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Notation

Banach spaces

X
0
1l %
.|p
Ty
X*
H:'L:l X

a Banach space

zero vector of a Banach space or the scalar zero

norm of the Banach space X

p-norm of the Banach space R

Euclidean inner product of two vectors z,y € R”
topological dual of the Banach space X

product space induced by the Banach spaces Xy, ..., X, equipped with the sum
norm

dual pairing of the Banach space X

open unit ball of the Banach space X

open ball with radius € around 7 € X

open ball with radius ¢ around Z € R™ w.r.t. the p-norm
closed unit ball of the Banach space X

closed ball with radius € around z € X

closed ball with radius € around z € R™ w.r.t. the p-norm
the Banach space X is continuously embedded into the Banach space Y
a sequence of vectors from the Banach space X

a sequence {x;} C X converging (strongly) to Z € X

a sequence {x;} C X converging weakly to Z € X

a sequence {z;} C X* converging weakly* to z* € X*

a sequence {tx} C R converging to 0

a sequence {t;} C R converging to 0

Banach space of all bounded, linear operators mapping from a Banach space X
to a Banach space Y

an element of L[, )]

adjoint operator of F € L[X, )]

image of A C X under F € L[X, )]

identical operator of the Banach space X

appropriate zero operator

Sets and set operations

N

Np
QJr
R

R
R-i—
Ry
RTL
R™t
Ry

—n

natural numbers (without zero)

natural numbers with zero

positive rational numbers

real numbers

extended real line

positive real numbers

nonnegative real numbers

set of all real vectors with n components

set of all vectors from R™ with positive components
set of all vectors from R™ with nonnegative components
unit simplex in R™
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conv A

cone A
cone A

proj,(z)

AO

AJ_

B,

By

lim sup®” Ay,
k—o0

liminf Ay
k—o00

a closed interval in R

a half-open interval in R

an open interval in R

Minkowski sum of sets A, A’ C X in a Banach space X

set of all elements from A which do not belong to A’ where A, A’ C X
Cartesian product of sets X and Y

power set of X

s-foldof aset A C X

closure of aset AC X

weak closure of a set A C X

weak sequential closure of a set A C X

weak* closure of a set B C X*

interior of a set A C X

relative interior of a set A C X

boundary of a set A C X

linear hull of a set A C X, i.e. the smallest linear subspace of X comprising A
convex hull of a set A C X, i.e. the smallest convex set in X comprising A
closed, convex hull of a set A C X, i.e. the smallest closed, convex set in X
comprising A

conic hull of a set A C X, i.e. the smallest convex cone in X comprising A
closed, conic hull of a set A C X, i.e. the smallest closed, convex cone in X
comprising A

projection of z € X onto the nonempty, closed, convex set A C X

polar cone of A C X

annihilator of A C X

reverse polar cone of B C X*

reverse annihilator of B C X*

weak sequential upper limit of a sequence of sets {4;} C 2%

(strong) sequential lower limit of a sequence of sets {4;} C 2%

Partially ordered sets

(S, 0)
<k
<

max {z;y}
ming{z; y}

Measurability

M= (Q,X,m)
N (M)
L£O(9m,R"™)
LO(9m, R™)

31 ® 39

B(X)
%m

a partially ordered set, i.e. a set S equipped with a partial order o C S x S
partial order induced by the closed, convex, pointed cone K C X

partial order induced by the cone Ry’ ™, i.e. the common componentwise less-or-
equal relation in R™

supremum of z,y € X w.r.t. the partial order <y

infimum of z,y € X w.r.t. the partial order <y

measure space induced by the o-algebra ¥ on Q with measure m

sets of measure zero in the measure space M

set of all measurable functions mapping from Q to R™

set of all equivalence classes of measurable functions mapping from Q to R™
smallest o-algebra comprising the Cartesian product 1 x X5 of the o-algebras ¥4
and X5

Borelean o-algebra induced by the metric space X

Borelean o-algebra induced by the Banach space R™

the Lebesgue measure

Dirac measure of the singleton {z}

total variation of the measure m
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vi

XA
Z(A)
M(X)

E, K
TK

Matrices
Sm Xn

Function spaces
Q

Q
Da

A
\Y

characteristic function of the set A

system of all finite and disjoint partitions of A € B(X) w.r.t. the o-algebra B(X)
Banach space of all signed, regular measures w.rt. the measurable space
(X, B(X))

decomposable sets

auxiliary function characterizing the convex hull of K C R™

set of all matrices with m rows and n columns whose entries come from S C R
set of all symmetric matrices from R™*™

set of all orthogonal matrices from R™*™

a matrix from R™*"

transposed of a matrix A € R™*"

pseudo inverse matrix of A € R™*™

submatrix of A € R™*"™ whose rows are indexed by I C {1,...,m} and whose
columns are indexed by J C {1,...,n}

Hadamard product of two matrices A, A’ € R™*"

inverse of a regular matrix B € R™*™

trace of a matrix B € R™*™

the matrix product Q "BQ for B € R™*™ and Q € O,,

the submatrix (BQ);; for B € R™*™, Q € O,,, and I,J C {1,...,m}

index sets corresponding to the positive, zero, and negative eigenvalues associated
with an ordered eigenvalue decomposition of a matrix B € S,

identity matrix from R™*™

zero matrix of appropriate dimensions

all-ones matrix of appropriate dimensions

the n unit vectors in R™

domain in R¢
closure of Q C R
the differential operator D" ... D5 with a multiindex a € N¢ and D; := 51

i=1,...,d, defined for functions mapping from Q C R¢ to R

the Laplacian operator

the gradient operator

the Hessian operator

the partial gradient operator w.r.t. the variables w; withi € I C {1,...,d}

the partial Hessian w.r.t. the variables w; with j € J C {1,...,d} and the partial
gradient V,,

Lebesgue space of all p-integrable functions from L°(9t, R") with 1 < p < o0
Lebesgue space LP (9, R)

Lebesgue space of all p-integrable functions from L°(90t, R™) with measure space
M= (2,8(Q),0)

Lebesgue space LP(M1, R) with measure space MM = (2, B(N2), 1)

conjugate coefficient of p, i.e. the real number from the interval (1, oo] which satis-
fies1/p+1/p’ =1wherel1 <p< o

vector space of all k-times continuously differentiable functions mapping from the
metric space X C R? to R

vector space of all functions from C* (X)) with support in X which is compact in R?
vector space of all continuous functions from X to R, i.e. C°(X)

vector space C§(X)
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vii

ACL2(Q,R)

Cones
Ra(z)

C(Q),

LP (M)
LP(Q)§
WP (Q) ]
H; ()
ACT2(Q)F

vector space of all locally Lebesgue integrable functions mapping from Q to R
Sobolev space of all order k weakly differentiable functions mapping from Q to R
whose weak derivatives belong to LP(£2)

closure of C5°(Q2) w.r.t. the Sobolev norm in WP ((2)

Sobolev space W*:2((2)

Sobolev space WE2(Q)

the dual of H}(Q)

vector space of all absolutely continuous functions mapping from Q to R where
Q:=(0,7) C R holds

Banach space of all functions with n components coming from AC(Q2) and pos-
sessing weak first-order derivatives in L?()

radial conetoaset AC X atzc A

tangent conetoaset AC X atz € A

inner tangent conetoaset AC X atz € A

weak tangent conetoaset AC X atz € A

Clarke tangent conetoaset AC X atz € A

critical coneto aset A C X w.rt. 7 € A and z* € Tx(x)°
set of all Fréchet o-normalstoaset AC X atz € A
Fréchet normal conetoaset AC X atz € A
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strong limiting normal conetoaset AC X atz € A
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cone of all positive semidefinite matrices from S,,,

cone of all positive definite matrices from S,,

cone of all negative semidefinite matrices from S,
second-order cone in R x R™

‘H-second-order cone in R x H where H is a Hilbert space

cone of all nonnegative functions from C ()

cone of all almost everywhere nonnegative functions from L?(901)
cone of all almost everywhere nonnegative functions from L?(Q)

cone of all almost everywhere nonnegative functions from W1 ()
cone of all almost everywhere nonnegative functions from H}(Q)

cone of all almost everywhere nonnegative functions from AC12(Q, R)

Functions and set-valued mappings

F:X%Qf

a function mapping from a Banach space X to a Banach space Y

a functional mapping from a Banach space X to the extended real line

a set-valued function mapping from a Banach space & to the power set 2Y of a
Banach space )

directional derivative of F' at z in direction §

Fréchet derivative of F at z

second-order Fréchet derivative of F' at &

partial Fréchet derivative of F' at T w.r.t. z;

second-order partial Fréchet derivative of F' at Z w.r.t. z; and z;, i.e. the operator
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epigraph of a functional ¥
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Clarke subdifferential of ¢ at

limiting subdifferential of ¢ at T
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1. Introduction

The aim of this thesis is the derivation of necessary optimality conditions for bilevel programming problems
in the rather general setting of Banach spaces. Therefore, we consider the model program

F(z,y) — min
.,y

G(z) € C (1.1)
y € ¥(z)

where U: X = Y is a set-valued mapping between Banach spaces X and Y which assigns to every x € X
the (possibly empty) set of global optimal solutions of the parametric optimization problem

f(z,y) — min 12
g(z,y) € K. '

Therein, F, f: X x Y - R, G: X - W, and g: X x Y — Z are sufficiently smooth mappings, W as well
as Z are Banach spaces, and C C W as well as K C Z are nonempty, closed, convex sets.

The original idea of bilevel programming dates back to Stackelberg who described a game between two
players whose cost functions and sets of admissible strategies depend on the respective other player’s
decision in 1934, see [115]. In this thesis, we think of the following special decision order in (1.1): First,
the upper level player or so-called leader, i.e. the decision maker in (1.1), chooses an instance of 2 which
satisfies the constraint G(x) € C. Next, the lower level player or so-called follower, i.e. the decision maker
in (1.2), is capable of computing the set ¥(x) which is passed back to the upper level decision maker. This
way the leader can determine the overall feasible set of (1.1) which allows him to solve the bilevel pro-
gramming problem since he can evaluate his objective functional for every admissible point. Note that this
procedure is related to the so-called optimistic approach to bilevel programming where the follower only
passes back such y € ¥(x) which minimize the leader’s objective for fixed = over the set ¥(z), see [140,
Proposition 5.3.1]. This reflects a cooperative behavior between the two players. The situation where the
leader does not know how the follower will react on his choice of z is far more delicate. In order to mini-
mize the damage caused by the follower’s decision, the leader has to assume that (in the worst case) the
follower passes back only those y € ¥(z) which maximize his objective for fixed = over the set ¥(x). This
idea on how to interpret a bilevel programming problem is called pessimistic approach and can be used
as well in order to model a competitive behavior of leader and follower. It is also possible to interpret the
classical bilevel optimization model where the leader minimizes his objective functional only w.r.t. x as an
instance of set optimization where the objective 7(z) := U, cy () {£'(2, )} has to be minimized, see [101].

During the last decades, standard bilevel programming problems, i.e. problems of type (1.1) where all
appearing Banach spaces are instances of R”, were studied extensively from a theoretical and numerical
point of view, see the monographs [8, 26, 36, 113] and the references therein. Hierarchical decision
structures appear in numerous applications from economics, logistics, engineering, or natural sciences.

Many models naturally comprise (ordinary or partial) differential equations (ODEs and PDEs for short)
in at least one decision level, see [3, 4, 18, 58, 59, 74, 76, 77, 89]. A special instance of the bilevel
programming problem in function spaces is the obstacle problem studied in [57, 64, 66, 67, 68, 73,
88, 96, 123, 125] and other papers by these authors where the solution of a variational inequality of the
first kind has to be controlled. More precisely, for a bounded domain © C R9 with sufficiently smooth
boundary, a nonempty, closed, convex set Xy C L?(Q2), a desired state y4 € L?(2), and a regularization
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parameter o > 0, the obstacle problem in hierarchical form is given by
2 o 2 .
sy — Yallzz) + 5 12ll72@) — min
xr € Xad (]3)
y € U(x)

where W: L2(Q2) = H}(Q) denotes the solution mapping of the parametric optimization problem

/|Vy |2dw—/ z(w)y(w)dw — min (1.4)

ylw) >0 a.e. on €.

Therein, = € L%(Q) is the so-called control variable while y € H} () is referred to as state variable. Of
course, using an appropriate discretization, one can easily transfer a so-called bilevel optimal control
problem into a standard bilevel optimization problem which can be discussed with the aid of results from
finite-dimensional programming (first-discretize-then-optimize approach), but from the current point of
view it is unclear in many situations how the solutions of the discretized problem and the original bilevel
optimal control problem are related. Thus, it seems reasonable to study (1.1) in the setting of Banach
spaces which covers the situation where function spaces are under consideration. In this thesis, we aim
for the derivation of necessary optimality conditions for (1.1) in the generalized setting. In terms of bilevel
optimal control, this can be seen as the starting point of a first-optimize-then-discretize scheme for the
numerical treatment of (1.1): First, the optimal solutions are characterized in the function space setting.
Afterwards, the feasibility and optimality conditions can be discretized and the arising finite-dimensional
and possibly nonlinear system can be treated numerically. For a detailed discussion of the first-discretize-
then-optimize and the first-optimize-then-discretize approaches for single-level optimal control problems
of PDEs, we refer the interested reader to [55] and [103].

Suppose that a standard bilevel programming problem is under consideration which comprises an un-
known parameter p. Using the concept of fuzziness, this situation is discussed in [109]. Another pos-
sible way to handle the uncertainty is provided by the robust optimization approach, see e.g. [11, 12].
Given a so-called uncertainty set P, the appearing objective functions are replaced by their correspon-
ding suprema over P w.r.t. the parameter p, whereas the constraints have to hold for all instances of
p € P. Depending on the structure of P, the robustification of the bilevel programming problem (1.1) is
a hierarchical optimization problem comprising e.g. semidefinite cone constraints or second-order cone
constraints, see [12]. Thus, it is reasonable to study bilevel programming problems in the vector space
of symmetric matrices. Noting that the symmetric matrices form a Banach space and that the set of all
positive semidefinite matrices is a closed, convex cone in this space, the general formulation (1.1) covers
this situation as well.

In order to derive necessary optimality conditions for (1.1), we need to transfer the hierarchical model into
a single-level surrogate problem. Let us briefly discuss the three approaches we use in this thesis for that
purpose, see [98] as well.

First, we assume that the lower level solution set U (z) equals the singleton {¢(x)} for all x € X. Then it
is possible to plug the function 1 into the upper level objective F', directly. Now, the resulting surrogate
problem only has to be minimized w.r.t. the upper level variable . For that purpose, it is necessary
to study the (generalized) differentiability properties of the function . In [25], the author investigates
standard bilevel programming problems with a unique lower level solution. Under appropriate constraint
qualifications the resulting lower level solution function is directionally differentiable, see e.g. [27, 104],
and its directional derivative is continuous w.r.t. the direction which allows the formulation of necessary and
sufficient optimality conditions. Reformulating the obstacle problem as the bilevel programming problem
(1.3), it is well-known that its lower level problem (1.4) possesses a unique solution which is directionally
differentiable and Lipschitz continuous w.r.t. the upper level variable, see [57, 75, 88]. This property
is used in several papers to derive necessary optimality conditions for the underlying optimal control
problem with and without control constraints, see [66, 67, 68, 123, 125]. In [84], we study a bilevel
programming problem whose lower level is given by a formal parametric optimal control problem. We
show that the lower level solution is unique and directionally differentiable under appropriate assumptions.
Furthermore, it is shown that this directional derivative equals the solution of a variational inequality of

the first kind.
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Next, let us suppose that the lower level problem (1.2) is convex w.r.t. the follower’s decision variable
and sufficiently regular, whereas K is a closed, convex cone. Then the condition y € ¥(x) in (1.1) can
be equivalently replaced by some Karush-Kuhn-Tucker-type optimality condition (forthwith, we will use the
abbreviation KKT for Karush-Kuhn-Tucker for brevity). This gives rise to the consideration of the surrogate
problem

F(z,y) — min
T,y,A

G(z) € C
fy(@y) + gy (z,9)*[A] = 0 (1.5)

g(z,y) € K

\ e K°

<)‘79($a y)>Z =0

where X is the lower level Lagrange multiplier, K° C Z* denotes the polar cone of K, and the mapping
(-,-)z : 2" x Z — R represents the dual pairing in the Banach space Z. The final three constraints in (1.5)
form a so-called complementarity condition. In [28], it is shown that the surrogate problem (1.5) is not
necessarily equivalent to (1.1) w.r.t. local optimal solutions anymore. Using this KKT approach, the authors
derive necessary optimality conditions for standard bilevel optimization problems in [32, 33, 34, 140].
In [87], some of these results are generalized to the Banach space setting and applied to state necessary
optimality conditions of Pontryagin-type for a bilevel optimal control problem with control constraints
in the lower level problem. Note that under the postulated convexity assumptions it is also possible to
replace the lower level problem (1.2) equivalently by a generalized equation or variational inequality.
Necessary optimality conditions for mathematical problems with variational inequality constraints are
widely studied in the finite-dimensional setting, see [23, 97, 116, 128, 133] and the references therein.
Generalizations to the setting of Banach spaces can be found in [90] and several other publications of
this author. We already mentioned a number of papers where optimal control problems comprising
variational inequalities are under consideration.

Introducing the lower level optimal value by ¢(z) := inf, {f(z,y) | g(z,y) € K} for all parameters z € X,
we can exploit the so-called optimal value function ¢: X — R of (1.2) in order to equivalently reformulate

(1.1) by

m m

(1.6)

without any additional assumption. On the other hand, the function ¢ is likely to be nonsmooth or even
discontinuous, see [7]. Anyway, under appropriate assumptions one can guarantee that ¢ is locally Lip-
schitz continuous or convex, and it is possible to compute its generalized derivative or subdifferential (in
an appropriate sense) in terms of initial data, see [31, 84, 91, 93]. Thus, using some nonsmooth calcu-
lus, necessary optimality conditions of KKT-type for (1.1) via (1.6) seem to be within reach. However, it
is shown for standard bilevel programming problems in [35] that constraint qualifications of reasonable
strength fail to hold at all feasible points of (1.6) and similar difficulties are likely to appear in the genera-
lized sefting. In [14, 84], the authors show in different situations that Fritz-John-type necessary optimality
conditions directly derived from (1.6) are degenerated in the sense that they hold at all feasible points of
the bilevel programming problem (1.1). In order to overcome this difficulty, the authors propose a partial
penalization approach w.r.t. the crucial constraint f(z,y) — ¢(z) < 0in [138]. Namely, they introduce the
famous concept of partial calmness which is used to derive necessary optimality conditions for standard
bilevel optimization problems in [29, 34, 92, 138], for bilevel programming problems with semidefinite
lower level in [30], for bilevel optimal control problems of ODEs with finite-dimensional lower level in
[13, 14, 74], for bilevel optimal control problems where leader and follower share a common dynamical
system of ODEs at the lower level in [130, 131], and for bilevel optimal control problems of ODEs with
control constrained optimal control problems at both decision levels in [84].
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Thinking of a standard bilevel programming problem where K equals the nonpositive orthant, problem
(1.5) is a special instance of a so-called mathematical program with complementarity constraints, MPCC
for short. It is well-known from the literature, see e.g. [139, Proposition 1.1], that standard constraint
qualifications like the Mangasarian Fromovitz constraint qualification, MFCQ for short, fail to hold at
all feasible points of such an MPCC. Consequently, the KKT conditions turn out to be a too selective
necessary optimality criterion for this problem class. Thus, the formulation of weaker stationarity notions
and appropriate constraint qualifications became a hot topic during the last two decades, see [42, 43,
44, 45,80, 111, 129, 132] and the references therein. Furthermore, the numerical approach to standard
MPCC:s is well-developed, see [4, 46, 70].

We mentioned earlier that the setting where K equals the positive semidefinite or second-order cone is
reasonable as well. This justifies the study of a more general class of complementarity problems. In this
thesis, we will consider the situation where the complementarity condition is given by

G(z) € K
H(z) € K° (1.7)
<I~{($),C~¥(3§)>Z =0

where G: X — Z and H: X — Z* are sufficiently smooth maps between Banach spaces and K is a
closed, convex cone. In order to ensure the symmetry of the complementarity condition, we will assume
that Z is reflexive. In [37, 119, 124, 127], the authors investigate the situation where K equals the
positive semidefinite cone. Assuming that K is given by the second-order cone, such complementarity
problems are discussed in [48, 79, 124, 135]. One may also think of optimal control problems with mixed
control-state complementarity constraints which can be used to model switching effects, see [56]. Then
the complementarity is induced by the cone of almost everywhere nonnegative functions in a Lebesgue
space, see [86] where we discuss this setting. Finally, optimal control problems of ODEs with terminal
complementarity constraints are the subject of discussion in [15]. A far more general consideration of
optimization problems in Banach spaces which comprise constraints of the form (1.7) can be found in
[87, 121, 124].

In Chapter 2 of this thesis, we present all the necessary fundamentals of mathematical programming in
Banach spaces we need for our subsequent considerations. First, we briefly recall the basic terminology of
functional analysis. Afterwards, we introduce all the Banach spaces which are considered here. Especially,
we deal with certain function spaces in the sense of Lebesgue and Sobolev and list the required embedding
theorems from [1]. Section 2.3.1 is dedicated to the study of different concepts of tangents and normals to
a set. Here we also recall the famous notion of polyhedricity which dates back to [57, 88]. Furthermore,
we study the property of sets in function spaces to be sequentially normally compact, see [90], which plays
an important role for the variational calculus of Mordukhovich. In order to compare certain stationarity
notions for general MPCCs, the algebraic concept of vector lattices is introduced in Section 2.3.2. In the
subsequent section, we study some tools of generalized differentiation which are used in Section 2.3.4
to formulate necessary optimality conditions for different classes of single-level optimization problems in
Banach spaces. Many optimal control problems are equipped with pointwise control constraints which
are induced by a (in a certain sense) measurable set-valued mapping with not necessarily convex images.
In order to state necessary optimality conditions for such problems, one needs to know more about the
variational geometry of pointwise defined sets in Lebesgue spaces. Section 2.3.5 deals with this issue.
We derive explicit formulae for several tangent and normal cones to these sets and obtain reasonable
lower and upper bounds for the corresponding limiting normal cone. Here the argumentation parallels
our considerations in [86].

Chapter 3 is dedicated to the investigation of general complementarity problems in Banach spaces. In
Section 3.1, we derive the concepts of weak and Mordukhovich stationarity for abstract MPCCs and study
corresponding constraint qualifications which ensure that a local minimizer of the problem of interest
satisfies these stationarity conditions. Here we mainly follow our considerations in [47, 87]. Furthermore,
we recall the concept of strong stationarity known from [121]. Finally, we study the relationship between
weak, Mordukhovich, and strong stationarity. As we will see, the polyhedricity of the underlying comple-
mentarity cone is essential for our results which can be used to discuss MPCCs in Lebesgue spaces and
Sobolev spaces. Afterwards, we apply our findings to the situations where the cone which induces the
complementarity equals the set of all almost everywhere nonnegative functions in a Lebesgue space or is
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polyhedral. Using our results on the variational geometry of pointwise defined sets in Lebesgue spaces,
we will be able to show the surprising fact that weak and Mordukhovich stationarity coincide for MPCCs
in Lebesgue spaces, see [86].

Necessary optimality conditions for the bilevel programming problem (1.1) are derived in Chapter 4.
We start with the consideration of a bilevel model whose lower level problem represents a rather general
parametric optimal control problem with a unique solution for all instances of the parameter. For the theo-
retical background, we investigate a special type of nonsmooth parametric equation in Section 4.1.1. We
show that it possesses a unique solution for any choice of the parameter, and it is proven that the corres-
ponding solution mapping is directionally differentiable under appropriate assumptions. We characterize
the directional derivative as the solution of another nonsmooth equation which can be equivalently stated
as a complementarity system. In Section 4.1.2, we apply these general results and our knowledge on ab-
stract MPCCs from Chapter 3 to the bilevel programming problem of interest. In the case where the lower
level control constraints are induced by a cone, it is possible to apply our findings from Chapter 3 directly
to the bilevel programming problem. We state the resulting optimality conditions and compare them to
the ones derived via the directional differentiability of the lower level solution mapping. An example from
optimal control illustrates the theory. In Section 4.2, we focus our attention on the KKT reformulation
(1.5) of the bilevel programming problem (1.1). First, the relationship of these two problems is discussed
in detail. An example shows that the argumentation in [28] for local optimal solutions cannot be ge-
neralized to the abstract setting if Z is infinite-dimensional. Nevertheless, we present some conditions
under which both problems are equivalent w.r.t. local optimal solutions. Partially following [87], we derive
necessary optimality conditions for the bilevel programming problem (1.1) via the MPCC reformulation
(1.5) in Section 4.2.2. Therefore, we exploit our results for general MPCCs from Chapter 3 again. We
close the section on abstract bilevel programming in Banach spaces with the investigation of the optimal
value transformation (1.6) in Section 4.3. First, we show that reasonable constraint qualifications from the
theory of programming in Banach spaces fail to hold at all feasible points of this program. Afterwards,
we restate the well-known concept of partial calmness, see [138], in the abstract setting in order to derive
necessary optimality conditions for the bilevel programming problem (1.1). Therefore, we exploit some of
our results on the Lipschitz continuity of the optimal value function in parametric optimization, see [31].
Using materials from Chapters 3 and 4, we derive necessary optimality conditions for three different
classes of bilevel programming problems in Chapter 5. We start with the consideration of the problem
class we already dealt with in Section 4.1 where the lower level control constraint is realized by demanding
the control to come from the cone of positive semidefinite matrices in Section 5.1. After gathering some
necessary results from variational analysis in the Banach space of symmetric matrices in Section 5.1.1, we
apply our findings from Section 4.1 to the model problem in Section 5.1.2. Furthermore, we compare our
results to the already existing ones on semidefinite complementarity programming [37, 124, 127] w.r.t.
the presented optimality conditions and constraint qualifications. Our considerations deepen the results
presented in [84]. In the subsequent Section 5.2, we consider a bilevel optimal control problem of ODEs
with optimal control problems at both decision levels and lower level control constraints. After stating
all the assumptions we need in order to apply our findings from Sections 3.2 and 4.2, we formulate the
lower level necessary and sufficient optimality conditions of Pontryagin-type, see [102], and derive the
KKT reformulation of the given bilevel programming problem in Section 5.2.1. As we will see in Section
3.2, Mordukhovich's stationarity concept is not suitable to deal with the situation at hand which is why we
restrict ourselves to the derivation of the weak and strong stationarity conditions of the surrogate optimiza-
tion problem in Section 5.2.2. Finally, in Section 5.2.3, we construct an applicable constraint qualification
which ensures that all local optimal solutions of the bilevel optimal control problem are strongly station-
ary. Therefore, we use the concept of controllability of linear dynamical systems, see [9]. The content
of this section is partially taken from our manuscript [87]. Section 5.3 is dedicated to the study of an
abstract optimal control problem with control constraints and an implicitly given pointwise state constraint
which is induced by a finite-dimensional lower level. More precisely, the lower level parameter equals
the realization of the state function at a certain point of the underlying domain. The natural gas cash-out
problem, see [74], represents a typical situation where such optimal control problems arise in practice.
We start the section by providing an existence result for global optimal solutions of such a bilevel optimal
control problem. The remaining part of the section is dedicated to the derivation of necessary optimality
conditions. First, we state an abstract optimality criterion in Section 5.3.1. We finish our considerations
applying our findings to the situation where the underlying optimal control problem is governed by a
linear ODE or Poisson’s equation which is a PDE in Sections 5.3.2 and 5.3.3, respectively. Thereby, we
continue our research on this problem class we initiated in [13, 14, 15, 74].



2. Fundamentals of mathematical
programming in Banach spaces

2.1. Preliminaries from functional analysis

Let X be a (real) Banach space with norm ||| ,, and zero vector 0. A second norm || - ||3 of X is said to
be equivalent to ||-|| - if there exist positive real constants ¢; and ¢, satisfying ¢1 ||z < [|z]|% < c2 ||z 5
for any x € X. It is well-known that in a finite-dimensional Banach space, all norms are equivalent.
Let us denote by Uy and Bx the open and closed unit ball of X, respectively. Furthermore, for any
x € X and any positive scalar ¢, we set U5 (z) := {z} + eUx and B5.(z) := {z} 4+ eBxy. Therein, for
arbitrary sets A, B C X and a scalar s, A + B denotes the sum in Minkowski’s sense, whereas we define
sA :={sa € X|a € A}. Additionally, we set A — B:= A+ (—B). Aset C C X is called a cone if for any
a >0, aC C C holds true. Furthermore, we exploit cl A, int A, rint A, bd A, lin A, conv A, conv A, cone A,
and cone A in order to denote the closure of A, the interior of A, the relative interior of A, the boundary
of A, the smallest linear subspace of X comprising A, the convex hull of A, the closed convex hull of A4,
the smallest convex cone comprising A, and the smallest closed, convex cone comprising A, respectively.
The set A is said to be locally closed (locally convex) at Z € A if there exists £ > 0 such that AN B5.(Z) is
closed (convex). The set A is said to be dense in B C X if c1 A = B holds. The Banach space X is called
separable if there exists a countable set A which is dense in X.

Lemma 2.1. Let X be a Banach space, and let A, B C X be nonempty. Then
cl(A+ B)=cl(clA+ B) =cl(cl A+ cl B)

is valid.

Proof. The respective inclusions C are obvious. Thus, we only need to show cl(cl A + ¢l B) C cl(A + B).
Therefore, observe that c1 A + ¢l B C cl(A + B) holds. That is why we obtain

cl(clA+clB) Ccl(cl(A+ B)) =cl(A+ B)
from the monotonicity of the operator cl. This completes the proof. O

Lemma 2.2. For a Banach space X and a nonempty set S C X, lin .S = conv | J,, .y @S holds true.

Proof. We start with the proof of the inclusion C. Observe that due to S C conv Uaer @S, it is sufficient
to show that L := conv|J,cp aS is a linear space. Therefore, take 2,5 € L and c¢*,¢¥ € R. Then
there are integers n,m € N, vectors s7,...,s% s¥,...,s¥ € S, scalars of,...,a%,af,...,a¥% € R, and

nonnegative scalars A1, ..., A\, ti1,. .., tm € R such that

n m n m
r= oAy Yol Y-t Yot
j=1 i=1 j=1 i=1

That is why we obtain

m

n n m
C €T M xT 1 >\ xTr xTr T i 1
cfr+cly = Z Ajctag s + Z piclals? = Z F2ctaf st + Z B2cvals! € L
j=1 i=1 =1 i=1



2. Fundamentals of mathematical programming in Banach spaces 7

H A A J25
since & 5,

3., 88, .., B2 € R are nonnegative scalars which satisfy

n

DY H=1

j=1 i=1

This shows 1in .S C L. The inclusion L C 1lin S follows from S C lin S for any a € R and the convexity of
lin S. O

Now, let Y be another Banach space. Then the Cartesian product X x Y is a Banach space as well
if equipped, e.g., with the sum norm induced by |||, and |||, which will be done throughout the
thesis if not stated otherwise. Thus, for n € N Banach spaces X1,...,X,, we can define the product
space H;L=1 Xj = X1 X --- x X, in a similar way by recursion. lts elements are addressed by n-tupels
x=(z1,...,2,) withz; € X;, j=1,...,n, or column vectors denoted by

I

T

depending on which representation is more suitable in the corresponding situation. Especially, when
dealing with linear operators between product spaces, the use of column vectors is more convenient.
Similarly, for sets X; C X, j =1,...,n, we exploit

X, X1
Xy Xn
in order to represent X7 x --- x X,, and X} x --- x X,,, respectively. f X = X} = ... = X,, holds, we use

the notation X" := H;’:l X. Similarly, for A C X, we denote by A™ its Cartesian product of order n.

A mapping ®: X — Y is called an isometry between & and V if |®(x)|;, = |[z]|, holds for all z € X
If an isomorphism between X and Y exists which is an isometry, these spaces are called isometrically
isomorphic, X & Y for short.

The real vector space L[X,))] of all continuous (or bounded, see [126, Satz 11.1.2]) linear operators
mapping from X to Y equipped with the norm

VEELX I Il = sup [IFf]lly
x X

forms another Banach space, see [126, Satz II.1.4]. From this definition [[F[z]||y, < [[F[|yx y [|z[|  for all
FeL[X,Y]and all z € X is easily seen. We can introduce X* := L[X, R], the (topological) dual space of
X. Let us define the so-called dual pairing (-, ), : X* x X = R of X by (z*,z) ,, := z*[z] for all z* € X*
and z € X. Obviously, this mapping is bilinear and safisfies

Vet e XtvVe e X: (@8, x) x| < 2t x 7l x -

The above relation is called Cauchy-Schwarz inequality. Note that the dual pairing is continuous w.r.t.
both of its components.

*
Lemma 2.3. For any Banach spaces X, ..., X, there is an isomorphism &: (H?Zl Xj) — H;.Lzl xr
with the property

va'e ([T_, %)+ 0"l ) < 19@) g, 2 <mlla e, 2, 2.1)

*
Proof. In order to shorten the notation, we introduce the spaces X := [[/_, &;, P := (H;?:I Xj) , and
Q:=[Ij_, X}. For any z* € P, we define
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where zf € X*,i=1,...,nis defined by
Va, € X;: xf[xg] = 2*[0,...,0,2;,0,...,0].

It is easy to see that this mapping is a linear bijection, i.e. an isomorphism between P and Q. In order
to show the validity of the presented inequalities, recall that X is equipped with the sum norm induced by
[/, 5+ Il - That is why we obtain

[z*]lp = sup  a[ar,...,z] = Zx ] <Z sup x [z;] = [|®(z") ]| o
(ml ..... :E»,,,)G]BX (ml ..... :ET, GBxi 1 i— 1’C EBX

which yields the first inequality. The second one follows from

n

[®(=")] o —Z sup z}[z;] < sup me[mz] = sup nxzy, ...,z =nlzp .
-1 T EBX (11,--47I1;)€77/BX i=1 (wlw-wzn)eBX
This completes the proof. O

*
We may interpret Lemma 2.3 as follows: the Banach spaces (H?Zl Xj) and H?Zl X are isomorphic

*
and (via an isomorphism) equipped with equivalent norms. Thus, it is reasonable to identify (H;.Lzl Xj>

and H?Zl X with each other. This will be done throughout this thesis without mentioning it again.

The continuous linear mapping X 5 z — (-, z),, € A**, called canonical embedding of X, is an injective
isometry between X and X** by the theorem of Hahn-Banach, see [126, Korollar 111.1.6]. We call X
reflexive if the corresponding canonical embedding is surjective. Thus, for any reflexive Banach space X,
we obtain X = X**, and, hence, we may identify any reflexive Banach space X and its bidual space X**
with each other. Note that any finite-dimensional Banach space is reflexive. We say that X' is continuously
embedded in the Banach space ), X — Y for short, if X C Y holds and if a positive real constant C
exists, such that
VeeX: |ally < Cllally

holds, i.e. if the identical mapping X > 2 — = € Y is an element of L[X, Y]. An operator F € L[X, )]
is called compact if the closure of {Fz]|z € Bx} w.rt. the norm in Y is compact. We say that X is
compactly embedded in Y if we have X — Y and if the identical mapping X > 2 — = € ) is a compact
operator. Let H be a Hilbert space with inner product (+,-). Then by means of Riesz’s representation
theorem the mapping H > = — (-, z)y € H* is an isometric isomorphism between H and H*. That is
why it is possible to identify the inner product of H and its dual pairing with each other. This will be done
throughout this thesis. On the other hand, it is also possible (but not always recommendable, e.g. when
discussing certain function spaces, see [118, Section 2.13.2]) to identify H and H* with each other. We
will point out whenever this property of Hilbert spaces is exploited.

For any F € L[X, )], F* € L[Y*, X*] defined by the relation (F*[y*], x) , = (y*,F[z]),, for any 2 € X and
y* € V* is called the adjoint operator of F. From [126, Satz 111.4.2] we know that the linear mapping
L[X,Y] 2 F — F* € L[Y*, X*] is an isometry. For a reflexive Banach space X, an operator G € L[X, X*]
is called self-adjoint if G = G* holds, and G is called monotone or positive, if

VeeX: (Gz],z), >0
is satisfied. We call G elliptic if there is a constant v > 0, such that
VreX:  (Glal,z)y > vl
is valid. By 0 € L[X,Y] and Ix € L[X,X], we denote the zero operator defined by 0[z] = 0 for all

x € X and the identical operator of X, respectively. For Banach spaces )i, ..., Y., and linear operators
F,; €L[X;, Y], i=1,...,mand j =1,...,n, we infroduce the product operator
1 X1 Fii ... Fin 1 E;—lzl Fi [z B%
v . c . . . . — . c . ’

n

Tn Xn Fm,l s Fm,’ﬂ Ln Zj:l Fmaj [x.]] ym
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and a similar notation is used to represent images of sets under product operators. Note that for brevity,
we leave the brackets [-] around the argument away whenever n > 2 holds. Clearly, the product operator
is an element of L[[[;_, &}, [T;Z, ¥i,], and we obtain the relation

*

* *
Fl,l Fl,n 1,1 m,1
= . (2.2)
* *
Fmi - Fmm fn o Fhn

from the above definitions.

A sequence {z} C X converges (strongly) to some point Z € X, z;, — T for short, if the real sequence
{llzx — z|| - } converges to zero. On the other hand, {x1} converges weakly to z, expressed by z;, — z, i
for any z* € X*, the real sequence {(z*, ) 1 } converges to (z*, Z) 5. In case of existence, the weak limit
point z is uniquely determined and satisfies # € conv{z* | k € N}, see [126, Satz I11.3.8]. Now, choose a
sequence {2} C X*. We call it weakly* convergent to z* € X*, 2} = &* for short, if for any = € X, the
real sequence {(z}, ), } converges to (Z*, x) ... Again, if a weak* limit point exists, it is unique. Using the
theorem of Banach and Steinhaus, see [126, Satz IV.2.1], we obtain that weakly and weakly* convergent
sequences are bounded. It is clear from the definition that

— — *
2T =, —~ T = o 5T

holds, and whenever X is reflexive, weak and weak* convergence in X* are equivalent. Moreover, any
bounded sequence of a reflexive Banach space contains at least a weakly convergent subsequence, see
[126, Satz 111.3.7]. In any finite-dimensional Banach space, the notions of strong, weak, and weak*
convergence coincide.

Lemma 2.4. Let X be a Banach space. Choose sequences {x;} C X and {z}} C X* such that 2, — =
and 2} 5 2* (vx — @ and 2}, — 2*) hold. Then we have (z},21) , — (v*,2) 5.

Proof. Since {z}} is weakly* convergent, it is bounded. Thus, we have

li x — < 1l | e — = 0.
Jim (a2 1) | < B e s — ol
This yields
kILH()lo (T ) = klggo«m;xk —T)y + <£va>x) = kILHOIO (@h )y = (2%, @) 5 -
The proof is similar for the situation where z;, — x and zj, — z* hold. O

Forsets U C X and V C X*, cI” U and cl* V denote the corresponding closure w.r.t. weak and weak*
topology (in X and A, respectively), whereas clg, U is used to express the weak sequential closure of
U, i.e. the set of all weak accumulation points of sequences in U. Note that we have clg, U C ¢l U in
general, see [83, Section 2.5]. We call U weakly sequentially closed (weakly closed) whenever U = clg, U
(U = cl” U) holds. Any closed, convex set is weakly sequentially closed and, by means of the famous
Hahn-Banach theorem, see [126, Satz VIII.2.12], weakly closed as well. Furthermore, U is said to be
weakly sequentially compact if any sequence in U contains a weakly convergent subsequence whose
weak limit belongs to U. Any compact set is weakly sequentially compact but not vice versa. Additionally,
it is clear that any bounded, closed, convex subset of a reflexive Banach space is weakly sequentially

compact. Finally, V' is called weakly* closed if V' = cl* V is satisfied.

A mapping F': X — ) between Banach spaces X and Y is called continuous at € X if the condition
V{zp} CX: x> = F(x) = F(Z)

is satisfied. Similarly, we call F' weakly-weakly continuous at  if
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holds. The mapping F is said to be continuous (weakly-weakly continuous) if it is continuous (weakly-
weakly continuous) at any point in X. Let ¢: X — R be a functional of X where R := R U {—0c0, 00}
denotes the extended real line. Then ¢ is called weakly lower semicontinuous at some point Z € X’ with
|o(Z)] < oo if the condition

V{zp} CX: o, =T = p(T) < likminfgo(xk)
—00

is safisfied. Furthermore, we call ¢ weakly lower semicontinuous if it possesses this property at any
point from X where it is finite. Clearly, if a functional is weakly-weakly continuous, it is weakly lower
semicontinuous. Obviously, any weakly lower semicontinuous functional is lower semicontinuous. On the
other hand, there exist continuous functionals which are not weakly lower semicontinuous. Note that for
any continuous convex functional ¢, the level sets {x € X' |p(z) < a} are closed and convex and, thus,
weakly closed for all & € R. Particularly, it easily follows that ¢ is weakly lower semicontinuous in this
case, see [71, Theorem 2.5]. The following result presents a version of the famous Weierstraf3 theorem
applicable in infinite-dimensional Banach spaces.

Lemma 2.5. Let X be a real Banach space, let o: X — R be a weakly lower semicontinuous functional,
and let M C X be nonempty. Then ¢ attains a global minimum on M provided that one of the following
assumptions holds:

1. M is weakly sequentially compact,

2. X is reflexive, ¢ is coercive, i.e. it satisfies
Yz} C X aglly = 00 = (k) — o0,

and M is weakly sequentially closed.

Proof. The statement of the first assertion equals [71, Theorem 2.3]. For the proof of the second claim,
choose Z € M arbitrarily and consider M := {z € M |¢(z) < ¢(&)}. Since ¢ is weakly lower semicon-
tinuous while M is weakly sequentially closed, it is easy to check that M is weakly sequentially closed as
well. Moreover, M is bounded due to the coercivity of ¢ and contains Z. We exploit the reflexivity of X
to see that M is weakly sequentially compact. Clearly, Argmin{¢(z) |2z € M} = Argmin{p(z) |z € M}
holds by definition of M. Finally, Argmin{¢(z)|z € M} is nonempty due to the first statement of this
lemma. This completes the proof. O

Let us compare the above result with the classical Weierstraf3 theorem.

Remark 2.6. In the classical Weierstraf3 theorem, lower semicontinuity of the functional ¢ and compactness
of the set M are demanded. However, compactness is a rather restrictive property in infinite-dimensional
spaces (boundedness and closedness is not sufficient for compactness anymore). Thus, this assumption
has to be weakened in order to obtain an acceptable version of the Weierstraf3 theorem. Here weak
sequential compactness pays off. However, weakening the assumptions on M, stronger properties have
to be postulated on the functional ¢. In the above lemma, the weak lower semicontinuity of ¢ is used
for that purpose. Thus, we may interpret the first statement of Lemma 2.5 as a generalized version of
the Weierstraf3 theorem. In any finite-dimensional Banach space X, this abstract result coincides with the
classical version, obviously.

2.2. Examples of Banach spaces

In this section, we are going to give a brief overview of Banach spaces which will be used in this thesis.
We start with some finite-dimensional spaces. Afterwards, certain function spaces together with some
well-known embedding relations will be introduced.
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2.2.1. Finite-dimensional Banach spaces

Let n € N be arbitrarily chosen. By R we denote the set of all real column vectors with n components.
Furthermore, R{"* and R™ ™ represent the set of all componentwise nonnegative real vectors with 7 com-
ponents and the set of all componentwise positive real vectors with n components, respectively. Especially,

we set R := Ry and Rt := R+, For 1 < p < oo, the norm ||, is defined by

1
Vz eR": o], = (Z’f_l \xm)p

where |s| represents the absolute value of a scalar s € R. Furthermore, |- is introduced by
Ve e R": || = max{|z];...; |2}

As mentioned earlier, all the norms ||p, 1 < p < oo, are equivalent. For any such p, U,, and B, ,
represent the open and closed unit ball of R™ w.r.t. the norm || . Choosing z € R™ and a positive real
scalar ¢ arbitrarily, we set U, (v) := {z} + €U, , and B}, () := {z} + €B, . For arbitrary vectors
z,y € R", z - y denotes their Euclidean inner product. Clearly, this inner product induces the norm |[-|,.
We write <y (z < ) ify —x € R"™ (y — 2 € R™7) holds. For a sequence {t;} C R, t;, \, 0 is used
to express that {tx} C R* and ¢, — 0 are valid. On the other hand, we write 5 | 0 in order to express
{tx} CR{ and t; — 0.

Remark 2.7. Let X, ..., X, be Banach spaces. As introduced before, for the norm of their corresponding
product space, we have

n
Vo= (e € [T A el a = el lloall)l, -

However, since all the norms ||, for p € [1, o] are equivalent, for any such p, an equivalent norm of the
product space []7_, & is given by

n
Vo = (x1,...,2Tn) € szl X HJUHP,H?ZI X, = ‘(||x1||)(1 oo lznlly,) .
The choice of such a norm in the product space does not change the statement of Lemma 2.3, one only
needs to choose different constants in (2.1).

For m € N, let R™*" contain all real matrices with m rows and n columns. Especially, R™*! = R™
is obtained. We use O € R™*™ and E € R™*" to represent the zero matrix and the all-ones matrix
of appropriate dimensions, respectively. The symbol I,, is used to represent the identity matrix in R?*",
Furthermore, for any matrix A € R™*", AT denotes its transpose. Interpreting A as a linear operator
between the product spaces R™ and R™, we obtain A* = AT by means of formula (2.2). Let arbitrary
index sets I C {1,...,m} and J C {1,...,n} be given. Then A;; € RI!I*I/I denotes the submatrix of A
which possesses the rows indexed by the elements of I and the columns indexed by the elements of J.
For any quadratic and regular matrix B € R™*™, B~! expresses the inverse matrix of B. In general, Af
denotes the pseudo inverse matrix of A. If A possesses full row rank m, AT = AT(AAT)~!is valid. We
will exploit the Hadamard product in R™*" defined by

a1,1bin ar2biz ... aiapbign
v a2,1b2,1 a2,252,2 - a2,nb2,n y
VA,BeR™": AeB:= . . ) . e R™*",
am,lbm,l am,2bm,2 e am,nbm,n

The set S,, shall comprise all symmetric matrices from R™*™. We will make use of the Frobenius inner
product on S,, defined as stated below for matrices A = (a; ;)i j=1,....n, B = (bi j)ij=1,...n € Sn:

<A, B>S,, = Z Z ai,jbi’j.

i=1 j=1
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Forthwith, tr A denotes the trace, i.e. the sum of the diagonal elements or eigenvalues, of A. It is easily
seen that (A, B) = tr(AB) is satisfied. Thus,

1Alls, == Vir(AA)

induces a norm in S,,. Consequently, S, is a Banach space of dimension n(n + 1).

2.2.2. Function spaces

Let M = (Q, X, m) be a complete and o-finite measure space (see [16] for a detailed introduction to the
theory of measurable spaces and measure spaces), let N(901) be the system of all sets of measure zero in
¥, and fix some n € N. We assume m(Q2) > 0 in order to exclude trivial situations. Let £°(90t, R") be the
set of measurable functions mapping from €2 to R™. We can define an equivalence relation on £°(9t, R")
as stated below:

Vu,v € LOOMLR™): u~v <= INENOMVweQ\N:  uw)=v(w).

The corresponding factor set £0(9,R™)/ ~ is denoted by L°(9,R") and its elements (equivalence
classes) are expressed via u: Q — R™ again, i.e. we identify an equivalence class with its representa-
tives. For any p € [1, o], we denote by L? (9, R") the Banach space of (equivalence classes of) functions
from LO(9,R™) satisfying [, [u(w)[5 dm < oo for p € [1,00) or which are componentwise essentially
bounded in the case p = oo, whose norm is given as stated below:

1
P
Vp € [1,00) Yu € LP(OM,R™): lull 2o o gy = </Q lu(w) [y dm) )
Yu € L (9N, R"): U] oo ny i= inf sup |u(w .
(0, ") ol e ey = (MGQ\N| ( >|2>

In the case where Q2 C R? is a domain (i.e. a nonempty, connected, open set) equipped with the Borelean
o-algebra induced by Q and the corresponding Lebesgue measure [, we write LP(Q,R™) for any p € [1, 0]
and dw instead of dm. On the other hand, in the case n = 1, we use LP(9) := LP(M,R) for any
p € [1,00]. It is easily seen from Remark 2.7 that the spaces L?(9, R™) and L?(9M)" are isomorphic
and equipped with equivalent norms. Note that for any p € [1, 00), the space L?' (9, R™) is isometrically
isomorphic to LP (9, R™)* where the conjugate coefficient p’ € (1, 00] is characterized via 1/p+1/p’ =1
(for p =1, we set p’ = o). The corresponding dual pairing reads as

Vp € [1,00) Vu € LP(9M, R™) Vv € LP (M, R™): (v, W) Lo o rny = / u(w) - v(w)dm.
Q

For any p € (1,00), LP(9M,R") is reflexive. The case p = 2 is of special interest because L?(9M,R") is a
Hilbert space. For any set A € %2, xa: © — R defined by

1 ifwed
Yw € Q: =
. xalw) {0 ifwe A
1
is called characteristic function of A. Obviously, we have x4 € L>(M) and [[xal| s o) = m(A)? for any
p € [1,00),i.e. xa € LP(M) for all p € [1,00) if and only if m(4) < oo.

Let @ C R? be a domain. Any a € N¢ is called a multiindex of order |a| := |a|,. We write w® in order to
express the monomial wi* ...wj?. Let us introduce the differential operator D* := D' ... D3* of order
la| where D; := 52, i = 1,....d, holds. We interpret D®+%) to be the identity and list some other
popular differential operators below:
a D | -\
A:=)"D;, V:i=|: |, V:=|VDy ... VD4
i=1 Dy | |
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Furthermore, we set

: |
Ve, = | D; , V2., =1|... VD

wrw.g
| iel
iel
Therein, I, J C {1,...d} are nonempty and w; := (w;);er holds true. If u: Q@ — R™ is a function such that
all components uy, ..., u,: Q — R are differentiable, we define

|
Vu:=|Vu ... Vu, , Vo= Vyur ... Vg u,

Let us assume that the domain € is bounded. We exploit the notation  := clQ in order to stay close to
standard literature. For any function u: 2 — R, the set suppu := cl{w € Q| u(w) # 0} is called support of
u. For any k € Ny U {oo}, we introduce C*(2), the vector space of all k-times continuously differentiable
real-valued functions on  and set C(Q2) := C°(2) to be the vector space of all continuous functions on €.
Clearly, since Q is not necessarily closed, the functions in C*(£2) do not need to be bounded. Additionally,
we introduce C¥(92), the subspace of C*(£2) comprising all functions whose support is a subset of 2 and
compact in R4, Clearly, any function from C§(£2) vanishes on bd Q2. Again, we stipulate Co(92) := C§(9).
Let us consider C* (Q), the vector space of all k-times continuously differentiable functions on €2, which
becomes a Banach space when equipped with the norm

T T
| | |

vue CF(Q) : (G = D¢ .
neCH @) longey = e (maxlD7oo))
We define C (Q) := C° (Q), the Banach space of all functions continuous on €. Furthermore, we will

exploit the vector space of all locally Lebesgue-integrable functions L (€2) defined by

2be(@) = {u e 120 w0 € 0@ [ uliol)as < .
Q
Note that for any functions u, ¢ € C5°(2) and any multiindex a € N4, we obtain

/u(w)Do‘gb(w)dw:(—l)“’“/Dau(w)gﬁ(w)dw
Q Q

from integration by parts and the fact that the functions from C§°(Q) vanish on bd Q. This motivates the
following definition of weak derivatives (also referred to as Sobolev derivatives), see [118].

Definition 2.1. Let u € L] () and a multiindex a € N§ be given. A function v € L} (€2) which satisfies

Vo € C5°(Q): /Qu(w)Da(b(w)dw = (=1)lel / v(w)d(w)dw

Q

is called weak derivative of order o of u and is denoted by Du.

The concept of weak derivatives will become important when considering solutions of PDEs. It is well-
known that several PDEs possess no classical (i.e. strong) solution but weak solutions in the Sobolev
sense. From the definition of weak derivatives it is natural to call functions from C§°(R2) test functions.
Note that we will use the differential operators defined above in this weak sense as well.

Now, it is possible to infroduce the so-called Sobolev spaces, see [1]. For any p € [1,00] and k£ € Ny,
WkP(Q) denotes the set of all functions u € LP(Q) possessing weak derivatives D%u € LP(§) for any
a € N¢ such that || < k. Defining the norm

1
P
Vp € [1,00) Vu € Wk’p(ﬂ): Hunwk-,p(g) = Z ||Da“H]Zp(Q) )
a€eNg, |a|<k
Vu € Wh(Q): ully ey =~ max [[D%l| (g

aeNg, |a|<k
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W*P(Q) becomes a Banach space. If p € (1,00) holds, then W*?(Q) is reflexive. Note that from [1,
Theorem 3.17] WkP(Q) is the completion of the set {u € C*(Q)| [ull @y < oo} w.rt. the Sobolev
norm |||y r.p (- Furthermore, we will deal with the space WP (Q) which is the closure of C§°(Q) w.ri.
the Sobolev norm ||-[|yy4.5 () - We obtain the trivial embeddings

WEP(Q) — WEP(Q) — LP(Q).

For p = 2, we set H*(Q) := W*2(Q) and observe that for any k € Ny, this is a Hilbert space with inner
product
Yu,v € H*(Q): (v, u) () = Z (D%, D) 2 -
a€eNg, |a|<k

Note that we do not identify H*(Q) with its dual (see [118] for some reasons) and, thus, did not use the
notion of the dual pairing above. We introduce the Hilbert space H}(Q) := Wé"’Q(Q) for any k € Ny. The
dual space of H}(Q) will be denoted by H~1(Q), and again, we abstain from identifying it with H}(Q).
Using the definition of duality, we easily obtain the embeddings

Hy(Q) < L*(Q) — H™H(Q),
i.e. the spaces (H} (), L%(Q), H~1()) form a so-called Gelfand triple, see [118].

In the following two theorems, we subsume the embeddings needed in this thesis. The results are parts of
Sobolev’s embedding theorem, see [1, Theorem 4.12], and the Rellich-Kondrachov embedding theorem,
see [1, Theorem 6.3], respectively.

Theorem 2.8. Let O C R? be a bounded domain with Lipschitz continuous boundary for d > 2 and a
bounded, open interval for d = 1. For any integer k € N and any real numbers p, ¢ € [1, ), the following
assertions hold:

1. f kp > d, then B
WhP(Q) = C (Q).

2. fkp=dand p < q< oo, then
WHhP(Q) — L1(R).

3. fkp<dandp<¢< di—’;p,’rhen
WHhP(Q) — L1(RQ).

Theorem 2.9. Let Q C R? be a bounded domain with Lipschitz continuous boundary for d > 2 and a
bounded, open interval for d = 1. Then the embeddings from Theorem 2.8 are compact.

When dealing with ODEs defined on a real time interval Q := (0,T'), we will deal with the vector space
AC(R2) of absolutely continuous functions on Q. Note that any function from AC(Q) is differentiable
almost everywhere and the corresponding derivative equals the (existing) weak derivative which is an
element of L*(). For short, for any absolutely continuous function u € AC(Q), there is v € L'(£2) such
that u(t) = u(0) + fot v(7)dr holds for almost every t € Q and vice versa; and v is its weak derivative, see
[49, Theorem 2.1.20]. Thus, any function u € AC(£2) may be identified with (u(0), D'u) € R x L*(Q). In
this thesis, we will work with the space AC12(2, R") which contains all functions mapping from Q to R”
whose components are absolutely continuous with weak derivatives in L2(2). This way, AC12(Q, R") can
be identified with R™ x L?(2,R™) by means of the bijection

ACH2(Q,R™) 3 u > (u(0), Vu) € R™ x L?(Q,R™)

and this will be done throughout the thesis at several instances. Note that Vu denotes the column vector
of the weak derivatives corresponding to the components of u. A suitable norm in AC12(Q, R") is given
by

Vue ACYE QR lullserzpn = 1Ol + [ Vull Lz pn) -
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Note that AC2(Q, R") is a Hilbert space whose dual will be identified with AC1+2(©2, R™) throughout the
thesis. The dual pairing in AC12(Q,R") is defined as stated below:

T
Yu,v € ACY2(Q,R™): (v, u) gor2(q ey = u(0) - v(0) +/O Vu(t) - Vo(t)dt.

Observe that it is possible to interpret the above dual pairing as an inner product in AC12(Q, R™).
However, this inner product induces a norm in AC1:2(€2, R"™) which is different from [l acr.2(0,m)-
The following embedding theorem will be important for our subsequent analysis.

Theorem 2.10. Forany T >0, Q:=(0,T), and n € N, we have
ACH(Q,R") — C (Q)"
and this embedding is compact.
Proof. It is clear from the definition that AC12(Q2,R™) C H*(Q)" is satisfied. Applying Theorem 2.8 with
d=1,m=1,and p =2, we find ¢ > 0 such that

Vv e H'(): [vllo@) < ellvllg)

holds along with H'(Q2) C C (Q). Thus, we have AC™?(Q,R") C C ()" and for any u € ACH2(Q,R"),
we obtain

2 2
Il oy = 3 lullomy < e Il = D\ luila + 1Dl
=1 =1 =1

< CZ (HuiHL?(Q) + HDlUiHLz(sz))

i=1

wi(0) + /0 Dluy(r)dr

+ HDluiHLzm))
L2(9)

IN

ci VTu; (0)] + (/OT </OtD1Ui(T)dT)2dt> ’ + ||D1uiHL2(Q)

IN

ci VT us(0)] + (/OTt (AtDlui(T)2d7> dt) ’ +[|D | o

IN

1
n T T 2
53 \FT|ui(0)|+<T/O /0 Dlui(T)szdt> + 1D i 12 g
=1

< e (VIIui(0)| + T [ D i gy + D0 )
=1

= c\/T|u(O)|1 +c(1+T)[IVull g2y
< CreVT [u(0)|, + Coc(1 4+ T) IVull L2 rn)
< max{C,eVT; Cac(1 +T)} [ull acr20,rm

where Cy,C> > 0 are real constants characterizing the equivalent norms |-|; and ||, as well as 12 yn

and ||| 2 (g gn). respectively. This shows ACH?(Q,R") — C (©)". On the other hand, the above argu-
mentation may be reprised to see

Vue B Q" Jull gy < max{CLVT; Ca(l+ T} full yonzgzm -
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Thus, we have AC12(Q,R") — H'(Q)". Theorem 2.9 yields that H'(Q)" — C(ﬁ)n is a compact

embedding. Applying [1, Remark 6.4.2], we obtain that AC"2(,R") — C (Q)" is a compact embedding
as well. This completes the proof. O

Now, let © C R? be an arbitrary bounded domain again. Then (22,8(Q)) is a measurable space where
B(Q) denotes the Borelean o-algebra induced by 2. On the other hand, Q becomes a metric space
when equipped with the Euclidean distance. A mapping u: B(Q) — R which is o-additive and satisfies
(@) = 0 is called a signed measure of (Q2,B(Q)). For any signed measure y, we define its variation
|ul: B(Q) = Ry by
VAEB@): |ul(4) = sw Y lu(B)
6€2(4) ges

where Z(A) denotes the system of all finite and disjoint partitions of A in B(Q). We call p regular if its
variation || possesses only finite values on the compact subsets of Q and satisfies

VA e B(Q): |u|(A) =sup{|p|(C)|C C A, C compact}.
Let M(Q) be the vector space of all signed and regular measures of (€2, B(€2)). Introducing
Ve M@): (il aegey = I,

M(2) becomes a nonreflexive Banach space. It is well-known that it is the dual space of C(Q), see [126,
Satz 11.2.5].

2.3. Principles of variational analysis and optimization in Banach
spaces

Set approximation and generalized differentiation are essential concepts for the consideration of opti-
mization problems in Banach spaces. In this section, we are going to introduce the variational concepts
needed in this thesis.

2.3.1. Polar, tangent, and normal cones

Let X be a Banach space and let A C X be a nonempty set. The polar cone and the annihilator of A are

defined by
A i={a* € X*|Vr e A: (2*,2), <0} and Al :={z* € X*|Vzec A: (z",z), =0},

respectively. Clearly, A° is a weakly* closed, convex cone, whereas A' is a weakly* closed subspace of
X*. It is easy to see that A° = (cl A)°, A° = (conv A)°, and A° = (cone A)° hold true. Furthermore,
At = A° N (—A)° is satisfied and, thus, St = S° holds true for any subspace S C X. For any nonempty
set B C X'*, we introduce the corresponding backward operations by

By, :={zx € X|Vz* € B: (z",2), <0}, B, ={xre€X|Vz" € B: (z",z), =0}

These operations possess similar properties as the polarization and annihilation presented above. If X
is reflexive, X** = X holds true and, thus, it is consistent to identify B° = B, as well as B+ = B, . The
following lemma is often called bipolar theorem, see [17, Proposition 2.40].

Lemma 2.11. Let X be a Banach space, and let C C X be a cone. Then (C°), = conv C holds.

For any subspace S C X, Lemma 2.11 leads to (S+), = clS. Especially, for a single point z € &,
lin{z} = ({z}Y)L = ({z}1), is obtained. In the lemma below, we list some calculus rules for convex
cones using the above operations.
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Lemma 2.12. Let X be a Banach space, and let C1,C5,C C X as well as K1, Ko C X* be nonempty,
closed, convex cones. Then we have

(C1+Cy)°=C7NnC5, (2.3q)
(C1 N Cy)° = cI*(CS + C3), (2.3b)
(K1 N K2)o = cl((K1)o + (K2)o), (2.3¢)
(C°), =Cn(-0), (2.3d)
(C1), = cllinC. (2.3e)

Proof. For the proof of the statements (2.3a), (2.3b), and (2.3c), we refer to [17, formulae (2.31) and
(2.32)]. Applying Lemma 2.11,

(C°)L=(C%)oN(=C%)0 = (C°)oN((=C)%)e =CN(-C)
is obtained which yields (2.3d). Finally, we exploit Lemma 2.11, (2.3¢), and linC' = C' — C to show
(CH)e = (C°N(=0)°), =cl((C°)o — (C°)o) = cl(C = C) = cllinC

which yields (2.3e). O

Let Y be another Banach space and choose an operator F € L[X, ))]. For any set A C X, we define the
image of A under F by F[A] := {F[z] € Y|z € A}. The set F[X] is just called image of F. Obviously, F[.X]
is a linear subspace of . Note that F[X] does not need to be closed.

The following result is called generalized Farkas lemma and can be found in a more abstract form in [51,
Theorem 1, Lemma 3]. In [47, Remark 2.1], its relation to the well-known Farkas lemma is illustrated.
The third assertion is taken from [17, Proposition 2.201].

Lemma 2.13. Let X and ) be Banach spaces, let C C X and K C Y be nonempty, closed, convex cones,
and let A € L[X, )] be an arbitrary linear operator. Then we obtain

{z € C|A[z] € K}° = cI*(C° + A*[K®)).

If the condition A[C] — K = Y holds, then cI* can be dropped in the above line.
On the other hand, if there are functionals 73, ...,z € X* such that C possesses the form

C={zeX|Vje{l,...,n}: <x}x>X <0}
and A[X] is closed, then
{z € C|Alx] =0}° = cone{a],... x5} + A" [V*]

is satisfied.

Note that the first statement of the above lemma generalizes the calculus rule (2.3b).

The following example introduces the concept of ellipticity and is included since it presents a typical
application of the above calculus rules for annihilators and polars. Note that the concept of elliptic
operators is closely related to the concept of elliptic PDEs. The theoretical and numerical handling of
optimal control problems which are governed by linear elliptic PDEs is well-developed, see [103, 118]
and the references therein.

Example 2.14. Let X be a reflexive Banach space and let A € L[X, X*] be elliptic. Thus, there is some
a > 0 such that
Ve X:  (Afa)a)y > ol

holds. Using the inequality of Cauchy and Schwarz, this yields

Vee X afzlly <[[Al]llxe < Al e 2] 2 - (2.4)
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It is easily seen from (2.4) that A is injective. On the other hand, A[X] is closed. In order to show this, we
choose a sequence {z;} C X such that {A[zg]} C X* converges to some z* € X*. Particularly, {A[zk]} is
bounded and due to (2.4), the same holds true for {z;}. We exploit the reflexivity of X’ in order to extract
a subsequence {zy, } of {zx} converging weakly to z € X. Then for any z € X,

(A[7), @) = (A"[2], 7)o = lim (A"[2], 2y, ) = Hm (Afzy, ], @)y = (27, 2) 5

l—00 —00
is obtained and consequently, z* = A[ﬁc] € A[X] is valid. This yields the closedness of A[X]. Now,
using the definition of ellipticity, A{X]* = {0} is obtained. Thus, we finally apply Lemma 2.11 to see
X* = {0}t = A[X]tL = clA[X] = A[X] which shows the surjectivity of A. Hence, any elliptic operator is
an isomorphism. [ ]

In this thesis, we will deal with several different concepts of tangent and normal cones which will be
defined and discussed below. Therefore, choose a nonempty set A C X such that Z € cl A is satisfied.
The cone

Ra(Z) :={de X |3ty >0Vs € (0,t0]: T+sde A}

is called radial cone to A at . Furthermore, we introduce the tangent (or Bouligand) cone, the weak
tangent cone, the inner (or adjacent) tangent cone, and the Clarke tangent cone to A at T as stated
below, see [6, Section 4.1] and [90, Definition 1.8]:

Ta(®) = {d € X |3{di} C X IHtr} CR: dy — d, 1, \, 0, T+ txdy, € AVE € N},
W(f) = {deX|EI{dk}§XEI{tk}QR di — d, tx 0, T + trpdy EAV]CEN},
To@) = {d e X |V{ti} SRt \ 0 = 3{dy} C X: dy — d, T + trdy € AVk € N)},

V{zr} C AV{t,} CR }

Ti(z):=qdeX
A®) { (.%‘;g—>§7, tk \ 0 = H{dk}gX: dip — d, .”L’k—‘rtkdkEAVkEN)

Clearly, the cones Ta(z), 74 (), and T5(Z) are closed by definition, see [6, Section 4] as well. Moreover,
T5(Z) is convex, see [6, Proposition 4.1.6]. From the definitions, we obviously have the inclusions

Ti(®) C TA(®) C Ta(®) C TX'(2)

and
Ra(Z) C T4(2).

The set A is said to be derivable at z if T3(z) = Ta(%) is satisfied. We call A derivable if it is derivable at
all of its points. For convex sets A, we easily see T(Z) C clee, cone(A — {Z}) = cone(A — {z}). Thus, [6,
Proposition 4.2.1] yields

seq

cone(A — {z}) = dARA(2) = T5(@) = TA(7) = Ta(@) = T4 (z)

in the convex case. Hence, any convex set is derivable. If C C X is a closed, convex cone containing ¢,
the formulae
Rc(e) = C+1lin{c}, Te(€) =cl(C +lin{e})

are easily obtained; 7¢(¢)° = C° N {¢}~ follows from (2.3a).

Lemma 2.15. Let X be a Banach space, let D1,..., D, C X be closed sets, and choose 7 € D := Ule D;

arbitrarily. Define I(z) = {i € {1,...,k} |z € D;} and assume that for any i € I(z), D; is derivable at Z.
Then D is derivable at z.

Proof. Applying some calculus rules for tangent and inner tangent cones, see [6, Tables 4.1 and 4.2], we
obtain

U o@= U 72.(2) S T5@) < To(@).

i€l(z) 1€l(z)

Thus, Tp (%) = TH(Z) is obtained and, hence, D is derivable at 7. O
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From the above lemma the union of finitely many convex sets is derivable. Especially, the finite union of
polyhedral sets is derivable. Recall that a set A C X is polyhedral if there exist functionals 3, ... ¥ € X*
and scalars o, ..., a, € R, such that A possesses the representation

A={zeX|Vie{l,...,n}: (z],2), < a;}.
On the other hand, a closed, convex set A is said to be polyhedric w.rt. (Z,2*) € A x Ta(z)° if
Ta(@) N {z"} L = cl(Ra(z) N{z"} 1)

is satisfied, and we call A polyhedric if it is polyhedric w.r.t. all points (z,1) € A x Ta(z)°. The closed
cone

Ka(Z, ") :=Ta(@)N{z"} L
is called critical cone to A w.r.t. (Z,2*). Roughly speaking, a set is polyhedric if its boundary possesses no
curvature. It is easy to see that the radial cone to a polyhedral set is always closed and, thus, equals the
corresponding tangent cone. This shows that any polyhedral set is polyhedric. The notion of polyhedricity
dates back to the seminal works [57] and [88] where it was used to characterize the directional differentia-
bility of the projection operator onto closed, convex sets. Later on, polyhedricity turned out to be a useful
property in infinite-dimensional programming, see [17, 68, 120, 121]. Generalizations of polyhedricity
can be found in [17, Section 3.2.3] and [120]. The latter article presents an overview of polyhedric sets,
calculus rules addressing set intersections involving polyhedric sets, and applications of polyhedricity in
mathematical programming.
Let X be a reflexive Banach space, let C C X be a nonempty, closed, convex cone, and choose ¢ € C as
well as ¢* € C° such that (¢*,¢) ,, = 0 holds (i.e. (¢,c*) € C' x T¢(€)°). Then

C polyhedric w.r.t. (¢,¢") <= C° polyhedric w.r.t. (¢*, )
< K¢c(G,c")° =Keo (¢, 0) (2.5)
< Keo(c",2)° = Ke (G, %)
is obtained by straightforward calculations and Lemma 2.11, see [121, Lemma 5.2] as well. Clearly, C'is

always polyhedric w.r.t. (0, 0).

Let us introduce some appropriate concepts of generalized normals which date back to Mordukhovich,
see [90] for the historical details. Again, let A C X be a set with T € ¢l A. Furthermore, we choose a
scalar ¢ > 0 in order to define the set of o-normals to A ot # as stated below:

lim sup w < cr} .
ez, zea [T =Ty

For o =0, Na(z) := J\Afg(f) is called Fréchet (or regular) normal cone to A at Z. Furthermore, the cone

N3 (z) = {n € x*

Na(z) = {77 € x* ‘ o) CRIwp} CAH e} CX*: 03 L0, 2 = T, e = 1), i € /\Afj"(:ck)Vk € N}
is called limiting (or basic, Mordukhovich) normal cone to A at Z, whereas

Ni(@) = {nexr

Howt CRIHar} C A} C X 04 L0, ap — T, e — 1, 1 € N (a) Vh € N}

defines the so-called strong limiting (or norm-limiting) normal cone to A at z. From [90, Theorem 2.35]
we can fix o = 0 in these definitions provided X is reflexive (or, to be more general, a so-called Asplund
space, i.e. a Banach space whose separable subspaces possess separable duals) and A is closed in a
neighborhood of Z. While the limiting normal cone enjoys full calculus, see [90, Sections 1.1 and 3.1.1],
the strong limiting normal cone suffers from a lack of available calculus rules in infinite-dimensional
spaces; in the finite-dimensional case, these cones obviously coincide. To the best of our knowledge, the
strong limiting normal cone was introduced in [50] first. Finally, we define the Clarke normal cone to A
at z by
N5(Z) :=TH(z)°.

Let us stipulate that all the introduced normal cones to A at some point Z ¢ cl A are empty. It is clear from
the definitions that AV'4(Z) and N§(z) are closed, convex cones. On the other hand, N4 (z) is neither
convex nor closed in general, see [90, Example 1.7]. Note that N'5(Z) is a closed cone which is not
necessarily convex.
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Lemma 2.16. For any set A C X and T € cl A, the cone N5(Z) is closed.

Proof. Let {ny} C N5(Z) be a sequence converging to n € X*. By definition, for any k& € N, we find
sequences {ox} C R, {zx;} C A4, and {ng;} C X* with oy ; | 0, zx; — Z, and ng; — n; as I — oo, and
Ny € N3 (zg,) for all 1 € N. Thus, for any k € N, we find I, € N such that the relations

Okt < 1 2k, — Zllp < % 7k — il e < 7

hold. Hence, we have

1080 = 0lle < Mz = Mell e + ke = lle < 5 4 06 — 0l s

from the triangle inequality, and, consequently, the sequences {01, }, {®k,i, }, and {nk, } satisfy o1, 1 0,
Tp1, — T, and .y, — nask — oo, and Ny, € Njk’l"‘ (zk,1,) forall k € N. Hence, n € N§(z) isvalid. O

Applying [90, Proposition 2.45], the inclusions

~

Na(z) C Ni(x) C Na(z) € Ni(2)

between the introduced normal cones are obtained. For any convex set A, all these normal cones coincide
with the normal cone of convex analysis, see [24, Proposition 2.4.4] and [90, Proposition 1.3], i.e. we
have

Na(@) = N5(@) = Na(@) = N§(7) = {n € X*|Vz € A: (n,x —T), <0} = (A~ {7})°.

On the other hand, if X is reflexive, we obtain N4 (z) = T2(z)° and N§(z) = conv Na(z) for sets A
which are locally closed at Z from [90, Corollary 1.11 and Theorem 3.57], respectively.

Let X be an arbitrary Banach space again. The set A is called sequentially normally compact, SNC for
short, at z if for any sequences {0} C R, {zx} C A, {nx} C X* satisfying oy | 0, zx, — &, . = 0, and
Nk € ./\A/Z" (zg) for all £ € N, n;, — 0 is valid. It follows from [90, Theorem 1.21] that a singleton in X is
SNC at its point if and only if X is finite-dimensional. Clearly, any subset of a finite-dimensional Banach
space is SNC at all of its points. In the following lemma, we present a results which characterizes the SNC
property of a closed, convex set in a reflexive Banach space.

Lemma 2.17. For a reflexive Banach space X and a nonempty, closed, convex set A C X, the following
statements are equivalent:

(i) A is everywhere SNC,
(i) Ais SNC at some point T € A,

(iii) lin A is closed, rint A is nonempty, and the dimension of the factor space X/ lin A is finite.

Proof. Recall that the set A is CEL (compactly epi-Lipschitzian) at a point Z € A if there are neighborhoods
N of Z and U of 0, some € > 0, and a convex, compact set C C X which satisfy

Va € (0,e): ANN+aU C A+ aC,

see [19, Definition 2.1]. Since A is a closed subset of a reflexive Banach space, we see from [39,
comments after Definition 2.1, Theorem 3.1] that A is SNC at Z if and only if it is CEL there.

Exploiting the equivalence of the SNC and CEL property, the equivalence of (i) and (iii) follows from [19,
Theorem 2.5, (i) and (vii)]. Moreover, (i) obviously implies (ii), i.e. we only need to show that (ii) implies (i).
Assume that A is SNC, i.e. CEL, at z € A. Then we find neighborhoods N of Z and U of 0, some ¢ > 0,
and a convex, compact set C' C X which satisfy ANN 4 SU C A+ 5C. This yields {z} + U C A+ 5C
and, thus, U € A+ §C — {z}. Obviously, the set C" := 5C — {z} is convex as well as compact and
satisfies 0 € int(A + C’). Thus, by means of [19, Theorem 2.5, (i) and (ii)], A is CEL everywhere. The
above arguments imply that A needs to be SNC everywhere. O
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Observe that the above result is remarkable since, by definition, SNC seems to be a local property of a
set.

For Banach spaces &7, ..., &, let A; C X} be chosen such that z; € A, j =1,...,n, holds. Then from
[90, Proposition 1.2] we obtain the product formulae

Na(@) =[] Na, (), Ni@) =[Ni, @), Na@) = [[Na, (@) (2.6)
j=1 j=1 j=1
where A:=[[_, Aj and & := (#1,...,%y). For the Clarke normal cone, we only obtain the inclusion

Ni(@) 2 [T 5, (@)

by straightforward calculations in general.
We will exploit the following calculus rule for the limiting normal cone to the intersection of sets, see [90,
Corollary 3.5].

Lemma 2.18. Let X be a reflexive Banach space and let A, A’ C X be sets which are locally closed at
Z € AN A’. Assume that one of the sets A or A’ is SNC at Z and that the condition

Na(@) 1 (~Nao(@)) = {0}
is satisfied. Then we have
/\/'AmA'(f) - NA(.CYJ) +/\/A/(CE).

If, additionally, A and A’ are locally convex at Z, then equality holds.

By means of examples, see [90], it is easily seen that the SNC assumption in the above lemma cannot be
omitted in general. On the other hand, the SNC property is very restrictive in several important function
spaces. This has been already remarked, e.g., in [73] and [86, Lemma 4.8]. Here we state some results
in order to point out the difficulties.

Lemma 2.19. Let Q C R? be a bounded domain and consider the following nonempty, closed, convex
cones:

<)
o+

CQ), ={ueC(Q)|uw)>0forallwen},
LP(Q) ¢ = {u e LP(Q) |u(w) > 0 fa.a. w e N},
WhP(Q)§ = {u e W"P(Q) |u(w) > 0 fa.0. we Q}.

>
>

]
<)

Then C (ﬁ);r and L>=(92)4 are SNC at all of their points. On the other hand, for any p € [1, ), the cone
LP(Q)§ is nowhere SNC.

Let © possess a Lipschitz boundary and choose p € (1, 00) arbitrarily. If p < d is satisfied, then the cone
WLP(Q){ is nowhere SNC. On the other hand, if p > d holds, then W1?(Q){ is SNC everywhere.

For an interval Q := (0,7) C R, the nonempty, closed, convex cone

ACHA( Q) = {u e ACT*(Q,R) |u(w) >0 forall w € Q}

is SNC at all of its points.

Proof. Since the cones C (ﬁ);r and L>=(Q){ possess a nonempty interior and satisfy lin C (ﬁ);r =C(Q)
and lin L>®(Q)§ = L>(Q2), their property to be SNC everywhere follows from [90, Theorem 1.21].

Fix p € [1,00), an arbitrary function @ € LP(Q), and a sequence {2} C 29 of measurable sets satisfying
(%) N\ 0. We define uy, := u(1 — xq,) € LP(Q){ for any k € N. Then uy — u in LP(Q2) follows easily
from Lemma A.1. Now, it is possible to infroduce

Vp e (l,0)Vw e Q: ni(w) = —[(Qk)_ixgk(w)
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or n := —xq, € L>®(Q) in the case p = 1 for any k € N. Here p’ is the conjugate coefficient of p. For all
p €[1,00) and k € N, we easily obtain

LA (_LPI(Q)S—) N{us}t = (LPQ)F)° N {ur} ™ = NLP(Q)OJr(uk) = -/\A/Lp(Q)g (uk)

from [17, Example 2.64]. Choosing p € (1,00) and v € LP(Q), we obviously have v € LP(Q) for all
k € N and Hélder's inequality yields

1

1

1 _1 P

‘<77k»U>Lp(Q)‘ =1(Q) /Q X (w)v(w)dw’ <IU(Qg) P ||Xﬂk“LP/(Qk) HU”LP(Q;C) = (/Q |v(w)|pdw>
k k

Using Lemma A.1 again, the latter integral tends to zero, i.e. 7, = 0. On the other hand, 17kl Lo () = 1

holds true for any k € N. Now, let p =1 and v € L(Q) be given. Similarly as above, the right hand side
of

[ hir@] < [ lol)lds
Qp

converges to zero as k tends to oo, i.e. ;= 0 follows. By construction 7w/l ey = 118 satisfied for

all k € N. Summing up all these considerations, we constructed a sequence {7} such that 7, = 0 and
nx ~ 0 hold in parallel. Thus, LP(2)F cannot be SNC at .

For p € (1,0), the Banach space W1P(Q) is reflexive. Choosing u € W1?(Q), the functions max{0; u}
and max{0; —u} belong to W?(Q) as well, see [75, Theorem A.1.]. From u = max{0; u} — max{0; —u}
we deduce lin WP (Q)& = WIP(Q)f — WHP(Q)5 = WP(Q). We distinguish between two cases.

Case |: Let p < d hold. Following Lemma 2.17, we only need to show that rint W (Q){ is empty in order
to verify the lack of the SNC property. Clearly, since we have lin W1P(Q)§ = WHP(Q), rint WP (Q)F
equals int WP(Q)F. Thus, it is sufficient to show int WHP(Q)F = @. Therefore, we first verify the
existence of functions in W1P(Q) \ L>(2). We assume on the contrary that W1?(Q) C L>°(Q) holds.
Take a sequence {ug} € W1P(Q) converging to 4 in W1P(Q) and assume that {u;} converges in L>(Q)
to 4 at the same time. Then we have

1
2 — ﬂ||Lp(Q) < - UkHLp(Q) + fluk — 7:L”LP(Q) <la- uk“WLP(Q) + ()7 [lu — u”LOO(Q) —0

from the triangle inequality. Thus, 4 = @ holds and, hence, we can deduce W1P(Q) < L>(Q) from [126,
Satz IV.4.5]. This contradicts Sobolev’s embedding theorem since for p < d, only WP (Q) — LI(Q) for
p<qg< ddfpp holds and the upper bound on ¢ is tight, or for p = d, only W1P(Q) — L4(Q) forp < g < 00
is satisfied, see Theorem 2.8. Thus, there exists © € WP(Q)f \ L>(2). Choose an arbitrary function
u € WHP(Q){ and define uy, for any k € N as stated below:

Vw € Q:  uk(w) == min{k; 4(w)} — £0(w).

From Lemma A.4 we have {uz} € WP(Q2) and uy, — 4 in WHP(Q). On the other hand, the boundedness
of w — min{k; u(w)} and the unboundedness of v yield ui, ¢ WP(Q)d. Thus, the interior of W1P(Q)F
is empty and, hence, this cone does not possess the SNC property at its elements.

Case Il: Suppose that p > d is satisfied. Then we have W'?(Q) < C (£2) by Theorem 2.8. Consequently,
int WHP(Q)§ # @ is obtained from intC(ﬁ)(—; # 2. From above we have lin WP(Q)5 = WiP(Q).
Combining these facts with Lemma 2.17, the cone W?(Q){ is SNC at all of its points.

Finally, let Q := (0,T) C R be a real interval. Applying Theorem 2.10, it is not difficult to see the relations
lin ACH2(Q)f = ACY2(Q,R) and int ACY3(Q) # @. Thus, the cone ACT2(Q)F is SNC at any of its
points by means of Lemma 2.17. O

Adapting the proof of the above lemma, we obtain the following results for sets in function spaces defined
via lower and upper bounds.

Corollary 2.20. Fix some ¢ > 0. For an arbitrary bounded domain  C R, the following sets are SNC
at all of their points:

{ueC(Q)]a(w)
{ue L*(Q)]a(w)

b(w) for all w € Q} a,be C(Q), a(w) < b(w) forallw € Q,
b(w) f.o.a. w e Q} a,b € L*(Q), b(w) — a(w) > ¢ f.a.a. w € Q.

<u(w) <
< <

u(w)
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On the other hand, for any p € [1,00), the set
{ue LP?(N) | a(w) < u(w) < b(w) f.a.a. w e Q} a,b e LP(Q), a(w) < b(w) f.a.a. w e N

is nowhere SNC.
For an interval 2 := (0,7) C R, the set

{u e ACT?(Q,R) | a(w) < u(w) < b(w) for all w € O} a,b € ACH?(,R), a(w) < b(w) forallw € Q

is SNC at all of its points.
Similar assertions hold true for sets defined via only upper or lower bounds and for the function spaces
C(Q)", L?(Q,R"), p € [1,00], and ACH2(Q,R").

Finally, we consider sets with upper and lower bounds in Sobolev spaces.

Lemma 2.21. Let Q C R? be an arbitrary bounded domain with Lipschitz continuous boundary and fix
p € (1,00). Furthermore, let a,b € WP(Q2) N L>°(Q) be functions which satisfy b(w) — a(w) > & almost
everywhere on Q where £ > 0 is a fixed constant. For p < d, the set

S :={uecW(Q)|aw) <u(w) < bw) fa.a we}
is nowhere SNC. On the other hand, if p > d is satisfied, then S is SNC everywhere.

Proof. We first show lin S = W1?(Q) N L>(Q). Therefore, we invoke Lemma 2.2 in order to see the
relation lin S = conv | J,,cp @S. Since we clearly have oS € WHP(Q) N L>°(2) for any a € R, the inclusion
C is obvious. Now, take any function i € W1P(Q) N L>(£2). Then we find a real constant C' > 0 such that
li(w)| < C holds almost everywhere on 2. On the other hand, with the function @ :=a + (b —a) € S
we obtain

S ={ueW"(Q)| — £ <u(w) < §faa.weQ} CS—{w}Clins.

Moreover, u € 225" C 1in § is satisfied. Hence, we have shown W1?(Q) N L*>(Q) C lin S.
First, we assume p < d. Similarly as in the proof of Lemma 2.19, we can show the existence of a function
v € WHP(Q)F \ L>(). On the other hand, the sequence {vi,} C W1P(Q) N L>(Q2) defined by

Vk € NVw € Q:  vp(w) := min{k; o(w)}

converges to © w.r.t. the W1P(Q)-norm, see Lemma A.4. Thus, lin S = WP(Q) N L*(R) is not closed.
Applying Lemma 2.17, S is nowhere SNC.

Finally, let us assume p > d. Then we have W?(Q) < C () from Theorem 2.8 and, consequently,
any function from W1P(2) needs to be bounded. This yields lin.S = W1P(Q) N L>(Q) = W1P(Q). On
the other hand, we obtain @ € int S = rint S in this situation. Summing up these arguments, S is SNC
everywhere by means of Lemma 2.17. O

2.3.2. Some facts on vector lattices

For some binary relation ¢ C S x S of a nonempty set S, we exploit the infix notation xgy in order to
express (z,y) € o for z,y € S. Recall that ¢ is called

reflexive <— VresS: xor,

antisymmetric <= Vz,y € S: zpy A yor = x =y,

transitive — Vz,y,z € 5: zoy A yoz = xpz.
A reflexive, antisymmetric, and transitive binary relation ¢ C S x S is called a partial order of S, the pair
(S, o) is said to be a partially ordered set.

Now, let (S, g) be a partially ordered set and fix z,y € S. Then s € S is called the supremum of x and y
if zos as well as yos hold and the condition

VzeS: xpz A yoz = soz
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is satisfied, i.e. s is the smallest upper bound of {x,y} in S w.r.t. . In case of existence, we denote the
supremum s of x and y by max{z;y}. If for all z,y € S, max{z;y} exists, then (S, o) is called an upper
semilattice.

Let X be a Banach space and let K C X be a closed, convex cone which is pointed, i.e. which satisfies
KN (—K) = {0}. We define a binary relation <xC X x X as stated below:

Ve,ye X: x<gy<—=y—xeckK.

It is easily seen, cf. [71, Theorem D.3], that (X, <k) is a partially ordered set. Moreover, we obtain the
following calculus rules for <y arising from the properties of the Banach space X':
V‘TayVZEX: lESK?J = I+Z§Ky+2;
Vr,y € XVa > 0: r<gy = axr<gay.
If (X, <k) is an upper semilattice, it is called a vector lattice.
Now, let (X, <k) be a vector lattice. Then the above calculus rules imply
Vr,y,z € X: maxg{z;y} + 2z = maxg{z + z;y + 2},
Vz,y € XVa > 0: maxg{azr;ay}t = amaxg{x;y}.
Here we added the index K to the supremum operator in order to emphasize that it is induced by the

cone K. Later on this notation will avoid confusion. We are going to exploit the natural definition
ming{z;y} := —maxg{—x; —y} for any z,y € X. Note that

x =z +maxg{—=;0} — maxg{—=;0} = maxg{0; 2} — maxg{—=;0} = maxg{z;0} + ming{x;0}

is satisfied for all x € X. Clearly, we can identify ming{z;y} with the largest lower bound of {z,y} in
X w.rt. <k, i.e. with the infimum of the set {z,y}. Consequently, for arbitrary =,y € X, the infimum
ming {x;y} exists and, thus, (X, <k) is a so-called lower semilattice as well. We easily check

Ve,y € X: z<gy < maxg{z;y} =y < ming{z;y} =z

Thus, (X, <k) is a lattice in classical sense, see [53]. This justifies the name vector lattice.

Example 2.22. In R3, consider the closed, convex, pointed, and polyhedral cones

Ky :={z € R®|(~1,0,0) -2 <0, (0,—1,0) -z <0, (0,0,—1) - = < 0} = R>™,
Ky:={z eR®|(-1,1,1)-2 <0, (=1,1,-1)- 2 <0, (=1,—1,—1) -2 <0, (=1,—-1,1) - = < 0}

Clearly, the cone K; induces the common less-or-equal binary relation < in R? and (R3, <) is obviously
a vector lattice. On the other hand, K5 does not induce a vector lattice in R? since there does not exist
supremum of, e.g., the points (0,0,0) and (0,1, 1). The set U of upper bounds of {(0,0,0), (0,1,1)} takes
the form

U = conv{(1,1,0),(1,0, 1)} + K>

but this set does not possess a smallest element w.r.t. <g,. [ ]

For a detailed introduction to the theory of vector lattices, we refer the interested reader to [110].
Later, we need some more calculus rules for supremum and infimum in connection with tangent cones.

Lemma 2.23. Let (X, <k) be a vector lattice induced by the closed, convex, pointed cone K C X which
satisfies the following condition:

V{xp} CXVE € X: 2 — T = maxg{xg;0} = maxg{Z;0}. (2.7)

Furthermore, for z € K, choose d € Tk (z) and r € =Tk (z). Then maxx{d; 0}, ming {d;0} € Tk (x) and
max g {r; 0}, ming {r; 0} € =Tk (z) hold.

Proof. Under condition (2.7), the statements for d follow from [120, Lemma 4.12]. Now, let us prove the
assertions on r. Observe that maxg{—7r;0} € Tk (x) holds. Hence, we have — maxy{—r;0} € =Tk (x),
i.e. ming{r;0} € =Tk (z). Analogously, we can show maxg {r;0} € —Tx (z). O
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As it was remarked in [120, Section 4.2], the property (2.7) is weaker than the property of (X, <k) to
be a Banach lattice, see also [110] for details. One may check [120, Lemma 4.8] for the proof of the
following result presenting a condition which guarantees that (2.7) is valid.

Lemma 2.24. Assume that X is a reflexive Banach space and let (X, <) be a vector lattice induced by
the closed, convex, pointed cone K C X. If there is a constant ¢ > 0 which satisfies

Vo e X |max{e;0} |y < cllelly,
then condition (2.7) is valid.
Example 2.25. Let M = (Q, X, m) be a complete and o-finite measure space. For p € [1, o0], the cone
LM = {u € LP(M) |u(w) > 0 f.a.a. w € O}
induces the vector lattice (L?(), SLP(M)J). Using the obvious inequality
Vo, € R: |max{«a;0} — max{8;0}| <|a— 8|,

we easily see that the mapping LP(IN) > u — MaxX (g + {u;0} € LP(M) is Lipschitz continuous with
Lipschitz modulus L = 1. Thus, the assumption of Lemma 2.23 holds.
Now, let Q C R? be a bounded domain and consider

Hy(Q)d :={u € Hy(Q) |u(w) > 0fa.0. weQ}.
The pair (H&(Q),gHé(Q)g) is a vector lattice, see [17, Lemma 6.11 and Proposition 6.45], and the
corresponding supremum operator Hi () 3 u Max 1 o)+ {u;0} € HL(Q) is continuous, i.e. the prop-
erty (2.7) holds. A similar argumentation is possible for H'(Q2) equipped with the cone of all almost

everywhere nonnegative functions which forms a vector lattice satisfying (2.7) as well, see [5, Theo-
rem 5.8.2]. |

2.3.3. Tools of generalized differentiation

Let F: X — Y be a mapping between Banach spaces X as well as Y and choose Z € X arbitrarily. Then
F is said to be directionally differentiable at Z in direction 6 € X if the limit

F/(CE' 5) -— lim F(j + té) — F(‘/E)
T N0 t

exists. In this case, F'(Z;0) is called directional derivative of F' at  in direction §. If F'(z; ) exists for all
§, then F is called directionally differentiable at . Suppose that F is directionally differentiable at z. If
o(t)

there is a function o: RS’ — Y which satisfies lim;\ o 7 = 0 and

VoeX: F(z+0)— F(2)— F(;0) = o[|0] 1),

then F' is called B-differentiable at . Note that whenever F' is locally Lipschitz continuous at Z while X is
finite-dimensional, then F is directionally differentiable at Z if and only if it is B-differentiable at this point,
see [112, Proposition 3.5]. On the other hand, F' is said to be Fréchet differentiable at 7 if there exists an
operator F'(z) € L[X, )] which satisfies

F(z+h)— F(z)— F'(z)[h)]

0= lim
1Al 0 2] »

In case of existence, F'(Z) is called Fréchet derivative of F' at Z. Obviously, if F' is Fréchet differentiable at
T, it is continuous there. If the mapping z — F’(x) is well-defined in a neighborhood of z and continuous
at this point, then F is called continuously Fréchet differentiable at Z. Note that any mapping which
is Fréchet differentiable at z is B-differentiable at Z and for any direction 6 € X, F'(Z;0) = F'(z)[d]
holds true. The mapping F is called directionally differentiable (B-differentiable, Fréchet differentiable,
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continuously Fréchet differentiable) if it possesses this property at all points z € X. If the mapping F is
continuously Fréchet differentiable at Z, it is reasonable to check whether the mapping F’: X — L[X, )]
is Fréchet differentiable at Z. If the answer is positive, then we call F twice Fréchet differentiable at Z and
exploit the notation F*)(z) := (F')'(z) € L[X,L[X,)]]. Note that we may interpret the operator F(?)(z)
as a continuous, symmetric bilinear mapping from X2 to ), see [142, Section 10.5]. Recall that a bilinear
mapping b: X2 — Y is continuous if and only if there is a constant o > 0 which satisfies

Va, o' € X: [ola, 2]| < alzfy [l 1 -

For any y* € V*, we introduce (y*, F(Q)(f)>y € L[X, X*] as stated below:

Vee X: <y*,F(2)(§:)>y [x] := <y*,F(2)(5)[l‘, ]>y = F(Q)(f)[xv Tyl

If X = X} x X holds for Banach spaces X1 and X, then partial Fréchet differentiability can be defined
considering z; — F(x1,Z2) and z2 — F(Z1,22) where Z = (Z1,%2). We write F, (z) € L[A;, )],
i = 1,2, in order to address the partial Fréchet derivatives if they exist. It is well-known that any Fréchet
differentiable mapping is partially Fréchet differentiable w.r.t. all of its variables. On the other hand,
if a mapping is continuously partially Fréchet differentiable w.r.t. all of its variables, it is continuously
Fréchet differentiable, see [142, Section 10.4.2]. A similar notion will be used for partial directional
derivatives. Partial second-order Fréchet derivatives can be introduced in an analogous way. The notation
Fﬁ?lj () = (F},),(T) € L[X;,L[A;, Y]] is exploited, and Ft(?%J (Z) will be interpreted as a continuous
bilinear mapping from &; x &; to V. Calculus rules for the computation of directional and Fréchet
derivatives are presented in [17] and [142].
Example 2.26. Let X, Y, and Z be Banach spaces and fix A € L[X,))], y4 € Y, and a symmetric,
continuous bilinear mapping b: Y2 — Z. Then straightforward calculations show that F: X — Z given
by
Vo € X:  F(z):= 1bAlz] — yg, Alz] — 4

is twice continuously Fréchet differentiable with the Fréchet derivatives

Vh,h' € X:  F'(z)[h] = b[A[h],A[z] — ya], FP(2)[h, h'] := b[A[L], A[]]

atanyz € X. ]

Example 2.27. We consider a similar situation as in Example 2.26. Let X and H be a Banach space and
a Hilbert space, respectively. Here we identify H and H* by means of Riesz’s representation theorem. Fix
A e L[X,H] and yq € H. Then the mapping J: X — R defined by

Vo€ X (@)=} (Mla] — yorAla) — gy = 3 IAla) — vl
is twice continuously Fréchet differentiable at any point € X and the Fréchet derivatives take the form
VhoH € Xi J(@)lh) = (AL AT — ), TD(@) (A1) = (ALAL A
Using the definition of adjoint operators, we find the reasonable representation
J'(3) = (A7) — yal.

In optimal control, the so-called tracking-functional J is a typical objective. It is easily seen that J is a
convex functional as well. Moreover, if A is elliptic (in the case X = H), then J is coercive since we have

J(x) = 3 1Al — (ALl yady + 5 lyalls, = 5 1ALl — 1ALzl llvall
L0k, (1812l = 21lyalla) 2 % 2l (lell = 2 llvally)

for all z € X with |[z], > 2|lyql,, where & > 0 denotes the constant from the characterization of
ellipticity, see Example 2.14. Thus, for any nonempty, closed, convex set M C H, the optimization
problem

2 .
3 1y = vally, — min
yeM

possesses an optimal solution i by means of Lemma 2.5. Since the objective functional is strictly convex,
this solution is unique. Clearly, § is the projection of y4 onto M. We exploit proj,,;(yq4) := 7. |
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Example 2.28. Finally, let X be a reflexive Banach space and let U be an arbitrary Banach space. For a
self-adjoint operator A € L[X, X*| and another arbitrary operator B € L[/, X*|, we consider the functional
J: X xU — R given by

Ve e XVuel: J(z,u):=3(Alz],z), — (Blu],z) .
At any point (Z,%) € X x U, it is twice continuously Fréchet differentiable and satisfies
Vh,h' € XVk e U: Jo(z,u)[h] = (A[z] — B[a], h) » , J)(z,u)[k] = — (Blk],Z
T2 (@, @)k, W] = (AW] ) T (@, @) [h, k] = — (BIK], h) o -
Exploiting the concept of adjoint operators, we obtain
Ji(z,u) = Alz] — Blu], J,(z,u)=—B*[z].

If A is elliptic, then z — J(x,4) is coercive and strictly convex. If, additionally, the operator B* is compact,
then J is weakly lower semicontinuous, since for any sequences {zx} C X and {ux} C U satisfying
xp — T and u, — @, we have B*[z;] — B*[Z] and, by means of Lemma 2.4,

i (Bug], @)y = lim (B*[ay], un)y, = (B*[a], @y, = (Bla, 7).

Note that the lower level program of the obstacle problem, see (1.4), possesses an objective functional of
the type presented in this example. |

For a functional ¢: X — R, a point z € X where (%) is finite, and § € X, we define the Clarke
generalized directional derivative of ¥ at T in direction § as stated below:

¥°(Z;6) := limsup Y(x +19) — ()
T a0 t .

The set
0Y(Z) = {a* € X*|V6 € X: (2%,8), <Y°(T;0)}

is referred to as Clarke subdifferential of ) at Z. Supposing that ¢ is locally Lipschitz continuous in a
neighborhood of 7, the set 9y (Z) is nonempty, closed, convex, and bounded, see [24, Proposition 2.1.2].
Let epiv) := {(z, ) € X x R|¢¥(x) < a} denote the epigraph of 4. Then

0°(@) = {2 € X" | (27, —1) € NG, (7, 9(2))} (2.8)

is satisfied if 1 is locally Lipschitz continuous at z. In [24], many other different calculus rules for Clarke
subdifferentials are presented. Especially, the mapping ¥ — 9°)(Z) is linear on the set of all functions
which are locally Lipschitz at Z. On the other hand, it is well-known that due to the convexity of the Clarke
subdifferential, this set is comparatively large. Thus, necessary optimality conditions derived via Clarke’s
tools turn out to be rather weak in many situations. Noting the representation in (2.8) and recalling the
relationship of the Clarke normal cone to the limiting normal cone, it is reasonable to define the limiting
(or basic, Mordukhovich) subdifferential of ¢ at Z via

0p(z) = {a" € X" [ (¢", —1) € Nepi (7, (7))}

in order to try to overcome this shortcoming of the Clarke subdifferential. Clearly, for convex functionals,
these subdifferential constructions coincide since the epigraph of a convex functional is a convex set. For
a functional ¥ which is continuously Fréchet differentiable at z,

oW(z) = 0% (x) = {¥'(2)}

is obtained. In general, 91 (Z) is a nonconvex set which is nonempty if ¢ is locally Lipschitz ot Z. Moreover,
the mapping ¥ — 0v(x) is positively homogeneous on the set of functions being locally Lipschitz at z.
In reflexive Banach spaces, we especially obtain 9°)(z) = conv 9 (z) if ¢ is locally Lipschitz at z which
yields

(=) (z) C I°(—¢)(7) = —9°(7) = — conv Iy(7)
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Other calculus rules for the limiting subdifferential can be found in [90].

let U: X = ) be a set-valued mapping, i.e. ¥ maps elements of X' to subsets of ). We define its
domain, kernel, and graph by dom V¥ = {z € X |¥(z) # &}, ker¥ = {z € X|0 € ¥(x)}, and
gph ¥ := {(z,y) € X x|y € ¥(x)}, respectively. Foranyset C C Y, U1(C) :={x € X |¥(z)NC # &}
represents the preimage of C' under ¥. The associated set-valued mapping ¥~1: Y = X is called the
inverse of 0.

For any point (Z, ) € gph ¥, the set-valued mapping D3, ¥ (Z,7): V* = X* defined by

Yyt eyt DyU(E,9)(y") = {a" € X[ (27, —y") € Ngpnw(Z,9)}

is called normal coderivative of ¥ at (z, 7). If the continuously Fréchet differentiable mapping F: X — Y
is interpreted as a set-valued mapping with singleton images, for any z € X, the formula

vyt €Y DyF(z,F(2))(y") = {F'(2)" [y}

is obtained, see [90, Theorem 1.38].

The set-valued mapping ¥ is called closed at Z € dom W if for any sequence {(x,yx)} C gph ¥ satisfying
zr — T and yp, — § € Y, we have (z,y) € gph ¥. Furthermore, ¥ is said to be locally bounded at z if
there are § > 0 and a bounded set B C Y such that ¥(z) C B holds for all z € U‘;(i). We say that ¥ is
locally upper Lipschitzian at Z if there exist constants L > 0 and § > 0, such that

Ve € U%(2):  U(z) CW(Z)+ Lz — 7|, By

is satisfied. Furthermore, ¥ is called calm at (Z,7) if there are L > 0, § > 0, and & > 0 such that the
condition
Vo € U%(z):  U(z)NTUS5(y) C ¥(z)+ Lz — |y By

holds. Clearly, if ¥ is locally upper Lipschitz at z, it is calm at all points (Z,y) where y € ¥(Z) is valid. The
mapping ¥ is said to be inner semicontinuous at (Z,7) if for any sequence {z;} C X which converges
to Z, there exists a sequence {yx} C ) converging to § which satisfies y, € U(xy) for sufficiently large
k € N. Finally, we call ¥ inner semicompact at T if for any sequence {z;} C X converging to z, there
exists a sequence {yr} C Y which possesses an accumulation point in ¥(z) and satisfies y, € ¥(xy) for
sufficiently large k € N.

2.3.4. Programming and constraint qualifications in Banach spaces

In general, a single-level optimization problem in Banach spaces is of the form

¥(z) — min

ce M (2.9)

where 1): X — R is called objective function, @ # M C X is referred to as feasible set, and X is a
Banach space. The following lemma comprises three different necessary optimality conditions for (2.9).
The first two are taken from [90, Propositions 5.1 and 5.3], respectively. The proof of the third condition
is standard and, thus, omitted.

Lemma 2.29. Let T € M be a local optimal solution of (2.9) such that ¢ is finite around Z. Then the
following assertions hold:

1. if ¢ is Fréchet differentiable at Z, then —¢/(Z) € Ny (Z) is satisfied,
2. if 9 is locally Lipschitz continuous at Z and X is reflexive, then 0 € 0y)(Z) + N (Z) is satisfied,

3. if ¢ is directionally differentiable at z, then ¢/(z; ) > 0 holds for all § € Ry (Z).
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Example 2.30. Let M C H be a nonempty, closed, convex subset of a real Hilbert space H which is identi-
fied with its dual by means of Riesz’s representation theorem. Choose y4 € H arbitrarily. Then, combining
Example 2.27 as well as Lemma 2.29 and keeping the convexity of the functional y — 1 |ly — yqll5, in
mind, we obtain the following well-known equivalences:

§=projy(yd) <= ya— G ENu(y) <= Yy M: (y—7,y4 — §)» < 0.

We will exploit these different representations of the projection onto a convex set in Section 4.1. [ |

Often, the set M equals the preimage F~1(C) of some nonempty, closed set C' C ) where ) is a Banach
space and F': X — ) is a mapping equipped with certain (generalized) differentiability properties. Here
we present some important lemmas which help to compute tangent and normal cones to preimages of
sets under transformations. This will be necessary in order to state optimality conditions for (2.9) in terms
of initial data.

Lemma 2.31. Let F: X — ) be a continuously Fréchet differentiable mapping between Banach spaces
X and Y, let C C Y be a nonempty, closed, convex set, and choose # € M := F~1(C) such that the
constraint qualification

F'(2)[X] - Rc(F(z)) =Y (2.10)

is satisfied. Then
Tir(®) = Tor(®) = Tu(2) = T (2) = {d € X | F'(2)[d] € To(F(2))}

is satisfied. If, additionally, X is reflexive, then we obtain

~

Nt (7) = N3y (2) = Nar (7) = Ny (2) = F'(2)" [Ne (F (7).

Proof. We exploit [17, Corollary 2.91] in order to obtain
Ti7(®) = Tap(2) = Tu (@) = {d € X | F'(2)[d] € Te(F())}

under the postulated constraint qualification. Thus, it is sufficient to show 7,4 (Z) C T (Z) to verify the first
statement of the lemma since the inclusion Ty (Z) C T4(Z) holds by definition of these cones. Hence,
choose d € T4 (Z) \ {0} arbitrarily (for d = 0, the statement is trivial). Then we find sequences {d,} C X
and {tx} C R such that di, — d as well as t; \, 0 are satisfied and F(Z + txdy) € C holds for any k& € N.
The convexity of C yields & := i(F(aZ‘ +trdy) — F(z)) € Ro(F(2)) for any k € N. Now, choose y* € Y*
arbitrarily. Then we have

(", F'(@)ld))y = lim (y", F'(2)[dx])y

_ lim < . F@+tudy) = F(@) = (F(& + tuds) — F(@) = F/(8)tadi)) >

k— o0 v ti

, 2

k—o0

lim <(y ey = (i D) Flo) = P k1>y)

Due to its weak convergence, {d} is bounded and, thus, {txdi} converges to zero. The definition of
Fréchet differentiability yields

0<

A, <y*, ], FEL tiedi) — F(@) = F(@)[tedi] >y

[tk di |l x
|F(Z + trdi) — F(7) = F'(@)[trd]lly _

0.
tkd|| »

< i “IIr,. ||d
< lim g™y lldell 2

Combining this with (2.11),
W &y = (", F'(@)[d])y

lim
k—o0
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is obtained for all y* € Y*, i.e. & — F'(z)[d]. Now, we can deduce
F'(z)[d] € conv{&, | k € N} Cconv R (F(z)) = cdlRe(F(z)) = To(F(z))

which shows the first statement of the lemma.
Due to the reflexivity of X and the first part of the proof, we find

Nat(®) € N3 (7) C Nar(T) €N (7) = T (2)° = T (2)° = Nar (@),

i.e. all these cones coincide. The fact that these cones equal F'(Z)*[Nc(F(Z))] follows from the sec-
ond statement of Lemma 2.13 and the above representation of the tangent cones, observing that the
postulated constraint qualification (2.10) implies

F(Z)[X] = Te(F(x) = . (2.12)
This completes the proof. O

Lemma 2.32. Let all assumptions apart from the reflexivity of X stated in Lemma 2.31 be satisfied.
Additionally, suppose that Z € M is a local optimal solution of (2.9) such that ¢ is Fréchet differentiable
at this point. Then there is a so-called (regular) Lagrange multiplier A € N¢(F(z)) which satisfies the
relation 0 = ¢/'(z) + F'(Z)*[A].

Proof. From Lemma 2.29 —¢/(z) € Ny (Z) is satisfied, and this yields —¢/(z) € N¢,(z). Due to the
validity of the constraint qualification (2.10), we obtain

Nii(z) = Ty (2)° = {d € X | F'(2)[d] € To(F(2))}° = F'(2)"[Te(F(2))°]

from Lemmas 2.13 and 2.31. Finally, the convexity of C' leads to 7 (F(Z))° = Ne(F(Z)) which completes
the proof. O

Remark 2.33. Again, let us postulate that F: X — ) is a continuously Fréchet differentiable mapping
between Banach spaces X and Y while C C YV is a nonempty, closed, convex set and 7 € F~1(C) is fixed.
The constraint qualification (2.10) was introduced by Robinson, see [105], in order to study stability
properties of the solution set to nonlinear inequality systems in Banach spaces. Later, Kurcyusz and Zowe
exploited the same condition to show the existence of Lagrange multipliers at local optimal solutions of
differentiable programming problems in Banach spaces, see [143]. That is why we call (2.10) Kurcyusz
Robinson Zowe constraint qualification, KRZCQ for brevity, throughout this thesis. Note that KRZCQ
implies the condition (2.12) which plays an important role in the generalized Farkas lemma, see Lemma
2.13. Polarizing (2.12), we easily see that this condition implies

0=F'(2)* [\, A € No(F(Z)) = A=0 (2.13)

which may be interpreted in the way that there do not exist nontrivial singular Lagrange multipliers at
7 € F~1(C) for optimization problems possessing the feasible set F~1(C). That is why it is often called
NNAMCQ), no nonzero abnormal multiplier constraint qualification, in the literature. Exploiting Lemma
2.11, the latter condition is equivalent to

A(F'(@)[X] — To(F(z)) = ¥ (2.14)

and, thus (see Lemma 2.1), to
A(F/(2)[X] - Re(F(@))) = . 2.15)

Consequently, we have
(2.10) = (2.12) = (2.13) <= (2.14) < (2.15),

see [17, Proposition 2.97]. If Y is finite-dimensional, all these conditions are equivalent. On the other
hand, if the set C' possesses a nonempty interior (which is often too restrictive in the context of program-
ming in Banach spaces), then all these conditions are equivalent and coincide with

dde Xx: F(z)+ F'(z)[d] € int C.
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This constraint qualification may be seen as a generalized version of MFCQ. Clearly, for common finite-
dimensional programming problems with inequality constraints, KRZCQ and MFCQ are equivalent. Note
that the conditions (2.10), (2.12), (2.14), and (2.15) are postulated in the space ) which is why they
are called primal constraint qualifications. On the other hand, (2.13) is a dual constraint qualification
since it states a condition in Y*. More information on KRZCQ and other representations of this constraint
qualification in product spaces can be found in [17, Section 2.3.4] and [31].

Remark 2.34. The necessary optimality conditions presented in Lemma 2.32 are called the KKT conditions
of (2.9) at Z as long as C'is a convex set. In the setting of programming in Banach spaces, these conditions
were stated under validity of KRZCQ in [143] first. In the case where C is a nonempty, closed, convex
cone, we obtain the more intuitive condition A € C° N {F(z)}* for the Lagrange multiplier. Note that
whenever F'(Z) is surjective, then KRZCQ holds ot Z and the Lagrange multiplier is unique. As it is shown
in [121, Section 4], the uniqueness of the Lagrange multiplier also follows from the condition

cl (F'(2)[X] = Ne(F(2))1) =Y (2.16)

which is obviously weaker than the surjectivity of F’(z). However, since (2.16) does not imply KRZCQ or
vice versa whenever ) is infinite-dimensional, it does not necessarily imply the existence of a Lagrange
multiplier satisfying the KKT conditions. Clearly, from the inclusion

Ne(F(z)) L =To(F(2)) 0 (=Te(F(x))) € To(F(2))

condition (2.16) implies (2.14) which is equivalent to KRZCQ as long as Y is finite-dimensional, see Re-
mark 2.33. Especially, in the case Y = R™ and C = —R["™, it is easily seen that (2.16) is equivalent
to the linear independence constraint qualification, LICQ for short, which simply says that the vectors
{F!/(z) € X*|i € I(z)} are linear independent. Here Fi,...,F,,: X — R denote the component map-
pings of F and I(z) = {i € {1,...,m}| F;(Z) = 0} is the set of active constraints.

Assume that at T € M, the KKT conditions hold with the multiplier A € Y*. The so-called strict condition
of Kurcyusz, Robinson, and Zowe, SKRZC for brevity, is said to hold at (z, \) if

F'(2)[X] = Rean(F(@) =Y (2.17)

is satisfied where C(z,)) := {y € C[ (\,y — F(z));, = 0} is valid. Since this condition does already
depend on a fixed Lagrange multiplier and, thus, on the objective 1, we do not call it a constraint qualifi-
cation for (2.9). However, it obviously implies KRZCQ and the uniqueness of the Lagrange multiplier, see
[17, Proposition 4.47]. On the other hand, SKRZC is not related to the constraint qualification (2.16) in
general. Note that whenever C' is a cone, then SKRZC is equivalent to

FI(2)[X] = Re(F(x) N{A}L =Y.
Especially, for common programming problems in R™ with inequality constraints, SKRZC equals SMFC,
the strict Mangasarian Fromovitz condition, see [80].
Recall that under certain convexity assumptions, the KKT conditions of (2.9) provide a sufficient criterion
for optimality.

Lemma 2.35. Let ) be a convex functional, F': X — ) be a continuously Fréchet differentiable mapping
between Banach spaces X and Y, let C C Y be a nonempty, closed, convex cone, and assume that F' is
—C-convey, i.e. it satisfies

Vz,2' € XVa €[0,1]: Flar+ (1—a)z’) —aF(z)— (1—a)F(z") € C,

see [72, Definition 2.4]. Choose # € M := F~1(C) where v is Fréchet differentiable and assume that the
KKT conditions hold at Z. Then Z is a global optimal solution of the corresponding optimization problem
(2.9).

Proof. Since the KKT conditions hold at Z and C' is a convex cone, we find a multiplier A € C° N {F(z)}*+
such that 0 = ¢/(Z) + F'(z)*[)] is satisfied. Suppose that there is some z € F~1(C) such that ¥(z) < ¥(%),
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i.e. T is not globally optimal for (2.9). Since F is —C' convex, we obtain F(z) + F'(z)[x — ] — F(z) € C,
see [72, Theorem 2.20]. Then the convexity of ¥, (A, F(x)),, <0, and (A, F(7)),, = 0 yield

= '(@) + F'(@)" [\, 2 - 2)p =¢'(2)[z — 2] + (X, F'(2) [z — )y,

<Y (@)]e— 2]+ (N F@) + F'(Z)[z — 7] — F(2))y

<P(@)z —z] <P(x) —¥(@) <0
which is a contradiction. Hence, Z is a global optimal solution of (2.9). O
In the case of a standard nonlinear program with inequality constraints, i.e. Y = R™ and C' = —Rj"*,
the mapping F is ]Rg"”'*'-convex if and only if its m component mappings Fi, ..., F,,: X — R are convex.

The fact that the KKT conditions are sufficient for optimality in standard nonlinear convex programming is
well-known, see [106, Section 28].

Later, it will be necessary to apply the primal and dual constraint qualifications introduced above to con-
straint systems in product spaces. In order to simplify these conditions, we will exploit some cancellation
rules stated in the subsequent lemma.

Lemma 2.36. For Banach spaces &, X2, V1, and )s, linear operators F € L[X1, V1], G € L[Xs, W],
U, U € L[Xy,)s], and V, V' € L[X,, )], as well as nonempty sets X1 C Xy, S; C )V, i=1,2, and T C Xy,
we consider the following conditions:

F G S1 W
U V(X {1 |
U/ V/ (XQ) - SQ - y2 5 (2] 80)
0 Iu, T Xy
F Iy, O —G S1 A%
U [[Xi-]0 0o —v S l=1>2]. (2.18b)
U -U 0 Iy, V-V | \T Vo
F G S1 B
u v X, {0} B2
Ay ( XQ) 1S =1l (2.18¢)
0 I, T Xy
F Iy, O —G S1 N2
cl U [Xl] — 0 0 -V Ss =1 1. (21 8d)
U -U 0 Iy, V-V | \T Vo

Then (2.18a) and (2.18b) are equivalent, whereas (2.18¢) and (2.18d) are equivalent as well.

Proof. We only provide a proof for the equivalence of (2.18c) and (2.18d). The validation of the lemma’s
first statement follows from a similar (but easier) argumentation.
Let (2.18¢) hold and choose y1 € Y1 and ys,y5 € Vs arbitrarily. Fix some e > 0. Since 0 belongs to Xy,
we find 2§ € X3, 25 € As, 85 € S;, i = 1,2, and ¢¢ € T such that

[F[z7] + Gz5] — 5§ —wlly, <e, (2.19aq)

[U[z7] + V[z3] — 2lly, <e, (2.19b)

[U'[25] + V'[25] — 85 — (2 + 2)lly, <&, (2.19¢)
|25 =15, <€ (2.19d)

Using the triangle inequality, we find

[Flz1] = 1 + G[t°] = mlly, < [Flz
< ||Ffe

|+ 6[z5] = 51 —wally, + 116017 —23]lly,
]+ Glzs] — 57 —wlly, + 1GlLia, v, 187 — 254,

<e (1 + HGIIWQ,%])

—m =
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and, similarly,
0l5) + ViE) = wally, < & (14 IVl )
is derived. The same trick yields
IV~ V)[a§] — 85+ (V = V)] — g4y,
< 0]+ V[ — 85 — (wh + y2) s, + llve — V5] — VIE] |,
< (1 IV g a) 2 (14 IVl )
= (24 1V lepa g + Wi ) -

Taking the limit € \, 0, we see that (2.18d) is valid.
Now, assume that (2.18d) holds and choose 7; € Y, 2, 75 € V2, and T € X, arbitrarily. Furthermore, fix
€ > 0. Then there are 5 € X1, §5 € S;, i = 1,2, and t* € T such that the estimates

[F[25] = 55 +G[F°] — (91 —c[z])][, <
[U[z5] + V[E*] = (g2 — V)|, <
10 = 0)[5] - 35 + (v = V)] — (34— o — (V fv>m>||y2 <c
are valid. Define 75 := 7 + #°. Then we have
[F[Z3] + G[25] = 81—t lly, <,
[U[27] + V[Z5] = 22lly, <e,
Hi“; — 1= i”xz =0.
Moreover, the triangle inequality yields
[0 [1] + V'[5] — 85 — Bally,
<[ - v)lE] = 8+ (V= VF] = (5 — §o — (V= V)]
< 2e.

+ [|ulz§] + V[E] - (72 — V[a])

Hy v Hy2

Thus, taking the limit € N\ 0 shows that (2.18¢) is satisfied. O

Corollary 2.37. For Banach spaces X, X2, and Y, linear operators F € L[X},)] and G € L[X3,))], as
well as nonempty sets X1 C X, S C Y, and T C X5, we consider the following conditions:

o ) (ii;) - (i) - (%) (2.200)

FXi] +G[T] -5 =, (2.20b)
() ()- <>> ()
cl(F[Xa] +G[T] - (2.20d)

Then (2.20a) and (2.20b) are equivalent, whereas (2.20c) and (2.20d) are equivalent as well.

The results in Lemma 2.31 heavily rely on the convexity of C. The following lemma which combines [90,
Corollary 1.15, Theorem 1.17, Theorem 3.8] shows some calculus rules for normals to inverse images of
not necessarily convex sets. Related results are presented in [6, Section 4] and [108, Section 6] as well.

Lemma 2.38. Let F: X — ) be a continuously Fréchet differentiable mapping between Banach spaces
X and Y, let C C Y be a nonempty, closed set, and choose 7 € M := F~(C). If F/(Z) is a surjective
operator, then R R

Nu(z) = F'(2)" [No(F(2))],  Nu(z) = F'(2) Ne(F(2))]

hold. On the other hand, if X and Y are reflexive, C' is SNC at F(Z), and the constraint qualification
(2.13) is satisfied, then the following upper approximation for the limiting normal cone is valid:

Nu (z) € F'(2)* [N (F(2)))-
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Combining Lemmas 2.29 and 2.38, we obtain necessary optimality conditions again: Supposing that
Z € X is a local optimal solution of (2.9) where 1) is Fréchet differentiable and the feasible set M is given
as presented in the above lemma, we have

N eNc(F(z): 0=1'(Z)+ F'(2)*[\]

provided F’(Z) is surjective. Often, this assumption is too restrictive. If it is weakened to (2.13) in the
setting of reflexive Banach spaces, then the weaker necessary optimality condition

INEN(F(@): 0=1'(z)+ F (@)

holds provided C'is SNC at F(z). Clearly, both of these conditions equal the KKT conditions for a convex
set C.

An important instance of (2.9) are problems with finitely many equality and inequality constraints.

Lemma 2.39. Let ¢1,...,9;: X — R be locally Lipschitz continuous functionals of a reflexive Banach
space X and let S C X be nonempty and closed. For k € {0,...,1}, we consider the set

@i(x) <0 fori=1,... k }
!

M = es
{x pile) =0 fori=k+1,...,

at some arbitrary point Z € M. Define I(z) := {i € {1,...,k} | ¢:(Z) = 0} and suppose that the constraint
qualification

0€ > 0:00i(z Z 0:0°0i(z) + Ns(z),

i€1(x) i=k+1
VieI(Z): 6; >0

= VieI(@)U{k+1,...,1}: ,=0. (2.21)

is satisfied. Then we have the following upper estimate for the limiting normal cone to M at z:

Nu(Z) € > iy Vi€ I(Z): 0; > 0, z} € Dpi(x)
i€l(z)

l

i=k+1

Vie{k+1,...,0}: 0, eR, z} € accpi(i")} + Ns(Z).

Proof. Let F: X — R! be the mapping possessing the components ¢1,...,p;. Clearly, F is locally
Lipschitz continuous. Moreover, let us introduce the convex set C := (—Ry'") x {0} C R! and the

preimage M := F~1(C). Observe that we have M = M N S by construction.
We apply the scalarization property of the limiting subdifferential, see [90, Theorem 3.28], and the sum
rule for locally Lipschitzian functionals, see [90, Theorem 3.36] in order to obtain

!
DN F(z,F (7)) <Zl9 %) (@) € Z (Vi) (@)
i=1
for any ¥ € R'. Choosing 0 € N¢(F(Z)), we easily see 0; = 0 forall i € {1,...,k}\ I(Z) and 6; > 0 for
all i € I(Z) which yields

l

DyF(z,F(2)(0) € Y 0:dpi(z Z 0°(0:ip)(T) = Y 0:00:(x) + > 0:0%;(7).

i€1(x) i=k+1 1€I1(T) i=k+1
Thus, the postulated constraint qualification implies

Nc(F(z)) Nker Dy F(z, F(z)) = {0}.
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Observing that C' is SNC at F(Z) as a subset of a finite-dimensional Banach space, M is SNC at z by
[90, Corollary 1.69, Theorem 3.84] and satisfies

Nig@) €< > O} | Vi€ I(z): 0; >0, 2} € 9p;(2)
i€I(Z)

l

i=k+1

Vie{k+1,...,0}: 0, eR, eaﬂpi(f)},

see [90, Theorem 3.8]. Thus, the postulated constraint qualification implies N7 (z) N (—Ns(z)) = {0}.
Recalling that M is SNC at z, the statement of this lemma is a direct consequence of Lemma 2.18. O

Finally, we present necessary optimality conditions for problem (2.9) whose feasible set is given as pre-
sented in Lemma 2.39.

Lemma 2.40. Let X be a reflexive Banach space, let the feasible set M of (2.9) be given as described
in Lemma 2.39, assume that z € M is a local optimal solution of (2.9), and let ¥ be locally Lipschitz
continuous at . Then there exist scalars 8y >0, 6; > 0fori € I(Z), and §; e Rfori =k +1,...,1 notall
equal to zero at the same time such that

l

0€0000(Z) + Y 0:dpi(@) + Y 0:0°(E) + Ns(@)

1€I(x) i=k+1

is satisfied. If the constraint qualification (2.21) is satisfied, then we can choose 6y = 1.

Proof. The necessity of the Fritz-John-type optimality condition was validated in [90, Theorem 5.21(iii)].
If (2.21) is satisfied, then 6y = 0 would imply that all all the other scalar multipliers are zero as well. This,
however, would be a contradiction to the fact that not all these scalars vanish at the same time. Thus, we
have 6y > 0 in this case and a scalarization yields the claim. O

2.3.5. Variational geometry of decomposable sets in Lebesgue spaces

Frequently, in optimal control, the set of feasible controls is given by the pointwise defined set
Ugg = {u € LP(Q,R™) |u(w) € U(w) f.0.0. w € Q}

where p € (1,00) holds, @ € R? is a bounded domain, and the set-valued mapping U: Q@ = R™ has
nonempty and closed images. In order to apply the necessary optimality conditions from Section 2.3.4
to optimization problems whose feasible sets comprise control constraints of this type, it is necessary
to compute different normal cones to U,y. This has been done for convex-valued mappings U in [17,
Section 6.3.3]. Here we want to substantially generalize these considerations, see [86].

Let (Q,Y) be a measurable space and let X be a Banach space. For an arbitrary set-valued mapping
¥: Q = X, we infroduce its domain, its graph, and its preimages as it was done at the end of Section
2.3.3 for set-valued mappings between Banach spaces. We call ¥ measurable if for any open set O C X,
the preimage ¥~1(0) is measurable. If ¥ is a closed-valued mapping and dom ¥ = € holds, then
it is measurable if and only if there is a sequence of measurable functions 9;: Q@ — X, k € N, such
that U(w) = cl{yy(w) |k € N} is satisfied everywhere on Q, see [100, Theorem 6.3.19]. Clearly, ¥ is
measurable if and only if c1¥: Q = X defined by (cl¥)(w) := cl¥(w) for any w € Q is measurable.
Thus, measurability of set-valued mappings is a concept which is not suited for set-valued mappings
with nonclosed images since it somehow disregards information on nonclosedness. We call ¥ graph-
measurable if gph ¥ is measurable w.r.t. the measurable space (2 x X, % @ B(X)) where B(X) denotes
the Borelean o-algebra induced by X, i.e. the smallest o-algebra which contains all open sets of X, and
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Y ® B(X) represents the smallest o-algebra containing the Cartesian product © x B(X’). Note that we
use B™ := B(R™). Any measurable mapping with closed images is graph-measurable by means of
[100, Proposition 6.2.10]. For any Banach space ), a mapping ¢: Q x X — Y is called a Carathéodory
function if for any w € Q, the mapping ¥(w, -) is continuous, whereas (-, z) is measurable for any fixed
z € X. Any Carathéodory function is  ® B(X)-measurable, see [100, Theorem 6.2.6].

In the upcoming considerations, let M = (Q, X, m) be a complete, o-finite, and nonatomic measure space
satisfying m(Q) > 0. Here nonatomic simply means that for any M € 3 with m(M) > 0, we find M € &

such that m(Af) > m(M) > 0 holds.
Next, we state two lemmas we need in order to compute the variational objects of interest related to
pointwise defined sets in Lebesgue spaces.

Lemma 2.41. Let X be a Banach space, let ¥: Q@ = X be a measurable set-valued mapping with
compact images, and let 1: Q x X — R be a Carathéodory function. Then the set M C Q defined below
is measurable:

M:={weQ|Vre V(w): Y(w,z) <0}

Proof. Let us define a set-valued mapping @: Q@ = Rby ®(w) := {¢(w,z) |z € ¥(w)} foranyw € Q. Then
M ={w e Q|®(w) C (—00,0]} =2\ &1((0,00)) holds. Since for any w € Q, ¥(w,-) is continuous while
U(w) is compact, ®(w) is closed. Thus, by means of [6, Theorem 8.2.8], ® is measurable. Consequently,
the preimage ®71((0, c0)) is measurable as well which shows the claim. O

Lemma 2.42. Let {«;.} be a sequence of measurable functions mapping from € to R. Assume that for
almost every w € Q, there is a number N(w) € N such that 15 (w) > 0 holds true for all £ > N(w). Then
the function : Q — R defined below is measurable:

Ywe Q:  YP(w) :=min{n € N|Vk > n: ¢;(w) > 0}.

Proof. Let us set 19 = —1. Then we have

Y {nd) = ¢t ((=o0,0) 0 () 97110, 00))

i€N, i>n

for any n € N, i.e. the preimage of {n} under 1 is the countable intersection of measurable sets and,
thus, measuable. Since N is countable, this yields the measurability of ¢ already. O

Let =, C R™ denote the unit simplex defined by
= = {FC ER”|Z?:1/<;i =1,k k"> 0}.

For a nonempty, closed set K C R™ and a point u € conv K, we infroduce the notation

Fu!

— 1 i
oo U e K3k €40 Zm"l_ /#ul:u}.

1=

JU %
ri(u) := min {izlr,r.l.?ﬁz,-i-l |u |2
Note that Carathéodory’s theorem yields rx(u) < oo. Moreover, the coercivity of the maximum norm
implies that the minimum is attained. By definition, 7k (u) is the smallest radius » > 0 such that the
relation u € conv (K NB}, 5(0)) holds. Thus, we obtain r (u) = [ul, for u € K. Exploiting Carathéodory’s
theorem once more, we easily see

rr(u) = min{_n}axl |ui|2 JeN, .. W eKIkes: Zizlniui = u} . (2.22)

yeeey

For the sake of completeness, let us set rx (i) = oo for all & ¢ conv K.

Now, let K: Q = R™ be a measurable set-valued mapping with closed images and let u: Q@ — R™ be
a measurable function satisfying u(w) € K(w) for almost every w € Q. Then [6, Theorem 8.2.11] yields
that the marginal function w = 7 () (u(w)) is measurable as well.

Let us recall the notion of decomposable sets which can be retraced to [107] where a similar concept was
introduced.
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Definition 2.2. A nonempty set K C LP(M,R™) is said to be decomposable if for any A € ¥ and
uy,ug € K, the relation xau; + (1 — xa)us € K is satisfied.

In [65], the authors present different properties and calculus rules for decomposable sets. A convenient
overview of the available theory on decomposable sets can be found in the recent monograph [100].
Clearly, if we find a measurable set-valued mapping K: Q = R™ with dom K = Q and closed images
such that

K:={ue LP(MM,R™)|u(w) € K(w) f.a.a. w € Q} (2.23)

is satisfied, then K is closed and decomposable. The converse holds true as well by means of [100,
Theorem 6.4.6]. The following lemma presents some essential calculus rules for decomposable sets.

Lemma 2.43. Let M = (2, X, m) be a complete, o-finite, and nonatomic measure space. Furthermore,
let K C LP(M1, R™) be a nonempty, closed, and decomposable set with its associated set-valued mapping
K: Q = R™ possessing nonempty, closed images.

(a) We have
cd“K=vconvK = {u € LP(M,R™) | u(w) € tonv K (w) f.a.a. w € Q}

where p’ € (1,00) satisfying 1/p + 1/p’ = 1 is the conjugate coefficient of p. Since the set-valued
mapping w — conv K (w) is measurable, the closed set c1* K is decomposable.
If L2(9M) is separable for all ¢ € [1, 00), then we additionally have

convK C {u € LP(M,R™) | rre(y(u(-)) € LP(MM)} C clgeq K.

(b) Assume that 0 € K holds true. Then we have
K® = {77 € Lpl(fm7 R™) ‘n(w) € K(w)° fa.a.we Q}

and since w — K(w)® is measurable, the closed set K° is decomposable.

Proof. Let us start with the proof of (a). The first calculus rule follows combining [100, Propositions 6.4.14,
6.4.19]. Here the fact that (2,3, m) is nonatomic is of essential importance. The measurability of the
mapping w — conv K (w) is shown in [6, Theorem 8.2.2].

Next, we prove the presented inclusions giving a lower and upper estimate of the set

S = {ue LP(MR™)|rgey(u(-) € LP(M)} .

First, we show K C S. Therefore, choose @ € K arbitrarily. Then we have 7 () (u(w)) = |u(w)|,. By
definition of LP(9,R™), we have |u(-)|, € LP(IM), i.e. u € S is valid. Next, let us show that S is convex.
Thus, we choose u, 4 € S and « € [0, 1] arbitrarily. Since u(w), 4(w) € conv K (w) holds for almost all
w € Q, we obtain au(w) 4+ (1 — a)a(w) € conv K (w) for almost every w € 2. Moreover, au + (1 — &) is
measurable. Thus, w = g (au(w) + (1 — a)u(w)) is well-defined and measurable. By definition, for

almost all w € Q, we find u!(w),...,u™ (W), @t (w),..., 2™ (w) € K(w) and k(w), &(w) € Z,,41 which
satisfy ' ‘ }

SR @) ule) = uw), @) = _max (i (@),

SR W E W) = aw),  rre(Ew) = max  [i@tw)],.

Thus, we have (ak(w), (1 — @)k(w)) € Egm2 and
S ekt (w) u'(w) + L - ) B(w) @' (W) = aulw) + (1 — @) d(w).
Consequently, exploiting the representation (2.22), we obtain

0 < rg)(au(w) + (1 - a) a(w))

< max {i_{??}ﬁﬂ [u'(W)], ,_max |ﬂi(w)|2} = max {7 () (u(w)); 7x () (@(w)) }
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for almost all w € Q. Hence, 7y (u(-)), 7k (a()) € LP(IMN) leads to rx .y (au(:) + (1 — a)u(-)) € LP(IM)
which yields the relation au + (1 — a)@ € S. This shows the convexity of S. Since S is a convex superset
of K, we obtain convK C S, i.e. the first inclusion we wanted to show.

For the proof of the upper estimate of S, we first assume that m is a finite measure, i.e. that m(Q) < oo
holds. Choose u € S arbitrarily. Then we have u(w) € conv K (w) for almost every w € Q. Let us define a
set-valued mapping T, : © = R™(m+1) » R™+1 gs stated below:

VWEQ Tu<UJ) = {(u17...7u7”+1’ﬁ)

Lt e K(w) n B “Y(0),
K€ Emat, Yort kit = u(w) .

By definition of r, the images of T, are nonempty. It is easy to see from [6, Theorem 8.2.9] that T, is
measurable. Applying the measurable selection theorem, see [6, Theorem 8.1.3], yields the existence of
measurable functions k: Q — Z,,.1 and u!, ..., u™t: Q — R™ with

m—+1
u (W), um T (W) € K(w) nBLEE @D 0), Z K (W) u (W) = u(w)

for almost every w € Q. Recalling 7 () (u(:)) € LP(IM), v, ..., u™ ! € LP(IM,R™) is obtained.

Next, we define the set-valued mapping E: Q = R™"! via E(w) := {e' € R™™ i =1,...,m + 1} for
any w € Q where el,...,em*! ¢ R™*+! denote the m + 1 unit vectors in R™*1, By E C LP(9,R™*1)
we denote the closed, decomposable set associated with E. Note that E is nonempty since m(Q) < oo is
assumed. Using the first formula of this lemma, we have

"E =convE = {£ € LP(M,R™) | £(w) € Epg Faia. w € O}

and, thus, s € cI”E is obtained. Noting that ¢ E is bounded (it lies within an v/m + 1 m(Q2)'/?-ball
around zero) while L (9) is separable, we have « € clg‘;q E, see [83, Corollary 2.6.20]. Thus, we find
a sequence {wi} C E with wy — x. Note that {wy} is even bounded in L>° (9, R™*!). By means of

Lemma A.3 we already have wy;, = & in L (9%, R™+1). This yields
S (we)iut = S R = w

in LP(M,R™). Moreover, {w;} C E yields Z?Sl(wk)zul € K for all £ € N. Thus, we have u € clg, K.
This shows the claim for m(Q) < co. In the case where M is an infinite measure space, we can prove this
inclusion by working on a countable partition {Q2,} C X of Q with 0 < m(Q,,) < oo for all n € N.

Finally, we show the statement (b). The inclusion 2 follows in a straightforward way from the definition of
the polar cone. For the proof of the inclusion C, we choose 7 € K° arbitrarily and assume that 77 does not
belong to the set on the right. Then we find ¢ > 0 and a set Q' € ¥ of positive, finite measure such that

Vw e Q' Fu(w) € K(w): fw) u(w)>e
is valid. We define a set-valued mapping ®: Q@ = R™ by

Ywe D Bw) {{u ER™|ue K(w), f(w) -u>e} ifw e,

{0} ifweQ\ Q.
Noting that K: Q@ = R™ is closed-valued and measurable while (w,u) — 7j(w) - u is a Carathéodory
function, ® is measurable by [6, Theorem 8.2.9] and, thus, possesses a measurable selection @, i.e. @
is a measurable function from L°(9t,R™) and satisfies i(w) € ®(w) almost everywhere on Q, see [6,
Theorem 8.1.3]. For any k € N, we define a measurable set A;, C Q as stated below:

A ={we Yk > |u(w)]y}.

Obviously, we have Aj, € Apyy forall k € Nand U,y Ar = Q. Let us set Q) = Ur_, Ax which is
measurable again for any n € N. Now, choose N € N so large such that m(€}y) > 2m(€) is valid. Let us
set i := Uxqy . By construction, i is essentially bounded on Q2 and vanishes on Q\ . Thus, we have
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@ € LP(OM,R™). Moreover, 4 € K is obtained from the definition of @ and 0 € K(w) for almost every
w € Q. This leads to

o _ _ 5

Doy = [ 76) - a)dm > em(@y) 2 5 m() >0
N

which contradicts 77 € K°. This shows the inclusion C. The measurability of w — K (w)° follows from [108,

Exercise 14.12]. This completes the proof. O

Applying the above lemma, we can characterize the weak closure of a decomposable set equivalently by
taking the closure of its weak sequential closure.

Proposition 2.44. Let M = (Q, X, m) be a complete, o-finite, and nonatomic measure space such that
L1(9M) is separable for all ¢ € [1,00). Furthermore, let K C LP(9,R™) be a nonempty, closed, and
decomposable set. Then we have

clely, K = cl” K.

seq

Proof. We invoke Lemma 2.43 in order to see

convK C cl¥” K C cl”K.

seq

Taking the closure yields
convK Ceclel? KCeclcel”K = cl”K.

seq

Since we have conv K = cl” K from Lemma 2.43, we deduce that these inclusions are in fact equalities.
This yields the claim. O

As a result, we obtain an interesting property of decomposable sets.

Corollary 2.45. Let the assumptions of Proposition 2.44 hold. Then K is weakly sequentially closed if
and only if it is weakly closed.

Proof. Clearly, if K is weakly closed, then we have K C clé‘éq KCc"K=K,ie K= clg’eq K, and K is
weakly sequentially closed as well.
On the other hand, if K is weakly sequentially closed, we obtain K = cIK = clcle, K = cl” K from the

closedness of K and Proposition 2.44. This shows that K is weakly closed. O

The property of closed, decomposable sets described in the above corollary is remarkable and does
not hold for general closed sets in infinite-dimensional Banach spaces. For some Hilbert space H with
orthonormal basis {e, |k € N} C H, one could consider the closed set H := {Vke, |k € N} which is
closed and weakly sequentially closed since the sequence {v/ke;} does not converge weakly. However,
we have 0 € cI¥ H and, thus, H cannot be weakly closed.

Let M = (Q, X, m) be a complete and o-finite measure space. It is well-known from [6, Corollary 8.5.2]
that for any nonempty, closed, decomposable set K C LP(91, R™) whose associated set-valued mapping
K: Q = R™ possesses derivable images and any u € K, we have

Te(@) = {d € LP(M,R™) | d(w) € Tic(w) (@(w)) fa.a. w € Q). (2.24)

Moreover, the mapping w — Tk () (@(w)) is measurable, see [108, Theorem 14.26], and closed-valued.
Thus, Tk (u) is decomposable. We will use the above formula and Lemma 2.43 in order to compute some
other variational objects of interest. Therefore, let us fix the following assumptions throughout the whole
section.

Assumption 2.1. Let 9t = (2,3, m) be a complete, o-finite, as well as nonatomic measure space and
let K: Q = R™ be a measurable set-valued mapping with closed and derivable images. For p € (1, 00),
we consider the corresponding decomposable set K C L (M1, R™) defined in (2.23) and fix an arbitrary
point @ € K. Furthermore, p’ € (1,00) satisfying 1/p + 1/p’ = 1 denotes the conjugate coefficient of p.
Finally, we assume that L7(90) is separable for all g € [1,00).



2. Fundamentals of mathematical programming in Banach spaces 40

Choosing © to be a domain in R¢ equipped with the Borelean o-algebra induced by © and Lebesgue’s
measure, the corresponding measure space M is o-finite and nonatomic. Moreover, L1() is separa-
ble for all ¢ € [1,00), see [1, Theorem 2.21]. Thus, the formal completion of (2,8B(Q),1), see [16,
Section 1.5], is a complete, o-finite, and nonatomic measure space such that L(£2) is separable for all
q € [1,00). Consequently, in the classical setting of optimal control, the assumptions on the underlying
measure space and the Lebesgue spaces of interest are naturally valid.

As a direct consequence of Lemma 2.43 and the formula for the tangent cone in (2.24), we obtain

Kk (u,7) = {d € LP(M,R™) | d(w) € K (o) (i(w), §(w)) fa.a. w € Q}

for any 77 € Tk(@)°, where the latter set possesses a pointwise characterization as well, see Lemma 2.43.
Let us check how the weak tangent cone to a decomposable set behaves.

Proposition 2.46. We have
Tx(u) C T (u) C conv Tk (u).

Proof. The first inclusion follows naturally from the definitions of tangent cone and weak tangent cone.
For the proof of the second inclusion, choose d € T (@) arbitrarily and assume on the contrary that
d ¢ conv Tx(u) is satisfied. Applying Lemma 2.11, we find 1 € Tk(u)® which satisfies (1), d) 1, (on gy > 0.
From the definition of the dual pairing there must exist a set E; € X with positive measure and a scalar
a > 0 such that n(w) - d(w) > « holds true for almost all w € E;. On the other hand, there are sequences
{dp} C LP(OM,R™) and {tx} C R satisfying d, — d and t; \, 0 such that uy := @ + txdy € K holds for all
k € N. Thus, we have u;, — @ in LP (9, R™) and, by choosing a subsequence which we denote by {uy}
again, we find Ey € ¥ satisfying Ey C By, m(Es) > %m(El), and up — @ in L= (M| g,, R™), see Lemma
A.2. Let us define M > 0 and e > 0 by

e OmiEY
=20

M 5= |1l o o oy 50 { It ooy | € N

Note that M is well-defined since {d} is bounded. By means of Lemma 2.41, for any v > 0, the set
E,:=FEnN {w e ’ Yue K(w)N B;’Q(ﬂ(w)): nw) - (u—a(w)) < eln(w)|a|u — ﬂ(w)\g}

is measurable. Since n(w) € T (w)(u(w))® holds almost everywhere on 2, see Lemma 2.43, we find a
sufficiently small 4 such that m(E5) > sm(E)) is satisfied. From [Juy, — 12||L(X,(9:n|E2 rmy — 0, for sufficiently

large k € N, we have ui(w) € K(w) N ]E%Z%z(u(w)) almost everywhere on E5. On the other hand, the

mappings w — |[n(w)]2 and w — |uk(w) — @(w)|s come from L¥' (M) and LP(9M), respectively. Thus, we
can exploit d;, — d and Hélder's inequality to obtain

2a 2 1
—m(E5) = 7/ adm < / N(w) - di(w)dm = —/ N(w) - (uk(w) — w(w))dm
3 3 E; E5 tk E5
5 _ € _
<o | In)lzlur(w) = a(w)lzdm < o nll Lo o gy ek = Gll Lo o 2
k JE, k
! o
= ||77||Lp’(sm,1Rm) HdkHLp(zm,Rm) <eM = Zm(El) < §m(Eﬁ)
for sufficiently large k. This, however, is a contradiction. O

Since the Lebesgue space L? (9, R™) is reflexive, we immediately obtain the following formula for the
Fréchet normal cone from Lemma 2.43 and the above result for the weak tangent cone.

Corollary 2.47. We have
Nig(a) = {n € L7 (M, R™) | n(w) € N ((w)) fa.a. w e Q} .

Especially, Nk (i) is a nonempty, closed, decomposable set.
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Proof. Using Proposition 2.46 as well as A° = (conv A)° for arbitrary sets in Banach spaces, we obtain
Tie()° = (conv T (@) C T (a)° € Ti(a)°.
Consequently, Lemma 2.43 and the reflexivity of L? (91, R™) yield

Nic(@) = T (@)° = Tw(a)° = {n e 1P (9, R™) ‘n(w) € Tic(w (@(w))° fa.0. w € Q}

- {n e LV (M, R™) ‘n(w) € N o) (@) fa.a. w e Q} .

Since we have Nk (i) = T ()° from above while Tx (i) is nonempty, closed, and decomposable, the
same holds true for Nk (@) by means of Lemma 2.43. This completes the proof. O

Trying to compute the limiting normal cone by definition using the above formula for the Fréchet normal
cone, it would be necessary to apply a so-called measurable selection theorem, see [6, Theorem 8.1.3]
or [100, Theorem 6.3.17], to the set-valued mapping w — gph N (). However, since the images of this
mapping are not closed in general, these results cannot be exploited. On the other hand, we can use the
graph-measurability of w — gph Nk (. provided in the upcoming lemma.

Lemma 2.48. The mapping w — gphJ\A/'K(w) is graph-measurable, i.e. the set
gphgph./\A/’K(l) = {(w,m V) EQXR"XxR" |ue K(w), ve ﬁK(w)(u)}

is measurable w.r.t. the o-algebra ¥ @ 8™ @ B™.

Proof. First, we show that for an arbitrary closed set C C R™, the set gph/\Afc can be represented as a
countable infersection of countably many unions of sets. Thus, observe that from the definition of the
Fréchet normal cone

gph N = {(u, v) e R™ x R™ ‘ ueC,ve /\Afc(u)}
={(u,v) e C xR™" |V} CC: ¢ »u = v-(ctx —u) < o(|cky —ul2)}
={(u,v) eC xR™|Ve € Q"Iy € QtVc e U, 2(w)NC: v-(c—u) < ele —ulo}
= U {(wv)eCxR"|Vee U], ,(w)NC: v-(c—u) <elc—uly}
c€Qt yeQt
is satisfied. Therein, Q* denotes the set of all positive rational numbers. Let {c;} C C be a sequence
which is dense in C. Then {c;} N T}, ,(u) is dense in C N B, ,(u). Thus, we obtain
{(u,v) e C xR™|Vce U)o NC: v (c—u) <ele—ulp}
-N ([(C\Uzw(ck)) x R™] U {(1,v) € C x R™|v- (¢ —u) < &g — u|2}>
keN
= N (€ xR™) N [[®R™\ T, 5(cr)) x R™] U{(w,v) € R™ X R™ | v+ (e = w) < elex — ula}] ).

keN

Now, let es turn our attention to gphgphﬂ\/}((‘). Since K is closed-valued and measurable, we find a
sequence of measurable functions ¢ : & — R™, k € N, such that {¢;(w) | k € N} is dense in K (w) for all
w € Q. Let us infroduce
S1:=gph K x R™,
Sa(7, k) :i={(w,u,v) € QX R™ xR™||u— ¢r(w)|2 > v},
S3(e, k) = {(w,u,v) € QX R™ X R™ | v (¢Y(w) —u) < e|tg(w) —ula}.

Then from the above considerations we obtain

epheph Ny = () U ) (810 [S200.0) U Ss (. 8)]). (2.25)

e€Qt ~veQt keN
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Since K is a measurable set-valued mapping with closed images, it is graph-measurable and, hence, S;
is a measurable set. For arbitrary v, € Q" and k € N, define functions ¢, j, 9. 1 : @ x R™ x R™ — R by

Yw e QVu,v € R™: ¢y p(w,u,v) :=7 — |u— ¢r(w)]e,
Ve (W, u,v) := v+ (Y(w) —u) — etp(w) — ula.
Then ¢, i (-,u,v) and 9. x(-,u,v) are measurable, whereas ¢, ;(w,-,-) and 9. i (w,-,-) are continuous.
Thus, ¢4 and 9. ;, are Carathéodory functions and, hence, measurable w.r.t. ¥ @ B™ @ B™. Conse-
quently, the sets
Sa(y, k) = (P;}g((_oov 0)), Ss(e, k)= 19;119((_0070})

are measurable w.r.t. ¥ ® B™ @ B™. Now, the claim follows from the representation (2.25). O

Using Lemma 2.48 and the obvious fact gph N = cl gph Nk, we obtain an explicit representation of the
strong limiting normal cone to decomposable sets.

Proposition 2.49. We have
N (a) = {n € L7 (M, R™) | n(w) € N (i(w)) fa.a. w e Q} .

Especially, NVi (@) is a nonempty, closed, decomposable set.

Proof. Exploiting the graph-measurability of w +— gphﬁK(w) which was obtained in Lemma 2.48, it is
possible to invoke [100, Proposition 6.4.20] in order to see

gph NV = cl gph N
— {(u,n) € LP(M,R™) x L¥ (M, R™) ‘ (u(w), n(w)) € gph N () fo.a. w € Q}

= {(u,n) € LP(M,R™) x LP (9, R™) ‘ (u(w),n(w)) € clgph]\AfK(w) fa.a.we Q}
- {(u,n) € LP(9,R™) x L (9, R™) ‘ (u(w), n(w)) € gph Nic(w) f.o.0. w € Q}

Therein, the second equality follows from Corollary 2.47, whereas the last one is a simple consequence
of the fact that in finite-dimensional spaces, the strong limiting normal cone coincides with the limiting
normal cone. Now, the pointwise representation of the strong limiting normal cone follows from applying
the definition of the graph of a set-valued mapping. Since the mapping w — N () (4(w)) is measurable,
see [108, Theorem 14.26], and closed-valued, see Lemma 2.16, N (@) is closed and decomposable. [

The above proposition is useful to prove the upcoming result. It presents upper and lower estimates for
the limiting normal cone to a decomposable set which satisfies Assumption 2.1.

Proposition 2.50. We have
cle . Ni(a) C Nk () C conv Mg (a@).

seq

Proof. Let us show the first inclusion. Therefore, we choose 7 € clg, Ni(u) arbitrarily. Thus, there is a

sequence {n,} C N (a) which satisfies 7, — 7. By definition of the strong limiting normal cone and the
reflexivity of ) (9, R™), for every k € N, we find sequences {ux,;} C K and {nx;} C )i (O, R™) with
upy — wand n,; — ng asl — oo, and g, € J\A/K(uk,l) for all I € N. Consequently, for any k € N, we find
I, € N which satisfies

||uk,lk - ﬂHLp({)jL]RM) S %7 ||{’7k,lk - nk”Lp/(m’I’Rm) S %

For arbitrary v € LP (9, R™), we have

<77k,l1« - 777@>Lp(9n’Rm) < ‘<77k,lk - nk7v>Lp(9ﬁ’Rm) + ’<77k - n7v>Lp(m,R7n)

< Wt = el 5t oy 100 ey + |8 = 70) o e e
k—
< % ”UHLP(EDTARW) + ‘<771€ - naU>Lp(gm’Rm) —OO> 0,
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i.e. mry, — 1 as k — oo, From uy,, — @ and g, € Nic(ug,) for all k € N, n € N (a) is obtained.

For the proof of the second inclusion, we assume on the contrary that Nk () ¢ conv N (a) is satisfied.
Then we find 7 € Nk () and, by Lemma 2.11, d € Ni(1)° such that (1, d) ., on gy > 0 is satisfied. Thus,
there are a set £, € X of positive measure and a scalar o > 0 which satisfy n(w) - d(w) > « for almost
every w € E;. On the other hand, there are sequences {u;} C K and {n;} C L? (9, R™) satisfying
N € J\A/K(uk.) forall k € Nand uy — @ as well as 7, — 1. Invoking Lemma A.2, there are a subsequence
of {ux}, which we denote by {ux} again, and Ey € 3 with m(E;) > %m(El) and By C E; such that
u, — @ holds true in L= (M| g,, R™). We introduce M > 0 and € > 0 as stated below:

.. am(E)
=T

M = ||d|\Lp(5m,Rm) SUP{HWHLp’(mz,RM) ke N} ’

For almost every fixed w € Es, we obtain d(w) € Nk (,)(u(w))® from Lemma 2.43 as well as Proposition

2.49 and ni(w) € ./\A/K(w)(uk(w)) for any k € N from Corollary 2.47. Next, we show that for almost every
w € FEy, there is a number N(w) € N such that

VEeN: k> N(w) = m(w)-dw) < elm(w)l2ldw)l

is satisfied. If this is not the case, we have d(w) # 0 and, hence, there needs to be a subsequence {n, (w)}
of {nx(w)} with
VIEN: 1 (W) - d(w) > el (w)[2]d(w)l2-

Since 7, (w) cannot vanish and uy, (w) — @(w) holds true almost everywhere on E2, we obtain that the
bounded sequence {7, (w)/|nk, (w)]2} converges w.l.o.g. to v € Nk () (u(w)). We deduce

0> v dw) = lim &)

oo |nkz (LU)|2 : d(w) > €|d(w)|2

which contradicts d(w) # 0. Hence, a number N(w) with the desired properties exists for almost every
w € Es. Thus, the function P: Q — Ny given by

min{n € N|Vk € N: k > n = ni(w) - d(w) < g|lng(w)]2]d(w)]2} fw € Fa,

Y Q: P =
e @) {o e\ By

is well-defined and Ey := {w € E> | N > P(w)} is measurable for any N € N by Lemma 2.42. For some
N € N sufficiently large, m(Ey) > 2m(E)) holds. Thus, for sufficiently large k € N, we obtain

Sy <3 [ adm s /| RIORETES /| )l o

!
<e ||dHLp(§m,Rm) an”Lp’(mz,Rm) <eM = Zm(El) <

which is a contradiction. This completes the proof. O

Now, we are able to state the main result of this section.

Proposition 2.51. We have
conv N (i) C {n e L (M, R™) \WK(.)m(-))(n(-)) e Lp’(sm)} C N(@) € NE(a).
Moreover, we obtain
el N (@) = N&(a@) = {n e L (M, R™) ‘n(w) € Nz (a(w)) faa. w e Q} :

Especially, NV (@) is a nonempty, closed, decomposable set.
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Proof. The first assertion follows from Lemma 2.43 and Propositions 2.49 as well as 2.50.
We use Proposition 2.50 once more to find

conv Vg () C Nk (a) C conv Vg (a).

This yields cl Nk (2) = conv NV (a) = conv Nk (a) = Ng(u). Applying Lemma 2.43 and Proposition 2.49
again, the pointwise characterization of the Clarke normal cone follows.

Since N (@) is nonempty, closed, and decomposable, the same holds true for conv Vi (@) = N (a), see
Lemma 2.43. This completes the proof. O

Recalling the convexity of Clarke’s tangent cone and exploiting Lemma 2.43, we obtain the following
corollary from Proposition 2.51.

Corollary 2.52. We have
TE(a) = {d € LP(M,R™) | d(w) € T, (aw)) fa.a. we Q} .

Especially, 7;() is a nonempty, closed, decomposable set.

Proposition 2.51 shows that the limiting normal cone to any closed, decomposable set in a Lebesgue
space contains the convex hull of the strong limiting normal cone and is dense in the corresponding
Clarke normal cone. In particular, if it is closed, it equals Clarke’s normal cone. Note that the nona-
tomicity of the underlying measure space 91 is essential for this result. The above proposition is related
to Lyapunov’s convexity theorem, see [6, Theorem 8.7.3], which says that the set { [ u(w)dm|S € X}
is convex and compact for any u € LY(91,R™). This theorem implies the convexity of certain integral
functions whenever the measure space of interest is nonatomic, see [6, Theorem 8.6.4] as well as [94,
Theorem 2.8, Proposition 2.10] and the references therein. Actually, it was already shown in [95] that the
image of a decomposable set under componentwise integration is convex which can be interpreted as an
extension of Lyapunov’s convexity theorem.

Note that whenever the set conv Vi (a) is closed, then we already have Nk (@) = Ng(u) from Propositions
2.50 and 2.51. On the other hand, we easily see from the definition of the function r and Proposition
2.51 that

{n e LY (M, R™)

P @) (1) € 2 (m)}

c {ner’mmrm)

n(w) € conv Ny (a(w)) fa.a. w e Q}
c {ne 1’ o R™)|n(w) € v N (@(w)) fa.a. w € O} = NE(@)

holds true. Thus, Proposition 2.51 does not provide a precise characterization of the limiting normal
cone whenever conv N () (4(w)) is not closed almost everywhere on Q since in the latter case, the lower
bounds on Nk (i) are strict subsets of Ng(u).

Proposition 2.51 suggests that Mordukhovich's (weak) limiting constructions are not appropriate for the
discussion of optimal control problems with nonconvex control constraints. In this situation, the conside-
ration of strong limiting normals seems to be reasonable by means of Proposition 2.49. However, strong
limiting normals do not enjoy a good calculus in infinite-dimensional spaces.

The following examples are included to visualize the above results. While the first example presents a
situation where the limiting normal cone to a decompoable set is computable from Proposition 2.51, the
second one shows that this does not need to be the case in general.

Example 2.53. Let us consider a bounded domain  C R¢, the nonempty, closed, decomposable set
K = {’U, S L2(Q,R2) |U1(CU)U2((_U) = 0 f.O.G. w E Q} ,

and its element 0. Introducing
K = {u€R2’u1u2 :O},

we obtain the equivalent representation

K= {ue L*(Q R |u(w) € K fa.a. weQ}.
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Clearly, the closed set K is the union of two closed, convex sets and, consequently, derivable by means of
Lemma 2.15. We apply Corollary 2.47 as well as Proposition 2.49 to obtain

Nx(0) = {0}, NE(0) =K.
Obviously, we have conv N (0) = convK = L?(Q,R?). Thus
N (0) = Ng(0) = L*(, R?)

follows from Proposition 2.51. [ |
Example 2.54. We define the nonempty, closed set K C R? by

ulzy/ungug}U{ueRﬂulug—O}.

Note that K is the union of two convex sets and, thus, derivable, see Lemma 2.15. Let us consider the
associated decomposable set

K:—{uGR?’

K := {ue L*(Q,R? |u(w) € K fa.a. weQ}
where Q C R? is a bounded domain. It is easy to see the relations

N (0) = cone{(—1,0,1)},

Nk (0) = {v ER?|—vy =4/v3 +v§} Ulin{(-1,0,1)},

conv Nk (0) = {v eR3 ‘ vy + vy < 0} Ulin{(-1,0,1)},
NF(0) = conv Nk (0) = {v e R? }vl +v3 < 0} )

Since conv Nk (0) is not closed, the lower bounds for the limiting normal cone Nk (0) provided in Propo-
sition 2.51 are strict subsets of

NE0) = {n € L*(Q,R?) | m1 (w) + n3(w) < 0 fo.a. we Q}

and thus, Proposition 2.51 cannot be used to obtain a precise formula for Nk (0). ]

As a direct consequence of Proposition 2.51 we obtain the following well-known result for sets in Lebesgue
spaces defined by box constraints. Note that we only present the scalar situation m = 1 here but a similar
result holds for vector functions as well.

Corollary 2.55. Let a,b € LP(9M) be given such that a(w) < b(w) holds true for almost every w € 2 and
consider the set
K:={ue LP(M)|a(w) < u(w) < b(w) f.a.a. w e N}.

Fix some @ € K. Then we have
Ne(w) <0 ifa(w

_\ ' )
Nk (z) = {na € L” (M) Na(w) =0 ifa(w) <

fo.o.we Q}

+ {nb e L (M)

fao. we Q} .

Proof. Clearly, we obtain
/ nw) <0 if alw) = a(w)
N(@)=<nel? (M) | nw)=0 ifalw)<iu(w) < blw)faa we
nw) >0 if u(w) = b(w)

from Proposition 2.51 since for convex sets, the limiting normal cone and the Clarke normal cone always
coincide. Thus, for any n € Nk (u), we can define 7, := min; onF {n;0} and n := MAX 1, (o) {n; 0} to

IN

Il
S <

see that the decomposition 1 = 1, + n; with 54,7, € LP (9M) is possible. Thus, the limiting normal cone
can be characterized as described above. O
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We want to close this section with a short look at decomposable sets which are defined by pointwise
inverse images. Therefore, let G: Q x R™ — R"™ be a Carathéodory function continuously differentiable
w.r.t. its second component such that the corresponding partial derivative V,G: Q x R™ — R"*™ s
a Carathéodory function again. Moreover, let T: Q@ = R" be a measurable set-valued mapping with
nonempty, closed, convex images and define

YVwe Q: Kw):={ueR"|G(w,u) € T(w)}.

By [6, Theorem 8.2.9], the set-valued mapping K : Q@ = R™ is measurable and closed-valued. Assuming
that for almost every w € Q, the constraint qualification

Vue K(w): V,G(w,u) 1=0,1€ Ny (Gw,u) = 1=0

is satisfied, the images of K are derivable as well, see Lemma 2.31 and Remark 2.33. Thus, the cor-
responding decomposable set K satisfies Assumption 2.1. For the derivation of necessary optimality
conditions for optimal control problems with control constraints of the form u € K, we need an explicit
formula for the limiting normal cone to the set K.

Proposition 2.56. Fix an arbitrary point @ € K. In the setting described above, we have

N(w) = VuG(w, u(w)) " A(w)

In € LO(M, R™): Aw) € Ny () (G(w, t(w)))

Nk (a) = {n e L (M, R™)

"fa.0.we Q} )

Proof. We apply Lemma 2.31, Remark 2.33, as well as Proposition 2.49 to obtain

Ni(@) D Ng(a) = {n e L” (M, R™) ’n(w) € N (a(w)) f.a.a. w e Q}

= P’ m n. 77((0) = VU,G(W,@(UJ))T/\(UJ) (2.26)
_ {nGL (O, R™) | IA(w) € R™: ) e A )

fa.o. we Q} .

That means the inclusion D is already verified.
For some n € LP (M, R™), we introduce the set-valued mapping ©,,: & = R” by

Vw €N Oy(w) = {1 € Ny (G(w,u(w))) | VuG(w, i(w)) "1 —n(w)=0}.

Since G is a Carathéodory function, w — G(w, @(w)) is measurable. Now, [108, Theorem 14.26] yields
that the set-valued mapping w — Ny () (G(w, @(w))) is measurable as well. On the other hand, define a
function g,: Q@ x R" — R™ by

VwEQVLER™:  gy(w,1) == V,G(w,a(w)) 1 - n(w).

This mapping is a Carathéodory function as well since w — V,,G(w, @(w)) and n are measurable. Invoking
[6, Theorem 8.2.9], ©,, is a measurable set-valued mapping since it possesses the representation

Oy (w) = {1 € Ny () (G(w, a(w))) | 4y (w, 1) = 0}

for almost all w € Q. Moreover, the images of ©,, are obviously closed almost everywhere on €.
Choose 77 € Nk (u) arbitrarily. Recalling Proposition 2.51 as well as Lemma 2.31 and Remark 2.33, we
easily see

Nie(@) € NE(a) = {n e LV (M, R™) ] 0,(w) # @ fa.a. we Q} .

Thus, the measurable set-valued mapping ©; possesses nonempty and closed images almost everywhere
on Q. Thus, by means of [6, Theorem 8.1.3], we find a measurable selection of O, i.e. a function
A € LO(MM, R™) which satisfies A\(w) € O;(w) for almost every w € . Recalling the definition of O, this
shows the inclusion C and completes the proof. O

In order to obtain a higher degree of regularity for the appearing multiplier A, i.e. A\ € L (9, R")
where ¢ is the conjugate coefficient of some ¢ € [1,p), one has to postulate certain growth conditions
on the so-called Nemytskii operator induced by G, i.e. the mapping u — G(-,u(-)), see [52, Theorem 7,
Remark 4].
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3. Mathematical problems with
complementarity constraints

In this chapter, we take a closer look at mathematical problems with complementarity constraints which
appear frequently in many different applications. The model program of our interest possesses the fol-
lowing form:

)
)

Glz) € K (MPCC)
)

Forthwith, the feasible set of (MPCC) is denoted by M. Below, we list our standing assumptions on this
problem.

Assumption 3.1. Let ¢: X — R be Fréchet differentiable and let g: X — Y, G: X — Z, as well as
H: X — Z* be continuously Fréchet differentiable. Here X’ and Y are arbitrary Banach spaces while Z is
a reflexive Banach space. Finally, C C Y is assumed to be a nonempty, closed, and convex set, whereas
K C Z is a nonempty, closed, convex cone.

Note that the reflexivity of Z guarantees that the complementarity constraint in (MPCC) is symmetric w.r.t.
G and H. The standard finite-dimensional situation, i.e. where X = R", Y = RY, and Z = R™ hold and
the complementarity in (MPCC) is induced by the cone K = R{"™, is well-studied. It is well-known that
common constraint qualifications of reasonable strength like MFCQ fail to hold at any feasible point of
the problem, and, consequently, the Fritz-John conditions hold at all feasible points. Thus, in the past,
huge effort was put in constructing suitable regularity and stationarity conditions, see e.g. [42, 43, 44,
45,80, 111, 129, 132], as well as numerical methods, see e.g. [46, 70] and the contained references,
in order to handle these standard complementarity problems.

Recently, complementarity constraints induced by the cone of positive semidefinite matrices
St ={AcS,|VzeR™: 2" Az >0},
see [37, 48, 124, 127], and the second-order cone
Koo i={(t,2) e R X R™|t > |z|2},

see [79, 119, 135], were studied. In [124], the author investigates complementarity constraints induced
by the more general H-second-order cone

Ky ={(t,z) e Rx H|t > ||z}

where H is an arbitrary Hilbert space. Whenever Z is infinite-dimensional, only a manageable amount of
publications is at hand which mainly focus on optimal control of variational inequalities as they appear for
instance when the obstacle problem is considered, see [64, 66, 67, 68, 73, 88, 96, 125]. The situation
where the complementarity constraint in governed by the cone of nonnegative functions in a Lebesgue
space was recently considered in [86]. On the other hand, in [56], the authors derive necessary optimality
conditions for optimal control problems with mixed control state complementarity constraints using point-
wise error bound conditions and a measurabe selection theorem. Thus, their approach naturally leads
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to weak results since the Lagrange multipliers corresponding to the complementarity constraint are, in
general, only measurable functions and no LP-regularity can be shown. To the best of our knowledge,
[121] is the first contribution which introduces a general concept of strong stationarity which fits (MPCC).
In [124], the author considers the situation where the cone K is nonpolyhedric in more detail. A gene-
ralized concept of weak stationarity is presented in the recent paper [87]. Finally, a first step towards a
generalization of Mordukhovich’s stationarity concept for (MPCC) has been done in [47].

3.1. Stationarity concepts for MPCCs

For the purpose of completeness, let us verify that KRZCQ is violated at any feasible point of (MPCC).
Lemma 3.1. The constraint qualification KRZCQ fails to hold at any feasible point of (MPCC).

Proof. Let T € X be a feasible point of (MPCC). We show that there is a nonvanishing singular Lagrange
multiplier of (MPCC) at Z. By means of Remark 2.33 this yields the violation of KRZCQ.

A nonvanishing quadruple (A, u,v, k) € Neo(g9(Z)) x K° x K x R is a singular Lagrange multiplier of
(MPCC) at z if and only if it satisfies

0=g'(@)" N+ G"(@)*[u] + H'(2)*[v] + £G'(2)"[H (2)] + H'(2)*[G(2)], p € {G()}*, v € {H(z)}.
Rearranging leads to
0=g'(@)" [\ + G'(@)*[p+ kH(2)]| + H'(2)"[v + £G(2)], p € {G(2)}*, v € {H(z)},

and, thus, respecting the feasibility of Z, (0, H(Z), G(Z),—1) is a nonvanishing singular Lagrange multi-
plier of (MPCC) at z. O

Since KRZCQ is violated at any feasible point of (MPCC), we cannot expect the KKT conditions to be
satisfied at the local optimal solutions of this problem. That is why we aim for weaker necessary optimality
conditions and corresponding constraint qualifications. To this end, we first follow [87] to derive the
notions of weak and strong stationarity via appropriate surrogate problems.

For fixed & € M, we define the relaxed nonlinear problem by

¥(z) — min
9(x) €
G(z) € Kﬂ{H (z)}+ (RNLP)
H(z) € K°n{G(z)}*.

Obviously, 7 is a feasible point of (RNLP) but there may exist points in M which are not feasible for
this surrogate problem. On the other hand, a feasible point of (RNLP) does not necessarily satisfy the
complementarity condition in (MPCC). In order to overcome these difficulties, we introduce the tightened
nonlinear problem

P(z)
g(z) €
G(z) € KO{H( )N (K° n{G(z)})*
H(z) € K°n {G(az:)}L N(KN {H(a’:)}L)L.

— min

(TNLP)

Again, 7 is a feasible point of (TNLP) but the feasible set of (TNLP) is a subset of M. Thus, if Z is a local
optimal solution of (MPCC), it is a local optimal solution of (TNLP) as well and the latter problem may
satisfy standard constraint qualifications like KRZCQ, i.e. Z may satisfy the KKT conditions of (TNLP) under
suitable assumptions. In order to find an explicit representation of the KKT conditions of (TNLP), we need
to study the geometry of the cones P(z) and Q(Z) defined below:

P(z):= KN {H(@)}* n(E°n{G@)}1)" Q@) =K n{G@)} n(Kn{H@)})"
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Lemma 3.2. For any & € M, we have

Np@ (G(E) = d(K° — K° n{G(z)}*) n{G(z)}*, (3.1q)
Noa) (H ) (K — Kn{Hz)}")n{H(@)}", (3.1b)
NKQ{H(w} (G(7)) = Kk (H(z), G(T)), (3.7¢)
Nioniaan+ (H(7)) = Kk (G(z), H(Z)) (3.1d)

Proof. Let us show (3.1q) first. The relation (3.1b) follows from similar arguments. Observe that from
T € M we obtain H(z) € K° N {G(z)}+. Exploiting the monotonicity of the operator lin, we derive
lin{H(z)} C lin(K° N {G(z)}*). This leads to

lin{ H(z)} + lin(K° N {G(z)}+) = lin(K° N {G(z)}Y).

Since K° is a convex cone, we have K° + K° N {G(z)}*+ = K°. Putting these observations together with
the Lemmas 2.1 and 2.12, we obtain

P(z)° = cl(K° + lin{H(Z)} + cllin(K° N {G(2)})) = cl(K° + lin{H(z)} + lin(K° N {G(z)}))
= cl(K° +lin(K° N {G(z)}")) = l(K° + K° N {G(z)} — K°N{G(z)}")
=cl(K° — K° N {G(2)}").

The fact that P(Z) is a closed, convex cone implies Np ;) (G(Z)) = P(2)° N {G(Z)}* which yields the
claim.
Next, we show (3.1c). Exploiting that K N {H(Z)}* is a closed, convex cone, we easily see

Ninga@y (G(@) = (KN {H(2)}7)° n{G(z)}*
= cl(K° + lin{H(z)}) N {G@)}* = Tie (H(@)) N {G(@)1 = Kio (H(7), G(T)).

Property (3.1d) follows analogously. O

Using Lemma 3.2, it is possible to intfroduce the weak and strong stationarity conditions of (MPCC) as the
KKT conditions of (TNLP) and (RNLP), respectively.

Definition 3.1. Let Z € M be arbitrarily chosen.

1. The point Z is called weakly stationary (W-stationary for short) for (MPCC) provided there exist
multipliers A € Y*, u € Z*, and v € Z which solve the system

0=1"(2) +g'(2)* [N + G'(z)"[u] + H'(z)*[V], (3.2a)
A € Ne(g(2)), (3.2b)
pec(K° — K°n{G(x)}") n{G@)}", (3.2¢)
ved(K—Kn{H@)}")n{H(@)}. (3.2d)

2. The point Z is called strongly stationary (S-stationary for short) for (MPCC) provided there exist
multipliers A € Y*, u € Z*, and v € Z which satisfy (3.2a), (3.2b), and the conditions

€ Ko (H(T), G(Z)),

v € Kx(G(z), H()). 3.3)

Corollary 3.3. If € M is an S-stationary point of (MPCC), it is W-stationary as well.

Proof. For the proof, it is sufficient to show the inclusions

T (H(2)) C cl(K° — K°N{G(2)}*), T (G(z)) C (K — K n{H(z)}*).
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In order to verify the first one, observe that H(z) € K° N {G(z)}* follows due to the feasibility of z for
(MPCC). Thus, K° +1in{H(z)} € K° — K° N {G(z)}* is obtained. The fact that K° is a closed, convex
cone leads to

Tie (H(Z)) = cl(K° + lin{H(2)}) C l(K° — K°N{G(z)}").

Similarly, we show the second inclusion. O

In the following proposition, we state constraint qualifications which imply that local optimal solutions of
(MPCC) satisfy the W- and S-stationarity conditions from Definition 3.1.

Proposition 3.4. Let z € M be a local optimal solution of (MPCC).

1. Assume that the constraint qualification

g'(z) Re(g(z)) y
G'(@)| [X] - | Rx(G(@)Nn(-Kk(G@),H(2) |=|Z2 (3.4)
H'(z) Rio(H(Z)) N (—Kkeo (H(Z),G(T))) Z*

is satisfied. Then Z is W-stationary.

2. Assume that the constraint qualifications (3.4) and

q'(7) NC(g(f))J_ Yy
d| [G'@) | [X] = | Trn=7e@@)) (G@)°+ z (3.5)
H'(z) TKon( TKO H(z)))(H(ff)) z*

are satisfied. Then Z is S-stationary.

3. Assume that the constraint qualification

is surjective (3.6)

is satisfied. Then z is S-stationary.

Proof. For the proof of the first assertion, it is sufficient to show that (3.4) equals KRZCQ for (TNLP).
Hence, we only need to verify

Rp@)(G(2)) = Rk (G(2)) N (-Kk (G(2), H(z))),
Ra@) (H(7)) = Rice (H(z)) N (=Ko (H(z),G(2))).-

Since G() is an element of the linear space {H(z)}* N (K° N {G(z)}*)*, we obtain

(

Rp@ (G() = KN {H(@)} N (K°N{G@)}")" +1in{G(z)}
= (K +1in{G(2)}) N {H (@)} N (K°n{G(z)}")*
= Ri(G(@) N {H(@)}" N Tr(G(7)"*
= Ri(G(@) N {H(@)} N Tk (G(2)) N (- Tk (G(1)))
=Rk(G(@) N (-Tx(G(z ))) n{H(x)}*
=Rr(G(7)) N (-Kk(G(7), H(T)))

from Lemma 2.12. The formula for Rz (H (7)) follows similarly.

The proof of the second assertion follows from [121, Theorem 5.2, Proposition 5.1] provided we can

show that the constraint qualification (2.16) for (TNLP) equals (3.5). Hence, it is sufficient to derive the
formulae

Np@ (G@) ' = TrnTe @@ (G@)°F, Now H @) = Tron(—To () (H(Z))F.

/-\/-\



3. Mathematical problems with complementarity constraints 51

We exploit Lemmas 2.11, 2.12, and 3.2 in order to see

o

N (@@)* = (A(K° ~ K° 0 (@@} n{e@))
::(d(K°—]¥°m{G@ﬂ} ) N {G(@) ) (d_K°m{G e 4<K°)ﬂ{Gcw}L)
= a((K° = Ti(G(2)°)° +1in{G(@)}) Nel( (T (G(@)° = K°)° +1in{G(2)})
::d(Krw—vk«xf»)+hng; )mc( (K N (~Tk(G(2)))) — lin{G(z n)

)N ( Trn(—Tx (G@))) (G(T)))
)+

By similar argumentation, we obtain the formula for N ;) (H(z))*.
Finally, the third assertion follows from the second one observing that the surjectivity of the given operator
implies the constraint qualifications (3.4) and (3.5). This completes the proof. O

G

S]]

_TKﬁ( Tk (G )(G(
m (G(

= Trkn(-Tx (G

Remark 3.5. Whenever ) and Z are finite-dimensional, (3.5) implies (3.4), see Remark 2.34. Following
Remarks 2.33 and 2.34, in the situation Y = R?, Z = R™, and K = Rg”, the constraint qualifications
(3.4) and (3.5) equal MFCQ and LICQ for (TNLP) at Z, respectively. These qualification conditions are
called MPCC-MFCQ and MPCC-LICQ, see [44, Definition 2.1].

Let T € M be arbitrarily chosen. It is shown in [121, Lemma 5.1] that T satisfies the classical KKT
conditions of (MPCC) if and only if there are multipliers A € Y*, u € Z*, and v € Z which satisfy (3.2a),
(3.2b), and

1€ Rio(H(T)) N{G(2)},

(3.7)
v € Ri(G(z)) N{H()}
Thus, the KKT conditions are even stronger than the S-stationarity conditions. In the recent paper [135],
the authors illustrate this phenomenon by means of MPCCs whose complementarity condition is induced
by the second-order cone and rename the corresponding KKT conditions as K-stationarity conditions in
order to depict that they provide a possible necessary optimality condition for (MPCC) as well. However,
in this thesis, we are not going to use the term K-stationarity. Clearly, if K is a polyhedral cone, then
Ri(G(Z)) and R (H(Z)) are already closed and, thus, in this case, the KKT conditions equal the S-
stationarity conditions. Especially, this holds true for MPCCs with Z = R™ and K = R{»". However, an
example from semidefinite complementarity programming presented in [121, Section 6.2] reveals that
even in the presence of the constraint qualification (3.6), a local optimal solution of (MPCC) does not
need to satisfy the KKT conditions in general.
Let Z € M be an S-stationary point of (MPCC) such that K is polyhedric w.rt. (G(Z), H(Z)). It was shown
in [121, Theorem 5.1] that in this case, there do not exist first-order decent directions of (MPCC), i.e
we have ¢/(z)[6] > 0 for all 6 € Ty (Z) (actually, this holds even when T;,(Z) is replaced by its larger
linearization cone). Thus, the S-stationarity conditions possess a reasonable strength whenever K is
polyhedric. In the absence of polyhedricity, one can use a linearization approach and exploit the fact that
any cone is polyhedric w.r.t. the origin in order to obtain S-stationarity conditions of appropriate strength
provided Z is a Hilbert space such that the projection onto K is directionally differentiable in the sense of
Haraux, see [57]. This procedure is presented in [124] and applied to the cases where K is the positive
semidefinite cone S, and the H-second-order cone K.
For the study of common finite-dimensional MPCC:s, there exist several other stationarity concepts stronger
than W- but weaker than S-stationarity, see e.g. [129]. Here we want to generalize the stationarity concept
of Mordukhovich to (MPCC). Therefore, we introduce the normal cone mapping Nk : Z = Z* induced
by the cone K which maps any z € K to the limiting normal cone to K at z and any Z ¢ K to the empty
set. Since K is a convex cone, we obtain

gph N = {(2,2%) € K x K°| (z*,2) ; = 0}.
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Thus, (MPCC) is equivalent to

Y(x) — min
g(z) € C
(G(z),H(z)) € gphNk.

This justifies the following definition.

Definition 3.2. A feasible point Z € M of (MPCC) is called Mordukhovich stationary (M-stationary for
short) for (MPCC) provided there exist multipliers A € Y*, u € 2*, and v € Z which satisfy (3.2a), (3.2b),
and

(1) € Nighwi (G(@), H(2)). 3.8)

We obtain the following necessary optimality conditions of M-stationarity-type.

Proposition 3.6. Let T € M be a local optimal solution of (MPCC) where the constraint qualification

0=g'(@)"\ + G'(2)"[u] + H'(2)*[v],
X e Ne(g(z)), = A=0,p0=0,v=0 (3.9)
(1, 1) € Nepn i (G(2), H(Z))

is satisfied and v is continuously Fréchet differentiable, and assume that X’ and Y are reflexive. Then any
of the conditions stated below is sufficient for Z to be M-stationary for (MPCC):

1. C x gph N is SNC ot (¢(z), G(z), H(Z)),
2. Cis SNC at g(z) and Z is finite-dimensional,

3. C'is SNC at g(z) and the operator

is surjective,

4. ¢'(z) is surjective and gph N is SNC at (G(z), H(T)).

Proof. Under the first condition, the assertion follows combining Lemmas 2.29 and 2.38. Note that
the second condition implies the first one. For the proof of the assertion under the third condition, we
introduce

M, =g 1 (0), My :={z € X|(G(z),H(x)) € gph Ng}.

Obviously, we have M = M; N M,. Exploiting the given assumptions, the constraint qualification (3.9)
implies

Ny () € '(2) Welg(@)], N () = {G'(2)*[u]+ H'(2)*[V] € X" [ (1, 1) € Ngpn e (G(2), H(2))},

see Lemma 2.38. Moreover, M; is SNC at Z, see [90, Theorem 3.84]. Exploiting the constraint qualifi-
cation (3.9) once more, from Lemma 2.18 we obtain Ny (Z) C Ny, () + Nag, (Z). Thus, the assertion
follows from Lemma 2.29. The proof of the lemma’s assertion under the fourth set of conditions is
analogous. O

Without a specific setting, the definition of M-stationarity and the above necessary optimality conditions
are rarely applicable since they comprise the implicitly given limiting normal cone to the graph of the
normal cone mapping induced by K which is usually difficult to compute. A general ready-to-use formula
for this variational object does not exist. However, if K equals RB”’+, S, or Ky, such formulae are at

hand, see [45], [37], or [134], respectively. In all these cases, Z is finite-dimensional, and if Y is finite-
dimensional as well, then C x gph N is SNC everywhere and Proposition 3.6 applies for the derivation
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of necessary optimality conditions.
From the theory of standard MPCCs we expect the relations

S-stationarity = M-stationarity = W-stationarity (3.10)

between the three stationarity concepts introduced above, see [129]. In the following, we are going to
study whether these relations hold in the situation, where K is polyhedric. As remarked earlier, MPCCs
with polyhedric complementarity cone are of special importance. We need the following lemma in order
to analyze this situation. These results were already presented in [124] for the case where Z is a Hilbert
space. Here we provide a slight generalization to the situation where Z is only reflexive.

Lemma 3.7. Let (z,2*) € gph Nk be chosen such that K is polyhedric w.r.t. (z,2*). Then the following
calculus rules hold:

Teph N (2,27) = {(d,d") € Kk (2,2") x Ko (2", 2) | (d*,d) z = 0},
conv Tapn Nk (2, 2%) = K (2,2") X Kgo (2", 2).

Proof. From [78, Theorem 3.1] we obtain
Teph N (2,27) = {(d, d") € K (2,27) x Kk (2,27)° | (d*,d) z = 0},

and Kk(z,2*)° = Kgo(2*,2) holds due to the polyhedricity of K w.rt. (z,2*). For the proof of the
second formula, we first remark that the inclusion C is clear from the first part of the proof. For the
validation of the converse inclusion, choose d € Kk (z,2*) and d* € Kko(z*, z) arbitrarily. Then, obvi-
ously, (2d,0), (0,2d*) € Tgpha (2,2%) is satisfied due to the first formula. Thus, we obtain the relation
(d,d*) = £(2d,0) + 3(0,2d*) € conv Tgpn ny (2, 2*) which completes the proof. O

Below, we present another result we need for the subsequent proofs.

Lemma 3.8. Let (2, 2*) € gph N be arbitrarily chosen. Then the following inclusions hold:

K0 (=Ti(2) S KN {z"} KON (=Tie (=) € K° 0 {zHh

Proof. We only show the first inclusion since the validation of the second one can be done in a similar
way.

Choose d € K N (=T (z)). Then we find sequences {z,} C K and {t;} C R such that 2z, — z, t;, \, 0,
and 7-(z;, — 2) = —d € —K hold true. From (z*,z) ; = 0 we obtain

zZ ZEk — %
OS<Z*7—k> :<Z*)_ ) > ’
tx =z ty =z

and taking the limit & — oo yields 0 < (2*,d) ;. On the other hand, from d € K we have (z*,d), < 0.
Hence, d € {z*}* follows and the proof is completed. O

Now, we can start to consider the relations between the three introduced stationarity notions.

Lemma 3.9. Let (z,2*) € gph Nk be chosen such that K is polyhedric w.r.t. (z,2*). Then we have

nghNK(Z7Z*) =Ko (2", 2) x Kr(z,27).

Proof. First, let us show the inclusions
Taph Nic (2, 27) C Tapnprc (2, 27) € conv Tgph are (25 27). (3.11)

The first one is clear from the definition of these tangent cones. Choose (d, d*) € Ty, v, (2, 2%) arbitrarily.
Then we find sequences {(zx,2;)} C gph Nk and {t;} C R safisfying zi — 2, 2z — 2%, tx \( 0,
(2 —2) = d, and ¢-(z — z%) — d*. Since we have (2 — 2) € R (2) and i-(2}; — 2%) € Rio(2*)
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for any k € N, we deduce d € Tx(2) and d* € Tko(2*) from the closedness and convexity of these cones.
Forany w € KN {z*}+,

2y — 2" z" z" . Pk — %
W=z ) <(——w—2z,) =(——,2—2) =(2, <0
th . th - th - te /2

holds, and taking the limit & — oo yields

(@ w—2), < (2*,d), <0,

see Lemma 2.4. Using w := z, we see d € {z*}* and, hence, d € Kk (z,2*). On the other hand, testing
with w = 0 and w = 2z yields d* € {2} which leads to d* € K- (2*,2). Now, we apply Lemma 3.7 and
obtain (d,d*) € conv Tgph ar (2, 2).

Let us polarize (3.11). Then we obtain

Teph Nic (2:2)° 2 Neph v (2,27) 2 (conv Toph ne (2,2))” = Teph v (2,27)°

since Z x Z* is reflexive. Consequently,

~

Naph N (2,2%) = (convﬁthK(z,z*))o =Kr(2,2%)° X Kgo(2%,2)° = Kgo (2%, 2) x Kk (z, 2%)

follows from Lemma 3.7 and the polyhedricity of K w.r.t. (2, 2*). O

In the case where the cone K is even polyhedral, the above assertion was already provided in [60,
Proposition 3.2]. Obviously, Lemma 3.9 shows that any S-stationary point of (MPCC) is also M-stationary
provided the cone K is polyhedric w.r.t. the reference point.

Below, we study whether any M-stationary point of (MPCC) is also W-stationary in the situation where K
is a polyhedric cone such that at least one of the pairs (2, <k ) and (Z£*, <k-) is a vector lattice.

Lemma 3.10. Let (z,2*) € gph Nk be fixed. Assume that K is a polyhedric cone and let the following
two conditions hold:

(i) One of the following properties is valid:

(ia) K° is pointed, (£*, <k-) is a vector lattice, and the mapping Z* 3 z* — maxg.{z*;0} € Z*
is continuous,

(ib) K is pointed, (Z£,<k) is a vector lattice, and the mapping Z > Z — maxx{Z;0} € Z is
weakly-weakly continuous.

(i) One of the following properties is valid:

(iia) K is pointed, (Z,<k) is a vector lattice, and the mapping Z 3 Z — maxg{Z;0} € Z is
continuous,

(ib) K° is pointed, (£*, <k-) is a vector lattice, and the mapping Z* 3 2* — maxg.{z*;0} € Z*
is weakly-weakly continuous.

Then we have

N (2,2%) C [d(KO “K°n{z}h)n {z}i} X [cl(K CKn {0

Proof. Let (n*,n) € Ngphnk (2, 2*) be arbitrarily chosen. Then we find sequences {(zx,2;)} C gphNg
and {(n,nx)} € 2* x Z which satisty z;, — 2z, zf — 2%, nf = n*, ni. = n, and (9}, k) € Naph vk (25, 2)1)
for all £ € N. Exploiting Lemma 3.9, the latter condition is equivalent to 7} € Kgo (2}, z;) as well as
ni € Kk (zk, 25) for all k € N. Hence, we obtain n; € {z;}* and n;, € {z;}* for any k € N. Applying
Lemma 2.4, n* € {z}* and 1 € {z*}* follow. Thus, we only need to show

n*ec(K°—K°n{z}t), nec(K-Kn{z})
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in order to complete the proof.

Here we only prove that condition (i) implies 1 € cI(K — K N {z*}*+). Similarly, one can proceed in order
to see that condition (ii) implies n* € cl(K° — K° N {z}*).

First, let us assume that the condition (ia) holds. Here we need some appropriate limiting operators for
sequences of sets, cf. [6, 108]. Thus, for a sequence {U;} C 2 in the Banach spaces U, we set

limsup“Uy := {u € U | H{U, } C {Ux} VI € NJuy, € Uy, : ug, — u},

k—o0

likminka ={uel|Tky € NVk > ko Jug € Ug: up — u}.
—00

These sets are called the weak sequential upper and (strong) sequential lower limit of {Uy}, respectively,
see [6, Section 1.1]. First, note that we have

7 € limsup® Tk (2k)-

k—o0

For later use, we need to verify the following formula:
K°nN (—TKo (z*)) C liminf K° N (_7—[(0(2;2)) (3.12)
k—o0

Take ¢* € K° N (—Tk-(2*)). Due to [6, Definition 4.1.7, Theorem 4.2.2], we find {¢;} C Z* satisfying
& € —Tko(2f) forall k € N and & — &*. Taking the supremum w.rt. K°, we obtain the relation
maxo{&;;0} € —Tko(z}) for all k € N, see Lemma 2.23. By definition of the supremum operator,
maxgo{£;;0} € K° is satisfied for any £ € N as well. From the continuity assumption on the supremum
operator we obtain max e {£;; 0} — maxg.{{*;0}. Since £* € K° is satisfied, max o {£*;0} = £* holds.
This shows the formula in (3.12).

Using the bipolar theorem, see Lemma 2.11, [6, Theorem 1.1.8], Lemma 3.8, (3.12), and Lemma 2.12,
we derive the following chain of inclusions:

lim sup® Tk (2x) = limsup® Tx (2x)°° C conv lim sup" Tk (2x)°°

k—o0 k—o0 k—o0

= (liminf TK(zk)") = (liminf K°n {zk}l)
k—o0 k—o0

]

o

c <nklgi£f K°n (TKO(Z;;))> C (K° N (~Tie(=9)))
= cl(K — KN {z*}L)

This shows n € cI(K — K N {z*}*) under condition (ia).

Now, we assume that condition (ib) is satisfied. Recall that for all & € N, we have n, € Tk (zx). Further-
more, nx — 7 holds. For any k € N, we decompose 7, into 1 := max {n;; 0} and 1, := ming {n;0}.
Due to the assumption, the sequences {n;"} and {1, } converge weakly to maxx{n;0} and ming{n;0},
respectively. Especially, n + 1, = ni — n = maxx{n;0} + ming {n; 0} holds. Due to the definition of
supremum and infimum, we obtain 7 € K and 5, € —K for all k € N. Furthermore, for all k € N,
N € Tk (z) follows from Lemma 2.23. We invoke Lemma 3.8 in order to obtain i, € (—K) N {z;}*.
Since {n; } converges weakly, whereas {z}} converges strongly, we obtain ming{n;0} € (—K) N {z*}+
from Lemma 2.4. The relation maxg{n;0} € K follows from the convexity and closedness of K. Com-
bining the above observations, n € K — K N {z*}* C cl(K — K N {z*}") is obtained.

Summing up these results, condition (i) implies 7 € cl(K — K N {z*}*). O

Combining Lemmas 3.9 and 3.10 with the definitions of S-, M-, and W-stationarity, we obtain the follow-
ing result.

Proposition 3.11. Consider (MPCC) where the cone K is polyhedric and choose an arbitrary feasible
point Z € M. Then the implication

S-stationarity = M-stationarity

holds for z. If, additionally, the conditions (i) as well as (ii) from Lemma 3.10 are satisfied, then the
implications in (3.10) are valid for z.
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Let us discuss the above result by means of the following two examples.

Example 3.12. Let M = (2, %X, m) be a complete as well as o-finite measure space and fix p € (1,00)
as well as the corresponding conjugate coefficient p’ € (1,00). We consider the reflexive Banach space
Z = LP(M) and the closed, convex, pointed cone

LPON)G = {u e LP(M) |u(w) > 0 f.a.a. w e Q}.

As we remarked in Example 2.25, LP(9) induces a vector lattice in Z and the corresponding supremum
operator max, , oy + is continuous. On the other hand,

(Lr(m))° = {77 e L¥ (9m) ’n(w) <0foa.0.we Q}
is easily seen. Repeating the same reasoning as used to discuss LP(9){, we obtain that its polar cone
induces a vector lattice in Z* = L¥' (9) whose corresponding supremum operator is continuous. Thus,
the conditions (i) and (i) of Lemma 3.10 hold since (ia) and (iia) are valid. Note that LP(90){ is polyhedric
by [17, Theorem 3.58]. Thus, the relations in (3.10) are valid. A detailed discussion about MPCCs whose
complementarity cone equals LP(9M){ is presented in Section 3.2. [ ]

Example 3.13. Let Q C R? be a bounded domain. We take a closer look at the reflexive Banach space
H}(2) and consider the closed, convex, pointed cone

Hy(Q)§ ={ue H)(Q)|uw) >0fa.a weQ}.

This cone is polyhedric by means of [17, Corollary 6.46] and induces a vector lattice in H}(Q2). The
corresponding supremum operator is continuous, see Example 2.25, and weakly-weakly continuous, see
[125, Lemma 4.1]. Consequently, the conditions (i) and (ii) of Lemma 3.10 are valid since (ib) and (iia) are
satisfied and the relations in (3.10) hold. Explicit representations of the W- and S-stationarity conditions
of an MPCC whose complementarity cone is given by H(Q){ can be derived from the results in [123].
In the case d = 1, the M-stationarity conditions are discussed in [73]. In [125], some M-stationarity-type
conditions for the obstacle problem are derived via a regularization approach for domains with dimension
d > 2. Whether these conditions equal the M-stationarity conditions from Definition 3.2 has to be clarified
in the future.

Note that (H—l(Q),g(Hol(Q)g)o) is no vector lattice: in [122, Appendix B], the author shows that the

negative part of a measure 1 € H~1(2) N M(Q), i.e. the possible maximum of 1z and 0 w.r.t. (HZ(Q)$)°,
does not necessarily need to be an element of H~1(Q) again. Thus, the conditions (ia) and (iib) from
Lemma 3.10 cannot be satisfied. |

In the following, we want to consider two important types of MPCCs with polyhedric complementarity
cone in more detail: mathematical problems with complementarity constraints in Lebesgue spaces and
optimization problems with polyhedral complementarity constraints.

3.2. Complementarity programming in Lebesgue spaces

Here we study the problem (MPCC) where Z := LP(90t,R™) holds and the closed, convex, pointed cone
K is given as stated below:

K :={ue (M R")|uw)>0faa we}. (3.13)

Therein, 9t = (2,X, m) is a complete, o-finite, as well as nonatomic measure space such that LI(9M) is
separable for all ¢ € [1,00). We fix p € (1,00) and denote by p’ € (1,00) the corresponding conjugate
coefficient. Moreover, we set I := {1,...,m}. Clearly, K is a decomposable set which satisfies Assumption
2.1. That is why for any % € K, we obtain

Nic(a) = {n e L7 (m,R™)

n(w) € N]Rg“* (i(w)) f.o.a. we Q}

={neromrm)

n(w) <0, n(w) - a(w) =0fa.0. we Q}



3. Mathematical problems with complementarity constraints 57

from Propositions 2.49 and 2.51. Moreover, K is polyhedric, see [17, Theorem 3.58]. We introduce a
closed set = C R™ x R™ by

E:={(a,b) eR"xR™|a>0,b<0,a-b=0}.

Clearly, Z can be represented as the finite union of convex sets and, thus, is derivable, see Lemma 2.15.
Taking these observations together,

gph Ny = {(u,n) € LP(M,R™) x LP (M, R™) | (u(w), n(w)) € E f.a.a. w € Q}

holds true. Moreover, the decomposable set gph N satisfies Assumption 2.1. In the following theorem,
we present explicit representations of the introduced stationarity conditions of (MPCC) where K is given
as in (3.13). We already know from Proposition 3.11 that the implications in (3.10) hold, see Example
3.12.

Theorem 3.14. Let T € M be a feasible point of (MPCC) where the cone K is given as in (3.13). Then
the following assertions hold:

1. The point Z is W-stationary if and only if there are A € Y* as well as functions 1 € L¥' (91, R™) and
v € LP(9M,R™) which satisfy the conditions (3.2a), (3.2b), and

Viel: pi(w)=0 faa welz,i),

. . (3.14)
Viel: vi(w)=0 fa.a wel® (z,9).

2. The point T is M-stationary if and only if it is W-stationary.

3. The point Z is S-stationary if and only if there are A € V* as well as functions ;1 € L (91, R™) and
v € LP(9M,R™) which satisfy the conditions (3.2a), (3.2b), (3.14), and

Viel: piw)<0,v(w)>0 faa wel%z,q). (3.15)

Therein, for any i € I, the measurable sets I10(z,4), 1°~(z,i), and I°°(%, i) are defined as stated below:

I0(z,0) = {w € Q| G(#)i(w) > 0, H(Z);(w) = 0},
197 (2,1) = {w € Q| G(2)i(w) = 0, H(Z):(w) < 0},
190(z,4) == {w € Q| G(2)i(w) = 0, H(z);(w) = 0}.

Proof. For brevity, we set z := G(z) and z* := H(Z).
Let us start with the proof of the first assertion. We need to show

A(K° — K°n{z}h)n{z)t = {M e LV (M, R™) ’Vi el p(w)=0fa.0 we 1+0(;z~,¢)} :
(K —Kn{z}")n{z"} ={veLP(MR™)|Viel: vjw)=0faa wel’ (z,9}.

Here we verify only the first equation, the second one follows in a similar way. Since K is a decomposable
set which satisfies Assumption 2.1, we obtain

Ko {2}t = Ng(z) = {u e L7 (M, R™) ‘,u(w) <0, p(w) - 2(w) = 0fa.a. we Q}

vier. pi(w) =0 fa.a. wel(z,i) }

={ e’ (MR™
{,u ( ) pi(w) <0 faa. we ' (z,i)UI%(z,1q)

Since we have /
K° = {77 e L? (OM,R™) ‘n(w) <0faa we Q}
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from Lemma 2.43, we easily obtain
K° —K°n{z}* = {u e L (M,R™) |Vi € I: pi(w) < 0faa. we I+°(5¢,i)} .

Due to the closedness of this set, the first assertion follows in a straightforward way.
Let us derive the second assertion. Therefore, we apply Proposition 2.51 to obtain

ngh/\/}( (Z’ Z*) c NgcthK (Z, Z*)

, 3.16
= {(u,u) eLP (MR™) x LP(OM,R™) | (n(w),v(w)) € NE(2(w), 2*(w)) f.a.a. w € Q} . ( )
Let us introduce Z C R™ x R™ by
Z:={(a,b) eR™" xR™|a>0,b>0,a-b=0}.
Then we clearly have
- |Ln O]
==16 _1,|=E
which yields
Ne@®) = 7 9O | [Nz(@ —b)] (3.17)
= O _I77L BV )
for any (@, b) € Z, see Lemma 2.38. Using e.g. [45, Proposition 2.4], we obtain
7 =0 ifi e Jt9a,b)
Nz(@a,—b) =4 (7, () ER™ xR™| (=0 ifi € J°(a,b) (3.18)

Now, we easily see

L,

N (a, b) = conv N=(a, b) = [O _(I)

= {(n,() eR™ x R™

G=0 ificJ’ (a,b)

Hence, (3.16) yields that any pair (11, ) € Ngpnark (2, 2*) satisfies the conditions in (3.14). Note that this
result is also a consequence of Example 3.12.

Now, choose (fi,7) € L¥ (9, R™) x LP(IM, R™) which satisfy (3.14). Combining (3.17), (3.18), and
Proposition 2.49, we obtain

Neph g (2,27)
pi(w) =0 fa.a. we It0(z,4)
={ (u,v) € LY (M, R™) x LP(IM,R™)|Vi € I+ v;(w) =0 fa.a. we 197 (z,0)
(i (W), v (w)) €© fa.a. we I1°z,4)

8l

where © C R? is the set defined below:

0:={(a,8) ER*|(a <OAB>0)VaS =0}
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Let us introduce functions pt, 2 € L (MM, R™) and vt 02 € LP(OM,R™) by pu' := 2f, 2 := 0, v! =0,
and 12 := 217 Then it is easy to see from the above representation of the strong limiting normal cone that
(', vh), (12, V) € N ar (2, 2%) holds. Consequently,

(7, 7) = S0t ) + 502, 12) € conv Ny wre (2, 27) € Nigpive (2,27)

is obtained from Proposition 2.51. Summing up the above arguments, we have

Neph Ny (2,2%) = {(,u,u) € L (M, R™) x LP(M,R™) | Vi € I:

pi(w) =0 fa.a. weltOz )
vi(w)=0 fa.a wel’(z,i)

which yields the second assertion of the theorem.
The proof of the third assertion reduces to the validation of

, . piw) =0 fa.a wel™(z,i6)
Kro(z*,2) =4 pe P (MR™)|Viel: 00
pilw) <0 fo.o.we I7(z,4) 3.19)
vi(w) =0 fa.a. wel’(z,i)
Kr(z,2*)=qve LP(O,R™)|Viel: 00
vi(w) >0 fa.0.wel”(Z,i)

We only show the first formula since the proof of the second one is analogous. Applying the results from
Section 2.3.5, we easily obtain

Ko (2%, 2) = {M e L (M, R™) ‘n(w) € K_gpt (2 (), 2(w)) faa. w e Q} .

Using the above notation, it is not difficult to see

’C—R(T’+(B7d):7——ﬂ{6”>+( )ﬂ{a}l—{neR |771<0|fZ€J+0( b J a b }ﬂ{a}l

{ — 7, =0 |fz€J+0&l_)}

Thus, the desired result follows once more from pointwise evaluation. O

The above theorem shows that the implications in (3.10) can be strengthened to
S-stationarity = M-stationarity <= W-stationarity

in the case where the complementarity cone is given as presented in (3.13). Thus, M-stationarity is
uncomfortably weak in this case. This result should be alarming in the sense that not all results from
the theory of finite-dimensional complementarity programming can be generalized one-to-one to more
abstract cases. It is a question of future research whether similar problems appear if the complementarity
is induced in Sobolev spaces or other reflexive function spaces.

Note that our stationarity concepts are essentially different from those ones derived in [56]. Especially, our
multiplier functions . and v possess a much higher degree of regularity. Furthermore, we do not need
two sets of multipliers in order to define M- and S-stationarity, see [56, Definition 3.1].

Lemma 3.15. Let T € M be a feasible point for (MPCC) where the complementarity cone K is given as
presented in (3.13). Then gph N is not SNC at (G(Z), H(Z)).

Proof. First, suppose that I'°(z, 1) is a set of positive measure. Since 91 is nonatomic, we find a sequence
{Qk} C ¥ of measurable subsets of 1°°(z, 1) such that m(Q) \, 0 holds true, see [16, Corollary 1.12.10].
For any k € N, we define

_1
Ywe D ppa(w) = —m(Q) P xo,(w), vgi(w):=0

and
Vie{2,....m}VweQ:  ppi(w) =rgi(w)=0.
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From (3.19) and Lemma 3.9 we have (g, k) € J\AfgthK(G(:i'), H(z)) for all k € N. Choose an arbitrary
function u € LP(M,R™) and observe that uy € LP(M|q, ) holds for all & € N. We apply Hélder’s
inequality in order to obtain

1
<Nk,17u1>Lp(m) =m(%) ¥

fimn

1
1 P
< (@) ol oo Il = ([ fustorpam)

k
Lemma A.1 shows that the latter integral tends to zero. Thus, pr — 0 is satisfied. However, from
HMkHLp'(mRm) = 1forany k € N, {u} does not converge strongly to 0. This leads to (ug,vx) — (0,0)
and (ug, k) = (0,0). Hence, gph Nk cannot be SNC at (G(z), H(Z)) in this case.

Now, suppose that 19°(z,1) is of measure zero (w.l.o.g. we assume I°°(z,1) = @). Then one of the sets
It9(z,1) or I°=(z,1) possesses positive measure. Let us assume m(/79(z,1)) > 0. Again, we find a
sequence {Q.} C X of measurable subsetes of I79(z, 1) satisfying m(€2,) \, 0. For any k € N, we define

_ w T 1w | w +o f’
e ) {(()1 X0, ()G (@)1 () iwiow

as well as
Vie{2,....m}VweQ:  upi(w):=G(T);(w).

From Lemma A.1 we obtain u, — G(Z) in LP (9, R™). Let us set

1
Vwe Q: ppa(w) = —m(Q) ? xq,(w), vgi(w):=0

and
Vie{2,....m}Vwe Q:  ppi(w) =v(w):=0

for any k € N. Then from (3.19) and Lemma 3.9 we have (ux,v) € /\A/'gph,\/K (ug, H(Z)) for any k € N.
Similar as above, we show u; — 0 and p, - 0 which implies that gph AV is not SNC at (G(z), H(z))
in this case as well. Finally, an analogous argumentation shows the lack of the SNC property whenever
m(I°=(z,1)) > 0 holds. This completes the proof. O

Remark 3.16. Due to Theorem 3.14, one may use Proposition 3.6 in order formulate constraint qualifi-
cations which ensure a local optimal solution of (MPCC) where K is given as in (3.13) to be W-stationary.
However, due to Lemma 3.15, the set C needs to possess the SNC property in this case. In view of Lemma
2.19 and Corollary 2.20, and Lemma 2.21, this property fails for many reasonable function spaces and,
thus, the consideration of optimal control problems with complementarity constraints on the control via
Mordukhovich’s approach does not seem to be advisable. In the absence of the constraints g(z) € C,
the only applicable constraint qualification from Proposition 3.6 already implies S-stationarity of local
solutions, see Proposition 3.4. Thus, we focus on Proposition 3.4 for necessary optimality conditions and
constraint qualifications.

The following result is a direct consequence of Proposition 3.4.

Proposition 3.17. Let T € M be a local solution of (MPCC) where K is given as in (3.13). We set

Ja>038>0Viel:
ui(w) = fa.a. we 1% (z,4) UT%(z, 1)
S =< (u,m) € LP(MM,R™) x LP (M, R™) u;(w) + aG(7);(w) >0 fa.a. we IM0(z,4)
Ni(w) =0 fa.a. we It%z,i)uI(z,q)
ni(w) 4+ BH(Z);(w) <0 fa.0. we 197 (7,4)

and

, , , ui(w) =0 fa.a. we I (z,9)UI%z,q)
T := < (u,n) € LP(M,R™) x LP (M,R™) | Vi € I:

ni(w) =0 fa.a. welt(z,i)uIl%(z,q)
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Suppose that the constraint qualification

g'(z) Re(g( Yy
&'(x) | (2] - (ReW@)) _  Logom,rm)
H/(i‘) ( S ) Lp’ (m, Rm)

is satisfied. Then Z is W-stationary (and, thus, M-stationary). If, additionally, the constraint qualification

g/(j) N, ( _ y
d| |G'@) ]| [x] - clg@)iy ) _ LP (M, R™)
( H'(z) ( T ) L (9m, R™)

holds, then Z is S-stationary.

Proof. Due to Proposition 3.4, we only need to show

$ = (Ric(G(@) N (~Kie(G(@), H(@) ) x (Raco (H(@)) N (Ko (H(7), G(2)))
and
T = (TKm(fTK(G(:E)))(G(i'))OL) X (TKoﬂ(fTKO(H(i)))(H(i'))OL)'

The formula for S follows from

dJa>0Viel:
Rir(G(Z) = ue LPO,R™) |  uj(w)>0 fa.a. we 1% (z,i) U I(z,4)
ui(w) + aG(z);(w) >0 fa.a. we IM0z,4)

B> 0Viel: }

Rio(H(Z)) =< ne L’ MR | niw)<0 fo.a. we Iz, i) uI%(z, i)
ni(w) + BH(Z);(w) <0 fa.a. we I°7(7,4)

and (3.19). On the other hand, the relations

KN (~Tk(G(z))) = {u c e rm) |vie . )20 ha.a.we I:i)(:’zi) o }
u(w) =0 fo.a.wel’"(Z,i)UI"(T,1)
. o o o e o Miw) <0 faa we 1°(z,4)
K°N (=Tke(H(z))) = {n e LP (M,R™) |Vie I: () =0 fa e () UIOO(:?,Z')}

lead to

TKQ(_TK(G(@))(G(@)) = {u € LP(OM,R™) |VZ €l: uj(w)=0 fa.o.we Ioi(i’,i) U Ioo(f,i)} ,
Tron(—To (H(z))) (H(Z)) = {77 e L (M, R™) ‘Vi €l: n(w)=0fa.a. wel™(zi)u Ioo(i,i)} .

This shows the formula for T since the above tangent cones are already closed subspaces of L? (91, R™)
and L? (9, R™), respectively. O

3.3. Complementarity programming with polyhedral cones

Let {zf,...,25} C Z* be a set of linear independent functionals where the reflexive Banach space Z is
arbitrarily chosen. Here we consider the polyhedral cone

K:={ze€Z|Vie{l,...,m}: (z],2); <0} (3.20)
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inducing the complementarity in (MPCC). Note that we cannot apply Proposition 3.11 in order to derive
the relations (3.10) directly since from the above assumptions, it is not clear whether or not K induces a
vector lattice in Z. Consider, e.g., Z = R? and the polyhedral cone

K:={zeR*|(1,-1,0)- 2 <0, (-1,-1,0) - 2 < 0}

whose generating elements zi = (1,—-1,0) and z5 = (—1,—1,0) are linearly independent. Then K is not
pointed and, consequently, the corresponding binary relation < is not antisymmetric. Hence, K does
not induce a lattice structure in R2. On the other hand, the cone

K° = {z* € R*|(-1,1,0)-2* <0, (1,1,0) - 2* <0, (0,0,1) - 2* < 0, (0,0,—1) - z* < 0}

does not induce a lattice structure in R? as well since, e.g., the set {(0,0,0), (0,0,1)} does not possess an
upper bound w.r.t. <go. Thus, we cannot apply Lemma 3.10 to the situation at hand.
Following Lemma 2.13, we obtain

K° = cone{z],..., 2}
Fix a feasible point Z € M of (MPCC) where K is given as in (3.20). Then we find unique scalars
ai, ...,y > 0such that H(z) = Y 1" | a;zF is satisfied. Thus, it makes sense to define index sets I(z)

and J(Z) as stated below:
@)= {i € {L...om}| (5,G@), =0} J(@) = {i € [(2)] oy > 0}
Stipulating lin @ = cone @ = {0}, it is easily seen that

Ri(G(z) ={de Z|Vie I(z): (z,d)z <0} =Tk(G(7)),
Rie(H(Z)) =1lin{z|i € J(Z)} +cone{z |i € {1,...,m}\ J(Z)} = Tk (H(Z))

IN

hold true since the radial cones are both closed, see Lemma 2.13. Especially, K is polyhedric w.r.t.
(G(z), H(Z)). Moreover, we easily obtain

VieI(@)\J(@): (z,d)z<0

Vi e J(T): (zf,dyz=0]" (3.21)

Kro(H(Z),G(Z)) =1lin{z] |i € J(Z)} + cone{z] |i € I(Z) \ J(T)}.

Kk (G(z),H(z)) = {d €z

For J(z) C P C Q C I(z), we define
Co,p :=lin{z] |i € P} +cone{z] |i € Q\ P},

VieQ\P: (zf,d), < o}

Dop:={deZz
@r { Vi e P: (zF,d); =0

Note that we have Ciz,5z) = Kk (H(Z),G(Z)) and Dy 5z = Kk (G(z), H(z)) from (3.21). We
obtain the following result which was partially presented in [60] and [62] .

Lemma 3.18. Let £ € M be feasible for (MPCC) where K is given as in (3.20). Exploiting the above
notations, we obtain

o~

Nephni (G(Z), H(Z)) = Cr(z),0(z) X Di(z),J(2)s

Naph v (G(2), H(Z)) = U Cq,p % Dq.p,
J(@)SPCQCI(2)

soh N (G(Z), H(Z)) = Cr(z),1) X Di),5(2)-

Proof. The formula for the Fréchet normal cone follows from Lemma 3.9. The second assertion precisely
equals [60, Theorem 4.2]. Thus, we only need to prove the formula for Clarke’s normal cone.

Note that for any index sets J(z) € P C Q C I(z), we have Cq,p C Ci(z),1(z) and Dg.p € D j(z),1(z)-
Since Z is reflexive, we obtain

eph Vi (G(Z), H(Z)) = eonv Ngpn v (G(Z), H(Z))
C v (Cr(a),1(2) X D), i) = Cr@y.ie) % D@y, i)



3. Mathematical problems with complementarity constraints 63

from the second formula of this lemma. Thus, the inclusion C holds. For the proof of the converse
inclusion, choose (1, v) € Crz),1z) X D)5z arbitrarily. Then (24,0) € Cra),1z) % Di),1z) and
(0,2v) € Cy),5() X D),z are obvious. Hence, we can conclude

(p,v) € conv((C’I(i)J(fz) X D1@),1(2)) Y (Crz),0z) X DJ(rE),J(a’c)))
C conv Ngph vy (G(Z), H(Z)) = N av (G(2), H(Z))

from the second formula of this lemma and the reflexivity of Z. This completes the proof. O

Another important observation we report in the subsequent lemma.

Lemma 3.19. Let T € M be a feasible point of (MPCC) where K is given as in (3.20). Exploiting the
above notations, we obtain
c(K° — K°N{G(z)

1)
(K — KnN{H(z)}")

{G@)}" = Cra),16)

N
N{H(@)}" = D))

Proof. We start with the proof of the first equation. Observe that K° N {G(z)}*+ = cone{z} |i € I(7)}
holds. This yields
K° — K°n{G(z)}* =lin{z} |i € [(Z)} + cone{z} |i € {1,...,m}\ I(Z)}
and the latter set is closed due to Lemma 2.13. Thus, we obtain
cA(K° = K°n{G(@)}") n{G(2)}" = (K° = K° N {G(2)}") N {G(@)}" = lin{z] i € 1(2)} = Cray, 1)

i.e. the first assertion of the lemma is valid.
In order to prove the second statement, we show both inclusions separately. First, observe that

Vie{l,....m}I\J(@): (=

o i)z <0
Kn{H@)}" = {dez Vi€ J(z): (27 d) ZO}

is safisfied. This yields
K-Kn{H(@)}-C{dec Z|Vie J(2): (2},d); <0}
and, since the set on the right is closed,
(K -~ Kn{H@})N{H@)}*C{de Z|Vie J(@): (2f,d); <0yn{H(z)}*
={zlie J@}" = Dy u@)

where we put @ = Z if necessary. This shows the inclusion C. On the other hand, the set {z} |i € J(z)}*
is a subset of {H(7)}+. Furthermore, the above representation of K N {H(Z)}* enables us to deduce

Dy@) @ = {z lie J@}" C Kn{H(@)}" - Kn{H@)}"
CK—-Kn{H(Z)}* Cc(K - Kn{H(®)}").

Thus, the inclusion D holds as well and the proof is completed. O

Combining Lemmas 3.18 and 3.19, we are able to state the W-, M-, and S-stationarity conditions of
MPCCs whose complementarity cone is given as stated in (3.20).

Theorem 3.20. Let T € M be a feasible point of (MPCC) where the cone K is given as in (3.20). Then
the following assertions hold:
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1. The point T is W-stationary if and only if there are A € Y*, p1, ..., um € R, and v € Z which satisfy
the conditions (3.2b) and

0=v'(2) + ' @)\ + 2L mG' (@)= + H'(2)*[v],
Vied{l,....m}\I(Z): u; =0, (3.22)
Vie J(@): (z],v)z =0.

2. The point T is M-stationary if and only if there are A € Y*, u1, ..., pm € R, and v € Z which satisfy
the conditions (3.2b), (3.22), and

Vie I(Z)\ J(Z): (i >0 A (2f,v) 5 <0) V (uzf,v) 5 = 0. (3.23)

3. The point T is S-stationary if and only if there are A € Y*, u1,..., pm € R, and v € Z which satisfy
the conditions (3.2b), (3.22), and

Vie I(@)\ J(z): m >0, (zF,v) 5 <0. (3.24)

Proof. We only need to comment on the M-stationarity conditions since the other representations are
clear from Lemmas 3.18 and 3.19. Therefore, choose (i, V) € Ngpn ni (G(Z), H(Z)). By Lemma 3.18
there exist index sets J(z) C P C @ C I(z) such that p € Cg p and v € Dg p hold. Hence, there are
P, tm € Rsatisfying p; =0 foralli e {1,.... m}\Q, p; >0foralli e Q\ P, and pp = =7 p;2;.
Especially, y; = 0 holds for all i € {1,...,m} \ I(Z). On the other hand, v satisfies (z},v); < 0 for all
i€\ Pand (zf,v); = 0foralli € P. Particularly, (zf,v), = 0 for i € J(z) follows. Observe that
@)\ J(@) = (P\ J(3) U@\ P)U(I(z) \ Q) holds.

Forany i € P\ J(z), we have (z;,v); = 0 and, thus, (u;2;,v)z = 0. Similarly, for i € I(z) \ Q, we obtain
i = 0 which leads to (u;2;,v)z = 0. Finally, choose i € Q \ P. Then we have y; > 0 and (zf,v); < 0.
If ui = 0 or (z7,v); = 0 holds true, then (11,2}, v) . = 0 follows again. Otherwise, we have ;; > 0 and
(zf,v)z < 0. This completes the proof. O

Due to the above theorem, we have the strict relations (3.10) between the introduced stationarity notions
although Proposition 3.11 is not generally applicable here.

Now, necessary optimality conditions of the corresponding MPCC may be derived from Propositions 3.4
and 3.6. Note that for any feasible point z € M of (MPCC) where K is given as in (3.20), the constraint
qualification (3.4) takes the form

g'(z) Re(g(Z)) Y
@ |- ety | =( 2], (3.25)
H'(z) lin{z]|i e J(z)} zZ*

whereas the constraint qualification (3.5) becomes

9'(7) Ne(g(z)) 1 y
dl |c@ |- rlict@nt || = 2.
H'(7) lin{z} | € J(z)} z*

Assume that the constraint qualification (3.25) holds. Polarizing this equation, we obtain

0=g' (@) N + 232G (2)"[2] + H'(2)"[v],
A € Ne(g(@),

Vie{l,....m}\I(Z): u; =0,

Vie J(@): (z,v)z;=0

= A=0m==U,=0,v=0

which is stronger than the constraint qualification (3.9), see Lemma 3.18 for the characterization of the
limiting normal cone to the complementarity set. Thus, under some additional SNC assumptions, (3.25)
is already sufficient for M-stationarity of local optimal solutions of MPCCs whose complementarity cone
K is polyhedral, see Proposition 3.6 as well.
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Corollary 3.21. Let T € M be a local optimal solution of (MPCC) where 1 is continuously Fréchet
differentiable. Let the cone K be given as in (3.20) and assume that X as well as )V are reflexive.
Suppose that (3.25) is satisfied and that one of the additional SNC conditions from Proposition 3.6 holds.
Then Z is M-stationary.

It is easily seen that the general setting in this section covers standard MPCCs with X = R", Y = R¢,
Z=R™,and K = Rg“f Indeed, if e!,...,e™ € R™ denote the m unit vectors of R™, then we have

Ry ={z€R™|Vie {1,...,m}: (~e')-2 <0},

One may check that the stationarity notions characterized in Theorem 3.20 equal the well-known ones,
see [129]. As we mentioned in Remark 3.5, (3.25) equals MPCC-MFCQ in this situation which already
implies M-stationarity of local optimal solutions by means of [42]. We obtained the same result in more
general form in Corollary 3.21.

In [10], the authors discuss a conic linear problem governed by the nonpolyhedric second-order cone
K. They used a polyhedral approximation of K,,, in order to simplify the original problem. It was shown
that this approximation is reasonably good under mild assumptions. Transferring this idea to (MPCC)
with complementarity constraints governed by K,,, one could think of approximating the nonpolyhedric
complementarity problem by a polyhedral one and applying the results obtained above to study the
surrogate problem. How this can be done explicitly and how the two problems behave is, however,
beyond the scope of this thesis and left as a topic of future research.

3.4. Additional remarks on complementarity programming

We want to close this chapter on complementarity programming with some additional remarks.
Firstly, consider (MPCC) where K is given as in (3.13) or (3.20) and choose a feasible point 7 € M of
it. Observe that from the proof of Theorem 3.14 and Lemmas 3.18 as well as 3.19, we see that the set
of multipliers (u,v) satisfying (3.2¢) and (3.2d) equals N, v, (G(Z), H(Z)). Thus, the question arises
whether we have

N (G(@), H(@)) = (el(K° = K° 0 {G(@)}) N {G@)}) x (K — K 0 {H(@)}) 0 {H(2)})
in general or at least in the situation where K is polyhedric w.r.t. (G(Z), H(z)). Currently, there is no
proof available for this result since we still suffer from a lack of knowledge on a general representation
of the limiting normal cone Ngph v (G(Z), H(Z)). On the other hand, it might be possible to derive the
formula

arh N (G(Z), H(T)) = Trn (=T (@) (G(Z)) X Tron(=Two (H(z)) (H (T)),

which is precisely the corresponding dual statement (see proof of Proposition 3.4), directly.

Secondly, it is a question of future research whether M-stationarity of a feasible point of (MPCC) implies
its W-stationarity in general provided the complementarity cone K is polyhedric (or even without the poly-
hedricity assumption). In the proof of Lemma 3.10, the condition that K induces a vector lattice in Z
or that K° induces a vector lattice in Z* is indispensable. On the other hand, we saw in the context of
MPCCs whose complementarity cone is polyhedral that this property is not necessary in some cases.

We will see later, see Remark 5.11, that in the sefting Z = S, and K = S, the implications (3.10) do
not hold since M- and S-stationarity (in the sense of Definitions 3.2 and 3.1, respectively) do not imply
each other. Furthermore, this example shows that our generalized notions of stationarity do not always
coincide with the well-known stationarity concepts from the literature, see [37]. Thus, in the absence of
polyhedricity, the situation is far more complicated and has to be analyzed carefully for the different com-
plementarity cones.

Since we know from Example 3.13 that the common relationship between W-, M-, and S-stationarity,
see (3.10), is valid for Z = H}(Q) and the corresponding cone of almost everywhere nonnegative func-
tions H} (), it would be interesting to compute the limiting normal cone to the complementarity set
gthH(}(Q)g in order to find an explicit representation of the M-stationarity conditions stated in Definition

3.2. However, this is a challenging task which requires a deep knowledge of Sobolev spaces and capacity
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theory, see [17, Section 6.4.3], which is clearly beyond the scope of this thesis but a promising object of
future research.

Finally, we want to mention that other stationarity concepts for generalized MPCCs exist in literature apart
from W-, M-, and S-stationarity e.g. Clarke’s stationarity concept, see [37, 66, 79, 129]. A possible
approach on how to derive the so-called C-stationarity conditions is described below. Assume that Z is a
Hilbert space which is identified with its dual by means of Riesz’s representation theorem. Then we have

(G(x), H(x)) € gph Nk <= H(z) € Nk(G(2)) <= G(x) = projg(G(z) + H(x))
from Example 2.30. Thus, we can restate (MPCC) equivalently by

¥(z) — min
glx) € C
G(z) —projg (G(z) + H(z)) = 0

which is an optimization problem with a single nonsmooth constraint. Applying Mordukhovich's tools of
generalized differentiation, it is possible to derive the M-stationarity conditions of (MPCC) under appropri-
ate constraint qualifications via this problem. On the other hand, since the projection operator projx(+)
possesses certain Lipschitz properties, it is reasonable to apply the concept of Clarke’s generalized Jaco-
bian, see [24, Section 2.6], in order to exploit some abstract differential information to derive first order
optimality conditions of (MPCC). This has been done for K = S in [37] and for K = K,,, in [79]. The
procedure is possible for standard MPCCs as well. This way, the C-stationarity conditions can be de-
duced. However, the definition of Clarke’s generalized Jacobian heavily relies on Rademacher’s theorem
which only applies in our setting if X and Z are finite-dimensional. Thus, this approach is limited to the
finite-dimensional situation which we do not presume here.
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4. Bilevel programming in Banach spaces

In this section, we take a closer look at the general bilevel programming model given by
F(z,y) — min
T,y

G(z) € C (BPP)
y € ¥(z)

where U: X = Y is the solution set mapping of the parametric optimization problem

f(z,y) = min
Yy
g(z,y) € K.

The following general assumptions on (BPP) shall hold.

Assumption 4.1. The mapping F': X x) — R is Fréchet differentiable while the mappings f: X x) — R,
G: X - W,and g: X x Y — Z are continuously Fréchet differentiable. Therein, X, ¥, W, and Z are
Banach spaces. Furthermore, the sets C C W and K C Z are nonempty, closed, and convex.

Let us briefly explain the decision order in (BPP): First, © € Xoq := {z € X |G(x) € C} has to be chosen
(so-called upper level decision). Afterwards, the set ¥(z) is computed (lower level decision) and the over-
all objective functional F' can be evaluated for the pairs (x,y) where y € ¥(x) holds. Thus, in contrast to
the original bilevel optimization model, see [115], where F is only minimized w.r.t. 2, our model (BPP) is
well-defined even if the lower level solution is not unique for some z satisfying the upper level constraints.
In [26, Theorem 5.2], one can find a criterion which ensures the existence of a global optimal solution of
(BPP) in the finite-dimensional situation. The proof of this result heavily relies on the classical Weierstraf3
theorem. However, we cannot transfer this proof to the general situation since the set gph ¥ which is
part of the constraints of (BPP) is generally nonconvex and, thus, the generalized Weierstraf3 theorem, see
Lemma 2.5, is rarely applicable. Actually, we have to discuss the existence of global optimal solutions
of (BPP) for the specific instances of this problem separately exploiting given structures. If the lower level
solution is unique, then one may utilize the properties of the corresponding solution operator to show the
existence of global optimal solutions. This procedure is possible for the consideration of e.g. the obstacle
problem, see [125]. Postulating quite restrictive assumptions, the author verifies the existence of global
optimal solutions of a bilevel model possessing optimal control problems of ODEs at upper and lower
level in [20].

In order to derive necessary optimality conditions for the bilevel model (BPP), it is a common idea to trans-
fer it to a single-level surrogate problem. Here we are going to distinguish three different approaches,

see [98]:

o If the lower level problem (4.1) possesses a unique solution 1 (x) for all z € X4, then the original
bilevel programming problem can be replaced by the equivalent model

Fla, (@) — min
G(z) € C.

Now, the derivation of necessary optimality conditions heavily relies on the properties of the map-
ping Xog 2 = — ¢(x) € Y and, thus, further discussion depends on the problem'’s structure. This
approach is used to tackle finite-dimensional bilevel programming problems in e.g. [25] and [35].
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In [85], we consider an abstract setting in Banach spaces where the lower level is given by an
abstract parametric optimal control problem. Furthermore, all results which address the obstacle
problem (1.3), see e.g. [67, 68, 125], can be settled here. In these papers, the authors exploit
uniqueness and stability results for the solution mapping of a certain given variational inequality.

e If the lower level problem (4.1) is convex w.r.t. y, it seems to be reasonable to replace the condition
y € U(x) in (BPP) by the lower level necessary and sufficient optimality conditions. This can be done
by means of a variational inequality, see e.g. [97, 128, 133] for the finite-dimensional situation and
[64, 66, 73] where the authors study optimal control problems of PDEs with variational inequality
constraints. It is also possible (in the presence of a constraint qualification) to use the KKT condi-
tions of (4.1) to replace the lower level problem. However, introducing the corresponding Lagrange
multiplier as a new decision variable, the resulting surrogate problem does not need to be equi-
valent to the original bilevel programming problem anymore, see [28] for the finite-dimensional
case. We will show that similar or even harder difficulties may arise in a more general setting. The
so-called KKT approach is used to derive necessary optimality conditions for (BPP) in [32, 33, 140]
for the finite-dimensional situation and in [87] for the setting in Banach spaces with applications to
a bilevel optimal control problem of ODEs.

e Let us introduce the so-called optimal value function ¢: X — R of (OV) by
Ve X p(e) = f{f(e,y) lg(e,y) € K. (4.2)

Since we clearly have y € ¥(x) if and only if f(z,vy) < p(z) and g(x,y) € K hold, the problem

F(z,y) — min
@,y

p(z) <0
g(x,y) € K

is fully equivalent to (BPP), see [34, Theorem 3.1] for the finite-dimensional case as well. However,
this problem is still a challenging one since it contains the implicitly known function ¢ which is
likely to be nonsmooth or even discontinuous. From [35, Theorem 3.1] and other contributions
we see that constraint qualifications of reasonable strength applicable to nonsmooth programs
fail to be satisfied at the feasible points of (OV). Especially, Fritz-John-type optimality conditions
may hold at all feasible points of (OV), see [84, Section 3.2]. Using partial penalization w.r.t. the
constraint f(z,y) — ¢(z) <0, Ye and Zhu initiated the study of optimality conditions and constraint
qualifications for (OV) with their seminal work [138]. This paper inspired the theory in [29, 34,
92, 137] for finite-dimensional bilevel programming and the results in [13, 14, 74, 84, 130, 131]
where bilevel optimal control problems of ODEs are studied. These results rely on a careful study
of the subdifferentiability properties of the function ¢, see e.g. [31, 91, 93]. In this thesis, we will
exploit local Lipschitz properties of the optimal value function.

f(z,y)

One may check the monographs [8, 26, 36] for further information and references on several other as-
pects of bilevel programming.

4.1. On a special class of bilevel programming problems with
unique lower level solution

Here we are going to study the bilevel programming model (BPP) where the corresponding lower level
problem is given as stated below:

2 2 .
3 llcly) = Ple]lly + § llu = Qle]lly, — min

Aly] = Blu] — h(z) = 0 (4.3)
u € Uyq.
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One may interpret (4.3) as a parametric optimal control problem of PDEs with control constraints gov-
erned by an elliptic (differential) operator A. Here y and u represent the state and control function,
respectively. The parameters can play the role of desired state and control. In this case, the overall bilevel
programming problem may be seen as a parameter identification problem where the desired state is
unknown and shall be reconstructed by measurements in some observation space M.

In addition to the standing assumptions listed in Assumption 4.1, the data of (4.3) shall satisfy the follow-
ing requirements.

Assumption 4.2. The Banach space Y = Y, x U is the product of a reflexive Banach space Vs and a
Hilbert space U. Furthermore, M is a Hilbert space as well. We identify & and M with their corresponding
dual spaces U* and M* by means of Riesz's representation theorem, respectively. Moreover, we assume
that the norm in & and M is induced by the respective inner product. The mapping h: X — VI is
Lipschitz continuous and Fréchet differentiable. The set U,y C U is nonempty, closed, and convex. The
linear operators A € L[YVs, V], B € L[U, V], C € L[Ys, M|, P € LIX, M], and Q € L[X,U] are fixed.
Moreover, A is an isomorphism. Finally, o > 0 is a fixed constant.

Observe that the so-called state equation Aly]—B[u]—h(x) = 0 is equivalentto y = (A~1oB)[u]+ (A~ 1oh)(z)
since A is a bijection. We introduce the control-to-observation operator S := CoA~!oB € L[U/, M] in order
to transfer (4.3) into the so-called reduced problem

st = (P = (con™ o h)@)|[, + % llu - Qla][f; — min "
u € Uyg-

Keeping in mind the state equation, the problems (4.3) and (4.4) are equivalent.

Proposition 4.1. Let T € X be arbitrarily chosen. Then for fixed parameter z = z, problem (4.3) possesses
a unique solution (7,u) € Vs x U. Additionally, (7, @) is the unique solution of the following system:

y=(A"'oB)a + (A" o h)(T), (4.50)
i = projy, ((g(s* oP)+Q— L(s*oCoA o h))(z)— L(s*0 s)[a]). (4.5b)

Proof. Similar as in Example 2.27 we see that for fixed @ = Z, the objective functional of the reduced
problem (4.4) is coercive and strictly convex. Thus, (4.4) possesses the unique solution @ which is neces-
sarily characterized by

—(8*oS+oIy)ul+ ((8 oP)+0Q— (S* 0 Co A" 0 h))(2) GNUGd(ﬁ),

see Lemmas 2.5 and 2.29. Due to the inherent convexity of the reduced problem (4.4), this condition is
also sufficient for the optimality of @. Noting that My, () is a cone, by means of Example 2.30 the above
generalized equation is equivalent to condition (4.5b). The corresponding uniquely determined optimal
state 7 is computed via the modified state equation (4.5a). This completes the proof. O

The above result justifies the definition of single-valued mappings ¢, : X — Y, and ¥,,: X — U such that
1, maps any parameter Z € X to the solution @ = 1,,(Z) of the nonsmooth equation (4.5b), whereas ),
equals (A7 oBo,) + (A71 o h), i.e. § = 1, (Z) is valid. Thus, the bilevel programming problem (BPP) is
equivalent to

F(z) := F(z,¢y(z), Yu(z)) — mIin

(4.6)
G(z) € C.

Clearly, in the presence of control constraints, the function v, is expected to be nonsmooth and, thus,

the same is true for v,. However, in order to derive necessary optimality criteria for (BPP), we will state

conditions which ensure that ¢, and ¢, are at least directionally differentiable. Moreover, we will present

formulae which characterize the corresponding directional derivatives. Applying Lemma 2.29 as well as
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an appropriate chain rule to (4.6) and using the theory of MPCCs presented in Chapter 3, we will finally
obtain necessary optimality conditions.

For brevity, we infroduce a Lipschitz continuous and Fréchet differentiable function n: X — U and a
bounded, linear operator E € LU, U] by
n:=21(8"oP)+Q—L(s*0CoA 0 h), E:= 1(s*05).

T o

Note that E is a monotone operator since we have

((8* 0 8)[u), u)y, = % (S[u],S[u]) ,, = L ||S[UH|3\/( =0

Q=

(Elul, u)y =

forallu e U.

4.1.1. Nonsmooth equations governed by monotone operators

In this section, we are going to provide the theory which is necessary in order to see that the solution map-
ping of the nonsmooth equation (4.5b) is directionally differentiable under some additional assumptions.
Furthermore, we implicitly characterize its directional derivative as the solution of another nonsmooth
equation. Therefore, the parameter-dependent abstract nonsmooth equation

h = projg (U(b) — U[h]) (4.7)
will be studied under the following standing assumptions.

Assumption 4.3. The mapping v: B — H is Fréchet differentiable and Lipschitz continuous with Lipschitz
modulus I > 0. Therein, B is a Banach space, whereas # is a Hilbert space. We identify H and its dual H*
by means of Riesz’s representation theorem. Furthermore, we suppose that the norm in H is induced by
its inner product. The bounded, linear operator U € IL[H, H] is monotone. Finally, H C H is a nonempty,
closed, convex set.

First, we show that for any b € B, (4.7) possesses a unique solution which depends in a Lipschitz continuous
way on the choice of b.

Lemma 4.2. For any b € B, the nonsmooth equation (4.7) possesses a unique solution h, € H. Fur-
thermore, the mapping ¢: B — H which maps b € B to the unique solution h;, € H of (4.7) is Lipschitz
continuous with Lipschitz modulus 1.

Proof. Fix an arbitrary parameter b € B. According to Example 2.30, h; € H is a solution of (4.7) if and
only if it satisfies
VheH: ((Tn+0)[h),h—hy)y > (0(b),h—hy)yy, (4.8)

Thus, let us show that the variational problem (4.8) possesses a unique solution hy. Therefore, observe
that the linear operator Iy, + U is elliptic. Indeed, we have

VheH: (T + V)AL, h)y = hll5, + (U[R], by, > [R5,

from the monotonicity of U. Consequently, (4.8) possesses a unique solution by means of [75, Theo-
rem 2.1]. Thus, the solution mapping v of (4.7) is single-valued.
Now, choose b,b’ € B arbitrarily and fix the corresponding solutions hy, hy € H of (4.7), i.e. we have
hy = ¥(b) and hy = ¥ (b'). From (4.8) we obtain the inequalities

(T + 0[], hey = he)gy = (0(0), by — By, (T +U)[hr], ey — P )y = (0(0), oy — Py )y -
Summing them up and exploiting the bilinearity of the dual pairing yields

(Tn +0)[h — hey]s hy = o)y = (0(b) = 0(V), hey — Tp)y,
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or, equivalently,
<hb/ — hb + U[hb/ — hb], hb’ — hb>?—[ S <U(b/) — U(b), hb’ — hb>7—[ .

We exploit the monotonicity of U and the Lipschitz continuity of v to see
||hb’ — hb”?—[ S <hb’ — hb +U[hb/ — hb], hb/ — hb>7—[ S <U(b/) - U(b)7 hb’ — hb>’H S le/ - b”B th/ — hb”?—[ .
Thus, by definition of ¥, we have
Vo,b' € B: (b)) — ¥(b)ll5 < LIV —bllg,

i.e. the solution mapping ¥ of (4.7) is Lipschitz continuous with Lipschitz modulus I. O

Clearly, if H does not equal the whole space H, we cannot expect the Lipschitz continuous solution
mapping ¢ of (4.7) to be Fréchet differentiable. However, it seems to be reasonable that ¢ possesses
similar properties as the projection operator proj,. For a deeper analysis of ¥, we will exploit the
following result by Haraux which says that the projection operator proj,; is directionally differentiable if
some additional properties hold, e.g. if H is polyhedric, see [57, Theorems 1 and 2].

Lemma 4.3. Choose h,h € H such that h = proj,(h) holds. Assume the existence of a self-adjoint
operator L € L[H, H] which possesses the following two properties:

L 0 Proji,; (h,h—h) = PIOjc; (h,h—h) OLs (4.90)
V6 € Ky (hyh —h): }1\% proj (h + ti) — projg (h) _ L2[5]. (4.9b)

Then projy is directionally differentiable at i and the following formula holds:
Vs e H:  projly(h;8) = <L2 o proj,CH(,ah,,;)) (8. (4.10)

Furthermore, if H is polyhedric w.r.t. (h, h — h), then the conditions (4.9) hold true with L := Iy, i.e. projy
is directionally differentiable and the corresponding directional derivative satisfies (4.10) with L := I.

Note that (4.9b) already implies the directional differentiability of proj; at & in all directions coming from
the critical cone Ky (h, h — h).

Below, we present a criterion which can be applied in order to check whether the condition (4.9q) is
safisfied.

Lemma 4.4. Choose h,h € H such that h = projy(h) holds. Assume the existence of a self-adjoint
automorphism L € L[H, H] satisfying L [ (h,h — h)] = Kg(h,h — ) and

V6 € Kp(hh — h)V8* € K(Roh—R)°: (6%,6), = 0 <= (L[5*], L8]}y = O.
Then (4.9q) is valid.
Proof. First, we show that L [y (h,h — h)°] = Ku(h,h — h)° holds. We exploit the assumptions of the
lemma in order to see the following equivalences:

5 € L[Ku(hh— h)°] <= 30" € K(h,h — h)°: & =L[o"]

= 30" € HV5 € Kp(h,h —Rh): (0%,8),, <0 A 6* =L[0"]
= 30" € HVY6 € K (h,h—h): (0%,L[0]),, <0 A 6 =L[0"]
= 30" € HVS € K(h,h —h): (L[67],8),, <0 A 5% = L[6"]
e V5 e Ku(hh—h): (6%,6), <0

< §* € Kg(h,h —h)°.
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Let us choose 4,6 € H arbitrarily. Due to the above result, the assumptions of the lemma, Example 2.30,
and the fact that Ky (h, h — h) is a cone, we obtain:
6= (L o prOjICH(E,h—E)) (6)

= 0= L] A 0= prOjKH(ﬁ,h—ﬁ)((;)

< =L AOeKy(h,h—h) AN6—0€Ku(h,h—h)° A (0,6 —0),, =0

> L7'[8] € Ky(h,h —h) A6 —L7'[8] € Ky (h,h—h)° A (L7'[6],6 — L_1[5}>H =0

< 6 € Ku(h,h—h), L8] =6 € Kr(h,h —h)® A (6,L[6] = &), =0

= d= (prOjICH(H,hfﬁ) oL) (6).

This completes the proof. O

In order to show our main result of this section, we need the following observation. lts proof is straight-
forward and, hence, omitted.

Lemma 4.5. Let X be a Banach space. For mappings f,g: X — X, we consider the three nonlinear
systems
z=1(y) z = 1(y) z = (fog)(x)
{) (1) (1.
y = g(x) y=(gof)(y) y = g(x)

Then (Z,7) € X x X solves (I) if and only if it solves (ll) if and only if it solves (lll). Especially, (I) possesses
a unique solution if and only if g o £ possesses a unique fixpoint if and only if £ o g possesses a unique
fixpoint.

Now, we are able to prove that under the assumptions of Lemma 4.3, the solution mapping ¢ of (4.7)
is directionally differentiable. A similar result validated by related proof techniques is presented in [54,
Theorem 4.3].

Proposition 4.6. Let b € B be arbitrarily chosen and set h := 9 (b) and h := v(b) — U[h]. Assume the
existence of a self-adjoint operator L € IL[H, H] possessing the properties (4.9) and let

VI € e projyy () — prog(h) — (L2 0 proje, iy ) (B — ) = o[ — hll)

for some function o: R — H with limg~ o @ = 0 be satisfied, i.e. projy is supposed to be B-differentiable

at h. Then ¢ is directionally differentiable at b, and for any direction 8, € B, the corresponding directional
derivative 1(b; dp) is the unique solution of the following nonsmooth equation:

61 = (L2 0 proju,, ri-my ) (v (B)0] — Vo). (4.17)
Furthermore, the mapping d;, — ¢’ (b; dp) is Lipschitz continuous.
Proof. Fix b € B and an arbitrary direction §, € B. According to (4.9a) and Lemma 4.5, (4.11) possesses
a unique solution if and only if the following system possesses a unique solution:
dn = L[], (4.12q)
O = projic iy (Lo v (4) 8] = (LoU)[54]). (4.12b)
We apply Lemma 4.5 once more in order to see that (65, 0 ) solves (4.12) if and only if it solves
dn, = L[], (4.130)
On = Drojx,, (i (Lo V' (9) 18] = (Lo U L)[6n)). (4.13b)
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Clearly, L o v/(b) is a bounded linear operator and, thus, Fréchet differentiable and Lipschitz continuous.
Furthermore, it is easy to check that L o U o L is monotone since U is monotone and L is self-adjoint. Thus,
by means of Lemma 4.2, (4.13b) possesses a unique solution ), and the mapping 0, +— 8, is Lipschitz
continuous. Retracing the above arguments, (4.11) possesses a unique solution §;, and the mapping
8y + 0y, is Lipschitz continuous.

Now, we are going to show 1/ (b; 8,) = &5,. In order to exclude trivial situations, we assume &, # 0 since
for 0, = 0, the assertion of the lemma is obviously satisfied. Fix some ¢t > 0. Then Lemma 4.3 and the
B-differentiability of proj, at h yield

(b + 18,) — B(B) = projy (v(b + t6,) — U (b + t6,)]) — projy (v(b) — V[ (B))

4.14
- (L2 o proj,CH(,—Lh,,—L)) (v(b + tdy) — v(b) — U (b + td) — (b)]) + 71 () ( )

where
r1(t) = o([lv(b+tdy) — v(b) — U[Y(b +tdp) — Y (b)][ly)
satisfies

71 ()4
[0(b+tds) — v(b) = U[(b + tds) — »(b)] |l

|[v(b+tdy) —v(b) = U[Y(b+tdy) — Y(b)]|l; = 0 = — 0.

The Lipschitz continuity of v, U, and 1, see Lemma 4.2, guarantee the existence of a constant « > 0 such
that
[o(b+1dp) — v(b) — U[th(b + tde) — Y (b)]ll5 < at

is satisfied. Thus, we obtain

71 () 1l5

t—0—= — 0. (4.15)

Rearranging (4.14) and exploiting the Fréchet differentiability of v leads to

Y+ tdy) —h(b) —ri(t) = <L2 ° prOjICH(B,h—E)) (v(b+t6) — v(b) — U (b + tdp) — 1(D)])
= (L2 ° proj}cH(B,h—B)) (t' (b)) + 01 (t) — V(b + t8p) — ¥ (b)])

= (1 0 projic, e ) (80 (D8] = UL (b + £53) — 6(6) — r1(6)] + (1))

where 75(t) := o (t) — U[r1(#)] shall hold and o : Rf — H satisfies limy o 2 = 0. Since Kp (b, h — h) is
a cone, we obtain

PO =00 (12 proje, ) (w00 - v | P = )
for positive t. From (4.15)
t—>0 — 7‘““2(?”” 0 (4.16)

follows easily. We introduce a function £: RT™ — H by

P(b+ 1) — ¥(b) —r1(t)
t

VteRY: £(t) =
and exploit (4.9a) to obtain
£(t) = (L o proj,CH(;L,h_E)) ((L o v (0)) (6] — (LoU)[E(H)] + L [%D . (4.17)

We interpret the above term as a nonsmooth equation in £(t) which is parameterized by ”T(t) Applying
Lemma 4.5, we can split this equation equivalently into two:

£(t) = Ln(t)],
1(t) = Projic, (b <(L o' (b))[0)] — (LoU)[E(t)] + L [TTHJD .
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Again, by Lemma 4.5, this system possesses the same solutions as
&(t) = Ln(1)], (4.18a)
n(t) = projic,, -y ((Lov'(1)8] — (LovoL) ()] +1 =2 ]). (4.18b)

Note that the mapping T“"T(t) — (Lov/(b))[6s] +L [”T(t)] is Fréchet differentiable and Lipschitz continuous,

whereas the operator L o U o L is monotone. Invoking Lemma 4.2, (4.18b) possesses a unique solution

7(t)ry (1) ¢ for any choice of ﬂﬂ € H and the mapping th(t) = 7(t)ry(1)/¢ is Lipschitz continuous. The

same holds true for the overall solution mapping %(t) = (€O ry ) /6 Ty (1)) OF the system (4.18).

Particularly, '27(” — &(t) (1)1 15 the single-valued and Lipschitz continuous solution mapping of (4.17).
Now, observe that £(t) = 0, holds. On the other hand, we have £(t),,)/c = (1 (b+td,) — 1 (b) — r1(t))
by construction. This leads to

H P(b+t6p) = p(b) — 1 (t)

||7’2(t)||7{
t

1 - Sh

= |E@)racye — E(t)o]|,, < B
M

where 3 > 0 is a fixed constant. Combining the last inequality with (4.15) and (4.16) yields
"¢(b+t5b) —9®) | o @l £ Blra(@)lly

-9
n h < ; — 0

l
for t \, 0. This shows ¢/ (b; 6,) = 05, which completes the proof. O

Remark 4.7. The assumption on proj to be B-differentiable is essential for the proof of the above propo-
sition. Note that for a finite-dimensional space H, projy is directionally differentiable if and only if it is
B-differentiable at a certain reference point since it is a Lipschitz continuous function, see [112, Proposi-
tion 3.5].

On the other hand, B-differentiability of the projection is not inherent if the underlying space is infinite-
dimensional. In [54, Remark 4], the authors show that the projection onto L?(Q){, where 2 C R? is a
bounded domain, is not necessarily B-differentiable from L?(Q) to L?(2) although it is directionally dif-
ferentiable since L%(Q){ is polyhedric, see Lemma 4.3. Nevertheless, under more restrictive assumptions
on v and U, the results of Proposition 4.6 stay true even if the space H = L?(Q2) is considered, see [54,
Theorem 4.3] for the details.

4.1.2. Necessary optimality conditions

Here we exploit the results obtained in Chapter 3 and Section 4.1.1 in order to find necessary optimality
conditions for the bilevel programming problem (BPP) with lower level (4.3). Let us start with the following
consequence of Proposition 4.6 and the chain rule for the composition of directionally differentiable
mappings, see [112, Proposition 3.6].

Lemma 4.8. Fix an arbitrary parameter € X and set § := 1,,(Z), @ := ¢, (%), as well as @ := n(z) —E[a].
Suppose that there exists a self-adjoint operator L € LI, U] which satisfies the following two conditions:

Loproji,_ (a,m—a) = PrOlxy_, (a,w—a) L (4.19q)
We&Mwwmygfm%@+@_mwﬂmzﬁw. (4.19b)

Moreover, let some function o: RS’ — U with lim~ o @ = 0 exist which satisfies
Vw €U:  projy,, (w) — projy,, (@) — (L2 o proji, o o) (0 —1) = offw—al,). (420

i.e. projy, . is B-differentiable at w. Then v, and v, are directionally differentiable at z. For all 4, € X,
the directional derivative ¢, (Z; d,) is the unique solution of the nonsmooth equation

b = (L 0 Projic, (o) ) (1 (2)[6] — E[8]).
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whereas 1, (7;0,) can be computed as stated below:

¥y (7:0:) = (A" o B)[,(%:00)] + (A7 o h'(2)) [0

Furthermore, the mappings d. + vy (Z;6.) and 8, + 1;,(F; ) are Lipschitz continuous.

Now, we are able to show the following result.

Proposition 4.9. Let (Z,7,1) € X x Vs xU be a local optimal solution of (BPP) with lower level (4.3) where
F is continuously Fréchet differentiable. Let the constraint qualification

G'(@)[X] = Re(G(z) =W (4.21)

be satisfied. Set w := 7(z) — E[u]. Suppose that there exists a self-adjoint operator L € LL[i/,U] which

satisfies the conditions (4.19) and (4.20). Then (0., ., d-) := (0,0,0) is a global optimal solution of the
following MPCC:

(FL(z,9,u) + F,(Z,5,u) o A= o 1'(2)) 6]
+(Fy(z,5,u) oA~ o B+ F}(Z,9,1))[6,] — min
)

5 —12[6,] = 0 (4.22)

€
1 (%)[6,] — E[0,] — 0 € Kuy(a, @ — )°
(' (%)[02] — E[0u] — 0x, )y = O.

Proof. Due to Proposition 4.1, Z is a local optimal solution of (4.6). By means of Lemma 4.8 ¢, and
1., are directionally differentiable at Z. Furthermore, these functions are Lipschitz continuous, see Lemma
4.2. Recall that F: X — R denotes the objective functional of (4.6). Since F is continuously Fréchet
differentiable at (z,7,), it is locally Lipschitz continuous there. Thus, F is locally Lipschitz continuous
at Z. Invoking the chain rule [112, Proposition 3.6], F is directionally differentiable at z as well. Using
Lemma 4.8 once more, we obtain

F'(@30,) = F1(0,0(2), 0a(@)) 6] + (7, 0 (2), 0 (@)} 62)] + Ful@, 6, (2), (@) [0, (756,
= F(@,5, 08 + Fy(,5,0) [ (A" 0 B) [} (556,)] + (A" o W'(2)) 8] + Fi(@,5, @) [0}, (7:6,)
= (Fi@,5.0)+ Fy(@,5.0) 0 A" o W (2)) 6] + (Fy (@, 0) 0 A" 0B+ Fy (2, 5,)) [,(3:,)

for arbitrary directions 4, € X, and the mapping 4§, — F’(g?; ) is Lipschitz continuous.
Let us define the perturbation mapping A: W = X as stated below:

YVweW: A(w):={zeX|Gx)+weC}.

The postulated constraint qualification (4.21) implies that A is calm at (0, ), see [17, Theorem 2.87 and
Remark 2.88] and [61, Section 1]. Hence, we can apply [90, Lemma 5.47] in order to see that there exists
a constant ¢ > 0 such that (Z, G(Z)) is a local optimal solution of the penalized problem

F(z)+c¢|G(x) —w|,, — min
w e C.

Observe that (z,w) — ¢||G(x) — w|,, is directionally differentiable at (Z, G(Z)) with directional derivative
(0z,0w) + ¢ ||G"(Z)[02] — dwllyy, see [112, Proposition 3.6], and this mapping is Lipschitz continuous. We
apply Lemma 2.29 in order to find the necessary optimality condition

Vo, € X6, € Ro(G(E):  F/(3:8,) + |G (3)[0a] — dullyy = 0.
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Next, we exploit the convexity of C' and the continuity of the appearing directional derivatives to obtain
the stronger condition

Vo, € XV6, € To(G(2)):  F'(2;0,) + ¢ ||G'(2)[62] — dullyy > 0.
This implies )
Vo, € X: G'(2)0:] € To(G(z)) = F(z;0,) > 0.
Consequently, 4, = 0 solves the surrogate problem
F'(Z;6,) — r%in
G'(2)[6:] € To(G(2)).

Let us introduce the additional variable &, := 1, (Z; 8,) in order to handle the directional derivative of F
properly. Furthermore, we set

O = PrOjkc,,  (a,m—a) (' (2)[0] — E[0u]).

Since Ky, (a,w — @) is a closed, convex cone, we can invoke Example 2.30 and Lemma 4.8 in order to
see that the relation §,, = !,(Z; 0..) is equivalent to the complementarity system
Sy —L%[0,] = 0
O
1'(2)[0z] — E[0u] — 0x
<77/(§5)[5w] —E[0,] — 577’57r>u = 0.

m Mm
o)
S
o
=
g
\
=

For 6, = 0, its unique solution is given by d, = 6 = 0. Combining this observation with the above
formula for the directional derivative of F', the proposition’s assertion is proven. O

Let us exploit the theory of MPCCs presented in Chapter 3 in order to formulate necessary optimality
conditions of KKT-type for the bilevel programming problem under consideration.

Theorem 4.10. Let (Z,7,u) € X x Vs x U be a local optimal solution of (BPP) with lower level (4.3) and
let all the assumptions of Proposition 4.9 hold. Then the following statements are valid:

1. Assume that the constraint qualification

n'(x) —E—TIy

holds. Then there exist multipliers p € W*, u,v € U, and p € Vs which solve the following system:

G'(7) 0 Py Iy 0 0 To(G(Z)) 4%
0 Iy (u) -1o0 L? 0| | Ku,(@w—a)yt|=|u (4.23)
0 Iy-L? Iy| \ Kuy,(a,o—a)t u

0= Fy(z,7, ) + h'(2)*[p] + G'(2)"[p] + ' (2)*[V], (4.240)
0=F.,(z,y,u) +B*[p| + u— (E+ Iu)[v], (4.24b)
0= A*[p] — F,(z,7,a), (4.24c¢)
p € No(G(z)), (4.24d)
v+ L2 u—v] € d(Ky,, (@,w —a)° — Ky, (a,w — 1)°), (4.24e)
v € d(Kuy, (@, w — a) — Ky, (@, ® — u)). (4.241)

2. Let X and W be reflexive. Assume that the constraint qualification

U—G'( ) []+72( )" v,
) € No(G@), = he=ty =l
(v+ L2[N —vv) € nghN)CUad(ﬁ,ﬁzfﬁ) (0,0)

(4.25)

holds, whereas one of the following conditions is valid:
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a) To(G(z)) is SNC at 0 and U is finite-dimensional,
b) the set Tc(G(Z)) x gph Ny, (a,w—a) is SNC at (0,0,0).
Then there are multipliers p € W*, u,v € U, and p € Y, which satisfy the conditions (4.24q) -

(4.24d) and
(v+L%pu—v]v) € nghN’CUGd('ﬁ'w"ﬁ) (0,0). (4.26)

3. Assume that the constraint qualifications (4.23) and

G'(z) 0 e Iy 0 0 Ne(G(z)) L 4%
cl 0 Iy (u) - |0 L? 0| [Ku,(ww—a)y+]|]|=(U (4.27)
n(z) —E—Iy 0 Iy—-L%2 Iy Ku,, (@, w — )+ U

are valid. Then there are multipliers p € W*, u,v € U, and p € Y which satisfy the conditions
(4.240) - (4.24d) and

v+ L u—v] € Ky, (a,w — u)°, (4.28q)
v € Ky,,(u,w — u). (4.28b)

Proof. First, we note that by means of Proposition 4.9 (d,,0,,6-) = (0,0,0) is a global optimal solution
of the MPCC (4.22).
For the proof of the first assertion, we invoke Lemma 2.36 in order to see that (4.23) is equivalent to

G'(z) © 0 pe To(G(Z)) )4%
0 Iy -—L? o {0} |lu
0 0 Iy (u) Ko, (a,w—u)°+ | | U
n(z) —E —Iy Ko, (@, w — a)* Uu

Thus, we can apply the first statement of Proposition 3.4 in order to find multipliers p € W* and k,9,v € U
which satisfy (4.24d) and

0= Fy(z,5,7) + F(,5,a) o A" o I () + G'(2)*[p] + 1/ (2)"[V],

Y

o, (4.29)

We define i := k+v in order to obtain the conditions (4.24e) and (4.24f). Finally, we introduce an adjoint
variable p € Y, as presented in (4.24c) to state the first two conditions in (4.29) as (4.24a) and (4.24b),
equivalently.

The proof of the second assertion is similar to the argumentation above. Under condition 2.a), the set
To(G(z)) x {0} x gphj\/',CUGd (a,m—a) 18 SNC at (0,0,0,0) and combining Lemmas 2.29 and 2.38 yields the

claim if the constraint qualification
0=G"(@)"[p] +n'(2)"[v],
0=k —E[],
0=—L*[x] +0 —v, — p=0,k=0,0=0,v=0 (4.30)
p € Nc(G(2)), k €U,
(0,v) € nghN)CUud(ﬂ,ﬁ)fﬂ) (0,0)
is satisfied. However, (4.30) is equivalent to (4.25):

If (p, p,v) € W* xU xU satisfy the premise of (4.25), then (p, k, 9, v) with k := p—v and ¥ := v +L2[u—v]
satisfy the premise of (4.30). Thus, if the latter constraint qualification holds, we obtain p = 0, Kk = 0,
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¥ =0, and v = 0 which leads to u = k + v = 0, i.e. (4.25) holds. On the other hand, let (4.25) hold
and assume that (p', k', ¥, V') € W* x U x U x U satisty the premise of (4.30). Setting 1/ := £’ + 1/, the
triplet (p/, ', V") satisfies the premise of (4.25) and, thus, we have p’ =0, 1/ = 0, and v/ = 0. This leads
tox' =p' —1v/ =0and ¥ =v' +L%[x'] =0, i.e. (4.30) is valid.

Postulating 2.b) and observing that the mapping (8,,d,) + d, — L?[0,] is surjective, we can adapt the
proof of Proposition 3.6 and the above argumentation in order to verify the second assertion.

The proof of the theorem's third statement is analogous to the validation of its first assertion using the
second statement of Proposition 3.4. O

Observe that the constraint qualifications (4.21) and (4.23) are both implied by the condition

G'(z) 0 pr Iy 0 0 Re(G(T)) 4%
0 Iy <u> —-|0 L2 0 Ko, (a0 —w)°t | =(U|. (4.31)
n'(Z) —-E—1Iy 0 Iy—-L? Iy| \ Ku,(a,o—u)* u

On the other hand, (4.21) and (4.23) together do not need to imply (4.31), see Example 4.15.
Below, we comment on Theorem 4.10.

Remark 4.11. We can interpret the optimality conditions presented in the first, second, and third statement
of Theorem 4.10 as W-, M-, and S-stationarity-type conditions, respectively, since they were derived via
the surrogate MPCC (4.22). Since zero is a global minimizer of (4.22) for any local optimal solution of
(BPP) with lower level problem (4.3) under the assumptions of the theorem, whereas any closed, convex
cone is polyhedric w.r.t. (0,0), the optimality conditions of S-stationary-type (i.e. the optimality conditions
presented in the theorem'’s third statement) possess reasonable strength, see Chapter 3. Moreover, these
S-stationarity-type conditions are more restrictive than the M-stationarity-type optimality conditions (i.e.
the optimality conditions presented in the theorem’s second statement), see Proposition 3.11.

If Uyq is polyhedric w.r.t. (4, w — @), then the operator L can be chosen to be I, in (4.24e), (4.26), and
(4.28a), see Lemma 4.3. Especially, the optimality system of S-stationarity-type reduces to the classical
system of S-stationarity.

Remark 4.12. From the proof of Theorem 4.10 the system of W-stationarity-type (4.24) possesses a
solution provided the system (4.24d), (4.29) possesses a solution. The converse of this statement is also
true: Let p € W*, u,v € U and p € Y, solve (4.24) and set x := u—v as well as ¥ := v +L?[x]. Respecting
the definition of p in (4.24c), the multipliers p, x, 9, and v solve (4.24d), (4.29). Carrying out the
proofs of the theorem'’s second and third assertion in a detailed way leads to optimality systems similar to
(4.29) as well, and these systems are equivalent to the optimality conditions of M- and S-stationarity-type,
respectively.

Note that there exist different ways of how to derive necessary optimality conditions for the bilevel pro-
gramming problem of interest. Recalling the proof of Proposition 4.1, we can replace the condition
(y,u) € ¥(x) equivalently by

Aly] = Blu] = h(z) = 0

n(z) = (E+ Tu)[u] € Ny, (u).
Thus, the original bilevel programming problem is equivalent to an optimization problem whose feasible

set comprises a generalized equation. Problems of this kind were considered in [90, 97, 128, 133] and
many other publications. Here we do not want to discuss this approach in more detail.

Let us take a closer look at the situation where U,y is a cone. Then we can rewrite the original bilevel
programming problem equivalently as the following MPCC:

Gz) € C
Aly] = Blu] = h(z) =0

(4.32)

S
n(z) — (E+ Iy)[u] € Ugy
<71(1) - (E+ I]/{)[U],U>u = 0.
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Using the results of Propositions 3.4 and 3.6, it is possible to obtain necessary optimality conditions for
this problem under appropriate constraint qualifications. Observe that the following results are essentially
different from those obtained in Theorem 4.10. Later, we will visualize these differences in the situation
where U,q equals the nonpolyhedric cone S;f in Section 5.1.

Proposition 4.13. Let (Z,7,4) € X x Vs x U be a local optimal solution of (BPP) with lower level (4.3)
where Uy is a cone. Furthermore, set @ := n(Z) — E[u]. Then the following statements are valid:
. Re(G(#)
() = | Rra@n (Kl

w
0 — 1)) ) = (u) (4.33)
Rue, (0 — 1) N (—Kys, (0 — @, 1)) Uu

holds. Then there exist multipliers p € W*, u,v € U, and p € )s which satisfy the conditions (4.24q)
- (4.24d) and

1. Assume that the constraint qualification

G'(7) 0
0 Iy
(@) —E-Iy

p€ cl(Ugy — Ugg n{a}*) n{a},
v € cl(Upg — Upg N {w — a}) N{w —a}".

2. Let X and W be reflexive, and let F' be continuously Fréchet differentiable ot (Z, 7, @). Assume that
the constraint qualification

0=G"(z)"[p] +n'(2)*[v],
0=p—(E+ Iy,

p € Ne(G(2)),

(v )EnghNud( w — u)

= p=0,p0=0,v=0

holds, whereas one of the following conditions is valid:
a) Cis SNC at G(z) and U is finite-dimensional,
b) the set C' x gph Ny, is SNC at (G(Z), u,w — @).
Then there are multipliers p € W*, u,v € U, and p € ), which satisfy (4.24a) - (4.24d) and

(p’a ) EjV’gphf\/Ud( w — ﬂ)

3. Assume that the constraint qualifications (4.33) and

G'(z) 0 X Ne(G(z)) L W
cl 0 Iy <u> - TUudﬂ(—TU (@) )+ =|\u (4.34)
(@) —E—Iy TU;’dﬁ(—TU;d(w—u))(m w)°+ u

are satisfied. Then there are multipliers p € W*, pu,v € U, and p € Y, which satisfy (4.24q) -
(4.24d) and

Remark 4.14. Even in the situation where Uy is a polyhedric cone, there might be a difference between
the results in Theorem 4.10 and Proposition 4.13 although we can put L. := I,. In order to see this, we can
consider U := L?(IM) and Uyy := L2(M)J for some complete, o-finite, and nonatomic measure space
M = (2,3, m) such that LI(9M) is separable for all g € [1,00). Then we have from (3.19) and Proposition
3.17 that the constraint qualification (4.33) is stronger than (4.31), whereas (4.27) is equivalent to (4.34).
Observe that the corresponding systems of W- and S-stationarity (i.e. the first and third optimality system
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in Theorem 4.10 and Proposition 4.13) are equivalent, see Theorem 3.14 and (3.19). Clearly, the M-
stationarity-type optimality conditions are not applicable due to the absence of the SNC property for the
complementarity set in Lebesgue spaces, see Lemma 3.15. Thus, in this situation, the results in Theorem
4.10 are superior to those in Proposition 4.13. In Section 5.1, we will analyze the situation where i = S,
and Uy := S, are under consideration.

We want to close this section with an illustrative example.
Example 4.15. We choose Q := (0,1) CR, X =U = L?(Q), Y, := {y € AC*?*(,R) | y(0) = 0},

C:={zcL*)|zw)€[-1,1] fa.a weQ},
as well as U,y = L%(Q)§ and consider the bilevel programming problem
1
%/ (y(w) — 1)*dw — min
0 T,Y,u
xeC
(y,u) € ¥U(x)

where ¥: L2(Q2) = Y, x L?(Q2) denotes the solution mapping of

(4.35)

;/Ol(u(w) — z(w))?*dw — min

y(w) - Aw U(T)dT — Aw I(T)dT — 0 a.e. on Q (436)
u € LA(Q)F.

Clearly, the lower level dynamics can be expressed equivalently by Vy = u + = almost everywhere on Q
and y(0) = 0. We identify Y* with its dual by means of Riesz’s representation theorem. Thus, we obtain
0=1,C=0,P=0,Q=1I12), A=1Iy, and

u, 2 w N ullw) = w’LLTT T)I\w) = waT T =Db|T||W).
Vu,z € I3 (Q)Vw € 0 Blu](w) / (N)dr,  hx)w) / (r)dr = Blz](w)

This yields 7 = I12(g) and E = 0.
One can easily check that a global optimal solution of (4.35) is given by (Z, 4, %) € L*(Q) x Vs x L?(Q)
defined below:

e w2 e )

As said in Remark 4.7, the projection onto L2(2)d is not B-differentiable from L?(Q) to L%(Q) so we
cannot apply Theorem 4.10 directly. On the other hand, in order to prove Proposition 4.9 and, thus,
Theorem 4.10, we only need the directional differentiability of the solution mapping to the nonsmooth
equation (4.5b) which reduces to @ = projy,_ (%) in our setting. Thus, its solution mapping equals proj_,.
Clearly, since U,g = L?*(Q)§ is polyhedric, the directional differentiability of the projection is inherent from
Lemma 4.3. Especially, we have L = I12(q). Thus, we can apply Theorem 4.10.

Clearly, the constraint qualification (4.21) holds. Using Lemma 2.12 and the results from Section 2.3.5,
we obtain

N ) v(w) > 0fa.a. we(0,3)
Ne(@) = {U € L) v(w) =0fao.0 we[3,1) } 7
Ne(@) ={w e L*(Q) |w(w) =0fa.a. we (0,3)},
Ku,, (4,2 — 1) = {we L*(Q)|ww) > 0faa we [ 1)},
. ) v(w) =0fa.a. we(0,3)
Ku,,(a,z — u) {véL Q) v(w)<0f.a.a.w€[§,1)}’
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From above, we easily see

Using Corollary 2.37 twice, this is equivalent to
Ize 0 Ne(z L*(Q
7 | (E0) - (et o) - ()
I2) —Irze Ku,, (4,7 —a)* L%(Q)

and the latter condition implies (4.23) and (4.27) for (4.35). By means of Example 2.27 the objective
functional of (4.35) is continuously Fréchet differentiable. Consequently, we know that the S-stationarity-
type optimality conditions from Theorem 4.10 hold ot (Z, 7, @). Note that since we have

u(w) € [~2,0] f.a.a. w € (0, ;)}

Rc(Z) = cone {u € LQ(Q) u(w) € [-1,1] fa.a. we [%, 1)

all functions from R (Z) need to be essentially bounded, i.e. they come from L>°(£2). Thus, we obtain
RC(Q_:) - ICUod (ﬂ7 z— a)OJ_ - ]CUcd (aa z— ﬂ)L 7& LZ(Q)

which shows (apply Corollary 2.37 again) that (4.31) is violated for our problem of interest. Following
Remark 4.14, the constraint qualification (4.33) is violated as well. Especially, we cannot apply the W- and
S-stationarity conditions from Proposition 4.13. Since gph Ay, fails to be SNC everywhere, see Lemma
3.15, the corresponding M-stationarity conditions from Proposition 4.13 cannot be used as well.

In order to evaluate the optimality conditions, we interpret F(z, 3, a) as a function in AC"?(Q,R). Using

Lemma A.5, we obtain
Yw € Q: F’___ // ) — 1)drds.

Applying the definition of the adjoint operator yields B*[ | = Vy for all functions y € );. Defining a
function ¢ € L*(Q) by ¢ := B*[F}(z,7,u)] = h/'(z)*[F,(Z,7,u)], the S-stationarity conditions from the
third assertion of Theorem 4.10 reduce to

0=v+p+v,

0= ¢ + B =V,

p € No(z), (4.37)

Due to
1 2 1 K 1
_ w—w?— 5 fwe(0,3)
Yw € Q: = —1)ds = 4 r2n
e vl = [ (1) - s {O o
the system (4.37) possesses the solution p := —2¢, u = 0, and v = 1. Thus, the S-stationarity-type
conditions are valid. |

4.2. The KKT reformulation of the bilevel programming problem

In this section, we want to discuss the replacement of the lower level problem by necessary and sufficient
optimality conditions comprising multipliers. Let us first postulate our standing assumptions which shall
hold throughout the whole section.
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Assumption 4.4. Let Assumption 4.1 hold. Furthermore, f and g are twice continuously Fréchet differen-
tiable, whereas K is a nonempty, closed, convex cone. For any z € Xq, f(z,-) is convex, whereas g(z, )
is —K -convex. Finally, for any 2 € X q and any y € Y satisfying g(z,y) € K, the constraint qualification

d,(x,9) V] — Ric(g(z,y)) = Z
shall hold.

These assumptions guarantee that for any z € X4, the condition y € ¥(z) is equivalent to

e Kon{gle, )} fyle,y) +g,(z9) [N =0, g(z,y) € K,
see Lemmas 2.32 and 2.35. Thus, it is reasonable to study the surrogate problem

F(z,y) — min
EIRTIDN
G(z) e C
fo(@,y) + gy (2, 9)* [\
g(z,y) € K
A€ K°
<>\,9(xay)>z = 0

which is an MPCC, see Chapter 3. We call (KKT) the KKT reformulation of (BPP). Similar as presented in
Lemma 3.1 we easily see that KRZCQ fails to be satisfied at the feasible points of (KKT). That is why we
need to invoke the theory developed in Chapter 3 in order to state applicable necessary optimality condi-
tions and constraint qualifications. Furthermore, in view of [28], it is necessary to clarify the relationship
between the two optimization models (BPP) and (KKT).

=0 (KKT)

S
S

4.2.1. On the relationship between original and surrogate problem

In this section, we want to compare the models (BPP) and (KKT) w.r.t. their global and local optimal
solutions. As mentioned earlier, by means of [28] we expect some delicate results here when local optimal
solutions are under consideration. The core of our analysis relies on the properties of the Lagrange
multiplier mapping A: X x Y = Z* of (4.1) defined below:

Vo e XVyeY: Alzy)={re K°n{gx,y)}" | f(z.y) +g,(x,y)"[\] = 0}.

Note that due to Assumption 4.4 as well as Lemmas 2.32 and 2.35, we have y € ¥(z) for z € X4
with g(x,y) € K if and only if A(z,y) # @ holds. In the following lemma, we subsume some important
properties of A. Recall that Assumption 4.4 holds. Especially, KRZCQ holds at any lower level feasible
point if the corresponding parameter is feasible for the upper level problem.

Lemma 4.16. Let (z,5) € X x Y be feasible for (4.1) and assume that A(Z, 7) is nonempty. Then the
following assertions hold:

1. For any sequences {(=x,yx)} € X x Y and {\} C Z* satisfying zr, — 7, yx — 7, Mk % X, and
A € Az, yi) for all k € N, we have X € A(Z, 7).

2. Ais locally bounded at (z, 7).

3. If the set-valued mapping T: Y* x Z = Z* defined by
Yyt e YVz e Z: Y(yt,z) ={Ae K°N{}"|y* + g, (z,5)* [\ =0} (4.38)

is locally upper Lipschitzian at (f;(Z,9), g(%, 7)), then A is locally upper Lipschitzian at (Z, 7).
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Proof. Let us start with the proof of the first assertion. Therefore, choose sequences {(zx,yx)} € X x Y
and {\;} C Z* which satisfy a2, = Z, yr = 7, Mk SN and N\, € A(zg,y) for all k € N. Then we have

Fo(@rsun) + gy (@r, yk) ] = 0, (ks g(@k,9)) 2 =0, Mg € K°

for any k € N. Since K° is weakly* closed, we have A\ € K° as well. The continuity of ¢ and Lemma
2.4 lead to <5\,g(i,gj)>z = 0. Since f and g are continuously Fréchet differentiable, we obtain the
convergencies f, (v1,yx) — f,,(Z,9) and g, (v1,yx) — g,(Z,7) in Y* and L[V, Z], respectively. We apply
Lemma 2.4 once more in order to see

lim <9;($k,yk)*[)\k}vy>y = kILYEO (Mo 9y (h, 90 [W]) 5 = <5\,9y(i',17)[y}>z = <9;(fa§)*[5\]ay>y

k— o0

foranyy € Y, i.e. g, (wr, yr)*[\i] R gg’/(a‘:,g)*[ﬁ] holds. Hence, for any y € ), we have
<f;(f, ) + gé(faﬂ)*[j\]awy = klggo <f@/,(ffk,yk) + Qé(xk,yk)*[)\k]va =0

which yields f; (z,7) + g,(, 7)*[\] = 0. Summarizing the above calculations, we arrive at A € A(Z, 7).
The fact that A is locally bounded at (z, 3) follows from [17, Proposition 4.43]. The final statement of the
lemma is a consequence of [17, Lemma 4.44]. O

Note that the property of A which we discussed in the first statement of the above lemma is stronger than
its closedness. Clearly, whenever Z is finite-dimensional, then both properties are equivalent.

Now, we are prepared fo start our analysis of the relationship between the two problems (BPP) and (KKT).
For global optimal solutions, the situation is calm and parallels [28, Theorems 2.1 and 2.3]. The proof of
the subsequent result is straightforward and, hence, omitted.

Theorem 4.17. If (z,y) € X x YV is a global optimal solution of (BPP), then (z,7, A) is a global optimal
solution of (KKT) for any A € A(Z, 7). On the other hand, if (Z,5,\) € X x Y x Z* is a global optimal
solution of (KKT), then (, ) is a global optimal solution of (BPP).

Now, we take a look at the relationship of (BPP) and (KKT) w.r.t. local optimal solutions. Note that local
optimality is considered w.r.t. all appearing variables of (KKT) in this thesis. In [137], the authors use a
different notion of local optimality where the norm of the lower level Lagrange multiplier \ is not taken
into account.

Let us start with the following observation. lts proof is, again, standard and, thus, omitted.

Theorem 4.18. If (Z,5) € X x Y is a local optimal solution of (BPP), then (Z,7,\) is a local optimal
solution of (KKT) for any A € A(Z, 7).

Clearly, the most interesting question is whether a local optimal solution of (KKT) corresponds to a local
optimal solution of the original bilevel programming problem since we want to solve the surrogate prob-
lem (KKT) instead of dealing with the hierarchical optimization problem (BPP). In the situation where Z is
finite-dimensional, we obtain the following result which parallels [28, Theorem 3.2].

Theorem 4.19. Suppose that Z is finite-dimensional and let (Z,7,A) € X x Y x Z* be a local optimal
solution of (KKT) for every A € A(Z, 7). Then (Z, ) is a local optimal solution of (BPP).

Proof. Suppose that (Z, ) is no local optimal solution of (BPP). Then there is a sequence {(zx,yx)} of
points from gph ¥ N (X,q X ) converging to (z,y) which satisfy F(zx,y,) < F(z,y) for all K € N. Since
KRZCQ holds for the lower level problem at (zx,yx), we find A\ € A(xg,yx) for all & € N. Applying
Lemma 4.16, {\r} is a bounded sequence in a finite-dimensional Banach space and, thus, contains a
convergent subsequence with limit A\ € Z*. Due to the closedness of A ot (7,7), see Lemma 4.16, we
obtain A € A(Z,%). Thus, (Z,7,A) is no local optimal solution of (KKT) which contradicts the assumptions
we made. O
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Let (Z, ) be a feasible point of (BPP). It is presented in [28, Example 3.1] in the case of finite-dimensional
bilevel programming that there may exist only one element X in the set of regular Lagrange multipliers
A(z,7) such that (Z,9,A) is a local optimal solution of (KKT) for all A € A(z,7) \ {A\} whereas (Z,7, \) is
not, and (Z, 7) is no local optimal solution of (BPP). Moreover, A may be a point in the relative interior of
Az, 7).

The proof of Theorem 4.19 heavily relies on the fact that the bounded sequence of Lagrange multipli-
ers contains a convergent subsequence which is natural when Z is finite-dimensional. However, this
argumentation is not possible anymore if we drop the assumption on Z to be a Banach space of finite
dimension. In the following example, we show that the situation is even worse in more general cases.

Example 4.20. For X =Y = R? and

Z = Cy([0,2n]) := {u € C(]0,27]) | u(0) = u(2m)},
K :={u e C,([0,27]) |u(t) < 0 forall t € [0, 2]},

we consider the parametric optimization problem

T -y — min
Y (4.39)
9ly) € K

where g: R? — C,([0,27]) is given by
Yy € R2Vt € [0,27]:  g(y)(t) := y1 cos(t) + yasin(t) — 1.

Note that g(y) € K is equivalent to |y|, < 1: Assume g(y) € K and |y|, > 1. Then there is a unique
t € [0,27) such that y/ |y|, = (cos(?),sin(f)) holds. This yields

: o 1 i
g(y)(t) = y1 cos(t) + yasin(t) — 1= m(y% +y3) - 1= mz 1=y, -1>0
2 2

which is a contradiction. On the other hand, |y|, < 1 yields

_ [y (cos(t)) o 20 B
o) = (1) - (Gath)) =1 < ol eos2(0) s ()~ 1= bl =1 <0
for any t € 0,27, i.e. g(y) € K.

Thus, for any z € R? \ {0}, the unique optimal solution of (4.39) is given by y(z) := —z/ |z|,, and there
is a unique t(x) € [0, 27) which satisfies () = (cos(t(x)),sin(t(z))). The affine mapping g is continuous
and, hence, continuously Fréchet differentiable with Fréchet derivative G € L[R2, C,, ([0, 2])] given below:

Vd € R?Vt € [0,27]:  G[d](t) = dy cos(t) + dg sin(t).
Note that we have

9(5(@)) + ¢ (H(@))[-y(x)] = 9(5(x)) - Gly(z)] = —1 € int K

which shows that KRZCQ holds for (4.39) at the optimal solution, see Remark 2.33. It is reasonable to
interpret C, ([0, 27])* = M([0, 27)) where the latter vector space contains all signed and regular measures
of ([0, 27), B([0, 27))) equipped with the common variation norm of measure spaces. That is why we have

Ve M([0,27)):  G*[u] = (/[0 Cos(t)du(t),/

[0,27)

sin(t)du(t))

2m)

as well as
K® = {pe M([0,2m)) [VA € B([0,27)): pu(A) > 0},
9(

and the KKT conditions of (4.39) at (x, §(x)) take the form

T +/ cos(t)dA(t) =0, a2+ sin(¢)dA(t) =0, / g(g(x))(®)dA(t) =0, A€ K°.
[0,27)

[0,27) [0,27)
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The unique solution of this system is given by A(x) := ||, d;(,) where d;(,) denotes the Dirac measure of
the singleton {t(z)}.

For an arbitrary continuously differentiable function F': R?xR? — R, we consider the bilevel programming
problem

F(z,y) — min
Ty

lz[,—1 =0 (4.40)
y € ¥(z)

where ¥: R? = R2 denotes the solution set mapping of (4.39). This problem satisfies Assumption 4.4.
Due to the above considerations, its KKT reformulation is given by

F(z,y) — min

z,Y,A
x|, —1 =0
x2+ ) (4.41)
oty =
|x\2

A — |1’|2 5t(z) = 0.
Choosing two different feasible points (2%, 3%, \), i = 1,2, of (4.41), we have t(z!) # t(2?) and, thus,

1_ 42 _ _
H)‘ = A HM([O,QW)) - H‘St(ml) - 6t(12)HM([0,2w)) =2

Consequently, any feasible point of the KKT reformulation (4.41) is a local optimal solution of this problem
since it is isolated. However, for reasonable objective functions F', not every feasible point will be locally
optimal for (4.40). Note that this example satisfies all the assumptions of Theorem 4.19 apart from the
fact that Z is infinite-dimensional. Choosing a sequence {(zx,yr)} € (Xog X R?) N gph ¥ converging to

some point (z, y) (with Z # (1,0)), we easily see t(z;) — ¢(z). Thus, for any u € C,([0, 27]), we obtain

lim (M), u)c (0,24 = Jim u(t)ddy(g,)(t) = lim u(t(xy))

k—oo k—oo [0}271.) k—oo
— u(t(®@)) = /[ | HO8 0 = @), v, om)

i.e. the bounded sequence of corresponding Lagrange multipliers {\(x)} converges weakly* to a mul-
tiplier \(Z) € A(Z,y). However, the convergence is not strong whenever the sequence {z;} does not
become stationary. This shows exemplary why the proof of Theorem 4.19 does not apply to the situation
where Z is infinite-dimensional. |

In order to avoid the difficulties depicted in the above example, we need to formulate stronger assumptions
than in Theorem 4.19.

Theorem 4.21. Let K be a polyhedral cone and let (z

a 7, A\) € X x Y x Z* be a local optimal solution of
(KKT) such that A(Z, §) equals the singleton {\}. Then (Z,

7) is a local optimal solution of (BPP).

Proof. Since K is polyhedral, it follows from [17, Theorem 2.208, Example 2.209] that the set-valued
mapping T defined in (4.38) is locally upper Lipschitzian at (f;(Z,9), (%, 9)). Thus, A is locally upper
Lipschitz continuous at (7, %), see Lemma 4.16. Taking into account A(Z, %) = {\}, there are constants
L > 0 and ¢ > 0 such that

V(z,y) € Uy VA€ Az, y): ||A =)

2. <Lz =2l +lly = 9ly) (4.42)

holds. Suppose that (Z, ) is no local optimal solution of (BPP). Then there is a sequence {(xy,yr)} in
(Xaq xY)Ngph ¥ converging to (Z, ) which satisfies F(xy, yr) < F(Z,y) for all k € N. On the other hand,
we find a sequence {\;} C Z* such that A\, € A(ag,yx) holds for all k € N, i.e. (zx, yx, M) is feasible for
(KKT) for all k € N. From (4.42) we derive ||Ar — ||, < L([|zr — Z| x + llyx — 7ll5,) for sufficiently large
k € N. Hence, we have A\, — \. This contradicts the local optimality of (z,4, ) for (KKT). O
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Theorem 4.22. Let (Z,5,\) € X x Y X Z* be a local optimal solution of (KKT) where the condition

9,(@. V) = Ri(9(z.9) N{A}L = 2

is satisfied. Then (Z,7) is a local optimal solution of (BPP).

Proof. Obviously, the postulated condition equals SKRZC for the lower level problem (4.1) for fixed z = z
and XA € A(Z,7). Recalling Remark 2.34, we have A(Z,3) = {\}. On the other hand, [17, Proposi-
tion 4.47] shows that the set-valued mapping T defined in (4.38) is locally upper Lipschitzian at (z, 7).
The remaining part of the argumentation parallels the proof of Theorem 4.21. O

Recalling Example 4.20 where any feasible point of the KKT reformulation was already a local optimal
solution, we obtain that the cone K defined therein is nonpolyhedral and that SKRZC does not hold at the
feasible points of the corresponding lower level problem (4.39).

Combining Theorems 4.17, 4.18, and 4.22 yields the following corollary.

Corollary 4.23. Suppose that for any point (z,y) € Xoq x Y which satisfies g(z,y) € K, the operator
g, (,y) is surjective. Then the mapping A is at most singleton-valued on Xoq x Y. Furthermore, a point
(z,7) € X x YV is a global (local) optimal solution of (BPP) if and only if there is A € A(Z,%) such that
(%,7, ) is a global (local) optimal solution of (KKT).

4.2.2. Necessary optimality conditions

Here we are going to apply the results obtained in Chapter 3 to the surrogate problem (KKT) in order to
derive necessary optimality conditions for (BPP). Therefore, we assume that Z is a reflexive Banach space
in order to ensure the symmetry of the complementarity condition. Let us define the following stationarity
notions for the bilevel programming problem.

Definition 4.1. A feasible point (7,7) € & x Y of the bilevel programming problem (BPP) is called
W-stationary (M-stationary, S-stationary) for (BPP) if there is some A\ € A(Z,y) such that (z,7,)) is a
W-stationary (M-stationary, S-stationary) point of (KKT) in the sense of Definition 3.1 (Definition 3.2,

Definition 3.1).

We need to mention that our definition of the various stationarity notions differs from the definitions pos-
tulated in [33] where the authors demand that (Z, 7, \) satisfies the corresponding stationarity conditions
of (KKT) for all A € A(Z,y). On the one hand, this stronger notion seems to respect the results in The-
orems 4.17 and 4.19. On the other hand, we may run into some trouble w.r.t. appropriate constraint
qualifications, see the forthcoming Remark 4.29 and Example 4.30. Additionally, as we revealed in the
last section, the local equivalence of (BPP) and (KKT) may be generally guaranteed only in the case where
the lower level multiplier is unique a priori whenever Z is infinite-dimensional, see Theorems 4.21 and
4.22 as well as Corollary 4.23, and in this case, our notions of stationarity do not differ from the ones in
[33]. Hence, we rely on the weaker stationarity notions from Definition 4.1.

In the following proposition, we state equivalent notions of the W-, M-, and S-stationarity conditions of
the bilevel programming problem which easily follow from Definition 4.1.

Proposition 4.24. Let (Z,7) € X x Y be a feasible point of the bilevel programming problem (BPP).

1. The point (Z,§) is W-stationary for (BPP) if and only if there are A € A(Z, %), p € W*, k € Y**, and
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u € Z* which satisfy the following conditions:

0= F1(5,9) + G'@)"lo) + £2(5,9)" 5] + (A 92 @.9))_ 6] + 053, 5)" [, (4.430)
0= F)(z,9) + fi2(z,9) [x] + <A 9§ (z z?)>;[/ﬂ +g,(z,9)*[ul, (4.43b)
p € No(G(Z)), (4.43¢)
pe (K — K°n{g(z,m)}") n{gz,9)}, (4.43d)
— g, (z,9)**[k] € cl(K — K n{A}) n{AH (4.43¢)

2. The point (Z, ) is M-stationary for (BPP) if and only if there are A € A(Z,§), p € W*, k € Y**, and
1 € Z* which satisfy the conditions (4.43a) - (4.43c¢) and

(1, =9, (2, 9) " [K]) € Nephnvc (9(2,9), A).- (4.44)

3. The point (z,§) is S-stationary for (BPP) if and only if there are A\ € A(z,§), p € W*, k € Y**, and
u € Z* which satisfy the conditions (4.43a) - (4.43c) and
:U/EK:KO()‘?g(jag))a (4 45)
— 9,(%,9)"[r] € Kr(9(Z,7),\).
In the following remark, we comment on the above notation.
Remark 4.25. For fixed (z,7) € X x ), we interpret fﬁ)(f,gj) e L[X,Y*] and fﬁ) (z,7) € L[V, Y*]. Now,
fix some A € Z*. Then we have

v e (Ag2@n)_ 10 = (A2 @l 6]) = o @81 N € Y

by definition and, thus, for any x € Y** and §, € X, we obtain

(A g2@0), K6.) = (rg2@REEIN) = (Mg @) 8]" 1)

v z’

Analogously, we interpret the operator </\, g@(fy) (z, g)>z e L[y, V*].

Let Y be reflexive. Then we deduce Y = Y** and
Vo, € X f3(@,9) K][0.] = £32 (2, 9)[k, 0]

as well as

voex: (Ag@@a) K] = (A g2 @ Dl b)

are obtained for any k € Y since géi)(j,gj)[-,ém]** = géi)(f,y)[-,éw] holds for all §, € X. Especially, we
have

Vo, € Vi 3@ 9) [K6,) = f57) (2,9)k,6,] = fi3) (%, 9)[K][6,]
as well as

e (Ag2@n) Ws) = (Ao @ 0)lk.5,])

= (A g2 @ 0l = (N gD @n)_ K5,

Furthermore, we can replace g, (7,7)** in (4.43e), (4.44), and (4.45) by g, (7, 7).

First, we formulate constraint qualifications which ensure that local optimal solutions of (BPP) are W- or
S-stationary. The following result is the counterpart of Proposition 3.4 for (KKT).



4. Bilevel programming in Banach spaces 88

Theorem 4.26. Let (Z,3) € X x Y be a local solution of (BPP).
1. Assume that there exists A € A(Z, §) such that the constraint qualification
Py Re(G(2)) w
050 () ~2@) | Rien (-KieOuaz) | = (7] wag
Ric(9(z.9) N (-Kk (9(2.9), V) z

is satisfied where Q(Z,7,A) € LJXY x Y, W x Y* x Z] and P(Z,§) € LIV x Z2* x Z,W x Y* x Z] are
defined as stated below:

0 0 Iz
Then (Z, ) is W-stationary for (BPP).

2. Assume that there exists A € A(z, §) such that the constraint qualifications (4.46) and

Ne(G()) L w
cl (Q(f,ﬂvk) <§§) —P(7,9) ( Ticon(=Tio 1) (A)°F . L)) = <3§> (4.47)
Y

Tro(-Ti (9(z9)) (9(T

are satisfied. Then (z, ) is S-stationary for (BPP).

3. Assume that there exists A € A(Z, 7) such that Q(Z, 7, A) is surjective. Then (Z,§) is S-stationary for
(BPP).

Proof. The proof of the first two statements follows from Proposition 3.4 and the cancellation rule for
constraint qualifications in product spaces, see Corollary 2.37. The final assertion obviously follows from
the first two. O

Similar as stated above, we can adapt Proposition 3.6 in order to find constraint qualifications ensuring
that local optimal solutions of (BPP) are M-stationary. Be aware that the singleton {0} in Y*, which appears
on the right hand side of the constraints in (KKT), is SNC if and only if Y is finite-dimensional. This has to
be taken into account during the formulation of appropriate constraint qualifications. In the subsequent
theorem, we only present two possible versions of the qualification condition. One may check the proof
of Proposition 3.6 in order to see how other constraint qualifications can be constructed.

Theorem 4.27. Let W, X, as well as Y be reflexive Banach spaces and let (z,5) € X x Y be a local op-
timal solution of (BPP) where F is continuously Fréchet differentiable. Assume that there exists a multiplier
A € A(Z,7) such that the constraint qualification

p
OZQ(jvgaA)* K1,
H = p=0,k=0,u=0 (4.48)

p € Nc(G(z)),
(14, —gy(:ﬁ y)[x]) GnghNK(g(f,ﬂ),A)

is satisfied and C x gph N is SNC at (G(Z), 9(Z,7), ). Then any of the conditions stated below is
sufficient for (z, ) to be M-stationary for (BPP):

(a) Y is finite-dimensional,
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(b) the operator
F2@n+ (e @n) A @n+ (Al @9)_ gy@.9)7] €LIX x Y x 27,

is surjective.

Proof. We remark that the constraint qualification (4.48) is equivalent to

P
0=0(z,5,N)" | x|,

7]
p € Ne(G(2)), = p=0,k=0,pu=0,v=0.

0=g,(z 9kl +v,
(/1’7 l/) € NgPhNK (g(jz,y), )‘)

Thus, under the first postulated condition of the theorem, the assertion follows combining Lemmas 2.29
and 2.38. If the second condition is valid, we can show the assertion similarly as we did in the proof of
Proposition 3.6. O

Furthermore, we obtain the following result from Corollary 3.21.

Theorem 4.28. Let W, X, as well as Y be reflexive Banach spaces and let (Z,7) € X x Y be a local
optimal solution of (BPP) where F' is continuously Fréchet differentiable. Furthermore, let K be polyhedral.
Assume that there exists A € A(Z,7) such that the constraint qualification (4.46) is satisfied and suppose
that C' x gph Nk is SNC at (G(z),g(x,5),A). Then (z,%) is M-stationary for (BPP) provided one of the
conditions (a) and (b) from Theorem 4.27 is valid.

Obviously, the constraint qualifications in the Theorems 4.26 and 4.27 may depend not only on the
feasible point of (BPP) but also on the choice of the corresponding lower level Lagrange multiplier. This
may cause some frouble when checking whether these constraint qualifications hold or not.

Remark 4.29. Let (z,y) € X x Y be a local optimal solution of (BPP) where A(Z, ) is not a singleton.
Then it may happen that the constraint qualifications (4.46), (4.47), and (4.48) hold for some but not all
multipliers from A(Z, 7). This means that the choice of the multipliers in the Theorems 4.26 and 4.27 is
of essential importance.

Example 4.30. For X =Y = Z =R? and K = —R>"", we consider the bilevel programming problem
2 2 .
3 l2l3+ 5 yl; — min
x € U(x)
where ¥: R? = R? represents the solution mapping of the parametric optimization problem
%(yQ - 1)2 — min
y
yi+y—a1 <0
y2 —x2 < 0.
The lower level problem is convex w.r.t. y and its feasible set possesses interior points for any choice
of 2 € R? which yields that the postulated constraint qualification in Assumption 4.4 holds everywhere.
Obviously, the unique global optimal solution of the presented bilevel programming problem is given by

(Z,7) := (0,0). One can easily check that the corresponding set of lower level Lagrange multipliers is
given by A(Z,§) = conv{(1,0),(0,1)}. For any A € A(Z,7), we obtain

0 0 2x O 0 0 0 0

o 0 0 0 1 _ -1 -1 0 0
Q(J%ya)\) = -1 0 0 1]’ P(.Z‘,y) = 0 0 1 0
0o -1 0 1 0 0 0 1
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which shows that the constraint qualifications (4.46) and (4.47) fail to hold for A := (0,1) and are valid
for all the other multipliers from A(Z, 7))\ {\}. Especially, (Z, 7) is S-stationary for the bilevel programming
problem. For any A € A(Z, ), the corresponding constraint qualification (4.48) reduces to

0= —H1,
0= —p2,
0= 2)\1:‘{17

— k=0,u=0.
0 = Ko + p11 + piz,

(- (2) o

Clearly, this condition is satisfied for any choice of A € A(Z,7) \ {A\} and violated for A. ]

If the lower level constraints are of special affine type, i.e. if there are a linear operator B € L[V, Z| and
a continuously Fréchet differentiable function h: X — Z such that

Vee XVyeY: g(z,y) := h(x)+ B[y]

is satisfied, the situation is more comfortable. Here the operator Q defined in Theorem 4.26 does not
depend on the lower level Lagrange multiplier but only on the feasible point of the bilevel programming
problem. Thus, the surjectivity of Q is a handy constraint qualification implying local minima of (BPP) to
be S-stationary, see Theorem 4.26. In the following example, we study a situation where Q does not even
depend on the choice of the feasible point of (BPP).

Example 4.31. Let ) be reflexive. Suppose that there are linear operators A € L[X, Z], B € L[V, Z],
CeL[X, W], as well as S € L[X, V*], a self-adjoint and elliptic operator R € L[V, V*], and vectors c € W
as well as d € Z such that the mappings G, f, and g take the following form:

VeeXVyel: G(x):=Clz]—¢,  f(z,y):=3 Ry + ]y,  g(z,y):=Alz]+Bly —d
Furthermore, let the constraint qualification
BV — Ruc(Ala] + Bly] — d) = Z

be satisfied at any point (z,y) € X x Y where A[z] + Bly] — d € K is valid. Then we easiliy see from
Example 2.28 that Assumption 4.4 is satisfied. If the operator

CcC 0
Q:= (S R| ELX XY WX Y x Z|
A B
y) € X x Y of the corresponding bilevel programming problem
¥), p €W*, k€Y, and p € Z* which solve the system

is surjective, any local optimal solution (Z,
is S-stationary, i.e. there are multipliers A €

O—F’( R[k] +B*[u],

p € Ne(C[z] — o),

w € Ko (X AlZ] +B[y] — d),
—B[k] € Kk (A[z] 4+ B[g] — d, \).

S

A(z,
Fy(2,9) + C*[p] + 8% [x] + A*[p,

y)+

I -

In the absence of upper level constraints, one can fix A = 0 and assume the surjectivity of B and S in order
to ensure the surjectivity of Q. This setting is called ample parameterization, see [38].

Note that the (appropriately) discretized obstacle problem (1.3) possesses an ample-parameterized lower
level problem and, thus, its local optimal solutions are S-stationary in the absence of control constraints.
Let us take a short look at the infinite-dimensional setting. Then we have X = L?(Q2) aswell as ) = H{ ()
for some bounded domain © C R?, and S is given by the natural embedding from L2(9) into H~1(1).
Since L?(Q) is dense in H~1(Q), S possesses a dense range but is not surjective, i.e. the lower level
program of the (infinite-dimensional) obstacle problem cannot be ample-parameterized. However, its
local optimal solutions are always S-stationary in the absence of control constraints. This classical result
is known from [88, Section 4]. |
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4.3. The optimal value reformulation of the bilevel programming
problem

In this section, we consider the so-called optimal value reformulation (OV) of the general bilevel pro-
gramming model (BPP) in more detail. As we pointed out earlier, from

VeeX: U(z)={yeV|glzy) €K, flz,y) <p(z)}

it is easily seen that (BPP) and (OV) are equivalent optimization problems. Therein, ¢ denotes the optimal
value function of (4.1) defined in (4.2). Our main issue is to illustrate the difficulties arising from this
equivalent reformulation and to depict some approaches to overcome these problems. Finally, we state
KKT-type necessary optimality conditions for (BPP).

It is well-known from parametric optimization, see e.g. [7, 90, 91, 92, 93], that the function ¢ does
not need to be smooth. Thus, (OV) is a nonsmooth optimization problem in general. Secondly, the
problem (OV) is likely to be nonconvex due to the following observation: If f is fully convex and g is — K-
convex, then ¢ is convex (one can easily adapt the proof of [40, Proposition 2.1]). Thus, (OV) possesses
a constraint function given by the difference of two convex functions which is nonconvex in general.
Another disadvantage of this surrogate problem is its inherent lack of regularity. If ¢ is continuously
Fréchet differentiable at the reference point, then KRZCQ is violated. In the case where ¢ is at least locally
Lipschitz continuous at the point of interest, the constraint qualification (2.21) is likely to fail as well. Thus,
the standard constraint qualifications implying that local minimizers satisfy KKT-type optimality conditions
do not hold.

Lemma 4.32. Let (7,7) € X x Y be a feasible point of (OV). Then the following assertions are true.
1. Suppose that ¢ is continuously Fréchet differentiable at z. Then KRZCQ for (OV) is violated at (Z, 7).

2. Let X and Y be reflexive. Assume that ¢ is locally Lipschitz continuous at T and let the constraint

qualification o ]
s g (3) - (st ) = (%) (4.49)

be satisfied. Then for M := {(x,y) € X x Y |G(x) € C, g(z,y) € K}, the constraint qualification

0€00(f — ) (Z,9) + Nu(z,5), — 0 =0
60>0 -

from Lemma 2.39 is violated.

Proof. By definition of ¢, for any point (z,y) € X x Y satisfying g(z,y) € K, we have f(z,y) — p(z) > 0.
Thus, since (Z, ) is feasible for (OV), (Z, 7) is a global optimal solution of

f(x,y) — p(r) — min
@y (4.50)
g(z,y) € K.

Let ¢ be continuously Fréchet differentiable at Z. Suppose that KRZCQ holds at (zZ,7) for (OV). Then the
constraint qualifications

[(f s :%y)} (3}6) - (Rmﬂfﬁ, y))) = (E) (4.51)
" g' (@)X x V] - R (9(2,9) = Z (4.52)

are valid as well. The global optimality of (z, ) for (4.50) and (4.52) imply the existence of A € Z* which
satisfies

(f =) (@.9) + 4@ 9)" [\ = 0, A € Nk (9(2,9)),
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see Lemma 2.32. Therefore, the constraint qualification

0= 0(f — ¢)'(@5) + ¢'(&.5)* ]\, o
650, € Nic(9(2.9) }:‘9““‘0

is violated. Following Remark 2.33, (4.51) is violated as well. This is a contradiction.
Now, assume that ¢ is locally Lipschitz continuous at Z and that the constraint qualification (4.49) is valid.
Then we have

Nu(z,9) = G'(2)" [Ne(G(@))] x {0} + ¢'(2,9)" [Ni (9(. 9))]
from Lemma 2.31. Since (4.49) implies (4.52), we have

0€d(f—v)(@,9) +9 (@9 [Nk(9(z.7))]

from Lemmas 2.29 as well as 2.31 and the fact that (Z, 7) solves (4.50). Since we obtain the inclusion
9 (z,9)* [Nk (9(z,9))] € Nu(z,7) from above, the second statement of the lemma is true as well. O

In order to overcome the inherent lack of regularity when facing (OV), we use a penalization approach
introduced in [138]. Therefore, we take a look at

F(z,y) + 6(f(z,y) —o(z)) — Iglyn

G(z) € C (OVy)
g(z,y) € K

where x > 0 is the penalization parameter. The validity of the so-called partial calmness condition at
a local minimum of (OV), see [138, Definition 3.1] for the finite-dimensional case and the forthcoming
Definition 4.2 for the general case, guarantees that for some finite , the point of interest is a local optimal
solution of the partially penalized problem (OV,.) as well under a not too restrictive additional assumption.
Since (OV,) is a program which is likely to satisfy standard constraint qualifications, KKT-type necessary
optimality conditions come within reach provided ¢ possesses certain (generalized) differentiability prop-
erties. The procedure described above was used to derive necessary optimality conditions for common
finite-dimensional bilevel programming problems in [29, 34, 63, 92, 137, 138], for semidefinite bilevel
programming problems in [30], and for bilevel optimal control problems in [13, 14, 74, 84, 130, 131].
Below, we show how this theory generalizes to a very abstract setting which covers all the aforementioned
types of bilevel programming problems.

Definition 4.2. Let (Z,7) € X x Y be a local optimal solution of (OV). This program is called partially
calm at (z, ) if there are a neighborhood U of (Z,%,0) and a constant > 0, such that the following
implication is valid:

V(z,y,r) €U: G(z) € C, g(z,y) € K, f(z,y) — p(x) <r = F(z,y) — F(z,y) +nr > 0.

As mentioned earlier, we have the following result which parallels [138, Proposition 3.3] and [14,
Lemma 3.3]. However, since there is no proof provided in [138] and the result in [14] addresses a
very special optimal control problem, we decided to present a proof for the sake of completeness.

Proposition 4.33. Let (Z,7) € X x ) be a local optimal solution of (OV) where F' is continuously Fréchet
differentiable. Then (OV) is partially calm at (Z, §) if and only if there is some & > 0 such that (Z,7) is a
local optimal solution of (OV,;) for any x > k.

Proof. We set M := {(z,y) € X x Y| G(z) € C, g(z,y) € K}. Furthermore, some £ > 0 can be chosen
such that F is Lipschitz continuous on U%, (%, ) with Lipschitz modulus L > 0 since F is continuously
Fréchet differentiable at (Z, 7). Supposing that (OV) is partially calm at (Z,7), we find 6 > 0 and n > 0
such that

Y(x,y,r) € (M x R) mU‘}nyR(j,g,O): fla,y) —plz) <r = F(x,y) — F(z,5)+nr >0
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is valid. Define € := min{e; 2}, choose (z,y) € M N US «y(Z,9) arbitrarily, and set r := f(z,y) — ¢(x).
Note that f(Z,7) — ¢(Z) = 0 and r > 0 hold true.
If (z,y,7) is an element of Uy, x(Z,7,0), then the partial calmness yields

F(z,9) +n(f(Z,9) — »(2)) = F(7,9) < F(x,y) +nr = F(z,y) + n(f(z,y) — ¢()).

On the other hand, if (z,y,7) does not belong to U4,z (

Z,7y,0), then we have r > g from our choice
(z,y) € Uy y(Z, 7). The Lipschitz continuity of ' around (z, )

leads to

F(z,9) + L(f(2,9) — (2)) = F(2,9) < F(z,y) + L§ < F(z,y) + Lr = F(z,y) + L(f(2,y) - ¢(2)).

Setting % := max{n; L} shows that (Z, ) is a local solution of (OV,) for any x > k.
For the converse direction of the proof, we assume that there is % > 0 such that (7, ) solves (OV,;) locally
for any k > k. That is why we find a constant v > 0 such that

V(z,y) e MNUY,y:  F(z,y) +&(f(z,y) — (x)) > F(z,7)
holds true. Consequently, if (z,y,7) € (M x R) N Uy, 5 (%,9,0) satisfies f(z,y) —p(x) <r, then
F(x,y) — F(z,5) + Rfr > F(z,y) — F(z,9) + &(f(z,y) — ¢(x)) >0

is valid, i.e. (OV) is partially calm ot (Z, 7). O

If the bilevel programming problem (BPP) possesses a minimax structure, i.e. if the upper level objective
function F' equals —f, then the partial calmness property holds at all local optimal solutions of (OV), see
[84, Remark 3], [131], or [138, Section 4.1]. One may check [14, 34, 63, 138] for other criteria which
ensure that the partial calmness condition holds at a given local minimum of (OV). Later, we will make

use of the presence of a so-called uniformly weak sharp minimum of the lower level problem (4.1), see
[138, Section 5].

Definition 4.3. The lower level problem (4.1) possesses a uniformly weak sharp minimum if there exists
a constant v > 0 which satisfies

V@,y) €XxY: g(ry) €K = flo.y) —p(@) 2y min y - y'lly - (4.53)

Particularly, the minimum on the right needs to be attained if the solution set ¥(z) is nonempty.

One can check [136, 138] for criteria which ensure that the lower level problem possesses a uniformly
weak sharp minimum. In the upcoming example, we characterize a certain class of parametric programs
where this property is inherent.

Example 4.34. Let Z’ be an arbitrary Banach space and set Z = Z’' x RP. For operators A € L[X, Z']
and B € L[y, 2], functionals aj,...,a; € X* and b7,... b5, c* € V*, scalars By, ..., 3, € R, as well as
¢ € Z/, we consider

A B 3
aj bi B

VeeXvyel: [flzy):=("yy, gl@y):=|.|[l+]|. |-
a, b By

We set K := {0} x (—Rg’Jr). Finally, we assume that Y is reflexive and that B possesses a closed range.
Fix some (Z,7) € X x Y which satisfy g(Z,9) € K and assume that ¥(z) is nonempty. Since the latter
set is convex and closed (due to the linearity of f and g), there exists § € Argmin, cyz) Iy — 7l see
Lemma 2.5. Obviously, we have

V(@) ={ye V| {c"y—1)y=0,9(2,y) € K}.
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Invoking Hoffmann’s lemma, see [17, Theorem 2.200], and ¢(Z,7) € K, there is a scalar ¢ > 0 depen-
ding only on B and b7, ..., b}, c¢* such that

/renq{n lv' —3lly = llg—4lly

<o <IIA[5c] + B[] = €llz + 3 max{(a], &) + (b], 9y — Bis 0} + (" y>y\>
=0 ’<C*,:l] - g>y’ =0 (<C*7g>y - <C*ag>y) = Q(f(j>g) - 90(53))

is valid. Since g is independent of the choice of (7, 7), the considered parametric optimization problem
possesses a uniformly weak sharp minimum. [ ]

In the following proposition, which is related to [138, Proposition 5.1], we show that the presence of a
uniformly weak sharp minimum for (4.1) implies that (OV) is partially calm at all local optimal solutions
where the objective function is continuously Fréchet differentiable.

Proposition 4.35. Let (z,7) € X x YV be a local optimal solution of (BPP) where F' is continuously Fréchet
differentiable. Furthermore, assume that (4.1) possesses a uniformly weak sharp minimum. Then (OV) is
partially calm at (Z, 7).

Proof. Since (Z,§) is a local optimal solution of (BPP) where F is continuously Fréchet differentiable, we
find a constant & > 0 such that F is Lipschitz continuous on U%,,y,(Z,%) with Lipschitz modulus L > 0 and
satisfies F'(z,y) > F(z,y) for all (z,y) € U%,(Z,y) which are feasible for (BPP). Furthermore, there is a
constant v > 0 which satisfies (4.53).

We set § := min{%; =} and choose (z,y,7) € U,y (Z, 7, 0) which satisfies G(z) € C, g(z,y) € K,
and f(z,y) — p(z) < r. Due to the definition of the uniformly weak sharp minimum, we find a point
y(z) € Argming ey, |y — ¢'lly- This yields

IA

ly(x) = glly < ly(@) —ylly +lly = glly < 5 (f(@9) = e@) + § <

_|_
L]

T £
vy 27

Clearly, (z,y(z)) € Uy (Z,9) is feasible for (BPP) and, thus, satisfies F'(z,y(x)) > F(z,y). Finally, this
leads to

F(.%‘7y) - F(.’Z’,]j) > F(m,y) - F(.’L‘,y(.’L‘)) > —L ||y y )Hy ﬁ(f(x,y) - gD(.’L‘)) > —

e. (QV) is partially calm at (7, ). O

2|

T,

As we mentioned earlier, we need to ensure that the function ¢ possesses certain generalized differentia-
bility properties in order to derive KKT-type necessary optimality conditions for the problem (OV,.). Here
we just focus on the local Lipschitz continuity of ¢ which ensures the nonemptyness of its limiting and,
thus, Clarke subdifferential. The following result is taken from [31, Lemma 3.1, Theorem 3.1].

Lemma 4.36. Let (Z,7) € gph ¥ be a point where U is inner semicontinuous. Assume that the Banach
spaces X, YV, and Z are reflexive. Moreover, let K be SNC at g(z, 7) and let the constraint qualification

9@, D] - Ri(9(z,9)) = Z (4.54)
be valid. Then ¢ is locally Lipschitz continuous at Z and the following formula holds true:
‘() C{f(Z,9) + 92(T,9)" [N | A € MA@, )}
Therein, A(Z, ) denotes the set of lower level Lagrange multipliers at (z, %) given by

AMz,9) = {X € Nk(9(z,9)) |0 = f,(,9) + g, (z,9)* [N} -
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Note that the inner semicontinuity of the solution set mapping ¥ needed in the above lemma is a very
restrictive assumption. However, we exploited it here to get rid of compactness assumptions (as they are
postulated in e.g. [26]) which are rarely satisfied in the infinite-dimensional setting. In [29, Remark 3.2],
the authors present an overview of conditions ensuring the inner semicontinuity of ¥ at a given point.
Recalling Proposition 4.1 and Lemma 4.2, the solution set mapping of the parametric optimization prob-
lem (4.3) is singleton-valued as well as Lipschitz continuous and, thus, inner semicontinuous. Clearly, the
corresponding optimal value function is locally Lipschitz continuous.

It is worth to mention that the results of Lemma 4.36 stay valid if the inner semicontinuity of ¥ at the point
(Z,7) € gph ¥ is weakend to p-inner-semicontinuity and ¢ is lower semicontinuous at Z, see [91, Sec-
tion 5] for the definition of p-inner-semicontinuity and [91, Theorem 5.2] as well as [93, Theorem 7] for
the validation of this result. However, the usual way to guarantee the lower semicontinuity of an optimal
value function is to postulate certain compactness assumptions on the underlying data, see [7, Theo-
rems 4.2.1. and 4.2.2.], which, as we mentioned earlier, is often too restrictive when infinite-dimensional
parametric optimization problems are under consideration.

Finally, we would like to emphasize that results similar to Lemma 4.36 can be given in the case where ¥
is only inner semicompact (¢-inner-semicompact) at the reference point z, see [91, 93] for the details.
We combine Proposition 4.33 and Lemma 4.36 in order to obtain the following necessary optimality
conditions of KKT-type. Although the technique of their validation is the same as used in [29, 30, 34] to
derive similar results, we decided to present the proof here in order to show the reader how all the above
preliminaries come together.

Theorem 4.37. Let (Z,5) € X x Y be a local optimal solution of (BPP) where F' in continuously Fréchet
differentiable, ¥ is inner semicontinuous, and the constraint qualifications (4.21) as well as (4.54) are
valid. Furthermore, let X, ), and Z be reflexive, whereas K is SNC at g(z, 7). Finally, assume that (OV)
is partially calm at (Z,7). Then there exist multipliers p € W* and A\, A € Z* as well as a scalar x > 0
which satisfy the following conditions:

0= Fo(7,9) + G'(2)*[p] + g5(Z, §)*[A — KA, (4.550)
0= F,(z,9) + £f,(.9) + g,(.9)"[\, (4.55b)

= f3(Z,9) + g,(z, §)* [N, (4.55¢)
p € Nc(G(2)), (4.55d)
A € Nk (9(2,9)), (4.55¢)
A€ Nk (9(7,7)). (4.55f)

Proof. Due to Proposition 4.33, we find some x > 0 such that (Z, %) is a local optimal solution of (OV,,).
The theorem’s assumptions guarantee that the objective function of the latter program is locally Lipschitz
continuous at (Z, %), see Lemma 4.36. We set M := {(z,y) € X x Y |G(z) € C, g(z,y) € K} and obtain

0 € 0°(F +w(f — ) (@, 9) + Nu(,7)

from Lemma 2.29. Invoking the sum rule for Clarke’s subdifferential, see [24, Corollary 2 in Section 2.3],
we have

0°(F +w(f = ) (@,9) = {F'(z,5) + xf'(z,9)} — k0°(z) x {0}.
Clearly, the validity of the constraint qualifications (4.21) as well as (4.54) implies that the constraint
qualification (4.49) holds as well. Hence, we can apply Lemma 2.31 in order to obtain

N (z,9) = {(G"(2)*[p] + 95(2,5)* [N, g, (7,9)*[N]) € X* x Y*| p € Ne(G(@)), X € Nk(9(2,9))} -
Consequently, we find z* € 9°p(z), p € W*, and A € Z* which satisfy
0=Fy(2,9) + 6(fo(2,9) — 27) + G'(2)"[p] + g(z, 9)*[A], (4.56)

(4.55b), (4.55d), and (4.55e). Finally, Lemma 4.36 yields the existence of A € Z* satisfying (4.55¢),
(4.55f), and B

v = f(2,9) + 9.(z,9)*[A].
Putting this representation of z* into (4.56) leads to (4.55a) and, consequently, the proof is completed. [
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5. Selected applications of bilevel programming

In this chapter, we are going to apply the theory developed in the above sections in order to state nec-
essary optimality conditions and constraint qualifications for three different types of bilevel programming
problems. First, we discuss a special hierarchical semidefinite optimization problem whose lower level
is governed by a certain operator equation. Therefore, we exploit the results obtained in Section 4.1.
Afterwards, bilevel optimal control problems of ODEs with lower level control constraints are considered
in more detail. Here our findings from Chapter 3 and Section 4.2 are useful. Finally, we study an optimal
control problem with an implicit pointwise state constraint determined by a finite-dimensional optimiza-
tion problem. Necessary optimality conditions and constraint qualifications for this problem are derived
via the optimal value reformulation of the hierarchical optimization problem.

5.1. A special class of hierarchical semidefinite programming
problems

Here we want to illustrate the theory from Section 4.1 for the situation where U equals the Hilbert space
S, and Uqq is given by the positive semidefinite cone in S,f. Note that in this case, the surrogate MPCCs
(4.22) and (4.32) will be semidefinite complementarity problems. Thus, it will be possible to compare
our results to the achievements in [37, 124, 127]. Bilevel programming problems with finite-dimensional
decision variables and a semidefinite lower level problem were recently considered in [30].

Let us motivate the setting of this section by means of the following example.

Example 5.1. Let C C S, be a closed, convex set of real symmetric matrices, let Yy € S, be a given
matrix, and let Ay € R be a fixed real number. We consider the problem of finding a matrix Y not too
far away from C, whose eigenvalues are at least as large as \g, and whose distance to Yy is minimal. In
order to emphasize that Y does not necessarily need to be an element of C while the eigenvalue condition
has to be satisfied in any case, a possible formulation of this problem can be stated as follows:

3IY = Yall5, - i,

X el

)

. 2 o 2
(Y, U) € Argmin {; 1Y - XI2 + 2 Ul

Y - U - Xl =0
Ues) '

Therein, the fixed parameter o > 0 controls the preference between the goals stay close to the set C (o
small) and stay close to the matrix A1, (o large). |

We start the paragraph with a short introduction to variational analysis in the Hilbert space S,,. Afterwards,
we apply our findings to state necessary optimality conditions for the bilevel program of interest and
compare the results to the ones in literature. Especially, we will show that there are essential differences
between the results in Theorem 4.10 and Proposition 4.13.

5.1.1. Variational analysis in S,

Let O, denote the set of all real orthogonal matrices from R?*?. For an arbitrary matrix M € S,,, there exist
a matrix P € O, and a diagonal matrix A € RP*?P whose diagonal entries are ordered nonincreasingly
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such that M = PAP " holds true. This representation is called an ordered eigenvalue decomposition of
M. For fixed index sets I,.J C {1,...,p} and an orthogonal matrix Q € O,, we define MQ := Q"TMQ
and M?J = (MQ)IJ.

Recall that S denotes the cone of all positive semidefinite matrices in S,,. Furthermore, we use S} to
denote the (nonclosed) convex cone of all positive definite matrices in S,,. Clearly, we have the relation
Sp = ST — ST, In our subsequent analysis, we need to characterize the positive definiteness of block
matrices. Therefore, we will exploit the following well-known result taken from [141, Theorem 1.12].

Lemma 5.2. Letn,m € Nsatisfyn+m =pandletR € S,,, S € R"*™, as well as T € S,,, be fixed. Then

the block matrix
R S

M = |:ST T:| S Sp

is positive definite if and only if T € S,, and R — ST!ST € S,, are both positive definite.

Fix some matrix A € S, and let A be the projection of A onto ;. Furthermore, let PAP T be an ordered
eigenvalue decomposition of A. Then, by means of [69, Section 4.2.3], we obtain

A =Pmax{A;O0}P" €S, A-A=Pmin{A;0}P" €5,

where minimum and maximum are interpreted in entrywise fashion and S, denotes the closed, convex
cone of all negative semidefinite and symmetric matrices from R?*?. Clearly, S, and S, are polar to
each other. Let a, 3, and v denote the index sets corresponding to the positive, zero, and negative
eigenvalues of A.

Lemma 5.3. Using the above notation, we have
A(SF -SFn{A-AY)N{A-A}Y ={WeSs,|WE =0},
(S — Sy 1 {A}) N {A} = {V €5, | VE, =0}

Proof. We only show the first assertion since the proof of the second one is analogous.
For an arbitrary matrix W € S, we obtain

We{A-A} <= tr(A-A)W)=0
— tr(A-A)FWF)=0 (5.1)
> tr (min{A;O}WF) =0 < tr (AWW%) =0.

Thus, if W comes from S N {A — A}+, then we have WE. ¢ S\J’;I and, due to the above arguments,
WY = 0. We conclude
S5 0{A - AN = {W eS| WEs.005 € Shpy WH =0, WE =0, WP —0}.  (52)
Choose W € cI(Sf — S+ n{A — A}+) N {A — A} arbitrarily. Then there are sequences {Sy} C S,
and {Ty} € SF N{A — A} such that S — T, = W holds true. From (5.2) we deduce the relation
(Sk —Tw)E, = (Sk)F, € S‘ny‘ for all k € N. Taking the limit & — oo yields WE. SIJ:YI' Since we have
W e {A - A}, WP = O can be derived from (5.1). This shows the inclusion C.
For the proof of the other inclusion, we pick a matrix W € S, such that W% = O holds. Due to (5.1),
we only need to verify W € cl(S,7 — SF N {A — A}*). From WE ;| 5 € Sjaup| we find two matrices
X,Y € S@Zm which satisty W& 5 .5 = X =Y. For k € N, we define matrices S, T, € S, as stated
below:
EX + k2I|aUB| Wguﬁ,'y
P 1

S, =P [ 1 P'.
~v,aUB alled

T o [Y+(E-1D)X+E T, O
}P ; T} ._P{ p P

Obviously, TF is the sum of the three positive semidefinite matrices

3e ey v
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and, thus, positive semidefinite. Taking a look at (5.2) yields Ty € S;7 N {A — A}+. Next, we show
S € S;* for sufficiently large k. Therefore, we use Lemma 5.2. First, observe that the matrix %Ilvl is
positive definite. Clearly, the eigenvalues of

(X + Fljauy)) = Wais, WS aus-

strictly increase for k — oo. Thus, this matrix is positive definite for sufficiently large k£ € N. Consequently,
the matrix )

(WX + K Taug) = Waus, (110) - Whaus
is positive definite for sufficiently large k¥ € N. By means of Lemma 5.2 SF ¢ S} is valid for large
enough k, and since P is orthogonal, the same holds true for S;,. Combining these observations,

P X_-Y _
P W(M aup Wfiuﬁ 7} P' =P [Wp V‘i(iuﬂ NPT =8, -TreS —SFfn{A- A}
w,aUB k- ¥,2UB kv

is obtained for sufficiently large & € N, and taking the limit k — oo yields W € ¢l (S} — S;F N {A — A}+).
This completes the proof.

In [17, Section 5.3.1], the authors provide the following formula for the radial cone to S at A:

R 0= W £ [ WEL € X R W W

[BU~]

Moreover, in [69, Section 5], one can find explicit formulae for the tangent and normal cone to the cone
of positive semidefinite matrices:

TS;(A):{WGS es,@wl}

,=0,VP,=0,VE =0, VE, ;. E‘Swuw}

NS;(A) = {VES

Since we have A = projs+(A) and (A,A—A) =0, it is reasonable to consider the critical cone
p

Ks+ (A, A — A). An explicit formula for this cone is stated in [99] and presented below:

P P
Ks: (A A-A)={Wes,|WE es), WE =0, WP —o}.

Lemma 5.4. Using the above notations, we have

Ks:(AA—A) = {Ves ‘V ~0,VE,=0,VE =0, Vﬁﬁeslﬁl}

Especially, K+ (A,A - A)° #Kg —(A A, A) is valid provided a # @ and v # @ hold, i.e. S, is not
polyhedric w.r.t. (A,A — A) in generol

Proof. Let us introduce

D:={Ves,|VE, =0, Vs, =0, VE -0, Vi es55}.

Choosing V € D, we easily see V € K+ (A,A—-A)°,ie.DC ICS;(A,A —A)°.
For the proof of the converse inclusion, we choose V € lCS,,* (A, A — A)° arbitrarily. For any matrix
W e Kg+ (A,A — A), we obtain
0> (V,W)g =tr(VW) = tr (VEWT)
=tr (VE,Wh,) +2tr (VEsWE,) + 2tr (VE, W) + tr (VE;WEg) .
Since there is no information on the blocks WE,,, WE . and WF_, we deduce Vi, = O, VE; = O,

and VE = O. Moreover, the block VE; needs to satisfy 0 > tr (V};’BWEB) = <V/13)B’WBB>SW for any
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WE; € SIE\' Thus, we obtain VE, € (S‘Jg‘)o =S and, hence, V € D. This shows D = ICS;(A, A—-A)r.

The last statement of the lemma follows from
Ks (A-AA) ={Ve Sp‘vga -0, VE, =0, Vi s}

and the characterization of polyhedric cones in (2.5). O

Let us introduce a matrix E € S, as stated below:

ax{\; i;0}—max{\; ;;0 o
med e OB i (1) € (@ x ) U (7 x a),

1 otherwise.

VZ,] € {1,,]7} ’gi,j = { (53)

We obtain from [99, Proposition 9] that the metric projection onto S, is directionally differentiable at A
and satisfies

A, anmean
] . . _ P i P T
VA e Sp' prOJ:S;,(A,A) — P Aﬂa prOJS‘;‘ (Aﬁﬁ> O P .
Eyae AL, o 0

Since the projection is Lipschitz continuous and S, possesses the finite dimension ip(p + 1), Projs+ is
already B-differentiable. On the other hand, [99, Proposition 9] yields

VA €S,: projgi(A;A) = (proleS+(A,AA) 0L2> (A) (5.4)
where L € L[S, S,] is the linear operator defined below:
VAES,: L[A]:=P (@. AP) P (5.5)

Therein, the entries of the matrix v/ are given by the square roots of the entries of . In the lemma
below, we study the properties of the operator L in more detail.

Lemma 5.5. Using the above notations, the operator L from (5.5) is a self-adjoint automorphism which
satisfies
Loprojc_, (A,a-A) = Plojk_, (A,.a-A)°L; (5.60)
P p

VA € ICS:(A, A—A): projs: (A; A) = L?[A]. (5.6b)

Proof. The fact that L is an isomorphism is easily seen. Its inverse is given by

1
VA €S,: L—lA:P<.AP)PT
P [ } \/E

L_ contains entrywise the reciprocal entries of v/=.

Next, we show that L is self-adjoint. Therefore, choose A, ® € S, arbitrarily and observe

where the matrix

(©,L[A])s

p

tr(@L[A]) = tr (POPPTP (VEs A7) PT)
(6 (vEea")) =ur((VEw07) a7
tr (P (\FE. @P) PTPAPPT) = (L[O] A) = (L[®], A)g, .

This shows that L is self-adjoint.
Now, we validate property (5.6a). Since L is a self-adjoint automorphism, we can invoke Lemma 4.4 for
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this issue. For brevity, we set K := K+ (A, A — A). First, we need to show L [K] = K. Therefore, choose
V € L[K] arbitrarily. Then there exists a matrix W € S, satisfying W, € SlJ/g‘ and

wP WP, VE., e WE,
V=P WE, WE, o) P’
VE,,eWE O 0]

Consequently, we have Vi, = W, € SIEI' V};/ =0,and VE =0, i.e. V € K. This shows the inclusion

L[K] C K. Similarly, we can show L=![K] C K, and applying L to this relation yields the other inclusion
K C LIK]. Next, we need to verify

YW eKVYV eK®: (VW) =0 < (L[V],L[W])g, =0.

However, choosing W € K as well as V € K° arbitrarily and respecting Lemma 5.4, we easily see
(LIV],LW])5 =0 = tr (P (\FE. VP) PP (@. WP) PT) =0
= tr ((\@o VP) (\@oWP)>
— tr (VFWP) =0
— tr(VW) =0
= (V,W)g =0.
By means of Lemma 4.4, (5.6q) is valid.

Property (5.6b) simply follows combining (5.4) and LIK] = K which was shown earlier. This completes the
proof. O

Finally, we want to take a closer look at the complementarity set C := gph Nic which is induced by the
closed, convex cone K := Kst(A,A—A). From Lemma 5.4 we obtain

wP + WP — wP —
s € S\B\’ By — O, Y 0,

P _ P _ P _ P -
C=S (W, V)eS§, xS, V,.,=0, Vaﬁ =0, VM =0, Vﬁﬁ € S\ﬁ\’

<V/13)B’Wll3jﬁ>sw =0
In the following lemma, we compute the limiting normal cone to C at (O, O).
Lemma 5.6. Using the above notations, we have
My, =0, Mf; =0, M}, =0,

P _ P _
Nc(0,0) = (M,N) S Sp X Sp NB'y - O? N'y'y - 07
(Mf;, Nj) € nghNS‘;‘ (0,0)

where
Vg5, =0.V3, =0,
Q. VQs5, € Sy -
Nepn ;. (0,0) = U (V. W) € Sjg x Spg | Wity =0, W2, =0,
Gr b0 1R QL Wi, € 1
QeO) TeVP, +(E-X)eWZ, =0

holds. Here P(8) denotes the set of all partitions of j.
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Proof. lt is sufficient to show the equation involving Nz (O, O) since the formula for the limiting normal
cone to gphJ\/'5+‘ at (0O, O) can be found in [37, Proposition 3.3].
15

We introduce an isomorphism F € L[S,,S,] by F[A] := AP for all A € S,. Moreover, let us define a set
S C S, xS, as stated below:

X3y =0,Xy, =0,
S = (X,Y)ESPXSP Yaa:O»Yaf}:Oa Yoryzov
(Xps, Yps) € gph N

Then we easily see C = {(W,V) € S, x S, | (F[W],F[V]) € S}. Exploiting the surjectivity of F,

Ne(0,0) = {(F*[M],F*[N]) € 5, xS,

(M, N) e Ns(O, 0)}
is obtained from Lemma 2.38. We apply the product rule for limiting normals (2.6) in order to see
Maa = 07 MQB = 07 Mav = O,

Ns(0,0) = (Mﬁ) €S, xS, | Ny =0,N;, =0,
(Mﬁﬁv Nﬁﬁ) € nghNSTw (0,0)

Thus, the formula for the limiting normal cone to C follows from
VO cS,: F @ =POPT

which is easily obtained from the definition of the adjoint operator. This completes the proof. O

5.1.2. Necessary optimality conditions and constraint qualifications

We consider the bilevel programming problem
F(z,y,U) — min
z,y,U
G(z) € C (5.7)
(y,U) € ¥(x)

where U: X =% ), x S, denotes the solution mapping of the parametric optimization problem
2 . 2 .
2 lIcly) = Plallla, + 51U — Qle]lls, — min

Aly] = B[U] — h(z) = 0 (5.8)
U e S,

Here Assumption 4.2 shall hold with i/ = S, and Uyq = S,F'. From Proposition 4.1 we already know that
for any z € X, the lower level problem possesses a unique solution which can be characterized by the
projection operator onto the positive semidefinite cone. As we mentioned in Section 5.1.1, the mapping
Projs+ is B-differentiable everywhere and the corresponding directional derivative can be characterized
in the sense of Haraux's lemma, see (5.4) and Lemma 5.5. Thus, all assumptions of Lemma 4.8 hold.
We define the Lipschitz continuous and Fréchet differentiable function n: X — S, and the bounded, linear
operator E € L[S, S,] as we did at the beginning of Section 4.1. Invoking Proposition 4.9, we obtain the
following intermediate result.

Proposition 5.7. Let (Z,7, U) € X' x Y, xS, be alocal optimal solution of (5.7) with lower level (5.8) where
the function F" is continuously Fréchet differentiable. Let the constraint qualification (4.21) be satisfied.
Set W := 5(z) — E[U], let PAP " be an ordered eigenvalue decomposition of W, and let L € L[S, S,]
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be the operator defined in (5.5) where E € S,, is given in (5.3).
Then (0., Ay, Anr) := (0,0, 0) is a global optimal solution of the following MPCC:

(Fi(2,9.0) + Fy (3, y,U)oA‘loh_’(fc))[éw]

+(F, (z, I_J)oAloB-i-FU(:E ,U))[Ay] = _ min

0z,Au,Amn
G'(2)[0.] € To(G(2))
Ay —L2[An] = 0 (5.9)
A € ICSIT(B’W — fj)
7 (@)[0.] — E[Au] - An € K (U,W - U)°

(' (2)[6:] — E[Av] — Am, Am)s, = 0.

Before we apply our optimality conditions from Theorem 4.10 to (5.7), we state the following supplemen-
tary result which helps us to characterize the constraint qualifications (4.23) and (4.27) in the semidefinite
case.

Lemma 5.8. Let (7,7, U) € X x Vs x S, be a feasible point of (5.7). Define W := 7(z) —E[U], let PAP T
be an ordered eigenvalue decomposition of W, let «, 3, and v denote the index sets corresponding to
the positive, zero, and negative eigenvalues of A, and let L € L[S, S,] be the operator defined in (5.5)
where 2 € S, is given in (5.3).

We define a set W(U,W — U) C S, x S, as stated below:

Wi, =0, Wi =0, WP =0,
W(U,W-1):=¢ (W, V)€, xS,| VE,=0,VE; =0, Vi; =0,
Eav'(W§v+V§v)_W§v:O

. 12 o] (Ks (U,W -0
W(U,W - U) = {ISP_Lz ISJ (ICS;(UW 0)L

Proof. We show both inclusions separately. Choosing (W, V) € W(U, W — U), we define

wP WP, (). eWE O O O
__ 1 oo af =/ ay ay ~
WP = Z e WP = WE, o o) , VP:=]0 O V%
- (é)'yoé ® Wsa O 0 O VS’B V'Y'Y

Therein, é € S, denotes the matrix which contains entrywise the reciprocal entries of Z. From Lemmas
2.12 and 5.4 we obtain W € Ks;(U,W —U)** and Ve Ksy (U, W —U)". The definition of the set
W(U,W —U) yields VE = ((%)(W —E) e WE . Thus, we derive

N ~ 1 ~
(E-E)e WP 4 VP = (:—E).WP+VP=VP

—

and this leads to N .
W =L*W], V=(Is, —L*)[W]+V.
This shows the inclusion C. N o _ ~ o _
For the proof of the converse inclusion, choose W € Kg+(U, W — U)°t and V ¢ Ks+(U,W — U)+
arbitrarily. This yields WB,H =0, Wg =0, Wl =0,V =0, Vag =0,V =0,and Vi = O.
Thus, we obtain N N
w Wgﬁ Eay® Wgﬂ{
L2W]=P | WE, o o) P’
EaeWE, O o)
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and ~
0 0O (E-E,,)eWF
(Is, —L})[W]+V =P o) o) % P
(E—E,.) e WE, VE VP
We easily see
ey @ [[Ban e WE] + [(E~Eoy) e WE ]| = [0y e WE ] = O,
This shows (L2[W], (Is, — L2)[W] + V) € W(U, W — U) and, thus, completes the proof. O

Now, we are in position to restate the necessary optimality conditions from Theorem 4.10 in terms of
problem (5.7).

Proposition 5.9. Let (z,7,U) € X x Y5 x S, be a local optimal solution of (5.7) where F' is continuously
Fréchet differentiable. Suppose that the constraint qualification (4.21) holds. Set W := n(z) — E[U]. Let
PAPT be an ordered eigenvalue decomposition of W, let o, 3, and v denote the index sets correspon-
ding to the positive, zero, and negative eigenvalues of A, and let E be the matrix defined in (5.3). Then
the following statements hold:

1. Assume that the constraint qualification

G) Igp ] (gf) _ (W@gv(f»m) _ (?) (5.10)

n'(x) —E-1Is,

holds. Then there exist multipliers p € W*, M,N € S, and p € ); which satisfy (4.24d) as well as

0= F,(2,5,0) + 1 (2)"[p] + G'(2)*[p] + ' (2)"[N], (5.170)
O = F;(z,5,U) + B*[p] + M — (E + I, )[N], (5.11b)
0= A*[p] — F,(z,9,0), (5.11¢)
ME, =0, ME; = O, (5.11d)
Nj, =0,NF =0, (5.11e)
Eoy e (M, —NE )+ N =0. (5.114)

2. Let X and W be reflexive. Suppose that the constraint qualification
0=G"(x)"[p] +n'(2)"[N],
O=M- (E+1Is,)[N],
p € No(G(2)),
ME, =0, Mf; = O,
P P
Ng, =0, N, =0,
Eay e (Mf, - NE )+ NE =0,
(M, Ng) € nghNSﬁm (0,0)

— p=0,M=0,N=0 (5.12)

is satisfied while 7 (G(z)) is SNC at 0. Then there exist multipliers p € W*, M,N € S, and p € ),
which satisfy (4.24d), (5.11), and

(Mgﬁ’Ngﬁ) 6ngh/\f5+ (0,0). (5.13)

G'(z) 0 ¥ Ne(G(&) %
cl 0 Is, - CATT)) L =S, (5.14)
(L =) @) s
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hold. Then there exist multipliers p € W*, M,N € S, and p € Y, which satisfy (4.24d), (5.11),
and
P NP -
(Mg, Njgg) € 55 % S‘g‘. (5.15)

Proof. Applying Lemmas 5.4, 5.6, and 5.8, the results directly follow from Theorem 4.10. O

Obviously, the constraint qualifications (4.21) and (5.10) are both implied by

Gléf) Izp ] (22 ) _ (W?S(gégi)%)) _ (?;) (5.16)

n'(x) —E-1Is, Sp

which was introduced in [124, Definition 5.5] under the name SDPMPCC-MFCQ. In [124, Definition 5.7],
the author refers to the constraint qualification (5.14) as SDPMPCC-LICQ. Observe that SDPMPCC-LICQ
does not need to imply SDPMPCC-MFCQ as long as W is infinite-dimensional. Using [124, Lemma 5.4],
we obtain

MF, =0, Mf; =0,
W(U,W-U0)°=¢ (M,N) €S, xS, | Nj, =0,NF =0,
EO"Y * (Mg’y - Ng’y) + Ng'y =0

Thus, if (5.10) holds, then by polarization and Remark 2.33 we easily see that (5.12) is satisfied as well.
Especially, SDPMPCC-MFCQ implies (5.12).

If we interpret the first, second, and third set of optimality conditions provided in Proposition 5.9 as
some W-, M-, and S-stationarity-type conditions, respectively, then we easily see from Lemma 5.6 that
the S-stationarity-type conditions are stronger than the M-stationarity-type conditions, whereas the M-
stationarity-type conditions are stronger than the W-stationarity-type conditions. Due to the fact that
these optimality conditions were derived via the surrogate MPCC (5.9) whose complementarity cone is
trivially polyhedric w.r.t. the point of interest (i.e. the zero vector), the S-stationarity-type conditions possess
reasonable strength. From above we obtain that a local minimizer of (5.7) where SDPMPCC-MFCQ is
valid, X and W are reflexive, and T¢(G(Z)) is SNC at 0 satisfies the M-stationarity-type conditions. This
observation is related to [127, Theorem 3.5] where a similar result was obtained for general semidefinite
MPCC:s in finite-dimensional spaces.

Since S, is a closed, convex cone, (5.7) is fully equivalent to the MPCC

F(z,y,U) — min
z,y,U

G(z) € C

Aly] —B[U] = h(z) = 0
UesS
n(z) — (E+1Is,)[U] € S,
(n(z)— (E+ I‘SP)[U]7U>SP = 0.

(5.17)

It is easy to see that the W-, M-, and S-stationarity-type necessary optimality conditions from Proposition
5.9 coincide with the W-, M-, and S-stationarity conditions as they are introduced in [127, Definition 3.3]
for the above MPCC (5.17). This underlines the strength of the derived conditions. In [124, Theorem 5.8],
the author shows that SDPMPCC-MFCQ and SDPMPCC-LICQ together imply that a local optimal solution
of a general semidefinite complementarity problem satisfies the S-stationarity-type conditions. Here we
obtained an analogous result for our special problem class (5.7) in Proposition 5.9.

Let us check how our notions of W-, M-, and S-stationarity from Definitions 3.1 and 3.2 can be used to
derive necessary optimality conditions for (5.7) via the equivalent surrogate problem (5.17). Therefore,
we just recall Proposition 4.13.

Proposition 5.10. Let (z,7,U) € X x Y, x S, be a local optimal solution of (5.7). Set W := 5(z) — E[U],
let PAPT be an ordered eigenvalue decomposition of W, and let o, 3, and v denote the index sets
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corresponding to the positive, zero, and negative eigenvalues of A. We define T(U,W —U) C S, x S,
as stated below:

T(O,W —U) = {(W,V) €S, xS,

P P P P
aB_OW _O’Wﬁﬁ:O’WIB'Y:()’W'Y'Y:O’
V5, =0,V5;=0,VE =0,Vj;=0,VE =0

Then the following statements hold.

1. Assume that the constraint qualification

G'(z 0 w

(@) X\ ([ Rel(G@)

0 Is, S T(U.W - U) Sy (5.18)
n'(x) -E-Is, b Sy
is valid. Then there exist multipliers p € W*, M,N € S,,, and p € Y which satisfy (4.24d), (5.110q)
-(5.11¢), and

P P
ME, =0, NP =0,
2. Let X and W be reflexive, and let I be continuously Fréchet differentiable at (z, 7, U). Assume that
the constraint qualification (5.12) is satisfied while C' is SNC at G(Z). Then there exist multipliers
p EW*, M,N € S, and p € Y which satisfy (4.24d), (5.11), and (5.13).

3. Suppose that the constraint qualifications (5.18) and

ol 2 @-(8526))-(3) e

are satisfied. Then there are multipliers p € W*, M,N € S, and p € ), which satisfy (4.24d),
(5.11q) - (5.11¢), and (5.15).

Proof. The proof mainly follows applying Proposition 4.13 to (5.17).
Let us start with the validation of the first statement. Due to Lemma 5.3, it is sufficient to show

T(U,W - U) = (Rg: (0) N (-2 (U, W = 0)) ) x (R (W = 0) 1 (~Kg (W - T, 0))).

This, however, is a simple consequence of the formulae for radial and critical cone to the semidefinite
cone provided in Section 5.1.1.

The proof of the second statement follows easily from [37, Theorem 3.1] where an explicit formula for the
limiting normal cone to gph/\/'S; is presented.

Recalling the formula for the critical cone to S;f, we only need fo verify

T(U,W-1U) = <Ts;n<Ts+<U>>(U>OL> X <Ts (T (W U>>(W—U>°L>~

This formula easily follows from

S50 (~Tg (0)) = {W es

Wea €S, Was =0, W = o,}
P b)
WBﬁ:OW :O’W'Y'Y:O

VE,=0,VE, =0, VE, 0}

S, N(-Ts-(W-T))=<{Ves
b (s ) { VE;=0,VE =0,VE €8

[71
and, thus,

7:930(77’540))({3) = {W SR

Wy =0, WE = o,wf;ﬁzo,}

WBV:O wl =0 ’
=0,VE; =0, V;:o,}

Vﬂﬂzo’vﬁvzo

7:9;0(77'5; w-oy(W 1) = {V es?

Now, we can apply Lemma 2.12 in order to complete the proof. O
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Here we see that the linearization approach we used in Section 4.1.2 leads to much better results in terms
of the W- and S-stationarity conditions than the direct consideration of the equivalent MPCC (5.17): It
is obvious that the constraint qualification (5.18) is much stronger than SDPMPCC-MFCQ while (5.19) is
much stronger than SDPMPCC-LICQ. On the other hand, the W- and S-stationarity conditions provided in
Proposition 5.10 are much weaker than the W- and S-stationarity-type conditions we derived in Proposition
5.9. Interestingly, the corresponding M-stationarity-type results are nearly the same; they only differ in the
SNC assumption and the additional constraint qualification (4.21) needed in Proposition 5.9.

Following Lemma 5.3, Theorem [37, Theorem 3.1], and the formula for the critical cone to S, stated
earlier, we obtain how the W-, M-, and S-stationarity conditions according to Definitions 3.1 and 3.2 for
generalized MPCCs whose cone inducing the complementarity constraint equals S,f look like.

Remark 5.11. Consider the mathematical program (MPCC) under Assumption 3.1 with Z := S, and
K := 8. Let the point Z € X be feasible for this problem. Furthermore, let PAPT be an ordered
eigenvalue decomposition of G(z) + H(z) and let «, 8, and v denote the index sets of positive, zero, and
negative eigenvalues of A.

1. The point Z is W-stationary for the corresponding problem (MPCC) in the sense of Definition 3.1 if
and only if there are multipliers A € Y* and M, N € S, which solve the system

0 =¢'(z) + ¢'(2)*[\ + G'(2)*[M] + H'(z)*|N], (5.20a)
A € Ne(G(2)), (5.20b)
Mg, = O, (5.20¢)
NP =o. (5.20d)

2. The point T is M-stationary for the corresponding problem (MPCC) in the sense of Definition 3.2 if
and only if there are multipliers A € Y* and M, N € S, which satisfy (5.20a), (5.20b), and

ME, =0, ME; = 0O, (5.21q)

N§,=0,N7, =0, (5.21b)
Eaye (ML, —NY )+ NP =0, (5.21¢)
(M,@B’Nﬁﬁ EnghN ( 0) (5.21d)

where E is defined in (5.3).

3. The point Z is S-stationary for the corresponding problem (MPCC) in the sense of Definition 3.1 if
and only if there are multipliers A € Y* and M,N € S, which satisfy (5.20a), (5.20b), (5.21a),
(5.21b), and

5 € Spap

+
Nﬂ esw

Note that our notions of W- and S-stationarity are substantially weaker than the ones used in [37], [124],
and [127]. For the S-stationarity conditions, this phenomenon was depicted in [121] already. One reason
for that might be the fact that S, is not polyhedric. This points out that the generalized stationarity notions
for W- and S-stationarity from Chapter 3 for nonpolyhedric complementarity cones may turn out to be too
weak to yield good necessary optimality conditions. In this section, by means of a linearization approach,
we overcame this drawback. A related idea was exploited in [121] and [124].

Using the notions of stationarity for semidefinite complementarity programs from Remark 5.11, we easily
see that any M-stationary point is W-stationary as well. On the other hand, there is no implication between
the S- and M-stationarity conditions. Thus, the implications (3.10) do not hold for semidefinite MPCCs.
This shows once more that the generalized concepts of stationarity for (MPCC) and their relation to each
other need to be discussed carefully for different choices for the complementarity cone.
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5.2. Bilevel optimal control of linear ODEs with lower level control
constraints

For some instance T > 0, we set Q2 := (0,T). In this section, we want to use the KKT approach to derive
necessary optimality conditions for the bilevel optimal control problem

T
Fo(x(T),y(T))Jr/O Fi(t,x(t),y(t),u(t),v(t))dt — min

T, u,y,v
Vz(t) — Cyz(t) — Cuu(t) = 0 a.e. on Q (BOC)
2(0)—xzg =0

(y,v) € ¥(z,u)

where U: AC12(Q,R") x L?(Q,R*) = ACH2(Q,R™) x L*(Q,R!) denotes the solution set mapping of
the parametric optimal control problem stated below:

$y(T) - (Ry(T)) + %/0 [y(t)- [Ryy(t) + 2Px(t)] + v(t) - (va(t))]dt — min

Vy(t) — Agz(t) — Byy(t) — Ayu(t) — Byo(t) = 0 a.e. on ) (5.22)
y(0) —yo =0
D, u(t) + Dyv(t) —d(t) > 0 a.e. on .

Many mathematical models arising from practical applications possess a hierarchical structure where at
least one decision level is a dynamic program of ODEs, see e.g. [3, 4, 41, 58, 59, 74, 76, 77, 89] for
examples and numerical solution approaches. However, there exist surprisingly few theoretical results
and optimality conditions for such problems which are not based on discretization, see [14, 18, 130] and
other publications by these authors. Here we want to study the bilevel optimal control problem (BOC) in
order to reduce the size of this gap.

Below, we list our standing assumptions on the model problem.

Assumption 5.1. The function Fy: R™ x R™ — R is continuously differentiable, whereas the function
Fi: R x R® x R™ x RF x R — R is (Lebesgue-)measurable w.r.t. its first argument and continuously
differentiable w.r.t. its last four arguments. Furthermore, there are scalars C, C’ > 0 such that the following
estimates hold for all t € (0,7), x € R", y € R™, u € R¥, and v € R!:

2 2 2 2
[Fu(t,x,y,0,v) < C(1+[x[5 + [yl5 + [ul; + [v)3),
’v(m,y,u,v)Fl(t>X7y’ u, V)‘g < C/(l + |X|2 + |y|2 + |u‘2 + |V|2)'

The matrices A, € R™*", A, € R™** B, € R™"*™ B, € R™*, C, € R**", C, € R"™**, D, € RI*k,
D, € R, P € R™*", R, R, € R™*™, and R, € R"*! are fixed. Furthermore, we assume that R, R,
as well as R, are symmetric and positive semidefinite, whereas D,, possesses full row rank ¢q. Additionally,
the function d € L?(2,R?) and the initial states 7o € R™ as well as 3y € R™ are fixed. The decision spaces
are fixed to AC1H2(2,R™) and AC2(Q,R™) for the state functions = and y, as well as to L?(Q2, R¥) and
L?(2,RY) for the control functions u and v, respectively.

We want to mention that the upcoming results stay valid in the case where all the autonomous matrices
are replaced by time-dependent ones under not too hard assumptions. However, for the purpose of
simplicity, we restict ourselves to the investigation of the autonomous case. Furthermore, one can modify
the lower level objective function such that it contains desired targets as long as its quadratic structure is
preserved.

Let us transfer (BOC) into a bilevel progamming problem discussed in Section 4.2 which satisfies As-
sumption 4.4. We introduce the spaces X' := ACH2(Q,R") x L2(Q,R¥), Y := ACT2(Q,R™) x L?(Q,R?Y),
W= ACH2(Q,R"), as well as Z := AC12(Q,R™) x L?(Q, R?) and define the mappings F': X x Y — R,
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G:X—>W, f: XxY—>R,and g: X x Y — Z as stated below for all (z,u) € X and (y,v) € V:
T
F(z,u,y,v) == Fo(2(T),y(T)) +/O Fi(t,2(t),y(t), u(t), v(t))dt,
G(z,u) :=z(-) — 29 — /0 [wa(r) + Cuu(T)}dT,
fu,y,0) = Sy(T) - (Ry(T)) + / () - [Ryy(®) +2Pa()] + v(t) - (Ryv(1)) |at,
g(m,u,y,v) = <y() — Yo — /0 [Amx(T) + Byy(T) + Auu(T) + BU’U(T)} dTa Duu() + DUU(') - d()) .

We introduce closed, convex cones C C W and K C Z by C := {0} and K := {0} x L?(Q,R%)],
respectively.

The function F' is Fréchet differentiable by means of [117, Lemma 3.1(b)]. Due to its quadratic structure,
f is twice continuously Fréchet differentiable, see Examples 2.27 and 2.28 which provide a strategy
for the validation of this result. Reprising the argumentation which was used to prove Lemma A.6, we
easily see that G and g are continuous affine operators and, thus, arbitrarily often continuously Fréchet
differentiable. Due to the positive semidefiniteness of the matrices R, R, and R,,, the mapping f(z,u, -, )
is convex for fixed (z,u) € X. Since g is affine, it is also — K -convex.

In the upcoming lemma, we show that g possesses a surjective partial Fréchet derivative w.r.t. the lower
level decision variables which implies that KRZCQ holds ot all lower level feasible points.

Lemma 5.12. For any point (Z,4,5,7) € X x Y, we have

T
V(hy, hy) € Y: gEyw) (Z, 1, g777)[hya hy] = <hy() - / {Byhy(T) + thv(T)] dr, Dvhv(')>
0
and this operator is surjective.

Proof. The representation of the Fréchet derivative follows from the fact that ¢ is an affine and continuous
mapping.

For the proof of the surjectivity of G := gzy7v)(i,a, ,U), we choose (z1,22) € Z arbitrarily and consider
the equation G[hy, hy] = (21, 22) for variables (hy, h,) € Y. Due to Assumption 5.1, D, possesses full row
rank ¢. Thus, we can set h,(-) := D, (DUDI)_le(J = D] 2,(-). Next, consider

hy(-) — /0 Byhy (7)dr = 21(-) +/0' B,D] 2 (7)dr.

Since the right hand side of this equation belongs to AC?(2,R™), a solution h, € AC12(Q,R™) of it
can be explicitly constructed using the fundamental matrix function ®: Q — R™*™ given as the solution
of the matrix differential equation

Vo(t) =B,®(t) fa.a.tel, ®(0) =1,

see [71, proof of Theorem 5.19]. Thus, we have G[hy, h,] = (21, z2) which shows the surjectivity of G. [

Combining the above observations and keeping Assumption 4.4 in mind, it is reasonable to discuss
the model problem (BOC) using the KKT approach from Section 4.2. Note that by means of Corollary
4.23 and Lemma 5.12 we already know that the bilevel optimal control problem (BOC) and its KKT
reformulation are equivalent w.r.t. local and global optimal solutions.



5. Selected applications of bilevel programming 109

5.2.1. The lower level KKT conditions and the KKT reformulation of the original
problem

In order to study the KKT reformulation of (BOC), we have to derive the KKT conditions of the lower level
problem (5.22) first. Therefore, we fix a lower level feasible point p := (z, 4, y,v) € X x Y and observe
that

T T
Flywy @Ry, ho] = by (T) - (Ry(T)) +/0 hy(t) - [Ryg(t)+Paj~(t)]dt+/0 hy(t) - (Ryo(t))dt

holds true for arbitrary (h,, h,) € ), see Example 2.27. We apply Lemma A.5 in order to obtain the
alternative representation

T

Flyy(P) = ((Ry(T) +/0 [R,(7) + Pz(7)|dr, Ry(T) +/ [Ry5(7) +Px(r)}dr> , va(-)> )

Combining Lemmas 5.12 and A.6, we have
T
Gy ()70, N] = ((@(0) - | BIVa, (. vy / B] V0, (r ) . DIA()-B] v0y<->>
0

for any (6, ) € Z2* = Z. Consequently, the lower level KKT conditions reduce to the existence of functions
0, € ACH2(Q,R™) and X € L?(©2,R?) which satisfy

T
0=Ry(T) + 6,(0) + / [R,y(7) + Pz(r) — B, V,(7)]dr, (5.23a)
0=Ry(T)+ VO,(t) + /T [R,5(7) + Pz(r) — B;—vey(T)]dT fa.a. t €, (5.23b)
0=R,u(t) + D) A(t) — B, Vo,(t) fa.a. t€Q, (5.23¢)
0> A1) fa.a. t €, (5.23d)
0=A(t) - (Dyu(t) + D,o(t) — d(t)) fo.a. te, (5.23¢)

see Section 3.2 for the derivation of the expression of the complementarity conditions (5.23d), (5.23e).
Equation (5.23b) yields that p := V6, solves the boundary value problem

0=Vp(t) — Ryy(t) — Pz(t) + B, p(t) fa.a.teqQ, (5.24q)
0= p(T) + Ry(T) (5.24b)

and, thus, is clrecdy an elemenT of ACH2(Q,R™). On the other hand, if p € AC12(Q, R™) solves (5.24),
then defining 6, (t) )+ fo 7)dr for all ¢ € Q produces a function which satisfies the conditions
(5.23a) and (5. 23b)

Consequently, the KKT conditions (5.23) are equivalent to the existence of functions p € AC12(Q,R™)
and ) € L?(9,R?) which satisfy (5.23d), (5.23e), (5.24), and

0=R,0(t) +DJA1t) —B/p(t) fa.a. tecQ. (5.25)

These optimality conditions for (5.22) are of so-called Pontryagin-type, see [102], since they comprise an
adjoint equation (5.24a) on the so-called adjoint state p, transversality conditions (i.e. boundary condi-
tions) (5.24b) on p, and Pontryagin’s (linearized) Maximum Principle (5.25) where the appearing Lagrange
multiplier X is characterized in (5.23d), (5.23¢) .

The above considerations show that the KKT reformulation of the bilevel programming problem (BOC) is
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equivalent to the optimal control problem

T
R ()u(M) + [ Filta(®.00). a0 00t > min
Va(t) — Cyz(t) — Cuu(t) = 0 a.e. on ()
Vy(t) — Azz(t) — Byy(t) — Ayu(t) — Byu(t) = 0 a.e. on {2
Vp(t) — Ryy(t) — Px(t) + B;p t) =0 a.e. on Q
2(0) —xzg =0
y(0) —yo = 0 (5.26)
p(0)—¢ =10
p(T )+Ry(T) 0
R,v(t) + D/ A(t) =B/ p(t) = 0 a.e. on Q
D,u(t) + Dyo(t) —d(t) > 0 a.e. on
At) <0 a.e. on )
A(®) - (Dyu(t) + Dyo(t) —d(t)) = 0 a.e. on {2

which comprises a complementarity constraint in the Lebesgue space L?(2,R?). Note that we introduced
a dummy variable £ € R™. This will be beneficial when deriving applicable constraint qualifications to
handle (5.26). Recall that the state functions in this problem are z, y, and p, whereas the control functions
are given by u, v, and A. From Theorem 4.18 we know that if (z,4,,0) € X x Y is a local optimal
solution of (BOC), then there are p € AC12(Q,R™) and X € L?(Q,RY) such that (Z, 4, 3,7, p, \,p(0)) is a
local optimal solution of (5.26).

In order to write the above program in a compact way, we introduce matrices M e R(n+2m)x(nt+2m),
N c R(n+2m)><(k+l+q) K c R(n+2m)><m P c Rlx(n+2m) Q c Rlx(k+l+q) and R c R X (n+2m) as stated
below:

A C, O O A C, 0 O A o)
M:=|A, By o |, N=|A, B, O K=]0]{,

P R, -B/ O 0 O L
P:=[0 O -B]], Q:=[0 R, D], R:==[0 R IL,].

Using these matrices, we can write (5.26) equivalently as

T
Fo(x(T),y(T))+/ Fi(t,z(t),y(t),u(t),v(t))dt -  min

0 2,100, €

)~ () ) -~ )
y@) | — [ wo | —K&E— M|y(t) | +N|ov(r)||dr =0 a.e. on )
p(t) 0 0 p(7) A(T)

(t

(i) el
Ply®) | +Q|v®) | =0 a.e. on Q

p(t) A(t)

. fC(T)>

R|y(T)| =0

p(T)
D,u(t) + Dyv(t) —d(t) > 0 a.e. on Q)
Alt) <0 a.e. on (2
A(t) - (Dyu(t) + Dyo(t) —d(t)) = 0 a.e. on Q.

5.2.2. The W- and S-stationarity conditions of the bilevel optimal control problem

In this section, we want to derive explicit representations of the W- and S-stationarity conditions which
correspond to the bilevel programming problem (BOC). Recalling Definition 4.1, we only need to state
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the W- and S-stationarity conditions of the MPCC (5.26) for that purpose. Note that the complementarity
constraint of this program is induced by the nonnegative cone in L?(Q2, R?) and, thus, we already know
that the consideration of the M-stationarity concept is not reasonable here since it coincides with W-
stationarity and the corresponding constraint qualifications are not applicable, see Section 3.2 for the
details.

In order to stay close to the notation used in Chapter 3, we define the Banach spaces

A01,2(Q,Rn+2m) > LQ(Q,Rk+l+q) x R™,
ACH?(Q,R™™) x L2(Q,R') x R™,
L*(Q,RY).

[\]2 Er ><1
i

We introduce the notation ¢ := (z,y,p,u,v,\, &) € X as well as functions ¢: X = R, §: X — ),
G: X — Z,and H: X — Z* as stated below for arbitrary r € A

() = F(x,u,y,v),
( (“) A (“T)) (7).
g) = lyv() | = v | —KE— M | y(r) | + N [v(r) | | dr,
»() 0 p(7) A(T)

Finally, we fix the closed, convex cones C' := {0} and K := L?*(,R9){ in order to see that the KKT
reformulation (5.26) of the bilevel programming problem (BOC) is equivalent to

From Section 5.2.1 we already know that ¢ is Fréchet differentiable. Lemma A.6 can be used to show
that §, G, and H are continuous, affine operators and, thus, continuously Fréchet differentiable.

Below, we characterize the Fréchet derivatives of the functions 1, g, G, and H at some point t € X.
Therefore, we fix some direction d := (d,, d,, d,, dyy, dyy, dx, de) € X. Using [117, Lemma 3.1], we obtain

V() = ((v Fo(e / Vo B (1 2(t), y(t), u(t), v(t))dt,
V. Fo(x /VFltas y(t), ()v(t))dt),
(v Fola / Y, Fu(t w(t), y(t), u(t), o(t))dt,

VyEo(2(T ),y(T))Jr/ VyFi(t, (t ),y(t)»U(t),v(t))dt>»

(070)7 VuFl('vI(')vy(')7u(')7v('))7 vvFl('aI(')a:’J(')»“(')’v('))? 0, O)
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The affine structure of g, G kes it easy to see

and H ma

T Do ) ()
dy () Kdg—/ M (dy(r) | + N [ do(r) || dr,
dp(-) 0 dp(T) dx(7)

G/ (1)) := Dudu(-) + Dudy(-),
H' ()] :=dx(").

Now, we characterize the corresponding adjoint operators. First, we recall Y* = Y and choose a vector
W = (wy, Wy, Wy, v, s) € Y arbitrarily. Then Lemma A.6 yields

w,(0) ) T ) Vwg(T)

wy(0) | +RTs+ / PTo(r) =M" | V(1) | | dr

wp(0) 0 Vwy(7)
Vuw,(+) R T . Vw, (1)
Vuw,(+) +RT5+/ PTo(r) —MT [ Vwy(r) | | dr |,
Vuwp(+) ' Vwy(7)

Vw,(+) w,(0)
)
V() wy,(0)

= <<wz(0) — /OT [CIwa(T) + A;—wa(T) + PTpr(T)]dT

Vuwg(-) — /T [CJ Vw, () + A Vwy (1) + PTpr(T)]dT> ,
T
<wy(0) +Rs — / [B, Vwy(7) + R, Vw,(r)]dr
0

T
Vwy(-) + Rs — / [B;va(T) + Rwap(T)]dT> ,

0

T
(wp(()) + 5 — / [BQ,U(T) — Bvap(T)]dT,
T
Vw,(-) + 5 — / [BUU(T) — Bwap(T)]dT> ,

- szww() - quva()’ va(') - B;)rva(')a va(')? _wp(0)> :

For z € L?(2,IR?), we obtain
G'(x)*[z] = (0,0, 0, D] 2(-), D, 2(-), 0, 0) ,
H'(r)*[2] = (0, 0, 0, 0, 0, z,0).

We are well-prepared to state the W- and S-stationarity conditions for the bilevel optimal control problem
of interest. Let p = (z,4,7,7) € X x Y be a fixed feasible point of the bilevel optimal control problem
(BOC). Then we find p € ACH2(Q,R™) and A € L?(Q,R?) such that ¥ = (7,7, p,u,v,\,p0) € X
is a local optimal solution of (5.26). Similar as in Section 3.2, for all i € Q := {1,. ..,q} we define
measurable sets 170(x,4), 1°~(x,4), and I°°(, i) as stated below:
I+O(_ i) == {t € Q| G(£)(t) > 0, H(F)(t) = 0},

07(5,1) == {t € Q| G(®)i(t) = 0, H(®)i(t) < 0}, (5.27)

100(;, i) = {t € Q|G¥):(t) =0, H(x):(t) = 0}.
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Then we know from Theorem 3.14 that T is W-stationary for (5.26) if and only if there are v € Y* and

w,v € L*(Q,RY) which satisfy the following set of conditions:

0= Vo Fo(2(T),5(T)) + we(0)

+/O [VZF1(7,£(7)7§(T), a(r),o(1)) — CIVU}I(T) — AIwa(T) — Pvap(T)}d’ﬂ (5.280)
)

0 = Vo Fo(Z(T), §(T)) + Vws(

+/ [VzFl(T,a?(T),Q(T), a(r),o(1)) — CIVU}I(T) — A;—wa(T) — PTpr(T)}dT7 (5.28b)

0=V, Fo(z(T),y(T)) + wy(0) + Rs
+/0 [val(T7:i‘(T),§(T), a(r),v(r)) — B;wa(T) — Rwap(T)]dT,
0=V, Fo(z(T),y(T)) + Vwy(-) + Rs

T
+/ [VyF1<T7.i‘(T),§(T), a(r),v(r)) — B;wa(T) — Rwap(T)]dT,
' T
0=w,(0) +s+ /0 [Bvap(T) - BU’U(T)]dT,

0=Vw,(-)+s+ / [Bwap(T) — va(T)]dT,

0=VuFi(,2(),5(),ul
0=Vo,Fi(,2(),9() ul
0 =Dyv() +v(),

0= —wy(0),

pi(t) =0 fa.a.teI™F,10),
vi(t) =0 fa.a.t eI’ (§,9).

,0(-) = Cy Vs (-) = A Vg (-) + Dy u(-),
,0(-)) + Rov(-) = By V(1) + Dy (),

For the S-stationarity conditions, the additional condition
VieQ@: wi(t) <0,v(t) >0 faa te

needs to be satisfied as well.

(5.28¢)

(5.28d)
(5.28e)

(5.281)

(5.289)
(5.28h)
(5.28i)
(5.28)

(5.28k)

Similar as in Section 5.2.1 we can show that introducing ¢, € AC*?(Q,R"), ¢, € AC*?(2,R™), and
¢p € ACH2(Q,R™) by means of ¢, := Vw,, ¢, :== Vw,, and ¢, := Vw,, the conditions (5.28a) - (5.28f)

and (5.28j) are equivalent to

0= Vo.(t)+CJlou(t) + Al ¢, (t) + P, (t) — Vo Fi(t,2(t),5(t),a(t),v(t)) fa.a. teQ,
0="Voy(t)+ B, dy(t) + Ryop(t) — Vy Fu(t, z(t), y(t), ult), v(t)) fa.a. t€Q,
0= Vo,(t) — Byo,(t) + Byu(t) fa.a. te€Q,
0= ¢,(0),

+ Vo Fo(2(T), 5(T)),
— Rop(T) + Vy Fo(2(T), y(T)).

Adding the lower level KKT system to this set of conditions, we obtain the following result.

Proposition 5.13. Let p := (Z,%,7,0) € X x ) be a feasible point of the bilevel optimal control problem
(BOC). The point p is a W-stationary point of the bilevel programming problem if and only if there exist
functions ¢, € ACH2(Q,R™), p, ¢y, ¢p € ACH2(Q,R™), v € L2(Q,RY), and A, u € L2(Q,RY) which satisfy
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the following set of conditions:

0=Vp(t) + B, p(t) — Pz(t) — Ryy(t) fa.a. teQ,

0= Vr(t) + Clou(t) + Al oy (t) + P o, (t) — Vo Fi(t, 2(1), §(t), a(t), 5(t)) fa.a.teQ,

0= Vo, (t) + B, ¢y (t) + Rydp(t) — V Fi(t, Z(t), y(t), u(t), 0(t)) faa. teQ,  (5.29q)
0 = Vo, (t) — Byoy(t) + Byu(t) fa.a. t €,

0 = ¢p(0)»

0=Ry(T) +p(T),

0= ¢.(T) + Vo Fo(z(T),y(T)), (5.29b)
0= Qby(T) - R¢p( ) +V Fo(j(T) Q(T))a

0 =R,3(t) + D] A(t) — B 5(t) fa.a. t€Q,

0= V. Fy(t,2(), 5(), a(t), 0(t) — Cjdu(t) = ALy (t) + Dypu(t) fo.a.te (5.29¢)
0= V,Fi(t,z(t),5(t), a(t),5(t)) + Ryv(t) — B} ¢, (t) + D u(t) fa.a.teQ, '

0 < Dya(t) + D,o(t) — d(t) fa.a. t€Q,

0> A(t) fo.a. te, 5 294
0=A(t) - (Dyu(t) + Dyo(t) —d(t)) fa.a.te, (5.294)
0 = p(t) fa.a. t € I0F,4), i € Q, (5.296)

0= (Dyu(t), foaa. tel’ (5i),icQ.

Furthermore, p is an S-stationary point of the bilevel programming problem if and only if there exist
functions ¢, € ACY2(Q,R™), p, ¢, ¢, € ACH2(Q,R™), v € L2(Q,RY), and A, 1 € L2(Q,R?) which satisfy
(5.29) and

0> pi(t) fa.a. t € I,4), i € Q,

0> (Dyu(t), faa.tel®(Fi),icqQ.

Therein, we set T := (7,7, p, 4, v, A, p(0)), and the measurable sets 119(x, i), I1°~(,4), as well as 1°(t, 1)
are defined in (5.27) for all i € Q

Remark 5.14. Using the terminology of optimal control, the dynamical system (5.29a) is called the adjoint
system, its boundary conditions (5.29b) are called the transversality conditions, and one refers to the
algebraic equations (5.29¢) as Pontryagin’s (linearized) Maximum Principle, see [102].

5.2.3. A constraint qualification implying S-stationarity of local optimal solutions

We want to close our considerations addressing (BOC) by constructing a constraint qualification which
implies that the local optimal solutions of this problem are always S-stationary points. Therefore, we
exploit the no’raﬁon introduced in the previous seciions

denote a feosible point of the KKT reformulation (5.26) associated to p. Due to Theorem 4 18 Tisa
local optimal solution of (5.26) as well. By definition p is an S-stationary point of (BOC) provided Tt is
an S-stationary point of (5.26). Thus, following Proposition 3.4, the surjectivity of the continuous linear
operator

ELIR,Y x £ x 2]
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implies the S-stationarity of p for (BOC). Obviously, H = H(f) is independent of . Noting that H'(¢) equals
the projection onto the A-component and setting

X = ACH2(Q,R") x ACT2(Q,R™) x ACT2(Q,R™) x L?(Q,R*) x L*(Q,R") x R™,
V= ACTH(Q,R") x ACH2(Q,R™) x ACH2(Q,R™) x L*(Q,R!) x L}(Q,R7) x R™,

the surjectivity of H is equivalent to the surjectivity of the operator H € L[X, )] defined below for any
h = (hra hy7 hp7 huv hﬂv hf) S &:

_ ha(:) . | hy(7) — (hy(7)
Ap) = | | hy() | —Khe— | |M | hy(r) | +N(® dr,
" ((h,,(.>> <), [ (hpm) (’“(”)]

Therein, the matrices N € R(nt2m)x(k+1) P ¢ RU+a)x(n+2m) gnd Q € RUFDX(*+) gre given by

c, O
A, B,
O o

N := ,

= O O —B;r A . O Rv
O O (O T '

b= D. D,

Now, choose an arbitrary vector § = (w,, wy, wy, v, z,s) € Y and consider the linear equation H[h] = 1.

Assume that Q possesses full row rank I + ¢ while ¢ < k is satisfied. Let Y € RUEHDx(:=4) be g matrix
whose columns form a basis of the null space of Q, i.e. a matrix with full column rank & — ¢ which satisfies
QY = O. Considering

an explicit solution is given by

hz()
oy (- ~ . ~
(i) = oo+ (1)) -2 (m0)
20 ) ~F €
»(")
for any function ¥ € L?(Q2, R¥=%). Putting this solution into the variational part of the definition of H, we
only need to find a solution of the ODE

Vhr() . o hr() . Vw'r() — 'U()
Vhy() | - (M - NQTP) hy() | = NY9() = | V() | + NQ (z(.)> (5.30)
Vhy(-) hy(+) Vwp(+)

which satisfies the boundary conditions

B (0) 0 w,(0) ha(T)
(hy(O)) - (0) = (wy(O)) . R (hy(T)) =5 (5.31)
hy(0) he wp(0) hp(T)

(due to the presence of the variable h¢, the initial value of k), is actually free). First, we find a solution
(hg, hy, hy) of the linear Volterra equation of the second kind

ha(:) L e ha(7) wy(+) T~ (u(T)
()| = [ (3-RQP) 1y | ar = (w0 ) + [ Nar (47 ar
hy () 0 hy(7) wp(-) 0
see the proof of Lemma 5.12 and the reference therein. Next, we consider the homogeneous system

Vhe(:) o [he() -
Vhy() | = (M - NQTP) hy() | + NYW()
Vhy(-) hp ()
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equipped with the boundary conditions

ha(0) 0 ha(T) ha(T)
hy() | = 0], R[hy(T)]|=5—R|h, (T
hy(0) he hy(T) hy(T)

Assuming that it possesses a solution (hi, hy, by, ¥, hy), we find that (hy + h’m,ﬁy + hy, Bp + hy,, 9’ hy)
provides a solution of (5.30), (5.31). This, however, means that H is surjective. Thus, we need to demand

that the homogeneous ODE system

Vhar() e hx : _ hx(o) 0 hm(T)
Vhy() | = (M=NQ'B) [ hy() | +NY0(),  [hy(0) | = |0 ), R{n(D)|=r (532
Vhy() hy () hy(0) he hy(T)

possesses a solution for any » € R™ in order to obtain the surjectivity of H and, consequently, of H.
Note that the matrix R possesses full row rank by definition while h¢ is a variable. Thus, we have the
surjectivity of H if

th() R I hx() - hx( ) hz(T)
Ui, () | = (M=NQ'P) [ h,() | +NY0(), |k (0)] =0, [ hy(T)] =7
V() 0! iy (0) hy(T)

possesses a solution for any 7/ € R"*2m_ A sufficient condition for this property is the controllability of the
linear dynamical system

th(') e~ ho (- ~
Vhy() | = (M_NQTP) hy(9) | + NY9(-), (5.33)
Vhy() hp(-)

see [9] for a detailed introduction to the theory of linear dynamical systems, their properties, and their
behavior. By means of the famous Kalman theorem, see [9, Theorem 4.1], the system (5.33) is controllable
if and only if its controllability matrix

~\ n+2m—1

{NY (M - NQTfD) NY ... (M - NQTP> NY] € R(nF2m)x(n+2m)(k=q) (5.34)

possesses full row rank n + 2m.
Summarizing the above considerations, we obtain our final result of this section.

Theorem 5.15. Let Q € R(U+9*(*+)) defined above possess full row rank I + g where ¢ < k is satisfied.
Moreover, let Y € R(k+)x(k=9) be g matrix whose columns form a basis of the null space of Q.
Suppose that one of the following conditions is valid:

1. For any r € R™, the system (5.32) possesses a solution.
2. The controllability matrix (5.34) possesses full row rank n + 2m.

Then any local optimal solution (z,4,y,v) € X x Y of (BOC) satisfies the S-stationarity conditions of
Proposition 5.13.

We close this section with the following numerical example which illustrates that the controllability of (5.33)
is a reasonable assumption.

Example 5.16. Consider the bilevel optimal control problem (BOC) withn =m =1,k =2,1=1, and
qg=1aswell as

A, =0, A,=(1 1), By,=1, B,=1, C,=0, C,=(1 0),
D,=(1 0), D,=1, P =0, R =0, R,=1, R,=1



5. Selected applications of bilevel programming 117

Then we have

0 0 O 1 0 0
- (o0 o). m-(1 1 ) (00 ). a0 )
0 1 -1 0 0 O
which yields
- -1 1
Q=0 o0
1 0
We choose
0
Y =11
0
to obtain
o 0 0 -1 _ 0
M-NQP=[0 1 0], NY=[1
01 -1 0

Thus, the controllability matrix (5.34) of the corresponding linear dynamical system (5.33) equals

0 0 -1
11 1
01 0

Clearly, this matrix possesses full row rank 3. Consequently, all local optimal solutions of any correspon-
ding bilevel optimal control problem are S-stationary by means of Theorem 5.15. [ |

5.3. Optimal control problems with an implicit pointwise state
constraint

For some bounded domain 2 C R? with d € {1,2, 3}, we study the abstract optimal control problem

~ Oz 2 o 2 .
Fo(zu(@),y) + % llzu — 2l 2@ pny) T 5 v — wdll 2 pry — o
u € Uy (©Q)
y € U(u)

where ¥: L?(Q2,R¥) = R™ denotes the solution set mapping of the parametric optimization problem

f(zu(®),y) — min
v (5.35)

9(ru(@),y) < 0.

Therein, for any control u € L%*(Q,R¥), the state x, := S[u] € F(Q,R") denotes the unique (weak)
solution of a given linear (ordinary or partial) differential equation whose solution operator is denoted by
S € L[L2(9, RF), F(2,R™)] where F(Q,R") is a certain function space of vector-valued functions with n
components. Below, we list our standing assumptions on (OC).

Assumption 5.2. We fix w € Qaswellasn =k = 1ford € {2,3} and @ := T as well as Q = (0,7)
for d = 1. The functions Fpy, f: R® x R™ — R and g: R x R™ — R! are continuously differentiable,
g € L2(Q,R™) and ugq € L?(Q, R¥) are the fixed desired state and control, respectively, U,q € L?(2,R¥)
is a nonempty, closed, convex set, and o,,0, > 0 are fixed weights. Finally, we assume that F(Q, R™)
satisfies (2, R™) — C (Q)" and that this embedding is compact.
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Let us discuss our assumption on F(©2,R™): From the compactness of F(Q,R") — C (Q)" and the
obvious embedding C () < L?*(Q2) we already get that F(Q,R") — L?*(Q,R") is compact, see [T,
Remark 6.4.2]. Especially, the objective function of (OC) is well-defined. Note that the continuity of the
state function z,, ensures that the lower level problem (5.35) is meaningful. In the case d = 1 where
Q = (0,7) is some bounded, open interval, we think of 7(Q,R") := AC*?(Q,R"), see Theorem 2.10.
For d € {2,3}, a possible choice is given by F(Q,R) := H?(Q2) where 2 possesses a Lipschitz continuous
boundary, see Theorem 2.9.

One may think of (OC) as a control constrained optimal control problem where some penalty cost de-
pending on the state function’s value at @ are added to the objective functional, and the penality cost is
calculated by means of the program (5.35). A typical example for such an optimal control problem of
ODEs is given by the so-called natural gas cash-out problem, see [13, 14, 74] and the references therein.
For an example in the context of PDE control, one can think of heating a potato in an oven where the
potato’s core temperature is used to compute a certain quality measure considered in the problem’s ob-
jective. It is not difficult to generalize the upcoming theory to the situation where the lower level problem
depends in a parametric way on the state function’s value at finitely many points from Q as long as d > 2
holds.

At the beginning of Chapter 4 we mentioned that it can be very difficult to verify the existence of global
optimal solutions for bilevel programming problems where the decision spaces are infinite-dimensional.
However, due to Assumption 5.2, we have the following existence result for (OC).

Theorem 5.17. In addition to Assumption 5.2, let the set U,y of admissible controls be bounded, assume
that the set {(x,y) € R" x R™ | g(x,y) < 0} is nonempty and compact, and that $: R — R defined by
o(x) = inf {f(x,y) | g9(x,y) < 0} for any x € R™ is upper semicontinuous. Finally, assume that (OC)
possesses at least one feasible point. Then (OC) has a global optimal solution.

Proof. From Section 4.3 we know that (OC) is equivalent to

Fo(2u(@), y) + 5 l|ow = 2al[130,m) + 5 [l = vl o) — moin
u € Uy (5.36)
F(@u(@).y) = $(2u(@)) < 0
9(zu(@),y) < 0.

Let {(ux,yr)} € L%(Q,R¥) x R™ be a minimizing sequence of (5.36), i.e. a sequence of points feasible
for (5.36) with

] 75, x 2 u 2 —
lim (Fo(u, (@), 1) + % 20, = 2all o) + % lox = vl o)) = o

where a € R U {—oc0} denotes the infimal objective value of (5.36). Due to the assumptions of the theo-
rem, U,q is weakly sequentially compact. Thus, {ux} possesses a weakly convergent subsequence whose
weak limit @ belongs to Uyq. W.l.o.g. we assume uy — @. Similary, since {y} is bounded, it possesses an
accumulation point § € R™ and w.l.o.g. we can assume 3, — 7.

From u;, — @ in L?(Q, R¥) we deduce z,,, — x4 in F(Q,R"). Due to the compactness of the embeddings
F(QRY) < C (Q)" and F(Q,R™) < L*(Q,R"), we obtain z,, — x4 in C (Q)" and L*(Q,R™). Espe-
cially, 2, (@) — zz(®) holds true due to the definition of the norm in C (ﬁ)n That is why the continuity
of f and g as well as the upper semicontinuity of ¢ lead to

J@a(@),9) - B(a(@)) < lminf [ (24, (@), ) — $(a0, (@))] <0,

e. (u, ) is feasible for (5.36). Exploiting the continuity of Fy, 2, — 3 in L?(Q,R™), and the weak lower
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semicontinuity of L*(Q, R*) 5 u +— 2 |lu — Ud||ig(Q7Rk) € R, we derive

- 2 _ 2
Fo(za(@),9) + % llza — 2l 2 re) + 3 18 — udllp2qpe)
. _ N 2 s 2
= klggo Fo (2w, (@), yrk) + klgrolo G | #u, — md”]ﬂ(QRn) + % lla— UdHLZ(Q,Rk)

Ou

. _ . 2 P
< k11>H;O 1-70(]"1L1c (w)a yk) + kILH;o % ||xuk - deLQ(Q,R”) + hkn—1>£f 2

2
Uk — Ud”Lz(Q’Rk)
o - . 2 . 2
= liminf | Fo(zu, (@), yr) + 5 12w — Zall 720 mn) + 5 llun = ud”LZ(Q,Rk)}

= Q.

The feasibility of (@,7) for (5.36) yields that it is a global optimal solution of this problem and, conse-
quently, the proof is completed. O

Note that the above proof is possible without exploiting the compactness of F(£2, R") < L2(Q,R"): one
only needs to use the weak lower semicontinuity of L?(Q,R™) 5 v — %= [jv — xd”iz(Q,R") and the fact that
for real sequences {a;} and {b;}, liminfy_, o ar + liminfy_, o by < liminfy_, o [ar + bx] holds true.

Due to the equivalence of our model problem (OC) and its optimal value reformulation (5.36), it is rea-
sonable to name (OC) an optimal control problem with implicit pointwise state constraint: The constraints
of (5.36) which result from the reformulation of the lower level problem restrict the choice of the state
function’s value at @. However, due to the presence of the (in general) unknown function ¢, we need to
call this pointwise state constraint implicit.

Note that the upper semicontinuity of the function ¢ demanded in Theorem 5.17 is a reasonable assump-
tion which holds for example if the lower level problem (5.35) is sufficiently regular. More precisely, ¢ is
upper semicontinuous if MFCQ is valid at all lower level feasible points, see [26, proof of Theorem 4.3].
Other criteria for the lower semicontinuity of optimal value functions can be found in [7, Section 4].

The above result justifies the search for conditions which characterize the optimal solutions of (OC). This
will be done in the subsequent parts of this chapter. We will use the optimal value reformulation (5.36) for
that purpose. However, following the arguments in [15], it seems to be possible to apply the KKT approach

as well provided the lower level problem (5.35) possesses certain convexity and regularity properties, see
Section 4.2.

5.3.1. The abstract case

In this section, we first want to study the differentiability properties of the mappings appearing in the
problem (OC).

Recall that s € L[L2(Q2, R¥), F (2, R™)] denotes the linear solution operator of a given differential equation.
Let E € L[F(2,R"), L?(2,R™)] represent the compact embedding F(2,R") < L?*(2,R™) and define
S:=EoS € L[L*(Q,RF), L2(Q,R")]. Furthermore, let E; € L[F(Q,R"), R"] be the pointwise evaluation
operator definded by E;[z] := x(@) for all z € F(Q,R™). Since we have F(Q,R") — C (Q)", Eg is a
continuous, linear operator. Finally, we put S5 := E; o S € L[L?(Q, R¥), R"].

We define mappings F: L%(Q,RF) x R™ — R, f: L?(Q,R*) x R™ — R, g: L?(Q,R*) x R™ — R!, and
@: L?(Q,R*) — R formally by

F(u,y) := Fo(Salul, y) + % ||S[u] — deiZ(Q,R") + % lu— udHiZ(Q,Rk) ’
flu,y) == f(Salul,y),
9(u,y) = g(Saul, y),

P(u) = @(Ss[ul)

for all u € L2(92, R¥) and y € R™. Note that the function ¢ is defined in Theorem 5.17.
We will exploit the following auxiliary result.

Lemma 5.18. Let #: R™ — R be a given function and define ©: L2(Q,R¥) — R by © := § 0 S. Further-
more, fix & € L?(Q, R¥).
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Suppose that 6 is locally Lipschitz continuous at Sz [@]. Then © is locally Lipschitz continuous at 4. Addi-
tionally, if v € 9°© (@) holds true, then there exists a € 9°0(S;[u]) which satisfies

vd e LX(Q,R"):  (v,d) 2 pny = a-Sald] = / a - S[d)(w)déz (w)
’ Q
where d; denotes the Dirac measure of the singleton {&}.
If § is continuously differentiable at S;[@], then © is continuously Fréchet differentiable at @ and we have

vd € L*(Q,R*):  ©'(a)[d] = VO(Sp[d)) - Seld] = /QVH(S@ [@]) - S[d](w)ddz (w).

Proof. Let 6 be locally Lipschitz continuous at Sz [a]. Since S is a continuous, linear operator, it is Lipschitz
continuous. Consequently, © is the composition of the mappings 6 and S which are locally Lipschitz
continuous at S [a] and 4, respectively. Thus, © is locally Lipschitz continuous at @. We apply Clarke’s
chain rule, see [24, Theorem 2.3.10], in order to obtain 9°©(@) C {a oS |a € 9°0(S5[u])} which shows
the first claim.

In the case where 6 is continuously differentiable at S5 [, © is continuously Fréchet differentiable at 4 due
to the chain rule for Fréchet differentiable mappings (clearly, Sz is continuously Fréchet differentiable since
it is a continuous, linear mapping), see [118, Satz 2.20]. The latter result yields ©'(z) = €' (Sg[u]) o Sg
which shows the claim. O

Using the above lemma and Example 2.27, we obtain the following corollaries.

Corollary 5.19. The mapping F is continuously Fréchet differentiable. For (@,7) € L%(Q,R*) x R™, we
have

Vd e I2QRY):  F'(a,5)[d] = /Q V. Fo(So[l, §) - S[d) () ddn (w) + 0 /Q §* [8[a] — 24] () - d(w)dw
_l’_

O'u/ [a(w) — ug(w)] - d(w)dw
Q
and Fy(a,y) = V,Fo(Sa[al, ).
Corollary 5.20. The mappings f and g are continuously Fréchet differentiable. We have
VaE QRS Fl@i)ld) = [ Vaf(Salal.5) - Slw)dbs(w),
9.(0.0)(d) = [ Vag(Sala). Sl )00 ),
Q

.fg;(ﬂﬁg) = vyf(sw[ﬂLg)l and g;(ﬂwg) = vyg(sw[ﬂLg) for every (ﬂvg) € LQ(Q7Rk) X R™.

Now, we can start to derive necessary optimality conditions for (OC) using the penalization approach
from Section 4.3. For that purpose, we exploit the following lemma which provides a criterion for the
partial calmness property to hold at the local optimal solutions of (5.36).

Lemma 5.21. Suppose that the parametric optimization problem
f(x,y) — min
y

g(x,y) <0

(5.37)

where the parameter x comes from R™ possesses a uniformly weak sharp minimum. Then (5.36) is
partially calm at its local optimal solutions.
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Proof. First, observe that the presence of a uniformly weak sharp minimum for (5.37) implies that

flu,y) — min

g(u,y) <0
possesses a uniformly weak sharp minimum as well. Noting that the function F is continuously Fréchet
differentiable, see Corollary 5.19, the assertion follows from Proposition 4.35. O

Let us denote by ¥: R™ = R™ the solution set mapping of the parametric optimization problem (5.37).
Then we obtain the following abstract necessary optimality conditions from Theorem 4.37.

Theorem 5.22. Let (,7) € L*(2,R¥) x R™ be a local optimal solution of (OC) and set z := S[u]. Assume
that U is inner semicontinuous at (Z(@), ) and that the constraint qualification

VAER: 0=V, g9(Z(@),7) \A>0,0=X-g(z(@),7) = A=0

is valid. Finally, suppose that (5.37) possesses a uniformly weak sharp minimum. Then there are multi-
pliers p € L?(Q,R¥), £ € L2(Q,R¥), k > 0, and A\, A € R! which satisfy the following conditions:

0= /Q [V Fo(2(®),9) + Vaog(@(@),7) " A — £A]] - S[d](w)ddz(w)

+ /Q [o:p(w) + oy (B(w) — ug(w)) + €(w)] - d(w)dw forall d € L*(Q,RY), (5.380)
0 =582 — 4] —p, (5.38b)
0=V, Fo(2(@),§) + £V, f(2(@), §) + Vyg(2(@),5) "X, (5.38¢)
0=V, f(Z(®),7) + Vyg(2(@),5) " A, (5.38d)
£ € Ny, (u), (5.38¢)
A>0,0=X-g(z(®),7), (5.38f)
A>0,0=X-g(z(w),7). (5.389)

Proof. The proof parallels the validation of Theorem 4.37. First, we apply Lemma 5.21 and Proposition
4.33 in order to find x > 0 such that (@, §) solves

Fu,y) + &(f(u,y) — @(u)) — 1511;1
u € Uy

glu,y) <0

locally. Invoking Lemma 4.36 and keeping Remark 2.33 in mind, the function ¢ is locally Lipschitz
continuous at Z(w) and satisfies

0°p(2(®)) C{V.f(2(@),9) + Vg(Z(@),5) " X| X satisfies (5.38d) and (5.38g)}.

Recalling @ = ¢ 0 S5, ¢ is locally Lipschitz continuous ot @ and a formula for the corresponding Clarke
subdifferential can be easily derived from Lemma 5.18. Moreover, all the other appearing mappings
are continuously Fréchet differentiable at (@, ) due to Corollaries 5.19 and 5.20. Finally, introducing
p € L2(Q,R¥) via (5.38b) allows us to formulate the whole optimality system (4.55) in the form (5.38). [

Below, we characterize a setting where all assumptions of the above theorem are valid, see [29, Re-
mark 3.2(c)], Example 4.34, and [17, Propositions 2.104, 2.106].

Remark 5.23. Let (u,y) € L*(Q, R¥) x R™ be a local optimal solution of (OC) and set # := S[u]. Assume
that there are matrices ¢ € R!, d € R™, C € RY*", and D € R*™ such that

Vs e R"Vy e R™:  f(s,y):=d-y, g(s,y):=Cs+Dy—c

is valid and assume that there is some § € R™ with g(Z(®), §) < 0. Then all the assumptions of Theorem
5.22 hold and, thus, the corresponding necessary optimality conditions are valid at (@, 7).
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5.3.2. Linear ODE constrained optimal control

We choose Q := (0,T) and set F(Q,R") := AC*?(Q,R") as well as @ := T. As we already mentioned
earlier, this choice for (2, R") is reasonable due to Theorem 2.10.

For matrices A € R"*" and B € R™**, let S € L[L%(Q, R¥), AC12(2,R"™)] be the solution operator of the
following linear system of ODEs:

Vz(t) = Az(t) + Bu(t) fo.a.teQ, z(0) = 0. (5.39)

We intfroduce the so-called fundamental matrix function ®: Q — R™*™ as the (uniquely determined)
solution of the matrix differential equation

VO(t) = Ad(t) faa.teQ,  D(0)=1I,.

Note that ®(t) is regular for all t € Q and, thus, we can define ®71(¢) := ®(¢)~! for all ¢ € Q. For detailed
information on the matrix function ® and its properties, we refer the interested reader to [2, Sections 17,
18]. Exploiting ®(t)®~1(t) = I,,, we obtain V& (t)®~1(t) + ®(t)V®~1(t) = O from the product rule and,
consequently,

VO l(t) = -0 (t)VO[)d 1 (t) = —d () AD(H)D L (t) = —d 1 (1)A (5.40)

for almost all t € Q.
Due to [2, equation (18.14)], we have the following explicit representation of the solution operator S:

Vu e 2(O,RY): 8] = &) / &= (r)Bu(r)dr. (5.41)
0

Remark 5.24. Note that the assumption x(0) = 0 in (5.39) is not restrictive. If 2(0) = z is demanded for
some xo € R, then the corresponding affine solution operator S: L2(2, R¥) — ACY2(Q, R™) is given by

Vu € L*(Q,RF):  §(u) := ®(-) (:vo + /0 q)_l(T)Bu(T)Ch') = ®(-)z + S[ul,

see [2, Section 18]. We introduce Z4(-) := z4(-) — ®(-)zo € L*(Q,R") and consider the new objective
function

n Oy Q ~, 2 Oy 2
F(u,y) := Fo(Srlu] + ©(T)zo, y) + % [S[u] — deLZ(Q,R") + % lu— udHLZ(Q,]Rk)

defined for all u € L?*(Q,R*) and all y € R™. Here S and Sy denote the operators associated to (5.39).
Similarly, we can modify the definitions of f, g, and @. Hence, we transferred the possibly nonvanishing
initial condition into a vanishing one.

For fixed a € R", we can define an operator St € L[L?(Q2, R¥), R] by
vd € L*(Q,R*):  Sp4[d] :=a-Sr[d].
For the evaluation of the necessary optimality conditions postulated in Theorem 5.22, we need to find an

appropriate representation of S, in the space L?(Q, RF) = L[L2(Q, R¥),R] = L?(Q, R*)*, and we have
to calculate the adjoint operator of S. This is summarized in the lemmas below.

Lemma 5.25. For some a € R", let the operator St , be given as defined above. Then we have
T
Vd e I2A(Q,RY):  Spald = / (BT¢(r)) - d(t)dt
0

where ¢ € AC12(Q,R") is the unique solution of the linear ODE

V()= —-AT¢(1) foaa. teQ, ((T)=a.
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Proof. For some d € L?(Q, R¥), we use (5.41) to obtain
T
Streldl =a-Sr[d =a-Ep [S[d]] =a- @(T)/O <I>71(T)Bd(7')d7'
= /Ta-q>(T)<1>—1(T)Bd(T)dT = /T(BT(I)_l(T)Tq)(T)Ta)-d(T)dT.
0 0
We set ((t) := @~ 1(t) T ®(T) "a for all t € Q. Clearly, we have ((T) = a, and
VCt) = (V') T®(T)Ta=-ATd7 ()" ®(T) Ta=—AT((t)

follows from (5.40) for all t € Q. This completes the proof. O

Lemma 5.26. We have
Yo e L2(Q,R"): S*]=B'¢

where 1 € AC12(Q,R") is the unique solution of the linear ODE

VYt) = -ATY(t) —v(t) faa.teQ,  (T)=0.

Proof. For u € L%(Q,R¥) and v € L?(Q2, R™), we use integration by parts and (5.41) in order to obtain

T t
(8*[v], u) 2 iy = (v, 8[u]) L2 rn) = /0 u(t) - ((I)(t)./o ‘I’l(T)Bu(T)dT> de

( /0 ! <I>(t)Tv(t)dt> . < /0 ! <I>_1(7')Bu(r)dr>

- /OT (/Ot @(T)TU(T)dT> (&1 (t)Bu(t))dt

For all t € Q, we set

Obviously, ¥(T') = 0 holds by definition. Furthermore, we exploit (5.40) and the product rule of differen-
tiation to see

T
Vo(t) = (Ve 1(t)" (/t (I)(T)T’U(T)d’7'> + @’l(t)T(—QJ(t)Tv(t))

T
=—ATo ()" (/ q)(T)TU(T)dT> —u(t) = —ATY(t) — v(t)
t
for any t € Q. This shows the claim. O

Combining the two above lemmas with Theorem 5.22, we arrive at the following explicit necessary opti-
mality conditions.

Theorem 5.27. Let (4,7) € L?(2,R*) x R™ be a local optimal solution of (OC) where S is the solution
operator of the linear ODE (5.39) and set Z := S[u]. Furthermore, let all the assumptions of Theorem
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5.22 be satisfied. Then there exist functions ¢ € AC™?(Q,R") and ¢ € L*(Q,R*), a scalar x > 0, and
vectors A\, A € R! which satisfy (5.38¢) - (5.38g) for @ := T and

0=Vq(t) + ATq(t) + o.(z(t ) x4(t)) fa.a. teQ, (5.420q)
0= q(T) = Vo Fo(2(T),5) = Vag(@(T),5) [ = A, (5.42b)
0 =BT q(t) + ou(a(t) — ug(t )) £(t) fa.a. teq. (5.42¢)

Proof. Let ) € AC™2(Q2,R™) be the unique solution of the linear ODE
Vi(t) = —ATY(t) — (2(t) — 24(t)) faa.teQ,  ¢(T)=0.
Then we have §*[z — x4] = B¢ from Lemma 5.26. Applying Theorem 5.22, we find £ € L?(Q,R¥),
x > 0, and vectors A\, A € R! which satisfy (5.38¢) - (5.38g) for @ := T and
T
0= / [V Fo(2(T),5) + Vag((T),5) " A — &X]] - S[d)(t)dor(¢)
0
T
+/ [0:BT(t) + o (u(t) —ug(t)) + £(t)] -d(t)dt  for all d € L*(Q,RF).
0
We set @ := V., Fo(Z(T), ) + V.g9(Z(T),5) [\ — kA] in order to see that the latter is equivalent to
T
0 = St.4[d] +/ [0:B (1) + o (Ult) — ug(t)) +£(t)] -d(t)dt  forall d € L*(Q,R¥).
0

Defining ¢ € AC12(2,R™) to be the unique solution of the linear ODE
Ve(t) =—-AT((t) faa. teq, ¢(T) = a,

we can transfer the above equation to

0= /T BT (((t) + 02(t) + ou(@(t) — ug(t)) +£(8)] -d(t)dt  for all d € L?(Q,RF)
0
which is equivalent to

0=B"(((t) + 0.0(t)) + oul(t) — ug(t)) + £(t) fo.a. teQ,

see Lemma 5.25. Now, we only need to define ¢ € AC12(Q, R"™) by means of ¢(t) := ((t) + o,9(t) for
all t € Q. A simple calculation reveals that this function satisfies (5.42a) and (5.42b). On the other hand,
the above considerations suggest that (5.42¢) is valid as well. This completes the proof. O

Remark 5.28. The necessary optimality conditions provided by Theorem 5.27 comprise the classical ele-
ments of optimality criteria known from optimal control: the adjoint equation (5.42a) which characterizes
the adjoint state ¢, transversality conditions (5.42b), and Pontryagin’s (linearized) Maximum Principle
(5.42c). However, there also appear other types of conditions which reflect the bilevel structure of our
model problem (OC).

Optimality conditions of related type can be found in [13, 14, 74] where the authors consider optimal
control problems of ODEs with implicit pointwise state constraints in different settings.

5.3.3. Optimal control of Poisson’s equation

In this section, for a bounded domain Q C R?, d € {2,3}, with C2-boundary bdQ2 and n = k = 1, we
consider Poisson’s equation given by

—Az(w) = B(w)u(w) fa.a.weq, (5.43)
0 :

x(w) f.a.0. w € bd Q.
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Therein, 8 € L*(Q) is a fixed function which governs where and how much the control function u
influences the dynamics. Especially, for some measurable set Q' C €, the choice 8 := xq is possible.
Note that (5.43) can be seen as a simple model which describes the (stationary) heating process of the
domain Q where u is the source of the heating energy, see [118].

Since the control u € L?(2) might be a function possessing jumps, it is reasonable that (5.43) does not
need to possess a classical solution in C? (€2). That is why we consider the variational formulation of the
dynamics given by

Vo € C5°(Q): —/QAx(w)Mw)dwz/Qﬁ(w)u(w)gb(w)dw.

Exploiting integration by parts on the left hand side of this equation and inserting the boundary condition
z|pan = 0, we derive the so-called weak formulation of the PDE (5.43):

Vo € C5°(Q): /QVx(w) -Vo(w)dw = AB(w)u(w)d)(w)dw. (5.44)

We have the following classical result.

Proposition 5.29. For any u € L*(Q), there is a uniquely determined function =, € H?(Q) N HE () which
satisfies (5.44) and

2l 2 () < llullp2 (o) -

Therein, the constant v > 0 does not depend on the choice of wu.

Proof. Due to [17, Lemma 6.14], (5.44) possesses a unique solution in H?(Q) N H}(Q) for any control
from L2(Q). The same result yields the existence of a constant ¢ > 0 which satisfies

Vue L(Q): Naull gz < cllBullpaq) -

Since we have ||Bullr2(q) < 18]« (o) [ullp2(q), the claim follows choosing v := ¢ || B]| 1, () - O

We define F(2,R) := H?(2) N H}(2) and equip this space with the H2(2)-norm. Using Theorems 2.8
and 2.9, we obtain H%(Q) N Hg(2) < C (Q) and that this embedding is compact due to our choice of
the domain’s dimension. Finally, we denote by S € L[L?(Q), H?(Q) N Hi ()] the solution operator of the
weak PDE (5.44). Clearly, S is well-defined by Proposition 5.29.

Let us consider the optimal control problem (OC) where S is given as defined above. We first comment
on the homogeneous boundary condition in (5.43).

Remark 5.30. Suppose that there is a measurable function b: bd Q2 — R such that the PDE (5.43) with
homogeneous boundary condition is replaced by

—Az(w) = Blw)u(w) fo.a. weQ, (5.45)

r(w) = b(w) f.a.a. w € bd . '
Clearly, if b is a discontinuous function, then the weak solution of (5.45) (if it exists) cannot be in C' (©2) and,
thus, not in H2(Q2). However, under certain regularity assumptions on the function b, we can transfer the
corresponding optimal control problem into a problem of type (OC) where S is the weak solution operator
of the homogeneous Poisson equation (5.43) again, see [5, Theorem 6.1.3] for details. Therefore, one

only has to introduce an appropriate desired state Z4 which replaces x4. The procedure is similar to the
one described in Remark 5.24 for ODEs.

As we saw earlier, Assumption 5.2 is valid. In order to formulate the necessary optimality conditions
from Theorem 5.22 in terms of this paragraph’s setting, we need to find an explicit representation of the
adjoint operator of S and a reasonable way to deal with the integral [, S[d](w)dés (w) for d € L?(Q2) which
appears in (5.38a).

The operator S* is characterized in the following well-known lemma, see [118, Lemma 2.24] for a proof.
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Lemma 5.31. We have
Yo e L*():  §*[v] := By
where ¢ € H2(2) N H}(Q) is the unique solution of

Ve CF@: [ Vi) Vowids = [ oo

The latter is the weak formulation of the PDE
—Ap(w) = v(w) fa.a.weQ,
Yw) =0 f.o.a. w € bdQ.

Next, we characterize the integral mentioned earlier.

Lemma 5.32. We have
Vd € L*(Q): /S[d](w)dég,(w) = / B(w)¢(w)d(w)dw
Q Q
where ¢ € W, (Q) is the unique solution of

Vo e Cgo(Q): - QC(W)Afb(W)dw =/, $(w)ddg(w) = H(@). (5.46)

Proof. First, by means of [17, Lemma 6.38] there is a uniquely determined function ¢ € W, " () satisfying
(5.46). Fix some d € L?(2) and set 2% := S[d]. Then we have

Vg € C5°( / Vad( @)w = | Bw)dw)ow)do.

Recalling that 2¢ € H?(2) holds due to Proposition 5.29, we find

Vo € C°(Q): / A(w)(w)dw = /Q B(w)d(w)d(w)dw

from the definition of the weak derivative. By definition, C3°() is dense in W, ' (Q). This yields

- [ ()@ = [ B

On the other hand, since we have z¢ € H2(Q) N H(Q) and C°(R) is dense in H} (1),

/Qd /A;v

follows from (5.46). Taking these observations together, we have
/ S[d](w)dds (w) = / 2 (w)ddn (@) = — | Art(w)C(w)dw = | Blw)d(w)¢(w)dw
Q Q Q Q
which completes the proof. O

Combining Lemmas 5.31 and 5.32 with Theorem 5.22, we derive the following explicit optimality condi-
tions for (OC) in terms of Poisson’s equation.

Theorem 5.33. Let (u,%) € L?(Q) x R™ be a local optimal solution of (OC) where S is the solution
operator of the weak PDE (5.44) and set z := S[u]. Furthermore, let all the assumptions of Theorem
5.22 be valid. Then there exist functions ¢ € W' (Q) as well as € € L2(), a scalar £ > 0, and vectors
M, A € R! which satisfy (5.38¢) - (5.38g) and

0= /Qq(w)Aqb(w)dw + oy /Q(:E(w) — z4(w))d(w)dw

(Vo Fo(3(@),5) + Vagl@(@),5) A — sX)6(@) for all 6 € C(9), (5.470)
0=Bw)g(w) + oy (t(w) — ug(w)) + &{(w) fa.a.we Q. (5.47b)



5. Selected applications of bilevel programming 127

Proof. Let € H?(Q) N H () be the unique solution of
Vo € C2o(Q): / Vib(w) - Veb(w)dew — / (2(w) — 24(w)) b(w)doo.
Q Q

Due to Lemma 5.31, we have §*[z — 4] = 1. Applying Theorem 5.22, we find £ € L*(Q2), x > 0, and
A, A € R! which satisfy (5.38¢) - (5.38g) and

0= /Q (Vo Fo(Z(®),9) + Vog(2(@),7) T [N — kA]]S[d](w)dds (w)
+ /Q [02:B(w)Y(w) + oy (U(w) — ug(w)) + E(w)]d(w)dw for all d € L*(Q).

We seta := V. Fy(Z(@), 7)+V29(Z(@),7) " [\—kA] and use Lemma 5.32 in order to see that this variational
equation is equivalent to

0= /Q [B(w) (@¢(w) + 0.9 (W) + oo (@(w) — ug(w)) + €(w)]d(w)dw for all d € L*(Q)

where ¢ € W' () is the function defined via (5.46). Introducing g(w) := @ ((w) + o, (w) for all w € Q,
(5.47b) is valid. Clearly, we have H2(Q)NHL(Q) € W, () and, thus, ¢ € W' (Q). Finally, for arbitrary
¢ € C§° (), we check

- /Q ¢(@)Ad(w)dw = —a /Q (@) AY(w)dw — o, /Q () Ad(w)dw
—a6(@) + 0 / V() - Vo(w)dw = a6(@) + 0, / ((w) — 74(w)) dw)dw
Q Q

which shows (5.47a). This completes the proof. O

Remark 5.34. From the proof of Theorem 5.33 we easily see that the adjoint function ¢ € W' (Q) can
be decomposed into the regular part 0,9 coming from H?(Q) N H(Q) and a less regular part @ ¢ which
belongs only to W' (€2). However, due to the appearence of state constraints in (OC) and, thus, in (5.36),
this phenomenon had to be expected. It is documented in other papers where optimal control problems
of PDEs with finitely many pointwise state constraints are considered, see [21, 22].

Note that the adjoint state in Theorem 5.27 possesses the same degree of regularity as the state function.
This is not surprising since the pointwise state constraint actually is nothing else but an additional terminal
condition and it is well-known from the theory of ODE control that this type of constraints only influences
the resulting transversality conditions.

Remark 5.35. Let us consider the weak formulation of the slightly more general linear PDE

—Az(w) + az(w) = B(w)u(w) f.a.0. w e Q,
z(w) =0 f.a.0. w € bd Q.
for some constant v > 0. Its solution operator still maps from L2(Q2) to H?(Q) N H(S2), see [17, Proposi-

tion 6.15]. The derivation of the necessary optimality conditions from Theorem 5.22 for the corresponding
problem (OC) parallels our above argumentation.
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6. Conclusions and outlook

In this thesis, we derived new results which address variational analysis in function spaces, MPCCs in Ba-
nach spaces, and bilevel programming problems in Banach spaces. We used our theoretical findings to
state applicable necessary optimality conditions for three different classes of bilevel programming prob-
lems.

Chapter 2 was dedicated to the gathering of preliminary results from functional analysis and optimization
theory we needed in order to deal with MPCCs and bilevel programming problems in Banach spaces.
Since these problems generally suffer from an inherent lack of convexity and/or smoothness, we decided
to study tools of variational analysis introduced by Boris Mordukhovich. Especially, we took a closer look
at the SNC property of pointwise defined sets in different function spaces in Section 2.3.1. Amongst oth-
ers, it has been shown that reasonable sets which are often used in optimal control to define control or
state constraints in the reflexive function spaces L?(2) and W?(Q) with 1 < p < co are nowhere SNC.
In view of [90] and other publications by Mordukhovich where the SNC property is demanded somehow
carefree in most of the results, this observation is quite alarming.

One of the main issues of this thesis is the consideration of MPCCs whose complementarity constraints are
given in a Lebesgue space. This abstract model covers optimal control problems with mixed control-state
complementarity constraints which were recently studied in [56]. The complementarity constraint can be
reformulated as an abstract constraint comprising a pointwise defined set in a Lebesgue space induced by
a measurable set-valued mapping with nonconvex images. For the derivation of necessary optimality con-
ditions for the underlying optimization problem, it is essential to be familiar with the variational geometry
of this set. This motivated our study of the broad class of so-called decomposable sets in Section 2.3.5.
As a supplementary result, we obtained that a nonempty, closed, decomposable set is weakly sequentially
closed if and only if it is weakly closed which is a remarkable property. We derived an explicit formula
for the weak closure of a decomposable set. In the future, we aim for a formula which characterizes the
associated weak sequential closure. Under mild assumptions, we derived explicit formulae for the associ-
ated Bouligand and Clarke tangent cone as well as the Fréchet, strong limiting, and Clarke normal cone.
Furthermore, we were able to show that the limiting normal cone to a decomposable set is a superset
of the weak sequential closure of the associated strong limiting normal cone and, additionally, always
dense in the associated Clarke normal cone, see Propositions 2.50 and 2.51. Although these results are
strong enough to obtain an explicit characterization of the limiting normal cone to the complementarity set
described above, we did not obtain explicit formulae for the limiting normal cone and the weak tangent
cone to general decomposable sets. This is a nearby topic of future research.

In Chapter 3, we studied general MPCCs in Banach spaces. Since reasonable constraint qualifications
like the regularity condition of Kurcyusz, Robinson, and Zowe fail to be satisfied at any feasible point of
such a problem, the KKT conditions turn out to be a too restrictive necessary criterion for local optimality.
Thus, one is in need of weaker necessary optimality conditions and constraint qualifications in order to
deal with MPCCs. Gerd Wachsmuth introduced and studied a reasonable concept of strong stationarity in
[127, 124]. We proceeded this research by intfroducing generalized concepts of weak and Mordukhovich
stationarity, and we investigated the relationship between these three stationarity notions. It turned out that
strong stationarity always implies weak stationarity. Furthermore, we were able to show that any strongly
stationary point is also Mordukhovich stationary if the underlying cone which induces the complementarity
condition is polyhedric. Using the theory of vector lattices and the polyhedricity of the complementarity
cone, we were in position to formulate conditions which ensure that a Mordukhovich stationary point is
weakly stationary as well. Furthermore, we presented constraint qualifications which imply that a local
minimizer of an MPCC satisfies the aforementioned stationarity conditions. Subsequently, we applied the
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obtained results to MPCCs whose complementarity cone equals the cone of nonnegative functions in a
reflexive Lebesgue space or is polyhedral. An important consequence of Section 2.3.5 turned out to be
the equivalence of Mordukhovich and weak stationarity for MPCCs in Lebesgue spaces. Furthermore, we
depicted that the constraint qualifications arising from Mordukhovich’s theory of variational analysis are
not applicable to these MPCCs since their complementarity set is nowhere SNC. In the future, it needs to
be investigated whether some pointwise counterpart of the finite-dimensional concept of Mordukhovich
stationarity can be derived as an applicable necessary optimality condition for MPCCs in Lebesgue spaces.
In view of Proposition 2.49, this requires some knowledge on the calculus of strong limiting normals which
is not available yet. An important task for our future research seems to be a more general clarification
of the relationship between the introduced stationarity notions under less restrictive assumptions. Further-
more, it is an open question whether other notions of stationarity which are well-known from standard
complementarity programming can be generalized to the setting of Banach spaces. Finally, if MPCCs are
considered whose complementarity constraint is induced by the nonnegative cone in H}(12), then we know
from Example 3.13 that the common relations between the concepts of strong, Mordukhovich, and weak
stationarity hold. However, it is completely unclear what the limiting normal cone to the corresponding
complementarity set looks like. This has to be investigated in the future.

We proceeded by considering a general bilevel optimization problem in Banach spaces in Chapter 4.
The three main approaches of transformation used to convert the hierarchical optimization model into a
single-level program (unique lower level solution, KKT reformulation, and optimal value reformulation),
see [98], were applied to derive necessary optimality conditions.

First, we investigated a bilevel programming problem whose lower level is fully convex and governed by a
so-called state equation equipped with control constraints. It has been shown that under certain assump-
tions, the lower level solution is unique, directionally differentiable, and that the directional derivative can
be computed as the solution of a nonsmooth equation or, equivalently, a complementarity model. After-
wards, we used the theory of MPCCs from Chapter 3 in order to derive necessary optimality conditions
for the corresponding bilevel model and discussed the case where the lower level control constraint set is
a cone in more detail. Since our lower level of interest reflects a parametric optimal control problem with
control constraints, we should transfer our results to the function space setting. However, due to Remark
4.7, this is not possible without additional assumptions on the underlying data. The technical details need
to be discussed in the future.

Under certain convexity and regularity assumptions on a more general lower level problem, it is possible
to replace it by its KKT conditions which we did in Section 4.2. However, in light of [28], this should not
be done too light-hearted. Thus, we studied the relationship between the original bilevel optimization
problem and its KKT reformulation in more detail. Both problems are (in a certain sense) equivalent
w.r.t. global optimal solutions. By means of Example 4.20 we have shown that we cannot generalize the
considerations of [28] to the infinite-dimensional situation if local optimal solutions are investigated. Nev-
ertheless, we were able to show the local equivalence of the problems under more restrictive assumptions
than in the finite-dimensional setting. However, these assumptions always imply the uniqueness of the
lower level Lagrange multiplier which is quite restrictive. In the future, it needs to be clarified whether
the local equivalence of the models can be preserved under less restrictive assumptions which allow the
lower level Lagrange multiplier set to be no singleton. We continued our considerations by formulating
necessary optimality conditions for the bilevel optimization model via its KKT reformulation. Therefore,
we used the results of Chapter 3 again. In Example 4.30, we presented that the necessary constraint
qualifications may depend on the choice of the lower level Lagrange multiplier.

Finally, we exploited the lower level optimal value function in order to find an equivalent single-level sur-
rogate problem of the bilevel programming model. For the derivation of necessary optimality conditions
via this approach, we used a concept of partial penalization. Our argumentation mainly generalized the
one in [29] and [138] to the Banach space setting. In order to follow this approach in the future, we need
to find some more results on the generalized differentiability of marginal functions to parametric optimal
control problems. Furthermore, it has to be examined whether there exist classes of bilevel programming

problems in function spaces where the so-called partial calmness property is inherent or at least easy to
check.

We concluded this thesis by applying the results of Chapters 3 and 4 to special classes of bilevel program-
ming problems in Chapter 5.
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First, we studied a hierarchical model comprising a semidefinite lower level problem whose solution is
unique. After we had carried out some variational analysis in the space S, the findings of Section 4.1
turned out to be applicable. Thus, we obtained necessary optimality conditions for the corresponding bi-
level programming problem. Since it was possible to state the latter equivalently as a semidefinite MPCC,
we compared the obtained results to the existing literature on semidefinite complementarity programming.
Next, we used our results from Chapter 3 and Section 4.2 in order to derive necessary optimality condi-
tions for a bilevel optimal control model with optimal control problems of ODEs at both levels and lower
level control constraints. We stated the corresponding weak and strong stationarity conditions and were
able to construct a constraint qualification implying all local optimal solutions of the bilevel programming
problem to be strongly stationary. This regularity condition is easy to check since it reduces to the control-
lability of a linear system of ODEs.

Finally, we considered a nonspecified optimal control problem with control constraints and an implicit
pointwise state constraint arising from a finite-dimensional parametric optimization problem whose pa-
rameter equals a certain realization of the state function at a fixed point of the underlying domain. We
were able to show the existence of a global solution to that problem under mild assumptions. Following
our results of Section 4.3, we stated abstract optimality conditions for the general model. We specified
these conditions in terms of linear ODEs and Poisson’s equation in order to show that the theory is appli-
cable to optimal control problems of ODEs and PDEs. This way, we continued the consideration of this
problem class we already studied in [13, 14, 15, 74].
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A. Supplementary results

Here we provide some results supporting our argumentation in the main part of the thesis. All the
subsequent lemmas address analytical problems in function spaces and possess mainly technical but
standard proofs.

First, we present a simple consequence of the dominated convergence theorem which can be found in
[16, Theorem 2.8.1] (general form) or [114, Theorem 5.2.2] (tailored to LP-spaces with p € [1, 00)).

Lemma A.1. Let M = (2,2, m) be a complete and o-finite measure space, let {Q} C % be a sequence
satisfying m(Qy) | 0, and let p € [1,00) as well as u € LP(9M) be arbitrarily chosen. Then xq,u — 0 and
(1 — xq,)u — u hold true w.r.t. the convergence in LP ().

Proof. By definition of the characteristic function and m(Q2) | 0, the sequences {xq,u} and {(1 — xq, )u}
converge pointwise almost everywhere on 2 to 0 and u, respectively. Furthermore, these sequences are
both majorized by |u| € LP(9N), i.e. we have

Vwe R Ixo(WuW)] < fu@)l,  [(1 = xa, (W)uw)] < Ju(w)]-

Thus, the lemma’s assertion follows from the dominated convergence theorem in Lebesgue spaces, see
[114, Theorem 5.2.2]. O

Furthermore, we need the following two technical convergence results in Lebesgue spaces. Their proofs
follow from standard arguments but, however, are included for the reader’s convenience.

Lemma A.2. Let M = (Q, X, m) be a complete and o-finite measure space, let p € (1,00) and m € N be
fixed, and choose {ux} C LP(9,R™) such that up — @ in LP(91,R™) holds for some @ € L? (9, R™).
Then for any e > 0, there is a set E € ¥ with m(E) < ¢ and a subsequence {uy,} of {ux} such that
ug, — 4 holds true in L>(9M|q\ g, R™).

Proof. Due to the postulated convergence in LP (901, R™), we can choose {uy, } with the following property:
VIENVE > 1 lug, — ll o gp gy < 277
For all I € N, let us define sets ; € X by
Q= {w € Q| |up, (w) — a(w)|2 > 271
Then we have

27 "Pm(Q) :/Q 27 "Pdm < A lug, (W) — w(w)Bdm < ||ug, — 1]||1£,,(im)Rm) <272
l 1

and, thus, m(€;) < 277, Let us introduce E; = Ufij Q; for all j € N. Then we have

m(E;) <> 27 <y ot =l
1=j 1=j

for any j € N. Choose jjy € N such that € > 2177 holds and set E := E;,. Then, for any [ > j, and any
w € N\ E, we obtain |ug, (w) — a(w)|2 < 27! and, thus, we have

sup Jug, (w) — @(w)|2 < 2!
wEQ\E

which shows |lug, — ﬂ”LOC(S)mQ\E,Rm) —0asl — oco. O
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Lemma A.3. Let M = (2,2, m) be a complete and finite measure space, let L'(9M) be separable, let
p € (1,00) as well as m € N be fixed, and choose {ux} C LP(9,R™) such that u — @ in LP(9T,R™)
holds for some @ € LP(90, R™). If {uy} is bounded in L>°(9M,R™), then we have u;, = @ in L= (9, R™).

Proof. By p’ € (1,00) we denote the conjugate coefficient of p. First, we want to show @ € L>°(9,R™).
Therefore, observe that the boundedness of {ux} in L>° (9, R™) and the separability of L1 (901, R™) imply
that {uy} possesses a weakly* convergent subsequence {uy,} with weak* limit & € L (91, R™), see [5,
Corollary 2.4.2]. From LP (9, R™) C L* (9, R™) we deduce for any v € L¥' (9, R™):

kILI& (U, /u/k>Lp(m’RTn) = lli)rélo <’U, ukl>Lp(m7]R’nL) = lli)lgo <ul€z 5 U>L1(ml’R7n) = <’le7 U>L1(EDT,RM) = <U, a)Lp(mJ:R’VTL) .
Thus, we have ux, — @ in LP(9, R™) and due to the uniqueness of the weak limit, & = @ € L>° (9, R™)
is obtained.

Now, we start to verify uj, = @ in L= (9, R™). Let w € L' (9M,R™) be given. Since L? (9, R™) is dense
in LY(OM,R™), for any I € N, we find w; € LP (9, R™) satisfying |Jw — will L1 om gy < 1. This leads to

(uk = U, W) 1 o gomy Wiy U = W) (g gy T (Uk = Uy W — W) 10y g

:‘<
<

wy, U — ﬁ>Lp(m’Rm)‘ + ||uk - ﬂ||Loc(9jt7R7n) |'LU - leLl(m’t,Rm) .

Noting that {u),—u} is bounded in L> (2, R™), we find a constant v > 0 such that [lu, — @[ ;e on gy < ¥
is valid for all k¥ € N. On the other hand, we have u;, — @ in LP (91, R™) which leads to
~y

< lim sup ’(wl, U — ﬂ)L,,(gm’Rm) + % =
k—o0

lim sup ‘(uk — 1, w>L1(9n,1R<m)
k—o0

for all I € N. Taking the limit [ — oo, we infer
(ug, — ﬂvw>L1(£m,Rm) — 0.

Since w € L'(M,R™) was chosen arbitrarily, we have u, = @ in L>®(M,R™) which completes the
proof. O

The next lemma provides a truncation result we need in order to prove Lemmas 2.19 and 2.21. The proof
is similar to the validation of [5, Theorem 5.8.2] or [122, Theorem A.2].

Lemma A.4. Let Q C R be a bounded domain with Lipschitz boundary and let p € (1, 0) be fixed. For
k € N, we define the truncation Tj;: R — R by

Ve e R: Ti(z) := min{k;z}.

Then the associated Nemyiskii operator, i.e. the mapping u — T} o u, denoted by T, as well, maps
W1P(Q) to WP(Q) and we have

Diju(w) ifu(w) <k,

Yue WHP(Q)Vie {1,....d}:  Di(Tpu)(w) = {0 if u(w) >k

for almost every w € Q2. Moreover, for any u € W1P(Q), we have Tju — u in WHP(Q) as k — oc.

Proof. We invoke [82, Theorem 2.1] in order to see that T,u € W1P(Q) holds for any u € W1?(Q2) and
k € N. Note that T}, is not differentiable, i.e. classical chain rules as presented in [81] are not applicable.
Fix some k € N. For ¢ > 0, we define a differentiable approximation 77 : R — R of T}, by

7+ ifz <k-—o,
VeeR: T¢(z):=qk—o(k—2)* ifk—o<a<k,
k ifx > k.
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It is easy to see

1 ifr<k—o,
Vo € R: %(T;f)(x): Lk—2) fk—0o<z<k,
0 ifx > k.

We apply [82, Theorem 2.1] once more in order to obtain T7u € W1?(Q) for any fixed v € WP(Q).
Due to the differentiability of T)7, we exploit the chain rule, see [81, Theorem 2.1], in order to obtain

Vie{l,...,d}: Di(T{u)(w)= %(T;g)(u(w))Diu(w)

almost everywhere on . Thus, a promising candidate for D;(Tyu), i € {1,...,d}, is given by

. | | Diu(w) ifu(w) <k,
Vwe Q: u(w) = {0 if u(w) > k.

We obtain

T (w(w)) = Ti(u(w))| < %
almost everywhere on Q. Consequently, T u converges a.e. on (2 pointwise to Tju as o falls to zero. Since
the above estimate provides an integrable upper bound, T)7u converges to Tiu in L?(2) as o falls to zero

by the dominated convergence theorem. For fixed i € {1,...,d}, we have the pointwise convergence of
D;(T{u) to v; a.e. on Q as o tends to zero. Additionally, taking a look at the above results,

| Di(Tiu)(w) = vi(w)| < 2[Diu(w)]

follows almost everywhere on 2, i.e. by the dominated convergence theorem, D, (T} u) converges to v; in
LP(Q) as o falls to zero. Using Halder’s inequality, for any function ¢ € C§°(9),

[ witwst)de & [ Diru@s)ds = - [ @Ru@Didwids 0 - [ (Tu)w)Dig(w)ds
Q Q Q Q

is valid and, thus, v; = D;(Txu) holds true.

Finally, we want to show that Tyu — u in W1?(Q2) holds true as k — oo. Therefore, we fix u € W1P(Q).
Let us define Q, := {w € Q| u(w) > k} for any k € N. Clearly, all these sets are measurable and satisfy
[(Q) | 0 (otherwise, we would not have u € LP(Q)). We have u(w) — (Tiu)(w) = (u(w) — k)xq, (w) for
any k € N and w € Q. Thus, Tru converges pointwise to u almost everywhere on Q. Moreover, we have

u(w) = (Thuw)(W)] = [(u(w) = F)xa, ()] < |u(w)]

almost everywhere on Q and, thus, the dominated convergence theorem yields Tyu — u in LP(Q) as
k — oo. Similarly, we have D;u — D;(Tyu) = D;u xq, which, by means of the dominated convergence
theorem, shows D;(Tyu) — D;u in LP(Q) for all i € {1,...,d} as k — oo. Hence, Tyu — u in WHP(Q)
as k — oo is satisfied and the proof is completed. O

For the discussion of the final two results, we need a nonempty, bounded interval Q := (0,7) CR and a
positive natural number n € N. Identifying the Hilbert space AC*2(Q2, R™) with its dual by means of Riesz's
representation theorem, it will be necessary to identify elements of AC12(£2, R™)* with a vector function
in AC*2(Q2,R™). Therefore, we included the following lemma which is related to [117, Lemma 3.1(b)].

Lemma A.5. Let v € L?*(Q,R") be fixed and let a, € R™ be a vector. We consider the dual vector
v* € ACH2(Q,R™")* given by

Yu € ACT2(QR™):  v*[u] := ay - u(T) + /Tv(t) -u(t)dt.
0

Then v* can be identified with a function in AC2(Q,R™) defined below:

(v*(0), Vo™) = <av —l—/o v(t)dt, ay, —|—/ U(t)dt) .
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Proof. For the proof, we use integration by parts and the definition of the dual pairing in AC*2(Q, R") to
obtain

T
(0", 1) gy = 0[] = @y - u(T) + / oft) - u(t)dt

= a, - u(T) + (/OTv(t)dt> ~u(T) — < )

) . <u<o> + [ v ) [ ([ ) Vu(t)dr
= (av+/oTv(t)dt> .u(0)+/OT dt+ /Tv ) Vau(t)dt
:(av—l-/OTv(t)dt)-u(0)+/OT(av+/t v(s)d )V()

=v*(0) =Vu*(t)

Vu(t

This shows the claim. O

Finally, we show how the adjoint of a certain operator which describes linear constraints of an optimal
control problem with ODE constraints can be computed. Again, we deal with the space AC12(Q,R"). A
related result can be found in [87, Appendix 1].

Lemma A.6. For natural numbers n,m, k,1 € N and real matrices M € R**", N € R**™, P € R¥*",
Q € R¥*™, and R € R™*", we define D € L[ACY2(Q,R") x L2(2,R™), AC12(, R") x L2(Q,R*) x RY]
as stated below for all z € AC*2(2,R") and u € L?(Q,R™):
D[z, u] := (z() —/ [Mz(t) + Nu(t)]dt, Pz(-) + Qu(-), Rz(T)) .
0

Its adjoint is given by
T
D*[w, v, 7] = ((w(O) LRy +/ [PTo(t) — MTVu(t)]dt,
0
T
Vw(-)+Rr + / [PTo(t) — MTVw(t)]dt> , Qo) — NTVw(-)>
for arbitrary w € ACY2(Q,R"™), v € L?(Q,R¥), and r € R..

Proof. We set X := AC1%(Q,R") x L?(2,R™) as well as V := AC1%(Q,R") x L?(Q, R¥) x R! and choose
(z,u) € X and (w,v,r) € Y arbitrarily. First, we show the continuity of D. Therefore, we observe

+/ Va(t)dt g\/T|z(o)2+H/ Va(t)dt
0 L2(Q,R") L2(Q,R")

= VT |2(0)|, + (/ /Vz )dr dt>l<f| 0)], + (//Wz |2det>

< \/T|Z(0)|2 +T ||VZ||L2(Q,Rn) B max{ﬁ; T} HZHAcm(Q,R") :

||Z||L2(Q,]R") =

Furthermore, we have

T
|2(T)], = |2(0) +/O Vz(t)dt| < [z(0)], +

2 /O ' Vi (t)dt

T
< [2(0)|y + (T/o |Vz(t)|§ dt) = [2(0)], + \/T||VZHL2(Q,R") < max{l; \/T} ||Z||AC1-2(Q,]R")'

2

N
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For the derivation of these estimates, we used Hélder’s inequality componentwise. Now, we find scalars
1 > 0 only depending on M as well as P, v > 0 only depending on N as well as Q, and p > 0 only
depending on R such that

D[z, u]lly = 12(0)|5 + [V2(-) = Mz(-) = Nu()|| 2 (q gy + [P2() + Qui-)l L2 rr) + R2(T)],
< zllacrz@eny + 12l L2 @pny TV Il 2@ rmy + 2 12(T))],

< (14 pmax{VT; T} + pmax{ s VT}) 2l acna o) + ¥ el s o em)

< max {1+ pmax{VT: T} + pmax{1; VT};v } ()] 2
holds true, i.e. D is continuous.

We use integration by parts and the definition of the dual pairing in the appearing function spaces to
come up with

(D*[w, v, 7], (2,u)) » = ((w, v, r),D[zgu])y

— 2(0) - w(0) + /0 : [Vz(t) M (Z(O) + /0 t vz(T)dT) _ Nu(t)} Vu(t)dt

+ /OT {P (z(O) + /Ot Vz(7’)d7'> + Qu(t)] -o(t)dt+ |R (z(O) + /OT Vz(7’)d7’>] 7

T T
= 2(0) - <w(0) +RTT+/ [PTo(t) — MTVw(t)]dt> +/ u(t) - [QTo(t) — NTVw(t)|dt
0 0

+ /OT {Vz(t)- [Vw(t) +RTr] + (/Ot VZ(T)dT> [PTo(t) - MTVw(t)]} dt

0

/ Vz(t) - [Vw(t) + RTr] dt+</ Va(t >-</OT[PTv(t)—MTVw(t)]dt>
- /O Va(t) - ( /O [PTU(T)—MTVw(T)]dT) dt

T T
= 2(0) - <w(0) +RT7~+/ [PTo(t) — MTVw(t)]dt> +/ u(t) - [QTo(t) — NTVw(t)]dt
0

= 2(0) - <w(0) +RU+/T [PTo(t) —MTVw(t)]dt> +/T u(t) - [QTo(t) — NTVw(t)|dt
0

0

/ Vz(t) - [Vuw(t) + R r]dt +/ Vz(t (/T [PTo(r) — Mva(T)]dT> dt
T
= 2(0) - (w(O) +R'r —|—/ [PTo(t) — MTVw(t)]dt>
0
T
/ Va(t ( ®+R™r +/ [PTo(r) — MTVU}(T)]dﬂ') dt

+/ u(t) - [Qo(t) — NTVw(t)]dt
0

This yields the presented formula for the adjoint operator D*. O
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