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I

Abstract

The objective of our studies is the combination of electromagnetic and direct current (DC)

resistivity methods in a joint inversion approach to improve the reconstruction of a given

conductivity distribution. We utilize the distinct sensitivity patterns of different methods to

enhance the overall resolution power and ensure a more reliable imaging result.

In order to simplify the work with more than one electromagnetic method and establish a

flexible and state-of-the-art software basis, we developed new DC resistivity and electromag-

netic forward modeling and inversion codes based on finite elements of second order on

unstructured grids. The forward operators are verified using analytical solutions and conver-

gence studies before we apply a regularized Gauss-Newton scheme and successfully invert

synthetic data sets. Finally, we link both codes with each other in a joint inversion.

In contrast to most widely used joint inversion strategies, where different data sets are com-

bined in a single least-squares problem resulting in a large system of equations, we introduce

a sequential approach that cycles through the different methods iteratively. This way, we

avoid several difficulties such as the determination of the full set of regularization parameters

or a weighting of the distinct data sets. The sequential approach makes use of a smooth-

ness regularization operator which penalizes the deviation of the model parameters from a

given reference model. In our sequential strategy, we use the result of the preceding indi-

vidual inversion scheme as reference model for the following one. We successfully apply this

approach to synthetic data sets and show that the combination of at least two methods yields

a significantly improved parameter model compared to the individual inversion results.



II

Kurzfassung

Ziel der vorliegenden Arbeit ist die gemeinsame Inversion (joint inversion) elektromagneti-

scher und geoelektrischer Daten zur Verbesserung des rekonstruierten Leitfähigkeitsmodells.

Dabei nutzen wir die verschiedenartigen Sensitivitäten der Methoden aus, um die Auflösung

zu erhöhen und ein zuverlässigeres Ergebnis zu erhalten.

Um die Arbeit mit mehr als einer Methode zu vereinfachen und eine flexible Softwarebasis

auf dem neuesten Stand der Forschung zu etablieren, wurden zwei Codes zur Modellierung

und Inversion geoelektrischer als auch elektromagnetischer Daten neu entwickelt, die mit

finiten Elementen zweiter Ordnung auf unstrukturierten Gittern arbeiten. Die Vorwärtsopera-

toren werden mithilfe analytischer Lösungen und Konvergenzstudien verifiziert, bevor wir ein

regularisiertes Gauß-Newton-Verfahren zur Inversion synthetischer Datensätze anwenden.

Im Gegensatz zur meistgenutzten joint inversion-Strategie, bei der verschiedene Daten in

einem einzigen Minimierungsproblem kombiniert werden, was in einem großen Gleichungs-

system resultiert, stellen wir schließlich einen sequentiellen Ansatz vor, der zyklisch durch

die einzelnen Methoden iteriert. So vermeiden wir u.a. eine komplizierte Wichtung der ver-

schiedenen Daten und die Bestimmung aller Regularisierungsparameter in einem Schritt. Der

sequentielle Ansatz wird über die Anwendung einer Glättungsregularisierung umgesetzt, bei

der die Abweichung der Modellparameter zu einem gegebenen Referenzmodell bestraft wird.

Wir nutzen das Ergebnis der vorangegangenen Einzelinversion als Referenzmodell für die fol-

gende Inversion. Der Ansatz wird erfolgreich auf synthetische Datensätze angewendet und

wir zeigen, dass die Kombination von mehreren Methoden eine erhebliche Verbesserung des

Inversionsergebnisses im Vergleich zu den Einzelinversionen liefert.
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1 Introduction and outline of the thesis

The acquisition and interpretation of geophysical data to investigate the upper part of the

Earth’s crust has occupied both scientists and exploration companies for decades. Adequate

design and sufficiently exact evaluation of a geophysical measurement requires continued

work on the existing software and its physical and mathematical background to further im-

prove and possibly accelerate the available algorithms. We have to constantly revise our

approaches to eliminate mistakes and replace outdated algorithms with new techniques.

Codes have to be adjusted to new developments in our understanding of the measurement

of geophysical data and the application of inversion schemes.

As a part of this ongoing research and advancement of available methods, in this thesis we

developed two new modeling and inversion codes for dealing with direct current (DC) resis-

tivity and electromagnetic data. These codes are partially based on known algorithms, but

we also examined and implemented new approaches. Each of the two individual codes en-

ables us to simulate and invert the particular data sets. Furthermore, we present a sequential

approach to joint inversion, where we combine both codes to improve the inversion result.

All parts of the software are implemented in MATLAB to achieve standardization of our codes

and establish a flexible and state-of-the-art software basis to simplify the work with more than

one geophysical method.

Overall, the thesis is divided into three main chapters. Chapters 2 and 3 deal with the

modeling and individual inversion of DC resistivity and electromagnetic data, respectively.

Here, we describe the historical and physical background of the methods and give a detailed

explanation of the mathematical techniques concerning the assembly of the linear system

and the solution of the resulting least-squares problem. Therefore, these chapters are more

or less a detailed documentation of the codes and we advise future users of the codes to

read through the corresponding chapter in order to understand the implementation and to

be able to work with it or add further features. An overview over the file structure is given

in the Appendix. Chapter 4 explains the sequential approach to joint inversion and shows

its applicability and advantages using two synthetic examples. We end with a summary and

outlook in Chapter 5.
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2 DC resistivity modeling and inversion

The DC resistivity method is one of the most common and cost-effective geophysical explo-

ration techniques. In the past decades, there has been an ongoing advancement and im-

provement in data acquisition and interpretation for all geophysical methods. The presence

of increasingly reliable geoelectrical data sets promoted and still promotes the development

of multifunctional simulation and inversion algorithms to evaluate and interpret these huge

amounts of data in an appropriate manner. There is a limited number of solution techniques

for the three-dimensional (3D) DC resistivity problem discussed in the literature: The integral

equation method implemented by Dieter et al. (1969) and Hohmann (1975) is applied to

simple model geometries (Bing and Greenhalgh, 2001). The finite difference method (Mufti

(1976), Dey and Morrison (1979), Lowry et al. (1989), Park and Van (1991), Spitzer (1995))

approximates the derivatives in the equation of continuity (Section 2.2.1) by finite differences.

The newest solution technique is the finite element method (Coggon (1971), Pridmore et al.

(1981), Sasaki (1994), Rücker et al. (2006), Yuan et al. (2016)) which approximates the so-

lution of a variational formulation. Referring to Li and Spitzer (2002) who compared finite

difference and finite element methods for the DC resistivity method as well as to Bing and

Greenhalgh (2001) who emphasized the accuracy and computational efficiency in finite ele-

ment modeling, we chose to use this approximation method in our studies, too. Furthermore,

Rücker et al. (2006) point out important advantages of an unstructured finite element grid,

which are “efficient local mesh refinement” and “flexible model geometry description”. The

inaccuracy of the solution due to singularities in the source term is eliminated by the singula-

rity removal technique introduced by Coggon (1971) and Lowry et al. (1989) and enhanced

by Zhao and Yedlin (1996). The inversion schemes based on the three different solution tech-

niques were first published by Park and Van (1991), Ellis and Oldenburg (1994) and Zhang

et al. (1995). Most of the inversion approaches are not new and based on Gauss-Newton

schemes, which we also use. Finite element inversion schemes were implemented by Sasaki

(1989), Yi et al. (2003) and Günther et al. (2006). Here, we present a 3D DC resistivity finite

element forward and inversion algorithm using unstructured grids and a smoothness regu-

larization based on a mixed finite element formulation. The resulting least-squares problem

is solved with a direct solver or an iterative Krylov subspace method (Hestenes and Stiefel

(1952), Paige and Saunders (1982)). The code was developed and implemented in the
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plemented in the Geotechnologien project Three-dimensional Multi-Scale and Multi-Method

Inversion to Determine the Electrical Conductivity Distribution of the Subsurface Using Parallel

Computing Architectures (Multi-EM) in close collaboration with Felix Eckhofer.

2.1 Physical principles

The DC resistivity method is a geoelectrical method to explore the upper part of the Earth’s

crust. It came into use in the first part of the 20th century (Zhdanov and Keller, 1994).

Examples of application are mineral exploration, detection of cavities and groundwater or

localization of hazardous waste. The aim of a geoelectrical survey is to get a sufficiently

exact image of the subsurface regarding electrical properties. In contrast to a geological

mapping, geoelectrical methods try to characterize the geological setting by means of petro-

physical parameters which are for example the electrical resistivity ρ, its reciprocal parameter

the electrical conductivity σ or the electrical permittivity ε. DC resistivity methods make use

of artificially generated, stationary electric fields. Figure 2.1 illustrates the setup of a geo-

current streamlines
equipotential surfaces

current electrodes
potential electrodes

A, B
M, N 

I

V

A

B
M

N

Fig. 2.1: Basic principle of a DC resistivity measurement, adapted from Knödel et al. (2005b).

electrical measurement, where we inject currents into the conductive ground using galvanic

contacts which are the current electrodes A and B in Figure 2.1. These currents disseminate

into the Earth and evoke a potential field in the subsurface which is influenced and altered by

the present conductivity structures as follows: Away from electric current sources in a homo-

geneous isotropic medium, there holds

∇ · j = 0

for the electric current density j. Inserting Ohm’s law (without displacement currents)

j = σE



2.1 Physical principles 7

with the electric field E, we get

∇ · (σE) = 0

∇σ ·E + σ∇ ·E = 0.

We insert the Maxwell equation (see Section 3.1)

∇ ·D = ∇ · εE = q, ε = const.

∇ ·E =
q

ε

with the electric displacement D, the electric permittivity ε and the charge density q, which

finally leads to

qs = − ε
σ
∇σ ·E.

This equation describes the evolution of surface charges qs in the interface between areas of

different conductivity. These surface charges alter the potential field which results in a visible

change in the measured sounding curves. That is why measuring potentials at the Earth’s

surface and/or in boreholes enables us to evaluate the underlying conductivity distribution.

Generally, a configuration of four electrodes is used; one pair of electrodes (sources, A and

B in Figure 2.1) transmits the current and the resulting potential field is measured with the

second pair (receivers, M and N in Figure 2.1). Figure 2.2 shows several configurations of

source and receiver electrodes and each has its own advantages and disadvantages with

regards to exploration depth, signal-to-noise ratio, sensitivity and others (Møller et al. (2006),

Knödel et al. (2005b)). For example Wenner arrays are less sensitive to noise whereas the

dipole-dipole, pole-dipole and gradient arrays are most susceptible to noise, but offer the

best resolution (Zhou and Dahlin (2003); Knödel et al. (2005b)). The exploration depth

depends on the underlying conductivity structure as well as on the configuration and spacing

of the electrodes. In general, this depth increases when the electrode spacing is enlarged. We

call the depth range with the highest current density depth of investigation and it is possible

to define approximate values for this depth for all configurations (Roy and Apparao, 1971).

According to the theorem of reciprocity (Geselowitz, 1971) in a four-electrode system the

positions of sources and receivers can be interchanged without affecting the results of the

measurement. This property is used to examine the accuracy of the measurement or to

enhance the signal-to-noise ratio using stacking (Zhou and Dahlin, 2003). The interpretation

of DC resistivity measurements is limited by equivalences. For example in a layered medium

different combinations of layer thicknesses and conductivities and even different numbers of

layers can result in the same potential field (Flathe, 1974). Particularly in the case of an
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A M N B

I
V

c) Gradient array

A M N B

V

b) Schlumberger array

I

A M N B

a) Wenner array

V I

d) Pole-pole array

A M

VI

e) Pole-dipole array

A M N

VI

f) Dipole-dipole array

A B M N

VI

current electrodes
potential electrodes

A, B
M, N 

Fig. 2.2: Some of the most common configurations of electrodes, adapted from Møller et al. (2006). I denotes

the injected current, whereas V denotes the potential difference measured between M and N.

embedded thin layer only the product or quotient of thickness h and conductivity σ can be

determined. Here, the terms of longitudinal conductance and transverse resistance play an

important role. If the thin layer is conductive in comparison with the background, the current

is going to flow almost horizontally along the thin layer. For a resistive layer, the current will

flow almost vertically through the layer. In both cases, the measurement result will not change

if the longitudinal conductance S = hσ or the transverse resistance T = h
σ remains constant.

For further explanation we refer to Zhdanov and Keller (1994).

A very important physical quantity in interpreting DC resistivity measurements is the apparent

resistivity ρa, which can be explained as follows: The potential u of a point source of strength

I located on the surface of a homogeneous halfspace is given by

u =
ρI

2πr

at an arbitrary spacing r (Keller and Frischknecht, 1966). For an array of two source elec-

trodes A and B and two measuring electrodes M and N the potential of each source will be

added to the resulting potential difference between M and N:

∆u(r) = ρI

[
1

2π

(
1

rAM
− 1

rBM
− 1

rAN
+

1

rBN

)]
︸ ︷︷ ︸

k

.

We call this formula Neumannsche Formel (ibid.). Then, the resistivity of the homogeneous

halfspace is given by

ρ = k
∆u

I
(2.1)
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with the geometric or configuration factor k, which depends on the position and spacing

between source and receiver electrodes and therefore, its unit is a measure of length. We

find the appropriate factors for a certain configuration e. g. in Roy and Apparao (1971) and

Knödel et al. (2005b). Equation (2.1) represents the resistivity for a homogeneous earth but

for an inhomogeneous conductivity distribution the values of ρ may differ a lot or even have

no relation to the actual resistivities because they are calculated under the assumption of

homogeneity. Hence, we call these values apparent resistivities ρa.

2.2 DC resistivity forward modeling

2.2.1 Governing equations and boundary conditions

If we want to study the propagation of the electric currents and the evolution of a potential

field during a DC resistivity measurement we have to evaluate the governing equations using

numerical forward modeling. Generally, the forward problem is a nonlinear mapping which

generates synthetic data u by applying an operator G to a given parameter distribution m:

G(m) = u.

G implements the laws of physics and processes which are relevant for the given physical

problem and usually, it is the discrete representation of a partial differential equation (PDE).

To model DC resistivity measurements, we first consider the equation of continuity:

−∇ · (σ∇u) = Iδ(x− x0), (2.2)

with the potential u, a point source of strength I located at x0 = [x0, y0, z0]T on the right-hand

side of the equation and a given conductivity distribution σ = σ(x, y, z). For a homogeneous

halfspace the solution of this equation is given by Green’s function in two and three dimen-

sions (Keller and Frischknecht (1966) and Zhdanov and Keller (1994)):

u(x) =


− I

πσ
log r, (2D)

I

2πσr
, (3D)

(2.3)

(2.4)

where r = ||x−x0|| is the distance between an arbitrary point x in the modeling domain and

the source position x0. Although the electric fields and currents spread in an infinite medium,

to find a discrete representation and solve equation (2.2) we have to limit the medium to a

small computational domain Ω with appropriate boundary conditions on ∂Ω which satisfy the
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laws of physics. These conditions are essential for a unique solution of the PDE. Depending on

the physical phenomenon we want to simulate numerically, we can set Dirichlet or Neumann

conditions, which determine the field value on the boundary or the normal derivative of

the considered field, respectively. These conditions yield a sufficiently good approximation

although the physical field extends beyond the boundary of the modeling domain. A mixed or

Robin boundary condition on ∂Ω includes a mapping of Dirichlet values onto Neumann values

and is known as Poincaré-Steklov operator (Oberai et al., 1998) or Dirichlet-to-Neumann

(DtN) operator. It maps the values of the electric potential u on the boundary ∂Ω onto the

normal derivative of the potential ∂nu on ∂Ω. For the two-dimensional (2D) DC resistivity

problem, we derive the DtN mapping of Green’s function (2.3): With the gradient of the

potential

∇u(x) =


∂xu

∂yu

∂zu

 = − I

πσr


∂xr

∂yr

∂zr

 = − I

πσr2


x− x0

y − y0

z − z0

 =
x− x0

r2 log r
u(x)

we obtain the normal derivative with the unit normal vector n as

∂nu(x) = n · ∇u(x) = n · (x− x0)

r2 log r
u(x),

and get the mixed boundary condition

∂nu− n ·
(x− x0)

r2 log r
u = 0. (2.5)

For the 3D case we get the DtN mapping as follows: The gradient of the potential is given

by

∇u(x) =


∂xu

∂yu

∂zu

 = − I

2πσr2


∂xr

∂yr

∂zr

 = − I

2πσr3


x− x0

y − y0

z − z0

 = −x− x0

r2
u(x)

and the normal derivative reads

∂nu(x) = n · ∇u(x) = −n · (x− x0)

r2
u(x)

resulting in the exact local boundary condition with a different sign compared to the 2D DtN

mapping:

∂nu+ n · (x− x0)

r2
u = 0. (2.6)

For the boundary located at the Earth’s surface, denoted by Γ0 ⊂ ∂Ω, we consider homoge-

neous Neumann conditions because the conductivity of the air is equal to zero and therefore

the electric field is tangential to the boundary:

∂nu ≡ 0 along Γ0. (2.7)
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2.2.2 The secondary field approach

In the previous section, we introduced the fundamental equation for DC resistivity modeling:

−∇ · (σ∇u) = Iδ(x− x0). (2.8)

Discretizing and solving this equation to obtain the electric potential u for a given conductivity

distribution is called total field approach for the DC resistivity problem. The slope of the dirac

delta distribution on the right-hand side of the equation is infinite at the source location and

therefore a singularity in the potential field u occurs at x0. This singularity restricts the accuracy

of the finite element approximation and results in a deduced convergence rate. We are not

able to discretize this discontinuous function adequately but the usage of very fine grids can

weaken the effect of the singularity. Unfortunately, this will increase the computational effort

rapidly (Lowry et al., 1989). To obtain the full rate of convergence and utilize a moderate

grid size, we use the secondary field approach described by Coggon (1971) and Lowry et

al. (1989) and we develop the corresponding PDE as follows: For a single point source of

strength I located at x0 on the surface of a 3D homogeneous halfspace with a constant

conductivity σ0 equation (2.8) changes to

−∇ ·
(
σ0∇up

)
= Iδ(x− x0) (2.9)

with the solution for the primary potential up given by Green’s function (equation (2.4)):

up(x) =
I

2πσ0r
(2.10)

at an arbitrary point x and r = ||x − x0||. Now, we assume an anomalous conductivity

σs = σ(x) − σ0 and decompose the total potential u into primary (up) and secondary (us)

potential:

u = up + us

Using this decomposition and inserting it into equation (2.8) we get

−∇ ·
(
σ∇(up + us)

)
= Iδ(x− x0)

−∇ ·
(
σ∇up

)
−∇ · (σ∇us) = Iδ(x− x0).

The right-hand side is replaced by equation (2.9):

∇ ·
(
σ∇up

)
+∇ · (σ∇us) = ∇ · (σ0∇up),
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which finally yields the fundamental equation for the secondary field approach:

∇ · (σ∇us) = ∇ ·
(
σ0∇up

)
−∇ ·

(
σ∇up

)
= ∇ ·

(
(σ0 − σ)∇up

)
−∇ · (σ∇us) = ∇ · ((σ − σ0)︸ ︷︷ ︸

σs

∇up). (2.11)

To model the Earth’s surface in a realistic way we have to be able to work with topography

which means to use correct boundary conditions for a surface which is far away from being

a “flat Earth”. For the total potential u, we use the homogeneous Neumann condition given

in equation (2.7). To fulfill this condition for the secondary potential us we have to implement

the following inhomogeneous Neumann boundary condition along Γ0:

us = u− up

∂us

∂n
=
�
�
�7

0
∂u

∂n
−
∂up

∂n

= −
∂up

∂n

= −n · ∇up.

We already calculated the gradient of the primary potential for the mixed boundary condition

given in equations (2.6) and (2.5). Hence, for the normal derivative of us we get two different

expressions for the 2D- and 3D-case:

∂us

∂n
=


−n · (x− x0)

r2 log r
u2D

p , (2D),

n · (x− x0)

r2
u3D

p , (3D).

(2.12)

These derivatives yield the correct potential fields for modeling the secondary potential in a

realistic Earth model containing topography at the air-Earth interface.

2.2.3 Finite element approximation – Lagrange elements

We are able to develop analytical solutions of PDEs for some simple models. But dealing with

complex and realistic model geometries requires us to use approximation procedures to get

a solution. There are a lot of different numerical methods to find this solution such as finite

element, finite difference, finite volume, or spectral methods. Each of these methods has

its own advantages and disadvantages. To solve the DC resistivity problem described in the
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previous section, we chose to use the finite element method. It uses an appropriate variational

formulation for each PDE and provides large flexibility concerning surface topography and

complex geological models.

In the following chapter, we give a short introduction to our finite element discretization and

the assembly of the resulting linear system of equations. For further details and explicit deriva-

tions see for example Zienkiewicz et al. (2005), Monk (2003) or Braess (2003). We want to

remark that almost all detailed explanations concerning basis functions, size of variables

etc. are developed in 3D but the DC resistivity code can be used for 2D problems, too (see

Appendix A.1.1).

2.2.3.1 Variational formulation

Again, we consider the equation of continuity given in (2.2):

−∇ · (σ∇u) = f, (2.13)

with the right-hand side or source term f and the following boundary conditions:

u = gD along ΓD ⊂ ∂Ω (2.14)

∂u

∂n
= gN along ΓN ⊂ ∂Ω (2.15)

with the Dirichlet boundary ΓD, the Neumann boundary ΓN and ∂Ω = ΓD ∪ ΓN . To deduce

the basis for a finite element discretization, which is the variational formulation, we need to

use the multidimensional equivalent of integration by parts which is the divergence theorem:

Theorem 1 (Divergence Theorem, see e.g. Monk (2003))

Let Ω ⊂ R3, with boundary ∂Ω and unit outward normal n, be a bounded Lipschitz

domain. Let u : R3 → R3 be a vector field with ui ∈ H1(Ω), i = 1, 2, 3. Then∫
Ω
∇ · u dx =

∫
Ω

(u1
x1 + u2

x2 + u3
x3) dx =

∫
∂Ω
u · n ds,

where u = [u1, u2, u3]T and ds stands for integration over the boundary ∂Ω.

The partial derivatives uixi are weak derivatives and can be described as follows: If there is a

continuous partial derivative ux of the function u with respect to x, then, for every differentiable

function φ which vanishes on ∂Ω and u1 = uφ, u2 = u3 = 0 there holds∫
Ω
uφx dx = −

∫
Ω
uxφdx, ∀φ ∈ C∞0 (2.16)
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according to the divergence theorem. This equation can apply to non-differentiable functions,

too: If u and v are integrable functions with the property∫
Ω
uφx dx = −

∫
Ω
vφ dx,

then v is the weak derivative of u with respect to x. Using these weak formulations, we

deduce the variational formulation for the DC resistivity problem by multiplying (2.13) by a

test function v, integrating and applying the divergence theorem:

(f, v) = −
∫

Ω
v∇ · (σ∇u) dx

= −
∫

Ω
(∇ · (σv∇u)−∇u · σ∇v) dx

=

∫
Ω
∇u · σ∇v dx−

∫
∂Ω
σv∇u · n ds

=

∫
Ω
∇u · σ∇v dx−

∫
∂Ω
σv
∂u

∂n
ds,

where (·, ·) is the L2 inner product for vector functions in Ω. Now, we choose a test function

v which vanishes on ΓD. With the Neumann condition given in equation (2.15) and the L2

inner product (·, ·)Γ on Γ we get

(∇u, σ∇v) = (f, v) + (σ∂nu, v)ΓN = (f, v) + (σgN , v)ΓN

with the (bi)linear forms

a(u, v) := (∇u, σ∇v) =

∫
Ω
∇u · σ∇v dx, (2.17)

l(v) := (f, v) + (σgN , v)ΓN =

∫
Ω
fv dx+

∫
ΓN

σgNv ds. (2.18)

Finally, with the functions u, v ∈ H1(Ω) and the ansatz and test spaces

S =
{
u ∈ H1(Ω) : u|ΓD = gD

}
(2.19)

V =
{
v ∈ H1(Ω) : v|ΓD = 0

}
(2.20)

we get the variational formulation for the DC resistivity problem given in equation (2.13):

Find u ∈ S such that a(u, v) = l(v) ∀v ∈ V . (2.21)

The DC resistivity code is able to work with different approaches for the right-hand side of

the PDE discussed in Chapter 2.2.2. For the total field approach the first integral of equation

(2.18) is given by ∫
Ω
fv dx = Iv(x0)

and for the secondary field approach we get∫
Ω
fv dx =

∫
Ω
∇v · (σ − σ0)∇up dx (2.22)

which is almost equal to the integral of the bilinear form a(u, v) as given in equation (2.17).
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2.2.3.2 Derivation of the Galerkin system

The variational formulation (2.21) enables us to assemble a linear system of equations to

solve the DC resistivity problem. The finite element method uses ansatz and test spaces for

the ansatz and test functions u and v consisting of piecewise polynomials and the underlying

modeling area Ω is divided into subdomains which are for example triangles in two dimen-

sions or tetrahedra, hexahedrons and others in three dimensions. We call the decomposition

of Ω into subsets K ⊂ Ω triangulation Th (Figure 2.3). First of all, the ansatz and test spaces

Fig. 2.3: Vertical cut through an exemplary tetrahedral triangulation Th of two concentric hemispheres.

given in equations (2.19) and (2.20) are substituted with finite spaces S h and V h. These

two spaces are equal except for the boundary conditions and in particular for gD ≡ 0 there

holds S h = V h. Therefore, we only consider basis functions of the n-dimensional subspace

V h ⊂ V to describe the solution uh. The variational formulation (2.21) changes as follows:

Find uh ∈ V h such that a(uh, v) = l(v) ∀v ∈ V h. (2.23)

With a basis of V h {φ1, φ2, . . . , φn} we get the solution uh by calculating the linear combina-

tion of these basis functions:

uh =
n∑
j=1

ujφj , (2.24)

where uj are unknown scalar coefficients or degrees of freedom (DOFs). Our code deals with

Lagrange elements which are scalar finite elements. Here, we consider linear elements where

the DOFs are defined on vertices (Figure 2.4). All linear basis functions φj ∈ V h are uniquely

defined by their function values at the vertices xi of the elements. We use an appropriate

nodal basis {φ1, φ2, . . . , φn}, given by

φj(xi) = δi,j , i, j = 1, . . . , n, (2.25)
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Fig. 2.4: DOFs (red) for linear Lagrange elements in two (left) and three (right) dimensions.

which means that each basis function φj is equal to one at the associated vertex xj and

vanishes for all other vertices. With the linear combination (2.24) and a test function v = φi,

the variational formulation (2.23) is equivalent to

n∑
j=1

uja(φj , φi) = l(φi), i = 1, 2, . . . , n.

With the matrix A ∈ Rn×n for [A]i,j = a(φj , φi), the right-hand side b ∈ Rn for [b]i = l(φi), the

solution u ∈ Rn for [u]i = ui and the conductivity vector σ, which contains one conductivity

value for each element K, we get the Galerkin system (Zienkiewicz et al., 2005):

A(σ)u = b. (2.26)

Because of the nodal basis, the solution u, which contains the coefficients (DOFs) of the

linear combination (2.24), directly represents the approximated electric potential on each

of the nodes in the triangulation Th. Therefore, we use the vector u for the solution of the

forward problem as well as for the electric potential from now on. Furthermore, the equations

(2.11) and (2.22) yield the discrete representation of the secondary field equation (Wolters et

al. (2007), Rücker et al. (2006)):

A(σ)us = A(σ0 − σ)up, (2.27)

where σ0 = σ0 · [1, 1, . . . , 1, 1]T is a constant vector containing the source conductivity. The

sum of the solution us (secondary potential) and the primary potential up (equation (2.10))

yields the total potential u and therefore an approximated solution of the underlying PDE

(2.11).
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2.2.3.3 Assembly of the system matrix

To assemble the Galerkin system we have to reformulate the integrals given in equations

(2.17) and (2.18) in terms of the basis functions of the finite element space. For each element

K of the triangulation T h and i, j = 1, 2, . . . , n it holds

a(φj , φi) =

∫
Ω
∇φj · σ(x)∇φi dx

=
∑
K∈T h

σK

∫
K
∇φj · ∇φi dx =:

∑
K∈T h

aK(φj , φi) (2.28)

l(φi) =

∫
Ω
fφi dx+

∫
ΓN

σ(x)gNφi ds

=
∑
K∈T h

(∫
K
fφi dx+ σK

∫
K∩ΓN

gNφids

)
=:

∑
K∈T h

lK(φi). (2.29)

We assume a piecewise constant conductivity distribution σ(x) which means that each element

K is associated with a constant conductivity σK and the element integrals given in equations

(2.28) and (2.29) do not depend on sigma anymore. With the element matrix and right-hand

side

[AK ]i,j := aK(φj , φi) i, j = 1, 2, . . . , n

[bK ]i := lK(φi) i = 1, 2, . . . , n,

which are defined in a single element, we get the full system matrix and right-hand side

A =
∑
K∈T h

AK and b =
∑
K∈T h

bK .

Usually, for a finite element method we define a finite element on the reference element K̂

and derive an arbitrary element K ∈ T h using an affine mapping from K̂ onto K. One

reason for this approach is that the derivation of basis functions and other essential quantities

is much easier for the reference element and has to be done only once. From now on, K̂

itself and all other quantities associated with the reference element will be marked with a hat

in this thesis. We set the reference element to be the unit tetrahedron K̂ (Figure 2.5) with the

coordinates x̂ = (ξ, η, ν) ∈ K̂ in 3D (unit triangle in 2D) and define it as follows:

K̂ = {(ξ, η, ν) ∈ R3 : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ, 0 ≤ ν ≤ 1− ξ − η}, (2.30)

with the vertices v̂1 = [1, 0, 0]T , v̂2 = [0, 1, 0]T , v̂3 = [0, 0, 1]T and v̂4 = [0, 0, 0]T . We want

to use a transformation FK from K̂ onto K to get the element matrix AK for an arbitrary

element. This transformation is given as follows:

FK : K̂ → K, K̂ 3 x̂ 7→ x ∈ K, x = FK(x̂) = BKx̂+ bK (2.31)
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ξ

η

ν

v̂1

v̂2v̂4

v̂3

Fig. 2.5: The reference tetrahedron K̂.

with 
x

y

z

 =


x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4


︸ ︷︷ ︸

BK


ξ

η

ν

+


x4

y4

z4


︸ ︷︷ ︸
bK

. (2.32)

Then, the affine mapping FK transforms each vertex of the reference tetrahedron K̂ onto an

arbitrary tetrahedron K:

v̂1 = [1, 0, 0]T 7→ [x1, y1, z1]T ,

v̂2 = [0, 1, 0]T 7→ [x2, y2, z2]T ,

v̂3 = [0, 0, 1]T 7→ [x3, y3, z3]T ,

v̂4 = [0, 0, 0]T 7→ [x4, y4, z4]T .

To evaluate the (bi)linear forms (2.28) and (2.29), we have to evaluate the basis functions

for an arbitrary element. This can be realized by transforming the basis functions defined in

the reference element to the respective element. The local 3D basis functions in the reference

element K̂ are given by

φ̂1(ξ, η, ν) = ξ, φ̂2(ξ, η, ν) = η, φ̂3(ξ, η, ν) = ν, and φ̂4(ξ, η, ν) = 1− ξ − η − ν

and their gradients are

[
∇̂φ1 ∇̂φ2 ∇̂φ3 ∇̂φ4

]
=


1 0 0 −1

0 1 0 −1

0 0 1 −1

 .
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With equation (2.31) there holds

φ(x) := φ̂(x̂) = φ̂(F−1
K (x)) (2.33)

∇φ = B−TK ∇̂φ̂

∇̂φ̂ =
[
∂ξφ̂, ∂ηφ̂, ∂ν φ̂

]T
.

Now, we can reformulate the (bi)linear forms and integrals given in equations (2.28) and

(2.29) in terms of the reference element (without boundary conditions):

aK(φj , φi) = σK

∫
K̂

(
B−TK ∇̂φ̂j

)
·
(
B−TK ∇̂φ̂i

)
|detBK | dx̂

l(φi) =

∫
K̂
fφ̂i|detBK | dx̂.

Within our assembly routines, we use a Gaussian quadrature rule to approximate the integrals

and assemble the matrix AK and the right-hand side bK for the element K.

Pseudocode 1 shows the principle of the assembly of the full stiffness matrix A and the right-

hand side b. We use the notation of MATLAB where A(i, j) denotes the entry of A in the ith

row and the jth column. Within our DC resistivity code the coordinates of all nodes of the

triangulation T h are given in an array mesh.nodes of size 3× nnodes in 3D. The four nodes a

tetrahedron K consists of are given in the array mesh.elem of size 4× nK .

Pseudocode 1 ASSEMBLY OF THE GALERKIN SYSTEM

1: A = O, b = 0

2: for i = 1, 2, . . . , nK {i: index of element K} do

3: Extract nodes

ik = mesh.elem(k, i), k = 1, 2, 3, 4

4: Calculate AK and bK for the element K

5: A([i1 i2 i3 i4], [i1 i2 i3 i4]) = A([i1 i2 i3 i4], [i1 i2 i3 i4]) +AK

6: b([i1 i2 i3 i4]) = b([i1 i2 i3 i4]) + bK

7: end for

Besides refining the mesh, it could be useful to increase the order of the basis functions to

improve the finite element approximation. The improvement in the solution depends on the

underlying problem and the PDE we have to discretize. In this chapter we just stated the

basis functions and DOFs for linear Lagrange elements, but the DC resistivity code is able to

use quadratic Lagrange elements in 2D and 3D, too. Therefore, we give the basis functions

and DOFs for quadratic Lagrange elements in Appendix A.1.2. The assembly procedure for

elements of higher order is similar to that for linear elements.
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2.2.3.4 Implementing boundary conditions

The previous section explained the assembly of the stiffness matrix without considering the

boundary conditions. In the following, we give a short overview over the three main types of

boundary conditions we implemented for our DC resistivity code. In the linear form (2.29) the

boundary integral for all elements is given as∫
ΓN

σ(x)gNφi ds =
∑
K∈T h

(
σK

∫
K∩ΓN

gNφids

)
.

To implement Neumann boundary conditions we have to transform the boundary integral to

the reference element. Because we want to evaluate this integral on the boundary of the

modeling domain, we have to compute a rectangular transformation matrix Br
K . This matrix

represents a projection from the original 3D boundary of the modeling domain Ω, consisting

of the triangular faces of the boundary tetrahedra, onto the reference triangle K̂ which is a

2D object. This results in

σK

∫
K∩ΓN

gNφi ds = σK

∫
K̂
gN φ̂i

√
|det(BrT

K ·Br
K)| dŝ.

For homogeneous Neumann conditions, this integral vanishes. If gN 6= 0, we have to add the

resulting vector to the right-hand side of the linear system of equations. An inhomogeneous

Neumann condition is needed to implement surface topography as described in Section 2.2.1

and in particular equation (2.12).

As given in Section 2.2.1 we want to be able to use Robin boundary conditions for all boun-

daries except the Earth’s surface. The associated equation (2.6) was given by

gR = ∂nu = −n · (x− x0)

r2
u.

Then, for the variational formulation (2.23) we get

a(u, v) = l(v)

=

∫
Ω
fv dx+

∫
ΓN

σgNv ds+

∫
ΓR

σgRv ds

a(u, v)

stiffness matrix

+

∫
ΓR

σ
n · (x− x0)

r2
uv ds

Robin contribution to the stiffness matrix

=

∫
Ω
fv dx

source term

+

∫
ΓN

σgNv ds.

Neumann condition

In terms of the reference element the contribution of the Robin condition to the stiffness matrix

is given by

σK

∫
K∩ΓR

n · (x− x0)

r2
φiφj ds = σK

∫
K̂

n · (x− x0)

r2
φ̂iφ̂j

√
|det(BrT

K ·Br
K)| dŝ.
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Again, we need the rectangular transformation matrix Br
K , because we are integrating over

the boundary triangles. In contrast to the Neumann condition, the mixed or Robin boundary

condition contributes to the stiffness matrix A.

Dirichlet boundaries can be used, if the exact solution on a certain boundary is known. They

are not considered in the initial assembly process, but incorporated before solving the system

of equations. First, we decompose the DOFs u ∈ Rn into inner nodes uI and Dirichlet

boundary nodes uD with

u =

uI
uD

 .
Then, the Galerkin system (2.26) can be decomposed as follows:AII AID

ADI ADD

uI
uD

 =

bI
bD

 .
The four matrices describe the coupling of the inner DOFs and the Dirichlet nodes with each

other and with themselves. With the Dirichlet condition

uD = gD

given in equation (2.14) we are able to separate the unknown inner DOFs from the known

Dirichlet values by AII AID

O I

uI
uD

 =

bI
gD


and we get the smaller linear system of equations

AIIuI = bI −AIDgD. (2.34)

Now we are able to solve this new, reduced system of equations for uI and afterwards

we combine these values with the known Dirichlet values uD to get the full solution vector

u = [uI , uD]T .

In the DC resistivity code, the implementation of the boundary conditions can be found in the

functions fe_get_rhs_bc, fe_get_stiffness_robin and fe_solve (see Appendix A.5.1.3).

Unless noted otherwise, we use a Neumann condition at the Earth’s surface and an exact

Robin boundary condition in all following forward simulations.



22 2 DC resistivity modeling and inversion

2.2.3.5 Decomposition of the stiffness matrix

To avoid reassembling the system matrix A(σ) for a new conductivity vector and simplify

the derivative of this matrix, it is beneficial to separate the parameter information from

the mesh information. Within this section we want to show two different possible ways to

decompose A(σ).

The approach we are using within our DC resistivity code is the following: We do not assemble

the full stiffness matrix A(σ), but a three-way tensor

A′(σ) =
∂A(σ)

∂σ
,

where the number of “slices” equals the number of parameters in σ and each slice ∂A(σ)
∂σi

contains the derivative of the matrix A with respect to σi. For example the first slice belongs

to the partial derivative with respect to σ1 (Figure 2.6). The system matrix A(σ) depends

linearly on each σi. The tensor is very sparse and independent of the parameters. To obtain

∂A(σ)
∂σ1

Fig. 2.6: Derivative of the system matrix A(σ) with respect to all σi.

the system matrix, we only have to multiply the tensor by the conductivity vector in the third

dimension:

A(σ) =
∂A(σ)

∂σ
×3 σ.

Therefore, there is no need to reassemble the matrix for a new parameter vector which will

become important especially in the inversion procedure later on. The tensor class we use was

implemented by Martin Afanasjew.

Alternatively, we can try to find a decomposition of A ∈ Rn×n (where n is the number of

DOFs) as follows:

A(σ) = ST ·D(σ) · S,
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where the diagonal matrix D contains the electrical conductivities σ and S contains the geo-

metric information of the mesh. This decomposition will simplify the process of deriving the

system matrix, which is needed for any inversion algorithm. Basically, we have to decompose

the integral (2.28) within the assembly process of the system matrix:

aK(φj , φi) =

∫
K
∇φj · σK · ∇φi dx

=

∫
K̂

(
B−TK ∇̂φ̂j

)
· σK ·

(
B−TK ∇̂φ̂i

)
|detBK | dx̂

=

∫
K̂

√
|detBK |

(
B−TK ∇̂φ̂j

)
︸ ︷︷ ︸

ST

· σK︸︷︷︸
D

·
√
|detBK |

(
B−TK ∇̂φ̂i

)
︸ ︷︷ ︸

S

dx̂.

For the ith element we get the following decomposition of the corresponding part of the

system matrix:

Ai = STi DiSi

Si =
√
|detBKi | ·B

−T
Ki
· ∇̂φ̂ ∈ R3×4, STi ∈ R4×3

Di =


σi 0 0

0 σi 0

0 0 σi

 ∈ R3×3.

The entries of Si are filled in a 3×n-matrix S̃i such that the first column of Si becomes the i1th

column of S̃i, where ik (k = 1, 2, 3, 4) are the global nodes that belong to the ith tetrahedron.

Finally, we get the decomposition of the assembled system matrix A for m elements and

n DOFs in the following way:

A =


| | |

S̃T1 S̃T2 · · · S̃Tn

| | |


n×3m


D1

D2

. . .

Dn


3m×3m


— S̃1 —

— S̃2 —
...

— S̃n —


3m×n

.

To calculate the derivatives with respect to σi we only have to consider the block Di in D,

which becomes a 3× 3-identity matrix. All other entries in D vanish. This second approach is

not implemented in our code, but is a promising alternative and should be included in future

tests concerning the performance of the assembly algorithm.



24 2 DC resistivity modeling and inversion

2.2.4 The measurement operator

2.2.4.1 Implementation for the electric potential

If we want to generate a synthetic DC resistivity data set b ∈ Rnreceivers to compare it with

an analytical solution and validate the implemented algorithms, we have to evaluate the

numerical solution u ∈ V h at the associated receiver positions. Usually, the receivers are

not bound to the nodes in the mesh. The finite element discretization enables us to calculate

synthetic potential data u at any point within the discretized area. The measurement operator

Q ∈ Rnreceivers×nDOFs can be used to calculate this data by a linear combination of the finite

element basis functions φ̂ in the following way:

b =


u(x1)

u(x2)
...

u(xnreceivers)

 =

nDOFs∑
i

uiφi(xj) = Qu =


φ1(x1) . . . φnDOFs(x1)

...
...

φ1(xnreceivers) . . . φnDOFs(xnreceivers)




u1

u2

...

unDOFs

 .

(2.35)

This equation shows two generic rows of Q and each row belongs to one receiver position.

For linear elements, only the four basis functions which are associated with the element K

the receiver is located in yield a nonzero contribution to the linear combination. They are

evaluated within the reference element and therefore, we transform the receiver location

x ∈ K to a point x̂ ∈ K̂ (equation (2.31)). For quadratic elements, we have to evaluate ten

basis functions belonging to the receiver element.

Pseudocode 2 CALCULATE JTH ROW OF Q FOR JTH RECEIVER

1: Calculate index i of enclosing element K for jth receiver

2: Extract corresponding DOFs i1, . . . , i4

3: Solve BKx̂ = (receivers(j, :)T − bK)

4: for i = 1, . . . , 4 do

5: qK(i)← φ̂i(x̂)

6: end for

7: Q(j, [i1 i2 i3 i4])← qTK

Pseudocode 2 gives an overview over the assembly of the jth row of the measurement operator

which is implemented in the function fe_assemble_observation. First of all, we use the

MATLAB function tsearchn to find the enclosing element K for the jth receiver. Afterwards,
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we assemble the transformation matrix BK and the vector bK (equation (2.32)) to transform

the coordinates of the receiver location (stored in a variable called receivers ∈ Rnreceivers×3)

to the reference element and finally evaluate the basis functions to get the entries of Q.

2.2.4.2 Implementation for the apparent resistivity

If we carry out a DC resistivity measurement, the data calculated from the injected currents

and measured potential differences are apparent resistivities ρa (Section 2.1). The mea-

surement operator Q, described in the previous subsection, extracts potential values at the

receiver locations. To convert these values into apparent resistivities, we have to apply the

Neumannsche Formel as stated in equation (2.1):

ρa = k
∆u

I

with k = 2πa being the geometric factor derived from Green’s function (2.4) for a pole-pole

configuration (Roy and Apparao, 1971) and a being the spacing between the current source

A and the potential electrode M (Figure 2.2). For a current I of 1 A, we implemented the

configuration factor k as a diagonal matrix D ∈ Rnreceivers×nreceivers:

Dρa = 2π



a1

. . .

aj
. . .

anreceivers


, j = 1, . . . , nreceivers

and aj is the spacing between the current electrode A and the jth receiver electrode Mj. Thus,

we get the data vector consisting of apparent resistivities as follows:

bρa = ρa(x) = DρaQu.

This measurement operator is implemented in the function rhoA_get_transformation (Appen-

dix A.5.1.3) for 2D and 3D problems. According to the 2D Green’s function (2.3), the con-

figuration factor for the pole-pole configuration in a 2D modeling domain is given by

k = − π

log(a)
.
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2.2.5 Incorporation of multiple sources

To improve the resolution of a DC resistivity measurement, it is not only important to use

several receiver positions, but an appropriate number of sources, too. For multiple sources

we have to build up block diagonal matrices of the system matrix A(σ) and the measurement

operator Q with one diagonal block for each source:

Ablk =


A(σ)

A(σ)

. . .

A(σ)

 , Qblk =


Q

Q

. . .

Q

 .

The entries of A(σ) and Q do not depend on the source position. Therefore, we have ns equal

blocks on the main diagonal of both block matrices for ns sources. These block matrices are

used later on within the Gauss-Newton scheme (see Section 2.3.1) to expand the sensitivity

matrix J for multiple sources. The data vector u is extended for multiple sources by solving

the forward problem for each source individually and writing the resulting vector usk (k =

1, . . . , ns) one below the other:

u =


us1

us2
...

usns

 .

The spacing a between the source and receiver electrodes changes for multiple source po-

sitions. Therefore, we have to extend the measurement operator for the apparent resistivities

(see Section 2.2.4.2) as follows:

Dblk
ρa

=


Ds1
ρa

Ds2
ρa

. . .

D
sns
ρa



with Dblk
ρa
∈ Rnreceivers·ns×nreceivers·ns .
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2.2.6 Reference solutions

The previous sections explain the discrete forward problem for DC resistivity modeling. To

verify this forward operator, we calculate the electric response for some simple models, where

the analytical solution is known and can be compared with the numerical solution. An appli-

cation of our DC resistivity forward modeling code to a realistic geological setting in com-

parison with other geophysical methods is shown in detail in Börner et al. (2015a).

There are different possibilities to solve the assembled forward problem, i.e. the Galerkin

system given in equation (2.26). For small systems the easiest way is to use MATLAB’s direct

solver mldivide. Our code is able to use both this solver and a multigrid method (Weißflog et

al., 2013). Felix Eckhofer implemented an algebraic multigrid (AMG) solver to take advantage

of the good scaling properties of this method. Within our code, he integrated HSL-MI20 (Boyle

et al. (2007), Boyle et al. (2010)) from the HSL Mathematical Software Library.

2.2.6.1 Concentric semicircles and hemispheres

We want to compare the results of our DC resistivity forward modeling code with the analytical

solution for a hemispherical anomaly (given in light grey in Figure 2.7) in a homogeneous

halfspace. The point source is of strength I and located at the origin above a 3D halfspace

R0

ρ1

ρ0

source

r

x

Fig. 2.7: Frontal slice of spherical shell model.

with a resistivity ρ1 and we have an anomaly with the shape of a hemisphere, a constant

resistivity ρ0 and a radius of R0 > 0. For this model, the analytical potential u at an arbitrary

point x = [x, y, z]T depends on the radial distance r to the source, as the potential of the

homogeneous halfspace given in equation (2.4) does, too and is given by

ui = ui(r) = ci +
di
r
,
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with i= 0, 1 and r = ||x|| in both subdomains. The constants c1, d1 for the halfspace and

c0, d0 for the hemispherical anomaly have to be determined. The potential in the subdomain

that contains the source is given by u0 and the second part of it decays with increasing r and

contains d0. This constant can therefore be calculated from the analytical potential for a point

source of strength I above a homogeneous halfspace (equation (2.4)):

d0 =
ρ0I

2π
.

Because the potential decays linearly with increasing r it vanishes at infinity and therefore,

c1 has to be equal to zero. To determine d1 and c0 we consider continuity conditions for the

potential and the flux at the interface r = R0. For the potential we get:

u(R0−) = u(R0+)

c0 + ���

ρ0I
2π

d0

R0
=��>

0
c1 +

d1

R0

c0 =
d1

R0
− ρ0I

2πR0

c0 =
2πd1 − ρ0I

2πR0
.

The flux yields

1

ρ0
u′(R0−) =

1

ρ1
u′(R0+)

− ���

ρ0I
2π

d0

ρ0R2
0

= − d1

ρ1R2
0

d1 =
ρ1I

2π
,

which leads to

c0 =
I(ρ1 − ρ0)

2πR0
.

Finally, we arrive at the solution

u(r) =


I(ρ1 − ρ0)

2πR0
+
ρ0I

2πr
, 0 < r ≤ R0,

ρ1I

2πr
, r > R0.

Following the derivation above, we can similarly find a solution for a 2D semicircular half-

space and an anomaly in the shape of a semicircle:

u(r) =


(ρ1 − ρ0)I

π
log

1

R0
+
ρ0I

π
log

1

r
, 0 < r ≤ R0,

ρ1I

π
log

1

r
, r > R0.
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Fig. 2.8: Simulated and analytical total potential for the 2D semicircle model (313 elements).
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Fig. 2.9: Simulated and analytical total potential for the 2D semicircle model (3034 elements).

Figures 2.8 and 2.9 show the total potential for the 2D model with the parameters R0 = 10 m,

ρ1 = 10 Ωm and ρ0 = 100 Ωm. We plotted the potential calculated with our forward modeling

code for the total and the secondary field approach compared with the analytical solution u(r)



30 2 DC resistivity modeling and inversion

given in the equation above for a coarse (313 triangles) and a finer mesh (3034 triangles).

The Figures clearly show that our DC resistivity software approximates the analytical solution

very accurately and the secondary field approach yields a better approximation than the total

field approach for coarse meshes (Figure 2.8 and Section 2.2.2). The modeling results for

the 3D hemispherical model are similar to the 2D results.

2.2.6.2 The layered halfspace

To verify the forward operator we examine the 1
r -dependence of the electric potential (equa-

tion (2.4)) and calculate a geoelectrical sounding curve for a conductive layer in a resis-

tive halfspace with the resistivities ρ= [100, 10, 100] Ωm, thicknesses h= [5, 1,∞] m and a

current of I = 1 A. We simulate a pole-pole configuration and therefore, the apparent resis-

tivity ρa is a function of the spacing a as given in equation (2.1):

ρa(a) = k · ∆u

I
,

where

k = 2πa.

We define 20 logarithmically spaced measuring points for an electrode spacing between

a= 2 m and a= 200 m. For the pole-pole configuration, the best indication of a conductive

layer in a halfspace can be measured at a spacing which is about three times the depth of

the layer (see Roy and Apparao (1971) and Section 2.1). Because the depth of investigation

primarily depends on the conductivity distribution this is only an approximate value. For our

model we will expect this maximum at a spacing of about 15 m. Figure 2.10 shows the

sounding curves for the measuring points at the Earth’s surface in negative and positive y-

direction at x= 0 m. If we measure very close to or far from the source we get the indication

of the halfspace with about 100 Ωm because the depth of investigation increases with the

electrode spacing and therefore, a large spacing enables us to measure the response of

the underlying halfspace. The conductive layer at 5 m depth induces the minimum apparent

resistivity at a spacing of about 12 m which corresponds to the estimated depth of about 15 m.

Due to the radial symmetry of the electric potential field to the point source, the apparent

resistivity calculated from the surface potential should be equal for identical radial distances

r to the source position. The small deviations between positive and negative y-direction can

be explained by the relatively coarse mesh at the surface of the model.
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Fig. 2.10: Sounding curve for a pole-pole configuration.

2.3 Inversion of DC resistivity data

The main goal of DC resistivity measurements is to find a parameter model for the subsur-

face that explains the measured data within the limits of the laws of physics. The previous

chapter explains the technique of forward modeling where we produce synthetic data for a

given parameter model in order to study measurement configurations and other important

issues when preparing a geophysical measurement. The inverse or parameter estimation

problem on the other hand solves a minimization problem to find parameters which explain

the measured data best (Figure 2.11). Within the following sections, we explain the main

parameter model(synthetic) data set

forward modeling

inversion

Fig. 2.11: Relation between forward modeling and inverse problems.
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ideas of the inverse problem for the DC resistivity method and illustrate used functions and

solution techniques. Obviously mathematical algorithms do not necessarily respect physical

properties of the real world. In particular an optimal parameter distribution could contain un-

physical negative values of the electrical conductivity. To avoid this problem, we use a simple

transformation which works well for parameters of the same order of magnitude:

σ = em

m = lnσ.

Using these logarithmized parameters, the Galerkin matrix A(σ) introduced in equation

(2.26) has the form

A(σ) = A(em)→ A(m) (2.36)

with the model parameter vectorm. For reasons of clarity, we describe the inversion algorithm

and all related properties for electric potential data b = Qu. For an inversion using apparent

resistivities ρa, the measurement operator Q must always be multiplied by Dρa as described

in Section 2.2.4.2.

2.3.1 The Gauss-Newton method

To solve the inverse problem, an appropriate and sufficiently smooth parameter model must

be reconstructed, such that the deviation between measured and modeled data is minimized.

Hence, the inversion process requires us to solve a minimization problem which combines the

data residual and a regularization operator R(m):

Φ(m) = 1
2‖g(m)− b‖22 + βR(m−mref)→ min

m

= 1
2‖Qu− b‖

2
2

data residual
+ β

2 ||W (m−mref)||2
regularization norm

→ min
m

(2.37)

subject to A(m)u = f .

Here, b is the measured data, g(m) = QA(m)−1f = Qu the modeled data,m are the model

parameters, Q is some measurement operator (Qu ≈ b), W is the regularization matrix, mref

is the reference model and β represents the regularization parameter. The regularization

norm is not always an L2 norm but can be defined in different spaces and therefore, we leave

a fixed index out. We will explain the regularization operator and the role and determination

of β later in Section 2.3.5.
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Applying a Gauss-Newton scheme (Schwetlick (1979), Nocedal and Wright (2006)) to solve

this non-linear least squares problem requires us to linearize Φ(m). Linearizing at m = m0

using the Taylor series

g(m) = g(m0) + g′(m0)∆m+O(|∆m|2) where ∆m = m−m0 (2.38)

the minimization problem (2.37) changes to

Φ(m) = 1
2‖g(m0) + g′(m0)∆m− b‖22 + β

2 ||W (∆m+m0 −mref)||2

= 1
2‖[g(m0)− b]

data residual
+ g′(m0)
Jacobian matrix

∆m‖22 + β
2 ||W (∆m+m0 −mref)||2 → min

m
. (2.39)

Here, g′(m0) is the Jacobian or sensitivity matrix. To minimize the objective function Φ(m)

according to equation (2.39), its derivative with respect to m has to vanish. Considering the

differentiation rules for vector-valued functions in Appendix A.3, we arrive at

∂Φ(m)

∂m
=
∂Φ(m)

∂∆m
·
�
�
��>

1
∂∆m

∂m
= g′T (m0)

(
[g(m0)− b] + g′(m0)∆m

)
+ . . .

. . .+ βW TW (∆m+m0 −mref) = 0.

(2.40)

Finally, equation (2.40) yields the normal equations:(
g′T (m0)g′(m0) + βW TW

)
∆m = g′T (m0)[b− g(m0)] + βW TW (mref −m0).

For an arbitrary model update ∆mk we get(
g′T (mk)g

′(mk) + βW TW
)

∆mk = g′T (mk)[b− g(mk)] + βW TW (mref −mk). (2.41)

The solution of the normal equations yields a new approximation to the model parameters

given by

mk+1 = mk + ∆mk.

Within our DC resistivity code we establish the normal equations explicitly for sufficiently small

model problems and solve them using MATLAB’s built-in sparse solver mldivide or using Intel

MKL PARDISO or the preconditioned conjugate gradients (PCG) Krylov subspace method (see

Section 2.3.2). For large systems of equations it can be useful to apply an appropriate Krylov

subspace method such as LSQR to the original least squares problem instead of solving the

normal equations. For this reason we have to reformulate equation (2.37). The main idea

is the combination of both the data residual and the regularization operator in one norm.

With

G(m) =

QA(m)−1f
√
βWm

 and a =

 b
√
βWmref
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we get

Φ(m) = 1
2 ||G(m)− a||22 → min

m

= 1
2

∥∥∥∥∥∥
QA(m)−1f
√
βWm

−
 b
√
βWmref

∥∥∥∥∥∥
2

2

→ min
m

.

Using the Taylor series (2.38) we are again able to linearize the least squares problem:

Φ(m0) = 1
2‖[G(m0)− a] +G′(m0)∆m‖22

=
1

2

∥∥∥∥∥∥∥∥∥
 b−Qu
√
βW (mref −m)


extended data residual

−

g′(m)
√
βW


extended Jacobian matrix

∆m

∥∥∥∥∥∥∥∥∥
2

2

→ min
m

. (2.42)

This reformulation leads to additional entries in the data residual and Jacobian matrix re-

garding the regularization norm. Now, the solution of this minimization problem can be

determined by the application of appropriate Krylov subspace methods which are explained

in the following section.

2.3.2 Krylov subspace methods

Krylov subspace methods are iterative solvers for large sparse linear systems of equations.

Unless noted otherwise, we will explain the main ideas and properties according to Saad

(2003). First, we consider the linear system of equations

Ax = b (2.43)

with the regular matrix A ∈ Rn×n. The unique solution of equation (2.43) is given by

x∗ = A−1b ∈ Rn. Krylov subspace methods calculate a solution xk which approximates x∗

and xk is contained in a shifted Krylov subspace:

xk ∈ x0 + Kk(A, r0). (2.44)

x0 is an arbitrary initial guess for the iterative algorithm with the corresponding residual

r0 = b−Ax0 ∈ Rn. The kth Krylov subspace given in equation (2.44) is defined as follows:

Kk(A, r0) := span{r0, Ar0, A
2r0, . . . , A

k−1r0}

= {α0r0 + α1Ar0 + α2A
2r0 + · · ·+ αk−1A

k−1r0, αj ∈ R}

= {p(A)r0 : p ∈Pk−1}, (2.45)
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where Pk−1 describes the space containing all real polynomials with a maximal degree

of k − 1. Consequently, Kk(A, r0) is generated by a linear combination of the vectors

r0, Ar0, A
2r0, . . . , A

k−1r0. It is easy to see that the dimension of the Krylov subspaces which

belong to a linear system of equations grows if we add another vector Ajr0 and each new,

larger space contains all previous subspaces:

{0} = K0 ⊆ span{r0} = K1 ⊆ · · · ⊆ Kk ⊆ Kk+1 ⊆ · · · ⊆ Rn.

The dimension of Krylov subspaces cannot grow arbitrarily. Because each new vector in the

linear span (equation (2.45)) is given by a multiplication of the residual r0 ∈ Rn with a power

of the system matrix A ∈ Rn×n, all of these vectors are in Rn, too and can only generate a

space which is of maximal dimension n (in case of linear independence). If the index k = L,

for which the dimension of the subspaces does not grow anymore is reached, we call the

space stationary. For all k ≥ L, the exact solution x∗ = A−1b is contained in the shifted

Krylov subspace x0 + Kk. Hence, Krylov subspace methods are also exact solvers because

(without rounding errors) the exact solution of the linear system of equations will be found at

the latest after n steps. Since x0 + Kk often contains an appropriate approximation of x∗ for

small values of k, the main field of application is the iterative determination of approximate

solutions with sufficiently small computational effort. These approximations are determined

according to equation (2.45) as follows:

x∗ = A−1b ≈ xk = x0 + pk−1(A)r0

= x0 + pk−1(A)(b−Ax0)

and in the simplest case (for x0 = 0) there holds:

A−1b ≈ pk−1(A)b.

Thus, the inverse of the matrix A is approximated by a polynomial of lower degree in A.

Krylov subspace methods can be divided into two groups: The first ones are called minimal

residual (or MR) methods. They determine an approximate solution xMR
k in the shifted Krylov

subspace x0 + Kk(A, r0) such that the residual norm is minimized:

||b−AxMR
k || = min

x∈x0+Kk(A,r0)
||b−Ax||.

In contrast, the orthogonal residual (or OR) methods built up the solution xOR
k in the shifted

Krylov subspace on the following condition:

b−AxOR
k ⊥ Kk(A, r0).
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Here, the residual rk = b−AxOR
k has to be orthogonal to the kth Krylov subspace.

Within our DC inversion code we apply the MATLAB routines for the Krylov subspace method

CG (Hestenes and Stiefel, 1952) directly to the normal equations and the LSQR routine (Paige

and Saunders, 1982) to the extended least squares problem given in equation (2.42).

2.3.3 Explicit calculation of the sensitivity matrix

To apply the Gauss-Newton method we need to calculate the so-called Jacobian or sensitivity

matrix J = g′(m) as given in equation (2.41). This matrix contains the derivative of the

synthetic data Qu with respect to the parameter vector m and describes the influence of the

underlying conductivity structure on the measured data set.

Conveniently, we choose to use the physical parameter vector σ to establish the Jacobian

matrix and replace it by the logarithmic parameter vector m as given in equation (2.36)

later on. The derivative of the primary potential up for a homogeneous halfspace defined in

equation (2.4) is given by:

∂up

∂σi
=


0, σi 6= σ0,

− 1

σ0
up, σi = σ0.

(2.46)

It only yields a contribution for conductivities equal to the source conductivity. To derive the

secondary potential us, we apply the product rule to the secondary field equation (2.27):

∂

∂σi

(
A(σ)us

)
=

∂

∂σi

(
A(σ0 − σ)up

)
.

Using the decomposition of the right-hand side

A(σ0 − σ) = σ0A(1)−A(σ)

due to Rücker et al. (2006) and because A is linear in σ we arrive at

∂

∂σi

(
A(σ)us

)
=

∂

∂σi

(
σ0A(1)up −A(σ)up

)
and finally get the derivative:

∂A(σ)

∂σi
us +A(σ)

∂us

∂σi
=
∂σ0A(1)

∂σi
up + σ0A(1)

∂up

∂σi
− ∂A(σ)

∂σi
up −A(σ)

∂up

∂σi
. (2.47)
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Now, we have to differentiate between the cases where σi is equal to the source conductivity σ0

and where it is not. For all conductivities that differ from σ0 several terms in (2.47) vanish:

∂A(σ)

∂σi
us +A(σ)

∂us

∂σi
=
�
��
��*

0
∂σ0A(1)

∂σi
up + σ0A(1)

�
�
��7

0
∂up

∂σi
− ∂A(σ)

∂σi
up −A(σ)

�
�
��7

0
∂up

∂σi

A(σ)
∂us

∂σi
= −∂A(σ)

∂σi

(
up + us

)

∂us

∂σi
= −A(σ)−1

(
∂A(σ)

∂σi

(
up + us

))
. (2.48)

If σi equals the source conductivity, we get the following expressions:

∂A(σ)

∂σi
us +A(σ)

∂us

∂σi
=
�
��
��*

A(1)
∂σ0A(1)

∂σi
up + σ0A(1)

�
�
��7

− 1
σ0
up

∂up

∂σi
− ∂A(σ)

∂σi
up −A(σ)

�
�
��7

− 1
σ0
up

∂up

∂σi

A(σ)
∂us

∂σi
= −∂A(σ)

∂σi

(
up + us

)
+A(σ)

1

σ0
up

∂us

∂σi
= −A(σ)−1

(
∂A(σ)

∂σi

(
up + us

))
+

1

σ0
up. (2.49)

It is easy to see, that the derivatives (2.48) and (2.49) differ only in the additional term 1
σ0
up

which has to be added for conductivities equal to the source conductivity. If we add the

derivatives for the primary and secondary potential given in equations (2.46), (2.48) and

(2.49), we get the following expression regarding the total field u = up + us:

J =
∂u

∂σ
= −A(σ)−1

(
∂A(σ)

∂σ
×2 u

)
.

The ith (i = 1 . . . nparameters) column of J contains the sensitivities with respect to the ith

parameter and the kth (k = 1 . . . nDOFs) row contains the sensitivities for the kth degree of

freedom. To extract the relevant receiver positions, we have to multiply the matrix J by the

measurement operator Q. We finally use the logarithmic parameters and calculate J as

follows:

J =
∂Qu

∂m
= −QA(m)−1

(
∂A(m)

∂m
×2 u

)
. (2.50)

To simplify this expression, we use the term A′(m) for the three-way tensor instead of ∂A(m)
∂m .

To show the influence of an embedded conductive or resistive body in a layered halfspace

on the resolution of the pole-pole configuration, we did some sensitivity studies for a simple

2D model given in Figure 2.12. Besides a layered background, the conductivity distribution
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σ

Fig. 2.12: 2D model with the source electrode A located in a borehole at x=40m.
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Fig. 2.13: Sensitivities for a homogeneous halfspace (a) and for the inhomogeneous model (b) given in

Figure 2.12.

contains a salt dome with a very high resistivity of 1000Ωm. The source A is located in a bore-

hole at x=40m and z=95m, whereas the measuring electrode M is located at x=120m

and z=0m. Figures 2.13 a) and b) show the sensitivity distribution for a homogeneous half-

space in comparison with the given conductivity model. In the homogeneous case we see the

well-known shape of negative sensitivity between A and M. In Figure 2.13b), the body causes

serious distortions of the sensitivity pattern.
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2.3.4 Implicit calculation of the sensitivity matrix

Although the tensor (see Section 2.2.3.5), which contains the partial derivatives with respect

to all entries of the parameter vector m, is sparse, we cannot afford to store the full sensitivity

matrix J (equation (2.50)) because it is very large and dense. To apply an iterative and

especially a Krylov subspace method to the least squares problem given in equation (2.42)

we do not need to built up the full sensitivity matrix, but we have to be able to multiply J by

an arbitrary vector v (cf. Mackie and Madden (1993), Siripunvaraporn and Egbert (2007)):

y = Jv = −QA(m)−1
(
A′(m)×2 u

)
v (2.51)

or for the transposed case

y = JTv = −
(
A′(m)×2 u

)T
A(m)−TQTv.

We want to avoid to solve a system of equations with several right-hand sides in (A′(m)×2 u)

because this matrix is very large and dense. Therefore, we rewrite equation (2.51) and solve

the system with the measurement operator Q as the right-hand side, which is smaller and not

as dense (see Section 2.2.4):

QA(m)−1 =
(
A(m)−TQT

)T
.

The implicit multiplication with J is implemented in the function multJ. Pseudocode 3 only

shows a simple implementation of the products y = J · v and y = JT · v without the regula-

rization functional as shown in equation (2.37).

Pseudocode 3 IMPLICIT MULTIPLICATION WITH J
1: G← A′(m)×2 u

2: if transpose then

3: w ← QTv

4: Solve −A(m)Tz = w

5: y ← GTz

6: return y

7: else

8: z ← Gv

9: Solve −A(m)TX = QT

10: y ← XTz

11: return y

12: end if
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Including this contribution we get

y = J · v =

J1 · v

J2 · v

 =

−QA(m)−1 (A′(m)×2 u) · v
√
βW · v

 ,

y = JT · v =
[
JT1 JT2

]w1

w2

 =
[
JT1 w1 + JT2 w2

]
, and v =

w1

w2

 .
Then, the algorithm changes to the function we are using within our DC resistivity code (Pseu-

docode 4). To do sensitivity studies (discussed in Section 2.3.3) it is advantageous to be able

to calculate the full sensitivity matrix or at least one column or one row of it. To achieve this,

we can pass the ith unit vector to the function multJ to get the ith column or row (transposed

case) of the matrix J .

Pseudocode 4 MULTJ.M
1: G← A′(m)×2 u

2: if transpose then

3: w1 ← v(1 : end− size(W, 1))

4: w2 ← v(end− size(W, 1) + 1 : end)

5: w1 ← QTw1

6: Solve −A(m)Tz = w1

7: y1 ← GTz

8: y2 ←
√
βW T ·w2

9: return y1 + y2

10: else

11: z ← Gv

12: Solve −A(m)TX = QT

13: y1 ← XT · z

14: y2 ←
√
βW · v

15: return

y1

y2


16: end if

For iterative methods which are applied directly to the normal equations given in equation

(2.41) we also need an algorithm which implements the product of JTJ with a vector v. We

apply the function multJ given in Pseudocode 5.
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Pseudocode 5 MULTJTJ.M
1: Jv ← multJ(. . . , v,′ notransp′);

2: JTJv ← multJ(. . . , Jv,′ transp′);

3: return JTJv

Here, we hand over the vector v to the function multJ and get the matrix vector product

y = J · v. After that, multJ is evaluated for the second time with the option ’transp’ which

calculates the product of JT with the vector y to get the required result JTJ · v.

2.3.5 Smoothness regularization

Inverse problems are often unstable and ill-posed in the sense of Hadamard (Engl et al.,

2000), which means that one of the following conditions is violated:

• A solution exists,

• the solution is unique,

• the solution depends continuously on the data.

The violation of the last condition leads to huge deviations in the result for small variations

in the initial data. An appropriate regularization operator stabilizes the inversion proce-

dure and provides additional information to avoid ambiguities. Consequently, regulariza-

tion can be used to find a solution of the inverse problem which is less sensitive to per-

turbations by enforcing smoothness and suppressing unwanted oscillations or noisy data

(Aster et al., 2013).

Again, we state the minimization problem given in equation (2.37) which combines the data

residual and a regularization functional:

Φ(m) = 1
2‖Qu− b‖

2
2

data residual
+ β R(m−mref)

regularization functional
→ min

m
(2.52)

subject to A(m)u = f . Our inversion approach is based on a finite element discretiza-

tion of the potential equation (2.2) using a piecewise constant representation of the con-

ductivity model. This requires a regularization functional applicable to piecewise constant

model parameters on unstructured grids. We have implemented a smoothness regularization
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(Schwarzbach and Haber, 2013) in which the penalty function measures the norm of a weak

gradient of the conductivity field. Its continuous formulation reads

R(m) = 1
2

∫
Ω
|∇(m−mref)|2 dV, (2.53)

with m ∈ H1(Ω). Because the parameters m are piecewise constant and not differentiable

across element boundaries, we use a generalized formulation to minimize this functional with

respect to m. As laid out in Brezzi and Fortin (1991) the mixed (or primal-dual, Strang (1986))

formulation of the problem of minimizing R(m) is fo find a stationary point of

Φ(m,p) = −β
(

1
2

∫
Ω
|p|2 dV +

∫
Ω

(m−mref)∇ · p dV
)
, (2.54)

where

• m ∈ L2(Ω)

• p ∈ H0(div; Ω) = {p ∈ L2(Ω)3;∇ · p ∈ L2(Ω);n · p|∂Ω = 0}.

For m, mref ∈ H1(Ω), our regularization operator (2.53) is equal to this mixed formulation or

more specifically to the saddle point problem

inf
p∈H0(div;Ω)

sup
m∈L2(Ω)

(
1
2

∫
Ω
|p|2 dV +

∫
Ω

(m−mref)∇ · p dV
)
. (2.55)

The divergence theorem and especially equation (2.16) yield∫
Ω
m∇ · p dV = −

∫
Ω
∇m · p dV

since n · p = 0 on ∂Ω. This changes equation (2.55) to

inf
p∈H0(div;Ω)

sup
m∈L2(Ω)

(
1
2

∫
Ω
|p|2 dV −

∫
Ω
∇(m−mref) · p dV

)
.

To get the infimum, we establish the derivative with respect to p and set it to zero:

p−∇(m−mref)
!

= 0

p = ∇(m−mref).

Using this equivalence, we obtain

sup
m∈L2(Ω)

− 1
2

∫
Ω
|∇(m−mref)|2 dV.

Changing the sign, we finally get

inf
m∈L2(Ω)

1
2

∫
Ω
|∇(m−mref)|2 dV
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which is our regularization functional R(m). Although both formulations are equivalent for

m, mref ∈ H1(Ω), equation (2.53) includes derivatives of the parameters m which are not

continuous across element boundaries in our parameter model. In contrast, the dual for-

mulation only contains derivatives of the dual variable p which fits our piecewise constant

conductivity m ∈ L2(Ω). Therefore, we base our regularization on the dual formulation.

Because this mixed formulation contains variables defined in different variational spaces,

we use mixed finite element subspaces to approximate the variables m and p (Brezzi and

Fortin (1991), Arnold et al. (2010)). The parameters m will be approximated by piecewise

constant basis functions because we assume that the conductivity will not change within a

single element. To achieve a conforming discretization for the dual variable p which is defined

in H0(div; Ω) where normal components vanish on the boundary, we use the divergence

conforming Raviart-Thomas (RT) elements of lowest order (RT0). This ensures continuity of

normal components across elements. Figures 2.14 and 2.15 show the DOFs for RT elements

of different order and the vector-valued basis functions for the RT0 elements in 2D. The

derivation of DOFs and basis functions is explained in Braess (2003). Figure 2.15 shows the

basis functions for the reference triangle, each associated with one edge of the triangle.

Fig. 2.14: Degrees of freedom for RT functions of order 0 (left), 1 (middle) and 2 (right).

Fig. 2.15: Basis functions of RT0 elements: φ1(x̂) = [x̂, ŷ]T (left), φ2(x̂) = [x̂ − 1, ŷ]T (middle) and φ3(x̂) =

[x̂, ŷ − 1]T (right).
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They have a nonzero normal component on the associated edge and on the other two edges

the normal component is zero, hence there are only tangential components. In contrast to

Lagrange elements where the transformation of basis functions from the reference element

to an arbitrary element is rather simple (equation (2.33)), we have to use the so-called Piola

transform given by

φ(x) :=
1

detBK
BKφ̂(x̂(x))

in order to preserve the normal components and ensure their continuity between neighboring

elements. Figure 2.16 illustrates the basis functions associated with the same edge in two

Fig. 2.16: Correct orientation of RT0 basis functions between neighboring elements.

adjacent triangles. The normal components (blue arrows) are continuous across the element

boundary. In our code, we ensure this orientation within the function orientationRT0.

As given in equation (2.24) for Lagrange elements, we represent the approximated dual

variable ph ≈ p as a linear combination of the RT0 basis functions φ:

ph =

n∑
j=1

ξjφj ,

with the scalar coefficients ξj. Using this expression and the piecewise constant representa-

tion

mh =

n∑
j=1

mjqj , q ∈ L2(Ω), qj = const. ≡ 1

for the parameters m, the discrete representation of equation (2.54) then reads:

Φ(m, ξ) = −β
2ξ

TMξ − β(m−mref)
TDξ. (2.56)
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M denotes the RT0 mass matrix and D the discrete divergence operator with

Mi,j =

∫
Ω
φi · φj dx

Di,j =

∫
Ω
qi∇ · φj dx =

∫
Ω
∇ · φj dx, qi = 1∀K ∈ Th.

In order to minimize the objective function (2.56) the gradient of Φ(m, ξ) with respect to the

dual coefficient vector ξ has to vanish:

∇ξΦ(m, ξ) = −βMξ − βDT (m−mref) = 0.

This results in

ξ = −M−1DT (m−mref).

Using this relation, we eliminate the dual variable ξ and arrive at the final objective function:

Φ(m) = β
2 (m−mref)

TDM−1DT (m−mref)→ min
m

.

To expose the relationship to the normal equations (2.41), we expand the general formulation

of the regularization operator given in equation (2.37):

β
2 ||W (m−mref)||22 = β

2 (W (m−mref))
T · (W (m−mref))

= β
2 (m−mref)

TW TW (m−mref).

Using this formulation it is easy to see that the matrix W TW can be replaced by DM−1DT .

If we want to apply an iterative method to the original least squares problem as described in

equation (2.42) we need to calculate the matrix W and therefore decompose DM−1DT . This

can be done using a Cholesky decomposition of M calculated by the MATLAB function chol:

With

M
chol
= LLT

we set

W := L−1DT

which yields

W TW = DL−TL−1DT

= D
(
LLT

)−1
DT

= DM−1DT .

Now, we are able to apply the smoothness regularization within our inversion algorithm using

a direct solver as well as an iterative method.
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2.3.6 Damping

Each Gauss-Newton scheme yields a direction of descent ∆mk by evaluating the system of

normal equations (see Schwetlick (1979) and Section 2.3.1). Now, we want to apply a simple

damping algorithm to the Gauss-Newton iteration in order to add only a sufficiently small

amount of the direction ∆mk to ensure the convergence to the desired minimum. Therefore,

the search direction is multiplied by a factor α and the new parameter vector is given by

mk+1 = mk +α∆mk. We calculate the synthetic data u and the data residual using the new

approximation mk+1 and compare it with the data residual of the previous iteration step. α

starts at a value of 1 and is reduced as long as the following criterion is fulfilled:

||b−Qu(mk+1)|| >
(
1− 1

4α
)
||b−Qu(mk)||.

The damping algorithm is implemented as follows:

Pseudocode 6 DAMPED GAUSS-NEWTON SCHEME

1: Choose m0

2: for k = 0, 1, 2, . . . do

3: Jk ← u′(mk)

4: rk ← b−Qu(mk)

5: Solve ||rk − Jk∆mk|| → min
∆mk

6: α← 1

7: m←mk + α∆mk

8: Solve A(m)u = f

9: while ||b−Qu(m)|| >
(
1− 1

4α
)
||rk|| do

10: α← 1
2α

11: if α < 2−10 then

12: return mk

13: end if

14: m←mk + α∆mk

15: Solve A(m)u = f

16: end while

17: mk+1 ←m

18: end for
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2.3.7 Matrix analysis and inversion results

We discussed the theory of all properties and features of the inversion algorithm of the DC

resistivity code in the previous sections. In order to show the need for regularization and

validate the functionality of the inversion algorithm, we apply the code to a synthetic model

problem and try to reconstruct the conductivity distribution shown in Figure 2.17 from a syn-

thetic apparent resistivity data set. We want to point out that the model is a scientific example

developed to validate the inversion algorithm. Its dimensions as well as the large source-

receiver configuration are only a matter of scaling. The conductivities of the homogeneous

Fig. 2.17: Synthetic model: σ1=0.1 S
m (green), σ2=0.01 S

m (top blue), σ3=1 S
m (red) and σ4=0.002 S

m (bottom

blue).

background and the embedded bodies are given in the caption of the figure. The red dots

mark nine source positions we use. First of all, we want to investigate the properties of the

system matrix of the normal equations (2.41), which we have to use within the Gauss-Newton

scheme:

JTJ + βW TW.

The first part contains the sensitivity matrix J which depends on parameters and data and

the second part is a regularization term which changes with the value of the regularization

parameter β. The properties of the system matrix regarding the solvability of the linear system

of equations can be described by the set of eigenvalues and the absolute ratio of largest and

smallest eigenvalue, respectively (Hansen, 2010). The inverse problem can be ill-conditioned

or even ill-posed if the condition number is too high or even infinite. In the following, we

calculate the condition number of JTJ for the model given in Figure 2.17 with a relatively
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coarse mesh of about 13 000 tetrahedra. We use just one source at x0 = [– 4, 0, 0] km and

289 measuring points at the Earth’s surface (z= 0 km) with x- and y-coordinates between

minus four and four kilometers and a step size of 500 meters. The starting model m0 is a

constant vector containing the logarithmized source conductivity σ0 = 0.1 S
m .

The MATLAB function cond returns Inf for the condition number of the matrix JTJ , which is

the representation of positive infinity. Hence, this number is very large which characterizes

a severely ill-posed problem. Therefore, we add the smoothness regularization operator

βW TW = βDM−1DT (see Section 2.3.5) to improve the condition of the linear system of

equations. The assembly of the regularization matrix DM−1DT requires a lot of computing

time because it includes the solution of a linear system with the RT0 mass matrix M which is

very large (dimension: nfaces × nfaces). Therefore, we choose to use only the diagonal of M

for the following calculations:

M∗ =


m1,1

m2,2

. . .

mnfaces,nfaces

 .

The number of nonzero entries of M∗ is decreased by a factor of seven in comparison with the

full mass matrix M . As a consequence, the ratio of nonzero entries between W TW assembled

with the full matrix M and assembled with its diagonal counterpart is 3·103 which results in

a much shorter time for solving linear systems of equations with this matrix. In addition, we

expanded the regularization matrix by a diagonal matrix which contains the cell volumes on

the main diagonal:

W =

k1WSR

k2I



with the smoothness matrix WSR and the diagonal matrix

I =


v1

v2

. . .

vn
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with the cell volumes v1, v2, . . . , vn. The scaling factors k1 and k2 define the ratio between the

two matrices. We chose to use this combination of matrices for the regularization operator

in order to construct a model that is close to a known reference model on the one hand

and varies smoothly between neighboring elements on the other hand. We investigate the

influence of the scaling factors on the inversion result later on in this section.

The choice of the regularization parameter β is another difficult issue, because we have

to find a compromise between fulfilling the data residual norm on the one hand and the

regularization norm on the other hand (equation (2.37)). A large β forces the solution to be

smooth and neglects data matching. For the following inversion results we chose to balance

the data residual and regularization norm and use the ratio of both as a starting value for β:

β1 =
||Qu− b||2

||W (m−mref)||2
. (2.57)

This ensures the correct search direction in the beginning of the inversion algorithm and

stabilizes the inversion. Throughout the Gauss-Newton iteration, we apply a continuation or

cooling approach (Newman and Hoversten, 2000) and decrease β in each Gauss-Newton

step k to give more importance to the data residual norm as the iteration progresses:

βk = max

{
βk−1

10
, βmin

}
with k = 2, . . . , n.

We want to avoid a situation where the smoothness regularization has almost no influence

and the inversion result becomes noisy: The smallest regularization parameter βmin has to be

chosen according to the noise level of the input data.

The model given in Figure 2.17 was coarsely discretized into about 13 000 elements and al-

lowed the parameter m to vary on each tetrahedron. We use one source at x0 = [4, 0, 0] km

and a uniform grid of receiver locations at the Earth’s surface between – 4 and 4 kilome-

ters in x- and y-direction with a distance of 500 meters between the single receivers. This

configuration generates about 250 data points to which we add three percent random noise

to avoid an inverse crime (Kaipio and Somersalo (2007), Mueller and Siltanen (2012) and

Section 3.3.2.1). For the starting model m0 we chose to use a constant vector containing the

logarithmized mean of the true parameter distribution given by σstart = 0.15 S
m . The reference

model mref was set to the logarithm of the background conductivity σ= 0.1 S
m and we cal-

culate β1 ≈69 according to equation (2.57) and set βmin = 10–9. First of all, we present the

development of the relative data residual norm r given by

rrel =
||Quk − b||2
||Qu1 − b||2

(2.58)
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in the kth Gauss-Newton step. The different curves in Figure 2.18 are calculated for different
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Fig. 2.18: Development of the relative data residual norm during the inversion of data generated from one source

for different weighting matrices.

ratios of the diagonal and smoothness matrix in the regularization operator W . The iteration

terminated once the new search direction yields no improvement to the solution according

to the damping criterion described in Pseudocode 6. The figure shows that it is not to easy

to find an appropriate composition of the regularization matrix W . Almost all combinations

stopped within the damping algorithm during the first two or three Gauss-Newton steps. The

successful iterations give more weight to the diagonal matrix, which seems to be essential

for the regularization term. On the other hand, it is not possible to neglect the smoothness

regularization matrix WSR. From the residual curves we are able to select the scaling factors

k1 = 1 for the smoothness matrix and k2 > 1 for the diagonal matrix. The final value for k2

was determined by the resulting parameter model which was not smooth enough for values

larger than two. Therefore, we chose to use k2 = 2 (violet line) for the Gauss-Newton iteration

with one source and show a frontal slice of the inversion result at x= 0 km in Figure 2.19.

Although we are only using a single source and 289 data points for 13 000 parameters

which is a factor of about 45, the resolution of the underlying conductivity model is quite

good: We can get an idea of the two large blocks. The resistive one (blue) on the right-hand

side appears to be larger than the more conductive block on the left. The small bent layer
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Fig. 2.19: Inversion result for one source.

close to the surface is not seen yet or is connected with the resistive block. Furthermore, the

resistive block smears out at greater depths because we do not get any information about

its boundaries with the source-receiver configuration we used. A source in a borehole might

overcome these difficulties.

If we use more sources and therefore, more data points and complementary information, the

inverse problem changes a lot. All control variables such as the regularization parameter β,

the weighting factors k1 and k2 as well as the damping parameter α might have to be chosen

totally different. Additional sources yield additional information about the subsurface and

might help to get a more precise image of the buried bodies. We expanded the number of

sources to a regular grid of nine point sources as it is shown by the red dots in Figure 2.17.

The receiver nodes stayed the same. The iteration was terminated once we reached a rela-

tive data residual norm of 10–4. Again, we calculate the starting value for the regularization

parameter according to equation (2.57): β1 ≈71. We apply the continuation approach and

set the lower bound to be 10–8. Figure 2.20 shows a frontal slice of the inversion result at

x= 0 km. As the number of sources is increased, the reconstruction of the embedded con-

ductive and resistive bodies becomes progressively more accurate because we add additional

information about the subsurface. The exact shape of the two blocks as well as the thin bent

layer was reconstructed quite well. Figure 2.21 shows the development of the relative data
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Fig. 2.20: Inversion result for the nine sources shown in Figure 2.17.

iteration index
0 2 4 6 8 10 12

re
la

tiv
e 

re
si

du
al

 n
or

m

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fig. 2.21: Development of the relative data residual norm during the Gauss-Newton iteration.

residual norm as defined in equation (2.58). Even for a relatively small lower bound of β

the regularization operator stabilized the iteration and guaranteed the convergence of the

Gauss-Newton scheme to a sufficiently smooth model.
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In the previous sections we explained the physical and mathematical background and the

implementation of our DC resistivity forward operator and inversion scheme. Overviews of

the structure and main input parameters of the code are given in Appendix A.5.1. Our

code can be used to do sensitivity studies in order to find an appropriate configuration in

preparation of a measurement. Furthermore, we are able to invert DC resistivity data to

reconstruct the underlying conductivity distribution. Although we can vary the measurement

configuration and add further sources and receivers to get complementary data including

deeper structures, the resolution of the DC resistivity method is limited. Therefore, we explain

the combination of DC resistivity data with an electromagnetic data set in Chapter 4.
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3 Electromagnetic modeling and inversion

In the following chapter, we develop and implement a forward and inversion algorithm for

electromagnetic methods. Here, we derive the fundamental equation which is almost equal

for all EM methods except for the right-hand side given by the mathematical representation

of the particular source configuration. In case of the magnetotelluric (MT) method, there

are no artificial sources and the source term is equal to zero. Therefore, we deduce all

algorithms for the MT problem to establish a basic instrument for modeling and inversion of

electromagnetic data. Then, an enhancement for any other electromagnetic method can be

achieved by simply implementing another source in the form of the right-hand side of the

curl-curl equation (see equation (3.7)).

The use of the MT method goes back to the 1950s and was mentioned for example by

Cagniard (1953) and Vozoff (1990) explained the main principles later on. Just like for the DC

resistivity method (Chapter 2) the number of 3D electromagnetic and especially MT surveys

increased (Heise et al. (2008), Patro and Egbert (2008)) and this goes along with a higher de-

mand for a continuous improvement of the evaluation software. For example Schmucker and

Weidelt (1975) have introduced the integral equation technique and there are some forward

modeling algorithms using this technique such as Xiong (1992) or Zhdanov et al. (2000).

Furthermore, a number of inversion algorithms – mainly based on finite difference or fi-

nite element forward algorithms – have been developed for example by Mackie and Madden

(1993), Newman and Alumbaugh (2000), Sasaki (2004), Siripunvaraporn and Egbert (2007),

Avdeev and Avdeeva (2009) and Siripunvaraporn and Sarakorn (2011) and an application to

mineral exploration data was given by Farquharson and Craven (2009). The most frequent

inversions schemes are Gauss-Newton (Sasaki, 2004) and quasi-Newton schemes (Haber

(2005), Avdeev and Avdeeva (2009)) as well as some variations regarding efficiency or im-

proved storage requirements (Siripunvaraporn et al., 2005). Here, we present a 3D MT

forward modeling and inversion code for one polarization direction. It is based on a dis-

cretization using unstructured grids and – as opposed to the discretization of the DC resistivity

problem – we use the vector-valued Nédélec elements. The inversion algorithm works with

complex field quantities and is based on a regularized Gauss-Newton scheme as well. We

demonstrate the accuracy with both scientific and realistic data sets.
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3.1 Physical principles

In contrast to the DC resistivity method, electromagnetic methods are based on natural or arti-

ficial time-varying source fields and measure electric and/or magnetic fields. Electromagnetic

fields are described by four complex vector functions (Monk, 2003), which are

• the electric field intensity e in V
m ,

• the electric displacement d in As
m2 ,

• the magnetic field intensity h in A
m ,

• and the magnetic induction b in T= Vs
m2

as well as Maxwell’s equations in the time domain which relate these vector functions with

each other:

∇× e = −∂b
∂t

∇ · d = q (3.1)

∇× h = j +
∂d

∂t
(3.2)

∇ · b = 0

with the electric charge density q in As
m3 and the electric current density j in A

m2 . The first equa-

tion is called Faraday’s law and describes the evolution of eddy currents when the magnetic

field changes with time. Equation (3.1) – Gauss’ law – shows the influence of the electric

charge density on the electric displacement. The third equation is Ampère’s circuital law

which describes the connectedness of the magnetic eddy current field and the ohmic and

displacement current (Nabighian and Macnae, 1988a). The fourth equation explains that

the magnetic field lines are solenoidal and the magnetic induction has no sources. Because

Maxwell’s equations are decoupled, we need additional constitutive equations that depend

on the medium the electromagnetic field is in:

b = µh = µ0µrh,

d = εe = ε0εre,

j = σe,
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with the vacuum and relative magnetic permeability µ0 and µr in Vs
Am , the vacuum and relative

electrical permittivity ε0 and εr in As
Vm and the electrical conductivity σ in S

m . In the following

isotropic considerations, we set the relative values of µ and ε to be equal to one and use the

vacuum permeability and permittivity with

µ = µ0 = 4π · 10−7 Vs
Am

ε = ε0 ≈ 8.854 · 10−12 As
Vm .

The spreading of electromagnetic fields is influenced by the skin effect which is caused by the

attenuation during the propagation of the electromagnetic fields through rocks and structures

in the subsurface. In consequence, we can observe an exponential decay of the source field’s

amplitude with growing distance from the source. A very important physical quantity is the

skin depth which is a characteristic depth where the source field has decayed to the e-th part

of the surface amplitude (ibid.):

δ =

√
2

σµω

≈ 503

√
1

σf
, (3.3)

with the frequency f and the angular frequency ω = 2πf . This depth yields important in-

formation for designing the virtual experiment, for example the size of the modeling area.

There is a rule of thumb which says that this area has to be at least as large as five times

the skin depth to ensure a full decayment of the initial source field. Furthermore, we can

suppose that the largest amount of current density, and therefore the most interesting part of

the measurement, is located in the meter range below the surface which is characterized by

the skin depth. Hence, the sensitivity distribution of the source-receiver configuration and the

skin depth are directly related.

Electromagnetic methods are called passive methods if they are using natural sources, such

as current systems in the ionosphere and magnetosphere which generate magnetic fields or

artificial sources which are far away from the investigated area such as for the MT method.

In contrast, active electromagnetic methods, such as the controlled-source electromagnetic

(CSEM) method, use artificial, near-field (portable) sources to generate the electromagnetic

primary (transmitting) field (Knödel et al., 2005a), which induces currents inside the Earth. The

response of the underlying conductivity structures is called secondary field and is measured

with the receivers. The inductive coupling of the sources and receivers enables measurements

in areas which might be inaccessible for methods which need galvanic coupling such as DC
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resistivity methods. The most important source and receiver types are the horizontal and

vertical electric dipole (HED and VED) or the horizontal and vertical magnetic dipole (HMD

and VMD) and combinations of them.

3.2 Electromagnetic forward modeling

3.2.1 Governing equations

We deduce the MT problem in the frequency domain for one polarization direction with an

electric field oriented in x-direction given by

E =


Ex(z)

0

0

 . (3.4)

With a time-dependence of E and H given by eiωt and the derivatives ∂E
∂t = iωE as well as

∂H
∂t = iωH, the third Maxwell equation – Faraday’s law (equation (3.2)) – is given by

∇×E = −iωµH, (3.5)

with the angular frequency ω = 2πf and the imaginary unit i. Applying the curl operator to

the previous equation, we get

∇×∇×E = −iωµ∇×H.

Inserting Ampère’s law given by

∇×H = σE (3.6)

we obtain the homogeneous Helmholtz equation for the electric field E:

∇×∇×E − k2E = 0 (3.7)

with

k2 = −iωµσ.

To deduce the analytical solution of this model problem for a homogeneous halfspace we

set

H = [0, 1, 0]TA/m
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for a constant magnetic source field which is equal to a plane wave in the air halfspace

(z ≤ 0). Then, the magnetic field fulfills the following homogeneous Helmholtz equation in a

homogeneous halfspace (z ≥ 0):

∂2
zzHy(z) + k2Hy(z) = 0, k2 = −iωµσ,

where σ is the conductivity of the halfspace. The solution is given by

Hy(z) = Hy(0)e−ikz, k =
√
−iωµσ

and with the plane wave Hy(0) = 1 we arrive at

Hy(z) =


1 z < 0

e−ikz z ≥ 0.

Applying Ampère’s law (3.6), we obtain the electric field in z > 0:

Ex(z) =
ik

σ
e−ikz (3.8)

and for the air halfspace z < 0 Faraday’s law (3.5) leads to

∂zEx = −iωµ.

We get the electric field by integration:∫ z

0
∂zEx(z)dz = Ex(z)− Ex(0) = −

∫ z

0
iωµdz = −iωµz.

Using equation (3.8) we get

Ex(z) = Ex(0)− iωµz =
ik

σ
− iωµz.

To summarize, the analytical solution for our model problem which we can use as inho-

mogeneous Dirichlet boundary conditions to confirm the correctness of our simulation in a

homogeneous halfspace is given by

Ex(z) =


ik
σ − iωµz z < 0

ik
σ e
−ikz z ≥ 0.

(3.9)

For a layered halfspace we refer to Wait (1953), Schmucker and Weidelt (1975) and Ward

and Hohmann (1988) and calculate the field values on the boundary according to Wait’s

algorithm in the function getE1dMT which was implemented by Ralph-Uwe Börner. We give a

brief overview on this algorithm in Appendix A.4.
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3.2.2 Finite element approximation – Nédélec elements

3.2.2.1 Variational formulation

As shown in Chapter 2, the finite element method is a powerful tool for the numerical mo-

deling of (geo)physical equations. In contrast to the equation of continuity (equation (2.2)),

the electromagnetic PDE (3.7) contains no gradient but a curl operator and the relevant fields

are vector fields. Therefore, we need another class of finite elements to discretize this equa-

tion appropriately. In Section 2.3.5 we apply the divergence conforming Raviart-Thomas

elements, which provide the continuity of normal components across element interfaces. The

physical fields we want to approximate by solving the Helmholtz equation (3.7) fulfill con-

tinuity conditions across the element interfaces regarding their tangential components. The

curl-conforming elements, which ensure these continuity conditions are Nédélec elements

(Nédélec, 1980). To deduce a finite element discretization, we derive the variational formu-

lation for the curl-curl equation (3.7).

By analogy with the derivation for the equation of continuity given in Section 2.2.3.1 we need

an equivalent to integration by parts for equation (3.7) which contains the curl operator. Monk

(2003) uses the divergence theorem 1 to establish the following Corollary:

Corollary 1 (adapted from Monk (ibid.))

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary ∂Ω and unit outward normal

n. Suppose u and v are in (C1(Ω))3. Then∫
Ω
v · (∇× u) dx =

∫
Ω
u · (∇× v) dx+

∫
∂Ω

(n× u) · vt ds,

with the tangential component of v given by vt = n× (v × n).

To ensure that these integrals are defined, the vector fields u and v as well as ∇ × u and

∇× v have to be square-integrable. Appropriate function spaces are

L2(Ω) :=

{
u : Ω→ C3 :

∫
Ω
|u|2 dx <∞

}
= L2(Ω)3,

H(curl; Ω) :=
{
u ∈ L2(Ω) : ∇× u ∈ L2(Ω)

}
. (3.10)

If there holds

∫
Ω
u · (∇× φ) dx =

∫
Ω
v · φ dx
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for each differentiable vector field φ which vanishes on ∂Ω, then the vector field v ∈ L2(Ω) is

called weak curl of u ∈ L2(Ω). The compatible boundary condition in H(curl; Ω) is defined

by

H0(curl; Ω) := {u ∈H(curl; Ω) : n× u = 0 on ∂Ω} . (3.11)

Now, we multiply equation (3.7) by a test function v, integrate and apply the partial integration

rule given in Corollary 1 to get the variational formulation:∫
Ω

(∇×E) · (∇× v) dx+

∫
∂Ω
n× (∇×E) · vt ds+ iωµ0

∫
Ω
σ(x)E · v dx = 0 (3.12)

for all test functions v ∈H(curl; Ω). The ansatz and test spaces are

S := {E ∈H(curl; Ω) : n×E = ED on ΓD}, (3.13)

V := {v ∈H(curl; Ω) : n× v = 0 on ΓD}. (3.14)

As described in the previous section and equation (3.9), the given electromagnetic boundary

value problem has only Dirichlet boundary conditions and because we choose the test space

V such that n × v vanishes on the Dirichlet boundary ΓD, the second integral in equation

(3.12) is equal to zero. Then, the variational formulation of the boundary value problem (3.7)

reads as follows:

Find E ∈ S such that

a(E,v) = l(v) ∀v ∈ V

with

a(E,v) =

∫
Ω

((∇×E) · (∇× v) + iωµ0σ(x)E · v) dx, (3.15)

l(v) = 0.

3.2.2.2 Derivation of the Galerkin system

As for DC resistivity modeling, we build a triangulation Th and decompose the modeling do-

main Ω into tetrahedral subsets K ⊂ Ω. We move to finite ansatz and test spaces S h and V h

which are equal except for the boundary conditions and there holds S h = V h for homoge-

neous Dirichlet boundary conditions given by ED ≡ 0 (equation (3.13) and (3.14)). Hence,

we are able to find the solution Eh using basis functions of the n-dimensional subspace

V h ⊂ V . The variational formulation changes to

Find Eh ∈ V h such that a(Eh,v) = 0 ∀v ∈ V h. (3.16)
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Using this formulation, we can derive a discrete representation of our PDE (3.7) based on

Nédélec elements. With an appropriate basis {φ1,φ2, . . . ,φn} of V h, the solution Eh ∈ V h

can be described as a linear combination of the basis functions:

Eh =

n∑
i=1

uiφi, (3.17)

where the unique scalar coefficients {ui}ni=1 are directly related to the DOFs of the finite

element approximation. In contrast to Lagrange elements, where the DOFs are the field

values at the vertices of the element, the DOFs for the vector-valued Nédélec elements are

moments on edges or more specifically “the average value of the tangential component of

the considered vector field on each edge” (Monk, 2003) for linear elements. Elements of

higher order are described by face and volume moments as well. With a polynomial space

Rk (equation (3.26)), these moments and the curl-conforming Nédélec elements are defined

as follows:

Definition 1 (Curl-conforming element, adapted from Monk (ibid.))

The curl-conforming finite element (K̂, PK̂ , ψK̂) is defined by

• K̂ is the reference tetrahedron,

• PK̂ = Rk is the associated function space,

• The degrees of freedom ψK̂ = Mê∪Mf̂ ∪MK̂ are of three types associated with

edges ê of K̂, faces f̂ of K̂ and K̂ itself. We denote by τ̂ a unit vector in the

direction of ê. We define three different degrees of freedom as follows:

(1) the first set is associated with edges of the element:

Mê(û) =

{∫
ê
û · τ̂ q̂ dŝ for all q̂ ∈ Pk−1(ê) for each edge ê of K̂

}
,

(3.18)

(2) the second set is associated with faces of the element:

Mf̂ (û) =

{
1

|f̂ |

∫
f̂
û · q̂ dÂ for all faces f̂ , q̂ ∈ (Pk−2(f̂))3, q̂ · n̂ = 0

}
,

(3) the last set is associated with the volume:

MK̂(û) =

{∫
K̂
û · q̂ dV̂ for all q̂ ∈ (Pk−3(K̂))3

}
.
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Following the theorem

Theorem 2 (adapted from Monk (ibid.))

The finite element defined in Definition 1 is H(curl; Ω) conforming and unisolvent.

the local interpolant Eh for the element K fulfills the following condition:

Mj(E
h) = Mj(E).

Applying this condition to equation (3.17) for the basis φ̂i defined in the reference element

we get

Mj(E
h) = Mj

(
n∑
i=1

uiφi

)

=
n∑
i=1

uiMj(φi)
!

= Mj(E).

Thus, the coefficients ui which are needed to evaluate the linear combination are linked to

the moments Mj by the following linear system of equations:

M(φ)u = m(E) (3.19)

with M(φ) being a matrix containing the moments of the basis functions and the vectorm(E)

containing the moments of the solution E. For a nodal basis {φj}j=1,...,n of V h and linear

Nédélec elements, the moments are given as follows:

Mi(φj) = δi,j , 1 ≤ i, j ≤ n, (3.20)

which means that the moments Mi of the basis functions are equal to one on the associated

edge and zero on all other edges. This is similar to the characteristic property of a nodal basis

for Lagrange elements we described in Section 2.2.3.2 and especially in equation (2.25). In

this case, the matrix M(φ) equals the identity matrix and thus, the coefficients u are equal

to the moments m(E). With the linear combination (3.17) and a test function v = φi, the

variational formulation (3.16) is equivalent to

n∑
j=1

uja(φj ,φi) = 0, i = 1, 2, . . . , n,

and with A ∈ Rn×n for [A]i,j = a(φj ,φi), the solution u ∈ Rn for [u]i = ui and the conductivity

vector σ which contains one conductivity value for each element K, we get the so-called

Galerkin system (Zienkiewicz et al., 2005)

A(σ)u = 0.
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In contrast to Lagrange elements, the solution u of the Galerkin system is related to the mo-

ments of the approximated physical quantity and we have to evaluate the linear combination

(3.17) to obtain the approximated electric field Eh. Therefore, we assemble a measurement

operator Q which is explained in detail in Section 3.2.3.

3.2.2.3 Assembly of the system matrix

To assemble the system matrix A(σ) we have to reformulate the bilinear integrals of equation

(3.15) in terms of the basis functions of the finite element space for each element K in the

triangulation T h:

a(φj ,φi) =

∫
Ω

((∇× φj) · (∇× φi) + iωµ0σ(x)φj · φi) dx

=

∫
Ω

(∇× φj) · (∇× φi) dx+ iωµ0

∫
Ω
σ(x)φj · φi dx

=
∑
K∈T h

∫
K

(∇× φj) · (∇× φi) dx︸ ︷︷ ︸
stiffness matrix

+ iωµ0

∑
K∈T h

σK

∫
K
φj · φi dx︸ ︷︷ ︸

mass matrix

=
∑
K∈T h

astiffness
K (φj ,φi) + iωµ0

∑
K∈T h

amass
K (φj ,φi). (3.21)

The system matrix can be split in two parts: The stiffness matrix containing the curl-curl

operator and the mass matrix depending on the parameter vector σ. As for the DC resistivity

problem, we consider a piecewise constant conductivity distribution σ(x), where each element

K is associated with a constant conductivity σK and the element integral for the mass matrix

does not depend on sigma anymore. We assemble the element matrix for a single element:

[AK ]i,j := aK(φj ,φi) i, j = 1, 2, . . . , n.

Then, the full system matrix can be obtained by forming

A =
∑
K∈T h

AK .

Again, we use tetrahedral grids and derive the basis functions and moments within the re-

ference tetrahedron K̂, which is the unit simplex in Figure 3.1 with the vertices

v̂1 = [1, 0, 0]T , v̂2 = [0, 1, 0]T , v̂3 = [0, 0, 1]T and v̂4 = [0, 0, 0]T . (3.22)

Its oriented edges, denoted by êj and j = 1, . . . , 6, are given by

ê1 : v̂1 → v̂2, ê2 : v̂1 → v̂3, ê3 : v̂1 → v̂4, ê4 : v̂2 → v̂3, ê5 : v̂2 → v̂4, ê6 : v̂3 → v̂4.
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Fig. 3.1: The reference tetrahedron.

With each edge we associate the unit (tangent) vector τ̂j in the edge direction:

τ̂1 =
1√
2


−1

1

0

 , τ̂2 =
1√
2


−1

0

1

 , τ̂3 =


−1

0

0

 , τ̂4 =
1√
2


0

−1

1

 , τ̂5 =


0

−1

0

 , τ̂6 =


0

0

−1

 .
Finally, we define the faces f̂j with j = 1, . . . , 4. These are spanned by the edges as follows:

f̂1 : ê1, ê2, (ê4), f̂2 : ê1, ê3, (ê5), f̂3 : ê2, ê3, (ê6), f̂4 : ê4, ê5, (ê6), (3.23)

with their corresponding outward unit normals

n̂1 =
1√
3

[1, 1, 1]T , n̂2 = [0, 0,−1]T , n̂3 = [0,−1, 0]T and n̂4 = [−1, 0, 0]T . (3.24)

With the reference tetrahedron K̂ we can obtain any tetrahedron K in the triangulation by

using an affine mapping (Monk, 2003). This transformation does not differ from that for

Lagrange elements stated in equation (2.31): For the map FK : K̂ → K with FK(K̂) = K it

holds

x = FK(x̂) = BKx̂+ bK , K̂ 3 x̂ 7→ x ∈ K, (3.25)

where BK and bK are of the same structure as described for Lagrange elements in equation

(2.32). To evaluate the bilinear forms for the mass and stiffness matrix given in equation

(3.21), we have to find an appropriate basis of the Nédélec space Rk. Following Monk (ibid.)

and Gopalakrishnan et al. (2005), the space of polynomials Rk is obtained by

Rk = (Pk−1)3 ⊕ Sk. (3.26)

Sk is a subspace of vector polynomials:

Sk =
{
p ∈ (P̃k)

3 |x · p = 0
}
,
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with x = (x, y, z), x · p ∈ P̃k+1 and (P̃k)
3 being the space of vector polynomials where each

component of the vector belongs to P̃k, the space of all homogeneous polynomials of degree

k. The number of the DOFs for each edge element is defined by the dimension of Rk:

dim(Rk) = 3 dim(Pk−1) + dimSk = 1
2(k + 3)(k + 2)k.

For the Nédélec elements of order k = 1 and k = 2 we will deal with the dimension of

Rk and therefore, the number of DOFs and basis functions per element is dimR1 = 6 and

dimR2 = 20. In the following, we derive the basis functions for R1. Whitney (1957) describes

a method to determine these functions by usage of barycentric coordinates λ, which are given

by

λ1(x̂) = ξ, λ2(x̂) = η, λ3(x̂) = ζ, λ4(x̂) = 1− ξ − η − ζ

for an arbitrary point x̂ = (ξ, η, ζ) ∈ K̂. Then, the basis functions can be deduced from the

Whitney form

θij := λi∇λj − λj∇λi, 1 ≤ i < j ≤ 6,

with the gradients of λ given by

∇λ1 =


1

0

0

 , ∇λ2 =


0

1

0

 , ∇λ3 =


0

0

1

 , ∇λ4 =


−1

−1

−1

 .
Consequently, the basis is given by

φ̂1(x̂) =


−η

ξ

0

 , φ̂2(x̂) =


−ζ

0

ξ

 , φ̂3(x̂) =


η + ζ − 1

−ξ

−ξ

 ,

φ̂4(x̂) =


0

−ζ

η

 , φ̂5(x̂) =


−η

ξ + ζ − 1

−η

 , φ̂6(x̂) =


−ζ

−ζ

ξ + η − 1

 . (3.27)

Just like for linear elements, we use Whitney forms to determine a basis of R2 on the reference

element and use barycentric coordinates to define 20 basis functions. The detailed derivation

and explicit functions can be looked up in Appendix A.2.

The preceding explanations and equations define moments and basis functions on the re-

ference tetrahedron. To calculate these quantities on an arbitrary element we need to use the

affine mapping defined in equation (3.25). For the transformation of Nédélec basis functions,
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which are vector functions, we have to multiply by a matrix to conserve their properties:

φ(x) := (dFK)−T φ̂(F−1
K (x)) = B−TK φ̂(x̂). (3.28)

Furthermore, we get the gradient of a scalar function φ in an arbitrary tetrahedron by

(∇φ) ◦ FK = B−TK ∇̂φ̂

and the curl of a vector-valued function φ̂ is obtained by

∇× φ =
1

detBK
BK(∇̂ × φ̂). (3.29)

Finally, the unit tangent vectors τ̂ along an edge ê of K̂ can be transformed as follows:

τ :=
BK τ̂

‖BK τ̂‖
. (3.30)

Now, to assemble the system matrix A(σ), we can reformulate the integrals for the stiffness

and mass matrix given in equation (3.21) in terms of the reference element using the affine

covariant Piola transformation (equation (3.28)). The mass matrix M will be assembled as

follows:

M(σ) = amass
K (φj ,φi)K = σK

∫
K
φj · φi dx

= σK

∫
K̂

(B−TK φ̂j) · (B−TK φ̂i)|detBK | dx̂.

And, with the transform of the curl given in equation (3.29), we can assemble the stiffness or

curl-curl matrix K, which is independent of the conductivity σK :

C = astiffness
K (φj ,φi) =

∫
K

(∇× φj) · (∇× φi) dx

=
1

|detBK |

∫
K̂

(BK∇× φ̂j) · (BK∇× φ̂i) dx̂.

The assembly of the mass and stiffness matrix yields all parts for the discrete representation

of our geophysical model problem stated in equation (3.7) which is the associated Galerkin

system:

(C + iωµ0M(σ))u = 0. (3.31)

As for DC resistivity forward modeling we do not assemble the mass matrix M(σ) directly,

but we calculate the derivative of M with respect to sigma as a three-way tensor (see Section

2.2.3.5). We can obtain the full mass matrix by multiplying this tensor by the full parameter

vector:

M(σ) =
∂M(σ)

∂σ
×3 σ.
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3.2.2.4 Implementing boundary conditions

We refrain from describing the implementation of the boundary conditions in detail because

of the similarities to the DC resistivity method and the variety of appropriate literature. As

stated in the previous section, we implement a Dirichlet boundary condition and refer to

Section 2.2.3.4 and especially equation (2.34):

AIIuI = bI −AIDgD. (3.32)

For Nédélec elements, the DOFs in uI are not equal to electric field values but linked to the

moments of the electric field at the boundary. Therefore, to implement the Dirichlet conditions

correctly, we have to evaluate the Nédélec interpolant at the boundary and calculate the re-

spective moments. We defined the curl-conforming Nédélec element and the edge, face and

volume moments in Definition 1. For example the edge moments Me can be calculated after

defining a basis of the polynomial space P0(ê). We choose the simplest constant polynomial

given by q̂ ≡ 1 in the linear case. Then, with the transformation given in equation (3.30) we

can determine the DOFs on the edges ej for an arbitrary boundary element by evaluating the

integral (3.18):

Mej (E(x)) =

∫
ej

E(x) · τj ds, j = 1, . . . , nboundary edges

=

∫
ej

E(x) · BK τ̂j
‖BK τ̂j‖

ds.

For each boundary edge ej we calculate one moment Mej and finally solve the linear system

(3.19) to determine the Dirichlet coefficients uD for all boundary edges:

uD = M(φ)−1m(E).

The matrix M(φ) is equal to the identity matrix for linear Nédélec elements (equation (3.18))

and there holds

ulinear
D = m(E).

We insert the boundary coefficients uD into the vector gD to finally evaluate equation (3.32).

After implementing these conditions, the solution of the electromagnetic Galerkin system given

in equation (3.31) yields the vector u which contains the coefficients of the linear combination

(3.17) which are used to obtain the field values in the following section.
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3.2.3 The measurement operator

3.2.3.1 Implementation for the electric field

In contrast to the DC resistivity method, where the solution u of the Galerkin system contains

the explicit values of the investigated physical field, for the electromagnetic problem and for

every problem discretized with Nédélec elements, the entries of u are not field values but

related to the moments on the edges of the elements. Therefore, to get the electric field E at

certain measurement points in a data vector bE, we have to calculate the linear combination

of these moments with the associated basis functions. This is done with the measurement

operator QE. The basic idea is the same as for Lagrange elements (see Section 2.2.4): We

implement the linear combination as a matrix-vector product:

bE =

nDOFs∑
i

uiφi(x) = QEu = QE


u1

u2

...

unDOFs

 , j = 1, . . . , nreceivers, (3.33)

where each row of QE represents one location and a single frequency and contains the

evaluated basis functions of the tetrahedron the receiver belongs to (Pseudocode 7). For linear

elements, we have at least six basis functions and for quadratic elements there are 20. In

comparison to Pseudocode 2 for Lagrange elements, the code changes for Nédélec elements

because we have to use the covariant Piola transformation described in equation (3.28) to

conserve the properties of the basis functions:

Pseudocode 7 CALCULATE JTH ROW OF QE FOR JTH RECEIVER

1: Calculate index i of enclosing element K for jth receiver

2: Extract corresponding DOFs i1, . . . , i6

3: Solve BKx̂ = (receivers(j, :)− bK)

4: for i = 1, . . . , 6 do

5: Solve BT
Kφi(x) = φ̂i(x̂)

6: qK(i)← φi(x)

7: end for

8: QE(j, [i1 i2 i3 i4 i5 i6])← qTK

The code is given for linear basis functions. In the quadratic case, the upper bound of the

for-loop has to be 20.
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3.2.3.2 Implementation for the magnetic field

The measured physical quantities for a lot of electromagnetic methods are not only electric

field components, but components of the magnetic field intensity, too. Therefore, we have

to implement a measurement operator QH for the magnetic field. We rewrite Faraday’s law

given in equation (3.5):

H = − 1

iωµ
∇×E.

Hence, we have to assemble the curl of the electric field and multiply it by a factor to get

the magnetic field H. The approach is similar to the implementation of the measurement

operator QE: The linear combination of the curl of different basis functions is implemented

as a matrix-vector product:

bH = − 1

iωµ

nDOFs∑
i

ui∇× φi(xj) = QHu = QH


u1

u2

...

unDOFs

 , j = 1, . . . , nreceivers. (3.34)

Again, the ith row of QH contains the curls of all basis functions associated with the element

the ith receiver belongs to.

Pseudocode 8 CALCULATE JTH ROW OF QH FOR JTH RECEIVER

1: Calculate index i of enclosing element K for jth receiver

2: Extract corresponding DOFs i1, . . . , i6

3: Solve BKx̂ = (receivers(j, :)− bK)

4: d← det(BK)

5: for i = 1, . . . , 6 do

6: ∇× φi(x)← 1
dBK∇× φ̂i(x̂)

7: qK(i)← ∇× φi(x)

8: end for

9: QH(j, [i1 i2 i3 i4 i5 i6])← − 1
iωµq

T
K

The implementation for linear elements follows Pseudocode 8. We apply the Piola trans-

formation given in equation (3.29) to obtain the curl of the basis functions in an arbitrary

element (line 6). A further method to assemble this measurement operator is the integration

of the electric field E over a small coil as done in the function get_Q_H, but we will only use

the curl of E in the following sections.



3.2 Electromagnetic forward modeling 71

3.2.4 Incorporation of multiple frequencies

Almost all electromagnetic methods use more than only one frequency to investigate the

subsurface. As described in Section 3.1, the behavior and especially the resolution depth of

an electromagnetic method depends on the frequency that is used during the measurement.

If we include a set of frequencies, the information will be much more detailed for a larger

depth range and this hopefully improves the inversion result.

Multiple frequencies in electromagnetics correspond to multiple source positions for the DC

resistivity method. We introduced modeling and inversion for multiple sources in Section 2.2.5

and use block diagonal matrices containing ns equivalent blocks of the system matrix A and

the measurement operator Q on their main diagonal for the inversion of data generated by

ns sources. For the electromagnetic code we have to keep in mind that the system matrix (see

Section 3.2.2)

A(σ) = C + iωµ0M(σ), ω = 2πf

as well as the measurement operator for the magnetic field QH (see Section 3.2.3) derived

from Faraday’s law (3.5) depends on the frequency f . Hence, we can assemble block diago-

nal matrices, too, but the individual blocks are different for each frequency fk (k = 1 . . . nf ):

Ablk =


Af1(σ)

Af2(σ)

. . .

Afk(σ)

 , Qblk
H =


Qf1H

Qf2H
. . .

QfkH

 .

The measurement operator for the electric field is independent of f and has to be assembled

only once:

Qblk
E =


QE

QE
. . .

QE

 .

The solution u of the Galerkin system is extended for multiple frequencies by solving this

system for each frequency individually and writing the resulting vectors ufk one below the

other:

u =


uf1

uf2
...

ufk

 .
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Later on, the block matrices are used as input for the inversion algorithm (see Section 3.3.1)

to expand the sensitivity matrix for multiple frequencies in an appropriate way.

Now we are able to solve the electromagnetic forward problem for one polarization and an

arbitrary conductivity distribution. The observation matrices QE and QH enable us to extract

synthetic data sets at arbitrary receiver locations for an arbitrary number of frequencies. The

following section describes the application of the forward modeling code to different model

problems.

3.2.5 Reference solutions

To verify the electromagnetic forward operator, it is important to calculate the numerical so-

lution for sufficiently simple models, for which we know the analytical solution so we can

compare the data sets.

The forward modeling code is able to use two different solvers for the Galerkin system which

are MATLAB’s built-in sparse solver mldivide and Intel MKL PARDISO. The efficiency of the

PARDISO solver will be explained in Section 3.2.5.3.

3.2.5.1 The cavity problem

First of all, we examine the cavity problem for a plane wave in a cavity (Monk, 2003). The

vector field

u(x) = a exp(iωk · x) (3.35)

describes a plane wave with the angular frequency ω = 2πf , the frequency f and the wave

vector k ∈ R3 which spreads in the bounded domain Ω with the boundary ∂Ω. The constant

vector a ∈ R3 contains the amplitude of the wave in all directions. The vector field u is the

solution of a PDE, which we derive as follows: Applying the curl operator to the vector field

u, we arrive at

∇× u = iω(k × a) exp(iωk · x).

Using the identity p× (q × r) = (p · r)q − (p · q)r leads to

∇×∇× u = (iω)2(k × (k × a)) exp(iωk · x)

= −ω2((k · a)k − (k · k)a) exp(iωk · x).
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Now, we choose the vectors a and k to be perpendicular to each other (a ⊥ k) and |k| = 1

to simplify this equation:

∇×∇× u = ω2 a exp(iωk · x)︸ ︷︷ ︸
u

.

Under these assumptions, u satisfies the homogeneous, linear PDE

∇×∇× u− ω2u = 0.

This PDE is similar to the electromagnetic curl-curl equation (3.7) as well as to its discrete

representation given in equation (3.31) except for the prefactor of the mass matrix M which

is −ω2 for the cavity problem and iωµ0 for the MT method. Its discrete representation then

reads

(C − ω2M(σ))u = 0

with a constant conductivity vector σ ≡ 1. To verify the implementation of this problem with

Nédélec elements, we have to add appropriate boundary conditions along ∂Ω, similar to the

electromagnetic boundary value problem given in equations (3.7) and (3.9). Here, we use

Dirichlet conditions and evaluate the analytical solution (3.35) at the boundary edges. We

assemble the mass and stiffness matrix as described in Section 3.2.2 and solve this equation

in the bounded unit cube. The numerical solution is compared with the analytical expression

for u given in equation (3.35). To ensure our assumptions are true, we choose the normalized

amplitude and wave vector to be

k =
k̂

||k̂||
=

1

||k̂||


−1.5

1

0

 and a =
â

||â||
=

1

||â||


1

1.5

0.5

 .
The angular frequency ω is set to one. For illustration purposes, we calculate and show the

field u for a very simple and coarse mesh consisting of only 24 tetrahedra and 49 DOFs for

linear elements and 218 DOFs for quadratic elements. Figure 3.2 gives a first impression

of the quality of the modeling code. It shows the real part of the field vectors u(x) at the

midpoints of all tetrahedra belonging to the mesh. We see the analytical solution given in

equation (3.35) on the left-hand side and the numerical solution for quadratic elements on

the right-hand side. For these full vectors, it is difficult to see differences or inaccuracies of the

numerical approximation. Therefore, we show further details for the modeled individual field

components for linear and quadratic elements in Figure 3.3 a) and b). There is almost no

difference between the analytical solution (red) and the modeled data for quadratic elements

(blue). Even for this coarse mesh with only 24 tetrahedra, the approximation is of very good
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Fig. 3.2: Field vectors Re(u(x)) at the midpoints of all tetrahedra in the unit cube for quadratic Nédélec elements.

quality. The linear approximation shows some inaccuracies which will become smaller for

refined meshes. To quantify the behavior of the error when decreasing the element size, we

can provide error estimates for the numerical solution uh depending on the element diameter

h. Referring to Monk (2003), we know that the L2 error e(h) = ||u−uh||L2 is proportional to

h. For a constant c, the ansatz

e(h) = chα

e

(
h

2

)
= c

(
h

2

)α

leads to the convergence rate estimate α in terms of two error measurements e(h) and

e(h/2):

α = log2

(
e(h)

e(h/2)

)
.

This formula yields the convergence rates for linear and quadratic elements for four different

meshes given in Table 3.1. Nédélec elements of orders one and two converge with the

expected convergence rate of one in the linear case and two in the quadratic case. The

table shows that the difference of the L2 error between order one and two is more than one

decimal power. Consequently, the use of finite elements of higher order should be obligatory,

whenever it is computationally affordable and the solution is sufficiently regular.
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Fig. 3.3: Real (a) and imaginary (b) part of the components of u(x) at the midpoints of all tetrahedra in the unit

cube for analytical and modeled data.
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elements DOFs L2 error, linear αlinear DOFs L2 error, quadratic αquad.

24 49 7.07e-2 - 218 3.62e-3 -

192 302 3.56e-2 0.99 1468 0.91e-3 1.99

1536 2092 1.77e-2 1.01 10712 0.23e-3 2.01

12288 15512 0.87e-2 1.02 81712 0.06e-3 2.02

Tab. 3.1: Convergence rates for elements of linear and quadratic order and different meshes.

3.2.5.2 MT on the unit cube

The consistency of the modeled forward solution with the analytical solution for the field u(x)

as well as the convergence rates for different meshes ensure that the implemented forward

modeling code works correctly. However, the cavity problem described in the previous section

is just a theoretical model problem in a homogeneous unit cube. In order to exclude errors for

inhomogeneous modeling domains and to establish the connection to electromagnetics, we

implemented the MT problem for one polarization introduced in Section 3.2.1. The modeling

domain consists of two unit cubes – one for the homogeneous Earth of constant conductivity

and the other for the air halfspace. The numerical solution is compared with the analytic

solution for a homogeneous halfspace given in equation (3.9). To determine an appropriate

Fig. 3.4: Field vectors Re(E(x)) at the midpoints of all tetrahedra in the unit cube for linear Nédélec elements.
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Fig. 3.5: Real (a) and imaginary (b) part of the components of E(x) at the midpoints of all tetrahedra in the unit

cube for analytical and modeled data.
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frequency f = ω
2π for this simple MT problem, we have to consider the skin effect. In Section

3.1 we derived a formula for the skin depth. Simulating a homogeneous halfspace with

a constant conductivity of σ= 0.01 S
m and a size of zmax = 1 m in z-direction we arrive at a

frequency of f = 2·109 Hz. The air conductivity is set to 10–9 S
m and we use Dirichlet boundary

conditions according to the analytical solution (3.9). The mesh consists of 48 elements, 90

DOFs for linear elements and 412 DOFs in the quadratic case. We show the forward solution

for linear elements, which are the field vectors for the real part of the electromagnetic field, in

Figure 3.4. Again, we achieve a good approximation and see only few differences between

the exact and the numerical solution. The field decays within the conductive cube and stays

almost homogeneous in the resistive air cube. Because we use only one polarization, the

electric field has only one component depending on the depth z as shown in Section 3.2.1. To

compare the quality for elements of different order, we show the individual field components

in Figures 3.5a) and b). For this coarse mesh, we observe a good approximation for elements

of second order and some differences in the linear case which will become smaller with further

refinement of the mesh because of the first and second order convergence of the L2 error as

shown in Table 3.1.

3.2.5.3 MT for the 3D-2 COMMEMI model

Finally, we apply our electromagnetic forward code to a more complicated model. Zhdanov et

al. (1997) published electromagnetic modeling results for a number of models. These results

can be used to test our code against it. The modeling is carried out for the 3D-2 COMMEMI

model (Comparison of Modeling Methods for ElectroMagnetic Induction problems) given in

Figure 3.6 and a frequency of 0.01 Hz. It mainly consists of three layers and two blocks in

the first layer where one is conductive and the other is resistive compared to the background

conductivity of the first layer. Within the paper, they developed the governing electromagnetic

equations for a time dependence e−iωt which differs from our ansatz in Section 3.2.2 in the

sign of the exponent. Therefore, we have to change the sign in the assembled Galerkin system

(equation (3.31)) as well:

(C − iωµ0M(σ))u = 0.

The forward problem has been assembled and solved for linear and quadratic elements and

a set of uniformly refined meshes (Table 3.2). Our discretized model extends from –100 km

to 100 km in both horizontal directions and down to a depth of 100 km in z-direction. The

air-layer is set to be of 100 km thickness, too. We impose Dirichlet conditions for a layered

halfspace and calculate the analytical boundary values with the function getE1dMT written by
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Fig. 3.6: Plan view (a) and slice (b) of the 3D-2 COMMEMI model.

Ralph-Uwe Börner according to Wait’s algorithm (Wait, 1953). The assembly of the stiffness

and mass matrix C and M is done only once for each model problem. Even for large meshes

with about 1.5 million DOFs the required assembly time is only about four minutes. Referring

to Section 3.2.5, besides assembly times, we compare two different solvers for our forward

problem in the table. Compared to MATLAB’s mldivide, the PARDISO solver is faster by a

factor of six to ten for reasonably sized meshes and should be preferred.

Order 1 1 1 2 2 2

No. of elements 3 687 29 496 235 968 3 687 29 496 235 968

No. of DOFs 4 657 35 804 280 804 24 516 191 408 1 512 744

Assembly time (s) 0.98 7.19 60.29 3.90 32.26 268.45

Solution time (s), mldivide 0.20 12.00 1092.19 6.89 469.02 -

PARDISO 0.25 2.29 88.88 1.21 49.55 2721.44

Tab. 3.2: Timings for elements of 1st and 2nd order and different meshes done on an SMP machine with four

AMD Opteron 6136 CPUs (“Magny-Cours”, 2.4 GHz) and 256 GB RAM.

Figure 3.7 shows the normalized real and imaginary part of the x-component of the electric

field E and the normalized real and imaginary part of the y-component of the magnetic field

H, which are the interesting components for modeling one polarization in the MT method.

All results are calculated using quadratic Nédélec elements and about 1.5 million DOFs as

shown in the last column of Table 3.2. The modeling results by Dr. Z. Xiong (blue circles)



80 3 Electromagnetic modeling and inversion

were computed using an integral equation code (Xiong, 1992) and a model consisting of

16 800 prismatic cells and 18 receiver locations between x= – 70 km and x= 70 km and

y= z= 0 km. Our results fit very well with Xiong’s data. Even at the interfaces of the first layer

and one of the embedded blocks the step sizes in the electric field component almost coincide

with each other.
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Fig. 3.7: Simulated real and imaginary part of the electric field component Ex (Figures a and b) as well as

both parts of the magnetic field component Hy (Figures c and d) in comparison with Xiong’s results published in

Zhdanov et al. (1997).

The previous modeling results, the comparison with reference solutions and the convergence

study for the cavity problem in Section 3.2.5.1 examined and confirmed the reliability and

correctness of our forward modeling code. Especially the convergence study showed that the

usage of quadratic Nédélec elements leads to a notably improved result. Now, this code can

be used as part of an inversion algorithm.
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3.3 Inversion of electromagnetic data

3.3.1 The Gauss-Newton method for complex data sets

Basically, the inversion algorithm is the same as described in Section 2.3.1 for the DC resisti-

vity method. We refer to this section and confine ourselves to explaining the main differences.

Again, we switch over to the logarithmic parameter vector m = logσ for the inversion algo-

rithm as described in equation (2.36). For an electromagnetic problem, we have to keep in

mind that we now deal with complex field quantities and system matrices and therefore the

normal equations change considerably. We refer to the least squares problem in equation

(2.39):

Φ(m) = 1
2‖[g(m0)− b]

data residual
+ g′(m0)

Jacobian matrix
∆m‖22 + β

2 ||W (∆m+m0 −mref)||2 → min
m

= 1
2‖∆d+ J∆m‖22 + β

2 ||W (∆m+m0 −mref)||2 → min
m

with the Jacobian or sensitivity matrix J . For the derivation of the normal equations for

complex quantities we leave out the second norm, which is the regularization part, because

the matrix W and all parameter vectors m0, mref and ∆m are real-valued and there is no

difference in this part compared to Section 2.3.1. We call this shortened objective function

Φ∗(m0). For the data residual norm there holds

Φ∗(m) = 1
2‖∆d+ J∆m‖22 = 1

2 (∆d+ J∆m)H (∆d+ J∆m)

= 1
2

(
∆dH∆d+ ∆dHJ∆m+ ∆mHJH∆d+ ∆mHJHJ∆m

)
. (3.36)

Because the parameters m are real-valued, ∆mH is equivalent to ∆mT . For the second and

third terms in equation (3.36) we get

∆dHJ∆m+ ∆mHJH∆d = ∆mTJT∆d+ ∆mTJH∆d

= ∆mT JH∆d︸ ︷︷ ︸
c

+∆mT JH∆d︸ ︷︷ ︸
c

.

Considering the sum of a complex number z = Re(z) + iIm(z) (with the imaginary unit i) and

its complex conjugate z = Re(z)− iIm(z)

z + z = Re(z) + iIm(z) + Re(z)− iIm(z) = 2Re(z) (3.37)

we arrive at

Φ∗(m) = 1
2

(
∆dH∆d+ 2Re(JH∆d)∆m+ ∆mHJHJ∆m

)
.
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Using the differentiation rules given in Appendix A.3 and again equation (3.37) the gradient

of Φ∗(m) is given by

∂Φ∗(m)

∂m
=
∂Φ∗(m)

∂∆m
·
�
�
��>

1
∂∆m

∂m
= 1

2

(
0 + 2Re(JH∆d) + 2Re(JHJ)∆m

)
= Re(JH∆d) + Re(JHJ)∆m.

Adding the regularization part as given in equation (2.41) we finally get the normal equations

for complex data:

(Re(JHJ) + βW TW )∆mk = Re(JH∆d) + βW TW (mref −mk). (3.38)

As described in Section 2.3.1 for the DC resistivity method, this linear system of equations can

be solved directly using MATLAB’s mldivide or PARDISO. But for direct solving we have to

assemble the full system matrix Re(JHJ) + βW TW which is very large and dense especially

for 3D problems. Therefore, we suggest and prefer to use an iterative solver and more

precisely again the Krylov subspace method (see Section 2.3.2) PCG. The algorithms which

calculate the product of J or JHJ with a vector v in order to avoid the explicit assembly of

the sensitivity matrix J (see Section 2.3.3 and Pseudocodes 4 and 5) need to be changed

according to (3.38) for complex valued-data as shown in Pseudocode 9 and 10.

Pseudocode 9 MULTJ.M
1: G← A′(m)×2 u

2: if transpose then

3: w1 ← v(1 : end− size(W, 1))

4: w2 ← v(end− size(W, 1) + 1 : end)

5: w1 ← QHw1

6: Solve −A(m)Hz = w1

7: y1 ← GTz

8: y2 ←
√
βW T ·w2

9: return y1 + y2

10: else

11: z ← Gv

12: Solve −A(m)TX = QT

13: y1 ← XT · z

14: y2 ←
√
βW · v

15: return [y1, y2]T

16: end if
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Pseudocode 10 MULTJHJ.M
1: Jv ← multJ(. . . , v, ′notransp′);

2: JHJv ← multJ(. . . , Jv, ′transp′);

3: return Re(JHJv)← real(JHJv);

The correct calculation of the derivative of the system matrix A as well as the assembly of the

full sensitivity matrix is verified within taylor_test.m and explained in Appendix A.5.2.6.

The complex-valued Gauss-Newton scheme as well as the frequency-dependence of the sys-

tem matrix and measurement operator (see Section 3.2.3) are the most important differences

in comparison with the DC resistivity inversion algorithm. All other features are carried over

from the DC code. Again, we use the smoothness regularization and the damping algorithm

described there. For further details see Section 2.3.5 and the following section.

3.3.2 Inversion results

3.3.2.1 Inversion of electric field components

For the inversion of MT data we choose to use the 3D-2 COMMEMI model as described in

Section 3.2.5.3. From the mathematical point of view, we want to use all available informa-

tion for the inversion, which means three components of the electric field E. As shown for

example in Figure 3.5, the y- and z-component ofE differ only a little from zero for numerical

reasons and they are supposed to be zero as given in equation (3.4). Nevertheless, we show

all components of the synthetic data set in Figure 3.8 (black circles). The most important input

parameters are given in Table 3.3. We use a relatively coarse mesh consisting of 3 687 tetra-

No. of elements 3 687

No. of DOFs 24 516

No. of parameters 2 241 (without air layer)

Frequency 0.01 Hz

Data 50 receivers between x= 70 km and x= – 70 km (y= z= 0 m)

→ 150 electric field components, no noise

Starting model homogeneous, σ0 = 0.01 S
m

Regularization β1 = 102, βi = max(βi−1/10, 10–8), layered halfspace

Tab. 3.3: Input parameter for the inversion algorithm



84 3 Electromagnetic modeling and inversion

hedra. We need the air layer to calculate a correct forward response which is the synthetic

data and the air conductivity is set to be 10–9 S
m . We set Dirichlet conditions for a layered

halfspace and calculate the analytical boundary values with the function getE1dMT (Section
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Fig. 3.8: Initial data set in comparison with the inversion result for real (left) and imaginary part (right) of the three

electric field components and a different number of pcg steps.
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3.2.1). In the electromagnetic inversion algorithm, we leave the parameters belonging to the

air layer out. The solution of the least squares problem within the Gauss-Newton scheme

is done by MATLAB’s pcg with two different maximum number of steps (15 and 50) and an

implicit calculation of the sensitivity matrix (see Section 3.3.1). Because we do not use a

preconditioner, pcg is equal to the standard conjugate gradient method. The inversion algo-

rithm is terminated with the damping criterion described in Section 2.3.6 or after a maximum

iteration number of 25 Gauss-Newton steps. Figure 3.8 shows the real and imaginary part

of measured and inverted data for all three components of the electric field. These results are

the only ones which provide information to evaluate the quality of the inversion result for a

real geophysical measurement. Most of the time we know nothing or only a few details about

the conductivity distribution under the Earth’s surface. Therefore, we can only solve the inverse

problem by matching the inverted data set with the measured one. In Figure 3.8 we see that

there is almost no difference between the measured data and the data for the inverted model

parameters for the x- and z-component of the electric field. Even for a very small number

of pcg steps, the approximation is sufficiently good. The inverted y-component differs a lot

from the initial data set for 15 pcg steps. This component is almost zero or at least about two

magnitudes smaller than the other components which leads to numerical inaccuracies. These

are overcome when increasing the number of pcg steps which is shown in the curve with red

crosses. A more detailed differentiation between more or fewer pcg steps can be achieved by
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considering the relative data residual norm in Figure 3.9 given by

relative data residual norm =
||Qui − b||2
||Qu0 − b||2

=
||ri||2
||r0||2

(3.39)

with the index 0 for the starting model and i for the result of the ith iteration step. Here,

the approximation of all three components of the electric field has influence on the residual

norm and makes a difference during the inversion steps. Obviously, because of the difficult

reconstruction of the Ey-component, more pcg steps lead to a better result for the full electric

field vector and improve the relative data residual norm by about one order of magnitude:

For 15 pcg steps the inversions stops after five Gauss-Newton steps with a relative data

residual norm of about 1.6 · 10 – 2. For the higher number of pcg steps we reach a relative

residual norm of 2.4 · 10 –3 after 8 Gauss-Newton iterations. Finally, we want to have a

look at the reconstructed parameter model. For our synthetic model problem, we have the
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possibility to compare the result with the exact solution. Figure 3.10 shows a frontal slice and

topview of the inversion result, again for 15 and 50 pcg steps. The exact dimension of the

embedded blocks is given by the black contour. First of all, we see the good approximation of

the layered background. Although we start our inversion with a homogeneous halfspace we

arrive at the three layers. The embedded blocks can be seen in all four pictures. Especially

for 50 pcg steps, the reconstruction of the blocks’ lateral extension is better and the first

and second layer is more homogeneous (lower figures). We might get a better result with

additional receiver profiles along the faces of the blocks or data from a second polarization

direction. The resolution in depth is better for the resistive block which originates in the

skin effect: In the conductive block, the amplitude of the electric field decays much faster and

therefore yields less information about the lower boundary. The conductivity values themselves

are of correct order for the different bodies. The right block has the same conductivity as

the second layer and the left block is a bit less conductive than the lowest layer which is

the most conductive. The good quality of this result is not least because we use noiseless

input data. Furthermore, we use the same mesh to produce the synthetic data set and to

carry out the inversion: The conductivity structure is present in the mesh, which is a kind of

regularization, and therefore the inversion result is forced to the given structure (inverse crime,

see Section 2.3.7). Nevertheless, using this mesh both for modeling and inversion is sufficient

for investigating the functionality and performance of the modeling and inversion code.

3.3.2.2 Inversion of electromagnetic impedances

Using three electric field components for the inversion process is not based on physics. A real

MT data set for one polarization as we use it provides only the x-component of the electric

field. In addition, the associated magnetic field component Hy can be measured which we

can calculate using the measurement operator QH described in Section 3.2.3. The ratio of

these components is called impedance Z and it is the quantity that is evaluated to extract the

conductivity structure from measured data (Vozoff, 1988):

Z =
Ex
Hy

. (3.40)

For a homogeneous halfspace, this ratio can be used to calculate the resistivity as follows:

ρxy =
1

µω

∣∣∣∣ExHy

∣∣∣∣2 .
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In case of inhomogeneities, this ratio depends on the frequency and is an apparent resistivity

ρa(f). If we add the second polarization, the impedance becomes a tensor:Ex
Ey

 =

Zxx Zxy

Zyx Zyy

Hx

Hy

 .
For our model problem, only equation (3.40) is relevant. Using the impedance as input data

set for our inversion algorithm requires a change in the calculation of the sensitivity matrix J

which is the derivative of the data with respect to the model parameters. We derive the new

matrix using equations (3.33), (3.34) and (3.40):

J =
∂Z

∂m
=

∂

∂m

Ex
Hy

=
∂Ex
∂m ·Hy − ∂Hy

∂m · Ex
H2
y

=
1

Hy

(
∂Ex
∂m

− Z∂Hy

∂m

)
=

1

Hy

(
∂QEu

∂m
− Z∂QHu

∂m

)
=

1

Hy
(QE − ZQH)

∂u

∂m
.

The derivative ∂u
∂m is the sensitivity matrix defined for the DC resistivity method in equation

(2.50) and we just have a new measurement operator QZ :

J = − 1

Hy
(QE − ZQH)A(m)−1

(
∂A(m)

∂m
×2 u

)
= −QZA(m)−1

(
∂A(m)

∂m
×2 u

)
.

We only have to change our measurement operator to QZ in the inversion algorithm – par-

ticularly in the explicit or implicit calculation of the sensitivity matrix J . Now we want to use

this realistic MT data type – the impedance – to invert data from the COMMEMI model. This

means that we only use one component of the electric and magnetic field as input data which

is less than for the inversion example in the previous section. We try to improve the resolution

by increasing the number of pcg steps up to 150. Furthermore, to avoid the inverse crime, we

add three percent random noise to the synthetic impedance data set:

bZ = bZ · (1 + noise · r),

where r is a vector of the same dimension as bZ and contains normally distributed random

numbers and the scalar factor noise is set to 0.03. For noisy data, we know from our expe-

rience that we have to increase the initial and smallest regularization parameter β0 and βmin
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to smoothen the result:

β0 = 104

βi = max(βi−1/10, 10−3).

All other input parameters as well as the Dirichlet boundary conditions are the same as for

the inversion of the electric field components given in Table 3.3. A further improvement of

the inversion result might be achieved by adding at least a second frequency which provides

information for another depth range. We invert the impedance data for the single frequency
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Fig. 3.11: Real (a and b) and imaginary (c and d) part of the initial noisy data set in comparison with the inversion

result for one (a and c) and two frequencies (b and d).

of 0.01 Hz in the first case and add the data generated by a frequency of 0.1 Hz to the

second inversion. We choose a larger frequency to improve the resolution of the two near-

surface blocks. Figure 3.11 gives an impression of the noisy data set (black circles) for



90 3 Electromagnetic modeling and inversion

both frequencies we used. Obviously the curves are not as smooth as they were for the

previous data set without noise, but we can still see the sharp boundaries between the different

conductivity structures. In comparison with the noiseless data set, the inversion stops a bit

earlier. That is due to the smoothness regularization which is used for smoothing the inversion

result and eliminating the noise which also improves the convergence of the Gauss-Newton

scheme. The approximation of the measured data sets is sufficient and we do not see a

difference in quality for the misfit between real and imaginary parts of the impedance. A

complete match is not possible because we added data noise which is not based on the

conductivity structures. If we compare the inversion for one and two frequencies, we see a

slight difference in the data misfit for the resistive block which is located between x= 0 km

and x= 20 km. A data set for two different frequencies yields more information about the

subsurface and especially the larger second frequency we used enables us to improve the

near-surface resolution. Therefore, the blue curve is more consistent with the initial data

set (black circles) especially in the region of the resistive block. The development of the

relative data residual norm (equation (3.39)) during the inversion is shown in Figure 3.12.

For one frequency, the inversion stops after six inversion steps with a relative residual norm of

1.75 ·10–2 and it stops after seven steps with a relative residual norm of about 1.73 ·10–2 for

two frequencies.
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Figure 3.13 shows the reconstructed conductivity model. First of all, if we compare the con-

ductivity distribution for the inversion of three electric field components (Figure 3.10) with the

result for the impedance inversion and a single frequency (Figures 3.13a1 and b1), we can

see that the resolution in depth is almost equal for both results. The inversion with three elec-

tromagnetic field components provides a better impression of the dimension of the embedded

blocks at the Earth’s surface because it has access to more information for each receiver lo-

cation than the impedance. Overall however we can achieve a good data approximation for

the inversion of real MT data set and the conductivity structure is reconstructed as well. The

figures on the right-hand side show the reconstructed parameter model for the impedance

data for two frequencies. As stated before, with the second frequency we add information

about the subsurface and improve the ratio of data values to unknown parameters. This
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Fig. 3.13: 3D-2 COMMEMI model: Frontal slice (a) and topview (b) of inversion result for impedance data of one

(left) and two frequencies (right).
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leads to a better parameter model especially if we have a look at the resistive block colored in

blue. The absolute conductivity value of the conductive block changes towards the true value,

too.

A further improvement of the inversion results for one polarization direction might be achieved

by adding a set of frequencies and weighting them amongst each other according to their

depth range (skin depth, see Section 3.1). Additional parallel profiles with further input data

will yield helpful information, too. Furthermore, we can examine the influence of a suitable

preconditioner for the PCG method or add another regularization operator.

To achieve a standardization of our codes, we also implemented this problem in MATLAB. An

overview on the structure of the electromagnetic code and implemented scripts and functions

is given in Appendix A.5.2.
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4 Joint inversion of DC resistivity and

electromagnetic data

4.1 A sequential approach to joint inversion

The interpretation and inversion of geophysical data has been investigated for many decades

and even the combined or joint inversion of different geophysical methods is not new, but

there are significant differences in each scheme. In general, the term joint inversion stands

for the combination of two or more different geophysical methods and sometimes different

petrophysical parameters in one inversion approach to enhance the overall resolution power.

Using joint inversion we can overcome some of the ambiguities and uncertainties which are

intrinsic in each of the individual methods (Sasaki (1989), Raiche et al. (1985), Haber and

Oldenburg (1997)). Each method is sensitive to a certain depth and parameter range and

yields distinct parameter models of the Earth (Albouy et al., 2001). We can exploit their

complementarity to get a better approximation of the measured data and a more precise

image of the subsurface (Jegen et al., 2009). In some cases, it is more cost-effective to

measure a restricted number of data sets of different methods than a large amount of data

belonging to one method and there might be a structure which cannot be detected by any of

the individual inversions but can be resolved using joint inversion (Vozoff and Jupp, 1975).

The location and resolution of targets might be more precise.

There are several possibilities to implement a combined inversion using different data sets.

Most of the literature, e.g. Meju (1996), Meju (2005) or Commer and Newman (2009), talk

about a joint inversion where the minimization problem given in equation (2.37) is extended

by adding a data residual norm for each additional geophysical method:

Φ(m) = 1
2α1‖Q1u1 − b1‖22 + 1

2α2‖Q2u2 − b2‖22 + · · ·+ β
2 ‖W (m−mref)‖2 → min

m

with the indices 1 and 2 for the first and second method. This additional data norm implies

an extension of the sensitivity matrix, too. The scaling factors αi, which can also be the

norm of scaling matrices, are a first hint on the difficulties which arise from this approach.

Now, the objective function is a sum of weighted misfit functionals and a stabilizing functional

(Gribenko and Zhdanov, 2011). The different data sets and therefore the sensitivities have to
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be balanced and there is a need for an appropriate weighting scheme using αi. Otherwise

we might fit only one data set and the joint models are dominated by the largest data set. The

scaling factors or matrices might be chosen according to the data covariance matrices (Haber

and Holtzman Gazit, 2013). Furthermore, we know from the previous chapters about the

individual inversion of DC resistivity and EM data that the determination of the regularization

parameter is very complex and there are no definitive rules about the right parameter for

a certain inversion algorithm even for only one method. Therefore it is much more difficult

to define this parameter and an appropriate smoothing regularization for different kinds of

geophysical methods and data.

Within the following pages we want to introduce an alternative approach of joint inversion

which almost eliminates all of these problems. In contrast to the combination of different

geophysical methods and data sets in one objective function, we implement a sequential joint

inversion approach. Raiche et al. (1985) propose to “sequentially use the result from one

inversion to guide input to the other” in the introduction of their article, but they do not apply

this approach. Another hint at sequential joint inversion is given in Commer and Newman

(2009). They talk about different inversion strategies such as standalone, sequential and

simultaneous inversion. Here, in the sequential inversion they use the result of the first method

as starting model for the second method and note, that “the sequential approach is achieved

at the lowest computational effort” and provides a better approximation of conductivities but

is not as good as simultaneous joint inversion in reproducing the size of the anomaly.

We present a sequential approach to joint inversion as follows: The data set of the first method

is inverted separately with its own regularization strategy and for example a homogeneous

reference model equal to the background conductivity. Then, we use the final result of the first

method (mmethod 1) as reference model for the second method. The objective function for the

minimization problem of the second geophysical method reads as follows:

Φmethod 2(m) = 1
2‖Qu− b‖

2
2 + β

2 ||W (m−mref)||2

= 1
2‖Qu− b‖

2
2 + β

2 ||W (m−mmethod 1)||2 → min
m

.

The result of the second inversion includes information of both methods and can now be used

as input for a third inversion and so on.
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Because we implement a separate inversion for each geophysical method, we do not have to

think about weighting the different data sets against each other. Just a weighting within one

data set concerning for example depth of resolution can be useful. Furthermore, we have to

find a suitable regularization strategy and parameter for only one method and do not have

to include all data sets in one parameter regularization. The reference model is free for the

first inversion where we usually use a homogeneous or layered background. In all following

calculations we use the one we get as result of the previous inversion scheme. Another big

advantage is the independence of the simulation software. It is possible to implement all

the methods in a different language and just hand the final parameter vector over to another

code. People from different working groups might work together more easily in this approach.

The only intersection we have to think about is the inversion mesh which is the distribution of

model parameters. This should be the same for all methods. Otherwise, we have to do a

difficult interpolation of data which will worsen the inversion’s result.

To show the simplicity and feasibility of the sequential joint inversion approach we apply it to

two combinations of DC resistivity method data and an electromagnetic method below.

4.2 3D joint inversion of DC resistivity and VLF-R data

The sequential approach to joint inversion enables us to combine different data sets easily.

Especially for a measuring area where we can access available data sets from former mea-

surements and want to improve the available inversion result, we can add some new profiles

for the second geophysical method and use the “old” result as reference model.

A DC resistivity measurement can last several hours even for one profile of a few hundred me-

ters in length. If we realize a lack of data afterwards and a bad resolution of the subsurface, it

would be expensive and time-consuming to measure additional DC data to improve the result,

especially in difficult terrain. A good complement is the very low frequency-resistivity (VLF-R)

method, which is a frequency domain electromagnetic technique that uses radio transmitters

operating with low frequencies between 10 and 30 kHz and a transmission power of 100 to

1000 kW (Beamish (1998), Knödel et al. (2005d)). The sources are vertical antennas and

primarily used in communication with submarines or long-range radio positioning. At suffi-

ciently large distance from the source (in relation to the skin depth), the antenna acts as a

vertical electric dipole with a vertical electric field component and the field can be considered
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as a plane wave. Hence, there holds the curl-curl equation (3.7) which we can simulate

and invert with the electromagnetic modeling and inversion code described in Chapter 3.

The electromagnetic field spreads between the Earth’s surface and the ionosphere which are

approximately concentric spherical shells (Figure 4.1). The magnetic field vector oscillates in a

E

H

transmitter
antenna

ionosphere

source-receiver direction

direct wave

reflected wave

Fig. 4.1: Propagation of the electromagnetic wave and direction of the magnetic and induced electric field at the

receiver location on the Earth’s surface, adapted from Knödel et al. (ibid.). H is the magnetic field vector and E

stands for the induced electric field vector in the subsurface.

horizontal direction which is parallel to Earth’s surface (Knödel et al., 2005d). Arriving at the

Earth’s surface, the electromagnetic wave is partially reflected and partially transmitted into

the subsurface. Because of the high conductivity contrast between the air and the conductive

Earth, the transmitted part of the plane wave diffuses almost vertically into the Earth. The

induced electric field is parallel to the source-receiver direction (Figure 4.1) and perpendicu-

lar to the magnetic field vector. Usually, a VLF-R measurement is carried out for one or two

frequencies and source-receiver directions that are perpendicular to each other to induce per-

pendicular current systems and resolve the lateral boundaries of the embedded conductivity

structures. Depending on the source-receiver direction, we measure the magnetic field com-

ponents Hx and/or Hy using a coil oriented along the x- or y-direction and the electric field

components Ex and/or Ey are measured with one pair of electrodes. The depth of investiga-

tion is guided by the skin depth given in equation (3.3) and rather small compared to an MT

survey because the operating frequencies are high compared to the typical MT frequencies.

For a homogeneous halfspace of 100 Ωm and a characteristic VLF-R frequency of 20 kHz, the

skin depth is 35 m. Thus, the VLF-R method is used to investigate near-surface conductivity

structures.
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In the numerical experiments, we combine 3D DC resistivity and VLF-R data to improve the

inversion result. We apply our joint inversion approach to the downscaled 3D-2 COMMEMI

model (Zhdanov et al., 1997) with a vertical extent of 100 m. It was discretized into a relatively

coarse mesh consisting of 2241 parameters. Figure 4.2a shows a plan view of the true model

consisting of one conductive and one resistive block compared to the 0.1 S
m background. The

objective functions for both methods are given as follows:

Φ(mDC) = ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mref)‖22

Φ(mVLF-R) = ‖Q2u2 − b2‖22 + β2
2 ‖W2(mVLF-R −mref)‖22.

The individual inversion for the DC resistivity method was carried out using nine equidistant

sources between x/y= – 30 m and x/y= 30 m at the Earth’s surface (Figure 4.2c, black

dots) and 49 receivers inside the source configuration producing 441 apparent resistivity data

points. We added three percent random noise. We use a homogeneous starting model of

0.1 S
m and the layered background as reference model within our smoothness regularization.

To find an optimal starting value for the regularization parameter β we use the ratio of the

data residual and regularization norm as described in Section 2.3.7 and equation (2.57).

According to our problem definition, we set β1 = 2.33. To give more weight to the data

residual with progressing inversion we decreased β by a factor of 10 in each Gauss-Newton

step until it reached a value of 10–3. A simple damping algorithm is applied (see Section

2.3.6). Figure 4.2c shows the individual DC resistivity result. Surface charges force the

electric current to concentrate in a conductive body which yields a much better reconstruction

of the conductive block compared to the resistive one.

For the VLF-R method, we used a transmitter frequency of 20 kHz and measured the compo-

nents Ex andHy at 50 receiver locations on a single profile at the Earth’s surface (z= y= 0 m)

between x= – 70 m and x= 70 m. The synthetic data set includes three percent random noise

as well. We use a resistive homogeneous starting model of 0.01 S
m and again the layered re-

ference model. The regularization parameter β was decreased by a factor of 10 in each step

from 102 to 10–5. In Figure 4.2b we see the individual VLF-R result. Due to the skin effect

which describes the decay behavior of the electromagnetic field, the resolution of the resistive

block is a bit better than for the conductive block. Understandably, with one profile in the

center of the model, we are not able to get the exact boundaries of the embedded blocks.

Data from the perpendicular polarization will improve this result.
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Fig. 4.2: Plan view of the downscaled 3D-2 COMMEMI model. a) The true model used to compute the synthetic

data. b) and c) are the inversion results for the individual VLF-R and DC resistivity inversion, respectively. d) Using

the DC resistivity solution as the reference model, we then inverted the VLF-R data to obtain a joint inversion result,

which recovers the two anomalous bodies well.

The joint optimization problem is given as follows: Find the model parameters mDC such

that

Φ(mDC) = ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mref)‖22

= ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mVLF-R)‖22

is minimized. As described in the previous section, we use the result of one method as

reference model for the second method to exploit the different sensitivity patterns. Here, we

use the inverted VLF-R result as input for the DC inversion. We give a bit more weight to the
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regularization norm and set the lower limit for β to be 10–2 in order to keep the result close

to the VLF-R model. All other parameters stay the same as for the individual DC inversion.

The iteration was terminated after 20 Gauss-Newton steps with a relative residual norm of

4.1·10–2. The overall resolution of the joint result in Figure 4.2d is better than the simple

addition of both individual results. We clearly see an improved image of the conductive block

compared to the DC resistivity inversion as well as small improvements in the resistive block.

Using the final result again as input for one of the individual inversions does not change

the resulting conductivity model. It is also possible to run the sequential joint inversion the

other way round: Using the DC result as reference model for the VLF-R inversion. Because

there is no improvement in the final conductivity model, we leave this result out. A further

sequential iteration also yields no improvement. Figure 4.3 shows the development of the

relative data residual norm during the Gauss-Newton inversion for both individual data sets

and both variants of the sequential joint inversion. In each case, the additional information in

the reference model leads to an improved data fitting. A further step will be the improvement

of the VLF-R result by adding a second data set based on the second polarization direction.
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Fig. 4.3: Development of the relative data residual norm during the Gauss-Newton inversion for the individual

data sets and the joint inversion approach.
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4.3 2D joint inversion of DC resistivity and TEM data

We describe a 2D example from our Geotechnologien project Three-dimensional Multi-Scale

and Multi-Method Inversion to Determine the Electrical Conductivity Distribution of the Sub-

surface Using Parallel Computing Architectures (Multi-EM) as presented in our science report

from Ritter et al. (2014). Although we do not focus on 2D problems in this thesis, the DC-TEM

joint inversion shows the functionality of the code as well as of the sequential joint inversion

approach in two dimensions, too.

In contrast to frequency-domain electromagnetic methods, the time-domain or transient elec-

tromagnetic (TEM) method measures induced secondary fields when the primary field of the

electromagnetic source is absent (Nabighian and Macnae (1988b), Knödel et al. (2005c)).

Therefore, we do not have to perform the difficult separation of the measured field and the

source field whose amplitude is usually larger. Generally, the transmitter is a large loop

on the Earth’s surface with a transmitting current I. This current is as abruptly turned off

as feasible after all turn-on transients have vanished. The rapid power-down induces eddy

currents in the subsurface and evokes a secondary field. The current system diffuses out- and

downwards and dissipates because of ohmic losses. Its characteristic topology are so-called

smoke rings (Nabighian and Macnae, 1988b). The propagation speed and dissipation of the

corresponding field depends on the underlying structures and its conductivity. The depth of

investigation for TEM methods is between several meters and about 200 meters. It is almost

impossible to resolve targets which are a few meters below the surface for technical reasons:

Because of the relatively fast propagation of the current system, the maximum current den-

sity has already passed into greater depths after a few microseconds before it is feasible to

measure the dissipating secondary field. We are able to characterize the subsurface at a

depth which is about one fourth of the depth of the maximum current density. Therefore, a

combination with high frequency methods or DC resistivity surveys is highly recommended.

For solving the TEM problem

µσ∂te(t) +∇×∇× e(t) = 0, t ∈ [0,∞)

e(t) = e0(t), t = 0

with the electric field e(t), the magnetic permeability µ and the electrical conductivity σ, we

apply the code described in Afanasjew et al. (2010) and Börner et al. (2015b). It uses Nédélec

finite elements to discretize the spatial part of the curl-curl equation for the electric field and

rational Krylov subspace techniques (Güttel, 2010) to reduce the numerical cost.
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As said above, the numerical experiments are limited to two dimensions. However, the

methodology applies to 3D scenarios in the same manner. To demonstrate the advantage of

a joint TEM-DC approach and showcase the respective properties of the different methods,

the model (Figure 4.4a) consists of two smaller bodies of high conductivity close to the surface

and a larger structure of high resistivity buried at greater depth within a 100 Ωm background.

First, the synthetic data for TEM and DC were independently calculated on different grids.

The modeling domain extends from -6 km to 6 km in x-direction and down to 5.4 km in

z-direction. The DC forward mesh consists of about 22 000 triangles and about 11 000

DOFs. The TEM modeling was carried out by Ralph-Uwe Börner on a mesh consisting of

about 11 000 triangles. Our DC setup is a pole-pole configuration with four sources lo-

cated at ±400 m and ±600 m on the Earth’s surface and one borehole source at a horizontal

distance of 200 m and a depth of 350 m. The 14 receivers are located along the surface

between ±600 m and yield 70 data points. The TEM receivers are located between −200 m

and +200 m for two sources on the Earth’s surface producing 465 data points. Then, the in-

dividual inversion processes were started for TEM and DC using a constant vector containing

the logarithmized mean of the true parameter distribution for the starting model m0 and

a homogeneous reference model equivalent to the background conductivity on a common

inversion mesh with about 11000 parameters. This mesh differs from the mesh we used to

generate the synthetic data sets. It represents a homogeneous halfspace and does not include

the conductivity structures of the model given in Figure 4.4a. As for the 3D problem, we use

a cooling approach for the different regularization parameters:

βk = max

{
βk−1

10
, βmin

}
with k = 2, . . . , n

βDC
1 ≈ 10−1, βTEM

1 ≈ 101, βmin = 10−5.

The objective functions are given as follows:

Φ(mDC) = ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mref)‖22

Φ(mTEM) = ‖Q2u2 − b2‖22 + β2
2 ‖W2(mTEM −mref)‖22.

Each function includes the respective residual norm with the individual measured data, the

forward solution and the measurement operator as well as the regularization norm without

any connection to the second geophysical method. The result of the Gauss-Newton scheme

are the modelsmDC andmTEM displayed in Figures 4.4b and 4.4c, respectively. Each method

yields an individual parameter model and has no information from the other method at

that point. It is easy to see that the TEM configuration is not able to resolve the deeper
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structure while being able to distinguish the two shallow bodies quite clearly. The DC inversion

reconstructs the large structure at depth while failing to separate the smaller objects to our

satisfaction. The joint optimization problem is given as follows: Find the model parameters

mDC such that

Φ(mDC) = ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mref)‖22

= ‖Q1u1 − b1‖22 + β1
2 ‖W1(mDC −mTEM)‖22

is minimized. Again, we use the result of one method as reference model for the second

method to exploit the different sensitivity patterns. Figure 4.4d shows the DC inversion result
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Fig. 4.4: a) The true 2D model used to compute the synthetic data. Figures b) and c) show the inversion results for

the individual inversion of only TEM or DC data, respectively. d) Using the TEM solution as the reference model,

we then inverted the DC resistivity data to obtain a joint inversion result, which recovers the three anomalous

bodies well. All figures are cut out from the complete modeling domain.

using the same configuration as described above and the TEM solution 4.4b as the reference

model. We increase the lower limit of the regularization parameter by one decade to keep

the resulting model close to the TEM result. The inversion stops after four Gauss-Newton

steps in the damping algorithm with a relative data residual norm of about 10-2. Combining

the individual resolution properties of these two methods yields a better image of the two

conductive blocks as well as of the resistive body at greater depth.
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It is also possible to use the result of the DC resistivity inversion as reference model for the

TEM inversion:

Φ(mTEM) = ‖Q2u2 − b2‖22 + β2
2 ‖W2(mTEM −mref)‖22

= ‖Q2u2 − b2‖22 + β
2 ‖W2(mTEM −mDC)‖22

Because there is almost no difference to the joint result given in Figure 4.4d we do not show

an additional figure of these results here. Another inversion using the joint result as reference

model for the DC or TEM inversion also yields no improvement.
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5 Conclusions and future work

In this thesis we developed new DC resistivity and EM forward modeling and inversion codes

based on linear and quadratic finite elements. The basic principles of both scalar nodal

Lagrange elements and vector-valued Nédélec elements are stated in a short and precise

manner in order to enable others in the scientific community to understand the principles and

make use of it as well as work on the code to improve and enhance it for regular use. Finite

elements enable us to model and invert most types of electromagnetic data with only small

changes to the code. The finite element modules are independent of the surrounding forward

problem and of the geophysical method we implemented and can be used and enhanced in

connection with other PDEs. Within the electromagnetic modeling and inversion code we only

have to make small changes in the right-hand side of the linear system of equations which

contains the source term to model almost all kinds of electromagnetic data. We tested the

forward modeling codes using known analytical solutions and convergence studies to avoid

programming mistakes and ensure a correct assembly of the system matrices as well as to

prove the expected convergence rate of the finite element approximation. Elements of higher

order lead to an improved modeling result for both the DC as well as the electromagnetic

modeling code. The codes can be used to develop an optimal setting for a measurement in

a realistic geological setting as shown in our paper Börner et al. (2015a).

For the inversion algorithms, we utilize a simple Gauss-Newton approach which yields a

slightly different formulation in case of complex field quantities which we have to handle for all

electromagnetic methods. The presented implicit strategy for the calculation of the sensitivity

matrix leads to an improved performance of the code and a considerable reduction of the

required memory. We investigated a smoothness regularization in a mixed finite element

method with Raviart-Thomas elements. This enables us to handle the piecewise constant

conductivity distribution and get sufficiently smooth inversion results as well as to add known

information within a reference model. We successfully inverted synthetic DC resistivity and

MT data sets from two different 3D models. The added noise overcomes the influence of

the inverse crime. An appropriate starting value for the regularization parameter, which is

the ratio of data residual and regularization norm, as well as the cooling approach yield an

optimal development of the ratio between data fitting and a smooth model.
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We finally introduced a sequential approach to joint inversion and successfully improved

the reconstructed conductivity model by adding at least a second DC resistivity or EM data

set to the inversion algorithm. The usage of the result of the first geophysical method as

the reference model for the second method overcomes several problems concerning data

weighting and scaling factors which occur when combining more than one data set in one

objective function.

Although we present a detailed explanation of the development of our codes, there are a lot of

additional features to implement in order to improve the results and enhance the functionality.

All our codes have been implemented in MATLAB for reasons of clarity and comprehensibility

and to create a consistent code basis within our working group. In order to improve the

performance, we suggest to work with MATLAB’s Parallel Computing Toolbox. The DC re-

sistivity code is able to work with topography on the Earth’s surface as we implemented an

inhomogeneous Neumann boundary condition. We did preliminary tests with simple surface

structures which are not included in this thesis because there should be more detailed studies

to ensure the correct implementation. To be able to work with topography is indispensable in

view of the inversion of a real geophysical data set. The data we worked with in this thesis

are generated from synthetic conductivity models in order to validate the implementation.

Now, an application to real field data is the next step. Furthermore, the electromagnetic code

contains only one polarization direction which is essential for the simulation and inversion of

a VLF-R data set. To obtain multifunctional software, we have to add the second polariza-

tion direction and think about other electromagnetic source types concerning the right-hand

side of the PDE. In addition, the secondary field approach would reduce the computational

cost for a passive electromagnetic method and overcome low convergence rates in case of

source singularities. The smoothness regularization yields a good method to solve ill-posed

problems and get a smooth model. In order to emphasize the sharp boundaries of embed-

ded conductivity structures, we propose to implement a total variation regularization strategy

(Hansen, 2010) and compare the results with the ones presented here.

The validation of the sequential joint inversion approach included some simple tests with a

CSEM modeling and inversion code developed in our working group by Christoph Schwarz-

bach (Schwarzbach, 2009) and Feiyan Wang (Wang, 2016). We did not state the preliminary

and fragmentary results in this thesis. Further studies will emphasize how simple a joint inver-

sion with codes of different programming languages is when using the presented sequential

approach. Only the parameter vector and the inversion mesh has to be interchanged and
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converted into the appropriate format. Finally, the comparison of our sequential joint inver-

sion approach with the usual method to combine more than one data set in one objective

function will lead to a better understanding of the advantages of both approaches and im-

prove the interpretation of geophysical data in many cases.
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A Appendix

In this appendix, we give additional information for the finite element approximation of our

DC resistivity and electromagnetic problems. For the DC resistivity code, we explain the

assembly of matrices and systems of equations for linear elements in 3D in Chapter 2. The

appendix contains basis functions, gradients and other information for 2D and quadratic

elements. For the electromagnetic code, we explain the calculation of the Nédélec moments.

Furthermore, we state differentiation rules for (complex) vector-valued functions which are

needed to derive the Gauss-Newton scheme in Section 3.3.1 and we explain Wait’s algorithm.

Finally, the structure of the implemented codes is outlined.

A.1 Lagrange elements – additional information

A.1.1 Linear elements in 2D

In comparison with the reference tetrahedron and the basis functions given in equation (2.30)

for a 3D element, the overall assembly process for 2D problems is almost equal. To improve

the understanding of the given DC resistivity code, we just want to state some features which

are different to that in 3D. First of all, the reference element K̂ is a unit triangle given by

K̂ = {(ξ, η) ∈ R2 : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ}.

For the transformation between the reference triangle K̂ and an arbitrary element K in the

modeling domain, there holds:

FK : K̂ → K, K̂ 3 ξ 7→ x ∈ K, x = FK(ξ) = BKξ + bK

with x
y

 =

x1 − x3 x2 − x3

y1 − y3 y2 − y3


︸ ︷︷ ︸

BK

ξ
η

+

x3

y3


︸ ︷︷ ︸
bK

.

The local basis functions in the reference element K̂ in 2D are given by

φ̂1(ξ, η) = ξ

φ̂2(ξ, η) = η

φ̂3(ξ, η) = 1− ξ − η
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and their gradients are

[
∇̂φ1 ∇̂φ2 ∇̂φ3

]
=

1 0 −1

0 1 −1

 .

A.1.2 Quadratic elements

A.1.2.1 Basis functions and gradients

For quadratic Lagrange elements there are additional DOFs on the midpoints of all edges of

the element shown in Figure A.1. For the unit triangle, the quadratic basis functions are

Fig. A.1: Degrees of freedom (red) for quadratic Lagrange elements in two (left) and three (right) dimensions.

λ =


λ1

λ2

λ3

 =


ξ

η

1− ξ − η

 , ∇λ =
[
∇λ1 ∇λ2 ∇λ3

]
=

1 0 −1

0 1 −1

 ,

φ̂1(ξ, η) = λ3(2λ3 − 1) φ̂2(ξ, η) = 4λ1λ3

φ̂3(ξ, η) = λ1(2λ1 − 1) φ̂4(ξ, η) = 4λ2λ3

φ̂5(ξ, η) = 4λ1λ2 φ̂6(ξ, η) = λ2(2λ2 − 1).

Their gradients are given by

∇̂φ1(ξ, η) = (4λ3 − 1)∇λ3 ∇̂φ2(ξ, η) = 4(λ1∇λ3 + λ3∇λ1)

∇̂φ3(ξ, η) = (4λ1 − 1)∇λ1 ∇̂φ4(ξ, η) = 4(λ2∇λ3 + λ3∇λ2)

∇̂φ5(ξ, η) = 4(λ1∇λ2 + λ2∇λ1) ∇̂φ6(ξ, η) = (4λ2 − 1)∇λ2.
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In 3D, we get the following quadratic basis functions for the reference tetrahedron:

λ =


λ1

λ2

λ3

λ4

 =


ξ

η

ζ

1− ξ − η − ζ

 , ∇λ =
[
∇λ1 ∇λ2 ∇λ3 ∇λ4

]
=


1 0 0 −1

0 1 0 −1

0 0 1 −1

 ,

φ̂1(ξ, η) = λ3(2λ3 − 1) φ̂2(ξ, η) = 4λ1λ3

φ̂3(ξ, η) = λ1(2λ1 − 1) φ̂4(ξ, η) = 4λ2λ3

φ̂5(ξ, η) = 4λ1λ2 φ̂6(ξ, η) = λ2(2λ2 − 1)

φ̂7(ξ, η) = 4λ3λ4 φ̂8(ξ, η) = 4λ1λ4

φ̂9(ξ, η) = 4λ2λ4 φ̂10(ξ, η) = λ4(2λ4 − 1).

The corresponding gradients are

∇̂φ1(ξ, η) = (4λ3 − 1)∇λ3 ∇̂φ2(ξ, η) = 4(λ1∇λ3 + λ3∇λ1)

∇̂φ3(ξ, η) = (4λ1 − 1)∇λ1 ∇̂φ4(ξ, η) = 4(λ2∇λ3 + λ3∇λ2)

∇̂φ5(ξ, η) = 4(λ1∇λ2 + λ2∇λ1) ∇̂φ6(ξ, η) = (4λ2 − 1)∇λ2

∇̂φ7(ξ, η) = 4(λ4∇λ3 + λ3∇λ4) ∇̂φ8(ξ, η) = 4(λ4∇λ1 + λ1∇λ4)

∇̂φ9(ξ, η) = 4(λ4∇λ2 + λ2∇λ4) ∇̂φ10(ξ, η) = (4λ4 − 1)∇λ4.

A.1.2.2 Local numbering of DOFs

To understand the quadratic version of the code we have to explain an additional feature used

within the assembly process, especially in the function fe_assemble_stiffness. The global

numbers of the nodes describing one element are given in the matrix mesh.tetra (in 2D:

mesh.tri). For linear elements, this matrix only contains the vertices of the element. In the

quadratic case, the additional DOFs for the ith element, which are located at the midpoints

of the edges of this element, are contained in the ith column of the matrix mesh.tetra (in 2D:

mesh.tri), too. Therefore, the size of this matrix changes from 4×nelements (in 2D: 3×nelements)

for linear elements to 10× nelements (in 2D: 6× nelements) for quadratic elements.

We generated most of our meshes for the examples described in this thesis and implemented

in the functions fe_create_mesh and fe_load_mesh using COMSOL Multiphysics. This soft-

ware does not simply add the additional (quadratic) DOFs to the element matrix below the
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vertices of the element but uses a consistent local numbering for each element. Figures A.2

and A.3 show this numbering for triangles and tetrahedra. In some cases, for example to

1

2

3

4

5

6

Fig. A.2: Numbered DOFs for quadratic Lagrange elements in two dimensions.

Fig. A.3: Numbered DOFs for quadratic Lagrange elements in three dimensions (Node 9 is located at the midpoint

of the back edge).

calculate the transformation matrix BK (equation (2.31)), it is not only important to know the

DOFs of a tetrahedron but especially which of these nodes are the vertices of the element.

Therefore, we introduce a variable called points which contains the local indices of all ver-

tices in a consistent numbering. Considering the figures the variable points is given by points

= [3; 6; 1] for triangles and points = [3; 6; 1; 10] for tetrahedra.
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For the generation of new meshes, which are not implemented in our mesh functions fe_cre-

ate_mesh and fe_load_mesh, it is recommended to adapt the local numbering of the DOFs

to the one described above or to adjust the variable points in the following m-files:

• fe_assemble_stiffness.m

• fe_get_stiffness_robin.m

• fe_get_rhs.m

• fe_get_rhs_bc.m

• fe_assemble_observation.m

• gaussNewtonR.m.

A.2 Nédélec elements – additional information

As for linear elements, we refer to Whitney (1957) in the quadratic case on how to determine

a basis of R2 on the reference element and use barycentric coordinates to define 20 basis

functions:

φ̂1 = λ1θ12, φ̂2 = λ2θ12, φ̂3 = λ1θ13, φ̂4 = λ3θ13,

φ̂5 = λ1θ14, φ̂6 = λ4θ14, φ̂7 = λ2θ23, φ̂8 = λ3θ23,

φ̂9 = λ2θ24, φ̂10 = λ4θ24, φ̂11 = λ3θ34, φ̂12 = λ4θ34,

φ̂13 = λ3θ12, φ̂14 = λ2θ13, φ̂15 = λ4θ12, φ̂16 = λ2θ14,

φ̂17 = λ4θ13, φ̂18 = λ3θ14, φ̂19 = λ4θ23, φ̂20 = λ3θ24,

where the basis functions λiθij and λjθij are associated with the edge defined by the vertices

vi and vj. On this edge, the edge moments of these two functions are equal to one and they

vanish on the other five edges. The basis functions λkθij with k 6= i, j are associated with

the face defined by the vertices vi, vj and vk. This definition leads to twelve basis functions

belonging to the tetrahedron’s edges:

φ1 =


−xy

x2

0

 , φ2 =


−y2

xy

0

 , φ3 =


−xz

0

x2

 , φ4 =


−z2

0

xz

 , φ5 =


−x+ xy + xz

−x2

−x2

 ,
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φ6 =


(−1 + y + z)(1− x− y − z)

−x+ x2 + xy + xz

−x+ x2 + xy + xz

 , φ7 =


0

−yz

y2

 , φ8 =


0

−z2

yz

 ,

φ9 =


−y2

y(x+ z − 1)

−y2

 , φ10 =


−y(1− x− y − z)

(x+ z − 1)(1− x− y − z)

−y(1− x− y − z)

 ,

φ11 =


−z2

−z2

xz + yz − z

 , φ12 =


−z + xz + yz + z2

−z + xz + yz + z2

(x+ y − 1)(1− x− y − z)

 .
The last eight basis functions correspond to the faces of the tetrahedron:

φ13 =


−yz

xz

0

 , φ14 =


−yz

0

xy

 , φ15 =


−y + xy + yz + y2

x− xy − xz − x2

0

 , φ16 =


−y + yz + y2

−xy

−xy

 ,

φ17 =


−z + xz + yz + z2

0

x− xy − xz − x2

 , φ18 =


−z + yz + z2

−xz

−xz

 ,

φ19 =


0

−z + xz + yz + z2

y − xy − yz − y2

 , φ20 =


−yz

−z + xz + z2

−yz

 .
In contrast to first-order elements, the face and edge moments for elements of order k = 2

with the associated polynomial space R2 are defined as follows:

Me(û) :=

{∫
ê
û · τ̂ q̂ dŝ, for all q̂ ∈ P1(ê) for each edge ê of K̂

}
,

Mf (û) :=

{
1

|f̂ |

∫
f̂
û · q̂ dÂ, for each face f̂ of K̂, q̂ ∈ R3, q̂ · n̂ = 0

}
.

Again, we have to find a set of bases of the polynomial spaces to determine the moments for

quadratic elements. For the face moments we choose two constant vector test polynomials q̂1

and q̂2. An appropriate choice are the non-normalized edge vectors, spanning the considered

face according to the definition of the faces in equation (3.23). For the DOFs on the edges of

an element, which are called edge moments, we have to find a basis for the scalar polynomial

space P1(ê). Consider an arbitrary edge of the reference element K̂ (equations (3.22) to

(3.24)) defined by two vertices vi and vj. The parametrization of the edge is given by

ξ(s) = v̂i + s(v̂j − v̂i), s ∈ [0, 1].
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In terms of the curve parameter s, the barycentric coordinates associated with the two vertices

read as follows:

vi : λi(s) = 1− s (A.1)

vj : λj(s) = s (A.2)

and each coordinate is equal to one on the associated vertex and equal to zero on the other

vertex. The edge basis functions are defined by their Whitney forms

θij := λi∇λj − λj∇λi, 1 ≤ i < j ≤ 6,

with the pair λiθij and λjθij. If we evaluate the edge moments for the basis functions φ, there

should be only one non-vanishing moment:

∫
ê
(λiθij · τ̂ ) q̂1(s) ds = 1,

∫
ê
(λjθij · τ̂ ) q̂1(s) ds = 0,∫

ê
(λiθij · τ̂ ) q̂2(s) ds = 0,

∫
ê
(λjθij · τ̂ ) q̂2(s) ds = 1.

θij represents the linear basis functions φ̂i(i = 1, . . . 6) given in equation (3.27) and the

product θij · τ is equal to the reciprocal edge length:

φ̂1 · τ̂1|ê1 ≡
1√
2
, φ̂2 · τ̂2|ê2 ≡

1√
2
, φ̂3 · τ̂3|ê3 ≡ 1,

φ̂4 · τ̂4|ê4 ≡
1√
2
, φ̂5 · τ̂5|ê5 ≡ 1, φ̂6 · τ̂6|ê6 ≡ 1.

These factors cancel with the differential of the curve parametrization which results in the

simplified integrals

∫
ê
λi q̂1(s) ds = 1,

∫
ê
λj q̂1(s) ds = 0,∫

ê
λi q̂2(s) ds = 0,

∫
ê
λj q̂2(s) ds = 1.
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In the following, we show the detailed derivation of the coefficients a1 and b1 for an arbi-

trary linear polynomial q̂1(s) = a1 + b1s. Inserting these polynomials and the barycentric

coordinates given in equations (A.1) and (A.2) the integrals can be evaluated as follows:∫ 1

0
(1− s) · (a1 + b1s) ds = 1,

∫ 1

0
s · (a1 + b1s) ds = 0,

∫ 1

0
a1 + (b1 − a1)s− b1s2 ds = 1,

∫ 1

0
a1s+ b1s

2 ds = 0,

[
a1s+

(b1 − a1)

2
s2 − b!

3
s3

]1

0

= 1,

[
a1

2
s2 +

b1
3
s3

]1

0

= 0,

a1 +
(b1 − a1)

2
− b1

3
= 1,

a1

2
+
b1
3

= 0,

a1 = 2− b1
3
, b1 = −3a1

2
.

Inserting one of these two equations into the other finally yields the coefficients a1 = 4 and

b1 = −6 and the first polynomial q̂1(s) = 4− 6s. The second polynomial q̂2(s) = −2 + 6s can

be derived in the same way.

A.3 Differentiation of vector-valued functions

For a given function g : Rd → R and the vectors x,x0 ∈ Rd, the gradient of g has the following

properties:

• For (γ ∈ R) : ∇(γg)(x0) = γ∇(g)(x0)

• ∇(g + h)(x0) = ∇g(x0) +∇h(x0)

• For (γ ∈ R) : g(x) = γ ⇒ ∇g(x0) = 0 ∈ Rd

• For b ∈ Rd : g(x) = bTx = xTb⇒ ∇g(x0) = b

• For c ∈ Cd : g(x) = cHx⇒ ∇g(x0) = c

• For c ∈ Cd : g(x) = xTc⇒ ∇g(x0) = c

• g(x) = xTx⇒ ∇g(x0) = 2x0

• For A ∈ Rd×d : g(x) = xTAx⇒ ∇g(x0) = Ax0 +ATx0
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• For A ∈ Cd×d : g(x) = xTAx⇒ ∇g(x0) = Ax0 +Ax0 = 2Re (A)x0

• For A ∈ Rm×d and b ∈ Rm : g(x) = ||b−Ax||2

g(x) = (b−Ax)T (b−Ax) = bTb− bTA︸︷︷︸
cT

x− xT ATb︸︷︷︸
c

+xTATAx

∇g(x0) = 0−ATb−ATb+ATAx0 +ATAx0 = 2ATAx0 − 2ATb

∇g(x0) = 2AT (Ax− b)

• For A ∈ Cm×d and b ∈ Cm : g(x) = ||b−Ax||2

g(x) = (b−Ax)H(b−Ax) = bHb− bHA︸︷︷︸
cT

x− xT AHb︸︷︷︸
c

+xTAHAx

∇g(x0) = 0−ATb−AHb+AHAx0 +ATAx0 = −AHb−AHb+AHAx0 +AHAx0

∇g(x0) = 2 Re(AHA)x0 − 2 Re(AHb) = 2 Re(AH(Ax0 − b)).

A.4 Plane waves in horizontally layered conductivity structures

As given in section 3.2.1, we calculate appropriate boundary values for the propagation of a

plane wave in a layered halfspace with the function getE1dMT according to Wait’s algorithm

(Wait, 1953).

z

z = 0
a1 b1 k1, d1

z1

...
zn−1

an bn kn, dn
zn

an+1 bn+1 kn+1, dn+1

zn+1

...
zN−1

aN kN

Fig. A.4: The layered halfspace and corresponding parameters.

Here, we refer to Ward and Hohmann (1988) and Schwarzbach (2009) and consider a lay-

ered halfspace consisting of n = 1, . . . , N layers with the corresponding physical parameters

σn and µ, the complex wave number kn with k2
n = −iωµσn and the layer thickness dn be-

longing to the nth layer between zn−1 and zn (Figure A.4). In this layer, the x-component of

the electric field and the y-component of the magnetic field can be described according to
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Faraday’s law (3.5):

Enx (z) = Zn

(
ane
−ikn(z−zn) + bne

ikn(z−zn)
)

(A.3)

Hn
y (z) = − 1

iωµ

∂Enx (z)

∂z
= ane

−ikn(z−zn) − bneikn(z−zn), (A.4)

with the amplitudes an and bn of the wave propagating in positive or negative z-direction,

respectively and the intrinsic impedance Zn = ωµ
kn

of the nth layer (Ward and Hohmann,

1988). Because the layer below zN−1 is a halfspace which extends to infinity, there is no

reflected wave traveling upwards and bn ≡ 0 for z ≥ zN−1.

We describe the electromagnetic impedance in section 3.3.2.2 and especially in equation

(3.40). According to that, we calculate the apparent impedance Ẑn in the nth layer as follows:

Ẑn =
Enx (z)

Hn
y (z)

= Zn
ane
−ikn(z−zn) + bne

ikn(z−zn)

ane−ikn(z−zn) − bneikn(z−zn)
. (A.5)

The impedance of the lowermost infinite halfspace is then given by ZN = ωµ
kN

. In the following,

we want to determine the impedance Ẑn from the impedance Ẑn+1 of the layer which lies

beneath the nth layer. At z = zn equation (A.5) yields

Ẑn =
Enx (zn)

Hn
y (zn)

= Zn
an + bn
an − bn

= Zn
1 + rn
1− rn

. (A.6)

The reflection coefficient

rn =
bn
an

describes the ratio of the amplitudes of the up- and downward traveling wave at the layer

interface z = zn. Similarly, we can derive the impedance Ẑn−1 on top of the nth layer as

follows: At z = zn−1, the continuity of the tangential components of the electric and magnetic

field yields

En−1
x = Enx

Hn−1
y = Hn

y

and therefore, the apparent impedance Ẑn−1 along z = zn−1 can be calculated according to

equation (A.5):

Ẑn−1 = Zn
ane
−ikn(zn−1−zn) + bne

ikn(zn−1−zn)

ane−ikn(zn−1−zn) − bneikn(zn−1−zn)

Ẑn−1 = Zn
1 + rne

−2ikndn

1− rne−2ikndn
,
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with the layer thickness dn = zn − zn−1. Furthermore, we introduce the coefficient α = ikndn

and rearrange this equation to calculate the reflection coefficients rn:

Ẑn−1

(
1− rne−2α

)
= Zn

(
1 + rne

−2α
)(

Zn + Ẑn−1

)
e−2αrn = Ẑn−1 − Zn

rn =
Ẑn−1 − Zn
Ẑn−1 + Zn

e2α. (A.7)

We insert this equation into (A.6), expand the fraction with e−α and get

Ẑn = Zn
1 + Ẑn−1−Zn

Ẑn−1+Zn
e2α

1− Ẑn−1−Zn
Ẑn−1+Zn

e2α

Ẑn = Zn
−Zn(eα − e−α) + Ẑn−1(eα + e−α)

Zn(eα + e−α)− Ẑn−1(eα − e−α)
.

The hyperbolic functions sinh(x) = ex−e−x
2 , cosh(x) = ex+e−x

2 and tanh(x) = sinh(x)
cosh(x) yield

Ẑn = Zn
−Zn sinh(α) + Ẑn−1 cosh(α)

Zn cosh(α)− Ẑn−1 sinh(α)

Ẑn = Zn
Ẑn−1 − Zn tanh(α)

Zn − Ẑn−1 tanh(α)
.

We rearrange this equation to obtain a recursion formula for Ẑn−1:

Ẑn

(
Zn − Ẑn−1 tanh(α)

)
= Zn

(
Ẑn−1 − Zn tanh(α)

)
Zn

(
Ẑn − Zn tanh(α)

)
= Ẑn−1

(
Zn + Ẑn tanh(α)

)
Ẑn−1 = Zn

Ẑn + Zn tanh(α)

Zn + Ẑn tanh(α)
.

Now, the impedances can be calculated recursively, starting from the halfspace impedance

ZN = ωµ
kN

to finally get the reflection coefficients in equation (A.7). To calculate the electric

and magnetic field values as given in equations (A.3) and (A.4) we need to know at least the

amplitude an. We apply the continuity condition for the electric field at z = zn to calculate

an+1 from the previous amplitude an and the corresponding reflection coefficients:

Enx (z = zn) = En+1
x (z = zn)

an + bn = an+1e
ikn+1dn+1 + bn+1e

−ikn+1dn+1

an(1 + rn) = an+1(eikn+1dn+1 + rn+1e
−ikn+1dn+1)

an+1 =
an(1 + rn)

(eikn+1dn+1 + rn+1e−ikn+1dn+1)
,

with dn+1 = zn+1 − zn. For an incident electric field E0 = 1 V/m, there holds a0 = 1 and

a1 =
(1 + r0)

(eik1d1 + r1e−ik1d1)
.

We are now able to compute the electric and magnetic field components in each layer.
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A.5 Architecture of the programs

A.5.1 Program structure of the DC resistivity code

A.5.1.1 Overview

Chapter 2 explained the algorithms and mathematical principles implemented in the DC re-

sistivity code. Within this section we want to show its structure, how to use it for the inversion of

DC resistivity data and which function accesses which subroutines. The script DCinversion.m

DCinversion.m

fe_create_mesh.m

fe_load_mesh.m

fe_prepare_mesh.m

rhoA_get_transformation.m

fe_solve.m

completeEdges.m

completeFaces.m

assembleRT0.m

gaussNewtonR.m

export_paraview.m

Fig. A.5: Directory tree of the DC resistivity code.

is the driver file for a DC resistivity inversion. Here, we have to set the main variables, define

the used synthetic model or include real data. The directory tree in Figure A.5 shows the setup

including all relevant m-files.

The first four variables in the driver determine the dimension of the model problem, the

degree of the Lagrange elements, the used boundary condition, the use of secondary or total

field approach and decide whether we perform an individual or joint inversion. After that, the

following tasks are performed:

• Generation of forward and inversion mesh and assembly of system matrices,

• Definition of sources and receivers,

• Generation of a synthetic data set,

• Assembly of regularization matrices,
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• Definition of reference and starting model,

• Application of a Gauss-Newton scheme,

• Plotting and saving result.

A.5.1.2 Mesh generation and assembly of system matrices

The directory tree A.6 shows a part of the full program which is used to generate or load

meshes and assemble the associated system matrices as well as the measurement operator.

Within DCinversion.m we can choose the model we want to use by setting the parameters

model_name and invmodel_name as well as the associated sources and receivers.

DCinversion.m

fe_create_mesh.m

sem_circle.m

refinement_uniform.m

getEdges.m

deleterepeatedrows.m

fe_load_mesh.m

do_load_mesh.m

do_combine_boxmesh.m

do_combine_boxmesh_3d.m

boundary_faces.m

fe_prepare_mesh.m

fe_index_mesh.m

fe_assemble_stiffness.m

tetraquad.m

tensor class

fe_assemble_observation.m

...

Fig. A.6: Directory tree for mesh generation and assembly.

The function fe_create_mesh provides different models in two and three dimensions. When

using this function, a new mesh is generated from scratch using the parameter hmax given

in DCinversion.m to determine the maximum element diameter. To use these models we

have to start MATLAB together with COMSOL because all implemented models are based
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on COMSOL commands. In contrast, the function fe_load_mesh loads static meshes. The

element size cannot be changed for these. The subroutines and local functions are used to

get boundary nodes and faces. Furthermore, we have to add certain features to the mesh to

enable its usage within forward calculations. Within fe_prepare_mesh.m we project the initial

conductivity vector m_0, which contains unique conductivity values of the chosen model, onto

all tetrahedra using the mesh property mesh.regio:

m0 = m0(mesh.regio).

We separately run fe_prepare_mesh for the forward and inversion mesh. After generating

or loading a mesh, the structure array mesh contains all information about the discretized

modeling area. Its properties are

• tetra/tri: matrix containing the mapping between DOFs and elements, tetra: 4 ×

nelements (2D, tri: 3× nelements),

• nodes: matrix containing the coordinates of all vertices (all DOFs for quadratic ele-

ments), 3× nvtx (2D: 2× nvtx),

• regio: vector of indices containing the mapping between elements and conductivities,

1× nelements,

• diric_dofs: vector of DOFs belonging to the Dirichlet boundary, empty matrix if there

is no Dirichlet boundary, nDiric. DOFs × 1 ,

• robin_bc: matrix containing boundary objects (faces in 3D, edges in 2D) belonging

to the Robin boundary, 3 × nRobin faces (2D: 2 × nRobin edges), empty matrix if there is no

Robin boundary,

• neum: matrix containing boundary objects belonging to the Neumann boundary, empty

matrix if there is no Neumann boundary, 3× nNeumann faces (2D: 2× nNeumann edges),

• degree: degree of finite element basis functions (1 for linear or 2 for quadratic),

• dim: dimension of modeled problem,

• I: matrix to exclude Dirichlet nodes: uinner nodes = u(I),

• E: matrix to insert Dirichlet nodes: u = E · uinner nodes,
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• dofmap: vector to map DOFs onto the grid nodes of the COMSOL mesh. In COMSOL,

the global numbering of grid nodes and DOFs is not necessarily the same,

• raw: output of COMSOL, finite element structure array containing the initial COMSOL

mesh structure.

All future meshes should contain these properties in order to guarantee compatibility with the

code. The last two items are only required if the user creates a COMSOL mesh and wants to

apply COMSOL functions, e. g. to plot the potential field using the command postplot.

After mesh generation, the mesh information can be used to assemble the system matrices.

The function fe_assemble_stiffness is used to assemble a tensor which only contains geo-

metric aspects in a three-way-tensor as given in Section 2.3.3. To get the full system or

stiffness matrix we use (and explain) the function fe_get_stiffness later on and multiply

each slice i of the tensor with the corresponding conductivity σi = emi . We use the tensor

class implemented by Martin Afanasjew.

Finally, we assemble the observation operator Q as described in Section 2.2.4 within

fe_assemble_observation.m.

A.5.1.3 Forward calculation and generation of a synthetic data set

The function fe_solve (Figure A.7) realizes the assembly and solution of the forward prob-

lem which is the calculation of synthetic DC resistivity data. As described in the previous

section we use the assembled tensor to build the stiffness matrix within fe_get_stiffness.m

by multiplication of the slices with the corresponding conductivities. Furthermore, using the

function fe_get_stiffness_robin we assemble a matrix A_rob which contains the Robin

boundary condition and is just added to the system matrix before we solve the forward prob-

lem. We build up the right-hand sides for total or secondary field approach using the function

fe_get_rhs in the first case and equation (2.27) in the second case and add the Robin con-

dition to the right-hand side, too. If we choose to use a Dirichlet boundary condition, the

calculation of the matrix A_rob is omitted. The choice between different boundary conditions

is made at the beginning of DCinversion.m as described in Appendix A.5.1.1.
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DCinversion.m

...

rhoA_get_transformation.m

fe_solve.m

fe_get_stiffness.m

tensor class

fe_get_stiffness_robin.m

quad1d.m

quadTri.m

fe_get_pfield.m

fe_get_rhs_bc.m

quad1d.m

quadTri.m

fe_get_rhs.m

...

Fig. A.7: Directory tree for forward solution.

For the secondary field approach we have to set up the primary potential up which is cal-

culated within fe_get_pfield.m using the analytical solution for a homogeneous halfspace

given in equations (2.4). After that, the linear system of equations is solved for the total or

secondary potential using MATLAB’s mldivide or a multigrid method (see Section 2.2.6). For

the secondary field approach, we have to add the primary potential to the solution of the

system to obtain the total potential. The resulting vector is the output parameter of fe_solve.

In Section 2.1 and especially equation (2.1) we explained the connection between the elec-

tric potential u and the apparent resistivity ρa. The outputs of the forward modeling code

are potentials, but real DC resistivity data are apparent resistivities. Hence, we have to con-

vert the potentials using the geometric factor k as described in Section 2.2.4.2. The function

rhoA_get_transformation implements this conversion and outputs a matrix D_rho which can

be multiplied by the data or potential vector to obtain apparent resistivities.

A.5.1.4 Assembly of regularization matrices

The directory tree in Figure A.8 shows the functions which are used to assemble the regula-

rization matrices M and D which have been described in Section 2.3.5. Because our regula-

rization strategy is based on RT elements where the DOFs are located on edges in the 2D
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case and on faces in 3D, we need to add the associated edges and faces to the given mesh

information. This is realized by the functions completeEdges and completeFaces which use

the given element table mesh.tri or mesh.tetra to define all edges or faces. The actual

DCinversion.m

...

completeEdges.m

completeFaces.m

assembleRT0.m

quadTri.m

tetraquad.m

orientationRT0.m

...

Fig. A.8: Directory tree for regularization operator.

assembly of the regularization matrices is implemented in assembleRT0.m and is quite simi-

lar to the assembly routine of the stiffness matrix. The additional function orientationRT0

ensures the correct orientation of neighboring faces and edges (see Section 2.3.5 and espe-

cially Figure 2.16). We consider each face (or edge in 2D) twice and have to keep in mind

that, because of the global numbering of the DOFs and the edges and faces, the direction of

rotation is different between neighboring faces. Therefore, we have to change the sign of the

outer basis function to get a conforming discretization.

A.5.1.5 The Gauss-Newton scheme

The actual inversion algorithm is implemented in gaussNewtonR and the directory tree in

Figure A.9 shows the subroutines that are called inside the function. Here, we have to set the

most important parameters concerning the inversion:

• maxit: maximum number of Gauss-Newton iterations,

• tol: termination tolerance for the absolute residual norm of the Gauss-Newton itera-

tion,

• solve_method: solution method of least squares problem (MATLAB’s mldivide, PAR-

DISO, PCG or LSQR, see Section 2.3.2),
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DCinversion.m

...

gaussNewtonR.m

fe_solve.m

fe_get_volume.m

tensor class

PARDISO

multJ.m

multJTJ.m

multJ.m

export_paraview.m

Fig. A.9: Directory tree for the Gauss-Newton scheme.

• maxit_iter: maximum number of iterations for iterative solver,

• tol_iter: relative target residual for iterative solver,

• beta: initial regularization parameter,

• betamin: lower bound for the regularization parameter.

We calculate all cell volumes within the function fe_get_volume in order to possibly add

a weighted identity matrix to the regularization operator. The solution of the least squares

problem is then executed in a while-loop, where we use a simple damping algorithm in order

to control the step size of the update of the model parameter vector (see Section 2.3.6).

A.5.1.6 Some additional script files and functions

The script file export_paraview.m can be used to create a vtu-file to display the 3D inversion

result in the vtk-based open-source software ParaView. It needs a mesh structure containing

the array mesh.tetra of size 4 × nelements which contains the four nodes belonging to the

ith tetrahedron in the ith column and the array mesh.nodes of size 3 × nvtx containing the

coordinates of all vertices. Furthermore, the parameter vector has to be in the variable m_k.

One can visualize just the final result or the development of the parameter distribution within

the inversion algorithm. Then, the result of the ith Gauss-Newton step has to be in the

ith column of the nparameters × niteration steps + 1 matrix m_k. Additionally, we can add e. g.
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the starting or reference model for comparison using d_cell.m_ref = log(m_ref). The

export routine is used at the end of DCinversion.m to save and display the 3D result. In two

dimensions, we display the parameter distribution using the MATLAB function trisurf.

The script file plot_sounding_curve.m can be used to plot analytical and modeled sounding

curves for a pole-pole configuration and a model with two concentric semicircles in 2D and

two concentric hemispheres in 3D. The profile line where the data is calculated is defined in

the vector x = (x, y, z) and initially given by 50 logarithmically spaced points at the Earth’s

surface. Using the analytical solutions given in Section 2.2.6 we are able to validate our

modeling results.

The function inspect_mesh is able to visualize boundary nodes and elements in order to check

the correct setup of the tables describing the boundary of the mesh. The input is a mesh

structure containing the properties mesh.neum for the boundary triangles (or edges in 2D)

belonging to the Neumann boundary, mesh.robin_bc for the boundary triangles belonging

to the Robin boundary and mesh.diric_dofs for all Dirichlet nodes.
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A.5.2 Program structure of the electromagnetic code

A.5.2.1 Overview

Chapter 3 explained the mathematical and physical background of the electromagnetic mo-

deling and inversion code. To simplify its usage, we give a short introduction to the structure

and the main functions. The directory tree in Figure A.10 shows the setup of the driver file

driverMT.m

load_mesh.m

assemble.m

fe_solve.m

getObservationE.m

getObservationH.m

getSyntheticData.m

taylor_test.m

gaussNewtonR.m

Fig. A.10: Directory tree of the electromagnetic code.

driverMT.m including all relevant m-files. The main parts are 1. the provision of a mesh

and the related parameters, 2. the assembly of the system matrix, 3. the solution of the

forward problem, 4. the assembly of the measurement operators, 5. the calculation of a

synthetic data set 6. the test of the first derivatives and finally, 7. the inversion algorithm. In

the first lines of driverMT.m we set up the input parameters which are for example the used

geophysical method, the order of Nédélec elements, the frequency range and others. We

can differentiate between one consistent mesh for observed synthetic data and the inversion

algorithm or – which is the only choice to avoid the inverse crime – two different meshes.

Furthermore, we define the profiles and receiver locations as well as the percentage of the

noise.

A.5.2.2 Loading and preparing a mesh

We have a small directory mt/mesh containing some meshes for a homogeneous unit cube

with and without air and for the 3D-2 COMMEMI model including different refinements. If

one wants to add his own mesh, then they have to keep in mind the needed fields of the mesh

structure (Figure A.11):
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• the element array tetToVtx ∈ R4×nelements which matches the tetrahedra with the associ-

ated global vertices,

• the point array vtx ∈ R3×nvertices which contains the coordinates of all vertices,

• and the mapping array regio ∈ R1×nelements which maps each element with the corre-

sponding conductivity area.

driverMT.m

load_mesh.m

completeMesh.m

prepare_mesh.m

fe_index_mesh.m

fe_index_params.m

plot_mesh.m

...

Fig. A.11: Directory tree for mesh preparation.

We have to apply the functions completeMesh and prepare_mesh to these tables to add further

fields describing the edges, faces and boundaries of the mesh and to assemble matrices

which are able to exclude Dirichlet nodes from the system matrix of the Galerkin system and

the right-hand side or to exclude the air layer in the inversion scheme. Within prepare_mesh

the conductivity values for the areas defined in the variable mesh.regio are set. The main

properties of the structure mesh are described in Appendix A.5.1.2.

A.5.2.3 Assembly of system matrices

The directory tree A.12 shows the structure of the matrix assembly as described in Section

3.2.2. The matrices for the Galerkin system

(C + iωµ0M(σ))u = 0

are assembled within the function assemble. First of all, we define quadrature nodes and

calculate the Nédélec basis functions and their curls on these nodes. The stiffness matrix C

is independent of the parameters. Therefore, we assemble this matrix once. On the other

hand, the mass matrix depends on σ. Therefore, we use the tensor class implemented by

Martin Afanasjew to store the derivative of M(σ) with respect to sigma and multiply it by the
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parameter vector if we need the full matrix (see Section 3.2.2). The function getAffineMap

yields the transformation matrix BK and the vector bK to transform between the reference

element and an arbitrary tetrahedron.

driverMT.m

...

assemble.m

tetQuadSolin.m

getBasis.m

getCurls.m

assembleMass.m

getAffineMap.m

assembleStiff.m

getAffineMap

tensor class

...

Fig. A.12: Directory tree for the assembly of matrices.

A.5.2.4 Forward problem

The solution of the forward problem is done within the function fe_solve as shown in Figure

A.13. We hand over the current parameter vector and the tensor to build up the mass matrix

and finally the full system matrix A. Before solving the system, we remove the DOFs belonging

to Dirichlet boundaries. This is done by calculating the analytical moments of the Nédélec

basis functions on the associated Dirichlet edges and faces. Finally, we are able to solve

the forward problem and decide between two direct solvers which are MATLAB’s mldivide

or PARDISO (see Section 2.3.1). The output parameters are the full system matrix and the

solution of the Galerkin system, both with and without Dirichlet values.

A.5.2.5 Measurement operators and synthetic data

The previous section described the calculation of the forward solution u which contains no

physical field values in the case of Nédélec elements, but the DOFs or the moments on

faces and edges, respectively. To calculate the electric or magnetic fields, especially on some

selected receiver locations, we have to multiply these moments with the associated basis func-
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driverMT.m

...

fe_solve.m

tensor class

removeDirichletDofs.m

fe_getInterpolation.m

getAnalyticMomentsEdges.m

quad1d.m

getAffineMap.m

evaluateFunctionF.m

getE1dMT.m

getAnalyticMomentsFaces.m

quadTri.m

getAffineMap.m

areaTriangle.m

evaluateFunctionF.m

getE1dMT.m

PARDISO

...

Fig. A.13: Directory tree for the solution of the forward problem.

tions or their curls for the magnetic field as described in Section 3.2.3 and Figure A.14. Within

driverMT.m we set an input parameter physics to decide whether the measured data are for

example electric field components, impedances or other. We have two different functions

getObservationE and getObservationH to calculate the measurement operators QE and

QH . Within the function for the magnetic field, we can decide between two methods which

are the assembly of the curl of the electric field E or the integration over a small coil. We then

hand over the measurement operators and the solution u to the function getSyntheticData

to calculate the synthetic data set. Immediately after this function call, we are able to add

some noise to these data within driverMT.m.
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driverMT.m

...

getObservationE.m

fe_assembleObservation.m

getBasis.m

getAffineMap.m

getObservationH.m

get_Q_H.m

quad1d.m

follow_ray.m

TriangleRayIntersection.m

test_intersection.m

fe_assembleCurl.m

getAffineMap.m

getCurls.m

getSyntheticData.m

...

Fig. A.14: Directory tree for the assembly of the measurement operators.

A.5.2.6 Validation of the derivatives

The most important quantities within the forward and inversion algorithm are the system

matrix A, which is built up from its derivative tensor dA, and the sensitivity or Jacobian matrix

J which is the derivative of the data with respect to the parameters. Therefore, we ensure

the correct assembly by doing a derivative test within the function given in Figure A.16. If we

consider the taylor series

f(x) = f(x0) + f ′(x0)∆x+O(∆x2) and ∆x = x− x0

then, the difference

f(x)− f(x0)− f ′(x0)∆x

decays with O(∆x2) and if we keep ∆x constant and multiply it by a small scalar value h,

the resulting difference converges to zero with h2. Figure A.15 shows an exemplary test result

for the system and sensitivity matrix for the 3D-2 COMMEMI model (see Section 3.2.5.3)

with impedance data and a relatively coarse mesh of 3 687 elements and 24 516 DOFs

for quadratic elements. We see the quadratic convergence of the derivatives and the linear

convergence of the data norm.
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Fig. A.15: Taylor test for the derivative of the system matrix A and the sensitivity matrix.

driverMT.m

...

taylor_test.m

fe_solve.m

tensor class

...

Fig. A.16: Directory tree for the taylor test.

A.5.2.7 The Gauss-Newton scheme

Finally, we show the structure of the inversion algorithm in Figure A.17. In the first lines of

the function gaussNewtonR we set the input parameters, which are for example the maximum

number of Gauss-Newton steps as well as the maximum number of steps and the tolerance

for the iterative solver. Afterwards, the operator for the smoothness regularization (see Section
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2.3.5) is assembled. We implemented a regularization matrix

W =

k1WSR

k2I


consisting of two parts: The smoothness regularization and the volume-weighted identity

matrix. We can decide to use one of these matrices or both in combination with the weighting

scalars k1 and k2. Within the Gauss-Newton iteration, we are able to solve the normal

driverMT.m

...

gaussNewtonR.m

completeFaces.m

assembleRT0.m

tetraquad.m

fe_get_volume.m

fe_solve.m

getSyntheticData.m

tensor class

PARDISO

multJ.m

multJHJ.m

multJ.m

Fig. A.17: Directory tree for the Gauss-Newton scheme.

equations directly with MATLAB’s mldivide or PARDISO. Furthermore, the iterative Krylov

subspace method PCG (see Section 2.3.2) is implemented and uses an implicit calculation

of the sensitivity matrix J . After solving the normal equations, we apply a simple damping

algorithm as described in Section 2.3.6 and set the output parameters to be the inverted data

set, the residual norm, the resulting parameter model and the number of Gauss-Newton

steps.


	Abstract
	Kurzfassung
	List of abbreviations
	Introduction and outline of the thesis
	DC resistivity modeling and inversion
	Physical principles
	DC resistivity forward modeling
	Governing equations and boundary conditions
	The secondary field approach
	Finite element approximation – Lagrange elements
	Variational formulation
	Derivation of the Galerkin system
	Assembly of the system matrix
	Implementing boundary conditions
	Decomposition of the stiffness matrix

	The measurement operator
	Implementation for the electric potential
	Implementation for the apparent resistivity

	Incorporation of multiple sources
	Reference solutions
	Concentric semicircles and hemispheres
	The layered halfspace


	Inversion of DC resistivity data
	The Gauss-Newton method
	Krylov subspace methods
	Explicit calculation of the sensitivity matrix
	Implicit calculation of the sensitivity matrix
	Smoothness regularization
	Damping
	Matrix analysis and inversion results


	Electromagnetic modeling and inversion
	Physical principles
	Electromagnetic forward modeling
	Governing equations
	Finite element approximation – Nédélec elements
	Variational formulation
	Derivation of the Galerkin system
	Assembly of the system matrix
	Implementing boundary conditions

	The measurement operator
	Implementation for the electric field
	Implementation for the magnetic field

	Incorporation of multiple frequencies
	Reference solutions
	The cavity problem
	MT on the unit cube
	MT for the 3D-2 COMMEMI model


	Inversion of electromagnetic data
	The Gauss-Newton method for complex data sets
	Inversion results
	Inversion of electric field components
	Inversion of electromagnetic impedances



	Joint inversion of DC resistivity and electromagnetic data
	A sequential approach to joint inversion
	3D joint inversion of DC resistivity and VLF-R data
	2D joint inversion of DC resistivity and TEM data

	Conclusions and future work
	Acknowledgements
	Bibliography
	Appendix
	Lagrange elements – additional information
	Linear elements in 2D
	Quadratic elements
	Basis functions and gradients
	Local numbering of DOFs


	Nédélec elements – additional information
	Differentiation of vector-valued functions
	Plane waves in horizontally layered conductivity structures
	Architecture of the programs
	Program structure of the DC resistivity code
	Overview
	Mesh generation and assembly of system matrices
	Forward calculation and generation of a synthetic data set
	Assembly of regularization matrices
	The Gauss-Newton scheme
	Some additional script files and functions

	Program structure of the electromagnetic code
	Overview
	Loading and preparing a mesh
	Assembly of system matrices
	Forward problem
	Measurement operators and synthetic data
	Validation of the derivatives
	The Gauss-Newton scheme




