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ABSTRACT

The application of sensor technologies for raw material characterization is rapidly growing,
and innovative advancement of the technologies is observed. Sensors are being used as
laboratory and in-situ techniques for characterization and definition of raw material proper-
ties. However, application of sensor technologies for underground mining resource extrac-
tion is very limited and highly dependent on the geological and operational environment. In
this study the potential of RGB imaging and FTIR spectroscopy for the characterization of
polymetallic sulphide minerals in a test case of Freiberg mine was investigated. A defined
imaging procedure was used to acquire RGB images. The images were georeferenced,
mosaicked and a mineral map was produced using a supervised image classification tech-
nique. Five mineral types have been identified and the overall classification accuracy
shows the potential of the technique for the delineation of sulphide ores in an underground
mine. FTIR data in combination with chemometric techniques were evaluated for discrimi-
nation of the test case materials. Experimental design was implemented in order to identify
optimal pre-processing strategies. Using the processed data, PLS-DA classification mo-
dels were developed to assess the capability of the model to discriminate the three materi-
al types. The acquired calibration and prediction statistics show the approach is efficient
and provides acceptable classification success. In addition, important variables (wavel-
ength location) responsible for the discrimination of the three materials type were identifi-
ed.

1 Introduction

The future challenges in mining can be attributed to depletion of known shallow mineral reserves,
and limited exploration of deep (>400m depth) resources. Future mining is moving to extraction of
valuable materials under geologically more complex conditions. Geologically complex conditions
are exemplified by deeper mines, a low continuity in grade, presence of toxic elements and high
irregularity in the geometry of the ore boundaries. Mining in complex conditions requires novel
technique and a real-time framework for advanced data acquisition and resource model updating
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[1]. Advanced data acquisition to provide relevant data for real-time online process control and op-
timization in mining application can be achieved using sensor technologies.

The applicability of sensor technologies for insitu material characterization is very limited. The li-
mited use of sensors for insitu material characterization is attributed to various factors. For example,
additional work is needed to show the added value of the use of sensors in the mining industry; the
design of some of the technologies are only intended for laboratory applications, sensor choice is
very specific to material/ deposit type and dependent on the sensor type, the initial investment to
purchase (and setup) the instrument might be higher than the benefit to be realized.

In spite of the limited use of sensors in the mining industry; studies [2] [3] [4] indicate that, the use
of sensor technologies in the mining industry will result in improved efficiency; increase producti-
vity and safety, reduce operational cost and environmental impact.

Sensor technologies provide data on different aspects of material properties. Fundamental understanding of
material characteristics is crucial in selecting the appropriate sensor solutions for material discrimination.
Material property is a broad term which addresses different properties of a certain material; these properties
include physical, chemical, optical, mechanical and atomic properties. Sensor technologies can be applied
throughout the mining value chain; it can be applied during extraction at the mining face, during material
handling and processing. This study presents the results of RGB Imaging and FTIR when applied to raw

material characterization in a test case using the Freiberg mine.

2 RGB Imaging and FTIR techniques

2.1 RGB Imaging

Red-Green-Blue (RGB) cameras operate in the visible range of the electromagnetic spectra and are
commercially most mature technology with rapid data processing capability. RGB sensors are ro-
bust for environmental conditions, non-destructive, need no sample preparation and can be used for
in-situ application. In addition, the technique is completely passive so it can be used in multiple
environments. RGB sensors are manufactured by multiple suppliers as consumer digital cameras.
Commercial availability is therefore not a concern.

RGB imagers characterize the reflectance property of a material and deliver 3 (red-green-blue)
spectral band information often using three independent CCD sensors. As an alternative, some
cameras capture the three band information using complementary metal oxide semiconductor
(CMOS) technology. A RGB camera captures images using a line scan technique and a frame (area
scan) sensor. To capture an image, frame cameras use a two-dimensional array of sensors. Line scan
cameras have a 1 -dimensional array of sensors.

The technology has great potential for mineral/lithological mapping. It produces a multispectral
image and can be used for identification of minerals and lithological units based on material colour
or visual appearance. It produces images that can been seen by human eyes. The data becomes in-
stantly understandable to viewers or operators e.g for a quality control application. RGB sensors are
portable and so are easier for embedding and surface mounting. One potential such application is
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side wall imaging at a mine face. In general, the technology can be directly applied in colour detec-
tion or indirectly for shape recognition of geological units.

Application of RGB images for material characterization is very limited, so far it is used in recyc-
ling, sorting and agricultural application. The use of high spatial resolution and colour selectivity,
[5] revealed the application of the technology for mineral sorting such as sorting of talc and calcite.
[6, 7] showed the potential of RGB images for automatic detection, classification of plant leaf dise-
ases and crop monitoring. The technology can be used for colour sorting of different material
streams and surface inspection of natural material [8]. However, application of RGB images for
underground mine material characterization is poorly defined. This study addresses the potential of
the technology for mine face mapping. In addition, the result was validated using FTIR technique.

2.2 Fourier-transform infrared spectroscopy (FTIR)

Infrared (IR) spectroscopy is a mature technology for the analysis of inorganic and organic materi-
als[9-11]. When samples are exposed to infrared radiation, the bonds in the molecules selectively
absorb the energy of the infrared radiation at specific wavelengths and this causes a change in vibra-
tional energy level of the molecules. Signals in the infrared spectrum of materials are produced as a
consequence of molecular vibrations. Vibration mode is different for each molecule that the infrared
spectrum can be analysed to get information on different functional groups which further can be
related to mineralogy.

The infrared region of the electromagnetic spectrum is divided in to Near Infrared (NIR: 0.7 —
1.4um), Shortwave Infrared (SWIR:1.4— 2.5 um), Mid Wave Infrared (MWIR: 2.5 - 7um), Long
Wave Infrared (LWIR: 7-15um) and Far Infrared (FIR: 15 - 1000pm) regions. SWIR is commonly
used for analysis of a wide range of alteration minerals. The LWIR region is used for identifying
rock forming minerals. However, the MWIR region is the least explored region and it is the focal
point of this study.

FTIR spectrometer has significant advantages of over other infrared spectrometers. It is a particular
focus of this study. For example, FTIR spectroscopy has a higher signal to noise ratio (The desired
signal to the level of background noise is higher so extracting signal is easier), higher accuracy,
short scan time, high resolution and wider scan range [10, 12-14]. Moreover, current advances of
the technology have produced portable FTIR spectrometers and the technology has a high potential
for real-time (in-situ) application [13].

A FTIR analyser has integrated sampling interfaces; Diffuse Reflectance, Attenuated Total Re-
flectance (ATR) and External Reflectance to enable molecular spectra to be obtained with little or
no sample preparation[13]. It is a non-destructive technique, it provides point data with high data
frequency (measurement time less than 30 seconds) and enable infrared (IR) spectral analysis in a
handheld package that it can be used for in-situ application in real-time basis. However, a protective
cover is required for an underground application. The analyser works over a wide range of the
electromagnetic spectrum (1.9um - 14.0um) that it is ideal for identification of various minerals.

Unlike other sensor technologies with a well-established spectral libraries (such as SWIR and RA-
MAN), the MWIR region of the FTIR spectra lacks well-developed libraries. This might be a chal-
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lenge for direct interpretation of the spectral features. This study aims to explore the opportunities
of FTIR combined with Chemometric techniques for material discrimination.

3 Study Area and Data acquisition

To assess the potential of RGB imaging and FTIR spectroscopy for raw material characterization, a
realistic test case was chosen. This test case was chosen to be the Reiche Zeche underground test
mine located in Freiberg, Germany.

3.1 Study Area

The Reiche Zeche underground mine is located in the eastern part of the Erzgebirge, Germany. It
was mined for Silver, Copper, Lead and Arsenic (from 1168 to 1915) and later mainly for Zinc and
pyrite [15]. Due to economic factors, the mine was closed in 1969. Starting from 1976, “Reiche
Zeche” and “Alte Elisabeth” shafts were reconstructed as a research and teaching mine.

3.1.1 Geology

The Erzgebirge is part of the Mid-European metamorphic basement and it represents an antiformal
megastructure. The antiformal megastructure has a large core which is constituted by medium to
high grade metamorphic gneisses and mica schists with intercalations of eclogite [16].

In the Erzgebirge region, two main gneiss units are identified. These are “Red Gneiss Unit” and the
“Grey Gneiss Unit”. Based on textural differences, Grey Gneisses in the Eastern Erzgebirge (Frei-
berg mine area) have been subdivided into two groups [17, 18]: (1) Inner Grey Gneiss: coarse- and
medium-grained biotite gneisses containing K-feldspar-porphyroblasts, and (2) Outer Grey Gneiss:
mostly fine-grained biotite gneisses. The other rock types at the Freiberg mine include; mica schist,
granulites, gabbro, variscan granites, variscan rhyolithes and eclogites [17]

3.1.2 Geological structures

The ore vein network in the test mine is characterized by two (NNE-SSW to N-S and E-W to ENE-
WSW) shear systems, and spatially associated fissure veins [19]. In general, ores in the Freiberg
mining district are associated with a system of dykes.

3.1.3 Mineralization

The Freiberg polymetallic sulphide deposit was formed by two hydrothermal mineralization events
of Late-Variscian and Post-Variscian age [20]. The Late-Variscian mineralization event, which do-
minates in the central part of the mine, is rich in Sulphur, Iron, Lead, Zinc and Copper. Typical ore
minerals are galena, pyrite, sphalerite, arsenopyrite, and chalcopyrite as well as quartz and minor
carbonate gangue.
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The Post-Variscian mineralization event is characterized by ore minerals with less Iron, Copper and
Zinc. It consists of a fluorite-barite-lead ore assemblage, mainly comprising galena, sphalerite, pyri-
te, chalcopyrite and marcasite as well as quartz, barite, fluorite, and carbonates as gangue [20, 21].
The polymetallic sulphide veins of the base metal deposits in the Erzgebirge are hostetd by ortho
gneiss (Freiberg district), mica schists (northern part of the Freiberg districts, Johanngeorgenstadt),
and sub-ordinately by postkinematic granites (Schneeberg and eastern part of the Freiberg district).

For this study, ore implies the polymetallic sulphide deposits including Galena, Sphalerite and
Chalcopyrite. Waste implies the gangue materials including carbonates, quartz and fluorite.

3.2 Data acquisition

Field work was carried out to define, image and map a selected mine face. This face was used to
test the project concept. In addition, the test case material is characterized by a high material and
mineralogical variability. A strategic sampling campaign was planned and conducted to generate
reliable and usable data of appropriate accuracy and precision. The RGB images were taken in-situ
and the FTIR measurements were performed in the laboratory using the samples acquired from sys-
tematic channel samples from the defined mine face.

3.2.1 RGB Imaging

The defined mine face has a lateral extent of ~ 22m and height ~2m, 42 reference points with 50cm
spacing are marked horizontally at the mine face (Figure 2). RGB photographs are acquired at the
defined mine face using Nikon D7100 digital camera with a focal length of 35 mm. The geographic
coordinate of the 21 reference points with Im spacing are acquired using LIDAR scan. Later, these
points are used to georeference and mosaic the images. In addition, each image was taken at the
specified 21 reference points. The full sets of images are acquired using the same camera setting.

The field of view of the camera varies depending on the distance between the camera and the mine
face, effort has been made to ensure the same areal extent coverage during image acquisition. Most
importantly, the images ensures to cover at least 3 reference points that these points can be used as
Ground Controlling Points(GCP) to tie the images together. Taking in to account the approximate
area coverage of each images, two vertical reference points were used to cover the whole defined
face laterally and vertically (Figure 1 and Figure 2).

To avoid or minimize illumination effect, halogen lamps were used to ensure constant illumination
condition throughout the mine face. To minimize distortion, the photographs were taken right in
front of the face (~ 90°). Photos have about 40% overlap that the defined face is fully captured and
the images can be tied together. At each reference point 2 or 3 pictures were taken in case to avoid
errors which can be associated with the photographing process.
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Figure 2: a) Overview illustrating the reference points and the defined mine face
b) lllustrates the two vertical reference points for imaging

A total of 42 images were acquired from the 21 horizontal and 2 vertical camera reference points.
These images fully cover the defined mine face both laterally and vertically.

Physical samples were acquired to validate the RGB imaging. To ensure the representativity of the
samples and to address the spatial variability over the 22m mine face, channel sampling was used.
This samples each lithotype and ore type independently. A total of 23 channels were cut and about
102 samples were collected at different intervals of each channel Figure 3.
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Figure 3: Sketch to illustrate the different intervals of a representative channel sample

3.2.2 FTIR

FTIR measurements were performed using the collected channel samples from the test site. Each
channel sample is split in to two sample sets. One sample set comprises whole rock samples and the
other half is pulverized to produce powder samples. The test case samples are heterogeneous, so
multiple spectra were collected from each sample in order to accommodate the degree of hetero-
geneity within the samples. FTIR data is collected using powder and rock samples. The result
presented in this paper shows the FTIR measurements using powder samples.

The geological nature of the deposit defines the material properties and such properties that are re-
levant for sensor-based material characterization. The choice of sensor and type of sensor measure-
ments need to be optimized for mineralogical and material features of a specific deposit type. The
FTIR measurements were optimized for the test case materials by considering different FTIR
setups. Such optimization includes interfaces (Attenuated Total Reflectance (ATR), External re-
flectance and Diffuse reflectance), number of sample scans, calibration time and resolution. The
ATR sampling interface measures the internal reflection. External reflectance measures the specular
reflection from the sample surface. It is usually most applicable for smooth surfaces. Diffuse re-
flectance measures both internal and external reflection. It is usually associated with reflection from
rough surfaces and is most relevant for this study.

The performance of the three sampling interfaces for materials from the test case was checked for
both whole rock and powder samples. A variety of sample scans were tested and the influence of
this on the measurement result was checked. To acquire better signal to noise ratio different calibra-
tion times of the instrument and the number of background scans was assessed. The instrument ac-
quires data at different resolutions. To assess the validity, measurements were collected at 4cm-1,
8cm-1 and 18cm-1 resolutions and the results are compared.

This work presents the results of analysis of 170 FTIR spectra collected with the preferred instru-
ment set-up. Each spectra represents 64 sample scans at 4cm’ resolution and over a spectral range
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of ~2.5 um to ~15um. To ensure maximum signal to noise the background reference was conducted
over 126 scans.

4 Methodology

4.1 RGB Imaging

The RGB images were acquired from the two vertical reference points (illustrated in Figure 2b) and
a total of 42 images were acquired to cover the defined ~22m lateral extent of the mine face. This
study presents the result of 8§ images which cover ~ 5m laterally and ~ 2m in height. The GCP’s
were used to georeference and mosaic the images together. The coordinate transformation was done
using a similarity polynomial (a first order polynomial which preserves shapes). To enhance distinct
identification of feature types, pre-processing and classification of the RGB images were carried
out. The major steps followed are presented in Figure 4.

Categorical classification using both unsupervised and supervised classification techniques were
used. First, unsupervised classification (UC) using k-mean methods were applied to assess any clus-
tering or grouping of pixels based on their grey level. The k-mean method is one of the most com-
monly used and efficient UC method for cluster analysis. It assigns n observations into k clusters
using the centroid of the clusters and minimizes the sum of squared error [29]. UC is done with no
apriori knowledge about the different classes however it requires apriori specification of the num-
ber of cluster centers. This part is considered as part of exploratory data analysis.
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Figure 4: Workflow for RGB image processing and information extraction

Supervised classification requires a training set for the classifier. The classifier uses a training set of
spectral signatures to identify of similar signatures in the remaining pixels of the images. It labels
all the image pixels as per the trained parameters [22]. Prior knowledge of the different classes is
crucial since the training set selection affects the classification accuracy. A large number of super-
vised classification algorithms are available for image classification and the choice of the classifier
algorithm is based on classification accuracy [22, 23]. For this study, the classification performance
of Maximum likelihood (ML), Minimum distance (MD) and Spectral Angle Mapper (SAM) algo-
rithms were compared.

The ML computes the probability of each pixel belonging to a class which is represented in the sig-
nature file and assigns the pixel to its most probable class. ML is based on two principles; one is
that the distribution of each class is normally distributed and uses Bayes' theorem to assign the pi-
xels in to classes [24]. The MD classifier uses the training data to determine the means of a class
and classify unknown pixels to classes of nearest means [24]. The SAM classifier considers the set
of reference spectra (training data) and the unknown pixels as vectors, and calculates the spectral
angle between them to identify the different classes in the image[25].
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Visual interpretation of the RGB images was conducted to identify the main mineral classes within
the defined mine face. The visual inspection of the images was supported by the geological map
which was generated during the sampling campaign. Training sets ( groups of pixels) were genera-
ted to represent five broad classes in a supervised classification. The feature selection is based on
the visual appearance (colour difference) of the designated material classes. The number of mineral
types which can be identified depends on different factors, such as: the presence of the minerals at
certain location, their clear appearance, the freshness of the exposure so that oxidation or other
weathering processes will not lower the visibility of the minerals and the resolution of the camera.
Thus, for some of the pictures more than 5 mineral classes are identified.

To ensure reliable prediction of the class membership, training area uniformity and representability
of the same class over the whole image was taken in to account. In addition, separability of the clas-
ses in the multidimensional attribute space was checked using histograms. Overlapping classes were
merged together and five broad classes were identified for the classification. Some of the minerals
are combined together (e.g quartz and calcite) since distinguishing the minerals based on their co-
lour and the utilized camera resolution is limited.

Following the selection of training areas a signature file was generated and the whole image was
classified using the signature file of the training sets. The output multiband raster is a classified
image which shows the mineral distribution at the defined mine face. The classification work is
validated using a separate validation sample set.

4.2 FTIR

FTIR spectroscopy combined with techniques used for chemometrics were used to investigate the
applicability of the technology for the discrimination of the test case materials in to ore, host rock
and weathered materials. Examples of each are illustrated in Figure 5. Chemometrics or multivaria-
te data analysis involves mathematical and statistical methods to process data and understand the
chemical compositional information of a material [26, 27]. The multivariate data analysis approach
include: design of experiment, explanatory data analysis and predictive or classification model de-
velopment. The design of experiment was developed for both independent and combined pre-
processing strategies Figure 6. Principal Component Analysis (PCA), outlier detection using T
hostelling and loading plot interpretation was carried out to explore the dataset and gain knowledge.

¢)

Figure 5: Rock samples representing the three material classes
a) Gneiss, b) Weathered material ¢c) Sulphide ore
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Figure 6: Design of experiment for both independent and combined pre-processing strategies

The explanatory data analysis includes an assessment of descriptive statistics and the PCA model.
PCA alone does not provide much, however it orders the latent variables and is useful for visualiza-
tion of high dimensional data. The most important question is how to distinguish between noise and
signal (how to extract valuable information or real information). Therefore, there is a need for de-
sign of experiment for different data pre-processing strategies independently or in combination and
to apply a discriminant analysis to distinguish the most informative variables. The goal of data pre-
processing is to remove data artefacts and make the data more amenable for data analysis. Many
data pre-processing methods are available. In this study, the following methods were applied inde-
pendently and in combination; baseline correction, Multiplicative scattering effect (MSC),
smoothing (such as Gaussian filter smoothing) and scaling ( such as normalize and Standard Nor-
mal Variate (SNV)).

A Partial Least Square - Discriminant Analysis (PLS-DA) classification model was developed to
find a discrimination rule for different categories. PLS-DA is a supervised classification method,
which builds classification rules (model) for pre-specified classes. PLS-DA is useful to identify key
variables for class separation and it helps in understanding differences among groups of samples.
Later, the model can be used for assigning unknown samples to the most probable class. Data is
prepared for PLS-DA analysis; category variables are converted into indicator variables. These
indicator variables are the Y-variables in the PLS model. The PLS-DA was performed in two steps;
first PLS regression was performed and later prediction. PLS regression was performed using the
dependent /response variable (Y) and the categorical data (the different classes). So, three PLS-DA
models (one for each class) were developed. The technique is a one versus all approach which uses
a binary encoding; it assigns 1 if the unknown measurement belongs to the specified class or 0 if it
belongs to other classes (Figure 7). Since three classes are considered, Y (the output) is a matrix
where binary encoding is used for pre-specified 3 classes (the number of targets). The length of Y
will be the same as the number of samples in X.
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Figure 7: A sketch to demonstrate PLS-DA model for three classes. X denotes the input
data where i is the number of samples, j is the number of variables

Model validation is a key requirement for all modelling tasks. Accordingly, to ensure proper model
performance and assess the model’s variable ranking, validation was carried out. To perform the
validation, the datasets were randomly split in to training and test sets taking in to account approxi-
mately equal presence of each classes in the training (calibration) and test (validation) set. The ran-
dom split of the datasets is to avoid systematic error. The calibration data has 130 measurements
and the validation data has 40 measurements. For a direct comparison of the MWIR and LWIR data
outputs, the calibration and validation data were obtained from identical samples measurements.
The parameters of the model are estimated using the training set and the performance of the model
was evaluated using the test set.

The FTIR data was acquired over the range of ~1.9um to ~15um wavelength. However for samples
from the test case the range from 1.9 pm to 2.5 um gave a noisy result and was excluded from all
further analysis. Then, the spectral range from 2.5um to 15um was split into MWIR (2.5 - 7um)
and LWIR (7 - 15pum) regions. Thus, the capability of the two datasets for the discrimination of the
test case materials was assessed separately. The whole data was acquired first and later split. There-
fore, for the two regions data is basically collected using the same setup and the same sample.
MWIR is the least explored region due to limited instrument development. Therefore, there are few
reference spectra. Thus, it is an exciting area of development which shows potential for discrimina-
tion of minerals. Compared to MWIR, LWIR is a better explored region of the IR. Instruments
which operate over this region are available such as: hyperspectral imaging. This region can be used
for identification of rock forming minerals, specifically silicates.

First, using the design of experiment, the MWIR and LWIR spectra were pre-processed using inde-
pendent and combined data filtering techniques. The class discrimination after each filtering techni-
que was assessed. Later, PLS-DA was applied for each pre-processed data and the performance of
the models was evaluated.
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5 Results and Discussion

5.1 RGB imaging

RGB images are acquired in-situ and georeferenced/mosaicked together using the GCP’s marked on
the mine face. Georeferencing and mosaicking of the RGB images is advantageous; to comprehend
the full spatial distribution of minerals (spatial variability ) on a single image, gives extended or full
area coverage of the mine face, to generate spatially constrained image data which further can be
linked with other sensor outputs based on location and improve positional accuracy of data.

The output of unsupervised classification using k-mean is used to determine the general pattern/
groups of the different classes with minimum degree of heterogeneity within a class (Figure 8). This
is considered as the first step for image classification since unsupervised classifiers might be useful
for discovering unknown but useful classes [28]. In addition, the classified image was used as a
preliminary input for definition of the training set.

Figure 8: a) RGB image b) Thematic map produced by K-mean classifier

Using the same training set the accuracy of ML, MD and SAM classification methods were com-
pared. The classification results were examined visually (pattern match) and validated. As can be
inferred from Figure 9, a better pattern match was achieved using ML. The classifier choice was
optimized using a single image at a time but tested on multiple images. Once the preferred classifier
is selected it was applied to the mosaicked images.
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Figure 9: a) RGB image taken at the test case mine face. Ore zone delineation results
produced by three classifiers b) MD c) ML d) SAM

Figure 10 shows an RGB image of the polymetallic sulphide ore at the mine face. The classifier
identified, 6 main classes (mineral types). The classification algorithm performance was assessed
using a validation set. The acquired overall accuracy is 78% and the class accuracy increases to
94%.

Most sulphide minerals show sufficient variation in colour (and therefore can visually be differenti-
ated by their colour ) that they can be delineated or mapped using RGB images. However, the same
mineral (e.g quartz) can appear in different visual appearances depending on its context so the trai-
ning set definition should take in to account the visual appearance of minerals in specific deposit
types. Taking this in to account, the colour of typical minerals from the test case was inspected
prior to feature selection. In the test mine, Arsenopyrite has silvery/golden colour , Pyrite has gol-
den appearance, Galena is grey, Sphalerite is dark grey to black and Quartz is white in colour . This
visual characteristic of the minerals makes RGB imaging a potential technique for the delineation of
sulphide ore zones based on their colour.
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Figure 10: a) shows an RGB face image taken from polymetallic ore at the Freiberg mine
b) Mineral map produced from RGB image

The classification work was extended for georeferenced and mosaicked images. This is illustrated in
Figure 11. These images are taken at a different location but at the same mine face such that the
spatial distribution of the minerals is different. Figure 11 shows 8 images tiled together and classifi-
ed using the same training set. The inset picture shows the reference points across the ~22m long
mine face and the location of these 8 images relative to the reference point. Since, images were not
taken immediate after blasting, the visibility of the sulphide minerals is reduced due to weathering.
As a result, differentiation among sulphide minerals was not achieved. However, image pixels were
successfully classified into five mineral classes namely weathered material, ore, quartz/ calcite , ore
disseminated in gneiss and gneiss. This is a good input to map a high grade ore zone and low grade
ore zone.

The acquired overall classification accuracy (78%), spatial or positional accuracy of the georefe-
renced images (+6cm), spatial resolution (336um) and easy interpretability of the classification re-
sults makes RGB imaging a potential technique for ore zone delineation. Imaging is advantageous
since it covers a wider areal extent and gives information at each specific point on the image.
Whereas, point spectrometers such as Laser Induced Breakdown Spectroscopy (LIBS) or IR (e.g
ASD point analyser) gives point data at specific locations. Compared to other techniques such as
hyperspectral imaging, acquisition of RGB images is low cost, low data volume and low computa-
tional intensity technique. For the same deposit type, if illumination is kept constant over the ima-
ged mine face, the same training set can be used to automate the classification process. In addition,
an RGB imager is a rapid, easily repeatable data acquisition system and it has a good potential for
automation.

Moreover, the use of a base map is important for geological or mineralogical mapping, however a
base map for sidewall mapping maybe difficult to obtain. This might raise a scale issue for mapping
of different lithological and structural units. RGB imaging can be a solution. Due to depletion of
minerals, the future mine is likely to shift to deeper environments. In such conditions it is not
conducive to stay longer to undertake extensive geologically mapping work. RGB imaging offers a
potential automated solution. Moreover, mapping in deleterious or hazardous environments can also
be achieved using RGB imaging. In general, comparing the approach with conventional mapping

117



REAL TIME MINING - Conference on Innovation on Raw Material Extraction = Amsterdam 2017

methods; RGB imaging gives objective, reproducible results and an expandable database. It can be
considered as complementary technique for mineral mapping.
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Figure 11: Thematic map of the mosaicked images. The relative location of the classified
images with respect to the 22m mine face is indicated in the inset map
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Figure 12: Mosaicked RGB images showing the position of the channel samples superimpo-
sed. The channels have ~80 cm to 120 cm spacing. Channel locations with their
corresponding intervals were digitized from the images. Thus, samples acquired
from the channels were spatially constrained.
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Channel samples were acquired from the mine face. The face was imaged after the channels were
cut and the location of each channel was digitized from the images. This is shown in Figure 12. This
is advantageous for generating spatially constrained/ controlled data which will have a significant
input for testing sensor technologies, sensor data integration based on location, for clear under-
standing of the spatial distribution of minerals (which will have an important implication for inter-
pretation of sensor outputs) and to provide location based sensor output data for resources model
updating.

5.2 FTIR

A total of 170 spectra were collected and the data were fused into a single matrix for multivariate
data analysis. Based on the design of experiment, independent and combined data filtering techni-
ques were applied to the data. Later, a PLS-DA classification model was developed to assess the
discrimination results of the raw and processed data. Figure 13 shows PCA models for MWIR and
LWIR after data scaling. As can be inferred from the figure each material type is clustered together
but the boundaries are not that clearly defined.

PC-2 (22%)
PC-2(13%)

® Hostrock m» Weathered materials a4 Ore

Figure 13: PCA distribution of a) MWIR data b) LWIR data of the three material types

The ellipse which bounds the data points on the graph (hostelling’s T?), shows the possible outliers
of the dataset. Outliers can be due to measurement error or a unique sample measurement result.
Their variability is poorly described by a model. Thus, the observed outliers are excluded from the
dataset in order to ensure proper description of variables by the model.

Figure 14 shows the score plots of the MWIR and LWIR data after the data is treated with indepen-
dent and combined filtering techniques. The score plots show the data structure and sample diffe-
rences or similarities in relation to each other. Compared to the raw data, a better clustering and
clear boundaries are achieved for MWIR data after the data is processed. LWIR data shows an im-
provement after data pre-processing is applied. However, the class separability is clearer for the
MWIR data than the LWIR data. The LWIR data do not differentiate the host rock from weathered
materials.
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Figure 14: The score plots of the first three factors from PLS model a) MWIR data after
baseline correction is applied to the data b) LWIR data after Gaussian and
Normalize data filtering is applied to the dataset

The PCA model was used to transform the full spectra into latent values (PC’s), later the loading
plot of the PC’s was interpreted to select the important variables for class differentiation. The first 3
PC’s explained 99% and 96% of the variation for MWIR and LWIR data respectively. The loading
plot of the first 3 PC’s are shown in Figure 15 and Figure 16. Regions indicated by orange coloured
squares are informative variables in the spectral data which are responsible for the difference
between the samples. For purpose of clarity, not all important variables are indicated. As can be
inferred from Figure 15 large loading coefficients (most variation) are observed for the MWIR data
from 2895 — 2300 cm-1 (3.45 — 4.3um) and 1985 — 1581cm-1 (5 — 6.3 um), so these region are the
most informative region for the class differentiation since variation equal information. There is a
clear difference among the three classes (Figure 14a ) that the selected variables are valid to distin-
guish the three classes.
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Figure 15: The loading plot of the first 3 PC’s of the MWIR data

Figure 16 shows the loading plot for the first 3 PC’s of LWIR data. Variables with large loading
coefficients are observed at 7um, 8.2 pm, 8.9 um, 9.5 pm 10.7 um and 13um. Thus, these variables
are responsible for the observed differences between the samples or have a large influence for the
differentiation. This might explain why LWIR could not differentiate weathered material from the
host rock, since most of the variation is in region from 8.2 um to 9um where quartz is a prominent
feature in this region. This might be because the concentration of quartz in Gneiss and the weat-
hered products (relatively quartz is resistant to weathering) is higher than the quartz content in the
ore.
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Figure 16: The loading plot of the first 3 PC’s of the LWIR data

Later, the pre-procced data were used to develop classification models using PLS-DA. The ac-
curacy of the results were compared for the different independent and combined filtering techniques
Table 1.
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Table 1 : PLS-DA model calibration and prediction statistics for ore prediction

Filtering techniques RMSECal RMSECV RMSEP R2

MWIR [LWIR | MWIR | LWIR| MWIR | LWIR [ MWIR [ LWIR

Raw data 0.19| 0.21( 0.21| 0.23| 0.21] 0.19| 0.71| 0.78
SNV 0.077| 0.12( 0.09( 0.15| 0.08| 0.14| 0.96|0.886
Baseline 0.1 0.13| 0.11]0.155| 0.09| 0.15( 0.95( 0.87
MSC 0.11| 0.14( 0.13| 0.19| 0.134| 0.22]| 0.895| 0.72
Gaussian 0.09| 0.15( 0.097(0.166| 0.074| 0.16| 0.97| 0.85

Combinations

Baseline/SNV 0.097( 0.12]| 0.109(0.114| 0.098(0.133| 0.944(0.898
MSC/ Baseline 0.09910.125( 0.12| 0.21| 0.13{0.194 0.9 0.78
Baseline/normalize 0.08( 0.11| 0.087| 0.13| 0.09] 0.11] 0.95( 0.93
Gaussian/SNV 0.08| 0.12 0.09| 0.14( 0.082| 0.14( 0.96)|0.886

Gaussian /normalize | 0.076|0.089( 0.08 0.1 0.09] 0.09| 0.954| 0.95
Gaussian / baseline | 0.085| 0.11| 0.09/0.145| 0.07]0.142| 0.97| 0.88
Gaussian / MSC 0.11] 0.13( 0.13| 0.19] 0.133]| 0.17| 0.897| 0.84

As is inferred from Figure 14 and Table 1, for this specific dataset MWIR data provides more accu-
rate discrimination results compared to LWIR data. Independent and combined data filtering tech-
niques were employed to evaluate the performance of the processed data for the discrimination of
the three classes. For each data processed with either independent or combined filtering techniques,
the calibration statistics and model prediction statistics show that generally the RMSE values are
lower and the R2 values are higher for MWIR data than LWIR. This indicate that the discrimination
capability of MWIR data is superior to LWIR data. However, for both datasets the discrimination
capability was enhanced by employing the filtering techniques. The result is interesting since
MWIR is the least explored region in terms of material characterization, and this region shows the
potential of the MWIR data for discrimination of these materials.

Considering a single filtering technique, the MWIR data gives a better discrimination result after
the data is treated using Gaussian filter smoothing while baseline correction resulted in a better
discrimination result for LWIR data. In general, a better discrimination results were achieved after
both datasets are processed using the filtering techniques. However not all filtering techniques ne-
cessarily improve the model performance. For example, for the LWIR dataset, MSC filtering tech-
nique does not improve the result while baseline correction gave an improved result. This might
arise from the fact that multiplicative effect is not pronounced in the data.

Comparing the single filtering techniques with combined filtering techniques, technique combinati-
on resulted in improvement of the discrimination results for LWIR data. The maximum accuracy
was achieved when Gaussian filter smoothing is combined with area normalization. However, com-
bination of the filtering techniques did not improve the accuracy of discrimination results for
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MWIR data. In general, accuracy of the discrimination result varies from technique to technique.
Therefore, the design of experiment is a crucial step to choose the best suited filtering technique for
each specific dataset.

Sub-clustering of minerals within the general ore class was observed. This sub-clustering might be
attributed to the different ore minerals which occur in the ore since ore is likely composed of mul-
tiple minerals. Thus, the approach can further be extended for discrimination within the ore mine-
rals with careful model calibration and using an extended dataset.

In addition, this experiment was tested by categorizing the materials into two classes; ore verses
waste. The waste material comprises both the host rock and the weathered material. Here, equal
numbers of samples were used in both categories. As it can be inferred from the score plot of PLS
model Figure 17, it is possible to categorize the samples in two classes. Using the FTIR spectral
data combined with data filtering techniques the discrimination results of the PLS-DA model can be
improved.
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Figure 17: Score plots for equal class size a) MWIR b) LWIR data

6 Conclusions

This study focused on investigating the characterization of samples from the test case utilizing RGB
imaging and FTIR technology combined with chemometric methods. A well-defined imaging pro-
cedure was developed to acquire RGB images at the defined mine face. Later, the images were geo-
referenced, mosaicked and a mineral map was produced using a supervised image classification
technique. The supervised image classification identified, 5 main classes (mineral types) with over-
all accuracy of 78%. The result shows that the approach is efficient and provides acceptable classi-
fication success for delineation of a polymetallic sulphide ore zone in an underground mine at this
specific site. Compared to the conventional mapping methods, RGB imaging gives automated, re-
producible and objective results. Moreover, RGB imaging systems are easy to use, rapid, low-cost
and robust to environmental conditions. The technology shows good potential for mapping of visu-
ally distinct minerals in underground mines.

FTIR measurements were optimized for the test case materials and data were acquired using the
preferred instrument setup. Later, the FTIR data was split in to two datasets, one covering the
MWIR region and the other covering the LWIR region. Design of experiment was implemented in
order to identify optimal specific and combined pre-processing strategies for discrimination of the
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three classes (ore, weathered material and the host rock) using both datasets separately. The discri-
mination result shows remarkable improvement after a pre-processing strategy was applied to the
dataset. Furthermore, using the processed data PLS-DA discrimination models were developed and
the predictive abilities of the models were evaluated by the calibration and prediction statistics in
the form of an estimated prediction error. The results demonstrated that (for the tested datasets) the
MWIR data shows a better discrimination result than the LWIR data. Loading plots were inter-
preted and important variables (wavelength location) responsible for the discrimination of the three
materials type were identified. This could be an important input for identification of minerals using
FTIR spectra. Using FTIR combined with chemometrics it is possible to classify the test case mate-
rial. With more FTIR spectral data and accurate model calibration, the approach can be extended for
automation of the material discrimination process.
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