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Abstract

This thesis aims to deepen the understanding of the anisotropic nature of the laminated rock masses.
Such nature is governed by the primary and secondary structures generated during the formation
stages. Thus, the variation of rock strength and stiffness, as known as mechanical anisotropy, is
expected at different scales: large- or small- scale. For most sedimentary and metamorphic rocks,
the anisotropic nature is characterized as inherited at which no main discontinuities (i.e. major
faults or cracks) could be distinguished. For engineering applications built either on or in the
anisotropic rock masses, the investigation of the strength and deformation behavior is essential.
To achieve this goal, two different continuum-based constitutive models named ‘Transubi model’
and ‘Jhoek model’ are presented and implemented into FLAC for the analysis of inherent
anisotropic rocks. Both models are adequate for laminated rocks whose inherent planes of
anisotropy could not be explicitly simulated.

Using the Jhoek model, the strength anisotropy could be described within the rock matrix by
applying rock material parameters which vary with the orientation of the inherent planes of
anisotropy. This model combines the Hoek and Brown failure criterion with the ubiquitous joint
plane approach to capture both non-sliding and sliding failure modes, respectively. On the other
hand, the Transubi model captures the stress-strain behavior of laminated rocks using a bi-linear
yield surface consisting of the Mohr-Coulomb yield criterion to check the failure of the rock matrix
and the weakness planes. This Transubi model behaves as strain hardening/softening by which the
strain hardening in the pre-peak region and the strain softening in the post-peak region for bedded
argillaceous rocks could be simulated.

Experimental investigations and numerical simulations, using Transubi model, mainly focus on
the influence of the mechanical anisotropy on the development of plastic zones around excavated
openings in laminated rocks. Later, the Transubi model is applied to a tunnel driven in a shaly
facies formation of bedded argillaceous Opalinus clay in an URL (FE-tunnel) to obtain short-term
stability insights. The simulation results are compared with data from in-situ measurements
showing good agreements and indicating that the consideration of stiffness anisotropy is as
important as the strength anisotropy. Overall, the research outcomes may have a prospective

impact regarding the understanding of anisotropy of laminated, bedded and foliated rocks which
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improves the prediction of deformation behaviour using continuum-based numerical modeling

tools.
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Chapter 1 Introduction

1. Introduction

1.1. Scope and research strategy

Rocks are generally jointed and naturally anisotropic. The stability of engineering applications
built on or in the rock masses are related to the strength and deformation behavior of those masses.
Thus, their strength and deformation behavior under different and complicated stress conditions have
to be analyzed in order to solve stability problems related to slopes, tunnels and underground
excavations. Rock anisotropy is not only caused by the existence of major faults, remarkable cracks or
secondary structures in general, it also depends on the nature of the host rock. For example, intact
sedimentary or metamorphic rocks show remarkable orientation dependent variations in strength and
elastic moduli. In other words, even massive rocks possess anisotropic nature without the presence of
natural or induced discontinuities. This nature is caused by the so-called primary structures: bedding
planes, schistosity, fissility etc.

Through the past decades, various analytical, numerical and empirical methods are developed to
consider the mechanical anisotropy of rock masses. Nowadays, it is possible to incorporate more
aspects of rock mass behavior into the analysis using numerical simulation tools. Continuum based
numerical methods are one of the best tools to provide both, accurate estimations and efficient
computations.

In this thesis, two new continuum-based constitutive models named ‘Transubi model’ and ‘Jhoek
model’ are presented and implemented into FLAC for the analysis of inherent anisotropic rocks.
Both models are adequate for interlayered rock masses whose inherent planes of anisotropy could
not be explicitly simulated. The Transubi model aims to capture the stress-strain behavior of
transverse isotropic rocks, while a bi-linear yield surface consisting of the Mohr-Coulomb yield
criterion is used to check the failure of the rock matrix and the weak planes. The Transubi model
is validated and calibrated against a series of triaxial tests conducted on well-known inherent
anisotropic rock samples such as Tournemire shale and Opalinus clay. The scope of the
formulation of the Transubi model is to improve predictions of the deformational behavior of
underground excavations in inherent anisotropic rocks. On the other hand, the Jhoek model
considers inherent anisotropic rocks by applying a Hoek and Brown failure criterion for intact rock,

and a Mohr-Coulomb yield criterion for weak planes.
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1.2. Structure of thesis
This dissertation is subdivided into eight chapters as follows:
The first chapter (Introduction) (current chapter) introduces the scope the of the research and
provides the major contributions of the thesis.
The second chapter (State-of-art) based on a literature review considers the main geological
features which cause rock anisotropy. It provides a theoretical review of anisotropy based on
elastic and inelastic concepts. Besides, a detailed overview of continuum-based approaches for
anisotropic rocks is given. Advantages and limitations of different approaches are discussed.
The third chapter (Transubi model) describes the formulation of this new model and delivers a
validation via uniaxial and triaxial tests and a comparison with the ubiquitous joint and the Caniso
model.
The fourth chapter (Tournemire shale and Opalinus Clay) presents detailed numerical
investigations of the mechanical anisotropy of bedded argillaceous rocks (Tournemire shale and
Opalinus clay). Data from literature of triaxial tests and direct shear tests are used to calibrate the
numerical simulations using the Transubi model.
The fifth chapter (Physical tests) investigates the significant influence of the transverse isotropic
elastic constants on the plastic zone around excavated openings. Thus, a special laboratory test
with a slate block containing a circular hole was designed. Cyclic loading is applied on the sample
while the opening perimeter is continuously observed. Then, the experiment is numerically
simulated using the Transubi model and results are compared against the lab measurements.
The sixth chapter (FE-Tunnel in Opalinus clay) presents numerical simulations of the
excavation of the FE-Tunnel in Opalinus clay using the Transubi model. The tunnel is modelled
with and without consideration of pore water pressure. The simulation results are compared with
the in-situ measurements. Special attention is paid to the short-term deformation behavior around
the excavated opening.
The seventh chapter (Jhoek model) introduces a new constitutive model based on a combination
of the Hoek model and the ubiquitous joint approach. The Jhoek model is validated by using
literature data of triaxial tests. In addition, simulation of a true triaxial test is presented.
The eighth chapter (Conclusions) summarizes the work presented. Conclusions and an outlook
are given in which achievements and new finding are summarized. Recommendations for future

research work are specified.
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1.3. Major contributions of the thesis
This thesis focuses on capturing both, the strength and the stiffness anisotropy of inherent
laminated rocks such as sedimentary and metamorphic rocks. Such study is important to predict
the deformational behavior around openings excavated in those rocks using numerical simulation

tools. The main findings of the thesis are:

(1) Normally, continuum-based models are suited for inherent laminated rocks with small
thickness of interlayers (< 1cm). Also, most of those rocks show pronounced anisotropy in both,

strength and stiffness.

(2) Considering only anisotropy in strength will lead to under-prediction of final strain values and

therefore the estimated deformations.

(3) Usually, the compressive strength values are plotted as U-shaped with shoulders as assumed
by Jaeger and Cook (1979) showing constant strength values for the rock matrix, while in reality

there is anisotropy in the intact rock as well as the joint plane.

(4) A review on the various developed continuum-based approaches for anisotropic rocks is given.
These approaches were compared with each other. Based on this review two new approaches are

proposed.

(5) A transverse isotropic elasto-plastic model called Transubi-model was developed and
implemented which considers stiffness and strength anisotropy as well as strain

hardening/softening of weak planes and rock matrix.

(6) The proposed Transubi model is applied to simulate the behavior of bedded argillaceous rocks
(Tournemire shale and Opalinus clay). Simulation results show very good agreement with the lab

results. Direct shear tests of Opalinus clay are firstly simulated using continuum-based tools.

(7) In-depth going investigations are performed on the dilation behavior of Opalinus clay using

the Transubi model. Realistic values for the dilation angles are proposed.
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(8) Exploring the plastic zone and the deformation behavior around a loaded slate rock block
containing a circular hole documents that the Transubi model is able to predict measurements and

observations quite well.

(9) Numerical simulations of the short-term deformational behavior during the excavation of the
FE-Tunnel in Opalinus clay (Mt. Terri) showed that — compared to measurements - considering

the pore water pressure is necessary especially in respect to volumetric strain.

(10) For strain softened material like Opalinus clay, grid structure and resolution play an important
role. Strain localization and formation of shear bands are highly grid dependent. Best results are

found for radial symmetric grids.

(11) An elasto-perfect-plastic model called Jhoek model is proposed using the Hoek and Brown
failure criterion to simulate the rock matrix, while ubiquitous joint approach is proposed for the
weak planes. The H-B parameters mg, o.i0 and ocig0 for rock matrix reflect the strength anisotropy

of the matrix.
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2. State of the art: Continuum-based modelling of anisotropic rocks

2.1. Features causing rock anisotropy
Rocks are characterized by mechanical bonding of grains of one mineral (mono-mineral rocks) or
more than one mineral (poly-mineral rocks). The mechanical bonding depends on the origin of the
rock, whether it is of igneous, metamorphic or sedimentary type. During the formation of rocks
different processes takes place which cause primary and secondary rock structures. In the
following the main geological features which cause rock anisotropy are discussed. The mechanical
anisotropy of rocks is already widely investigated through the last few decades. The anisotropic
behavior is influenced by micro and macro scale characteristics. Anisotropy can be subdivided
into inherent and induced anisotropy (Casagrande and Carillo (1944)). Inherent mechanical
anisotropy of rocks can be interpreted very well and is common for all metamorphic rocks and
some sedimentary rocks as well. As seen in Fig. 2-1, the naturally inherent anisotropy planes result
in variations in both, rock strength and stiffness with respect to the loading direction (Saroglou
and Tsiambaos 2008). The anisotropic nature of metamorphic rocks is caused by the natural
orientation of flat and long minerals or banding phenomena which can be found in schists, gneisses
and slates (Ismael et al. 2014; Oda and Nakayama 1989; Bagheripour et al. 2011). The inherent

anisotropy of sedimentary rocks is caused by the stratification of the bedded layers.

Vertical

Horizontal

Symmetry axis

Fig. 2-1 Orientation of inherent planes as function of plug direction, (Wang 2002)
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The induced anisotropy appears at the inelastic stage but can be illustrated by the fabric scale as
well as the inherent anisotropy which has been explained for granular material by Oda (1993). He
found that during a plastic deformation the particles reform continuously and create new contact
planes. Such planes can be considered as planes of anisotropy which influence the following stage
of plasticity (i.e. hardening or softening). At the macro scale, induced anisotropy can be generated
in originally isotropic rock masses due to extremely non-hydrostatic stress states (Wu and Hudson
1991; Shao et al. 1994). Usually the investigation of induced anisotropy is associated with rock
masses and is related to engineering applications, such as excavation of tunnels (Wang and Huang
2014) or borehole stability (Fang et al. 2013; Wang et al. 1993). Here we concentrate mainly on

the mechanical inherent anisotropy, although to some extent induced anisotropy is also discussed.

2.1.1. Primary structures
Micro geological features are named also primary structures generated during the formation stage
of rocks. These features influence the rock anisotropy by rock fabric anisotropy, texture,
schistosity and fissility. They are mainly found at the micro scale and related to the grain size. In
general, the anisotropic behavior of the rocks mainly depends on the texture and fabric of the
principal rock forming minerals, the so-called microscopic fabric (Ullemeyer et al. 2006).
According to the anisotropic nature of rocks Bagheripour et al. (2011) stated:

1. Most foliated metamorphic rocks, such as schists, slates, gneisses and phyllites, contain a
natural orientation in their flat/long minerals or a banding phenomenon which results in
anisotropy in their mechanical properties. Fig. 2-2.a shows a sample of metamorphic fabric
in which a coarse-grained band-textured gneiss interlocks with different feldspar minerals.

2. Stratified sedimentary rocks like sandstone, shale or sandstone-shale alteration often
display anisotropic behavior due to the presence of bedding planes. The major reason for
the anisotropy of sedimentary rocks is the sedimentation processes of the different layers
(strata) or different minerals with various grain sizes. Fig. 2-2.b shows a sample of bedding
which is found in graded bedded sedimentary rock. Fissility is a special geological feature
of sedimentary rocks in which grains are deposited forming parallel sets of planes and the
rock unit fails by slipping along these planes. However, the fissility of laminated rocks is
considered as a structure related mostly to sedimentary rocks such as siltstone and it is

metamorphosed into the foliation (Van Hise 1896).
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3. Anisotropy can also be exhibited by igneous rocks having flow structures as may be
observed in porous rhyolites due to weathering (Matsukura, Hashizume, and Oguchi 2002).
Generally, igneous rocks have only seldom fabric anisotropy. But in some cases, anisotropy
may be found due to layering when lava flows and moves as highly viscous masses

immediately before the consolidation (Walhlstrom 1973).

Here, we have to point out the difference between terminologies, such as: layering, bedding,
lamination and foliation. Basically, sedimentary rocks are formed by the deposition of grains and
particles. The default is a horizontal stratum which usually turned to graded bedded layers based
on the size of grains (coarse grains settle faster and before fine grains). Non-horizontal
sedimentation is called cross bedding deposition. Generally, the undisturbed formation of
sedimentary rocks takes place as follows: bedding as macro-scale labeling, layering which can be
found within the same bed indicating the variation of the deposition rates, and at the finest scale,

there is lamination with small thickness (< 1cm).

(2) (b)

Fig. 2-2 Samples of primary styructures (a) Metamorphic texture of coarse-grained foliated gneiss
(Weinberg, 2007); and (b) Graded bedded sedimentary rock, one strata consists of various layers

due to discontinuity of the depostion.
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Metamorphic rocks are formed by subjecting the original rocks to the conditions of high
temperature and high pressure. One of the main metamorphic fabric is called foliation in which
the realignment of the long and flat minerals such as mica causes repetitive layering which could
be very thin like a sheet of paper or reach a thickness of several meters. Schistose rocks are
categorized as coarse grained foliated metamorphic rocks. Foliation is a common fabric and can

be found in several metamorphic rocks such as slate, gneiss, schist and phyllite.

2.1.2. Secondary structures
Secondary structures are macro scale features also called “discontinuities”. They are defined as:
(1) cracks and fractures, (ii) bedding planes and (iii) shear planes and faults (Salager et al. 2013).
Such features’ influence is significant and associated with three distinct issues (Bobet et al. 2009):
i.  The scale: which effects the modelling of these planes implicitly or explicitly,
ii.  Stress and/or displacement conducted: these planes significantly reduce the rock strength,
and
iii.  Relative motions of rock blocks: the discontinuity limits the elastic behavior of the rock

material.

Hoek (1983) has developed a criterion to express the strength of the jointed rock mass:
1. The rock strength of jointed rock depends completely on the degree of interlocking of
rock blocks,
1.  Rocks with a single joint set behave highly anisotropic, and
iii.  The strength behavior of rock masses having three, four or five intersecting joint sets are

considered approximately homogenous and isotropic.

2.2. Observation and measurement of rock anisotropy
For the characterization of rock anisotropy most of all the following parameters are used.

2.2.1. Strength anisotropy
Anisotropy of rock strength means that the rock strength is a function of the angle between loading
direction and orientation of the anisotropy planes. For simplicity and due to the fact that this
constellation is often met in engineering practice and lab testing, let us consider uniaxial loading
of a rock sample with one plane of weakness. In that case the minimum strength value will be

found usually between f,.i» = 30° and 45° (f is the angle between loading direction and plane of
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weakness). The magnitude of the strength changes according to the orientation of the inherent
planes of weakness. Saroglou and Tsiambaos (2008) have tested different types of metamorphic
rock. Fig. 2-3 shows the obtained uniaxial compressive strength (UCS) as function of orientation
angle f. This diagram shows, that some rocks show pronounced anisotropy in strength, others not

or only marginal.

=== Gneiss A Gneiss B Schist

Uniaxial compressive strength
[MPa]

Loading angle, § [°]

Fig. 2-3 Uniaxial compressive strength versus orientation angle B (modified after Saroglou and

Tsiambaos (2008))

Anisotropy in strength is also observed under tensile loading. Fig. 2-4 shows results for Brazilian
indirect tensile tests carried out on Leubsdorfer Gneiss (Le.Gs) at fixed value of bedding dip
direction (y = 0°, bedding planes direction is parallel to loading). It is indicated that the loading
orientation plays also a significant role in characterizing the tensile strength anisotropy. Also, the

dip direction has significant influence on the results.
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Fig. 2-4 Tensile strength versus orientation angle f of Leubsdorfer Gneiss

(Le.Gs) at dip direction y = 0°, after von Dinh (2011).

2.2.2. Stiffness anisotropy
Besides strength anisotropy, there exists also an anisotropy in stiffness, namely in terms of elastic

constants like Young’s modulus £ or Poisson ratio v.

Table 2-1 Elastic constants of Mayen-Koblenz slate (Nguyen 2013)

Min. — Max. Value

Matrix Parameters Unit

I 1
Young’s modulus [GPa] 71175 40 - 43
Poisson’s ratio [-] 0.25-0.3 0.23-0.3

|| - Parallel to schistosity plane. 1 - Perpendicular to schistosity plane

Table 2-1 shows the elastic properties of a slate measured parallel and perpendicular to the plane
of anisotropy (schistosity plane). Stiffness parallel to the schistosity planes is much higher than
those perpendicular to the schistosity planes. Kim et al. (2012) as well as Park and Min (2015)
have studied anisotropic characteristics of the elastic moduli of Asan (As) gneiss and Yeoncheon
(YC) schist. The YC schist shows stronger anisotropy in stiffness than the AS gneiss as presented
in Fig. 2-5.

10
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Fig. 2-5 Young’s modulus for AS gneiss and YC schist as function of angle f (Park and Min 2015)

2.2.3. Other types of anisotropy

Anisotropy of rocks is also observed in respect to permeability and seismic properties.
Permeability anisotropy can be caused by bedding, schistosity, fractures, damage, loading etc. A
rock material is considered to be quasi-isotropic when the permeability ratio in two perpendicular
directions (k) to (k) is >= 0.7 (Meyer 2002). Mokhtari et al. (2013) investigated the permeability
of Mancos shale in respect to the orientation of the bedding planes and the confining pressure. Fig.
2-6 shows the permeability values of six vertical, one inclined (45°) and one horizontal core
samples subjected to different confining pressures ranging from 1130 psi (=7.79 MPa) to 3390 psi
(= 23.37 MPa).

On the other hand, seismic anisotropy means that the wave propagation velocity depends on the
propagation direction of the waves through the rock. The wave speed is maximum (Vfast) in the
direction parallel to the anisotropy plane and minimum (Vslow) perpendicular to this direction. It
can be distinguished between P- and S-wave velocities (compressional and shear wave velocities)
(Inks et al. 2014). In addition, shear wave splitting or damping can be used to characterize

anisotropy.

11
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Fig. 2-6 Permeability anisotropy of Mancos shale core samples (Pc:

confining pressure; 1 psi = 0,0069 MPa), Mokhtari et al. (2013).

2.3. Theoretical research background

2.3.1. Elastic stiffness/compliance matrix of rocks
The classical continuum mechanical constitutive models for anisotropic rock masses are mostly
based on the elasto-plastic theory, but with special consideration of joint effects. An increment in
total strain (&) can be decomposed into an elastic part €° and a plastic part &.
e=¢g'+¢g’ (2.1)
The first deformation stage is characterized by linear elasticity. A review of the generalized
Hooke’s law considering different types of anisotropy are provided in Table 2-2 and Fig. 2-7. The

incremental strain-stress equation in the elastic stage can be written in tensorial form as follows:

Agl.j = Cl.jk,AO‘k, (2.2)

where, Cyi 1s the elastic compliance tensor, which has 36 elastic constants (6 x 6 matrix).

12
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Table 2-2 Overview about anisotropic elastic rock models

Anisotropy Representation | Independent Scope of application Model type
type of joints parameters for
compliance
tensor
Isotropic None E v Hard rocks or heavily- | Elastic / Elasto-plastic

fractured rocks

One joint set E v Thinly bedded bedrock | Elasto-plastic
Several joint Ev+Y (kn, ks; Fractured rock mass Elasto-plastic
sets space;)
Transverse None E., Es vy, v, G2 Layered rock Elastic / Elasto-plastic
isotropic Parallel o o Ea vy va G transverse 1sotropic
inherent joint
orientation
Orthotropic Two or three ELE> E3 v, v, Perpendicular joint sets | Elastic/ Elasto-plastic
orthogonal joint | v3, Gy, G2, G3 orthotropic
sets

2.3.1.1  Intact rock as an isotropic material

The model of linear elasticity is the most widely used one to describe the mechanical behavior of
hard brittle rocks. In this case the compliance matrix of the constitutive law is simply characterized
by two independent material properties: Young’s modulus E and Poisson's ratio v, or the
corresponding Lame's constants, G and 4.

Elasto-plastic models which use the Mohr-Coulomb or Hoek-Brown failure criteria have been
developed and applied for fractured rocks since the 1970s (e.g. Hoek and Brown 1980; Owen and
Hinton 1980). Intact rock masses in those elastic/elasto-plastic models are all regarded as an
isotropic material are shown in Fig. 2-7.a. Mohr-Coulomb plasticity is suitable for rocks with
negligible bedding (thick sandstone), while for the thinly bedded bedrock several anisotropic
models are used (Barton et al. 2005) which embedded joints inside an intact rock (see Fig. 2-7.b).
In the above mentioned models, influence of joint parameters and joint spacing are not considered

in the elastic compliance matrix.
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2.3.1.2 Intact rock as isotropic material combined with joint parameters
For a jointed rock mass, the mechanical behavior is influenced by joints (Zhang and Lei 2013).
More sophisticated constitutive models (Fig. 2-7.c, .d) for a jointed rock mass can be derived using
the equivalent continuum method which considers the spatial, stiffness and strength characteristics
of up to three joint sets (Sitharam and Verma 2005; Sitharam et al. 2007; Jiang et al. 2009; Wang
and Huang 2014). The established equivalent elastic compliance matrix of the rock mass can be

determined by superposing the compliance of all components (Agharazi et al. 2011), as follows:
C,=C'+>.C (2.3)
i=1
where:
Ceq: equivalent compliance matrix of the rock mass,

C": intact isotropic rock compliance matrix,

C;: joint compliance matrix represented by joint stiffness and space parameters.

14
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Fig. 2-7 Schematic for anisotropic models: (a) isotropic model (elastic/elasto-plastic: two independent
elastic parameters), (b) anisotropic model composed by isotropic intact rock and one implicit joint set
without joint stiffness, (¢) anisotropic model consisting of isotropic intact rock and implicit joint with
joint stiffness parameters, (d) anisotropic model consisting of several joint sets with joint stiffness
parameters, (e) elastic transverse isotropic model (five independent elastic parameters), (f) anisotropic
model consisting of transvers isotropic intact rock with a representative joint orientation, (g) elastic
orthotropic model (nine independent elastic parameters)
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2.3.1.3 Intact elastic anisotropic rocks

Models based on the concept of isotropic intact rock cannot fully describe the behavior of typical
layered rock masses due to the preferred joint orientations or the subsistent of non-random joints
(Tien and Kuo 2001). Several anisotropic models were deduced by considering alternative elastic
symmetry conditions, such as transverse isotropy (Fig. 2-7.e) or continuum intersected by two
orthogonal sets of joints (Jing 2003). The elastic transverse isotopic compliance matrix has five
independent constants. For the past few years, some developed models combine the transverse
isotopic intact rock with the joint strength parameters to consider the stiffness anisotropy influence
of the layered rocks. These models (Fig. 2-7.f) have a single plane of weakness, which matches
the orientation of the plane of isotropy. Similar developments are also noticed by Schoenberg and
Muir (1989) who added additional joint elements into the homogeneous medium equivalent to a
heterogeneous set of layers. Johnson and Rasolofosaon (1996) characterized the stress-induced
behavior of transverse isotropic rocks.

Extensive research work has been carried out to formulate appropriate models for orthotropic
materials (Fig. 2-7.f). An orthotropic rock has nine independent elastic constants. Layered
sedimentary rocks intersected with perpendicular tension joints are examples of orthotropic rock
masses. Crook et al. (2002) used an orthotropic elasto-plastic model to analyze the principal
characteristics of weak shales, while Xin-pu et al. (2001) introduced an orthotropic damage tensor

into the Mohr-Coulomb criterion through homogenization.

2.3.2. Various anisotropic rock failure criteria

A failure criterion is a governing equation or framework which predicts the value of the maximum
loading and its conditions, i.e. loading rate and loading orientation, causing the rock to fail. Both,
Duveau et al. (1998) and Kwasniewski (1993) published a review about anisotropic rock failure
criteria, while a most recent classification can be found in (Ambrose 2014). In these reviews,
anisotropic rock failure criteria are classified into continuous and discontinuous based on the
representation of the anisotropy or the discontinuities within the material.

Mathematical continuous approaches

A continua is modelled as a solid body having a continuous variation in strength depending on
direction. Usually the main linkage in the formulation is the loading angle f or the foliation angle
w or both of them (Ambrose 2014). Pei (2008) and Semnani et al. (2016) summarized different

mathematical based failure criteria for anisotropic rocks.
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Based on the von Mises approach, Hill (1950) proposed the first anisotropic failure criterion for
frictionless material (i.e. metals) which has been extended for fiber reinforced composites by Tsai
and Wu (1971) and for anisotropic rocks by Pariseau (1968) in which a relationship between the
deviatoric stress (= ;- 03) and £ has been formulated. Another way to consider the anisotropy
was proposed by Boehler and Sawczuk (1977) based on the invariants of stress and structure
tensors. Allirot and Boehler (1979) applied this criterion on samples of diatomite. In the same
context, Pietruszczak and Mroz (2000) formulated a failure criterion incorporating an anisotropy
parameter within the microstructure tensor. The third and the final type of those approaches is the
transformed stress tensor technique by which the Mohr-Coulomb isotropic failure criterion has
been extended to both, transverse isotropic and orthotropic materials (Boehler and Sawczuk 1977).
Later one Nova (1986a) provided an extended Cam-Clay model for soft anisotropic rocks by
rotating the fourth-order tensor in reference to the principal stress directions.

Although those mathematical approaches have a strong basis and background, there are some
challenges facing them: (i) most of those models are complex and do not provide a clear physical
meaning of the material parameters, (ii)) when those models are applied to anisotropic rocks,
several constants have to be determine experimentally, and (iii) the introduced terms of the stress

state require well understanding of the behavior of the studied anisotropic rocks (Riahi 2008).

Empirical continuous approaches

These approaches are mainly an extension of isotropic failure criteria, mostly the Mohr-Coulomb
or the Hoek-Brown failure criteria, which are altered by adding some empirical parameters to
predict the strength anisotropy regarding the loading angle . A good review of these empirical
criteria for both, isotropic and anisotropic rocks has been provided by Sheorey (1997). Although
this approach is more direct, easy to handle and applicable, there are some drawbacks: (i) sound
physical and mathematical basis are missing, (ii) formulations depend on curve fitting techniques
of experimental datasets which require a large data base, and (iii) deduced criteria are restricted to
rocks on which experimental testing was conducted.

One of the first empirical formulation is known as the variational cohesion theory by Jaeger (1960)
in which the strength is defined empirically as a function of f. This criterion was extended by
McLamore and Gray (1967) to account also for the variation of the friction coefficient. A non-
linear regression of triaxial lab data was conducted by Ramamurthy et al. (1993). Hoek and Brown

(1980) proposed an indirect modification on their original failure criterion which defined empirical
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formulations for the variation of rock parameters m and s in reference to the maximum principal
loading orientation (Fig. 2-7.a). Another modification was proposed by Colak and Unlu (2004) for
rock parameter m and its variation with the orientation of the anisotropy plane, assuming s = 1 for
intact rocks. Also, distribution functions were formulated for both, m and s in terms of a second-
order tensor to predict those parameters for transverse isotropic rocks (Lee and Pietruszczak 2008).
On the other hand, Saroglou and Tsiambaos (2008b) and Bagheripour et al. (2011) proposed a
direct modification in order to consider the rock anisotropy for inherent anisotropic intact rocks
direct in the Hoek-Brown failure criterion. A review about different empirical approaches
extending the Hoek-Brown failure criterion for anisotropic rocks can be found in (Ismael et al.

2015; Shi et al. 2016).

Discontinuous criteria (plane of weakness approach)
Such criteria distinguish between non-sliding (isotropic) failure in the intact rock and sliding
(anisotropic) failure along the plane of weakness. One of the pioneering discontinuous criteria is
Jaeger’s theory of single plane of weakness (Jaeger 1960; Jaeger 1964). Later, this approach has
been embedded into the Mohr-Coulomb isotropic failure criterion to model the failure of jointed
rocks (Jaeger and Cook 1979). Later, Duveau and Shao (1998) extended the single weakness plane
approach by the non-linear Barton’s criterion. Hoek (1964) as well as Walsh and Brace (1964)
used Griffith’s fracture criterion to follow the crack propagation through inherent anisotropic rocks.
Generally, this approach assumes that the strength of the anisotropic rocks varies due to the
existence of the discontinuous plane. Thus, it is no longer considered as a continuous approach.
Also, those discontinuous criteria usually prescribe rocks having one single plane of weakness.
2.3.3. Classifications of rock anisotropy
Anisotropy of rocks can be quantified and classified (degree of anisotropy). Two often used
systems are: the point load index and the strength anisotropy index.
Point load index
Tsidzi (1990) proposed a scheme for foliated rocks to classify the degree of foliation as well as the
degree of anisotropy. A fabric index was introduced first to classify metamorphic rocks (Tsidzi
1986). It has been noted that there is a strong relation between the degree of foliation and the point
load strength anisotropy index /o) according to Eq. (2.4) which is proposed by the ISRM (1985).

I
Tos, = S<5°V 2.4
<0 IS(SO)H ( )
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L5002 and [0y, are the point load strength measured perpendicular and parallel to the foliation
planes for a samples of diameter equal to 50 mm. According to the observations, the minimum
point load value is found when the loading is parallel to the foliation causing splitting along the
weakness planes (Saroglou and Tsiambaos 2007). Table 2-3 shows the proposed classification of

foliated rocks based on the point load strength anisotropy index.

Table 2-3 Classification of foliated rocks based on point load anisotropy index (Tsidzi 1990)

Nature of rock Point load anisotropy Descriptive term  Examples

Index, 10!(50)

Very strongly foliated >3.5 Very highly Slate
anisotropic
Strongly foliated 35-25 Highly anisotropic ~ Quartz mica
schists
Moderately foliated 25-1.5 Moderately Mica gneisses
anisotropic
Weakly foliated 1.5-1.1 Fairly anisotropic Granitic
gneisses
Very weakly foliated or <lI1.1 Quasi-isotropic Quartzite

non-foliated

Strength anisotropy classification (Rc)

Ramamurthy (1993) defined the anisotropy strength (Rc). Eq. (2.5) quantifies the Rc value as the
ratio between strength of the intact rock with loading angle perpendicular to bedding (=90°) and
the minimum strength of the same intact rock at Suin.

(o
Re=—0 (2.5)
o

¢(min)

The strength anisotropy classification Rc for various rock types is shown in Table 2-4. Rc is
essentially based on the uniaxial compressive strength of rocks. However, reports on the strength
anisotropy in confined compression state have shown that the degree of anisotropy for a specific
rock is not constant (Zhang 2006).

As the effect of strength anisotropy is reduced when the confining pressure is increased, a newly
introduced experimental criterion for discontinuous rock defines a specific level of confining

pressure above which the jointed weak sandstone ceased to behave as anisotropic rock
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(Bagheripour et al. 2011). This specific level of confining pressure o3 was evaluated in terms of
the uniaxial compressive strength of the corresponding intact rock as o3 = 0.58c.; which is in close

agreement with the value reported by Ramamurthy and Arora (1994).

Table 2-4 Anisotropy strength ratio Rc (Zhang 2006)

Anisotropy ratio Rc Class Rock Types
1.0<Rc<1.1 Isotropic Sandstone

1.1 <Rc<2.0 Low anisotropy Sandstone, Shale
2.0<Rc<4.0 Medium anisotropy  Shale, Slate
4.0<Rc<6.0 High anisotropy

) . Slate, Phyllite
6.0 <Rc Very high anisotropy

2.3.3. Analysis using different numerical methods
The stress-strain behavior has a non-reversible part which refers to the plastic nature of the rock
material. The description of the elasto-plastic behavior under multiaxial stress conditions demands
the definition of the following terms:
Yield surface (F) is the stress state at which yielding starts (failure criterion). The yield condition
including an interface with £ as the orientation of applied load with respect to state of stress, ¢ and
the hardening parameter, ks, is given by Eq. (2.6).
F(o.,k,, ) =0 (2.6)
The plastic potential (g) as given in Eq. (2.7) determines the direction of plastic strain.
g(o) =const. (2.7)
If yield function and plastic potential are identical the flow rule is called associated, otherwise non-

associated (Vermeer and de Borst 1984).

Continuum versus discontinuum approach
There are two major approaches that can be used for the same aim: the continuum or the

discontinuum approach. Table 2-5 shows the main differences between them.
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Table 2-5 Comparison between continuum and discontinuum approaches

Continuum approach Discontinuum approach
Benefits and usability: Benefits and usability:
1) Numerical discretization is 1) Explicit simulation of micro- or
independent of the joints. macro-scale discontinuities.
2) Reduced model size. 2) Allows finite displacements and
3) Increased computational rotations of discrete bodies
efficiency. including complete detachment and
generation of new contacts
automatically.
Drawbacks:
1) Geometry of discontinuities is Drawbacks:
restricted. 1) Demand of huge computational
2) For every time-step, especially power. Run times are quite long.
when significant displacement is 2) Reliability of results is highly
noticed along the discontinuity, dependent on input parameters
remeshing is required for the which are difficult to determine.

entire model which can lead to
numerical instabilities.

Most popular methods: Most popular methods:
- Finite Element Method (FEM) - Distinct Element Method (DEM)
- Boundary Element Method - Discontinuous Deformation
(BEM) Analysis (DDA)
- Finite Difference Method (FDM) - Finite Element Method with
- Extended Finite Element Method interface model (FEM*)
(XFEM).

2.4. Continuum-based constitutive approaches for anisotropic rocks
A comprehensive consideration of the directional dependence of rock strength demands the usage
of constitutive models with following characteristics: (i) capture the full path of stress-strain
response such as: post-peak and hardening/softening behavior, (ii) analyze large scale behavior of
geo-structures (Salager et al. 2013), and (ii1) consider the stiffness anisotropy besides the strength

anisotropy.

2.4.1. Ubiquitous joint approach
In continuum based models, the joints are regarded as smeared cracks which are implicitly used.
The term ‘ubiquitous joint’ which was introduced by Goodman (1967) implies that the joint set
may occur at any point in the rock mass without a fixed location, and the orientation of the joint
set is precisely defined (Manh et al. 2015). The ubiquitous joint model is a conventional equivalent
continuum approach where a layered material can be substituted by a homogeneous anisotropic

medium. The behavior of the interfaces is governed by various yield criteria (Hsiung et al. 1995).
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The two commonly used joint types are the Mohr-Coulomb and Barton-Bandis joint models.
Failure may occur in either the rock matrix or along the joints, or both, according to the stress state,
the orientation of the weak planes and the material properties of the matrix and the joint.
Both, Amadei (1996) and Park and Min (2015) indicated that the overall Young’s modulus (elastic
modulus) of an anisotropic rock can be expected to vary widely if the uniaxial compressive test is
performed under different joint directions (Fig. 2-8.c). There are numerous studies on the
mechanical behavior of a single joint or a set of ubiquitous joints. This approach is widely used
for the numerical investigation of underground excavations and for slope stability (e.g Cartney
1977; Coulthard and Dutton 1988; Bye and Bell 2001; Jiang et al. 2009; Zhu et al. 2009).
Plenty of researches on the fluid flow and hydraulic conductivity were carried out to study the
ubiquitous discontinuity effects on the hydraulic properties and the conductivity of rock masses
(e.g. Hakami and Barton 1990; Coli and Pinzani 2014). Within the framework of elasto-plasticity
and taken into account the time-dependent behavior by degrading the strength of rock with time,
a model with ubiquitous joints was developed by Wang and Huang (2011). A new anisotropic
time-dependent constitutive model was proposed by Manh et al. (2015) including ubiquitous joints
of specific orientation embedded in an isotropic visco-plastic medium to simulate the anisotropic
closure of the Saint-Martin-la-Porte gallery.

2.4.1.1. Original ubiquitous joint model
The original ubiquitous joint model (Fig. 2-8.b) behaves elastic-perfect-plastic and has some
restrictions in respect to the simulation of fractured rock masses. First, the rock mass is simulated
using only one set of joints in a Mohr-Coulomb material (Riahi 2008); second, the joints are
considered to be persistent at the zone level and very closely spaced. Under 1-dimensional loading
the angle f is the angle between the applied vertical stress and the joint (Fig. 2-8.a). The anisotropy
behavior of the uniaxial compressive strength is shown in Fig. 2-8.b. Uniaxial compressive test
results based on the original ubiquitous joint model with various joint orientations are shown in
Fig. 2-8.d in which the compressive strength varies with the loading angle but the slope of the
stress-strain curve inside the elastic stage is the same because the elastic phase is isotropic.

2.4.1.2.  Strain-hardening/softening ubiquitous joint model
The strain hardening/softening ubiquitous-joint model (subiquitous) is a generalization of the
ubiquitous-joint model in which the failure envelopes for the intact rock and the joint are formed

by multi surface yield functions (Mohr-Coulomb failure criterion) with a tension cut-off part. This
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model has the advantage that the strength parameters of the matrix and joint may harden and soften
after the onset of plastic yield (Itasca 2016). Based on a calibration for a Synthetic Rock Mass
(SRM), Sainsbury et al. (2008) developed a Ubiquitous Joint Rock Mass (UJRM) model and
showed that a calibrated subiquitous model can reproduce accurate failure mechanisms and
strength anisotropy of jointed rock masses. The stress-strain curves of the subiquitous joint model
which contains one joint set are shown in Fig. 2-8.e. Like the original ubiquitous joint model, the
stress-strain curves of the subiquitous joint model have a constant slope in the elastic stage for

different joint orientations.

2.4.1.3. Intrinsic anisotropic ubiquitous joint model
The above mentioned models, the original ubiquitous and the subiquitous joint models, do not
consider the intrinsic anisotropy of the rock matrix. In order to simulate the behavior of layered
material and to account for slip along the direction of layering, some new constitutive models have
been developed by Itasca (2016), Rahmati (2016) or Ismael and Konietzky (2017). The intrinsic
anisotropic ubiquitous joint model combines the logic of an elastic transverse isotropic material
with that of the ubiquitous joint model. A local Mohr-Coulomb yield criterion with tension cut-off
is used as failure criterion on the weak planes. The rock matrix is treated as an elastic material. To
include anisotropy characteristics for the rock matrix, several models are proposed. The Modified
Ubiquitous Joint (MUJ) model (Ismael and Konietzky 2017) describes the elastic and plastic
behavior of a transverse isotropic rock mass considering rock matrix and one joint set. Another
model presented by Rahmati (2016), called Anisotropic Ubiquitous Joint (AUJ) model, treats the
intact rock as an intrinsic anisotropic material and the ubiquitous joint method is adopted to
account for the influence of weak planes which induce structural anisotropy. In order to describe
the intrinsic anisotropy of the intact rock, the Mohr-Coulomb criterion with variable cohesion and
friction (McLamore and Gray 1967) is used as shear yield criterion to describe the intrinsic
anisotropy behavior of the rock matrix. A tension cut-off is adopted as tensile yield criterion. Non-
associated and associated flow rules are adopted in the shear and tensile constitutive models,

respectively (Rahmati 2016).
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Fig. 2-8 Uniaxial compressive test results for ubiquitous joint models: (a) test configuration, (b) uniaxial
compressive strength versus loading orientation, (¢) general trend of elastic modulus versus loading
orientation, (d) elastic-perfect-plastic stress-strain curve for several loading angles of a single joint
considering no stiffness anisotropy, (e) elasto-plastic stress-strain curve with strain softening for several
loading angles of a single joint considering no stiffness anisotropy, (f) elastic-perfect-plastic stress-strain
curve for several loading angles of single joint considering stiffness anisotropy due to transverse isotropy, (g)
elastic-perfect-plastic stress-strain curve for several loading angles of multi-joints (two joints) considering
stiffness anisotropy due to spacing and stiffnesses of joints, (h) elasto-plastic stress-strain curve with strain
softening for several loading angles of multi-joints (two joints) considering stiffness anisotropy due to
spacing and stiffnesses of joints, (i) elasto-plastic stress-strain curve with strain hardening for several loading
angles of single joint considering no stiffness anisotropy.
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These different models consider not only the strength anisotropy but also the elastic stiffness
anisotropy related to the joint orientations. The slope of the stress-strain curves are influenced by
the joint angle. The stress-strain curves of the intrinsic anisotropic ubiquitous joint model with
various joint orientations are shown in Fig. 2-8.f. The stiffness anisotropy has a major influence

on the rock mass deformation behavior.

2.4.1.4. Ubiquitous multi-joint models
A rock mass often contains several sets of discontinuities. Therefore, more sophisticated modelling
techniques based on the ubiquitous/subiquitous joint concept have emerged over recent years. A
three-dimensional equivalent continuum model (Jointed Rock model) containing up to three
persistent joint sets was developed by Agharazi (2013). There are two limitations of the Jointed
Rock model: first, joint strength parameters are given for the first (most critical) joint set and only
this joint set can fail; second, the multi-surface plasticity is not considered. To overcome such
limitations, a two-dimensional multi-joint model was developed by Chang (2017). In this multi-
joint model, each joint set has independent strength and stiffness parameters which downgrade the
mechanical parameters of the rock matrix for the equivalent continuum. Each joint is considered
and failure incl. plastic corrections are considered for the joint at critical angle. Both, Joined Rock
model and Multi-joint model are elastic-perfect-plastic models. Fig. 2-8.g describes the stress-
strain curves for different joint angle combinations. The stiffness parameters and the spatial
distribution of joint sets can also influence the slope of the stress-strain curves.
2.4.1.5. Subiquitous multi-joint models

A non-linear constitutive model and an associated numerical implementation for rock masses with
regularly distributed subiquitous joint sets was proposed by Wang and Huang (2009) and Wang
and Huang (2014) so that the complete pre-and post-peak deformation of the rock mass can be
obtained. The shear strength in this model is estimated by the Barton empirical formula and this
model combines the mechanical behavior of intact rock with the spatial configuration and strength
parameters of joint sets. The slope of the stress-strain curves are different for various joint
orientations resulting in stiffness and strength anisotropy as shown in Fig. 2-8.h and Fig. 2-8.i. A
new constitutive model combining orthotropic elastic behavior with the presence of up to four
arbitrary subiquitous joints has been proposed to simulate the behavior of columnar basalt with

non-isotropic elastic matrix (Detournay et al. 2016).
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2.4.2. Cosserat-based approach
Constitutive models based on the Cosserat approach (Cosserat and Cosserat 1909) have recently
witnessed a significant development especially for capturing the mechanical behavior of
anisotropic materials, i.e. layered or laminated rocks. The original theory has been generalized by
Mindlin (1964) to consider a 3-dimensional elastic continuum. The Cosserat approach
conceptualizes the continua as infinite number of layers and considers an internal length scale
parameter. Therefore, the micro-moments are introduced into the governing equations. On the
other hand, Cosserat theory is known also as micropolar theory, i.e. a theory of asymmetrical
elasticity, in which the micro-moments vary along the continua and consequently the stress tensor
[o] is asymmetric (Riahi and Curran 2009). Fig. 2-9 shows the placement of the Cosserat based

models in the classification scheme of continuum based models.

Continuum Models

v v
Classic mechanics Micromorphic / Microstructure
(stress tensor is symmetric considering (stress tensor is asymmetric considering
the external action in the macroscale) both internal and external actions)

higher order
15t order microstructure tensor < > microstructure
tensor
Gradient-dependent | Second gradient
plasticity »  (The particle deforms as the

continuum)

Y

Cosserat or Micropolar

Fig. 2-9 Clasification scheme for continuum based models with special consideration of Cosserat

models (Germain 1973; Godio et al. 2015; Madeo 2015).

2.4.2.1. Cosserat based constitutive models for layered materials
The first trials to adopt the lamination concept of the Cosserat approach can be noticed in
(Miihlhaus and Vardoulakis 1986; Miihlhaus 1990), where the influence of the bending stiffness
[u] of layers was inserted into the micro-tensor. The bending stiffness term stands for the effect of

the layer thickness, i.e. the internal lengths, as illustrated in Fig. 2-10. Thus, the Cosserat based
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constitutive models use a [9 x 9] stiffness matrix which relates the stress and bending stress

components with the strain and curvature components in local coordinates.
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Fig. 2-10 Schematic view of a Cosserat layered continuum (a) 3D representative stress /o] and
bending stress ¢/ components, (b) unloaded layered continuum, and (c) layered continuum
after deformation (Riahi 2008), b stands for the layering effect on the displacement (Kolymbas
2007).

Due to the assumptions that length scale of the layer thickness plays a significant role at the
macroscopic scale, the effects of bending and buckling of the layers had to be considered in the
elasto-plastic framework (Miihlhaus 1995). This effect can be neglected if the length of modelled
continua is much larger than the thickness of the layers, and consequently in that case the result is
similar to the ubiquitous joint model (4=0). Riahi (2008) studied the effect of the internal length
scale on the deformation pattern for stratified rocks, where it has been depicted by Adhikary and
Dyskin (1997) that the larger the thickness, the more the results differ. In fact, the bending of the
layers is triggered when slipping along the joints takes place. A detailed review about the Cosserat
plasticity for generalized continua is presented in (Forest and Sievert 2003; Riahi 2008). However,
these papers focus mainly on the development of the Cosserat based elasto-plastic formulations
for layered rocks.

Considering the equivalent continuum approach, the Cosserat based elasto-plastic governing
framework for layered rocks was introduced firstly by Cundall and Dawson (1992) using Finite
Difference Method implemented in FLAC. It was simplified later by Alehossein and Korinets
(1999) and Alehossein and Korinets (2000) utilizing the gradient dependent plasticity approach.
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In parallel Miihlhaus (1995) developed a Finite Element formulation for an elasto-plastic Cosserat
model applied for the interface only. As an example a beam under a point load was analyzed. Then,
a generalized 2D Cosserat elasto-plastic model was presented by Adhikary and Dyskin (1997) and
Adhikary and Dyskin (1998) in which a large number of layer parameters is considered. The Finite
Element formulation procedure of this model is briefly presented by Adhikary, Dyskin, and Jewell
(1996). However, the intact layers are assumed to be rigid and possess no plastic behavior. Later,
the 2-dimensional elasto-plastic model was extended by adding yield possibility of the intact layers
(Adhikary and Guo 2002). Both, intact layers and smeared joints are described by the Mohr-
Coulomb law with tension cut-off.

A 3-dimensional extended Cosserat based constitutive model for an equivalent continuum with
multi-surface plasticity approach was introduced by Riahi and Curran (2009). Based on this model,
the buckling analysis of the layered rocks was studied (Riahi et al. 2009). Because of the difference
in rotation between 2D and 3D, it was difficult to extend the Cosserat based constitutive model to
3D (Riahi and Curran 2008). Most of above mentioned models assume a layered rock mass as an
equivalent continuum where the interface between the layers has its own stiffness and therefore
the thickness of the layers are inserted into the stiffness matrix. Recently, an elastic transverse
isotropic model in the framework of the Cosserat approach for layered soils has been introduced

by Hu and Tang (2013). This model is elastic and does not show any plastic yield.
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Fig. 2-11 Model set-up for the salt interlayered rock mass (Li et al. 2009)
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All of the above discussed Cosserat models assume that the layers of the intact rock have a constant
thickness (h=constant) and all layers have the same mechanical properties and therefore the same
elasto-plastic behavior. A 3-dimensional Cosserat like elasto-plastic constitutive model was
introduced for bi-laminated salt rocks as a composite of anhydrite-halite or mudstone-halite (Li et
al. 2009). This model assumes that bedding is horizontal and each layer has its own thickness and
mechanical properties. As shown in Fig. 2-11, this model assumes that both layers (layer A and
layer B) are bonded in a perfect way which prevents opening or sliding and this is in agreement
with the experiments on anhydrite interlayers. However, the numerical implementation in
FLAC3D neglects the influence of the bending effect. Each zone in the model has the thickness

(h) and the volume fractions of the two layers are represented by: a4 = ha/h and as = hs/h.

2.4.2.2. Cosserat-based constitutive models for blocky (masonry-like) materials
Sometimes rock masses are formed in a brickwork pattern or in orthotropic fabric as shown in Fig.
2-12.a (Miihlhaus 1993). The Cosserat approach was utilized extensively to capture such behavior
of regular blocky structures. A simple 2-dimensional kinematic concept with two adjacent blocks
was firstly introduced by Miihlhaus (1993), as shown in Fig. 2-12.b. The block dimension was
assumed as length = 2a and height = . Masiani and Trovalusci (1996) presented a study conducted
on brick masonry structures comparing Cosserat and Cauchy continuum models. The Cosserat
based model showed an advantage over the Cauchy model as it considers the internal length scale
and showed also better results compared to the rigid Discrete Element model.
Later, based on (Miihlhaus 1993), a 2-dimensional Cosserat based elasto-plastic framework was
implemented by Sulem and Miihlhaus (1997) in which the model can be adjusted for square bricks
(b=2a) and a columnar (orthotropic) structure as shown in Fig. 2-12.c. However, this model
assumed rigid blocks having no yield condition and plasticity acts only for the interfaces. Sulem
and Cerrolaza (2000) presented various failure modes (e.g. sliding and tilting) of a blocky slope
where the rock blocks behave as rigid material. Based on another approach, Schlegel et al. (2005)
introduced a continuum based model to simulate masonry structures considering different block
dimensions (2a x b). The parameters of the elasto-plastic model were calibrated based on the
modelled block dimension, the block format (masonry structure as shown in Fig. 2-12.b or
orthogonal as in Fig. 2-12.c) and if the blocks are cemented by mortar or not. An extensive review
of Cosserat based continuum models for the masonry like structures can be found in (Casolo 2006;

Salerno and de Felice 2009; Baraldi et al. 2016).
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Fig. 2-12 Blocky (masonry-like) fabric: (a) natural broken rock mass, (b) modelled masonry
structure, and (c) orthotropic structure after (Miihlhaus 1993), 2a stands for the length and b is the
height or thickness.

2.4.2.3. Comparison between Ubiquitous Joint and Cosserat models
Adhikary (2010) and Riahi (2008) defined the shortcomings of ubiquitous joint models as follows:
(1) the local stress tensor is symmetric due to the assumptions of partially equal shear stresses, (ii)
there is no consideration of rotation of the layers and thus there is also no representation of the
internal moment components, and (iii) the existence of joints have no anisotropy influence on the
elastic properties. On the other hand, Sainsbury and Sainsbury (2017) illustrated that although the
Cosserat based constitutive models showed an advanced representation of the layered rocks by
containing additional rotational degrees of freedom, there are some technical complications to be
commercially released. Those complications arise because of: (i) adjusting the meshing to allow
the rotational degrees of freedom, (ii) updating the equations of motion for each grid point
according to the additional stress components related to the moments and coupling of each layer.
Due to the rotational degrees of freedom, some new phenomena can be duplicated, i.e. buckling
and deflection. The discussion of these two models raised important questions: to which extend is
the conventional beam theory — the reference of Cosserat based models — capable to predict elastic
deflection of stratified rock masses ? Can the ubiquitous joint model simulate the buckling

mechanism of layered rocks ?
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For underground openings in horizontal bedded anisotropic rocks as shown in Fig. 2-13.a, a
deflection is observed in the roof because of the lamination partings (Diederichs and Kaiser 1999).
Although the conventional beam theory could work to predict the deflection of the roof for
horizontally stratified rocks, there might be various intersecting joint sets within the roof causing
difficulties to work based on the beam theory. In such conditions, the conventional beam theory

tends to underestimate the stability (Diederichs and Kaiser 1999).

(b)

Fig. 2-13 Schematics of different underground openings having (a) a deflection of a horizontal
bedded jointed roof, and (b) a buckling of the sidewall of a steeply bedded rocks, the doted
lines show the highly deformed zones (Diederichs and Kaiser 1999; Yun-mei et al. 1984).

When the foliation angle is steep, there is a buckling mechanism within the layered (laminated,
foliated or stratified) rocks which is a significant characteristic. Failure modes are specified such
as buckling at sidewalls and the related squeezing of steeply bedded rock masses as shown in Fig.
2-13.b (Yun-mei et al. 1984). Karampinos et al. (2015) studied the non-linear anisotropic response
of steeply hard foliated rocks in deep underground openings. The continuum based models could
not fully simulate the buckling of foliated rocks. Therefore a Discrete Element approach was
adopted (Karampinos et al. 2015). Concerning the Cosserat based models, Riahi et al. (2009)
applied a 3-dimensional Cosserat continuum based approach to model the buckling phenomenon
of layered structures. On the other hand, the ubiquitous joint model alone cannot simulate such
behavior because of the above mentioned reasons. Sainsbury and Sainsbury (2017) developed a
new strategy to overcome the ubiquitous joint model shortcomings by combining continuum and

discontinuum approaches. In this new strategy, Distinct Element model software (UDEC and
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3DEC) was applied to model explicitly the major joints by using their advantages to consider joint
spacing, length and stiffness. In addition, the modelled blocks in between those explicit joints were
simulated as a continuum based ubiquitous or subiquitous joint model.

Up to now, layered rocks cannot fully be assessed using continuum based approaches especially
by the ubiquitous joint model. However, there are trials by Sainsbury and Sainsbury (2017) but
their strategy had some limitations concerning the scale effect. On the other hand, Cosserat based
models show promising advance in relation to the simulation of deflection and buckling

phenomena, but some limitations related to the meshing and the usage of beam theory exist as well.
2.4.3. Approaches based on critical plane and microstructure tensor

2.4.3.1.  Critical plane approach

According to experimental data of Donath (1964), the orientation of the critical (failure) plane is
a function of the orientation of the weakness planes, as shown in Fig. 2-14. It is obvious that for
the strength anisotropy, the experimental data and numerical values fit well especially for loading
angle f between 20° and 80° (failure plane = weakness plane). There are also discrepancies
between the experimental and simulation results for f between 0° to 15° and 80° to 90° where
failure takes place inside the matrix and not along the weakness planes.

According to Pietruszczak and Mroz (2001), an anisotropic failure criterion extended from the
Coulomb criterion was proposed to consider a spatial distribution of strength parameters. The
failure function is defined through a traction component which acts on a physical plane. This
critical plane approach has been successfully applied to the analysis of masonry structures
(Pietruszczak and Ushaksaraei 2003). The performance of the critical plane approach is especially
suited for rocks with evenly spaced homogeneous layers. Lee and Pietruszczak (2008) used the
critical plane approach to depict the strength properties of transverse isotropic rocks combined
with the Hoek and Brown failure criterion. Hoek-Brown rock parameters m and s are used to define
rock masses anisotropy with the symmetric traceless tensors which describe the spatial distribution

of strength parameters.
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Fig. 2-14 (a) Definition of failure plane for anisotropic material under triaxial compression

and (b) corresponding simulation results for slate (Lee and Pietruszczak 2008).

The purpose of the critical plane approach is to find out the orientation of a failure plane which
satisfied the maximum of the failure function. The failure of the rock is then identified as failure
along this critical plane but it should be noticed that the critical plane approach does not fit well
the intact rock failure pattern. It is also not inconvenient to implement different failure criteria for
the numerical analysis because the specification of the critical plane orientation is obtained from
a maximization procedure (Pietruszczak and Mroz 2001). More detail information for the specific
corresponding failure criterion can also be found in (Pei 2008).

This approach was incorporated in a constitutive model based on the multi-laminate framework

which will be discussed later in section 2.4.4.

2.43.2. Microstructure tensor approach
A non-linear failure criterion was introduced to consider directly the anisotropy based on the
microstructure tensor approach (Pietruszczak and Mroz 2000). This approach defines explicit
functions in which the stress invariants and microstructure tensors are incorporated in connection
with material parameters. The result of this failure criterion is a scalar parameter called anisotropy

parameter (1) which is a function of higher degree tensors and quantifies the load orientation
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influence in terms of the material axes. The general formulation of 7 can be expressed as follows

according to Pietruszczak et al. (2002).

n=al = ML+ ALl +b (ALY +b (A1) +..] (2.8)

gy §gritj [/
n physically means the projection of the microstructure tensor a;; on the direction of /;. /; and /; are

the normal components of that plane where a;; is projected, 7 is the mean value of 5. 4; is the

traceless symmetric tensor describing the bias in the spatial distribution and is the deviatoric part
of the microstructure tensor a;;. b; and b are material parameters. 4;;, b; and b, are determined by
curve fitting of simple tests, i.e. uniaxial compression tests.

In order to specify Eq. (2.8) in a sample having arbitrary planes of anisotropy with angle o in
respect to the bedding planes (bedding orientation angle), Haghighat et al. (2015) provided a
simple example (Fig. 2-15) based on the assumptions of Pietruszczak et al. (2002) for a sample

under compressive loading o, (o, = 07) and constant confining pressure p, (po = 02 = 03 = constant).

O, =0, = consl.
Al

Failure plane

!

Fig. 2-15 Schematic of a failure plane and inherent planes of anisotropy (Haghighat et al. 2015).

In case of non-confining compression Eq. (2.8) can be expressed as follows:

A

n=al =nl+4(1-3cos” @) +b 4’ (1-3cos’ @)’ +..]  (2.9)

The first full elasto-plastic constitutive model based on this failure criterion was introduced by
Pietruszczak et al. (2002). In this model, a non-associated plasticity framework for brittle plastic

anisotropic sedimentary rocks is used. It is based on a continuum elasto-plastic constitutive model
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for concrete (Pietruszczak et al. 1988), in which the transition mechanisms from brittle to ductile
behavior is conceptualized using an appropriate hardening/softening parameter. However, this
framework is restricted to strain hardening only. The constitutive model by Pietruszczak et al.
(2002) was the motivation of a simpler elasto-plastic model for argillite rock by Xu et al. (2013).
That model uses a return mapping scheme created by Krieg and Krieg (1977) and Huang and
Griffiths (2008). Xu et al. (2013) introduced a linear elastic-perfect-plastic constitutive model with
associated flow rule based on the nonlinear constitutive model of Pietruszczak et al. (2002).
Recently, the microstructure tensor approach was adopted to formulate an elasto-plastic
constitutive model based on the Mohr-Coulomb failure criterion (Haghighat et al. 2015). Similar
to the previous model (Pietruszczak et al. 2002), the strength parameters (i.e. the cohesion and
friction angle) were extended to consider the effect of load orientation. This elasto-plastic
framework simulates exclusively strain hardening, but no softening. Haghighat et al. (2015)
developed this framework based on a simple linear approximation of the Mohr-Coulomb failure
criterion introduced in (Pietruszczak and Mroz 2000) which is applicable for low confinement.
Abdi and Evgin (2013) and Haghighat et al. (2015) altered Eq. (2.9) to directly describe the
anisotropic behavior of the Mohr-Coulomb rock parameters. In fact, the anisotropy parameter 7 is
normalized to predict the value of friction angle ¢, in respect to the orientation angle while the
cohesion c is assumed to be constant.

Table 2-6 and Fig. 2-16 show a comparison between the previously discussed three elasto-plastic
models in which the microstructure tensor approach is used. The microstructure tensor approach
was incorporated into a Mohr-Coulomb strain hardening/softening constitutive model by Nguyen
and Le (2015) in which cohesion (initial and residual) and friction angle (interlocking and residual,
initial friction angle is assumed to be zero) are orientation dependent. Their values can be predicted
according to Eq. (2.9). The constitutive model assumes transverse isotropy where the elastic
regime is linear applying Hooke’s law while the plastic flow rule is non-associate. Regardless the
time dependency of the Young’s modulus, we focus here on the plastic part of this model and the
consideration of the microstructure tensor approach. This model predicts well the hardening before
yielding. The friction angle varies based on a square root function starting from zero to a maximum
value (i.e. interlocking friction angle). By applying this model to simulate the behavior of Opalinus
clay under triaxial test conditions, the simulations show good agreement with the lab results

especially for higher confinement.
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Table 2-6 Summary of microstructure tensor models and their applications

Tournemire shale
(Niandou et al. 1997)
E=22GPa, E>=17

argillite rock
E=5.619GPa, E>=
4.129 GPa, v1 =0.213,

Model Pietruszczak et al. Xu et al. (2013) Haghighat et al.
(2002) (2015)
Modelled rock type Transverse isotropic Transverse isotropic Transverse isotropic

Tournemire argillite
E=12.5 GPa, E>=21
GPa, v, =0.16,

GPa,v,=0.12, 02 = 02=0.187 and v2=0.08 and G>=4.57
0.14 and G2 =4 GPa G2=0.885 GPa GPa

Parameters used 11 =22 MPa, 1 =26.885 MPa, 1 =1.0725 MPa,

in Eq. 2.9) 4/-0.017025, A4/=0.17034, 5=0.214, | A1=0.17034, b1=5.4957
b1=515.49, b=—0.563
b=61735.3,
bh3=2139820

Used elasto-plastic

framework

Framework for brittle
plastic material by
Pietruszczak et al.
(1988) considering

hardening only

Elastic-perfect-plastic
framework based on
Pietruszczak et al.
(1988) and return

mapping schemes

Linear approximated
(Mohr-Coulomb)
clasto-plastic

framework.

Fig. 2-16 Illustration of anisotropy behavior according to (a) Pietruszczak et al. 2002, (b) Xu et al.
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2.4.4. Multi-laminate and micro-polar related approach

The multi-laminate approach is one of the most commonly used methods for equivalent continuum
based models originally introduced by Zienkiewicz and Pande (1977) to simulate rock mass
behavior based on the theory of elasto-visco-plasticity. The multi-laminate framework for
modelling rock masses and soils is given by Pande and Yamada (1994). Sanchez et al. (2008) used
the multi-laminate framework to predict the behavior of the geomaterials by considering several
“integration planes” (Fig. 2-17).

The slip theory of plasticity was first introduced into a multi-laminate model for clay by Pande
and Sharma (1983) not considering the rotation of the principal stress axes during plastic flow.
The plasticity formulation of a multi-laminate isotropic hardening model for soil was presented by
Pietruszczak and Pande (1987). A multi-laminate model for soft clays incorporating bonding
anisotropy was developed by Cudny and Vermeer (2004) using the framework of rate independent
plasticity. Within the past few years, sophisticated multi-laminate constitutive models

incorporating anisotropy behavior for soils were developed by Schweiger et al. (2009).

i-th plane

/ / /

/ // // ?//;/éf/:rlntact rock

// /////// (i+1)-th plane
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//// i
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Fig. 2-17 Schematic for multi-laminate model

An improved multi-laminate model which uses the Coulomb criterion as yield condition on the i-
th plane for clays were developed by Pietruszczak and Pande (2001). Cohesion and friction angle
are orientation dependent. A set of second-order symmetric traceless tensors were used to describe
the distribution of the Coulomb parameters. The multi-laminate model may be considered as a
simple version of the critical plane approach (Pietruszczak and Mroz 2001), see also chapter
243.1.

A constitutive model similar to the multi-laminate framework was proposed to simulate the

behavior of reinforced rock masses with rock bolting (Chen and Pande 1994). The intact rock was
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treated as an isotropic material and yielding according to the Drucker-Prager failure criterion. The
flow rule of the rock matrix is associate, while it is non-associate for the joint sets. The yield
surface is based on the Mohr—Coulomb failure criterion (Chen and Egger 1999). Later, Chen et al.
(2009) extended the original Chen model to consider spacing, normal and shear stiffness of the
joints. On the other hand, Roosta et al. (2006) proposed a multi-laminate model which accounts
for strain hardening/softening behavior to simulate jointed rock masses. The Mohr-Coulomb
failure criterion with tension cut-off was used for both, the joint planes and the intact rock. Intact
rock behaves elastic-perfect-plastic and the joint planes show strain hardening and softening. In
these multi-laminate model simulations, the peak shear strength values are reproduced in a correct

manner but the expected residual shear strength revealed larger deviation compared to test results.

2.4.5. Approaches based on Boehler’s theory of stress transformation
As previously discussed, Boehler and Sawczuk (1977) defined the concept of stress tensor
transformation as a straightforward failure criterion in which the stress tensor is dependent on the
orientation of the inherent planes of anisotropy. In case of transverse isotropic rocks, a fourth order
transformation tensor A4;x is defined according to the existing planes of anisotropy, while this
tensor is a function of three independent parameters o, f and y. These parameters are defined from

curve fitting with lab test results.

A

oy = Ay (2.10)

& is the anisotropic stress tensor. This approach is a very effective way to extend most of the

isotropic elasto-plastic constitutive models to anisotropic models.

2.4.5.1.  Stress history model of Oka

Oka et al. (2002) introduced an extension to an isotropic elasto-plastic constitutive model which
considers the strain hardening/softening behavior of soft rocks proposed by Adachi and Oka (1995).
The original isotropic model has the ability to consider the stress and strain history tensors and the
plastic deformation is governed by a non-associated flow rule. To extend such an isotropic model,
Oka et al. (2002) considered both, the elastic and the plastic anisotropy assuming that the tested
soft rock is transverse isotropic. For the elastic part five elastic independent moduli are specified
and the stress incrementation is applied using the generalized Hooke’s law (linear elasticity).

The stress tensor transformation approach is applied in the plastic regime to adapt the anisotropic

characteristics within the plastic stress tensor. The plastic strain increment in the original isotropic
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constitutive model is replaced by the transformation tensor proposed by Boehler and Sawczuk
(1977) within the yield function and the plastic potential function. By applying this modified model
to simulate triaxial tests on a weak rock, a slight overestimation of the residual strength and
underestimation of the volumetric strain is observed. This overestimation is explained by Fu et al.

(2012) as there is no consideration of the intermediate principal stress dependency.

2.45.2. The inherent anisotropic soft sedimentary rock model
Fu et al. (2012) added mechanical anisotropy to an existing elasto-visco-plastic constitutive model
proposed by Zhang et al. (2005). This model is complicated as it is formulated in order to describe
not only the mechanical anisotropy but also to include strain hardening/softening, stress dilatancy
and the influence of the intermediate principal stress. Like the work of Zhang et al. (2005), the
anisotropic model assumes that the elastic part has no stiffness anisotropy, but a hypo-elastic
relation between the Young’s modulus and the mean principal stress exists. The anisotropic plastic
deformation follows an associated flow rule. The plasticity framework of Zhang et al. (2005)
considers the transformation of the equivalent isotropic stress tensor into the generalized stress
space called #;-concept according by Nakai and Mihara (1984). However, Fu et al. (2012) altered
the equivalent isotropic stress tensor according to the Boehler’s theory of stress transformation by
introducing a modified anisotropic model with two stages of transformations: first transferring the
isotropic stress tensor into the anisotropic state and then describing the anisotropic stress tensor in
the #; space. By applying this model to triaxial tests of two soft rocks, the predicted stress behavior
and the volumetric strain almost met the lab test results for different applied confining stresses. As
advantage over the Oka model, Fu et al. (2012) considered the dependency on the intermediate
principal stress. On the other hand, the model of Fu has no stiffness anisotropy, the applied flow

rule is associated and it requires a significant number of parameters.

2.4.5.3. The Cam-Clay based constitutive model by Nova
First versions of Cam-Clay based anisotropic rock-like models for soft rocks and bonded soils was
presented by Nova (1986a,b). Based on the technique of Boehler (Boehler and Sawczuk 1977), an
elasto-plastic constitutive model with associated flow ruled was introduced which captures strain
hardening of soft rocks (Nova 1986b). By applying this model to triaxial lab tests on diatomite
(Allirot and Boehler 1979), it was found that the simulations did not give good agreement with the
lab results and the model tends to overestimate the hardening behavior of the tested rock with

increasing confining pressure (Attaia et al. 2015).
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2.4.54. Crooke’s 3D orthotropic model
The modified Cam-Clay model was extended to account for stiffness and strength anisotropy of
orthotropic soft rocks such as shales by Crook et al. (2002). The developed yield surface is
orthotropic pressure dependent. In other words, all three principal stresses are included into the
constitutive model. The elastic behavior of this model is linear and the post peak behavior shows
strain hardening/softening based on the evolution of volumetric plastic strain (Crook, Yu, and
Willson 2002). The complexity of this model arises in the post peak region where compaction or
consolidation of soft rock appears. The Crooke model adopts the Hoffman yield criterion
(Hoffman 1967) and the return mapping algorithm developed by Hashagen and de Borst (2001).
The detailed numerical implementation of the Crooke model is introduced in (Attaia et al. 2015),
although the procedure is slightly different than the original model where only the first derivatives
of the yield criterion are used. Crook et al. (2002) has noticed the stiffening of the Young’s
modulus with increasing applied confinement, but the constitutive model neglects this. The
calibration of Crooke’s model for different confining pressures on horizontal bedded shale samples
showed a significant agreement especially in the post peak range for axial and radial strains. This
model has been extended by Sereide et al. (2008) to include thermal effects. However, there is
significant mismatch between numerical simulation and lab testing for undrained samples (Sereide
et al. 2008) and this might be due to the lack of the implementation of the local strain effects at

large deformation.

2.4.5.5. Extended Drucker-Prager model
An elasto-plastic constitutive model was developed for anisotropic weak rocks which considers
strain hardening/softening post peak behavior based on the Drucker-Prager failure criterion
(Francois et al. 2011). The elastic regime is linear transverse isotropic. The simulation of the post
peak hardening/softening behavior is based on the technique of mobilized friction and cohesion
via a hyperbolic variation of the internal variables as a function of the Von Mises equivalent plastic
strain (Barnichon 1998). The plasticity framework is non-associate. The plastic strain at each time
step is corrected according to computed values of friction angle and cohesion, which vary between
the initial and the critical values. Assuming hardening behavior, the critical value of both, cohesion
and friction are greater than the initial values, while it is the opposite in case of softening. This
model was successfully applied by Francois et al. (2014) to estimate the Excavation Damaged

Zone (EDZ) around saturated overconsolidated Boom clay.
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3. Transubi model

3.1. Introduction

This chapter introduces a modified bi-linear strain hardening/softening ubiquitous joint
constitutive model (Transubi model) which describes the mechanical behavior of layered rock
masses by smeared joints across the rock mass. This modified model considers not only the
strength anisotropy but also the elastic stiffness anisotropy (transverse isotropic stiffness matrix).
Thus, new elastic stress increments and the plastic corrections have to be included. The Transubi
model is applied to simulate the behavior of transverse isotropic rock samples under uniaxial
compression and triaxial loading. Simulation results using the Transubi model are compared with

the analytical solution from Jaeger and the Caniso model available in FLAC 8.0.
3.2. Elasto-plastic modeling of inherent anisotropic rocks

3.2.1. Transformation of coordinates
Usually, stress state and stiffness tensors of the rock mass are defined with respect to a fixed global
coordinate system (X, Y, Z). In order to transform tensors from a global to another coordinate
system, for example (x', y’, z'), series of transformation rules are applied. The composition of the
rotation matrix for strain tensor is explained as following. Consider a strain state in both local and
global coordinate systems &y, and exyz, respectively. Thus, this relation could be expressed as

follows:

8,,:6U' and &, Uy

o "X

where, Uy and Uy are the displacement components in x' and X directions, respectively. By

(3.1)

applying chain rule of differentiation, Eq. 3.1 is obtained as follows.
0U, _0U, X U, oY U, oz
ox' 0X ox' oY ox' 0Z ox'
oU, _, 8U, , 0U, , oU,

(3.2)

=1 + +1,
ox' ox oy oz

Similarly,
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Uy _; &y ) Uy, 3Uy
x' Cax ov oz
ou, _, U, ,, U, ., dU,

(3.3)

=l —E+1 —L+1
ox' oX oY 0z
Generally, the displacement component Uy’ is written in respect to the global system as follows.

U=LUy+1U, +1U, (3.4)

By differentiating Eq. 3.4 with respect to x’, the following relation results.
ou, ~ oU ou ou

S Rt Sy Rt By
ox' ox' 7 ox! Ox'

By the substitution of Egs. 3.2 and 3.3 in Eq. 3.5, &« is obtained in reference to (X, Y, Z).

(3.5)

eyl U6y + 6,1 60t Lo, +1 e, (3.6)
Similarly,

—py2 2 2
gy'y'_mxg)(z\’ +mngY +ngZZ +mxmngY +mxngXZ +myngYZ (3 7)
—,2 2 2 '
Ep TN Exy TN Eyy TN_EH NN Ey TN N Eyy + 1,1y,

Proceeding in a similar way, the second-order strain tensor (6x1 matrix) is rotated from global to

local coordinates using the following transformation rules:
Evpn =R Exyy (3.8)
where, R; is 6x6 rotation tensor which is defined by the direction cosines of local coordinates in

terms of the global coordinates. R is formed based on the above mentioned procedure as follows.

2
[ 11 11, 1.

X'y
2

m m; m,m, mm, m,m.

2
y
2 2 2
Rl ™ n, n; nn, nn, nn, (3.9)
&

2Am. 2Am, 2m, Im+lm  Im +Lm [ m +Im,

2An, 2n, 2n. In+ln An+ln. In +ln,

2mn, 2mn, 2mn. mn +mn. mn +mn. mn +mn,
Same procedure is utilized to form the transformation matrix R, for the second-order stress tensor.
Similar to Eq. 3.8, the stress state is transformed from global system to local coordinates as follows.

o...=R o, (3.10)

xy
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As noticed from Eqgs. 3.8 and 3.10, the rotation tensor defined for second order strain tensor R; is
slightly different from the second order stress rotation tensor R,. As the rotational matrix is

orthogonal, both tensors R and R, could be linked to each other as follows:
RgT = Rojl (3.11)
The transformation of the elastic stiffness matrix {S} is more complicated and is given as follows:

(S} =RI{S,,.}R, (3.12)

3.2.1. Algorithms of anisotropic material

According to elasto-plasticity theory: if a material is subjected to a load, two types of deformations
are expected: reversible deformations ¢° (elastic) and irreversible deformations &” (plastic). Plastic
deformations occur when the stress state reaches the yield condition.

e=¢&"+¢’ (2.1)

A yield surface [F (o) = 0] has to be defined as plastic limit. If the stress state does not violate the
yield surface, the total strains are elastic. Once the yield surface is violated, a correction of the
stress state is required. Plastic corrections for granular materials (i.e. rocks, soils, cement or
concrete) are based on the plastic potential [g (o) = const.] as the flow rule is non-associated. For
more details about the plasticity of granular material, see Vermeer and de Borst (1984). Depending

on the defined number of yield surfaces, the techniques for the plastic corrections differ.

3.2.1.1.  Single surface plasticity

For stress-based plastic algorithms, the new trail stress value is predicted as follows:

trial
Gna

i+l

=0, +8d¢,,, (3.13)
Then, the stress state is tested against the defined yield surface:

” F(c"™)<0 elastic domain

+1

trial : : (314)
F(o.[")>0 plastic domain
If the stress state reaches the plastic domain, the corresponding yield function and flow rule are

mobilized as shown in Fig. 3-1.
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otrial
i+l

flow rule

yield surface

5 elastic region

elastic region

(a) (b)

Fig. 3-1 Schematic showing the return mapping procedure for (a) a smooth non-linear yield surfaces, and

(b) a linear yield surfaces.

3.2.1.2.  Multi surface plasticity
If the yield surface is more complex like for the Transubi model, a more sophisticated procedure
should be considered. Each yield surface of this model has its own strength parameters. Generally,

the shape of the yield surface is either convex or linear, see Fig. 3-2.

! (a) (b)

T

~—— T ﬁeld surface 2
. Yield surface 2 |
Yield surface 1
/ ~ | Yigld surface 1
Z o

)

Fig. 3-2 Schematic of interaction of two yield surfaces (a) two convex yield surfaces, and (b) two linear

yield surfaces

The intersection between a M-C shear failure criterion and a tension cut-off criterion is shown in

Fig. 3-3.
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Fig. 3-3 Active surface detection of a multi yield surface composed of a M-C criterion and tension cut-off

(a) general solution, and (b) proposed solution by Itasca (2016) applied to the ubiquitous joint model

The total plastic strain increments are given by the sum of the plastic strains of all active plasticity

surfaces.
g’ :Zn:/i(%) (3.15)
= oo

where, i represents the number of yield surfaces and 4 is defined as the plastic multiplier for the
activated yield surface i (see section 3.3.2). According to Fig. 3-3.a, the detection of the active
yield-surface is complex. Thus, several different situations have to be considered (Ortiz and Simo
1986).
Case I: when only one yield surface is violated (domains D4 or DS5), plastic corrections are
processed based on the corresponding functions F; and g;.
Case II: when more than one yield surface is violated, the situation can be categorized as:
(a) If F"4! (g) > 0 and ;> 0 for surfaces i =1 and 2 (domain D12): both surfaces are active.
(b) If F" (g) > 0 and J; < 0, for surfaces i =1 or 2 (domains D1 or D2): only one of the

surfaces is active.

Another solution has been proposed by Itasca (2016) which is used for example for the ubiquitous
joint model (Fig. 3-3.b). For case II, two yield functions F; and F> are separated by a diagonal

function named (4 = 0):

h=c+0o' tang—1—(\1+tan’ ¢ —tan g)(c' -, (3.16)
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If 4 < 0 means surface i =2 is active (domain D2). On the other side, if 2 > 0, surface i =1 is active
(domain DI). Later in section 3.3.3, a detailed discussed regarding the plastic corrections and

detection of multi-surface failure criterion is presented.

3.2.3. Existing upgrades for ubiquitous joint model

Modelling of layered rock mass can be performed by implicit consideration of joints (i.e.
ubiquitous joint model) or by explicit representation of the discontinuities (i.e. discrete element
approach) (Davila and Schubert 2014). However, computational power and time consumption
limits the use of discrete approaches. The accuracy of implicit joint models and the Cosserat
approach has been investigated by Riahi (2008) and Dawson (1995). This chapter considers the
continuum-based implicit approach (i.e. smeared joints).

The elasto-perfect-plastic ubiquitous joint model is one of the numerical models used to analyze
jointed rock masses (Wang and Huang 2009). It is found in the FLAC software package as “an
anisotropic plasticity model that includes weak planes of specific orientation embedded in a Mohr-
Coulomb (M-C) solid” (Itasca 2016). This model can predict the strength anisotropy for a rock
mass containing weak planes reasonably accurate. However, the presence of the joints is taken into
account for the plastic corrections but has no effect on the elastic behavior and the model is
restricted to one set of joints only (Azadeh Riahi 2008). A modified ubiquitous joint model (Comba
model) has been presented to simulate the behavior of columnar basalt with the presence of up to
four arbitrary orientation of weak planes. The elastic stiffness matrix in the Comba model is
anisotropic due to the orientation of the joint sets and spacing and stiffness are considered.
However, it is difficult to set values for joints orientation and stiffness that equalize the elastic
stiffness matrix of the transverse isotropy for a specific orientation (Detournay, Meng, and Cundall
2016).

First implementations considered the jointed rock mass without considering the elastic stiffness
anisotropy (i.e. cross anisotropy), such as: the elasto-perfect-plastic ubiquitous joint model (Itasca
2016). Then, the elastic transverse isotropic stiffness was implemented without consideration of
strain softening. Such models were developed incorporating one or several anisotropy planes with
softening but without considering the rock matrix (e.g. Wittke (1990); Caniso model in (Itasca
2016) or Jointed Rock model in (Plaxis 2016). Other approaches considered the anisotropy of the
rock matrix without incorporating the softening of both, the rock matrix and the joint plane

(Rahmati 2016) and (Ismael and Konietzky 2017). On the other hand, Bliimling and Konietzky
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(2003) introduced a bi-linear elasto-plastic strain hardening/softening ubiquitous joint model
which was improved later by Konietzky and te Kamp (2004) as well as Konietzky and te Kamp
(2006) by coupling of two different mechanical constitutive models: the elastic transverse isotropic
model and the bi-linear subiquitous joint model. This model was successfully used to simulate the
mechanical behavior of Opalinus clay.

To overcome these partial limitations a transverse isotropic elasto-plastic model called Transubi-
model with stiffness and strength anisotropy and strain hardening/softening of weak planes and
rock matrix is proposed. The “Transubi” model has several advantages: (i) the elastic matrix is
transverse isotropic with 5 independent parameters, (ii) pre- and post-yielding behavior can be
non-linear: for example, the pre-yielding region can show hardening and the post-yielding region
can show softening, (iii) strength anisotropy is considered, and (iv) the bi-linear concept is adapted
for both, the rock matrix and the joint planes to allow up to two M-C failure envelopes describing
the plasticity of the material. Thus, the Transubi model is known as a transverse isotropic bi-linear

strain/hardening ubiquitous joint constitutive model developed for 2D continua.

3.3. Theoretical background of the Transubi model

In principle, the Transubi model is using the same methodology as the original subiquitous joint
model. Symmetry characteristics and corresponding properties are illustrated in Fig. 3-4. A zone
represents both, a transverse isotropic elasto-plastic rock matrix (RM) and a joint plane (JP), which
can fail in tension or shear. Mohr-Coulomb parameters are given for the rock matrix and the joint
plane as well in addition to the transverse isotropic matrix. The angle a refers to the orientation of
the joint plane which equals (90-$). For a general 3-dimentional case, the orientation is given either
by the dip (dip) and the dip direction (dd) or by specifying the three components (ny, ny, n:) of the
normal unit vector of the joint plane. In our study, a 2-dimentional case is applied. The dd is

assumed as 90° while the dip equals therefore the inclination angle o (Fig. 3-4).
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M-C rock matrix's peak and residual parameters M-C joint plane peak and residual parameters
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Fig. 3-4 Transubi-model: illustration of a single zone with anisotropy plane and corresponding material

parameters

3.3.1. Elastic increments

The elastic stiffness matrix {S} is described in local coordinates (x;, x2, x3) of the joint plane. It is
simpler to provide the compliance matrix {C} which is the inverse of the stiffness matrix. Five
independent elastic stiffness parameters have to be given parallel or normal to the joint plane,
respectively. The independent elastic properties in the plane parallel to the joint plane are Young’s
modulus £ and Poisson’s ratio v, while the other elastic properties are in the plane normal to the
joint plane (E’, " and G"), as indicated previously in Fig. 3-4. Based on the orientation of the joint
plane, a transformation of the elastic stiffness matrix from local coordinates the global coordinates
(X, Y, Z) is implemented (Eq. 3.17) as discussed in section 3.2.1. The calculation scheme of the

elastic increments is always performed in global coordinates.
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_l __V __V' O O 0_
E E E
L
E E E
A A S
o= & 5 B (3.17)
o o o 2 o4 g
E
1

0 0 0 = 0

1
0 0 0 0 =

According to Amadei (1996), there are several restrictions in respect to the elastic parameters.

E>0

E'>0

G'>0

vi<l (3.18)
y? <1

2Ev"

E'

>0

(1=v)-

3.3.2. Yield surfaces and input parameters
The rock matrix is defined as bi-linear M-C solid with two intersecting shear failure envelops. First
envelop has the strength parameters: cohesion c, friction angle ¢,, dilation angle w and a tension
cut-off with value ¢ as a tensile strength. The second shear yield surface has parameters cohesion
c2, friction angle ¢,> and dilation angle 2. Residual strength parameters could be assigned for both
yield surfaces except tensile strength which is exclusively defined for the first surface. Similar, a
bi-linear strength surface is defined for the joint plane. Fig. 3-5 introduces the bi-linear M-C yield

surface for both, the rock matrix and the joint plane.
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c,/tan ¢,

\/

S,

Fig. 3-5 Schematics showing the bi-linear failure criterion for (a) rock matrix in the principal stress space ,

and (b) joint plane in local stress coordinates (Itasca 2016).

During the elastic stress incrementation, the yield condition is always monitored for both, the rock
matrix and the joint plane. For checking the failure condition inside the rock matrix, the global
stress state is transformed into the principal stress state as shown in Eq. 3.19. Also, the stiffness

matrix is transformed into the principal coordinates (x”, y*, z) leading to {S7}.
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0, = 51};51 + Slggz + S1§83

o, =S,& +8he, +She, (3.19)

o,=S,¢& +8he, +She,

As shown in Fig. 3-5.a, segments B-C and B-A are two intersected M-C failure surfaces at point
B. The segments are defined by f;° = 0 and f>*= 0; respectively. The segment D-C is the tension

cut-off part and represented by /* = 0. Thus, the yield functions in the principal stress plane are

defined as follows:

1 =0 -o;N,, +2c“/N¢1

1, =0,-03N,, + 2, \/N¢z (3.20)
ft — 0_3 _Ut
where
1+sing,
5= —¢f (3.21)
1-sing,

For the intersection point between the shear yield surfaces at point B, the corresponding value of

the minimum principal stress defined as o3’ is given by:

2N,
.

Ny, =Ny

(3.22)

The plastic shear potential for rock matrix corresponds to a non-associated flow rule by using
dilation angles (w; and y2) instead of the friction angles (Eq. 3.20), while the tensile plastic

potential follows an associated flow rule.

g’ =0,— G3Ny/1

g =0,-0;N,, (3.23)

g =0,

where

N, = Lt S%m// (3.24)
1-siny
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After checking the failure state of the rock matrix in the principal stress plane, the corrected stress
state (discussed later in chapter 3.3.3.1) is returned back into the global system. Then, the global
stress state is transformed to the joint plane local coordinates using the joint inclination angle a.
The local stress state is decomposed into two stress components: tangential stress component 7 and
normal stress component o33’ acting on the joint plane. The stress components at local coordinates

are obtained by the following relations:

Oy = Sy &y + 82800 + 81365y
Oy =SE + 8,165 + 8365,

Oy = S;3E + 836, +85,65

E
O, = Ey (3.25)
12 (1+V) 12
0,3 =2G"'¢g,
0,, =2G'&,s

where; S1;, S12, S13 and S3; are elastic stiffness components obtained from the inversion of Eq. 3.17.

[
S —E E'-v"E :
1+v)[(1-v)E'-2v" E]
1,02
S, -E vE'-v" E :
A+v)[A-v)E'-2v" E]
L (3.26)
S. - vV'E :
[(1-V)E'-2v" E]
. (1-v)E'
¥ [(1-v)E'-2v* E]

The acting normal stress component on the joint plane o33 is obtained from Eq. 3.25. The

tangential shear stress component 7 is computed as follows:

T=4\0p +05s (3.27)
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Similar to the above mentioned yield surface of the rock matrix, the joint plane failure surface
consists of segments B-C and B-A which are two intersected Mohr-Coulomb failure criteria
surfaces at point B. Each segment is defined f;* = 0 and f>* = 0; respectively. D-C is the tension

cut-off part and is represented by f* = 0.
fL =t-0oytang, +c,

[, =t—0y, tan ¢j2 ¢ (3.28)

['=0y-0]

Similar to the rock matrix, the plastic shear potential for joint plane follows a non-associated flow
rule by using dilation angles (;; and y;>) instead of the friction angles (Eq. 3.28), while the tensile

plastic potential follows an associated flow rule.
g =T—Oyytany,
g, =T— 0y tany (3.29)

t —_—
g =0y,

3.3.3. Plastic corrections for rock matrix and joint plane
Once the stress state exceeds the yield conditions for either the rock matrix or the joint plane (f7°> 0
or f5° > 0 or f* > 0), a series of plastic corrections are performed to return the stress state to the

defined yield surface.

3.3.3.1.  Plastic corrections of rock matrix for yielding in shear and tension
The flow rule for plastic yielding has the following form:

0
Ag? =25 (3.30)
do,

where, i = 1 to 3; A corresponds to the plastic multiplier for both, shear and tension. In the case of

shear failure, the plastic strain increments (4¢;”*) are given as follows:

Agl =4
A&l =0 (3.31)
Ag]” ==A"N,,

Thus, the obtained plastic shear corrections A¢”"C for the principal stresses in Eq. 3.19 are given

by Eq. 3.32.
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Ao =2 (8] - SSNW)

Aoy ==2(Sy -S;N,) (3.32)

AoyC =-2° (S5, —S;;NW)

where, 4° represents the shear plastic multiplier which is calculated as follows:

2 o’ -o{N 5T 2q/N7,
(S =855N, ) = (S5, = SN, N,

(3.33)

The superscript O is used to represent the old corrected value. The obtained strength parameters
within the corrections for the principal stresses and the shear plastic multiplier depend on the yield
surface on which the corrections are executed. For each computational step, the bi-linear shear
surfaces are tested to figure out the active surface based on the given value of principal stresses
(o7 and o3).

Similar, the plastic strain increments for tensile failure 4¢;”" are given as follows:

Ael' =0

Ael' =0 (3.34)
Ael' ==}

The stress corrections for tensile failure are computed as follows:
AGTC ==1'S}

Aoy < =-2'Sh (3.35)

P.C _ toP
Ao, " =-A'S;;

where, A’ represents the tensile plastic multiplier which is calculated as follows:

(3.36)

Thus, the new principal stress state is given by Eq. 3.37, whether it is corrected due to shear or
tensile or simultaneously combining shear and tensile yielding.
o’ +Ac"C

(6" ]=| 070 +A0)€ (3.37)
o, % +Ao) €
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The superscripts (° and V) denote the principal stresses values obtained just before detection of
failure and the new corrected values, respectively.
3.3.3.2.  Plastic corrections on the joint plane for yielding in shear and tension

Checking the failure on the joint plane is executed directly after the correction of the principal
stress state for the matrix returned back to the global system. Then, the updated global stress state
is transformed to the local joint plane space. Excluding the shear component on the plane normal
to the joint plane, the stress components at local coordinates specified in Eq. 3.25 can be rewritten
as follows:

01'1' = Sllgl'l' + S1282'2' + S1383'3'
02'2' = 51281'1' + Slng'Z' + S1383'3' 3 38
0-3'3' = Sl3€l'l' + S1382.2, + S33€3,3, ( . )

T=2G"y

where,

7 =\Em 80 =15 (3.39)

Based on the flow rule for plastic yielding given by Eq. 3.30 and the potential functions specified

in Eq. 3.29, the shear plastic strain increments 4¢;”* are given as follows:

Agll =Agyy =0

Aggy = A’ tany (3.40)

Ay = 1

Thus, the obtained shear plastic corrections for the local stress state are given by Eq. 3.41.
Aoy = Aoy, ==A'S,s tany,

Acyy =—A'Sy, tany (3.41)

At =-2°2G"

While the shear plastic multiplier 4° is obtained as follows:
7% -0y tang, —c,

T2G' Sy, tany ; tan @,

N

(3.42)

The tensile failure follows an associated flow rule. The tensile plastic strain increments Ae; " are

given as follows:
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Aglll =Aepy =0
Aefs =1 (3.43)
Ayt =0

The stress corrections for tensile failure on the joint plane are computed as follows:

Ac', =Aos, =-A'S,

Aoy, ==A'S,, (3.44)

At =0

where, A’ represents the tensile plastic multiplier which is calculated as follows:

oy —0
S33

A=

(3.45)

The new local stress state given by Eq. 3.38 is updated, whether it is corrected due to shear or

tensile or simultaneously combined shear and tensile yielding as follows:
o' =0’ +Ac’

o), =0, +Ao),
(3.46)

N 0] C
o' =0 +Ac
33" 3'3" 33"

™ =%+ ALC

The superscripts (° and V) denote the principal stress values obtained just before detection of failure
and the new corrected values, respectively. After the local stress state has been updated, it will be
transformed back into the global system for checking large-strain up-date of joint orientation. In
large strain, the orientation of the weak plane is adjusted per zone to account for rigid body

rotations and rotations due to deformations (Itasca 2016).

3.3.3.3.  Bi-surface plasticity inside the Transubi model
Similar to the original Subiquitous joint model (Itasca 2016), the yield functions in the Transubi
model are linear for matrix and joint. The activation of the second yield shear surface for either
the rock matrix or the joints or both is done by setting the properties bimatrix and/or bijoint to 1.
For the rock matrix, the application of the plastic corrections are extremely complex due to the
obtained composite yield surface. Thus, new functions, ¢, are introduced in the o;- g3-space in
order to solve the multi-surface plasticity problem. Function /4; represents the diagonal between

f1*=0and f*= 0, while function /4, represents the diagonal between f; * = 0 and /> * = 0. The active
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yield surface is detected according to the diagonal functions, /4; and /42, and the yield functions of

each surface. After the detection of the active surface, the plastic corrections are performed.

A

(/K]

7]

Fig. 3-6 Multi-surface plasticity of rock matrix in principal stress space

As shown in Fig. 3-6, when the composed failure surface is violated, the elastic guess could be
located either in domains of />* or f7* or f*, corresponding to negative or positive domains (4; =0

and /> = 0), respectively. The diagonal functions are defined as follows:
h, =o,—0' +a’(o,-o") (3.47)

where

a’ = I+ N} +N,,

(3.48)
o’ =0'N, —2¢, [N,
The second diagonal function /2 is defined as follows:
h,=(0y~0;)+¢"(0,~07) (3.49)

where, o3’ represents the minimum principal stress at the intersection point of the shear yield

surfaces at point B as shown in Fig. 3-5.a and Eq. 3.22.
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o

(J1+N; =N, )+(J1+N;, - N,,)

[(ch N, N¢2) —(2¢, MN¢1 )}

Ny —N,,

p

(3.50)

0, =

Fig. 3-7 Multi-surface plasticity of joint plane in z- o33 coordinate system

Similar to the rock matrix, the multi-surface plasticity of the joint plane is tackled as shown in Fig.
3-7. However, the composed yield surface is introduced in local coordinates (z- a33' space). Two
diagonal functions, /;/ and h>/, are used for detection of the active yield surface. The diagonal

functions for the joint plane are defined as follows:
hi=t-10-al(0yy,-0") (3.51)

where

P _ _ t
Ty =c; —tang,o,

J

(3.52)
al = [l+tang; —tang,
The second diagonal function 4>/ is defined as:
h, :(T_Tj)_é/f(gss'_aéy) (3.53)
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where, 7/ and o33/ represent the stress values in tangential and normal direction to the joint plane,

respectively, at point B as shown in Fig. 3-5.b.

T; _ (cptang, —c,tang,, )
tang, —tang,,;
ol = (¢, —¢;)
tangy,; —tang,

(3.54)

3.3.4. Hardening/Softening parameters

In the proposed Transubi model, strength parameters for rock matrix and joint plane (i.e. cohesion,
friction angle and dilation angle for bi-linear yield surfaces and tensile strength) could be assigned
as tables. For each strength parameter, the table data consist of pairs of these strength parameters
and the corresponding hardening parameter. Such hardening parameters are computed directly
from the accumulated plastic strains for the rock matrix and the joint. The evaluation of the plastic
strains for the rock matrix is implemented in the principal stress space, while is computed in local
coordinates for the joint. Four independent hardening parameters are assigned (£*, K, k;* and k).

First parameter is &* which specifies the rock matrix plastic shear strain to update the matrix
cohesion ¢, matrix friction angle ¢y and matrix dilation y. These parameters can be assigned for
both shear yield surfaces to update corresponding strength parameters. The incremental value of
this parameter 4%° is computed as the square root of the second invariant of the incremental plastic

shear strain deviator.

1
AKS = E\/(Agl” — APV +(AeP) + (Al —AgP’)  (3.55)
where, e, * 1s defined as the volumetric plastic shear strain increment.
1
Ae,” = E(Aglp C+Ag”) (3.56)

The second parameter is &' which specifies the rock matrix plastic tensile strain to update the matrix
tensile strength ¢’. The tensile-hardening increment for the rock matrix is the plastic volumetric

tensile strain increment, given as follows:

A" = Ael (3.57)
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Similar, the joint plastic shear strain is specified by the third hardening parameter &;°. It updates
the joint strength parameters (cohesion c;, friction angle ¢;r and dilation ;) for both shear yield

surfaces. The incremental value of this parameter 44 is computed as follows:

1
A =\/§<Ae£;)2+(Ay”)2 (3.58)
where
A]/p,s — ‘Agljféf (359)

On the other hand, the fourth hardening parameter &/ which updates the joint tensile strength is

defined as incremental value as follows:
Aki = Agﬁ (3.60)

The use of these hardening/softening parameters is demonstrated in chapter 4.

3.3.5. Flowchart of Transubi model

Similar to the original Ubi model, the calculations in the Transubi model start first in the matrix
followed by the joint plane, see Fig. 3-8. This calculation sequence could be considered as a
limitation especially because failure is checked in rock matrix prior to the joint plane. According
to Bahrani and Hadjigeorgiou (2018), the joints are much weaker than the rock matrix in reality,
therefore failure should always be detected first along these planes. This limitation is widely
overcome by applying the time stepping technique in FLAC called the explicit time scheme. The
used timestep is always smaller than the critical time step; therefore no failure inside the rock
matrix or joint plane will be missed.

Another limitation has been addressed by Bahrani and Hadjigeorgiou (2018) regarding the
assigned elastic parameters. If the given elastic parameters are evaluated from tested rock matrix
(intact rock samples) and not from a jointed samples (rock mass), the computed deformation will
be underestimated. Thus, the elastic moduli in this constitutive model should consider the scale

effect.
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Fig. 3-8 Flowchart of Transubi model
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3.4. Model verifications
The verifications discussed within this chapter assume a lineal elastic-perfect-plastic case. These
applications are presented to compare the simulated strength anisotropy behavior with the
analytical solution of Jaeger and Cook (1979), the original Ubi model and the Caniso model (Itasca
2016). Later (see chapter 4) strain hardening/softening, bi-linear yield surfaces and stiffness
anisotropy are introduced to simulated the mechanical behavior of bedded argillaceous rocks
(Tournemire shale and Opalinus Clay).
3.4.1. Single joint in an isotropic matrix

For verification, the Transubi model is used to predict the compressive strength of a rock sample
with inherent anisotropy planes. The elastic stiffness matrix is isotropic which results in a bulk
modulus K of 100 MPa and a shear modulus G of 70 MPa (Table 3-1). The simulation results are
compared with the analytical solution from Jaeger and Cook (1979), where the uniaxial
compressive strength is calculated by Eq. 3.61. This example is a good verification as the failure
mode in a sample having ubiquitous joints is similar to the failure mode of a sample with single

plane of weakness (Kazakidis and Diederichs 1993).

min{2c,/N, ,2¢,/(1-tang, tan B)sin2  if(1-tan ¢, tan §) >0
o, = ' ' ' 3.61
2c, /NW if(1-tang, tan B) <0 -6

Table 3-1 Properties of the tested rock sample (Itasca 2016)

Elastic stiffness matrix components Rock matrix M-C input Joint M-C input

E=E' v=0' G=G' K G c ér ¢ G i ]

170 MPa 0.22 70MPa 100MPa 70MPa  2KPa 40° 24KPa 1KPa 30° 2 KPa

Transubi model and analytical solution show nearly identical results with error less than 1% for
all values of f as documented in Fig. 3-9. In the case of rock matrix failure, the uniaxial
compressive strength oc is limited to 8.58 KPa. For this constellation both approaches give

identical results.
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Transubi Analytical Solution
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Fig. 3-9 Comparison between analytical and numerical solution using Transubi model.

3.4.2. Single joint plane in a transverse isotropic matrix
Simulations have been conducted to check the applicability of the Transubi model under uniaxial
and triaxial loading conditions. Results are compared with the Caniso model and the analytical

solution from Jaeger.

3.4.2.1. Uniaxial compression test: Bossier shale
Used input data are based on experimental results of Bossier shale presented in Table 3-2
(Ambrose 2014). This shale is a reservoir rock, highly laminated with organic-filled weak planes.
The maximum possible tensile strength is determined by Eq. 3.62. However, realistic tensile

strength values are much lower.

t _ ¢
O = Hang, (3.62)
The value for G' is estimated based on laboratory results as suggested by Lekhnitskii (1981) and
Itasca (2016).
E'E
G'=———— 3.63
EQ+2v)+E' ( )
Table 3-2 Parameters for Bossier shale (Ambrose 2014)
Elastic stiffness matrix components Rock matrix M-C input Joint M-C input
E[GPa]  E'[GPa] v v’ G'[GPa] c[MPa] ¢ o' [MPa] ¢j[MPa] &g o [MPa]
29.65 15.2 0.2 0.22 5.86 26 29° 7.9 14 24° 4.4
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Results for Bossier shale are presented in Fig. 3-10. The Transubi model shows the same behavior
as the modified analytical solution. However, the Caniso model can only detect joint failure and

not yielding in the rock matrix.

Transubi —— CANISO Analytical Real

12

10 |

o, [x10 MPa]

0 15 30 45 60 75 920

f [Degree]

Fig. 3-10 Uniaxial compression tests: Numerical and analytical solutions for Bossier shale

compared with lab test results.

3.4.2.2. Triaxial compression test: Martinsburg slate
Both, the Transubi and the Caniso model are used to simulate triaxial tests (confining pressure
03=3.5 and 10.5 MPa, respectively) on Martinsburg slate (Donath 1964). This rock behaves like a
transverse isotropic rock. E, E’, ¢’ and ¢’ are estimated under triaxial stress conditions for £ = 0°
and 90° using RocLab (Rocscience 2007), assuming GSI=95 and MR=450. Shear modulus G’ is
computed by Eq. 3.63, while v and »" are assumed to be 0.22. M-C parameters for rock matrix and
joints are given by Tien and Kuo (2001) and Ambrose (2014). Table 3-3 shows the data applied in
the numerical simulations and Jaeger’s analytical solution. Results obtained from numerical

simulations and the analytical solution are shown in Fig. 3-11.

Table 3-3 Parameters for Martinsburg slate

Elastic stiffness matrix components Rock matrix M-C input Joint M-C input
E [GPa] E'[GPa] v v’ G' [GPa] ¢ [MPa] ¢r &'[MPa] c¢j[MPa] ¢5 &'j[MPa]
69.7 43.6 0.22 0.22 23 25 45° 8.8 9 21° 4.5
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As Fig. 3-11 shows, the Caniso model behaves elastic considering the rock matrix. Thus, a
maximum driving strain (&x4x) must be assigned. However, the failure in the rock matrix is limited
to the Mohr-Coulomb matrix failure surface and corresponds therefore to the modified analytical
solution of Jaeger. Generally, both numerical models and the analytical solution show the same

behavior in case of joint yielding.

Transubi (63=3.5 Mpa) CANISO (03=3.5 Mpa) Analy. (63=3.5 Mpa)
B 63=3.5Mpa Transubi (63=10.5 Mpa) = = CANISO (63=10.5 Mpa)
A Analy. (63=10.5 Mpa) B ¢3=10.5 Mpa
P I e e T e e i
1 k H ] | [
| | I | | |
| I I | I |
| | | | | |
| I I | I |
20 poomoooes SRR Hi i i Rk Foees i-
A ! ! ! | lh—h—h—h—A——A
I S | | ¥ " :
S S R Gmmmeees rommemme I v debiadebinks ;
2 \ | | | | |
s R | | F u :
f | 1 1 | 1 |
S0 ooy - ERRREEEEE toe A P :
~; i | / i l
» 1 * A 1 |
| "'-‘_ 1 i | 1 |
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Fig. 3-11 Numerical vs. analytical results for triaxial testing of Martinsburg slate (53=3.5 and 10.5 MPa)

3.5. Conclusion

The stiffness anisotropy of transverse isotropic rock matrix has been integrated into the subiquitous
joint model. The mathematical formulations for the plastic corrections for the rock matrix and the
joint plane were introduced for both, shear and tension yielding. Numerical simulations on the
basis of uniaxial compression tests were carried out to verify this model and results were compared
to the modified analytical solution of Jaeger. Furthermore, the Transubi model and the Caniso
model were tested under uniaxial and triaxial compression using lab data of two different rocks.
Results indicate that the Transubi model is able to reproduce the elastic as well as the plastic
behavior for both, joint and rock matrix. The stiffness anisotropy has a major influence in the
elastic range. Finally, the new proposed model is an interesting alternative to describe anisotropic

rock behavior and is advantageous in case of potential matrix failure.
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4. Numerical simulation of laboratory investigations of bedded
argillaceous rocks (Tournemire shale and Opalinus Clay)

4.1. Introduction
This chapter presents a detailed investigation of the mechanical anisotropy of bedded argillaceous
rocks (Tournemire shale and Opalinus clay). Due to its anisotropic nature, these types of rocks are
considered as a good case study to apply the proposed Transubi model, also this rock shows strain
hardening in the pre-peak region and strain softening in the post-peak region. In order to verify the
proposed model, an experimental dataset of Tournemire shale (Niandou et al. 1997) for different
confining pressure applied to three different orientations is used. Later, the laboratory
investigations conducted on Opalinus clay are modelled using the proposed constitutive model.
Unlike the Tournemire shale, the Opalinus clay behaves bilinear in both, the rock matrix and the
bedding planes. Triaxial lab testing and direct shear testing performed in direction parallel to the
bedding planes, are numerically simulated and the results are compared against experimental

datasets (Popp and Salzer 2007).
4.2. Tournemire shale

4.2.1. Strength and stiffness anisotropy of Tournemire shale

Based on the lab results obtained by Niandou (1994) and Niandou et al. (1997) on a shale taken
from a French site in the Massif Central, the mechanical behavior shows significant anisotropy in
strength and stiffness. Tournemire shale is a transverse isotropic material because of the presence
of the bedding planes. Fig. 4-1 shows the variation of the strength for different confining pressures
versus the bedding plane dip angle (Niandou et al. 1997).

Besides the strength anisotropy, the elastic modulus of the Tournemire shale varies with the
bedding plane orientation which also indicates that it behaves as a transverse isotropic rock. The
corresponding elastic stiffness matrix is defined by 5 independent elastic parameters (£, E', v, v’
and G'). As previously mentioned, E and v are working in the direction tangential to the bedding
plane, while £’, " and G' are working in the direction normal to the bedding plane. The lab testing
on Tournemire shale revealed that the elastic parameters are highly dependent on the applied
confining pressure (Fig. 4-2). The remarkable increase in the elastic parameters - especially the
elastic modulus in the direction normal to the bedding planes E’ - with increasing confining

pressure can be explained by the progressive closure of these planes (Chen et al. 2012).
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Fig. 4-1 Variation of the deviatoric stress [o; - 03] values vs. bedding plane dip

angle [a] after (Niandou et al. 1997)
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Fig. 4-2 Variation of elastic parameters (£, £’ and G') of Tournemire shale under
different confining pressures, after (Niandou 1994; Niandou et al. 1997 and Chen et al.
2012).
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4.2.2. Parameters identification
In order to identify the parameters for numerical simulation, the mechanical behavior of
Tournemire shale under loading has to be identified. Experimental results show elasto-plastic
behavior, noticeable hardening in the pre-yielding phase and softening in the post-yielding phase.
As indicated in Fig. 4-3, Abdi et al. (2015) specified that the stress-strain curve shows non-
elasticity already in earlier stages due to the closure of the existing fissures and bedding planes,
and they suggested a mobilization of the strength parameters (cohesion and friction angle) as
shown in Fig. 4-3b. The region between points A to B describes the initial inelastic phase due to

closure of existing fissures which is not content of this research.

(a)
Pre Peak g— , — Post Peak
i? Peak strength D
.2 C
B
2
[}
=
W
=
E
B
A
Axial strain
(b) Pre Peak "_D' — Post Peak
- )
g E
2o C D ..
=) Friction
$ =
= =
8
:E
E
= Cohesion
A
B Axial strain

Fig. 4-3 Schematics of (a) stress—strain curve of Tournemire argillite, and (b) the mobilization
of the strength parameters, after (Abdi et al. 2015)
Similar to the framework of hardening/softening introduced by Vermeer and De Borst (1984), a
rapid increasing rate of the mobilized cohesion is applied in the pre- peak stage especially between
points B and C to simulate the hardening in this stage, while in the post-peak region the cohesion
decreases to its residual value or almost vanishes as the tested sample is heavily cracked (Abdi et

al. (2015)). On the other side, the applied friction angle in the post-peak region becomes the main
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component of the post-peak strength of the specimen. Generally, the applied mobilization of the
strength parameters according to Abdi et al. (2015): (i) showed a complicated behavior, (ii) did
not clarify the basic function to perform such a mobilization, and (iii) has taken the entire rock
sample into consideration without differentiation between the mobilization of the rock matrix and
the planes of weakness.

In order to apply the Transubi model, a fixed dataset of the independent elastic parameters is
assumed for the rock samples, as the proposed constitutive model does not consider the stress-
dependent non-linear elasticity. The assumed elastic parameters are given in Table 4-1. The bulk

density of the shales is set to 2450 kg/m® (Niandou 1994).

Table 4-1 Elastic parameters for Tournemire shale

E [GPa] E'[GPa] v[-] v[] G'[GPa]
18.0 7.0 0.22 0.12 25

The mechanical observations indicated anisotropy in strength and deformation. The post-peak
strain softening behavior is sharp (brittle) at lower confinement and more gentle for higher values
of confining pressure. Although, as indicated in Fig. 4-1, there are small differences between the
measured peak strength at direction parallel to joint planes (o = 0°) and perpendicular to the joint
planes (a = 90°) under different confinement, fixed strength parameters are applied for the rock
matrix of the Tournemire shale. This assumption has been investigated also by Abdi et al. (2015)
by evaluating the degree of the strength anisotropy (k;) which is found nearly equal to one.
k=91 =%)u0. (5.1)

(G, = 03) 400
Based on the remarks of Niandou (1994) and Abdi et al. (2015), the proposed peak and residual
strength parameters for rock matrix and bedding planes are given in Table 4-2.
The M-C peak and residual strength envelops with tension cut-off for rock matrix and bedding
planes are shown in Fig. 4-4 and Fig. 4-5, respectively. Constant dilation angles for rock matrix
and bedding planes are assumed, although it has been found that the volumetric strains and
therefore the dilation angle are influenced by the bedding plane orientation (o) and the applied

confining pressure (o3).
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Table 4-2 Strength parameters of Tournemire shale.

Rock matrix parameters
c¢1 [MPa] o1 [°] o' [MPa] wi[°] ¢ [MPa] o™ [°]
11 27 6 2 8.5 21
Inherent joint plane parameters
¢j1 [MPa] 051 [°] o'j[MPa] wi[°] ¢ [MPa] | @51 [°]
7.5 20 4.5 0 6.5 18

Peak Residual ----Tension Cut-off

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

--q‘-
e

6; [MPa]

Fig. 4-4 M-C peak and residual failure envelops for Tounemire shale rock matrix

Peak Residual =---Tension Cut-off

o [MPa]

Fig. 4-5 M-C peak and residual failure envelops for Tounemire shale bedding planes
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4.2.3. Mobilization of the strength parameters

For the simulation of the Tournemire shale, nonlinear behavior in the pre- and the post-peak
regions are assumed. The strength parameters (cohesion, friction angle and tensile strength) for the
rock matrix and the bedding planes are mobilized from the first step of the simulation. As
previously explained, the Transubi model allows that these parameters are assigned by tables as a
function of the accumulated plastic shear and tensile strains. Cohesion, friction angle and tensile
strength are mobilized for rock matrix and bedding planes, while the dilation angles are constant
although mobilization of the dilation angle is also recommended (Zhao and Cai 2010; X. Zhao,
Cai and Cai 2010; Walton et al. 2015).

The inserted tables describing the variation of the strength parameters are divided into two parts:
first part describes the pre-yielding hardening and the second part is for the softening. Regarding
the pre-peak region, the following analytical approach is applied for cohesion and friction angle

(Konietzky, Bliimling and te Kamp 2003).

' s .8
Cactual _Cin +2 (8!7'8Psmax) cpeak (52)

E,FE)
Ao = 0] G gt (53)
P p,max
¢ = arctan Y _AZ”;’”’”’ (5.4)
actual
where:
cmal = actual applied cohesion [MPa],
c" = initial cohesion, mostly very small and nearly zero [MPa],
¢’ = maximum value of cohesion at peak strength [MPa],
@r™al = actual applied friction angle [°],

g% = maximum value of friction angle at peak strength [°],
& = actual value of accumulated plastic shear strain [-],
&pmax = maximum plastic shear strain at which the maximum values of cohesion and friction

angle are achieved [-].
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On the other hand, the strain softening behavior starts directly after the strain hardening and the
first value of the plastic shear strain &°, is set equal to &°),ma from the hardening stage. Inspired by
the analytical functions from Vermeer & De Borst (1984), cohesion and friction angle are

gradually reduced as follows:

s 2
T % o _(i_ } (O e 55)
s 2
actual __ gres &, peak res
o =@ TEXp _(g_fj U (5.6)
where
" =residual value of cohesion [MPa],
o™ =residual value of the friction angle [°],
& = accumulated plastic shear strain at which cacua reaches crs , this parameter controls the
degree of softening [-],
¢ = accumulated plastic shear strain at which @yacua reaches @rres [-].

Applying these functions to adapt the hardening-softening behavior of the Tournemire shale is not
as simple as it seems, as the plastic strain is depending on the applied confining pressure and the
bedding plane orientation as well (Abdi et al. 2015). The other constraint is that utilizing these
functions as failure criterion for the rock matrix does not mean that it works proper also for failure
at the bedding planes. The best fit result of Eq. 5-2 to 5-6 for rock matrix and bedding planes are
given in Fig. 4-6, Fig. 4-7 and Fig. 4-8 for applied confining pressures of 5, 30 and 50 MPa.
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Fig. 4-6 Applied mobilization of strength parameters (cohesion and firction angle) at o3=5 MPa

for (a) rock matrix, loading parallel to joint planes, (b) joint planes, and (c) rock matrix, loading

normal to joint planes
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normal to joint planes
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The mobilization of the strength parameters is orientation and pressure dependent. For loading in
direction normal to the bedding planes, the region of the hardening in the pre-peak stage for o = 0°
is wider than the same for & = 90°. For the same orientation both, hardening and softening behavior

are more pronounced with increasing applied confining pressure o3.

4.2.4. Numerical modelling of triaxial tests

A series of triaxial tests on Tournemire shale are documented by Niandou (1994) and Niandou et
al. (1997). These tests were performed with three different orientations (parallel to bedding planes
a = 90° normal to bedding planes o = 0° and inclined to bedding planes with angle a = 45°). Also,
different confining pressures were applied (o3 =5, 30, 40 and 50 MPa). Strains in orthogonal
directions were measured which allowed the determination of volumetric strains.

Numerical modelling of these tests are carried out using the previously identified strength
parameters and the mobilizing functions. Fig. 4-9, Fig. 4-10 and Fig. 4-11 show a comparison
between numerical and lab results for loading parallel (o =90°), inclined (a=45°) and
perpendicular to the bedding planes (a = 0°). This comparison documents, that the Transubi model
is able to simulate the strength and the stiffness anisotropy of the Tournemire shale. The volumetric
compaction could not be well reproduced because the constitutive model does not consider this
effect in detail. The significant difference in volumetric strain behavior for samples loaded parallel
and perpendicular to the bedding has been extensively investigated by Abdi et al. (2015). As the
volumetric strain is an indicator of crack propagation, the failure mode of samples loaded
perpendicular to the bedding (o = 0°) shows strong fracturing and thus higher values of volumetric
strain.

Fig. 4-10.b and Fig. 4-11.b document that greater values of dilation angle for rock matrix and
bedding (= 15° and w;=5°) at higher confining stresses could approximately duplicate the

volumetric response of Tournemire shale.
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Analyzing the deviatoric stress versus axial strain for a=0° and 90° reveals that strength
anisotropy is not well reproduced by the proposed Transubi model. It should be noticed that the
numerical prediction for samples at lower applied pressure (e.g. 63=5 MPa) underestimates the
strength for a = 0° and 90°. Therefore, a bilinear definition of the yield surface for the rock matrix

of the Tournemire shale is recommended for both, lower and higher applied stresses.

Finally, it can be stated that observed failure of samples with inclined bedding in the lab is in close
agreement to the simulations (Fig. 4-10a). However, the initial nonlinear phases for 3= 5 and 30
MPa was neglected by the simulations. The observed failure modes are identical with those
investigated by Niandou et al. (1997): shear failure in the rock matrix for samples with a = 0° and

90° and sliding along the bedding planes for sample with a = 45°.

4.3. Opalinus clay

Similar to the Tournemire shale, Opalinus clay from the underground rock laboratory (URL)
located in Mont-Terri (Switzerland) exhibits significant anisotropy in strength and stiffness as a
transverse isotropic rock. The anisotropy can be explained by preferred orientation of the clay
minerals which form 40 — 70 wt.% of its mineralogical composition (Loon et al. 2008). Salager,
Nuth and Laloui (2010) stated that a constitutive model of the Opalinus clay should consider (i)
elastic modulus on the inherent planes of anisotropy in a proper way, and (ii) pre- yield hardening
or post-yield softening as observed by Olalla, Martin and Saez (1999), Corkum (2006) and Popp
and Salzer (2007) taken into account stress induced anisotropy and loading angle.

Updated mechanical properties of the Opalinus clay could be found in (Bock 2009; Lisjak,
Grasselli and Vietor 2014; Bossart et al. 2017). Unlike the stress-strain behavior of the Opalinus
clay reported by many scholars (e.g. Popp and Salzer 2007; Olalla, Martin and Saez 1999; Corkum
and Martin 2004), Salager, Nuth and Laloui (2010) documented post- yielding hardening which is
not considered in this work. The uniaxial compressive strength UCS 1 in loading direction normal
to the bedding planes (a = 0°) is higher than UCS/, parallel to the bedding planes (a = 90°) (Bock
2009; Lisjak, Grasselli and Vietor 2014). In contrast, Popp and Salzer (2007) investigated the
Opalinus clay strength under different applied confining pressures showing that UCS, < UCS..
Fig. 4-12 shows proposed strength parameters for rock matrix provided by Bock (2009) and Thony
(2014) and for the bedding planes by Popp and Salzer (2007). The rock matrix itself does not show

any anisotropy.
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Fig. 4-12 Proposed strength envelops for Opalinus clay accoding to Bock (2009), Thony
(2014) and Popp and Salzer (2007)

Investigations of the sensitivity of the elastic modulus of Opalinus clay in respect to the applied
confining pressure are documented for instance by Corkum (2006) and Naumann et al. (2007). A
slight dependency of the elastic modulus on the applied confining pressure (o3) has been found.
Since the value of the elastic modulus is relatively constant between g3 = 2 — 10 MPa, which
represents the in-situ stress level at Mont Terri, Bock (2009) suggested to use constant elastic
modulus. Recently, new drained triaxial lab testing confirmed a relation between the applied
confining stress and the measured Young’s moduli for P- and S-samples (Favero et al. 2018).
Generally, the elastic modulus measured parallel to bedding planes (£, P-samples) is higher than
perpendicular to the bedding plans (£, S-samples). As shown in Fig. 4-13, the undrained elastic
anisotropy ratio k = E// E., is commonly between 3 and 4 (Thony 2014; Lisjak et al. 2014; Bock
2009). k is decreasing at higher confinement, & is about 1.5 for 3> 10 MPa (Favero et al. 2018).
Two different Young’s moduli have been identified for the Opalinus clay: the ordinary Young’s
modulus (£) deduced from cyclic loading tests (loading-unloading-reloading) and the secant or

tangent Young’s modulus (E«so or Ey.2¢;) determined at 50% UCS or after 0.2% of the axial strain
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(Bock 2009; Corkum 2006). Usually, E is significantly greater than E.so. Various values of

Young’s modulus for different orientations (P- and S- samples) are shown in Fig. 4-13.

B/ —e— E/f (t-50) EL --¢--EL(t-50) E//-Drained E.l-Drained
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Fig. 4-13 Range of measured Young’s moduli for P- and S-samples of Opalinus clay; drained
values under saturated conditions and confining stress [o3=2 — 10 MPa], after Bock 2009 and

Favero et al. 2018.

4.3.1. Parameters identification and bi-linear behavior
Based on the published experimental lab testing such as uniaxial compressive tests, triaxial
compressive tests, tensile tests and direct shear tests (Olalla, Martin and Saez 1999; Rummel and
Weber 2007; Popp and Salzer 2007; Konietzky and te Kamp 2004; Naumann, Hunsche and
Schulze 2007; Amann et al. 2011; Amann et al. 2017), the mechanical behavior of Opalinus clay
cannot be approximated by a simple linear Mohr-Coulomb failure criterion for rock matrix and
bedding planes as shown in Fig. 4-12. Bock (2009) stated that the failure mode at lower applied
confinement (<5 MPa) is a combination of axial fractures with local shear fractures and/or
spalling, while shear failure is observed at higher confining pressures. Thus, a non-linear M-C
envelop should be considered for the mechanical behavior of the Opalinus clay. The strength
parameters for a bi-linear constitutive law are given in Table 4-3, Fig. 4-14 and Fig. 4-15

(Konietzky, Bliimling and te Kamp 2003; Bock 2009; Popp and Salzer 2007; Thony 2014).
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Table 4-3 Bi-linear peak and residual M-C strength parameters for rock matrix and bedding planes for

Opalinus clay (Konietzky, Bliimling and te Kamp 2003; Popp and Salzer 2007; Thony 2014; Bock 2009)

Rock matrix Joint plane
Peak values a Peak values a'
First surface Second surface [MPa] First surface Second surface [MPa]
(<3 MPa) (>3 MPa) (<1MPa) (<1MPa)
c1 o5 c2 op ¢j1 o1 G2 052
3.5 35 6.5 20 0.6 29 0.96 21
Residual values - Residual values 04
First surface Second surface . First surface Second surface .
clres ¢ﬂres czres (pﬁres cﬂres (oﬁlres cjzres wﬁzres
1.5 35 3.2 20 0.3 26 0.6 18
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Fig. 4-14 Bi-linear M-C strength envelopes for rock matrix of
Opalinus clay
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Fig. 4-15 Bi-linear M-C strength parameters for bedding planes of
Oplainus clay

The work by Popp and Salzer (2007) focused on the bedding planes dilation angle assuming a
relatively high value of 25° for low confinement (< 1 MPa) which decreases exponentially to
values close to 0° for higher confining pressure (> 2 MPa). They analyzed the dilatancy for both,
the rock matrix and the bedding planes via the comparison between numerical simulation results,

triaxial lab testing and direct shear tests.

4.3.3. Mobilization of strength parameters
Similar to the mobilization procedure described for Tournemire shale in chapter 4.2.3, the
analytical functions (Eq. 5.2 — 5.6) for pre-yield hardening and post-yield softening are applied
also for the Opalinus clay. The mobilization is considered for cohesion and friction angle while
tensile strength and dilation angle are constant. It is assumed that elastic parameters are not
sensitive to the applied confining pressure, thus the plastic strain depends completely on the
bedding plane orientation. Fig. 4-16 and Fig. 4-17 present the mobilization of the strength

parameters for both rock matrix and bedding planes, respectively.
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The plotted strength mobilization functions are used within the following section to simulate the

triaxial and the direct shear tests conducted on Opalinus clay by Popp and Salzer (2007).

4.3.4. Numerical simulation of triaxial tests
The numerical simulation of triaxial compression tests conducted on Opalinus clay by Popp and
Salzer (2007) is performed using the proposed Transubi model and applying the strength
parameters given in Table 4-3, Fig. 4-14 and Fig. 4-15. The simulations utilize the mobilization of
these strength parameters as discussed previously. The elastic parameters are given in

Table 4-4 (Bock 2009; Lisjak, Grasselli and Vietor 2014).

Table 4-4 Elastic parameters for Opalinus clay

E [GPa] E'[GPa] v [ v [ G'[GPa]
10.5 3.0 0.35 0.25 2.0

Constant values are assumed for the dilation angles: y; = 7° and y> = 5° for rock matrix. Literature
does not provide values for the dilation angle of the rock matrix, but the volumetric dilatancy was
investigated via triaxial lab tests with different orientation of bedding planes to loading directions
(Bock 2001; Popp and Salzer 2007). Without a detailed explanation Thony (2014) proposed
relatively high values for the dilation angle for rock matrix and bedding planes: 32° and 19°,
respectively. On the other side, the dilation angle was considered as 2/3 of the friction angle which
varies with the loading angle (a) (i.e. wmin = 10° (for orientation a = 40°) and wme = 15° (for
orientation a = 90°) ) (Nguyen and Le 2015). As the proposed constitutive model considers
hardening and softening in the pre- and post-yielding phase, the numerical results are highly
sensitive to any variation of the dilation angles.

Fig. 4-18 presents that simulation results show a good agreement with lab data obtained from
triaxial compression tests. As previously mentioned, the Transubi model considers no strength
anisotropy for the rock matrix, thus the computed strength of the rock matrix for the same
confining pressure (o3) is independent on the sample orientation. However, the model is able to
simulate the stiffness anisotropy as well as pre-yielding hardening and post-yielding softening,
especially for S-samples. On the other hand, the plastic strain of Opalinus clay shows dependency

on the bedding plane orientation. As shown in Fig. 4-18 for P-samples, the simulation displays
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excessive hardening in the pre-yielding region. Generally, the Opalinus clay shows pronounced
strain softening for P-samples especially at higher confinement. On the contrary, a brittle plastic
behavior is adapted for S-samples as explained by Popp and Salzer (2007). The dilatancy of P-

and S- samples during the triaxial tests is shown in Fig. 4-19.
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Fig. 4-18 Numerical and lab results of triaxial tests (P- and S-samples)

The volumetric strain shows significant variations in behavior and magnitude for different loading
directions. Hatzor and Heyman (1997) confirmed that applied confining pressure and bedding
plane orientation play a significant role in dilation performance. Loading in direction perpendicular
to the bedding planes (i.e. S-sample, a = 0°) produces higher dilation than loading parallel to
bedding (i.e. P-sample, a = 90°) (Hatzor and Heyman 1997; Bonnelye et al. 2017). A numerical
example has been introduced by Zhao and Cai (2010) in which an elastic-perfect-plastic M-C rock
sample is subjected to (i) fixed confining pressure and different dilation angles (Fig. 4-20a), and

(11) different confining pressures with constant dilation angle (Fig. 4-20b).
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Fig. 4-19 Numerical and lab results of the observed dilatancy of P- and S-sample during triaxial lab tests
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Fig. 4-20 Volumetric vs. axial strain for rock samples with (a) different constant
dilation angles (3 =1 MPa), and (b) subjected to different confining stresses

(w=20°) (simulations by Zhao and Cai 2010).
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Based on the lab datasets given by Popp and Salzer (2007), the volumetric strain behavior with
loading direction perpendicular to the bedding planes (a = 0°) fits with the curves given in Fig.
4-20. Generally, rock samples (a = 0°) for different confinement indicate a fixed pre-yielding slope
which confirms constant elastic properties.

Unlike the behavior captured at rock samples with loading normal to bedding (a=0°), a
remarkable contrast is found in the volumetric strain for loading direction parallel to bedding (P-
sample, o =90°). Applying constant dilation angles (e.g. w;=7° and w>= 5°) does not lead to
proper volumetric strain results. Hatzor and Heyman (1997) stated that increasing confining
pressure could cause either decreasing dilation or increasing elastic modulus (as observed by
Corkum (2006) and Bock (2009)) or decreasing Poisson’s ratio (Favero et al. 2018). Because
constant elastic properties are used in the proposed model, this behavior cannot be duplicated.
According to Bonnelye et al. (2017) bedding plane dip angle is not the only variable causing the

dilation variations but also the dip direction as documented in Fig. 4-21.

-01 * 5MPa
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Fig. 4-21 Radial vs. axial strain as a function of the locations of gauges R1 (dashed lines) and

R2 (solid lines) for loading parallel to bedding planes (a = 90°) and confining pressures of 5 and
80 MPa (Bonnelye et al. 2017).

By applying a dilation angle nearly similar to the angle proposed by Nguyen and Le (2015) for P-
sample (i.e. w2 = 12°), the numerical simulation shows closer agreement with lab results for

confinement a3 = 10 MPa (Fig. 4-22). However, such excessive decrease in volume for clay rocks
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in general and Opalinus clay in particular is usually not observed (Amann et al. 2011; Wild et al.
2015; Favero et al. 2018)). Also, Nguyen and Le (2015) stated that P-sample dilation is
overestimated. As shown in Fig. 4-22, the computed maximum volumetric strain using y» = 5°
equals -0.0022 which closely fits the measurements provided by Bock (2001) with -0.0021. The
difference in values given by Bock (2001) and Popp and Salzer (2007) could reflect the influence
of bedding plane dip direction. Dilatancy starts at peak stress and continues up to failure. This

finding is consistent for S-samples (Popp and Salzer 2007; Naumann et al. 2007; Nguyen and Le

2015). However, for P-sample, it is far from experimental observations (Fig. 4-19).
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Fig. 4-22 Numerical and lab results of volumeritic strain of P-sample (g3 = 10 MPa)

applying different dilation angles

4.3.5. Numerical simulation of direct shear tests

This part documents numerical simulations of direct shear tests conducted on Opalinus clay in the
lab by Popp and Salzer (2007). Samples are horizontally bedded blocks with dimension w = 200
mm and h = 100 mm (see Fig. 4-23) subjected to different normal stresses (o, = 0.5, 1, 3 and 4
MPa). The entire test procedure is explained in details by Popp and Salzer (2007) showing also

the influence of the displacement rates.
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As shown in Fig. 4-23, the numerical simulation is based on a 2-dimensional model with same size
of the sample (0.2 m x 0.1 m) discretized into 40 x 20 zones in x- and y- direction, respectively.
This model is adjusted from the shear test example found as example 3.5 in FLAC manual (Itasca
2016). A constant vertical stress (g,y) is applied while two different horizontal stresses (ox and oz-)
are initiated and their values are similar to the applied vertical stress. Afterward, a fixed horizontal
displacement is applied on the upper boundary in the positive x-direction. Different 8 points
located on the upper boundary of the sample are assigned as history points to record the
displacements in both x- and y-directions by which the dilation and the shear displacements could

be plotted.

L}_# ¢ # L ¢—}yz;-displayz;emtant

Bedding planes orientation y

A U U NN "X

Fixed in x- and y- direction

Fig. 4-23 Sketch of the numerical direct shear test

Elastic and strength properties of the rock matrix and the bedding planes of the Opalinus clay are
identified previously, however the dilation angle of the bedding planes is not yet assigned.
According to Popp and Salzer (2007), the value of the dilation angle depends on the applied normal
stress, for o, < 1 MPa: y; > 10° On the other side, the dilation angle exponentially decreases for

on =21 MPa and reaches almost zero (y; =0°) at o, = 5 MPa. Fig. 4-24 and Fig. 4-25 show a

comparisons between lab and numerical simulation results.
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The applied dilation angles for bedding planes are defined according to the observation given by
Popp and Salzer (2007) in which the values are measured using the dilatancy curves. As already
explained, a bi-linear M-C failure criterion is used to describe the behaviors of the rock matrix and
the bedding planes. The intersection between these two shear surfaces is assigned at g3 = 1 MPa

where the dilation angle decreases significantly as well, see Fig. 4-26.
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Fig. 4-26 Normalized applied joint dilation angle vs. the observed lab values.

Compared with lab data, the Transubi model using the bi-linear yield surfaces is able to simulate
the direct shear test conducted on horizontally bedded Opalinus clay samples. Although this
simulation - in respect to the bedding planes - shows significant difference in behavior under low
normal stress (< 1 MPa), in practice considering in-situ stress states between 2 to 10 MPa, the

applied yield surface is linear and follows the second yield surface (o3 >1 MPa).

4.4. Conclusions
This chapter introduced numerical simulations of lab tests conducted on inherent anisotropic rocks:
Tournemire shale and Opalinus clay. As illustrated, both rocks behave as transverse isotropic
materials which possess anisotropy in strength and stiffness. For Tournemire shale, the triaxial
compression tests done by Niandou (1994) were simulated using the Transubi model which is able

to capture the pre-yield hardening and the post-yield softening. The mobilization of the strength
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parameters for the Tournemire shale show relation to plastic strain, deformation modulus,
volumetric strain, applied confining pressure and strength in respect to loading direction.

On the other hand, Transubi model utilizes bilinear yield surfaces for both, the rock matrix and the
bedding planes. Similar to the Tournemire shale, the Opalinus clay behaves non-linear in the pre-
and post-yield regions, thus the mobilization of the strength parameters starts from the first stages
of loading. Unlike the Tournemire shale, there is not dependency of the plastic strain on the
confining pressure for Opalinus clay. Triaxial and direct shear tests carried out by Popp and Salzer
(2007) have been numerically simulated and results show good agreement with the lab datasets.
Dilation angles for rock matrix and bedding planes show high variability in respect to loading
direction and applied confining pressure.

To sum up, the Transubi constitutive model is able to model the stiffness and strength anisotropy
for bedded argillaceous rocks and predicts in good agreement with lab tests the stress — strain
behavior. However, it does not include stress dependent elastic modulus or rock matrix strength
anisotropy. Also, the simulation results show significant influence of the assigned dilation angle

which should be carefully assigned.
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5. Loading and unloading of transverse isotropic rock block with
circular hole: lab test and numerical simulation

5.1. Introduction
Transverse isotropic elastic constants have a significant influence on the plastic zone around
excavated openings (Tonon 2000). To investigate this phenomenon a special laboratory test has
been designed using a transverse isotropic slate rock block containing a circular opening. A one-
sided partial faced cyclic loading is applied on the sample while the opening perimeter was
continuously observed using a special optical observation method. Later, this test was simulated
using different constitutive models: anisotropic elastic model, ubiquitous joint model and Transubi

model.

5.2. Evaluation of previous numerical studies

The improvement of computational methods has given deeper insight into the behavior of openings
in transverse isotropic rocks, e.g. by introduction of stress-dependent deformation modulus
(Corkum 2006), the evolution of the EDZ based on continuum modelling (Wang et al. 2009) or
finite discrete element modelling (Lisjak et al. 2014). A review is summarized in Table 5-1
focusing on the stress-strain behavior around openings in transverse isotropic rock masses.

Wang and Huang (2014) analyzed the deformations around a tunnel based on the enhanced strain
hardening/softening ubiquitous joint model considering up to three joint sets. The assigned
parameters of the joint planes are fixed to all included joint sets. Later, Agharazi (2013) and Chang
(2017) developed an equivalent continuum multi-joint ubiquitous joint model based on elastic-
perfect-plastic theory. Based on the FEM code RFPA, Tang et al. (1998), Wang et al. (2009); Jia
and Tang (2008) and Wang et al. (2012) modelled not only the influence of stiffness and strength
anisotropy, but also the effect of rock heterogeneity on the growth of the EDZ around unlined
openings of different geometries. Wang et al. (2012) studied in detail the failure modes around a
circular hole driven into an interlayered rock based on experimental investigations by Tien et al.
(2006). Using the FEM code Phase2 (Rocscience, 2011), a tunnel excavation in a stratified rock
mass was investigated by Fortsakis et al. (2012). In contrast to the elastic study by Lisjak et al.
(2015) based on the same software, Fortsakis et al. (2012) used a generalized Hoek—Brown
constitutive law based on the GSI-Index where dominant discontinuities were explicitly modelled

by the nonlinear Barton—Bandis failure criterion. Similar, a tunnel in dipping layered formation
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was investigated by Li et al. (2013) using the FDM code FLAC3D (Itasca, 2016). Here, for the
rock matrix the isotropic Mohr—Coulomb law was used while the dipping layering was modelled
explicitly by interface elements. Another continuum based approach with strength and stiffness
anisotropy is available in the FEM code PLAXIS (Plaxis, 2016). Simanjuntak et al. (2014) used
this 2-dimensional elasto-plastic model in which the rock matrix behaves elastic while the joint
planes react elasto-plastic. Full elasto-plastic numerical simulations based on continuum based
constitutive models are presented by Frangois et al. (2014) in which a cross-anisotropic strain
hardening/softening constitutive model is applied to simulate the deformations and plastic zone
around unlined openings. All previous mentioned numerical studies considered symmetrical
loading conditions. Liu et al. (2017) conducted centrifugal model tests and corresponding
numerical simulations for a shallow unlined opening excavated in an interlayered inclined rock
mass in which the applied loading on the opening is unsymmetrical. A comparative study provided
by Riahi and Curran (2009) considers the response of a circular hole excavated in a layered rock
with layers oriented in an out-of-plane direction by using a Cosserat equivalent continuum elasto-
plastic model. The results were compared with those obtained by the DEM code 3DEC. Regarding
the discontinuum based models, a recent numerical study about the failure mechanisms of
horizontal boreholes in transversely isotropic rock mass utilizing the particle flow code PFC?P by
Jia et al. (2017) has to be mentioned. The failure modes around a horizontal borehole considering
different bedding inclinations have been investigated and compared with numerical analysis by
Wang et al. (2012). The hybrid finite discrete element method (FDEM) combines continuum
mechanics principles with DEM algorithms to simulate the progressive failure and the spontaneous
nucleation and propagation of cracks in an explicit manner within the rock mass (Lisjak and

Grasselli 2014; Lisjak et al. 2014; Lisjak et al. 2015).
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Table 5-1 Summary of selected recent numerical studies of a tunnel in layered rock mass

Reference No. of joint/interface sets Strength anisotropy Stiffness anisotropy Type of used software Captured failure modes remarks
P Sliding on joints, failure through
(Azadeh Riahi and One joint set, spacing considered . X ¢ J ¢ 3D Cosserat-based constitutive
Yes Yes, as equivalent continuum FEM rock matrix and flexural layer
Curran 2009) ) model
bending
(Wang and Hll‘tlllg o L . X Sliding on joints, failure through Joint properties are fixed for
Three joint sets, spacing included Yes Yes, as equivalent continuum FLAC . .
2014) rock matrix the different sets
One joint set, interlayered rock Yes, as transverse isotropic Sliding on joints, failure through Interlayered elastic properties
(Wang et al. 2012) ! y Yes _ _ REPA & onJot rous o
type stiffness matrix rock matrix and cracking are explicitly defined
. One inclined joint set, interlayered Sidewall failure with increasin
(Liu et al. 2017) ! Y Yes Yes ANSYS . ¢ Centrifugal test
rock type acceleration
. Yes, but rock matrix behaves as Sliding on joints and deflections of
(Fortsakis et al. 2012) One dominant discontinuity set . . X Yes Phase2D . Beam theory
“pseudo-isotropic” material internal rock mass
Sliding on joints, failure through . . .
. . . ; . Different applied horizontal
(Jla et al. 2017) One inherent joint set Yes Yes PFC2D rock matrix; collapsed zone is
stresses
simulated
(Simanjuntak et al.
One inherent joint set Yes Yes Plaxis Sliding on joints Rock matrix is elastic
2014)
. Yes, as transverse isotropic Sliding on joints, failure through
(Frangois et al. 2014) One inherent joint set Yes - ) LAGAMINE FEM . ) HM-coupling
stiffness matrix rock matrix and shear banding
Shearing through intact . .
P . . R . o EDZ formation process in
(Lisjak et al. 2014) One inherent joint set Yes Yes Y-Geo FEM/DEM matrix, bedding plane delamination .
horizontal bedded rock mass
and axial splitting
T Underestimation of
(A Lisjak et al. 2015) One inherent joint set No Yes Phase2D Elastic deformations X
deformation around the hole
. Isotropic rock with five interface Sliding on joints, failure through Effect of dipping layers on the
(Li et al. 2013) Yes, at the interfaces No FLAC3D/ANSYS interface

element layers

rock matrix

construction process
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5.3. Experimental Model Setup
The experiment was conducted on a slate block with inherent planes of anisotropy (horizontal
bedding). The tested block had the dimensions (height x width x thickness) of 249.03 x 250.75 x
39.27 mm. A circular hole with radius (7) of 23.33 mm was drilled in the middle of the rock block.
Boundary conditions are illustrated in Fig. 5-1. Note that, the loading on the plate was not applied
on the entire face, and the model sides were not fixed. Applying such load on a partial side of the
sample was suggested due to the capacity of the testing machine (i.e. maximum stress which could
be generated using the entire boundary is 100 MPa) which is lower than the estimated compressive

strength of the sample (o.= 142 MPa).

Applied Load

4

Fig. 5-1 Simplified sketch of the lab test settings
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5.3.1. Loading pattern and deformation monitoring system
A pseudo static cyclic load was applied at the sample with a displacement velocity of 0.05 mm/min
which results in a measured vertical force of approximately 0.12 kN/sec. The loading (F)) history
is shown in Fig. 5-2. The load is increased in stages up to: 100 kN, 150 kN, 200 kN, 250 kN, 350
kN and 400 kN. Once the peak load was reached, the specimen was unloaded to 10 kN with the

same loading speed.
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Fig. 5-2 Vertical load (F}) vs. time with applied loading velocity of 0.05 mm/min

The cyclic loading was applied until the sample failed. Vertical load was measured directly by the
load measuring cell. The initial loading until 100 kN shows a strong non-linear behavior (see Fig.
5-2) caused by the initial setting of the interface between the sample and the loading platens and
will not be considered further in the simulation. The real time deformation behavior along the
perimeter of the hole was observed in detail using a high precision optical multi-point and profile
measurement device. Up to 16 points can be measured simultaneously with an accuracy of about
2 um for each measurement point. The measurement technique is based on a 2D image projected
on a complementary metal-oxide—semiconductor [CMOS] receiver. The optical system uses a

green LED. Telecentric lenses apply uniform LED light onto the target. This light projects an
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image on the CMOS. The experimental test setting is shown in Fig. 5-3.a. A closer view of the

contour of the circular hole before and after the experiment is shown in Fig. 5-3.b.

(b)

Fig. 5-3 Observation system: (a) Exemplary photo of optical deformation observation system, and (b)

Detailed view of the circular opening (left: before loading; right: after the experiment).

5.3.2. Observation results
During the experiment the absolute position of several points along the perimeter was determined
every second. As axisymmetric behavior was assumed, the observation was carried out only on

one quarter of the perimeter (a = 0° to 90°), see Fig. 5-4.
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Point no. Point code a ']
1 A 0°
2 B 15°
3 C 45°
4 D 75
5 E 90°

Fig. 5-4 Locations and angular positions of the observation points

The observed radial deformations of the observations points are shown in Fig. 5-5. The
displacements of points D and E (i.e. from a = 90° to 75°, called crown) are mainly directed toward
the center of the hole. For the sidewall, i.e. the springline region according to Hefny and Lo (1999),
the behavior should be somewhat different. The radial deformations in the region from point A to
point B (i.e. 0° < a < 15°) are nearly constant with only very minor fluctuations. Starting from the
loading cycle at # = 9250 s, the radial deformation pattern significantly changed. This can be best
observed in the graphs for points A, B and C in Fig. 5-5 and can be interpreted as an indication of
yielding and fracturing occurring along the perimeter.

As previously discussed, the first loading cycle shows pronounced non-linearity which is not
considered in the simulation. Thus, the initial point was shifted to the point in time of 800 sec. The
variation of the radial deformation confirms an elastic behavior for the first loading cycles, while
plastic effects start at 9250 sec (applied load = 315 KN). This is indicated by notable deviations in
the radial displacements at point C (i.e. @ = 45°). Furthermore, it is observed that the radial
deformation at various observation points shows significant softening, especially at points A, B

and C, once the plastic behavior has been initiated.
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Radial deformation [mm]

—Point A —PointB —Point C PointD —PointE
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Fig. 5-5 Radial displacements versus time for observation points (minus sign indicates movement toward the centre of the hole)
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During the cyclic loading with increasing amplitude, elastic and plastic deformations are
observed. In particular, sample 5 shows significant anisotropic behavior not only in strength,
but also in stiffness. The deformation behavior for the crown region is significantly different
from that in the sidewall region. In other words, for the same applied stress interval (4o) a
unique strain value (4¢) is not expected for the different observed points along the perimeter,

as explained in Fig. 5-6.

aj

aj

Ao

v

Fig. 5-6 Schematic illustration showing the effect of the stiffness anisotropy,

after (Niandou 1994)

For transverse isotropic rock with inclined inherent plane of isotropy with angle S, Pei (2008)
introduced Eq. 5.1 to interpret the anisotropic Young’s modulus Eg for Chichibu green schist

tested by Mogi (2006) based on the work of Amadei (1983).

L:cos2ﬁ+Sinzﬂ+5in2(2ﬂ)(l+i) (5.1
E, E E 4 E E

E and E' are the Young’s moduli in direction parallel and normal to the inherent anisotropy
plane. The elastic anisotropy of inherent laminated rocks could be quantified by an index
defined in Eq. 5.2 according to Amadei et al. (1987).

E

k==
El

(5.2)

The value of k for most anisotropic rocks is usually between 1 to 4 (Lisjak et al. 2014), which

fits well with the experimental testing for shale samples by Gholami and Rasouli (2014). Also,
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the conducted experiments on Yeoncheon schist performed by Park and Min (2015) show that

elastic stiffness anisotropy is app. 4.
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Fig. 5-7 Stress-strain curve of the tested sample at higher loading stages till failure point.

There is a noticeable change in the inclination of the stress-strain curve at the higher loading
levels as documented in Fig. 5-7. This feature can be explained by the plasticity theory
considering residual or softening parameters (Zhang et al. 2012; Cui et al. 2017). Consequently,
the numerical simulation of such lab test needs the consideration of strength anisotropy and
stiffness anisotropy which demands the framework of an anisotropic elasto-plastic constitutive

model with strain softening.

5.4. Material parameters
The tested roof slate from the Sauerland region in the west of Germany is a fine grained slate
with remarkable anisotropy (Braun, 2012; Brenne et al., 2014). The mechanical anisotropy of
this slate has been investigated by Braun (2012) via uniaxial tests with orientation intervals of
15°. Berwanger and Helms (1993) performed loading tests on samples with three different
orientations (5 = 0°, 45° and 90°). Mechanical investigations of the same shale type have been
performed by Haumann (2016) with different loading angles (4 = 0°, 30° and 90°). On the other
hand, material parameters were obtained from lab testing conducted on Mayen Mosel-Slate by
(Tan et al. 2015; Dinh 2011). This slate has similar mechanical behavior as the tested slate
(strain softening behavior). Fig. 5-8 shows the uniaxial compressive strength (UCS) and elastic

modulus (£) for different loading angles (f) including the error bars for the UCS lab values.
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The ratio of the elastic anisotropy, defined in Eq. 5.2, equals 3.55 (19.5/5.5) which indicates a
very high stiffness anisotropy.

Uniaxial compressive strength (UCS) == Elastic Modulus (E)
160 v------------ S it TooToooooe FoToToooos S it - 25
T S— - ] A S . I--
: | | . [ T
120 3- - L e | A e San . an
Ju— 1 1 a ] 1 =
= 1 I 1 —
a 100 PR FEPE N — . e AP Jpp— e =]
i | | - 15 A
=) ! | : )
80 Fo Ny R o =
T T, et T S DY SR S R 10
40 3-----——---> N % ______ .., — S R
. = .l . + —A |5
PI E— T i i G SRR Ao
-5 15 35 55 75 95
Loading angle, f [°]

Fig. 5-8 Plotted numerical values of UCS incl. error bars and the numerical elastic modulus

(E) vs. the loading angle (f), after Brenne et al. (2014) and Haumann (2016)

According to Ramamurthy (1993) and based on the data shown in Fig. 5-8, the strength
anisotropy Rc varies between 2.5 and 6. For this slate, Rc covers a range between 6 to 9 which
indicates a very high anisotropy in strength. Within this paper it is assumed that Rc equals 5.9
(125.7/21.3) as omin 1s found at f = 30°. The numerical simulation of the uniaxial compressive
strength shows the following pattern: concave upwards [f = 10° — 60°] referring to sliding
failure mode and shoulder type for non-sliding failure mode [f = 0°, 75° — 90°]. Average value
of UCS for both shoulders is no equal according to lab results: UCSyy is about 135 MPa and
UCSy is about 110 MPa (Fig. 5-8).

The input properties used in the numerical simulations are averaged based on previous testing
(Braun 2012; Berwanger and Helms 1993; Haumann 2016). Missing properties have been
reasonably assumed and were calibrated in the numerical models. The finally assigned
properties are summarized in Table 5-2. The behavior of the tested slate is assumed to be elasto
-plastic with softening for rock matrix and joint plane. For the rock matrix, softening for
cohesion, friction angle and tensile strength is proposed, while the softening for joint plane is

implemented only for the shear parameters (c¢; and ¢y).
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Table 5-2 Mechanical input parameters for numerical simulations

Parameter Value
Bulk density, p [kg/m?] 2760
Elastic components
E [GPa] 19.5
E' [GPa] 5.5
v [-] 0.1
v [-] 0.05
G' [GPa] 3.5
Rock matrix
o [MPa] 12.5
¢ [MPa] 23.5
o [ 49
" [MPa] 9.5
¢ [MPa] 19
o/ [°] 45
y [ 10
Joint planes
g’ [MPa] 4.0
¢ [MPa] 8.0
o [ 16
¢/ [MPa] 4.0
gojjres [0] 15
v [l 0
Angle of inclination, a [°] 0

The tensile strength of the rock matrix (¢”) is about 10% of the defined maximum UCS as
shown in Fig. 5-8. The maximum UCS on the bedding planes varies between 14 to 45 MPa.
Thus, the applied values for the joint plane tensile strength (o) is 4.0 MPa, which is almost
13% of the average UCS observed at f = 45° (Fig. 5-8). Generally, it is found from literature
that there is a remarkable variation in the measured properties of tested slates, therefore most

of the assigned parameters in Table 5-2 have been checked by numerical back analysis.

As previously mentioned, slight softening behavior is noticed for the slates in the post yielding
region. The mobilization of the strength parameters for rock matrix and the joint plane are
defined manually in respect to the plastic strain (i.e. €”). Fig. 5-9 shows the applied mobilization
of the strength parameters. The strength mobilization functions were calibrated to duplicate the

same degradation as shown in Fig. 5-7.
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Fig. 5-9 Mobilization of the strength parameters for matrix and joint versus plastic strain

5.5. Numerical simulations

5.5.1. Model setup

Different constitutive models are used to duplicate the lab experiment: the developed
constitutive model (Transubi), the transverse isotropic elastic model (Elastic) and the original
ubiquitous joint model (Ubi model). This comparison documents the capability of the Transubi
model to overcome some problems of different existing anisotropic constitutive models to
reproduce the lab measurements.

Model geometry and loading pattern (Fig. 5-1 and Fig. 5-2) as well as the mesh (Fig. 5-10) for
simulations using different constitutive models are identical. A full model with circular hole is
chosen. The grid is formed by radial zoning with square outer boundaries. The model consists

of 7200 (60 x 120) trapezoid-shaped zones. The mesh is coarse at the boundaries and very fine
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close to the hole. The hole perimeter is discretized into 120 equal segment (gridpoint very 3°).
Moreover, the radial mesh structure allows a detailed observation of the deformation acting on
the perimeter. In order to simulate the incremental load on both sides of the sample, velocity

in the y-direction is applied along the location of both loading plates, see Fig. 5-1.

y-displacement = -2¢-6

' Grid plot
I [
0 10 em

il

Fig. 5-10 Numerical model set-up incl. boundary conditions

For the simulation with the Transubi model, material parameters given in Table 5-2 are used.
For the pure transverse isotropic elastic simulations only the elastic parameters are used. For
the ubiquitous joint model average values are used for Young’s modulus (£ = 15.5 GPa) and
Poisson ratio (v = 0.1), otherwise plastic parameters according to Table 5-2 are used. Different
history points (same as in the experiments, see Fig. 5-4) were placed at the perimeter of the
opening in order to record the displacements. All the loading and unloading phases performed
in the experiment were duplicated by the numerical modeling. The relatively large calculation
time required by the Transubi model (4 times greater than using the ubiquitous joint model) is

due to the complexity of the used constitutive model. Fig. 5-11 shows the vertical applied stress
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versus the axial strain for the lab data and different modeling approaches. Simulation results
are given based on the model shown in Fig. 5-10. The mechanical parameters are presented in
Table 5-2 and the applied mobilization for the strength parameters of the Transubi simulation

is shown in Fig. 5-9.

Lab data
~——Transubi
Ubi

Elastic

-0.001 0 0.001 0.002  0.003 0.004  0.005  0.006
Strain [mm/mm]

Fig. 5-11 Vertical stress versus axial strain of the tested sample: numerical simulations using

Transubi, Elastic and Ubi models vs. lab data

5.5.2. Simulation of strength and stiffness anisotropy
Fig. 5-12 and Fig. 5-13 present the comparison between the numerical simulation results and
the lab experiments for 5 observation points located along the periphery of the circular hole.
As expected, the Ubi model tends to overestimate the radial deformation for the sidewall region:
points A, B and C (i.e. a = 0° —45°) (Fig. 5-12). The numerical simulation using the Transubi
model is able to duplicate both, the elastic and plastic deformations observed during the lab
experiment. The elastic stiffness anisotropy is responsible for a remarkable change in the
behavior of the radial deformations (4r) at each observation point. On the other hand, the
plastic behavior has been also captured by the numerical simulation which begins in the fifth
loading cycle at around F), = 315 kN (i.e. after time = 8800 sec of loading, Fig. 5-2). As shown
in Fig. 5-12, the transition from expansion to contraction of the opening diameter begins at

point C (i.e. a = 45°) which could not be captured by the Ubi model as well. Furthermore, the
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radial deformations at the crown, points D and E, are underestimated by the Ubi model in
reference to the lab observations (Fig. 5-13).

On the other side, the elastic anisotropic model is able to duplicate the general trend detected
during the lab test. However, the elastic approach leads to a significant underestimation of the
final displacement values and cannot show the progressive deformations due to the yielding of
the sample at last loading stages. During the cyclic loading significant yielding occurs
especially close to the boundary of the opening which is responsible for the sample failure and
remarkable increase in radial deformations. In general, the numerical simulation using the
Transubi model is able to predict the final displacements along the opening’s perimeter and the
overall trend of radial deformation during all phases of loading and unloading. Within the last
unloading path, a significant distortion in the radial deformation is noticed which marks the
formation of a main crack, noticed at point C (Fig. 5-12). The numerical simulation explains
this distortion by sudden loss of the rock strength (tensile and shear). Generally, the Transubi
model can capture the strength and stiffness anisotropy based on the elasto-plastic theory quite
well, whereas both, the Ubi and transverse-isotropic model show significant deviations from
the lab observations because they only consider one type of anisotropy, either stiffness or

strength anisotropy.
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Fig. 5-12 Comparison of the radial deformation evolution (Transubi, Elastic and Ubi models) vs. lab data for 3 observation points A, B and C. At

point C, there is an excessive failure notice during lab test (circled in red).
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Fig. 5-13 Comparison of the radial deformation evolution (Transubi, Elastic and Ubi models) vs.

lab data for 2 observation points D and E.
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The final radial displacements along the opening perimeter for different constitutive models are
shown in Fig. 5-14 in comparison with the lab data. Both, the Transubi and the linear elastic models
show much better agreement with the lab test data compared to the Ubi model. However, a severe
under-prediction is observed (at points B and C) using the transverse-isotropic elastic model:
maximum expansion of sidewalls of +0.093 mm (total difference of -42% compared to lab
measurements) and an average contraction at the crown with about -0.258 mm (total difference of
-33% compared to lab measurements). At the side wall, the Ubi model overestimates the expansion
of the hole. The predicted deformation by the Ubi model at o = 0° is about three times the value
predicted by the Transubi model and the value measured in the lab, although a relative high elastic
modulus has been given (i.e. greater than average). This overestimation in the sidewall
deformation is due to the elastic isotropic assumption (i.e. £, = 19.5 MPa and E1 = 5.5 MPa while
given E value for Ubi = 15.5 MPa). The transition zone where the hole deformation switches from
expansion to contraction is predicted quite well by the Transubi and elastic model (o = 30° - 35°).
The numerical simulation using the Ubi model underestimates the contraction due to the lack of

stiffness anisotropy.

Lab Data

Transubi Elastic Ubi

Final radial deformation [mm]

Inclination angle,  [°]

Fig. 5-14 Final radial deformation versus angle of inclination a: numerical

simulations and experimental measurement (+: expansion of hole)
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According to Fig. 5-15, the total displacement pattern for both Transubi (Fig. 5-15.a) and linear
elastic model (Fig. 5-15.b) is sand-clock shaped, similar to the findings by Lisjak et al. (2014).
The maximum displacements occur at the crown, while the displacements reach their minimum at
the sidewalls due to two reasons: (i) the local perturbation in the stress field near to the hole, and
(i1) the elastic anisotropy (i.e. elastic modulus normal to loading direction is greater than parallel
to loading). On the other side, the Ubi model tends to overestimate the displacements at the

sidewalls (Fig. 5-15.c).

Displacement contours (a) ' '
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(b)

Fig. 5-15 Final total displacement contours [cm]: (a) Transubi model, (b) linear elastic

transverse-isotropic model, and (c¢) Ubi model.

5.5.3. Failure modes detected during elasto-plastic simulations
Three different loading stages are used to compare the generated failure modes in detail for the

Transubi and Ubi model (£, = 150 kN, 350 kN and final load stage 400 kN). Based on the lab

114



Chapter 5 Loading and unloading on an unlined circular hole in a transverse isotropic rock

observations, there are two different types of failure noticed around the opening during the test.
Damage starts with tensile fracture propagation at the crown (i.e. point E) followed by mixed-
mode cracking in zigzag form: tensile cracking interrupted by shear failure along the schistosity
planes. Fig. 5-16 shows the progress of the RM failure at the end of the second loading stage (i.e.
F, =150 KN) around the hole (invert and crown points) for Transubi and Ubi models.

(a)

Actrve ténsil_e fracture

Grid plot

0 1E 1

Plasticity Indicator

o at yield in tension

(b)

served tensile failure| |

Grid plot

0  1E 1

Plasticity Indicator

Fig. 5-16 Plasticity indicators at the end of the second loading stage (F, = 150 KN) showing the
development of the rock matrix tensile failure at the crown region for (a) Ubi model and (b) Transubi

model (grid plotted in cm).
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With increasing applied load, the yield zone around the hole has extended. As noticed in Fig. 5-5,
the measurements of the radial displacement have been disturbed at F), = 327 KN especially at
point C (i.e. a = 45°). The lab observations show that the main fracture is continuously growing,
but slightly deviated towards the corners of the slate block. Also, different fractures have been
noticed at the corners (i.e. 15° <a < 65°) as indication of shear failure which fits with the numerical
simulations using the Transubi model (Fig. 5-17). In contrast, the Ubi model predicts more or less

only one single vertical tensile fracture.
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Fig. 5-17 Plasticity indicators at the end of the fifth loading stage (#, = 350 KN) showing the
development of the failure modes for (a) Ubi model and (b) Transubi model (grid plotted in cm).
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In general, the Transubi model can duplicate the main damage features observed during the lab
test (compare the lab observations shown in Fig. 5-20 and Fig. 5-19 against Fig. 5-16, Fig. 5-17
and Fig. 5-18), which is not the case for the Ubi model. However, a continuum-based modelling
technique cannot capture the fracture mechanisms in detail. Therefore, discontinuum-based

approaches are recommended if fracture evolution should be investigated in detail.
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Fig. 5-18 Plasticity indicators at final loading stage (¥}, = 400 KN) showing the development of the failure
modes around the opening for (a) Ubi model and (b) Transubi model (grid plotted in cm).
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Fig. 5-19 Sample front side: fracture pattern observed around the opening at the end of the test. Red lines

correspond the shear (inclined) cracks and green ones represent the tensile (splitting) cracks.

Fig. 5-20 Sample back side: fracture pattern observed around the opening at the end of the test. Red lines

correspond the shear (inclined) cracks and green ones represent the tensile (splitting) cracks.

118



Chapter 5 Loading and unloading on an unlined circular hole in a transverse isotropic rock

5.6. Conclusions

Different elastic and elasto-plastic constitutive models were applied to back analyze a lab test (slate
block with hole under quasi-static cyclic loading up to failure). It is shown, that both - stiffness
and strength anisotropy — have to be considered to reproduce the observed deformation and
damage behavior. A pure transverse elastic model is able to reproduce the general trends, but is
not able to duplicate the non-linearites at higher load levels or accumulated damage and
consequently under-predicts the displacements. Elasto-plastic models without considering the
elastic stiffness anisotropy are unable to reproduce the significant anisotropic deformation
behavior, which can even lead to a wrong prediction of deformation trends. The proposed Transubi
model covers stiffness as well as strength anisotropy and has shown good agreement with the lab
results in a quantitative and qualitative manner.

At different loading stages, the evolution of the failure around the circular opening displays
variations between the Transubi and the Ubi models. The Transubi model can simulate the main
failure pattern detected within the experiment. This is only true to some extend for Ubi model.
Nevertheless, discontinuum-based approaches are better suited to simulate fracture propagation in

detail.
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6. Mechanical response of excavations in Opalinus clay

6.1. Introduction

Based on the mechanical behavior of the Opalinus clay described in chapter 4, deformations
around a tunnel excavated in Opalinus clay are analyzed by numerical simulations. This tunnel is
driven in a shaly facies formation of Opalinus clay in an URL. Short-term stability of the tunnel is
considered as part of a long-term research project (Full-scale Emplacement (FE) experiment). The
numerical simulation considers a shotcrete-supported 3-m diameter tunnel. The deformational
behavior is compared with data from in-situ measurements (Lisjak et al. 2015). The tunnel is
excavated steadily, while the lining is installed in certain steps. The FE tunnel was equipped with
differed instrumentation providing several data sets. The model considers pore pressure, but water
flow is not allowed. A sensitivity analysis is conducted to study both, the influence of grid structure
and the effect of sudden excavation on the displacements and the pore pressure development

around the tunnel.

6.2. Tunneling in strain softened rock mass
The difficulty associated with strain softened rock masses is that these materials are defined as
highly deformable and they behave as low-modulus medium (Duncan Fama 1993). During tunnel
excavation, the strength parameters would gradually drop to their residual values at the tunnel
periphery causing a weakness zone around the formed opening (Ranjbarnia et al. 2015). Fig. 6-1
illustrates the responses of a circular tunnel driven in elasto-plastic media under hydrostatic in-situ
stress (Cui et al. 2017). As indicated in Fig. 6-1.b, the slope of the decreasing part of the stress-
strain curve (i.e. the softening rate) plays the most significant role for the stability of the tunnel
walls (Egger 2000). Based on the softening rate, the evolution of the residual zone is identified
and therefore the critical time to install the tunnel support system is obtained. The higher the

softening rate the higher the required support pressure, as indicated in Fig. 6-2 (Egger 2000).

120



Chapter 6 Mechanical response of excavation in Opalinus clay

elastic zone

€~ &
...... &
2N |
i i
|
|
|
' |
: | I
residual zone R } i
softening zone o, | £ — &
T.
()
elastic zone
Oy
...... o,
|
}
residual zone -
r2 8] - 83

(c)
Fig. 6-1: Schematic illustration of formed weakness zones around a circular opening in (a) linear elastic, (b)
plastic strain softening, and (c) brittle plastic materials under hydrostatic institu stress conditions (Cui et al.

2017).
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Fig. 6-2 Ground reaction curves for three different types of rocks: (a) perfect plastic, (b) strain
softening, and (c) brittle plastic materials (Egger 2000). uy is the initial radial displacement before

support installation.

Once the internal pressure (P;) approaches its critical value (i.e. Pi, Pi» and Pic) as indicated in Fig.
6-2, the EDZ is extended by forming a failure zone with radius R, as shown in Fig. 6-1 (Alonso et
al. 2003). According to the rock mass behavior, the critical internal pressure value is obtained
which is defined as the minimum value of pressure required to prevent the formation of the EDZ.
Generally, the formation of the EDZ or the so called yield zone does not mean that the excavated
opening would collapse, since the rock mass still has a considerable strength (Duncan Fama 1993;
Alonso et al. 2003). Thus, it is important to define the critical strains and critical support pressures
of the softened rock mass. Different analytical and numerical attempts were presented to analyze
circular tunnels excavated in either H-B or M-C strain softened materials (e.g. Cui et al. 2017,
Ranjbarnia, Fahimifar and Oreste 2015). Most solutions are based on isotropic, continuous, and
initially elastic rock mass which delimits those solutions for more complex conditions.

In practice, tunnels are excavated in anisotropic in-situ stress conditions which affect the formation

of the EDZ zone. Besides that, the occurrence of different discontinuities (e.g. the bedding planes
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and inherent anisotropy planes) within the excavated rock mass play a significant role for the
development of such yielding zones. Apart of the in-situ stress anisotropy, the bedding planes
could influence greatly the direction of the formation of the EDZ. Theoretical scenarios of the
formation of the EDZ around tunnels or boreholes have been later confirmed by field observations

in the URL Mont Terri as presented in Fig. 6-3 (Wermeille and Bossart 1999).

Gmax

(a) L (b)

isotropic
Rock mass
O min
4> 4_
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-2 Failure due to bedding planes

% Failure due to stress anisotropy

Fig. 6-3 Schematic showing different scenarios of EDZ formation around circular opening: (a)
excavated vertically in isotropic rock matrix, (b) excavated verically in bedded rock mass inclined with
angle of 45°, (¢) excavated horizontally in bedded rock mass inclined with angle of 45°, and (d)
excavated horizontally in bedded rock mass inclined with angle of 0°, modified after (Wermeille and

Bossart 1999).
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Thus, it is difficult to provide an analytical solution to predict the extension of the EDZ in a strain
softening rock mass especially under complicated stress conditions and pronounced strength
anisotropy. The trend is to solve such cases numerically to improved predictions of rock mass
response and to provide a sound basis for a suitable support system. Also, the numerical back-
analysis based on field measurements (e.g. extensometers and topological survey) is important for
further applications or operations in similar rock masses.

The considered short-term stability analysis has been described as brittle and therefore the EDZ
evolution takes place immediately (Marschall et al. 2017). A review of numerical simulations
which are used to capture the short-term response of the rock mass around openings and the EDZ
process is presented by Lisjak et al. (2015). Short-term response is defined within the duration
between the construction stages to a few days after installation of the support system or based on
the numerical terminology that the model has reached the equilibrium state. The aforementioned
review is updated in this chapter and up-to-date modelling studies are summarized in Table 6-1.
The inserted new studies are either released after the publication by Lisjak et al. (2015) or
mechanical models for both, drained and undrained rock masses. Bliimling and Konietzky (2003)
introduced a bi-linear elasto-plastic strain hardening/softening ubiquitous joint model (Subiquitous
model) for Opalinus clay. Similarly, the mine-by experiment located in shaly-facies Opalinus clay
of Mont Terri underground rock laboratory was evaluated by using the Subiquitous model in
FLAC3D without considering the stiffness anisotropy by (Thony 2014). The proposed Transubi

model is considered as an update of these trials to apply both: strength and stiffness anisotropy.
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Table 6-1 Updated summary of EDZ simulations for openings in Opalinus clay, after (Lisjak et al. 2015)

Anisotropy
Study Modeling code Dimensions Constitutive models
Stiffness Strength
Martin and Lanyon (2003) Boundary element-based 3D 3D No No . .
. D Linear elastic
program, Examine
Konietzky, Bliimling, and te Kamp (2003) FLAC3D 3D No Yes Bi-linear elasto plastic strain
and Bliimling and Konietzky (2003)* hardening ubiquitous joint model
Corkum and Martin (2004) 2D finite element program, 2D No No Linear elastic
Phase2
Elasto-plastic
Elastic-brittle-plastic
Konietzky and te Kamp (2004) and FLAC 3D 3D Yes Yes Elasto-plastic with ubiquitous ioints
Konietzky and te Kamp (2006) p q J
Corkum and Martin (2007) FLAC 3D 3D No No Linear elastic
No Elasto-plastic
No Nonlinear stress-dependent
modulus elasto plastic model
(SDM)
Yes Ubiquitous joint model
Stefanizzi, Barla, and Kaiser (2007) Finite/discrete element code, 2D No No Elasto-plastic with the concept of
ELFEN “strain-driven” fractures
Popp and Salzer (2007) and Popp, Salzer, UDEC 2D No Yes L S
and Minkley (2008) Elasto-plastic with explicit joints
Yong, Kaiser, and Loew (2010) Phase2 2D Yes No Linear elastic with continuous
joints
Yes Yes Elasto-plastic with continuous
joints*
3DEC 3D No No Linear elastic with joints
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Yong, Kaiser, and Loew (2013) FLAC3D 3D Yes No Elastic anisotropic continuum
model
Thony (2014)* FLAC3D 3D Yes No Linear elastic
No Yes Bi-linear elasto plastic strain
hardening/softening ubiquitous
joint model
Lisjak et al. (2015) Phase2 2D Yes No Linear elastic
Hybrid finite-discrete element 2D Yes Yes Linear elastic with cohesive
code, Y-Geo elements
Le and Nguyen (2015)* Finite element software, 3D Yes Yes Elasto-plastic strain
COMSOL Multiphysics hardening/softening with implicit
joints.
Lisjak et al. (2016)* Hybrid finite-discrete element 2D Yes Yes Linear elastic with cohesive

code, Y-Geo

elements and explicit pre-existing
discontinuity

* Newly added studies of excavations in Opalinus clay.
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6.3. Short-term stability analysis of the excavation of FE niche
As Opalinus clay is considered as host rock for the deep geological repositories for radioactive
waste in Switzerland, the Full-scale Emplacement (FE) Experiment was initiated mainly to
investigate Thermo-Hydro-Mechanical (THM) coupled effects. Full description and procedure of
this experiment is given by Miiller et al. (2017). The experiment consists of a 50-m long full face

excavated tunnel starting from the FE cavern/niche (Fig. 6-4).

FE cavern Shotcrete linin
o Location of 2D model section
—> Interjacent

FE tunnel @ approx. 3 m Heater sealing section

A A

Concrete plug Bentonite blocks Steel sets

-+— Access
tunnel

Fig. 6-4 General layout of the FE experiment (Miiller et al. 2017).

The short-term analysis of the EDZ is found in (Lisjak et al. 2015), while the general long-term

response is described in (Lanyon et al. 2014). This study considers only the short-term behavior.

6.3.1. Site layout and monitoring systems

The Opalinus clay in Mont Terri is categorized into three different formations: (i) sand, (ii) a
carbonate-rich, sandy facies, and (iii) a shaly facies. The FE tunnel is excavated at an azimuth of
242° from North, approximately parallel to the strike of the bedding, and is entirely located within
the shaly facies formation (Fig. 6-5). The construction of the FE tunnel was accomplished between
April 2012 and July 2012. The excavation method was a combination of pneumatically hammering
and roadheader (Lisjak et al. 2015; Miiller et al. 2017). The excavation sequence was that the
remotely controlled excavator equipped with the pneumatic hammer was used for the tunnel
profiling, while the roadheader was adjusting the profile. Unlike the simulation, the tunnel invert
was excavated as flat section rather than the original circular section.

Such excavation method did not result in a perfect circular profile (diameter is between 2.7 to 3.0

m including lining). However, the simulated section without lining is set to 3.0 m assuming smooth
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walls. In practice, this irregularity of the surface caused problems with lining adhesion and

therefore shear and bending forces in the lining.
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Fig. 6-5 Geological map of the Mont Terri underground rock laboratory, FE tunnel is highlighted
inred, (Lisjak et al. 2015).

The support system of this tunnel varied along the tunnel. At the access section from 0 to 9 meter
depth, a combination of shotcrete with steel arches is used. With advance of the tunnel and
immediately after the excavation, mesh reinforced shotcrete with a minor thickness ranging
between 16 and 24 cm was applied from 9 to 38 m depth. The targeted 2-dimensional section is
located in the region supported with a 16-cm shotcrete at 28 m depth approximately, see Fig. 6-4.
For the rest of the tunnel from 38 to 50 m depth, steel arches with wire meshing are used. The

various support systems are summarized in Table 6-2. During the construction of the tunnel, high
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convergence rates are observed at section depths TM9 — TM18 m and TM18 — TM38 m. Here
invert failed and renovation was required. Thus, a new support system has been installed in the
section from TM9 to TM 38 as specified in Table 6-2. The 2-dimensional numerical simulation at
TM28 considers only the shotcrete with thickness 16 cm as a support system for the modelled

section.

Table 6-2 Summary of support systems used along FE tunnel, after (Lanyon et al. 2014 and Lisjak et al.

2015)
Section depth [m] Support system Notes
T™MO — TM9 Steel sets (0.5 — 1 m spacing) + | Recording the minimum
shotcrete with thickness 19 cm convergence rates
TM9 — TM18 Shotcrete with thickness 24 cm | From 12.30 — 18.3 m depth; extra
22 mm diameter and 2.5 m long
fibreglass solid bolts with axial
spacing = 1.5 m are installed
TM18 — TM38 Shotcrete with thickness 16 cm | From 19.8 — 37.8 m depth; extra
32 mm diameter and 7.5 m long
hollow steel bolts in the right side
wall with axial spacing = 1.5 m
are installed
TM38 — TMS50 Steel arches (0.5 — 1 m spacing) | The convergence rate is similar
+ wire mesh to the access section.

As described in Fig. 6-6, an extensive monitoring system has been installed along the tunnel axis
and at the targeted section point TM28. In order to monitor the rock mass response, the entire
tunnel has been divided into 10 convergence sections (CO ... to ... C9). At each of them 5 to 7
geodetic monitoring reflectors are installed to record the deformations. Also, five radial
extensometers were installed from the tunnel walls each with four displacement sensors and a
length of 6 m. Two sections, E1 and E2, are used to continuously record radial measurements of
ground movements around the FE tunnel. At each section, extensometers BFEC-01 and BFEC-02,
have been installed parallel (inclined with angle = 30°) and perpendicular to the bedding planes
(inclined with angle = 120°), respectively.
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Fig. 6-6 Schematic of simplified longitudinual section showing different support sections, convergence
measurement sections (CO — C9) and location of radial extensometers (E1 and E2) installed during

tunnel construction, (adapted from Lisjak et al. 2015)

As previously indicated, the modelled section is located within the convergence measurement
sections C3 (TM21.8), C4 (TM27.6) and C5 (TM34.3) at which the supporting system is shotcrete
with thickness of 16 cm, no anchors were considered. The 2-dimensional section is approximately
at the middle of the tunnel (app. TM28), also it is positioned nearly intermediate between the
location of the radial extensometers (E1 and E2). Two 45-m long inclinometers have been installed
to continuously monitor the vertical displacements above the crown of the FE-tunnel. The two
inclinometers (BFEA-10 and BFEA-11) were nearly parallel to the tunnel axis and drilled directly
from the FE cavern prior to the excavation. The position of both inclinometers measured from the

tunnel axis at the studied section (TM28) is app. 2.6 m.
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The pore pressures in the near- and far-field were monitored before, during and after the excavation.

Six boreholes (BFEA-02 to BFEA-07) were installed from the FE niche/cavern. Six measuring

points were fixed along each borehole. A visualization of the installed boreholes and the

inclinometers is shown in Fig. 6-7. Note that the recording points were located starting from point

TM20 till nearly TM40 in such a way that the 16 intervals are the closest to the FE cavern wall and

the il intervals are furthest from the gallery wall (Lanyon et al. 2014).

-15

Piezometers:
BFEA-07 1 e BFEA-02
104 = BFEA-03 s &
| & BFEA-04 .
o BFEA-05 a
BFEA-06 54 4 BFEA-06 6 5, 4o 39 22 12
BFEA-05 | & BFEAD?T 8 ©° ° °
—_—~ *
BFEABSTA-10 E 0% s
5 b 1 Inclinometers: . .
N-11 54 + BFEA-0 R
| + BFEA-M . " e,
| ]
104 L.
4 4 A
15 -
0 10 20 30 40
z(m)
(a) (b)

Fig. 6-7 Arrangement of installed inclinometers and borehole array in (a) 3D (adapted from

Lanyon et al. 2014) , and (b) top view (adapted from Lisjak et al. 2015)

6.3.2. Model description, in-situ stress field and assigned parameters

50

The numerical model considers a 3 m diameter circular hole centered in a 50 m x 50 m square

domain. A radial mesh is defined by polar coordinates around the opening. This mesh maximizes

the model efficiency by providing refinement in the region close to the excavation in order to

capture the formation of the EDZ. On the other side, the mesh is quite coarse close to the outer
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boundaries where no plasticity is expected which reduces the runtime significantly (Fig. 6-8). The
built-up mesh consists of 12.800 elements. The minimum length of elements on the opening
perimeter is 0.06 m and the element size is graded toward the borders until it reaches 1.25 m
adjacent to the outer boundaries. A sensitivity analysis in respect to mesh performance is presented

in section 6.6.4.

Grid plot

0 2E 0

Fig. 6-8 Mesh geometry [m] near to the tunnel, 10 m x 10 m total model size.

Model size was chosen in such a way that boundary effects are negligible. At the outer boundary
stresses are applied according to Table 6-3. Unlike the numerical simulation reported by Lisjak et
al. (2015), three orthogonal stress components (o, g,y and o:) are applied. As the model for a
tunnel section is a plane strain one, the third stress component (o.-) could not be vanished. Lisjak
et al. (2015) analyzed previous studies regarding the in-situ stress state at Mont Terri. Field
investigations using borehole breakouts were provided by Wermeille and Bossart (1999). Martin
and Lanyon (2003) presented a numerical back-analyses of these measurements. In this context,
another 3-dimensional numerical model was obtained showing that the minimum component of
the in-situ stress (o3) and the out-of-plane component (o:-) have some uncertainty and should be

re-evaluated. Finally, Bock (2009) concluded that the insitu stress values are between 2 to 10 MPa.
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On the other side, the measured undisturbed pore pressure (g,,) around the FE tunnel is 2 MPa
(Lanyon et al. 2014). Finally, the in-situ stress tensor is defined as given in Table 6-3.

Table 6-3 Applied in-situ stresses in the numerical model.
Component oxx [MPa] oy [MPa] oz [MPa] opp [MPa]
Magnitude 4.5 6.5 2.5 2

The Transubi model is applied for the whole domain, assuming inclined bedding planes with angle
(a) = 35° based on the reported observations (Lisjak et al. 2015; Lanyon et al. 2014; Miiller et al.
2017) and the field investigations (Jaeggi et al. 2012).

Table 6-4 Mechanical properties of Opalinus clay applied to numerical simulations (Lisjak, Grasselli, and

Vietor 2014; Bock 2009)

Parameter Value
Bulk density, p [kg/m?] 2330
Elastic components

E [GPa] 3.8
E' [GPa] 1.3
v [-] 0.35
v -] 0.28
G' [GPa] 0.9
Rock matrix

o [MPa] 1.0
First surface

¢ [MPa] 2.0
o [ 28
¢ [MPa] 1.5
o [°] 20
v [ 5
Second surface

¢ [MPa] 3.0
o [ 20
™ [MPa] 2.0
o [°] 12
v [ 7
Bedding planes

g’ [MPa] 0.3
¢ [MPa] 0.8
0[] 20
¢/* [MPa] 0.4
o [°] 12
y o [] 0
Angle of inclination, o [°] 35
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Fig. 6-9 Main stages of the simulation (a) pre-excavation stage including installation of history
points and primary stress state, (b) excavation phase, gradual reduction of traction on the
tunnel surface until a prescribed factor is reached, and (c) applying liner support and bringing

model to equilibrium .

The mechanical properties of Opalinus clay obtained in section 4.3 are updated in which the
applied pre-yielding region is linear elastic with no hardening to investigate the propagation of the
plastic state around the hole, elastic components are determined after (Lisjak, Grasselli and Vietor
2014; Lisjak et al. 2015), see Table 6-4. Also, the strength parameters have been slightly reduced
based on the design recommendations provided by Bock (2009). Softening (brittle-plastic) is still
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applied in the post yielding region. The rock matrix is described as bilinear M-C, while for the
bedding planes a linear M-C model with tension cut-off is used.

The second stage (Fig. 6-9.b) simulates the relaxation procedure at which the forces at the tunnel
wall are incrementally decreased up to a prescribed value. The analysis of the ground reaction
curve of the FE-tunnel shows that approximately 50 % convergence occurred before the shotcrete
installation. This required a relaxation of 95% (i.e. relaxation factor = 0.05). This value is
significantly close to the value suggested by Lisjak et al. (2015). Thus, applied relaxation along
the tunnel perimeter from 0 % to 95 % is implemented, whereas the convergences, deformations

and pore pressure are continuously recorded around the excavation, see Fig. 6-10.

Convergence pin, P2
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Fig. 6-10 Ground response curve for convergence point P2, almost 50% total

displacement occurs at relaxation factor = 0.05 (Relaxation = 95%)

The third and the final stage (Fig. 6-9.c) is the support installation as a liner shotcrete with perfect
adhesion. The nodes on the tunnel perimeter are marked, and then the shotcrete segments were
applied between each marked node. In FLAC, the logic of structure installation follows the plane-
stress formulation. Thus, the given Young’s modulus should be altered to be compatible with
plane-strain. The applied shotcrete is linear elastic with homogeneous properties. Parameters are
given in Table 6-5. After the installation of the shotcrete, the model is brought to equilibrium

allowing the complete relaxation (100% relaxation).
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Table 6-5 Mechanical properties of installed shotcrete

Parameter Young’s modulus* Thickness Moment of Poison ratio, v
[GPa] [m] Inertia, / [m*] [-]
value 10 0.16 2.73E-4 0.2

* The given value is adjusted for plane-strain case to 10.4 MPa.

Concerning the value of the Young’s modulus for the shotcrete, there is no clear data of the applied

shotcrete installed prior to the invert renovation in 2015 (Miiller et al. 2017). Because the short-

term behavior is considered, the assumed stiffness for shotcrete was adjusted for the age of 1 to 7

days (Bryne 2014; Neuner et al. 2017). The assumed values agree with the parametric study in

respect to the displacements at pin P2 and the variation of the shotcrete stiffness (Lisjak 2013).

Similar, the displacements at pin P3 are recorded prior and after the support installation (relaxation

= 95%) assuming two applied Young’s modulus for the shotcrete (Fig. 6-11). Very high value is

assumed for the shotcrete stiffness (E = 5 GPa) similar to the applied properties of shotcrete in

(Itasca 2016) showing no produced displacements. On the other hand, low modulus (E = 10 MPa)

is given similar to the value obtained by Lisjak et al. (2015) and Table 6-5 indicating that there is

large tunnel convergence consistent with the measured values in-situ.
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Fig. 6-11 Influence of applied support stiffness on the evolution of the total displacements at

convergence pin P3, support installed at relaxation = 95%

136




Chapter 6 Short-term mechanical response of excavation in Opalinus clay

The histories of the recorded total displacements versus the normalized distance between the
measuring sections and the excavation face for three convergence sections C3, C4 and C5 located
in the tunnel part lined with 16 cm thick shotcrete are shown in Fig. 6-12. The described model
procedure is applied (a) without consideration of the pore pressure in chapter 6.3.3 and (b) with
consideration of a homogenous initial pore pressure and fully saturated rock mass in chapter 6.3.4.
Both cases use the Transubi model and the undrained Opalinus clay properties shown in Table 6-4.

As the simulations aim at the short-term analysis, no fluid flow is allowed (undrained conditions).
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Fig. 6-12 Normalized recorded tunnel wall total displacements at five pins P1, P2, P3, P4 and PS5 as
function of distance between the measuring section and the excavation face (Z/D), Z is the distance
from the tunnel face and D is the tunnel diameter, for convergence sections (a) C3 at TM21.8, (b) C4

at TM27.6, and (c) C5 TM34.3, (Lisjak 2013).
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6.3.3. Mechanical simulation: no pore pressure considered
During the simulation, histories of x- and y-displacement components according to the locations
of the inclinometers, the extensometers and the convergence pins are recorded. Therefore, the total
development of the tunnel convergences and the deformation field around the opening can be
reproduced and plotted. Neglecting the measured values before installation of the support, the
comparison between the simulated displacements at the pins and the field measurements recorded

at convergence sections (C3, C4 and C5) are found in Fig. 6-13.
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Fig. 6-13 Normalized computed total displacements of tunnel wall compared to average in-

situ measurements at convergence pins (a) P1, P3 and P4, and (b) P2 and P5
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The computed total displacements show that the proposed numerical model produces symmetric
behavior, although the field measurements exhibit asymmetric deformation behavior especially
for P5 and P2. Total displacements at P1 and P4 are overall identical and under-predicted by about
9 mm indicating another failure mode. The insitu observed behavior cannot be captured by the
proposed continuum-based model. Lisjak et al. (2015) found the same result concerning P1 and
P4 as well. Also, the displacements at P5 are underestimated by approximately 20 mm. To explain
this, different potential reasons have to be mentioned. The convergence pin P5 is located near to
the base of the north-east wall in a region where tectonic fault planes associated with a fault zone
present from 14.5 m onwards in the FE cavern exist (Lanyon et al. 2014). Detailed geological
mapping of excavation face of FE-tunnel is found in (Jaeggi et al. 2012). Additionally, P5 was
near to the sharp edges formed due to the installed flat slap at the invert producing concentration
of the deviatoric stresses. In contrast, the model assumed a perfect circular profile without slap in
the invert and perfect adhesion of the shotcrete.

On the other hand, the predicted displacements at P3 and P2 are in good agreement with the
average in-situ measurements. Notable deformations are generated in P2 because of the shear and
tensile failure on bedding planes. The shear zone formed near to P2 influences the deformation
field at the tunnel crown, where P3 is located. The evolution of the fractures simulated by Lisjak
et al. (2015) confirms an excessive fracturing after the support activation at the crown and the
invert associated to the local shear zones at P2 and P5. In order to enhance the understanding of
the deformational behavior acting on the tunnel walls, convergences have been recorded between
the pin points. The total displacements at each pin are analyzed in the direction of the target
convergence line (Fig. 6-14). Computed convergences at lines P1-P3, P5-P3, P2-P5 and P2-P4 are
in close agreement with the average field results. The convergence line P1-P4 is under-predicated
with value 20 mm which is close to the computed value of the linear elastic analysis performed by
Lisjak et al. (2015). Values for convergence line P1-P5 are underestimated by about 40 mm.
Similar results were found by Lisjak et al. (2015) where P1-P4 and P1-P5 were under-predicted
by approximately 13 and 30 mm, respectively.
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Fig. 6-14 Comparison between the computed convergencs and the average field

measurements

The evolution of the vertical displacements is plotted in Fig. 6-15. Two points are located at the
same positions of the inclinometers BEFA-10 and BEFA-11, see Fig. 6-9. The recorded vertical
deflection is consistent with the analysis presented by Lisjak et al. (2015) in which the recorded
vertical displacements at equilibrium were 8 and 10 mm for BEFA-10 and BEFA-11, respectively.
On the contrary, the average insitu vertical deflection measured by the inclinometers between TM9
and TM38 is about 21.5 mm shows significant deviation from the numerical simulation results.
The insitu value is obtained by considering the displacements recorded at a given section when the
excavation face is approximately 9 m away. Such difference could be the consequence of the
selection of the 2-dimensional instead of 3-dimensional analysis. Applying different supporting
systems along the tunnel axis without consideration the time dependency will lead to irregular
values for the measured vertical deflections along the installed inclinometers (BEFA-10 and
BEFA-11). As shown in Fig. 6-15, the average measured vertical displacements recorded at the
excavation face at TM28 at inclinometers BEFA-10 and BEFA-11 are 4.7 and 9 mm, respectively,

which is in close agreement with the numerical simulation results.
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Fig. 6-15 Computed vertical displacements at two history points located at the positions of
BEFA-10 and BEFA-11. Doted lines indicate the measured vertical deflections for BEFA-10
and BEFA-11 recorded at the excavation face at TM28.

EXT-01 and EXT-02 are 6 m long extensometers which were installed in orthogonal configuration
in order to quantitatively describe the propagation of the EDZ. Fig. 6-16 presents short-term radial
displacements for both extensometers at TM14.6 (section E1, Fig. 6-6) (Lisjak et al. 2015). For
EXT-01, the measured radial displacements show gradual reduction, almost linear from 2.6 to 0
mm indicating less yielding in direction parallel to bedding planes in a good agreement with the
field observations shown in Fig. 6-3.c (Wermeille and Bossart 1999). Conversely, the radial
displacements at EXT-02 show a drop in measurements at the region between 1 to 3 m away from
the tunnel perimeter which characterizes the extent of the EDZ. Fig. 6-17 shows the computed
radial displacements parallel and perpendicular to the bedding planes at equilibrium. The
difference between measured and computed values is not rational, Lisjak et al. (2015) stated in
such context that a limited share of the radial displacements have been captured by the installed
radial extensometers EXT-01 and EXT-02. In addition, it could be concluded that the radial
deformations at E1 section (TM14.6) for different support system could be different than the
deformations at this section. Generally, both measured and computed results share the same
characteristic: radial deformations at EXT-02 are higher than those at EXT-01. The propagation
of the EDZ is presented in Fig. 6-18 showing polar symmetric shape and maximum extend in

direction perpendicular to the bedding plane (P2 and P5) at about 2.7 m from the tunnel wall.
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Fig. 6-16 Measured short-term radial displacements at TM14.6 section assuming a zero

value at R = 6 m (Lisjak et al. 2015)
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Fig. 6-17 Normalized computed radial displacement at equilliprium along two lines

corresponding to the installed extensometers shown in Fig. 6-9
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Fig. 6-18 Plasticity indicators showing the formed EDZ at equiliprium state, 10 m x 10 m model size.

6.3.4. Mechanical generation of pore pressure — No flow

For short-term mechanical analysis, the simulation time is shorter than the characteristic time of
the coupled diffusion process. Thus, the discussed numerical simulation in this part consists of the
undrained mechanical response combined with the generation of pore pressure change.

The properties of the Opalinus clay given in Table 6-4 are applied in the simulation, whereas 100%
saturation and porosity of 0.5 are assumed for all model runs. The initial pore pressure is set to 2
MPa (Table 6-3). The assigned fluid bulk modulus equals 1 GPa which is considered as a realistic
value. Fig. 6-19 shows the comparison between numerical results and average field measurements
as well as the finally evaluated displacements from the mechanical simulations without

consideration of the pore pressure (section 6.3.3, Fig. 6-13).
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Fig. 6-19 Normalized computed total displacements of tunnel wall compared to the average in-situ
measurements at convergence pins (a) P1, P3 and P4, and (b) P2 and P5. Displacements computed

from the mechanical simulation without pore pressure consideration are also plotted.

As noticed from Fig. 6-19, the overall behavior of the total displacements for points P1, P2, P3
and P4 after the support installation are quite similar. During the application of the relaxation from
95% to 98.33% at step no. 80.000, displacements are triggered until equilibrium is reached.
Compared with simulation results shown in chapter 6.3.3, the computed displacements at points
P1 and P4 are higher than predicted previously. At P1, the developed displacements are increased
by 87%, while the percentage is even higher for P4 and equals 137%. Such jumping in the values
of the computed total displacements for P1 and P4 indicate that the hydraulic coupling plays a
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major role. Nevertheless, the computed values are still unsatisfactory compared with the insitu
measurements with an average difference of about 7 mm. Although the simulations achieved
reasonable predictions for the displacements at P2 and P3, the computed values are lower than
those estimated by the pure mechanical simulations without pore pressure consideration. The drop
in the computed values for P2 and P3 is 38% and 11%, respectively.

On the other hand, the behavior at pin P5 is totally different than those recorded at the other points.
The jump in the displacements values starts directly after the support activation until equilibrium
is reached producing a difference in the computed total displacements of approximately 30 mm.
Afterward, the system stabilizes up to the point when relaxation (98.33%) is applied at step 80.000.
At equilibrium, the computed displacement recorded at P5 is about 45 mm which is in good
agreement with the average measured values. For the interpretation of the deformational behavior
at P5, the hydro-mechanical interaction should be taken into account. Thus, at this region, the
hydro-mechanical coupling is essential to enhance the understanding of this displacement jump at
PS5 at the moment before and after the support installation. As shown in Fig. 6-20, before the
shotcrete installation, the saturation is redistributed around the hole showing decreasing values (=
93.5%) in the direction perpendicular to the bedding planes (P2-P5 line). Such reduction in
saturation is combined with increasing in the displacements at points P2 and P5 (= 20.7 mm). Until
this moment, there is no jump in displacement values at P5.

Afterward, the model is brought to equilibrium after installation of the shotcrete. At the end of the
simulation (relaxation = 100 %), significant drop in saturation near point P5 (= 0 %) occurred
which is responsible for the notable jump in the total displacement values in this region due to the
generated heave (Fig. 6-21). Excessive upward displacements (y-displacements) were induced
(= 65 mm) at the tunnel perimeter because of the buoyancy effect: water level tries to raise again
to re-saturate region near to P5. Also, the saturation slightly decreased at P2 region to
approximately 90%. As remarked, the saturation levels at areas near to P1 and P4 show no change.
On the other hand, such high value in displacements near the tunnel invert could cause the breakage
of the shotcrete as reported by Miiller et al. (2017). Generally, this explanation could be the main
contributor to the relatively high measured displacement values at P5 besides the other reasons
mentioned previously in 6.3.3 such as: disturbed tectonic fault planes located near to pin P5 and
temporary flat slap placed at the invert forming sharp edges (Lanyon et al. 2014; Lisjak et al.
2015).

145



Chapter 6 Short-term mechanical response of excavation in Opalinus clay

Saturation contours

. 9.35E-01
9.45E-01
9.55E-01
9.65E-01
9.75E-01

9.85E-01
l 9.95E-01
Contour interval= 5.00E-03
Displacement vectors

scaled to max = 6.000E-02
max vector = 2.069E-02

0 2E-1

Fig. 6-20 Saturation around the circular opening before support activation (relaxation =
95%) and total displacement vectors showing polar symmetry, maximum displacement

values at P2 and P5 with 20.7 mm
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Fig. 6-21 Evolution of saturation at the end of the simulation at equillibrum state, showing
drop of saturation near to P5. Excessive total displacement value near to P5 with average
value of 65 mm, near to P2 the developed displacements are comparably low. At line P1-P4

displacements reach the minimum.
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The computed relative displacements between pin points are compared with the results from
undrained numerical simulations and the average field results (Fig. 6-22). Convergences at lines
P1-P3 and P2-P4 are quite equal to the computed values using the mechanical only simulation and
are also close to the measured values. For lines P5-P3 and P2-P5, the computed values are almost
similar, however the predicted convergence at P5-P3 is over-estimated by about 20 mm. There is
perfect agreement with in-situ measurements for the computed displacements along P2-P5 = 55
mm. Noticeable improvement in the predicted convergences for lines P1-P4 and P1-P5 was
achieved in reference to previous simulation results in which the computed values are under-
predicted by 18 and 24 mm, respectively. In general, the numerical simulations considering pore
pressure changes result in slightly better prediction of tunnel wall convergences compared to those

without hydro-mechanical coupling.
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P1-P3 P5-P3 P2-P5 P1-P4 P2-P4 P1-P5
Convergence line

Fig. 6-22 Comparison between the computed convergencs and average measurment,

convergence lines are visualized in the legend

The evolution of the vertical displacements is shown in Fig. 6-23. The obtained vertical
displacements for BEFA-10 is 8.15 mm while it is about 8.5 mm for BEFA-11 which is consistent
with the analysis presented by Lisjak et al. (2015). Also the computed final vertical deflections for
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BEFA-10 and BEFA-11 at equilibrium are in close agreement with the field measurements. The
predicted displacements are close to the average measured values at TM28 for inclinometers
BEFA-10 and BEFA-11 which are 4.7 and 9 mm, respectively. On the other hand, the predicted
values in this simulation are increased compared to the mechanical simulation considering no pore
pressure for BEFA-10 and BEFA-11 by 22% and 21.6%, respectively. This indicates the effect of
pore pressure on the evolution of the vertical deflection and settlement in general. There is still
obvious deviation between the predicted vertical displacements and the average in-situ vertical
deflection measured by the inclinometers between TM9 and TM38 considering the displacement
recorded at a given section when the excavation face is approximately 9 m away. The
corresponding value is about 21.5 mm. As previously mentioned, such underestimation of the
vertical deflections could be a result of the selection of the 2-dimensional instead of 3-dimensional
analysis, applying different supporting systems along the tunnel axis, and not considering the time

dependency.
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Fig. 6-23 Computed vertical displacements at locations BEFA-10 and BEFA-11 until
equilibrium. Doted lines indicate the measured vertical deflections for BEFA-10 and

BEFA-11 recorded at the excavation face at TM28.

Regarding the radial displacements, Fig. 6-24 shows the computed values parallel and
perpendicular to the bedding planes at equilibrium. Compared to the measured radial

displacements in Fig. 6-16 and the predicted values for pure mechanical simulations (Fig. 6-17),
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the radial deformations at EXT-02 are still higher than those at EXT-01. Although the predicted
displacements at EXT-01 are greater than those for pure mechanical simulation shown in Fig. 6-17,
an increase in radial displacement by about 100% near to the tunnel perimeter (at pin P4) is
observed. In general, the behavior of the radial displacements between the two simulation
methodologies is similar to the Finite/Discrete Element modelling conducted by Lisjak et al.
(2015). To visualize the EDZ, the plasticity zones are plotted in Fig. 6-25 showing polar symmetry,
similar to the formed EDZ for the mechanical simulation without consideration of pore pressure
(Fig. 6-18). The extension of the plastified zones around the opening is larger in case the pore
water pressure is considered. The maximum extension of the EDZ is found in direction
perpendicular to the bedding plane (P2 and P5) with about 3.5 m from the tunnel wall, while the

extension in direction of the sidewalls reaches only 2.5 m.
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Fig. 6-24 Normalized computed radial displacements at equilliprium along two lines

corresponding to the installed extensometers shown in Fig. 6-9
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Fig. 6-25 Plasticity indicators showing the extension of the EDZ at equilibrium, 10 m x 10 m model size.
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Fig. 6-26 Computed pore pressure change 4g,, at locations of boreholes BEFA-02
(parallel to bedding planes) and BEFA-05 (perpendicular to bedding planes) until
equilibrium state. Doted lines indicate the maximum measured 4y, at interval midpoints

i5 and i4 (BEFA-02 and BEFA-05) recorded close to section TM28.
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The computed pore pressures close to the opening are compared with those values measured along
the installed boreholes BEFA-02 and BEFA-05 (Fig. 6-9). Two history points were positioned at
the same location to record the pore pressure change during the calculation. The location at
approximately TM28 close to the installed piezometer interval midpoints i5 and i4 (Fig. 6-7.b) was
used. The applied simulation methodology cannot duplicate the variation of pore pressure with
real time, thus the computed pore pressures are compared to the maximum average field
measurements. Mostly, the hydraulic behavior shows pressure rise as the face is approached
followed by a subsequent pressure fall and recovery (Lanyon et al. 2014). Fig. 6-26 shows the
variation of the computed pore pressures change at history points located at BEFA-02 and BEFA-
05 versus the average insitu results.

Like the field observations, the numerical simulations capture an obvious difference between the
pore pressure in direction parallel to bedding planes and the values normal to the bedding planes.
The recorded pore pressures parallel to bedding are greater than those in the orthogonal direction
which could be explained by the mechanical deformations during the excavation. While the
relaxation was applied, regions parallel to bedding planes are less deformed than regions
perpendicular to the bedding. As the porosity was assumed constant, the change in pore pressure
is mainly a direct consequence of the induced volumetric strains (Fig. 6-27). In conclusion, more
detailed time dependent fully coupled hydro-mechanical simulation is required to better model this

issue.
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Fig. 6-27 Pore water pressure distribution around excavation at equilibrium showing high pressure

values in regions parallel to bedding planes and low pressures perpendicular to the bedding.
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6.4. Sensitivity analysis
Usually, strain-softened material behavior is grid dependent due to localization in which the
deformation concentrate forming so-called “shear bands”. Thus, sensitivity analysis is performed
to investigate the stability of the unlined hole assuming instantaneous excavation with different
grid sizes, orientation and inhomogeneity. On the other hand, the simulations presented in sections
6.3.3 and 6.3.4 follow the gradual excavation methodology to minimize the inertial reaction.
Another common way assuming that the excavation is made at once will be applied and compared

to the results of the simulations considering pore pressure as described in section 6.3.4.

6.4.1. Mesh sensitivity
In case of plasticity grid size and the mesh orientation have remarkable influence on the
localization, especially the shear band evolution. Different orthogonal grids — coarse (60 x 60
zones) and fine (140 x 140 zones) — are constructed and used to model instantaneous creation of a
circular opening (no relaxation applied, no lining). Same mechanical properties and constitutive
model are applied. The localization of shear strain at equilibrium is compared for both grid

structures (Fig. 6-28 and Fig. 6-29).
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Fig. 6-28 Maximum shear strain at equilliprium (detail with dimension 12 x 18 m) (a) coarse

mesh 60 x 60 zones and (b) fine mesh 140 x 140 zones
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Fig. 6-29 Maximum shear strain (detail with dimension 12 x 18 m of the original grid).

As depicted from Fig. 6-28 and Fig. 6-29, grid structure and orientation have great influence on
the developed maximum shear strain. In the coarse grid (Fig. 6-28.a) the shear strain localization
can hardly be recognized. The radial mesh with high resolution as used for the mechanical
simulations documented in sections 6.3.3 and 6.3.4 shows much better localization effects (Fig.
6-29). This simple mesh study documents, that mesh-independency is not realized. Therefore,
calibration is performed and only valid for specified mesh size and structure. This restriction can

be avoided if internal length scale parameter would be integrated into the constitutive model.

6.4.2. Effect of sudden excavation on pore pressure
Grid and material properties for the simulation are the same as given in chapter 6.3.4. The
difference between gradual and sudden excavation with simultaneously installation of lining is
investigated. Fig. 6-30 and Fig. 6-31 indicate that the differences between both modelling
methodologies are small. The produced total displacements for gradual relaxation are slightly
higher than for suddenly excavated openings especially at sidewalls and at right hand side of the
opening where pin P5 is located, see also Fig. 6-21. Otherwise the evolution of the pore water
pressure is almost identical for both excavation methodologies. However, the suddenly excavated
model indicates higher pore pressure in direction parallel to the bedding planes (g, = 3 MPa).

Such similarity in results between both models can be explained by the explicit time-marching
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calculation scheme of FLAC. The used timestep is always very small to assure that the nonlinear

response due to the unloading follows a valid physical way.
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Fig. 6-30 Total displacements around the circular opening at equilliprium for (a) sudden excavation

and (b) gradual excavation.
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Fig. 6-31 Evolution of pore pressure around opening at equilliprium for (a) sudden

excavation and (b) gradual excavation
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6.5.Conclusion

The short-term deformation behavior of a 3 m diameter tunnel excavated as part of the long term
experiment called “Full-scale Emplacement (FE)” is simulated. The tunnel was excavated in shaly
facies Opalinus clay and its axis is parallel to the bedding planes with dip angle (o = 33° — 40°).
The tunnel length is 50 m in which 4 different support systems have been used. The studied section
was at 28 m depth from the tunnel portal and supported by a 16 cm thick shotcrete layer.

Owing to the mentioned excavation sequence by Miiller et al. (2017) and the insitu measurements
(Lisjak et al. 2015), gradual excavation was used for the numerical simulation of the tunnel. The
support system was installed after 50% of computed convergences. The undrained mechanical
simulations without consideration of pore water pressure showed good agreements with the FDEM
analysis performed by Lisjak et al. (2015). On the other hand, simulations considering the pore
water pressure as a function of volumetric strain was carried out and resulted in even better results
compared to the field data. Generally, the simulated EDZ is in close agreement compared to
numerical studies and field observations.

Finally, a sensitivity analysis in respect to grid dependency and excavation sequence was executed.
For strain softened material like Opalinus clay, grid structure and resolution play an important role.
Strain localization and formation of shear bands are highly grid dependent. Best results are found
for radial symmetric grid. Also, different excavation methodologies have been applied: sudden
and gradual excavations. The effect of these excavation method was analyzed in terms of
displacements and generated pore water pressure around the excavation. It was found that both

methodologies showed only minor differences.
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7. Ubiquitous joint model based on the Hoek-Brown failure

criterion

7.1. Introduction

The development of appropriate constitutive models is one of the key issues for reliable predictions
in rock mechanics and rock engineering. Salager et al. (2013) emphasize the importance to fully
capture the stress-strain behavior of anisotropic rocks and also the current limitations of various
anisotropic rock failure criteria. The directional variation of strength for rocks has been
experimentally verified under different loading conditions (i.e. under uniaxial or triaxial
compression) by many researchers (e.g. Jaeger 1960; Donath 1964; Hoek 1964; Walsh and Brace
1964; Chenevert and Gatlin 1965; McLamore and Gray 1967; Horino and Ellickson 1970; Attewell
and Sandford 1974; Brown et al. 1977; Ramamurthy et al. 1993; Niandou et al. 1997; Duveau and
Shao 1998; Saroglou and Tsiambaos 2008). A full assessment of the mechanical anisotropy of
inherent anisotropic rocks was provided by Fereidooni et al. (2016), especially considering
cohesion and friction angle. Within this thesis, the term ‘inherent anisotropic rock’ means
transverse isotopic fabric rock like slate or shale. However, most of those studies are empirical and
only applicable for specific rocks under certain loading conditions.

For transverse isotropic rocks, the directional variation of the strength has been extensively studied
(Ramamurthy 1993; Tien and Kuo 2001; Ramamurthy and Arora 1994; Bagheripour et al. 2011),
see Fig. 7-1. Jaeger (1960) and Donath (1964) have only considered the potential of sliding failure
on the joint and did not consider the non-sliding failure, which leads to an U-shaped failure
criterion as shown in Fig. 7-1.a. Later, this approach has been extended based on the Mohr-
Coulomb failure criterion to include also non-sliding failure resulting in a shoulder-shaped failure
criterion (Jaeger and Cook 1979). For uniaxial compressive loading the shoulder-shaped curve
gives equal strength values for both sides of the non-sliding failure area. Most of the experimental
studies show maximum strength at 5 = 90° (B is the angle between the main loading direction and
orientation of anisotropy plane). The minimum strength is noticed at f = 30° — 45° (Tien and Kuo
2001). However, as shown in Fig. 7-1.b, the strength at both shoulders is not equal if confining
pressure acts. The third typical failure type valid for rock with more than one joint set is undulatory

or wavy shaped, as shown in Fig. 7-1.c. Usually the directional strength variation is a function of
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both, the degree of the strength anisotropy and the value of the confining pressure (Nasseri, Rao
and Ramamurthy 1997). In case of rocks with higher degree of anisotropy, it is likely that the
strength variation follows the U-shoulder shape or the abstracted shape given in Fig. 7-1.d (Duveau

and Shao 1998).
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Fig. 7-1 Schematics showing the compressive strength anisotropy vs. angle B (a) Jaeger’s

definition — U-shape, (b) Extended Jaeger’s solution — shoulder-shape (Duveau and Shao 1998),
(c) Wavy or undulatory type, and (d) simplified or abstracted shape (Nasseri, Rao and
Ramamurthy 1997).

The failure modes of inherent anisotropic rocks under uniaxial and various triaxial stress
conditions have been discussed extensively by different scholars (Donath 1964; McLamore and
Gray 1967; Niandou et al. 1997). Ambrose (2014) utilized CT scanning and thin sections of the
Bossier shale to investigate the failure modes under different confinement. All of these
investigations showed that failure modes can be categorized into two different types. On the one
hand, failure through the rock matrix, also called “non-sliding mode”, is observed. The analytical
solution of Jaeger and Cook (1979) assumes that the rock matrix strength is a constant value, but
experiments showed different strength values for the matrix depending on loading angle p.
McLamore and Gray (1967) introduced a simple function to explain the variation of the matrix

strength in dependence on the angle f. In a similar way Duveau and Shao (1998) combined the
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non-linear Barton failure criterion with the analytical solution of Jaeger and Cook (1979) to adjust
the variability of the strength in the non-sliding region. On the other hand, failure along the inherent
planes of weakness, also called “sliding-mode” can occur. Such mode was successfully explained
already by Jaeger (1960) and therefore it is included in different solutions to describe the strength
behavior of anisotropic rocks. The explained failure modes of inherent anisotropic rocks are
similar to those found for artificial interlayered materials documented by Tien and Kuo (2001) and
Tien et al. (2006). However, the scope of this chapter is the strength anisotropy of rocks possessing
a natural single set of anisotropic planes, i.e. schistose, bedded, foliated and laminated rocks. The
weakness planes of such rocks cannot explicitly considered in either analytical or numerical
solutions because those planes are found everywhere within the rock and therefore they are called

“ubiquitous joints” (Wang and Huang 2009).
7.2. Anisotropy of Hoek-Brown failure criterion

The Hoek-Brown (H-B) failure criterion is an empirical formulation which is governed by three
material parameters: m, s and o.;. The rock parameter s refers to the quality of the rock: for intact rock
(s=1) and for crushed pieces (0 < s < 1). Thus, the corresponding equation can be written as follows:
o,=0,+0,(m 95, 1)°? (7.1)
O-ci

Where, 0/ and o3 are the maximum and minimum principal stresses. oc;is the uniaxial compressive
strength of the intact rock matrix and m; is a material parameter which expresses the interlocking
and friction between the particles (Hoek and Brown 1980). In case of transverse isotropic rocks, it
was found that both, o, and m; are dependent on the orientation of the applied loading to the
orientation of the anisotropy plane. The consideration of the anisotropic strength characteristics
using the H-B failure criterion can be performed by direct or indirect modifications. Direct
modification means that a factor or a parameter is added into the original formulation to account
for the strength anisotropy while keeping the material parameters constant in terms of their
orientation (Bagheripour et al. 2011; Ismael et al. 2014; Saroglou and Tsiambaos 2008). Indirect
modification means that empirical functions are used to modify the material parameters (m; or s or
both) according to the orientation angle (Colak and Unlu 2004; Hoek and Brown 1980). Eq. 7.2

shows the indirect formulation of anisotropic H-B criterion.
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o, =0,+0. ,(m,—+1)> 7.2)
1 3 cp 14
cp

Most of these modifications of the H-B failure criterion are empirically formulated and work
exclusively for the tested rocks and cannot be generalized. An overview about the latest direct and
indirect anisotropic H-B failure criteria have been provided by Ismael et al. (2015) and Shi et al.
(2016).

This chapter focuses on the indirect approach to provide an anisotropic H-B based constitutive
model. The approach is known as composed failure criterion or discontinues failure criterion
according to Duveau et al. (1998), in which two different failure criteria are merged to describe
both, the sliding and the non-sliding modes of failure.

The pioneering work in this context is those by Hoek (1983) who assumed that the strength of the
rock matrix follows the isotropic H-B failure criterion and for the joint planes the Jaeger solution
for a single plane of weakness is adopted. Later, Amadei and Savage (1989) proposed a multiaxial
composed failure criterion in which the isotropic H-B failure criterion is used for the intact rock
matrix (i.e. s = 1, m; and o.; are constants), while the Coulomb criterion with complete tension cut-
off is applied for the joints. This approach has the advantage to consider the complete triaxial stress
state, whereas the original H-B failure criterion considers only the minimum and maximum
components. However, the shortcomings of this model are: the failure in the rock matrix is still
isotropic and the tensile strength of the joint is restricted to zero.

Another composed failure criterion for transverse isotropic rocks in which the joint is represented
by Jaeger’s weakness failure plane modified by a degradation of cohesion and friction angle
according to the orientation (Tien and Kuo 2001). For the matrix failure an empirical maximum
axial strain criterion derived from the H-B failure criterion is used. The strength of the rock matrix
is dependent on the orientation as two empirical parameters (k and n) were introduced by which
the strength of the rock matrix is controlled. This criterion was successfully tested at several
uniaxial and triaxial lab data and showed good agreement. However, this criterion cannot explain
the severe change of the curvature at points where the failure is changing from non-sliding to
sliding. Also, there is a difficulty regarding the determination of the anisotropy parameter (n)
which plays a critical role in the non-sliding failure region.

Furthermore, Lee and Pietruszczak (2008) proposed a three-dimensional H-B failure criterion

based on the critical plane approach (CPA) published earlier by Pietruszczak and Mroz (2001).
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The matrix strength is anisotropic with directional parameters (ms and sg) utilizing distribution
functions for both parameters, while the sliding failure mode is described by a local form of the
H-B criterion in terms of traction components on the plane. In principle, this approach computes
the failure under consideration of the orientation. This model incorporates the effect of the
intermediate principal stress as well. Compared to the lab results from Martinsburg slate (Donath
1964), the simulation results show good agreement in relation to the sliding failure, but there is
some discrepancy regarding the strength predication of the rock matrix, especially at f=15°. Also,
the applied compressive strength is a constant value.

Recently, the H-B failure criterion has been extended by Lee et al. (2012) to consider the inherent
strength anisotropy based on the microstructure-tensor approach proposed by Pietruszczak and
Mroz (2000). The uniaxial compressive strength is supposed to be orientation dependent while the
rock parameter m; is constant. The intermediate principal stress o2 is also considered in that work.
The simulation results show the noticeable effect of o> on the formation of the failure planes. On
the other hand, this failure criterion could not duplicate the post failure behavior or the orientation
dependency of m;.

Generally, all the above discussed H-B model variants are only failure criteria and do not provide
a full description of the stress-strain relations for anisotropic rocks. Therefore, this chapter
introduces a complete constitutive model (i.e. elastic-perfect-plastic in terms of classical plasticity
theory) consisting of two combined approaches to describe both failure modes of inherent
laminated rocks. For the sliding failure mode along the inherent anisotropy planes, the ubiquitous
joint approach (Ubi) is adopted. On the other hand, the modified H-B criterion is used to capture
the failure in the rock matrix. In the anisotropic constitutive model, the rock parameter m; is a

function of § by using the distribution function given by Lee and Pietruszczak (2008).
7.3. Proposed H-B model framework (Jhoek model)

The developed constitutive model is the result of combining two different approaches to describe
the non-sliding and the sliding failure modes. The non-sliding failure mode is described according
to the adjusted H-B failure criterion and the sliding mode follows the ubiquitous joint approach.
Below the newly developed model is called “Jointed Hoek-Brown constitutive model” (Jhoek
model) which is qualified to capture the strength anisotropy and to simulate the full stress-strain

behavior.
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7.3.1. The H-B Model for rock matrix

The Jhoek model is quite similar to the Mhoek model in (Itasca 2016) and it is considered as an
alternative version of the Hoek-Brown constitutive model based on the work of Cundall et al.
(2003). The Mhoek model includes a tensile yield criterion and allows to specify a dilation angle.
Compared to the Hoek model, the Mhoek model provides a simplified and suitable flow rule for
both, tensile and compressive regions. The simplicity of the Mhoek model is based on a continuous
approximation of the non-linear H-B failure criterion by the linear Mohr-Coulomb failure surface.
This approximation is defined as tangent at the H-B failure envelope for the current acting o; value,
as shown in Fig. 7-2.a. In case of tensile stress, the tangential M-C line at o3= 0 is extended and
intersects with the vertical line at o3 = -s*a.i/ms, which works as tension cut-off part as shown in
Fig. 7-2.b. The yield surface of the Mhoek model uses the general formulation of the H-B failure
criterion according to Eq. 7.3.

o, =0,+0,(m, SER s)* (7.3)

For the current stress level o3, a linear approximation of the M-C failure criterion is performed:

0, =0;N,, +2¢,\N,, (7.4)
Ny, = 1+sing, — 7 (7.5)
1-sing,

where; ¢, and ¢, are the apparent cohesion and friction angle, respectively. Actual cohesion and

friction values for each timestep are evaluated using the following equations:

¢, =2tan"' \[N, —90° (7.6)
¢ = % (7.7)

da

ucs

The values of the parameters Ng, and o, are numerically computed based on the assigned H-B

parameters and the current value of o3.
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Fig. 7-2 Sketch of failure envelope (a) linear approximation of non-linear H-B yield surface at any

applied o3 and (b) tension cut-off part, after (Itasca 2016).

The original Mhoek model is altered to simulate the failure in the rock matrix in which the H-B
parameters s is 1.0 and a equals 0.5 assuming the rock matrix is totally intact. The rock parameter
my 1s orientation dependent (becomes mp) and its value is determined either by lab testing or values
from the distribution function which is discussed later in section 7.3. Based on this modification,
the numerically computed M-C parameters depend on both, the orientation of the inherent
anisotropy planes and the confining pressure. Also, the uniaxial compressive strength o is
orientation dependent (i.e. a.ig). For simplification, the proposed model however requires only the

values of o.; at f=0° and f=90°. Thus, the governing failure criterion can be written as follows:

iy =0y + 0, o (my—2— 1) for0< f<f,., (7.8a)
ci,}=0

Oy = Oy + Gy (M —2—+1)* for B, < <90 (7.8b)
ci, =90

This modified H-B failure criterion works well for the strength prediction of anisotropic rocks,
especially for regions (0°<f<p;) and (f2<<90°, see Fig. 7-1.b. This goes beyond the
modified analytical solution by Jaeger and Cook (1979) and the Ubi model found in FLAC (Itasca
2016) in which the strength parameters are constant as the rock matrix is considered as isotropic.
The variation of the rock parameter ms with orientation guarantees the anisotropy in strength in

the rock matrix.
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7.3.2. The ubiquitous joint approach
Similar to the work of Tien and Kuo (2001) and the Ubi model, the proposed Jhoek model uses
the superposition principle to transfer the global stress state to the local stress state according to
the orientation of the inherent anisotropic planes. The converted stress state allows to test for
sliding along those planes. Normal and shear stresses acting on those planes are considered. The
applied failure criterion is a shear strength criterion. The joint plane strength depends on the
assigned parameters: joint cohesion (¢;) and joint friction angle (¢;). From Eq. 7.9, the strength is
orientation dependent and reaches its minimum value at S, (Fereidooni et al. 2016; Hu et al.
2013). The failure criterion can be expressed considering the confinement as follows:
2c, +o,tan g,

Gp =T (l—tanj¢j tan f3) s;n 20

for g, < B < B, (7.9)

Assigning the strength parameters is described in detail previously in Tien and Kuo (2001).
However, the proposed model demands the quantification of additional parameters, such as: tensile

strength and dilation angle of the joints.

7.3.3. Orientation dependency of parameter mg
As has been mentioned before, the rock parameter my is orientation-dependent which needs
assignment for each f. However, it is not applicable to evaluate this parameter for each £ or for
small intervals such as (44 = 5° or 10°). Thus, it is logical to normalize the values of my by a spatial
distribution function based on the proposed technique by Lee and Pietruszczak (2008). This
approach has been conducted for the spatial variation of the friction angle and cohesion of
transverse isotropic rocks. As mentioned in (Lee and Pietruszczak 2015), the exponential spatial
distribution function proposed in (Lee and Pietruszczak 2008) is more suitable for higher degrees
of anisotropy than the polynomial approximation given by Pietruszczak and Mroz (2001). In this
work, the utilized function from Lee and Pietruszczak (2008) is altered considering the loading
angle f instead of using the orientation angle o or dip angle which is defined as the angle between
the bedding plane and the horizontal axis, see Fig. 7-1. As = 90° — a, cos’a is modified to sin’p.
This recent research utilizes explicitly (i.e. not implicitly included into the Jhoek model) the special
distribution function which normalizes the values of ms according to the orientation . The spatial
distribution function consists of two wings: the left wing distributes the mg values from mg to mmin,
while the right wing is for the values between m i, and mgg. The following equation explains the

implementation of the spatial distribution function:
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my, = a, + a, Exp[Q,(1-3sin® )] (7.10)

where Q is the principal coefficient of the second order tensors describing the spatial distribution
(Qo = Q11 = Q33). The assigned value for Qo has a great influence on the distribution of mg and
offers three different values (- 0.1, - 1.0 and - 5.0). The direction independent coefficients (a; and

az) could be determined as follows:

4= Mo EXP[—2Q | — m, Exp[ A€, ] (7.11a)
Exp[-2Q,1— Exp[ A0, ]
0, = M — M (7.11b)
Exp[-2Q,]1— Exp[AQ),]
A=1-3sin”> g* (7.11¢)

Similar to Lee and Pietruszczak (2008), the constant A is evaluated based on the assigned 8" of 70°.
The presented spatial distribution formulation of mg could be applied for both wings as specified
previously. In case of the left wing (mg to muin), the value of muq. could be assumed as my. On the
other hand, the value of m .. could be assumed as mgy for the right wing. The value of Qo could
not be the same for both wings and depends on the best fit of the distribution with the lab test
results. However, in this work a single value of Qo is assumed for both wings. mui» refers to the
minimum value of mg, and 1s assumed to be at § = 30° or 45°. This distribution function provides
a non-symmetric polynomial normalization of the rock parameter my along £ assuming that the
values of muqx are found at f = 0° and 90°. Although this assumption is hypothetically satisfactory
for anisotropic rocks, the real practicing with anisotropic rocks shows different behavior: the
maximum value is sometimes found at £ # 0° or 90° (Colak and Unlu 2004).

The applicability of this formulation is tested on some inherent anisotropic rocks from the literature
to normalize my values (Table 7-1). The triaxial lab test data were processed to evaluate the value
of m; for different orientation f using RocLab (Rocscience 2011b). RocLab 4.0 (Rocscience 2016)
is a specific tool to perform a regression to get the parameters m; and o.; for certain strength data

sets while s is set to 1 as the tests are conducted on intact rocks and not on a rock mass.
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Table 7-1: Spatial distribution of ms deduced from rock sample data

Rock type moo mo Mmin Pomin £29-pest [Omega]
Martinsburg Slate

14.22 11.54 1.1 30° -0.1
(Donath 1964)
Angers Schist

10.74 14.86 1.65 30° -0.1
(Duveau et al. 1998)
Austin Slate

5.72 6.56 2.54 40° -0.1 or-1.0
(McLamore and Gray 1967)
Green River Shale I

6.99 6.7 6.2 30° -5.0
(McLamore and Gray 1967)
Penrhyn slate 3.07%* 60°%*

9.9%* 8.81 -0.1
(Attewell and Sandford 1974) or 2.48 or 30°
Tournemire Shale

4.33 4.5 2.65 30° -1.0 or -5.0
(Niandou et al. 1997)

* Most references stated that mo9=6.23. However according to the analysis of the triaxial lab data of Penrhyn slate
from (Pei 2008) a value of mgp=9.9 is obtained. This value fits well with the RocData 4.0 plots (Rocscience 2016).
Also, the ratio of the variation of mg values follows the ratio from (Saroglou and Tsiambaos 2008b).

*% The best selected value of fuin is at § = 60°, although at f = 60° it is not the lowest value of m,.

As shown in Fig. 7-3, the spatial distribution function gives an approximation of the values of m
with the orientation according to parameters given in Table 7-1. However, the lab results show
some slight misfit to this distribution as there are values greater than the values at mgand mog. Also,
this distribution function overestimates slightly the mys value for f = 45° — 75°. Moreover, the
dependency of the distribution on the applied value of Qo is quite strong. A parametric study on
Qo was conducted by Lee and Pietruszczak (2008) which revealed a great influence of the selected
Qo value on the shape of the H-B failure criterion envelope for different applied confinements
especially for rock matrix failure.

As shown in Fig. 7-3, the determination of Qo plays a significant role for the shape of the spatial
distribution function (mg). Thus, it is recommended to perform a calibration of Qo against
experimental data to get the best fit. The greater the anisotropy, the greater the fluctuation of the
spatial distribution function and therefore the greater the value of Q. For example, the Green River
shale I which possesses low strength anisotropy according to Ramamurthy strength anisotropy

classification Ramamurthy (1993) (i.e. Rc = 1.4) Qy is -5.0 (very low). However, for high to very
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high anisotropic rocks such as: Martinsburg slate with Rc value > 8 or Penrhyn slate with Rc value

~ 4.85 the value of Qo is -0.1 (very high).
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Fig. 7-3 Spatial distribution of parameter m for various anisotropic rock samples with different applied

Qg values.

7.4. Model implementation

This part contains a detailed description of the implementation of the developed constitutive model,
which consists of two distinct parts: one for the rock matrix by applying the non-linear modified

H-B failure criterion and the other which is a ubiquitous joint approach.
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7.4.1. Model parameters
The model can be used with associated or non-associated flow rule for the rock matrix similar to
the original model Mhoek (Itasca 2016). Table 7-2 specifies the required model parameters. As
shown in Table 7-2, new parameters in the Jhoek model compared to the Mhoek model are: my,

ocio and o990 for the rock matrix as well as all parameters for the joints.

Table 7-2 Parameters for Jhoek model.

Rock matrix parameters Joint plane parameters
- Young’s modulus and Poisson ratio, - Inclination angle (o) = 90 — loading angle
- Dilation angle, B,
- Defined tensile strength (Fig. 7-2.b and Eq. - Joint friction angle (¢),
7.12), - Joint cohesion (c;)),
- Uniaxial compressive strength (ocio Or Geig), - Joint dilation angle (y)),
according to Eq. 7.8, - Joint tensile strength (g;).
- Rock parameter (m).

Generally, the selection of the rock matrix dilation angle value is dependent on the applied
confinement as the dilation decreases with increasing confining pressure (Ribacchi 2000). In the
proposed model, the rock matrix dilation angle could be assigned as a constant value or as a pre-
defined fraction of the numerically computed apparent friction angle ¢., as given by Eq.7.6. For
excellent to very good quality rock, the value is estimated as w = ¢/4 (Alejano and Alonso 2005;
Hoek and Brown 1997). Generally, by increasing the applied confinement, the H-B failure envelop
is softened and therefore the computed apparent friction angle decreases (Eberhardt 2012). Thus,
the best way to assign the rock matrix dilation angle is to use a fraction of the friction angle. The
variability of the dilation angle against the applied confinement is extensively discussed as well
(Zhao and Cai 2010). Moreover, the defined maximum tensile strength is dependent on the

specified uniaxial compressive strength and (mg) value as follows:

t _ O6i(0 or 90)

The joint plane parameters friction angle ¢; and cohesion ¢; should be determined experimentally
based on the procedure proposed by Tien and Kuo (2001). Unlike the joint definition by Barton
(2013), the M-C approximation of the joint behavior requires the assignment of joint cohesion and
tensile strength as well. For the ubiquitous joint model, the assigned joint dilation has not such a

noticeable effect as the pre-yield phase exhibits no plasticity and the post failure behavior is perfect
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plastic. Consequently, the assigned value for y;is between 0° and 10°. The maximum value for the

joint tensile strength is estimated according to (Itasca 2016) as follows:
t c j
o, = An 3 (7.13)

In general, the inserted values of friction angle, cohesion and dilation for the inherent joint planes
do not follow Barton’s definitions of rock joints and particularly those for natural joints in rock
masses. The joint parameters are usually back-analyzed by numerical simulations or obtained from
in-situ measurements. Although the estimation of these parameters does not follow a defined
strategy, it is very important to conduct a sensitivity analysis especially in respect to the scale-

effect and the applied boundary conditions (Alejano and Alonso 2005).

7.4.2. Implementation sequence

After assigning of model parameters, the numerical calculation sequences starts with testing if the
stress state violates the failure envelop. At each step as shown in Fig. 7-4, the failure conditions
for both, the rock matrix and the joint plane have to be tested. For the rock matrix, the applied
stress state is transformed into the principal state at which the H-B yield surface is defined (see Eq.
7.8). As already mentioned, the non-linear H-B failure envelop is approximated by a tangent linear
M-C yield surface at the current applied o3 and the M-C rock parameters are evaluated from the
assigned H-B rock parameters. If the principal stress state violates the yield surface a correction
for the plastic state is required to bring the stress state back to the defined M-C yield surface. For
simplicity perfect plasticity is assumed, although in reality rock exhibits ductility and softening.

After handling the plasticity for the rock matrix, the resulting stress state is examined in respect to
the sliding failure mode on the joint plane. Thus, the global stress state should be transformed to
the predefined local coordinates of this joint plane. Based on the defined M-C yield surface, the
failure conditions are tested for either shear or tension. At the local stress state, the plastic
corrections are numerically computed and then the stress state is transformed back to the global
system. As the stepping in FLAC is an explicit time scheme and the used timestep is always smaller
than the critical time step, violation of the yield surface is avoided after the correction, that means

at the end of each calculation step.
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Fig. 7-4 Flowchart for each calculation step of the Jhoek constitutive model.
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As illustrated, the stress state is tested first for the non-sliding failure mode and later for the sliding
failure mode of the joint plane. As shown in Fig. 7-5, the formed yield surfaces depend on the
value of f. For higher confining stresses and when the friction angle of the joint is larger than the
friction angle of the rock matrix. As shown in Fig. 7-5.b, the linear M-C failure surface of the joint
plane intersects with the H-B failure envelope at higher confinement o3. Thus, a complex yield
surface is formed describing that sliding failure along the joints occurs as long as o3 is lower as at
the intersection point, while at higher confinement the sliding failure mode turns into the non-

sliding mode of failure.

Lincar M-C
approximation
for rock matrix
(a) L (b) Linear M-C
a ~ approximation
<fi< 3 p
Osp<p .' B<p<p for rock matrix .,
< f5<90° .
o) g ¢ a1

Non-Linear H-B Non-Linear H-B

General yield surface  eesses General vicld surface  esesse

M-C yield surface
for joint planc

M-C yicld surface
for joint plane

a3 G3

Fig. 7-5 Yield surfaces for (a) failure through rock matrix: non-sliding failure mode, and (b) sliding

along the inherent joint planes.

7.5. Validation of the model

Various simulations using different lab data have been conducted to check the applicability of the
Jhoek model to simulate the mechanical behavior of inherent anisotropic rocks. The validation of
the Jhoek model involves the gneiss B (Saroglou and Tsiambaos 2008) at different loading
orientations and a study of the strength anisotropy for several rock samples. Also, simulations of
true triaxial tests are used to illustrate the behavior of this model under different values of principal

stresses.
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7.5.1. Failure envelops for gneiss at different loading angle
The tested gneiss B (Saroglou and Tsiambaos 2008) is an inherent anisotropic rock because it is
rich in foliation planes due to the presence of long particles within the fabric (Ismael et al. 2014;
Saroglou and Tsiambaos 2008). Triaxial tests with various confining pressures and at different
orientation angles regarding the foliation planes and the main loading direction were performed.
The given data are not sufficient for the proposed Jhoek model as there are no data about the
inherent joint planes. Therefore, the remaining data concerning the joint planes are taken from
(Asadi 2016). However, dilation angle and tensile strength are missing. These parameters are

assumed reasonably based on previous experience.

Table 7-3 Parameters of gneiss B (Saroglou and Tsiambaos 2008b; Asadi 2016)

Rock matrix parameters

0o [MPa] | Gc99 [MPa] | myg [-] ms3 [-] mys [-] moy [-] v [°] o' [MPa]
45.4 85.7 20.4 13.7 9.5 23.2 Pal4 2.0
Bedding planes parameters

¢j[MPa] | ¢ [°] Wi ] o'j [MPa]

7.2 33 8 1.7

The dilation angle of the rock matrix is assumed to be friction angle dependent and the computed
friction is a function of the confining stress. The rock matrix tensile strength varies from 2.23 to
3.70 MPa based on Eq. 7.12, but it is fixed here to 2 MPa. Also, the assigned value for the inherent
joint plane tensile strength is set to 1.7 MPa in contrast to the computed value according to Eq. 7.13
which gives an unrealistic high value as 11 MPa. The comparison between the lab data for gneiss B
at different values of § and the output from the Jhoek model is shown in Fig. 7-6.

It should be noticed that f = 45° mark a transition point at which the failure mode changes from
sliding mode to a mixed failure mode, see Fig. 7-7. According to (Niandou et al. 1997; Tien et al.
2006), the mixed failure mode is a combination of rock matrix failure and sliding along the joint
planes. This was explained already in Fig. 7-5.b, where the complex yield surface shows an
intersection between rock matrix and joint failure planes. Unlike the failure mode at = 30°, for
different confinement the yield surface is linear which indicates a sliding failure mode and follows

the ubiquitous joint approach.
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Fig. 7-6 Failure envelops for gneiss B at different f: lab data and Jhoek model.
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Fig. 7-7 Transition of failure mode from sliding along the inherent joint planes to non-

sliding at § = 45° under applied o3 =~ 10-15 MPa.
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7.5.2. Strength anisotropy of natural inherent anisotropic rocks
The Jhoek constitutive model is applied to predict the strength for different inherent anisotropic
rocks (persistent continuous foliation planes, (Nasseri et al. 1997)) for different orientation angles
p and different applied confinement 3. In order to predict the mechanical strength for different
orientation angles £, the spatial distribution function defined in section 7.3.3 is applied. Therefore,
the distributions of parameter mp shown in Fig. 7-3 are used. The additional required material

parameters are given in Table 7-4.

Table 7-4 Assigned parameters for different tested inherent anisotropic rocks (Ambrose 2014; Asadi
2016; Duveau and Shao 1998; Pei 2008; Tien and Kuo 2001)

Rock type ¢j [MPa] di [°] 6.0 [MPa] o.90 [MPa] Qy
Martinsburg Slate
9 21 100 155 -0.1
(Donath 1964)
Angers Schist
4 17 145 165 -0.1
(Duveau et al. 1998)
Austin Slate
31 17 230 195 -0.1
(McLamore and Gray 1967)
Green River Shale I
40.5 30 220 200 -5.0
(McLamore and Gray 1967)
Penrhyn Slate
343 14 155 175 -0.1
(Attewell and Sandford 1974)
Tournemire Shale
_ 4 36 36 40 -1.0
(Niandou et al. 1997)

A comparison between the experimental data and the model results are given in Fig. 7-8 to Fig.
7-13. The lab data are plotted as scattered points while the numerical results are lines, as the
assigned 4p (i.e. = fi+1 - Bi) in the numerical simulations for the different anisotropic rock samples
is not larger than 7.5°. On the contrary, the lab test data cannot be interpolated for such small
intervals of £.

The exhibited shape of the strength variation with orientation angle B fluctuates between shoulder-
type and U-type. It is noticed also in (Tien and Kuo 2001), that sliding along the joint is observed

according to the single plane of weakness solution of Jaecger. However, there is some fluctuation
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regarding the compressive strength in the joint sliding part as shown in Fig. 7-9, Fig. 7-12 and Fig.
7-13. In the region where matrix failure occurs, the modified H-B failure criterion gives a
convenient prediction displaying the strength anisotropy with the non-sliding part. According to
Eq. 7.8, the predicted o; depends on the assigned values of my, o.is and the applied o3. For rocks
with high variation of my: by increasing the value of the applied confining stress, the predicted
shape of the failure envelop is different at both shoulders, see Fig. 7-8, Fig. 7-9 and Fig. 7-12. It is
observed also and illustrated in Fig. 7-5.b that with increasing confinement a remarkable
convergence of the values of £; and f> is noticed, which indicates a shift from sliding to non-
sliding failure at the edges of the U-shaped failure envelope representing sliding on the joint. In
agreement with the lab data, there is no significant change of the value of S, at which the value
of o1min 1s found. Finally, it can be stated, that the proposed constitutive model is able to predict
the compressive strength of the tested inherent anisotropic rocks under different applied confining

stresses.
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Fig. 7-8 Predicted failure strength by Jhoek model model in comparison with lab
results of Martinsburg slate (Donath 1964).
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7-9 Predicted failure strength by Jhoek model in comparison with lab results

of Angers Schist (Duveau and Shao 1998).
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Fig. 7-10 Predicted failure strength by Jhoek model in comparison with lab results

of Austin slate (McLamore and Gray 1967).
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7-11 Predicted failure strength by Jhoek model in comparison with lab results

of Green River shale I (McLamore and Gray 1967).
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Fig. 7-12 Predicted failure strength by Jhoek model in comparison with lab results

of Penrhyn slate (Attewell and Sandford 1974).
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Fig. 7-13 Predicted failure strength by Jhoek model in comparion with lab results
of Tournemire shale (Niandou et al. 1997).

7.5.3. True triaxial test and effect of intermediate principal stress

True triaxial tests as proposed by Mogi (1966) allow to apply independently the three principal
stresses on a rectangular prismatic specimen. The applied principal stresses can have different
values which allows to investigate the influence of the intermediate principal stress. One of the
weaknesses of the classical H-B failure criterion is the disregarding of the effect of the intermediate
principal stress (a2). The proposed Jhoek constitutive model is tested against various values of dip
angle jdip (i.e. the orientation angle in 2D, a), strike jdd and various applied o2, while the minimum
applied principal stress g3 is kept constant. Fig. 7-14 illustrates the test settings.

According to the results presented in previous sections, the Jhoek model shows a remarkable
accuracy in predicting the rock strength for different angles f (i.e. f = 90° — jdip or a). In this
section, the influence of different values of jdd with a fixed value of jdip (f = 30°) with applying
different values of the intermediate principal stress is tested. Based on the experimental
investigations on the green foliated Chichibu schist (Mogi et al. 1978; Kwasniewski and Mogi
1990; Kwasniewski and Mogi 2000), three different jdd orientations have been tested under true
triaxial stress conditions. The following cases are considered: (I) strike is parallel to applied o2 (i.e.
jdd = 90°); (II) strike is 45°, and (III) strike is perpendicular to applied o2 (i.e. jdd = 0°). All these
cases are applied at fixed value of jdip which equals 60°, and the applied o3 is fixed to 50 MPa.
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The test results are given by Mogi (2006) and Pei (2008), while the green Chichibu schist

parameters used in the simulation are presented in Table 7-5.
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Fig. 7-14 Test setting for simulation of true triaxial experiment using Jhoek model.

Table 7-5 Assigned parameters of the green foliated Chichibu schist, deduced from (Lee and Pietruszczak
2008; Mogi 2006; Pei 2008)

Rock matrix parameters
Density E [GPa] v [-] G690 [MPa] oc0 [MPa] myg [-] m3g [-] v ]
2780 31 0.2 150 160 13.5 7.54 10
Bedding planes parameters
¢j [MPa] $i [°] AN o'j [MPa]
17 33 8 0.4

The values of Young’s modulus, Poisson ratio and joint parameters are assigned according to Pei

(2008), while other rock matrix parameters are evaluated from the performed conventional triaxial

test using (Rocscience 2016) at orientation angle f = 90° (i.e. jdip = 0°). Because there are no data

about the strength value at f = 0°, o0 is assumed to be 160 MPa, as it is supposed that it must be

greater than ocgg. For Case 11, there are two different values of m39 assigned to the rock matrix. The

applied values for the uniaxial compressive strength and m3o for each case are given in Table 7-6.
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Table 7-6 Assigned values for rock matrix depending on strike orientation with applied o

Case Number jdipljdd (i.e. ) [°] | p/strike [°] | 6co [MPa] | my o orientation

I 60/90 30/parallel | 160 7.54% strike is parallel to
applied o2

IT — my similar to I 60/45 30/45 160 7.54 strike is inclined. with

11— my similar to II1*** | 60/45 30/45 160 13.5 angle 45° to applied 02

I 60/0 30/normal 160 13.5%* strike is perpendicular
to applied o2

* The value of mp for case I equals the value of msp based on the analysis of Colak and Unlu (2004),

** The value of mg for case Il equals the value of moy based on the calibration of conventional triaxial tests

using RocLab (Rocscience 2011),
**% The best fit value of mg for case 1l should be similar to the value of Case 11, i.e. mg for case 1l equals the

value of mog. However, the best fit for strength is shown fort msg instead of mog. This could be considered as a

shortcoming of the model as there is no representation of the intermediate principal stress, o>.

The results of the numerical simulations using the Jhoek constitutive model in comparison with

the lab results for the three cases are shown in Fig. 7-15. In case I, the difference between maximum

and minimum principal stress is constant (183 MPa). In this case, o> has no effect due to the

following reasons: (i) the shear strength of the joint is considered to be constant, and (ii) the

direction of the applied o is parallel to the strike of the inherent plane of anisotropy and therefore

in the direction of the shear traction force.

@® Casel-Lab data

W Casell - Lab Data
¢  Caselll - Lab data

Case II - m=13.5 (as case III)

= = = Case Il - m=7.54 (as Case I)

Casel

Case 111

60 80

100

o, - 6; [MPa]

120 140

160 180

Fig. 7-15 Numerical simulation results for Jhoek model in comparison with lab data

from Mogi (2006), 3 = 50 MPa.
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For case II, in which the strike of the anisotropy plane is 45° in relation to the direction of o2, the
value of o; varies with increasing applied o2. Two different values are assigned for the rock
parameter mp: 7.54 similar to case I and 13.5 similar to case II. The applied o2 is decomposed into
three traction components: one as normal stress and the two others as shear stresses. The failure
mode is sliding along the anisotropy planes, as long as the shear component is larger than the
normal traction. For mp = 13.5, the failure mode is sliding along inherent planes till o2 = 190 MPa,
then the failure mode becomes non-sliding. The rock matrix strength is similar to this value
observed in case I1I (g; - 03 =366 MPa), as there is no influence of the intermediate principal stress
on the rock matrix failure and the assigned value of my is fixed for both cases II and III. Generally,
the numerical results in this case do not show good agreement with the lab data. Therefore, a
different value of mg is assumed by back analysis to get better correlation with the lab data.

As shown in Fig. 7-15, the sliding mode of failure is observed until (62 = 121 MPa) and then it
becomes non-sliding failure mode in the rock matrix for case II with mpg=7.54. As the value of my
was reduced by -44%, the yielding limit of the rock matrix decreased to (o; - 63=396 MPa) which
is considered in close range to the obtained lab data. Thus, the numerical simulations for case II
assure that the value of myg in 3-dimentional does not only depend on the jdip, the jdd plays a
significant role as well. Similarly, for case III when the strike of the inherent anisotropic planes
are perpendicular to the direction of applied o2, a change in the mode of failure happens rapidly in
this case (i.e. 2~ 110 MPa). This fits well the numerical findings of Lee and Pietruszczak (2008)
and the experimental results of Mogi (2006).

In general, the proposed constitutive Jhoek model is able to capture the effect of the intermediate
principal stress for inherent jointed rocks especially for the failure on the joint planes. However,
the non-sliding failure mode is not affected by o2 because the used H-B yield surface for the rock
matrix does not include o2 which is a shortcoming of the proposed Jhoek model. Therefore, in the
future the rock matrix part in the Jhoek model should be modified to consider o: like proposed in

(Zhang 2008; Zhang and Zhu 2007).
7.6 Conclusions

The simulation of the strength anisotropy of rocks based on the H-B failure criterion is still a
challenging topic which needs improvements. Different approaches have been presented. However,

engineering applications require more comprehensive H-B based constitutive models which are
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able to simulate the behavior of naturally laminated rocks. This chapter presented an elastic-perfect
plastic constitutive model called Jhoek which combines two yield surfaces: one for describing the
anisotropic rock matrix (modified H-B failure criterion) and the ubiquitous joint model duplicating
the inherent joints. The anisotropy of the rock matrix is considered by the variation of the H-B
parameters mg, oo and oci90. Due to the complication of the plasticity of the H-B failure criterion,
the plastic corrections of the rock matrix are based on the linear approximated M-C model. For the
normalization of the rock parameter my, a spatial distribution function is utilized based on Lee and
Pietruszczak (2008).

The developed Jhoek model was successfully tested in reference to different lab experiments. It
can predict the failure load for different angles between loading and foliation (/). For the region
of sliding failure mode (8 = [f1, f2]), however the failure shows a linear behavior as it reflects the
linear M-C failure criterion assigned to the inherent joint planes. The model predictions show a
remarkable agreement with lab data for various applied confinements. Also, the effect of the
intermediate principal stress o2 was duplicated in a correct manner.

Otherwise, the Jhoek model is not able to detect the influence of intermediate principal stress
regarding the rock matrix because o7 is not yet included in the H-B failure criterion. The proposed
model is consistent to the lab results and the introduced examples verify that the Jhoek model can
improve numerical predictions or back analysis for more complex engineering applications in

naturally inherent anisotropic rocks.
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8. Conclusions and recommendations for future work

8.1. Conclusions
In this thesis, stiffness and strength anisotropy behavior of inherent laminated rock masses has
been investigated based on numerical simulations and lab tests. The aim of this work was to
develop different continuum-based anisotropic constitutive laws able to model the influence of
mechanical anisotropy and validate them in reference to lab and in-situ datasets. Different topics
have been discussed in this work: continuum-based approaches for anisotropic rocks, different
failure and deformation mechanisms in anisotropic rocks, propagation and formation of plastic
zones of circular opening in bedded argillaceous rocks and dilatancy of laminated rocks. Overall,

the following conclusions can be drawn.

(1) The rock strength is closely related to the direction of the loading with respect to the orientation
of inherent planes of weakness. Such planes are formed naturally and found in intact rock samples
and rock masses. On other hand, such rocks possess remarkable stiffness anisotropy as well.
Different numerical modelling approaches were analyzed considering the computational

efficiency and accuracy. Continuum modelling techniques shows high proficiency.

(2) A comprehensive literature review over the recent developed continuum-based constitutive
models for inherent anisotropic rocks is presented showing the advantages and limitations of each

model.

(3) Different inherent anisotropic rocks, such as bedded argillaceous rocks, possess not only
anisotropy in strength and stiffness, but show also non-linearity in their stress-strain behavior.
Thus, new bi-linear elasto-plastic transverse isotropic strain hardening/softening model (Transubi
model) was developed to capture all these features. Several datasets from uniaxial and triaxial
compressive tests were gathered from literature and used to validate the Transubi model and to

compare it with existing constitutive models (e.g. Caniso model, ubiquitous joint model).
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(4) Both, the elastic and plastic framework of the Transubi model are introduced in detail. Plastic
corrections for rock matrix and weak planes showed the influence of the stiffness anisotropy. Thus,
this model needs different transformation procedures for stress and strain second order tensors and

fourth order stiffness tensor.

(5) The Transubi model has great potential to reproduce the mechanical response of bedded
argillaceous rocks such as Tournemire shale or Opalinus clay. The pre-yielding hardening and the
post-yielding softening were successfully simulated for both studied rocks. Generally, both rock
types show brittle failure mechanisms. Tournemire shale was simulated using single M-C yield
surface with tension cut-off, while Opalinus clay was simulated with bi-linear shear yield surface.
The dilatancy of both, rock matrix and bedding planes of the Opalinus clay was extensively

investigated by the Transubi model giving more realistic values for the dilation angle.

(6) The presence of the inherent bedding planes can be simulated via both continuum and
discontinuum approaches. However, for larger scale of applications such as tunnels, discontinuum
approaches show limitations in respect to the computational efficiency and upscaling. A special
lab experiment of rock block containing a circular hole excavated in transverse isotropic slate and
subjected to cyclic loading was conducted to investigate the deformation behavior around the hole.
Numerical simulations using the Transubi, the ubiquitous joint and the elastic anisotropic model
were calibrated against the lab results showing good agreement between results of measurements

and the Transubi model.

(7) Numerical analysis of the short-term mechanical response of Opalinus Clay investigated by
field measurements at the FE tunnel excavated at the Mont Terri URL (Switzerland) was
conducted. Two simulations were performed: one considered no pore pressure, while the second
considered pore pressure under undrained conditions. Comparison between simulations and in-situ

data showed that the consideration of pore pressure gives more realistic results.

(8) A sensitivity study was performed in respect to grid dependency and excavation sequence. As
the modelled material (Opalinus clay) is considered as strain softened, the deformation results

show dependency on grid structure and size. Different mesh configurations are proposed and tested,
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with the result, that radial symmetric mesh gives best results. On the other hand, gradual or sudden
excavations methodologies lead to only minor differences. However, wall convergences obtained

from gradual excavation method shows slightly better agreement with in-situ measurements.

(9) An elasto-perfect plastic constitutive model called Jhoek is presented. This model combines
two yield surfaces: one for describing the anisotropic rock matrix (modified H-B failure criterion)
and the ubiquitous joint model duplicating the inherent joint sliding mode. The anisotropy of the
rock matrix is considered by the variation of the H-B parameters mg, o0 and oci90. This model is
validated against series of triaxial tests from literature showing good agreement between numerical
results and lab data. True triaxial test of the green foliated Chichibu schist is simulated showing

that the influence of the intermediate principal stress o> is duplicated in a correct manner.

8.2. Recommendations for future work

(1) Upgrade the proposed Transubi model for 3-dimensional analysis.
This is recommended because (i) axis of principal stress as well as axis of geotechnical
construction may be inclined in relation to joint planes and (ii) developed stress states have a

pronounced 3-dimensional character like a tunnel face etc.

(2) Extension of the Transubi model by including time-dependent behavior.
The current version of the Transubi model is time-independent and used only for short-term
analysis. The consideration of long-term stability (sub-critical crack growth, stress corrosion etc.)

or creep effects need an extension.

(3) Incorporation a regularization algorithm into Transubi model
In order to avoid mesh-dependency, it is very important to incorporate an internal length scale

parameter as a better regularization procedure.

(4) Performing fully hydro-mechanical coupled simulations.
Further validation of the Transubi model should include fully hydro-mechanical coupled
simulations of the pore pressure around the excavated tunnel. For example, the FE-tunnel

experiment at Mt. Terri is providing a good case study for such a task.
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(5) Experimental investigation of dilation behavior of Opalinus clay

During the numerical investigation of the Opalinus clay, it was found that the dilatancy of the
Opalinus clay is sensitive to the orientation of the bedding planes. The reported data from Popp
and Salzer (2007) were only interested in the dip angle without mentioning the dip direction of the
bedding planes. It is recommended to study this issue as it greatly affects the results of the dilation

angles especially for the rock matrix.

(6) Applying Jhoek model in rock engineering

Although the results of the proposed Jhoek model showed consistent agreement to the lab results,
it is recommended to apply this model on more complex engineering applications. The introduced
examples verified that the Jhoek model can improve numerical predictions for naturally inherent

anisotropic rocks. A field study could show the extend and the applicability of this model.
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Transubi model: FLAC keywords

The “transubi” model can be loaded in FLAC using the following commands:

config cppudm
model load modeltransubi.dll (for FLAC version 8.0)
model transubi

A list of model specific keywords follows:

Elastic parameters for intact rock

density mass density, p [kg/m?]

el Young’s modulus parallel to the weak plane, £ [Pa]
e3 Young’s modulus normal to the weak plane, £’ [Pa]
g2 Shear modulus normal to the weak plane, G’ [Pa]
nul Poisson’s ratio in plane, v [-]

nu2 Poisson’s ratio cross plane, v'[-]

Mechanical parameters for intact rock
bimatrix = ( for matrix linear model (default)

= | for matrix bilinear model

cohesion matrix cohesion, c¢; [Pa]

co2 matrix cohesion, ¢z [Pa]

ctable number of table relating matrix cohesion, c;, to matrix plastic shear
strain

c2table number of table relating matrix cohesion, c2, to matrix plastic shear
strain

friction matrix friction angle, ¢ [°]

fr2 matrix friction angle, ¢> [°]

ftable number of table relating matrix friction, ¢;, to matrix plastic shear
strain
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f2table

dilation

di2

dtable

d2table

tension

ttable

number of table relating matrix friction, ¢>, to matrix plastic shear
strain

matrix dilation angle, y; [°]

matrix dilation angle, v [°]

number of table relating matrix dilation, y;, to matrix plastic shear
strain

number of table relating matrix dilation, w2, to matrix plastic shear
strain

matrix tension limit, ¢’ [Pa]

number of table relating matrix tension, ¢’, to matrix plastic shear

strain

Mechanical parameters for joint plane

bijoint

jangle
jcohesion
je2
cjtable

cj2table
jfriction
jf2
fjtable

fj2table

jdilation

jdi2

= 0 for joint linear model (default)

=1 for joint bilinear model

joint angle taken counterclockwise from the x-axis, a [°]

joint cohesion, ¢j; [Pa]

joint cohesion, ¢;2 [Pa]

number of table relating joint cohesion, ¢;;, to joint plastic shear
strain

number of table relating joint cohesion, c;2, to joint plastic shear
strain

joint friction angle, ¢;; [°]

joint friction angle, ¢;2 [°]

number of table relating joint friction, ¢;;, to joint plastic shear
strain

number of table relating joint friction, ¢;2, to joint plastic shear
strain

joint dilation angle, v;; [°]

joint dilation angle, w;2 [°]
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djtable number of table relating joint dilation, ;;, to joint plastic shear
strain

dj2table number of table relating joint dilation, 2, to joint plastic shear
strain

jtension joint tension limit, ¢’; [Pa]

tjtable number of table relating joint tension, ¢’;, to joint plastic shear
strain

;% small example of input: multi-joint model****

new
config cppudm
model load modeltransubi.dll
g510
mo transubi
pro den 2700 el 10.5e9 e3 3.5¢9 g2 1.5¢9 nul 0.35 nu2 0.28
pro bijoint 1 bimatrix 1
pro co 4.5e6 fr 34 ten 1.3e6 dila 5
pro co2 6.5e6 fr225di2 7
pro jco 0.6e6 jfr 29 jten 0.65¢6 jdila 10
pro jc2 0.96e6 jf2 21 3di 0
pro jang 0
end
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Jhoek model: FLAC keywords

The “jhoek” model can be loaded in FLAC using the following commands:

config cppudm

model load modeljhoek.dll (for FLAC version 8.0)

model jhoek

A list of model specific keywords follows:

Parameters for intact rock
Bulk

Shear

density

hbmb

hbsigci

hb_doption

hbpsi

hb_tension

elastic bulk modulus, K [Pa]
elastic shear modulus, G [Pa]
mass density, p [kg/m?]
calibrated Hoek-Brown parameter based on given angle, myp [-]
calibrated Hoek-Brown parameter based on given angle, o5 [Pa]
acip = oci), if f (1.e.: 90-a) < Pmin
ocip = ocion), if B (1.e.: 90-01) > Brin
= 0, means a constant dilation angle specified by hbpsi (default)
= -1, means associated flow; w.=¢. (current value of friction)
=val, means a fraction of friction angle, ¢. (. =val x ¢.)
dilation angle,  (specified if hb_doption=0)

current value of matrix tension limit, ¢’ [pa]

based on the given Hoek-Brown parameters, the following properties can be plotted via FISH:

hb_cohesion
hb_friction
hb_dilation

Parameters for joint plane
jangle

jcohesion

jfriction

jdilation

current value of cohesion, c. [pa]
current value of friction, ¢. [°]

current value of dilation, . [°]

joint angle taken counterclockwise from the x-axis, o [°]
joint cohesion, ¢; [Pa]
joint friction angle, ¢, [°]

joint dilation angle, y; [°]
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jtension joint tension limit, ¢’; [Pa]

;*¥** small example of input: multi-joint model****

new

config cppudm

model load modeljhoek.dll

g510
mo jhoek
pro dens 2500 bulk 19¢9 she 8¢9 hbmb 14.86 hbsigci 164.5¢6 hb_doption 0.4
pro jco 4e6 jfr 17 jang 0 jdila 6 jten 0.4e6
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