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ABSTRACT 

With the availability of range of artificial lightweight aggregates and other mineral 

admixtures, lightweight aggregate concrete is getting momentum in construction 

industry. With such variety of materials, lightweight aggregate concrete can achieve 

compressive strength similar to that of normal weight concrete and thus be used in 

framed structures. Besides other qualities, like better fire resistance performance, 

better insulating properties, the most attractive part of lightweight concrete is the 

possibility of achieving greater reduction in the self-weight of the reinforced concrete 

member. On an average weight reduction of 20% or even higher can be achieved by 

replacing normal weight concrete with structural lightweight concrete. The effect of 

weight reduction on the whole structure is even more accomplishing, as not only can 

the size of supporting members, for example, columns at lower stories of a high rise 

buildings be reduced, creating more useable area, but also lower footing dimensions 

and savings in reinforcements are possible due to overall positive effect on 

foundations. 

Like any other material, lightweight concrete also has its own demerits, such as higher 

initial cost, lower tensile strength, lower fracture energy, lower bond strength and 

higher shrinkage values. However some of these issues can be addressed with the use 

of discrete fibres. Another important issue in the wide acceptability of lightweight 

concrete whether or not reinforced with fibres is the unavailability of standard rules 

and regulations. This is particularly true in case of bond mechanism of this material 

with deformed reinforcing bars which directly affects the development and splice 

length of these bars.  

There is plenty of literature available on the bond behaviour of normal weight 

concrete and most of the building code standards are based on the test results 

performed on conventional concrete. However, such rules or guidelines are not 

available for lightweight concrete, although, ACI-318 penalizes lightweight concrete 

by lowering its bond strength by 30% due to its lower tensile strength, but there is no 

reference of fibre reinforced concrete. Also, such reduction is not found in fib Model 

Code 2010, although, there is well defined bond stress-slip relationship, it is again 

specifically developed from bond test results of normal weight concrete and such a 

relationship is not available for LWFC.  



  

Current research work was initiated to address these issues by performing bond tests 

on Normal Weight Fibre-reinforced Concrete (NWFC) and Lightweight Fibre-

reinforced Concrete (LWFC) using pull-out test methodology. Besides significant 

improvement in flexural capacity, addition of fibres is also found to positively affect 

the bond strength of both the LWFC and NWFC. At highest fibre dosage (60 kg/m3) 

the bond strength LWFC is either equal or higher than the conventional (NWC) 

concrete of comparable strength. Improvement in bond strength is found to be related 

with the fibre factor f f

f

l V

d
 and is therefore recommended to be included in the fib 

Model Code 2010 bond equation. Modifications are also suggested in bond stress-slip 

relationship parameters to reflect the improvement in residual bond stress-slip profile 

of LWFC.  
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1 Introduction 

1.1 General 

As a structural concrete, lightweight aggregate concrete can be considered as a 

possible alternative to normal strength concrete in situations where dead load dictates 

the structural members’ geometry, be it columns or foundations. However, 

lightweight aggregate concrete is not the first choice of engineers when it comes to 

the selection of structural material for construction due to its brittle nature and limited 

ability to absorb earthquake energy compared to the normal concrete. 

Lightweight Fibre-reinforced Concrete (LWFC) on the other hand, which is made by 

adding discrete fibres to concrete has higher ductility, reduced crack width and also 

good impact resistance. Hence the limitations associated with lightweight concrete 

can be to some extent addressed by using different types of fibres. Acceptance of 

LWFC on a wide scale as a structural material for construction is subjected to detailed 

and thorough understanding of behaviour of this material. Current research work on 

bond performance of this material is a step in this regard. 

1.2 Background 

Normal weight and lightweight concretes are being used as structural concrete for 

quite some time. After many years of research, their properties and behaviour are well 

established and are entered in design codes. Developments in concrete technology and 

construction industry are still continuously pushing researchers and engineers for 

evaluation and standardization of modified properties and behaviour of these and 

other types of concretes – self-compacting concrete, fibre-reinforced concrete and 

self-healing concretes are the notable mentions. 

Since its inception fibre-reinforced concrete has earned its place in construction 

industry, especially for projects dealing with impact and dynamic loadings. 

Subsequent advances in material technology, i.e. fibre types, mineral and chemical 

admixtures, artificial lightweight aggregates have made it possible to produce 

concrete that has favourable rheological behaviour. 
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Lightweight concrete due to lower density requires less effort and energy to handle 

and also has better thermal insulation when compared to normal weight concrete. 

Lower density of this material has been the most interesting point for design engineers 

as they are able to add more members or stories to a structure which otherwise may 

not be possible with normal weight concrete. This aspect is also attractive for design 

engineers who intend to use this concrete as strengthening material for rehabilitation 

of flexural members without adding too much dead load to them. Lightweight 

concrete however is more brittle in nature, besides this, difficulty associated with 

placing it in the form work meant for rehabilitation has also been the discouraging 

factor in its acceptance as the strengthening material. Researchers [1]–[3] have 

addressed these issues using fibres and superplasticizer, and successfully used 

lightweight concrete for repair and strengthening of reinforced concrete members.  

Although, use of fibres has been found effective in enhancing the ductility of this 

concrete and thus addresses the issue of brittleness, another factor in low acceptance 

of lightweight concrete as a construction material has been higher initial investment 

cost. However, in long term, positive effects on foundations and savings from energy 

consumption because of better thermal insulation of structures can be more gainful. 

Based on these arguments, Lightweight Fibre-reinforced Concrete (LWFC) is 

expected to have good production and economic potential.  

As a structural concrete, LWFC must first be extensively investigated for its 

application and design regulations and with years of experience, standards be 

developed. Properties of LWFC are being assessed for quite some time, however, 

because of the diversity of factors influencing, bond between the reinforcing bar and 

the concrete surrounding it is not fully understood or investigated. Current research 

work was carried out to investigate experimentally the interaction between deformed 

reinforcing bars and LWFC. Bond tests were also performed on Normal weight Fibre-

reinforced Concrete (NWFC) of same strength class to better understand the 

performance difference between the two types of concretes. Within this research 

programme only hooked end steel fibres were used for making fibre-reinforced 

concrete. Other types of fibres, reinforcing bars (straight bars) and pre-stressing 

strands were not considered. 
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1.3 Scope of Research 

There is plenty of literature available on bond behaviour due to two main reasons:  

• diversity of parameters influencing it and  

• recent developments in material technology.  

Most of the literature is however focused on normal weight concrete or more recently 

on normal weight high strength concrete. After going through the reports on bond by 

ACI [4] and fib [5] and other research publications, it is realized that there is limited 

data available on bond behaviour of LWFC; furthermore, results reported in the 

literature were based on dosage and types of fibres which are not very common in 

concrete construction. 

The research work presented here is aimed at serving additional database on bond 

behaviour of LWFC and its comparative performance with NWFC of same 

compressive strength class. 

1.4 Objectives 

The main objective of the present thesis is to investigate the bond behaviour of 

Lightweight Fibre-reinforced Concrete (LWFC) and how it performs in comparison to 

NWFC of same strength class. In order to achieve this aim, following tasks were 

undertaken: 

• Review literature on bond performance of LWFC and its other mechanical 

properties. This would help in understanding the relation between bond 

and different concrete properties, besides this, influence of other structural 

and geometrical parameters on bond would be realized. 

• Experimentally investigate the parameters that influence the bond 

performance: reinforcing bar diameter, fibre content and type of concrete. 

• Evaluation of test results proposal of a new approach for description of 

bond in LWFC. 

1.5 Thesis Outline 

The whole document is composed of total seven chapters followed by the annexure of 

bond-slip profiles of test specimens. The details of the chapters are as under; 
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Chapter 2 is about the literature on LWFC, this includes history of lightweight 

concrete and fibres, subsequently leading towards the development of LWFC. It also 

includes literature on the effect of incorporation of fibres on different material 

properties of structural lightweight concrete. 

In Chapter 3, previous literature on Bond is presented; it starts with explaining bond 

mechanism in a reinforced concrete member and its numerical interpretation, 

followed by discussion on factors influencing bond behaviour for both lightweight 

and normal weight concretes. However, due to certain limitations, which are 

discussed later in the chapter, only selective factors/parameters are considered. 

Materials used and the concrete mix design approach adopted for current 

experimental program is presented in Chapter 4. Test parameters and the methodology 

adopted for the design of pull-out test specimens are also explained in this chapter. 

Material properties test results for both LWFC and NWFC are presented in Chapter 5, 

these include fresh and hardened concrete test results, followed by bond test results in 

next chapter. It is done with a hope that these results will help in understanding the 

pull-out behaviour of specimens.  

In Chapter 6, discussion and analysis of the bond test results is made. Results of the 

pull-out tests of NWFC and LWFC are presented along with discussion of effect of 

test parameters on bond behaviour. The analysis of results not only evaluates 

effectiveness of fibres in enhancing material and structural properties of LWFC and 

NWFC but also measures accuracy of code equations used for prediction of bond 

strength. 

Chapter 7 summarizes the major outcomes of the research work and suggests potential 

future research work needed on current topic. 

 

 



 

2 Literature Review on LWFC 

2.1 About the Chapter 

Chapter 2 covers brief history of development of Lightweight Fibre-reinforced 

Concrete (LWFC), its application and challenges in its acceptance on wide scale, 

which leads the focus to current research objectives that includes literature review on 

bond, which is done in chapter 3. It also includes different types of lightweight 

aggregates and fibres, along with their properties, used in production of LWFC. This 

is followed by the review of literature covering effect of fibres on fresh concrete 

properties and hardened concrete properties. 

2.2 History of LWFC 

2.2.1 Lightweight Concrete 

LWFC is concrete made of hydraulic cement containing discontinuous fibres and 

either fine aggregates only or fine aggregates in combination with lightweight 

aggregates. It may also contain pozzolana and other admixtures commonly used in 

conventional concrete. It is therefore important to follow the development of 

lightweight concrete and fibre-reinforced concrete to understand the evolution of 

LWFC. 

History of use of lightweight concrete in Europe dates back to Roman age when 

Grecian and Italian pumice were used as lightweight aggregate for its making. The 

Port of Cosa built in 273 B.C., Pantheon, built in 27 B.C., and famous amphitheatre 

Coliseum, built between 75 to 70 A.D. in Italy, are few of the known existing 

structures from past built using lightweight concrete [6]. In the construction of 

Pantheon dome (Figure 2.1) for example, pumice and tufa, both being lightweight 

aggregates are used in its top portion [7]. This dome still holds the credit of being 

largest unreinforced concrete dome with the of diameter 43.3 m [8]. It is believed that 

erection of such a structure would have not been possible, had the romans not opted 

for lightweight concrete over natural blocks. The structure is nowadays being used as 

a church. 
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Figure 2.1 Cross-section of Pantheon - built in 27 B.C. [9] 

Before Portland cement was conceived by Joseph Aspdin in 1824, roman cement was 

used as a binding medium for making concrete. This cement was so weak that the 

strengths of lightweight and normal weight concretes were almost comparable. But 

with the development of Portland cement, performance difference between the two 

concretes became wider. Various natural lightweight aggregates were tried to close 

this gap and take good advantage of greater strength of new cement but such attempts 

could not succeed. During 20th century, while addressing the bloating problem during 

brick making, Engr. Stephen J. Hayde, from Kansas, discovered that the bloated 

material had the potential of being used as artificial lightweight aggregates and if 

proper grading and size is used in making lightweight concrete then such a concrete 

can have mechanical properties similar to that of regular concrete. After years of 

experimentation, he was granted patent for the process of making artificial lightweight 

aggregates [10].  

It was until the First World War when the full potential of lightweight aggregate 

concrete was realized. Although Lightweight Concrete (LWC) was being used for 

marine applications and in shipbuilding in U.S., its application on large scale was 

recognized during launch of 132.3 m long warship U.S.S. Selma (Figure 2.2). 

Successful operation of the Selma encouraged engineers and the production of 

concrete ships scaled from 14 to 104 by the end of World War II [10]. 
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Figure 2.2 Launching of warship U.S.S Selma, June 1919 [10] 

 

 

 

 

Figure 2.3 Southwestern Bell Telephone Office (Oak Tower) [11] 
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Although the first commercial plant started producing lightweight aggregates in 1920 

in United States; in Germany production of artificial or synthetic aggregates started 

between 1935 to 1939 and Liapor which is produced by thermal treatment of 

expansive clay came to production in Germany in 1967 [12]. 

The first major project that involved use of structural lightweight concrete in 

construction of buildings was undertaken in 1928 in U.S. Engineers on the project 

wanted to add additional stories to the Southwestern Bell Telephone Company office 

(Figure 2.3) in Kansas City. Using LWC having compressive strength of 25 MPa, 

they were able to add 14 stories instead of eight (08) stories conceived with normal 

weight concrete [11]. 

2.2.2 Use of Fibres in Concrete 

Like lightweight aggregates, use of fibres is also not new to mankind. According to 

the second book of Torah “The Book of Exodus”, mud bricks reinforced with straw 

were in use by the Egyptians before Exodus that occurred in 1446 BC. Besides this 

use of asbestos is also reported for strengthening earthenware pots somewhat 4500 

years ago [13].  

Asbestos is a name given to a group of six fibrous minerals which occur naturally. 

Asbestos fibres are too small to be seen by the naked eye, these are also non-

dissolvable in water, do not evaporate and resistant to fire and heat. Prolong exposure 

to asbestos can cause health problems like lung cancer and asbestosis. These health-

related issues led to the option and introduction of alternate fibres. Although, products 

involving asbestos are still widely being used in world, use of asbestos in construction 

projects in developed countries including European Union has been banned [14].   

Like mud bricks, brittleness of cementitious matrices and their weakness in tension 

was equally realized by researchers and is assumed to be the driving reason for using 

fibres to overcome these shortcomings. A good review of earlier patents on fibre 

reinforcement for concrete is presented by Naaman [15]. According to him 

development of fibre reinforcement for concrete can be divided into two 

phases/periods. He terms the first phase prior to 1960s as the pioneering phase during 

which different patents were registered throughout the world but saw almost no 

application and the second phase after 1960s as a phase of growth and application. 
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Different notable patents on fibre reinforced concrete include those filed by A. Berard 

from California in 1874, by R. Weakly from Missouri in 1912, H. Alfsen from France 

in 1918 and by A. Kleinogel from Germany in 1920 who suggested use of iron 

particles in concrete mix. In U.S.S.R. glass fibres were first used in concrete in the 

late 1950s, and then in early 1960s first major investigation was carried out to assess 

the prospective of steel fibres in concrete. This marked the point of second phase from 

where extensive research and development parallel with industrial application of fibre 

reinforced concrete has occurred [16]. Although century old patents exist for use of 

fibres in normal weight concrete, it is not clear exactly when the application of fibres 

in lightweight concrete begun. 

2.3 Structural Lightweight Fibre-Reinforced Concrete 

2.3.1 General Remarks 

There are different types of lightweight concretes used for various purposes, e.g. 

lightweight aggregate concrete, no-fines concrete and cellular concrete. As the name 

suggests in lightweight aggregate concrete, aggregate portion is lighter, generally 

done by replacing normal weight aggregates by lightweight aggregates. Concrete 

made by replacing only the denser coarse aggregates by lightweight aggregates is 

called either coarse lightweight aggregate concrete or sand-lightweight aggregate 

concrete; it is called all-lightweight aggregate concrete if both the fine and coarse 

aggregates (normal weight) are replaced by lightweight aggregates.  Other details, the 

density, strength and applications about lightweight aggregate concrete are presented 

in subsequent sections. 

No-fines concrete is produced by omitting the sand from concrete mix and therefore 

with larger voids is more porous than the conventional concrete but has the 

advantages of being lower in density (1600 – 2000 kg/m3) with better thermal 

insulation property [17], [18]. The thermal conductivity (k ) of no-fines concrete is 

0.7 W/m-K compared to 2.0 W/m-K for dense concrete [19].  This concrete due to its 

lower strength (5 – 15 MPa) and higher brittleness is not used in load carrying 

members. Besides its use in non-load bearing walls and as large in situ panels, this 

concrete, due to its open texture and high permeability (see Figure 2.4 (a)) is also used 
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as a drainage medium where it absorbs rainwater and facilitates the natural runoff 

[20].  

 

(a) 

 

(b) 

Figure 2.4 Lightweight concrete (a) No-fines concrete [21] (b) 
Cellular concrete [22] 

Cellular concrete (Figure 2.4(b)) is made from the mixture of cement, water and 

performed foam [23]. Cellular concretes may or may not include the sand aggregates 

and other admixtures and therefore covers wider range of density i.e. from 320 kg/m3 

to 1920 kg/m3. In every case, these concretes contain stable air or gas cells resulting 

from the action of a foaming agent. Although there are many lightweight cementitious 

materials, the thing that differentiates cellular concrete from these cementitious 

materials is the use of a foaming agent to reduce the density [24]–[27]. Low density 

cellular concrete does not contain aggregates, this concrete therefore attains the 

density of 800 kg/m3 or less and is used for geotechnical fills or on roof decks due to 

better thermal insulation. Typical thermal conductivity values for this concrete are 

presented in following table. Cellular concrete that has sand aggregate as one of the 

constituent materials, generally weight more than 800 kg/m3 but have compressive 

strength less than 17 MPa. Concrete in this density range are used for cast-in-place, 

precast applications and non-structural floor fills [28]. Apart from better thermal 

insulation, other advantages of cellular concrete are better pump ability, ease of 

handling and better acoustical insulating properties.  
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Table 2.1 Thermal conductivity values for oven-dry cellular concrete [23] 

Oven dry density 
(kg/m3) 320 480 640 800 

Thermal conductivity, k
(W/m-K) 0.11 0.13 0.16 0.20 

Like other building materials, performance expectations from lightweight concrete 

have also risen over the years and with the experience of every passing year, more 

predictable material behaviour and properties are being observed. With the possibility 

of achieving high performance lightweight concrete and the other reasons mentioned 

earlier, that, apart from other non-structural applications like lagging or sound-

proofing, it is now being employed as a structural concrete in construction of precast 

elements and high-rise buildings. 

Use of high strength lightweight concrete is particularly encouraging in situations 

where high strength with lower density is preferred. However, compared to the 

normal weight concrete, lightweight concrete demonstrates more brittle behaviour for 

the same strength level. By confining the LWC, using fibres, brittleness of LWC, 

lower residual tensile strength and lower fracture toughness can be overcome [29]. 

2.3.1.1 Types of aggregates 

One of the important constituents of structural lightweight concrete is the lightweight 

aggregate. In general, lightweight aggregates have apparent specific gravity 

considerably lower than the normal weight aggregates. There are several types of 

lightweight aggregates that can be used in the production of variety of LWC mixes. 

For structural concrete, the lightweight fine aggregate and coarse aggregates should 

have maximum bulk density values up to 1120 kg/m3 and 800 kg/m3 respectively and 

are prepared either by processing natural materials (like scoria, tuff) or by sintering of 

blast furnace slag, clay, shale [30]. Compared to this, aggregates such as perlite and 

vermiculite, which are mainly used for making insulating concrete have bulk density 

values in the range of 120 to 160 kg/m3 and are called non-structural aggregates [31]. 

Table 2.2 enlists different types of aggregates with their bulk density values, which 

can be used for production of structural and insulating lightweight concretes.  
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Table 2.2 Different lightweight aggregates used in the production of LWC 

Types of lightweight 
aggregates 

Aggregates’ bulk density, 

a  
(kg/m3) 

Used for making '
cf  

(MPa) 

Expanded slag 800 - 1040 Structural concrete 20 - 40 

Expanded shale, clay, 
slate - sintered 

300 - 800 Structural concrete 20 - 40 

Expanded shale, clay, 
slate – rotary kiln 

300 - 700 Structural concrete 17 - 38 

Cinders 700 - 900 Structural concrete 

Fill concrete 

12 - 40 

Scoria 700 - 1000 Structural concrete, 
Fill concrete and 
insulating concrete 

9 - 17 

Pumice 500 - 700 Fill concrete and 
Insulating concrete 

7 – 14 

Expanded glass 220 - 2160 Structural and 
Insulating concrete 

- 

Perlite 120 - 192 Insulating concrete 2 - 7 

Vermiculite 88 - 160 Insulating concrete 2-7 

2.3.1.2 Range of properties of structural LWC 

As stated earlier LWFC is a lightweight concrete reinforced with fibres; to fit in the 

definition domain of being called structural lightweight fibre-reinforced concrete, 

LWC, as per ACI building code (ACI 318) [32] guidelines should have a minimum of 

28 days cylindrical compressive strength of 17 MPa and an equilibrium density 

between 1120 and 1840 kg/m3. Model Code 2010 [33] on the basis of density 

classifies concrete into lightweight aggregate concrete ( c 2000 kg/m3), normal 

weight ( c2000 2600kg/m3) and heavy weight concrete ( c>2600kg/m3). As 

per ACI [32], [34] and Euro Code [35] lightweight concrete may be termed high 

strength if it attains compressive strength higher than or equal to 55 MPa. 

Figure 2.5 shows full spectrum of lightweight concretes along with range of density 

values that can possibly be achieved by using different aggregate types. Low density 

concretes shown at the left side of the diagram are used for insulation purposes; 
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whereas those in the middle are used as fill concrete and insulating concrete. 

Compared to these two, structural lightweight concrete on the right side of the 

diagram has higher compressive strength and for this reason is primarily used in the 

framed structures. Table 2.2 not only lists bulk density of aggregates and applications 

of lightweight concrete, but also lists compressive strength values that are attainable 

with specified LWA types. 

 

Figure 2.5 Lightweight concretes along with their typical range of 28 – 
day-air-dry unit weight (after [36]) 

2.3.1.3 Fibres used in concrete 

Since 1960s development in fibre technology has given birth to numerous fibre types 

with different geometries. Fibres (Figure 2.6), are categorised as metallic fibres (e.g. 

steel fibres), synthetic fibres (glass fibres, polymeric fibres, carbon fibres), and natural 

fibres (cellulose fibres, basalt fibres, ceramic fibres) and most of the commercially 

available fibres used for concrete making fall into these main categories Fibres are 

produced and applied as continuous fibres (textile meshes) and as short discrete 

fibres. Selection of the specific fibre types or geometry is decided based on 

field/environmental conditions and the type of loading conditions that a structure 

incorporating fibre reinforced concrete has to sustain.  
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Natural fibres can be acquired from different sources such as jute, sisal, sugarcane, 

coconut etc. Although these fibres can be obtained at lower energy costs and their use 

has successfully been reported too by some researchers but durability issues have also 

been recorded mainly due to the expansion of these fibres in presence of moisture 

[16].  

Wide variety of glass fibres with different chemical composition can be obtained for 

use in concrete. Initial research incorporating glass fibres used borosilicate and soda-

lime-silica glass fibres, also known as E-glass and A-glass fibres respectively. 

However reaction of these glass fibres in an alkaline environment makes them 

unsuitable for use in concrete [37]. Nowadays many types of alkali resistant (AR) 

glass fibres are available commercially and almost all concretes made from glass 

fibres utilize this type of fibre. Other properties of glass fibres are tabulated in Table 

2.3. More than 75% of the application of glass fibre-reinforced concrete involves 

making of exterior building façade panels [16]. 

Exposure of AR-glass fibre-reinforced concrete to weather conditions has shown too 

reduction in modulus of rupture strength, loss in strain capacity. Research findings of 

an experimental program [38] which assessed the effect of environment on glass 

fibre-reinforced concrete over 10 years reveal that modulus of rupture strength of 

concrete reduced to the strength level at proportional elastic limit  

 

Figure 2.6 Different fibre types (a) coir – a natural fibre obtained from 
the husk of coconut (b) glass fibres (c) hooked-end steel 
fibres (d) polypropylene – synthetic fibres 
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Different types of fibres such as polypropylene, acrylic, carbon, polyethylene, nylon 

etc. categorized as synthetic fibres are used form making synthetic fibre-reinforced 

concrete (SNFC). Properties of some of these fibres commercially available are 

presented in Table 2.3. Earlier applications of synthetic fibres were in the projects of 

shotcrete concrete, as not only these were easy to handle but also unlike steel fibres 

were resistant to corrosion. At volume fraction of between 0.1% to 0.3% these fibres 

are primarily used for controlling shrinkage cracks [39].  

For most structural and non-structural purposes, steel fibre is the most commonly 

used of all the fibres [40]. Steel fibres have length that range from 6.4 mm to 76 mm 

with an aspect ratio between 20 to 100 and diameter range of 0.25 mm to 1 mm. The 

maximum volume fraction of steel fibres in concrete is from 1.5% to 2%. Utilization 

of fibres above this limit tends to create issues like balling of concrete and other 

mixing and placement issues. Various shapes and cross sections of steel fibres are 

being used in research on steel fibre-reinforced concrete, some of which are shown in 

Figure 2.7. 

Compared to most of the other fibre types, steel fibres have higher elastic modulus 

and specimens made from steel fibre-reinforced concrete have higher toughness 

values. Fibres are sometimes bent at ends or crimped at intervals along their length for 

better mechanical bond with matrix. Crimping process of fibres throughout the fibre 

length may cause loss in elastic modulus of fibres. Other way of increasing the 

mechanical bonding of fibres is by enlarging their surface area, however, this may 

result in difficulty of concrete mix. Major portion of the following write-up contains 

discussions focused on steel fibre-reinforced concrete  
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Figure 2.7 Various shapes of steel fibres used in FRC (after [41]) 

 

Table 2.3 Properties of different types of fibres 

Fibre type Tensile strength 
(MPa) E (GPa) Specific gravity 

Strain at 
break 

% 
Steel fibres 345 - 2600 200 7.8 3 
Glass fibres 

A-glass 
E-glass 

AR-glass 

 
3100 
3450 
2460 

 
65 
72 
79 

 
2.46 
2.54 

2.7-2.74 

 
4.7 
4.8 

2.5-3.6 

Synthetic fibres 
Acrylic 

Polypropylene 
Carbon 

 
268-1000 
138-689 
482-4000 

 
14-19 
3-5 

28-480 

 
1.16-1.18 
0.9-0.91 
1.6-2.15 

 
7.5-50 

15 
0.5-2.4 

Natural fibres 
Coconut 

Jute 
Sisal 

 
120-200 
248-350 
275-568 

 
19-26 
26-32 
13-26 

 
1.12-1.15 
1.02-1.04 
1.33-1.37 

 
10-25 

1.5-1.9 
3-5 

2.3.2 Effect of Fibres on Fresh Concrete Properties 

The two constituting materials in lightweight fibre-reinforced concrete that distinct it 

from normal weight concrete are, the lightweight aggregates and the fibres. 

Subsequent sections therefore present the literature review on the effect of these 

materials on fresh and hardened properties of LWC and where ever possible 

performance comparison is made against normal weight concrete. It is done in a view 

of understanding the correlation, if any, of these properties with the bond of LWFC. 
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2.3.2.1 Workability 

According to ACI Committee 544 [42], “workability of freshly mixed concrete is a 

measure of its ability to be mixed, handled, transported, and, most importantly, placed 

and consolidated with a minimal loss of homogeneity”. It recommends measurement 

of workability of fibre-reinforced concrete by measuring time of flow through 

inverted slump cone (Figure 2.8). Compared to traditional slump cone test, this 

method involves use of vibrator to facilitate the flow of fibre-reinforced concrete and 

noting down the time it takes. The test method is standardized in ASTM C995 [43]; 

however the standard was withdrawn without replacement in 2008 due to 

complexities associated with this method like incompatibility with self-consolidating 

fibrous concretes, wrapping of long fibres along vibrator and filling the cone with 

concrete so that no concrete falls through the hole. Apart from this method, ACI 

Committee [16] also recommends use of Vebe test apparatus standardized in DIN EN 

12350-3 [44] for the workability test. 

German standard DIN EN 12350-5 [45] uses method of jolting the fibre-reinforced  

concrete rather than vibration. The method follows the procedure of filling the cone 

(Figure 2.9) in two layers and then letting the concrete spread by jolting the metal 

plate from specified height for 15 times and then measuring the spread in two 

perpendicular directions. Although the method does not account effectively the 

thixotropic nature of fibre-reinforced concrete compared to those involving vibration, 

but is advantageous in a way that similar test method/procedure is followed for 

concretes containing no fibres, making it easier to compare test results for evaluation 

and also it is easy to carry equipment and perform tests in field with this method. 

The ease with which concrete is worked upon can be improved if the density/weight 

of concrete can be reduced. For such purpose, use of lightweight aggregates of low 

specific gravity becomes advantageous and results in good workable concrete even at 

lower slump values. In contrast higher slump values may cause separation and settling 

of heavier mortar away from lightweight aggregates [13], this phenomenon is 

opposite to that of segregation in normal weight concrete, where heavier aggregates 

settle leaving mortar at surface. ACI [6] therefore limits maximum slump value for 

lightweight aggregate concrete to 125 mm when determined using ASTM C-143 [46] 

procedure.  
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Figure 2.8 Inverted slump cone test apparatus [43] 

Workability of fresh concrete is adversely affected by fibres, the magnitude of effect 

being directly proportional to the amount of fibres being used [47]–[49]. According to 

Bayasi and Soroushian [50], in a fibre-reinforced concrete, fibre aspect ratio f fl d  

and fibre volume fraction (Vf) are the two main parameters that influence concrete 

 

Figure 2.9 Flow table test equipment for measuring workability 
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workability. They investigated the effect of different steel fibre types (crimped, 

hooked end and straight fibres) on workability using inverted slump cone and Vebe 

test methods and found that inverted slump cone timings of hooked-end fibres were 

higher than the straight and crimped fibres. They also reported higher Vebe times for 

crimped fibres compared to straight fibres. Effect of fibres on workability also 

depends upon the fibre types being used as highlighted by Chen and Liu [51]. They 

observed that at 1% volume fraction, steel fibres reduced slump by about 54%, 

whereas this reduction was only 20.8% when propylene fibres were used in 

lightweight concrete. The effect of fibre aspect ratio and fibre volume fraction of steel 

fibres on workability is reported by Yazici et al. [52]. Hooked-end bundled fibres 

having aspect ratios of 45, 65 and 80 were used by the researchers in volume fractions 

of 0.5%, 1% and 1.5%. They observed that workability of the mix was adversely 

affected with increase in fibre volume fraction and fibre aspect ratio. Compared to 

control mix with no fibres, slump of the mix with fibres (0.5% Vf) reduced by only 

4% at lower fibre aspect ratio ( f f 45l d ), for similar fibre content this reduction 

was however around 13% when fibres of higher aspect ratio (
f f 80l d ) were used. 

Authors further report that slump reduced by 13%, 34% and 37% when quantity of 

fibres was increased by 0.5%, 1% and 1.5% respectively for similar fibre aspect ratio 

( f f 80l d ). 

In another study [53] on the effects fibres on properties of lightweight self-

compacting concrete, micro steel fibres were used. These straight fibres had length 

and diameter of 13 mm and 0.2 mm respectively. The authors report that when fibre 

volume fraction increased from 0.5% to 1.25%, the slump flow reduced from 725 mm 

to 630 mm – a reduction of about 13%. 

Superplasticizers are therefore normally used in fibrous concretes to achieve good 

workability. In a study [29] that incorporated steel fibre dosages as high as 160 kg/m3 

(2% Vf) in lightweight concretes made from expanded clay and pumice stone, good 

workability was achieved by using 1.5% of superplasticizer by weight of cement. 

Iqbal et al. [54] increased quantity of fines in his mix design along with 

superplasticizer to achieve required workability for high strength self-consolidating 

lightweight fibrous concrete.   
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2.3.2.2 Density 

Because of their higher specific gravity, steel fibres have tendency to increase the 

density of concrete [55]. A study [56], about steel fibres’ effect on properties of 

lightweight pumice aggregate concrete reports an increase in unit weight of concrete 

by 3.1%, 6.5%, 8.5% for fibre volume fraction of 0.5%, 1% and 1.5% respectively. 

This factor of increase in weight of lightweight concrete therefore needs to be 

considered by design engineers especially for volume fraction of fibres greater than 

1%. Use of fibres having lower specific gravity, like polypropylene or glass fibres or 

hybrid fibres (combination of steel and other fibre types) can be considered as an 

option in such scenario [57]. Silica fume, besides having good effect on interfacial 

transition zone (ITZ) is also found to reduce the concrete weight. Test results [58], on 

effect of silica fume and steel fibres on normal weight concrete show that when steel 

fibres having aspect ratio f fl d  of 65 were added at 1% Vf, unit weight of concrete 

increased by 1.5%, whereas the increment was only 0.4% when silica fume replaced 

cement by 15% at similar fibre dosage (Figure 2.10). 

 

Figure 2.10 Effect of silica fume on fresh concrete density [58] 

ASTM C-138 [59] method which is used for conventional concrete is equally 

applicable fibre-reinforced concrete, except that vibration instead of rodding is used 

for achieving compaction. Similarly German standard DIN 12350-6 [60] can also be 

used for both fibrous and non-fibrous mixes. 
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2.3.2.3 Pump ability 

With the innovations of different materials for concrete making and to avoid city 

pollution, the consumption/requirement of ready mixed concrete is growing. This 

concrete in some situations is needed to be pumped to reduce construction period and 

therefore project cost as well [61]. During pumping controlling the consistency and 

quality of this concrete over long pumping distances like in multi-storey buildings can 

be a difficult task [62]. Basic requirement for efficient pumping of the concrete is that 

the mix should neither be too dry nor too wet.  

Harsher mixes tend to exert pressure on pipe walls, whereas too wet mixes can be 

sticky. For lightweight concretes, extra care is required while pumping, as loss of 

slump at delivery point can be sometimes very high due to absorption of water by 

aggregates which could be as high as 15 to 20%. It is therefore generally standard 

practice that lightweight aggregates are soaked prior to concrete mixing to avoid 

slump loss. Pre-wetting of lightweight aggregates therefore not only improves pump 

ability but also maintains consistency at the end point [63]. ACI Committee 304 [64] 

limits the maximum coarse aggregate size to 1/3 and 2/5 of the smallest of the pump 

or pipe diameter for angular and rounded aggregates respectively. Besides this shape 

of coarse aggregates also affect pumping, e.g. angular aggregates require more mortar 

for effective pumping due to higher surface area compared to rounded aggregates 

[64].  

Estimation of pumping pressure required for pumping fresh concrete is done till to 

date by the field tests in conjunction with the nomograms and guidelines generated 

from past experience [65]. For example, ACI Committee 304 [66] recommends 

production and pumping of trial mix before final mixing, for which the pumping 

pressure may be estimated from the Figure 2.11 shown below. The nomogram 

essentially estimates the pumping pressure based on the required flow rate, pipe 

length and the slump at delivery point. In recent years, researchers [61], [67], [68] 

have also attempted different ways of predicting pumping pressure and flow rate by 

estimating rheological properties of concrete and the lubricating layer, also called 

boundary layer that is formed between concrete and pipe wall during pumping.  
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Figure 2.11 Estimation of concrete pumping pressure from the flow 
chart for required flow rate [66] 

Note: 1”= 25.4 mm, 1´= 0.3048 m, 1 yd3/hr = 0.76 m3 

Addition of steel fibres makes lightweight concrete harder to pump, therefore matrix 

must be rich enough to carry over the fibres and fibres need to be completely mixed 

with the mix. Fibres tend to increase the friction factor and modify viscosity of the 

mix [69]; however this could be compensated using higher HRWRA (High Range 

Water Reducing Admixture) dosage which will decrease viscosity and increase of 

pump ability [70]. Also, mixes rich in cement content or pumps with higher suction 

power or air entrainment can also be considered. Another option to improve the pump 

ability is to use mineral admixtures like fly ash and silica fume [71]. Spherical and 

smaller shape of fly ash particles make the mix more slippery and thus improve the 

pump ability, however its higher content could create sticky effect and reduce pump 

efficiency [72]. Jeong et al [70] investigated the effect of different mineral admixtures 

(fly ash, silica fume and zirconica silica fume) on pumpability and found that for 

similar pumping conditions (pumping pressure, pipe dimensions) flow rate of 

concrete doubled at 20% replacement of cement by zirconia silica fume, which was 

higher than the other types of admixtures.  
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According to ACI Committee 304, both synthetic and steel fibres can be pumped, but 

gives no guidelines on maximum fibre content that can be pumped for different 

conditions and recommends that manufacturer’s manual be consulted in this regard. In 

a field and laboratory testing, however, concretes with fibre volumes up to 1.25 % Vf 

have been used without any difficulty [73], [74]. For pumping a slump of 50 mm to 

150 mm are suitable, multiple factors such as setting of cement and absorption of 

water by aggregates may cause loss of slump while pumping and therefore should be 

considered while mix design. At higher slump values, aggregates might separate from 

rest of the matrix, in such a scenario use of superplasticizer can be effective [66]. 

2.3.2.4 Fibre agglomeration 

Fibre agglomeration or fibre balling is the phenomenon where fibres interlock 

together during mixing of the concrete. It is especially undesirable, as such balls or 

bunches of fibres can create regions of unconsolidated concrete and make pumping of 

concrete difficult. An unconsolidated concrete when hardened would result in voids 

and therefore crack more easily under load. Apart from fibre balling, another aspect 

that needs to be looked upon is the settlement of fibres during mixing of lightweight 

aggregate concrete. This is common in pan type mixers, where steel fibres due to 

higher specific gravity travel to the bottom of mixer leaving the aggregates atop. This 

phenomenon can be avoided by selecting short fibres which result in lesser weight, 

opting for drum type mixer, and designing a mortar with enough viscosity to hold the 

discrete fibres in suspension. 

Factors that contribute in fibre agglomeration are, shape of fibres, fibre aspect ratio, 

size and gradation of aggregates, fibre quantity and the way fibres are mixed to 

concrete. Fibres of specific shape, ball easily than others at similar aspect ratios and 

tendency of interlocking in steel fibres is higher if fibre aspect ratio is higher than 100 

[75]. 

Certain measures, if taken, reduce the chances of balling effect. Attention shall be 

paid to the shape and aspect ratio while selecting the fibre type. Chances of balling are 

reduced if fibre volume fraction is kept lower than 2%, and may increase even at 1% 

if fibres having higher aspect ratio are used. Once type and fibre volume are selected 

then these should be fed into the concrete mixer in a rain type fashion this could be 

done by shaking the fibres through a screen before feeding them in the wet mix. Once 
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fed clumped free, chances of fibre balling are minimal, but the mix must be fluid and 

rich enough to carry over the fibres, otherwise would continue to stack over each 

other forming the wet fibre balls. Use of auxiliary conveyor belt can be helpful for 

easy feeding of fibres as shown in Figure 2.12, the speed of mixer needs to be 

adjusted during this stage. Alternatively .on a batching plant site, fibres should be fed 

on a conveyor belt together with aggregates [76]. German standard, DIN EN 14721 

method [77] can be used for checking balling effect in a mix by taking samples during 

casting stage. Another way of reducing the balling effect is by using bundled fibres 

glued together with the help of water soluble adhesive. Ramakrishnan et al. [78] in 

their work used glued hooked-end steel fibres and straight fibres which were not 

glued. They report that despite having hooked-ends and higher aspect ratio of 100 

f f51 , 0.5l mm d mm compared to that of straight fibres 
f f25.4 , 0.5l mm d mm , 

it was possible to produce tangle free concrete with such high aspect ratio due to 

bundling of fibres. 

2.3.2.5 Air content 

For non-air-entrained concrete, there is always some amount of air which is entrapped 

in concrete. The higher amount of entrapped air could be the result of poor mixing, 

consolidation and improper concrete placement. As a result unwanted and irregularly 

sized air pockets are formed which affect the concrete strength. In some cases, air is 

intentionally introduced in concrete to produce uniformly dispersed air bubbles for 

improving fresh and hardened concrete properties, such a concrete is called air-

 

Figure 2.12 Adding fibres last to the transit mixer [76] 
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entrained concrete. In fresh state, air bubbles, normally created with the help of an air 

entraining admixtures, lubricate the mix and increase slump. In hardened state, 

durability of concrete is highly improved with air-entrainment. Its effectiveness is 

especially realized in areas with higher temperature fluctuations. Freezing and 

thawing cycles in such areas may cause water/ice pressure on cement matrix and its 

possible disintegration. In an air-entrained concrete, this pressure is taken by air 

bubbles which act as a relieve valve and enhance concrete durability. For lightweight 

aggregate concrete recommended and approximate air content values for air-entrained 

and non-air-entrained concretes respectively are presented in Table 2.4. 

Table 2.4 Air content values for air-entrained and non-air-entrained lightweight 
aggregate concrete 

Aggregate 
size 

(mm) 

Approximate amount 
of entrapped air in 
non-air-entrained, % 

Air content for air-entrained concrete for different 
levels of exposure, % 

Mild  Moderate  Extreme 

9.5 3 4.5 6 7.5 
12.7 2.5 4 5.5 7 
19 2 4 5 6 

Source: ACI Committee 211 [79] 

Like other constituent materials of mix e.g. cement, water and aggregates, variation in 

fibre volume, geometry and fibre aspect ratio also greatly affect the fresh properties of 

concrete [80]. The air content of fresh concrete mix is mostly reported to increase 

with subsequent increase in fibre volume and aspect ratio. Iqbal et al. [53] studied the 

effect of change in the volume micro steel fibres on fresh and hardened properties of 

high strength lightweight self-compacting concrete. He used four different volume 

fractions of fibres i.e. 0.5%, 0.75%, 1% and 1.25% in his work and recorded 

respectively the air content values as 3.63%, 4.17%, 5.25%, and 5.32% (see Figure 

2.13). 

In their experimental work Soulioti et al. [81] used two different types of steel fibres 

(hooked end & waved shape) in three different fibre volumes fractions. For both types 

of fibres, they observed increase in air content as the fibre volume increased. 

Although both the fibre types had different aspect ratios, 41 
f f31 , 0.75l mm d mm  

for hooked end and 33 
f f25 , 0.75l mm d mm for waved type, but both these 

resulted in similar increase in air content values. For both fibre types authors have 
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reported 24% increase in air content from reference mix containing no fibres. 

According to Johnston [82] rise in the amount of entrapped air is due to the reduced 

workability of the fibre-reinforced concrete. 

 

Figure 2.13 Effect of steel fibres on lightweight concrete [53] 

2.3.3 Effect of Fibres on Hardened Concrete Properties 

2.3.3.1 Compressive strength 

Inherently all the concretes have micro cracks in them, which can increase in size for 

loads as below as 50% of ultimate load. Formation of network of these cracks causes 

concrete member to fail. Presence of discrete steel fibres resist formation of this 

network due to fibre-matrix bond and hence some improvement in strength and 

ductility can be achieved [83]. Lightweight aggregate concrete specimens under 

compression fail in a highly brittle way, this mode of failure changes to less brittle 

with successive addition of fibres. Irrespective of concrete type, fibres have variable 

effect on compressive strength of concrete; the effect generally being insignificant is 

dependent on the amount of fibres [42]. Studies of Johnston [82] and Williamson [83] 

report an increase of up to 20% in compressive strength test results for normal weight 

concrete after incorporation of steel fibres. In another study [84], increase in 

compressive strength values of just 3.5% and 5.95% was observed for fibre volume 

fractions of 0.5% and 1% respectively. Mahadik et al. [85] report that although 

compressive strength values of all fibrous mixes (Vf = 0.25%, 0.5%, 0.75% and 1%) 

were higher than the reference concrete mix containing no steel fibres, it essentially 

started decreasing after 0.75% Vf. The increase of 24% in strength value observed at 

this fibre content, decreased to 10% at 1% Vf. Recent experimental work by 

Hamzacebi and Sengul [86] on effect of using waste steel fibres in concrete suggest 



2 Literature Review on LWFC  27 

 

 

that fibres have variable influence on compressive strength. Their results indicated 

that for fibre volume of 20 kg/m3, compressive strength of concrete reduced by 8% 

whereas an increase of up to 10% was observed for fibre dosage of 40 kg/m3. Similar 

unclear trend is reported by Lee et al. [87], they used three different fibre aspect ratios 

of hooked-end steel fibres in their experimental work and observed variable profile of 

compressive test results for them (Figure 2.14). 

 

Figure 2.14 Effect of steel fibres of different aspect ratios on 
compressive strength of conventional concrete.(modiefied 
from [87]) 

 

 

Figure 2.15 Stress-strain plot under compression for lightweight fibre-
reinforced concrete [88] 
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An experimental work [88] on effect of steel fibres on bond between conventional 

reinforcement and lightweight concrete which also outlines compressive strength test 

results reports an increase in test results. Lightweight concrete in this study was made 

from expanded clay having maximum aggregate size of 17 mm and hooked-end steel 

fibres of 30 mm length and aspect ratio of 60 were added at dosages of 0.5%, 1% and 

2% Vf. It was observed that compressive strength of these fibrous mixes increased 

(Figure 2.15) by 22%, 29% and 38% respectively. In another study [89] on effect of 

hybrid fibres on mechanical properties of lightweight concrete made from pumice 

aggregate, polypropylene fibres and hooked-end steel fibres 
f f35 , 0.55l mm d mm , 

it is reported that compared to polypropylene fibres, improvement in compressive 

strength of SFRC was more prominent. This improvement however reduced from 

61.5% at fibre volume fraction of 0.5% to 54.5% for fibre volume fraction of 1%. 

Similarly, for propylene fibres compressive strength of concrete increased by 11.2% 

at Vf of 0.2% but a reduction of 8.56% (from reference mix) was observed at Vf = 

0.4%. 

Above studies have reported variable influence of fibres on compressive strength, and 

this unclear trend is considered to be result of lack of uniformity in material selection 

and specimen design. Nevertheless, majority of the past studies have reported that 

compressive strength can be increased from 0 to 15% by using steel fibres up to 1.5% 

[16]. This improvement is considered to be the result of arrest of micro cracks and 

delaying their formation into macro cracks under compressive loads.   

Determination of compressive strength of LWFC can be made using similar testing 

equipment and testing procedure which are used for normal weight concrete. However 

size of molds used for casting specimens should be at least three times the fibre length 

and once filled, these moulds should preferably be vibrated externally to facilitate 

random fibre distribution and discourage preferential fibre alignment, which 

otherwise could yield unrealistic higher compressive strength test results [42] . These 

testing methods are reported by American Society for Testing Materials (ASTM) in 

ASTM-C39 [90] and by German Standard in DIN 12390-3 [91].  

2.3.3.2 Splitting tensile strength 

Multiple factors influence the tensile strength of concrete including concrete 

compressive strength, aggregates type and also type of test used for its determination. 
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Normally tensile strength of concrete ranges between 8 to 15 percent of the 

compressive strength and tensile strength of lightweight concrete can be as low as 

30% than that of normal weight concrete [92]. Two types of tests, splitting tensile 

strength test and flexural tensile strength test (also called modulus of rupture test) are 

commonly used for determination of tensile strength of concrete. There is third type 

of test, called direct tensile strength test used for measuring concrete’s tensile 

strength, but since, there is no international or European standard for the test [93], it is 

mostly used in research works, also among these tests splitting tension test is 

considered more practical and reliable [94].. American Society for Testing Materials 

[30] recommends that concrete made from sand-lightweight aggregate with a 

maximum density of 1140 kg/m3 should have a minimum splitting tensile strength of 

2.3 MPa when determined using ASTM C 496 [95] procedure. 

Most of the previous studies [89], [96]–[99]  have reported increase in splitting tensile 

strength of both lightweight and normal weight concretes. For steel fibre volume 

fraction of up to 1%, an increase in the splitting tensile strength of lightweight 

aggregate concrete can be as high as 116% [57]. Effect of steel fibres on split cylinder 

tensile strength of lightweight aggregate concrete made from expanded clay and 

pumice stone is reported by Campione et al.[29]. They performed split tension testes 

on cylinders of 100 x 200 mm size and used hooked-end steel fibres 

f f30 , 0.5l mm d mm  in four different volume percentages (0, 0.5, 1 and 2%). The 

expanded clay used in their experimental work had maximum aggregate size of 17 

mm and bulk density of 650 kg/m3 that produced the concrete of density 1640 kg/m3. 

They observed that compared to pumice stone lightweight concrete, increase in 

splitting tensile strength was more in expanded clay concrete with addition of steel 

fibres. Results of their work show that for expanded clay lightweight concrete, 

splitting tensile strength was doubled as the fibre quantity increased from 0 to 160 

kg/m3. Furthermore, authors are of the view that strain hardening effect can be 

achieved for fibre dosages of 1% and 2% volume fractions (see Figure 2.16)  
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Figure 2.16 Effect of fibres on split cylinder tensile strength of 
lightweight concrete [29] 

Study by Balendran et al. [96] in which they used 1% Vf of straight steel fibres 

f f15 , 0.25l mm d mm , concludes that splitting tensile strength of both normal 

weight and lightweight concretes increased after fibre addition and that for the same 

volume fraction of fibres this increase was more in lightweight concrete than normal 

weight concrete. Yao et al. [98] report an increase of 36.5% in splitting tensile 

strength of normal weight concrete after adding 0.5% Vf of hybrid fibres composed of 

carbon and steel fibres. Balaguru and Foden [99] observed that fibre length has 

insignificant effect on splitting tensile strength of expanded shale lightweight concrete 

but reported that the strength was more than doubled at maximum fibre content of 90 

kg/m3.  

2.3.3.3 Modulus of elasticity 

Lightweight concrete has lower elastic modulus than normal weight concrete [100] 

and fibres are found to have insignificant influence on modulus of elasticity of 

concrete [13], [97].  Results of elastic modulus tests performed on sintered fly ash 

Pollytag lightweight concrete by Domagala [101] show that the consistent increase of 

hooked end steel fibres from 0% to 0.8% Vf  could not alter its elastic modulus (see 

Figure 2.17). Campione et al. [29] work shows that elastic modulus of expanded clay 

lightweight aggregate increased by 17.7% when fibre volume was raised from 0 to 

2%, however for the same volume fraction it decreased by 12% for lightweight 

concrete made from pumice aggregate. Iqbal et al. [54] produced fibre reinforced high 
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strength lightweight self-compacting concrete using expanded clay as coarse 

aggregate, fly ash and high strength micro steel fibres. Their test results on modulus 

of elasticity show slight decrease of 7% at maximum fibre content of 1.25%. 

Compared to lightweight concrete, modulus of elasticity of normal weight concrete is 

typically 25% to 50% higher [102]. Nevertheless, effect of fibres is found to be 

similar on concrete’s elastic modulus as observed in lightweight concrete. For 

example in a study [58] it was shown that fibres with different aspect ratios of 65 and 

80 had identical effect on elastic modulus of normal weight high strength concretes 

and in both cases maximum change of negative 6.5% was observed at 1% Vf.  

ASTM C469 [103] and DIN EN 12390-13 [104] are used by the respective American 

and German Standards for determination of modulus of elasticity of all types of 

concrete.  

 

Figure 2.17 Effect of steel fibres on elastic modulus of lightweight 
concrete (after [101]) 

2.3.3.4 Flexural strength 

Flexural strength of conventional concrete in laboratory under flexural loads is 

determined either by centre point loading test arrangements or by four-point loading 

test setup. These methods are detailed in ASTM C78 [105] and ASTM C293 [106] by 

American Society for Testing and Materials (ASTM) and in EN 12390-5 [107] as per 

European Standard. For concrete, reinforced with fibres, three different types of test 

arrangements are in practice. For example European Standard EN [108] utilizes the 

centre-point loading test setup in which specimen under flexure is notched at its 



2 Literature Review on LWFC  32 

 

 

bottom and the tensile behaviour is observed from the load-crack mouth opening 

displacement curve obtained from the test. German Committee for Structural 

Concrete (Deutscher Ausschuss für Stahlbeton - DAfStb) [109] uses four point 

bending test setup for flexural strength determination of fibre-reinforced concrete as 

shown in the Figure 2.18. This test setup is also documented in ASTM 

C1609/C1609M [110] with some changes, for example ASTM allows use of different 

specimens sizes, other than the two recommended sizes of 100 x 100 x 350 mm and 

150 x 150 x 500 mm. 

 

Figure 2.18 Four point bending test setup recommended by DAfStb 
[109] 

Fibre addition imparts greater improvement in flexural behaviour of concrete than its 

other aforementioned mechanical properties. This improvement comes from the fact 

that once the beams under flexural loading start cracking, fibres start on taking tensile 

stresses, resist propagation of cracks toward compression zone and thus increase load 

carrying capacity of member. Using four point loading test setup, results show that 

flexural behaviour of unreinforced normal weight concrete beams could be improved 

by 50% to 70% with steel fibres at volume fraction of 1.5% to 2% [16]. Yoo et al. 

[111] used normal strength concrete, high strength concrete and ultra-high strength 

concrete beams reinforced with steel fibres of aspect ratio 60 
f f30 , 0.5l mm d mm

for evaluation of their flexural behaviour. Their results show that for the same 

strength class of normal weight fibre reinforced concrete, increase in fibre content 

from 0.5% to 1%, flexural strength of concrete increased by 39%, whereas it was 

doubled when the fibre dosage was further increased to 2%. 
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Although LWAC has lower flexural strength than normal weight concrete, it has been 

reported by Balendran et al. [96] that improvement in flexural strength of LWAC is 

more than NWC after fibre addition (see Figure 2.19). They used 1% of steel fibres 

for both types of concretes and observed maximum improvement of 43% in flexural 

strength of normal weight concrete, whereas for lightweight concrete, strength 

increased by 91% with similar testing variables. Results of study by Düzgün et al [56] 

contradict with this statement, where flexural strength of concrete made from 75% of 

normal aggregates and 25% of Pumice aggregate increased by 79% at 1% Vf. At the 

same fibre content this improvement was 61%, when all normal weight coarse 

aggregate was replaced with lightweight aggregate.  

General trend on the effect of fibres on tensile strength of concrete from both flexural 

and splitting tensile strength suggest that tensile strength of concrete is positively 

influenced. Tensile strength of test specimens also depends upon the type of test 

which is being used and also on the specimen size, loading conditions and other 

 

Figure 2.19 Flexural strength of plain and fibre-reinforced concretes 
for different beam specimen sizes (a) normal weight 
concrete (b) lightweight concrete (after [96]) 
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factors. For example, tensile strength decreases as the specimen size increases [112] 

and a four point loading test performed on a 150 mm square beam gives higher tensile 

strength (modulus of rupture) than a splitting tensile strength test, which is on an 

average 1.5 times higher. Similarly direct tensile strength as per Euro Code 2 is 10 % 

lower than the splitting tensile strength determined by EN 12390-6 [113]  

2.3.3.5 Post cracking behaviour 

The usefulness of fibres in enhancing the post cracking performance of fibre-

reinforced concrete is undisputable. It is mainly due to this superior quality of 

arresting cracks that FRC (Fibre-reinforced concrete) is used in structures which are 

prone to crack under static, impact or seismic/environmental induced loadings [114]–

[116].  

Post cracking behaviour of FRC can be assessed using similar test setups mentioned 

in section 2.3.3.4, and is generally evaluated in terms of flexural toughness and the 

residual flexural tensile strength determined at specific deflection points as per test 

standards. ASTM 1609 [110] specifies two points, L/600 and L/150 (L = beam span 

length) for residual tensile strength calculations and determination of area of load 

deflection diagram up to net deflection of L/150 for flexural toughness. German 

Committee for Structural Concrete (Deutscher Ausschuss für Stahlbeton - DAfStb) 

[109] uses net deflection of 0.5 mm and 3.5 mm of load-displacement curve (see 

Figure 2.20) for residual flexural strength. The committee uses the mean values of 

these results with some additional calculations to determine the performance class of 

fibre-reinforced concrete. It recommends that apart from other classes such as 

compressive strength, exposure and humidity, the fibre performance class of FRC 

shall also be indicated as a ratio of L1/L2; where L1 and L2 here correspond to 

performance classes for minor and major deformations respectively. Classification of 

SFRC into different performance classes measures its ability to transfer tensile loads 

across a cracked section.  



2 Literature Review on LWFC  35 

 

 

 

Figure 2.20 Specific deflection points on load-displacement curve for 
finding out residual tensile strength [109] 

Performance improvement in post cracking region of FRC, for example improvement 

in flexural strength, toughness and residual load capacity are highly dependent on 

fibre aspect ratio and fibre volume fraction and fibre type [117].  

Gao et al. [117], evaluated the effect of these two parameters i.e. fibre aspect ratio and 

fibre volume fraction) on the properties of lightweight concrete made from expanded 

clay. Four different volume fractions of steel fibres i.e. 0.6%, 1%, 1.5% and 2% were 

used. The fibre lengths (20 mm, 25 mm, 30 mm) used developed aspect ratios of 46, 

58 and 70 respectively. Results of flexural test specimens from his work indicate that 

fibres play major role in increasing the flexural toughness or the area under load-

deflection curve. The improvement in flexural toughness can be seen in Figure 2.21 as 

both the aspect ratio f fl d and fibre volume fraction (Vf) increase. 

 

Figure 2.21 Effect of fibre volume and aspect ratio on flexural 
toughness (after [117]) 
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Besides steel fibres researchers have also evaluated effect of other fibre types used 

individually and also in combination with steel fibres on post cracking behaviour of 

concrete. Corinaldesi and Moriconi [118] for example studied the effect of synthetic 

fibres on the properties of self-compacting lightweight aggregate concrete. 

Polypropylene micro fibres having length 19 mm with aspect ratio of 63 and macro 

fibres 50 mm long, generating aspect ratio of 110 were used in the concrete mixtures. 

Although authors did not observe any improvement in maximum tensile strength 

value, they however did observe significant improvement in post cracking behaviour 

of concrete having synthetic macro fibres. 

Hybrid fibres composed of steel fibres and polypropylene fibres were used by Libre et 

al. [89] in their research work. The steel fibres were hooked-end shaped 35 mm in 

length and with a diameter of 0.55 mm; whereas synthetic fibres had length of 12 mm 

and diameter of 0.016 mm. Fibres were incorporated in both the conventional and 

lightweight concrete made from pumice aggregates. Authors observed higher 

improvement in flexural toughness values of LWAC compared to conventional 

concrete and suggest that this could be due to the higher brittleness of LWAC. They 

also observed that enhancement in toughness values was way higher than the 

improvement in flexural strength, for example, compared to 78 times improvement in 

toughness of concrete, flexural strength improved only by two times at steel fibre 

volume fraction of 1%. Similar observations have been reported by Kim et al. [119], 

who used oil palm shell as lightweight coarse aggregates and hooked end steel fibres 

for production of LWFC. Results of test specimens show that flexural toughness at 

1% volume fraction of fibres was 25 times higher than the control specimens 

containing no fibres. 

2.3.3.6 Thermal conductivity 

Ability of a substance to conduct heat is called thermal conductivity, measured in 

watts per meter kelvin (W/m-K) and generally varies with the temperature. According 

to ASTM [120], thermal conductance is "time rate of steady state heat flow through a 

unit area of a material or construction induced by a unit temperature difference 

between the body surfaces" measured in W/m2-K. Materials with lower thermal 

conductivity values, allow heat to transfer at lower rates than materials with higher 

conductivity values and it is essential that thermal properties of materials be known 
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for energy calculations of any building. For concrete, guarded-hot-plate apparatus can 

be used for determination of thermal conductivity values. The methodology 

employing this apparatus is detailed in ASTM C177 [121] document.  

Multiple factors such as environmental conditions, intrinsic characteristics of 

specimen for example size and distribution of pores and test conditions may affect the 

thermal conductivity [122]. Due to porous nature of most of the aggregates used in 

making LWAC, it has better insulating properties or in other words has lower 

conductance than conventional concrete. Typical values for NWC range between 1.2 

to 1.8 W/m-K whereas for structural lightweight concrete the range is between 0.4 to 

0.8 W/m-K [122], [123]. Thermal conductivity k  test results performed on 

concretes having density ranging from 320 to 3200 kg/m3 indicate strong relationship 

between concrete density c  and k  values as shown in Figure 2.22 and expressed 

in the following equation. 

(0.00125 )0.072 ck e  (2.1) 

Where k  and c  have units of W/m K and kg/m3 respectively in above equation. 

 

Figure 2.22 Plot of relationship between thermal conductivity and 
concrete density (after [124]) 
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Small increase in k  values has been reported by Cook and Uher [125] after increasing 

the steel fibre content in the concrete from 0.5% to 1.5%. Copper fibres were also 

used in their study work, for which they found higher thermal conductivity values 

compared to steel fibres. In another research work, Nagy et al. [126] studied the 

thermal properties of glass, steel and plastic fibre reinforced concretes. Authors used 

three different fibre contents i.e. 20, 27.5 and 35 kg/m3 of steel fibres and reported 

lower k  values for concrete mixes with higher fibre dosages. Higher porosity values 

of the samples are considered as the possible explanation for such behaviour as 

reported by the researchers. 

2.3.3.7 Electrical resistivity 

Use of fibre-reinforced concrete has increased over the years and lot of literature has 

been published focusing on its fresh and hardened properties; however little has been 

published about its electrical resistivity. From the available literature, it is generally 

agreed that the addition of steel fibres reduce the electrical resistivity of concrete and 

in doing so influence the corrosion rate of deformed bars [127]. For such a scenario a 

hybrid system, consisting of conductive and non-conductive fibres can be considered 

to limit the material degradation [128]. Similarly electrical resistivity of concrete 

reinforced with carbon fibres is discussed in other studies [129]–[131]. A case study 

on the corrosion of steel reinforcement by stray electric current and its effects is 

presented by Stanley [132]. In another research work, Amr S. El-Dieb [133] has 

reported an decrease in electrical resistivity after addition of steel fibres. Apart from 

the control specimens (without fibres), he prepared three other mixes with different 

amounts of fibres, the maximum volume fraction of steel fibres used in his work were 

0.52%. He reports that on 28th day of testing, electrical resistivity of concrete 

containing highest amount of steel fibres was about 550% lesser than that of control 

specimens. Lower electrical resistance is recorded during early age of concrete, but 

increased with the time, up to 90 days as shown in Figure 2.23. 
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Figure 2.23 Effect of steel fibres on concrete’s electrical resistivity 
(after [133]) 

 



 

3 Literature Review on Bond 

3.1 Bond Mechanism 

Concrete is a brittle material and has very low tensile strength, hence requires services 

of reinforcement to bear excessive stresses. Transfer of stresses between 

reinforcement and concrete is very significant for the response of reinforced concrete 

structures and is only possible if there is adequate bond between them, absence of 

which would means loss of strain compatibility between the two materials leading to 

excessive slip and thus to structural member’ failure. A good bond between steel 

reinforcement and concrete is not only the prerequisite for any structural reinforced 

concrete member to function as a composite material but it also influences crack 

development and ductility of the reinforced concrete member [1]–[3].  

Three different mechanisms are responsible for the transfer of forces between the two 

materials (reinforcing bar and concrete) namely adhesion, friction and mechanical 

anchorage (Figure 3. 1). Out of these three, surface adhesion is the first one to be lost 

as the reinforcing bar slips under loading. This is followed by reduction of frictional 

forces which act on barrel and ribs of bar. In the end, due to higher slipping and loss 

of adhesion and frictional forces, bearing of the ribs against surrounding concrete 

(mechanical anchorage) is left as the key mechanism for force transfer.  

 

Figure 3.1 Bond force transfer mechanism (after [4]) 

According to Tepfers [134], the inclined forces on the bar are balanced by the ring 

tensile stresses in the surrounding concrete as shown in Figure 3.2. The 

inclined/bearing forces exerted by the ribs on the surrounding concrete can be split 

into horizontal and vertical components; the later component is responsible for the 
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splitting mode of bond failure when it exceeds the tensile capacity of concrete. 

Another mode of failure i.e. pull-out failure occurs in more heavily confined concrete 

(with larger concrete cover and transverse reinforcement), when shear resistance of 

concrete between successive ribs is exceeded. 

It would be interesting to see if splitting mode of bond failure could be delayed and 

bond capacity of the reinforced concrete member be increased by incorporation of 

fibres in lightweight concrete. In past, efforts have been made by researchers in this 

regard, but such efforts mostly involved conventional concrete. Harajili for example 

used hooked-end steel fibres in normal weight concrete and found that contribution of 

fibres in enhancing the bond strength was insignificant for all such cases where pull-

out mode of failure occurred because the slipping of bar occurred prior to the 

activation of fibres through development of any splitting cracks. He also found that 

the ratio of product of fibre length and fibre volume to the fibre diameter (fibre index) 

had strong influence on bond-slip profile and recommended that this ratio should be 

considered in equations used for estimation of bond strength and proposed following 

equation. 

Compared to the normal weight concrete, lightweight concrete perhaps is more 

deserving or worthy of fibre feeding for the reasons such as being more brittle in 

nature than normal weight concrete, achieves higher workability than convention 

concrete for same fibre content, and perhaps achieve higher percent of bond strength 

increase, like higher percentage of rise in compressive strength for similar fibre 

content than NWFC as reported earlier by and discussed in section 2.3.3.1. Despite all 

these LWFC has not received attention to the extent it deserves, especially when it 

comes to its bond behaviour. It is expected that arresting of splitting cracks by fibres 

 

Figure 3.2 Tensile stresses in the form of ring band (after [134]) 
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as shown in Figure 3.3 would help in raising the bond strength and evaluate further 

the justification of penalty imposed by various building codes on lightweight concrete 

due to its brittle nature.  

 

Figure 3.3 Mechanism of arrest of splitting cracks by fibres 

3.2 Interpretation of Bond Stress 

 Consider Figure 3.4 (a) which shows the typical Free Body Diagram (FBD) of a 

beam and let there be the loading condition on this beam such that force system at 

section – 2 is greater than that of section – 1, which would mean that bar stress 2s  

would be greater than 1s  by magnitude s . This extra force/stress presence will try 

to dislocate the bar, therefor for the reinforcing bar to remain in equilibrium; bond 

stresses ( bτ ) must be present on the surface of the bar as shown in Figure 3.4 (b). 

Fulfilment of force equilibrium condition leads to the bond stress expression as 

follows; 
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structural applications. The ever-increasing use of lightweight aggregate concrete due 

to enhancements in its properties because of addition of some ingredients have made 

this concrete a common construction material and pushed researchers time and again 

to evaluate its structural and mechanical properties. 

Since lightweight aggregates have lower strength, therefore concrete made from it 

also possesses lower mechanical properties like tensile strength and fracture energy 

and also the bond strength when compared with the normal weight concrete of same 

strength class [4]. There are several studies that support these findings that 

lightweight aggregate concrete has lower bond strength and should have larger 

development/bond length than the normal weight concrete. Robins and Standish [136] 

for example compared the bond behaviour of lightweight aggregate concrete and 

normal weight concrete in presence of lateral pressure. The lightweight concrete was 

made from Lytag and pull-out specimens were used in the experimental work. Their 

study concluded that in splitting mode of failure, pull-out specimens made from 

normal weight concrete had 10 to 15% higher bond strength than the lightweight 

concrete. They observed that with increase in lateral pressure the difference in bond 

strength between the two concretes also increased and that nature of failure changed 

from splitting to pull-out. Test results showed that normal weight concrete had more 

than 40% bond strength than the lightweight concrete at higher lateral pressure level. 

For concretes having compressive strength lower than 40 MPa, Chen et al. [137] 

observed that bond strength of lightweight concrete was lower than the normal weight 

concrete. They used expanded clay in their experimental program for making 

lightweight aggregate concrete. The tested pull-out specimens had dimensions of 150 

x 150 x 150 mm and were reinforced with 19 mm pull-out bar. 

Results of the 24 pull-out tests conducted by Lachemi et al. [138] show that the two 

different lightweight self-compacting concretes, one made from expanded shale and 

the other from blast furnace slag had 16 to 38% lower bond strength than the self-

compacting concrete made from normal weight aggregates. They used two different 

bond/embedment lengths i.e. 100 mm and 200 mm in their study, and for both these 

bond lengths normal weight concrete had better bond resistance than all other 

concretes, followed by lightweight aggregate concrete made from expanded shale. 

The lowest bond strength was observed to be that of all-lightweight concrete made 



3 Literature Review on Bond 46 

 

 

from blast furnace slag aggregates. Figure 3.6 shows the comparison of normalized 

bond strength (ratio of bond strength to the square root of compressive strength) of 

normal and lightweight self-compacting concretes. 

 

Figure 3.6 Comparison of bond strength of lightweight and normal 
weight self-compacting concretes (after [138]) 

Collepardi and Colladi [139] investigated different properties including bond strength 

of lightweight aggregate concrete and of normal weight concrete. The lightweight 

aggregate concrete was made from expanded clay. They found that it is possible to 

achieve higher bond strength for lightweight concrete than the normal weight concrete 

by using chloride free superplasticizing admixture (Rheomac 877) based on 

sulphonated nepthalene formaldehyde polymer and higher amount of cement content. 

However, without admixture, their results showed steel-concrete bond value of 9 MPa 

for lightweight concrete which is 40% lower than the bond strength value of 15 MPa 

for conventional concrete at 28 days of testing. 

Present-day studies [140], [141] also support these results. More recently 72 pull-out 

tests were conducted by Kaffetzakis and Papanicolaou [140] for understanding the 

bond behaviour of lightweight self-compacting concrete. They have reported an 

increase in the bond strength of test specimens (containing 12 mm pull-out bar) from 

15.47 MPa to 22.46 MPa (an increase of 45%) when only pumice fine sand was 

replaced with the normal river sand. This increase was more pronounced - up to 70%, 

when both coarse and fine aggregates (both pumice aggregates) were replaced by 

normal weight aggregates. Besides the above mentioned literature, similar findings 

have been reported by other researchers [142]–[144] in past.  
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There are also several studies which have reported different results from those 

mentioned earlier. According to Chen et al. [137] for concrete with compressive 

strength above 40 MPa, lightweight concrete performed better in bond test results 

than the conventional concrete. They attribute this to the higher mortar strength, 

whereas lower aggregate strength governed the bond strength of concretes having 

compressive strength lower than 40 MPa. However results of Mor [144] contradict 

with this observation as his test results show that even for concretes having 

compressive strength as high as 70 MPa, bond strength of lightweight aggregate 

concrete was lower (65%) than conventional concrete. His findings were based on test 

results of an experimental program intended for investigating the effect of condensed 

silica fume on bond strength. He used pull-out specimens 76 x 76 x 508 mm in size, 

embedded with 19 mm bar in his work. Also, no any significant influence of silica 

fume on bond is reported by him. 

Mitchell and Marzouk [145] performed bond tests on 72 pull-out and push-in 

specimens made from high strength lightweight aggregate concrete with average 

compressive strength of 83 MPa. They compared their results with the results of a 

previous study [146] conducted with similar testing conditions on high strength 

normal weight concrete and observed that high strength lightweight concrete had 

similar or slightly higher bond strength than the high strength normal weight concrete. 

Therefore they are of the opinion that the use of factor 1.3 by ACI-318 [32] in design 

equation for development length is not justified for lightweight concrete. Studies by 

Clarke and Birjandi [147], Martin [148], and Shideler [149] also reported either 

comparable or higher bond strength values for lightweight concrete than the normal 

weight concrete.  

Observations made in this section are difficult to ascertain that bond strength of 

lightweight concrete is lower, comparable or better than normal weight concrete 

because of the different testing parameters and characteristics associated with mix 

designs. 

3.3.3 Fibre reinforcement 

As mentioned earlier in Section 2.1.1, use of fibres is not new to mankind and since 

1960s their use as an ingredient in concrete has seen remarkable growth. Among the 

many commonly used fibre-reinforced concrete (FRC) types, like, glass fibre-
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reinforced concrete, synthetic fibre-reinforced concrete etc. steel fibre-reinforced 

concrete (SFRC) is used widely due to better performance of steel fibres than other 

fibre types in enhancing tensile strength, resistance to splitting cracks, shear, 

toughness and flexural strength of concrete [150]–[153].  

Since code requirements for bond length are governed by splitting failure of concrete, 

therefore, it is believed that by enhancing the tensile strength of concrete using fibres 

which should improve the splitting failure of concrete, bond strength of the concrete 

can also be improved. According to Cairns and Plizzari [154], even at lower fibre 

volume, fibres can improve bond capacity. This improvement is also the result of 

better confinement condition of FRC; when distributed randomly in sufficient 

volume, the discrete fibres not only function as longitudinal but also as a transverse 

reinforcement thus effectively confining the concrete and would thus require higher 

force to pull-out reinforcing bars from such a concrete [4], [154]–[156]. 

Campione et al. [88] explored the bond strength of LWFC made from expanded clay 

aggregates and hooked-end steel fibres. In his study fibres were added to concrete in 

quantities of 0.5, 1 and 2% Vf and a 12 mm diameter bar with two different bond 

lengths i.e. 60 mm and 96 mm was used as a pull-out bar. The pull-out test results of 

specimens having squat geometry show that addition of 1% Vf of steel fibres resulted 

in an increase in bond strength from 15.53 MPa to 19 MPa – an increase of about 

22%. Whereas increase in bond strength was about 39% when volume of fibres added 

was increased up to 2%.  He concluded that using steel fibres in sufficient quantity, a 

better post cracking behaviour for lightweight concrete (see Figure 3.7) can be 

obtained which is otherwise characterized by a brittle failure in absence of any such 

reinforcement. 
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Figure 3.7 Effect of hooked-end steel fibres on bond-slip behaviour of 
LWFC (after [88]) 

Besides various other parameters, Garcia-Taengua et al. [157] also studied the effect 

of quantity of steel fibres, fibre length and fibre slenderness on the bond capacity of 

NWFC. In their study, pull-out specimens with four different bar sizes (8, 12, 16 and 

20 mm) and concrete compressive strengths in the range of 32 to 48 MPa were used. 

They observed only a limited improvement in bond strength after fibre addition of up 

to 70 kg/m3 and found that shorter fibres were more effective in improving the bond 

strength than the longer fibres (Figure 3.8). Their reasoning for this is that upon 

loading, micro cracking around the bar is so progressed and developed that bond 

strength of the specimen was reached, but the long fibres were still not activated. In 

another study by Ezeldin and Balaguru [158], decrease in bond strength was recorded 

when steel fibres were used in quantity of 0.25% by volume, however at higher fibre 

contents of 0.5 and 0.75% an improvement of 18% was observed.  

Harajli et al. [159] obtained 26% and 33% improvement in the splitting bond strength 

of NWFC at fibre dosage of 1% and 2% by volume fraction respectively. In their 

study hooked-end steel fibres having aspect ratio of 60 (lf = 30 mm, df = 0.5 mm) and 

bond length equal to 5 times the diameter of pull-out bar was used. The pull-out bars 

had diameter of 16, 20, 25 and 32 mm. They tested 32 small scale beam specimens to 

study the local bond stress-slip behaviour of plain and fibre-reinforced concrete. They 

observed that addition of fibres also improved the ductility of bond failure and 

concluded that compared to the beam specimens, pull-out testing method 

underestimates the bond strength of deformed bars in tension. 
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In an experimental study conducted by Yerex et al. [163], effect of polypropylene 

fibres on bond strength was studied. Test results from their work show that bond 

strength of polypropylene fibre-reinforced concrete was similar to the normal weight 

concrete. Harajli, and Salloukh [164] also investigated the effect of multiple 

parameters (including type of fibres) on development strength of reinforcing bars in 

tension by testing 15 full scale beams. They observed that addition of 0.6% Vf of 

polypropylene fibres improved the ductility of bond failure but compared to steel 

fibres, these were less effective in enhancing the development strength of the 

deformed bars. They also observed that in comparison to plain unconfined concrete, 

bond strength of concrete reinforced with 2% by volume of hooked-end steel fibres 

was 55% higher. 

Summarizing the test results of different researchers, Kim et al. [165] observed that 

irrespective of type of failure, whether splitting or pull-out, bond strength of the 

specimens increased as the fibre content increased for LWC (Figure 3.9). Study by 

Harajli et al. [166] however reported no significant improvement in bond strength of 

specimens that had pull-out failure.   

 

 

Figure 3.9 Effect of steel fibres on bond strength of lightweight 
concrete (Kim et al. [165]) 
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3.3.4 Compressive strength 

It is acknowledged in many studies [138], [167] that bond strength increases with 

increase in compressive strength. Kim et al. [167] used compressive strength and 

bond length as test parameters in their experimental programme for studying bond 

properties of artificial lightweight aggregate concrete. They tested 144 pull-out 

specimens made from bottom ash (by product of coal combustion) lightweight 

aggregate concrete to measure the bond strength. Their test results performed on 16 

mm diameter bar are presented in Figure 3.10 which shows increase in bond strength 

as the compressive strength increases. According to the authors, increases in 

compressive strength induces more confinement around the bar, resulting in improved 

bond strength.  

Almost all known bond expressions proposed by researchers contain compressive 

strength parameter. Esfahani et al. [168] for example, after some modification to the 

Tepfer’s [134] partly cracked thick cylinder theory proposed an expression (3.2) for 

estimating bond stress where it is proportional to the square root of compressive 

strength of concrete. 
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Figure 3.10 Effect of compressive strength on bond strength of 
lightweight concrete (after [167]) 
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Representation of effect of concrete properties on bond strength by √𝑓𝑐
′ is also 

existent in expressions proposed by Harajli [169], Orangun et al. [170]. 

The design expression of ACI-318 (see Eqn. (3.8)) and also that of fib Model Code 

2010 (see Eqn. (3.11)) indicate that bond strength increase in proportion to the square 

root of compressive strength. However, according to ACI committee on bond (ACI-

408) [4], this representation for concretes having strengths higher than 55 MPa is not 

adequate and based on the database of 171 beam test results finds out that concrete’s 

contribution to bond is best represented by '4
cf  . 

 

Figure 3.11 Effect of compressive strength and splice length on 
normalized bond strength (after [171]) 

Note.  1 in = 25.4 mm, 1 MPa = 145 psi 

This phenomenon of lower normalized bond strength for higher strength concrete is 

best explained in the work by Azizinamini et al. [171], where authors are of the view 

that since tensile strength of concrete does not increase in proportion to its bearing 

strength, therefore, concrete surrounding the bar is more prone to splitting than to 

crushing. This leads to bond failure in splitting by first few lugs, before all lugs could 

be activated resulting in lower normalized bond strength for higher concrete strength 

as shown in Figure 3.11.  

 

 

10 20 30 40 50 60 70 80
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Splice length (in)

 
 
'

'

6000

10000
c

c

f psi

f psi

'

Test

cf



3 Literature Review on Bond 54 

 

 

3.3.5 Fracture energy 

It is now generally agreed that fibres are activated once the cracks have developed in 

concrete matrix and are effective way of improving fracture energy; in other words 

fibres are ineffective in enhancing the tensile strength of concrete before cracking or 

the first-cracking stress [162]. Shah and Naaman [172] used two different types of 

fibres in their work to see their effect on mechanical properties of reinforced mortar 

and observed no improvement in first cracking stress of fibrous composites as shown 

in Figure 3.12. Similar observations have also been reported in other studies by Nanni 

[173] and Naaman [174]. Also ACI Committee 408 on Bond [4] is of the view that 

fracture energy rather than the tensile strength has more effect on bond strength. 

Findings of the committee suggest that since bond strength is represented better by 

√𝑓𝑐
′4  rather than square root of compressive strength (tensile strength); therefore, 

tensile strength alone is not the significant parameter in improving bond strength. And 

since bond strength increases at slower rate during increase in the compressive 

strength, it is therefore better to enhance the fracture energy using fibres to increase 

the bond strength. 

3.3.6 Bar size 

Smaller bars perform better than the larger diameter bars when their performance is 

measured in terms of bond stresses [4]. Ezeldin and Balaguru [158] in their 

experimental work used three different bar sizes (9, 16, 19 and 25 mm) as pull-out 

bars. They studied the bond behaviour through modified pull-out specimens made 

from normal and high-strength fibrous concretes mixes. For both the plain and fibrous 

concrete mixes, they observed higher bond strengths as the bar size reduced (see 

Figure 3.13). They also found that fibres were slightly more effective in enhancing 

bond capacity for larger bar sizes. Authors attribute this phenomenon to the fact that 

in case of larger bar sizes bond failure is dominated more by splitting than pull-out 

and therefore fibres can play their part of arresting these splitting cracks and thus raise 

the bond capacity.  
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of bar area, therefore increase in bond force at failure is slow as the bar size increases 

and for this reason larger development lengths are needed for bigger diameter bars 

[4]. 

 

Figure 3.14 Maximum slip values for various bars against concrete 
strength (after [175]) 

3.4 Consideration of Bond in Normative Rules 

3.4.1 ACI-318 

Present design provisions of ACI Code [32] for the anchorage length or development 

length of straight reinforcing bars in tension are derived from the work of Orangun, 

Jirsa and Breen [170], who using statistical techniques developed following 

expressions. 
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Equation (3.3) is used to describe the bond strength of bars not confined with 

transverse reinforcement, whereas, equation (3.4) is used for bars confined by 

transverse reinforcement 

ACI committee 408 [4], finds the representation of effect of concrete strength by 

√𝑓𝑐
′ inadequate for concrete strengths greater than 55 MPa and observes that concrete 
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contribution to bond strength is best characterized by √𝑓𝑐
′4  as shown in following 

expressions. 
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The design expression for anchorage length in ACI-318, described here as equation 

(3.7) is obtained by solving above equation (3.4). The detailed transformation of Eqn. 

(3.4) to Eqn. (3.7) and the modification of constants can be found in the report of 

ACI-408 Committee [4] on bond and development of straight reinforcing bars in 

tension. 
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Where, bl , c, and trK  are bond length, concrete cover and factor representing 

contribution of transverse reinforcement. In above equation t e s, ,ψ ψ ψ  and λ  

represent the effects of bar location, epoxy coating, bar size factor and factor for 

lightweight concrete respectively. 

Because of this lower bond strength of lightweight concrete the design provisions 

require for larger development length for lightweight concrete to compensate for the 

lower tensile strength of aggregates. ACI 318 for example incorporates a factor λ (λ = 

0.75) in its design equation for bond length. If the reinforcement to be anchored is so 

placed that there is more than 300 mm of fresh concrete below it than bar location 

factor ( tψ ) shall be taken as 1.3, whereas for all other cases its value shall be 1. 

Similarly for concrete reinforced with epoxy coated reinforcement having size smaller 

than or equal to 19 mm diameter, values of eψ  and sψ  are, 1.5 and 0.8 respectively. 

For conventional concrete, reinforced with uncoated bars, having diameter greater 

than 19 mm, all such values shall be taken as 1.  

Manipulation of equations (3.1) and (3.7) yields the ultimate design bond stress as; 
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3.4.2 fib Model Code  

For Model Code 2010 [33], design ultimate bond strength equation for ribbed bars 

(Eqn. (3.10)) is derived from the semi-empirical relationship (Eqn. (3.9)) for 

reinforcement stress ( stmf ), obtained from the calibration of over 800 test results. 
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Where, ,0bτ  is basic bond strength considered as an average stress over the bond 

length of reinforcing bar and is given by following equation: 
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Coefficients 1η , 2η , 3η , and 4η  represent the effects of rebar geometry, bond 

condition, bar size and characteristic strength of reinforcement being anchored 

respectively. For ribbed bars 1η = 1, whereas for plain bars this value is 0.9. Values of 

other coefficients shall be taken as unity as well if their size is less than or equal to 20 

mm, have characteristic yield strength of 500 MPa and are laid in such a way that 

good bond conditions are assumed. Values for all other cases can be found in the 

Model Code 2010 [33]. 

In equation (3.10), k is effectiveness factor, whose value depends on the 

reinforcement details; 1 st
tr

b v

n A
K

n s
 is the transvers reinforcement factor. From 

equation (3.10), the design anchorage length may be calculated as follows: 
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For design bond length, it shall be ensured that it is not less than the minimum 

required length, such requirements are highlighted in the Model Code, one such 

condition is that b,minl  > 200 mm. The value of coefficient 4  depends upon the 

percentage of reinforcement lapped or anchored within 0.65 bl . 

3.4.3 Eurocode 2 

The ultimate design bond stress in Eurocode 2 [176] is given by following expression; 

bd 1 2 ctd2.25 fτ η η    

Where; bdτ  is ultimate bond stress (design) and ctdf  is design value for concrete 

tensile strength. 1  and 2  are the coefficients which depend upon bond conditions 

and bar diameter respectively. For good bond conditions 1  is 1 and 0.7 for all other 

cases. For bar sizes, having diameter equal or smaller than 32 mm, 2 = 1 and for 

higher bar sizes, 2 (132 ) 100 . The value of ctdf  is calculated using formula; 

ctd ct ctk,0.05 cf f  

Where; c  is partial safety factor for concrete equal to 1.5 and ct  is the factor for 

consideration of long term effects on tensile strength and its recommended value is 1. 

According to Eurocode 2, assuming constant bond stress ( bdτ ), the basic anchorage 

length or development length required b,req( )l  to anchor the force sd( )sA  shall be 

calculated as follows; 

sd
b,req

bd4
l

f
 

3.5 Methods for Experimental Investigation of Bond 

Different test arrangements are in practice for studying the bond behaviour (see 

Figure 3.15), among these pull-out test setup is widely used due to ease and simplicity 

in making and testing of specimens [4]. Because of these reasons, majority of 
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database on bond is available perhaps from these. Both the ASTM [178] and RILEM 

[177] test procedure do not mention the use of transverse reinforcement in pull-out 

tests, nevertheless the confining effect by such reinforcement has been studied by 

some researchers [145], [179], [180]. Since the concrete surrounding the pull-out bar 

during testing is under compression as against of flexural tension in real structures; 

the testing standard was therefore withdrawn by ASTM in year 2000. It is however, 

an effective method for comparison of bond of different concretes of similar strength, 

or of reinforcing bars with different rib geometry, reinforced in concrete of similar 

mix design [177]. 

Beam specimens and beam-end specimens for bond test can be prepared following the 

guidelines of RILEM [181] and ASTM [182] respectively. These methods produce 

realistic test results as the stress state in the concrete and the pull-out bar depicts 

closely the conditions or concrete members. Attention shall be paid in placing the 

compressive force away from the test bar, to avoid formation of compression struts, 

which may alter the actual state stress around bar. ACI [4] suggests that minimum 

distance between test bar and compressive force should not be less than bond length.  

 

Figure 3.15 Different test setups used for the study of bond between 
rebar and concrete (modified from [183]) 

 



 

4 Experimental Program 

4.1 General Aspects 

Main objective of the research program was to evaluate the bond behaviour of 

Lightweight Fibre-reinforced Concrete (LWFC). However, since design expression 

for development length for bars in building codes, for example in ACI – 318 are based 

on the work of bond tests on normal weight concrete; therefore, for analysis and 

comparison purpose, test specimens of Normal Weight Fibre-reinforced Concrete 

(NWFC) were also included in experimental program. It would have been unfair, if 

this comparison between two different types of concretes was made at different 

compressive strength levels, and for this reason the experimental work included 

following main tasks; 

 Development of concrete mixes for both types of concretes i. e. lightweight 

and normal weight, which would yield similar strength class at various fibre 

dosages. 

 Investigation of the influence of fibre volume, concrete type and bar size on 

bond performance of LWFC and NWFC. These parameters are further 

elaborated in Table 4.1  

 Comparison and analysis of test results for both types of concretes with 

different bond strength expressions of fib-2010 and ACI standards. 

For bond strength evaluation, pull-out specimens with varying bar sizes, fibre content 

were tested and all these bond tests were grouped under LWFC and NWFC series. 

Also, tests were performed for determination of mechanical properties of concrete, 

such as modulus of rupture test, splitting tensile strength test, compressive strength 

and elastic modulus test. Total 72 pull-out tests were performed, these included 36 

tests for series of LWFC and 36 for NWFC, other than these, 48 tests for each series 

were performed for hardened properties. All the pull-out tests and other hardened 

concrete tests were performed at concrete’s age of 28 days. It shall be noted that most 

of the tests performed for hardened and fresh concrete properties followed the 

German DIN standards, whereas for bond behaviour, most of the guidelines of pull-

out test which are set by RILEM (Réunion Internationale des Laboratoires et Experts 
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des Matériaux, systèmes de construction et ouvrages), the International Union of 

Laboratories and Experts in Construction Materials were followed. 

4.2 Scope of Test Program 

Scope of the experimental work included understanding the bond behaviour of 

lightweight concrete after addition of steel fibres. One of the main question to answer 

through this research was whether fibres affect the bond strength of concrete or not 

and if they do then what changes need to be made in expressions on which design 

equations for bar development length are based. To answer this first question, it was 

decided to incorporate steel fibres to the reference mix in dosages of 20, 40 and 60 

kg/m3
 which corresponds to fibre volume fraction of 0.25%, 0.5% and 0.75% 

respectively. Secondly, to what extent the difference between the bond performance 

of LWFC and NWFC exist at each fibre content level, if they have similar 

compressive strength class at those levels. 

Since there are only few experimental investigations about the bond behaviour of 

reinforcement in LWC, especially for bigger bar sizes [33], therefore, the program 

included range of bar sizes (10, 16 and 20 mm) to generate database of ultimate bond 

stresses test results for future codes. 

Scope of the work was further expanded to cover the behaviour of normal weight 

fibre-reinforced concrete for the reasons mentioned in previous section. ACI – 408 [4] 

recommends decrease in bond strength for LWC by factor λ. Evaluation of bond 

behaviour of NWFC and its comparison with the results of pull-out tests of LWFC 

having similar strength class would enable to see if this factor could be adjusted for 

fibre-reinforced concretes. 

Additional tests for hardened concrete properties, apart from main bond tests were 

included in the program scope to support test findings. These included compression 

tests, split tensile strength test, flexural beam tests and elastic modulus tests. 
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4.3 Materials 

In following sections, materials used in design mix of both LWFC and NWFC and the 

reinforcement are described 

4.3.1 Cement 

Since the major objective was to achieve a comparable strength for both LWFC and 

NWFC and database for concretes having normal strength, therefore, for both types of 

concretes (LWFC & NWFC) Ordinary Portland Cement with a strength class of 42.5 

(CEM-1/42.5 N) was used. It was supplied by Lafarge Cement GmbH. 

4.3.2 Fine aggregate 

Natural sand having particle size in the range of 0 – 2 mm and particle density of 

2570 kg/m3 was used as a fine aggregate. The moisture content of the aggregate was 

determined using the ASTM procedure [184] and was adjusted during mix design 

stage.  

4.3.3 Coarse aggregate 

Initial approach while making selection of coarse aggregates for production of LWFC 

was to opt for a type that had specific gravity closer but slightly higher than that of 

water for avoiding aggregates’ floating issue, and the one which has regular shape. 

Rationale behind this approach was to be able to produce concrete which is 

sufficiently lighter so that addition of maximum steel fibre dosage does not increase 

concrete’s density beyond set limit of 1850 kg/m3, and because of regular shape ease 

in handling and working with concrete was expected.  

For the reasons mentioned above, expanded clay (Commercial name Liapor 6.5), 

round in shape (Fig. 4.1), having particle density of 1190 kg/m3 and particle size 

ranging from 2 to 10 mm was used as a coarse aggregate for production of LWFC. 

Aggregates had water absorption of 14% and were found within the specified range 

provided by the supplier of material. For NWFC, gravel having grain size range of 2 – 

8 mm was used as coarse aggregate. Other details of the aggregates are given in Table 

4.2. 
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Figure 4.1 Aggregates used in experimental program 

4.3.4 Superplasticizer 

Polycarboxylate ether based superplasticizer (Glenium ACE 391 (FM)) provided by 

BASF Construction Solutions GmbH was incorporated as high range water reducing 

agent.  

4.3.5 Fibres 

The steel fibres have a length, (𝑙f), usually ranging from 6 mm to 70 mm and an 

equivalent diameter, (𝑑f), ranging from 0.15 mm to 1.20 mm [185]. Due to their 

better performance under tensile loading and other advantages over other fibres 

mentioned in section 2.3.1.3, hooked-end steel fibres were chosen as reinforcement 
for fibrous mixes and were provided by the company ArcelorMittal. These fibres (see 

Figure 4.2) were 35 mm long and had diameter of 0.55 mm; developing an aspect 

ratio ( 𝑙f

𝑑f
) of 0.64 and tensile strength of 1200 MPa. 

 

Figure 4.2 Hooked-end steel fibres used in experimental work 

 



65 

 

 

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15 20 25 30 35 40 45

P 
(k

N
) 

Displacement (mm) 

10 mm
16 mm
20 mm



4 Experimental Program 66 

 

 

every subsequent fibre content level, both these mixes have similar compressive 

strength class. 

Initial quantities for trial mixes were calculated ACI [186] procedure. The approach 

adopted for bringing the difference in compressive strength of LWFC and NWFC to 

less than 5 MPa was to use wherever possible similar material quantities and material 

sizes in order to lessen the number of factors influencing concrete strength. For 

example, same type of cement, fine aggregate, fibres and superplasticizer were used 

for both mixes, moreover, there were marginal differences between the quantities of 

cement and sizes of coarse aggregates used for concrete mix of LWFC and NWFC. 

Quantity of cement used for LWFC was 360 kg/m3 and for NWFC it was 350 kg/m3, 

whereas lightweight aggregate had particle size range of 2-10 mm and for gravel 

which was used for producing NWFC, this range was from 2 – 8 mm. The higher 

water absorption percentage of lightweight aggregate (14.36%) influenced the water 

demand; therefore, the total water demand for LWFC was 25 kg/m3 higher than 

NWFC. However, the effective water (water needed for hydration) was higher for 

NWFC with effective w/c of 0.45 compared to 0.35 for LWFC. Since lower w/c ratio 

results in higher compressive strength of concrete, therefore it was expected that this 

factor would bring the compressive strength of LWFC closer to NWFC which 

otherwise would not be possible without increasing cement content.  

During trial mix stage, it was realized that fibres at maximum dosage seriously 

affected workability of concrete, especially handling of NWFC became difficult. For 

this reason, superplasticizer in a small amount of 0.5% was introduced in every mix. 

Details of the mixes for both types of concretes are listed in Table 4.3. 

4.5 Mixing and Placing of Concrete 

A rotating type drum mixer having capacity of 500 litres (0.5 m3) was used for 

production of all batches of concrete. After batching of the constituting materials, they 

were added in the mixing machine in following order; 

Coarse aggregate was added first, followed by the fine aggregates and the water 

calculated based on aggregates’ (both fine and coarse aggregates) water absorption 

capacity, these were then allowed to get uniformly mixed during allocated time of one 

minute. Later cement was added and immediately after that remaining water which 
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also contained superplasticizer was poured, making sure that it covered whole mix in 

the drum. The mix was given one minute to mix properly and then steel fibres were 

added. To avoid balling of fibres in concrete mix, they were fed in a rain type fashion, 

this technique although costs some time at maximum fibre content level, but was 

necessary to avoid balling of fibres. Mix was then allowed to rest for 3 minutes, 

followed by additional 2 minutes of mixing before finally being discharged. The 

whole procedure on an average after addition cement and water took about 9 minutes.  

Fresh concrete tests were performed using ASTM method [59] before placing it into 

the formwork. Fresh concrete density for all mixes was determined using 0.003 m3 

cylindrical mould as shown in Figure 4.4. The mould was filled in a single layer and 

was then externally vibrated at frequency of 115 Hz In current experimental work 

guidelines of German standard DIN EN 12350-5 [45] were followed to determine the 

workability of both types of concrete i.e. NWFC and LWFC (Figure 4.5). This test 

method was preferred over other methods due to its ease, simplicity and application. 

For example, compared to the ASTM standard, German DIN standard uses same 

testing method for workability measurement of concretes with or without fibres, 

making it suitable to quantify the effect of fibres.  

All the pull-out specimens (09 specimens) and specimens for hardened concrete 

properties (12 specimens) for single fibre dosage were casted on the same day. Scoops 

were used to place the concrete into the formwork after which they were vibrated 

externally on a vibration table at a frequency of 115 Hz. External vibration (through 

vibration table) was used for compaction during concrete placement to avoid fibre 

alignment, also with internal vibrator, disturbance of pull-out bar in smallest pull-out 

specimen could not have been avoided. 

Before placing the concrete in formwork, it was properly cleaned and lubricated with 

oil (Figure 4.6); extra care was taken to avoid any contact of deformed bars with oil 

during lubrication process. All these specimens were then covered with plastic sheets 

and allowed to harden. On the next (after 24 hours) they were demoulded and were 

wrapped with 3 layers of plastic foils and then placed in a climate room (see Figure 

4.7) where continuous humidity and temperature levels were maintained at 65% and 

20 oC. 

 



4 Experimental Program 68 

 

 

 

Figure 4.4 Fresh concrete density measurement 

(a) (b) 

Figure 4.5 Measurement of slump flow (a) NWFC (b) LWFC 

 

  

Figure 4.6 Formwork ready before concrete placement 
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Figure 4.7 Specimens placed in climate control room 

4.6 Testing for Material Properties 

Compressive strength, splitting tensile strength test and elastic modulus tests were 

performed in the similar testing machine with some minor setup arrangements. The 

machine had capacity of applying load maximum up to of 5000 kN. In case of 

splitting tensile strength test, additional steel plates designed for directing the splitting 

load at the centre and across the specimen length were placed on both of its sides (top 

and bottom side) as shown in Figure 4.8(b). Measurement of elastic modulus in this 

machine was possible with the help of instrument supported by jig attached to the 

specimens. The vertical displacement during load application was recorded by this 

instrument and transferred to processing unit via data cable (Figure 4.8 (c)). Cylinders 

having dimensions of 100 x 200 mm were used for elastic modulus tests, whereas for 

splitting tensile strength and compressive strength tests, cubes of dimensions 150 mm 

x 150 mm x 150 mm were used. True dimensions of these specimens were also 

measured with the help of scale (see Table 5.4 to Table 5.9) and thus machine 

readings for these tests were corrected.  

Few of the issues while comparing the flexural performance of the LWFC and NWFC 

have been the norms of using different testing standards, specimen sizes and loading 

rates. All of these factors affect the results and therefore question on the validity of 

test results may arise if these are ignored. Results of a study [187] on effect of loading 

conditions and specimen size showed different behaviour of fibrous specimens under 
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flexure for different loading environment and concluded that third-point loading 

arrangement is more appropriate for assessing flexural and toughness capacity 

compared to the centre-point test setup. For the current experimental program, 

therefore, similar testing environment, specimen size, and material selection (except 

coarse aggregates) were ensured. Experimental program involved testing of 24 beams 

(150 x 150 x 700 mm) under flexure using four-point loading test setup. The test setup 

is preferred over centre point loading method [188], as the failure crack is not forced 

to initiate at the centre of the beam where the matrix can have higher strength, rather 

it is allowed to arise where ever there is weak zone in maximum moment area of the 

test beam. Beams were tested using deflection controlled machine with four-point 

loading arrangement as shown in Figure 4.9. Loading rate was increased in steps with 

increasing deflection as per ASTM [110] guidelines. Two Linear Variable 

Displacement Transducers (LVDTs) were used – each one on the longitudinal side of 

the beam for recording centre point deflection and corresponding loading. Loading of 

specimens continued until they broke or achieved net deflection of 4 mm. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.8 Test arrangements for (a) compression test (b) splitting 
tensile strength test (c) elastic modulus test 
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Figure 4.9 Flexure test setup 

Effect of addition of fibres, in quantities of low volume fraction (Vf < 1%), and lower 

to medium volume fraction (Vf < 2%) on mechanical properties of concretes has been 

extensively investigated, and in most cases specific concrete with different fibre types 

or geometry was the focus. Iqbal et al. [54] for example used micro steel fibres in high 

strength lightweight self-compacted concrete for evaluation of mechanical properties. 

His results of flexural beam tests show more than 65% improvement in flexural 

strength at 0.75% volume fraction of fibres. Kim et al. [189] observed deflection 

hardening behaviour for specimens under flexure at fibre volume as low as 0.4%. He 

achieved this behaviour by incorporating chemical admixtures and using high strength 

concrete. Test results of experimental work by Adyin [190] also reported similar 

behaviour for normal strength concrete beam specimens that were made without using 

any chemical admixtures at 0.75% fibre volume fraction. For low volume fraction of 

fibres Soutsos et al. [190] reported deflection softening behaviour for concrete having 

compressive strength of 32 MPa and observed higher flexural toughness values when 

steel fibres were used in combination with synthetic fibres. 

All of these studies reported results for specific types of concrete with different fibre 

geometry and type and suggest that it is possible to obtain better flexural behaviour at 

lower fibre content. Under similar testing environment, at low volume fraction of 

fibres and for the same concrete strength class, what performance difference exists 
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between LWFC and NWFC, when tested in flexure, however is not extensively 

reported. 

4.7 Pull-out Test Parameters 

4.7.1 Concrete type 

Current descriptive and design expression for bond strength in ACI and fib codes are 

based on the test results carried on normal weight concretes. These are then adjusted 

for lightweight concrete with some factors, for example, ACI – 408 [2] recommends 

decrease in bond strength for LWC by factor λ. By including LWFC and NWFC as 

test parameters, it was aimed at to find out how these expressions perform for these 

types of concrete and whether the λ factor for lightweight concrete could further be 

adjusted. 

4.7.2 Fibre content 

There are various studies which have highlighted the effect of fibres on bond 

properties of different types of concretes and in most cases normal weight concrete 

has been the subject. Also, these studies either included a specific type of fibre or had 

fibre dosages above the practical range used in construction. Considering these, 

hooked end steel fibres’ dosage was chosen as a parameter in experimental work.  

4.7.3 Bar/Specimen size 

As mentioned earlier in section 4.6 that the size of the specimens used in current 

experimental work was chosen to vary in proportion to the size of reinforcing bars 

used. Unlike RILEM’s [191] specimen design approach, variable concrete cover was 

chosen for test specimens depending upon bar diameter. Dimensions of the specimens 

were multiple of 10 of bar diameter, for example, for a 10 mm bar; dimensions of 

bond specimen were 100 x 100 x 100 mm. Similarly, for 16 mm and 20 mm bar sizes, 

specimens’ dimensions were 160 x 160 x 160 mm and 200 x 200 x 200 mm 

respectively. Advantage of this approach is that it ensures similar cover to bar size 

ratio (c/db) or concrete confinement for all bar sizes, thus enabling to specifically 

monitor the effect of fibres on bond behaviour of concrete. Also, for smaller bar sizes, 

for example 10 mm bar size, concrete cover around the bar as per RILEM guidelines 

is as high as 95 mm which is also very high.   
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4.8 Pull-out Specimen Design 

Pull-out test method is one of the easiest way for bond strength determination, there 

are also various test arrangements for evaluation of bond strength that closely relate 

with stress conditions in actual scenario [192], details of these methods can be found 

in reports of ACI 408 [4] and fib-2010 [5]. Diagrammatic details of one of these test 

methods used by Desnerck et al. [193], where the concrete around reinforcing bar is 

under tension is shown in Figure 4.10. However, production and handling of 

specimens used in such test arrangements become an issue, especially in conditions 

where test parameters demand for higher number of specimens. Apart from these 

reasons, production of specimens at higher quantity would also be not economically 

viable. 

Compared to these tests, concrete surrounding the bar in pull-out test is under 

compression beside this other issue is of presence of frictional forces which are 

generated due to bearing stresses of concrete against steel plate supporting the 

specimen and are responsible for resisting concrete expansion in transverse direction 

as shown in Figure 4.11. It also shows the bar stress and bond stress profiles, it can be 

seen that since unlike real scenario concrete is not cracked, therefore bond stresses do 

not fluctuate i.e. there are no in and out bond stresses [92]  

There have been some efforts in past by researchers to overcome these shortcomings 

of pull-out tests. Aiello et al [194] for example embedded four steel bars in concrete 

of the specimen and then fixed those bars with a steel plate (see Figure 4.12). By this 

way the authors avoided the direct contact of specimen with steel plate which 

otherwise would have induced compressive stresses. However, there is not ample 

literature/database available with these modified test setups for comparison. For these 

reasons traditional pull-out test method standardized by RILEM [191] with some 

minor modification was chosen for current experimental work. 
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Figure 4.10 Beam test method for bond strength evaluation (after [193]) 

 

 Figure 4.11 (a) Typical pull-out test method (b) Pull-out bar stress 
profile (c) bond stress profile (after [92]) 

  

Figure 4.12 Modified pull-out test setup used by Aiello et al. [194] 

Experimental program included testing of 72 Pull-out specimens; these included 36 

specimens for LWFC and 36 for NWFC. Compared to the standard RILEM pull-out 

specimens, size of the test specimens was altered in proportion to the bar size. 

Detailed discussion on this aspect is made in section 4.7.3. Following the RILEM 

guidelines bond length (𝑙𝑏) and the bond free portion have to be the multiples of bar 

diameter. Therefore, this length for 10, 16 and 20 mm bar sizes is 50, 80 and 100 mm 

respectively. Contact of concrete with reinforcement in bond free length was avoided 

by using PVC tube, whose ends were sealed using elastic silicon material. 
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There were three (03) specimens for each bar size in every concrete mix i.e. nine (09) 

specimens for every mix and total 36 specimens for all the four concrete mixes of 

LWFC, similarly other 36 specimens for NWFC. Specimens were labelled as 

LWFC/NWFC-N1-N2-N3, where NI, N2, N3 refer to fibre content in kg/m3, bar 

diameter, and specimen number respectively (see Figure 4.13). Figure 4.14 highlights 

detials of the different sizes of specimens used in present research work.  

LWFC/NWFC N1, N2, N3 

 

Specimen Nr. (1, 2, 3) 

Bar diameter, Φ (10, 16, 20 mm)  

Fibre volume, fv (0, 20, 40, 60 kg/m3) 

Lightweight Fibre-reinforced Concrete 
Normal weight Fibre-reinforced Concrete 

Figure 4.13 Notations indicating type of specimen used in 
current experimental work 
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4.9 Test Setup and Procedure 

Specimens were tested in 600 kN displacement controlled machine. The bar from the 

specimen was pulled out at the rate of 0.005 mm/s, this displacement rate was chosen 

based on the literature review and experience of previous series of experiments done 

at HTWK Leipzig, Germany [195]–[198]. This loading rate was held constant for all 

series of specimens. The relative slip of bar against concrete was measured with the 

help of six Linear Variable Displacement Transducers (LVDTs) having precision of 

1/1000 mm. These were placed on both loaded and free end (3 LVDTs on each side) 

of specimens, however due to local disturbance, test readings from free end only are 

used for analysis purpose. Figure 4.15 shows rest of the features of test setup. 

Pull-out specimens before start of test were placed concentrically on a steel plate 

measuring 300 x 200 x 40 mm in dimensions; this plate was supported with the help 

of screws hanging from another steel plate at top having similar dimensions (Figure 

4.15). The upper steel plate was then attached to the top clamp of loading frame with 

the help of high strength steel bar. After attaching the LVDTs at the mentioned 

positions and verification of connection and functioning of these, the whole frame 

including specimen were slowly moved until pull-out bar was correctly fixed within 

the bottom clamp of loading frame. 

Before the start of test, unevenness of contact between specimen and supporting steel 

plate was removed by using bubble-level and adjusting the screw nuts. The test then 

begun with a pre-load of 0.5 kN, after which it continued with the selected loading 

rate. The test continued until the specimen fractured which was expected from brittle 

nature of concrete or it attained a minimum displacement of 4 mm in case of fibre-

reinforced concrete. On an average specimen from beginning of test, till a slip of pull-

out bar to 4 mm took 15 minutes, whereas for placement and dismantling of 

specimens and accessories required approximately additional 20 minutes. Thus, for all 

the 9 specimens from single batch on a single testing day consumed 5.25 hours. 

Additional 4 hours were utilized in testing the specimens made for evaluation of 

mechanical properties of concrete. 
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(a) (b) 

Figure 4.15 (a) Pull-out test setup (b) close-up of specimen 
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Table 4.1 Pull-out test program 

Concrete type 
Fibre volum 

vf   
 (kg/m3) 

Pull-out bar 
diameter 
Φ (mm) 

Casting date Nr. of specimens 
Li

gh
tw
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t F
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re
-r

ei
nf

or
ce

d 
C

on
cr

et
e 

(L
W

FC
) 

0 

10 

07-04-15 

03 

16 03 

20 03 

20 

10 

14-04-15 

03 

16 03 

20 03 

40 

10 

30-06-15 

03 

16 03 

20 03 

60 

10 

28-04-15 

03 

16 03 

20 03 

N
or

m
al

 w
ei

gh
t F

ib
re

-r
ei
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ce
d 

C
on
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et

e 
(N

W
FC

) 

0 

10 

13-05-15 

03 

16 03 

20 03 

20 

10 

20-05-15 

03 

16 03 

20 03 

40 

10 

27-05-15 

03 

16 03 

20 03 

60 

10 

03-06-15 

03 

16 03 

20 03 

Total 72 

Note: vf  = 0, 20, 40, 60 kg/m3 = 0, 0.25, 0.5, 0.75% fV   
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Table 4.2 Material properties 

Aggregates 

Type Particle size 
[mm] 

Bulk density 
[kg/m3] 

Particle density 
[kg/m3] 

24H water 
absorption 

% 

Expanded clay 2-10 650 1190 14.36 

Gravel 2-8 1474 2520 1.48 

Sand 0-2 1604 2573 1.02 
Fibres 

Shape fl   
[mm] 

fd   
[mm] 

Aspect ratio 
lf /df 

Tensile strength 
[MPa] 

Hooked-end 35 0.55 0.64 1100 

Table 4.3 Mix design for LWFC and NWFC 

Material Unit LWFC NWFC 

Cement [kg/m3] 360 350 

Coarse aggregate [kg/m3] 472 884 

Fine aggregate [kg/m3] 772 955 

Total water [kg/m3] 205 180 

Superplasticizer [% weight of 
cement] 0.5 0.5 

Fibre volume, vf   [kg/m3] 0, 20, 40, 60 0, 20, 40, 60 

Effective w/c  0.35 0.45 
Note vf  = 0, 20, 40, 60 kg/m3 = 0, 0.25, 0.5, 0.75% fV  
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Table 4.4 Mechanical & geometrical properties of pull-out bars 

 
(mm) 

sA  
(mm2) 

Weight 
(kg/m) 

yf  
(MPa) 

uf  
(MPa) 

Rib height 
(mm) 

Relative 
rib area

r

r
r

h
R

s
 

Clear rib 
spacing 

Cclear 

10 78.5 0.61 509 623 0.58 0.116 2.64 

16 201 1.58 497 591 1.02 0.204 5 

20 314 2.47 509 601 1.24 0.231 5.325 

 



 

5 Material Properties 

5.1 General 

Results of tests performed for fresh and hardened concrete properties of Lightweight 

Fibre-reinforced Concrete (LWFC) and Normal weight Fibre-reinforced Concrete 

(NWFC) are presented in this chapter. Most of these properties also have direct effect 

on the bond behaviour of concrete. This effect, however, will be discussed in detail in 

following chapter. 

5.2 Fresh Concrete Properties 

5.2.1 Workability 

Effort required for working with fibre reinforced concrete is reduced when 

lightweight aggregate is used instead of normal weight aggregate. Due to their lower 

density, LWFC having even low slump values can attain sufficient workability, which 

is comparable to high slump normal weight fibre reinforced concrete. It is now 

established that addition of fibres in concrete has adverse effect on the slump of fresh 

concrete [57], [199], [200] and becomes more pronounced as the length-diameter ratio 

of fibre gets increased [201]. It was observed that, compared to the normal weight 

concrete, fibres influenced the workability of lightweight concrete significantly (see 

Figure 5.1). However, even for lower slump values, LWFC was found easy to handle 

in laboratory than NWFC because of round shape of coarse aggregate and also due to 

their lower density. Test results presented in Table 5.1 indicate that workability of 

LWFC when measured in terms of slump reduced by 12.5% when fibre dosage was 

raised from 0 to 0.75% by volume, whereas for NWFC this decrease was only about 

6.4%. It can also be seen that up to the fibre dosage level of 40 kg/m3 fibres did not 

affect the slump flow of NWFC. This is mainly due to the higher density of normal 

weight aggregates which under jolting of slump flow table overcame the resistance to 

flow offered by steel fibres. Depending upon the spread achieved during flow table 

test, consistency of the concrete can be stiff, plastic, soft or flow-able as shown in 

Table 5.2 below. All the mixes fell into F2 to F3 consistency class, i.e. they were 

plastic or soft in fresh state. 
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Figure 5.1 Effect of fibres on slump flow (workability) of LWFC & 
NWFC 

 

Table 5.1 Slump values of LWFC and NWFC 

Slump flow (mm) 

Fibre content 
(kg/m3) LWFC % 

increase/decrease NWFC % 
increase/decrease 

0 440 - 390 - 

20 420 -4.5 395 +1.2 

40 390 -11.36 390 0 

60 385 -12.5 365 -6.4 

 

Table 5.2 Consistency classes of concrete 

Consistency 
class F1 F2 F3 F4 F5 F6 

Consistency 
description Stiff Plastic Soft Very soft Flow-able Highly 

flow-able 

Flow spread 
(mm) 340  350 - 410 420 - 480 490 - 550 560 - 620 630  
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5.2.2 Density 

For structural lightweight concrete, oven dry density should not be more than 1840 

kg/m3  and 2000 kg/m3 as per ACI [32] and EN [202] standards respectively. Apart 

from reducing the workability another disadvantageous effect of fibre addition on 

concrete is that they increase its weight. From the results, it can be seen that highest 

density was recorded as 2293.77 kg/m3 for NWFC and 1831 kg/m3 for LWFC at 

maximum fibre content. All these results of fresh concrete density for both LWFC and 

NWFC are presented in Table 5.3 alongside percentage variation in density due to 

fibre addition and air content values. General trend of the results shows that fibres due 

to their higher specific gravity tend to raise the density of both the concretes (LWC 

and NWC) at all volume fraction of fibres. The only exceptional case where NWFC 

had reduced density was at 20 kg/m3 fibre content level, which can only be justified 

by the higher air content level in the mix due to possible insufficient compaction. 

Similarly, like workability test results, fibres are also found to affect the density of 

LWC more than NWC. An increase of 2.2% is recorded in in the density of NWC 

whereas for LWC this increase was 6.7% when fibre volume fraction was increased 

from 0 to 60 kg/m3 (0 to 0.75% Vf) as shown in Figure 5.2. 

 

Figure 5.2 Effect of fibres on fresh concrete density of LWFC & 
NWFC 
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Table 5.3 Fresh concrete density and air content values of LWFC and NWFC 

Fresh concrete density & air content values 

  LWFC  NWFC 

Fibre 
content 
(kg/m3) 

 
A (%) γ 

(kg/m3) 
%  

variation 

 
A (%) γ 

(kg/m3) 
%  

variation 

0  5.09 1716.73 -  5.30 2243.83 - 

20  2.31 1782.10 +3.8  7.37 2213.33 -1.3 

40  0.99 1822.33 +6.2  5.76 2270.60 +1.2 

60  2.02 1831 +6.7  5.58 2293.77 +2.2 

5.3 Hardened Concrete Properties 

5.3.1 Compressive strength 

Table 5.4 and Table 5.5 present the test results for all the 24 cube specimens of 

LWFC and NWFC tested under compression. Besides these cylindrical compressive 

strength test results determined by testing the cylinders having dimensions of 100 mm 

x 200 mm are also presented in Table 5.6 and Table 5.7 for LWFC and NWFC 

respectively. Determination of compressive strength through testing of cylinders was 

necessary as fib-2010 [33] and ACI-318 [32] utilize 28-day cylindrical compressive 

strength test values in their bond expressions. From these results, it can be seen that 

for every respective fibre volume, the difference between the compressive strength of 

LWFC and NWFC is less than 5 MPa – a prerequisite for both the concretes to fall in 

similar strength class. This task was achieved through extensive trial mixes, altogether 

18 different combinations were tried before final selection of mixes for both 

concretes. 
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Table 5.4 Compressive strength test results of LWFC cubes 

Specimen ID 
Dimensions (mm) Testing 

date 
Age Max. load at 

failure 
Compressive 

Strength 
L W D (days) (kN) (MPa) 

C-LWFC-00-01 150 150 146 

5-05-15 28 

821.67 37.52 

C-LWFC-00-02 150 150 147 857.9 38.91 

C-LWFC-00-03 150 150 148 832.83 37.51 

Average 37.98 

C-LWFC-20-01 150 150 148 

12-05-15 28 

843.5 38.00 

C-LWFC-20-02 150 150 148 881.55 39.71 

C-LWFC-20-03 150 150 148 937.76 42.24 

Average 39.98 

C-LWFC-40-01 150 150 150 

19-05-15 28 

1003.76 44.61 

C-LWFC-40-02 150 150 149 1023.82 45.81 

C-LWFC-40-03 150 150 148.5 1058.48 47.52 

Average 45.98 

C-LWFC-60-01 150 150 148 

26-05-15 28 

877.1 39.51 

C-LWFC-60-02 150 150 148 994.84 44.81 

C-LWFC-60-03 150 150 148 883.46 39.80 

Average 41.37 
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Table 5.5 Compressive strength test results of NWFC cubes 

Specimen ID 
Dimensions (mm) Testing 

date 
Age Max. load 

at failure 
Compressive 

Strength 
L W D (days) (kN) (MPa) 

C-NWFC-00-01 150 150 149 

10-06-15 28 

972.6 43.52 

C-NWFC-00-02 150 150 149 948.56 42.44 

C-NWFC-00-03 150 150 150 961.68 42.74 

Average 42.90 

C-NWFC-20-01 150 150 150.5 

17-06-15 28 

871.39 38.60 

C-NWFC-20-02 150 150 150 861.87 38.31 

C-NWFC-20-03 150 150 149 904.99 40.49 

Average 39.13 

C-NWFC-40-01 150 150 150 

24-06-15 28 

1045.34 46.46 

C-NWFC-40-02 150 150 150 1044.53 46.42 

C-NWFC-40-03 150 150 149 1021.78 45.72 

Average 46.20 

C-NWFC-60-01 150 150 150 

1-07-15 28 

886 39.38 

C-NWFC-60-02 150 150 150 912.37 40.55 

C-NWFC-60-03 150 150 148 973.74 43.86 

Average 41.26 
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Table 5.6 Cylindrical compressive strength test results of LWFC 

Specimen ID 
Dimensions (mm) Testing 

date 
Age Max. load 

at failure 
Compressive 

Strength 
L Diameter (days) (kN) (MPa) 

C-LWFC-00-01 200 100 

5-05-15 28 

289.38 36.85 

C-LWFC-00-02 200 100 313.95 39.97 

C-LWFC-00-03 200 100 280.63 35.73 

Average 37.52 

C-LWFC-20-01 200 100 

12-05-15 28 

290.72 37.02 

C-LWFC-20-02 200 100 311.26 39.63 

C-LWFC-20-03 200 100 334.99 42.65 

Average 39.77 

C-LWFC-40-01 200 100 

19-05-15 28 

375.39 47.80 

C-LWFC-40-02 200 100 336.21 42.81 

C-LWFC-40-03 200 100 342.9 43.66 

Average 44.75 

C-LWFC-60-01 200 100 

26-05-15 28 

254.69 32.43 

C-LWFC-60-02 200 100 296.18 37.71 

C-LWFC-60-03 200 100 283.44 36.09 

Average 35.41 
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Specimens without fibres failed in more brittle fashion compared to those with fibres. 

Also, number of cracks at failure increased with increasing fibre content, and the 

width of cracks is observed to be decreasing as shown in Figure 5.3. Test results 

performed on both the 150 mm cubes and on cylinders (100 mm x 200mm) showed 

no clear effect of fibres on compressive strength. For both types of specimens, 

maximum compressive strength value was observed at 0.5% (Vf = 40 kg/m3) volume 

fraction of fibres as shown in Figure 5.4. This increase was about 21.1% for 

Table 5.7 Cylindrical compressive strength test results of NWFC 

Specimen ID 
Dimensions (mm) Testing 

date 
Age Max. load 

at failure 
Compressive 

Strength 
L Diameter (days) (kN) (MPa) 

C-NWFC-00-01 200 100 

10-06-15 28 

291.36 37.10 

C-NWFC-00-02 200 100 278.21 35.42 

C-NWFC-00-03 200 100 308.1 39.23 

Average 37.25 

C-NWFC-20-01 200 100 

17-06-15 28 

269.93 34.37 

C-NWFC-20-02 200 100 287.3 36.58 

C-NWFC-20-03 200 100 244.04 31.07 

Average 34.01 

C-NWFC-40-01 200 100 

24-06-15 28 

342.16 43.57 

C-NWFC-40-02 200 100 307.55 39.16 

C-NWFC-40-03 200 100 339.36 43.21 

Average 41.98 

C-NWFC-60-01 200 100 

1-07-15 28 

273.51 34.82 

C-NWFC-60-02 200 100 265.93 33.86 

C-NWFC-60-03 200 100 286.91 36.53 

Average 35.07 
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specimens of LWFC and only 7.7% for cylindrical specimens. It can be assumed that 

beyond this point further addition of fibres started creating cavities and voids in the 

mix and therefore specimens crushed at lower compressive loads. Values in the Figure 

5.4 represent the mean values alongside error bars of standard deviation. In general, 

compressive strength of cylindrical specimens was 80 to 86 % lower than the cubes. 

Similar observations have been reported by Topçu and Canbaz [203] that compressive 

strength values determined by cylindrical specimens are lower. Contrary to this, 

results of work of Domagala [101] show that for 0.6% fibre volume fraction 

compressive strength of LWFC increased by 4.6% when determined by cubes and by 

7% when determined by cylinders of 150 mm x 300 mm. 

Fibre content 
(kg/m3) LWFC NWFC 

0 

 
 

20 

  

40 

  

60 

  

Figure 5.3 Overview of specimens tested under compression at different 
fibre content levels 
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Figure 5.4 Effect of fibres on compressive strength of LWFC & NWFC 

5.3.2 Tensile strength 

Splitting tensile strength of the specimens was calculated using following equation 

and German DIN standard DIN EN 12390-6 [113]. 

ct-sp
2F

f
ld

 (5.1) 

Where 
ct-spf  is splitting tensile strength in MPa, F  is applied force in N and ,l d are 

length and depth of specimen in mm. 

For all mixes of LWFC, tensile strength is found to be, on an average 6.59 percent of 

the compressive strength, whereas for NWFC this percentage ranges from 6.41 to 

6.88%. All test results determined on 150 mm cube specimens are presented in Table 

5.8 and Table 5.9 for LWFC and NWFC respectively. The maximum difference of 

0.247 MPa in the splitting tensile strength of both concretes was observed at 0% 

volume fraction of fibres, just like compressive strength test results. At zero fibre 

content level, specimens failed with single major crack in two halves, whereas, 

multiple cracking at centre due to uniform tensile stresses and crushing at ends due to 

transverse compression stresses was observed at highest fibre dosage (see Figure 5.5)  
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Table 5.8 Splitting tensile strength test results of LWFC 

Specimen ID Dimensions (mm) Testing date Age 
Max. load at 

failure 
Tensile 
Strength 

L W D (days) (kN) (MPa) 

LWFC-00-01 150 150 148 

05-05-15 28 

92.24 2.61 

LWFC-00-02 150 150 148 91.93 2.60 

LWFC-00-03 150 150 148 81.38 2.30 
Average  2.50 

LWFC-20-01 150 150 148 

12-05-15 28 

94.39 2.67 

LWFC-20-02 150 150 149 98.85 2.80 

LWFC-20-03 150 150 149 98.25 2.78 
Average  2.75 

LWFC-40-01 150 150 149 

19-05-15 28 

100.68 2.85 

LWFC-40-02 150 150 149 100.94 2.86 

LWFC-40-03 150 150 149.5 102.62 2.90 
Average  2.87 

LWFC-60-01 150 150 148 

26-05-15 28 

95.85 2.71 

LWFC-60-02 150 150 148 92.64 2.62 

LWFC-60-03 150 150 148 101.04 2.86 
Average  2.73 
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Table 5.9 Splitting tensile strength test results of NWFC 

Specimen ID Dimensions (mm) Testing date Age 
Max. load 
at failure 

Tensile 
Strength 

L W D (days) (kN) (MPa) 

NWFC-00-01 150 150 150 

10-06-15 28 

98.9 2.80 

NWFC-00-02 150 150 150 101.82 2.88 

NWFC-00-03 150 150 149 91.01 2.58 

Average  2.75 

NWFC-20-01 150 150 149.5 

17-06-15 28 

94.01 2.66 

NWFC-20-02 150 150 149.5 90.27 2.55 

NWFC-20-03 150 150 148.5 100.23 2.84 

Average  2.68 

NWFC-40-01 150 150 150 

24-06-15 28 

111.1 3.14 

NWFC-40-02 150 150 150 106.72 3.02 

NWFC-40-03 150 150 150 99.6 2.82 

Average  2.99 

NWFC-60-01 150 150 150 

01-07-15 28 

98.93 2.80 

NWFC-60-02 150 150 148 102.44 2.90 

NWFC-60-03 150 150 150 99.61 2.82 
Average  2.84 

 

  



5 Material Properties 94 

 

 

 

 fv = 0 kg/m3 fv = 60 kg/m3 
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 Figure 5.5 Overview of specimens after split tensile strength 
test 

Also, variation of tensile strength strongly follows the compressive test results, as 

shown in Figure 5.6. These observations suggest that compressive strength has strong 

influence on splitting tensile strength of concrete and improvement in first cracking 

tensile stress through addition of steel fibres may not be a viable option. This is also 

evident from Table Table 5.10 which shows that increase in fibre volume does not 

affect the ratios of splitting tensile strength to cf  and to 
2
3
cf  for both conventional 

and lightweight concretes and is almost constant. For ACI Code [32], the ratio of 

splitting tensile strength to the square root of compressive strength of concrete is 0.56 

and 0.476 for conventional and lightweight concretes respectively. Although, some 

improvement in tensile strength was observed but it was of no appreciable amount; 

for example, at maximum fibre content level an improvement of only 9% is recorded 

in case of LWFC, whereas for NWFC it was merely of 3%. Maximum improvement 

of 8.8% and 14.6% were recorded at 0.5% volume fraction of fibres. At this volume 

fraction i.e. 0.5%, Song and Hwang recorded 19% improvement in splitting tensile 

strength of high-strength fibre-reinforced concrete, whereas 11% increase is reported 

by Yazici et al. [52] for normal strength fibre-reinforced concrete. Nevertheless, for 
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current experimental program, improvement in splitting tensile strength due to fibre 

addition was more pronounced in LWFC then NWFC. Similar observation is noted by 

Balendran et al. [96] in their work. 

 

Figure 5.6 Variation of splitting tensile strength with respect to 
compressive strength for LWFC & NWFC  

 

Table 5.10 Effect of fibre volume on the ratios of splitting tensile strength to 

cf  and to 
2
3
cf  

Fibre content  

(kg/m3) 

LWFC NWFC 

1
2

ct

c

f

f
 

2
3

ct

c

f

f
 

1
2

ct

c

f

f
 

2
3

ct

c

f

f
 

0 0.408 0.223 0.451 0.247 

20 0.436 0.236 0.460 0.255 

40 0.429 0.228 0.461 0.248 

60 0.459 0.253 0.480 0.265 

5.3.3 Flexural performance 

In current experimental work, performance of LWFC and NWFC beams under flexure 

is evaluated by first peak strength, energy absorption capacity (toughness), and 

residual capacity. Fibre reinforced concrete specimens can attain multiple peak load 

values under flexure depending upon the quantity of fibres added to the matrix. The 
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first peak strength 
1f  is the flexural strength of specimens calculated at first peak 

load 
1F  using equation (5.2). It is also termed as modulus of rupture as it 

characterizes the point of onset of the first crack where load-deflection curve has zero 

slope. 

1
1 2

F l
f

bd
 (5.2) 

For above equation, 1F  is flexural load at first peak, 1f , the flexural capacity 

corresponding to this load, and b, d, l are the width, depth and clear span of beam 

specimens.  

Flexural toughness is the measure of the energy absorption capacity of specimens and 

can be determined by finding out the area under the load-deflection curve. ASTM 

[110] suggests determination of this area up to deflection of 1/150 of the clear span of 

beams. Residual capacity is the flexural strength or stress value of the damaged 

concrete in post cracking region, and here it is determined at deflection of l/600 and 

l/150.  

5.3.3.1 First peak strength 

Fibres can impart greater ductility to the concrete and such reinforced concrete beams 

under flexural loading can attain multiple peak loads with progressive deflection. First 

peak strength 1f , calculated at first peak load, F1 (see Figure 5.7.), characterizes the 

point of onset of the first crack; hence stress at this level is also called first cracking 

stress. Results of both the splitting tensile strength and flexural tensile strength test 

1f , show similar trends. Higher values were recorded in case of beam tests compared 

to splitting tensile strength tests, possible reasons for this difference as per Nilson are 

the localization of the bending stresses at the outermost  beam surface and the 

application of Hook’s law for a material with non-linear behaviour. The ratio of mean 

value of flexural tensile strength to the square root of compressive strength for 

conventional and LWC is 0.69 and 0.58 respectively [92]. With the addition of steel 

fibres, these values were however, found to be higher compared to the control 

specimens without fibres (see Table 5.11), in addition, it shall also be noted that 
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results of tensile tests tend to have more scatter due to its dependence on multiple 

factors, such as, aggregate strength, bond between aggregate and cement paste etc. 

Table 5.11 Effect of fibre volume on the ratios of flexural tensile strength to cf  

and to 
2
3
cf  

Fibre content  

(kg/m3) 

LWFC NWFC 

1
2

1

c

f

f
 

2
3

1

c

f

f
 

1
2

1

c

f

f
 

2
3

1

c

f

f
 

0 0.568 0.311 0.678 0.371 

20 0.614 0.332 0.806 0.448 

40 0.700 0.371 0.795 0.426 

60 0.660 0.364 0.851 0.470 

Both fib Model Code 2010 and Eurocode 2, provide the relationship between direct 

axial tensile strength and modulus of rupture presented here as equation (5.3) and 

(5.4)  respectively.  

ctm fl 1

b
fl 0.7

b

0.06
where 

1 0.06

f A f

h
A

h   

(5.3) 

1
ctm

b1.6
1000

f
f

h

 

(5.4) 

Where hb represents beam height, and ctmf  is mean axial tensile strength. 

From these relationships one can establish a relationship between splitting tensile 

strength, ct-spf  and modulus of rupture 1f , as according to Eurocode 2 

ct-sp ctm 0.9f f . Thus for the size of beams (150 x 150 x 700) used in current work 

hb is 150 and the relationship between ct-spf  and 1f  as per Model Code 2010 and 

Eurocode 2 are as ct-sp 1 ct-sp 10.67and 0.77f f f f  respectively. Compared to 

this the calculated values for LWFC and NWFC are tabulated as under (see Table 

5.12), which indicates that the modulus of rupture value are 1.3 to 1.5 times higher 

than the splitting tensile strength test results. 
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Table 5.12 Relationship between splitting tensile strength and flexural tensile 
strength (modulus of rupture) 

Fibre content 
(kg/m3) ct-sp 1f f  

LWFC NWFC 

00 0.718 0.664 
20 0.710 0.570 
40 0.613 0.5805 
60 0.694 0.563 

Flexural strength values at first peak loads (F1) for specimens of both LWFC and 

NWFC are tabulated in Table 5.13. Although, it appears as if fibres have increased the 

flexural strength at this load value, fluctuation of values with compressive strength 

suggests that, not fibres, rather compressive strength is the reason for this increase. 

This observation is in agreement with the findings of Shah [204], who observed no 

improvement in first cracking stress for the amount of fibres used in current 

experimental work. Comparison of the results of LWFC and NWFC (see Figure 5.8) 

shows that maximum and the minimum difference of first peak strength is at fibre 

dosages of 60 and 40 kg/m3 where LWFC achieved 28.24% and 10.04% respectively 

lesser strength than NWFC. 

 

Figure 5.7 Definition of first peak load on a typical load-deflection 
curve of FRC beam 
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Figure 5.8 Flexural strength of beam specimens at first peak/crack 
point 
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Table 5.13 Flexural performance indicators 

Specimen 
Fibre 

content 

[kg/m3] 

l 

[mm] 

F1 

[kN] 

f1 

[MPa] 
% increase 

δ1 

[mm] 

T 

[Joules] 

LWFC 

0 

600 

19.31 3.48 0.00 0.098 1.21 

20 21.55 3.87 11.21 0.104 41.26 

40 25.97 4.68 34.48 0.33 71.58 

60 22.09 3.93 12.93 0.108 67.01 

NWFC 

0 

600 

23.04 4.14 0.00 0.098 1.28 

20 26.42 4.70 13.53 0.104 52.69 

40 28.60 5.15 24.4 0.08 86.25 

60 28.26 5.04 21.74 0.12 93.94 

Note: Values are average of 3 specimens 
δ1 = Beam deflection at first peak load 
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5.3.3.2 Flexural toughness  

In recent years with growing security concerns, toughness T  is expected to become 

the most desired property of the concrete, especially in situations where structural 

elements have to withstand impact from shocks and blasts. Toughness is also highly 

influenced property of concrete when fibres are added to it. It characterizes material’s 

capacity to energy absorption and is evaluated by determining the area under the load-

deflection curve up to specific deflection point. Figure 5.9 shows area under load 

deflection curves up to deflection of 4 mm (l/150) along with toughness values in 

joules. These curves are the average of load-deflection curves of three beams 

specimens, and the plots (load-deflection curves) of all those individual specimens are 

presented in Figure 5.10. Although LWFC achieved lower toughness values, pattern 

of the curves suggests that fibres had similar effect on both concretes. Poor bond of 

lightweight aggregates with the mortar and their lower strength under tensile loading 

are assumed to be the reason due to which fibres kept on slipping at reduced loading. 

As a result of this slippage, contribution of fibres in bridging the cracks is also 

affected. Failure of all the specimens occurred in the maximum moment region of 

beams.  

 

Figure 5.9 Evaluation of area under load-deflection curves 

Note: [fv 20 kg/m3 = 0.25% Vf], [fv 40 kg/m3 = 0.5% Vf], [fv 60 kg/m3 = 0.5% Vf] 

0.
16

00
8

0.
52

82
6

0.
55

02
8

0.
56

22
8

0.
59

23
0.

60
43

0.
61

03
1

0.
61

63
1

0.
62

83
1

0.
63

63
2

0.
64

83
2

0.
65

43
3

0.
66

63
3

0.
67

63
4

0.
68

63
4

0.
69

43
5

0.
70

83
5

0.
71

83
6

0.
73

03
7

0.
73

83
7

0.
74

83
7

0.
77

83
9

0.
80

84
0.

82
44

1
0.

83
64

2
0.

87
84

4
0.

89
04

5
0.

91
44

6
0.

94
24

7
0.

97
64

9
1.

00
05

1.
02

25
1

1.
03

25
2

1.
04

85
2

1.
05

85
3

1.
06

85
3

1.
07

65
4

1.
08

85
4

1.
09

65
5

1.
13

65
7

1.
14

65
7

1.
15

25
8

1.
16

25
8

1.
17

05
9

1.
18

85
9

1.
19

86
1.

21
46

1
1.

23
86

2
1.

24
46

2
1.

25
46

3
1.

26
26

3
1.

27
46

4
1.

28
06

4
1.

28
86

4
1.

29
46

5
1.

30
26

5
1.

30
86

5
1.

31
66

6
1.

32
46

6
1.

33
66

7
1.

35
46

8
1.

36
86

8
1.

37
46

9
1.

38
06

9
1.

38
66

9
1.

39
87

1.
41

67
1

1.
42

67
1

1.
43

47
2

1.
45

07
3

1.
46

67
3

1.
47

87
4

1.
49

67
5

1.
53

87
7

1.
54

47
7

1.
56

47
8

1.
59

48
1.

61
68

1
1.

63
48

2
1.

65
28

3
1.

66
28

3
1.

67
08

4
1.

69
28

5
1.

71
48

6
1.

72
28

6
1.

74
28

7
1.

76
68

8
1.

79
69

1.
80

89
1.

81
89

1
1.

85
49

3
1.

87
49

4
1.

88
89

4
1.

91
89

6
1.

93
69

7
1.

94
69

7
1.

99
9

2.
02

70
1

2.
05

70
3

2.
06

70
3

2.
12

50
6

2.
13

30
7

2.
15

10
8

2.
17

90
9

2.
18

50
9

2.
21

51
1

2.
25

31
3

2.
28

91
4

2.
29

51
5

2.
31

71
6

2.
33

71
7

2.
34

71
7

2.
36

51
8

2.
37

91
9

2.
40

52
2.

44
32

2
2.

48
72

4
2.

50
12

5
2.

51
12

6
2.

53
52

7
2.

54
12

7
2.

56
32

8
2.

57
72

9
2.

58
72

9
2.

60
13

2.
61

13
1

2.
62

13
1

2.
62

73
1

2.
64

33
2

2.
66

33
3

2.
67

33
4

2.
68

33
4

2.
70

13
5

2.
70

73
5

2.
72

33
6

2.
74

53
7

2.
78

73
9

2.
80

54
2.

81
14

1
2.

81
74

1
2.

82
74

1
2.

83
34

2
2.

83
94

2
2.

85
14

3
2.

89
34

5
2.

89
94

5
2.

90
54

5
2.

91
54

6
2.

92
14

6
2.

92
74

6
2.

94
94

7
2.

95
54

8
2.

97
14

9
2.

98
74

9
2.

99
35

3.
00

35
3.

00
95

3.
01

55
1

3.
02

75
1

3.
03

35
2

3.
03

95
2

3.
04

55
2

3.
05

15
3

3.
05

75
3

3.
07

15
4

3.
07

75
4

3.
08

35
4

3.
08

95
4

3.
09

95
5

3.
10

55
5

3.
11

55
6

3.
13

55
7

3.
14

15
7

3.
14

75
7

3.
15

35
8

3.
17

75
9

3.
18

95
9

3.
19

56
3.

20
16

3.
20

76
3.

21
36

1
3.

22
56

1
3.

23
16

2
3.

24
16

2
3.

24
76

2
3.

25
36

3
3.

26
36

3
3.

27
16

4
3.

27
76

4
3.

28
96

4
3.

29
56

5
3.

30
76

5
3.

31
36

6
3.

32
36

6
3.

33
16

7
3.

33
76

7
3.

34
36

7
3.

34
96

7
3.

35
56

8
3.

36
76

8
3.

39
17

3.
39

77
3.

40
37

3.
40

97
3.

41
57

1
3.

42
17

1
3.

42
77

1
3.

43
37

2
3.

43
97

2
3.

44
57

2
3.

45
37

3
3.

46
97

3
3.

47
77

4
3.

49
57

5
3.

50
37

5
3.

50
97

5
3.

52
37

6
3.

53
17

7
3.

53
97

7
3.

54
57

7
3.

55
37

8
3.

55
97

8
3.

56
77

8
3.

58
37

9
3.

58
97

9
3.

59
78

3.
60

58
3.

61
18

1
3.

61
78

1
3.

62
38

1
3.

63
18

2
3.

64
38

2
3.

64
98

2
3.

65
58

3
3.

66
38

3
3.

66
98

3
3.

67
98

4
3.

68
58

4
3.

69
18

5
3.

69
98

5
3.

70
78

5
3.

71
38

6
3.

72
18

6
3.

72
98

6
3.

73
58

7
3.

74
18

7
3.

74
98

7
3.

75
98

8
3.

76
58

8
3.

77
38

9
3.

78
18

9
3.

79
19

3.
79

79
3.

80
59

3.
81

19
1

3.
82

19
1

3.
82

79
1

3.
83

59
2

3.
84

19
2

3.
84

99
2

3.
85

59
3

3.
86

99
3

3.
87

99
4

3.
88

79
4

3.
89

59
5

3.
90

39
5

3.
91

19
6

3.
91

79
6

3.
92

59
6

3.
93

39
7

3.
94

19
7

3.
94

99
7

3.
95

59
8

3.
96

39
8

3.
97

19
9

3.
97

99
9

3.
98

79
9

0 1 2 3 4
0

5

10

15

20

25

30

T = 93.94 J
T = 67.01 J

0 1 2 3 4
0

5

10

15

20

25

30 f
v
= 60 kg/m3

f
v
= 40 kg/m3Lo

ad
 (k

N
)

Deflection (mm)

T = 71.58 J
T = 86.25 J

0 1 2 3 4
0

5

10

15

20

25

30  NWFC
 LWFC

T = 52.69 J
T = 41.26 J

0 1 2 3 4
0

5

10

15

20

25

30 f
v
= 20 kg/m3

T = 1.21 J
T = 1.28 Jf

v
= 0 kg/m3

0.00 0.04 0.08 0.12
0

5

10

15

20

25

Lo
ad

 (k
N

)

Deflection (mm)



5 Material Properties 101 

 

 

 

Figure 5.10 Load-deflection diagrams of all the tested beam specimens 

  

  

  

  

(a) (b) 

Figure 5.11 Overview of beam specimens after flexural test (a) NWFC 
(b) LWFC 
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As expected, presence of multiple cracks at the tensile surface was not observed at 

such low percentage of fibres. Although few small cracks started appearing at higher 

volume fraction (40 and 60 kg/m3) of fibres, these could not progress further to 

compression zone, and failure occurred due to single major crack (see Figure 5.11). 

At maximum fibre content, LWFC and NWFC had toughness values 55 times and 73 

times higher than their respective control specimens without fibres. Toughness values 

of LWFC were lower than NWFC by 5.8%, 27.8%, 20.5% and 40% at 0, 20, 40 and 

60 kg/m3 fibre contents respectively. 

5.3.3.3 Residual capacity 

Post first peak performance of cracked concrete is highly dependent on the amount of 

fibres added to it [205]. Multiple peaks on load deflection curves started becoming 

prominent for fibre volume fraction higher than 0.5% (fv = 40 kg/m3). For these 

specimens, after the first crack point, load started decreasing rapidly with increasing 

deflection for a while but later started rising as the tensile load shifted to fibres. From 

this point onwards, beams of NWFC were able to regain flexural strength higher than 

first peak strength at higher deflection values (0.5 mm), whereas, for lightweight 

concrete, the residual strength at maximum peak strength (at around 0.4 mm for all 

specimens) and the first peak strength remained almost at the same level. Residual 

strength of LWFC also remained lower than NWFC at all stages of flexural tests of all 

specimens. Figure 5.12 shows residual flexural strength values calculated at 1 mm

/600lf  and 4 mm /150lf  for fibre volume of 20, 40 and 60 kg/m3
 (0.25, 0.5 and 

0.75% Vf). These calculated values are also tabulated in Table 5.14. Specimens of 0% 

Vf could not achieve deflections higher than 0.15 mm and showed no residual 

capacity, which is typical of unreinforced concrete beams. At volume fraction of 

0.25%, NWFC achieved 27% higher residual capacity than LWFC measured at 

deflection of 1 mm and 4 mm. At similar deflection levels, difference between the two 

concrete became wider at maximum volume fraction (0.75%) as the NWFC achieved 

residual capacity 37% and 49% higher than LWFC. Reason for the widening of this 

performance gap, with increasing fibre quantity, is considered to be the better synergy 

between stiff concrete matrix resulting from irregular, rough textured coarse aggregate 

and the fibres. 
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Figure 5.12 Residual flexural capacity of beam specimens 

 

Table 5.14 Residual capacity of beam specimens at specific deflection points 

Fibre content 

(kg/m3) 

LWFC NWFC 

/600 1mmlf  
/150 4mmlf  

/600 1mmlf  
/150 4mmlf  

20 2.069 1.318 2.639 1.680 

40 3.589 2.525 4.509 2.821 

60 3.555 2.085 4.876 3.113 

5.3.4 Modulus of elasticity 

Test results for modulus of elasticity (E) are presented in Table 5.15 and illustrated in 

Figure 5.13 as a function of fibre content. Table 5.15 also contains values calculated 

from ACI-318 and Eurocode-2 equations presented below as equations (5.5) and (5.6) 

respectively. For lightweight concrete ACI-318 recommends that results be multiplied 

by with 0.85 for sand lightweight concrete and with 0.75 for all-lightweight concrete. 

Although Eurocode-2 specifies the changes required in calculation of modulus of 

elasticity for different types of aggregates, however, author could not find guidelines 

for lightweight concrete. Therefore tabulated values for LWFC as per Eurocode-2 

could not be estimated. 
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For lightweight concrete, results’ trend clearly indicates that fibre addition causes a 

slight reduction in elastic modulus of the concrete. This decrease was on an average 

5.86% at the highest fibre volume. Mansur et al. [206] and Neves & Almeida [207] 

have reported similar behaviour and can be explained because addition of fibres 

results in not so compacted concrete as it would be without fibres. Compared to this, 

test values of NWFC follow trend of compressive strength results, suggesting well 

established relation between elastic modulus and compressive strength i.e. any change 

in compressive strength will affect the elastic modulus exponentially (see Figure 

5.14). Ineffectiveness of steel fibres on modulus of elasticity of NWFC can only be 

explained by the fact that due to higher specific gravity of coarse aggregates, NWC 

specimens were able to achieve enough compaction under vibration which 

counteracted the effect of fibre presence. Since modulus of elasticity of concrete is 

highly dependent on specific gravity of coarse aggregate as well, for this reason, 

results show that despite having similar strength class, LWFC had on an average 14 

GPa lower modulus of elasticity values than NWFC. 

 

Figure 5.13 Elastic modulus as a function of fibre content for LWFC & 
NWFC 
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Table 5.15 Modulus of elasticity test results for LWFC and NWFC 

Concrete 
type 

fv 
(kg/m3) Elastic modulus, E (Gpa) 

Average 
(GPa) 

ACI-318 Eurocode-2 
LW

FC
 

0 19.67 19.12 19.74 19.51 24.47 
 

20 20.67 19.21 19.65 19.85 25.19 
 

40 19.94 18.68 20.02 19.55 26.72 
 

60 18.53 17.23 19.37 18.37 23.77 
 

 

 
  

 
  

N
W

FC
 

0 31.17 32.39 31.59 31.71 28.69 32.64 

20 32.77 31.52 29.56 31.28 27.41 31.76 

40 36.58 37.23 36.49 36.77 30.45 33.83 

60 33.46 31.24 32.96 32.55 27.83 32.06 

 

Figure 5.14 Effect of compressive strength of concrete made from 
different types of aggregates on modulus of elasticity [93] 

 



 

6 Results & Analysis of Bond Test 

6.1 General 

This chapter presents results of all the pull-out tests performed on Lightweight Fibre-

reinforced Concrete (LWFC) and Normal weight Fibre-reinforced Concrete (NWFC). 

The effect of test parameters on bond behaviour is also discussed, followed by 

influence of selected material properties – the results of which are presented in 

previous chapter. It has been made sure in this chapter to present all the test results in 

tabular form; however, the plots of pull-out tests include the average of three test 

results. Reader can access any specific pull-out test plot/curve for any type of concrete 

in Annex – A for LWFC and Annex – B for NWFC 

6.2 Pull-out Test Results 

No pull-out failure was observed, and failure of all the specimens took place by 

splitting of concrete. The maximum pull-out force and the corresponding bond 

strength for all the specimens of LWFC and NWFC are presented in Table 6.2 and 

Table 6.3 respectively. 

Cracks became visible at the outer surface of all the specimens at the maximum pull-

out force radiating outward from pull-out bar along its bonded length. Wider cracks 

are observed in both the concrete types (LWC and NWC) with increasing bar or 

specimen size, and compared to NWC, cracks in LWC specimens were wider and 

these specimens at failure fractured completely in absence of fibres as shown in 

Figure 6.1. Besides enhancing the post cracking performance, another advantage for 

which steel fibres are well known, is their ability in to delay crack formation and 

reducing the crack width [208], [209] . This phenomenon is observed during pull-out 

tests as well. The crack width is function of concrete’s tensile strength, which means 

lower the tensile strength higher the crack width. Since residual tensile capacity is 

found to increase with increasing fibre dosage as noted in section 0 therefore crack 

widths noted at higher fibre dosages and higher displacements are also lower in pull-

out tests.  

Increased interest by the building codes in improving durability and appearance of 

structure by limiting crack width and propagation is also an important factor in 
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widespread use of fibres in concrete. Structures with larger crack widths not only give 

dull view to the observer but also lose some part of their service life because of 

corrosion of reinforcement that is exposed to outside environment due to larger crack 

widths [210]. 

Figure 6.2 shows the effect of fibres on crack width on the pull-out tests of 20 mm bar 

size specimens of LWFC. Crack width measured at slip of 4 mm is 1.2 mm at fibre 

content of 20 kg/m3, which can be seen to reduce to 0.15 mm at highest fibre dosage. 

Figure 6.2 (b) presents the magnified view of these cracks.  

 

 

Figure 6.1 Overview of specimens of different sizes at the end of bond 
test (a) LWFC (b) NWFC 
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 Figure 6.2 (a) Effect of fibres on cracks measured at slip of 4 mm for 
20 mm bar size specimen of LWFC (b) magnified view 

6.2.1 Effect of bar/specimen size 

Bond stress at failure was observed to decrease with development of larger crack 

widths as the bar/specimen size increased, because in larger specimens, due to 

distributed cracking, non-simultaneous nature of failure in different zones is more 

pronounced which help to cause the final failure resulting in larger cracks at same slip 

values (see Figure 6.1). Also, compared to conventional concrete, brittleness of 

lightweight concrete was evident, as specimens of this mix completely split at the end 

of test. This is because, normal weight aggregates have higher values of density, 

particle strength and elastic modulus, therefore these act as an obstacle to further 

propagation of cracks, whereas lightweight aggregate being lighter and porous offer 

less resistance. 
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Effect of bar size and specimen size in different concretes on bond has been reported 

in earlier literature [211], [212]. These reports suggest decrease in bond strength as 

the bar size/specimen size increase. This decrease is attributed to the fact that there is 

increase in circumferential shearing area as the bar diameter increases. Even with 

same cover to bar size c  ratio, results for all the mixes of current experimental 

work show that 10 mm bar size attained highest bond strength. For NWFC, on an 

average bond strength of specimens with 20 mm bar and 16 mm bar were found to be 

82.5% and 86.4% respectively of the bond strength of 10 mm bar. Whereas for LWFC 

bond strength of 16 mm and 20 mm bars were 83.9% and 69.76% respectively of the 

bond strength of 10 mm bar. Higher difference in percentage of bond strength of 20 

mm and 10 mm bar size specimens in case of LWFC reflects here two things, one 

brittleness of lightweight aggregate concrete against the higher pull-out loads 

achieved in case of larger specimens and second the fact that in larger specimens, 

non-simultaneous nature of failure is more pronounced as explained earlier.  

Lightweight concrete has lower bond strength than normal weight concrete due to the 

lower particle strength [213]. This trend was also observed in current experimental 

work as shown in Figure 6.3. Results show that, except 10 mm bar size specimens at 

0% fibre volume fraction, bond strength of LWFC was lower than that of NWFC at 

every other fibre content level. Figure 6.3 presents average results of ultimate bond 

strength for both concrete types (LWFC & NWFC) including all bar size specimens. 

On an average for 10 mm, 16 mm and 20 mm bar size specimens, bond strength of 

NWFC was higher than LWFC by 1.396, 1.18 and 1.35 times respectively. 
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Figure 6.3 Ultimate bond strength as a function of bar size for all 
concrete types 

6.2.2 Effect of fibres 

6.2.2.1 Effect on bond stress-slip profile 

In non-fibrous mixes of lightweight concrete, the descending branch of bonds stress-

slip profile is very steep and short when compared with the NWC as can be seen (see 

Figure 6.4 (a)) in the bond stress-slip plot of 10 mm bar size specimens of both the 

Lightweight and normal weight concretes. It can be inferred from this behaviour that 

failure occurred suddenly in the aggregates due to their lower strength. This kind of 

behaviour started to change with the subsequent addition of steel fibres and more 

consistent softening branch was observed in the post splitting region of bond slip plots 

i.e. compared to the abrupt dipping of bond force the descent was more gradual and 

smooth as the fibre quantity in the mix increased, indicating the effectiveness of fibres 

in trapping the progressing cracks (see Figure 6.4 (b)).  

Almost similar behaviour is observed in higher diameter bar specimens of non-fibrous 

mixes of LWC; i.e. failure also occurred in aggregates with sharp dipping of bond 

stress. However, because of better confinement due to larger concrete cover, 

resistance to slip was noted with higher bond stresses, whereas profiles of NWC have 

well defined descending branch without any sharp peaks (see Figure 6.4 (c)), which 
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suggests that in case of normal weight concrete, aggregates did not fail, but the failure 

initiated in the cement paste. Overview of non-fibrous bond specimens after testing 

confirms this observation, compared to normal weight aggregates, lightweight 

aggregates particles can be seen completely fractured in Figure 6.5 (a). 

 

Figure 6.4 Bond stress-slip profiles of lightweight and normal weight 
concretes for 10 mm and 20 mm bar size specimens 

 

 

(a) 

 

(b) 

Figure 6.5 Overview of specimens after bond test (a) LWC, (b) NWC 



6 Results & Analysis of Bond Tests 112 

 

 

Another interesting aspect observed in the bond behaviour of both the concretes was 

the improvement in the residual bond strength values. In current experimental work, it 

is observed that, there is significant improvement in the residual bond strength of 

LWFC and NWFC with addition of steel fibres. It is primarily because immediately 

after reaching to maximum bond stress values in non-fibrous mixes cracks becomes 

so wide that reinforced bar is easily pulled out without causing much damage to the 

concrete present between the bar ribs (see Figure 6.6 (a)), thus facing virtually no 

further resistance as reflected by the lower residual bond strength of the specimens 

(see Figure 6.6.(b)) Contrary to this behaviour, more of the concrete before lugs of the 

pull-out bar is found to be damaged (Figure 6.6 (b)) in fibrous mixes due to slip of bar 

due to increasing confining pressure with increasing fibre dosage, raising significantly 

the residual bond strength (Figure 6.6 (d)). 

 
(a)  

(b) 

 
(c) 

 
(d) 

Figure 6.6 Overview of the bond specimens after test (a) without fibres 
(b) with fibres, along with their corresponding stress slip 
profiles (c) without fibres (d) with fibres 
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This improvement is especially higher in case of LWC (see Figure 6.4 (b)) and also 

for larger sized pull-out specimens (Figure 6.4 (d)). In case of NWC, normal weight 

aggregates also contribute in resisting crack propagation, for this reason, not so much 

improvement could be achieved by fibre addition compared to LWFC. Since, larger 

specimens, attain higher pull-out loads and hence dissipate more energy with more 

brittle nature of failure than smaller specimens, therefore better improvement in 

residual bond strength can be observed due to fibre incorporation. For example, when 

the fibre volume is increased from 20 kg/m3 to 60 kg/m3, residual bond strength of 

bond specimens of LWFC containing 16 mm pull-out bar increased by 60%, whereas, 

for specimens having 20 mm diameter bar this increase was about 95%. Similarly, for 

NWFC, these percentages are 53% and 65% for 16 mm and 20 mm pull-out bar 

specimens respectively. 

Residual bond stress values determined at slip of 1, 2 and 4 mm are presented in 

Table 6.5 for LWFC and in Table 6.6 for NWFC. Significant improvement in the 

stress values recorded at bar displacement of 4 mm, with subsequent increase in fibre 

quantity, can be seen in the Figure 6.7. Due to lower fracture energy and high 

brittleness, almost all LWC specimens have zero bond strength at displacements 

greater than 3 mm. For this reason, percentage improvement in residual bond strength 

due to fibre addition is higher in LWFC than NWFC bond specimens; nevertheless, 

NWFC attained higher bond stress values at all fibre content levels. For example, at 

the slip value of 4 mm and for fibre dosage of 60 kg/m3, the average of three test 

results shows that bond strength of LWFC is 73.77%, 78.18% and 78.02% of the bond 

strength of NWFC for 10 mm, 16 mm and 20 mm pull-out bars specimens 

respectively.  

Fib – 2010 [33] for typical splitting mode of failures for all types of concretes, 

whether confined or unconfined, considers no contribution of frictional resistance and 

hence the residual bond strength values are zero as shown in its typical bond stress-

slip law for monotonic loading (see Figure 6.8). In case of pull-out type of failures, 

code considers further resistance to slip offered by friction and its magnitude is taken 

equal to 40% of maximum bond stress. Also, in both the pull-out and splitting modes 

(for concrete confined with stirrups) of failure, bond law, after maximum bond stress, 

has the bi-linear stress-slip relationship. Although, fibre reinforcement depicts to 
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6.2.2.2 Effect on ultimate bond strength 

Clear effect of fibres in improving the ultimate bond strength of NWFC is observed, 

where, on average bond strength of pull-out specimens, for all bar sizes, increased by 

29% at the maximum fibre content. Improvement in the bond strength was more 

pronounced in higher diameter bars at fibre dosage of 40 kg/m3 with an increment of 

38% for 20 mm bar size and about 30 % for 16 mm bar shown in Figure 6.9 (a). This 

enhancement with increasing fibre content could be due to better bond between matrix 

and fibres. Disturbance in packing/density of matrix at maximum fibre content is 

believed to be the reason for reduction in compressive strength of concrete and thus 

the ultimate bond strength of 16 mm and 20 mm bars. Although, density is higher at 

this fibre volume (see Table 5.3), but, this rise in density is believed to be due to 

weight of fibres. This highlights the fact that compressive strength has strong 

influence on bond. Contrary to this 10 mm bar has improved bond strength at this 

fibre content (60 kg/m3) which could be due to the presence of fibres near crack 

region or/and that length of fibres was adequate enough for trapping multiple cracks 

due to smaller size of specimens, thus delaying crack propagation and increasing bond 

strength, however this aspect needs further investigation.  

For both 10 mm and 16 mm bar size specimens of LWFC, no distinct effect of fibres 

on the ultimate bond strength could be observed, and the bond strength for these bar 

sizes remains almost unchanged even at the highest fibre content level. However, 

progressive improvement in the ultimate bond strength of 20 mm bar size specimens 

is recorded and specimens of this series attained the highest percent increase among 

all the pull-out specimens of both the LWFC and NWFC series (see Figure 6.9 (b)). 

Lower relative density/strength of LWA particles may be considered as the factor for 

ineffectiveness of fibres in improving the ultimate bond strength of 10 mm and 16 

mm bar size specimens, as fibres may not have been able to cover cracks initiated 

from both the cement and weaker aggregates, whereas for 20 mm bar size specimens 

additional concrete cover helped in raising the bond strength. Nevertheless, the 

ultimate bond strength of LWFC specimens for all bar sizes at maximum fibre dosage 

is found either equal to or higher than the conventional normal weight concrete having 

no fibres as shown in Figure 6.10. At this fibre content i.e. 60 kg/m3, the ultimate 

bond strength of LWFC-60-10 is higher than NWFC 00-10 by 14% and similarly for 
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20 mm bar size specimens it is higher by 11.5 %. This suggests that using adequate 

quantity of fibres in LWC, bond strength, similar to that of NWC can be achieved.  

(a) (b) 

Figure 6.9 Effect of fibres on ultimate bond strength (a) NWFC (b) 
LWFC 

 

Figure 6.10 Ultimate bond strength of LWFC and NWFC in relation 
with the bond strength of NWC shown by red line. 

6
8

10
12
14
16
18

d
b
 = 10 mm

d
b
 = 16 mm

-20

0

20

40

60

0 20 40 60
6
8

10
12
14
16
18

d
b
 = 20 mm

Fiber content (kg/m3)

U
lti

m
at

e 
bo

nd
 st

re
ng

th
 (M

Pa
)

-20

0

20

40

60

6
8

10
12
14
16
18

 Ultimate bond strength - NWFC
 Percent variation (%)

-20

0

20

40

60

 P
er

ce
nt

 v
ar

ia
tio

n 
(%

) 6
8

10
12
14
16
18

 Ultimate bond strength - LWFC
 Percent variation (%)

db = 10 mm

-20

0

20

40

60

6
8

10
12
14
16
18

U
lti

m
at

e 
bo

nd
 st

re
ng

th
 (M

Pa
)

db = 16 mm

-20

0

20

40

60

 P
er

ce
nt

 v
ar

ia
tio

n 
(%

)

0 20 40 60
6
8

10
12
14
16
18

db = 20 mm

Fiber content (kg/m3)

-20

0

20

40

60

0
3
6
9

12
15
18

db=16 mm

 NWFC
 LWFC

db=10 mm

13.03

0 20 40 60
0
3
6
9

12
15
18 db=20 mm

Ul
tim

ate
 bo

nd
 st

re
ng

th
 (M

Pa
)

Fiber content (kg/m3)

10.73

0
3
6
9

12
15
18

11.51



6 Results & Analysis of Bond Tests 117 

 

 

6.3 Estimation of Bond Strength 

Since most of the bond expressions are based on the experimental results of NWC and 

that too without fibres. It is therefore reasonable to see first, how closely these 

equations predict bond strength of conventional concrete reinforced with steel fibres. 

Pull-out test results of NWFC presented in Table 6.3 are compared with the equations 

of ACI 408 [4], fib-2010 [33] and equation given by Orangun et al. [170] on which 

the famous design equation of ACI-318 [32] for development length is based. Table 

6.7 presents test results and prediction by these equations ((6.1) to (6.3)). 

s s max
b min s'1/4 '1/4

min

b      1.43 0.5 57.4 0.1 0.9
c c

T A f C
l C A

Cf f
 (6.1)  

0.25 0.33 0.10.2
ck min max

u,split 2 tr
min

20
.6.54. . . . 8

20

f c c
K

c
τ η   (6.2)  

b min

'
b

0.10 0.25 4.15

c

c

lf

τ
 (6.3) 

Origin of the above equations is presented in detail in section 3.4. (6.1)) is expressed 

in terms of bond force and must be converted to bond stress by dividing it with 

circumferential area b( )l .  

Because of the similar cover to bar diameter ratio c   and also similar bar diameter 

to development length ratio 
bl

 , (6.1)) and (6.3)) yield identical bond strength 

results for all specimen sizes of any fibre content series. (6.2)), however is 

independent of bar size to development length ratio but considers the effect of bar size 

using factor 
0.2

20 in the equation. It is for this reason that it shows variation of bond 

strength with good prediction results as shown in Figure 6.11. The parameter 2  in 

(6.2) is taken equal to 1 for calculations, assuming that good bond conditions exist, 

for other bond conditions code suggests value of 0.7. 
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It can also be observed that as the fibre content increases, prediction of ultimate bond 

strength by all these bond expressions start to become conservative. Many of the 

research works [173], [169], [214] show that improvement in the material and 

structural properties of concrete as a result of steel fibre addition could be the function 

of fibre aspect ratio multiplied by the fibre volume fraction, the product is also known 

as fibre factor f f

f

l V

d
.  

The effect of confinement, provided by transverse reinforcement, in enhancing the 

ultimate bond strength in (6.2) of fib-2010 is represented by trK , called transverse 

reinforcement factor. In absence of such reinforcement, the improvement of ultimate 

bond strength with increasing fibre content can be considered the function of fibre 

factor. To strengthen this argument, fibre factor f f

f

l V

d
 is included and adjusted in the 

Eq. (6.4) and the plots of experimental results vs predicted values are drawn for all the 

specimens of NWFC (see Figure 6.12), also the mean and standard deviation values 

for the (6.1), (6.2) and (6.4) are presented in Table 6.8. It can be seen that proposed 

equation not only predicts well the experimental results with better mean values, but 

also the dispersion of the results from mean values expressed as standard deviation is 

also lower than the other bond expressions.  

The limitation of 0.5fV  is also imposed in the proposed equation, as it is found that 

fibre volume fraction below this level has either negligible positive effect on bond 

strength as in case of NWFC pull-out test results, or in some cases has negative 

influence as observed in the behaviour of LWFC specimens (see Figure 6.9 (b)). 

Hence the contribution of fibres below this level shall not be considered i.e. f f

f

l V

d
 

shall be set to zero.  

0.25 0.33 0.1 0.10.2
ck min max f f

u,split 2 tr
min f

20
.6.54. . . . 8

20

f c c lV
K

c d
τ η  (6.4) 

Where, f 0.5V  
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Figure 6.12 Ultimate bond strength of NWFC plotted against predicted 
values by different code expressions 
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Figure 6.11 Prediction of bond strength for NWFC by different 
equations 
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The proposed equation (6.4) also appears to be predicting well the ultimate bond 

strength of LWFC bond specimens with some modification. ACI – 318 reduces the 

bond strength of LWC by 30% owing to its lower tensile strength (see Eq. (6.5)). This 

penalty of lowering the bond strength by factor 1.3 is also continued by the ACI 

Committee– 408 in its proposed design expression for the development length, and is 

represented by symbol λ as mentioned earlier in section 3.3.2. However no such 

parameter is incorporated in the bond expressions of fib-2010.  

Therefore, ultimate bond strength of LWFC pull-out specimens is calculated using 

(6.1) and (6.4) after including λ = 1.3, whereas fib-2010 equation ((6.2)) remains 

unchanged. 

b s s max
b min s'1/4 '1/4

minc

1
     1.43 0.5 57.4 0.1 0.9 .
c

T A f C
l C A

Cf f
 (6.5) 

0.25 0.33 0.10.2
ck min max

u,split 2 tr
min

20
.6.54. . . . 8

20

f c c
K

c
τ η   (6.2) 

0.25 0.33 0.1 0.10.2
ck min max f f

u,split 2 tr
min f

20 1
.6.54. . . . 8 .

20

f c c lV
K

c d
τ η

λ
 

(6.6) 

Where; f 0.5V  

For LWFC specimens, the proposed equation too predicts the ultimate bond strength 

reasonably well as can be seen from the mean and standard deviation values (see 

Table 6.9) and the graphs (see Figure 6.13) of experimental results plotted against the 

predicted values for different bar sizes.  

6.4 Bond Stress-Slip Law for LWFC  

As highlighted earlier that one of the many hindrances in wide acceptability of 

lightweight concrete is the absence of normative rules, and this is especially true when 

such concrete is reinforced with fibres. Fib Model Code – 2010 for example has a 

well-defined bond stress-slip law/relationship for the normal weight concrete for 

different modes of bond failure i.e. pull-out and splitting for confined and unconfined 

concretes as shown in Figure 6.8. Such relationships are very useful in defining the 
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expected material behaviour and can be used in structural analysis programs to 

observe overall performance of a structure before on ground construction. 

 

Figure 6.13 Ultimate bond strength of LWFC plotted against predicted 
values by different code expressions 

The pull-out behaviour of NWC is defined by four different stages in fib-2010, the 

ascending branch, constant maximum stress, descending stress branch and then final 

stage reflected by resistance offered by the surface friction. Whereas, for splitting 

mode of failure in a concrete, confined by stirrups, the bond relationship has three 

stages and for unconfined concrete there are two stages. All these stages are defined 

by the following equations. 
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2
max max

3 2
f

s s

s s
τ = τ τ τ  

2 3s s s  (6.9) 

fτ = τ  3s s   (6.10) 

Parameters used in the above equations are defined in Table 6.1. There were two 

distinct differences observed in the bond stress-slip profile of LWFC when it was 

plotted using the above four equations ((6.7 - (6.10) and Table 6.1, assuming good 

bond conditions. The first change observed was that the ultimate bond stress of the 

majority of specimens was less by a factor ranging between 1.2 to 1.3, which is the 

reflection of lower tensile strength of LWC; however, unlike ACI-318, such reduction 

is not integrated in bond stress-slip law of fib-2010. Secondly in the post peak stress 

region, the descending branch has mild slope for LWFC specimens compared to both 

the confined and unconfined bond stress behaviours defined by fib as shown in Figure 

6.14. It is emphasized that for the general cases, for estimating ultimate bond strength 

for splitting mode of bond failure, fib suggests use of formulae 
0.25'

7
20
cf and 

0.25'

8
20
cf

for unconfined and confined conditions respectively. For specific cases, such as 

current one where reinforcement and concrete details are available forehand to the 

designer, such calculations should be carried out using (6.2).  

All these observations have been considered in the modified bond stress-slip law 

proposed here for LWFC, where some changes are recommended. For example, the 

slip values 1s and 2s  have been fixed at 0.65 mm as all the specimens were noted to 

fail in splitting at slip values lower than 0.65 mm and 3 11.2 7 fVs s . 

Determination of 3s  using above formula is indicative of observation that slope of 

descending branch is affected by fibre volume fraction i.e. higher fibre volume leads 

to more mild slope and better ductile behaviour.  

Furthermore the slope of ascending stress-slip branch has been attuned slightly by 

setting α equal to 0.3 instead of 0.4. 
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All these proposed modifications for bond stress-slip law for LWFC are presented in 

Table 6.1 and the resulting bond stress-slip laws are plotted for all the bars at 

maximum fibre content shown in Figure 6.15. 

  

Figure 6.14 Comparison of observed bond behaviour of LWFC against 
the treatment of fib-2010 for the same  

Table 6.1 Parameters for defining bond stress-slip relationship 

Parameter 
fib Model Code-2010 Proposed 

modifications 
Pull-out Splitting-

unconfined 
Splitting-
confined Splitting 

maxτ  '2.5 cf   (6.2) (6.2) (6.6) 

1s  1 mm 
maxs τ  maxs τ  0.65 

2s  2 mm 
1s  1s  0.65 

3s  Cclear 
11.2s  0.5Cclear 

1 71.2 fVs  
α 0.4 0.4 0.4 0.3 

fτ  max0.4τ  0 
max0.4τ  max0.4τ  

s3s2

f

u(split-conf)

u(split-conf)

S
tre

ss

slip

 Pull-out
 Splitting-confined
 Splitting-unconfined
 LWFC

max

s1
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Note: db = bar diameter   

 

 

 

 

 

Figure 6.15 Comparison of the fib bond stress-slip law with the 
observed and proposed bond stress relationship for LWFC 
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Table 6.2 Ultimate bond strength of LWFC Pull-out specimens 

S. 
No. Specimen code 

Specimen size 
(mm) 

(L x W x H) 

  
(mm) 

'
cf  

 (MPa) 
maxP  

(kN) 
τu 

(MPa) 

1 LWFC-00-10-01 100 x 100 x 100 10 

37.52 
 

21.63 13.77 
2 LWFC-00-10-02 100 x 100 x 100 10 24.52 15.61 
3 LWFC-00-10-03 100 x 100 x 100 10 19.72 12.55 
4 LWFC-00-16-01 160 x 160 x 160 16 55.38 13.77 
5 LWFC-00-16-02 160 x 160 x 160 16 45.68 11.99 
6 LWFC-00-16-03 160 x 160 x 160 16 41.11 10.22 
7 LWFC-00-20-01 200 x 200 x 200 20 48.72 7.75 
8 LWFC-00-20-02 200 x 200 x 200 20 57.47 9.15 
9 LWFC-00-20-03 200 x 200 x 200 20 41.64 6.63 

10 LWFC-20-10-01 100 x 100 x 100 10 

39.77 
 

23.12 14.72 
11 LWFC-20-10-02 100 x 100 x 100 10 18.95 12.06 
12 LWFC-20-10-03 100 x 100 x 100 10 20.55 13.08 
13 LWFC-20-16-01 160 x 160 x 160 16 39.47 9.81 
14 LWFC-20-16-02 160 x 160 x 160 16 38.33 9.53 
15 LWFC-20-16-03 160 x 160 x 160 16 41.32 10.27 
16 LWFC-20-20-01 200 x 200 x 200 20 51.84 8.25 
17 LWFC-20-20-02 200 x 200 x 200 20 47.01 7.48 
18 LWFC-20-20-03 200 x 200 x 200 20 59.74 9.50 
19 LWFC-40-10-01 100 x 100 x 100 10 

44.75 
 

17.25 10.98 
20 LWFC-40-10-02 100 x 100 x 100 10 20.99 13.37 
21 LWFC-40-10-03 100 x 100 x 100 10 22.01 14.01 
22 LWFC-40-16-01 160 x 160 x 160 16 54.64 13.59 
23 LWFC-40-16-02 160 x 160 x 160 16 45.53 11.32 
24 LWFC-40-16-03 160 x 160 x 160 16 50.85 12.65 
25 LWFC-40-20-01 200 x 200 x 200 20 72.32 11.51 
26 LWFC-40-20-02 200 x 200 x 200 20 59.77 9.51 
27 LWFC-40-20-03 200 x 200 x 200 20 58.71 9.34 
28 LWFC-60-10-01 100 x 100 x 100 10 

35.41 
 

22.62 14.4 
29 LWFC-60-10-02 100 x 100 x 100 10 21.89 13.94 
30 LWFC-60-10-03 100 x 100 x 100 10 25.56 16.27 
31 LWFC-60-16-01 160 x 160 x 160 16 46.63 11.59 
32 LWFC-60-16-02 160 x 160 x 160 16 44.02 10.95 
33 LWFC-60-16-03 160 x 160 x 160 16 48.86 12.15 
34 LWFC-60-20-01 200 x 200 x 200 20 72.68 11.57 
35 LWFC-60-20-02 200 x 200 x 200 20 72.85 11.59 
36 LWFC-60-20-03 200 x 200 x 200 20 80.35 12.79 

 



6 Results & Analysis of Bond Tests 126 

 

 

Table 6.3 Ultimate bond strength of NWFC Pull-out specimens 

S. 
No. Specimen code 

Specimen size 
(mm) 

(L x W x H) 

  
(mm) 

'
cf  

 (MPa) 
maxP  

(kN) 
τu 

(MPa) 

1 NWFC-00-10-01 100 x 100 x 100 10 

37.25 

22.96 14.62 
2 NWFC-00-10-02 100 x 100 x 100 10 20.26 12.90 
3 NWFC-00-10-03 100 x 100 x 100 10 18.23 11.61 
4 NWFC-00-16-01 160 x 160 x 160 16 43.48 10.81 
5 NWFC-00-16-02 160 x 160 x 160 16 49.56 12.32 
6 NWFC-00-16-03 160 x 160 x 160 16 46.45 11.55 
7 NWFC-00-20-01 200 x 200 x 200 20 66.39 10.57 
8 NWFC-00-20-02 200 x 200 x 200 20 56.37 8.97 
9 NWFC-00-20-03 200 x 200 x 200 20 79.70 12.68 

10 NWFC-20-10-01 100 x 100 x 100 10 

34.01 

21.68 13.80 
11 NWFC-20-10-02 100 x 100 x 100 10 26.20 16.68 
12 NWFC-20-10-03 100 x 100 x 100 10 25.84 16.45 
13 NWFC-20-16-01 160 x 160 x 160 16 52.49 13.05 
14 NWFC-20-16-02 160 x 160 x 160 16 57.45 14.29 
15 NWFC-20-16-03 160 x 160 x 160 16 50.82 12.64 
16 NWFC-20-20-01 200 x 200 x 200 20 72.80 11.59 
17 NWFC-20-20-02 200 x 200 x 200 20 76.65 12.20 
18 NWFC-20-20-03 200 x 200 x 200 20 78.38 12.47 
19 NWFC-40-10-01 100 x 100 x 100 10 

41.98 

25.57 16.28 
20 NWFC-40-10-02 100 x 100 x 100 10 26.31 16.75 
21 NWFC-40-10-03 100 x 100 x 100 10 26.13 16.63 
22 NWFC-40-16-01 160 x 160 x 160 16 50.98 12.68 
23 NWFC-40-16-02 160 x 160 x 160 16 61.14 15.20 
24 NWFC-40-16-03 160 x 160 x 160 16 69.08 17.18 
25 NWFC-40-20-01 200 x 200 x 200 20 99.83 15.89 
26 NWFC-40-20-02 200 x 200 x 200 20 102.55 16.32 
27 NWFC-40-20-03 200 x 200 x 200 20 78.22 12.45 
28 NWFC-60-10-01 100 x 100 x 100 10 

35.07 

28.56 18.18 
29 NWFC-60-10-02 100 x 100 x 100 10 25.25 16.07 
30 NWFC-60-10-03 100 x 100 x 100 10 28.67 18.25 
31 NWFC-60-16-01 160 x 160 x 160 16 56.69 14.10 
32 NWFC-60-16-02 160 x 160 x 160 16 55.43 13.78 
33 NWFC-60-16-03 160 x 160 x 160 16 58.53 14.56 
34 NWFC-60-20-01 200 x 200 x 200 20 92.21 14.68 
35 NWFC-60-20-02 200 x 200 x 200 20 86.14 13.71 
36 NWFC-60-20-03 200 x 200 x 200 20 86.15 13.71 
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Table 6.4 Average results of ultimate bond strength of different bar sizes of 
LWFC and NWFC 

  Ultimate bond strength, τu 
(MPa) 

   (mm) 

Concrete type fv (kg/m3) 10 16 20 

     

LWFC 

0 13.98 11.99 7.84 
20 13.29 9.87 8.41 
40 12.79 12.52 10.12 
60 14.87 11.56 11.98 

     
     

NWFC 

0 13.04 11.56 10.74 
20 15.64 13.33 12.09 
40 16.55 15.02 14.89 
60 17.5 14.15 14.03 

     
 

Table 6.5 Residual bond strength of LWFC at different slip values 

  
 

Residual bond strength, τres 

(MPa) 

fv (kg/m3) τu 

(MPa) d = 1 mm d = 2 mm d = 4 mm 

 = 10 mm 
0 13.98 7.74 1.45 - 

20 13.29 11.43 9.23 6.44 
40 12.79 10.50 8.78 6.29 
60 14.87 13.07 10.52 7.34 

 = 16 mm 
0 11.99 - - - 

20 9.87 8.04 6.32 4.82 
40 12.52 10.15 8.84 7.25 
60 11.56 10.48 9.41 7.74 

 = 20 mm 
0 7.84 7.50 6.08 2.38 

20 8.41 7.04 5.20 4.11 
40 10.12 9.98 8.95 7.08 
60 11.98 11.20 9.79 8.02 

Note: values are the average of three test results 
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Table 6.6 Residual bond strength of NWFC specimens at different slip values 

  
 

Residual bond strength, τres 

(MPa) 

fv (kg/m3) τu 

(MPa) d = 1 mm d = 2 mm d = 4 mm 

   = 10 mm  
0 13.04 11.96 10.26 6.69 
20 15.64 13.73 9.55 5.53 
40 16.55 15.67 12.75 8.67 
60 17.5 16.83 14.21 9.95 

 = 16 mm 
     

0 11.56 10.84 8.39 2.86 
20 13.33 12.23 9.12 6.43 
40 15.02 14.54 11.73 8.11 
60 14.15 14.01 12.84 9.90 

 = 20 mm 
0 10.74 10.56 9.05 3.84 
20 12.09 11.28 8.46 6.20 
40 14.89 14.64 12.12 9.60 
60 14.03 13.83 12.45 10.28 

Note: values are the average of three test results 
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Table 6.7 Estimation of bond strength of NWFC by different bond expressions 

S. No. 
Specimen 

size 
(mm x mm) 

Φ 
(mm) 

'
cf   

(MPa) 
maxP  

(kN) 
τu 

 (MPa) 
fib – 2010 

(MPa) 
ACI – 408 

(MPa) 

Orangun 
et al. 

(MPa) 

1 100 x 100 10 

37.25 

22.96 14.62 14.42 12.71 12.54 
2 100 x 100 10 20.26 12.90 14.42 12.71 12.54 
3 100 x 100 10 18.23 11.61 14.42 12.71 12.54 
4 160 x 160 16 43.48 10.81 13.12 12.71 12.54 
5 160 x 160 16 49.56 12.32 13.12 12.71 12.54 
6 160 x 160 16 46.45 11.55 13.12 12.71 12.54 
7 200 x 200 20 66.39 10.57 12.55 12.71 12.54 
8 200 x 200 20 56.37 8.97 12.55 12.71 12.54 
9 200 x 200 20 79.70 12.68 12.55 12.71 12.54 
10 100 x 100 10 

34.01 

21.68 13.80 14.09 12.43 11.98 
11 100 x 100 10 26.20 16.68 14.09 12.43 11.98 
12 100 x 100 10 25.84 16.45 14.09 12.43 11.98 
13 160 x 160 16 52.49 13.05 12.83 12.43 11.98 
14 160 x 160 16 57.45 14.29 12.83 12.43 11.98 
15 160 x 160 16 50.82 12.64 12.83 12.43 11.98 
16 200 x 200 20 72.80 11.59 12.27 12.43 11.98 
17 200 x 200 20 76.65 12.20 12.27 12.43 11.98 
18 200 x 200 20 78.38 12.47 12.27 12.43 11.98 
19 100 x 100 10 

41.98 

25.57 16.28 14.85 13.10 13.31 
20 100 x 100 10 26.31 16.75 14.85 13.10 13.31 
21 100 x 100 10 26.13 16.63 14.85 13.10 13.31 
22 160 x 160 16 50.98 12.68 13.52 13.10 13.31 
23 160 x 160 16 61.14 15.20 13.52 13.10 13.31 
24 160 x 160 16 69.08 17.18 13.52 13.10 13.31 
25 200 x 200 20 99.83 15.89 12.93 13.10 13.31 
26 200 x 200 20 102.55 16.32 12.93 13.10 13.31 
27 200 x 200 20 78.22 12.45 12.93 13.10 13.31 
28 100 x 100 10 

35.07 

28.56 18.18 14.20 12.52 12.17 
29 100 x 100 10 25.25 16.07 14.20 12.52 12.17 
30 100 x 100 10 28.67 18.25 14.20 12.52 12.17 
31 160 x 160 16 56.69 14.10 12.93 12.52 12.17 
32 160 x 160 16 55.43 13.78 12.93 12.52 12.17 
33 160 x 160 16 58.53 14.56 12.93 12.52 12.17 
34 200 x 200 20 92.21 14.68 12.36 12.52 12.17 
35 200 x 200 20 86.14 13.71 12.36 12.52 12.17 
36 200 x 200 20 86.15 13.71 12.36 12.52 12.17 
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Table 6.8 Mean and Standard Deviation values calculated against proposed 
and other bond expressions for NWFC specimens 

Equation 

Φ 

10 mm 16 mm 20 mm 

Mean S. Dev Mean S. Dev Mean S. Dev 

ACI – 408 (Eq. 6.1) 1.274 0.151 1.076 0.119 1.001 0.145 

Fib – 2010 (Eq. 6.2) 1.124 0.133 1.042 0.115 1.014 0.146 

Proposed (Eq: 6.4) 1.024 0.107 0.982 0.089 0.993 0.109 

 
 
 
 

Table 6.9 Mean and Standard Deviation values calculated against proposed 
and other bond expressions for LWFC specimens 

Equation 

Φ 

10 mm 16 mm 20 mm 

Mean S. Dev Mean S. Dev Mean S. Dev 

ACI – 408 (Eq. 6.5) 1.387 0.154 1.17 0.128 0.931 0.186 

Fib – 2010 (Eq. 6.2) 0.941 0.105 0.872 0.095 0.726 0.145 

Proposed (Eq: 6.6) 1.158 0.134 1.029 0.114 0.898 0.142 

 



 

7 Conclusions and Recommendations 

7.1 General Remarks 

This research work was aimed at studying the bond behaviour of lightweight fibre-

reinforced concrete. Lightweight concrete has numerous advantages over 

conventional concrete, but it lags behind its true market potential due to higher initial 

cost and poor ductility. For these reasons, engineers have shown restraint in its 

acceptance as a construction material, especially in seismic areas. Efforts are 

continuously being made to reduce the brittleness of lightweight concrete without 

much affecting its lower density quality. Use of discrete fibres in lightweight concrete 

is one such step in this dimension. There are normative rules and bond stress-slip 

relationship defined in codes for conventional concrete and substantial data for lower 

diameter bar sizes; however, these are not available for concretes reinforced with 

discrete fibres. An effort was made in current research work to address some of these 

issues by performing pull-out tests on lightweight and normal weight concretes with 

and without hooked-end steel fibres. Following section contains the conclusions 

which could be drawn from these tests, followed by the recommendation for future 

work. 

7.2 Conclusions 

7.2.1 Bond 

It is possible to produce structural LWFC of similar strength class as that of NWFC 

with small variations in material quantities except for coarse aggregates. For example, 

cement quantity required for producing 1 cubic meter of LWFC was only 10 kg 

higher than that needed for NWFC. Maximum difference of 4.92 MPa in the 

compressive strength of both the LWFC and NWFC was recorded at fibre dosage of 

00 kg/m3. 

Although there is some improvement (29%) in ultimate bond strength of NWFC 

specimens, such improvements were not observed for LWFC, especially at lower fibre 

volumes i.e. for Vf < 0.5%. Since NWFC mixes were rich in fine aggregate, therefore 

it is possible that better bond of fibres with NWFC matrix resulted in improvement in 
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ultimate bond strength. Post-cracking bond strength of both the LWFC and NWFC is 

however significantly improved and this improvement is higher in case of LWFC. 

Fibres are not as effective as the compressive strength of concrete in enhancing the 

maximum bond strength and strong variation in bond strength is observed with the 

variation in compressive strength.  

Pre-cracking stage of bond stress-slip profile is little affected by fibres, nevertheless, 

in the later stage i.e. in the post maximum bond stress region; bond stress-slip 

relationship is highly affected by fibre volume. In other words, ductility and bond 

strength in post cracking region can be improved considerably by fibre addition due to 

restriction of splitting cracks by fibres. 

Similar specimen size for all bars in RILEM test methodology favours smaller bars, 

therefore same cover to bar size ratio was adopted for current experimental work. 

However, even with similar c/Φ ratio, the bond strength of larger diameter pull-out 

bars was lesser than the bond specimens having smaller diameter pull-out bars. For 

example on an average the bond strength of 10 mm bar size specimens was higher 

than 16 mm and 20 mm bar sized specimens by 13.6% and 17.5% respectively. 

For all sizes of bars, the mode of failure recorded in current experimental work is 

splitting type. Pull-out specimens, without fibres, and having highest diameter bar (20 

mm bar) failed in somewhat explosive way. 

The contribution of fibres in enhancing post-cracking bond strength is found to be 

higher for higher bar sizes in LWFC. For example at slip of 1 mm percent increase for 

20 mm and 16 mm bar is 59% and 30% respectively, whereas for 10 mm bar this 

increase was only 14%.  

The existing fib Model Code – 2010 does not deal the case of fibre-reinforced 

concrete and hence the improvements, especially in the post-cracking phase of bond 

stress-slip profile of concrete are not reflected. A modified bond stress-slip law for 

lightweight concrete reinforced with fibres is presented therefore, with some changes 

in existing fib Model Code – 2010. 
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7.2.2 Material properties 

Effects of fibre addition, particle density and shape of aggregates were clearly 

observed during handling and measurement of fresh concrete properties. All these 

parameters favoured LWFC over NWFC. Due to lower density of lightweight 

aggregates: 1.19 compared to 2.5 of gravel, LWFC was on an average 21% lighter 

than that of NWFC as determined by density tests. Because of their higher specific 

gravity, fibres tend to raise the density of concrete mix. For fibre volume fraction of 

0.75%, density of LWFC increased by 6.7% and density of NWFC increased by 2.2%. 

Possible reason for higher density values of LWFC could be the easiness in vertical 

travel of lightweight aggregates while vibration due to their regular shape. Thus more 

lightweight concrete could be filled in moulds compared to conventional concrete; 

this is also supported by the higher air content values of NWFC (5.58%) than LWFC 

(2.02%). 

Fibre addition lowers slump values, thus seriously affecting the workability of fresh 

concrete mix. Nevertheless it can be improved through several means, for example, by 

using superplasticizers. Higher reduction in slump flow of LWFC compared to 

NWFC due to fibre addition was noted. It is because the design of flow table test is 

such that while jolting operation, heavier normal weight aggregates collapsed easily 

overcoming the resistance of fibres. Even at lower slump values handling of LWFC is 

better than NWFC of higher slump values. The degraded workability of fresh concrete 

mix due to fibre addition is compensated to some extent by regular, round shaped 

aggregates of lower density. All these parameters can play significant role in 

minimizing the efforts required at site for handling mixes with medium to high fibre 

volume fraction. 

No clear variation is seen on compressive strength of NWFC with increasing fibre 

content. Although, for LWFC it seems that compressive strength is increasing but 

then at maximum fibre content level it starts decreasing, mainly due to the disturbance 

caused by fibres to concrete in attaining full compaction thereby raising the air void 

content. It is therefore concluded that steel fibres in general have no influence on 

concrete’s compressive strength.  

Both the LWFC and NWFC attained tensile strength that is on an average 6.7% of 

their respective compressive strengths. It is concluded from the trend followed by the 
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tensile strength test results that it is highly dependent on compressive strength. It is 

further determined that for the selected range of fibre dosage (up to 0.75% Vf) first 

cracking tensile strength of concrete remains unaffected. Although it has been claimed 

in a research [204], that it can be improved by using larger fibre volume fraction, but 

current laboratory experience and other literature review cited suggest restriction of 

fibre dosage up to 2% for practicality and economic reasons. Nevertheless, there is 

some marginal improvement in tensile strength of both the concretes and it is more 

pronounced in LWFC than NWFC, possibly due to higher brittleness of former. 

LWFC at maximum fibre content level attained splitting tensile strength equivalent to 

that of conventional concrete without fibres.  Addition of fibres does influence the 

failure pattern of tensile test specimens. Specimens without fibres failed with single 

vertical major crack compared to those with fibres which developed multiple cracks at 

failure and the number of cracks increased with increasing fibre volume.  

Flexural performance of the concrete was judged by three parameters: first peak 

strength of test beams, toughness and the residual capacity. 

Like splitting tensile strength test, first peak strength also called modulus of rupture 

remained in general unaffected by fibre addition and is strongly dependent on the 

compressive strength of the concrete. It is therefore confirmed from both these tests 

that initiation of cracking in matrix is independent of presence of fibres. 

Energy absorption capacity evaluated from beams point out that increase in toughness 

is higher for NWFC than LWFC for the similar percent increase in fibre content. 

Overall up to higher fibre volume fraction energy absorption capacity of the LWFC is 

55 times higher than the control specimens, whereas for NWFC this increase was 73 

times. Effectiveness of fibres in enhancing the toughness property can be judged from 

the fact that energy absorption capacity of lightweight concrete reinforced with lowest 

fibre amount (20 kg/m3) was 32 times higher than conventional concrete without 

fibres. It is further established that fibre dosage of 40 kg/m3 (Vf = 0.5%) is the limit 

point beyond which beams when loaded under flexure start showing signs of flexural 

hardening. 

Like toughness, residual flexural capacity also improves noticeably as a result of fibre 

addition. Flexural capacities determined at 1 mm and 4 mm beam deflection indicate 

that conventional concrete reinforced with discrete fibres has advantage over LWFC. 
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Even though the compressive strength of lightweight concrete was higher at some 

fibre dosages, yet it underperformed in terms of residual flexural capacity primarily 

due to the coarse aggregates. 

The slight decrease in elastic modulus of LWFC, about 5.8%, and for NWFC 

variation of it with compressive strength support the observation and hence the 

conclusion that fibres have no significant impact on this property of concrete. On an 

average elastic modulus of lightweight concrete with or without fibres is lower than 

NWFC by 14 GPa. 

7.3 Recommendations 

Current research was carried out to better understand the effect of fibres on the bond 

performance of lightweight concrete, apart from it, behaviour of conventional 

concrete with and without fibres was also considered since the existing descriptive 

and design expressions are based on the results of conventional concrete. Other 

parameters that were included in the work were bar sizes, fibre content. However, a 

full study and understanding of bond property is beyond the scope of single PhD 

research due to the diversity of parameters affecting it. Nevertheless based on the 

findings of current work following recommendations may be considered for future 

research.  

Steel fibres having aspect ratio f

f

l

d
 of 64 were considered in this experimental 

program. It is suggested that further investigation should be carried out to see the 

effect of different fibre aspect ratios. It would also be interesting to find out the effect 

of steel fibres in combination with other fibre types like synthetic fibres on bond 

performance. 

In present study, although efforts were taken to use similar quantities of materials, yet 

it was not possible completely in case of fine aggregate which had higher amount in 

conventional concrete than LWFC. It is believed that if similar or higher quantity of 

fine aggregate is used in lightweight concrete its bond strength would increase, this 

aspect needs to be verified in presence of fibre reinforcement. 

A numerical study using proposed bond stress-slip law for LWFC may be carried out 

for further verification and improvement. It may also be improved by carrying out 
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experimental works using higher fibre volume fractions and by studying their effect 

on bond stress-slip behaviour. 

Selective numbers of parameters were studied in this study; research work on bond 

performance of LWFC may be carried out with other test parameters as well, such as 

bond length, fibre geometry, bar location etc. 

Since it is established that post cracking phase of bond stress-slip law is highly 

affected by presence of fibres, therefore this effect be incorporated and reflected by 

making some modifications as suggested in previous chapter. 

A test procedure may be devised for determination of fracture energy of fibrous 

mixes. Fibre-reinforced concrete has higher fracture energy compared to conventional 

concrete. The knowledge of fracture energy is useful for numerical simulations and 

modelling of cracking. Although a RILEM [215] test methodology, using 3-point 

bending tests on notched beams exists for conventional concrete, there is no standard 

procedure documented to obtain fracture energy for fibrous mixes.  

German Committee for Structural Concrete (Deutscher Ausschuss für Stahlbeton - 

DAfStb) [109] has proposed methodology to obtain design residual tensile strength 

values from the fibre performance class of SFRC. It is recommended that this 

approach may further be expanded and mechanism be devised to get the residual bond 

strength values and ultimately the design values for development length for bond. 
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Annexes 

Annex A: Bond stress – slip profiles of LWFC specimens 
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Annex B: Bond stress – slip profiles of NWFC specimens 
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