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Abstract 

This thesis aims to deepen the understanding of the anisotropic nature of the laminated rock masses. 

Such nature is governed by the primary and secondary structures generated during the formation 

stages. Thus, the variation of rock strength and stiffness, as known as mechanical anisotropy, is 

expected at different scales: large- or small- scale. For most sedimentary and metamorphic rocks, 

the anisotropic nature is characterized as inherited at which no main discontinuities (i.e. major 

faults or cracks) could be distinguished. For engineering applications built either on or in the 

anisotropic rock masses, the investigation of the strength and deformation behavior is essential. 

To achieve this goal, two different continuum-based constitutive models named ‘Transubi model’ 

and ‘Jhoek model’ are presented and implemented into FLAC for the analysis of inherent 

anisotropic rocks. Both models are adequate for laminated rocks whose inherent planes of 

anisotropy could not be explicitly simulated. 

Using the Jhoek model, the strength anisotropy could be described within the rock matrix by 

applying rock material parameters which vary with the orientation of the inherent planes of 

anisotropy. This model combines the Hoek and Brown failure criterion with the ubiquitous joint 

plane approach to capture both non-sliding and sliding failure modes, respectively. On the other 

hand, the Transubi model captures the stress-strain behavior of laminated rocks using a bi-linear 

yield surface consisting of the Mohr-Coulomb yield criterion to check the failure of the rock matrix 

and the weakness planes. This Transubi model behaves as strain hardening/softening by which the 

strain hardening in the pre-peak region and the strain softening in the post-peak region for bedded 

argillaceous rocks could be simulated. 

Experimental investigations and numerical simulations, using Transubi model, mainly focus on 

the influence of the mechanical anisotropy on the development of plastic zones around excavated 

openings in  laminated rocks. Later, the Transubi model is applied to a tunnel driven in a shaly 

facies formation of bedded argillaceous Opalinus clay in an URL (FE-tunnel) to obtain short-term 

stability insights. The simulation results are compared with data from in-situ measurements 

showing good agreements and indicating that the consideration of stiffness anisotropy is as 

important as the strength anisotropy. Overall, the research outcomes may have a prospective 

impact regarding the understanding of anisotropy of laminated, bedded and foliated rocks which 
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improves the prediction of deformation behaviour using continuum-based numerical modeling 

tools. 
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1. Introduction   

1.1. Scope and research strategy 

Rocks are generally jointed and naturally anisotropic. The stability of engineering applications 

built on or in the rock masses are related to the strength and deformation behavior of those masses. 

Thus, their strength and deformation behavior under different and complicated stress conditions have 

to be analyzed in order to solve stability problems related to slopes, tunnels and underground 

excavations. Rock anisotropy is not only caused by the existence of major faults, remarkable cracks or 

secondary structures in general, it also depends on the nature of the host rock. For example, intact 

sedimentary or metamorphic rocks show remarkable orientation dependent variations in strength and 

elastic moduli. In other words, even massive rocks possess anisotropic nature without the presence of 

natural or induced discontinuities. This nature is caused by the so-called primary structures: bedding 

planes, schistosity, fissility etc.  

Through the past decades, various analytical, numerical and empirical methods are developed to 

consider the mechanical anisotropy of rock masses. Nowadays, it is possible to incorporate more 

aspects of rock mass behavior into the analysis using numerical simulation tools. Continuum based 

numerical methods are one of the best tools to provide both, accurate estimations and efficient 

computations. 

In this thesis, two new continuum-based constitutive models named ‘Transubi model’ and ‘Jhoek 

model’ are presented and implemented into FLAC for the analysis of inherent anisotropic rocks. 

Both models are adequate for interlayered rock masses whose inherent planes of anisotropy could 

not be explicitly simulated. The Transubi model aims to capture the stress-strain behavior of 

transverse isotropic rocks, while a bi-linear yield surface consisting of the Mohr-Coulomb yield 

criterion is used to check the failure of the rock matrix and the weak planes. The Transubi model 

is validated and calibrated against a series of triaxial tests conducted on well-known inherent 

anisotropic rock samples such as Tournemire shale and Opalinus clay. The scope of the 

formulation of the Transubi model is to improve predictions of the deformational behavior of 

underground excavations in inherent anisotropic rocks. On the other hand, the Jhoek model 

considers inherent anisotropic rocks by applying a Hoek and Brown failure criterion for intact rock, 

and a Mohr-Coulomb yield criterion for weak planes.  
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1.2. Structure of thesis 

This dissertation is subdivided into eight chapters as follows:  

The first chapter (Introduction) (current chapter) introduces the scope the of the research and 

provides the major contributions of the thesis.  

The second chapter (State-of-art) based on a literature review  considers the main geological 

features which cause rock anisotropy. It provides a theoretical review of  anisotropy based on 

elastic and inelastic concepts. Besides, a detailed overview of continuum-based approaches for 

anisotropic rocks is given. Advantages and limitations of different approaches are discussed.  

The third chapter (Transubi model) describes the formulation of this new model and delivers a 

validation via uniaxial and triaxial tests and a comparison with the ubiquitous joint and the Caniso 

model.  

The fourth chapter (Tournemire shale and Opalinus Clay) presents detailed numerical 

investigations of the mechanical anisotropy of bedded argillaceous rocks (Tournemire shale and 

Opalinus clay). Data from literature of triaxial tests and direct shear tests are used to calibrate the 

numerical simulations using the Transubi model.  

The fifth chapter (Physical tests) investigates the significant influence of the transverse isotropic 

elastic constants on the plastic zone around excavated openings. Thus, a special laboratory test 

with a slate block containing a circular hole was designed. Cyclic loading is applied on the sample 

while the opening perimeter is continuously observed. Then, the experiment is numerically 

simulated using the Transubi model and results are compared against the lab measurements.  

The sixth chapter (FE-Tunnel in Opalinus clay) presents numerical simulations of the 

excavation of the FE-Tunnel in Opalinus clay using the Transubi model. The tunnel is modelled 

with and without consideration of pore water pressure. The simulation results are compared with 

the in-situ measurements. Special attention is paid to the short-term deformation behavior around 

the excavated opening.  

The seventh chapter (Jhoek model) introduces a new constitutive model based on a combination 

of the Hoek model and the ubiquitous joint approach. The Jhoek model is validated by using 

literature data of triaxial tests. In addition, simulation of a true triaxial test is presented. 

The eighth chapter (Conclusions) summarizes the work presented. Conclusions and an outlook 

are given in which achievements and new finding are summarized. Recommendations for future 

research work are specified. 
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1.3. Major contributions of the thesis 

This thesis focuses on capturing both, the strength and the stiffness anisotropy of inherent 

laminated rocks such as sedimentary and metamorphic rocks. Such study is important to predict 

the deformational behavior around openings excavated in those rocks using numerical simulation 

tools. The main findings of the thesis are: 

 

(1) Normally, continuum-based models are suited for inherent laminated rocks with small 

thickness of interlayers (< 1cm). Also, most of those rocks show pronounced anisotropy in both, 

strength and stiffness.  

 

(2) Considering only anisotropy in strength will lead to under-prediction of final strain values and 

therefore the estimated deformations. 

 

(3) Usually, the compressive strength values are plotted as U-shaped with shoulders as assumed 

by Jaeger and Cook (1979) showing constant strength values for the rock matrix, while in reality 

there is anisotropy in the intact rock as well as the joint plane.  

 

(4) A review on the various developed continuum-based approaches for anisotropic rocks is given. 

These approaches were compared with each other. Based on this review two new approaches are 

proposed.   

 

(5) A transverse isotropic elasto-plastic model called Transubi-model was developed and 

implemented which considers stiffness and strength anisotropy as well as strain 

hardening/softening of weak planes and rock matrix.  

 

(6) The proposed Transubi model is applied to simulate the behavior of bedded argillaceous rocks 

(Tournemire shale and Opalinus clay). Simulation results show very good agreement with the lab 

results. Direct shear tests of Opalinus clay are firstly simulated using continuum-based tools. 

 

(7) In-depth going investigations are performed on the dilation behavior of Opalinus clay using 

the Transubi model. Realistic values for the dilation angles are proposed.     
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(8) Exploring the plastic zone and the deformation behavior around a loaded slate rock block 

containing a circular hole documents that the Transubi model is able to predict measurements and 

observations quite well. 

 

(9) Numerical simulations of the short-term deformational behavior during the excavation of the 

FE-Tunnel in Opalinus clay (Mt. Terri) showed that – compared to measurements -   considering 

the pore water pressure is necessary especially in respect to volumetric strain. 

 

(10) For strain softened material like Opalinus clay, grid structure and resolution play an important 

role. Strain localization and formation of shear bands are highly grid dependent. Best results are 

found for radial symmetric grids. 

 

(11) An elasto-perfect-plastic model called Jhoek model is proposed using the Hoek and Brown 

failure criterion to simulate the rock matrix, while ubiquitous joint approach is proposed for the 

weak planes. The H-B parameters mβ, σci0 and σci90 for rock matrix reflect the strength anisotropy 

of the matrix.  
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2. State of the art: Continuum-based modelling of anisotropic rocks 

2.1.  Features causing rock anisotropy 

Rocks are characterized by mechanical bonding of grains of one mineral (mono-mineral rocks) or 

more than one mineral (poly-mineral rocks). The mechanical bonding depends on the origin of the 

rock, whether it is of igneous, metamorphic or sedimentary type. During the formation of rocks 

different processes takes place which cause primary and secondary rock structures. In the 

following the main geological features which cause rock anisotropy are discussed. The mechanical 

anisotropy of rocks is already widely investigated through the last few decades. The anisotropic 

behavior is influenced by micro and macro scale characteristics. Anisotropy can be subdivided 

into inherent and induced anisotropy (Casagrande and Carillo (1944)). Inherent mechanical 

anisotropy of rocks can be interpreted very well and is common for all metamorphic rocks and 

some sedimentary rocks as well. As seen in Fig. 2-1, the naturally inherent anisotropy planes result 

in variations in both, rock strength and stiffness with respect to the loading direction (Saroglou 

and Tsiambaos 2008). The anisotropic nature of metamorphic rocks is caused by the natural 

orientation of flat and long minerals or banding phenomena which can be found in schists, gneisses 

and slates (Ismael et al. 2014; Oda and Nakayama 1989; Bagheripour et al. 2011). The inherent 

anisotropy of sedimentary rocks is caused by the stratification of the bedded layers.  

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2-1 Orientation of inherent planes as function of plug direction, (Wang 2002) 
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The induced anisotropy appears at the inelastic stage but can be illustrated by the fabric scale as 

well as the inherent anisotropy which has been explained for granular material by Oda (1993). He 

found that during a plastic deformation the particles reform continuously and create new contact 

planes. Such planes can be considered as planes of anisotropy which influence the following stage 

of plasticity (i.e. hardening or softening). At the macro scale, induced anisotropy can be generated 

in originally isotropic rock masses due to extremely non-hydrostatic stress states (Wu and Hudson 

1991; Shao et al. 1994). Usually the investigation of induced anisotropy is associated with rock 

masses and is related to engineering applications, such as excavation of tunnels (Wang and Huang 

2014) or borehole stability  (Fang et al. 2013; Wang et al. 1993). Here we concentrate mainly on 

the mechanical inherent anisotropy, although to some extent induced anisotropy is also discussed.   

2.1.1. Primary structures 

Micro geological features are named also primary structures generated during the formation stage 

of rocks. These features influence the rock anisotropy by rock fabric anisotropy, texture, 

schistosity and fissility. They are mainly found at the micro scale and related to the grain size. In 

general, the anisotropic behavior of the rocks mainly depends on the texture and fabric of the 

principal rock forming minerals, the so-called microscopic fabric (Ullemeyer et al. 2006). 

According to the anisotropic nature of rocks Bagheripour et al. (2011) stated: 

1. Most foliated metamorphic rocks, such as schists, slates, gneisses and phyllites, contain a 

natural orientation in their flat/long minerals or a banding phenomenon which results in 

anisotropy in their mechanical properties. Fig. 2-2.a shows a sample of metamorphic fabric 

in which a coarse-grained band-textured gneiss interlocks with different feldspar minerals. 

2. Stratified sedimentary rocks like sandstone, shale or sandstone-shale alteration often 

display anisotropic behavior due to the presence of bedding planes. The major reason for 

the anisotropy of sedimentary rocks is the sedimentation processes of the different layers 

(strata) or different minerals with various grain sizes. Fig. 2-2.b shows a sample of bedding 

which is found in graded bedded sedimentary rock. Fissility is a special geological feature 

of sedimentary rocks in which grains are deposited forming parallel sets of planes and the 

rock unit fails by slipping along these planes. However, the fissility of laminated rocks is 

considered as a structure related mostly to sedimentary rocks such as siltstone and it is 

metamorphosed into the foliation (Van Hise 1896). 
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3. Anisotropy can also be exhibited by igneous rocks having flow structures as may be 

observed in porous rhyolites due to weathering (Matsukura, Hashizume, and Oguchi 2002). 

Generally, igneous rocks have only seldom fabric anisotropy. But in some cases, anisotropy 

may be found due to layering when lava flows and moves as highly viscous masses 

immediately before the consolidation (Walhlstrom 1973).  

Here, we have to point out the difference between terminologies, such as: layering, bedding, 

lamination and foliation. Basically, sedimentary rocks are formed by the deposition of grains and 

particles. The default is a horizontal stratum which usually turned to graded bedded layers based 

on the size of grains (coarse grains settle faster and before fine grains). Non-horizontal 

sedimentation is called cross bedding deposition. Generally, the undisturbed formation of 

sedimentary rocks takes place as follows: bedding as macro-scale labeling, layering which can be 

found within the same bed indicating the variation of the deposition rates, and at the finest scale, 

there is lamination with small thickness (< 1cm).  

 

 

 

 

 

 

(a) (b) 

Fig. 2-2 Samples of primary styructures (a) Metamorphic texture of coarse-grained foliated gneiss  

(Weinberg, 2007); and (b) Graded bedded sedimentary rock, one strata consists of various layers 

due to discontinuity of the depostion.  
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Metamorphic rocks are formed by subjecting the original rocks to the conditions of high 

temperature and high pressure. One of the main metamorphic fabric is called foliation in which 

the realignment of the long and flat minerals such as mica causes repetitive layering which could 

be very thin like a sheet of paper or reach a thickness of several meters. Schistose rocks are 

categorized as coarse grained foliated metamorphic rocks. Foliation is a common fabric and can 

be found in several metamorphic rocks such as slate, gneiss, schist and phyllite.        

 

2.1.2. Secondary structures 

Secondary structures are macro scale features also called “discontinuities”. They are defined as: 

(i) cracks and fractures, (ii) bedding planes and (iii) shear planes and faults (Salager et al. 2013). 

Such features’ influence is significant and associated with three distinct issues (Bobet et al. 2009): 

i. The scale: which effects the modelling of these planes implicitly or explicitly, 

ii. Stress and/or displacement conducted: these planes significantly reduce the rock strength, 

and 

iii. Relative motions of rock blocks: the discontinuity limits the elastic behavior of the rock 

material. 

Hoek (1983) has developed a criterion to express the strength of the jointed rock mass:  

i. The rock strength of jointed rock depends completely on the degree of interlocking of 

rock blocks,  

ii. Rocks with a single joint set behave highly anisotropic, and 

iii. The strength behavior of rock masses having three, four or five intersecting joint sets are 

considered approximately homogenous and isotropic. 

2.2.  Observation and measurement of rock anisotropy 

For the characterization of rock anisotropy most of all the following parameters are used. 

2.2.1. Strength anisotropy 

Anisotropy of rock strength means that the rock strength is a function of the angle between loading 

direction and orientation of the anisotropy planes. For simplicity and due to the fact that this 

constellation is often met in engineering practice and lab testing, let us consider uniaxial loading 

of a rock sample with one plane of weakness. In that case the minimum strength value will be 

found usually between βmin = 30o and 45o (β is the angle between loading direction and plane of 
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weakness). The magnitude of the strength changes according to the orientation of the inherent 

planes of weakness. Saroglou and Tsiambaos (2008) have tested different types of metamorphic 

rock. Fig. 2-3 shows the obtained uniaxial compressive strength (UCS) as function of orientation 

angle β. This diagram shows, that some rocks show pronounced anisotropy in strength, others not 

or only marginal. 

 

 

 

 

Anisotropy in strength is also observed under tensile loading. Fig. 2-4 shows results for Brazilian 

indirect tensile tests carried out on Leubsdorfer Gneiss (Le.Gs) at fixed value of bedding dip 

direction (ψ = 0o, bedding planes direction is parallel to loading). It is indicated that the loading 

orientation plays also a significant role in characterizing the tensile strength anisotropy. Also, the 

dip direction has significant influence on the results.  
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2.2.2. Stiffness anisotropy 

Besides strength anisotropy, there exists also an anisotropy in stiffness, namely in terms of elastic 

constants like Young’s modulus E or Poisson ratio ν. 

 

Table 2-1 Elastic constants of Mayen-Koblenz slate (Nguyen 2013) 

Matrix Parameters Unit 

Min. – Max. Value 

‖ ⊥  

Young’s modulus [GPa] 71 – 75  40 – 43  

Poisson’s ratio [-] 0.25 – 0.3  0.23 – 0.3  

  - Parallel to schistosity plane. ⊥  - Perpendicular to schistosity plane 

Table 2-1 shows the elastic properties of a slate measured parallel and perpendicular to the plane 

of anisotropy (schistosity plane). Stiffness parallel to the schistosity planes is much higher than 

those perpendicular to the schistosity planes. Kim et al. (2012) as well as Park and Min (2015) 

have studied anisotropic characteristics of the elastic moduli of Asan (As) gneiss and Yeoncheon 

(YC) schist. The YC schist shows stronger anisotropy in stiffness than the AS gneiss as presented 

in Fig. 2-5. 
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Fig. 2-4 Tensile strength versus orientation angle β of Leubsdorfer Gneiss 

(Le.Gs) at dip direction ψ = 0o, after von Dinh (2011). 
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2.2.3. Other types of anisotropy 

Anisotropy of rocks is also observed  in respect to permeability and seismic properties. 

Permeability anisotropy can be caused by bedding, schistosity, fractures, damage, loading etc. A 

rock material is considered to be quasi-isotropic when the permeability ratio in two perpendicular 

directions (kv) to (kh) is >= 0.7 (Meyer 2002). Mokhtari et al. (2013) investigated the permeability 

of Mancos shale in respect to the orientation of the bedding planes and the confining pressure. Fig. 

2-6 shows the permeability values of six vertical, one inclined (45°) and one horizontal core 

samples subjected to different confining pressures ranging from 1130 psi (≈7.79 MPa) to 3390 psi 

(≈ 23.37 MPa).  

On the other hand, seismic anisotropy means that the wave propagation velocity depends on the 

propagation direction of the waves through the rock. The wave speed is maximum (Vfast) in the 

direction parallel to the anisotropy plane and minimum (Vslow) perpendicular to this direction. It 

can be distinguished between P- and S-wave velocities (compressional and shear wave velocities) 

(Inks et al. 2014). In addition, shear wave splitting or damping can be used to characterize 

anisotropy.  

 

Fig. 2-5 Young’s modulus for AS gneiss and YC schist as function of angle β (Park and Min 2015) 
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2.3.  Theoretical research background 

2.3.1. Elastic stiffness/compliance matrix of rocks 

The classical continuum mechanical constitutive models for anisotropic rock masses are mostly 

based on the elasto-plastic theory, but with special consideration of joint effects. An increment in 

total strain (ε) can be decomposed into an elastic part εe and a plastic part εp.  

= e p  +         (2.1) 

The first deformation stage is characterized by linear elasticity. A review of the generalized 

Hooke’s law considering different types of anisotropy are provided in Table 2-2 and Fig. 2-7. The 

incremental strain-stress equation in the elastic stage can be written in tensorial form as follows: 

 

ij ijkl klC  =         (2.2) 

where, Cijkl is the elastic compliance tensor, which has 36 elastic constants (6 x 6 matrix). 

 

 

Fig. 2-6 Permeability anisotropy of Mancos shale core samples (Pc: 

confining pressure; 1 psi = 0,0069 MPa), Mokhtari et al. (2013). 
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Table 2-2 Overview about anisotropic elastic rock models 

 

2.3.1.1 Intact rock as an isotropic material 

The model of linear elasticity is the most widely used one to describe the mechanical behavior of 

hard brittle rocks. In this case the compliance matrix of the constitutive law is simply characterized 

by two independent material properties: Young’s modulus E and Poisson's ratio ν, or the 

corresponding Lame's constants, G and λ. 

Elasto-plastic models which use the Mohr-Coulomb or Hoek-Brown failure criteria have been 

developed and applied for fractured rocks since the 1970s (e.g. Hoek and Brown 1980; Owen and 

Hinton 1980). Intact rock masses in those elastic/elasto-plastic models are all regarded as an 

isotropic material are shown in Fig. 2-7.a. Mohr-Coulomb plasticity is suitable for rocks with 

negligible bedding (thick sandstone), while for the thinly bedded bedrock several anisotropic 

models are used (Barton et al. 2005) which embedded joints inside an intact rock (see Fig. 2-7.b). 

In the above mentioned models, influence of joint parameters and joint spacing are not considered 

in the elastic compliance matrix.  

Anisotropy 

type  

Representation 

of joints  

Independent 

parameters for 

compliance 

tensor 

Scope of application Model type 

Isotropic None E, ν  Hard rocks or heavily-

fractured rocks 

Elastic / Elasto-plastic  

One joint set E, ν Thinly bedded bedrock Elasto-plastic  

Several joint 

sets 

E,ν+ ∑ (kni, ksi, 

spacei) 

Fractured rock mass Elasto-plastic    

Transverse 

isotropic 

 

None E1, E2, ν1, ν2, G2 Layered rock  

 

Elastic / Elasto-plastic 

transverse  isotropic     
Parallel to 

inherent joint 

orientation 

E1, E2, ν1, ν2, G2 

Orthotropic 

 

Two or three 

orthogonal joint 

sets 

E1,E2, E3, ν1, ν2, 

ν3, G1, G2, G3  

Perpendicular joint sets Elastic/ Elasto-plastic 

orthotropic 
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2.3.1.2 Intact rock as isotropic material combined with joint parameters  

For a jointed rock mass, the mechanical behavior is influenced by  joints (Zhang and Lei 2013). 

More sophisticated constitutive models (Fig. 2-7.c, .d) for a jointed rock mass can be derived using 

the equivalent continuum method which considers the spatial, stiffness and strength characteristics 

of up to three joint sets (Sitharam and Verma 2005; Sitharam et al. 2007; Jiang et al. 2009; Wang 

and Huang 2014). The established equivalent elastic compliance matrix of the rock mass can be 

determined by superposing the compliance of all components (Agharazi et al. 2011), as follows: 

1

n
I i

eq j

i

C C C
=

= +        (2.3) 

where: 

Ceq: equivalent compliance matrix of the rock mass, 

CI: intact isotropic rock compliance matrix, 

Cj: joint compliance matrix represented by joint stiffness and space parameters. 
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Fig. 2-7 Schematic for anisotropic models: (a) isotropic model (elastic/elasto-plastic: two independent 

elastic parameters), (b) anisotropic model composed by isotropic intact rock and one implicit joint set 

without joint stiffness, (c) anisotropic model consisting of isotropic intact rock and implicit joint with 

joint stiffness parameters, (d) anisotropic model consisting of several joint sets with joint stiffness 

parameters, (e) elastic transverse isotropic model (five independent elastic parameters),  (f) anisotropic 

model consisting of transvers isotropic intact rock with a representative joint orientation, (g) elastic 

orthotropic model (nine independent elastic parameters) 
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2.3.1.3 Intact elastic anisotropic rocks 

Models based on the concept of isotropic intact rock cannot fully describe the behavior  of typical 

layered rock masses due to the preferred joint orientations or the subsistent of non-random joints 

(Tien and Kuo 2001). Several anisotropic models were deduced by considering alternative elastic 

symmetry conditions, such as transverse isotropy (Fig. 2-7.e) or continuum intersected by two 

orthogonal sets of joints (Jing 2003). The elastic transverse isotopic compliance matrix has five 

independent constants. For the past few years, some developed models combine the transverse 

isotopic intact rock with the joint strength parameters to consider the stiffness anisotropy influence 

of the layered rocks. These models (Fig. 2-7.f) have a single plane of weakness, which matches 

the orientation of the plane of isotropy. Similar developments are also  noticed by Schoenberg  and 

Muir (1989) who added additional joint elements into the homogeneous medium equivalent to a 

heterogeneous set of layers. Johnson and Rasolofosaon (1996) characterized the stress-induced 

behavior of transverse isotropic rocks.    

Extensive research work has been carried out to formulate appropriate models for orthotropic 

materials (Fig. 2-7.f). An orthotropic rock has nine independent elastic constants. Layered 

sedimentary rocks intersected with perpendicular tension joints are examples of orthotropic rock 

masses. Crook et al. (2002) used an orthotropic elasto-plastic model to analyze the principal 

characteristics of weak shales, while Xin-pu et al. (2001) introduced an orthotropic damage tensor 

into the Mohr-Coulomb criterion through homogenization. 

2.3.2. Various anisotropic rock failure criteria  

A failure criterion is a governing equation or framework which predicts the value of the maximum 

loading and its conditions, i.e. loading rate and loading orientation, causing the rock to fail. Both, 

Duveau et al. (1998) and Kwasniewski (1993) published a review about anisotropic rock failure 

criteria, while a most recent classification can be found in (Ambrose 2014). In these reviews, 

anisotropic rock failure criteria are classified into continuous and discontinuous based on the 

representation of the anisotropy or the discontinuities within the material.  

Mathematical continuous approaches 

A continua is modelled as a solid body having a continuous variation in strength depending on 

direction. Usually the main linkage in the formulation is the loading angle β or the foliation angle 

ѱ or both of them (Ambrose 2014). Pei (2008) and Semnani et al. (2016) summarized different 

mathematical based failure criteria for anisotropic rocks.  
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Based on the von Mises approach, Hill (1950) proposed the first anisotropic failure criterion for 

frictionless material (i.e. metals) which has been extended for fiber reinforced composites by Tsai 

and Wu (1971) and for anisotropic rocks by Pariseau (1968) in which a relationship between the 

deviatoric  stress (= σ1 - σ3) and β has been formulated. Another way to consider the anisotropy 

was proposed by Boehler and Sawczuk (1977) based on the invariants of stress and structure 

tensors. Allirot and Boehler (1979) applied this criterion on samples of diatomite. In the same 

context, Pietruszczak and Mroz (2000) formulated a failure criterion incorporating an anisotropy 

parameter within the microstructure tensor. The third and the final type of those approaches is the 

transformed stress tensor technique by which the Mohr-Coulomb isotropic failure criterion has 

been extended to both, transverse isotropic and orthotropic materials (Boehler and Sawczuk 1977). 

Later one Nova (1986a) provided an extended Cam-Clay model for soft anisotropic rocks by 

rotating the fourth-order tensor in reference to the principal stress directions. 

Although those mathematical approaches have a strong basis and background, there are some 

challenges facing them: (i) most of those models are complex and do not provide a clear physical 

meaning of the material parameters, (ii) when those models are applied to anisotropic rocks, 

several constants have to be determine experimentally, and (iii) the introduced terms of the stress 

state require well understanding of the behavior of the studied anisotropic rocks (Riahi 2008).  

Empirical continuous approaches 

These approaches are mainly an extension of isotropic failure criteria, mostly the Mohr-Coulomb 

or the Hoek-Brown failure criteria, which are altered by adding some empirical parameters to 

predict the strength anisotropy regarding the loading angle β. A good review of these empirical 

criteria for both, isotropic and anisotropic rocks has been provided by Sheorey (1997). Although 

this approach is more direct, easy to handle and applicable, there are some drawbacks: (i) sound 

physical and mathematical basis are missing, (ii) formulations depend on curve fitting techniques 

of experimental datasets which require a large data base, and (iii) deduced criteria are restricted to 

rocks on which experimental testing was conducted.  

One of the first empirical formulation is known as the variational cohesion theory by Jaeger (1960) 

in which the strength is defined empirically as a function of β. This criterion was extended by 

McLamore and Gray (1967) to account also for the variation of the friction coefficient. A non-

linear regression of triaxial lab data was conducted by Ramamurthy et al. (1993). Hoek and Brown 

(1980) proposed an indirect modification on their original failure criterion which defined empirical 
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formulations for the variation of rock parameters m and s in reference to the maximum principal 

loading orientation (Fig. 2-7.a). Another modification was proposed by Colak and Unlu (2004) for 

rock parameter m  and its variation with the orientation of the anisotropy plane, assuming s = 1 for 

intact rocks. Also, distribution functions were formulated for both, m and s in terms of a second-

order tensor to predict those parameters for transverse isotropic rocks (Lee and Pietruszczak 2008). 

On the other hand, Saroglou and Tsiambaos (2008b) and Bagheripour et al. (2011) proposed a 

direct modification in order to consider the rock anisotropy for inherent anisotropic intact rocks 

direct in the Hoek-Brown failure criterion. A review about different empirical approaches 

extending the Hoek-Brown failure criterion for anisotropic rocks can be found in (Ismael et al. 

2015; Shi et al. 2016).   

Discontinuous criteria (plane of weakness approach) 

Such criteria distinguish between non-sliding (isotropic) failure in the intact rock and sliding 

(anisotropic) failure along the plane of weakness. One of the pioneering discontinuous criteria is 

Jaeger’s theory of single plane of weakness (Jaeger 1960; Jaeger 1964). Later, this approach has 

been embedded into the Mohr-Coulomb isotropic failure criterion to model the failure of jointed 

rocks (Jaeger and Cook 1979). Later, Duveau and Shao (1998) extended the single weakness plane 

approach by the non-linear Barton’s criterion. Hoek (1964) as well as Walsh and Brace (1964) 

used Griffith’s fracture criterion to follow the crack propagation through inherent anisotropic rocks. 

Generally, this approach assumes that the strength of the anisotropic rocks varies due to the 

existence of the discontinuous plane. Thus, it is no longer considered as a continuous approach. 

Also, those discontinuous criteria usually prescribe rocks having one single plane of weakness.        

2.3.3. Classifications of rock anisotropy 

Anisotropy of rocks can be quantified and classified (degree of anisotropy). Two often used 

systems are: the point load index and the strength anisotropy index. 

Point load index 

Tsidzi (1990) proposed a scheme for foliated rocks to classify the degree of foliation as well as the 

degree of anisotropy. A fabric index was introduced first to classify metamorphic rocks (Tsidzi 

1986). It has been noted that there is a strong relation between the degree of foliation and the point 

load strength anisotropy index Iα(50) according to Eq. (2.4) which is proposed by the ISRM (1985). 

(50)
(50)

(50)

s

s

I
I

I
 ⊥=        (2.4) 
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Is(50)⊥ and Is(50)// are the point load strength measured perpendicular and parallel to the foliation 

planes for a samples of diameter equal to 50 mm. According to the observations, the minimum 

point load value is found when the loading is parallel to the foliation causing splitting along the 

weakness planes (Saroglou and Tsiambaos 2007). Table 2-3 shows the proposed classification of 

foliated rocks based on the point load strength anisotropy index. 

 

Table 2-3 Classification of foliated rocks based on point load anisotropy index (Tsidzi 1990) 

Nature of rock Point load anisotropy 

Index, Iα(50) 

Descriptive term Examples 

Very strongly foliated > 3.5 Very highly 

anisotropic 

Slate 

Strongly foliated 3.5 – 2.5 Highly anisotropic Quartz mica 

schists 

Moderately foliated 2.5 – 1.5 Moderately 

anisotropic 

Mica gneisses 

Weakly foliated 1.5 – 1.1 Fairly anisotropic Granitic 

gneisses 

Very weakly foliated or 

non-foliated 

< 1.1 Quasi-isotropic Quartzite 

 

Strength anisotropy classification (Rc) 

Ramamurthy (1993) defined the anisotropy strength (Rc). Eq. (2.5) quantifies the Rc value as the 

ratio between strength of the intact rock with loading angle perpendicular to bedding (β=90o) and 

the minimum strength of the same intact rock at βmin. 

(90)

(min)

c

c

Rc



=         (2.5) 

The strength anisotropy classification Rc for various rock types is shown in Table 2-4. Rc is 

essentially based on the uniaxial compressive strength of rocks. However, reports on the strength 

anisotropy in confined compression state have shown that the degree of anisotropy for a specific 

rock is not constant (Zhang 2006). 

As the effect of strength anisotropy is reduced when the confining pressure is increased, a newly 

introduced experimental criterion for discontinuous rock defines a specific level of confining 

pressure above which the jointed weak sandstone ceased to behave as anisotropic rock 
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(Bagheripour et al. 2011). This specific level of confining pressure σ3 was evaluated in terms of 

the uniaxial compressive strength of the corresponding intact rock as σ3 = 0.58σci which is in close 

agreement with the value reported by Ramamurthy and Arora (1994). 

 

Table 2-4 Anisotropy strength ratio Rc (Zhang 2006) 

Anisotropy ratio Rc Class Rock Types 

1.0 < Rc < 1.1 Isotropic Sandstone 

1.1 < Rc < 2.0 Low anisotropy Sandstone, Shale 

2.0 < Rc < 4.0 Medium anisotropy Shale, Slate 

4.0 < Rc < 6.0 High anisotropy 
Slate, Phyllite 

6.0 < Rc Very high anisotropy 

 

2.3.3. Analysis using different numerical methods 

The stress-strain behavior has a non-reversible part which refers to the plastic nature of the rock 

material. The description of the elasto-plastic behavior under multiaxial stress conditions demands 

the definition of the following terms:  

Yield surface (F) is the stress state at which yielding starts (failure criterion). The yield condition 

including an interface with β as the orientation of applied load with respect to state of stress, σ and 

the hardening parameter, kh, is given by Eq. (2.6). 

( , , ) 0hF k  =        (2.6) 

The plastic potential (g) as given in Eq. (2.7) determines the direction of plastic strain. 

( ) .g const =         (2.7) 

If yield function and plastic potential are identical the flow rule is called associated, otherwise non-

associated (Vermeer and de Borst 1984). 

 

Continuum versus discontinuum approach 

There are two major approaches that can be used for the same aim: the continuum or the 

discontinuum approach. Table 2-5 shows the main differences between them. 
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Table 2-5 Comparison between continuum and discontinuum approaches 

 

2.4.  Continuum-based constitutive approaches for anisotropic rocks 

A comprehensive consideration of the directional dependence of rock strength demands the usage 

of constitutive models with following characteristics:  (i) capture the full path of stress-strain 

response such as: post-peak and hardening/softening behavior, (ii) analyze large scale behavior of 

geo-structures (Salager et al. 2013), and (iii) consider the stiffness anisotropy besides the strength 

anisotropy. 

2.4.1. Ubiquitous joint approach 

In continuum based models, the joints are regarded as smeared cracks which are implicitly used. 

The term ‘ubiquitous joint’ which was introduced by Goodman (1967) implies that the joint set 

may occur at any point in the rock mass without a fixed location, and the orientation of the joint 

set is precisely defined (Manh et al. 2015). The ubiquitous joint model is a conventional equivalent 

continuum approach where a layered material can be substituted by a homogeneous anisotropic 

medium. The behavior of the interfaces is governed by various yield criteria (Hsiung et al. 1995). 

Continuum approach Discontinuum approach 

Benefits and usability:  

1) Numerical discretization is 

independent of the joints.  

2) Reduced model size. 

3) Increased computational 

efficiency.  
 

Benefits and usability:  

1) Explicit simulation of micro- or 

macro-scale discontinuities.  

2) Allows finite displacements and 

rotations of discrete bodies 

including complete detachment and 

generation of new contacts 

automatically. 

Drawbacks: 

1) Geometry of discontinuities is 

restricted.  

2) For every time-step, especially 

when significant displacement is 

noticed along the discontinuity, 

remeshing is required for the 

entire model which can lead to 

numerical instabilities. 

 

Drawbacks: 

1) Demand of huge computational 

power. Run times are quite long.  

2) Reliability of results is highly 

dependent on input parameters 

which are difficult to determine. 
 

 

Most popular methods: 

- Finite Element Method (FEM) 

- Boundary Element Method 

(BEM)  

- Finite Difference Method (FDM) 

- Extended Finite Element Method 

(XFEM). 

 

Most popular methods: 

- Distinct Element Method (DEM) 

- Discontinuous Deformation 

Analysis (DDA) 

- Finite Element Method with 

interface model (FEM*) 
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The two commonly used joint types are the Mohr-Coulomb and Barton-Bandis joint models. 

Failure may occur in either the rock matrix or along the joints, or both, according to the stress state, 

the orientation of the weak planes and the material properties of the matrix and the joint. 

Both, Amadei (1996) and Park and Min (2015) indicated that the overall Young’s modulus (elastic 

modulus) of an anisotropic rock can be expected to vary widely if the uniaxial compressive test is 

performed under different joint directions (Fig. 2-8.c). There are numerous studies on the 

mechanical behavior of a single joint or a set of ubiquitous joints. This approach is widely used 

for the numerical investigation of underground excavations and for slope stability (e.g Cartney 

1977; Coulthard and Dutton 1988; Bye and Bell 2001; Jiang et al. 2009; Zhu et al. 2009).  

Plenty of researches on the fluid flow and hydraulic conductivity were carried out to study the 

ubiquitous discontinuity effects on the hydraulic properties and the conductivity of rock masses 

(e.g. Hakami and Barton 1990; Coli and Pinzani 2014). Within the framework of elasto-plasticity 

and taken into account the time-dependent behavior by degrading the strength of rock with time, 

a model with ubiquitous joints was developed by Wang and Huang (2011). A new anisotropic 

time-dependent constitutive model was proposed by Manh et al. (2015) including ubiquitous joints 

of specific orientation embedded in an isotropic visco-plastic medium to simulate the anisotropic 

closure of the Saint-Martin-la-Porte gallery. 

2.4.1.1. Original ubiquitous joint model  

The original ubiquitous joint model (Fig. 2-8.b) behaves elastic-perfect-plastic and has some 

restrictions in respect to the simulation of fractured rock masses. First, the rock mass is simulated 

using only one set of joints in a Mohr-Coulomb material (Riahi 2008); second, the joints are 

considered to be persistent at the zone level and very closely spaced. Under 1-dimensional loading 

the angle β is the angle between the applied vertical stress and the joint (Fig. 2-8.a). The anisotropy 

behavior of the uniaxial compressive strength is shown in Fig. 2-8.b. Uniaxial compressive test 

results based on the original ubiquitous joint model with various joint orientations are shown in 

Fig. 2-8.d in which the compressive strength varies with the loading angle but the slope of the 

stress-strain curve inside the elastic stage is the same because the elastic phase is isotropic. 

2.4.1.2. Strain-hardening/softening ubiquitous joint model  

The strain hardening/softening ubiquitous-joint model (subiquitous) is a generalization of the 

ubiquitous-joint model in which the failure envelopes for the intact rock and the joint are formed 

by multi surface yield functions (Mohr-Coulomb failure criterion) with a tension cut-off part. This 
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model has the advantage that the strength parameters of the matrix and joint may harden and soften 

after the onset of plastic yield (Itasca 2016). Based on a calibration for a Synthetic Rock Mass 

(SRM), Sainsbury et al. (2008) developed a Ubiquitous Joint Rock Mass (UJRM) model and 

showed that a calibrated subiquitous model can reproduce accurate failure mechanisms and 

strength anisotropy of jointed rock masses. The stress-strain curves of the subiquitous joint model 

which contains one joint set are shown in Fig. 2-8.e. Like the original ubiquitous joint model, the 

stress-strain curves of the subiquitous joint model have a constant slope in the elastic stage for 

different joint orientations. 

2.4.1.3. Intrinsic anisotropic ubiquitous joint model 

The above mentioned models, the original ubiquitous and the subiquitous joint models, do not 

consider the intrinsic anisotropy of the rock matrix. In order to simulate the behavior of layered 

material and to account for slip along the direction of layering, some new constitutive models have 

been developed by Itasca (2016), Rahmati (2016) or Ismael and Konietzky (2017). The intrinsic 

anisotropic ubiquitous joint model combines the logic of an elastic transverse isotropic material 

with that of the ubiquitous joint model. A local Mohr-Coulomb yield criterion with tension cut-off 

is used as failure criterion on the weak planes. The rock matrix is treated as an elastic material. To 

include anisotropy characteristics for the rock matrix, several models are proposed. The Modified 

Ubiquitous Joint (MUJ) model (Ismael and Konietzky 2017) describes the elastic and plastic 

behavior of a transverse isotropic rock mass considering rock matrix and one joint set. Another 

model presented by Rahmati (2016), called Anisotropic Ubiquitous Joint (AUJ) model, treats the 

intact rock as an intrinsic anisotropic material and the ubiquitous joint method is adopted to 

account for the influence of weak planes which induce structural anisotropy. In order to describe 

the intrinsic anisotropy of the intact rock, the Mohr-Coulomb criterion with variable cohesion and 

friction (McLamore and Gray 1967) is used as shear yield criterion to describe the intrinsic 

anisotropy behavior of the rock matrix. A tension cut-off is adopted as tensile yield criterion. Non-

associated and associated flow rules are adopted in the shear and tensile constitutive models, 

respectively (Rahmati 2016).   
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Fig. 2-8 Uniaxial compressive test results for ubiquitous joint models: (a) test configuration, (b) uniaxial 

compressive strength versus loading orientation, (c) general trend of elastic modulus versus loading 

orientation, (d) elastic-perfect-plastic stress-strain curve for several loading angles of a single joint 

considering no stiffness anisotropy, (e) elasto-plastic stress-strain curve with strain softening for several 

loading angles of a single joint considering no stiffness anisotropy, (f) elastic-perfect-plastic stress-strain 

curve for several loading angles of single joint considering stiffness anisotropy due to transverse isotropy, (g) 

elastic-perfect-plastic stress-strain curve for several loading angles of multi-joints (two joints) considering 

stiffness anisotropy due to spacing and stiffnesses of joints, (h) elasto-plastic stress-strain curve with strain 

softening for several loading angles of multi-joints (two joints) considering stiffness anisotropy due to 

spacing and stiffnesses of joints, (i) elasto-plastic stress-strain curve with strain hardening for several loading 

angles of single joint considering no stiffness anisotropy. 
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These different models consider not only the strength anisotropy but also the elastic stiffness 

anisotropy related to the joint orientations. The slope of the stress-strain curves are influenced by 

the joint angle. The stress-strain curves of the intrinsic anisotropic ubiquitous joint model with 

various joint orientations are shown in Fig. 2-8.f. The stiffness anisotropy has a major influence 

on the rock mass deformation behavior.   

2.4.1.4. Ubiquitous multi-joint models   

A rock mass often contains several sets of discontinuities. Therefore, more sophisticated modelling 

techniques based on the ubiquitous/subiquitous joint concept have emerged over recent years. A 

three-dimensional equivalent continuum model (Jointed Rock model) containing up to three 

persistent joint sets was developed by Agharazi (2013). There are two limitations of the Jointed 

Rock model: first, joint strength parameters are given for the first (most critical) joint set and only 

this joint set can fail; second, the multi-surface plasticity is not considered. To overcome such 

limitations, a two-dimensional multi-joint model was developed by Chang (2017). In this multi-

joint model, each joint set has independent strength and stiffness parameters which downgrade the 

mechanical parameters of the rock matrix for the equivalent continuum. Each joint is considered 

and failure incl. plastic corrections are considered for the joint at critical angle. Both, Joined Rock 

model and Multi-joint model are elastic-perfect-plastic models. Fig. 2-8.g describes the stress-

strain curves for different joint angle combinations. The stiffness parameters and the spatial 

distribution of joint sets can also influence the slope of the stress-strain curves.  

2.4.1.5. Subiquitous multi-joint models  

A non-linear constitutive model and an associated numerical implementation for rock masses with 

regularly distributed subiquitous joint sets was proposed by Wang and Huang (2009) and Wang 

and Huang (2014) so that the complete pre-and post-peak deformation of the rock mass can be 

obtained. The shear strength in this model is estimated by the Barton empirical formula and this 

model combines the mechanical behavior of intact rock with the spatial configuration and strength 

parameters of joint sets. The slope of the stress-strain curves are different for various joint 

orientations resulting in stiffness and strength anisotropy as shown in Fig. 2-8.h and Fig. 2-8.i. A 

new constitutive model combining orthotropic elastic behavior with the presence of up to four 

arbitrary subiquitous joints has been proposed to simulate the behavior of columnar basalt with 

non-isotropic elastic matrix (Detournay et al. 2016). 
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2.4.2. Cosserat-based approach 

Constitutive models based on the Cosserat approach  (Cosserat and Cosserat 1909) have recently 

witnessed a significant development especially for capturing the mechanical behavior of 

anisotropic materials, i.e. layered or laminated rocks. The original theory has been generalized by 

Mindlin (1964) to consider a 3-dimensional elastic continuum. The Cosserat approach 

conceptualizes the continua as infinite number of layers and considers an internal length scale 

parameter. Therefore, the micro-moments are introduced into the governing equations. On the 

other hand, Cosserat theory is known also as micropolar theory, i.e. a theory of asymmetrical 

elasticity, in which the micro-moments vary along the continua and consequently the stress tensor 

[σ] is asymmetric (Riahi and Curran 2009). Fig. 2-9 shows the placement of the Cosserat based 

models in the classification scheme of continuum based models. 

 

 

2.4.2.1. Cosserat based constitutive models for layered materials 

The first trials to adopt the lamination concept of the Cosserat approach can be noticed in 

(Mühlhaus and Vardoulakis 1986; Mühlhaus 1990), where the influence of the bending stiffness 

[μ] of layers was inserted into the micro-tensor. The bending stiffness term stands for the effect of 

the layer thickness, i.e. the internal lengths, as illustrated in Fig. 2-10. Thus, the Cosserat based 

Continuum Models

Classic mechanics

(stress tensor is symmetric considering 
the external action in the macroscale)

Micromorphic / Microstructure

(stress tensor is asymmetric considering 
both internal and external actions)

1st order microstructure tensor

Gradient-dependent 
plasticity

Cosserat or Micropolar

Second gradient

(The particle deforms as the 
continuum)

higher order 
microstructure 

tensor

Fig. 2-9 Clasification scheme for continuum based models with special consideration of Cosserat 

models (Germain 1973; Godio et al. 2015; Madeo 2015). 
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constitutive models use a [9 x 9] stiffness matrix which relates the stress and bending stress 

components with the strain and curvature components in local coordinates.  

  

 

Due to the assumptions that length scale of the layer thickness plays a significant role at the 

macroscopic scale, the effects of bending and buckling of the layers had to be considered in the 

elasto-plastic framework (Mühlhaus 1995). This effect can be neglected if the length of modelled 

continua is much larger than the thickness of the layers, and consequently in that case the result is 

similar to the ubiquitous joint model (h=0). Riahi (2008) studied the effect of the internal length 

scale on the deformation pattern for stratified rocks, where it has been depicted by Adhikary and 

Dyskin (1997) that the larger the thickness, the more the results differ. In fact, the bending of the 

layers is triggered when slipping along the joints takes place. A detailed review about the Cosserat 

plasticity for generalized continua is presented in (Forest and Sievert 2003; Riahi 2008). However, 

these papers focus mainly on the development of the Cosserat based elasto-plastic formulations 

for layered rocks.  

Considering the equivalent continuum approach, the Cosserat based elasto-plastic governing 

framework for layered rocks was introduced firstly by Cundall and Dawson (1992) using Finite 

Difference Method implemented in FLAC. It was simplified later by Alehossein and Korinets 

(1999) and Alehossein and Korinets (2000) utilizing the gradient dependent plasticity approach. 

(b) 

(c) 

(a) 

Fig. 2-10 Schematic view of a Cosserat layered continuum (a) 3D representative stress [σ] and 

bending stress [μ] components, (b) unloaded layered continuum, and (c) layered continuum 

after deformation (Riahi 2008), b stands for the layering effect on the displacement (Kolymbas 

2007). 
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In parallel Mühlhaus (1995) developed a Finite Element formulation for an elasto-plastic Cosserat 

model applied for the interface only. As an example a beam under a point load was analyzed. Then, 

a generalized 2D Cosserat elasto-plastic model was presented by Adhikary and Dyskin (1997) and 

Adhikary and Dyskin (1998) in which a large number of layer parameters is considered. The Finite 

Element formulation procedure of this model is briefly presented by Adhikary, Dyskin, and Jewell 

(1996). However, the intact layers are assumed to be rigid and possess no plastic behavior. Later, 

the 2-dimensional elasto-plastic model was extended by adding yield possibility of the intact layers 

(Adhikary and Guo 2002). Both, intact layers and smeared joints are described by the Mohr-

Coulomb law with tension cut-off. 

A 3-dimensional extended Cosserat based constitutive model for an equivalent continuum with 

multi-surface plasticity approach was introduced by Riahi and Curran (2009). Based on this model, 

the buckling analysis of the layered rocks was studied (Riahi et al. 2009). Because of the difference 

in rotation between 2D and 3D, it was difficult to extend the Cosserat based constitutive model to 

3D (Riahi and Curran 2008). Most of above mentioned models assume a layered rock mass as an 

equivalent continuum where the interface between the layers has its own stiffness and therefore 

the thickness of the layers are inserted into the stiffness matrix. Recently, an elastic transverse 

isotropic model in the framework of the Cosserat approach for layered soils has been introduced 

by Hu and Tang (2013). This model is elastic and does not show any plastic yield.  

 

 
Fig. 2-11 Model set-up for the salt interlayered rock mass (Li et al. 2009) 
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All of the above discussed Cosserat models assume that the layers of the intact rock have a constant 

thickness (h=constant) and all layers have the same mechanical properties and therefore the same 

elasto-plastic behavior. A 3-dimensional Cosserat like elasto-plastic constitutive model was 

introduced for bi-laminated salt rocks as a composite of anhydrite-halite or mudstone-halite  (Li et 

al. 2009). This model assumes that bedding is horizontal and each layer has its own thickness and 

mechanical properties. As shown in Fig. 2-11, this model assumes that both layers (layer A and 

layer B) are bonded in a perfect way which prevents opening or sliding and this is in agreement 

with the experiments on anhydrite interlayers. However, the numerical implementation in 

FLAC3D neglects the influence of the bending effect. Each zone in the model has the thickness 

(h) and the volume fractions of the two layers are represented by: αA = hA/h and αB = hB/h.  

2.4.2.2. Cosserat-based constitutive models for blocky (masonry-like) materials 

Sometimes rock masses are formed in a brickwork pattern or in orthotropic fabric as shown in Fig. 

2-12.a (Mühlhaus 1993). The Cosserat approach was utilized extensively to capture such behavior 

of regular blocky structures. A simple 2-dimensional kinematic concept with two adjacent blocks 

was firstly introduced by Mühlhaus (1993), as shown in Fig. 2-12.b. The block dimension was 

assumed as length = 2a and height = b. Masiani and Trovalusci (1996) presented a study conducted 

on  brick masonry structures comparing Cosserat and Cauchy continuum models. The Cosserat 

based model showed an advantage over the Cauchy model as it considers the internal length scale 

and showed also better results compared to the rigid Discrete Element model. 

Later, based on (Mühlhaus 1993), a 2-dimensional Cosserat based elasto-plastic framework was 

implemented by Sulem and Mühlhaus (1997) in which the model can be adjusted for square bricks 

(b=2a) and a columnar (orthotropic) structure as shown in Fig. 2-12.c. However, this model 

assumed rigid blocks having no yield condition and plasticity acts only for the interfaces. Sulem 

and Cerrolaza (2000) presented various failure modes (e.g. sliding and tilting) of a blocky slope 

where the rock blocks behave as rigid material. Based on another approach, Schlegel et al. (2005) 

introduced a continuum based model to simulate masonry structures considering different block 

dimensions (2a x b). The parameters of the elasto-plastic model were calibrated based on the 

modelled block dimension, the block format (masonry structure as shown in Fig. 2-12.b or 

orthogonal as in Fig. 2-12.c) and if the blocks are cemented by mortar or not. An extensive review 

of Cosserat based continuum models for the masonry like structures can be found in (Casolo 2006; 

Salerno and de Felice 2009; Baraldi et al. 2016). 
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2.4.2.3. Comparison between Ubiquitous Joint and Cosserat models 

Adhikary (2010) and Riahi (2008) defined the shortcomings of ubiquitous joint models as follows: 

(i) the local stress tensor is symmetric due to the assumptions of partially equal shear stresses, (ii) 

there is no consideration of rotation of the layers and thus there is also no representation of the 

internal moment components, and (iii) the existence of joints have no anisotropy influence on the 

elastic properties. On the other hand, Sainsbury and Sainsbury (2017) illustrated that although the 

Cosserat based constitutive models showed an advanced representation of the layered rocks by 

containing additional rotational degrees of freedom, there are some technical complications to be 

commercially released. Those complications arise because of: (i) adjusting the meshing to allow 

the rotational degrees of freedom, (ii) updating the equations of motion for each grid point 

according to the additional stress components related to the moments and coupling of each layer. 

Due to the rotational degrees of freedom, some new phenomena can be duplicated, i.e. buckling 

and deflection. The discussion of these two models raised important questions: to which extend is 

the conventional beam theory – the reference of Cosserat based models – capable to predict elastic 

deflection of stratified rock masses ? Can the ubiquitous joint model simulate the buckling 

mechanism of layered rocks ?  

Fig. 2-12 Blocky (masonry-like) fabric: (a) natural broken rock mass, (b) modelled masonry 

structure, and (c) orthotropic structure after (Mühlhaus 1993), 2a stands for the length and b is the 

height or thickness. 
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For underground openings in horizontal bedded anisotropic rocks as shown in Fig. 2-13.a, a 

deflection is observed in the roof because of the lamination partings (Diederichs and Kaiser 1999). 

Although the conventional beam theory could work to predict the deflection of the roof for 

horizontally stratified rocks, there might be various intersecting joint sets within the roof causing 

difficulties to work based on the beam theory. In such conditions, the conventional beam theory 

tends to underestimate the stability (Diederichs and Kaiser 1999).  

 

 

 

When the foliation angle is steep, there is a buckling mechanism within the layered (laminated, 

foliated or stratified) rocks which is a significant characteristic. Failure modes are specified such 

as buckling at sidewalls and the related squeezing of steeply bedded rock masses as shown in Fig. 

2-13.b (Yun-mei et al. 1984). Karampinos et al. (2015) studied the non-linear anisotropic response 

of steeply hard foliated rocks in deep underground openings. The continuum based models could 

not fully simulate the buckling of foliated rocks. Therefore a Discrete Element approach was 

adopted (Karampinos et al. 2015). Concerning the Cosserat based models, Riahi et al. (2009) 

applied a 3-dimensional Cosserat continuum based approach to model the buckling phenomenon 

of layered structures. On the other hand, the ubiquitous joint model alone cannot simulate such 

behavior because of the above mentioned reasons. Sainsbury and Sainsbury (2017) developed a 

new strategy to overcome the ubiquitous joint model shortcomings by combining continuum and 

discontinuum approaches. In this new strategy, Distinct Element model software (UDEC and 

Fig. 2-13 Schematics of different underground openings having (a) a deflection of a horizontal 

bedded jointed roof, and (b) a buckling of the sidewall of a steeply bedded rocks, the doted 

lines show the highly deformed zones (Diederichs and Kaiser 1999; Yun-mei et al. 1984). 
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3DEC) was applied to model explicitly the major joints by using their advantages to consider joint 

spacing, length and stiffness. In addition, the modelled blocks in between those explicit joints were 

simulated as a continuum based ubiquitous or subiquitous joint model.  

Up to now, layered rocks cannot fully be assessed using continuum based approaches especially 

by the ubiquitous joint model. However, there are trials by Sainsbury and Sainsbury (2017) but 

their strategy had some limitations concerning the scale effect. On the other hand, Cosserat based 

models show promising advance in relation to the simulation of deflection and buckling 

phenomena, but some limitations related to the meshing and the usage of beam theory exist as well.   

2.4.3. Approaches based on critical plane and microstructure tensor 

2.4.3.1. Critical plane approach  

According to experimental data of Donath (1964), the orientation of the critical (failure) plane is 

a function of the orientation of the weakness planes, as shown in Fig. 2-14. It is obvious that for 

the strength anisotropy, the experimental data and numerical values fit well especially for loading 

angle β between 20° and 80° (failure plane = weakness plane). There are also discrepancies 

between the experimental and simulation results for β between 0° to 15° and 80° to 90° where 

failure takes place inside the matrix and not along the weakness planes.  

According to Pietruszczak and Mroz (2001), an anisotropic failure criterion extended from the 

Coulomb criterion was proposed to consider a spatial distribution of strength parameters. The 

failure function is defined through a traction component which acts on a physical plane. This 

critical plane approach has been successfully applied to the analysis of masonry structures 

(Pietruszczak and Ushaksaraei 2003). The performance of the critical plane approach is especially 

suited for rocks with evenly spaced homogeneous layers. Lee and Pietruszczak (2008) used the 

critical plane approach to depict the strength properties of transverse isotropic rocks combined 

with the Hoek and Brown failure criterion. Hoek-Brown rock parameters m and s are used to define 

rock masses anisotropy with the symmetric traceless tensors which describe the spatial distribution 

of strength parameters.  
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The purpose of the critical plane approach is to find out the orientation of a failure plane which 

satisfied the maximum of the failure function. The failure of the rock is then identified as failure 

along this critical plane but it should be noticed that the critical plane approach does not fit well 

the intact rock failure pattern. It is also not inconvenient to implement different failure criteria for 

the numerical analysis because the specification of the critical plane orientation is obtained from 

a maximization procedure (Pietruszczak and Mroz 2001). More detail information for the specific 

corresponding failure criterion can also be found in (Pei 2008). 

This approach was incorporated in a constitutive model based on the multi‐laminate framework 

which will be discussed later in section 2.4.4. 

2.4.3.2. Microstructure tensor approach  

A non-linear failure criterion was introduced to consider directly the anisotropy based on the 

microstructure tensor approach (Pietruszczak and Mroz 2000). This approach defines explicit 

functions in which the stress invariants and microstructure tensors are incorporated in connection 

with material parameters. The result of this failure criterion is a scalar parameter called anisotropy 

parameter (ɳ) which is a function of higher degree tensors and quantifies the load orientation 

Fig. 2-14 (a) Definition of failure plane for anisotropic material under triaxial compression 

and (b) corresponding simulation results for slate (Lee and Pietruszczak 2008). 
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influence in terms of the material axes. The general formulation of ɳ can be expressed as follows 

according to Pietruszczak et al. (2002). 

2 3

1 2[1 ( ) ( ) ...]ij i ij i ij ij i j ij i ja l A l l b A l l b A l l 


= = + + + +   (2.8) 

ɳ physically means the projection of the microstructure tensor aij on the direction of li. li and lj are 

the normal components of that plane where aij is projected, 

 is the mean value of ɳ. Aij is the 

traceless symmetric tensor describing the bias in the spatial distribution and is the deviatoric part 

of the microstructure tensor aij. b1 and b2 are material parameters. Aij, b1 and b2 are determined by 

curve fitting of simple tests, i.e. uniaxial compression tests.  

In order to specify Eq. (2.8) in a sample having arbitrary planes of anisotropy with angle α in 

respect to the bedding planes (bedding orientation angle), Haghighat et al. (2015) provided a 

simple example (Fig. 2-15) based on the assumptions of Pietruszczak et al. (2002) for a sample 

under compressive loading σy (σy = σ1) and constant confining pressure po (p0 = σ2 = σ3 = constant). 

 

 

 In case of non-confining compression Eq. (2.8) can be expressed as follows: 

2 2 2 2

1 1 1[1 (1 3cos ) (1 3cos ) ...]ij ia l A b A   


= = + − + − +  (2.9) 

The first full elasto-plastic constitutive model based on this failure criterion was introduced by 

Pietruszczak et al. (2002). In this model, a non-associated plasticity framework for brittle plastic 

anisotropic sedimentary rocks is used. It is based on a continuum elasto-plastic constitutive model 

Fig. 2-15 Schematic of a failure plane and inherent planes of anisotropy (Haghighat et al. 2015).  

α 
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for concrete (Pietruszczak et al. 1988), in which the transition mechanisms from brittle to ductile 

behavior is conceptualized using an appropriate hardening/softening parameter. However, this 

framework is restricted to strain hardening only. The constitutive model by Pietruszczak et al. 

(2002) was the motivation of a simpler elasto-plastic model for argillite rock by Xu et al. (2013). 

That model uses a return mapping scheme created by Krieg and Krieg (1977) and Huang and 

Griffiths (2008). Xu et al. (2013) introduced a linear elastic-perfect-plastic constitutive model with 

associated flow rule based on the nonlinear constitutive model of Pietruszczak et al. (2002).  

Recently, the microstructure tensor approach was adopted to formulate an elasto-plastic 

constitutive model based on the Mohr-Coulomb failure criterion (Haghighat et al. 2015). Similar 

to the previous model  (Pietruszczak et al. 2002), the strength parameters (i.e. the cohesion and 

friction angle) were extended to consider the effect of load orientation. This elasto-plastic 

framework simulates exclusively strain hardening, but no softening. Haghighat et al. (2015) 

developed this framework based on a simple linear approximation of the Mohr-Coulomb failure 

criterion introduced in (Pietruszczak and Mroz 2000) which is applicable for low confinement. 

Abdi and Evgin (2013) and Haghighat et al. (2015) altered Eq. (2.9) to directly describe the 

anisotropic behavior of the Mohr-Coulomb rock parameters. In fact, the anisotropy parameter ɳ is 

normalized to predict the value of friction angle ϕf in respect to the orientation angle while the 

cohesion c is assumed to be constant. 

Table 2-6 and Fig. 2-16 show a comparison between the previously discussed three elasto-plastic 

models in which the microstructure tensor approach is used. The microstructure tensor approach 

was incorporated into a Mohr-Coulomb strain hardening/softening constitutive model by Nguyen 

and Le (2015) in which cohesion (initial and residual) and friction angle (interlocking and residual, 

initial friction angle is assumed to be zero) are orientation dependent. Their values can be predicted 

according to Eq. (2.9). The constitutive model assumes transverse isotropy where the elastic 

regime is linear applying Hooke’s law while the plastic flow rule is non-associate. Regardless the 

time dependency of the Young’s modulus, we focus here on the plastic part of this model and the 

consideration of the microstructure tensor approach. This model predicts well the hardening before 

yielding. The friction angle varies based on a square root function starting from zero to a maximum 

value (i.e. interlocking friction angle). By applying this model to simulate the behavior of Opalinus 

clay under triaxial test conditions, the simulations show good agreement with the lab results 

especially for higher confinement.  
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Table 2-6 Summary of microstructure tensor models and their applications 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Model Pietruszczak et al. 

(2002) 

Xu et al. (2013) Haghighat et al. 

(2015) 

Modelled rock type Transverse isotropic 

Tournemire shale 

(Niandou et al. 1997) 

E1= 22 GPa, E2 = 7 

GPa, υ1 = 0.12, υ2 = 

0.14 and G2 = 4 GPa 

Transverse isotropic 

argillite rock 

E1= 5.619 GPa, E2 = 

4.129 GPa, υ1 = 0.213, 

υ2 = 0.187 and 

G2 = 0.885 GPa 

Transverse isotropic 

Tournemire argillite  

E1= 12.5 GPa, E2= 21 

GPa, υ1 = 0.16, 

υ2 = 0.08 and G2 = 4.57 

GPa 

Parameters used  

in Eq. (2.9) 




=22 MPa, 

A1=0.017025, 

b1=515.49, 

b2=61735.3, 

b3=2139820 




=26.885 MPa, 

A1=0.17034, b1=0.214, 

b2=−0.563 




=1.0725 MPa, 

A1=0.17034, b1=5.4957 

Used elasto-plastic 

framework 

Framework for brittle 

plastic material by  

Pietruszczak et al. 

(1988) considering 

hardening only 

Elastic-perfect-plastic 

framework based on 

Pietruszczak et al. 

(1988) and return 

mapping schemes 

Linear approximated 

(Mohr-Coulomb) 

elasto-plastic 

framework. 

Fig. 2-16 Illustration of anisotropy behavior according to (a) Pietruszczak et al. 2002, (b) Xu et al. 

2013, and (c) Haghighat et al. 2015. 

α 

β, (90-α) [o] 

β, (90-α) [o] 
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2.4.4. Multi-laminate and micro-polar related approach 

The multi-laminate approach is one of the most commonly used methods for equivalent continuum 

based models originally introduced by Zienkiewicz and Pande (1977) to simulate rock mass 

behavior based on the theory of elasto-visco-plasticity. The multi-laminate framework for 

modelling rock masses and soils is given by Pande and Yamada (1994). Sánchez et al. (2008) used 

the multi-laminate framework to predict the behavior of the geomaterials by considering several 

“integration planes” (Fig. 2-17). 

The slip theory of plasticity was first introduced into a multi-laminate model for clay by Pande 

and Sharma (1983) not considering the rotation of the principal stress axes during plastic flow. 

The plasticity formulation of a multi-laminate isotropic hardening model for soil was presented by 

Pietruszczak and Pande (1987). A multi-laminate model for soft clays incorporating bonding 

anisotropy was developed by Cudny and Vermeer (2004) using the framework of rate independent 

plasticity. Within the past few years, sophisticated multi-laminate constitutive models 

incorporating anisotropy behavior for soils were developed by Schweiger et al. (2009). 

  

 

An improved multi-laminate model which uses the Coulomb criterion as yield condition on the i-

th plane for clays were developed by Pietruszczak and Pande (2001). Cohesion and friction angle 

are orientation dependent. A set of second-order symmetric traceless tensors were used to describe 

the distribution of the Coulomb parameters. The multi-laminate model may be considered as a 

simple version of the critical plane approach (Pietruszczak and Mroz 2001), see also chapter 

2.4.3.1. 

A constitutive model similar to the multi-laminate framework was proposed to simulate the 

behavior of reinforced rock masses with rock bolting (Chen and Pande 1994). The intact rock was 

Fig. 2-17 Schematic for multi-laminate model 
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treated as an isotropic material and yielding according to the Drucker-Prager failure criterion. The 

flow rule of the rock matrix is associate, while it is non-associate for the joint sets. The yield 

surface is based on the Mohr–Coulomb failure criterion (Chen and Egger 1999). Later, Chen et al. 

(2009) extended the original Chen model to consider spacing, normal and shear stiffness of the 

joints. On the other hand, Roosta et al. (2006) proposed a multi-laminate model which accounts 

for strain hardening/softening behavior to simulate jointed rock masses. The Mohr-Coulomb 

failure criterion with tension cut-off was used for both, the joint planes and the intact rock. Intact 

rock behaves elastic-perfect-plastic and the joint planes show strain hardening and softening. In 

these multi-laminate model simulations, the peak shear strength values are reproduced in a correct 

manner but the expected residual shear strength revealed larger deviation compared to test results.   

2.4.5. Approaches based on Boehler’s theory of stress transformation 

As previously discussed, Boehler and Sawczuk (1977) defined the concept of stress tensor 

transformation as a straightforward failure criterion in which the stress tensor is dependent on the 

orientation of the inherent planes of anisotropy. In case of transverse isotropic rocks, a fourth order 

transformation tensor Aijkl is defined according to the existing planes of anisotropy, while this 

tensor is a function of three independent parameters α, β and γ. These parameters are defined from 

curve fitting with lab test results.  

ij ijkl klA 


=        (2.10) 

̂  is the anisotropic stress tensor. This approach is a very effective way to extend most of the 

isotropic elasto-plastic constitutive models to anisotropic models.  

2.4.5.1. Stress history model of Oka 

Oka et al. (2002) introduced an extension to an isotropic elasto-plastic constitutive model which 

considers the strain hardening/softening behavior of soft rocks proposed by Adachi and Oka (1995). 

The original isotropic model has the ability to consider the stress and strain history tensors and the 

plastic deformation is governed by a non-associated flow rule. To extend such an isotropic model, 

Oka et al. (2002) considered both, the elastic and the plastic anisotropy assuming that the tested 

soft rock is transverse isotropic. For the elastic part five elastic independent moduli are specified 

and the stress incrementation is applied using the generalized Hooke’s law (linear elasticity). 

The stress tensor transformation approach is applied in the plastic regime to adapt the anisotropic 

characteristics within the plastic stress tensor. The plastic strain increment in the original isotropic 
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constitutive model is replaced by the transformation tensor proposed by Boehler and Sawczuk 

(1977) within the yield function and the plastic potential function. By applying this modified model 

to simulate triaxial tests on a weak rock, a slight overestimation of the residual strength and 

underestimation of the volumetric strain is observed. This overestimation is explained by Fu et al. 

(2012) as there is no consideration of the intermediate principal stress dependency.   

2.4.5.2. The inherent anisotropic soft sedimentary rock model 

Fu et al. (2012) added mechanical anisotropy to an existing elasto-visco-plastic constitutive model  

proposed by Zhang et al. (2005). This model is complicated as it is formulated in order to describe 

not only the mechanical anisotropy but also to include strain hardening/softening, stress dilatancy 

and the influence of the intermediate principal stress. Like the work of Zhang et al. (2005), the 

anisotropic model assumes that the elastic part has no stiffness anisotropy, but a hypo-elastic 

relation between the Young’s modulus and the mean principal stress exists. The anisotropic plastic 

deformation follows an associated flow rule. The plasticity framework of Zhang et al. (2005) 

considers the transformation of the equivalent isotropic stress tensor into the generalized stress 

space called tij-concept according by Nakai and Mihara (1984). However, Fu et al. (2012) altered 

the equivalent isotropic stress tensor according to the Boehler’s theory of stress transformation by 

introducing a modified anisotropic model with two stages of transformations: first transferring the 

isotropic stress tensor into the anisotropic state and then describing the anisotropic stress tensor in 

the tij space. By applying this model to triaxial tests of two soft rocks, the predicted stress behavior 

and the volumetric strain almost met the lab test results for different applied confining stresses. As 

advantage over the Oka model, Fu et al. (2012) considered the dependency on the intermediate 

principal stress. On the other hand, the model of Fu has no stiffness anisotropy, the applied flow 

rule is associated and it requires a significant number of parameters. 

2.4.5.3. The Cam-Clay based constitutive model by Nova 

First versions of Cam-Clay based anisotropic rock-like models for soft rocks and bonded soils was 

presented by Nova (1986a,b). Based on the technique of Boehler (Boehler and Sawczuk 1977), an 

elasto-plastic constitutive model with associated flow ruled was introduced which captures strain 

hardening of soft rocks (Nova 1986b). By applying this model to triaxial lab tests on diatomite 

(Allirot and Boehler 1979), it was found that the simulations did not give good agreement with the 

lab results and the model tends to overestimate the hardening behavior of the tested rock with 

increasing confining pressure (Attaia et al. 2015).   
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2.4.5.4. Crooke’s 3D orthotropic model 

The modified Cam-Clay model was extended to account for stiffness and strength  anisotropy of 

orthotropic soft rocks such as shales by Crook et al. (2002). The developed yield surface is 

orthotropic pressure dependent. In other words, all three principal stresses are included into the 

constitutive model. The elastic behavior of this model is linear and the post peak behavior shows 

strain hardening/softening based on the evolution of volumetric plastic strain (Crook, Yu, and 

Willson 2002). The complexity of this model arises in the post peak region where compaction or 

consolidation of soft rock appears. The Crooke model adopts the Hoffman yield criterion 

(Hoffman 1967) and the return mapping algorithm developed by Hashagen and de Borst (2001). 

The detailed numerical implementation of the Crooke model is introduced in (Attaia et al. 2015), 

although the procedure is slightly different than the original model where only the first derivatives 

of the yield criterion are used. Crook et al. (2002) has noticed the stiffening of the Young’s 

modulus with increasing applied confinement, but the constitutive model neglects this. The 

calibration of Crooke’s model for different confining pressures on horizontal bedded shale samples 

showed a significant agreement especially in the post peak range for axial and radial strains. This 

model has been extended by Søreide et al. (2008) to include thermal effects. However, there is 

significant mismatch between numerical simulation and lab testing for undrained samples (Søreide 

et al. 2008) and this might be due to the lack of the implementation of the local strain effects at 

large deformation. 

2.4.5.5. Extended Drucker-Prager model 

An elasto-plastic constitutive model was developed for anisotropic weak rocks which considers 

strain hardening/softening post peak behavior based on the Drucker-Prager failure criterion 

(François et al. 2011). The elastic regime is linear transverse isotropic. The simulation of the post 

peak hardening/softening behavior is based on the technique of mobilized friction and cohesion 

via a hyperbolic variation of the internal variables as a function of the Von Mises equivalent plastic 

strain (Barnichon 1998). The plasticity framework is non-associate. The plastic strain at each time 

step is corrected according to computed values of friction angle and cohesion, which vary between 

the initial and the critical values. Assuming hardening behavior, the critical value of both, cohesion 

and friction are greater than the initial values, while it is the opposite in case of  softening. This 

model was successfully applied by François et al. (2014) to estimate the Excavation Damaged 

Zone (EDZ) around saturated overconsolidated Boom clay.   
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3. Transubi model  

3.1.  Introduction  

This chapter introduces a modified bi-linear strain hardening/softening ubiquitous joint 

constitutive model (Transubi model) which describes the mechanical behavior of layered rock 

masses by smeared joints across the rock mass. This modified model considers not only the 

strength anisotropy but also the elastic stiffness anisotropy (transverse isotropic stiffness matrix). 

Thus, new elastic stress increments and the plastic corrections have to be included. The Transubi 

model is applied to simulate the behavior of transverse isotropic rock samples under uniaxial 

compression and triaxial loading. Simulation results using the Transubi model are compared with 

the analytical solution from Jaeger and the Caniso model available in FLAC 8.0.  

3.2.  Elasto-plastic modeling of inherent anisotropic rocks 

3.2.1. Transformation of coordinates 

Usually, stress state and stiffness tensors of the rock mass are defined with respect to a fixed global 

coordinate system (X, Y, Z). In order to transform tensors from a global to another coordinate 

system, for example (xʹ, yʹ, zʹ), series of transformation rules are applied. The composition of the 

rotation matrix for strain tensor is explained as following. Consider a strain state in both local and 

global coordinate systems εxʹyʹzʹ and εXYZ, respectively. Thus, this relation could be expressed as 

follows:    

'
' '   and  

'

x X
x x XX

U U

x X
 

 
= =

 
     (3.1) 

where, Uxʹ and UX are the displacement components in xʹ and X directions, respectively. By 

applying chain rule of differentiation, Eq. 3.1 is obtained as follows.  

' ' ' '

'

X X X X

X X X X
x y z

U U U UX Y Z

x X x Y x Z x

U U U U
l l l

x X Y Z

     
= + +

      

   
= + +

   

   (3.2) 

Similarly, 
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'
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l l l

x X Y Z
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= + +
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    (3.3) 

Generally, the displacement component Uxʹ is written in respect to the global system as follows. 

 ' =  x x X y Y z ZU l U l U l U+ +      (3.4) 

By differentiating Eq. 3.4 with respect to xʹ, the following relation results. 

' =  
' ' ' '

x X Y Z
x y z

U U U U
l l l

x x x x

   
+ +

   
    (3.5) 

By the substitution of Eqs. 3.2 and 3.3 in Eq. 3.5, εxʹxʹ is obtained in reference to (X, Y, Z).  

2 2 2

' ' = + +  x x x XX y YY z ZZ x y XY x z XZ y z YZl l l l l l l l l      + + +   (3.6) 

Similarly, 
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+ + +

+ + +
   (3.7) 

Proceeding in a similar way, the second-order strain tensor (6x1 matrix) is rotated from global to 

local coordinates using the following transformation rules: 

' ' 'x y z XYZR =       (3.8) 

where, Rε is 6x6 rotation tensor which is defined by the direction cosines of local coordinates in 

terms of the global coordinates. Rε is formed based on the above mentioned procedure as follows.  
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 (3.9) 

Same procedure is utilized to form the transformation matrix Rσ for the second-order stress tensor. 

Similar to Eq. 3.8, the stress state is transformed from global system to local coordinates as follows.  

' ' 'x y z XYZR =      (3.10) 
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As noticed from Eqs. 3.8 and 3.10, the rotation tensor defined for second order strain tensor Rε is 

slightly different from the second order stress rotation tensor Rσ. As the rotational matrix is 

orthogonal, both tensors Rε and Rσ could be linked to each other as follows: 

1TR R 

−=        (3.11) 

The transformation of the elastic stiffness matrix {S} is more complicated and is given as follows: 

   ' ' '

T

XYZ x y zS R S R =      (3.12) 

3.2.1. Algorithms of anisotropic material 

According to elasto-plasticity theory: if a material is subjected to a load, two types of deformations 

are expected: reversible deformations εe (elastic) and irreversible deformations εp (plastic). Plastic 

deformations occur when the stress state reaches the yield condition. 

e p  = +        (2.1) 

A yield surface [F (σ) = 0] has to be defined as plastic limit. If the stress state does not violate the 

yield surface, the total strains are elastic. Once the yield surface is violated, a correction of the 

stress state is required. Plastic corrections for granular materials (i.e. rocks, soils, cement or 

concrete) are based on the plastic potential [g (σ) = const.] as the flow rule is non-associated. For 

more details about the plasticity of granular material, see Vermeer and de Borst (1984). Depending 

on the defined number of yield surfaces, the techniques for the plastic corrections differ. 

 

3.2.1.1. Single surface plasticity 

For stress-based plastic algorithms, the new trail stress value is predicted as follows: 

1 1

trial

i i iSd  + += +       (3.13) 

Then, the stress state is tested against the defined yield surface: 

1

1

( ) 0     elastic domain
if 

( ) 0     plastic domain

trial

i

trial

i

F

F





+

+




    (3.14) 

If the stress state reaches the plastic domain, the corresponding yield function and flow rule are 

mobilized as shown in Fig. 3-1.   
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3.2.1.2. Multi surface plasticity 

If the yield surface is more complex like for the Transubi model, a more sophisticated procedure 

should be considered. Each yield surface of this model has its own strength parameters. Generally, 

the shape of the yield surface is either convex or linear, see Fig. 3-2. 

 

 

 

The intersection between a M-C shear failure criterion and a tension cut-off criterion is shown in 

Fig. 3-3. 

 

 

 

(a) (b) 

Fig. 3-1 Schematic showing the return mapping procedure for (a) a smooth non-linear yield surfaces, and 

(b) a linear yield surfaces. 

(a) (b) 

Fig. 3-2 Schematic of interaction of two yield surfaces (a) two convex yield surfaces, and (b) two linear 

yield surfaces 
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The total plastic strain increments are given by the sum of the plastic strains of all active plasticity 

surfaces. 

1

( )
n

p i
i

i

g
 

=


=


       (3.15) 

where, i represents the number of yield surfaces and λ is defined as the plastic multiplier for the 

activated yield surface i (see section 3.3.2). According to Fig. 3-3.a, the detection of the active 

yield-surface is complex. Thus, several different situations have to be considered (Ortiz and Simo 

1986). 

Case I: when only one yield surface is violated (domains D4 or D5), plastic corrections are 

processed based on the corresponding functions Fi and gi. 

Case II: when more than one yield surface is violated, the situation can be categorized as:  

(a) If Ftrial (σ) > 0 and λi > 0 for surfaces i =1 and 2 (domain D12): both surfaces are active. 

(b) If Ftrial (σ) > 0 and λi < 0, for surfaces i =1 or 2 (domains D1 or D2): only one of the 

surfaces is active. 

Another solution has been proposed by Itasca (2016) which is used for example for the ubiquitous 

joint model (Fig. 3-3.b). For case II, two yield functions F1 and F2 are separated by a diagonal 

function named (h = 0): 

2tan ( 1 tan tan )( )t t

Nh c       = + − − + − −   (3.16) 

(a) (b) 

Fig. 3-3 Active surface detection of a multi yield surface composed of a M-C criterion and tension cut-off 

(a) general solution, and (b) proposed solution by Itasca (2016) applied to the ubiquitous joint model 
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If h < 0 means surface i =2 is active (domain D2). On the other side, if h > 0, surface i =1 is active 

(domain D1). Later in section 3.3.3, a detailed discussed regarding the plastic corrections and 

detection of multi-surface failure criterion is presented. 

3.2.3. Existing upgrades for ubiquitous joint model 

Modelling of layered rock mass can be performed by implicit consideration of joints (i.e. 

ubiquitous joint model) or by explicit representation of the discontinuities (i.e. discrete element 

approach) (Davila and Schubert 2014). However, computational power and time consumption 

limits the use of discrete approaches. The accuracy of implicit joint models and the Cosserat 

approach has been investigated by Riahi (2008) and Dawson (1995). This chapter considers the 

continuum-based implicit approach (i.e. smeared joints).   

The elasto-perfect-plastic ubiquitous joint model is one of the numerical models used to analyze 

jointed rock masses (Wang and Huang 2009). It is found in the FLAC software package as “an 

anisotropic plasticity model that includes weak planes of specific orientation embedded in a Mohr-

Coulomb (M-C) solid” (Itasca 2016). This model can predict the strength anisotropy for a rock 

mass containing weak planes reasonably accurate. However, the presence of the joints is taken into 

account for the plastic corrections but has no effect on the elastic behavior and the model is 

restricted to one set of joints only (Azadeh Riahi 2008). A modified ubiquitous joint model (Comba 

model) has been presented to simulate the behavior of columnar basalt with the presence of up to 

four arbitrary orientation of weak planes. The elastic stiffness matrix in the Comba model is 

anisotropic due to the orientation of the joint sets and spacing and stiffness are considered. 

However, it is difficult to set values for joints orientation and stiffness that equalize the elastic 

stiffness matrix of the transverse isotropy for a specific orientation (Detournay, Meng, and Cundall 

2016).  

First implementations considered the jointed rock mass without considering the elastic stiffness 

anisotropy (i.e. cross anisotropy), such as: the elasto-perfect-plastic ubiquitous joint model (Itasca 

2016). Then, the elastic transverse isotropic stiffness was implemented without consideration of 

strain softening. Such models were developed incorporating one or several anisotropy planes with 

softening but without considering the rock matrix (e.g. Wittke (1990); Caniso model in (Itasca 

2016) or Jointed Rock model in (Plaxis 2016). Other approaches considered the anisotropy of the 

rock matrix without incorporating the softening of both, the rock matrix and the joint plane 

(Rahmati 2016) and (Ismael and Konietzky 2017). On the other hand, Blümling and Konietzky 



Chapter 3 Transubi model 

47 

 

(2003) introduced a bi-linear elasto-plastic strain hardening/softening ubiquitous joint model 

which was improved later by Konietzky and te Kamp (2004) as well as Konietzky and te Kamp 

(2006) by coupling of two different mechanical constitutive models: the elastic transverse isotropic 

model and the bi-linear subiquitous joint model. This model was successfully used to simulate the 

mechanical behavior of Opalinus clay. 

To overcome these partial limitations a transverse isotropic elasto-plastic model called Transubi-

model with stiffness and strength anisotropy and strain hardening/softening of weak planes and 

rock matrix is proposed. The “Transubi” model has several advantages: (i) the elastic matrix is 

transverse isotropic with 5 independent parameters, (ii) pre- and post-yielding behavior can be 

non-linear: for example, the pre-yielding region can show hardening and the post-yielding region 

can show softening, (iii) strength anisotropy is considered, and (iv) the bi-linear concept is adapted 

for both, the rock matrix and the joint planes to allow up to two M-C failure envelopes describing 

the plasticity of the material. Thus, the Transubi model is known as a transverse isotropic bi-linear 

strain/hardening ubiquitous joint constitutive model developed for 2D continua.  

 

3.3.  Theoretical background of the Transubi model 

 

In principle, the Transubi model is using the same methodology as the original subiquitous joint 

model. Symmetry characteristics and corresponding properties are illustrated in Fig. 3-4. A zone 

represents both, a transverse isotropic elasto-plastic rock matrix (RM) and a joint plane (JP), which 

can fail in tension or shear. Mohr-Coulomb parameters are given for the rock matrix and the joint 

plane as well in addition to the transverse isotropic matrix. The angle α refers to the orientation of 

the joint plane which equals (90-β). For a general 3-dimentional case, the orientation is given either 

by the dip (dip) and the dip direction (dd) or by specifying the three components (nx, ny, nz) of the 

normal unit vector of the joint plane. In our study, a 2-dimentional case is applied. The dd is 

assumed as 90o while the dip equals therefore the inclination angle α (Fig. 3-4).  
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3.3.1. Elastic increments  

 

The elastic stiffness matrix {S} is described in local coordinates (x1, x2, x3) of the joint plane. It is 

simpler to provide the compliance matrix {C} which is the inverse of the stiffness matrix. Five 

independent elastic stiffness parameters have to be given parallel or normal to the joint plane, 

respectively. The independent elastic properties in the plane parallel to the joint plane are Young’s 

modulus E and Poisson’s ratio υ, while the other elastic properties are in the plane normal to the 

joint plane (Eʹ, υʹ and Gʹ), as indicated previously in Fig. 3-4. Based on the orientation of the joint 

plane, a transformation of the elastic stiffness matrix from local coordinates the global coordinates 

(X, Y, Z) is implemented (Eq. 3.17) as discussed in section 3.2.1. The calculation scheme of the 

elastic increments is always performed in global coordinates.  

 

Fig. 3-4 Transubi-model: illustration of a single zone with anisotropy plane and corresponding material 

parameters 
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According to Amadei (1996), there are several restrictions in respect to the elastic parameters.  
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     (3.18) 

 

3.3.2. Yield surfaces and input parameters 

The rock matrix is defined as bi-linear M-C solid with two intersecting shear failure envelops. First 

envelop has the strength parameters: cohesion c, friction angle ϕf, dilation angle ѱ and a tension 

cut-off with value σt as a tensile strength. The second shear yield surface has parameters cohesion 

c2, friction angle ϕf2 and dilation angle ѱ2. Residual strength parameters could be assigned for both 

yield surfaces except tensile strength which is exclusively defined for the first surface. Similar, a 

bi-linear strength surface is defined for the joint plane. Fig. 3-5 introduces the bi-linear M-C yield 

surface for both, the rock matrix and the joint plane.  
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During the elastic stress incrementation, the yield condition is always monitored for both, the rock 

matrix and the joint plane. For checking the failure condition inside the rock matrix, the global 

stress state is transformed into the principal stress state as shown in Eq. 3.19. Also, the stiffness 

matrix is transformed into the principal coordinates (xP, yP, zP) leading to {SP}. 

(a) 

(b) 

Fig. 3-5 Schematics showing the bi-linear failure criterion for (a) rock matrix in the principal stress space , 

and (b) joint plane in local stress coordinates  (Itasca 2016).  
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     (3.19) 

As shown in Fig. 3-5.a, segments B-C and B-A are two intersected M-C failure surfaces at point 

B. The segments are defined by f1 
s = 0 and f2 

s = 0; respectively. The segment D-C is the tension 

cut-off part and represented by f t = 0.  Thus, the yield functions in the principal stress plane are 

defined as follows: 
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     (3.20) 

where 

1 sin

1 sin

f
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=

−
      (3.21) 

For the intersection point between the shear yield surfaces at point B, the corresponding value of 

the minimum principal stress defined as σ3
I is given by:  

2 2 1 1
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2 2
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c N c N
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     (3.22) 

The plastic shear potential for rock matrix corresponds to a non-associated flow rule by using 

dilation angles (ѱ1 and ѱ2) instead of the friction angles (Eq. 3.20), while the tensile plastic 

potential follows an associated flow rule. 
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After checking the failure state of the rock matrix in the principal stress plane, the corrected stress 

state (discussed later in chapter 3.3.3.1) is returned back into the global system. Then, the global 

stress state is transformed to the joint plane local coordinates using the joint inclination angle α. 

The local stress state is decomposed into two stress components: tangential stress component τ and 

normal stress component σ3ʹ3ʹ acting on the joint plane. The stress components at local coordinates 

are obtained by the following relations: 

 

1'1' 11 1'1' 12 2'2' 13 3'3'

2'2' 12 1'1' 11 2'2' 13 3'3'

3'3' 13 1'1' 13 2'2' 33 3'3'
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(1 )

2 '
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S S S
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= 
+


=

= 

    (3.25) 

 

where; S11, S12, S13 and S33 are elastic stiffness components obtained from the inversion of Eq. 3.17. 
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    (3.26) 

The acting normal stress component on the joint plane σ3ʹ3ʹ is obtained from Eq. 3.25. The 

tangential shear stress component τ is computed as follows: 

2 2

1'3' 2'3'  = +       (3.27) 
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Similar to the above mentioned yield surface of the rock matrix, the joint plane failure surface 

consists of segments B-C and B-A which are two intersected Mohr-Coulomb failure criteria 

surfaces at point B. Each segment is defined f1 
s = 0 and f2 

s = 0; respectively. D-C is the tension 

cut-off part and is represented by f t = 0. 

1 3'3' 1 1

2 3'3' 2 2

3'3'

tan

tan

s

j j

s

j j

t t

j

f c

f c

f

  

  

 

= − +


= − + 


= − 

     (3.28) 

Similar to the rock matrix, the plastic shear potential for joint plane follows a non-associated flow 

rule by using dilation angles (ѱj1 and ѱj2) instead of the friction angles (Eq. 3.28), while the tensile 

plastic potential follows an associated flow rule. 
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     (3.29) 

 

3.3.3. Plastic corrections for rock matrix and joint plane 

Once the stress state exceeds the yield conditions for either the rock matrix or the joint plane (f1
s > 0 

or f2
s > 0 or f t > 0), a series of plastic corrections are performed to return the stress state to the 

defined yield surface.  

3.3.3.1. Plastic corrections of rock matrix for yielding in shear and tension 

The flow rule for plastic yielding has the following form: 

p

i

i

g
 




 =


       (3.30)  

where, i = 1 to 3; λ corresponds to the plastic multiplier for both, shear and tension. In the case of 

shear failure, the plastic strain increments (Δεi 
p,s) are given as follows: 
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 =
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      (3.31) 

Thus, the obtained plastic shear corrections ΔσP,C for the principal stresses in Eq. 3.19 are given 

by Eq. 3.32.  
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where, λs represents the shear plastic multiplier which is calculated as follows: 
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The superscript O is used to represent the old corrected value. The obtained strength parameters 

within the corrections for the principal stresses and the shear plastic multiplier depend on the yield 

surface on which the corrections are executed. For each computational step, the bi-linear shear 

surfaces are tested to figure out the active surface based on the given value of principal stresses 

(σ1 and σ3).  

Similar, the plastic strain increments for tensile failure Δεi 
p,t are given as follows: 
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The stress corrections for tensile failure are computed as follows: 
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where, λt represents the tensile plastic multiplier which is calculated as follows: 

3
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−
=        (3.36)  

Thus, the new principal stress state is given by Eq. 3.37, whether it is corrected due to shear or 

tensile or simultaneously combining shear and tensile yielding.  
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The superscripts (O and N) denote the principal stresses values obtained just before detection of 

failure and the new corrected values, respectively.  

3.3.3.2. Plastic corrections on the joint plane for yielding in shear and tension 

Checking the failure on the joint plane is executed directly after the correction of the principal 

stress state for the matrix returned back to the global system. Then, the updated global stress state 

is transformed to the local joint plane space. Excluding the shear component on the plane normal 

to the joint plane, the stress components at local coordinates specified in Eq. 3.25 can be rewritten 

as follows: 
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    (3.38) 

where,  

2 2

1'3' 2'3' 1'3'   = + =      (3.39) 

Based on the flow rule for plastic yielding given by Eq. 3.30 and the potential functions specified 

in Eq. 3.29, the shear plastic strain increments Δεi 
p,s are given as follows: 
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Thus, the obtained shear plastic corrections for the local stress state are given by Eq. 3.41.  
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While the shear plastic multiplier λs is obtained as follows: 
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The tensile failure follows an associated flow rule. The tensile plastic strain increments Δεi 
p,t are 

given as follows: 
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The stress corrections for tensile failure on the joint plane are computed as follows:  
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where, λt represents the tensile plastic multiplier which is calculated as follows: 
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The new local stress state given by Eq. 3.38 is updated, whether it is corrected due to shear or 

tensile or simultaneously combined shear and tensile yielding as follows:  
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The superscripts (O and N) denote the principal stress values obtained just before detection of failure 

and the new corrected values, respectively. After the local stress state has been updated, it will be 

transformed back into the global system for checking large-strain up-date of joint orientation. In 

large strain, the orientation of the weak plane is adjusted per zone to account for rigid body 

rotations and rotations due to deformations (Itasca 2016).    

3.3.3.3. Bi-surface plasticity inside the Transubi model 

Similar to the original Subiquitous joint model (Itasca 2016), the yield functions in the Transubi 

model are linear for matrix and joint. The activation of the second yield shear surface for either 

the rock matrix or the joints or both is done by setting the properties bimatrix and/or bijoint to 1.  

For the rock matrix, the application of the plastic corrections are extremely complex due to the 

obtained composite yield surface. Thus, new functions, c, are introduced in the σ1- σ3-space in 

order to solve the multi-surface plasticity problem. Function h1 represents the diagonal between 

f1 
s = 0 and f t = 0, while function h2 represents the diagonal between f1 

s = 0 and f2 
s = 0. The active 
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yield surface is detected according to the diagonal functions, h1 and h2, and the yield functions of 

each surface. After the detection of the active surface, the plastic corrections are performed. 

 

 

  

 As shown in Fig. 3-6, when the composed failure surface is violated, the elastic guess could be 

located either in domains of f2 
s or f1 

s or f 
t, corresponding to negative or positive domains (h1  = 0 

and h2 = 0), respectively. The diagonal functions are defined as follows: 

  1 3 1( )t p ph     = − + −      (3.47)  
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The second diagonal function h2 is defined as follows: 

 2 3 3 1 1( ) ( )I p Ih     = − + −      (3.49)  

where, σ3
I represents the minimum principal stress at the intersection point of the shear yield 

surfaces at point B as shown in Fig. 3-5.a and Eq. 3.22.  

Fig. 3-6 Multi-surface plasticity of rock matrix in principal stress space 
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Similar to the rock matrix, the multi-surface plasticity of the joint plane is tackled as shown in Fig. 

3-7. However, the composed yield surface is introduced in local coordinates (τ- σ3ʹ3ʹ space). Two 

diagonal functions, h1 
j and h2 

j, are used for detection of the active yield surface. The diagonal 

functions for the joint plane are defined as follows: 

 1 3'3' ( )j p p t

j j jh     = − − −      (3.51)  
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The second diagonal function h2 
j is defined as: 

 2 3'3' 3'3'( ) ( )I p I

j jh     = − − −     (3.53)  

Fig. 3-7 Multi-surface plasticity of joint plane in τ- σ3ʹ3ʹ coordinate system 
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where, τj
I and σ3ʹ3ʹ 

I represent the stress values in tangential and normal direction to the joint plane, 

respectively, at point B as shown in Fig. 3-5.b.  
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3.3.4. Hardening/Softening parameters 

In the proposed Transubi model, strength parameters for rock matrix and joint plane (i.e. cohesion, 

friction angle and dilation angle for bi-linear yield surfaces and tensile strength) could be assigned 

as tables. For each strength parameter, the table data consist of pairs of these strength parameters 

and the corresponding hardening parameter. Such hardening parameters are computed directly 

from the accumulated plastic strains for the rock matrix and the joint. The evaluation of the plastic 

strains for the rock matrix is implemented in the principal stress space, while is computed in local 

coordinates for the joint. Four independent hardening parameters are assigned (ks, kt, kj
s and kj

t).  

First parameter is ks which specifies the rock matrix plastic shear strain to update the matrix 

cohesion c, matrix friction angle ϕf and matrix dilation ψ. These parameters can be assigned for 

both shear yield surfaces to update corresponding strength parameters. The incremental value of 

this parameter Δks is computed as the square root of the second invariant of the incremental plastic 

shear strain deviator. 

, , 2 , 2 , , 2

1 3

1
( ) ( ) ( )

2

s p s p s p s p s p s

m m mk      =  − +  +  −  (3.55)  

where, Δεm 
p, s is defined as the volumetric plastic shear strain increment. 

, , ,

1 3

1
( )

3

p s p s p s

m   =  +       (3.56)  

The second parameter is kt which specifies the rock matrix plastic tensile strain to update the matrix 

tensile strength σt. The tensile-hardening increment for the rock matrix is the plastic volumetric 

tensile strain increment, given as follows: 

,

3

t p tk  =         (3.57)  
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Similar, the joint plastic shear strain is specified by the third hardening parameter kj
s. It updates 

the joint strength parameters (cohesion cj, friction angle ϕjf and dilation ψj) for both shear yield 

surfaces. The incremental value of this parameter Δkj
s is computed as follows: 

, 2 , 2

3'3'

1
( ) ( )

3

s p s p s

jk   =  +       (3.58)  

where 

, ,

1'3'

p s p s  =         (3.59) 

On the other hand, the fourth hardening parameter kj
t which updates the joint tensile strength is 

defined as incremental value as follows: 

,

3'3'

t p t

jk  =         (3.60) 

The use of these hardening/softening parameters is demonstrated in chapter 4.  

  

3.3.5. Flowchart of Transubi model 

Similar to the original Ubi model, the calculations in the Transubi model start first in the matrix 

followed by the joint plane, see Fig. 3-8. This calculation sequence could be considered as a 

limitation especially because failure is checked in rock matrix prior to the joint plane. According 

to Bahrani and Hadjigeorgiou (2018), the joints are much weaker than the rock matrix in reality, 

therefore failure should always be detected first along these planes. This limitation is widely 

overcome by applying the time stepping technique in FLAC called the explicit time scheme. The 

used timestep is always smaller than the critical time step; therefore no failure inside the rock 

matrix or joint plane will be missed.  

Another limitation has been addressed by Bahrani and Hadjigeorgiou (2018) regarding the 

assigned elastic parameters. If the given elastic parameters are evaluated from tested rock matrix 

(intact rock samples) and not from a jointed samples (rock mass), the computed deformation will 

be underestimated. Thus, the elastic moduli in this constitutive model should consider the scale 

effect. 
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Fig. 3-8 Flowchart of Transubi model 
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3.4.  Model verifications 

The verifications discussed within this chapter assume a lineal elastic-perfect-plastic case. These 

applications are presented to compare the simulated strength anisotropy behavior with the 

analytical solution of Jaeger and Cook (1979), the original Ubi model and the Caniso model (Itasca 

2016). Later (see chapter 4) strain hardening/softening, bi-linear yield surfaces and stiffness 

anisotropy are introduced to simulated the mechanical behavior of bedded argillaceous rocks 

(Tournemire shale and Opalinus Clay). 

3.4.1. Single joint in an isotropic matrix 

For verification, the Transubi model is used to predict the compressive strength of a rock sample 

with inherent anisotropy planes. The elastic stiffness matrix is isotropic which results in a bulk 

modulus K of 100 MPa and a shear modulus G of 70 MPa (Table 3-1). The simulation results are 

compared with the analytical solution from Jaeger and Cook (1979), where the uniaxial 

compressive strength is calculated by Eq. 3.61. This example is a good verification as the failure 

mode in a sample having ubiquitous joints is similar to the failure mode of a sample with single 

plane of weakness (Kazakidis and Diederichs 1993). 

 

min{2 ,2 / (1 tan tan )sin 2       if (1 tan tan ) 0

2                                                             if (1 tan tan ) 0 

f j fj fj

c

f fj

c N c

c N





    


 

 − − 
= 

− 

 (3.61) 

 

Table 3-1 Properties of the tested rock sample (Itasca 2016) 

Elastic stiffness matrix components Rock matrix M-C input Joint M-C input 

E=E ʹ υ= υ ʹ G= G ʹ K G c ϕf σt cj ϕfj σt
j 

170 MPa 0.22 70 MPa 100 MPa 70 MPa 2 KPa 40o 2.4 KPa 1 KPa 30o 2 KPa 

 

Transubi model and analytical solution show nearly identical results with error less than 1% for 

all values of β as documented in Fig. 3-9. In the case of rock matrix failure, the uniaxial 

compressive strength σc is limited to 8.58 KPa. For this constellation both approaches give 

identical results.  
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3.4.2. Single joint plane in a transverse isotropic matrix 

Simulations have been conducted to check the applicability of the Transubi model under uniaxial 

and triaxial loading conditions. Results are compared with the Caniso model and the analytical 

solution from Jaeger. 

3.4.2.1. Uniaxial compression test: Bossier shale 

Used input data are based on experimental results of Bossier shale presented in Table 3-2 

(Ambrose 2014). This shale is a reservoir rock, highly laminated with organic-filled weak planes. 

The maximum possible tensile strength is determined by Eq. 3.62. However, realistic tensile 

strength values are much lower.  

max tan
t

f

c


=       (3.62)  

The value for Gʹ is estimated based on laboratory results as suggested by Lekhnitskii (1981) and 

Itasca (2016). 

'
'

(1 2 ') '

E E
G

E E
=

+ +
      (3.63)              

Table 3-2 Parameters for Bossier shale (Ambrose 2014) 

Elastic stiffness matrix components Rock matrix M-C input Joint M-C input 

E [GPa] Eʹ  [GPa] υ υʹ Gʹ  [GPa] c [MPa] ϕf σt [MPa] cj [MPa] ϕfj σt
j [MPa] 

29.65 15.2 0.2 0.22 5.86 26 29o 7.9 14 24o 4.4 
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Fig. 3-9 Comparison between analytical and numerical solution using Transubi model. 
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Results for Bossier shale are presented in Fig. 3-10. The Transubi model shows the same behavior 

as the modified analytical solution. However, the Caniso model can only detect joint failure and 

not yielding in the rock matrix. 

 

3.4.2.2. Triaxial compression test: Martinsburg slate 

Both, the Transubi and the Caniso model are used to simulate triaxial tests (confining pressure 

σ3=3.5 and 10.5 MPa, respectively) on Martinsburg slate (Donath 1964). This rock behaves like a 

transverse isotropic rock. E, Eʹ, σt and σt
j are estimated under triaxial stress conditions for β = 0o 

and 90o using RocLab (Rocscience 2007), assuming GSI=95 and MR=450. Shear modulus Gʹ is 

computed by Eq. 3.63, while υ and υʹ are assumed to be 0.22. M-C parameters for rock matrix and 

joints are given by Tien and Kuo (2001) and Ambrose (2014). Table 3-3 shows the data applied in 

the numerical simulations and Jaeger’s analytical solution. Results obtained from numerical 

simulations and the analytical solution are shown in Fig. 3-11.  

 

Table 3-3 Parameters for Martinsburg slate 

Elastic stiffness matrix components Rock matrix M-C input Joint M-C input 

E [GPa] Eʹ  [GPa] υ υʹ Gʹ  [GPa] c [MPa] ϕf σt [MPa] cj [MPa] ϕfj σt
j [MPa] 

69.7 43.6 0.22 0.22 23 25 45o 8.8 9 21o 4.5 
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Fig. 3-10 Uniaxial compression tests: Numerical and analytical solutions for Bossier shale 

compared with lab test results. 
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As Fig. 3-11 shows, the Caniso model behaves elastic considering the rock matrix. Thus, a 

maximum driving strain (εmax) must be assigned. However, the failure in the rock matrix is limited 

to the Mohr-Coulomb matrix failure surface and corresponds therefore to the modified analytical 

solution of Jaeger. Generally, both numerical models and the analytical solution show the same 

behavior in case of joint yielding. 

 

3.5.  Conclusion 

The stiffness anisotropy of transverse isotropic rock matrix has been integrated into the subiquitous 

joint model. The mathematical formulations for the plastic corrections for the rock matrix and the 

joint plane were introduced for both, shear and tension yielding. Numerical simulations on the 

basis of uniaxial compression tests were carried out to verify this model and results were compared 

to the modified analytical solution of Jaeger. Furthermore, the Transubi model and the Caniso 

model were tested under uniaxial and triaxial compression using lab data of two different rocks. 

Results indicate that the Transubi model is able to reproduce the elastic as well as the plastic 

behavior for both, joint and rock matrix. The stiffness anisotropy has a major influence in the 

elastic range. Finally, the new proposed model is an interesting alternative to describe anisotropic 

rock behavior and is advantageous in case of potential matrix failure.  

 

Fig. 3-11 Numerical vs. analytical results for triaxial testing of Martinsburg slate (σ3=3.5 and 10.5 MPa) 
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4. Numerical simulation of laboratory investigations of bedded 

argillaceous rocks (Tournemire shale and Opalinus Clay) 

4.1.  Introduction 

This chapter presents a detailed investigation of the mechanical anisotropy of bedded argillaceous 

rocks (Tournemire shale and Opalinus clay). Due to its anisotropic nature, these types of rocks are 

considered as a good case study to apply the proposed Transubi model, also this rock shows strain 

hardening in the pre-peak region and strain softening in the post-peak region. In order to verify the 

proposed model, an experimental dataset of Tournemire shale (Niandou et al. 1997) for different 

confining pressure applied to three different orientations is used. Later, the laboratory 

investigations conducted on Opalinus clay are modelled using the proposed constitutive model. 

Unlike the Tournemire shale, the Opalinus clay behaves bilinear in both, the rock matrix and the 

bedding planes. Triaxial lab testing and direct shear testing performed in direction parallel to the 

bedding planes, are numerically simulated and the results are compared against experimental 

datasets (Popp and Salzer 2007).      

4.2.  Tournemire shale 

4.2.1. Strength and stiffness anisotropy of Tournemire shale 

Based on the lab results obtained by Niandou (1994) and Niandou et al. (1997) on a shale taken 

from a French site in the Massif Central, the mechanical behavior shows significant anisotropy in 

strength and stiffness. Tournemire shale is a transverse isotropic material because of the presence 

of the bedding planes. Fig. 4-1 shows the variation of the strength for different confining pressures 

versus the bedding plane dip angle (Niandou et al. 1997). 

Besides the strength anisotropy, the elastic modulus of the Tournemire shale varies with the 

bedding plane orientation which also indicates that it behaves as a transverse isotropic rock. The 

corresponding elastic stiffness matrix is defined by 5 independent elastic parameters (E, Eʹ, υ, υʹ 

and Gʹ). As previously mentioned, E and υ are working in the direction tangential to the bedding 

plane, while Eʹ, υʹ and Gʹ are working in the direction normal to the bedding plane. The lab testing 

on Tournemire shale revealed that the elastic parameters are highly dependent on the applied 

confining pressure (Fig. 4-2). The remarkable increase in the elastic parameters - especially the 

elastic modulus in the direction normal to the bedding planes Eʹ - with increasing confining 

pressure can be explained by the progressive closure of these planes (Chen et al. 2012).   
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4.2.2. Parameters identification 

In order to identify the parameters for numerical simulation, the mechanical behavior of 

Tournemire shale under loading has to be identified. Experimental results show elasto-plastic 

behavior, noticeable hardening in the pre-yielding phase and softening in the post-yielding phase. 

As indicated in Fig. 4-3, Abdi et al. (2015) specified that the stress-strain curve shows non-

elasticity already in earlier stages due to the closure of the existing fissures and bedding planes,  

and they suggested a mobilization of the strength parameters (cohesion and friction angle) as 

shown in Fig. 4-3b. The region between points A to B describes the initial inelastic phase due to 

closure of existing fissures which is not content of this research. 

 

 

Similar to the framework of hardening/softening introduced by Vermeer and De Borst (1984), a 

rapid increasing rate of the mobilized cohesion is applied in the pre- peak stage especially between 

points B and C to simulate the hardening in this stage, while in the post-peak region the cohesion 

decreases to its residual value or almost vanishes as the tested sample is heavily cracked (Abdi et 

al. (2015)). On the other side, the applied friction angle in the post-peak region becomes the main 

Fig. 4-3 Schematics of (a) stress–strain curve of Tournemire argillite, and (b) the mobilization 

of the strength parameters, after (Abdi et al. 2015) 
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component of the post-peak strength of the specimen. Generally, the applied mobilization of the 

strength parameters according to Abdi et al. (2015): (i) showed a complicated behavior, (ii) did 

not clarify the basic function to perform such a mobilization, and (iii) has taken the entire rock 

sample into consideration without differentiation between the mobilization of the rock matrix and 

the planes of weakness. 

In order to apply the Transubi model, a fixed dataset of the independent elastic parameters is 

assumed for the rock samples, as the proposed constitutive model does not consider the stress-

dependent non-linear elasticity. The assumed elastic parameters are given in Table 4-1. The bulk 

density of the shales is set to 2450 kg/m3 (Niandou 1994). 

 

Table 4-1 Elastic parameters for Tournemire shale   

E [GPa] Eʹ [GPa] ν [-] νʹ [-] Gʹ [GPa] 

18.0 7.0 0.22 0.12 2.5 

   

The mechanical observations indicated anisotropy in strength and deformation. The post-peak 

strain softening behavior is sharp (brittle) at lower confinement and more gentle for higher values 

of confining pressure. Although, as indicated in Fig. 4-1, there are small differences between the 

measured peak strength at direction parallel to joint planes (α = 0o) and perpendicular to the joint 

planes (α = 90o) under different confinement, fixed strength parameters are applied for the rock 

matrix of the Tournemire shale. This assumption has been investigated also by Abdi et al. (2015) 

by evaluating the degree of the strength anisotropy (k1) which is found nearly equal to one.  

1 3 0
1

1 3 90

( )

( )
k 



 

 
=

=

−
=

−
      (5.1) 

Based on the remarks of Niandou (1994) and Abdi et al. (2015), the proposed peak and residual 

strength parameters for rock matrix and bedding planes are given in Table 4-2. 

The M-C peak and residual strength envelops with tension cut-off for rock matrix and bedding 

planes are shown in Fig. 4-4 and Fig. 4-5, respectively. Constant dilation angles for rock matrix 

and bedding planes are assumed, although it has been found that the volumetric strains and 

therefore the dilation angle are influenced by the bedding plane orientation (α) and the applied 

confining pressure (σ3).   
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Table 4-2 Strength parameters of Tournemire shale. 

Rock matrix parameters 

c1 [MPa] φf1 [°] σt [MPa]  ψ1 [°] c1
res [MPa] φf1

res [°] 

11 27 6 2 8.5 21 

Inherent joint plane parameters 

cj1 [MPa] φfj1 [°] σt
j [MPa] ψj [°] cj1

res
 [MPa] φfj1

res [°] 

7.5 20 4.5 0 6.5 18 

 

 

 

 

 

 

 

 

 

Fig. 4-4 M-C peak and residual failure envelops for Tounemire shale rock matrix  

Fig. 4-5 M-C peak and residual failure envelops for Tounemire shale bedding planes  
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4.2.3. Mobilization of the strength parameters 

For the simulation of the Tournemire shale, nonlinear behavior in the pre- and the post-peak 

regions are assumed. The strength parameters (cohesion, friction angle and tensile strength) for the 

rock matrix and the bedding planes are mobilized from the first step of the simulation. As 

previously explained, the Transubi model allows that these parameters are assigned by tables as a 

function of the accumulated plastic shear and tensile strains. Cohesion, friction angle and tensile 

strength are mobilized for rock matrix and bedding planes, while the dilation angles are constant 

although mobilization of the dilation angle is also recommended (Zhao and Cai 2010; X. Zhao, 

Cai and Cai 2010; Walton et al. 2015).  

The inserted tables describing the variation of the strength parameters are divided into two parts: 

first part describes the pre-yielding hardening and the second part is for the softening. Regarding 

the pre-peak region, the following analytical approach is applied for cohesion and friction angle 

(Konietzky, Blümling and te Kamp 2003).     

,max

,max

2 ( . )s s

p pactual in peak

s s

p p

c c c
 

 
= +

+
    (5.2) 

,max

,max

2 ( . )
sin( )

s s

p p peak

actual fs s

p p

 


 
 =

+
    (5.3) 

2

2
arctan

1

actual actual
f

actual




=
−

     (5.4) 

where: 

cactual = actual applied cohesion [MPa], 

cin = initial cohesion, mostly very small and nearly zero [MPa],   

cpeak = maximum value of cohesion at peak strength [MPa],     

φf 
actual = actual applied friction angle [o],    

φf 
peak = maximum value of friction angle at peak strength [o],        

εs
p = actual value of accumulated plastic shear strain [-],    

εs
p,max = maximum plastic shear strain at which the maximum values of cohesion and friction 

angle are achieved [-]. 
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On the other hand, the strain softening behavior starts directly after the strain hardening and the 

first value of the plastic shear strain εs
p is set equal to εs

p,max from the hardening stage. Inspired by 

the analytical functions from Vermeer & De Borst (1984), cohesion and friction angle are 

gradually reduced as follows: 

2

exp .( )

s

pactual res peak res

c
c c c c





  
 = + − −     

   (5.5) 

2

exp .( )

s

pactual res peak res

f f f ff


   



  
 = + − −     

   (5.6) 

where 

cres = residual value of cohesion [MPa],   

φf 
res = residual value of the friction angle [o],        

εc = accumulated plastic shear strain at which cactual  reaches cres  , this parameter controls the   

    degree of softening [-],   

εf = accumulated plastic shear strain at which φf.actual reaches φf.res [-]. 

 

Applying these functions to adapt the hardening-softening behavior of the Tournemire shale is not 

as simple as it seems, as the plastic strain is depending on the applied confining pressure and the 

bedding plane orientation as well (Abdi et al. 2015). The other constraint is that utilizing these 

functions as failure criterion for the rock matrix does not mean that it works proper also for failure 

at the bedding planes. The best fit result of Eq. 5-2 to 5-6 for rock matrix and bedding planes are 

given in Fig. 4-6, Fig. 4-7 and Fig. 4-8 for applied confining pressures of 5, 30 and 50 MPa. 
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Fig. 4-6 Applied mobilization of strength parameters (cohesion and firction angle) at σ3 = 5 MPa 

for (a) rock matrix, loading parallel to joint planes, (b) joint planes, and (c) rock matrix, loading 

normal to joint planes 

(a) 

(c) 

(b) 



Chapter 4 Numerical simulation of laboratory investigations of bedded argillaceous rocks  

74 

 

 

 

0

5

10

15

20

25

30

0 0,01 0,02 0,03 0,04 0,05M
o
b

il
iz

ed
 r

o
ck

 m
a
tr

ix
 c

o
h

es
io

n
 

[M
P

a
] 

&
 f

ri
ct

io
n

 a
n

g
le

 [
o
]

Accumlated plastic shear strain [-]

Cohesion Friction angle

0

5

10

15

20

25

0 0,01 0,02 0,03 0,04 0,05

M
o
b

il
iz

ed
 j

o
in

t 
co

h
es

io
n

 [
M

P
a
] 

&
 f

ri
ct

io
n

 a
n

g
le

 [
o
]

Accumlated plastic shear strain [-]

Cohesion Friction angle

0

5

10

15

20

25

30

0 0,01 0,02 0,03 0,04 0,05M
o
b

il
iz

ed
 r

o
ck

 m
a
tr

ix
 c

o
h

es
io

n
 

[M
P

a
] 

&
 f

ri
ct

io
n

 a
n

g
le

 [
o
]

Accumlated plastic shear strain [-]

Cohesion Friction angle

(a) 

(b) 

(c) 

Fig. 4-7 Applied mobilization of strength parameters (cohesion and firction angle) at σ3 = 30 MPa 

for (a) rock matrix, loading parallel to joint planes, (b) joint planes, and (c) rock matrix, loading 

normal to joint planes 
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Fig. 4-8 Applied mobilization of strength parameters (cohesion and firction angle) at σ3 = 50 MPa 

for (a) rock matrix, loading parallel to joint planes, (b) joint planes, and (c) rock matrix, loading 

normal to joint planes 
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The mobilization of the strength parameters is orientation and pressure dependent. For loading in 

direction normal to the bedding planes, the region of the hardening in the pre-peak stage for α = 0o 

is wider than the same for α = 90o. For the same orientation both, hardening and softening behavior 

are more pronounced with increasing applied confining pressure σ3.  

 

4.2.4. Numerical modelling of triaxial tests 

A series of triaxial tests on Tournemire shale are documented by Niandou (1994) and Niandou et 

al. (1997). These tests were performed with three different orientations (parallel to bedding planes 

α = 90o, normal to bedding planes α = 0o and inclined to bedding planes with angle α = 45o). Also, 

different confining pressures were applied (σ3 = 5, 30, 40 and 50 MPa). Strains in orthogonal 

directions were measured which allowed the determination of volumetric strains.  

Numerical modelling of these tests are carried out using the previously identified strength 

parameters and the mobilizing functions. Fig. 4-9, Fig. 4-10 and Fig. 4-11 show a comparison 

between numerical and lab results for loading parallel (α = 90o), inclined (α = 45o) and 

perpendicular to the bedding planes (α = 0o). This comparison documents, that the Transubi model 

is able to simulate the strength and the stiffness anisotropy of the Tournemire shale. The volumetric 

compaction could not be well reproduced because the constitutive model does not consider this 

effect in detail. The significant difference in volumetric strain behavior for samples loaded parallel 

and perpendicular to the bedding has been extensively investigated by Abdi et al. (2015). As the 

volumetric strain is an indicator of crack propagation, the failure mode of samples loaded 

perpendicular to the bedding (α = 0o) shows strong fracturing and thus higher values of volumetric 

strain. 

Fig. 4-10.b and Fig. 4-11.b document that greater values of dilation angle for rock matrix and 

bedding (ψ = 15o and ψj = 5o) at higher confining stresses could approximately duplicate the 

volumetric response of Tournemire shale.         
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Fig. 4-9 Numerical and lab results for loading parallel to bedding (α = 90o, σ3 = 5, 40 

and 50 MPa): (a) deviatoric stress vs. axial strain, (b) deviatoric stress vs. volumetric 
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strain  
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Fig. 4-11 Numerical and lab results for loading perpendicular to bedding (α = 0o, σ3 = 5, 40 and 

50 MPa): (a) deviatoric stress vs. axial strain, (b) deviatoric stress vs. volumetric strain  
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Analyzing the deviatoric stress versus axial strain for α = 0o and 90o reveals that strength 

anisotropy is not well reproduced by the proposed Transubi model. It should be noticed that the 

numerical prediction for samples at lower applied pressure (e.g. σ3 = 5 MPa) underestimates the 

strength for α = 0o and 90o. Therefore, a bilinear definition of the yield surface for the rock matrix 

of the Tournemire shale is recommended for both, lower and higher applied stresses.  

Finally, it can be stated that observed failure of samples with inclined bedding in the lab is in close 

agreement to the simulations (Fig. 4-10a). However, the initial nonlinear phases for σ3 = 5 and 30 

MPa was neglected by the simulations. The observed failure modes are identical with those 

investigated by Niandou et al. (1997): shear failure in the rock matrix for samples with α = 0o and 

90o and sliding along the bedding planes for sample with α = 45o.       

4.3.  Opalinus clay 

Similar to the Tournemire shale, Opalinus clay from the underground rock laboratory (URL) 

located in Mont-Terri (Switzerland) exhibits significant anisotropy in strength and stiffness as a 

transverse isotropic rock. The anisotropy can be explained by preferred orientation of the clay 

minerals which form 40 – 70 wt.% of its mineralogical composition (Loon et al. 2008).  Salager, 

Nuth and Laloui (2010) stated that a constitutive model of the Opalinus clay should consider (i) 

elastic modulus on the inherent planes of anisotropy in a proper way, and (ii) pre- yield hardening 

or post-yield softening as observed by Olalla, Martin and Saez (1999), Corkum (2006) and Popp 

and Salzer (2007) taken into account stress induced anisotropy and loading angle.  

Updated mechanical properties of the Opalinus clay could be found in (Bock 2009; Lisjak, 

Grasselli and Vietor 2014; Bossart et al. 2017). Unlike the stress-strain behavior of the Opalinus 

clay reported by many scholars (e.g. Popp and Salzer 2007; Olalla, Martin and Saez 1999; Corkum 

and Martin 2004), Salager, Nuth and Laloui (2010) documented post- yielding hardening which is 

not considered in this work. The uniaxial compressive strength UCS⊥ in loading direction normal 

to the bedding planes (α = 0o) is higher than UCS// parallel to the bedding planes (α = 90o) (Bock 

2009; Lisjak, Grasselli and Vietor 2014). In contrast, Popp and Salzer (2007) investigated the 

Opalinus clay strength under different applied confining pressures showing that UCS// < UCS⊥. 

Fig. 4-12 shows proposed strength parameters for rock matrix provided by Bock (2009) and Thöny 

(2014) and for the bedding planes by Popp and Salzer (2007). The rock matrix itself does not show 

any anisotropy.     
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Investigations of the sensitivity of the elastic modulus of Opalinus clay in respect to the applied 

confining pressure are documented for instance by Corkum (2006) and Naumann et al. (2007). A 

slight dependency of the elastic modulus on the applied confining pressure (σ3) has been found. 

Since the value of the elastic modulus is relatively constant between σ3 = 2 – 10 MPa, which 

represents the in-situ stress level at Mont Terri, Bock (2009) suggested to use constant elastic 

modulus. Recently, new drained triaxial lab testing confirmed a relation between the applied 

confining stress and the measured Young’s moduli for P- and S-samples (Favero et al. 2018). 

Generally, the elastic modulus measured parallel to bedding planes (E//, P-samples) is higher than 

perpendicular to the bedding plans (E⊥, S-samples). As shown in Fig. 4-13, the undrained elastic 

anisotropy ratio k = E// / E⊥, is commonly  between 3 and 4 (Thöny 2014; Lisjak et al. 2014; Bock 

2009). k is decreasing at higher confinement, k is about 1.5 for σ3 ≥ 10 MPa (Favero et al. 2018). 

Two different Young’s moduli have been identified for the Opalinus clay: the ordinary Young’s 

modulus (E) deduced from cyclic loading tests (loading-unloading-reloading) and the secant or 

tangent Young’s modulus (Et-50 or E0.2%) determined at 50% UCS or after 0.2% of the axial strain 
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Fig. 4-12 Proposed strength envelops for Opalinus clay accoding to Bock (2009), Thöny 

(2014) and Popp and Salzer (2007)   
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(Bock 2009; Corkum 2006). Usually, E is significantly greater than Et-50. Various values of 

Young’s modulus for different orientations (P- and S- samples) are shown in Fig. 4-13.   

 

 

 

4.3.1. Parameters identification and bi-linear behavior  

Based on the published experimental lab testing such as uniaxial compressive tests, triaxial 

compressive tests, tensile tests and direct shear tests (Olalla, Martin and Saez 1999; Rummel and 

Weber 2007; Popp and Salzer 2007; Konietzky and te Kamp 2004; Naumann, Hunsche and 

Schulze 2007; Amann et al. 2011; Amann et al. 2017), the mechanical behavior of Opalinus clay 

cannot be approximated by a simple linear Mohr-Coulomb failure criterion for rock matrix and 

bedding planes as shown in Fig. 4-12. Bock (2009) stated that the failure mode at lower applied 

confinement (< 5 MPa) is a combination of axial fractures with local shear fractures and/or 

spalling, while shear failure is observed at higher confining pressures. Thus, a non-linear M-C 

envelop should be considered for the mechanical behavior of the Opalinus clay. The strength 

parameters for a bi-linear constitutive law are given in Table 4-3, Fig. 4-14 and Fig. 4-15 

(Konietzky, Blümling and te Kamp 2003; Bock 2009; Popp and Salzer 2007; Thöny 2014).  

Fig. 4-13 Range of measured Young’s moduli for P- and S-samples of Opalinus clay; drained 

values under saturated conditions and confining stress [σ3 = 2 – 10 MPa], after Bock 2009 and 

Favero et al. 2018. 
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Table 4-3 Bi-linear peak and residual M-C strength parameters for rock matrix and bedding planes for 

Opalinus clay (Konietzky, Blümling and te Kamp 2003; Popp and Salzer 2007; Thöny 2014; Bock 2009)  

Rock matrix  

σt 

[MPa] 

Joint plane 

σt
j 

[MPa] 

Peak values Peak values 

First surface 

(< 3 MPa) 

Second surface 

(> 3 MPa) 

First surface 

(< 1 MPa) 

Second surface 

(< 1 MPa) 

c1 φf1 c2 φf2 

1.2 

cj1 φfj1 cj2 φfj2 

0.4 

3.5 35 6.5 20 0.6 29 0.96 21 

Residual values Residual values 

First surface Second surface First surface Second surface 

c1
res φf1

res c2
res φf2

res cj1
res φfj1

res cj2
res φfj2

res 

1.5 35 3.2 20 0.3 26 0.6 18 

 

 

 

 

 

 

 

 

Fig. 4-14 Bi-linear M-C strength envelopes for rock matrix of  

Opalinus clay    
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The work by Popp and Salzer (2007) focused on the bedding planes dilation angle assuming a 

relatively high value of 25o for low confinement (< 1 MPa) which decreases exponentially to 

values close to 0o for higher confining pressure (> 2 MPa). They  analyzed  the dilatancy for both, 

the rock matrix and the bedding planes via the comparison between numerical simulation results, 

triaxial lab testing and direct shear tests.        

4.3.3. Mobilization of strength parameters 

Similar to the mobilization procedure described for Tournemire shale in chapter 4.2.3, the 

analytical functions (Eq. 5.2 – 5.6) for pre-yield hardening and post-yield softening are applied 

also for the Opalinus clay. The mobilization is considered for cohesion and friction angle while 

tensile strength and dilation angle are constant. It is assumed that elastic parameters are not 

sensitive to the applied confining pressure, thus the plastic strain depends completely on the 

bedding plane orientation. Fig. 4-16 and Fig. 4-17 present the mobilization of the strength 

parameters for both rock matrix and bedding planes, respectively.  

 

 

 

 

Fig. 4-15 Bi-linear M-C strength parameters for bedding planes of  

Oplainus clay 
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Fig. 4-16 Mobilization of strength parameters (cohesion and friction angle) for Opalinus 

clay for rock matrix. 

Fig. 4-17 Mobilization of strength parameters (cohesion and friction angle) for Opalinus 

clay for bedding planes. 
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The plotted strength mobilization functions are used within the following section to simulate the 

triaxial and the direct shear tests conducted on Opalinus clay by Popp and Salzer (2007).  

   

4.3.4. Numerical simulation of triaxial tests 

The numerical simulation of triaxial compression tests conducted on Opalinus clay by Popp and 

Salzer (2007) is performed using the proposed Transubi model and applying the strength 

parameters given in Table 4-3, Fig. 4-14 and Fig. 4-15. The simulations utilize the mobilization of 

these strength parameters as discussed previously. The elastic parameters are given in  

Table 4-4 (Bock 2009; Lisjak, Grasselli and Vietor 2014). 

 

Table 4-4 Elastic parameters for Opalinus clay   

E [GPa] Eʹ [GPa] ν  [-] νʹ  [-] Gʹ [GPa] 

10.5 3.0 0.35 0.25 2.0 

 

Constant values are assumed for the dilation angles: ψ1 = 7o and ψ2 = 5o for rock matrix. Literature 

does not provide values for the dilation angle of the rock matrix, but the volumetric dilatancy was 

investigated via triaxial lab tests with different orientation of bedding planes to loading directions 

(Bock 2001; Popp and Salzer 2007). Without a detailed explanation Thöny (2014) proposed 

relatively high values for the dilation angle for rock matrix and bedding planes: 32o and 19o, 

respectively. On the other side, the dilation angle was considered as 2/3 of the friction angle which 

varies with the loading angle (α) (i.e. ψmin = 10o (for orientation α = 40o) and ψmax = 15o (for 

orientation α = 90o) ) (Nguyen and Le 2015). As the proposed constitutive model considers 

hardening and softening in the pre- and post-yielding phase, the numerical results are highly 

sensitive to any variation of the dilation angles.  

Fig. 4-18 presents that simulation results show a good agreement with lab data obtained from 

triaxial compression tests. As previously mentioned, the Transubi model considers no strength 

anisotropy for the rock matrix, thus the computed strength of the rock matrix for the same 

confining pressure (σ3) is independent on the sample orientation. However, the model is able to 

simulate the stiffness anisotropy as well as pre-yielding hardening and post-yielding softening, 

especially for S-samples. On the other hand, the plastic strain of Opalinus clay shows dependency 

on the bedding plane orientation. As shown in Fig. 4-18 for P-samples, the simulation displays 
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excessive hardening in the pre-yielding region. Generally, the Opalinus clay shows pronounced 

strain softening for P-samples especially at higher confinement. On the contrary, a brittle plastic 

behavior is adapted for S-samples as explained by Popp and Salzer (2007).  The dilatancy of P- 

and S- samples during the triaxial tests is shown in Fig. 4-19. 

 

 

 

The volumetric strain shows significant variations in behavior and magnitude for different loading 

directions. Hatzor and Heyman (1997) confirmed that applied confining pressure and bedding 

plane orientation play a significant role in dilation performance. Loading in direction perpendicular 

to the bedding planes (i.e. S-sample, α = 0o) produces higher dilation than loading parallel to 

bedding (i.e. P-sample, α = 90o) (Hatzor and Heyman 1997; Bonnelye et al. 2017).  A numerical 

example has been introduced by Zhao and Cai (2010) in which an elastic-perfect-plastic M-C rock 

sample is subjected to (i) fixed confining pressure and different dilation angles (Fig. 4-20a), and 

(ii) different confining pressures with constant dilation angle (Fig. 4-20b).  

 

Fig. 4-18 Numerical and lab results of triaxial tests (P- and S-samples) 
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Fig. 4-19 Numerical and lab results of the observed dilatancy of P- and S-sample during triaxial lab tests 

Fig. 4-20 Volumetric vs. axial strain for rock samples with (a) different constant 

dilation angles (σ3 =1 MPa), and (b) subjected to different confining stresses 

(ψ=20o) (simulations by Zhao and Cai 2010). 
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Based on the lab datasets given  by Popp and Salzer (2007), the volumetric strain behavior with 

loading direction perpendicular to the bedding planes (α = 0o) fits with the curves given in Fig. 

4-20. Generally, rock samples (α = 0o) for different confinement indicate a fixed pre-yielding slope 

which confirms constant elastic properties.  

Unlike the behavior captured at rock samples with loading normal to bedding (α = 0o), a 

remarkable contrast is found in the volumetric strain for loading direction parallel to bedding (P-

sample, α = 90o). Applying constant dilation angles (e.g. ψ1 = 7o and ψ2 = 5o) does not lead to 

proper volumetric strain results. Hatzor and Heyman (1997) stated that increasing confining 

pressure could cause either decreasing dilation or increasing elastic modulus (as observed by 

Corkum (2006) and Bock (2009)) or decreasing Poisson’s ratio (Favero et al. 2018). Because 

constant elastic properties are used in the proposed model, this behavior cannot be duplicated. 

According to Bonnelye et al. (2017) bedding plane dip angle is not the only variable causing the 

dilation variations but also the dip direction as documented in Fig. 4-21. 

        

By applying a dilation angle nearly similar to the angle proposed by Nguyen and Le (2015) for P-

sample (i.e. ψ2 = 12o), the numerical simulation shows closer agreement with lab results for 

confinement σ3 = 10 MPa (Fig. 4-22). However, such excessive decrease in volume for clay rocks 

Axial strain [%] 

Radial strain [%] 

Fig. 4-21 Radial vs. axial strain as a function of the locations of gauges R1 (dashed lines) and 

R2 (solid lines) for loading parallel to bedding planes (α = 90o) and confining pressures of 5 and 

80 MPa (Bonnelye et al. 2017). 
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in general and Opalinus clay in particular is usually not observed (Amann et al. 2011; Wild et al. 

2015; Favero et al. 2018)). Also, Nguyen and Le (2015) stated that P-sample dilation is 

overestimated. As shown in Fig. 4-22, the computed maximum volumetric strain using ψ2 = 5o 

equals -0.0022 which closely fits the measurements provided by Bock (2001) with -0.0021. The 

difference in values given by Bock (2001) and Popp and Salzer (2007) could reflect the influence 

of bedding plane dip direction. Dilatancy starts at peak stress and continues up to failure. This 

finding is consistent for S-samples (Popp and Salzer 2007; Naumann et al. 2007; Nguyen and Le 

2015). However, for P-sample, it is far from experimental observations (Fig. 4-19). 

 

 

 

4.3.5. Numerical simulation of direct shear tests 

This part documents numerical simulations of direct shear tests conducted on Opalinus clay in the 

lab by Popp and Salzer (2007). Samples are horizontally bedded blocks with dimension w = 200 

mm and h = 100 mm (see Fig. 4-23) subjected to different normal stresses (σn = 0.5, 1, 3 and 4 

MPa). The entire test procedure is explained in details by Popp and Salzer (2007) showing also 

the influence of the displacement rates. 

Fig. 4-22 Numerical and lab results of volumeritic strain of P-sample (σ3 = 10 MPa) 

applying different dilation angles 



Chapter 4 Numerical simulation of laboratory investigations of bedded argillaceous rocks  

91 

 

As shown in Fig. 4-23, the numerical simulation is based on a 2-dimensional model with same size 

of the sample (0.2 m x 0.1 m) discretized into 40 x 20 zones in x- and y- direction, respectively. 

This model is adjusted from the shear test example found as example 3.5 in FLAC manual (Itasca 

2016). A constant vertical stress (σyy) is applied while two different horizontal stresses (σxx and σzz) 

are initiated and their values are similar to the applied vertical stress. Afterward, a fixed horizontal 

displacement is applied on the upper boundary in the positive x-direction. Different 8 points 

located on the upper boundary of the sample are assigned as history points to record the 

displacements in both x- and y-directions by which the dilation and the shear displacements could 

be plotted.  

      

 

Elastic and strength properties of the rock matrix and the bedding planes of the Opalinus clay are 

identified previously, however the dilation angle of the bedding planes is not yet assigned. 

According to Popp and Salzer (2007), the value of the dilation angle depends on the applied normal 

stress, for σn ≤ 1 MPa: ψj  ≥ 10o
. On the other side, the dilation angle exponentially decreases for 

σn ≥1 MPa and reaches almost zero (ψj  ≈ 0o) at σn = 5 MPa. Fig. 4-24 and Fig. 4-25 show a 

comparisons between lab and numerical simulation results.    

 

 

 

 

Fig. 4-23 Sketch of the numerical direct shear test 
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The applied dilation angles for bedding planes are defined according to the observation given by 

Popp and Salzer (2007) in which the values are measured using the dilatancy curves. As already 

explained, a bi-linear M-C failure criterion is used to describe the behaviors of the rock matrix and 

the bedding planes. The intersection between these two shear surfaces is assigned at σ3 = 1 MPa 

where the dilation angle decreases significantly as well, see Fig. 4-26.  

 

 

   

Compared with lab data, the Transubi model using the bi-linear yield surfaces is able to simulate 

the direct shear test conducted on horizontally bedded Opalinus clay samples. Although this 

simulation - in respect to the bedding planes - shows significant difference in behavior under low 

normal stress (≤ 1 MPa), in practice considering in-situ stress states between 2 to 10 MPa, the 

applied yield surface is linear and follows the second yield surface (σ3 >1 MPa).         

4.4.  Conclusions 

This chapter introduced numerical simulations of lab tests conducted on inherent anisotropic rocks: 

Tournemire shale and Opalinus clay. As illustrated, both rocks behave as transverse isotropic 

materials which possess anisotropy in strength and stiffness. For Tournemire shale, the triaxial 

compression tests done by Niandou (1994) were simulated using the Transubi model which is able 

to capture the pre-yield hardening and the post-yield softening. The mobilization of the strength 
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parameters for the Tournemire shale show relation to plastic strain, deformation modulus, 

volumetric strain, applied confining pressure and strength in respect to loading direction.  

On the other hand, Transubi model utilizes bilinear yield surfaces for both, the rock matrix and the 

bedding planes. Similar to the Tournemire shale, the Opalinus clay behaves non-linear in the pre- 

and post-yield regions, thus the mobilization of the strength parameters starts from the first stages 

of loading. Unlike the Tournemire shale, there is not dependency of the plastic strain on the 

confining pressure for Opalinus clay. Triaxial and direct shear tests carried out by Popp and Salzer 

(2007) have been numerically simulated and results show good agreement with the lab datasets. 

Dilation angles for rock matrix and bedding planes show high variability in respect to loading 

direction and applied confining pressure.  

To sum up, the Transubi constitutive model is able to model the stiffness and strength anisotropy 

for bedded argillaceous rocks and predicts in good agreement with lab tests the stress – strain 

behavior. However, it does not include stress dependent elastic modulus or rock matrix strength 

anisotropy. Also, the simulation results show significant influence of the assigned dilation angle 

which should be carefully assigned. 
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5. Loading and unloading of transverse isotropic rock block with 

circular hole: lab test and numerical simulation 

5.1.  Introduction 

Transverse isotropic elastic constants have a significant influence on the plastic zone around 

excavated openings (Tonon 2000). To investigate this phenomenon a special laboratory test has 

been designed using a transverse isotropic slate rock block containing a circular opening. A one-

sided partial faced cyclic loading is applied on the sample while the opening perimeter was 

continuously observed using a special optical observation method. Later, this test was simulated 

using different constitutive models: anisotropic elastic model, ubiquitous joint model and Transubi 

model.        

5.2.  Evaluation of previous numerical studies 

The improvement of computational methods has given deeper insight into the behavior of openings 

in transverse isotropic rocks, e.g. by introduction of stress-dependent deformation modulus 

(Corkum 2006), the evolution of the EDZ based on continuum modelling (Wang et al. 2009) or 

finite discrete element modelling (Lisjak et al. 2014). A review is summarized in Table 5-1 

focusing on the stress-strain behavior around openings in transverse isotropic rock masses. 

Wang and Huang (2014) analyzed the deformations around a tunnel based on the enhanced strain 

hardening/softening ubiquitous joint model considering up to three joint sets. The assigned 

parameters of the joint planes are fixed to all included joint sets. Later, Agharazi (2013) and Chang 

(2017) developed an equivalent continuum multi-joint ubiquitous joint model based on elastic-

perfect-plastic theory. Based on the FEM code RFPA, Tang et al. (1998), Wang et al. (2009); Jia 

and Tang (2008) and Wang et al. (2012) modelled not only the influence of stiffness and strength 

anisotropy, but also the effect of rock heterogeneity on the growth of the EDZ around unlined 

openings of different geometries. Wang et al. (2012) studied in detail the failure modes around a 

circular hole driven into an interlayered rock based on experimental investigations by Tien et al. 

(2006). Using the FEM code Phase2 (Rocscience, 2011), a tunnel excavation in a stratified rock 

mass was investigated by Fortsakis et al. (2012). In contrast to the elastic study by Lisjak et al. 

(2015) based on the same software, Fortsakis et al. (2012) used a generalized Hoek–Brown 

constitutive law based on the GSI-Index where dominant discontinuities were explicitly modelled 

by the nonlinear Barton–Bandis failure criterion. Similar, a tunnel in dipping layered formation 
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was investigated by Li et al. (2013) using the FDM code FLAC3D (Itasca, 2016). Here, for the 

rock matrix the isotropic Mohr–Coulomb law was used while the dipping layering was modelled 

explicitly by interface elements. Another continuum based approach with strength and stiffness 

anisotropy is available in the FEM code PLAXIS (Plaxis, 2016). Simanjuntak et al. (2014) used 

this 2-dimensional elasto-plastic model in which the rock matrix behaves elastic while the joint 

planes react elasto-plastic. Full elasto-plastic numerical simulations based on continuum based 

constitutive models are presented by François et al. (2014) in which a cross-anisotropic strain 

hardening/softening constitutive model is applied to simulate the deformations and plastic zone 

around unlined openings. All previous mentioned numerical studies considered symmetrical 

loading conditions. Liu et al. (2017) conducted centrifugal model tests and corresponding 

numerical simulations for a shallow unlined opening excavated in an interlayered inclined rock 

mass in which the applied loading on the opening is unsymmetrical. A comparative study provided 

by Riahi and Curran (2009) considers the response of a circular hole excavated in a layered rock 

with layers oriented in an out-of-plane direction by using a Cosserat equivalent continuum elasto-

plastic model. The results were compared with those obtained by the DEM code 3DEC. Regarding 

the discontinuum based models, a recent numerical study about the failure mechanisms of 

horizontal boreholes in transversely isotropic rock mass utilizing the particle flow code PFC2D by 

Jia et al. (2017) has to be mentioned. The failure modes around a horizontal borehole considering 

different bedding inclinations have been investigated and compared with numerical analysis by 

Wang et al. (2012). The hybrid finite discrete element method (FDEM) combines continuum 

mechanics principles with DEM algorithms to simulate the progressive failure and the spontaneous 

nucleation and propagation of cracks in an explicit manner within the rock mass (Lisjak and 

Grasselli 2014; Lisjak et al. 2014; Lisjak et al. 2015). 
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Table 5-1 Summary of selected recent numerical studies of a tunnel in layered rock mass 

Reference No. of joint/interface sets Strength anisotropy Stiffness anisotropy Type of used software Captured failure modes remarks 

(Azadeh Riahi and 

Curran 2009) 

One joint set, spacing considered 

 
Yes Yes, as equivalent continuum  FEM 

Sliding on joints, failure through 

rock matrix and flexural layer 

bending 

3D Cosserat-based constitutive 

model 

(Wang and Huang 

2014) 
Three joint sets, spacing included Yes Yes, as equivalent continuum  FLAC 

Sliding on joints, failure through 

rock matrix 

Joint properties are fixed for 

the different sets 

(Wang et al. 2012) 
One joint set, interlayered rock 

type 
Yes 

Yes, as transverse isotropic 

stiffness matrix 
RFPA 

Sliding on joints, failure through 

rock matrix and cracking  

Interlayered elastic properties 

are explicitly defined 

(Liu et al. 2017) 
One inclined joint set, interlayered 

rock type 
Yes Yes ANSYS 

Sidewall failure with increasing 

acceleration  
Centrifugal test 

(Fortsakis et al. 2012) One dominant discontinuity set 
Yes, but rock matrix behaves as 

“pseudo-isotropic” material 
Yes Phase2D 

Sliding on joints and deflections of 

internal rock mass 
Beam theory 

(Jia et al. 2017) One inherent joint set Yes Yes PFC2D 

Sliding on joints, failure through 

rock matrix; collapsed zone is 

simulated 

Different applied horizontal 

stresses 

(Simanjuntak et al. 

2014) 
One inherent joint set Yes  Yes  Plaxis Sliding on joints Rock matrix is elastic 

(François et al. 2014) One inherent joint set Yes 
Yes, as transverse isotropic 

stiffness matrix 
LAGAMINE FEM 

Sliding on joints, failure through 

rock matrix and shear banding 
HM-coupling 

(Lisjak et al. 2014) One inherent joint set Yes Yes Y-Geo FEM/DEM  

Shearing through intact 

matrix, bedding plane delamination 

and axial splitting 

EDZ formation process in 

horizontal bedded rock mass 

(A Lisjak et al. 2015) One inherent joint set No Yes Phase2D Elastic deformations 
Underestimation of  

deformation around the hole   

(Li et al. 2013) 
Isotropic rock with five interface 

element layers 
Yes, at the interfaces No FLAC3D/ANSYS interface 

Sliding on joints, failure through 

rock matrix 

Effect of dipping layers on the 

construction process 
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5.3.  Experimental Model Setup 

The experiment was conducted on a slate block with inherent planes of anisotropy (horizontal 

bedding). The tested block had the dimensions (height x width x thickness) of 249.03 x 250.75 x 

39.27 mm. A circular hole with radius (r) of 23.33 mm was drilled in the middle of the rock block. 

Boundary conditions are illustrated in Fig. 5-1. Note that, the loading on the plate was not applied 

on the entire face, and the model sides were not fixed. Applying such load on a partial side of the 

sample was suggested due to the capacity of the testing machine (i.e. maximum stress which could 

be generated using the entire boundary is 100 MPa) which is lower than the estimated compressive 

strength of the sample (σc = 142 MPa).  

 

 

 

 

Fig. 5-1 Simplified sketch of the lab test settings 
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5.3.1. Loading pattern and deformation monitoring system 

A pseudo static cyclic load was applied at the sample with a displacement velocity of 0.05 mm/min 

which results in a measured vertical force of approximately 0.12 kN/sec. The loading (Fy) history 

is shown in Fig. 5-2. The load is increased in stages up to: 100 kN, 150 kN, 200 kN, 250 kN, 350 

kN and 400 kN. Once the peak load was reached, the specimen was unloaded to 10 kN with the 

same loading speed.  

 

 

 

The cyclic loading was applied until the sample failed. Vertical load was measured directly by the 

load measuring cell. The initial loading until 100 kN shows a strong non-linear behavior (see Fig. 

5-2) caused by the initial setting of the interface between the sample and the loading platens and 

will not be considered further in the simulation. The real time deformation behavior along the 

perimeter of the hole was observed in detail using a high precision optical multi-point and profile 

measurement device. Up to 16 points can be measured simultaneously with an accuracy of about 

2 µm for each measurement point. The measurement technique is based on a 2D image projected 

on a complementary metal–oxide–semiconductor [CMOS] receiver. The optical system uses a 

green LED. Telecentric lenses apply uniform LED light onto the target. This light projects an 

Fig. 5-2 Vertical load (Fy) vs. time with applied loading velocity of 0.05 mm/min 
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image on the CMOS. The experimental test setting is shown in Fig. 5-3.a. A closer view of the 

contour of the circular hole before and after the experiment is shown in Fig. 5-3.b. 

 

 

 

      

5.3.2. Observation results  

During the experiment the absolute position of several points along the perimeter was determined 

every second. As axisymmetric behavior was assumed, the observation was carried out only on 

one quarter of the perimeter (α = 0o to 90o), see Fig. 5-4.  

 

 

 

 

Fig. 5-3 Observation system: (a) Exemplary photo of optical deformation observation system, and (b) 

Detailed view of the circular opening (left: before loading; right: after the experiment). 
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The observed radial deformations of the observations points are shown in Fig. 5-5. The 

displacements of points D and E (i.e. from α = 90o to 75o, called crown) are mainly directed toward 

the center of the hole. For the sidewall, i.e. the springline region according to Hefny and Lo (1999), 

the behavior should be somewhat different. The radial deformations in the region from point A to 

point B (i.e. 0o < α < 15o) are nearly constant with only very minor fluctuations. Starting from the 

loading cycle at t ≈ 9250 s, the radial deformation pattern significantly changed. This can be best 

observed in the graphs for points A, B and C in Fig. 5-5 and can be interpreted as an indication of 

yielding and fracturing occurring along the perimeter.  

As previously discussed, the first loading cycle shows pronounced non-linearity which is not 

considered in the simulation. Thus, the initial point was shifted to the point in time of 800 sec. The 

variation of the radial deformation confirms an elastic behavior for the first loading cycles, while 

plastic effects start at 9250 sec (applied load ≈ 315 KN). This is indicated by notable deviations in 

the radial displacements at point C (i.e. α = 45°). Furthermore, it is observed that the radial 

deformation at various observation points shows significant softening, especially at points A, B 

and C, once the plastic behavior has been initiated.   

 

 

Fig. 5-4 Locations and angular positions of the observation points 
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Fig. 5-5 Radial displacements versus time for observation points (minus sign indicates movement toward the centre of the hole) 
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During the cyclic loading with increasing amplitude, elastic and plastic deformations are 

observed. In particular, sample 5 shows significant anisotropic behavior not only in strength, 

but also in stiffness. The deformation behavior for the crown region is significantly different 

from that in the sidewall region. In other words, for the same applied stress interval (Δσ) a 

unique strain value (Δε) is not expected for the different observed points along the perimeter, 

as explained in Fig. 5-6. 

 

For transverse isotropic rock with inclined inherent plane of isotropy with angle β, Pei (2008) 

introduced Eq. 5.1 to interpret the anisotropic Young’s modulus Eβ for Chichibu green schist 

tested by Mogi (2006) based on the work of Amadei (1983). 

 

2 2 21 cos sin sin (2 ) 1 1
( )

' 4 'E E E E E

  
= + + +     (5.1) 

 

E and Eʹ are the Young’s moduli in direction parallel and normal to the inherent anisotropy 

plane. The elastic anisotropy of inherent laminated rocks could be quantified by an index 

defined in Eq. 5.2 according to Amadei et al. (1987). 

'

E
k

E
=         (5.2) 

The value of k for most anisotropic rocks is usually between 1 to 4 (Lisjak et al. 2014), which 

fits well with the experimental testing for shale samples by Gholami and Rasouli (2014). Also, 

Fig. 5-6 Schematic illustration showing the effect of the stiffness anisotropy, 

after (Niandou 1994) 
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the conducted experiments on Yeoncheon schist performed by Park and Min (2015) show that 

elastic stiffness anisotropy is app. 4. 

 

There is a noticeable change in the inclination of the stress-strain curve at the higher loading 

levels as documented in Fig. 5-7. This feature can be explained by the plasticity theory 

considering residual or softening parameters (Zhang et al. 2012; Cui et al. 2017). Consequently, 

the numerical simulation of such lab test needs the consideration of strength anisotropy and 

stiffness anisotropy which demands the framework of an anisotropic elasto-plastic constitutive 

model with strain softening. 

5.4.  Material parameters 

The tested roof slate from the Sauerland region in the west of Germany is a fine grained slate 

with  remarkable anisotropy (Braun, 2012; Brenne et al., 2014). The mechanical anisotropy of 

this slate has been investigated by Braun (2012) via uniaxial tests with orientation intervals of 

15o. Berwanger and Helms (1993) performed loading tests on samples with three different 

orientations (β = 0o, 45o and 90o). Mechanical investigations of the same shale type have been 

performed by Haumann (2016) with different loading angles (β = 0o, 30o and 90o). On the other 

hand, material parameters were obtained from lab testing conducted on Mayen Mosel-Slate by 

(Tan et al. 2015; Dinh 2011). This slate has similar mechanical behavior as the tested slate 

(strain softening behavior). Fig. 5-8 shows the uniaxial compressive strength (UCS) and elastic 

modulus (E) for different loading angles (β) including the error bars for the UCS lab values. 

Fig. 5-7 Stress-strain curve of the tested sample at higher loading stages till failure point. 
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The ratio of the elastic anisotropy, defined in Eq. 5.2, equals 3.55 (19.5/5.5) which indicates a 

very high stiffness anisotropy. 

 

  

According to Ramamurthy (1993) and based on the data shown in Fig. 5-8, the strength 

anisotropy Rc varies between 2.5 and 6. For this slate, Rc covers a range between 6 to 9 which 

indicates a very high anisotropy in strength. Within this paper it is assumed that Rc equals 5.9 

(125.7/21.3) as σmin is found at β = 30o. The numerical simulation of the uniaxial compressive 

strength shows the following pattern: concave upwards [β = 10o – 60o] referring to sliding 

failure mode and shoulder type for non-sliding failure mode [β = 0o, 75o – 90o]. Average value 

of UCS for both shoulders is no equal according to lab results: UCS90 is about 135 MPa and 

UCS0 is about 110 MPa (Fig. 5-8).  

The input properties used in the numerical simulations are averaged based on previous testing 

(Braun 2012; Berwanger and Helms 1993; Haumann 2016). Missing properties have been 

reasonably assumed and were calibrated in the numerical models. The finally assigned 

properties are summarized in Table 5-2. The behavior of the tested slate is assumed to be elasto 

-plastic with softening for rock matrix and joint plane. For the rock matrix, softening for 

cohesion, friction angle and tensile strength is proposed, while the softening for joint plane is 

implemented only for the shear parameters (cj and ϕfj).   

 

Fig. 5-8 Plotted numerical values of UCS incl. error bars and the numerical elastic modulus 

(E) vs. the loading angle (β), after Brenne et al. (2014) and Haumann (2016) 
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Table 5-2 Mechanical input parameters for numerical simulations 

Parameter Value 

Bulk density, ρ [kg/m3] 2760 

Elastic components  

E     [GPa] 19.5 

Eʹ    [GPa] 5.5 

ν      [-] 0.1 

νʹ    [-] 0.05 

Gʹ   [GPa] 3.5 

Rock matrix  

σt     [MPa] 12.5 

c      [MPa] 23.5 

φf     [o] 49 

σt.res  [MPa] 9.5 

cres   [MPa] 19 

φf
res  [o] 45 

ψ      [o] 10 

Joint planes  

σj
t     [MPa] 4.0 

cj      [MPa] 8.0 

φfj     [o] 16 

cj
res   [MPa] 4.0 

φfj
res  [o] 15 

ψj      [o] 0 

Angle of inclination, α [o] 0 

 

 

The tensile strength of the rock matrix (σt) is about 10% of the defined maximum UCS as 

shown in Fig. 5-8. The maximum UCS on the bedding planes varies between 14 to 45 MPa. 

Thus, the applied values for the joint plane tensile strength (σj
t) is 4.0 MPa, which is almost 

13% of the average UCS observed at β = 45o (Fig. 5-8). Generally, it is found from literature 

that there is a remarkable variation in the measured properties of tested slates, therefore most 

of the assigned parameters in Table 5-2 have been checked by numerical back analysis. 

 

As previously mentioned, slight softening behavior is noticed for the slates in the post yielding 

region. The mobilization of the strength parameters for rock matrix and the joint plane are 

defined manually in respect to the plastic strain (i.e. ep). Fig. 5-9 shows the applied mobilization 

of the strength parameters. The strength mobilization functions were calibrated to duplicate the 

same degradation as shown in Fig. 5-7. 
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5.5.  Numerical simulations  

5.5.1. Model setup 

Different constitutive models are used to duplicate the lab experiment: the developed 

constitutive model (Transubi), the transverse isotropic elastic model (Elastic) and the original 

ubiquitous joint model (Ubi model). This comparison documents the capability of the Transubi 

model to overcome some problems of different existing anisotropic constitutive models to 

reproduce the lab measurements. 

Model geometry and loading pattern (Fig. 5-1 and Fig. 5-2) as well as the mesh (Fig. 5-10) for 

simulations using different constitutive models are identical. A full model with circular hole is 

chosen. The grid is formed by radial zoning with square outer boundaries. The model consists 

of 7200 (60 x 120) trapezoid-shaped zones. The mesh is coarse at the boundaries and very fine 

Fig. 5-9 Mobilization of the strength parameters for matrix and joint versus plastic strain 
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close to the hole. The hole perimeter is discretized into 120 equal segment (gridpoint very 3o). 

Moreover, the radial mesh structure allows a detailed observation of the deformation acting on 

the perimeter. In order to simulate the incremental load on both sides of the sample, velocity 

in the y-direction is applied along the location of both loading plates, see Fig. 5-1. 

 

 

 

For the simulation with the Transubi model, material parameters given in Table 5-2 are used. 

For the pure transverse isotropic elastic simulations only the elastic parameters are used. For 

the ubiquitous joint model average values are used for Young’s modulus (E = 15.5 GPa) and 

Poisson ratio (ν = 0.1), otherwise plastic parameters according to Table 5-2 are used. Different 

history points (same as in the experiments, see Fig. 5-4) were placed at the perimeter of the 

opening in order to record the displacements. All the loading and unloading phases performed 

in the experiment were duplicated by the numerical modeling. The relatively large calculation 

time required by the Transubi model (4 times greater than using the ubiquitous joint model) is 

due to the complexity of the used constitutive model. Fig. 5-11 shows the vertical applied stress 

Fig. 5-10 Numerical model set-up incl. boundary conditions 
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versus the axial strain for the lab data and different modeling approaches. Simulation results 

are given based on the model shown in Fig. 5-10. The mechanical parameters are presented in 

Table 5-2 and the applied mobilization for the strength parameters of the Transubi simulation 

is shown in Fig. 5-9. 

 

Fig. 5-11 Vertical stress versus axial strain of the tested sample: numerical simulations using 

Transubi, Elastic and Ubi models vs. lab data 

 

5.5.2. Simulation of strength and stiffness anisotropy 

Fig. 5-12 and Fig. 5-13 present the comparison between the numerical simulation results and 

the lab experiments for 5 observation points located along the periphery of the circular hole. 

As expected, the Ubi model tends to overestimate the radial deformation for the sidewall region: 

points A, B and C (i.e. α = 0o – 45o) (Fig. 5-12). The numerical simulation using the Transubi 

model is able to duplicate both, the elastic and plastic deformations observed during the lab 

experiment. The elastic stiffness anisotropy is responsible for a remarkable change in the 

behavior of the radial deformations (Δr) at each observation point. On the other hand, the 

plastic behavior has been also captured by the numerical simulation which begins in the fifth 

loading cycle at around Fy = 315 kN (i.e. after time = 8800 sec of loading, Fig. 5-2). As shown 

in Fig. 5-12, the transition from expansion to contraction of the opening diameter begins at 

point C (i.e. α = 45o) which could not be captured by the Ubi model as well. Furthermore, the 
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radial deformations at the crown, points D and E, are underestimated by the Ubi model in 

reference to the lab observations (Fig. 5-13).  

On the other side, the elastic anisotropic model is able to duplicate the general trend detected 

during the lab test. However, the elastic approach leads to a significant underestimation of the 

final displacement values and cannot show the progressive deformations due to the yielding of 

the sample at last loading stages. During the cyclic loading significant yielding occurs 

especially close to the boundary of the opening which is responsible for the sample failure and 

remarkable increase in radial deformations. In general, the numerical simulation using the 

Transubi model is able to predict the final displacements along the opening’s perimeter and the 

overall trend of radial deformation during all phases of loading and unloading. Within the last 

unloading path, a significant distortion in the radial deformation is noticed which marks the 

formation of a main crack, noticed at point C (Fig. 5-12). The numerical simulation explains 

this distortion by sudden loss of the rock strength (tensile and shear). Generally, the Transubi 

model can capture the strength and stiffness anisotropy based on the elasto-plastic theory quite 

well, whereas both, the Ubi and transverse-isotropic model show significant deviations from 

the lab observations because they only consider one type of anisotropy, either stiffness or 

strength anisotropy.  
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Fig. 5-12 Comparison of the radial deformation evolution (Transubi, Elastic and Ubi models) vs. lab data for 3 observation points A, B and C. At 

point C, there is an excessive failure notice during lab test (circled in red). 
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Fig. 5-13 Comparison of the radial deformation evolution (Transubi, Elastic and Ubi models) vs. 

lab data for 2 observation points D and E. 
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The final radial displacements along the opening perimeter for different constitutive models are 

shown in Fig. 5-14 in comparison with the lab data. Both, the Transubi and the linear elastic models 

show much better agreement with the lab test data compared to the Ubi model. However, a severe 

under-prediction is observed (at points B and C) using the transverse-isotropic elastic model: 

maximum expansion of sidewalls of +0.093 mm (total difference of -42% compared to lab 

measurements) and an average contraction at the crown with about -0.258 mm (total difference of 

-33% compared to lab measurements). At the side wall, the Ubi model overestimates the expansion 

of the hole. The predicted deformation by the Ubi model at α = 0o is about three times the value 

predicted by the Transubi model and the value measured in the lab, although a relative high elastic 

modulus has been given (i.e. greater than average). This overestimation in the sidewall 

deformation is due to the elastic isotropic assumption (i.e. E// = 19.5 MPa and E⊥ = 5.5 MPa while 

given E value for Ubi = 15.5 MPa). The transition zone where the hole deformation switches from 

expansion to contraction is predicted quite well by the Transubi and elastic model (α ≈ 30o - 35o). 

The numerical simulation using the Ubi model underestimates the contraction due to the lack of 

stiffness anisotropy. 

 

 

 

Fig. 5-14 Final radial deformation versus angle of inclination α: numerical 

simulations and experimental measurement (+: expansion of hole) 
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According to Fig. 5-15, the total displacement pattern for both Transubi (Fig. 5-15.a) and linear 

elastic model (Fig. 5-15.b) is sand-clock shaped, similar to the findings by Lisjak et al. (2014). 

The maximum displacements occur at the crown, while the displacements reach their minimum at 

the sidewalls due to two reasons: (i) the local perturbation in the stress field near to the hole, and 

(ii) the elastic anisotropy (i.e. elastic modulus normal to loading direction is greater than parallel 

to loading). On the other side, the Ubi model tends to overestimate the displacements at the 

sidewalls (Fig. 5-15.c). 

 

5.5.3. Failure modes detected during elasto-plastic simulations 

Three different loading stages are used to compare the generated failure modes in detail for the 

Transubi and Ubi model (Fy = 150 kN, 350 kN and final load stage 400 kN). Based on the lab 

Fig. 5-15 Final total displacement contours [cm]: (a) Transubi model, (b) linear elastic 

transverse-isotropic model, and (c) Ubi model. 
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observations, there are two different types of failure noticed around the opening during the test. 

Damage starts with tensile fracture propagation at the crown (i.e. point E) followed by mixed-

mode cracking in zigzag form: tensile cracking interrupted by shear failure along the schistosity 

planes. Fig. 5-16 shows the progress of the RM failure at the end of the second loading stage (i.e. 

Fy ≈ 150 KN) around the hole (invert and crown points) for Transubi and Ubi models.   

 

 

Fig. 5-16 Plasticity indicators at the end of the second loading stage (Fy = 150 KN) showing the 

development of the rock matrix  tensile failure at the crown region for (a) Ubi model and (b) Transubi 

model (grid plotted in cm). 
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With increasing applied load, the yield zone around the hole has extended. As noticed in Fig. 5-5, 

the measurements of the radial displacement have been disturbed at Fy ≈ 327 KN especially at 

point C (i.e. α ≈ 45o). The lab observations show that the main fracture is continuously growing, 

but slightly deviated towards the corners of the slate block. Also, different fractures have been 

noticed at the corners (i.e. 15o < α < 65o) as indication of shear failure which fits with the numerical 

simulations using the Transubi model (Fig. 5-17). In contrast, the Ubi model predicts more or less 

only one single vertical tensile fracture. 

 

 

Fig. 5-17 Plasticity indicators at the end of the fifth loading stage (Fy = 350 KN) showing the 

development of the failure modes for (a) Ubi model and (b) Transubi model (grid plotted in cm). 
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 In general, the Transubi model can duplicate the main damage features observed during the lab 

test (compare the lab observations shown in Fig. 5-20 and Fig. 5-19 against Fig. 5-16, Fig. 5-17 

and Fig. 5-18), which is not the case for the Ubi model.  However, a continuum-based modelling 

technique cannot capture the fracture mechanisms in detail. Therefore, discontinuum-based 

approaches are recommended if fracture evolution should be investigated in detail.  

 

 

Fig. 5-18 Plasticity indicators at final loading stage (Fy = 400 KN) showing the development of the failure 

modes around the opening for (a) Ubi model and (b) Transubi model (grid plotted in cm). 



Chapter 5 Loading and unloading on an unlined circular hole in a transverse isotropic rock 

 

118 

 

 

Fig. 5-19 Sample front side: fracture pattern observed around the opening at the end of the test. Red lines 

correspond the shear (inclined) cracks and green ones represent the tensile (splitting) cracks. 

 

 

 

Fig. 5-20 Sample back side: fracture pattern observed around the opening at the end of the test. Red lines 

correspond the shear (inclined) cracks and green ones represent the tensile (splitting) cracks. 
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5.6.  Conclusions 

Different elastic and elasto-plastic constitutive models were applied to back analyze a lab test (slate 

block with hole under quasi-static cyclic loading up to failure). It is shown, that both - stiffness 

and strength anisotropy – have to be considered to reproduce the observed deformation and 

damage behavior. A pure transverse elastic model is able to reproduce the general trends, but is 

not able to duplicate the non-linearites at higher load levels or accumulated damage and 

consequently under-predicts the displacements. Elasto-plastic models without considering the 

elastic stiffness anisotropy are unable to reproduce the significant anisotropic deformation 

behavior, which can even lead to a wrong prediction of deformation trends. The proposed Transubi 

model covers stiffness as well as strength anisotropy and has shown good agreement with the lab 

results in a quantitative and qualitative manner.  

At different loading stages, the evolution of the failure around the circular opening displays 

variations between the Transubi and the Ubi models. The Transubi model can simulate the main 

failure pattern detected within the experiment. This is only true to some extend for Ubi model. 

Nevertheless, discontinuum-based approaches are better suited to simulate fracture propagation in 

detail.  
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6. Mechanical response of excavations in Opalinus clay 

6.1.  Introduction 

Based on the mechanical behavior of the Opalinus clay described in chapter 4, deformations 

around a tunnel excavated in Opalinus clay are analyzed by numerical simulations. This tunnel is 

driven in a shaly facies formation of Opalinus clay in an URL. Short-term stability of the tunnel is 

considered as part of a long-term research project (Full-scale Emplacement (FE) experiment). The 

numerical simulation considers a shotcrete-supported 3-m diameter tunnel. The deformational 

behavior is compared with data from in-situ measurements (Lisjak et al. 2015). The tunnel is 

excavated steadily, while the lining is installed in certain steps. The FE tunnel was equipped with 

differed instrumentation providing several data sets. The model considers pore pressure, but  water 

flow is not allowed. A sensitivity analysis is conducted to study both, the influence of grid structure 

and the effect of sudden excavation on the displacements and the pore pressure development 

around the tunnel. 

 

6.2.  Tunneling in strain softened rock mass 

The difficulty associated with strain softened rock masses is that these materials are defined as 

highly deformable and they behave as low-modulus medium (Duncan Fama 1993). During tunnel 

excavation, the strength parameters would gradually drop to their residual values at the tunnel 

periphery causing a weakness zone around the formed opening (Ranjbarnia et al. 2015). Fig. 6-1 

illustrates the responses of a circular tunnel driven in elasto-plastic media under hydrostatic in-situ 

stress (Cui et al. 2017). As indicated in Fig. 6-1.b, the slope of the decreasing part of the stress-

strain curve (i.e. the softening rate) plays the most significant role for the stability of the tunnel 

walls (Egger 2000). Based on the softening rate, the evolution of the residual zone is identified 

and therefore the critical time to install the tunnel support system is obtained. The higher the 

softening rate the higher the required support pressure, as indicated in Fig. 6-2 (Egger 2000). 

 



Chapter 6 Mechanical response of excavation in Opalinus clay 

121 

 

 

 

Fig. 6-1: Schematic illustration of formed weakness zones around a circular opening in (a) linear elastic, (b) 

plastic strain softening, and (c) brittle plastic materials under hydrostatic institu stress conditions (Cui et al. 

2017).   
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Once the internal pressure (Pi) approaches its critical value (i.e. Pia, Pib and Pic) as indicated in Fig. 

6-2, the EDZ is extended by forming a failure zone with radius Rp as shown in Fig. 6-1 (Alonso et 

al. 2003). According to the rock mass behavior, the critical internal pressure value is obtained 

which is defined as the minimum value of pressure required to prevent the formation of the EDZ. 

Generally, the formation of the EDZ or the so called yield zone does not mean that the excavated 

opening would collapse, since the rock mass still has a considerable strength (Duncan Fama 1993; 

Alonso et al. 2003). Thus, it is important to define the critical strains and critical support pressures 

of the softened rock mass. Different analytical and numerical attempts were presented to analyze 

circular tunnels excavated in either H-B or M-C strain softened materials (e.g. Cui et al. 2017; 

Ranjbarnia, Fahimifar and Oreste 2015). Most solutions are based on isotropic, continuous, and 

initially elastic rock mass which delimits those solutions for more complex conditions.  

In practice, tunnels are excavated in anisotropic in-situ stress conditions which affect the formation 

of the EDZ zone. Besides that, the occurrence of different discontinuities (e.g. the bedding planes 

Fig. 6-2 Ground reaction curves for three different types of rocks: (a) perfect plastic, (b) strain 

softening, and (c) brittle plastic materials (Egger 2000). u0 is the initial radial displacement before 

support installation.  



Chapter 6 Mechanical response of excavation in Opalinus clay 

123 

 

and inherent anisotropy planes) within the excavated rock mass play a significant role for the 

development of such yielding zones. Apart of the in-situ stress anisotropy, the bedding planes 

could influence greatly the direction of the formation of the EDZ. Theoretical scenarios of the 

formation of the EDZ around tunnels or boreholes have been later confirmed by field observations 

in the URL Mont Terri as presented in Fig. 6-3 (Wermeille and Bossart 1999).   

 

 

 

   

Fig. 6-3 Schematic showing different scenarios of EDZ formation around circular opening: (a) 

excavated vertically in isotropic rock matrix, (b) excavated verically in bedded rock mass inclined with 

angle of 45o, (c) excavated horizontally in bedded rock mass inclined with angle of 45o, and (d) 

excavated horizontally in bedded rock mass inclined with angle of 0o, modified after (Wermeille and 

Bossart 1999).  
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Thus, it is difficult to provide an analytical solution to predict the extension of the EDZ in a strain 

softening rock mass especially under complicated stress conditions and pronounced strength 

anisotropy. The trend is to solve such cases numerically to improved predictions of rock mass 

response and to provide a sound basis for a suitable support system. Also, the numerical back-

analysis based on field measurements (e.g. extensometers and topological survey) is important for 

further applications or operations in similar rock masses. 

The considered short-term stability analysis has been described as brittle and therefore the EDZ 

evolution takes place immediately (Marschall et al. 2017). A review of numerical simulations 

which are used to capture the short-term response of the rock mass around openings and the EDZ 

process is presented by Lisjak et al. (2015). Short-term response is defined within the duration 

between the construction stages to a few days after installation of the support system or based on 

the numerical terminology that the model has reached the equilibrium state. The aforementioned 

review is updated in this chapter and up-to-date modelling studies are summarized in Table 6-1. 

The inserted new studies are either released after the publication by  Lisjak et al. (2015) or 

mechanical models for both, drained and undrained rock masses. Blümling and Konietzky (2003) 

introduced a bi-linear elasto-plastic strain hardening/softening ubiquitous joint model (Subiquitous 

model) for Opalinus clay. Similarly, the mine-by experiment located in shaly-facies Opalinus clay 

of Mont Terri underground rock laboratory was evaluated by using the Subiquitous model in 

FLAC3D without considering the stiffness anisotropy by (Thöny 2014). The proposed Transubi 

model is considered as an update of these trials to apply both: strength and stiffness anisotropy. 
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Table 6-1 Updated summary of EDZ simulations for openings in Opalinus clay, after (Lisjak et al. 2015) 

Study Modeling code  Dimensions 
Anisotropy 

Constitutive models 
Stiffness Strength 

Martin and Lanyon (2003) Boundary element-based 3D 

program, Examine3D  

3D No No 
Linear elastic 

Konietzky, Blümling, and te Kamp (2003) 

and Blümling and Konietzky (2003)* 

FLAC3D 3D No Yes Bi-linear elasto plastic strain 

hardening ubiquitous joint model 

Corkum and Martin (2004) 2D finite element program, 

Phase2 

2D No No Linear elastic 

Elasto-plastic 

Elastic-brittle-plastic 

Konietzky and te Kamp (2004) and 

Konietzky and te Kamp (2006) 

FLAC 3D 3D Yes Yes 
Elasto-plastic with ubiquitous joints  

Corkum and Martin (2007) FLAC 3D 3D No No Linear elastic 

No Elasto-plastic 

No Nonlinear stress-dependent 

modulus elasto plastic model 

(SDM) 

Yes Ubiquitous joint model 

Stefanizzi, Barla, and Kaiser (2007) Finite/discrete element code, 

ELFEN 

2D No No Elasto-plastic with the concept of 

“strain-driven” fractures 

Popp and Salzer (2007) and Popp, Salzer, 

and Minkley (2008) 

UDEC 2D No Yes 
Elasto-plastic with explicit joints 

Yong, Kaiser, and Loew (2010) Phase2 2D Yes No Linear elastic with continuous 

joints  

Yes Yes Elasto-plastic with continuous 

joints* 

3DEC 3D No No Linear elastic with joints 
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Yong, Kaiser, and Loew (2013) FLAC3D 3D Yes No Elastic anisotropic continuum 

model 

Thöny (2014)* FLAC3D 3D Yes No Linear elastic 

No Yes Bi-linear elasto plastic strain 

hardening/softening ubiquitous 

joint model 

Lisjak et al. (2015) Phase2 2D Yes No Linear elastic 

Hybrid finite-discrete element 

code, Y-Geo 

2D Yes Yes Linear elastic with cohesive 

elements 

Le and Nguyen (2015)* Finite element software, 

COMSOL Multiphysics 

3D Yes Yes Elasto-plastic strain 

hardening/softening with implicit 

joints. 

Lisjak et al. (2016)* Hybrid finite-discrete element 

code, Y-Geo 

2D Yes Yes Linear elastic with cohesive 

elements and explicit pre-existing 

discontinuity 

* Newly added studies of excavations in Opalinus clay. 
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6.3.  Short-term stability analysis of the excavation of FE niche 

As Opalinus clay is considered as host rock for the deep geological repositories for radioactive 

waste in Switzerland, the Full-scale Emplacement (FE) Experiment was initiated mainly to 

investigate Thermo-Hydro-Mechanical (THM) coupled effects. Full description and procedure of 

this experiment is given by Müller et al. (2017). The experiment consists of a 50-m long full face 

excavated tunnel starting from the FE cavern/niche (Fig. 6-4).   

 

 

The short-term analysis of the EDZ is found in (Lisjak et al. 2015), while the general long-term 

response is described in (Lanyon et al. 2014). This study considers only the short-term behavior. 

        

6.3.1. Site layout and monitoring systems 

The Opalinus clay in Mont Terri is categorized into three different formations: (i) sand, (ii) a 

carbonate-rich, sandy facies, and (iii) a shaly facies. The FE tunnel is excavated at an azimuth of 

242o from North, approximately parallel to the strike of the bedding, and is entirely located within 

the shaly facies formation (Fig. 6-5). The construction of the FE tunnel was accomplished between 

April 2012 and July 2012. The excavation method was a combination of pneumatically hammering 

and roadheader (Lisjak et al. 2015; Müller et al. 2017). The excavation sequence was that the 

remotely controlled excavator equipped with the pneumatic hammer was used for the tunnel 

profiling, while the roadheader was adjusting the profile. Unlike the simulation, the tunnel invert 

was excavated as flat section rather than the original circular section.  

Such excavation method did not result in a perfect circular profile (diameter is between 2.7 to 3.0 

m including lining). However, the simulated section without lining is set to 3.0 m assuming smooth 

Fig. 6-4 General layout of the FE experiment (Müller et al. 2017). 

Location of 2D model section 
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walls. In practice, this irregularity of the surface caused problems with lining adhesion and 

therefore shear and bending forces in the lining. 

 

 

 

The support system of this tunnel varied along the tunnel. At the access section from 0 to 9 meter 

depth, a combination of shotcrete with steel arches is used. With advance of the tunnel and 

immediately after the excavation, mesh reinforced shotcrete with a minor thickness ranging 

between 16 and 24 cm was applied from 9 to 38 m depth. The targeted 2-dimensional section is 

located in the region supported with a 16-cm shotcrete at 28 m depth approximately, see Fig. 6-4. 

For the rest of the tunnel from 38 to 50 m depth, steel arches with wire meshing are used. The 

various support systems are summarized in Table 6-2. During the construction of the tunnel, high 

Fig. 6-5 Geological map of the Mont Terri underground rock laboratory, FE tunnel is highlighted 

in red,  (Lisjak et al. 2015).  
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convergence rates are observed at section depths TM9 – TM18 m and TM18 – TM38 m. Here 

invert failed and renovation was required. Thus, a new support system has been installed in the 

section from TM9 to TM 38 as specified in Table 6-2. The 2-dimensional numerical simulation at 

TM28 considers only the shotcrete with thickness 16 cm as a support system for the modelled 

section.   

 

Table 6-2 Summary of support systems used along FE tunnel, after (Lanyon et al. 2014 and Lisjak et al. 

2015) 

Section depth [m] Support system Notes 

TM0 – TM9  Steel sets (0.5 – 1  m spacing) + 

shotcrete with thickness 19 cm 

Recording the minimum 

convergence rates  

TM9 – TM18  Shotcrete with thickness 24 cm  From 12.30 – 18.3 m depth; extra 

22 mm diameter and 2.5 m long 

fibreglass solid bolts with axial 

spacing = 1.5 m are installed  

TM18 – TM38  Shotcrete with thickness 16 cm From 19.8 – 37.8 m depth; extra 

32 mm diameter and 7.5 m long 

hollow steel bolts in the right side 

wall with axial spacing = 1.5 m 

are installed 

TM38 – TM50  Steel arches (0.5 – 1 m spacing) 

+ wire mesh  

The convergence rate is similar 

to the access section. 

 

As described in Fig. 6-6, an extensive monitoring system has been installed along the tunnel axis 

and at the targeted section point TM28. In order to monitor the rock mass response, the entire 

tunnel has been divided into 10 convergence sections (C0 … to ... C9). At each of them 5 to 7 

geodetic monitoring reflectors are installed to record the deformations. Also, five radial 

extensometers were installed from the tunnel walls each with four displacement sensors and a 

length of 6 m. Two sections, E1 and E2, are used to continuously record radial measurements of 

ground movements around the FE tunnel. At each section, extensometers BFEC-01 and BFEC-02, 

have been installed parallel (inclined with angle = 30o) and perpendicular to the bedding planes 

(inclined with angle = 120o), respectively.    
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As previously indicated, the modelled section is located within the convergence measurement 

sections C3 (TM21.8), C4 (TM27.6) and C5 (TM34.3) at which the supporting system is shotcrete 

with thickness of 16 cm, no anchors were considered. The 2-dimensional section is approximately 

at the middle of the tunnel (app. TM28), also it is positioned nearly intermediate between the 

location of the radial extensometers (E1 and E2). Two 45-m long inclinometers have been installed 

to continuously monitor the vertical displacements above the crown of the FE-tunnel. The two 

inclinometers (BFEA-10 and BFEA-11) were nearly parallel to the tunnel axis and drilled directly 

from the FE cavern prior to the excavation. The position of both inclinometers measured from the 

tunnel axis at the studied section (TM28) is app. 2.6 m.  

Fig. 6-6 Schematic of simplified longitudinual section showing different support sections, convergence 

measurement sections (C0 – C9) and location of radial extensometers (E1 and E2) installed during 

tunnel construction, (adapted from Lisjak et al. 2015)  
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The pore pressures in the near- and far-field were monitored before, during and after the excavation. 

Six boreholes (BFEA-02 to BFEA-07) were installed from the FE niche/cavern. Six measuring 

points were fixed along each borehole. A visualization of the installed boreholes and the 

inclinometers is shown in Fig. 6-7. Note that the recording points were located starting from point 

TM20 till nearly TM40 in such a way that the i6 intervals are the closest to the FE cavern wall and 

the i1 intervals are furthest from the gallery wall (Lanyon et al. 2014).  

 

 

 

6.3.2. Model description, in-situ stress field and assigned parameters 

The numerical model considers a 3 m diameter circular hole centered in a 50 m x 50 m square 

domain. A radial mesh is defined by polar coordinates around the opening. This mesh maximizes 

the model efficiency by providing refinement in the region close to the excavation in order to 

capture the formation of the EDZ. On the other side, the mesh is quite coarse close to the outer 

BFEA-11 

BFEA-10 BFEA-02 

BFEA-03 

BFEA-04 

BFEA-05 

BFEA-06 

BFEA-07 

FE cavern 

(a) (b) 

Fig. 6-7 Arrangement of installed inclinometers and borehole array in (a) 3D (adapted from 

Lanyon et al. 2014) , and (b) top view (adapted from Lisjak et al. 2015)    
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boundaries where no plasticity is expected which reduces the runtime significantly (Fig. 6-8). The 

built-up mesh consists of 12.800 elements. The minimum length of elements on the opening 

perimeter is 0.06 m and the element size is graded toward the borders until it reaches 1.25 m 

adjacent to the outer boundaries. A sensitivity analysis in respect to mesh performance is presented 

in section 6.6.4.  

 

 

Model size was chosen in such a way that boundary effects are negligible. At the outer boundary 

stresses are applied according to Table 6-3. Unlike the numerical simulation reported by Lisjak et 

al. (2015), three orthogonal stress components (σxx, σyy and σzz) are applied. As the model for a 

tunnel section is a plane strain one, the third stress component (σzz) could not be vanished. Lisjak 

et al. (2015) analyzed previous studies regarding the in-situ stress state at Mont Terri. Field 

investigations using borehole breakouts were provided by Wermeille and Bossart (1999). Martin 

and Lanyon (2003) presented a numerical back-analyses of these measurements. In this context, 

another 3-dimensional numerical model was obtained showing that the minimum component of 

the in-situ stress (σ3) and the out-of-plane component (σzz) have some uncertainty and should be 

re-evaluated. Finally, Bock (2009) concluded that the insitu stress values are between 2 to 10 MPa. 

Fig. 6-8 Mesh geometry [m] near to the tunnel, 10 m x 10 m total model size. 
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On the other side, the measured undisturbed pore pressure (σpp) around the FE tunnel is 2 MPa 

(Lanyon et al. 2014). Finally, the in-situ stress tensor is defined as given in Table 6-3. 

Table 6-3 Applied in-situ stresses in the numerical model. 

Component σxx [MPa] σyy [MPa] σzz [MPa] σpp [MPa] 

Magnitude  4.5 6.5 2.5 2 

    

The Transubi model is applied for the whole domain, assuming inclined bedding planes with angle 

(α) = 35o based on the reported observations (Lisjak et al. 2015; Lanyon et al. 2014; Müller et al. 

2017) and the field investigations (Jaeggi et al. 2012).  

Table 6-4 Mechanical properties of Opalinus clay applied to numerical simulations (Lisjak, Grasselli, and 

Vietor 2014; Bock 2009) 

Parameter Value 

Bulk density, ρ [kg/m3] 2330 

Elastic components  

E     [GPa] 3.8 

Eʹ    [GPa] 1.3 

ν      [-] 0.35 

νʹ     [-] 0.28 

Gʹ    [GPa] 0.9 

Rock matrix  

σt     [MPa] 1.0 

First surface  

c      [MPa] 2.0 

φf     [o] 28 

cres   [MPa] 1.5 

φf
res  [o] 20 

ψ      [o] 5 

Second surface  

c      [MPa] 3.0 

φf     [o] 20 

cres   [MPa] 2.0 

φf
res  [o] 12 

ψ      [o] 7 

Bedding planes  

σj
t     [MPa] 0.3 

cj      [MPa] 0.8 

φfj     [o] 20 

cj
res   [MPa] 0.4 

φfj
res  [o] 12 

ψj      [o] 0 

Angle of inclination, α [o] 35 
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The mechanical properties of Opalinus clay obtained in section 4.3 are updated in which the 

applied pre-yielding region is linear elastic with no hardening to investigate the propagation of the 

plastic state around the hole, elastic components are determined after  (Lisjak, Grasselli and Vietor 

2014; Lisjak et al. 2015), see Table 6-4. Also, the strength parameters have been slightly reduced 

based on the design recommendations provided by Bock (2009). Softening (brittle-plastic) is still 

(a) (b) 

(c) 

Fig. 6-9 Main stages of the simulation (a) pre-excavation stage including installation of history 

points and primary stress state, (b) excavation phase, gradual reduction of traction on the 

tunnel surface until a prescribed factor is reached, and (c) applying liner support and bringing 

model to equilibrium . 
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applied in the post yielding region. The rock matrix is described as bilinear M-C, while for the 

bedding planes a linear M-C model with tension cut-off is used.  

The second stage (Fig. 6-9.b) simulates the relaxation procedure at which the forces at the tunnel 

wall are incrementally decreased up to a prescribed value. The analysis of the ground reaction 

curve of the FE-tunnel shows that approximately 50 % convergence occurred before the shotcrete 

installation. This required a relaxation of 95% (i.e. relaxation factor = 0.05). This value is 

significantly close to the value suggested by Lisjak et al. (2015). Thus, applied relaxation along 

the tunnel perimeter from 0 % to 95 % is implemented, whereas the convergences, deformations 

and pore pressure are continuously recorded around the excavation, see Fig. 6-10.  

 

 

 

The third and the final stage (Fig. 6-9.c) is the support installation as a liner shotcrete with perfect 

adhesion. The nodes on the tunnel perimeter are marked, and then the shotcrete segments were 

applied between each marked node. In FLAC, the logic of structure installation follows the plane-

stress formulation. Thus, the given Young’s modulus should be altered to be compatible with 

plane-strain. The applied shotcrete is linear elastic with homogeneous properties. Parameters are 

given in Table 6-5. After the installation of the shotcrete, the model is brought to equilibrium 

allowing the complete relaxation (100% relaxation).  
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Fig. 6-10 Ground response curve for convergence point P2, almost 50% total 

displacement occurs at relaxation factor = 0.05 (Relaxation = 95%) 
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Table 6-5 Mechanical properties of installed shotcrete  

Parameter Young’s modulus* 

          [GPa] 

Thickness  

[m] 

Moment of 

Inertia, I [m4] 

Poison ratio, ν  

[-] 

value 10 0.16 2.73E-4 0.2 

* The given value is adjusted for plane-strain case to 10.4 MPa. 

 

Concerning the value of the Young’s modulus for the shotcrete, there is no clear data of the applied 

shotcrete installed prior to the invert renovation in 2015 (Müller et al. 2017). Because the short-

term behavior is considered, the assumed stiffness for shotcrete was adjusted for the age of 1 to 7 

days (Bryne 2014; Neuner et al. 2017). The assumed values agree with the parametric study in 

respect  to the displacements at pin P2 and the variation of the shotcrete stiffness (Lisjak 2013). 

Similar, the displacements at pin P3 are recorded prior and after the support installation (relaxation 

= 95%) assuming two applied Young’s modulus for the shotcrete (Fig. 6-11).  Very high value is 

assumed for the shotcrete stiffness (E = 5 GPa) similar to the applied properties of shotcrete in 

(Itasca 2016) showing no produced displacements. On the other hand, low modulus (E = 10 MPa) 

is given similar to the value obtained by Lisjak et al. (2015) and Table 6-5 indicating that there is 

large tunnel convergence consistent with the measured values in-situ. 
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The histories of the recorded total displacements versus the normalized distance between the 

measuring sections and the excavation face for three convergence sections C3, C4 and C5 located 

in the tunnel part lined with 16 cm thick shotcrete are shown in Fig. 6-12. The described model 

procedure is applied (a) without consideration of the pore pressure in chapter 6.3.3 and (b) with 

consideration of a homogenous initial pore pressure and fully saturated rock mass in chapter 6.3.4. 

Both cases use the Transubi model and the undrained Opalinus clay properties shown in Table 6-4. 

As the simulations aim at the short-term analysis, no fluid flow is allowed (undrained conditions). 

 

 

  

(a) (b) 

(c) 

Fig. 6-12 Normalized recorded tunnel wall total displacements at five pins P1, P2, P3, P4 and P5 as 

function of distance between the measuring section and the excavation face (Z/D), Z is the distance 

from the tunnel face and D is the tunnel diameter, for convergence sections (a) C3 at TM21.8, (b) C4 

at TM27.6, and (c) C5 TM34.3, (Lisjak 2013). 
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6.3.3. Mechanical simulation: no pore pressure considered 

During the simulation, histories of x- and y-displacement components according to the locations 

of the inclinometers, the extensometers and the convergence pins are recorded. Therefore, the total 

development of the tunnel convergences and the deformation field around the opening can be 

reproduced and plotted. Neglecting the measured values before installation of the support, the 

comparison between the simulated displacements at the pins and the field measurements recorded 

at convergence sections (C3, C4 and C5) are found in Fig. 6-13.  
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Fig. 6-13 Normalized computed total displacements of tunnel wall compared to average in-

situ measurements at convergence pins (a) P1, P3 and P4, and (b) P2 and P5 
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The computed total displacements show that the proposed numerical model produces symmetric 

behavior, although the field measurements exhibit asymmetric deformation behavior especially 

for P5 and P2. Total displacements at P1 and P4 are overall identical and under-predicted by about 

9 mm indicating another failure mode. The insitu observed behavior cannot be captured by the 

proposed continuum-based model. Lisjak et al. (2015) found the same result concerning P1 and 

P4 as well. Also, the displacements at P5 are underestimated by approximately 20 mm. To explain 

this, different potential reasons have to be mentioned. The convergence pin P5 is located near to 

the base of the north-east wall in a region where tectonic fault planes associated with a fault zone 

present from 14.5 m onwards in the FE cavern exist (Lanyon et al. 2014). Detailed geological 

mapping of excavation face of FE-tunnel is found in (Jaeggi et al. 2012). Additionally, P5 was 

near to the sharp edges formed due to the installed flat slap at the invert producing concentration 

of the deviatoric stresses. In contrast, the model assumed a perfect circular profile without slap in 

the invert and perfect adhesion of the shotcrete.  

On the other hand, the predicted displacements at P3 and P2 are in good agreement with the 

average in-situ measurements. Notable deformations are generated in P2 because of the shear and 

tensile failure on bedding planes. The shear zone formed near to P2 influences the deformation 

field at the tunnel crown, where P3 is located. The evolution of the fractures simulated by Lisjak 

et al. (2015) confirms an excessive fracturing after the support activation at the crown and the 

invert associated to the local shear zones at P2 and P5. In order to enhance the understanding of 

the deformational behavior acting on the tunnel walls, convergences have been recorded between 

the pin points. The total displacements at each pin are analyzed in the direction of the target 

convergence line (Fig. 6-14). Computed convergences at lines P1-P3, P5-P3, P2-P5 and P2-P4 are 

in close agreement with the average field results. The convergence line P1-P4 is under-predicated 

with value 20 mm which is close to the computed value of the linear elastic analysis performed by 

Lisjak et al. (2015). Values for convergence line P1-P5 are underestimated by about 40 mm. 

Similar results were found by Lisjak et al. (2015) where P1-P4 and P1-P5 were under-predicted 

by approximately 13 and 30 mm, respectively. 
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The evolution of the vertical displacements is plotted in Fig. 6-15. Two points are located at the 

same positions of the inclinometers BEFA-10 and BEFA-11, see Fig. 6-9. The recorded vertical 

deflection is consistent with the analysis presented by Lisjak et al. (2015)  in which the recorded 

vertical displacements at equilibrium were 8 and 10 mm for BEFA-10 and BEFA-11, respectively. 

On the contrary, the average insitu vertical deflection measured by the inclinometers between TM9 

and TM38 is about 21.5 mm shows significant deviation from the numerical simulation results. 

The insitu value is obtained by considering the displacements recorded at a given section when the 

excavation face is approximately 9 m away. Such difference could be the consequence of the 

selection of the 2-dimensional instead of 3-dimensional analysis. Applying different supporting 

systems along the tunnel axis without consideration the time dependency will lead to irregular 

values for the measured vertical deflections along the installed inclinometers (BEFA-10 and 

BEFA-11). As shown in Fig. 6-15, the average measured vertical displacements recorded at the 

excavation face at TM28 at inclinometers BEFA-10 and BEFA-11 are 4.7 and 9 mm, respectively, 

which is in close agreement with the numerical simulation results.  
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EXT-01 and EXT-02 are 6 m long extensometers which were installed in orthogonal configuration 

in order to quantitatively describe the propagation of the EDZ. Fig. 6-16 presents short-term radial 

displacements for both extensometers at TM14.6 (section E1, Fig. 6-6) (Lisjak et al. 2015). For 

EXT-01, the measured radial displacements show gradual reduction, almost linear from 2.6 to 0 

mm indicating less yielding in direction parallel to bedding planes in a good agreement with the 

field observations shown in Fig. 6-3.c (Wermeille and Bossart 1999). Conversely, the radial 

displacements at EXT-02 show a drop in measurements at the region between 1 to 3 m away from 

the tunnel perimeter which characterizes the extent of the EDZ. Fig. 6-17 shows the computed  

radial displacements parallel and perpendicular to the bedding planes at equilibrium. The 

difference between measured and  computed values is not rational, Lisjak et al. (2015) stated in 

such context that a limited share of the radial displacements have been captured by the installed 

radial extensometers EXT-01 and EXT-02. In addition, it could be concluded that the radial 

deformations at E1 section (TM14.6) for different support system could be different than the 

deformations at this section. Generally, both measured and computed results share the same 

characteristic: radial deformations at EXT-02 are higher than those at EXT-01. The propagation 

of the EDZ is presented in Fig. 6-18 showing polar symmetric shape and maximum extend in 

direction perpendicular to the bedding plane (P2 and P5) at about 2.7 m from the tunnel wall.     
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Fig. 6-16 Measured short-term radial displacements at TM14.6 section assuming a zero 

value at R = 6 m (Lisjak et al. 2015)   
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corresponding to the installed extensometers shown in Fig. 6-9 
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6.3.4. Mechanical generation of pore pressure – No flow  

For short-term mechanical analysis, the simulation time is shorter than the characteristic time of 

the coupled diffusion process. Thus, the discussed numerical simulation in this part consists of the 

undrained mechanical response combined with the generation of pore pressure change.  

The properties of the Opalinus clay given in Table 6-4 are applied in the simulation, whereas 100% 

saturation and porosity of 0.5 are assumed for all model runs. The initial pore pressure is set to 2 

MPa (Table 6-3). The assigned fluid bulk modulus equals 1 GPa which is considered as a realistic 

value. Fig. 6-19 shows the comparison between numerical results and average field measurements 

as well as the finally evaluated displacements from the mechanical simulations without 

consideration of the pore pressure (section 6.3.3, Fig. 6-13).     

 

 

 

Fig. 6-18 Plasticity indicators showing the formed EDZ at equiliprium state, 10 m x 10 m model size. 

Extend = 2.70 
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As noticed from Fig. 6-19, the overall behavior of the total displacements for points P1, P2, P3 

and P4 after the support installation are quite similar. During the application of the relaxation from 

95% to 98.33% at step no. 80.000, displacements are triggered until equilibrium is reached. 

Compared with simulation results shown in chapter 6.3.3, the computed displacements at points 

P1 and P4 are higher than predicted previously. At P1, the developed displacements are increased 

by 87%, while the percentage is even higher for P4 and equals 137%. Such jumping in the values 

of the computed total displacements for P1 and P4 indicate that the hydraulic coupling plays a 
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Fig. 6-19 Normalized computed total displacements of tunnel wall compared to the average in-situ 

measurements at convergence pins (a) P1, P3 and P4, and (b) P2 and P5. Displacements computed 

from the mechanical simulation without pore pressure consideration are also plotted. 
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major role. Nevertheless, the computed values are still unsatisfactory compared with the insitu 

measurements with an average difference of about 7 mm. Although the simulations achieved 

reasonable predictions for the displacements at P2 and P3, the computed values are lower than 

those estimated by the pure mechanical simulations without pore pressure consideration. The drop 

in the computed values for P2 and P3 is 38% and 11%, respectively. 

On the other hand, the behavior at pin P5 is totally different than those recorded at the other points. 

The jump in the displacements values starts directly after the support activation until equilibrium 

is reached producing a difference in the computed total displacements of approximately 30 mm. 

Afterward, the system stabilizes up to the point when relaxation (98.33%) is applied at step 80.000. 

At equilibrium, the computed displacement recorded at P5 is about 45 mm which is in good 

agreement with the average measured values. For the interpretation of the deformational behavior 

at P5, the hydro-mechanical interaction should be taken into account. Thus, at this region, the 

hydro-mechanical coupling is essential to enhance the understanding of this displacement jump at 

P5 at the moment before and after the support installation. As shown in Fig. 6-20, before the 

shotcrete installation, the saturation is redistributed around the hole showing decreasing values (≈ 

93.5%) in the direction perpendicular to the bedding planes (P2-P5 line). Such reduction in 

saturation is combined with increasing in the displacements at points P2 and P5 (≈ 20.7 mm). Until 

this moment, there is no jump in displacement values at P5. 

Afterward, the model is brought to equilibrium after installation of the shotcrete. At the end of the 

simulation (relaxation = 100 %), significant drop in saturation near point P5 (≈ 0 %) occurred 

which is responsible for the notable jump in the total displacement values in this region due to the 

generated heave (Fig. 6-21). Excessive upward displacements (y-displacements) were induced 

(≈ 65 mm) at the tunnel perimeter because of the buoyancy effect: water level tries to raise again 

to re-saturate region near to P5. Also, the saturation slightly decreased at P2 region to 

approximately 90%. As remarked, the saturation levels at areas near to P1 and P4 show no change. 

On the other hand, such high value in displacements near the tunnel invert could cause the breakage 

of the shotcrete as reported by Müller et al. (2017). Generally, this explanation could be the main 

contributor to the relatively high measured displacement values at P5 besides the other reasons 

mentioned previously in 6.3.3 such as: disturbed tectonic fault planes located near to pin P5 and 

temporary flat slap placed at the invert forming sharp edges (Lanyon et al. 2014; Lisjak et al. 

2015).       
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Fig. 6-20 Saturation around the circular opening before support activation (relaxation = 

95%) and total displacement vectors showing polar symmetry, maximum displacement 

values at P2 and P5 with 20.7 mm  

Fig. 6-21 Evolution of saturation at the end of the simulation at equillibrum state, showing 

drop of saturation near to P5. Excessive total displacement value near to P5 with average 

value of 65 mm, near to P2 the developed displacements are comparably low. At line P1-P4 

displacements reach the minimum. 
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The computed relative displacements between pin points are compared with the results from 

undrained numerical simulations and the average field results (Fig. 6-22). Convergences at lines 

P1-P3 and P2-P4 are quite equal to the computed values using the mechanical only simulation and 

are also close to the measured values. For lines P5-P3 and P2-P5, the computed values are almost 

similar, however the predicted convergence at P5-P3 is over-estimated by about 20 mm. There is 

perfect agreement with in-situ measurements for the computed displacements along P2-P5 ≈ 55 

mm. Noticeable improvement in the predicted convergences for lines P1-P4 and P1-P5 was 

achieved in reference to previous simulation results in which the computed values are under-

predicted by 18 and 24 mm, respectively. In general, the numerical simulations considering pore 

pressure changes result in slightly better prediction of tunnel wall convergences compared to those 

without hydro-mechanical coupling. 

 

 

 

The evolution of the vertical displacements is shown in Fig. 6-23. The obtained vertical 

displacements for BEFA-10 is 8.15 mm while it is about 8.5 mm for BEFA-11 which is consistent 

with the analysis presented by Lisjak et al. (2015). Also the computed final vertical deflections for 
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BEFA-10 and BEFA-11 at equilibrium are in close agreement with the field measurements. The 

predicted displacements are close to the average measured values at TM28 for inclinometers 

BEFA-10 and BEFA-11 which are 4.7 and 9 mm, respectively. On the other hand, the predicted 

values in this simulation are increased compared to the mechanical simulation considering no pore 

pressure for BEFA-10 and BEFA-11 by 22% and 21.6%, respectively. This indicates the effect of 

pore pressure on the evolution of the vertical deflection and settlement in general. There is still 

obvious deviation between the predicted vertical displacements and the average in-situ vertical 

deflection measured by the inclinometers between TM9 and TM38 considering the displacement 

recorded at a given section when the excavation face is approximately 9 m away. The 

corresponding value is about 21.5 mm. As previously mentioned, such underestimation of the 

vertical deflections could be a result of the selection of the 2-dimensional instead of 3-dimensional 

analysis, applying different supporting systems along the tunnel axis, and not considering the time 

dependency.  

 

Regarding the radial displacements, Fig. 6-24 shows the computed values parallel and 

perpendicular to the bedding planes at equilibrium. Compared to the measured radial 

displacements in Fig. 6-16 and the predicted values for pure mechanical simulations (Fig. 6-17), 
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Fig. 6-23 Computed vertical displacements at locations BEFA-10 and BEFA-11 until 

equilibrium. Doted lines indicate the measured vertical deflections for BEFA-10 and 

BEFA-11 recorded at the excavation face at TM28. 
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the radial deformations at EXT-02 are still higher than those at EXT-01. Although the predicted 

displacements at EXT-01 are greater than those for pure mechanical simulation shown in Fig. 6-17, 

an increase in radial displacement by about 100% near to the tunnel perimeter (at pin P4) is 

observed. In general, the behavior of the radial displacements between the two simulation 

methodologies is similar to the Finite/Discrete Element modelling conducted by Lisjak et al. 

(2015). To visualize the EDZ, the plasticity zones are plotted in Fig. 6-25 showing polar symmetry, 

similar to the formed EDZ for the mechanical simulation without consideration of pore pressure 

(Fig. 6-18). The extension of the plastified zones around the opening is larger in case the pore 

water pressure is considered. The maximum extension of the EDZ is found in direction 

perpendicular to the bedding plane (P2 and P5) with about 3.5 m from the tunnel wall, while the 

extension in direction of the sidewalls reaches only 2.5 m.  
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Fig. 6-24 Normalized computed radial displacements at equilliprium along two lines 

corresponding to the installed extensometers shown in Fig. 6-9 



Chapter 6 Short-term mechanical response of excavation in Opalinus clay 

150 

 

 

     

 

Fig. 6-25 Plasticity indicators showing the extension of the EDZ at equilibrium, 10 m x 10 m model size. 
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Fig. 6-26 Computed pore pressure change Δσpp at locations of boreholes BEFA-02 

(parallel to bedding planes) and BEFA-05 (perpendicular to bedding planes) until 

equilibrium state. Doted lines indicate the maximum measured Δσpp at interval midpoints 

i5 and i4  (BEFA-02 and BEFA-05) recorded close to section TM28. 
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The computed pore pressures close to the opening are compared with those values measured along 

the installed boreholes BEFA-02 and BEFA-05 (Fig. 6-9). Two history points were positioned at 

the same location to record the pore pressure change during the calculation. The location at 

approximately TM28 close to the installed piezometer interval midpoints i5 and i4 (Fig. 6-7.b) was 

used. The applied simulation methodology cannot duplicate the variation of pore pressure with 

real time, thus the computed pore pressures are compared to the maximum average field 

measurements. Mostly, the hydraulic behavior shows pressure rise as the face is approached 

followed by a subsequent pressure fall and recovery (Lanyon et al. 2014). Fig. 6-26 shows the 

variation of the computed pore pressures change at history points located at BEFA-02 and BEFA-

05 versus the average insitu results.  

Like the field observations, the numerical simulations capture an obvious difference between the 

pore pressure in direction parallel to bedding planes and the values normal to the bedding planes. 

The recorded pore pressures parallel to bedding are greater than those in the orthogonal direction 

which could be explained by the mechanical deformations during the excavation. While the 

relaxation was applied, regions parallel to bedding planes are less deformed than regions 

perpendicular to the bedding. As the porosity was assumed constant, the change in pore pressure 

is mainly a direct consequence of the induced volumetric strains (Fig. 6-27). In conclusion, more 

detailed time dependent fully coupled hydro-mechanical simulation is required to better model this 

issue.  

 

 

Fig. 6-27 Pore water pressure distribution around excavation at equilibrium showing high pressure 

values in regions parallel to bedding planes and low pressures perpendicular to the bedding. 
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6.4.  Sensitivity analysis 

Usually, strain-softened material behavior is grid dependent due to localization in which the 

deformation concentrate forming so-called “shear bands”. Thus, sensitivity analysis is performed 

to investigate the stability of the unlined hole assuming instantaneous excavation with different 

grid sizes, orientation and inhomogeneity. On the other hand, the simulations presented in sections 

6.3.3 and 6.3.4 follow the gradual excavation methodology to minimize the inertial reaction. 

Another common way assuming that the excavation is made at once will be applied and compared 

to the results of the simulations considering pore pressure as described in section 6.3.4.  

6.4.1. Mesh sensitivity 

In case of plasticity grid size and the mesh orientation have remarkable influence on the 

localization, especially the shear band evolution. Different orthogonal grids – coarse (60 x 60 

zones) and fine (140 x 140 zones) – are constructed and used to model instantaneous creation of a 

circular opening (no relaxation applied, no lining). Same mechanical properties and constitutive 

model are applied. The localization of shear strain at equilibrium is compared for both grid 

structures (Fig. 6-28 and Fig. 6-29). 

 

Fig. 6-28 Maximum shear strain at equilliprium (detail with dimension 12 x 18 m) (a) coarse 

mesh 60 x 60 zones and (b) fine mesh 140 x 140 zones  

(a) (b) 
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As depicted from Fig. 6-28 and Fig. 6-29, grid structure and orientation have great influence on 

the developed maximum shear strain. In the coarse grid (Fig. 6-28.a) the shear strain localization 

can hardly be recognized. The radial mesh with high resolution as used for the mechanical 

simulations documented in sections 6.3.3 and 6.3.4 shows much better localization effects (Fig. 

6-29). This simple mesh study documents, that mesh-independency is not realized. Therefore, 

calibration is performed and only valid for specified mesh size and structure. This restriction can 

be avoided if internal length scale parameter would be integrated into the constitutive model. 

6.4.2. Effect of sudden excavation on pore pressure 

Grid and material properties for the simulation are the same as given in chapter 6.3.4. The 

difference between gradual and sudden excavation with simultaneously installation of lining is 

investigated. Fig. 6-30 and Fig. 6-31 indicate that the differences between both modelling 

methodologies are small. The produced total displacements for gradual relaxation are slightly 

higher than for suddenly excavated openings especially at sidewalls and at right hand side of the 

opening where pin P5 is located, see also Fig. 6-21. Otherwise the evolution of the pore water 

pressure is almost identical for both excavation methodologies. However, the suddenly excavated 

model indicates higher pore pressure in direction parallel to the bedding planes (σpp = 3 MPa). 

Such similarity in results between both models can be explained by the explicit time-marching 

Fig. 6-29 Maximum shear strain (detail with dimension 12 x 18 m of the original grid).  
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calculation scheme of FLAC. The used timestep is always very small to assure that the nonlinear 

response due to the unloading follows a valid physical way.  

 

 

 

 

(a) (b) 

Fig. 6-30 Total displacements around the circular opening at equilliprium for (a) sudden excavation 

and (b) gradual excavation. 

Fig. 6-31 Evolution of pore pressure around opening at equilliprium for (a) sudden 

excavation and (b) gradual excavation  

(a) (b) 
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6.5. Conclusion 

The short-term deformation behavior of a 3 m diameter tunnel excavated as part of the long term 

experiment called “Full-scale Emplacement (FE)” is simulated. The tunnel was excavated in shaly 

facies Opalinus clay and its axis is parallel to the bedding planes with dip angle (α = 33o – 40o). 

The tunnel length is 50 m in which 4 different support systems have been used. The studied section 

was at 28 m depth from the tunnel portal and supported by a 16 cm thick shotcrete layer.  

Owing to the mentioned excavation sequence by Müller et al. (2017) and the insitu measurements 

(Lisjak et al. 2015), gradual excavation was used for the numerical simulation of the tunnel. The 

support system was installed after 50% of computed convergences. The undrained mechanical 

simulations without consideration of pore water pressure showed good agreements with the FDEM 

analysis performed by Lisjak et al. (2015). On the other hand, simulations considering the pore 

water pressure as a function of volumetric strain was carried out and resulted in even better results 

compared to the field data. Generally, the simulated EDZ is in close agreement compared to 

numerical studies and field observations. 

Finally, a sensitivity analysis in respect to grid dependency and excavation sequence was executed. 

For strain softened material like Opalinus clay, grid structure and resolution play an important role. 

Strain localization and formation of shear bands are highly grid dependent. Best results are found 

for radial symmetric grid. Also, different excavation methodologies have been applied: sudden 

and gradual excavations. The effect of these excavation method was analyzed in terms of 

displacements and generated pore water pressure around the excavation. It was found that both 

methodologies showed only minor differences. 
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7. Ubiquitous joint model based on the Hoek-Brown failure 

criterion  

7.1.  Introduction 

The development of appropriate constitutive models is one of the key issues for reliable predictions 

in rock mechanics and rock engineering. Salager et al. (2013) emphasize the importance to fully 

capture the stress-strain behavior of anisotropic rocks and also the current limitations of various 

anisotropic rock failure criteria. The directional variation of strength for rocks has been 

experimentally verified under different  loading conditions (i.e. under uniaxial or triaxial 

compression) by many researchers (e.g. Jaeger 1960; Donath 1964; Hoek 1964; Walsh and Brace 

1964; Chenevert and Gatlin 1965; McLamore and Gray 1967; Horino and Ellickson 1970; Attewell 

and Sandford 1974; Brown et al. 1977; Ramamurthy et al. 1993; Niandou et al. 1997; Duveau and 

Shao 1998; Saroglou and Tsiambaos 2008). A full assessment of the mechanical anisotropy of 

inherent anisotropic rocks was provided by Fereidooni et al. (2016), especially considering 

cohesion and friction angle. Within this thesis, the term ‘inherent anisotropic rock’ means 

transverse isotopic fabric rock like slate or shale. However, most of those studies are empirical and 

only applicable for specific rocks under certain loading conditions. 

For transverse isotropic rocks, the directional variation of the strength has been extensively studied 

(Ramamurthy 1993; Tien and Kuo 2001; Ramamurthy and Arora 1994; Bagheripour et al. 2011), 

see Fig. 7-1. Jaeger (1960) and Donath (1964) have only considered the potential of sliding failure 

on the joint and did not consider the non-sliding failure, which leads to an U-shaped failure 

criterion as shown in Fig. 7-1.a. Later, this approach has been extended based on the Mohr-

Coulomb failure criterion to include also non-sliding failure resulting in a shoulder-shaped failure 

criterion (Jaeger and Cook 1979). For uniaxial compressive loading the shoulder-shaped curve 

gives equal strength values for both sides of the non-sliding failure area. Most of the experimental 

studies show maximum strength at β = 90o (β is the angle between the main loading direction and 

orientation of anisotropy plane). The minimum strength is noticed at β = 30o – 45o (Tien and Kuo 

2001). However, as shown in Fig. 7-1.b, the strength at both shoulders is not equal if confining 

pressure acts. The third typical failure type valid for rock with more than one joint set is undulatory 

or wavy shaped, as shown in Fig. 7-1.c. Usually the directional strength variation is a function of 
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both, the degree of the strength anisotropy and the value of the confining pressure (Nasseri, Rao 

and Ramamurthy 1997). In case of rocks with higher degree of anisotropy, it is likely that the 

strength variation follows the U-shoulder shape or the abstracted shape given in Fig. 7-1.d (Duveau 

and Shao 1998).  

 

The failure modes of inherent anisotropic rocks under uniaxial and various triaxial stress 

conditions have been discussed extensively by different scholars (Donath 1964; McLamore and 

Gray 1967; Niandou et al. 1997). Ambrose (2014) utilized CT scanning and thin sections of the 

Bossier shale to investigate the failure modes under different confinement. All of these 

investigations showed that failure modes can be categorized into two different types. On the one 

hand, failure through the rock matrix, also called “non-sliding mode”, is observed. The analytical 

solution of Jaeger and Cook (1979) assumes that the rock matrix strength is a constant value, but 

experiments showed different strength values for the matrix depending on loading angle β. 

McLamore and Gray (1967) introduced a simple function to explain the variation of the matrix 

strength in dependence on the angle β. In a similar way Duveau and Shao (1998) combined the 

Fig. 7-1 Schematics showing the compressive strength anisotropy vs. angle β (a) Jaeger’s 

definition – U-shape, (b) Extended Jaeger’s solution – shoulder-shape (Duveau and Shao 1998), 

(c) Wavy or undulatory type, and (d) simplified or abstracted shape (Nasseri, Rao and 

Ramamurthy 1997).  
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non-linear Barton failure criterion with the analytical solution of Jaeger and Cook (1979) to adjust 

the variability of the strength in the non-sliding region. On the other hand, failure along the inherent 

planes of weakness, also called “sliding-mode” can occur. Such mode was successfully explained 

already by Jaeger (1960) and therefore it is included in different solutions to describe the strength 

behavior of anisotropic rocks. The explained failure modes of inherent anisotropic rocks are 

similar to those found for artificial interlayered materials documented by Tien and Kuo (2001) and 

Tien et al. (2006). However, the scope of this chapter is the strength anisotropy of rocks possessing 

a natural single set of anisotropic planes, i.e. schistose, bedded, foliated and laminated rocks. The 

weakness planes of such rocks cannot explicitly considered in either analytical or numerical 

solutions because those planes are found everywhere within the rock and therefore they are called 

“ubiquitous joints” (Wang and Huang 2009). 

7.2.  Anisotropy of Hoek-Brown failure criterion 

The Hoek-Brown (H-B) failure criterion is an empirical formulation which is governed by three 

material parameters: m, s and σci. The rock parameter s refers to the quality of the rock: for intact rock 

(s=1) and for crushed pieces (0 < s < 1). Thus, the corresponding equation can be written as follows: 

0.53
1 3 ( 1)ci i

ci

m


  


= + +       (7.1) 

Where, σ1 and σ3 are the maximum and minimum principal stresses. σci is the uniaxial compressive 

strength of the intact rock matrix and mi is a material parameter which expresses the interlocking 

and friction between the particles (Hoek and Brown 1980). In case of transverse isotropic rocks, it 

was found that both, σci and mi are dependent on the orientation of the applied loading to the 

orientation of the anisotropy plane. The consideration of the anisotropic strength characteristics 

using the H-B failure criterion can be performed by direct or indirect modifications. Direct 

modification means that a factor or a parameter is added into the original formulation to account 

for the strength anisotropy while keeping the material parameters constant in terms of their 

orientation (Bagheripour et al. 2011; Ismael et al. 2014; Saroglou and Tsiambaos 2008). Indirect 

modification means that empirical functions are used to modify the material parameters (mi or s or 

both) according to the orientation angle (Colak and Unlu 2004; Hoek and Brown 1980). Eq. 7.2 

shows the indirect formulation of anisotropic H-B criterion. 
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= + +       (7.2) 

Most of these modifications of the H-B failure criterion are empirically formulated and work 

exclusively for the tested rocks and cannot be generalized. An overview about the latest direct and 

indirect anisotropic H-B failure criteria have been provided by Ismael et al. (2015) and Shi et al. 

(2016).  

This chapter focuses on the indirect approach to provide an anisotropic H-B based constitutive 

model. The approach is known as composed failure criterion or discontinues failure criterion 

according to Duveau et al. (1998), in which two different failure criteria are merged to describe 

both, the sliding and the non-sliding modes of failure.  

The pioneering work in this context is those by Hoek (1983) who assumed that the strength of the 

rock matrix follows the isotropic H-B failure criterion and for the joint planes the Jaeger solution 

for a single plane of weakness is adopted. Later, Amadei and Savage (1989) proposed a multiaxial 

composed failure criterion in which the isotropic H-B failure criterion is used for the intact rock 

matrix (i.e. s = 1, mi and σci are constants), while the Coulomb criterion with complete tension cut-

off is applied for the joints. This approach has the advantage to consider the complete triaxial stress 

state, whereas the original H-B failure criterion considers only the minimum and maximum 

components. However, the shortcomings of this model are: the failure in the rock matrix is still 

isotropic and the tensile strength of the joint is restricted to zero. 

Another composed failure criterion for transverse isotropic rocks in which the joint is represented 

by Jaeger’s weakness failure plane modified by a degradation of cohesion and friction angle 

according to the orientation (Tien and Kuo 2001). For the matrix failure an empirical maximum 

axial strain criterion derived from the H-B failure criterion is used. The strength of the rock matrix 

is dependent on the orientation as two empirical parameters (k and n) were introduced by which 

the strength of the rock matrix is controlled. This criterion was successfully tested at several 

uniaxial and triaxial lab data and showed good agreement. However, this criterion cannot explain 

the severe change of the curvature at points where the failure is changing from non-sliding to 

sliding. Also, there is a difficulty regarding the determination of the anisotropy parameter (n) 

which plays a critical role in the non-sliding failure region. 

Furthermore, Lee and Pietruszczak (2008) proposed a three-dimensional H-B failure criterion 

based on the critical plane approach (CPA) published earlier by Pietruszczak and Mroz (2001). 
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The matrix strength is anisotropic with directional parameters (mβ and sβ) utilizing distribution 

functions for both parameters, while the sliding failure mode is described by a local form of the 

H-B criterion in terms of traction components on the plane. In principle, this approach computes 

the failure under consideration of the orientation. This model incorporates the effect of the 

intermediate principal stress as well. Compared to the lab results from Martinsburg slate (Donath 

1964), the simulation results show good agreement in relation to the sliding failure, but there is 

some discrepancy regarding the strength predication of the rock matrix, especially at β=15o. Also, 

the applied compressive strength is a constant value. 

Recently, the H-B failure criterion has been extended by Lee et al. (2012) to consider the inherent 

strength anisotropy based on the microstructure-tensor approach proposed by Pietruszczak and 

Mroz (2000). The uniaxial compressive strength is supposed to be orientation dependent while the 

rock parameter mi is constant. The intermediate principal stress σ2 is also considered in that work. 

The simulation results show the noticeable effect of σ2 on the formation of the failure planes. On 

the other hand, this failure criterion could not duplicate the post failure behavior or the orientation 

dependency of mi. 

Generally, all the above discussed H-B model variants are only failure criteria and do not provide 

a full description of the stress-strain relations for anisotropic rocks. Therefore, this chapter 

introduces a complete constitutive model (i.e. elastic-perfect-plastic in terms of classical plasticity 

theory) consisting of two combined approaches to describe both failure modes of inherent 

laminated rocks. For the sliding failure mode along the inherent anisotropy planes, the ubiquitous 

joint approach (Ubi) is adopted. On the other hand, the modified H-B criterion is used to capture 

the failure in the rock matrix. In the anisotropic constitutive model, the rock parameter mi is a 

function of β by using the distribution function given by Lee and Pietruszczak (2008).  

7.3.  Proposed H-B model framework (Jhoek model) 

The developed constitutive model is the result of combining two different approaches to describe 

the non-sliding and the sliding failure modes. The non-sliding failure mode is described according 

to the adjusted H-B failure criterion and the sliding mode follows the ubiquitous joint approach. 

Below the newly developed model is called “Jointed Hoek-Brown constitutive model” (Jhoek 

model) which is qualified to capture the strength anisotropy and to simulate the full stress-strain 

behavior. 
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7.3.1. The H-B Model for rock matrix 

The Jhoek model is quite similar to the Mhoek model in (Itasca 2016) and it is considered as an 

alternative version of the Hoek-Brown constitutive model based on the work of Cundall et al. 

(2003). The Mhoek model includes a tensile yield criterion and allows to specify a dilation angle. 

Compared to the Hoek model, the Mhoek model provides a simplified and suitable flow rule for 

both, tensile and compressive regions. The simplicity of the Mhoek model is based on a continuous 

approximation of the non-linear H-B failure criterion by the linear Mohr-Coulomb failure surface. 

This approximation is defined as tangent at the H-B failure envelope for the current acting σ3 value, 

as shown in Fig. 7-2.a. In case of tensile stress, the tangential M-C line at σ3 = 0 is extended and 

intersects with the vertical line at σ3 = -s*σci/mb, which works as tension cut-off part as shown in 

Fig. 7-2.b. The yield surface of the Mhoek model uses the general formulation of the H-B failure 

criterion according to Eq. 7.3. 
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For the current stress level σ3, a linear approximation of the M-C failure criterion is performed:  
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where; ca and ϕa are the apparent cohesion and friction angle, respectively. Actual cohesion and 

friction values for each timestep are evaluated using the following equations: 

12 tan 90o
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The values of the parameters Nϕa and σa
ucs are numerically computed based on the assigned H-B 

parameters and the current value of σ3. 
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The original Mhoek model is altered to simulate the failure in the rock matrix in which the H-B 

parameters s is 1.0 and a equals 0.5 assuming the rock matrix is totally intact. The rock parameter 

mb is orientation dependent (becomes mβ) and its value is determined either by lab testing or values 

from the distribution function which is discussed later in section 7.3. Based on this modification, 

the numerically computed M-C parameters depend on both, the orientation of the inherent 

anisotropy planes and the confining pressure. Also, the uniaxial compressive strength σci is 

orientation dependent (i.e. σciβ). For simplification, the proposed model however requires only the 

values of σci at β=0o and β=90o. Thus, the governing failure criterion can be written as follows: 
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This modified H-B failure criterion works well for the strength prediction of anisotropic rocks, 

especially for regions (0o ≤ β ≤ β1) and (β2 ≤ β ≤ 90o), see Fig. 7-1.b. This goes beyond the 

modified analytical solution by Jaeger and Cook (1979) and the Ubi model found in FLAC (Itasca 

2016) in which the strength parameters are constant as the rock matrix is considered as isotropic. 

The variation of the rock parameter mβ with orientation guarantees the anisotropy in strength in 

the rock matrix. 

Fig. 7-2 Sketch of failure envelope (a) linear approximation of non-linear H-B yield surface at any 

applied σ3 and (b) tension cut-off part, after (Itasca 2016). 



Chapter 7 Ubiquitous joint plane model based on the Hoek-Brown failure criterion 

163 

 

7.3.2. The ubiquitous joint approach 

Similar to the work of Tien and Kuo (2001) and the Ubi model, the proposed Jhoek model uses 

the superposition principle to transfer the global stress state to the local stress state according to 

the orientation of the inherent anisotropic planes. The converted stress state allows to test for 

sliding along those planes. Normal and shear stresses acting on those planes are considered. The 

applied failure criterion is a shear strength criterion. The joint plane strength depends on the 

assigned parameters: joint cohesion (cj) and joint friction angle (ϕj). From Eq. 7.9, the strength is 

orientation dependent and reaches its minimum value at βmin (Fereidooni et al. 2016; Hu et al. 

2013). The failure criterion can be expressed considering the confinement as follows: 
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Assigning the strength parameters is described in detail previously in Tien and Kuo (2001). 

However, the proposed model demands the quantification of additional parameters, such as: tensile 

strength and dilation angle of the joints.    

7.3.3. Orientation dependency of parameter mβ  

As has been mentioned before, the rock parameter mβ is orientation-dependent which needs 

assignment for each β. However, it is not applicable to evaluate this parameter for each β or for 

small intervals such as (Δβ = 5o or 10o). Thus, it is logical to normalize the values of mβ by a spatial 

distribution function based on the proposed technique by Lee and Pietruszczak (2008). This 

approach has been conducted for the spatial variation of the friction angle and cohesion of 

transverse isotropic rocks. As mentioned in (Lee and Pietruszczak 2015), the exponential spatial 

distribution function proposed in (Lee and Pietruszczak 2008) is more suitable for higher degrees 

of anisotropy than the polynomial approximation given by Pietruszczak and Mroz (2001). In this 

work, the utilized function from Lee and Pietruszczak (2008) is altered considering the loading 

angle β instead of using the orientation angle α or dip angle which is defined as the angle between 

the bedding plane and the horizontal axis, see Fig. 7-1. As β = 90o – α, cos2α is modified to sin2β. 

This recent research utilizes explicitly (i.e. not implicitly included into the Jhoek model) the special 

distribution function which normalizes the values of mβ according to the orientation β. The spatial 

distribution function consists of two wings: the left wing distributes the mβ values from m0 to mmin, 

while the right wing is for the values between mmin and m90. The following equation explains the 

implementation of the spatial distribution function: 
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where Ω0 is the principal coefficient of the second order tensors describing the spatial distribution 

(Ω0 = Ω11 = Ω33). The assigned value for Ω0 has a great influence on the distribution of mβ and 

offers three different values (- 0.1, - 1.0 and - 5.0). The direction independent coefficients (a1 and 

a2) could be determined as follows: 
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21 3sin * = −        (7.11c) 

Similar to Lee and Pietruszczak (2008), the constant λ is evaluated based on the assigned β* of 70o. 

The presented spatial distribution formulation of mβ could be applied for both wings as specified 

previously. In case of the left wing (m0 to mmin), the value of mmax could be assumed as m0. On the 

other hand, the value of mmax could be assumed as m90 for the right wing. The value of Ω0 could 

not be the same for both wings and depends on the best fit of the distribution with the lab test 

results. However, in this work a single value of Ω0 is assumed for both wings.  mmin refers to the 

minimum value of mβ, and is assumed to be at β = 30o or 45o. This distribution function provides 

a non-symmetric polynomial normalization of the rock parameter mβ along β assuming that the 

values of mmax are found at β = 0o and 90o. Although this assumption is hypothetically satisfactory 

for anisotropic rocks, the real practicing with anisotropic rocks shows different behavior: the 

maximum value is sometimes found at β ≠ 0o or 90o (Colak and Unlu 2004).  

The applicability of this formulation is tested on some inherent anisotropic rocks from the literature 

to normalize mβ values (Table 7-1). The triaxial lab test data were processed to evaluate the value 

of mi for different orientation β using RocLab (Rocscience  2011b). RocLab 4.0 (Rocscience 2016) 

is a specific tool to perform a regression to get the parameters mi and σci for certain strength data 

sets while s is set to 1 as the tests are conducted on intact rocks and not on a rock mass.  
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Table 7-1: Spatial distribution of mβ deduced from rock sample data  

Rock type m90 m0 mmin βmin Ω0-Best [Omega] 

Martinsburg Slate 

(Donath 1964) 
14.22 11.54 1.1 30o -0.1 

Angers Schist 

(Duveau et al. 1998) 
10.74 14.86 1.65 30o -0.1 

Austin Slate 

(McLamore and Gray 1967) 
5.72 6.56 2.54 40 o -0.1 or -1.0   

Green River Shale I 

(McLamore and Gray 1967) 
6.99 6.7 6.2 30o -5.0 

Penrhyn slate 

(Attewell and Sandford 1974) 
9.9* 8.81 

3.07** 

or 2.48 

60o** 

or 30o 
-0.1 

Tournemire  Shale 

(Niandou et al. 1997) 
4.33 4.5 2.65 30o -1.0 or -5.0 

* Most references stated that m90=6.23. However according to the analysis of the triaxial lab data of Penrhyn slate 

from (Pei 2008) a value of m90=9.9 is obtained. This value fits well with the RocData 4.0 plots (Rocscience 2016). 

Also, the ratio of the variation of mβ values follows the ratio from (Saroglou and Tsiambaos 2008b).  

** The best selected value of βmin is at β = 60o, although at β = 60o it is not the lowest value of mi. 

 

As shown in Fig. 7-3, the spatial distribution function gives an approximation of the values of m 

with the orientation according to parameters given in Table 7-1. However, the lab results show 

some slight misfit to this distribution as there are values greater than the values at m0 and m90. Also, 

this distribution function overestimates slightly the mβ value for β = 45o – 75o. Moreover, the 

dependency of the distribution on the applied value of Ω0 is quite strong. A parametric study on 

Ω0 was conducted by Lee and Pietruszczak (2008) which revealed a great influence of the selected 

Ω0 value on the shape of the H-B failure criterion envelope for different applied confinements 

especially for rock matrix failure.  

As shown in Fig. 7-3, the determination of Ω0 plays a significant role for the shape of the spatial 

distribution function (mβ). Thus, it is recommended to perform a calibration of Ω0 against 

experimental data to get the best fit. The greater the anisotropy, the greater the fluctuation of the 

spatial distribution function and therefore the greater the value of Ω0. For example, the Green River 

shale I which possesses low strength anisotropy according to Ramamurthy strength anisotropy 

classification Ramamurthy (1993) (i.e. Rc = 1.4) Ω0 is -5.0 (very low). However, for high to very 
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high anisotropic rocks such as: Martinsburg slate with Rc value > 8 or Penrhyn slate with Rc value 

≈ 4.85 the value of Ω0 is -0.1 (very high). 

 

7.4.  Model implementation 

This part contains a detailed description of the implementation of the developed constitutive model, 

which consists of two distinct parts: one for the rock matrix by applying the non-linear modified 

H-B failure criterion and the other which is a ubiquitous joint approach. 

Fig. 7-3 Spatial distribution of parameter m for various anisotropic rock samples with different applied 

Ω0 values.  
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7.4.1. Model parameters 

The model can be used with associated or non-associated flow rule for the rock matrix similar to 

the original model Mhoek (Itasca 2016). Table 7-2 specifies the required model parameters. As 

shown in Table 7-2, new parameters in the Jhoek model compared to the Mhoek model are: mβ, 

σci0 and σci90 for the rock matrix as well as all parameters for the joints. 

 

Table 7-2 Parameters for Jhoek model. 

Rock matrix parameters Joint plane parameters 

- Young’s modulus and Poisson ratio, 

- Dilation angle, 

- Defined tensile strength (Fig. 7-2.b and Eq. 

7.12), 

- Uniaxial compressive strength (σci0 or σci90), 

according to Eq. 7.8, 

- Rock parameter (mβ).  

- Inclination angle (α) = 90 – loading angle 

(β), 

- Joint friction angle (ϕj), 

- Joint cohesion (cj), 

- Joint dilation angle (ψj), 

- Joint tensile strength (σj
t). 

 

Generally, the selection of the rock matrix dilation angle value is dependent on the applied 

confinement as the dilation decreases with increasing confining pressure (Ribacchi 2000). In the 

proposed model, the rock matrix dilation angle could be assigned as a constant value or as a pre-

defined fraction of the numerically computed apparent friction angle ϕa, as given by Eq.7.6.  For 

excellent to very good quality rock, the value is estimated as ψ = ϕ/4 (Alejano and Alonso 2005; 

Hoek and Brown 1997). Generally, by increasing the applied confinement, the H-B failure envelop 

is softened and therefore the computed apparent friction angle decreases (Eberhardt 2012). Thus, 

the best way to assign the rock matrix dilation angle is to use a fraction of the friction angle. The 

variability of the dilation angle against the applied confinement is extensively discussed as well 

(Zhao and Cai 2010). Moreover, the defined maximum tensile strength is dependent on the 

specified uniaxial compressive strength and (mβ) value as follows: 

(0 or 90)t ci

m


 =        (7.12) 

The joint plane parameters friction angle ϕj and cohesion cj should be determined experimentally 

based on the procedure proposed by Tien and Kuo (2001). Unlike the joint definition by Barton 

(2013), the M-C approximation of the joint behavior requires the assignment of joint cohesion and 

tensile strength as well. For the ubiquitous joint model, the assigned joint dilation has not such a 

noticeable effect as the pre-yield phase exhibits no plasticity and the post failure behavior is perfect 
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plastic. Consequently, the assigned value for ψj is between 0o and 10o. The maximum value for the 

joint tensile strength is estimated according to (Itasca 2016) as follows: 

tan
t j

j
j

c



=         (7.13) 

 

In general, the inserted values of friction angle, cohesion and dilation for the inherent joint planes 

do not follow Barton’s definitions of rock joints and particularly those for natural joints in rock 

masses. The joint parameters are usually back-analyzed by numerical simulations or obtained from 

in-situ measurements. Although the estimation of these parameters does not follow a defined 

strategy, it is very important to conduct a sensitivity analysis especially in respect to the scale-

effect and the applied boundary conditions (Alejano and Alonso 2005).  

7.4.2. Implementation sequence 

After assigning of model parameters, the numerical calculation sequences starts with testing if the 

stress state violates the failure envelop. At each step as shown in Fig. 7-4, the failure conditions 

for both, the rock matrix and the joint plane have to be tested. For the rock matrix, the applied 

stress state is transformed into the principal state at which the H-B yield surface is defined (see Eq. 

7.8). As already mentioned, the non-linear H-B failure envelop is approximated by a tangent linear 

M-C yield surface at the current applied σ3 and the M-C rock parameters are evaluated from the 

assigned H-B rock parameters. If the principal stress state violates the yield surface a correction 

for the plastic state is required to bring the stress state back to the defined M-C yield surface. For 

simplicity perfect plasticity is assumed, although in reality rock exhibits ductility and softening. 

After handling the plasticity for the rock matrix, the resulting stress state is examined in respect to 

the sliding failure mode on the joint plane. Thus, the global stress state should be transformed to 

the predefined local coordinates of this joint plane. Based on the defined M-C yield surface, the 

failure conditions are tested for either shear or tension. At the local stress state, the plastic 

corrections are numerically computed and then the stress state is transformed back to the global 

system. As the stepping in FLAC is an explicit time scheme and the used timestep is always smaller 

than the critical time step, violation of the yield surface is avoided after the correction, that means 

at the end of each calculation step.  
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Fig. 7-4 Flowchart for each calculation step of the Jhoek constitutive model.  
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As illustrated, the stress state is tested first for the non-sliding failure mode and later for the sliding 

failure mode of the joint plane. As shown in Fig. 7-5, the formed yield surfaces depend on the 

value of β. For higher confining stresses and when the friction angle of the joint is larger than the 

friction angle of the rock matrix. As shown in Fig. 7-5.b, the linear M-C failure surface of the joint 

plane intersects with the H-B failure envelope at higher confinement σ3. Thus, a complex yield 

surface is formed describing that sliding failure along the joints occurs as long as σ3 is lower as at 

the intersection point, while at higher confinement the sliding failure mode turns into the non-

sliding mode of failure. 

 

 

 

7.5.  Validation of the model 

Various simulations using different lab data have been conducted to check the applicability of the 

Jhoek model to simulate the mechanical behavior of inherent anisotropic rocks. The validation of 

the Jhoek model involves the gneiss B (Saroglou and Tsiambaos 2008) at different loading 

orientations and a study of the strength anisotropy for several rock samples. Also, simulations of 

true triaxial tests are used to illustrate the behavior of this model under different values of principal 

stresses.  

Fig. 7-5 Yield surfaces for (a) failure through rock matrix: non-sliding failure mode, and (b) sliding 

along the inherent joint planes.  



Chapter 7 Ubiquitous joint plane model based on the Hoek-Brown failure criterion 

171 

 

7.5.1. Failure envelops for gneiss at different loading angle 

The tested gneiss B (Saroglou and Tsiambaos 2008) is an inherent anisotropic rock because it is 

rich in foliation planes due to the presence of long particles within the fabric (Ismael et al. 2014; 

Saroglou and Tsiambaos 2008). Triaxial tests with various confining pressures and at different 

orientation angles regarding the foliation planes and the main loading direction were performed. 

The given data are not sufficient for the proposed Jhoek model as there are no data about the 

inherent joint planes. Therefore, the  remaining data concerning the joint planes are taken from 

(Asadi 2016). However, dilation angle and tensile strength are missing. These parameters are 

assumed reasonably based on previous experience.  

 

Table 7-3 Parameters of gneiss B (Saroglou and Tsiambaos 2008b; Asadi 2016) 

Rock matrix parameters 

σc0 [MPa] σc90 [MPa] m0 [-] m30 [-] m45 [-] m90 [-] ψ [o] σt [MPa] 

45.4 85.7 20.4 13.7 9.5 23.2 ϕa/4 2.0 

Bedding planes parameters 

cj [MPa] ϕj [o] ψj [o] σt
j [MPa] 

7.2 33 8 1.7 

  

The dilation angle of the rock matrix is assumed to be friction angle dependent and the computed 

friction is a function of the confining stress. The rock matrix tensile strength varies from 2.23 to 

3.70 MPa based on Eq. 7.12, but it is fixed here to 2 MPa. Also, the assigned value for the inherent 

joint plane tensile strength is set to 1.7 MPa in contrast to the computed value according to Eq. 7.13 

which gives an unrealistic high value as 11 MPa. The comparison between the lab data for gneiss B 

at different values of β and the output from the Jhoek model is shown in Fig. 7-6. 

It should be noticed that β = 45o mark a transition point at which the failure mode changes from 

sliding mode to a mixed failure mode, see Fig. 7-7. According to (Niandou et al. 1997; Tien et al. 

2006), the mixed failure mode is a combination of rock matrix failure and sliding along the joint 

planes. This was explained already in Fig. 7-5.b, where the complex yield surface shows an 

intersection between rock matrix and joint failure planes. Unlike the failure mode at β = 30o, for 

different confinement the yield surface is linear which indicates a sliding failure mode and follows 

the ubiquitous joint approach. 
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Fig. 7-6 Failure envelops for gneiss B at different β: lab data and Jhoek model. 

Fig. 7-7 Transition of failure mode from sliding along the inherent joint planes to non- 

sliding at β = 45o under applied σ3  ≈ 10-15 MPa.  
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7.5.2. Strength anisotropy of natural inherent anisotropic rocks 

The Jhoek constitutive model is applied to predict the strength for different inherent anisotropic 

rocks (persistent continuous foliation planes, (Nasseri et al. 1997)) for different orientation angles 

β and different applied confinement σ3. In order to predict the mechanical strength for different 

orientation angles β, the spatial distribution function defined in section 7.3.3 is applied. Therefore, 

the distributions of parameter mβ shown in Fig. 7-3 are used. The additional required material 

parameters are given in Table 7-4. 

 

Table 7-4 Assigned parameters for different tested inherent anisotropic rocks (Ambrose 2014; Asadi 

2016; Duveau and Shao 1998; Pei 2008; Tien and Kuo 2001) 

Rock type cj [MPa] ϕj [°] σc0 [MPa] σc90 [MPa] Ω0 

Martinsburg Slate 

(Donath 1964) 
9 21 100 155 -0.1 

Angers Schist 

(Duveau et al. 1998) 
4 17 145 165 -0.1 

Austin Slate 

(McLamore and Gray 1967) 
31 17 230 195 -0.1 

Green River Shale I 

(McLamore and Gray 1967) 
40.5 30 220 200 -5.0 

Penrhyn Slate 

(Attewell and Sandford 1974) 
34.3 14 155 175 -0.1 

Tournemire  Shale 

(Niandou et al. 1997) 
4 36 36 40 -1.0 

 

A comparison between the experimental data and the model results are given in Fig. 7-8 to Fig. 

7-13. The lab data are plotted as scattered points while the numerical results are lines, as the 

assigned Δβ (i.e. = βi+1 - βi) in the numerical simulations for the different anisotropic rock samples 

is not larger than 7.5o. On the contrary, the lab test data cannot be interpolated for such small 

intervals of β. 

The exhibited shape of the strength variation with orientation angle β fluctuates between shoulder-

type and U-type. It is noticed also in (Tien and Kuo 2001), that sliding along the joint is observed 

according to the single plane of weakness solution of Jaeger. However, there is some fluctuation 
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regarding the compressive strength in the joint sliding part as shown in Fig. 7-9, Fig. 7-12 and Fig. 

7-13. In the region where matrix failure occurs, the modified H-B failure criterion gives a 

convenient prediction displaying the strength anisotropy with the non-sliding part. According to 

Eq. 7.8, the predicted σ1 depends on the assigned values of mβ, σciβ and the applied σ3. For rocks 

with high variation of mβ: by increasing the value of the applied confining stress, the predicted 

shape of the failure envelop is different at both shoulders, see Fig. 7-8, Fig. 7-9 and Fig. 7-12. It is 

observed also and illustrated in Fig. 7-5.b that with increasing confinement a remarkable 

convergence of the values of β1 and β2 is noticed, which indicates a shift from sliding to non-

sliding failure at the edges of the U-shaped failure envelope representing sliding on the joint. In 

agreement with the lab data, there is no significant change of the value of βmin at which the value 

of σ1min is found. Finally, it can be stated, that the proposed constitutive model is able to predict 

the compressive strength of the tested inherent anisotropic rocks under different applied confining 

stresses.  

 

 

 

Fig. 7-8 Predicted failure strength by Jhoek model model in comparison with lab 

results of Martinsburg slate (Donath 1964).  
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Fig. 7-9 Predicted failure strength by Jhoek model in comparison with lab results 

of Angers Schist (Duveau and Shao 1998).  

Fig. 7-10 Predicted failure strength by Jhoek model in comparison with lab results 

of Austin slate (McLamore and Gray 1967).  



Chapter 7 Ubiquitous joint plane model based on the Hoek-Brown failure criterion 

176 

 

 

 

 

Fig. 7-11 Predicted failure strength by Jhoek model in comparison with lab results 

of Green River shale I (McLamore and Gray 1967).  

Fig. 7-12 Predicted failure strength by Jhoek model in comparison with  lab results 

of Penrhyn slate (Attewell and Sandford 1974). 
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7.5.3. True triaxial test and effect of intermediate principal stress 

True triaxial tests as proposed by Mogi (1966) allow to apply independently the three principal 

stresses on a rectangular prismatic specimen. The applied principal stresses can have different 

values which allows to investigate the influence of the intermediate principal stress. One of the 

weaknesses of the classical H-B failure criterion is the disregarding of the effect of the intermediate 

principal stress (σ2). The proposed Jhoek constitutive model is tested against various values of dip 

angle jdip (i.e. the orientation angle in 2D, α), strike jdd and various applied σ2, while the minimum 

applied principal stress σ3 is kept constant. Fig. 7-14 illustrates the test settings.  

According to the results presented in previous sections, the Jhoek model shows a remarkable 

accuracy in predicting the rock strength for different angles β (i.e. β = 90o – jdip or α). In this 

section, the influence of different values of jdd with a fixed value of jdip (β = 30o) with applying 

different values of the intermediate principal stress is tested. Based on the experimental 

investigations on the green foliated Chichibu schist (Mogi et al. 1978; Kwaśniewski and Mogi 

1990; Kwaśniewski and Mogi 2000), three different jdd orientations have been tested under true 

triaxial stress conditions. The following cases are considered: (I) strike is parallel to applied σ2 (i.e. 

jdd = 90o); (II) strike is 45o, and (III) strike is perpendicular to applied σ2 (i.e. jdd = 0o). All these 

cases are applied at fixed value of jdip which equals 60o, and the applied σ3 is fixed to 50 MPa. 

Fig. 7-13 Predicted failure strength by Jhoek model in comparion with lab results 

of Tournemire shale (Niandou et al. 1997). 
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The test results are given by Mogi (2006) and Pei (2008), while the green Chichibu schist 

parameters used in the simulation are presented in Table 7-5. 

 

 

 

Table 7-5 Assigned parameters of the green foliated Chichibu schist, deduced from (Lee and Pietruszczak 

2008; Mogi 2006; Pei 2008) 

Rock matrix parameters 

Density E [GPa] ν [-] σc90  [MPa] σc0  [MPa] m90  [-] m30 [-] ψ [o] 

2780 31 0.2 150 160 13.5 7.54 10 

Bedding planes parameters 

cj [MPa] ϕj [o] ψj [o] σt
j [MPa] 

17  33 8 0.4 

 

The values of Young’s modulus, Poisson ratio and joint parameters are assigned according to Pei 

(2008), while other rock matrix parameters are evaluated from the performed conventional triaxial 

test using (Rocscience 2016) at orientation angle β = 90o (i.e. jdip = 0o). Because there are no data 

about the strength value at β = 0o, σc0 is assumed to be 160 MPa, as it is supposed that it must be 

greater than σc90. For Case II, there are two different values of m30 assigned to the rock matrix. The 

applied values for the uniaxial compressive strength and m30 for each case are given in Table 7-6. 

Fig. 7-14 Test setting for simulation of true triaxial experiment using Jhoek model. 
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Table 7-6 Assigned values for rock matrix depending on strike orientation with applied σ2 

Case Number jdip/jdd (i.e. α) [°] β/strike [°] σc0 [MPa] mβ σ2 orientation 

I 60/90 30/parallel 160 7.54* strike is parallel to 

applied σ2 

II – mβ  similar to I 60/45 30/45 160 7.54 strike is inclined with 

angle 45o to applied σ2 II – mβ  similar to III*** 60/45 30/45 160 13.5 

III 60/0 30/normal 160 13.5** strike is perpendicular 

to applied σ2 

* The value of mβ for case I equals the value of m30 based on the analysis of Colak and Unlu (2004), 

** The value of mβ for case III equals the value of m90 based on the calibration of conventional triaxial tests 

using RocLab (Rocscience 2011), 

 *** The best fit value of mβ for case II should be similar to the value of Case III, i.e. mβ for case II equals the 

value of m90. However, the best fit for strength is shown fort m30 instead of m90. This could be considered as a 

shortcoming of the model as there is no representation of the intermediate principal stress, σ2. 

 

The results of the numerical simulations using the Jhoek constitutive model in comparison with 

the lab results for the three cases are shown in Fig. 7-15. In case I, the difference between maximum 

and minimum principal stress is constant (183 MPa). In this case, σ2 has no effect due to the 

following reasons: (i) the shear strength of the joint is considered to be constant, and (ii) the 

direction of the applied σ2 is parallel to the strike of the inherent plane of anisotropy and therefore 

in the direction of the shear traction force.  

 

 

Fig. 7-15 Numerical simulation results for Jhoek model in comparison with lab data 

from Mogi (2006), σ3 = 50 MPa. 
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For case II, in which the strike of the anisotropy plane is 45o in relation to the direction of σ2, the 

value of σ1 varies with increasing applied σ2. Two different values are assigned for the rock 

parameter mβ: 7.54 similar to case I and 13.5 similar to case II. The applied σ2 is decomposed into 

three traction components: one as normal stress and the two others as shear stresses. The failure 

mode is sliding along the anisotropy planes, as long as the shear component is larger than the 

normal traction. For mβ = 13.5, the failure mode is sliding along inherent planes till σ2 = 190 MPa, 

then the failure mode becomes non-sliding. The rock matrix strength is similar to this value 

observed in case III (σ1 - σ3 = 366 MPa), as there is no influence of the intermediate principal stress 

on the rock matrix failure and the assigned value of mβ is fixed for both cases II and III. Generally, 

the numerical results in this case do not show good agreement with the lab data. Therefore, a 

different value of mβ is assumed by back analysis to get better correlation with the lab data.  

As shown in Fig. 7-15, the sliding mode of failure is observed until (σ2 = 121 MPa) and then it 

becomes non-sliding failure mode in the rock matrix for case II with mβ = 7.54. As the value of mβ 

was reduced by -44%, the yielding limit of the rock matrix decreased to (σ1 - σ3 = 396 MPa) which 

is considered in close range to the obtained lab data. Thus, the numerical simulations for case II 

assure that the value of mβ in 3-dimentional does not only depend on the jdip, the jdd plays a 

significant role as well.  Similarly, for case III when the strike of the inherent anisotropic planes 

are perpendicular to the direction of applied σ2, a change in the mode of failure happens rapidly in 

this case (i.e. σ2 ≈ 110 MPa). This fits well the numerical findings of Lee and Pietruszczak (2008) 

and the experimental results of Mogi (2006).  

In general, the proposed constitutive Jhoek model is able to capture the effect of the intermediate 

principal stress for inherent jointed rocks especially for the failure on the joint planes. However, 

the non-sliding failure mode is not affected by σ2 because the used H-B yield surface for the rock 

matrix does not include σ2 which is a shortcoming of the proposed Jhoek model. Therefore, in the 

future  the rock matrix part in the Jhoek model should be modified to consider σ2 like proposed in 

(Zhang 2008; Zhang and Zhu 2007). 

7.6 Conclusions 

The simulation of the strength anisotropy of rocks based on the H-B failure criterion is still a 

challenging topic which needs improvements. Different approaches have been presented. However, 

engineering applications require more comprehensive H-B based constitutive models which are 
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able to simulate the behavior of naturally laminated rocks. This chapter presented an elastic-perfect 

plastic constitutive model called Jhoek which combines two yield surfaces: one for describing the 

anisotropic rock matrix (modified H-B failure criterion) and the ubiquitous joint model duplicating 

the inherent joints. The anisotropy of the rock matrix is considered by the variation of the H-B 

parameters mβ, σci0 and σci90. Due to the complication of the plasticity of the H-B failure criterion, 

the plastic corrections of the rock matrix are based on the linear approximated M-C model. For the 

normalization of the rock parameter mβ, a spatial distribution function is utilized based on Lee and 

Pietruszczak (2008).  

The developed Jhoek model was successfully tested in reference to different lab experiments. It 

can predict the failure load for different angles between loading and foliation (β). For the region 

of sliding failure mode (β = [β1, β2]), however the failure shows a linear behavior as it reflects the 

linear M-C failure criterion assigned to the inherent joint planes. The model predictions show a 

remarkable agreement with lab data for various applied confinements. Also, the effect of the 

intermediate principal stress σ2 was duplicated in a correct manner.  

Otherwise, the Jhoek model is not able to detect the influence of intermediate principal stress 

regarding the rock matrix because σ2 is not yet included in the H-B failure criterion. The proposed 

model is consistent to the lab results and the introduced examples verify that the Jhoek model can 

improve numerical predictions or back analysis for more complex engineering applications in 

naturally inherent anisotropic rocks.  
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8. Conclusions and recommendations for future work 

8.1. Conclusions 

In this thesis, stiffness and strength anisotropy behavior of inherent laminated rock masses has 

been investigated based on numerical simulations and lab tests. The aim of this work was to 

develop different continuum-based anisotropic constitutive laws able to model the influence of 

mechanical anisotropy and validate them in reference to lab and in-situ datasets. Different topics 

have been discussed in this work: continuum-based approaches for anisotropic rocks, different 

failure and deformation mechanisms in anisotropic rocks, propagation and formation of plastic 

zones of circular opening in bedded argillaceous rocks and dilatancy of laminated rocks. Overall, 

the following conclusions can be drawn.  

 

(1) The rock strength is closely related to the direction of the loading with respect to the orientation 

of inherent planes of weakness. Such planes are formed naturally and found in intact rock samples 

and rock masses. On other hand, such rocks possess remarkable stiffness anisotropy as well. 

Different numerical modelling approaches were analyzed considering the computational 

efficiency and accuracy. Continuum modelling techniques shows high proficiency.  

 

(2) A comprehensive literature review over the recent developed continuum-based constitutive 

models for inherent anisotropic rocks is presented showing the advantages and limitations of each 

model.  

 

(3) Different inherent anisotropic rocks, such as bedded argillaceous rocks, possess not only 

anisotropy in strength and stiffness, but show also non-linearity in their stress-strain behavior. 

Thus, new bi-linear elasto-plastic transverse isotropic strain hardening/softening model (Transubi 

model) was developed to capture all these features. Several datasets from uniaxial and triaxial 

compressive tests were gathered from literature and used to validate the Transubi model and to 

compare it with existing constitutive models (e.g. Caniso model, ubiquitous joint model).     
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(4) Both, the elastic and plastic framework of the Transubi model are introduced in detail. Plastic 

corrections for rock matrix and weak planes showed the influence of the stiffness anisotropy. Thus, 

this model needs different transformation procedures for stress and strain second order tensors and 

fourth order stiffness tensor.     

 

(5) The Transubi model has great potential to reproduce the mechanical response of bedded 

argillaceous rocks such as Tournemire shale or Opalinus clay. The pre-yielding hardening and the 

post-yielding softening were successfully simulated for both studied rocks. Generally, both rock 

types show brittle failure mechanisms. Tournemire shale was simulated using single M-C yield 

surface with tension cut-off, while Opalinus clay was simulated with bi-linear shear yield surface. 

The dilatancy of both, rock matrix and bedding planes of the Opalinus clay was extensively 

investigated by the Transubi model giving more realistic values for the dilation angle.  

 

(6) The presence of the inherent bedding planes can be simulated via both continuum and 

discontinuum approaches. However, for larger scale of applications such as tunnels, discontinuum 

approaches show limitations in respect to the computational efficiency and upscaling. A special 

lab experiment of rock block containing a circular hole excavated in transverse isotropic slate and 

subjected to cyclic loading was conducted to investigate the deformation behavior around the hole. 

Numerical simulations using the Transubi, the ubiquitous joint and the elastic anisotropic model 

were calibrated against the lab results showing good agreement between results of measurements 

and the Transubi model.   

 

(7) Numerical analysis of the short-term mechanical response of Opalinus Clay investigated by 

field measurements at the FE tunnel excavated at the Mont Terri URL (Switzerland) was 

conducted. Two simulations were performed: one considered no pore pressure, while the second 

considered pore pressure under undrained conditions. Comparison between simulations and in-situ 

data showed that the consideration of pore pressure gives more realistic results.   

 

(8) A sensitivity study was performed in respect to grid dependency and excavation sequence. As 

the modelled material (Opalinus clay) is considered as strain softened, the deformation results 

show dependency on grid structure and size. Different mesh configurations are proposed and tested, 
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with the result, that radial symmetric mesh gives best results. On the other hand,  gradual or sudden 

excavations methodologies lead to only minor differences. However, wall convergences obtained 

from gradual excavation method shows slightly better agreement with in-situ measurements.           

 

(9) An elasto-perfect plastic constitutive model called Jhoek is presented. This model combines 

two yield surfaces: one for describing the anisotropic rock matrix (modified H-B failure criterion) 

and the ubiquitous joint model duplicating the inherent joint sliding mode. The anisotropy of the 

rock matrix is considered by the variation of the H-B parameters mβ, σci0 and σci90. This model is 

validated against series of triaxial tests from literature showing good agreement between numerical 

results and lab data. True triaxial test of the green foliated Chichibu schist is simulated showing 

that the influence of the intermediate principal stress σ2 is duplicated in a correct manner.  

8.2. Recommendations for future work   

 

(1) Upgrade the proposed Transubi model for 3-dimensional analysis. 

This is recommended because (i) axis of principal stress as well as axis of geotechnical 

construction may be inclined in relation to joint planes and (ii) developed stress states have a 

pronounced 3-dimensional character like a tunnel face etc.  

 

(2) Extension of the Transubi model by including time-dependent behavior.   

The current version of the Transubi model is time-independent and used only for short-term 

analysis. The consideration of long-term stability (sub-critical crack growth, stress corrosion etc.) 

or creep effects need an extension.  

 

(3) Incorporation a regularization algorithm into Transubi model  

In order to avoid mesh-dependency, it is very important to incorporate an internal length scale 

parameter as a better regularization procedure. 

 

(4) Performing fully hydro-mechanical coupled simulations.  

Further validation of the Transubi model should include fully hydro-mechanical coupled 

simulations of the pore pressure around the excavated tunnel. For example, the FE-tunnel 

experiment at Mt. Terri is providing a good case study for such a task.  



Chapter 8 Conclusions and recommendations for future work  

185 

 

 

(5) Experimental investigation of dilation behavior of Opalinus clay  

During the numerical investigation of the Opalinus clay, it was found that the dilatancy of the 

Opalinus clay is sensitive to the orientation of the bedding planes. The reported data from Popp 

and Salzer (2007) were only interested in the dip angle without mentioning the dip direction of the 

bedding planes. It is recommended to study this issue as it greatly affects the results of the dilation 

angles especially for the rock matrix.    

 

(6) Applying Jhoek model  in rock engineering 

Although the results of the proposed Jhoek model showed consistent agreement to the lab results, 

it is recommended to apply this model on more complex engineering applications. The introduced 

examples verified that the Jhoek model can improve numerical predictions for naturally inherent 

anisotropic rocks. A field study could show the extend and the applicability of this model. 
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Appendix  

Transubi model: FLAC keywords  

The “transubi” model can be loaded in FLAC using the following commands: 

config cppudm 

model load  modeltransubi.dll (for FLAC version 8.0) 

model transubi 

A list of model specific keywords follows: 

 

Elastic parameters for intact rock  

density                                        mass density, ρ [kg/m³] 

e1                                                Young’s modulus parallel to the weak plane, E [Pa] 

e3                                                Young’s modulus normal to the weak plane, Eʹ [Pa] 

g2                                                Shear modulus normal to the weak plane, Gʹ [Pa] 

nu1                                              Poisson’s ratio in plane, ν [-] 

nu2                                              Poisson’s ratio cross plane, νʹ [-] 

 

Mechanical parameters for intact rock 

bimatrix      = 0 for matrix linear model (default) 

     = 1 for matrix bilinear model 

cohesion                                     matrix cohesion, c1 [Pa] 

co2                                             matrix cohesion, c2 [Pa] 

ctable     number of table relating matrix cohesion, c1, to matrix plastic shear 

                                                  strain 

c2table     number of table relating matrix cohesion, c2, to matrix plastic shear 

                                                  strain 

friction                                      matrix friction angle, ϕ1 [°] 

fr2                                             matrix friction angle, ϕ2 [°] 

ftable     number of table relating matrix friction, ϕ1, to matrix plastic shear 

                                                  strain 
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f2table     number of table relating matrix friction, ϕ2, to matrix plastic shear 

                                                  strain 

dilation                                     matrix dilation angle, ψ1 [°] 

di2                                            matrix dilation angle, ψ2 [°] 

dtable     number of table relating matrix dilation, ψ1, to matrix plastic shear 

                                                  strain 

d2table     number of table relating matrix dilation, ψ2, to matrix plastic shear 

                                                  strain 

tension                                      matrix tension limit, σt [Pa] 

ttable     number of table relating matrix tension, σt, to matrix plastic shear 

                                                  strain 

 

Mechanical parameters for joint plane 

bijoint     = 0 for joint linear model (default) 

    = 1 for joint bilinear model 

jangle    joint angle taken counterclockwise from the x-axis, α [°] 

jcohesion                                   joint cohesion, cj1 [Pa] 

jc2                                             joint cohesion, cj2 [Pa] 

cjtable     number of table relating joint cohesion, cj1, to joint plastic shear 

                                                  strain 

cj2table     number of table relating joint cohesion, cj2, to joint plastic shear 

                                                  strain 

jfriction                                     joint friction angle, ϕj1 [°] 

jf2                                             joint friction angle, ϕj2 [°] 

fjtable    number of table relating joint friction, ϕj1, to joint plastic shear 

                                                 strain 

fj2table    number of table relating joint friction, ϕj2, to joint plastic shear 

                                                 strain 

jdilation                                    joint dilation angle, ψj1 [°] 

jdi2                                           joint dilation angle, ψj2 [°] 
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djtable     number of table relating joint dilation, ψj1, to joint plastic shear 

                                                  strain 

dj2table     number of table relating joint dilation, ψj2, to joint plastic shear 

                                                  strain 

jtension                                     joint tension limit, σt
j [Pa] 

tjtable    number of table relating joint tension, σt
j, to joint plastic shear 

                                                 strain 

 

;*** small example of input: multi-joint model**** 

new 

config cppudm 

model load modeltransubi.dll 

g 5 10 

              mo transubi 

              pro den 2700 e1 10.5e9 e3 3.5e9 g2 1.5e9 nu1 0.35 nu2 0.28 

              pro bijoint 1 bimatrix 1 

              pro co 4.5e6  fr 34 ten 1.3e6 dila 5 

              pro co2 6.5e6  fr2 25 di2 7 

              pro jco 0.6e6 jfr 29 jten 0.65e6 jdila 10 

              pro jc2 0.96e6  jf2 21 jdi 0 

              pro jang 0 

end 

…… 
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Jhoek model: FLAC keywords  

The “jhoek” model can be loaded in FLAC using the following commands: 

config cppudm 

model load  modeljhoek.dll (for FLAC version 8.0) 

model jhoek 

A list of model specific keywords follows: 

 

Parameters for intact rock  

Bulk                                           elastic bulk modulus, K [Pa] 

Shear                                          elastic shear modulus, G [Pa] 

density                                        mass density, ρ [kg/m³] 

hbmb                                          calibrated Hoek-Brown parameter based on given angle, mβ [-] 

hbsigci                                        calibrated Hoek-Brown parameter based on given angle, σciβ [Pa] 

                                                        σciβ = σci(0), if β (i.e.: 90-α)  ≤ βmin 

                                                        σciβ = σci(90), if β (i.e.: 90-α) > βmin 

hb_doption                                  = 0, means a constant dilation angle specified by hbpsi (default) 

                                                    = -1, means associated flow; ψc=ϕc (current value of friction) 

                                                    =val, means a fraction of friction angle, ϕc (ψc =val × ϕc) 

hbpsi                                           dilation angle, ψ (specified if hb_doption=0) 

hb_tension                                  current value of matrix tension limit, σt [pa] 

 

based on the given Hoek-Brown parameters, the following properties can be plotted via FISH: 

hb_cohesion                                current value of cohesion, cc [pa] 

hb_friction                                  current value of friction, ϕc [
o] 

hb_dilation                                  current value of dilation, ψc [
o] 

 

Parameters for joint plane  

jangle      joint angle taken counterclockwise from the x-axis, α [°] 

jcohesion                                     joint cohesion, cj [Pa] 

jfriction                                       joint friction angle, ϕj [°] 

jdilation                                      joint dilation angle, ψj [°] 
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jtension                                       joint tension limit, σt
j [Pa] 

;*** small example of input: multi-joint model**** 

new 

config cppudm 

model load modeljhoek.dll 

g 5 10 

              mo jhoek 

              pro dens 2500 bulk 19e9 she 8e9 hbmb 14.86 hbsigci 164.5e6  hb_doption 0.4 

              pro jco 4e6 jfr 17 jang 0 jdila 6 jten 0.4e6  

end 

…… 
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