty in the spatial 

coordinates of the located hypocenter in this method may reach few 

kilometers.  

Baker et al. (2005) show an application of Kirchhoff migration for locating 

earthquakes in the case of real time monitoring of local earthquakes, where 

the location process proceeds without explicit phase picking. In this method, 

the envelope of direct P-phase recorded by the vertical component of different 

stations is used in the migration procedure. The location algorithm is tested 

on a set of events with local magnitudes greater than 4.0 where the 

uncertainty in the hypocenters location was less than 10 km.   

Rentsch et al. (2010) introduce a migration-based method for locating seismic 

events using multicomponent data. By analyzing P-wave polarization at 

different stations, this method propagates the energy recorded at stations 
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back in the depth based on ray tracing and a weighting factor inspired by 

Gaussian beams which restricts the back propagated energy around the 

raypath. This method is capable to locate seismic events with an accuracy in 

the range of tens of meters.  

Grigoli et al. (2014) locate small magnitude local earthquakes (𝑀𝐿 < 3.0) by 

analyzing the coherency of the recorded P- and S-waves at 3-component 

stations. The coherency function is calculated based on short-term-average / 

long-term-average (STA/LTA) ratio of the P- and S-waves characteristic 

(energy) functions. A coherency value is then assigned to each point in depth 

and the maximum coherency indicates the location of hypocenter. The located 

events show an uncertainty (mostly) between 100 - 200 m and 30 – 50 ms in 

locations and origin times, respectively.    

In an earthquake investigation, based on the aim of the study, the location 

method must be chosen with respect to the computation costs and the 

required precision of the results. On the other hand, the quality of the data 

(S/N ratio) and the recording network (one- or three-component) are 

determinant in choosing the appropriate method for locating seismic events. 

In this study, a localization algorithm based on the 3-D Kirchhoff prestack 

depth migration (KPSDM) is implemented for locating microseismic events 

using only P-wave arrival times at one-component (vertical) receivers. Using 

this algorithm, the events can be located with high precision in the range of 

few tens of meters. In the localization procedure, the hypocenter is considered 

to be a point diffractor in the subsurface it is imaged by the KPSDM 

approach. Since the true origin time of the seismic event is unknown, the 

integration (see eq. [1]) must be performed for all possible origin times, 

resulting in a time-dependent image cube 𝐼(𝑦, 𝑦, 𝑧, 𝑡) . Searching for the 

maximum image value within the image cube over time, determines the 
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hypocenter location and the origin time of the event.  

A-6-2 Imaging pseudo synthetic data 

Even though the observed waveforms have a high signal-to-noise ratio, they 

cannot be used as the direct input to the migration algorithm. Since the 

hypocenter location and time are determined from the image maximum, 

observed waveforms with consistent P-wave phase characteristics are ideal. 

As can be seen in Figure A.5, the observed waveforms have a clear P-wave 

onset, however the wavelet itself varies based on the station location and 

type, for example compare stations 109 (borehole), 144, 107 and 148. 

Furthermore, the first break indicates the moment where the source energy 

reaches the station. This time is independent of the wavelet characteristics 

and can be used as the energy arrival time. Therefore, the P-wave first breaks 

are picked from the observed seismograms and pseudo synthetic 

seismograms are created consisting of a normalized Gaussian curve (figure 

A.7) with its maximum at the corresponding picked time.  

The Gaussian function is defined as: 

 

𝑓(𝑡) =
1

√2𝜋𝜎2
𝑒

−(𝑡−𝜇)2

2𝜎2                  [2] 

 

where the picked P-wave arrival time is used as the mean of the distribution 

(𝜇) and the uncertainty of arrival time picking is applied as the standard 

deviation (𝜎). For this data set the recorded traces exhibit a very high signal 

to noise ratio with an uncertainty of about 3ms for the picked arrival times. 

 



 

 

28 

  

Figure A.7: Gaussian wavelet used to create pseudo synthetic seismograms for 
migration (left). The picked P-wave arrival time is the mean of the Gaussian 
distribution (here at time zero) with a 3 ms uncertainty. An example of a recorded 
trace, the picked P-wave first break (red spike) and the created synthetic trace (right).

 

In contrast with the application of KPSDM for imaging subsurface 
structures, the geometrical spreading and wavefield obliquity do not 
contribute to the localization algorithm since only the time of the first P-wave 

arrivals is considered and it is optimal to have the same contribution from 

different stations during the Kirchhoff integral computation. Thus the 
weighting factor  in equation [1] is set to 1.  

The migration algorithm is implemented using a 3-D Cartesian grid with 25 

meter spacing between grid points. The size of the 3-D cube is chosen to have 
a wide enough coverage over the investigation area (11.5 x 14.0 x 9.0 km) to 
include all possible hypocenter locations. 
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To ensure that the migration process covers all possible origin times, the data 

is iteratively migrated using 4 ms time steps over 2 seconds, starting from 

the latest P-wave arrival time and going backward in time. The 2 s time 

window accommodates all possible locations within the 3-D model grid. At 

each time step, the migration yields a 3-D image cube for the corresponding 

origin time. Figure A.8 shows a slice through the resulted images at different 

time steps. 

After migration, the origin time and the spatial coordinate of the hypocenter 

is defined by searching for the maximum amplitude within all migrated 3-D 

cubes over time and space. An example with slices through the image cube 

for the resulting origin time is shown in figure A.9, where the maximum 

image value corresponds to the determined hypocenter.  
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Figure A.8: A slice in y-z plane through the resulted images at different time steps. 
The actual time and the time step are shown at the bottom-left and -right of each slice 
respectively. To emphasize the visible difference in maximum amplitudes, the images 

are shown at 16 ms time difference (4 time steps). The amplitude reaches its maximum 
at the time step 186. 
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Figure A.9: Slices through the resulting 3-D image cube at the determined origin time. 

The maximum at the intersection of the slices corresponds to the hypocenter location 

(after Hassani et al., 2018). 

 

A-6-3 Traveltimes calculation 

According to equation [1], traveltimes from the image point to the source and 

receiver (ts and tr) must be calculated in order to compute the image value for 
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each image point. In the case of constant velocity, traveltimes can be 

calculated simply by the given spatial coordinates of the source and receiver. 

However, except for some cases where the velocity variations in the medium 

are negligible, one needs to calculate traveltimes with respect to the vertical 

and lateral gradients in velocity based on a reliable 3-D velocity model. 

There are several approaches for calculating traveltimes in the case of 

spatially varying velocity 𝑣(𝑥, 𝑦, 𝑧), e.g. paraxial ray tracing (Červený et al., 

1982), Gaussian beam ray tracing (Červený et al., 1984) and wavefront 

construction (Vinje et al., 1993). Another effective approach for calculating 

traveltimes is the use of the eikonal equation. In wave propagation problems, 

the eikonal equation is an approximation of the scalar wave equation where 

the traveltime of a ray is defined in relation to its spatial varying velocity: 

(
𝜕𝑇

𝜕𝑥
)2 + (

𝜕𝑇

𝜕𝑦
)2 + (

𝜕𝑇

𝜕𝑧
)2 =

1

𝑣2(𝑥,𝑦,𝑧)
            [3]      

 

where in a medium with the varying velocity 𝑣(𝑥, 𝑦, 𝑧), the traveltime of the 

ray at the point 𝑚(𝑥, 𝑦, 𝑧) is 𝑇(𝑥, 𝑦, 𝑧).  

The eikonal equation is a valid approximation to the scalar wave equation 

under one of these conditions: 1) The wave amplitude does not varying 

spatially. In the case of spatially inconstant amplitude, the traveltime 

function 𝑇(𝑥, 𝑦, 𝑧) is not a solution for the eikonal equation. 2) When the 

amplitude varies in space, the eikonal equation can be a reliable 

approximation to the scalar wave equation only if the wavelength is not much 

larger than the extent in which the velocity variation occurs (Officer, 1958). 

In practice, the eikonal equation can be considered as an approximation to 

the scalar wave equation when the velocity contrasts in the subsurface are 
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not very sharp (Yilmaz, 2001). This means that in largely contrasted velocity 

mediums, a direct calculation of the traveltimes from the eikonal equation 

does not yield accurate results. 

Finite difference approximation of the eikonal equation can be used for 

calculation traveltimes in slightly varying velocity mediums (e.g. Vidale, 

1988). Podvin and Lecomte (1991) propose a technique for calculating first 

arrivals traveltimes in mediums with sharp velocity contrasts, which is an 

extension of Vidale’s method with respect to the concept of Huygens’ principle 

and Fermat’s minimum time principle. In this method, the 3-D medium is 

divided into small constant velocity cubes (figure A.10-a) with dimensions 

smaller than velocity anomalies extent. The traveltime of a grid point is 

calculated regarding to the traveltimes of the neighboring grid points, 

considering 3 different wave propagation modes; transmission, diffraction 

and refraction. After calculating all possible arrival times at a grid point, the 

minimum one is picked as the traveltime. 

Referring to figure A.10-b, in the case of 3-D transmission, a wavefront can 

be transmitted through the interface MNPQ to the point R. Four different 

scenarios are applicable relating to each half of the interface through which 

the wavefront can be transmitted. For instance, the locally plane wavefront 

defined by the traveltimes of the points M, N and Q can reach point R if: 

0 ≤ (𝑡𝑁 − 𝑡𝑀) ≤ (𝑡𝑄 − 𝑡𝑁) ≤ (ℎ
𝑣⁄ )2  

and 

 2(𝑡𝑄 − 𝑡𝑁)2 + (𝑡𝑁 − 𝑡𝑀)2 ≤ (ℎ
𝑣⁄ )2 

In this case, the arrival time at point R will be: 

𝑡𝑅 = 𝑡𝑄 + √(ℎ
𝑣⁄ )2 − (𝑡𝑄 − 𝑡𝑁)

2
− (𝑡𝑁 − 𝑡𝑀)2           [4] 
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where 𝑡𝑀, 𝑡𝑁  and 𝑡𝑄  are the traveltimes of the grid points M, N, Q  

respectively, 𝑣  is the velocity within the current cube and ℎ  is the grid 

spacing. This calculation must be done for all 24 neighbouring interfaces to 

point R in the 3-D space (figure A10).  

Diffracted waves can be originated from 8 corners and 24 edges in 3-D 

structure. Consider the cube in figure A.10-b: 

𝑡𝑅 = 𝑡𝑀 + (ℎ
𝑣⁄ )√3         [5] 

 

Equation [5] calculates the diffracted wave arrival time for a wave starting 

at point M and ending at point R. The arrival time of the diffracted wave from 

the edge MN at point R is calculated as:  

 if  0 ≤ (𝑡𝑁 − 𝑡𝑀) ≤ ℎ 𝑣√3⁄ , then 

𝑡𝑅 = 𝑡𝑁 + √2√(ℎ
𝑣⁄ )2 − (𝑡𝑁 − 𝑡𝑀)2         [6] 

In the 3-D space, arrival time of the head waves (refractions) are calculated 

by computing 1-D transmissions and 2-D transmissions and diffractions at 

the boundary (edges and surfaces) between two adjacent cubes with different 

velocities. Suppose that 𝑣′ > 𝑣 in figure A.10-b, a refracted wave from point 

Q arrives at point R (1-D transmission) where: 

                     𝑡𝑅 = 𝑡𝑄 + ℎ
𝑣′⁄                      [7] 

 

A 2-D transmission occurs on the front plane of the cube with the contribution 
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of the edge QN (figure A. 10-b) where: 

if  0 ≤ (𝑡𝑄 − 𝑡𝑁) ≤ ℎ 𝑣′√2⁄  , then: 

   𝑡𝑅 = 𝑡𝑄 + √(ℎ
𝑣′⁄ )2 − (𝑡𝑄 − 𝑡𝑁)2          [8] 

Also 2-D diffractions occur on interfaces in the 3-D model. For example, 

considering N as a point diffractor (figure A. 10-b), the arrival time at R will 

be:  

                   𝑡𝑅 = 𝑡𝑁 + (ℎ
𝑣′⁄ )√2              [9] 

 
                             a)                                                                              b) 

Figure A.10: 3-D model used in Podvin and Lecomte (1991) method for calculating 

traveltimes. a) The medium is divided to constant velocity cubes where the traveltime 

of a grid point (the open circle) is calculated using the known traveltimes of neighboring 

grid points. b) A single cube with the velocity v surrounded by neighboring cubes with 

the velocity v’. For details, see the text. 
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In this study, the method of Podvin & Lecomte (1991) is used to calculate 

traveltimes for migration. It is applied using a 3-D velocity model of the area 

(figure A.11) developed through seismic tomography (Hloušek et al. 2015). 

Within the area of investigation, the 3-D velocity model is characterized by 

lateral velocity variations with a contrast of ~1000 m/s change in 300 m 

lateral distance. In the depth interval of ~700 – 1700m in which the events 

are expected to be located (based on the information from previous studies), 

the velocity range between 5000 and 6000 m/s. In deeper parts of the model 

the velocity variation is less. This 3D velocity model is derived from a 3-D 

wide angle seismic survey and its validity has been evaluated by comparing 

the calculated and observed first arrival travel times (Hloušek et al. 2015).  

Figure A.11: The velocity model used for calculating traveltimes (developed by Hloušek 
et al. 2015). 
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A-6-4 Localization results 

The located hypocenters are plotted in figure A.12. The obvious extent of the 

hypocenters is diagonal in x-y plane in the locally defined Cartesian 

coordinate system (west-east in latitude-longitude coordinate system, see 

figure A.3). This trend correlates to the extension of the excavated area of the 

mine (figures A.2 and A.15). Also, in the y-z plane, a clear cluster of the 

hypocenters can be seen dipping in the negative y direction, which is towards 

north-east, the same as the dip direction of top of granite (figure A.2). The 

coordinates and origin times of the located events are given in the appendix. 

More details about the characteristics of the hypocenters scattering pattern 

is discussed in section A-6-6. 

It is important to consider the potential sources of error and uncertainty in 

the hypocenter locations. The initial source of error stems from the manually 

picked arrival times. With respect to the careful pickings and considering the 

sampling frequency and data quality, the error in arrival times is defined as 

3 ms. As discussed in section A-6-2, to account for this uncertainty, this error 

is applied in the Gaussian pulse (equation [2]) used in pseudo synthetic 

seismograms. The second uncertainty stems from the time step used in the 

iterative migration. A fine sampling with an iteration every 4 ms is used for 

the migration, however even this fine sampling can introduce error in the 

location results. The third source of error is the resolution of the 3-D model 

grid (25 m grid point spacing) which also affects the accuracy of the final 

results. The other uncertainty which can affect the location results is the 

possible small errors in the 3-D velocity model. The accuracy checks on the 

velocity model (see section A-6-3) are convincing and small possible errors are 

not included. For an average velocity of 5700 m/s, the total spatial error in 

hypocenter location due to the aforementioned uncertainties is ~50 m which 

is minor and does not significantly impact the calculated locations and 
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further interpretations. 

Figure A.12: Localization results in top and side views in the local coordinate system 
(see figure A.3). Depth datum is set to sea level.

A-6-5 Effect of Velocity variations  

It is worthy to compare the migration-base localization results to those 
gained previously for the same dataset. Since only the location results of some 

of the events located by Wismut GmbH were accessible, the comparison could 
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not be done for all of the located events. On the other hand, in order to test 

the effect of velocity variations on the localization results, the localization 

algorithm is applied using two different P-wave velocity models to this part 

of the dataset; a constant velocity model of 6000 m/s and the 3-D velocity 

model. The localization results provided by Wismut GmbH were located using 

a 1-D station-based velocity model. This station-dependent model can be 

considered as a pseudo-3D model as it can account for some local velocity 

variations. 

The comparison is illustrated in figure A.13. In x-y plane, the located 

hypocenters using the 3-D velocity model show a relatively fine adjustment 

in their location comparing the locations provided by Wismut GmbH, where 

the events are moved in y direction. Larger differences can be seen in the z 

direction. Here the results from 3-D velocity model are more extended in the 

z direction while the Wismut results are (except one event) concentrated 

within 300 m in depth (-1000 to -1300 m). A group of hypocenters located 

using the 3-D velocity model correspond to a rather vertical structure in x-z 

plane (the dashed box in figure A.13) while they are concentrated around a 

point in Wismut results (at down-left side of the dashed box in figure A.13). 

This obvious structure will be discussed in section A-7. 

The velocity variations included in the 3-D model produce significantly 

different locations in comparison to the constant velocity model hypocenters. 

The differences are more distinct in the z direction where the results from 

the constant velocity model are located significantly shallower. This can also 

be seen when comparing the constant velocity model results to those from 

Wismut GmbH. 

The average P-wave velocity in the 3-D model down to the maximum depth 

where the events are located (~-1500 m) is less than 6000 m/s, which is used 
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in the constant velocity model. But surprisingly, the events are located 

shallower when the constant velocity model is applied. A faster velocity 

should lengthen the calculated raypaths and locate the events deeper. On the 

other hand, the detected origin times (using the constant velocity model) are 

mostly later than the ones detected by applying the 3-D velocity model. This 

may explain the shallower calculated depths but cannot explain the 

hypocenters locations, which are scattered far away from other results also 

in the x-y plane. Nevertheless, the 6000 m/s is an accepted assumption for 

the constant velocity in this area. Migrating reflection seismic data using this 

constant velocity yields comparable results to the migration using the 3-D 

velocity model with small downward shifts in the position of the reflectors 

(Hloušek et al., 2015).  

The migration procedure is much more sensitive to the accuracy of the 

velocity model in the case of earthquake location than when it is applied for 

reflection seismic imaging. In the case of reflection seismic data processing, 

most of the errors due to the inaccuracy of the lateral and vertical variations 

in the velocity model will be weakened during stacking since the wrong 

intersections of migration isochrones cannot be stacked constructively. 

Furthermore, for earthquake location the zero (origin) time is unknown and 

the data must be iteratively migrated over different assumptions of origin 

times. Thus, the errors in the constant velocity model can lead the migration 

isochrones to intersect with a maximum amplitude at the wrong zero (origin) 

time and spatial coordinates. This means that even moderate errors in the 

velocity model may cause significant shift in the location results. Thus the 

results of the constant velocity model are not reliable and only the 3-D 

velocity model is applied for the whole dataset. The focus of the analysis and 

discussion will be on the events located using the 3-D velocity model. 
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Figure A.13: Comparing hypocenters located with the constant velocity model (blue) 

and the 3-D velocity model (green) using earthquake migration (after Hassani et al., 

2018). The hypocenter locations provided by Wismut GmbH, which they calculated 

using a station-dependent velocity model, are also shown for comparison (red). The 

differences are most significant in depth as can be seen in the two side views. Depth 

datum is set to sea level. The cluster of green hypocenters that are shown in the dashed 

box in the x-z plane are events which correlate temporally. This comparison is done 

only for a part of the dataset. 
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A-7 Results analysis  

Seismicity is a known consequence of mining activities, usually associated 

with the removal of material. Furthermore, in mines prone to flooding, the 

increased pore pressure caused by the incoming water reduces frictional 

forces within fractures and decreases the fault strength. During mining 

operation, excavations cause disturbances in the mechanical state of the 

crustal structures and this stimulates accumulated shear stress in the rocks 

where the presence of either faults or weakness points potentially can cause 

stress release. Rockbursts and microearthquakes are common stimulated 

seismic events in mines during mining operations. Stronger seismic events 

can also happen as a consequence of the excavation-resulted stress 

inhomogeneity in bed rocks, e.g. the relatively large event which occurred in 

Schlema-Alberoda during mining operation (see section A-2-2). If the 

accumulated stress is not sufficient to overcome the shear strength of the 

structures (but comparable to this strength) during the excavations, it can 

cause earthquakes after the end of mining operation in the presence of any 

later mechanical disturbance. This can be either tectonic forces or an increase 

in pore pressure of crustal structures. In Schlema-Alberoda, several faults 

exist within the mine which extend down into the granite. These structures 

act as weakness points in the solid rock and stresses accumulated during the 

mining operation and subsequent flooding are preferentially released along 

these faults. 

In order to monitor the geomechanical effects of the excavations on the 

crustal structures during mining operations in Schlema-Alberoda, some 

measurements were conducted to indicate the pressure variations on the bed 

rock. An ultrasonic measurement on the granite shows that the S-wave 

velocity increased from 3000 m/s in year 1982 to 3200 m/s in 1987 (Brinker, 
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2003). This is an indication of noticeable changes in the mechanical status of 

the crustal structures which is a consequence of the accumulated energy that 

can lead to triggered microseismic events by any later changes in pore 

pressure. On the other hand, several rockbursts happened during mining 

operations. Figure A.14 shows the occurrence frequency of these events. The 

first major rockburst happened in 1961 and until 1978, only 4 other 

rockbursts occurred within the mine. From 1979 to 1986, over 200 rockbursts 

were observed in the Schlema-Alberoda (Petschat, 1986). An interesting 

feature about these rockbursts is the dramatic increase in the number of 

events in this period of time (figure A.14). It is noticeable that these frequent 

rockbursts started after a relatively large magnitude (ML=2.9) event in 1979 

which obviously triggered successive stress releases. The frequent occurrence 

of these events after an idle period is an indication of rising inhomogeneity 

in the crustal loaded mechanical forces as a result of mass removals. 

 

 

Figure A.14: Occurrence frequency of the rockbursts in the mine Schlema-Alberoda 

from 1961 to 1986 (after Petschat, 1986). 
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Referring back to figure A.13, within the events located using the 3-D velocity 

model, a group of the hypocenters are scattered almost vertically at the left 

side of the cluster in y-z plane (dashed box in figure A.13). These events 

correlate temporally as they all occurred within 14 hours. These hypocenters 

lie directly beneath the top of the granite under the Ruhmvoll fault and 

correlate with its interpreted extension (intersected by Bad Elster fault) into 

the granitic body (see figure A.2), thereby confirming its existence. Other 

localization results (Künzel, 2013) show that many events are concentrated 

along the interpreted extension of the Ruhmvoll. Wallner (2009) also shows 

evidence of the Ruhmvoll fault extension downward to the Roter Kamm fault.  

Figure A.15 shows the located hypocenters projected on the 3-D seismic 

image of the area developed by Hloušek et al. (2015). As can be seen, the 

events are located along and (mostly) below the top of granite. The excavated 

area of the mine is located directly above the granite and some of the 

hypocenters, which are themselves located above the granite. The dispersion 

of the hypocenters indicates that these events are likely rockbursts that 

occurred within the mine openings. In the x-y plane it can be seen that all 

events are located within the mine area (figures A.12 and A.15) and their 

trend follows the extension of the excavations. This indicates that the located 

microearthquakes are stimulated events and in the presence of flood water 

in the mine, the accumulated stress releases at weakness points, since the 

flood water itself is also a source of stress induction. During flooding, mine 

pits act as new hydraulic connections which can increase the pore pressure 

in the preexisting fractures and faults below the mine and consequently 

trigger earthquakes. 

Moreover, as discussed in section 1, historic observations show that this area 

is tectonically active. Due to the removed load during mining operations in 

Schlema-Alberoda, any small changes in the tectonic forces can easily trigger 
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the faults which are located below the mine. Consequently, this extends the 

size of the existing faults or can create new fractures. The clustered style of 

the located hypocenters can be an indication of crack growth and the release 

of the accumulated shear stress at the new cracks.  

As can be seen in figure A.15-a, the hypocenters are mostly located between 

the top of the granite and the Roter Kamm, where several reflectors visible 

in the 3-D seismic image are located near to and parallel to the hypocenter 

clusters (figure A.15-a). However no clear reflections can be seen within the 

area where the hypocenters are located (figure A15-b). Nevertheless, the 

reflectors may in fact extend towards the area where the hypocenters are 

focused, indicating that the stress release happened along the reflectors but 

due to the very low reflection coefficients, this part of the reflectors cannot be 

detected in the 3-D seismic image. However, the frequency of energy release 

at this particular area between the top of the granite and Roter Kamm 

characterizes this area as an unstable zone.  
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Figure A.15: Hypocenters plotted with the interpreted reflectors and known geology. 
BEX and TEX are the bottom and top of the excavated area. The Z axis shows the 
approximate depth at the vertical profile which crosses the middle of the area where 
hypocenters are located. (a): The hypocenters mostly concentrate directly below the top 

of the granite. (b): A cluster of hypocenters is located directly below the Ruhmvoll fault 
and follows an extension pattern, which seems almost the same as Ruhmvoll. In the 3-
D image, visible reflectors do not extend to the hypocenters but are oriented towards 
them. (c) & (d): Some of the hypocenters are located between the top of the granite and 
the bottom of the mine (BEX) and few of them are within the mine.  
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A-7 Conclusions 

The Kirchhoff Prestack Depth Migration algorithm provides high precision 

for locating microseismic events using only P-wave arrival times when an 

accurate velocity model of the area is available. The accuracy of this method 

is sensitive to the lateral and vertical variations of the P-wave velocity. 

Therefore applying a homogeneous velocity model even with a proper 

assumption of the average velocity may lead to unreliable results. 

The results show that the flood water in the tunnels increases the pore 

pressure in the preexisting faults and discontinuities below the mine and 

stress release occurs due to the instability in the mechanical status of the 

crustal structures caused by changes in the volume and load. Also, the history 

of the seismicity in this area proves the existence of tectonic shear stress in 

the preexisting crustal structures causing (micro-) earthquakes which are 

triggered by any increase in pore pressure. The scattering pattern of the 

hypocenters proves the assumption that the Ruhmvoll fault has a downward 

extension deep into the granite. The deepest located hypocenters emphasize 

that new fractures are created within the granitic body far below the 

excavated area, some of them towards the Roter Kamm. These fractures are 

potentially new hydraulic connections which may cause new seismic events 

in deeper parts within the granitic body, especially in the case when the 

flooding level in the mine increases. 

 Comparing the localization results with the 3-D reflection seismic image 

where the reflectors are aligned between the top of the granite and Roter 

Kamm fault (figure A.15-a), a connection between the reflectivity and the 

located hypocenters is obvious. Although the visible parts of the reflectors do 

not reach the hypocenters position (figure A.15-b), the localization results can 

confirm their extension to the area where the hypocenters are located. Thus 
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the reflectors intersect with the Ruhmvoll fault and extend the fault plane 

down to the Roter Kamm.  

In order to have a precise overview on the origin of the microseismicity in this 

area, locating more events over specific time periods will provide more 

detailed information about the main cause of the events by comparing the 

spatial focus of the hypocenters over different time periods. Also, real time 

monitoring using KPSDM method is useful for further studies on the 

seismicity of the area.  

The 3-D velocity model used in the migration-based localization procedure 

does not account for the anisotropic properties of the phyllites and schists. 

Regarding to the tested accuracy of the velocity model (section A-6-3) no 

significant changes in the located hypocenters are expected. Nevertheless, 

developing an anisotropic 3-D velocity model of the area and applying it in 

the KPSDM localization algorithm would certainly strengthen the accuracy 

of the results.  

The data used in this study contained only vertical component records. If 

three-component data would be available together with an accurate S-wave 

velocity model, S-wave arrivals can also be used by the designed localization 

algorithm and it may improve hypocenters location precision.  
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Interim summary 

Usually in seismic exploration, imaging subsurface structures is conducted 

through conventional active seismic imaging methods using artificial seismic 

sources (explosives, vibro-trucks, etc.) and by installing a temporary array of 

receivers (geophones). In contrast, in passive seismic imaging methods, data 

collection is performed using mostly permanently installed seismic stations, 

and earthquakes as natural seismic sources. This will reduce costs of the 

survey and in some cases can be more effective and advantageous in 

comparison to conventional active seismic methods.  

In chapter A, several microearthquakes are located in the Schlema-Alberoda 

mining area. Due to the reliable accuracy of the localization results (the 

spatial coordinates of the hypocenters and the origin times), the located 

events are appropriate to be used as natural sources for imaging local crustal 

structures in the area. 

The recorded waveforms and the magnitude of the located events show that 

these events are originated from small-scale sources. Therefore, imaging 

structures in short distances from the hypocenters is feasible because the 

reflected waves from those structures are not distorted by direct waves. Also, 

the located hypocenters are focused directly beneath the mine, in an 

immediate vicinity of the crustal structures and in a favorable position with 

respect to the illumination angles of the structures.  On the other hand, the 

hypocenters are located in the depth of 300-3200 m below sea level and are 

mostly concentrated within the granitic body beneath the mine. The low 

attenuation of the granite causes less energy loss, thus also reflections from 

boundaries with low acoustic impedance contrast are likely to be imaged by 

using these events as seismic sources.   
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In Chapter B, a subset of the recorded waveforms from the located 

microseismic events is used directly in a proposed passive imaging algorithm 

for two purposes; to test the functionality and effectiveness of the passive 

seismic imaging approach and to achieve a better understanding about the 

subsurface structures in the area. The results are then compared to the 

previous active seismic image of the area (see section A-7) to evaluate their 

accuracy and reliability.  
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B.  Imaging crustal structures using microseismic 

events 

 
 

B-1 Introduction 

Conventional methods in reflection seismic imaging are widely in use to 

image subsurface structures either in shallow or deep seismic surveys where 

artificial sources (e.g. explosives, dropping weight and vibro-truck) are used 

to generate body waves. These methods are known as “Active Seismic 

Imaging” (ASI) and are well developed in seismic exploration industry. An 

alternative to the conventional ASI methods is “Passive Seismic Imaging” 

(PSI) where natural seismic events are used as energy sources and records of 

these events are used in imaging procedure. PSI is still not well established 

as a conventional method for imaging subsurface structures, nevertheless it 

has some advantages which makes it in some cases more effective than 

conventional active methods, e.g. less costs of data acquisition. In PSI, data 

acquisition is (in most cases) almost free of costs because the data are 

recorded by permanent seismic monitoring networks and the energy sources 

are natural.   

Besides that PSI is cost-efficient, it also has some other advantages in 

comparison to active seismic techniques such as greater source energy, less 

attenuation in body waves and source distribution with no topographical 

limitation (Soma et al. 2002) which enables one to image reflections from 

deeper structures. On the other hand, when the target structures are located 

beneath the top of granitic basement, in most cases, active seismic methods 
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may not result in a detailed image (Asanuma et al, 2011). This of course 

depends to the acoustic impedance contrast at the upper boundary of granite 

and depth of the target as well as the attenuation of the body waves in 

overburden layers.  

Nevertheless, PSI methods have their limitations and might be challenging 

to be applied. For instance, the position and distribution of sources with 

respect to target structures as well the frequency of occurrence and the 

magnitude of events. The latter is important with respect to the distance 

between a source and a target structure. Large events may not be proper 

sources for imaging reflectors which are located in the vicinity of the source 

because reflections will be distorted by direct waves. 

A specific attribute of passive reflection seismic methods is their ability to 

image near vertical structures which makes them advantageous in the cases 

where target structures are steeply dipping. Reshetnikov et al. (2010) used 

microseismic events at San Andreas fault system to image near-vertical 

reflectors in the vicinity of a borehole by Fresnel volume migration (Buske et 

al, 2009). The final image is then compared to the results of the active seismic 

surveys in the same area and showed a significant improvement in the 

resolution of the imaged near vertical reflectors.    

So far, different attempts and methods has been carried out to produce an 

image of the subsurface using non-artificial seismic sources. Daneshvar et al. 

(1995) used direct waves of microearthquakes recorded at the surface to 

detect the near-surface structures. In this method, near vertical incidence 

records were used. The autocorrelation of the transmitted (direct) waves from 

different sources recorded at individual stations showed a consistency to the 

acoustic impedance contrast of the shallow structures. Autocorrelation of 

transmitted wavefields represents the earth’s transmission response which 
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is equivalent to surface zero-offset reflection records (Claerbout, 1968). 

Soma et al. (2002) applied a passive reflection technique in which the 3D 

particle motion detected at a recording station (hodogram) is analyzed to find 

coherent signals and detect reflected waves which are covered by the direct 

wave coda. This technique which is called “AE (Acoustic Emission) reflection 

method” is performed for high-frequency signals (around 200 Hz). The 

imaging is conducted using S-wave reflections and its directivity with respect 

to the linearity of the 3-D particle motion. This technique is advantageous as 

it is able to detect reflectors using even one downhole 3-component if the 

source distribution is wide enough considering the target area. Asanuma et 

al. (2011) proposes a passive imaging method with same concept as AE, using 

a group of microseismic events which have similar waveforms, so called 

“microseismic multiplet”. In this approach, hundreds of microseismic events 

are used and the advantage of waveform similarity and delays between 

reflected energy from different sources eliminates artifacts in the final image.   

Presumably, in PSI for near surface structures, the sources are triggered or 

induced microseismic events, or natural microearthquakes which occur only 

as a result of pure tectonic pressure on active faults. Stimulated (induced and 

triggered) microseismic events are frequent phenomena in mining areas and 

hydrocarbon reservoirs (McGarr et al., 2002) due to excavations or changes 

in pore pressure. 

When some prerequisites (e.g. availability of a reliable velocity model) are 

assured, it is possible to apply prestack depth migration techniques, which 

are usually used in active seismic imaging, also for PSI. In this study, 

subsurface structures in the Schlema-Alberoda mining area are imaged 

through a 3-D passive reflection imaging approach using the microseismic 

events which are located through the migration-based algorithm (chapter A). 
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The final image is then compared to the results of the active seismic survey 

conducted previously in this area. 

 

B-2 Subsurface structures in the investigation area 

In the Schlema-Alberoda mining area, the subsurface is structured by 

heterogeneous crystalline rocks (Hiller and Schuppan, 2008) and as 

discussed in section A-2, the area is located along the Gera-Jàchymov trans-

regional fault zone. Several faults belonging to this fault system dip into the 

crystalline rocks at angles between 50o and 70o towards the south-west and 

are conjugated to the Roter Kamm (e.g. see figure A.2). These faults are vein 

structures and known as ore bearing veins since they are mineralized within 

the Silurian/Devonian schists in the mine. Displacements at the top of the 

granite caused by these “conjugate faults” makes the assumption of their 

extension to larger depths likely. The thickness of these conjugate varies 

between 10 m within the mine and up to 60 m in the granitic body.  

The thickness of the Roter Kamm is 20-25 m and at some parts increases up 

to 100 m. On the fault plane, different veins are formed such as granite 

apophyses, aplite dykes and all formations of hydrothermal veins of different 

ages. The fault plane dips towards the north-east and likely extends to a 

depth of 8 km, as estimated through geological investigations during the 

mining operation. 

 

B-2.1 Imaging significance in Schlema-Alberoda 

As a major structure in the area, the Roter Kamm is a very important fault, 
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not only because it can cause earthquakes, but also the possibility of using 

this fault for geothermal energy exploitation. During mining operations in 

Schlema-Alberoda, one of the operations which became necessary was cooling 

the mine pits because the natural air circulation was not efficient enough to 

bring the temperature down to a level in which working would be possible 

(Hiller and Schuppan, 2008). For example, at a depth of 1270 m the rock 

temperature reaches up to 50 oC. Measurements showed that at depths 

between 500 and 1500 m, the temperature rises with an average rate of 0.035 

oC/m (Korobko and Grebenkin, 1960). It is expected that the rock 

temperature reaches 160 oC at 5 km depth. The hot rocks (petrothermal 

reservoir) at this depth can be used as a source of energy (petrothermal 

reservoir). A conventional method for exploiting geothermal energy from 

petrothermal reservoirs is fracturing rocks by fluid injection in order to 

increase hydraulic permeability. Fracturing deep rocks can be a risky 

operation since it stimulates seismic events which can be large (see McGarr 

et al., 2002; Häring et al., 2008). An effective alternative to fracturing is using 

existing faults as hydraulic paths for exchanging heat in deep rocks.  

Since the Roter Kamm is geologically interpreted to extend down to a depth 

of 8 km, it can be an ideal hydraulic path to exchange geothermal heat. 

However, for that purpose, the fault plane must be precisely imaged to ensure 

its extension and path. Other smaller faults in the area such as conjugate 

faults are also important in this aspect to be imaged precisely.  

Imaging the aforementioned structures is challenging since they have steeply 

dipping angle and are in a crystalline environment. Small scale 

heterogeneities within crystalline rocks cause significant diffracted and 

scattered energy which can affect the accuracy of the seismic image unless 

an appropriate migration method is applied. Kirchhoff prestack depth 

migration (KPSDM) is an effective migration method for imaging structures 
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within crystalline rocks because it is a diffraction summation based method 

that uses only first reflection arrivals. Therefore it is able to efficiently 

construct diffraction surfaces. On the other hand, the KPSDM method has no 

initial assumption about the slope of the structures which makes it 

advantageous especially in crystalline environments (Buske, 1999). 

 

B-3 Principle of 3-D coherency migration 

A disadvantage of Kirchhoff migration is that the amplitudes smear along 

the TWT (two way traveltime) isochrones (see section A-5-2). This can be 

problematic where the sharp angles in crustal structures are to be imaged 

and also when the interval between receivers is not small enough to build up 

reflection surfaces. To avoid the smearing problem, one may apply a 

migration aperture which images the reflected wavefield within a certain 

angular limit. This however will affect the resolution of the migration results 

at shallow depths and also restricts steep structures from being imaged. In 

this study, applying a migration aperture is meaningless because of the low 

number of receivers (see section B-4-1) and also that the position of sources 

and receivers does not give a wide coverage on the studying area. 

 An effective solution to avoid wavefield smearing in KPSDM is to take the 

coherency of the recorded amplitudes into account. Neidell and Taner (1971) 

introduced a coherency measurement as a “semblance coefficient” for a single 

shotgather which evaluates the coherency between the amplitudes in 

neighboring traces. Here, an additional weighting factor is applied to the 

KPDSM based on the semblance coefficient to focus the amplitudes onto the 

real physical diffraction points in depth during wavefield summation. 

Coherency migration (Hloušek et al., 2015) can be defined as: 
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This function is defined for each image point 𝑚 and each receiver 𝑟 in a shot 

gather and represents the coherent energy of the wavefield in relation to its 

total energy within a defined time window 𝑇 and over 𝑁 neighboring traces. 

The length of the time window 𝑇 must be chosen based on the source signal 

length. In practice it is equal to the length of the phase which is to be imaged 

(e.g. P-wave). The coherency ratio (eq. 6) varies between 0 which means no 

coherency (i.e. random noise) and 1 when the wavefield is perfectly coherent. 

Thus the smearing of the amplitudes will be limited to the physically 

contributing part along the migration operator (TWT isochrone), i.e. the 

diffraction point.  

The principle of Coherency migration is visualized in figure B.1. Suppose that 

the diffraction point D lying in a constant velocity medium is to be imaged 

using a source located at depth and an array of receivers on the surface 

(figure B.1-a). If the source releases a single wavelet, the resulting diffracted 

wavefield recorded by the receiver array would be like as shown in figure B.1-

b. The dashed ellipsoid in figure B.1-a is the TWT isochrone ( 𝑡𝑠 + 𝑡𝑅 ) 

corresponding to one receiver (blue). Migrating this single trace through 

KPSDM smears the recorded wavefield along the whole TWT isochrone 
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(figure B.1-e) and all of the points on the isochrone will be introduced as 

diffraction points. Applying coherency migration to the record of the 

aforementioned single receiver using 10 neighboring traces (5 traces on each 

side), the recorded signal (the blue trace) gains a high coherency factor (eq. 

6) around point D during migration (figure B.1-f). This is because the 

recorded amplitudes at neighboring receivers are coherent due to the 

diffraction point D, i.e. they follow the calculated traveltimes pattern for 

point D within the defined time window 𝑇 (figure B.1-b). In other words, one 

measures the semblance of the neighboring traces within the time window 

for a specific point. On the other hand, considering a hypothetical diffraction 

point D’ on the TWT isochrone (figure B.1-c), the recorded amplitudes at the 

neighboring traces do not follow the calculated traveltime pattern for this 

point (figure B.1-d). Thus the coherency factor for this point is low and the 

imaged amplitudes will be decreased around it during migration (figure B.1-

f). Therefore, in coherency migration, smearing of the migrated amplitudes 

will be limited around actual diffraction points and the resolution of the final 

image increases.   
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Figure B.1: The concept of coherency migration (after Hloušek et al., 2015). The red 
asterisk shows the source position and the triangles are the surface receivers. The red 

boxes in b and d are the time windows with the length T on the neighboring traces. For 
detailed description see text. 
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B-4 Imaging microseismic data 

 

B-4-1 Data preprocessing and analyzing 

For locating hypocenters, as described in section A-6-2, pseudo-synthetic 

seismograms were used to represent the manually picked P-wave first 

breaks. For imaging subsurface structures, the original recorded traces of the 

same dataset are used after applying the same filters as in localization 

procedure (see section A-4-2). In addition, to magnify the attenuated 

amplitudes reflected from deeper parts, the recorded amplitudes are gained 

by a time exponential factor of 2 (𝐴𝑜𝑢𝑡 = 𝑡2𝐴𝑖𝑛).  

Generally in passive seismic imaging, not all recorded traces may be 

appropriate for the imaging procedure. Although 135 events are located with 

a reliable accuracy, only those source-receiver pairs with maximum S/N 

ratios are selected in order to achieve a maximum precision in imaging, only 

those source-receiver pairs are selected which have maximum S/N ratio. Also, 

to eliminate borehole reverberations, the records of the two borehole 

hydrophones are eliminated in the imaging procedure.  

In addition to the importance of the S/N ratio, the differences in the source 

mechanism and wave propagation patterns in PSI may introduce 

complications. One must analyze the dataset carefully and contribute only 

those parts of the data into the migration procedure which fulfill the 

requirements of the specific applied imaging method. Since the dataset 

contains only vertical component records, it was more meaningful to rely on 

only P-wave secondary arrivals (reflections) for imaging the subsurface 

structures. Thus the traces with clear and strong (in comparison to the 

maximum recorded amplitude) direct P phase are chosen for imaging. This 
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implies that the source released enough energy in the form of P-wave that 

the P-wave reflection amplitudes can overcome other phases in the traces 

which will be used in the migration procedure.  

Due to the source focal mechanism and the disposition of the source-receiver 

pairs with respect to reflectors, it is possible that a source released enough 

energy in the form of P-wave, but the direct P-wave recorded at specific 

stations has a low amplitude. In such a case, the P-wave reflections from 

those reflectors which are located at a proper position to the source and 

receiver can be recorded efficiently to be imaged. Nevertheless, to use these 

records which may contain strong P-wave reflections despite the low-

amplitude direct P-wave, focal mechanism analysis of the hypocenters is 

necessary.   

These considerations led to a selection of 170 traces from about 5000 recorded 

traces. Due to the inconsistency in the recorded amplitudes at different 

stations and also different magnitude of the events, the traces are normalized 

to assure their equivalent contribution in the migration procedure. Figure B-

2 shows an example of recorded (filtered) traces from one of the events and 

the selected traces among them for the imaging procedure.  
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B-4-2 Migration 

Basically, the coherency migration functions over a single shotgather because 

the source signal must be similar between the neighboring traces through 

which the coherency value is to be measured (Neidell and Taner, 1971). The 

presumption is that all the receivers are identical in their physical properties 

(natural frequency) and they are attached to the same ground with the same 

rigidity so that the recorded traces would have similar frequency content. 

This condition is valid in almost all active seismic surveys and because 

normally the intervals between the geophones does not exceed some meters, 

the ground over which the neighboring geophones are installed has the same 

properties in the sense of wave propagation (e.g. density, porosity and 

weathering layer thickness). Thus there would be no significant difference in 

the frequency content between recorded wavefields at neighboring geophones 

due to attenuation.  

However, in this study the recording network is not designed for a seismic 

survey and the receivers are attached to different grounds like solid rock, 

concrete based surface, weathering surface, etc. On the other hand, due to 

the distances between the recording stations (up to several hundred meters), 

the underlying layers (especially weathering layer) may vary for different 

stations. These cause differences in frequency content of the recorded source 

signal from a single event at different stations. Figure B.3 shows selected 

records of two single events (shot gathers). As can be seen, the recorded 

wavefield appears with different frequency content at different stations. 

Comparing the recorded traces between all shot gathers, a similarity in 

frequency content as well as waveform between the records of different 

sources at individual receivers could be identified (figure B.3-c). Therefore, 

for this dataset it is more relevant to apply the coherency migration to 

common-receiver gathers. 
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Figure B.3: An example of two common-source gathers (a and b) and the common-
receiver gather R101 (c). The red and blue traces are recorded from the events S55 and 
S23 by the station R101 respectively. The total record length is longer than that shown 

time window. The order of the records in source gathers is as stored in the dataset. 

Due to the criteria for choosing proper traces for the migration procedure, the 
selected data was grouped into 30 receiver gathers. Referring back to the 
equation [6], more neighboring traces (N) used to compute the coherency 

value, result in a more accurate measurement. Generally, this value (N) 
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should be selected by also considering the computation costs. In order to 

achieve a reliable coherency measure, only those receiver gathers with at 

least 7 traces are used. Finally 10 receiver gathers including records from 48 

sources with a total number of 128 traces were chosen for the migration. The 

receiver gather with the largest number of traces contains 26 sources. During 

migration, all traces in each receiver gather are involved in calculating 

coherency factors as neighboring traces.  

After evaluating the direct P-wave wavelength in all traces involved in 

migration procedure, each receiver gather is assigned an individual length 

(varying between 16 and 42 ms) for the time window 𝑇  over which the 

coherency value must be calculated (see eq. 6). In order to avoid the effect of 

the varying focal mechanism on the polarity of the recorded wavefields, the 

traces are adjusted to the same polarity. 

To magnify the focusing effect of the coherency migration, an exponent ∝ can 

be applied to the coherency function in equation [5] as 𝐶𝑆
∝(𝑚, 𝑟). A higher 

value of ∝ intensifies the most coherent amplitudes and suppresses the less 

coherent ones and random noise. To avoid exaggerating the coherent signals 

and the resulting ghost reflectors by choosing a too high value of ∝, different 

values must be tested to find the optimum one. Here the ∝ value of 3 is used 

in the coherency migration.  

For calculating traveltimes, the same method as in the localization procedure 

is used (finite difference approximation of the eikonal equation – see section 

A-6-3). Since the traveltimes are calculated based on the P-wave velocity, it 

is expected that the coherency factor measured for S-wave reflections is low 

and through the exponent value ∝ = 3  for 𝐶𝑆
∝(𝑚, 𝑟) , the reflected S-wave 

amplitudes are decreased during the migration. This can assure that only P-

wave reflections are the dominant constructive migrated amplitudes in the 
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final image. 

B-4-3 Results and discussion 

As described in the previous section, the prestack coherency migration is 

applied to the receiver gathers resulting in an individual image for each 

single receiver gather. A final image is then obtained by stacking these single 

images.  

To obtain a migrated image, different methods can be applied such as 

migrating the envelope, absolute values or real values of the wavefield 

(phase-consistent image). In this study, the absolute and real values of the 

wavefield are used to image the receiver gathers. To reduce the effect of 

amplitude distortions due to the presence of the S-wave and its reflections 

and reverberations, the coherency value calculated during migration, is also 

considered as an image value. The resulting image is called as “coherency 

image” in following.  
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Figure B.4: a) A vertical slice through the 3-D coherency image. b) The same slice as 

(a) showing major structures mapped in geological surveys and the sources (red circles) 
and receivers (blue triangles) contributed in the imaging procedure. c) Top and side 
views of the 3-D model; the dashed line ABC refers to the position of the image slice in 
(a). 

Figure B.4 shows a vertical slice through the 3-D coherency image cube and 

the position of the selected sources and receivers used in the migration 

procedure. As can be seen, the sources and receivers have a limited coverage 
over the image cube. Therefore the analysis is focused on the parts of the 
image cube with near offset to the source and receiver positions. For 

comparison and further analysis, the size of the 3-D image cube is defined 
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the same as the 3-D image cube of the area recently obtained through an 

active seismic survey. 

 

Figure B.5: Vertical slices through the phase consistent image (a) and absolute values 

image (c). The dashed boxes refer to the zoomed-in illustrations (b and d). The red solid 

line shows the imaged part of the Roter Kamm fault and the green dashed ellipses refer 

to the reflectors B and D in figure B.9.  

Vertical slices through the absolute value and the phase-consistent image 

cubes are shown in figure B.5. These slices have the same x-coordinate value 

as the vertical profile in figure B.4. Comparing these three images, it is clear 

that the coherency image has a better resolution. Particularly, in the deeper 
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parts, some reflectors are visible in the coherency image which are not very 

clear in the two other images. However, one of the reflectors is clearly visible 

in all three image cubes in the shallower parts of the image close to the 

position of the sources (figures B.4 and B.5). This reflector will be later 

discussed in detail.  

The S-wave presence with a comparable amplitude to the P-wave is a 

complication which affects the quality of the final image, especially when the 

absolute or real values are imaged. S-wave reflections cannot gain a high 

coherency value and because of the P-wave velocity model, the S-wave phases 

should not be added constructively during migration. However, these 

amplitudes still can appear in the final image and distort P-wave reflections. 

Besides that, in some of the events (sources), the S-wave has a lower 

frequency which causes less energy loss in its reflections from deeper parts 

in comparison to those of P-wave (figure B.6), therefore reflected P-waves 

from deeper parts can be covered by S-wave reflections.  

 
Figure B.6: An example of the waveforms used in the migration procedure. The P- and 
S- direct waves are marked for comparing frequency contents. 
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Nevertheless, since the coherency value is calculated over a time window 

which represents the P-wavelength, the S-wave and its reflections could have 

only a minimal contribution and the calculated coherency values are less 

affected by S-wave direct or reflected phases. Therefore the final image would 

be less distorted when the amplitudes are not directly included in the image. 

Thus the discussions and analysis will be mostly focused on the coherency 

image. Figure B.7 shows sequential vertical slices through the 3-D coherency 

image with an interval of 125 meters.  

 

 
Figure B.7: Sequential slices in x direction through the 3-D Coherency image. 
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As described in section B-2, a major structure in this area is the Roter Kamm 

fault. The part of this fault observed through geological surveys reaches a 

depth of ~300 m below sea level and based on the properties of the area, it is 

expected that the fault plane has a linear extension down to a depth of 8 km. 

The final results of this study detects this fault which is clearly visible in the 

coherency image as well as the phase-consistent and absolute value images 

(figures B.5 and B.8). Nevertheless, the results show differences to the 

previous assumptions about the Roter Kamm’s extension. The imaged fault 

plane has a slightly smaller dipping angle, it is bent at a depth of ~1400 m 

and it extends further towards the north-east (negative y direction in the 

local coordinate system) with a smaller angle down to ~2600m below sea level 

(figure B.8). A further possible extension of the fault plane could not be 

imaged due to the position of the sources and receivers. The Schwerin fault 

is another structure which was mapped during the mining operation in the 

area and was expected to intersect the Roter Kamm. Surprisingly it can be 

seen that this fault extends directly towards the bending point of the Roter 

Kamm. It is convincing that the Schwerin fault plane extension reaches the 

Roter Kamm, indeed at its bending point (figure B.8). 
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Figure B.8: Correlation of the coherency image with the extension of Roter Kamm and 
Schwerin marked in the geology map of the area. The solid black line emphasizes the 
imaged fault plane (Roter Kamm). 

B-4-4 Evaluating the results 

Recently, a 3-D active reflection seismic investigation was conducted in the 

same area and resulted in a 3-D image cube detecting several crustal 

structures (Hloušek et al., 2015). To compare the PSI results with the active 

seismic image cube, only the area under the coverage of source-receiver 
positions is considered. Figure B.9 shows the same vertical slice of the 3-D 
coherency image and of the 3-D absolute value image developed through the 

active seismic survey.  
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As mentioned before, the Roter Kamm fault is one of the structures which is 

visible in all three final images in this study, but in the active seismic image, 

the fault plane is not clearly visible. Generally, in an active surface seismic 

survey, structures with a large dipping angle are unlikely to be imaged unless 

the data contains records of far-offset sources and receivers and the target 

structure has a high acoustic impedance contrast (reflectivity) so that the 

body waves can be reflected with a minimum refraction at the reflector’s 

boundary. This is however not a limitation in passive seismic imaging 

because the sources usually release more energy and are located 

underground, therefore with less energy loss. Thus if the receivers would be 

installed in a proper disposition, near vertical structures can also be imaged 

even if they are not strongly reflective.  

The Roter Kamm is a vein structure (see section B.2) and according to its 

geological properties, the fault plane is not expected to be strongly reflective. 

In addition, this fault has a large dipping angle (figures B.5 and B.8). Thus 

the fault plane could not be imaged by the active seismic survey.  

Nevertheless, Hloušek et al. (2015) show evidence in some parts of the 3-D 

active seismic image which demonstrates the existence of the Roter Kamm, 

e.g. discontinuities in some other reflectors (at a distance larger than 1.0 km 

to the analysis area of this study in x-direction).  Also, in a part of the image 

cube, after stacking the shot gathers with a far-offset to the Roter Kamm, 

they could detect an acoustic impedance contrast at the area where the Roter 

Kamm is expected to be located. 

Most of the reflectors detected in the PSI results are also visible in the active 

seismic image cube (Fig. 9). One of the structures detected in both images is 

the so called “Schneeberg Body” (SB) which is an unknown reflective zone in 

the depth of 4-7 km and its existence was detected first by the aforementioned 
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active seismic survey. Hloušek et al. (2015) give a hypothesis about the 

nature of the SB and describe it as a high reflective complex zone. This 

structure zone shows higher reflectivity at its top and bottom in the active 

image whereas in the PSI results, the top and bottom of the SB are clearly 

visible with distinctive amplitudes (reflectors D and F in figure B.9). 

Especially at the bottom of the SB, the less reflective dipping tail in the active 

image follows the trend of the detected reflection (F) in the passive image. 

Both images detect reflectors C and E, which have a lower reflectivity. These 

reflectors belong to a group of so called “conjugate faults” that extend towards 

the expected deeper extension of the Roter Kamm. The connection of these 

faults with the microseismicity in this area is discussed in section A-7. 

Directly above the SB, a fairly strong and well-focused reflection can be seen 

in the coherency image (reflector B in figures B.9 and B.10), while in the 

active image, a structure oriented perpendicular to reflector B with low 

reflectivity is imaged at the same position. Figure B.10 shows a focused view 

of this reflector and compares it to the phase-consistent active image. As it 

can be seen, Reflector B correlates perpendicularly to the small-scale parallel 

reflections detected in the active image. This reflector can be interpreted as 

a small zone of mineralization related to the SB, nevertheless it is not 

connected to the uppermost layers. In figure B.10, reflector D also shows a 

very good correlation to the detected reflector at the top of SB in the active 

image. Reflectors B and D (top of SB) are also visible in the absolute value 

and phase-consistent images (figure B.5). 
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In the deeper parts of the image cube, there is also a reflector (G) detected in 

the coherency image. Comparing to the active image, this reflector has a 

displacement in the negative Y direction. It must be noticed that in the 

dataset, the recorded traces were not in the same length and not all of them 

reach the deeper most part of the cube (in depth domain). Therefore, the 

resulted image has less accuracy at depths greater than 7.5 km. On the other 

hand, this reflector has an offset of ~5 km to the position of the sources and 

receivers which can also cause bias in the position and dip of the imaged 

reflector. Therefore the detected position of this reflector is more reliable in 

the active image. 

 

Figure B.10: A zoomed illustration of the reflectors B and D in the coherency image 
(left) and their position marked by the arrows on the same slice from phase consistent 
active image (right). Note that these slices are located in a distance of 250 m in x 
direction to the slices in figure 9.
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B-5 Conclusions 

In this chapter, a passive seismic imaging approach using the coherency 

migration technique is presented for imaging crustal structures using the 

records of one component (vertical) geophones. Despite the narrow aperture 

of the source-receiver positions, the accuracy of the results is remarkable. 

As discussed before, the data used in this study was collected by a permanent 

local seismic monitoring network which is not designed for seismic surveys 

and therefore the dataset was not optimal for conducting a passive seismic 

imaging survey. Nevertheless, in spite of the low number of recorded traces 

which were appropriate for imaging the subsurface structures, the imaging 

procedure is designed and conducted so that the best possible accuracy in the 

results could be achieved. The results show that the coherency migration is 

an effective and powerful technique for imaging passive seismic data due to 

its focusing effect which can efficiently amplify P-wave secondary arrivals 

(reflections) and suppress random noise and other phases while migrating 

the data.    

The final image shows a reliable match to the results of the active seismic 

survey conducted previously in the same area. In addition, the advantage of 

the passive seismic imaging led to a better understanding of some structures 

with low reflectivity such as the Roter Kamm and Schwerin faults. 

Furthermore, the correlation between the results of both passive and active 

imaging surveys demonstrates the reliability of both results. 

The similarity of the recorded waveforms from different sources verifies a 

resemblance between the hypocenters. This is proof of the findings in the first 

part of this thesis on the nature of the current seismicity in the area. It is 

interpreted that most of the microseismic events beneath the Schlema-
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Alberoda uranium mine have the same nature and are a sign of crack growth 

and the reactivation of preexisting faults in the granitic body due to the 

increasing pore pressure.  

The position of the sources and receivers in relation to the source focal 

mechanism and the geometry of the structures (position, strike and dip 

direction), affects the recorded P-wave reflections at individual receivers (see 

section B-4-1). Based on the localization results (chapter A), most of the 

located events are expected to originate from the preexisting faults or new 

growing cracks and fissures in the granitic body. Regarding the position of 

the sources and receivers (figure B-4) and as it is obvious in the final image, 

the structures located at the left side (south-west) of the source and receiver 

positions are perfectly imaged. These structures dip towards the north-east 

(e.g. the Roter Kamm) and the P-waves released from the sources could be 

efficiently recorded by the receivers. Therefore, the P-waves must have been 

released from sources with a relatively perpendicular mechanism direction 

to those structures. This is proof of the previous interpretation that the 

preexisting faults and fractures (or new cracks) which are dipping towards 

the south-west in the granitic body (see figure A-2) are the origin of the 

events.  

The velocity model used in the imaging procedure does not include 

anisotropic properties of the underlying crystalline medium. This velocity 

model is the same as the one used for the previous active seismic survey and 

its reliability is confirmed through tests by Hloušek et al. (2015). No 

significant bias is expected in the imaged structures although some minor 

errors might be included in the velocity model.    
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Summary 

In this thesis, microseismicity in the Schlema-Alberoda mining area was 

investigated and some of the crustal structures were explored through a 

passive seismic imaging technique. 

A localization algorithm based on Kirchhoff prestack depth migration was 

developed and several microseismic events that occurred between 1998 and 

2012 are located in the area. The dataset contained only the records of one 

component (vertical) stations. The precision in origin times and hypocenters 

location is 2 ms and ~50 m, respectively. The localization results are 

compared (partly) to the results of a previous localization survey in the area; 

some adjustments in the location of the hypocenters could be identified which 

are convincing with respect to the geological properties of the area.  

The located events in connection with geological information of the area show 

that the main cause of the current seismicity in the area is the increasing 

pore pressure in subsurface structures as consequence of the flooding. With 

respect to the seismologically active history of the area, the increasing pore 

pressure and the unstable mechanical state of the structures (as a 

consequence excavations), will cause more microseismic events and the 

occurrence of larger events is also likely.  

The scattering pattern of the located hypocenters confirmed expected 

extension of pre-existing faults within the granitic body and also existence of 

new cracks and fissures. In particular, it is very likely that the Ruhmvoll 

fault is extended to the Roter Kamm fault plane. On the other hand, 

comparing the located hypocenters with the results of a previously conducted 
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active seismic imaging survey in the area, a relation between reflectivity and 

seismicity in this area is identified. Some of the imaged reflectors extend 

towards the located hypocenters and their slope correlates with the direction 

of the faults and fissures which are interpreted to be the origin of the located 

events. The slope of these reflectors together with the scattering pattern of 

the hypocenters confirms the connection between the so called “conjugate 

faults” (e.g. Ruhmvoll) and Roter Kamm.    

In order to test the sensitivity of the localization algorithm to velocity 

variations, a constant velocity model is applied to a part of the dataset. The 

results show that the migration-based localization technique is sensitive to 

the accuracy of the velocity model and errors in velocities may cause 

significant shifts in the located hypocenters and origin times. 

The located events are then used to image subsurface structures beneath the 

mine through a passive seismic imaging approach. For this purpose, after 

analyzing the dataset, some of the recorded traces from several events are 

selected and used in the imaging procedure. The imaging is conducted using 

P-wave secondary arrivals and by applying 3-D coherency migration 

technique, which is a focusing extension of Kirchhoff prestack depth 

migration.  

The passive imaging results are compared to the images obtained from a 3-D 

active seismic survey conducted previously in the same area. Several 

reflectors which are detected by the active seismic survey are also visible in 

the passive imaging results. The comparison confirmed the accurate 

performance of the passive imaging procedure. This is also proof of the 

precision of the localization algorithm and the detected hypocenters and 

origin times. 
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Furthermore, the fault Roter Kamm, which was not clearly visible in the 

results of the active seismic survey could be imaged through the passive 

seismic approach despite its steep dipping angle and low reflectivity. The 

final image identified an adjustment in the previous geological interpretation 

of the fault plane extension. The fault dips into the granitic body with a 

smaller angle and bends at a depth of approximately 1400 m below sea level.  

The imaging results confirmed the previously interpreted orientation of 

faults and fissures within the granitic body which extend relatively 

perpendicular towards the Roter Kamm. This supports also the 

aforementioned interpretations from the scattering pattern of the located 

hypocenters.  

Analyzing the final image also showed that in a passive seismic approach, 

with respect to the imaging method and the reflected phases which are used 

for imaging, the source-receiver positions and the focal mechanism of the 

sources can affect significantly the quality and resolution of the final image.  
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Outlook 

 

The presented study attempted to derive the best possible results from the 

available dataset and velocity model. The results of both parts of the study 

are satisfying as their reliability is proved from different aspects. The 

localization and imaging methods can be used for investigations in any other 

area, especially in areas with complex geology, the procedure can be useful to 

precisely locate microearthquakes and image subsurface structures. 

 Nevertheless, applying a 3-D velocity model which includes the anisotropic 

characteristic of the crystalline environment, may strengthen the accuracy of 

both the localization and imaging results. To improve the precision of both 

procedures in Schlema-Alberoda, It is recommended that the recording 

network be modified in two aspects. First, the installation condition (rigidity 

and spacing) of the stations, which can improve the quality and consistency 

of the recorded waveforms. Second, the coverage of the network over the area. 

An expanded recording network is highly recommended since this will extend 

the imaging aperture and consequently strengthen the accuracy and 

resolution of the imaging results, in particular, of the targets in deeper parts. 

The dataset used in this study contains only 1-component (vertical records) 

and therefore, only P-waves are used in the localization and imaging 

procedures. Installing multi-component recording stations around the study 

area will provide the possibility of using S-waves in both procedures and can 

improve the results. Not to mention that generally in the case of natural 

seismic sources (earthquakes), a significant part of the energy releases in the 

form of S-wave.    

The released energy from the seismic events in Schlema-Alberoda in the 
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presence of tectonic forces and overburden load, may result in deformations 

and breakdowns in the mine openings and pits, which consequently can cause 

collapses in larger dimensions with destruction at the surface. The results of 

this study show that the occurrence of seismic events will continue and 

therefore, permanent and precise seismic monitoring in the area is 

imperative. 

Locating more events within individual time periods with the presented 

localization algorithm may provide more details about the fault extensions 

and fractures and crack growth within the granitic body. The resulting 

information can be valuable for anticipating upcoming events. On the other 

hand, through such a survey, new hydraulic paths can be detected 

(particularly in connection to the Roter Kamm) which may be useful in a 

geothermal project.  

The imaged part of Roter Kamm demonstrated its reflectivity and therefore 

proved mineralization on the fault plane within the granite (at least partly). 

It is recommended that by installing recording stations (preferably 3-

component) at far offsets to the fault plane, and distributed over the north-

eastern part of the area, another passive seismic imaging survey would be 

conducted using the same approach as in this study. It is expected that 

through such a survey, the fault plane can be imaged in more details 

including its likely downward extension. 
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Appendix:  

Located events in the Schlema-Alberoda. The coordinates are in a local 

Cartesian coordinate system. The timestep refers to the iterative migration 

(see section A-6-4). 

 

yy.mm.dd x y z Origin time timestep 
98.03.02 8150 6550 1575 13:03:34,81 68 
98.05.10 8475 6400 1575 12:27:57,63 75 
98.05.29 8550 6800 1075 13:44:47,28 50 
99.01.02 8350 6775 1375 17:01:31,82 67 
99.01.11 8325 6750 1350 02:47:07,38 65 
99.02.01 9300 5525 1225 00:52:24,87 83 
99.03.19 8525 6475 1550 14:42:06,13 94 
99.04.26 8250 6800 1325 12:21:46,50 64 
99.05.11 7850 6375 1725 05:31:32,73 61 
99.07.09 7925 7550 850 15:01:00,82 62 
99.08.01 7850 6550 1475 00:46:23,72 96 
00.06.21 8200 6550 1175 10:13:37,19 61 
01.05.23 8475 6575 875 16:40:03,46 52 
01.11.16 8000 7100 250 08:24:12,29 29 
03.03.12 8025 7650 550 15:20:10,98 22 
03.11.27 8675 6225 1325 14:40:40,96 75 
03.11.28 8825 6125 1350 01:17:40,57 83 
06.01.07 8175 7325 1225 15:25:12,59 51 
06.01.30 8325 7500 675 05:25:45,45 30 
06.02.23 8125 6425 1850 16:04:15,38 72 
06.02.25 7725 7525 750 14:03:23,48 25 
06.02.26 8400 6675 1400 09:19:11,32 68 
06.02.28 6875 7475 1375 05:43:20,70 57 
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06.03.01 8325 6350 1950 15:28:31,88 80 
06.03.03 8475 6500 1550 16:28:17,98 76 
06.03.20 8475 6575 1900 12:40:26,39 88 
06.04.01 7950 7075 1100 08:13:27,95 49 
06.04.01 7950 7100 1125 23:16:43,13 49 
06.04.02 7825 7100 1025 04:31:51,32 45 
06.04.12 8875 6275 1250 15:49:20,30 75 
06.04.12 8900 6275 1325 16:17:37,70 77 
06.04.13 9050 6075 1050 08:42:55,71 73 
06.06.09 8550 6875 1325 19:59:10,44 69 
06.06.10 8625 6525 1525 09:14:17,26 81 
06.06.12 8650 6500 1525 22:59:21,54 82 
06.06.29 8825 6225 1225 08:33:13,31 74 
06.06.29 8825 6225 1225 12:34:32,29 74 
06.07.24 8350 6575 1425 17:24:04,53 68 
06.08.05 8825 6125 1450 07:51:14,97 79 
06.08.12 8275 6700 1550 20:08:23,48 74 
06.08.27 8625 5625 825 17:11:21,39 57 
06.09.21 8475 6450 1350 05:03:18,39 71 
06.10.06 8875 5475 1000 03:33:41,45 70 
06.10.30 7800 6400 1925 01:03:23,97 88 
06.11.09 7600 6900 1875 18:26:12,88 86 
06.11.26 7700 6725 2025 17:28:13,84 85 
07.01.14 9200 5950 1625 18:35:57,11 98 
07.02.06 7975 7050 1075 17:57:16,28 50 
07.02.06 7975 7025 1050 17:57:38,23 51 

07.02.07 8125 7275 900 14:01:35,45 61 
07.02.10 8300 7250 1075 13:45:56,72 52 
07.03.26 7825 7200 1075 02:48:26,99 73 
07.04.01 7950 7650 800 11:54:24,53 24 
07.04.19 9025 5950 850 18:46:07,16 63 
07.07.27 7625 6925 1300 22:40:47,30 57 
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07.08.03 7575 6550 1250 19:00:59,10 46 
07.08.04 8775 6250 475 18:37:16,07 48 
07.09.25 8100 8475 325 02:21:06,69 36 
07.10.13 7875 7775 1075 06:28:05,54 31 
07.10.13 9000 5900 725 12:38:26,85 57 
07.10.16 8950 6075 925 04:36:34,80 66 
07.11.04 7825 6750 1375 16:15:40,76 60 
07.11.17 7675 7200 1400 08:31:55,83 57 
07.11.18 7925 7025 1800 17:51:02,83 79 
07.11.18 8000 7025 1100 17:51:12,40 52 
07.11.18 8300 7050 1425 18:11:05,92 69 
07.12.18 7975 7075 1000 21:48:32,79 54 
07.12.25 7750 7100 1025 09:51:32,12 44 
07.12.26 8175 6450 2025 08:14:10,55 108 
08.01.03 7825 7300 1375 19:36:27,27 58 
08.01.05 7800 7675 1000 13:11:06,87 26 
08.01.10 9875 7850 1475 04:29:58,85 98 
08.01.10 9375 7750 1325 04:38:31,09 81 
08.01.12 8700 6400 1525 04:28:58,93 89 
08.01.15 8275 7275 1000 18:50:29,78 45 
08.01.16 9850 5275 1625 09:30:40,22 112 
08.01.16 8950 6175 3225 20:21:49,49 156 
08.01.22 8925 6150 1450 00:55:37,27 79 
08.01.22 8950 6100 1375 08:04:06,22 77 
08.02.18 7975 7575 800 11:38:58,52 23 
08.02.19 7925 7625 700 01:28:12,47 21 

08.02.21 9225 5875 1275 18:46:24,60 83 
08.03.02 9000 6000 1000 07:46:44,27 70 
08.03.10 7725 7525 1100 23:21:57,47 34 
08.04.13 8175 7175 925 04:18:57,76 47 
08.04.14 7725 6800 775 03:25:54,29 53 
08.04.20 7875 6800 1300 01:20:32,87 64 
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08.04.23 8925 6300 1650 22:17:41,65 103 
08.04.24 7725 6675 1425 00:19:42,82 70 
08.05.09 7875 6950 1125 16:01:27,43 82 
08.05.24 9250 5775 1200 19:48:09,19 80 
08.05.25 8075 7125 1225 12:01:58,61 53 
08.05.27 7950 6825 1350 18:18:21,46 65 
08.06.06 8100 6275 1550 04:09:11,46 91 
08.06.11 9075 5800 2100 17:13:22,06 112 
08.06.16 7950 7400 1100 10:06:09,26 46 
08.07.01 9250 5300 1250 02:57:34,45 87 
08.08.16 8350 6475 1475 08:33:47,84 86 
08.08.31 8650 6525 1500 04:14:13,58 89 
08.09.14 8875 5550 1025 14:06:49,85 70 
08.09.15 7775 6750 1550 16:21:00,47 71 
08.10.19 7425 7675 1950 09:12:10,97 69 
08.10.27 9225 5850 1325 11:55:38,83 85 
08.11.11 7925 6900 1375 21:20:57,57 62 
08.11.22 9375 5900 1575 13:04:00,95 96 
08.11.26 8975 6275 900 18:29:21,36 67 
09.02.09 9250 6050 1800 08:52:28,88 109 
09.02.22 8050 6975 1150 00:14:21,59 56 
09.03.19 9050 5450 1725 21:57:06,27 105 
09.04.11 9475 5875 1750 18:57:15,27 105 
09.04.28 7900 7675 800 16:51:35,37 22 
09.05.14 8075 7125 1125 05:40:37,99 51 
09.05.16 7950 7150 1325 19:43:38,58 55 

09.05.28 7975 6675 1600 08:56:24,36 77 
09.10.25 8300 6250 2200 03:16:12,44 122 
09.11.04 9050 6075 1125 20:14:51,36 76 
09.11.04 8050 6275 1700 21:47:55,49 94 
09.11.10 8050 6300 1700 06:03:11,33 93 
09.11.21 8875 6300 900 07:15:04,72 68 
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10.01.06 8775 5975 1300 14:02:25,27 85 
10.02.03 9250 5725 1800 05:41:09,18 106 
10.04.16 7850 6800 1750 23:44:53,89 80 
10.04.19 9225 5800 1275 19:16:22,32 83 
10.05.11 8125 7125 1325 14:30:55,02 57 
10.05.11 8125 7125 1275 16:52:04,69 56 
10.09.16 9100 5850 875 15:14:22,91 64 
10.10.22 8000 7050 1175 08:39:31,58 79 
12.11.06 7950 6800 1250 15:04:57,62 75 
12.01.24 3775 3150 2050 17:13:01,70 53 
12.01.25 3825 3175 1825 05:16:36,08 67 
12.01.25 3825 3400 1650 05:51:41,11 40 
12.01.25 3750 3125 2150 06:04:34,75 71 
12.01.25 3725 3150 2175 06:11:44,87 59 
12.01.25 3875 3400 1700 06:21:38,64 84 
12.01.25 3775 3175 2025 07:20:54,30 77 

 
 

 

 

 

 

 

 

  


