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Abstract 

Despite the negative effects of fossil fuels on the environment, these remain as the 

primary contributors to the energy sector. In order to mitigate global warming risks, 

many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being 

used as a substitute for fossil fuels and short rotation forestry is a prime example. 

In order to examine the sustainability of energy crops for fuel, typical European short 

rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are 

examined and compared to rapeseed (Brassica napus L.) in respect to various aspects 

of soil respiration and combustion heat obtained from the extracted products per 

hectare. 

Various approaches are used to look at an As-contaminated site not only in the field 

but also in a soil-column experiment that examines the fate of trace elements in SRF 

soils, and in an analysis using MICMAC to describe the driving factors for SRF crop 

production. Based on the cause-effect chain, the impacts of land-use change and 

occupation on ecosystem quality are assessed when land-use is changed from 

degraded land (grassland) to willow and poplar SRF. 

A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to 

measure CO2 emissions at a willow/poplar short rotation forest in 

Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed 

site in 2014.  

Short rotation forest soils showed higher CO2 emission rates during the growing 

season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows 

and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during 

the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 

and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the 

studied plantations were observed in July for both years 2013 and 2014, during 

which the highest air and soil temperatures were recorded. 

Correlations between soil emission of CO2 and some meteorological parameters and 

leaf characteristics were investigated for the years 2013 and 2014. For example, for 

the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for 

each between their soil emission of CO2 and both soil temperature and moisture 
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content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 

3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% 

of soil CO2 emission for H275. Estimated models can be used as a gap-filling 

method, when field data is not available. 

The ratio between soil respiration and the combustion heat calculated from the 

extracted products per hectare was evaluated and compared for the study’s willow, 

poplar and rapeseed crops. The results show that poplar and willow SRF has a very 

low ratio of 183 kg CO2 GJ-1 compared to rapeseed, 738 kg CO2 GJ-1. 

The soil-column experiment showed that by continuing the SRF plantation at the As-

contaminated site, remediation would need only about 3% of the time needed if the 

site was left as a fallow field. 

In order to understand the complex willow and poplar short rotation forestry 

production system, 50 key variables were identified and prioritized to describe the 

system as a step to enhance the success of such potentially sustainable projects. The 

MICMAC approach was used in order to find the direct and the indirect relationships 

between those parameters and to classify them into different clusters depending on 

their driving force and interdependency. From this, it can be summarized that in 

order to enhance the success of a SRF system, decision makers should be focussing 

on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, 

improving subsidy regulations and recommending a proper harvesting year cycle. 

Finally, the impacts of land-use change and occupation on the ecosystem quality 

were assessed. Results show that establishing SRF plantations on degraded lands 

improved the ecosystem structural quality (ESQ) by about 43% and ecosystem 

functional quality (EFQ) by about 12%. 

Based on overall results, poplar and willow SRF biomass can be recommended as 

renewable and sustainable sources for bioenergy.   
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1. Background 

1.1. General introduction 

It is very important to understand the movement of carbon among its four main 

reservoirs: the atmosphere, the terrestrial biosphere, the oceans and fossil carbon 

(Schimel 1995). Between the years 1750 and 2011, the atmospheric CO2 

concentration rose from 278 to 391 ppm as a result of human activities (IPCC 2013). 

Accordingly, over one century, the average global temperature increased by 1ºC 

above the preindustrial level, with an associated increase in extreme weather events 

and other environmental problems (Harnay and Rème 2012). Furthermore, the 

balance of energy on our planet has been disturbed. Most of this imbalanced energy 

is going into the oceans. Deep sea and sea surface water temperatures are rising. 

Moreover, the anthropogenic carbon uptake by oceans causes a decrease in the pH of 

surface waters, in addition to global change of the water cycle (Talley et al. 2015).  

Scientists and policy makers are worried about how our limited non-renewable 

resources can meet the increasing demand for energy and about the emissions of 

greenhouse gases GHGs (Karp and Shield 2008). Transport is responsible for about 

25% of European GHG emissions (Linares and Pérez-Arriaga 2013). Many 

legislative and technical steps have been taken to reduce fossil fuel use, such as 

carbon taxes and improving energy efficiency, even though the researchers Harnay 

and Rème (2012) point out that new vehicle technologies may be more influential 

than the carbon tax system. 

In response to the Kyoto Protocol (1997), the EU committed itself to reduce its 

anthropogenic carbon dioxide equivalent emissions of GHGs by 8% in the period 

2008–2012 as compared to 1990 levels (UN 1998). Later, the EU set new targets for 

2020 to achieve 20% lower GHG emissions as compared to 1990, 20% greater 

energy efficiency and 20% renewable energy (EP 2010). Such commitments have led 

to a search for new renewable energy sources (EEA 2008).  

The increasing concern about renewable energy is driven by many factors, such as 

energy security, climate change (Karp and Shield 2008) and the limited global supply 

of fossil fuel (de Neergaard et al. 2002). Bioenergy crops are renewable sources for 

energy because they absorb atmospheric CO2 and transfer C into the soil. This 
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C-sequestration is considered a tool to rehabilitate the environment (Gupta et al. 

2009; Sainju et al. 2008). 

Yet, not all bioenergy crops are produced in the most sustainable way. Sustainability 

depends on many factors, such as feedstock type, management and location. For 

example, extracting feedstock from savanna or peatlands may have even higher GHG 

emissions than fossil fuel. Thus, more investigations and assessments should be done 

to select the proper crop (FAO 2008; Johnson 2009; McKechnie et al. 2011).  

This chapter aims to introduce and describe the system of Short Rotation Forestry 

(SRF) as a sustainable source of woody biomass for energy, first by describing the 

concept of Soil Organic Carbon (SOC), where atmospheric carbon is captured and 

stored in soil, and the opposite process where carbon is lost from soil to the 

atmosphere through soil respiration. Moving to the bioenergy sector, some energy 

ratios for main bioenergy crops and how the energy input changes with different 

activities are discussed that provide examples to illustrate the distribution of energy 

throughout the production system. After that, basic concepts about willow and poplar 

SRF are presented, including a general description of this plantation, productivity 

and main factors that affect it. Since establishing SRF on degraded and marginal 

lands is recommended, this topic is examined together with results of many studies. 

Most importantly, the supply of woody biomass from SRF for energy has been 

reported to be sustainable. Thus, the general concept of sustainability is addressed, 

and specific benefits of adopting SRF as a tool to mitigate climate change are 

provided; these include social, economic and environmental impacts. Finally, the 

main challenges of SRF are described. The objectives of this study are at the end of 

this chapter. 

1.2. Soil organic carbon (SOC) 

Plants play an important role in the carbon cycle. They absorb atmospheric CO2 and 

transfer C into the soil. This C-sequestration is considered a tool to rehabilitate the 

environment. Soil, the second largest store of C after the oceans, has the ability to 

significantly alter the atmospheric CO2 concentration, depending on many factors, 

including land management practices (European Commission 2011; Gupta et al. 

2009). 
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Converting cropland to forest will increase mean soil organic carbon (Poeplau and 

Don 2013). In one study, cultivation of land was responsible for the loss of about 

50% and 30% of the initial organic carbon soil content in the top 20 and 100 cm of 

soil, respectively, over a 30–50 year period (Post and Kwon 2000).  

Carbon sequestration in soil is affected by multiple factors; these include changes in 

the inflow of organic matter to soil, changes in the organic decomposition rate, field 

activities that may alter soil’s physical properties and enhance the loss of organic 

matter (e.g., tillage), and vertical changes in the organic matter within the soil profile 

(Post and Kwon 2000). 

Typical estimations of global SOC consider the top meter of the soil horizon. Yet, 

Jobbágy and Jackson (2000) estimated the vertical distribution and storage of SOC to 

a 3-m depth. The amounts of organic carbon stored in the second and the third meter 

are about 34% of that in the first meter in the boreal forests, 57% in croplands, 86% 

in the deserts. Globally, total amount of SOC stored in the first meter is about 1502 Pg 

and distributed as 41, 23, 16, 11 and 9% in the layers of 0–20, 20–40, 40–60, 60–80 

and 80–100 cm depth, respectively (Figure 1). Additional amounts of C are stored in 

the second and the third meter of about 491 and 351 Pg, respectively (Pg = petagram 

= 1015 g = 1 billion ton). 

 
Figure 1. Vertical distribution of soil organic carbon (SOC) in the top meter of a soil profile 
as estimated by Jobbágy and Jackson (2000) 
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1.3. Soil respiration 

Soil respiration is a process that releases carbon dioxide from soil. This emission 

comes mainly from root respiration (autotrophic) and decomposition of organic 

matter by soil organisms (heterotrophic). A smaller component of soil respiration 

comes from abiotic factors such as carbonate reactions (Rochette et al. 1997; Rustad 

et al. 2000). Soil respiration is the largest emitter of CO2 from the terrestrial 

ecosystem to the atmosphere (Subke and Bahn 2010). It is affected by many 

parameters, the most important of which are soil temperature and moisture, soil 

properties (C:N ratio, pH, texture and structure), air pressure and land use (Luo and 

Zhou 2006).  

Generally, natural fluxes of CO2 between the biosphere and atmosphere are 

controlled by the ratio of net primary production (NPP) to gross primary production 

(GPP). When plants fix atmospheric carbon in their biomass, part of the fixed carbon 

will be consumed by plants themselves to provide energy required for their growth, 

and released again as CO2 to the atmosphere through autotrophic respiration (RA). 

However, global warming and climate change may alter this ratio and affect the 

ecosystem’s behaviour to act as a source or a sink for CO2 (Box 2004). For example, 

it is expected that global warming will significantly affect the boreal ecosystems, 

which store about 10–20% of the terrestrial SOC. This amount of organic carbon is 

susceptible to mineralization and subsequently increase atmospheric CO2 

concentration (Allison and Treseder 2011; Jobbágy and Jackson 2000). In addition to 

different abiotic factors, tillage and harvesting can disturb the ecosystem and alter the 

soil respiration rate Rs (Shabaga et al. 2015). 

As mentioned previously, many biotic and abiotic factors are involved in the soil 

respiration process and make it complex, making common methodologies to describe 

the actual reaction of soil respiration to temperature changes hard to obtain (Subke 

and Bahn 2010). In spite of this fact, the relation between soil respiration and soil 

temperature is generally explained by exponential function (Zhang et al. 2015). 

However, the relationship with soil moisture content is different than soil 

temperature. A general description was suggested by Zhang et al. (2015): maximum 

soil respiration is achieved at an optimum soil moisture content, which is about 

0.25 m3 m3 under desert ecosystem (Figure 2). 
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1.4. Energy and bioenergy crops 
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feedstocks for bioenergy. Additional bioenergy crops include sugarcane (Saccharum 

officinarum, a perennial grass that needs to be renewed after 5 years to keep 

productivity stable), other perennial C4 grasses such as switchgrass (Panicum 

virgatum) and different species of Miscanthus (Karp and Shield 2008), as well as 

woody plants under SRF plantations. 

Willow and poplar are the most used plants in SRF in Europe because the climatic 

conditions are favorable for tree growth (Dimitriou and Fištrek 2014), furthermore, 

they can be used for the fiber industry (Perttu 1998). 

Fossil fuel power plants have several negative impacts on the environment and 

human health, for example, acid rain caused by sulfur dioxide, declining air quality 

(e.g., ozone concentrations, emission of CO2, SO2, NOx and Hg), smog formation, 

and finally their contribution to global warming (Heller et al. 2004). Useable energy 

such as electricity and heat can be transformed from the extracted woody biomass, 

making it an attractive renewable source for energy (Walle et al. 2007). Woody 

biomass can be used in the production of heat and power in different ways such as 

combustion and gasification. Furthermore, it is mostly produced locally (Volk et al. 

2004) and offers environmental advantages when used as fuel feedstock over fossil 

fuel (Kopp et al. 2001). 

Agrochemicals such as fertilizers and pesticides have high energy equivalent values 

(based on their lifecycle: manufacturing, packaging, shipping and application), for 

example, nitrogen, phosphate and potash fertilizers have values of 78.2, 17.5 and 

13.8 MJ kg-1, respectively (Helsel 1992), and even higher values for herbicides: 

288 MJ kg-1 (Green 1987). Thus, applying a low-input management regime for 

bioenergy crops will significantly increase the energy efficiency of such crops (Nassi 

O Di Nasso et al. 2010). 

Djomo et al. (2011) in their review, found that the energy ratios (ER) for willow and 

poplar SRF were 13–79 and 3–16 for the cradle-to-farm gate and the cradle-to-plant, 

respectively. This wide range is a result of variations in the yield, management 

practices, as well the technology used to generate electricity, e.g., gasification has 

higher conversion efficiency than direct combustion of the biomass. Harvesting and 

fertilization are strongly responsible for raising the energy input value. Furthermore, 
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willow and poplar were slightly different from each other in their ER but not 

significantly.  

Despite the low productivity of poplar clones studied by Dillen et al. (2013), the 

energy ratio for cradle-to-farm gate ERfarm was 29.8. Higher values were estimated 

by Heller at al. (2004) and Nassi O Di Nasso et al. (2010) for willow and poplar SRF 

plantations with values of 55 and 60.8, respectively. A value of 39 was estimated for 

Miscanthus (Angelini et al. 2009).  

The input and output energy of a poplar SRF grown on degraded land under a low-

energy input management system was estimated by Dillen et al. (2013); the site was 

kept without the addition of fertilizers, irrigation or fungicides for 16 years and 

produced 4 harvests. The results demonstrated that the total energy input in the form 

of woody chips was 49.3 GJ ha-1 while energy output in the form of electricity 

produced through gasification was 546.5 GJ ha-1 (1469.1 GJ ha-1 at the farm gate). Of 

that input energy, 30% was due to weed control (chemical and mechanical weeding), 

harvesting and chipping accounted for about 26.8%, and the conversion of biomass 

into electricity utilized about 23.8%.  Finally, the production of the cuttings, planting 

and transportation of woody chips to power plants (50 km) were responsible for 

about 10% of the total energy costs (Figure 3). 

 
Figure 3. Detailed breakdown of energy inputs over 16 years to a poplar SRF with 4 
harvests due to: F: Field preparation; W: Weed control (chemical and mechanical); 
H: Harvesting and chipping; O: Other factors (planting materials, transport of biomass) 
C: Converting biomass into electricity. Data used from Dillen et al. (2013) 
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Yet, contradictory data can be found, such as that of Wilnhammer et al. (2015) that 

described a scenario for wood energy analysis for Germany for the period 2010–

2035. Their scenario showed that an increase of using 35% of woods for energy, 

combined with a decline of 31% in the material-based wood products may enhance 

global warming because other alternatives will be used such as non-wood building 

materials. For this reason, importing wood to fill the gap in the energy sector is better 

than using conventional materials by other sectors.  

1.5. Willow and poplar short rotation forestry 

Trees under SRF are single-stemmed or multi-stemmed trees (Sims et al. 2001). 

Other terms used by researchers to specify the type of SRF include “Short rotation 

coppice” (SRC) or “short-rotation woody crops” (SRWC) – these refer to fast-

growing trees used to produce wood biomass for energy (Dimitriou and Fištrek 2014; 

Djomo et al. 2011; Hoffmann and Weih 2005; Pacaldo et al. 2014). Such types of 

plantations have been used in Sweden since the 1970s (Lockwell et al. 2012). 

Many genetically improved plants are cultivated under short-rotation systems, such 

as willow (Salix spp.) and hybrid poplar (Populus spp.), these plants are fast 

growing, high-yield crops and are asexually produced (Volk et al. 2004). Willow has 

abundant species, which helps hybridization to find new varieties with better 

characteristics (Karp and Shield 2008).  

In spring, cuttings are thickly planted in double rows (density ranging between 

10,000 to 20,000 trees ha-1) and once rooted coppiced in winter (cut down near 

ground level in order to force the regrowth of many new shoots). Later, each tree will 

have between 6–15 new stools as multiple stems. Harvesting is repeated every 2–10 

years (2–3 years is the average rotation length) using chipping machines. Rotation 

length depends on many factors, such as soil status and goal dimensions of the 

harvested wood production. A single plantation remains in the field for 20–30 years 

(7–8 harvests), minimizing establishing costs. Trees reach a height of 5–8 meters 

within 3 years of each harvest (Dimitriou and Fištrek 2014; Kahle et al. 2010; Kopp 

et al. 2001; Volk et al. 2004). 

This multiple-harvest technique enables willow and poplar plantations to compete in 

the energy market (Kopp et al. 2001). Cutting on short cycles (average 3 years) 

makes it possible to cultivate plants under dense plantation and extract higher 
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biomass (Dillen et al. 2013). Furthermore, the consumed non-renewable energy to 

produce one tonne of wood fuel from SRF decreases as rotation length increases, 

from 1.0 to 0.45 MJ for one and two-year rotations, respectively, and 0.31 MJ for 

three-year harvesting intervals (Nassi O Di Nasso et al. 2010). 

Yet, under dense plantation and long cutting intervals, high mortality and invasive 

fungal infections are expected (Sims et al. 2001). Willow and poplar trees under SRF 

plantation have very few roots below 1.3 m and about 70% of their roots are less than 

1 mm in diameter. At the beginning of the growing season, the stored carbohydrates 

in roots are used to support new stool growth. Thus, the length of coppice rotation 

limits root size but not the number of fine roots (Crow and Houston 2004). 

SRF can be irrigated with treated wastewater. This has been successful in Enköping, 

Sweden, where 75 ha of willow SRF are irrigated annually with 200,000 m3 of 

treated wastewater during the growing season when precipitation is not sufficient. 

SRF can also be fertilized with a mixture of sewage sludge and wood ash to offer a 

balanced fertilizer of N, P and K (Dimitriou and Aronsson 2005).  

Crop yield is affected by several factors: plant variety, site properties (e.g., climate, 

slope and soil chemical and physical properties), crop management, sensitivity to leaf 

rust attacks and frost (Aronsson et al. 2014; Dimitriou et al. 2011). Differences in the 

management regimes and system boundaries make it difficult to directly compare 

SRF productivity between studies (Dillen et al. 2013). These factors are discussed in 

more detail below. 

Metrological parameters play a large role in the rate of yield, particularly 

precipitation during the growing season and air temperature. Biomass production is 

affected positively by the number of growing days (daily mean temperature ≥ 5 ᵒC 

(Kopp et al. 2001). A heavy reduction in yield is observed when plants are highly 

susceptibility to leaf rust (Dillen et al. 2013) because temperature and rainfall can 

impact the effects of fungus. 

Productivity is significantly affected by the interaction between clone production and 

rotation (Dillen et al. 2013). Nassi O Di Nasso et al. (2010) found that harvesting 

intervals have significant influence on productivity. For example, harvesting poplar 

plantations every 3 years was better than every 1–2 years. Furthermore, there is a 
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positive correlation between the number of stools and biomass; high stool numbers 

correspond with high biomass production (Dillen et al. 2013).  

There is no consensus among researchers concerning fertilization. Some researchers 

mention that SRF yields increase significantly with fertilization (e.g., Aronsson et al. 

2014). Others found  that fertilizing with N, P and K annually did not affect 

productivity of willow and polar SRF but rather reduced the period to reach 

maximum production and increased mortality (e.g., Kahle et al. 2007; Kopp et al. 

2001). 

In general, different average yields of willow and poplar SRF were reported by 

authors as appear in Table 1. 

Table 1. Productivity of willow and poplar under SRF plantation in tonnes of DM ha-1 year-1  

Productivity Reference 

7.7 Mola-Yudego et al. (2015) 

 11.5  Djomo et al. (2011) 

13.6 Heller et al. (2004) 

4.3–10.5 Dillen et al. (2013) 

6–12 Dimitriou and Aronsson (2005) 

8–12 Faaij (2013) 

1.6. Degraded lands 

Degraded lands, caused by natural processes and human activities, cover about 15% 

of the Earth’s land mass (ca. 1964 million ha). The reasons for degradation can be 

classified into four categories listed in descending order: water erosion, wind erosion, 

chemical and physical deterioration, and most degraded lands fall under the first two 

categories (Faaij 2013). Depending on the extent of degradation, these lands can be 

further classified into: severely, moderately or lightly degraded soils (Gibbs and Salmon 

2015). 

Kerckhoffs and Renquist (2013) defined marginal lands as lands “which provide (on 

average) suboptimal growing conditions for major food or feed crops in the relevant 

climatic zone”. The term marginality is often used by researchers to describe lands 



Background 

11 
 

from biophysical or/and economic point of view, but not quantitatively defined, 

making it unclear.  

Moreover, lands are classified based on rankings relative to the ideal one (Richards 

et al. 2014). In the same way, degraded land is very widely defined; it may include 

different types of exhausted land, i.e. abandoned (Takimoto et al. 2009), or soils that 

are desertified, salinized, compacted or eroded (Gibbs and Salmon 2015). In 

addition, marginality of land is dynamic and may change depending on different 

physical factors, such as techniques applied in the field or other economic factors 

(FAO 1999). 

Land availability plays a crucial role in meeting the future world energy demand that 

is increasing rapidly (Faaij 2013). Contaminated soils inhibit food production and 

may yield potential risks for human and animal health (Maxted et al. 2007). Marginal 

lands can be used to establish perennial bioenergy crops (Karp and Shield 2008). 

Such areas may be suitable, however, for short rotation forestry (SRF) because it can 

be established on a broad range of land-use areas that include marginal lands 

(Broeckx et al. 2012), to produce biomass for energy purposes – and to bring about a 

longer term remediation of soils with moderate trace element contamination, e.g. Cd 

(Dimitriou and Fištrek 2014), or at least prevent further soil deterioration. In 

addition, fields can be left without adding agrochemicals, making the system low-

energy input (Dillen et al. 2013). 

Thus, SRF may support efforts to decrease conflicts between food and energy crops 

by reducing the competition on arable lands. Such forestry can also restore slightly 

contaminated soils to be suitable for growing food crops (Maxted et al. 2007). The 

risks of negative impacts on human health and environment will be also minimized, 

e.g., Cd concentrations decreased 12% in the topsoil after 10–20 years under willow 

SRF (Dimitriou et al. 2012b). In addition to increasing farm income (Witters et al. 

2009) by extracting biomass for energy, even if woody biomass contains high 

concentrations of heavy metals, removing them from ash is not difficult from a 

technical point of view (Dimitriou and Aronsson 2005). 

Different energy crops, maize (Zea mays), rapeseed (Brassica sp.), willow (Salix 

spp.) and poplar (Populus spp.), were established on soil contaminated with Cd, Pb 

and Zn and compared (Witters et al. 2009). These crops were ranked according to 
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income (economic return) and phytoremediation scenarios. Each scenario has its own 

goal: farmer income and site remediation. Compared to other energy crop options, 

results showed that SRF is suitable for phytoremediation, however, maize and 

rapeseed are more suitable for attaining income. Hence, it would be difficult for 

farmers to adopt SRF as an option to remediate contaminated sites unless it is 

financially supported. Without subsidies, farmers will choose other crops able to 

fulfill their needs such as maize and rapeseed because SRF does not provide them 

with sustainable income. 

On the other hand, some challenges may be introduced as a result of using marginal 

lands for bioenergy crop production, such as reductions in productivity (Li et al. 

2010) which may reach to 30–45% when planting bioenergy crops on severely 

degraded lands (Faaij 2013). Moreover, there may be higher costs required for 

transportation of the harvest if such lands are far away from energy plants (Li et al. 

2010).  

In general, establishing willow and poplar in SRF on a low to moderately 

contaminated soils with trace elements is recommended because it is cheap and an 

environmentally friendly method to remediate sites (Witters et al. 2009). 

1.7. SRF: A sustainable biomass production system 

Sustainability is an important topic at institutional and governmental levels (Romero 

and Linares 2014), as well as when talking about energy issues. In most cases, using 

wood fuel from willow and poplar short rotation forestry is sustainable because it has 

the potential of reducing GHG emissions and has other environmental, economic and 

social benefits (Witters et al. 2009). Yet, sustainability is not a simple issue and 

requires complicated approaches when dealing with its components (Romero and 

Linares 2014) because it is based on human values, which should be compatible with 

environmental, economic and social aspects (Volk et al. 2004).  

It is rare to find researchers who connect ecosystem service with the psychology of 

human behaviour (Hicks et al. 2015). Thus, the following short introduction may 

provide useful insights into understanding the basics of the sustainability from 

psychological point of view. 
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Values are used to describe human needs; they deliver standards for individuals and 

society to direct different affairs, such as actions and choices. Generally, people 

classify things into either two contradictory categories, e.g., true and false, and their 

selection is based on their values. Societies show extremely different patterns of 

values. These values acquired by learning and experience play a main role in 

developing them, hence, the relation between values and behaviour increases with 

time. Selected actions by humans are influenced by their values (Williams 1979).  

Humans have both sustaining and non-sustaining values; the later can negatively 

affect the ecosystem. As an example, the sustaining value (equity) lies between 

personal well-being and the well-being of others, this value can transform to a non-

sustaining value (selfishness) if personal well-being of others is ignored (Twomey et 

al. 2010), to overcome these challenges, values support sustainability shall be 

grasped. 

Furthermore, areas that lie between opposite values can create trade-offs that are 

responsible for guiding people’s behavior, i.e. willingness to change and 

traditionalism (stability) make the process more complicated (Hicks et al. 2015).  

Change towards sustainability requires essential changes to different social, 

economic and environmental aspects (Twomey et al. 2010). However, human values 

are changeable over time (Hicks et al. 2015). Despite existing challenges, policy 

makers are able to change the development into more sustainable way.  

By extracting wood fuel in a sustainable way from SRF, many benefits (externalities) 

will be gained by the society, economy and environment (Dimitriou and Fištrek 

2014; Sáez et al. 1998). These provided benefits are the reason behind considering 

SRF as promising crop energy and paying a lot of attention to develop it (Mola-

Yudego et al. 2015).   

1.7.1. Socio-economic benefits 

Various economic and social advantages will be generated when SRF is used as a 

renewable source for energy, such as, enhancing industry and developing regions, 

creating direct/indirect jobs, and strengthening the energy security at the regional 

level (Domac et al. 2005; Sáez et al. 1998). Moreover, these socio-economic benefits 
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are considered key driving forces behind the increase of bioenergy share at the local, 

regional and national levels (Domac et al. 2005).  

1.7.2. Environmental benefits 

Air 

Establishing more SRF can cause a significant reduction of atmospheric carbon 

(Walle et al. 2007) because the net contribution of SRF to the atmospheric CO2 is 

slightly negative. SRF considered a net uptake of atmospheric CO2 (Perttu 1998). 

By comparing the emissions of CO2, SO2 and NOx from heating plants using willow 

woods and others using fossil oil, emissions from the different steps of each chain 

(e.g., cultivation, fertilizer use and transport) were considered. SRF allows for a 

reduction of 80% in CO2 and SO2 emissions. At the same time, an increase of 10% in 

NOx was reported by Perttu (1998) and a reduction in NOx emissions was reported 

by Heller et al. (2004). 

Using willow and poplar biomass for energy, e.g., as co-firing to generate electricity 

can reduce 90–99% of the GHG emissions in comparison to coal. Their GHG 

emissions are 24 times lower than coal (Djomo et al. 2011; Styles and Jones 2007). 

The emission reductions included SO2 and NOx because wood has less sulfur content 

and higher moisture content and volatility than coal (Heller at al. 2004). 

Water 

A scientific controversy on the impacts of SRF on water exists, involving more 

doubts surrounding water consumption than water quality. In general, SRF has 

higher evapotranspiration than croplands but less than forestlands. Many studies have 

estimated the evapotranspiration of SRF. Due to the variation in soil properties and 

climatic parameters, a broad range of values have been reported by Dimitriou and 

Fištrek (2014). 

To achieve the European Union water policy goals, the intensive farming shall be 

reduced (EEA 2008). Yet, fertile lands are limited in Europe and the demand of 

biofuels is increasing. Consequently, this puts greater pressure on fertile lands to 

produce bioenergy crops rather than crops for food – this pressure on land use is 

normally linked with water quality deterioration because of the intensive farming 

practices.  
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In comparison with croplands, SRF is considered to be a low-energy input system, 

with limited use of the agrochemicals such as pesticides in fields, and a positive 

influence on groundwater quality (Dimitriou and Fištrek 2014). For example, the 

average amount of N-fertilizer recommended for cereals is ca. 120–140 ha-1 year-1 

(Dimitriou et al. 2012a) and for rapeseed the recommended amount is about 180–

190 kg ha-1 year-1 (Berry et al. 2014), while it is about 70–80 kg ha-1 year-1 for SRF 

in case a fertilizing regime is applied. 

The leakage of nutrients and other agrochemicals from the soil is less at SRF sites 

than conventional agriculture sites because SRF utilizes nutrients in an efficient way 

with minimum leaching to groundwater (Dimitriou and Fištrek 2014). Short rotation 

forests have an excellent and well-developed root system and trees remain for a 

prolonged periods in soil (Perttu 1998). 

In conclusion, it is highly recommended to establish SRF in regions where 

groundwater has a high risk of being contaminated due to N-leaching (Dimitriou et 

al. 2012a).  

Soil 

Soil organic matter is the part of the soil composed of different plant, animal and 

microbial breakdown residues and involves many complex processes – physical, 

chemical and biological (Post and Kwon 2000). 

SRF can improve the physical and chemical quality of soil by increasing its organic 

matter content. It can improve the soil structure, infiltration rate, water storage, 

holding capacity, aggregate stability, thus minimizing the risks of losing nutrients 

through surface runoff, and having higher soil biota than conventional farming due to 

the no-till practice at SRF sites. For these reasons, it is highly recommended to 

establish SRF in areas with high risk of erosion (Dimitriou and Fištrek 2014; Kahle 

et al. 2007; Mann and Tolbert 2000). 

In fields under willow and poplar SRF plantations for 12 years and without 

fertilization, Corg increased from 7.5±0.2 to 11.05±0.65 g kg-1 due to the annual 

accumulation of the litter. Due to the no-tillage practise, the total nitrogen increased 

from 0.90±0.04 to 1.06±0.03 g kg-1. As a result, C/N ratio increased from 8.4±0.1 to 

10.4±0.3, and soil bulk density decreased from 1.59±0.06 to 1.43±0.04 g cm-3. Its 

porosity increased from 40.05±2.25 to 46.15±1.35 %, whereas soil pH did not 
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change significantly. Although phosphorus and potassium concentrations were 

depleted in the soil, plants were provided with their needs sufficiently (Kahle et al. 

2007). 

Lockwell et al. (2012) for example, compared the changes of soil organic carbon 

(SOC) when converting abandoned alfalfa fields to high-density SRF (using 18,000 

willow cuttings per hectare) in southern Quebec, Canada. Their results show that 

SRF did not change the total soil organic carbon (TSOC). Instead, SRF changed the 

distribution of the organic carbon within soil profile. Yet, these results do not 

represent a long-term situation because measurements were conducted after 9 years 

of establishing the SRF. In order to demonstrate an effect on the soil carbon stock, a 

comparison would need to be made after 20–25 years of establishing the SRF site, 

which is the typical life-span of such plantation as suggested Post and Kwon (2000) 

suggestion, long-term studies are needed when estimation about soil carbon 

sequestration is needed. 

Soils under willow SRF and conventional annual crops for periods of 10–20 years 

were compared (Dimitriou et al. 2012b). Results showed that soils at SRF sites had 

9% higher organic carbon in the topsoil and 27% higher in subsoil.  

A non-fertilized poplar SRF filed in central Germany was compared with winter 

wheat that received 120 kg N ha-1 annually. Results showed that soil carbon 

sequestration increased more in soil under SRF than under winter wheat, with soil 

Corg values of 18.6 for SRF and 8.1 g kg-1 for wheat, C/N ratio values of 11 for SRF 

and 9.6 for wheat were measured (Baum et al. 2013). 

Other example from a non-fertilized site under willow and poplar SRF was compared 

with a neighbouring fertilized field under conventional annual crops (winter wheat, 

winter barely, oat, winter rape, grass, clover, lupine and maize). In this case, the 

results show that soil at both sites did not differ significantly (Kahle et al. 2010). 

1.7.3. Biodiversity 

As long as SRF is not established in regions that have high ecological value such as 

wetlands and swamps, it can promote biodiversity by providing habitats and 

protecting places for living things such as plants and animals (Dimitriou and Fištrek 

2014; Sage 1998). Such SRF sites show a higher diversity of breeding birds than 
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areas with conventional crops (Londo et al. 2005). The dense canopy of SRF reduces 

the sunlight reaching the soil surface, which in turn increases the ground-layer 

species of insects and plants such as shade tolerant herbs and grasses (Dimitriou and 

Fištrek 2014; Sage 1998). 

Improving the habitat quality (air, water and soil) where human and biota are living 

will subsequently improve their health and protect them (Dimitriou and Fištrek 

2014).  

1.8. Challenges 

In the future, there is a positive prospect of increasing areas under SRF in Europe, 

even on agricultural lands close to power and energy supply stations, because local 

feedstocks are favorable (Dimitriou and Fištrek 2014). Yet, there are many 

challenges in developing this sector, which can be summarized as follows: 

 One of the critical barriers to using biomass as renewable energy source is its cost, 

(Sáez et al. 1998). Hence, financial incentives are needed for this sector to 

encourage farmers to establish new SRF sites because biomass is still considered 

as a rural source and non-commercial product, and this idea has to be changed. 

 Providing enough biomass feedstock on a global level, eliminating competition 

against food production and ensuring product sustainability (Linares and Pérez-

Arriaga 2013). 

 Challenges may arise from the use of degraded lands due to the additional costs 

for site preparation (Dillen et al. 2013).  

 Disease and pest occurrences are major factors that may alter the sustainability of 

bioenergy crops because they directly affect their productivity (Karp and Shield 

2008). 

 Additional research is needed on the feasibility of establishing SRF on marginal 

and degraded lands (Faaij 2013). 

 During combustion or gasification the woody biomass, problems may arise if the 

biomass has a high content of alkali metals. Moreover, wood moisture content is 

an important factor with thermal conversion processes because heating values of 

woody biomass decreases as its moisture content increases (Karp and Shield 2008). 

 Scaling up from chamber measurement to ecosystem, regional and/or global level 
is the main challenge (Rustad et al. 2000). 
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1.9. Objectives of this study 

The aim of this study is: 

1. To study soil respiration under different biomass production systems, SRF and 

rapeseed, and to elucidate existing correlations between soil respiration and 

other soil, climatic and plant parameters. 

2. To conduct a comparison between the cumulative seasonal CO2 soil emissions 

per energy unit (MJ kg-1) obtained from one hectare to assess the efficiency of 

the two sources of bioenergy: willow/poplar SRF and rapeseed. In addition, to 

estimate the CO2 savings resulting from different land uses. 

3. To investigate the fate of trace elements and heavy metals in soil when soil is 

unvegetated and fed with rainwater using a soil column test. 

4. To investigate driving factors for a willow and poplar short rotation forestry 

(SRF) production system and evaluate the strength of relationship between these 

factors using the MICMAC approach. This will involve the visualization of 

direct and indirect relationships to better understand their role in the system. 

5. To assess the impacts on the ecosystem quality when SRF plantations are 

established on degraded lands, based on the cause-effect chain principle.  
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2. Methodology 

2.1. Site Description 

In 2005, the Saxon State Agency for Environment, Agriculture and Geology 

(LfULG) established a willow and poplar short rotation forest at a 2-hectare site 

located on arsenic (As)-contaminated land in Krummenhennersdorf (about 8 km 

north of Freiberg/Saxony; 50°58′N 13°20′E; ca. 350 m a.s.l.). The site’s soil 

contained an average of 128±18 mg As kg-1 (Kumpiene et al. 2014) and other trace 

metals (see the geochemical survey map of Saxony for topsoil, Figure 4). 

 

Figure 4. Geochemical survey map of Saxony for Arsenic (As) in the topsoil (after LfULG 
2009) 

This SRF site is located in an area that has a history of mining and metallurgical 

industry, especially lead (Pb), silver (Ag) and zinc (Zn). Less than one kilometer 

from the SRF site is situated an approximately 140-meter high chimney, the 

Halsbrücker Esse, which was built in 1889 (Figure 5) and was at that time the tallest 

in Europe. The purpose of building such tall chimney was to disperse the emissions 

over a wide area instead of loading the pollutants in a small area, thereby avoiding 
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legal claims against the metallurgical plant. Thus, damaging emissions were 

distributed over an area of about 300 km2 around this chimney (Andersen 2006). 

 
Figure 5. The chimney, Halsbrücker Esse, at Halsbrücke in 1889 (Andersen 2006) 

The site was cultivated with different clones of poplar (Populus sp. H 275 and 

Max 3) and willow (Salix sp. Tora, Sven and Jorr) in a double row system with a 

high planting density at about 11,850 trees ha-1 (Figure 6). 

 
Figure 6. Plant spacing of the double row system at the SRF site 
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The annual average rainfall is 820 mm and the mean annual average temperature is 

7.2°C. The soil is silt loam in texture (Figure 7) and classified as average quality, 

ackerzahl 45. (Ackerzahl is a soil quality index used to rate fields in Germany that 

ranges between 1= very bad and 120=excellent.) The soil is not deep, has a pH value 

of 5.7 and contains 2.5% humus in the top 30-cm layer (Röhricht and Kiesewalter 

2008), with an average cation exchange capacity (CEC) of 10.7±0.6. The site has a 

gentle slope of about 5% towards the southwest and 2–3% towards the northwest.  

 
Figure 7. Soil texture at the SRF site, the diagram was generated through the website of the 
United States Department of Agriculture (http://www.nrcs.usda.gov/) 

The adjacent rapeseed field (about 12-hectare site located at a few meters to the north 

of the short rotation forest) and a grassland site surrounding the SRF site (about 

1000 m2) have almost the same site conditions and are examined in parallel in this 

work’s study area (Figure 8). 

http://www.nrcs.usda.gov/
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Figure 8. Study site at Krummenhennersdorf, Germany that includes a short rotation forest 

and rapeseed field 

2.2. Environmental variables 

Average monthly temperature and precipitation data were obtained from monthly 

statistics available online at (wetter.com). Various parameters were registered during 

each measurement: 

 Soil temperature and soil moisture content by inserting sensors into soil at a 

depth of about 10 cm, (Th2-f UMS© and EC-5-k Decagon©, respectively), 

 Photosynthetically active radiation (PAR) below the canopy at about 50 cm 

above the soil surface  (SQ-215 Apogee Instruments©) and 

 Air pressure, air temperature and relative humidity through the built-in 

SEMACH-FG sensors as described in section 2.3.1 (144SC0811BARO 

Sensor Technics©, PT1000 Pollin© and DKRF 4001-P Driesen©, 

respectively). 
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2.3. Measuring CO2 emissions 

2.3.1. Soil emission of CO2 

Soil emissions were measured monthly in 2013 and biweekly from April to 

December in 2014 with a manual opaque dynamic closed chamber system 

(SEMACH-FG). This system consists of a transparent cylindrical chamber (acrylic 

glass, volume 15.87 L) to trap emitted CO2 from the soil surface. An infra-red CO2 

sensor (Vaisala GMP343) inside the chamber logs the concentrations. Within the 

chamber air is contained, homogenized with a small fan, and sensors measure the 

parameters of volumetric water content (EC-5-k Decagon©) and soil temperature 

(Th2-f UMS©). In addition, air temperature, air pressure and relative humidity inside 

and outside the chamber, as well as photosynthetic active radiation (PAR) are 

measured. The chamber is connected to a portable computer to collect and store the 

data (Figure 9). 
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Figure 9. Manual soil respiration measuring system (SEMACH-FG). Top: PVC collar; 

Lower-left: gas collection chamber; Lower-right: registration and steering unit. 

CO2 was registered by placing the chamber on collars (diameter 25 cm) that were 

inserted in the soil at up to 5-cm depths one week prior to measurement. These 

collars contain an inner rubber ring that has two main purposes: it gives the chamber 

a tight fit to contain gas released from the soil (preventing leakage) and also ensures 

a stable positioning of the chamber (Rochette et al. 1997). Each measurement lasted 
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for a short time, followed by a 5-min interval with the chamber open to restore 

ambient conditions inside the chamber. The measuring period was shortened to three 

minutes to avoid the negative effect of placing the chamber on soil surface, i.e. 

changing soil environment (Rochette et al. 1997). The CO2 flux was calculated with 

linear regression of the concentration in ppmv versus time. The last 120 seconds were 

used to calculate the slope of the CO2 accumulation inside the chamber. 

Soil emission rate was calculated based on the following formula: 

𝐹𝐶𝑂2 =
∆𝑉𝐶𝑂2 ∗ 𝑉𝑐ℎ ∗ 𝑃𝑐ℎ  ∗ 100

60 ∗ 𝑅 ∗ (𝑇𝑐ℎ + 273.15) ∗ 𝐴𝑐ℎ
 

where FCO2 is the emission rate in μmol CO2 m-2 s-1,  

VCh is the volume of chamber (m3),  

ΔCO2 is the mixing ratio of the CO2 inside the chamber (ppmv min-1),  

PCh is the air pressure inside the chamber (mbar),  

R is the universal gas constant (KJ mol-1 K-1),  

TCh is the air temperature inside the chamber (°C) and  

Ach is the chamber cross-sectional area (m2). 

At the willow and poplar SRF site, each plant type was represented by two 

measuring points (10 collars at SRF site), and by three measuring points at the 

rapeseed site. Collars were inserted at randomly selected points at both sites because 

the soil emission rate does not significantly differ in areas either between two double 

rows or within a double row (Pacaldo et al. 2014). At each sampling point, three 

individual measurements were taken each time. The average emission rate was 

calculated from the average of the two points. 

2.3.2. Sensitivity of soil respiration to temperature (Q10) 

Q10 is used as an indicator of temperature sensitivity to soil respiration, as well, it is 

an important parameter in different ecosystem models (Xu and Qi 2001). 

Furthermore, our calculations are based on van ’t Hoff equation, which is the most 

common one as described by Davidson et al. (2006): 

𝐹 =∝ 𝑒𝛽𝑇 

𝑄10 = 𝑒𝛽×10 
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where F is the emission rate (µmol CO2 m-2 s-1),  

α and β are fitted parameters, and  

T is the soil temperature in (℃) at depth of 10 cm.  

Correlation between soil temperature and soil respiration was fitted to obtain 

regression coefficients (α and β) for each clone, then average Q10 values were 

estimated for willow and poplar clones.  

2.4. Willow and poplar leaf traits 

From each plant type, two healthy, fully expanded leaves from each of five 

individual plants were collected per month as described by Cornelissen et al. (2003). 

Leaves were scanned to measure leaf size by using image analysis software. Leaves 

were dried in the oven at 80 °C for 48 h, then dry mass were weighed to calculate the 

Specific Leaf Area (SLA). 

2.4.1. Measuring leaf area 

Collected leaves were scanned using (Zeutschel OS 12000 HQ) scanner. Four pieces 

of 1 cm2 papers were cut with known sizes and scanned within each leaf. Then, 

images were processed to count pixels and converting them into area unit with 

Adobe Photoshop 7.0 ME software (Figure 10), by averaging number of pixels per 

cm2, Leaf Area (LA) was estimated using the following equation: 

Leaf Area (𝑐𝑚2)  =
𝑥

𝑦
 

where x is the number of pixels within the selected area (leaf) and  

y is the average number of pixels per cm2.  

To check the accuracy of this procedure, three of the four squares were used to 

estimate the average number of pixel per cm2, then the average value was used to 

estimate the area of the fourth square, results were always 1±0.02 cm2. 
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Figure 10. Measuring leaf area by counting number of pixels of a scanned fresh leaf using 
Adobe Photoshop software. 

In addition to leaf area, Specific Leaf Area (SLA) is calculated as the ratio between 

the one-sided area of a fresh leaf and its oven-dry mass (leaf area per dry mass; 

m2 kg-1). Or leaf mass per area (LMA) which is the inversed value of SLA (1/SLA).  

2.4.2. Leaf Area Index (LAI) 

Photosynthesis is the most important process where atmospheric carbon is fixed by 

plants (Farooq et al. 2015). This process is strongly influenced by the leaf area of the 

tree canopy (King and Evans 1967) that may indirectly influence soil respiration and 

can be characterized by the leaf area index (LAI). For this reason, LAI for willow 

and poplar clones were estimated in order to investigate any correlation between LAI 

and soil respiration. 

In general, the maximum leaf area index (LAI) is reached by willow trees in August 

under temperate climate (Iritz and Lindroth 1996) hence, hemispherical photographs 

were taken at the SRF site in August 2014 using a digital camera (Nikon Coolpix 

4500) equipped with a hemispherical (fisheye) lens. Photos were taken using a self-

leveling mount (type SLM2) with a tripod. The hemispherical images were analyzed 

later with HemiView Software® (Delta-T Devices Ltd) to measure LAI. For each 
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plant species (clone), 12 images taken from four different points, with a minimum 

10 m distance between each point (Figure 11). 

 
Figure 11. Collecting Digital hemispherical photographs at SRF 

2.4.3. Leaf sensitivity to high and low temperatures 

The starting time leaf buds break in poplar trees in spring was observed 2–3 weeks 

later than willow. For that, a small test was carried out to check the sensitivity of 

their leaves to temperature. The procedure followed as described by Cornelissen et 

al. (2003). Two healthy, young and fully expanded leaves were collected from six 

randomly selected individuals of H275, Max 3 (poplar) Tora, Sven and Jorr (willow) 

trees with a minimum number of 12 leaves from each clone. Leaves were rinsed with 

deionized water and dried. From each leaf, four 5-mm-diameter leaf discs were cut 
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and rinsed with deionized water for 2 h. For each replicate, two discs were 

submerged in 1 mL deionized water in Eppendorf 2 ml tubes. For each treatment, six 

replicates were made using 6 Eppendorf tubes (Figure 12). 

   
Figure 12. Leaf discs in Eppendorf tubes 

To assess leaf sensitivity to cold and hot temperatures, six tubes for each clone were 

kept in darkness for 14 h under -20°C, 40°C and at room temperature 20°C as control 

(each clone has 18 tubes). Later, all samples were kept at room temperature until 

their temperatures reached the ambient, then electrical conductivity of solutions were 

measured using a calibrated compact conductivity meter (B-173 HORIBA®; Figure 

13), with an accuracy value of ±2% when the conductivity is less than 10 mS/cm. 

Afterward, tubes were kept for 15 minutes in a boiling bath, left until the 

temperatures cooled down, then the electrical conductivity of the solutions were 

measured again. 

 
Figure 13. Compact conductivity meter 
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The damage to leaves by low or high temperatures was calculated as the percentage 

of electrolyte leakage (PEL). For each sample, PEL is calculated by dividing its 

electrical conductivity measured directly after the treatment by the conductivity 

value after boiling it. 

For each plant species, one average value of PEL for the control was calculated. 

Then, this value was used to calculate the corrected PEL as shown in the following 

equation:  

Corrected PEL= PEL treatment – PEL control 

where PEL treatment is the value of freezing or hot temperature treatment, and  

PEL control is the average value of PEL for each species kept under room temperature.  

2.5. Soil characteristics  

Investigating the physical and chemical properties of soil might help to explain the 

differences in soil emission of CO2 among willow and poplar clones. For this 

purpose, 30 soil cores were taken to make six composite soil samples at the base of 

the willow and poplar clones, as well from the grassland surrounding the SRF site.  

2.5.1. Soil sampling 

Soil samples from the top 30 cm of the soil horizon were collected using a manual 

auger (semi-cylindrical stainless steel) at the SRF site in September 2014. From each 

clone, (5 clones), five sub-samples over an area of about 3,000 m2 were mixed and 

homogenized to constitute a composite sample of ca. 1.5 kg each. Samples were 

oven dried at 40 °C, hammered and homogenized. For pH and cation exchange 

capacity (CEC) analysis, samples were passed through 2-mm sieves. For CNS and 

ICP analysis, samples were pulverized using an agate mill and then sieved to a 

particle size of less than 0.63 µm. 

In December 2014, six undisturbed soil core samples were collected from depths 

between 10–20 cm from the immediately around the Tora clone using a soil sampling 

ring kit. The rings have an inner volume of 100 cm3 (57 mm inner diameter, 40.5 mm 

height).  
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2.5.2. Soil Moisture Content % (SMC) by gravimetric method 

Three soil samples of about 15 g each were oven dried at 110 °C to a constant 

weight. Soil moisture content (%) was calculated as a percentage of their dry weight 

based on the following formula: 

𝑆𝑀𝐶 =
𝑊1 − 𝑊2

𝑊2
× 100 

where W1 is the weight of wet soil (g) and 

W2 is weight of dried soil (g). 

2.5.3. Soil pH 

A suspension of 1:5 (V/V) was prepared by mixing 10 g dry-soil sample sieved and 

has size less than 2 mm with 50 ml distilled water at room temperature. The 

suspension was shaken for 5 minutes, then allowed to settle for 15 minutes before 

immersing the electrode of the portable IDS pH- electrodes (SenTix® 91 WTW®), 

which was calibrated with standard solutions. 

2.5.4. Soil Cation Exchange Capacity (CEC) 

CEC was determined for two soil samples from Max (poplar) and Tora (willow) 

clones using UV VIS-Spectrophotometer as described by Blume et al. (2011). 

2.5.5. Soil content of C, N, S and trace elements 

Soil samples were prepared for analysis by adopting the common procedure used at 

the clean laboratories of the Institute for Mineralogy, TU Bergakademie Freiberg, 

where the analyses were done. Zinc, Ni, As, Cr, Cu and Pb were determined by 

inductively-coupled plasma atomic emission spectrometry (ICP-AES; Optima 

3300DV), while Cd was determined by graphite furnace atomic absorption 

spectroscopy (GFAAS, Zeeman 4100). Detection limits were 0.4 (Zn), 0.8 (Ni), 

6.3 (As), 0.8 (Cr), 0.1 (Cd), 0.46 (Cu) and 3.3 (Pb) mg kg-1. 

2.5.6. Soil porosity 

Soil porosity is needed to calculate both the pore volume of the soil column, as well 

the soil in the field. It is estimated based on the following formula: 
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𝑆𝑜𝑖𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − (
𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
) 

2.5.7. Soil pore water  

Samples of soil pore water were collected from three locations at the SRF site using 

suction cups. The sampling system consists of a porous ceramic cup placed 

underground (diameter 63 mm, length 35 cm), from which an empty PVC tube leads 

to a 1-L collection bottle on the ground surface. A second PVC tube connects the 

bottle to a hand-vacuum pump, which created a low pressure to about -0.8 bar, 

thereby creating a suction to withdraw pore water near the soil surface. The sampling 

system was left in field for about one week to retrieve pore water (Figure 14). 

 

Figure 14. Pressure vacuum soil water sampler at the SRF site with a hand-vacuum pump 

2.5.8. Soil hydraulic conductivity (Kf) 

For the soil column experiment, the soil hydraulic conductivity, Kf value, is needed 

to estimate the speed at which water moves within a soil column. A soil saturated 

hydraulic conductivity test was done to determine the coefficient (k) in Darcy's 

equation by direct method in the laboratory, based on Schlichting et al. (1995). Six 

undisturbed samples were collected from the SRF field (Tora clone site) using steel 
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cylinders with a volume of 100 cm3. In the laboratory, the outside of the cylinders 

were cleaned before weighing them and prepared for the test. After cylinders were 

sealed at the bottom with a fine-nylon mesh and fixed with a rubber ring, the samples 

were immersed in water for one week until soil samples were saturated (Figure 15 

and Figure 16). Care was taken to avoid trapping air when samples were immersed. 

Before conditioning the samples in the laboratory, tissues (nylon mesh), rubber rings, 

cylinders and soil samples were weighed.  

 

Figure 15. Mesh covered cylinder  

 

Figure 16. Conditioning samples 

After one week, soil samples were ready for the test and moved to the sample holder 

‘Hauben permeameter’. The samples were covered completely with water (Figure 

17). For each sample, flow rate over certain time was estimated three times, then kf 

values were estimated based on Darcy's law using the following formula: 

𝐾 =
𝑉 ∙ 𝑙

𝐹 ∙ 𝑡 ∙ ℎ
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where K is the hydraulic conductivity (cm s-1),  

V is the water volume (cm3) flowed in a specific time t (s),  

l is the soil height (cm),  

F is the cross-section (cm2), and  

h is the hydraulic gradient (cm). 

 

Figure 17. Soil samples are in the Hauben permeameter 

2.6. Soil-column experiment 

The soil-column experiment is important in investigating the fate of trace elements in 

soil, where the distribution coefficient Kd for trace elements (e.g., As, Cd, Pb and Zn) 

can be estimated. This experiment is also essential in estimating the remediation time 

of contaminated soils with trace elements that is needed to reach the legal limits set 

by the government. For example, the concentration of As in soil should not exceed 

50 mg kg-1 in grasslands, as set by German Federal Soil Protection and Contaminated 

Site Ordinance (BBodSchV 1999).  
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2.6.1. Experiment set-up 

Three polytetrafluoroethylene PTFE columns (inner diameter of 2 cm, 30 cm inner 

height) were filled with the soil composite sample collected from a willow clone 

(Tora) at the SRF site. During the experiment, columns were fed with rainwater 

(collected one day before running the experiment from the university campus) to 

simulate the field situation, and pumped from the bottom with a flow rate of 

80 µL min-1 using a high precision peristaltic pump (Ismatec® IPC, Switzerland). 

Effluent were collected daily (125 ml every 24 h) in 250-ml tubes over a time period 

of 120 h (Figure 18). Effluent samples were immediately filtered with 0.2 µm 

cellulose acetate filters (Membrex, Germany) and acidified by adding few drops of 

HNO3 30% and refrigerated for ICP-MS analysis, in addition, Rainwater samples 

were prepared in exactly the same way for ICP-MS analysis. 

 

Figure 18. Schematic drawing of the experimental setup of soil-column experiment 

2.6.2. Distribution coefficients (Kd) 

Also known as solid–liquid partition coefficients, Kd is the ratio between the 

concentration of the element on the soil solid phase to its concentration in the soil 

solution phase. The lowest Kd values, is the highest leaching or moving element, for 

example, if an element has value of 0, this means the element has the same velocity 

of the water in soil, and there is no adsorption (Sheppard et al. 2009). 
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The Kd is calculated based on the following equation: 

𝐾𝑑 =
Sorbed metal

dissolved metal
 

where the sorbed metal expressed by the concentration of the metal in the solid phase 

(mg kg-1) and the dissolved metal expressed by the concentration in the liquid phase 

(mg L-1). 

2.7. MICMAC approach 

Providing the energy sector with woody-biomass from SRF goes through different 

stages; from establishing the field, via crop management, harvesting and 

transportation, to drying and biomass storage. Yet, the success of such a system is 

affected by various parameters. Thus to ensure the sustainability of such projects, we 

need to study and understand these parameters and their direct and indirect 

interdependencies. Humans are unable to explore indirect relationships in complex 

systems, or to process multifactor-interdependencies without the help of specialized 

software. The MICMAC® software (Cross-impact matrix multiplication applied to 

classification) has been developed by a French Computer Innovation Institute 3IE 

(Institut d’Innovation Informatique pour l’Entreprise). It can be used to analyse 

highly complex systems. It studies relationships between selected and potentially 

influential variables. 

In order to apply the MICMAC approach, the recommended steps described in the 

manual of the software MICMAC® (version 6.1.3) were followed (see below). 

2.7.1. Selection of variables 

A comprehensive literature review, meetings and discussions with experts were 

carried out to identify the variables that characterize the system.  

2.7.2. Description of direct relationships 

Relationships between variables were described and scored using a dual-entry table. 

Values were recorded that represented the strength of the direct relationship 

(influence) between each pair of variables i and j, where i is the variable in raw 

position and j is in column position. A scale of 1, 2 and 3 was used to indicate a 

weak, average and strong relationship, 0 was used when relationships did not exist, 
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and P indicated a potential relationship. A matrix of direct influences (MDI) resulted. 

All elements in the system are connected through this matrix, describing the system 

better. The highest sums of scores for each row “I” represents the most directly 

influencing factors and for each column “j” the most dependency factors. 

2.7.3. Classification of variables 

It is important to study the indirect relations between variables (V) in the system, 

e.g., if variable V1 influences V2, and V2 influences V3, then V1 will influence V3. 

Thus, indirect relationships were indicated to the fifth level. Based on the MDI, a 

Matrix of Indirect Influences (MII) was generated using MICMAC by multiplication 

through a number of loop iterations. In order to classify variables according to their 

direct and indirect relationships, maps of direct and indirect relations were produced 

by plotting parameters on two axes: X represents dependence power and Y 

represents driving power. In this way, variables are distributed according to their 

relation power and make it easier to visually understand the existing relationships 

between variables. 

From the generated maps, variables were classified into four groups (clusters; Figure 

19): Autonomous variables, dependence variables, linkage variables and driving or 

independent variables.  

 

Figure 19. Influence/dependence map 
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2.8. Impacts of land-use change on the ecosystem quality 

This part of the study aims to assess the impacts of land-use change and occupation 

on ecosystem quality, when land-use is changed from degraded land (grassland) to 

willow and poplar SRF. To conduct this assessment, the procedure described by 

Achten et al. (2008, 2010) was followed, which is based on the cause-effect chain, by 

selecting and quantifying many mid-points and end-points. The selected mid-points 

are parameters in the impact chain and link causes with the end-points (Bare 2010). 

For example, changing the soil physically can be considered a mid-point for the 

biodiversity end-point because this change may alter species composition and 

negatively affect the biodiversity (Brandão et al. 2011; European Union 2011). In 

this study, two end-points were selected and their impacts were quantified: the 

Ecosystem Structural Quality (ESQ) and the Ecosystem Functional Quality (EFQ). 

To quantify each of the end-points, three relevant mid-points were identified. The 

score of each end-point impact is the aggregation of its mid-point impacts. 

Accordingly, the impacts of soil fertility (Sf), biodiversity (Bd) and biomass 

production (Bp) were used to estimate the ESQ, while soil structure (Ss), vegetation 

structure (Vs) and on-site water balance (Wb) were used for EFQ. In this case, the 

basic and important impacts were covered: soil, biodiversity, vegetation and water 

(Achten et al. 2008). The mid-points are greatly interconnected and interdependent, 

e.g., biomass production is influenced by soil erosion, salinity, fertility and 

compaction (Brandão and Canals 2012). 

Furthermore, the mid-points were assessed non-directly and quantified through 

indicators. It is recommended to select one or two relevant indicators for each mid-

point according to data availability. In this work, one indicator was selected for each 

mid-point – in particular, soil cation exchange capacity (CEC), species richness (S), 

total aboveground biomass (TAB), soil organic matter (SOM), leaf area index (LAI) 

and evapotranspiration rate (ET) were used as indicators of soil fertility (Isf), 

biodiversity (IBd), biomass production (IBp), soil structure (ISs), vegetation structure 

(IVs) and on-site water balance (IWb) mid-points, respectively (Figure 20). 
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Figure 20. An outline of the assessment of land-use change and occupation impacts on the 
ecosystem quality, in which the linkage between the mid-points (solid arrows) and end-
points (dashed arrows) through the indicators is shown (after Achten et al. 2008). 

In order to assess the impacts of land-use change and land-use occupation on the 

ecosystem quality, reference sites are required. For land-use change impact, the 

former land-use is needed as a reference site, which is grassland, and was used 

against the new plantation which is the willow and poplar SRF. For land-use 

occupation impact, local potential natural vegetation (PNV) is used as the reference 

site. With the help of PNV maps, biome type can be determined. PNV is the 

expected natural vegetation of the land if is it left undisturbed by humans. For the 

state of Saxony, these maps are available online at the website of the Saxon State 

Ministry of the Environment and Agriculture (SMUL 2016). 

Impacts on ecosystem structural quality (ESQ) and ecosystem functional quality 

(EFQ) were calculated based on the equations reported by Achten et al. (2010). 
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For land-use change impacts, the following equations were used: 

𝐼𝐸𝑆𝑄 = (
(𝑇𝐴𝐵𝑟𝑒𝑓 − 𝑇𝐴𝐵𝑆𝑅𝐹)

𝑇𝐴𝐵𝑃𝑁𝑉

+
(𝐵𝑑𝑟𝑒𝑓 − 𝐵𝑑𝑆𝑅𝐹)

𝐵𝑑𝑃𝑁𝑉

+
(𝐶𝐸𝐶𝑟𝑒𝑓 −  𝐸𝐶𝐸𝑆𝑅𝐹)

𝐶𝐸𝐶𝑃𝑁𝑉

) ÷ 3 

𝐼𝐸𝐹𝑄 = (
(𝑆𝑂𝑀𝑟𝑒𝑓 − 𝑆𝑂𝑀𝑆𝑅𝐹)

𝑆𝑂𝑀𝑃𝑁𝑉

+
(𝐿𝐴𝐼𝑟𝑒𝑓 − 𝐿𝐴𝐼𝑆𝑅𝐹)

𝐿𝐴𝐼𝑃𝑁𝑉

+
(𝐸𝑇𝑟𝑒𝑓 −  𝐸𝑇𝑆𝑅𝐹)

𝐸𝑇𝑃𝑁𝑉

) ÷ 3 

While for land-use occupation impacts, the following equations were used: 

𝐼𝐸𝑆𝑄 = (
(𝑇𝐴𝐵𝑃𝑁𝑉 − 𝑇𝐴𝐵𝑆𝑅𝐹)

𝑇𝐴𝐵𝑃𝑁𝑉

+
(𝐵𝑑𝑃𝑁𝑉 − 𝐵𝑑𝑆𝑅𝐹)

𝐵𝑑𝑃𝑁𝑉

+
(𝐶𝐸𝐶𝑃𝑁𝑉 − 𝐸𝐶𝐸𝑆𝑅𝐹)

𝐶𝐸𝐶𝑃𝑁𝑉

) ÷ 3 

𝐼𝐸𝐹𝑄 = (
(𝑆𝑂𝑀𝑃𝑁𝑉 − 𝑆𝑂𝑀𝑆𝑅𝐹)

𝑆𝑂𝑀𝑃𝑁𝑉

+
(𝐿𝐴𝐼𝑃𝑁𝑉 −  𝐿𝐴𝐼𝑆𝑅𝐹)

𝐿𝐴𝐼𝑃𝑁𝑉

+
(𝐸𝑇𝑃𝑁𝑉 −  𝐸𝑇𝑆𝑅𝐹)

𝐸𝑇𝑃𝑁𝑉

) ÷ 3 

where IESQ is the impact score of the end-point ecosystem structural quality [%], 

IEFQ is the impact score of the end-point ecosystem functional quality [%], 

ref indicates the reference site (grassland),  

proj indicates the project or newly established land use (willow/ poplar SRF), and  

PNV indicates the local potential natural vegetation. 

2.9. Computer software 

Graphs, statistical and regression analyses were made using STATGRAPHICS 

Centurion ΧVΙ version 16.1.11, OriginPro 9.1.0 and Microsoft Excel 2010. 
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3. Results and Discussion 

This study provides answers to five research questions (listed in Section 1.9) that 

examine various aspects as to whether short rotation forestry biomass is sustainable. 

First, the driving forces of soil CO2 emission from SRF site are examined and reveal 

that there is a significant correlation between soil emission of CO2 and a number of 

environmental factors: soil temperature (ST), moisture content (SMC) and air 

temperature (AT). Correlations with some leaf characteristics (Leaf area LA and 

specific leaf area SLA) were also established. These findings can be used to model 

soil emission of CO2 (filling data gap) when part of the data is missing or 

unavailable.  

This study provides a comparison of soil respiration in areas with short rotation 

forests and rapeseed crops, in terms of the extracted bioenergy and emitted amounts 

of CO2 from soil. Results of soil-column experiment investigated how SRF can affect 

the fate of trace elements in soil. The MICMAC approach investigated the driving 

factors for a willow and poplar SRF production system. Finally, the impacts on the 

ecosystem quality when land is used for SRF is assessed based on the results of a 

cause–effect chain analysis. On the whole, a general evaluation can be made about 

the sustainability of short rotation forestry biomass. 

3.1. Environmental conditions 

3.1.1. Photosynthetically active radiation (PAR) 

Short rotation forestry has dense cultivation system, well developed and dense 

canopy, as well tree height were about 6–8 meters, these factors reduce light 

penetration and affect soil temperature. Photosynthetically active radiation (PAR) 

was measured below the canopy at the willow and poplar sites at about 50 cm above 

the soil surface and, as well at the adjacent grass site. There was a significant 

difference in PAR between the grass and SRF sites, yet no significant difference 

between willow and poplar sites (Figure 21). 
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Figure 21. Photosynthetically Active Radiation (PAR) values measured at Grass (G), 
Willow (W) and Poplar (P) SRF sites in 2014. 

3.1.2. Soil temperature 

Leaf litter (mainly fallen leaves) at short rotation forestry sites normally mulch the 

soil and play a role in decreasing its temperature (Grigal and Berguson, 1998). The 

results showed that soil temperature in short rotation forests was lower than that at 

the neighbouring grass site (ca. 8–10 meters away from SRF site). Yet, the difference 

was smaller during October than that seen during the growing season from April to 

the end of September. The measured soil temperatures taken at a 10 cm depth at the 

willow/poplar SRF and grass sites can be seen in Figure 22. Soil temperatures at the 

poplar site were slightly cooler than at the willow during the period May–October. In 

April, however, the difference was either very small or the poplar site showed 

slightly higher soil temperatures because poplar broke dormancy about two weeks 

later than willow (mid April). Once the poplar leaves started to grow and reduce the 

direct sunlight reaching the soil, it had a cooling effect. 
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Figure 22. Soil temperature at 10-cm depth at Grass (G), willow (W) and Poplar (P) sites in 
2014. 

3.1.3. Soil moisture content 

Average values for soil moisture content at SRF site ranged from 8 to 43.4%, the 

lowest value was measured in August 2014, and the highest in December 2014 

(Figure 23). 
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Figure 23. Average soil moisture content % (SMC) at willow and poplar short rotation 
foresty site (SRF) and grassland (G). Error bars represent two standard deviations. 

As can be seen in Figure 23, at the beginning of the growing season, soil moisture 

content at the grassland site was higher than at SRF until the end of June. In contrast, 

from July until mid-October, grassland showed higher moisture content than SRF, 

and thereafter grasslands’ moisture content started to decrease again. In this respect, 

it is expected that willow and poplar leaf area have an important role.  

At the beginning of growing season, willow and poplar leaves were small, as seen by 

the leaf area (Figure 24). As leaf area increases, soil moisture content decreases and 

this is possibly a result of the increase in the evapotranspiration (Figure 25) for 

poplar SRF. The increase in leaf area is observed only until August, after that, leaf 

area starts to decline due to leaf rust disease (common fungal disease), in addition to 

the fact that leaves reach their maximum growth in July. The highest average leaf 

area was observed in poplar clones H 275 and Max 3, with values of 425±53 and 

220±39 cm2 leaf-1 respectively. Barigah et al. (1994) observed wide differences in 

the individual leaf area of different hybrid poplar clones, which ranged from 66 to 

254 cm2 leaf-1, with an average across all clones 148±69 cm2 leaf-1. Regarding 

willow clones, clone Tora had the highest leaf area, followed by Jorr and Sven, with 
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3.2. Soil emission of CO2  

3.2.1. CO2 emission from soil at the short rotation forestry site 

In general, emission rates ranged from 0.76 to 10.95 µmol CO2 m-2 s-1 at the willow 

site and from 1.10 to 8.55 at the poplar site. For willow and poplar plantations, 

median values of soil emission were 5.62±1.81 and 5.08±1.37 µmol CO2 m-2 s-1 

during the growing season, and 2.54±0.81 and 2.07±0.56 µmol CO2 m-2 s-1 during 

the dormant season, respectively, with an average emission of 3.83±2.16 µmol CO2 

m-2 s-1. Emission of CO2 from soils at the willow site was slightly higher than from 

the poplar site during the years 2013 and 2014 (Figure 26). 

 
Figure 26. Monthly average air temperature and soil emission of CO2 at willow and poplar 
SRF sites for the years 2013 and 2014. Bars represent two standard deviation of the mean. 

As mentioned previously in Section 3.1.1 on photosynthetically active radiation, in 

April and early in the growing season, the difference between soil respiration at the 

willow and poplar plantations was statistically significant. Poplar starts its growing 

season about 2 weeks later than willow, which could influence the root activity. 

Hence, it can be deduced that the higher respiration rate from willow soil is a result 

of the higher autotrophic respiration Ra, namely willow’s root respiration because 

environmental conditions (soil and air temperature and soil moisture content) at both 

sites were the same. 
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The results are consistent with earlier studies, e.g., Oertel et al. (2015) measured rate 

of about 3.5 μmol CO2 m-2 s-1 of forestland in Saxony, Germany for summer. 

Dilustro et al. (2005) reported an emission rate of forestland in Georgia, USA. with 

values of 0.78 and 6.99 μmol CO2 m-2 s-1 in winter and summer, respectively. Abou 

Jaoudé et al. (2011) also reported CO2 emissions from a poplar SRF field in Central 

Italy: 0.9 and 5.8 μmol CO2 m-2 s-1 for winter and summer, respectively. In addition 

to this, the dormant season findings of circa 0.76 μmol CO2 m−2 s−1 from this study 

are in agreement with other research. Pacaldo et al. (2014) measured a rate of about 

0.5 μmol CO2 m−2 s−1 at a SRF site and Lagomarsino et al. (2013) provided value of 

0.8±0.07 μmol CO2 m-2 s-1 for a poplar SRF plantation. 

Yet, values of soil emission from the SRF site in Krummenhennersdorf during the 

growing season are slightly higher than other researchers. For example, Yan et al. 

(2014) provided values for soil emission ranging between 2.92 to 

4.74 μmol CO2 m-2 s-1 from a hybrid poplar SRF site in China during the growing 

season. It is expected that dry conditions at such a site may play important role 

behind these low values, which may significantly influence soil respiration rate 

because average annual precipitation was about 200 mm where Yan et al. (2014) 

measured soil emission. Similarly, Lagomarsino et al. (2013) reported a low 

emission rate of 2.9±0.2 μmol CO2 m-2 s-1 from a poplar SRF under Mediterranean 

conditions. 

As mentioned previously, emission rates were measured once monthly during the 

year 2013 and biweekly during the year 2014. In Figure 27, soil emission rates of 

willow and poplar clones are shown using a color scale ranging from dark red 

indicating the highest emission rate to blue indicating the lowest. The color scale 

interval is 2 µmol m-2 s-1, starting with less than 2 µmol CO2 m-2 s-1 and ending with 

higher than 8 µmol CO2 m-2 s-1. This scale was used due to the fact that the highest 

emission rates (> 8 µmol CO2 m-2 s-1) were measured during the peak of the growing 

season in July, while the values dropped to below than 2 µmol CO2 m-2 s-1 during the 

autumn and winter (dormant season).  
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Figure 27. Soil emission rate of CO2 from clones of willow; Tora (T), Sven (S), Jorr (J) and 
poplar; H275 (H) and Max 3 (M) in the years 2013 and 2014 

3.2.2. Soil emission of CO2 during the day and the night  

A small laboratory experiment was carried out to compare soil respiration during the 

day and the night using 3 non-disturbed soil samples taken from the SRF site in 

Krummenhennersdorf. Samples were taken by inserting the same collars (diameter 

25 cm, and soil depth ca. 30 cm) used to place the chamber to measure soil emission. 

A non-parametric test (W-test) was used to compare the median of emission rates. 

The results show that the difference between day and night emission rates was 

statistically not significant at the 95.0% confidence level, with values of 1.62±0.36 
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for daytime respiration and 1.16±0.25 µmol CO2 m-2 s-1 for nighttime respiration 

(Figure 28). 

 

Figure 28. Soil respiration rate during the day and the night 

It is important to mention that the measurements were conducted in November. Thus, 

and probably, most of the emission rate came from heterotrophic respiration (Rh). 

3.2.3. Cumulative emission of CO2 

For each clone, the cumulative emission of CO2 was calculated based on emission 

rates of year 2014. Due to the higher resolution, results show that emissions from 

poplar clone soil (H 275) were the lowest at 42.4±8.6 t CO2 ha-1 year-1, followed by 

Jorr, Max3, Sven and Tora with values of 45±3.4, 47.9±5.5, 51.3±6.3 and 

53.8±6.4 t CO2 ha-1 year-1, respectively (Figure 29). 

Thus, based on an estimate of the cumulative emissions of carbon dioxide from soils 

in this study, poplar shows less emissions 45.1±2.8 t CO2 ha-1 year-1 than willow 

50±3.6 t CO2 ha-1 year-1. 
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Figure 29. Annual cumulative emission of CO2 (CE) from different willow and poplar 
clones under SRF plantation. 

3.2.4. Comparison with other bioenergy crops 

Since willow and poplar SRF are perennial bioenergy crops, soil CO2 emissions from 

SRF are compared to those from other annual bioenergy crops (ABC) such as wheat, 

sugar cane and rapeseed, as well as emissions from forestlands (F). Therefore, a 

review of the published data on the emission rates was undertaken and a summary of 

this is shown in Table 2. 
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Table 2. Summary of published data on emission rates of CO2 from soils under different 
vegetation covers used as energy sources 

Vegetation cover Emission rate 

µmol CO2 m-2 s-1 

Annual/Perennial Herbaceous Bioenergy Crops (ABC) 

Wheat 5.25[1], 3.95[2] 

Barley 7.52[3], 3.18[4], 

Sugar cane 4.86[5], 2.8[6] 

Sugar beet 5[7] 

Rapeseed 4.15[8] 

Maize 7.05[9], 6[1], 6[10], 3.3[11]  

Soybean 10.4[12] 

Forests (F) 

Pine 4.1[13],3.9[14], 3.56[15], 2.79[16], 4.8[17] 

Beech 3.42[18], 2.3[19] 3.7 [17] 

Aspen 6.8[20] 

Spruce 3.75[21], 3.1[17] 

Dipterocarp 2.98[22] 

Mixed  2.32[23] , 2.28[23], 1.96[23] 

Fir 4.02[24] 

Larch 5.7[25] 

Various 3.86[26], 3.4[27], 2.06[28], 1.97[27], 1.85[28], 

1.64[28], 1.38[29], 1[29], 1[30], 0.9[29], 0.83[31] 

Short Rotation Forestry (SRF) 

Willow and poplar 4.86[32], 4.8[33], 4.15[34], 4.14[32], 3.71[35], 

3.51[36], 2.9[37], 2.9[32], 2.17[38], 1.76[38] 

[1]Zhang et al. (2013); [2]Liu et al. (2016); [3]Maljanen et al. (2004); [4]Lohila et al. (2003); [5]La Scala Jr et 
al. (2006); [6]Moitinho et al. (2015); [7]Fiener et al. (2012); [8]Zhang et al. (2007); [9]Zhang et al. (2014); 
[10]Astiani et al. (2015); [11]Gelfand et al. (2015); [12]Yang and Cai (2006); [13]Tyree et al. (2008); [14]Dilustro 
et al. (2005); [15]ArchMiller and Samuelson (2016); [16]wang et al. (2013); [17]Oertel et al. (2015) [18]SØe 
and Buchmann (2005); [19]Leitner et al. (2015); [20]Russell and Voroney (1998); [21]Laganière et al. 
(2012); [22]Hosea et al. (2014); [23]Shabaga et al. (2015); [24]Chen et al. (2010); [25]Liang, et al. (2004); 
[26]Wu et al. (2015);[27]Bond-Lamberty and Thomson (2010); [28]Mo et al. (2007); [29]Minkkinen et al. 
(2007); [30]Mäkiranta et al. (2007); [31]Borken and Brumme (1997); [32]Gong et al. (2012); [33]Vande Walle 
et al. (2007); [34]Pacaldo et al. (2014); [35]Yan et al. (2014); [36]Abou Jaoudé et al. (2011); [37]Lagomarsino 
et al. 2013); [38]Nikièma et al. (2012). 

Since land management under SRF is less intensive than annual bioenergy crops and 

more intensive than forestlands, average CO2 emission rates correlated with this 

order: the lowest emission rates were detected from forestlands, followed by willow 

and poplar SRF, and highest emissions were from annual bioenergy crops, with 

median values of 2.6, 3.6 and 5.0 µmol CO2 m-2 s-1 respectively. 
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The Kruskal-Wallis test was used as a non-parametric test to check if there is a 

statistically significant difference amongst the medians at the 95% confidence level. 

As can be seen in Figure 30, there is a statistically significant difference between 

medians of annual bioenergy crops and both forestlands and willow/poplar SRF. Yet, 

the difference between medians of forestlands and willow/poplar SRF is not 

statistically significant.  

 

Figure 30. Box-and-Whisker Plot for soil respiration rates of Annual Bioenergy Crops ABC 
(n=13), Forests F (n=26) and Short Rotation Forestry SRF (n=10) 

3.3. Q10 

Soil sensitivity to temperature Q10 for willow and poplar SRF for the year 2014 is 

found to be 2.17±1 and 2.58±0.8 respectively. These Q10 values for willow and 

poplar SRF seem similar to those measured at forestlands, e.g., Q10 values of 2.3±0.2 

were measured at Hainich beech forest and 2.5±0.2 at Wetzstein spruce forest in 

Germany (Moyano et al. 2008). Average Q10 values for willow and poplar are listed 

in Table 3. 

The value of Q10 is influenced by the measuring system, as well by measuring 

frequency, for example, using continuous measuring system such as automated 

chambers to measure soil CO2 effluxes gives a better Q10 value than using the non-

contiguous one because different soil temperatures and moisture contents may be 

missed between the successive measurements (Liang et al. 2004). Even soil 
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emissions at the SRF site were measured with a non-continuous instrument, but the 

measurements were taken over a wide range of environmental conditions: high and 

low soil and air temperatures, different soil moisture contents, e.g., a minimum value 

of 8% soil moisture content and a maximum of 43.4% were measured at SRF site 

were in December and August, respectively.  

Soil temperatures were taken at about 10-cm depth. Measuring soil temperature at 

different depths may, however, give different results for Q10. Xu and Qi (2001) for 

example, estimated Q10 for soils at different depths (5, 10 and 20 cm) and observed a 

slight increase in Q10 with the increase in soil depth but not statistically significant. 

Table 3. Q10 values for willow and poplar clones, based on soil temperature at 10-cm depth 

Clone Plant 
Q10 

Growing season 1 Dormant season 2 

Tora 
Willow 
(Salix spp.) 

1.14 2.11 

Sven 1.21 2.70 

Jorr 1.72 4.16 

H 275 Poplar 
(Populus spp.) 

1.87 3.25 

Max 3 1.68 3.50 
1 15. April–15. October 
2 15. October–17. December 

As can be seen in Figure 31, there is differences between summer and winter Q10 

values. In summer where soil temperatures were higher than in winter, sensitivity of 

soil respiration to temperature was lower than in winter, these findings are in 

agreement with Xu and Qi (2001), who found a negative correlation between soil 

temperature and Q 10 and a positive correlation with soil moisture content. 
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Figure 31. Average Q10 values for willow and poplar trees. Error bars represent two standard 
deviations. 

3.4. Willow and poplar Leaf Characteristics  

3.4.1. Leaf Area Index (LAI) 

Leaf area index is an important factor controlling photosynthesis and plant 

productivity (Barigah et al. 1994). For this reason soil respiration will be indirectly 

influenced by a changing root respiration rate (autotrophic respiration), as well as by 

soil fauna and flora respiration, because these depend on the available substrate in 

the belowground. As photosynthesis increases, the translocated amounts of nutrients 

from the areal part to the belowground increases. 

For this part of the work, normal distribution of data was tested by checking values 

of standardized skewness and standardized kurtosis; values were within the range 

(-2 and +2). Thus, the data is significantly normal distributed. To compare the means 

of LAI for the studied clones, Fisher’s LSD intervals (Least Significant Difference) 

with 95.0% LSD intervals were calculated.  

Leaf area indexes for willow and poplar clones ranged from 2.5 for clone Jorr to 

3.4 m2 m-2 for clone H275. Results show differences even between clones within the 

same plant type, e.g., the two poplar clones H275 and Max 3 have significantly 

different LAI values, as well as within willow clones: Sven significantly differs from 

Jorr and Tora. In general, willow clones have significantly lower LAI values than 

poplar ones (Figure 32). 
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Differences of LAI were found between different clones of hybrid poplars by other 

researchers. For example, Barigah et al. (1994) measured values ranges between 0.82 

to 2.95 m2 m-2. Their average values were relatively lower than that of hybrid poplars 

at Krummenhennersdorf, which ranged between 1.94±0.8 to 2.85±0.3 m2 m-2. Rather 

than genetic differences, other factors may cause differences in LAI between clones, 

such as the age, size and density of plants (Al Afas et al. 2005). LAI at the 

Krummenhennersdorf site may be influenced by the foliage disease because the site 

was attacked with leaf rust in 2014 and this may have decreased its LA values, or it 

can be that the cultivated clones at the site have naturally low leaf area indexes. For 

example, Pellis et al. (2004) classified 18 different poplar clones based on their LAI 

into three groups: low, intermediate and high LAI with values of  

2.1–2.7, 3.2–4.3 and 4.9–5.8 m2 m-1, respectively. Similar low values of LAI were 

measured by Al Afas et al. (2005) for hybrid poplar trees with values that ranged 

between 2.1 and 2.7 m2 m-2. However, higher LAI for hybrid poplar were measured 

with values ranging from 3.8 to 7.4 m2 m-2 (e.g., Al Afas et al. 2005; Iritz and 

Lindroth 1996; Schmidt-Walter et al. 2014). Another reason behind the low values of 

LAI for willow and poplar clones at Krummenhennersdorf site is that the trees were 

coppiced in early 2013, thus, when LAI measurements were conducted, stools were 

in their second growing season, which is in agreement with other researchers such as 

Broeckx et al. (2015), they reported that LAI of poplar clones in their second 

growing season ranged between 0.87 to 4.63 m2 m-2, as well with Johansson (2012) 

who reported an average of 2.42±0.17 m2 m-2 for hybrid poplar stands. 

 
Figure 32. Left: Leaf area index (LAI) of H 275 (H), Max 3 (M), Jorr (J), Sven (S) and Tora 
(T). Right: In general, average values for LAI of willow (W) and poplar (P) with a 
confidence level of 95.0%. 
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3.4.2. Specific leaf area (SLA) 

As mentioned previously, SLA is the ratio between the one-sided area of a fresh leaf 

and its oven-dry mass (leaf area per dry mass; m2 kg-1 or cm2 g-1). Results show that 

willow and poplar have high SLA values during the early growing season and then 

gradually decreased to a low level at the end of the growing season. Al Afas et al. 

(2005) found negative correlation between leaf area (LA) and SLA. Thus, as leaf 

area increases during the growing season, SLA decreases.  

There is significant positive correlation between SLA and leaf nitrogen content (Al 

Afas et al. 2005; Pellis et al. 2004). Since SLA decreases during the growing season, 

this means that leaf content of total nitrogen decreases too, which agrees with the 

work of MacKerron and Haverkort (1999). 

Willow leaves show slightly higher SLA values than poplar’s, with average values of 

13.5±2.2 for willow clones and 12.8±2.6 m2 kg-1 for poplar clones (Figure 33). The 

SLA for willow clones ranged from 16.9±1.4 in the early growing season to 

11±0.8 m2 kg-1 at the end of the growing season. For poplar clones, SLA ranged from 

16.3±0.8 to 9.1±1 m2 kg-1 in the early and at the end of the growing season, 

respectively. 

 

Figure 33. Average specific leaf area for willow and poplar leaves in 2014. Error bars 
represent two standard deviations. 
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Results of this study are in agreement with Tripathi et al. (2016), who reported an 

average SLA value of 13.05±0.2 for hybrid poplar under SRF plantation, which 

ranged from 12.6±0.3 to 13.9±0.1 cm2 m2 kg-1. 

Yet, higher values were reported in many studies, for example, a range of 16–

21 m2 kg-1 was reported by Pellis et al. (2004) and an average value of 17.8±0.4 

m2 kg-1 for hybrid poplar cultivated in Belgium (Al Afas et al. 2005). An extremely 

higher value of 32.5±0.2 was reported by Taylor and Ferris (2001). 

It should be noted that the willow and poplar clones of this study are not the same 

studied by other researchers. Comparing SLA of different clones could be a reason 

behind the differences in SLA values. Moreover, the way that tree leaves are 

collected from the field can influence the SLA values. For example, shaded leaves 

show higher SLA values than those exposed to sun (Pellis et al. 2004), and leaves in 

the upper canopy had lower SLA than those in the lower part of the canopy (Al Afas 

et al. 2005). In addition, SLA is influenced by the availability of nitrogen in soil 

(Pellis et al. 2004). 

3.4.3. Leaf sensitivity to temperature 

Climate parameters at sites are important to the success of agricultural projects such 

as poplar SRF because they can limit plant growth (Cocozza et al. 2009). Therefore, 

choosing proper clones that are suitable for a region reduces the risk of frost damage 

mainly during bud development, which is an important factor for the sustainability. 

For this purpose, a comparison of leaf sensitivity to temperature between different 

willow and poplar clones was conducted. 

In general, values of the percentage of electrolyte leakage (PEL) for willow and 

poplar leaves were normally distributed and are within the expected range for 

standardized skewness (-2 to +2). The results show a statistically significant 

difference between leaf samples of willow and poplar clones kept under low 

temperature at the 95.0% confidence level, as can be seen in Figure 34. Yet, the 

difference under high temperature conditions is not significant. 
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Figure 34. Mean corrected percentage of electrolyte leakage PEL from willow and poplar 
leaf samples kept at low and high temperatures. Error bars represent SD. 

Leaf sensitivity to low temperature did not differ significantly among willow clones. 

As was also the case among poplar clones. In addition, all willow clones do differ 

significantly from poplar clones. Therefore, the clones of willow are better suited 

than poplar at sites where early frost is expected and foliage damage due to low 

temperatures needs to be avoided. Willow clones show higher resistance by having 

low PEL values, for instance, the Jorr clone shows the highest resistance, followed 

by Tora and Sven (willow clones) with values of 41.1±23, 47±16 and 49.9±14%, 

respectively. Furthermore, poplar clones H275 and Max 3 show a high percentage 

with values of 69.3±2.7 and 67.3±3%, respectively (Figure 35). 
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Figure 35. Corrected percentage of electrolyte leakage PEL values of willow clones; Tora 
(T), Sven (S) and Jorr (J), and poplar clones; H275 (H) and Max 3 (M) for the samples kept 
under low temperature. Error bars represent two standard deviations. 

There is no statistical significant difference among willow and poplar clones when 

leaf samples were under high temperature conditions (40 ºC) at the 95.0% confidence 

level. This means both willow and poplar clones are very sensitive to high 

temperatures since all clones show high PEL values. 

3.5. Correlations of soil CO2 emission with soil temperature and 

moisture content 

Gap-filling methods using fitted models are important when field data is missing or 

unavailable. In order to generate fitted models, correlations between soil emission of 

CO2 and other environmental parameters need to be investigated, such as the 

parameters of soil temperature and moisture content at depth of 10 cm and air 

temperature. The quantitative estimation of soil respiration was assessed with the 

help of three statistical indicators: the root mean square error (RMSE), the coefficient 

of determination (R2) and Nash-Sutcliffe efficiency (NSE). RMSE is widely used to 

evaluate the performance of models (Krähenmann and Ahrens 2013), where a lower 

RMSE value is the better indicator. In order to compare the estimated values over all 

the plant types in this study, Normalised root mean square error (NRMSE) was 

calculated, which is based on RMSE values. Yet, the unit of RMSE is the same of 
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soil respiration rate (µmol CO2 m-2 s-1), while NRMSE is expressed as a percentage. 

RMSE and NRMSE and NSE were calculated according to the following equations: 

𝑅𝑀𝑆𝐸 =
∑(𝑂𝑖 − 𝑆𝑖)

2

𝑛
 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂𝑖,𝑚𝑎𝑥  − 𝑂𝑖,𝑚𝑖𝑛
 

𝑁𝑆𝐸 = 1 −
∑(𝑆𝑖 − 𝑂𝑖)

2

∑(�̅�𝑖 − 𝑂𝑖)2
 

where Oi is the observed value, 

Si is the simulated value, 

n is the number of the measured samples, 

Oi,max and Oi,min are the maximum and minimum observed values, respectively, and 

�̅�𝑖 is the mean of the observations.  

Equations of the fitted models for soil respiration and RMSE values are given in 

Table 4 and Table 5. Nash–Sutcliffe efficiency (NSE) was also computed because it 

provides more information about the model. When NSE is larger than 0, this means 

accuracy of the model is higher than the mean of the observed data. Value of 1 is the 

perfect fit between the model and the observed values (Gayler et al. 2013).  
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Table 4. Statistical summary of estimating soil respiration models. 

Plant Model P-value R2 

(%) 
SE of 

Estimation 
Equation RMSE 

 
NRMSE 

 
NSE 

 

Tora 1 0.0000 49.10 1.700  = -4.41578 + 0.195213 * SM + 0.645369 * ST 1.462 20.51 0.4401 

Tora 2 0.0000 51.46 1.674  = -2.66716 − 0.134522 * AT + 0.192272 * SM + 0.71874 * ST 1.412 19.80 0.4779 

Sven 1 0.0000 29.16 1.778 = -1.96581 + 0.128262 * SM + 0.471761* ST 1.333 19.78 0.0221 

Sven 2 0.0000 29.48 1.794 = -1.53372 − 0.0332945 * AT + 0.127292 * SM + 0.490675 * ST 1.329 19.73 0.0276 

Jorr 1 0.0000 76.96 0.821 = -1.37372 + 0.0533389 * SM + 0.478123 * ST 0.796 12.06 0.7058 

Jorr 2 0.0000 77.05 0.826 = -1.5097 + 0.0155315 * AT + 0.0527776 * SM + 0.465814 * ST 0.798 12.09 0.7042 

H 275 1 0.0000 53.59 1.159 = 3.13708 − 0.0446526 * SM + 0.281556 * ST 1.504 23.60 -0.0095 

H 275 2 0.0000 53.76 1.166 = 3.14616 + 0.0187854 * AT − 0.0489086 * SM + 0.256563 * ST 1.533 24.05 -0.0485 

Max 3 1 0.0000 75.26 0.824 = 0.974946 + 0.00883146 * SM + 0.403195 * ST 1.573 27.44 -0.1080 

Max 3 2 0.0000 75.36 0.829 = 0.90755 + 0.0154521* AT + 0.00770017 * SM + 0.385407 * ST 1.429 24.93 0.0856 

Willow 1 0.0000 33.97 1.702 = -0.691344 + 0.0778452 * SM + 0.444124 * ST 1.732 19.51 0.2931 

Willow 2 0.0000 33.98 1.707 = -0.763635 + 0.00683962 * AT + 0.0779065 * SM + 0.439113 * ST 1.738 19.58 0.2882 

Poplar 1 0.0000 50.40 1.175 = 1.76124 − 0.00544659 * SM + 0.343128 * ST 0.911 13.36 0.6831 

Poplar 2 0.0000 50.55 1.177 = 1. 81996 − 0.0199452 * AT − 0.00300709 * SM + 0. 367024 * ST 0.907 13.29 0.6862 

R2  Coefficient of determination 
SE Standard error  
SM Soil moisture content 
ST Soil temperature 

AT Air temperature.  

Model 1 includes SM and ST as predictors 
Model 2 includes SM, ST and AT 
RMSE Root mean square error units in µmol CO2 m-2 s-1 
NRMSE Normalised root mean square error is expressed as percentage 
NSE Nash-Sutcliffe efficiency 
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Table 5. Equations for best fitted model between soil respiration (SR), soil temperature (ST), soil moisture (SM) and air  
temperature (AT) 

Plant Parameters Best fitted 
model 

Correlation 
Coefficient 

R2 
(%) 

SE of 
estimation 

P-value Equation 

Willow SR-ST Exponential 0.633 40.02 0.322 0.0000 SR = exp(0.951942 + 0.0720324 * ST) 

Willow SR-SM Reciprocal-Y 
squared-X 0.502 25.20 0.115 0.0000 SR = 1/(0.0986405 + 0.000158389 * SM^2) 

Willow SR-AT Squared-X 0.398 15.85 1.916 0.0000 SR = 3.75175 + 0.00567837 * AT^2 

Willow AT-ST Linear 0.663 44.01 2.731 0.0000 ST = -0.671034 + 0.588404 * AT 

Willow AT-SM Linear -0.502 25.24  7.184 0.0000 SM = 43.4366 – 1.01466 * AT 

Willow SM-ST Linear -0.645 41.66 2.573 0.0000 ST = 17.8453 – 0.320157 * SM 

Poplar SR-AT S-curve model -0.557 31.01 0.348 0.0000 SR = exp(2.21522 - 11.4298 / AT) 

Poplar SR-ST Exponential 0.758 57.49 0.273 0.0000 SR = exp(0.619978 + 0.0941872 * ST) 

Poplar SR-SM Logarithmic-Y 
squared-X -0.515 26.56 0.359 0.0000 SR = exp(1.95672 - 0.000608102 * SM^2) 

Poplar AT-ST Linear 0.731 53.42 2.299 0.0000 ST = 0.382322 + 0.51421 * AT 

Poplar AT-SM Square root-Y 
logarithmic-X 

-0.412 16.95 0.622 0.0000 SM = (7.76977 – 0.942223* ln(AT))^2 

Poplar SM-ST Linear -0.745 55.53 2.433 0.0000 ST = 17.9805 – 0.327255 * SM 

SE Standard error 
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Willow clone (Jorr) and poplar clone (Max 3) have the highest R2 values, the models 

can explain about 77 and 75 % of the variables, respectively. Yet, the highest score 

for NRMSE was about 25–27 and the lowest score for NSE was about -0.11 for 

clone Max 3, which indicates a weak performance of the model, even it has high 

R-squared value (about 75%) as shown in Figure 36. Hence, results show that it is 

not enough to depend on R2 alone to evaluate how well the model used performs in 

simulating the soil emission rate of CO2 and does the model fully recognize the 

importance of using further statistical indicators such as NRMSE and NSE. 

While the lowest value of R2 was associated with willow clone (Sven), this value 

agrees with the low value of NSE and the relatively high value of NRMSE, which 

reflect a weak performance of the model. In general, models for poplar show a better 

performance than willow in terms of R2, NRMSE and NSE. In particular, poplar 

have lower NRMSE and higher NSE values than willow – this is may be due to the 

fact that the correlation existing between soil respiration and soil temperature of 

poplar is stronger than willows, with R2 values of about 57% (poplar) and 40% 

(willow).  

In addition, by including the predictor air temperature (AT) in models, model 

performances were neither enhanced nor weakened. It caused only slight increases or 

reductions, i.e. increases in R2 and NSE and reduction in NRMSE.  

The study’s results show strong and statistically significant relationships between 

soil temperature and soil respiration, and between air temperature and soil 

temperature, with R2 values of 40% and 44% for willow and 57% and 53% for 

poplar. 

Comparing our correlation results of CO2 emissions with other work on NO and 

N2O, soil moisture is playing a more important role with N2O emission than CO2 

(Schindlbacher et al. 2004).  
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3.6. Correlations of soil CO2 emission with plant parameters 
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Regarding the fitted model equations, linear regression can explain about 53.9% 

(R2 value) of the data at the 95.0% confidence level when the parameters LA and 

SLA are used together: 

𝑆𝑜𝑖𝑙 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 6.29123 + 0.00297191 × 𝐿𝐴 − 0.118455 × 𝑆𝐿𝐴 

Yet, relations between soil emission of CO2 with LA and SLA separately show 

different results: the highest R2 for the relationship was between soil CO2 emission 

and LA (68.78%) and lower with SLA (51.15%). Thus, using the model of leaf area 

alone explains better CO2 emission results than other models. When the Spearman 

rank correlation was used to test the correlation between LA, SLA and CO2 emission, 

a correlation value of 0.8352 was obtained for LA and CO2 with statistically 

significant correlation (P-value=0.0038) at 95.0% confidence level (Table 7).  

Table 6. Statistical significance of relationships between soil emission and some leaf 
parameters 

 Soil CO2 emission LA SLA 1/SLA 

Soil CO2 emission – * * * * 

LA * * – * * * * 

SLA * * * – – 

1/SLA * * * – – 
* Statistically significant with p-value <0.05 

** Statistically significant with p-value <0.01 

Comparisons of alternative models that fit better with CO2 were tested, the best fitted 

models that have the highest R2 values are listed in Table 7.  
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Table 7. Best fitted models for soil respiration  

Variable 
A 

Variable 
B 

Correlation 
Coefficient 

R2  
% 

Equation Best fitted Model 

CO2 LA –0.83 68.8 CO2=(2.51624–20.6896/ 
LA)2 

Square root-Y 
reciprocal-X 

CO2 SLA –0.72 51.2 CO2=sqrt (45.8342–
0.0945026*SLA2) 

Double squared 

CO2 1/SLA –0.67 44.7 

 
 Squared-Y 

reciprocal-X 

LA SLA 0.90 80.8 SLA=1/(0.0587376 + 
0.00011079*LA) 

Reciprocal-Y 

LA 1/SLA 0.91 83.2 1/SLA= sqrt (0.00306229 
+ 0.0000195656*LA) 

Squared-Y 

LA Leaf area  SLA Specific leaf area      sqrt square root  
 

3.7. Insights into soil respiration and combustion heat per area 

The emitted amounts of carbon dioxide (kg ha-1) from soils at the SRF and rapeseed 

sites were calculated for the entire observation period (April–October 2014). 

Combustion heat values (MJ kg-1) for willow and poplar, as well as average 

harvested biomass (oven dry tons ha-1 y-1) from two rotations (two harvests in 2008 

and 2010) were calculated for each clone based on data by Dietzsch (2011). Average 

productivity and combustion heat values for rapeseed were obtained from Wcislo 

(2005). The CO2 emission-energy ratio was calculated by dividing the cumulative 

seasonal CO2 emitted from soil per hectare [kg CO2 ha-1] by the energy value 

obtained from each crop per hectare [MJ ha-1] using the following equation: 

=
Cumulative emission 

productivity ×  combustion heat value 
 

During cold months (October to April), soil CO2 emissions are generally rather low 

because of low temperatures and the resulting suppressed soil microbial activity (data 

not shown). Yet, minimum emission rates of CO2 during the growing season were 

measured in June, in parallel to minimum differences between CO2 emission at the 

SRF and the rapeseed field (Figure 37). The main reason behind this decrease in 

respiration rate was the low precipitation in June, even if temperature was relatively 

high (Figure 38). 
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Figure 37. CO2 emission rates from soils under willow and poplar SRF (S) and rapeseed (R) 
plantations during the growing season 2014. Error bars represent two standard deviations. 

 
Figure 38. Mean monthly precipitation and air temperatures at the SRF and rapeseed sites in 
the year 2014. 

 

3.7.1. Cumulative seasonal CO2 emission (CE) 

In order to compare the amount of CO2 emitted from soil at different sites, soil CO2 

emission rates were transformed into cumulative emissions (kg CO2 ha-1) for the 
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entire measuring period (April–October). The CE calculation was based on the 

following equation, which is after Li et al. (2013): 

Cumulative emission = ∑[(𝐹𝑎 + 𝐹𝑏) × 5 ×  10−6 × 𝑡 × 24] 

The unit of CE is (t CO2 ha-1), Fa and Fb are the measured emission rates 

(mg CO2 m-2 h-1) for the same site on two subsequent days, and t is the number of 

days between the two measurements. Due to limited diurnal soil temperature 

fluctuations, it was assumed that the measured emission rate is the same for the entire 

day. 

Figure 39 shows a comparison between the cumulative seasonal emissions of CO2 

from the SRF and rapeseed soils. Fall and winter months are not included in this 

comparison because soil respiration reaches its minimum under cold conditions and 

there is close to no difference between the two sites (data not shown). The seasonal 

CO2 emissions from the SRF site accumulate to 63% of those from the rapeseed site. 

Thus, about 24 t CO2 can be saved annually per hectare, if the land was under SRF 

plantation instead of rapeseed. The normal lifetime of a SRF plantation is between 

20–25 years before replanting new cuttings. Accordingly, around 480–600 tonne of 

CO2 ha-1 can be saved during this period. 

 
Figure 39. Average cumulative CO2 emission (CE) from the SRF and rapeseed sites (April–
October 2014). 

3.7.2. Output energy 

The output energy was determined by multiplying the end product yield (DM 

woodchips/rapeseed oil) by its caloric value. To estimate the ratio for willow and 
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poplar woodchips, combustion heat values of 18.34 and 18.44 MJ kg-1 respectively 

were used (Dietzsch 2011). Values for average productivity (1478.5±118.17 kg oil 

mass ha-1) and combustion heat (38.9±0.54 MJ kg-1) were calculated from 14 

different rapeseed cultivars (Wcisło 2005). Thus, metabolizable energy (ME) was 

used to estimate the contribution of rapeseed cake (used to feed animals) to the 

output energy at a value of 13.71 MJ kg-1 (Esteban et al. 2011; Lindermayer and 

Propstmeier 2007). The amount of rapeseed is made up of its co-products: 40% 

rapeseed oil and 60% rapeseed cake. 

3.7.3. CO2(soil respiration) / Energy ratio 

The ratio of CO2 (soil respiration) / Energy acts as an efficiency indicator for the extracted 

energy in terms of carbon dioxide: CO2 emitted from soil divided by energy output. 

It appears to be a very helpful indicator to compare between different bioenergy 

crops because it evaluates different elements: CO2 emission from soils, combustion 

heat value of the products, and land area used for biomass production. In this case, 

the energy ratio was estimated between the cumulative seasonal CO2 emission as a 

by-product of soil respiration (kg CO2) to produce a specific energy-crop and its 

combustion heat obtained from different forms of the extracted biomass (wood 

pellets and oil) per hectare (MJ ha-1).  

This calculation for the extracted energy includes the harvested woody biomass of 

SRF plantation, while rapeseed oil and rapeseed cake used for feeding animals were 

considered from the rapeseed plantation. Leaf litter from SRF plantation and straw 

from rapeseed plantation are usually left in the field, thus they were not included in 

the energy balance (Figure 40). 
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The key message is that SRF has a lower average ratio of 183.1±38.7 than rapeseed, 

738.0. Short rotation forestry is about 400% more efficient than rapeseed (Figure 41). 

 
Figure 41. CO2 (soil respiration) / Energy ratio for willow, poplar SRF and rapeseed 

3.7.4. Global-warming potential (GWP) 

It is possible to include other major GHGs in the estimation, namely N2O and CH4, 

using their global-warming potential (GWP). Thus, CO2-eq will be calculated instead 

of CO2. Nitrous oxide and CH4 have 298 and 25 times higher GWP than CO2, 

respectively, on a time horizon of 100 years (IPCC 2007). Drewer et al. (2012) 

reported that CH4 emissions were very low and insignificant from SRF and rapeseed 

fields. Other authors like Hellebrand and Scholz (2000) reported that the annual CH4 

emissions at non-fertilized poplar and willow plantations were negative (atmospheric 

methane was degraded in the soil) and ranged between 0.25 and 1.00 kg CH4 ha-1. 

This value is relatively small and equal to -6.25 to -25 kg CO2-eq. Therefore, CH4 

will be neglected in our calculations. The key parameter controlling N2O emissions 

from soil is nitrogen availability. An exponential relation exists between 

N-fertilization and N2O emission. Perennial bioenergy crops such as SRFs have 

higher nitrogen-use efficiency; they require less fertilizer and emit 40–99% less N2O 

than conventional bioenergy crops such as rapeseed. Furthermore, rapeseed plants 

emit more N2O than other cereal crops during the growing season and rapeseed soils 



Results and Discussion 

73 
 

show higher postharvest emissions than during the growing season because of their 

residues (Don et al. 2012; Walter et al. 2015).  

In order to calculate CO2-eq, a value of 2.26 kg N2O-N ha-1 yr-1 was used. This is the 

annual emission at a rapeseed field receiving a standard rate of N-fertilizers 

(200 kg N ha-1 yr-1), as given by Walter et al. (2015) from 43 sites. That value is 

equal to 1,058.3 kg CO2-eq. For SRF, Zona et al. (2013) measured N2O emission 

during the second year after establishing a short rotation forest on formerly fertilized 

agricultural land. They reported 0.42±0.17 Mg CO2-eq ha-1, which was used in this 

study’s calculation and is equal to 429 kg CO2-eq ha-1. For the newly calculated 

CO2-eq using the GWP see Table 9. 

Table 9. Greenhouse gas emissions and net global warming potential of soils under SRF and 
rapeseed cultivations  

 
Tora 

(Willow) 

Sven 

(Willow) 

Jorr 

(Willow) 

H 275 

(Poplar) 

Max 3 

(Poplar) 

Rapeseed 

Soil GHG emissions  
(kg CO2-eq ha-1) 

51,847 38,296 38,569 35,341 39,611 64,872 

Ratio  
(kg CO2-eq GJ-1) 

243 166 197 147 172 750 

Relative to rapeseed  
(%) 

32.4 22.2 26.2 19.7 22.9 100.0 

 

3.8. Trace elements in soil 

Trace elements in ecosystems are existing in different forms: in aerosol or gaseous 

form in the atmosphere, in organic form within the living and dead parts of plants 

and animals, in free ionic or complexed forms in soil solution or sorbed on soil 

(exchangeable and bioavailable for plants), and in solid form in primary and 

secondary minerals (Adriano 2001). The bioavailable part of trace elements is very 

important because it can increase risks of groundwater contamination. Thus, studying 

the distribution coefficients or solid–liquid partition coefficients (Kd) is very 

important to estimate the leachability and to predict the mobility of heavy metals, 

trace elements and other contaminates such as pesticides in contaminated soils.  
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3.8.1. Solid-liquid partition coefficients (Kd) 

As mentioned previously, the willow and poplar short rotation forestry site in 

Krummenhennersdorf is contaminated with trace elements, some of which have 

already exceeded the legal limit such as arsenic (As), while other contaminates are 

within the legal limit but their concentrations in soil were elevated, such as Pb, Cd, 

Zn and Cr. There are fluxes of trace elements between ecosystem compartments, e.g., 

As is not only present in the lithosphere (soil), there are natural fluxes of As between 

the lithosphere, atmosphere, hydrosphere and biosphere (Matschullat 2000). Figure 

42 presents an overview of how trace elements move through the SRF ecosystem 

parts and highlights the major points of cycling the trace elements.  

 

Figure 42. An overview of the distribution and pathways of trace elements (TE) in a short 
rotation forestry (SRF) ecosystem. 
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Regarding the inputs of trace elements to a SRF ecosystem, there are two main 

inputs, as can be seen in Figure 42: the first one is the use of agrochemicals at the 

site. An example of that are phosphate fertilizers and pesticides, which are sources of 

Cd and As, respectively (Adriano 2001). The second input is from wet and dry 

atmospheric deposition, such as dusts and emissions of mining and smelting 

activities, for example, Cu-smelting and coal combustion are the main anthropogenic 

sources of As (Matschullat 2000). In addition, As can be transported as volatile 

metalloids in gaseous form (Adriano 2001). 

It can be observed from Figure 42 that part of the trace elements can be translocated 

to the above ground parts of trees. There, the translocated elements are fundamental 

constituents first of all in the tree stems and twigs that will be eventually harvested 

and removed from the field – the main output of trace elements from an ecosystem – 

and secondly in the tree leaves that will return back to the soil when they fall in late 

autumn and winter forming leaf litter. Besides the harvest of plant/tree parts, another 

output from the ecosystem may occur when trace elements are transported from a 

field either through erosion by wind and water runoff, e.g., as Pb and Zn in particle 

forms (Alloway 2013) or physical transport by machines and trucks used at a site. An 

output of elements also occurs through leaching down the soil profile to 

groundwater. 

It is important to predict the mobility of the dissolved trace elements in soil water 

(bonds to organic acids or as free ions) because they are chemically and biologically 

very active (Carrillo-González et al. 2006). In addition, studying the distribution 

coefficients (Kd) helps to estimate the potential fate of trace elements in soil. 

Distribution coefficient values depend on many factors, such as soil pH, soil content 

of organic matter, soil depth and temperature, and it is expressed by either L kg-1 or 

m3 kg-1 (Dollinger et al. 2015; Jakomin et al. 2015; Sheppard et al. 2009). 

By running a soil-column experiment (ex situ) and collecting soil water samples 

from the field (in situ), values of the distribution coefficient Kd for trace elements in 

SRF soil were determined. Thereafter trace elements were arranged based on their Kd 

values, from the highest to the lowest. From the results of the soil-column 

experiment, Kd ranked in descending order as follows: Pb>As>Zn>Cd and from the 

field experiment: Pb>As>Cd>Zn. So according to both experiments, Pb has the 

highest Kd value, followed by As, and the difference between the soil-column and 
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field results regarding Zn and Cd is statistically not significant. Thus, both results 

show the same order (Figure 43). This study’s results are in agreement with previous 

studies, e.g., Adriano (2001) and Carrillo-González et al. (2006) reported that Zn and 

Cd cations have almost the same value of Kd for the same soil. Although Kd values in 

the soil-column experiment differ from those of the field experiment, both 

experiments show the same order of Kd values. The reason behind these differences 

may be due to a disturbed soil texture and hence changed its physical-chemical 

properties during the soil sample collection and filling into experimental columns. 

Such changes can cause a change in Kd values for the same trace element 

(Rutkowska et al. 2015). 

 
Figure 43. Solid-liquid partition coefficients (Kd) values for Zn, Cd, As and Pb from soil-
column and field experiments. 

From Figure 43, it can be seen that Pb has the highest Kd value; this means that Pb is 

stable in soil and sorbed to soil particles. In other words, a small part is bioavailable 

for a plant to uptake or to leach down. The findings of this study agree with the work 

of Shaheen et al. (2013) that reported that Pb is a strongly sorbed trace element, 

while Cd and Zn are more mobile, and that Cd more weakly sorbed to soil than Zn. 

Yet in this work, the difference between the Kd values of Cd and Zn was found to be 

slight and was not statistically significant. Likewise, these results correspond to 

Jakomin et al. (2015), in that Kd for Pb is higher than that of Zn and Cd. This means 
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that the ability of Pb to be adsorbed on soil particles is stronger than Zn and Cd, and 

that Pb may exist in insoluble forms in soil, such as PbO2 and PbCO3. 

Plant roots influence trace elements in the root zone via three main mechanisms that: 

change the soil environment (e.g., changing pH and organic content), transform 

chemical forms of trace elements (e.g., changing AsIII to AsV) and use biosorption 

(Carrillo-González et al. 2006). The soil at the SRF site has higher concentrations of 

Pb (361.6±39 mg kg-1) than Zn (195.6±22 mg kg-1). In contrast, poplar and willow 

trees had higher concentrations of Zn than Pb in their stems, with values of 

83.50 mg kg-1 Zn and 3.94 mg kg-1 Pb dry biomass of poplar trees, and 

141.8 mg kg-1 Zn and 2.17 mg kg-1 Pb dry biomass of willow trees (Dietzsch 2011). 

Zinc is a trace element that is a vital micronutrient for plants and although Zn is non-

toxic to plants and soil microorganisms (Adriano et al. 2004; Rutkowska et al. 2015), 

other non-essential elements for plants such as As, Cd and Pb are toxic and their 

biological functions in plants are not known. It is known that the uptake of trace 

elements by plants depends mainly on the genotype (Alloway 2013). Most plants 

avoid the uptake of As from soil because of the mechanisms they have to protect 

themselves (Reimann et al. 2009). Thus, these Kd results may contribute to the 

explanation behind the difference of Pb and Zn concentrations in soil and plant parts. 

The uptake of trace elements by plants is influenced by many factors. For example, 

the existence of high concentrations of trace elements in soils, mainly the non-

essential elements for plants, can reduce a plant’s ability to uptake essential 

elements, i.e., Cd can reduce the uptake of Mn, and As(V) competes with phosphate 

for sorption places in soil (Adriano 2001). 

The mobility of trace elements in soil is also influenced by many factors, and soil pH 

is the most important one. When soil is under acidic conditions (low pH), one 

expects to find more elements in the aqueous phase than under high pH conditions. 

For instance, changing soil pH from 5 to 7 will cause an approximately 100-fold in 

available Cd that are bounded on the solid phase (Carrillo-González et al. 2006). 

Furthermore, under acidic conditions, a small percentage of Pb will be in an 

exchangeable form in soil, and more Cd and Zn will be bioavailable as shown in 

Figure 44 (Chlopecka  1996). The SRF site has acidic soil, therefore, trace element 

percentages that are close to these can be expected to be found there in soil.  
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3.8.2. Estimating time of remediation 
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The distribution coefficient result of As indicates that this trace element is easily 

leached out from soil profile under current conditions at the SRF site of soil 

properties. Furthermore, relative concentration (C/C0) of As computed from 

soil-column experiment shows a relatively high value as can be seen in Figure 45. 

 
Figure 45. Relative concentration of As delivered by soil-column experiment, where C is the 
concentration of As in the effluent when it exits the soil-column, and C0 is the initial 
concentration of As when it enters the column which is equal to the concentration of As in 
the rain water collected from the region to feed the columns. 

The remediation time of As to reach the legal concentration under two scenarios for 

land use was estimated. In scenario 1, the site is a rainfed willow and poplar SRF 

plantation, and in scenario 2, the site is a rainfed fallow field. The remediation time 

in scenario 1 was approximated by using the removal rate of the trace element (As) 

in poplar trees, namely, in stems and stools as harvested parts, whereas in scenario 2, 

the removal rate of the trace element by precipitation (leaching) was used and 

computed from soil-column experiment. 

For both scenarios, a productivity of 10 t DM ha-1 year-1 for poplar SRF was used 

and the topsoil layer (30 cm) is considered to be remediated as suggested by Dietzsch 

(2011). 
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In order to estimate the pore volume for soil, soil porosity is needed and it was 

estimated as follows:  

𝑆𝑜𝑖𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − (
𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
) 

Soil bulk density 1.45 g cm-3 was measured previously, soil volume is 0.3 m3 for a 

depth of 0.3 m, and particle density is assumed to be 2.65 g cm-3, which yields a soil 

porosity of 0.45 cm3 g-1 (45%). 

Hence, about 435 kg soil per square meter needs to be remediated at the site. This 

amount of soil has about 38,976 mg As (based on the current soil content of 

89.6 mg kg-1 As). In the case of this study, remediation time is the time needed to 

reduce the current amount of As in the topsoil from 38,976 mg to 21,750 mg, which 

is equal to 50 mg kg-1. In Dietzsch (2011) the remediation time was estimated based 

on removing all As in the topsoil and not on reaching the accepted standard level. 

To determine an annual removal rate of As in the first scenario, it was postulated that 

a poplar stem had an As content of 0.12 mg As kg-1 (Dietzsch 2011). The annual 

productivity of poplar per hectare is 10 tonnes DM and this is equal 

to 1 kg DM m-2 year-1. Accordingly, a removal of 0.12 mg of As per m-2 year-1 is 

achieved when the site is a poplar SRF plantation. 

In scenario 2 the removal rate by rain was estimated by dividing the average annual 

precipitation at the site by number of pore volumes needed to leach 1 µg of As from 

the soil profile (based on the soil-column experiment). The latter was calculated by 

plotting the cumulative amount of As removed from the soil profile against the pore 

volumes (Figure 46). Then, a linear equation Y = 0.3359X + 0.2377 was found to 

give the best fit between As removed from soil profile (leached) and pore volume, 

where Y is 1 µg of As, and X is the number of pore volume. In this case, it was 

found that 2.27 pore volumes are needed to allow 1 µg of As leave the soil profile. 

For a soil profile in the field and based on soil porosity, pore volume is estimated to 

be 0.135 m3. Moreover, average annual precipitation at the SRF site is 820 mm, this 

is equal to 0.82 m3 m-2, this means that under a rainfed condition, precipitation 

causes about 6.074 pore volumes of leached water. Thus, the average removal rate of 

As from the soil profile by precipitation is about 2.676 µg As m-2 year-1 or 

26.76 mg As ha-1 year-1. 
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Figure 46. Cumulative leached As (µg) per pore volume in the soil-column experiment.  

From results shown in Table 10, it can be can concluded that by continuing the SRF 

plantation on the contaminated site, remediation would need only about 3% of the 

time needed if the site was left as fallow field.  

Table 10. Remediation time needed for scenarios 1 and 2 

Amount of As in soil 
(mg As m-2) 

Removal rate by 
(mg As m-2 year-1) 

Remediation time 
(thousand years) 

Currently Projected SRF Rain Scenario 1 

(this study) 

Scenario 1 

(Dietzsch 2011) 

Scenario 2 

(this study) 

40,000 21,750 0.12 2.67 × 10-3  181 360 6,500 

Numbers are rounded 

The concentration of Pb in soil at the SRF site did not exceed the legal standard limit. 

Pb concentrations were also estimated in the same way as As. On this basis, it was 

calculated that Pb needs about 21.1 pore volumes to let 1 µg of Pb leave the soil 

profile (30-cm depth), in other words, about 9.3 times slower than As. Thus, these 

results show that Pb has a longer residence time in soil than any other trace element 

(Figure 47). Therefore, a remediation mission of Pb will take longer than one of As.  
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Figure 47. Leached amounts of Pb through soil profile in the soil-column experiment 
 
The results of this work have sources of uncertainties like any experiment. For 

example, the removal rate by poplar trees is based on content of trace elements found 

in stems, here it cannot be established that all trace elements present in plant tissues 

were taken from the soil because plants can absorb some trace elements from 

atmosphere. Random errors may have incurred during the collection of soil and water 

samples in the field and soil-column experiments, as well as instrument errors in 

measuring different parameters over 120-h periods. For this reason, further 

experiments on a larger scale and for longer periods are recommended. 

3.9. Identification and Prioritization of Key Parameters for Willow and 

Poplar Short Rotation Forestry (SRF) Production System 

The recommended steps by the software MICMAC® (version 6.1.3) manual were 

followed as described in the methodology section (MICMAC approach). Fifty 

variables were selected that characterize the system and that potentially influence it. 

These variables are listed with a brief description in Table 11.  
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Table 11. Variables that characterize and potentially influence SRF system 

No. Variable Short 
label 

Description 

1 Farmers’ decisions  V1 To establish SRF 
2 Insufficient farmer 

experience 
V2 With SRF cultivations 

3 Acceptance of land-use 
change 

V3 From conventional crops to SRF 

4 Changing subsidy 
regulations 

V4 Encouraging farmers to establish new SRF 
plantations 

5 Undeveloped wood-fuel 
market 

V5 Includes facilities to dry and to store wood chips 

6 Carbon taxation V6 A decrease of carbon tax on fossil fuels 
7 High initial cost V7 To establish SRF fields, e.g., fencing and plant 

materials 
8 Long-period projects  V8 Plantation life of 20–25 years 
9 Long-term supply contracts V9 Agreements with terms of at least 15 years 
10 Decrease in wood price V10 Payback period is dependant on wood price 
11 Rise in grain prices V11 May attract farmers to cultivate their lands with 

those grains rather than under SRF 
12 Yield risk V12 Harvested quantities is less than the expected or 

estimated 
13 Carbon storage in soil V13 SRF plantation may accumulate higher C amounts 

in soil, thus improving soil quality and trapping 
atmospheric CO2 in soil  

14 Groundwater quality V14 SRF could lower the rate of nitrate reach to 
groundwater  

15 Nutrient cycling V15 Harvested wood has low nutrient contents 
compared to other bioenergy crops such as 
rapeseed  

16 Animal production V16 In regions of animal production (e.g., for dairy), 
land is needed for fodder rather than bioenergy 
production 

17 No- or minimum tillage V17  
18 Annual returns V18 Depend on the harvesting year cycle, which varies 

from 2 to 5 years. 
19 High harvesting costs V19  
20 Worries about crop failure in 

the year of establishment 
V20 SRF should extent for 20–25 years, failure in the 

first year due to different (biotic/abiotic) factors 
may affect its competitiveness top other crops. 

21 Local employment V21 SRF projects offer local job opportunities for 
employment 

22 Low precipitation V22 Less than 600 mm per year 
23 Localized plantation V23 Establishing SRF sites in areas located close to 

firewood and heating markets 
24 Land-use conflict V24 Conflicts may arise between bioenergy and food 

production 
25 Terrain conditions V25 When fields are not flat, it may negatively affect 

plant density and suitability of farming machines 
26 Small field size V26 Field with size of 2–3 hectares   
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Table 11. continued…Variables that characterize and potentially influence SRF system 

No. Variable Short 
label 

Description 

27 Soil preparation and weed 
control 

V27 Especially in the year of establishment 

28 Low soil quality V28 Nutrient-poor soils 
29 Marginal and polluted sites V29 Sites are not suitable for food production 
30 Mixed pattern V30 Cultivating field with mixture of varieties (willow 

and poplar) 
31 Plant density V31 Plant density at SRF sites ranges between 10,000 

to 18,000 plants ha-1 
32 Row orientation V32 For example: row length of more than 500 m may 

need additional passages 
33 Plant diseases V33 Mainly risk of fungi 
34 Wild game V34 Browsing of wild game, such as damages caused 

by roe deer 
35 Fencing V35 Construction of fences is expensive. It aims to 

prevent damages caused by wild game 
36 Harvest cycle  V36 SRF are harvested in a 2–5 year cycle 
37 Snow accumulation in the 

field 
V37 Snow height in the field during harvesting will 

cause a loss of the harvested products because 
part of the biomass will be left at field.  

38 Large stem diameters V38 Stems with diameter more than 15 cm 
39 Wood harvesting system V39 Cut-and-chip or whole stem 
40 Wood chip size  V40 Fine or course chips 
41 Non-optimized warehouse V41 May cause loss of product during storage time 
42 Machine maintenance V42 As plant age and density increases, machine 

maintenance will also increase, resulting in an 
increase of harvesting costs. 

43 Biomass drying  V43 Drying the harvested biomass naturally or 
electrically. 

44 Long distance transportation V44 Normally, SRF biomass is a local fuel (harvest is 
transported <50 km) for local markets. Wood 
chips are expensive to transport due to their low 
density 

45 High GHG emissions V45 Due to activities in the field, e.g., applying 
fertilizers and chemicals, tillage and harvesting. 

46 Unsuitable clones V46 Selecting inappropriate clones for climate and soil 
conditions, resulting with a lower productivity or 
low quality products. 

47 Not accurate biomass 
assessment 

V47 Incorrect or inexact estimation of the stand 
biomass 

48 Minimum initial costs for 
subsidy 

V48 Variations between different governmental states 
subsidies normally encourage establishing large-
size sites 

49 Paperwork V49 Farmers need to fill a lot of documents in order to 
apply for or receive a subsidy. 

50 Rule restrictions V50 Farmers who receive subsidies are restricted by 
rules, e.g., selection of specific clones. 
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3.9.1. Based on direct influence/dependence map:  

In general, the most directly influencing variables are the farmers’ decisions, the 

underdeveloped wood-fuel market, insufficient farmers’ experience, changing 

subsidy regulations, and worries about crop failure in the year of site establishment 

(V1, V5; V2, V4 and V20 with values of 27, 26, 25, 23 and 22, respectively). The 

most powerful direct dependency factors are farmers’ decision, yield risk, acceptance 

of land-use change, high GHG emissions and small field size (V1, V12, V3, V45 and 

V26 with values of 72, 42, 39, 38 and 35, respectively) Figure 48.  

 
Figure 48. Direct influence/dependence map derived from MDI. 

The grouping of the variables within clusters (Figure 19), is summarized in the 

following sections. 

3.9.1.1. Autonomous variables 

Variables within this group are normally described as being excluded from the 

system. These have limited links to the system and the linkage between them with 

others in the system is weak because they have a weak driving and dependency 
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power (Dubey and Singh 2015; Srivastava and Dubey 2014). Thus, they do not play 

an important role in the system. In the case of this study, many variables fell into this 

group and were divided into two sub-groups: disconnected variables and secondary 

levers. 

Disconnected variables: Variables within this sub-group are located near the origin 

of the graph (Elmsalmi and Hachicha 2014). Variables such as snow accumulation at 

field, paperwork and row orientation (e.g., length of planted rows) belong into this 

sub-group. These are not able to influence and to be influenced by other system 

variables. 

Secondary levers: Generally, variables within this sub-group are located above the 

diagonal, their driving power (influence) is higher than their dependency. Elmsalmi 

and Hachicha (2014) recommended monitoring these variables in the system. In this 

study, a lot of variables fall within this sub-group and the most important of these 

are: machine maintenance, wood chip size, long distance transportation, biomass 

drying (technique), local employment and groundwater quality. 

3.9.1.2. Dependency variables 

Variables in this group are characterized by their strong power of dependency and 

their weak driving power. In general, variables falling into this group are unstable, 

and any change will influence themselves and other variables (Bag and Anand 2014). 

Only two dependency variables were identified: acceptance of land-use change and 

high GHG emissions. 

3.9.1.3. Linkage variables 

Variables within this group have a strong drive and dependency power. Variables fall 

under this category are generally unstable, and able to influence other variables when 

an action done on them (Bag and Anand 2014). We found only two variables under 

this category; farmers’ decision and yield risk. 

3.9.1.4. Driving variables 

Variables in this group have strong driving power, yet their dependency power is 

weak. In general, Bag and Anand (2014) reported that variables within this group are 

important for successful Green Supply Chain Management. From this study’s results, 
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the most important driving variables are: the undeveloped wood-fuel market, 

insufficient farmer experience, changes in subsidy regulations, harvest cycle and 

worries about failure in the first year. 

3.9.2. Based on indirect influence/dependence map: 

As shown in Figure 49, the most indirectly influential variables in our case study are: 

insufficient farmers’ experience, changing subsidy regulations, fencing, worries 

about crop failure in the year of establishment, wild game and an underdeveloped 

wood-fuel market (V2, V4, V35, V20, V34 and V5, respectively). The most indirect 

dependency parameters are: farmers’ decision, acceptance of land-use change, small 

field size, high GHG emissions and land-use conflict (V1, V3, V26, V45 and V24, 

respectively).   

Figure 49.  Indirect influence/dependence map derived from MII. 

The difference between direct and indirect influence maps is shown in the 

displacement map (Figure 50). By looking at the direct influence/dependence map, it 

becomes obvious that some parameters are within autonomous cluster, this means 

they are not important for the system because they have poor relationships with 
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others. Yet, when looking at the indirect influence/dependence map, some of 

variables were within the autonomous cluster (based on direct classification) became 

within the dependence cluster; these variables are wood harvesting system, land-use 

conflict and small field size (V39, V24 and V26). So based on the indirect 

classification, they are important and they may influence the system because they 

have (indirectly) strong power of dependency and weak driving power. This explains 

the importance of examining and understanding the indirect relationships within the 

system. When looking at the direct influence map, the graph shows that few 

parameters such as long-period projects, large stem diameters and subsidy-rule 

restrictions (V8, V38 and V50) are located at the boundary between the driving and 

autonomous clusters. This is because they have a moderate direct driving power, and 

for that it is difficult to distinguish to which cluster are the mentioned parameters 

belong. Yet, depending on the indirect classification, it clearly appears that rule 

restrictions (V50) belong to the dependence cluster, while long-period projects (V8) 

and large stem diameters (V38) belong to the autonomous one. In addition, long-term 

supply contracts (V9) and harvest cycle (V36) were within the driving cluster and 

became within the autonomous cluster depending on their direct and indirect 

influence classification. 

 

Figure 50. Displacement map shows differences between the direct and indirect 
influence/dependence maps. 
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As is evident from the direct influence graph (Figure 48), farmers’ decisions (V1) 

has strong influence on other variables such as land-use conflict (V24), soil 

preparation and weed control (V27) and wood harvesting system (V39). In other 

words, it has stronger influence on personal and legal and operational factors rather 

than other categories. 

As can be seen from the direct influence graph (Figure 51), a large number of strong 

relationships exist between variables. In this case, it can be suggested to classify 

variables that are strongly influenced by a minimum number of 5 variables (which 

comprise 10% of the studied factors) as intensive, directly influenced variables (IDI). 

These IDI variables consist of: farmers’ decisions (V1), yield risk (V12), worries 

about crop failure in the year of establishment (V20), small field size (V26), 

acceptance of land-use change (V3) and long-term supply contracts (V9). Half of 

these IDI variables have financial influences. The Farmer’s decisions variable has the 

highest number of direct relationships and is influenced by a lot of other variables, 

e.g., insufficient farmers’ experience (V2), undeveloped wood-fuel market (V5), 

high initial cost (V7), long-period projects (V8), rise in grain prices (V11), annual 

returns (V18), worries about crop failure in the year of establishment (V20), 

marginal and polluted sites (V29), harvest cycle (V36), minimum initial costs for 

subsidy (V48), paperwork (V49) and rule restrictions (V50).  
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Figure 51. Graph showing 10% of the direct influence relationships between variables 

Farmers’ decisions (V1) is one of the important variables in the system that influence 

it. Based on the direct influence/dependence clustering, this variable belongs into the 

linkage cluster, which means that it has strong driving and dependency power. 

Variables within this cluster are unstable and for that reason, it is important to know 

which variables have relationships with VI and how strong are they. The indirect 

influence graph (Figure 52) shows that the variable, farmers’ decisions, is influenced 

strongly by insufficient farmers’ experience (V2), and relatively strongly by 

changing subsidy regulations (V4) and fencing (V35). It is moderately influenced by 

wild game (V34), unsuitable clones (V46), marginal lands and polluted sites (V29), 

high initial cost (V7) and yield risk (V12). A third of these influential variables are 

financial ones, which mean financial issues play important roles in making the 

decisions to establish SRF. To understand how these influential variables can change 

the system indirectly, the links between the strongest variable (insufficient farmers’ 

experience) and the relatively strong variables (changing subsidy regulations and 

fencing) were examined with the other variables in the system. It was ascertained 

that insufficient farmers’ experience (V2) has relatively strong power to indirectly 

influence: small field size (V26) and acceptance of land-use change (V3). Changing 

subsidy regulations (V4) has relatively strong power to influence farmers’ decisions 
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(V1) and could moderately influence the acceptance of land-use change (V3), small 

field size (V26), high GHG emissions (V45) and land-use conflict (V24). Yet, 

fencing (V35) has no strong relationships with any of other variables. It has only one 

relatively strong power to influence farmers’ decisions (V1). There are variables that 

are moderately influenced by fencing: acceptance of land-use change (V3), small 

field size (V26), high GHG emissions (V45) and land-use conflict (V24). 

The small size of SRF sites (V26) is one of the most challenging issues in Germany. 

Approximately 50% of the sites are smaller than 1 ha, 20% are smaller than 1–2 ha 

and 17% are smaller than 2–5 ha (Wirkner 2015). This variable falls under driving 

cluster. This means its driving power is strong, while its dependency power is weak, 

which makes it important to influence the whole system. This analysis is trying to 

overcome this challenge and for this reason the existing indirect relationships that 

influence the small field size were examined. The results show that small field size is 

relatively strongly influenced by insufficient farmers’ experience (V2) and 

moderately influenced by changing subsidy regulations (V4), fencing (V35), 

undeveloped wood-fuel market (V5), worries about crop failure in the year of 

establishment (V20), wild game (34) unsuitable clones (V46) and farmers’ decisions 

(1). Generally, it appears that social and physical variables do not play a fundamental 

role in changing field size. 
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Figure 52. Graph showing 5% of the indirect influence relationships between variables 

One of the main purposes of establishing SRF is to help reduce the amount of GHG 

released to the atmosphere. The variable GHG emission is classified as one of the 

most direct and indirect dependency parameters, it has a strong power of 

dependency, and it may influence other variables but weakly. It is easy to know 

which variables influence directly the emission rate, yet it is getting more difficult to 

define the indirect influences. For this reason, indirect influences on GHG emissions 

were examined. The variable GHG emissions (V45) is moderately influenced by 

insufficient farmers’ experience (V2), changing subsidy regulations (V4), fencing 

(V35), worries about crop failure in the year of site establishment (V20), wild game 

(V34) and undeveloped wood-fuel markets (V5). Furthermore, it is weakly 

influenced by unsuitable clones (V46), farmers’ decisions (V1), carbon taxation 

(V6), decrease in wood price (V10), marginal and polluted sites (V29), rule 

restrictions (V50), high initial cost (V7), non-optimized warehouse (V41), rise in 

grain prices (V11), plant diseases (V33), yield risk (V12), low precipitation (V22), 

harvest cycle (V36), minimum initial costs for subsidy (V48), low soil quality (V28), 

nutrient cycling (V15) and mixed pattern (V30).  
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Resolving conflicts over land use, namely between lands used for bioenergy and food 

production, is one of the desired benefits of establishing SRF. Based on the indirect 

influence/dependency classification, this variable V24 falls within the dependency 

cluster. This means that it is influenced much more by other variables in the system 

rather than influencing them itself due to its strong power of dependency. From the 

indirect influence map, it can be seen that land-use conflict is influenced moderately 

by insufficient farmers’ experience (V2), changing subsidy rules (V4), fencing 

(V35), worries about crop failure in the year of site establishment (V20), wild game 

(V34) and undeveloped wood-fuel market (V5). 

In brief, results show that farmers’ decisions and the underdeveloped wood-fuel 

market exert the highest direct driving (influencing) force on the system, while 

farmers’ decisions and yield risk have the highest direct dependency power. The 

insufficient experience of a farmer and changing subsidy regulations are variables 

that express a high indirect driving force, while farmers’ decision making, 

acceptance of land-use change, and small field size are variables that generate the 

highest dependency power. 

3.10. Impacts of Land-use Change on the Ecosystem Quality 

An ecosystem is a complex interaction between living elements and their non-living 

components (abiotic environment) at a specific place to provide various benefits and 

services (Hoffmann et al. 2014). Humans benefit directly and indirectly from this 

range of ecosystem goods and services to fulfil their main needs for food, raw 

materials and energy. To support life on Earth, other important functions are needed 

and provided by the ecosystem, such as the regulation of atmospheric chemical 

compounds, global temperature and hydrological flows (Brandão and Canals 2012; 

Costanza et al. 1997).   

Human land use causes wide impacts on the ecosystem, ranging from changes in 

species diversity to disturbances of ecosystem processes (Milà i Canals and Baan 

2015). Unfortunately, ecosystem services lack attention from policy makers 

(Costanza et al. 1997). A clear example of that is the exclusion of land-use change 

and occupation impacts on the ecosystem when conducting life cycle assessments 

(LCA). Ecosystem services are for example involved in the provision of potable 

water and decomposition of wastes. This work examines anthropogenic influences 
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and impacts, in the case where the land use/cover on degraded lands is converted 

from grassland to SRF.  

Regarding the local potential natural vegetation (PNV) for the SRF site at 

Krummenhennersdorf and based on the PNV maps for Germany that are available on 

the website of the Saxon State Ministry of the Environment and Agriculture (SMUL 

2016), the map shows a potential of beech-oak forest as shown in Figure 53. This 

biome type is used as a reference. 

 

Figure 53. Potential natural vegetation (PNV) map shows the location (red box) of the short 

rotation forestry (SRF) study site at Krummenhennersdorf, Saxony, Germany. Map section 

modified after Saxon State Ministry of the Environment and Agriculture (SMUL 2016). 
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Most SRF values of the indicators used to estimate impacts on the ecosystem used in 

this section are own data that were obtained from measurements conducted at the 

SRF site in Krummenhennersdorf. Other values have been obtained from the work 

conducted by other researchers at the same site. For the grassland study, most of the 

data used are from published data derived from experiments done in grasslands in 

Germany. Regarding the local PNV, which is beech-oak forest, results of 

experiments were used that were done at Hainich forest in central Germany, which is 

composed of typical beech trees (Fagus sylvatica), in addition to other deciduous 

trees (Kutsch et al. 2010). Although Tharandt forest is just a few kilometers from the 

SRF site, data from Hainich forest were used for PNV parameters because it is more 

suitable in terms of soil and plant properties (Heilmeier H., personal communication, 

April 6, 2016). 

In examining the biodiversity, specific data from the SRF and grassland sites were 

not gathered, and average values provided by Baan et al. (2013) of biodiversity 

damage potential (BDP) were used. These BDP values are based on species richness 

using 195 empirical studies and peer-reviewed papers from approximately 900 data 

points. The BDP are a world average for different land use type biomes, e.g., the 

BDP value for a non-used forest is zero and considered a semi-natural one. Finally, 

values of five different indicators – cation exchange capacity (CEC), total 

aboveground biomass (TAB), soil organic matter (SOM), leaf area index (LAI), and 

evapotranspiration (ET) – are used to estimate the mid-points impacts on the 

ecosystem (Table 12). 
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Table 12. Values of the indicators used to estimate impacts on ecosystem structural quality 
IESQ  and ecosystem functional quality IEFQ. 

Indicator Value Units 

Project 
(SRF) 

Reference 
(Grassland) 

PNV 
Beech-oak 

forest 

Cation exchange  
capacity (CEC) 

10.7±0.6 [1] 12.8±0.02 [1, 2] 11.2±3.9 [3] cmol kg-1 

Total aboveground  
biomass (TAB) 

14.8± 1.5 [4, 5, 6, 7] 6.7±1.5 [8, 9] 6.82±1.4 [10, 11, 

12] 
t dry mass ha-1 yr-1 

Soil organic matter  
(SOM) 

2.46 [1] 2.58[4] 4.8±1.18 [13] % 

Leaf area index  
(LAI) 

3.1±0.2 [1] 2.55±0.4 [14, 15, 16] 4.6±0.5 [17, 18, 19] m2 m-2 

Evapotranspiration  
(ET) 

493.8±30.5 [20, 21, 22, 23] 343.6±84.6 [24, 25, 26] 525±59 [19] mm yr-1 

 [1]Own data; [2]Lutter et al. (2016); [3]Guckland (2009); [4]Dietzsch (2011); [5]Guidi Nissim et al. 
(2013); [6]Stolarski et al. (2008); [7]Verlinden et al. (2015); [8]Borchard et al. (2015); [9]IPCC (2003); 
[10]Brumme and Khanna 2009); [11]Tum et al. (2011); [12]FAO (2015); [13]Kutsch et al. (2010);  

[14]Falge et al. (2005); [15]Preusser et al. (1999); [16]Spank et al. (2013); [17]Bernhofer et al. (2011); 
[18]Korn (2004); [19]Herbst et al. (2015); [20]Bungart and Hüttl (2004); [21]Busch (2009); [22]Petzold et al. 
(2010); [23]Schmidt-Walter and Lamersdorf (2012); [24]Harsch et al. (2009); [25]Hussain et al. (2011); 
[26]Müller et al. (2010). 

It is important to mention that a negative value of the impact reflects improvement in 

the ecosystem quality, while a positive value reflects deterioration. From land-use 

change impacts results (Figure 54), it can be observed that SRF causes a slight 

decrease in soil structure quality, where impact of soil structure ISS has a value of 

4.65%. This is a result of the slightly higher content of soil organic matter (SOM) at 

the grassland site than that at the SRF site in Krummenhennerdorf. It needs to be 

pointed out that SOM values are based on the results of the topsoil samples, 

however, normally at SRF plantations (in situ) soil stores more organic matter at 

depths deeper than 30 cm (Lutter et al. 2016). Thus, if SOM for the whole soil 

column is included (1-m depth), then this result may change. However, the result of 

ISS is based on results from one site. If an average value for SRF influence on the 

SOM is used, as the percentage cited from the recent work of Lutter et al. (2016) that 

monitored 51 research sites shows, after 15 years of establishing a SRF plantation, 

soil organic carbon increases by 10.4% in the top and 17.2% in the bottom soil 

layers. When this percentage over 15 years is applied to this calculation, the new ISs 

value rose to -5.4±0.65 for the land-use change. In other words, an improvement of 
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about 5% of the soil structure is evident, whereas the previous results showed a slight 

reduction in the soil structure (about 2.5%).  

Figure 54. Impact of land-use change (LUC) on: biomass production (Bp), biodiversity 

(Bd), soil fertility (Sf), soil structure (Ss), vegetation structure (Vs) and on-site water balance 

(Wb). 

The midpoint scores of the land-use change impacts were aggregated in order to 

estimate the ecosystem structural quality (ESQ) and ecosystem functional quality 

(EFQ) as described previously in the methodology Section 2.8. Results of land-use 

change impacts on the ecosystem show that converting degraded land (grassland) to 

SRF generates an improvement of the ESQ with value of 43.1±4%. Yet, a slight 

reduction in its EFQ was noticed with value of 6.6±6%, as seen in Figure 55. 

Through this improvement in the ecosystem structural quality ESQ, it is readily 

understood that the storage capacity in terms of biomass, structure and biodiversity at 

the SRF site is higher than that of the grassland site on degraded land. On the other 

hand, the message behind the reduction of the ecosystem functional quality EFQ is 

that SRF land has less control over fluxes of water, material and nutrients than that of 

grassland. The evapotranspiration (ET) of SRF is much higher than that of grassland, 

and there is a lower content of organic matter in SRF soils compared to grassland – 

this plays a role in this reduction of ecosystem functional quality EFQ at the SRF 

site.  
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Figure 55. Land-use change impact (LUC) of short rotation forestry (SRF) on the ecosystem 
structural quality (ESQ) and on ecosystem functional quality (EFQ). 

Regarding the land occupation impacts, normally this type of impact assessment is 

used to compare different land-use scenarios (Fehrenbach et al. 2015). As shown in 

Figure 56, the SRF land-use occupation can be compared to grassland. These mid-

point impacts show that SRF plantations have much more power to improve the 

ecosystem quality than grassland and beech-oak forest in terms of the capacity to 

produce biomass. In addition, SRF plantations are less harmful to the biodiversity 

than grassland.   

 
Figure 56. Mid-point impacts of land occupation for short rotation forestry (SRF) site and 
for grassland (G). 
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The impacts of land occupation by SRF on the ecosystem structural quality ESQ and 

ecosystem functional quality EFQ (Figure 57) show that both the potential ecosystem 

structural quality (ESQ) and ecosystem functional quality (EFQ) would decrease if 

the land is used as grassland, with impact values of 13.2±14.4 and 18.9±0.9%, 

respectively. In contrast, the SRF plantation improved the ESQ (with a value 

of -30.1±2.8%), while it reduced the potential ecosystem functional quality (EFQ) of 

the land to about 25.5±1.0% compared to the PNV.  

 
Figure 57. Land occupation impact on the ecosystem structural quality (ESQ) and 
ecosystem functional quality (EFQ) for short rotation forestry (SRF) and grassland (G). 

From land-use change impact results, the aggregated impacts of mid-point to 

endpoints show that SRF land has higher storage capacity in terms of controlling the 

solar energy and nutrients flow. Furthermore, as seen from the negative value of its 

ecosystem functional quality EFQ impact, SRF land has the ability to maintain and 

store the ecosystem structural quality ESQ, whereas an increase of about 12% is 

observed for grassland. Furthermore, SRF land has the ability to provide better 

environmental services than grassland, as well as to improve its ecosystem quality 

over time. Thus, the conversion of grassland to SRF is found to be encouraging in 

this study. 
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Compared to a beech-oak forest (which is the expected local potential natural 

vegetation), SRF land shows about a 30% improvement on its ecosystem structural 

quality, while showing a deterioration of 25% on its functional quality. This means 

this SRF land may never regenerate back to its original state because it has less 

control on energy- and nutrient-flows. It also has less capacity to restore and 

maintain its ecosystem structural quality ESQ. 
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4. Conclusions and Recommendations 

In conclusion, it is recommended to plant short rotation forests on marginal land and 

brownfields, parallel to other sustainable land management options. Such land usage 

will reduce the demand for fertile and non-contaminated arable land for energy 

crops. Consequently, more fertile land remains available for food and animal feed 

production. At the same time, SRF contributes on a longer term to continuous soil 

quality and biodiversity improvement, groundwater protection, and soil erosion 

prevention. 

Greenhouse gas GHG emissions from soils need to be calculated when estimating the 

energy efficiency of biofuels or when applying LCA for bioenergy crops. Moreover, 

using real values obtained from field experiments may decrease the uncertainty of 

estimating GHG-savings because there are different parameters affecting soil 

emissions. The results of this study are in good agreement with those of other 

research (Firrisa et al. 2014; van Duren et al. 2015) that report that the energy 

efficiency of biofuel derived from rapeseed in the European countries is low, 

although empirical data for soil emission were not included in their calculations. 

Felten et al. (2013) compared the ability of annual GHGs savings between different 

bioenergy crops, rapeseed, maize and Miscanthus. Results showed that rapeseed used 

for biodiesel production was the lowest.  

Based on an analyses of the driving factors for a willow and poplar short rotation 

forestry (SRF) production system, the MICMAC method was used to describe the 

system with matrixes that linked all factors (elements) together. This study concludes 

that to enhance the success of this system, decision makers should focus on ensuring 

a developed wood-fuel market, on increasing farmer’s experience (training), on 

improving subsidy regulations and on recommending a proper harvesting year cycle.  

The assessment of impacts of land-use change on the ecosystem quality, which was 

discussed in Section 3.10, indicates that establishing SRF plantations on degraded 

lands improved the ecosystem structural quality (ESQ) and ecosystem functional 

quality (EFQ). 

Finally, and based on all results, establishing poplar and willow SRF on degraded 

lands to extract biomass for energy is sustainable and highly recommended. 
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Appendix 

 
Table A1. Variables sorted by a) their driving (influence) power (based on MDI), b) their 
power of dependency (based on MDI), c) their driving (influence) power (based on MII), d) 
their power of dependency (based on MII) 

Based on MDI Based on MII 
a b c d 

Rank Variable 
No. 

Rank Variable 
No. 

Rank Variable 
No. 

Rank Variable 
No. 

1 1 1 1 1 2 1 1 
2 5 2 12 2 4 2 3 
3 2 3 3 3 35 3 26 
4 4 4 45 4 20 4 45 
5 20 5 26 5 34 5 24 
6 36 6 9 6 5 6 39 
7 10 7 19 7 46 7 12 
8 6 8 27 8 1 8 9 
9 29 9 7 9 6 9 19 

10 41 10 39 10 10 10 21 
11 9 11 20 11 50 11 14 
12 11 12 13 12 29 12 43 
13 35 13 18 13 41 13 40 
14 12 14 14 14 7 14 29 
15 15 15 21 15 11 15 27 
16 7 16 43 16 33 16 17 
17 25 17 44 17 12 17 7 
18 33 18 40 18 22 18 18 
19 34 19 42 19 36 19 5 
20 8 20 10 20 8 20 13 
21 38 21 5 21 27 21 20 
22 46 22 29 22 48 22 15 
23 50 23 8 23 9 23 44 
24 3 24 33 24 28 24 42 
25 22 25 34 25 15 25 41 
26 16 26 41 26 30 26 35 
27 26 27 46 27 25 27 28 
28 27 28 27 28 18 28 38 
29 28 29 28 29 16 29 23 
30 48 30 35 30 31 30 10 
31 13 31 48 31 3 31 30 
32 17 32 15 32 24 32 49 
33 18 33 38 33 38 33 46 
34 23 34 49 34 26 34 36 
35 30 35 4 35 13 35 4 
36 31 36 47 36 49 36 8 
37 47 37 17 37 19 37 16 
38 39 38 25 38 43 38 34 
39 24 39 16 39 17 39 25 
40 40 40 23 40 47 40 33 
41 44 41 30 41 45 41 48 
42 19 42 31 42 21 42 50 
43 21 43 50 43 37 43 47 
44 32 44 2 44 23 44 31 
45 42 45 6 45 44 45 2 
46 43 46 36 46 42 46 6 
47 37 47 11 47 39 47 11 
48 45 48 22 48 40 48 22 
49 49 49 32 49 32 49 32 
50 14 50 37 50 14 50 37 
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Table A2. Comparison of Alternative Models, correlation  
between 1/SLA and CO2 for clone H275 

Model Correlation R-Squared 

Squared-Y reciprocal-X -0.6683 44.67% 

Reciprocal-X -0.6637 44.04% 

Square root-Y reciprocal-X -0.6599 43.55% 

S-curve model -0.6552 42.93% 

Squared-Y logarithmic-X 0.6494 42.18% 

Double reciprocal 0.6432 41.37% 

Logarithmic-X 0.6425 41.28% 

Square root-Y logarithmic-X 0.6378 40.67% 

Squared-Y square root-X 0.6374 40.63% 

Multiplicative 0.6322 39.96% 

Square root-X 0.6293 39.60% 

Squared-Y 0.6241 38.95% 

Double square root 0.6240 38.93% 

Reciprocal-Y logarithmic-X -0.6185 38.26% 

Logarithmic-Y square root-X 0.6178 38.17% 

Linear 0.6146 37.78% 

Square root-Y 0.6087 37.05% 

Reciprocal-Y square root-X -0.6033 36.40% 

Exponential 0.6021 36.25% 

Double squared 0.5948 35.38% 

Reciprocal-Y -0.5867 34.42% 

Squared-X 0.5827 33.95% 

Square root-Y squared-X 0.5756 33.13% 

Logarithmic-Y squared-X 0.5679 32.25% 

Reciprocal-Y squared-X -0.5506 30.32% 

Logistic <no fit>  

Log probit <no fit>  
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Table A3. Comparison of Alternative Models,  
correlation between SLA and CO2 for clone H275 

Model Correlation R-Squared 

Double squared -0.7154 51.18% 

Squared-Y -0.7113 50.60% 

Squared-X -0.7079 50.11% 

Squared-Y square root-X -0.7065 49.91% 

Square root-Y squared-X -0.7027 49.38% 

Linear -0.7022 49.30% 

Squared-Y logarithmic-X -0.6997 48.96% 

Logarithmic-Y squared-X -0.6966 48.53% 

Square root-X -0.6963 48.49% 

Square root-Y -0.6963 48.48% 

Exponential -0.6895 47.54% 

Logarithmic-X -0.6885 47.40% 

Logarithmic-Y square root-X -0.6829 46.63% 

Reciprocal-Y squared-X 0.6819 46.49% 

Square root-Y logarithmic-X -0.6817 46.47% 

Squared-Y reciprocal-X 0.6809 46.36% 

Multiplicative -0.6741 45.45% 

Reciprocal-Y 0.6737 45.38% 

Reciprocal-X 0.6673 44.53% 

Reciprocal-Y square root-X 0.6664 44.40% 

Square root-Y reciprocal-X 0.6595 43.49% 

Reciprocal-Y logarithmic-X 0.6569 43.15% 

S-curve model 0.6510 42.37% 

Double reciprocal -0.6321 39.96% 

Double square root <no fit>  

Logistic <no fit>  

Log probit <no fit>  
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Table A4. Comparison of Alternative Models,  
correlation between LA and 1/SLA for clone H275 

Model Correlation R-Squared 

Squared-Y 0.9120 83.17% 

Linear 0.9087 82.57% 

Double square root 0.9055 81.99% 

Square root-X 0.9050 81.89% 

Logarithmic-Y square root-X 0.9030 81.55% 

Square root-Y 0.9026 81.47% 

Double squared 0.8995 80.92% 

Log probit 0.8983 80.69% 

Squared-Y square root-X 0.8956 80.21% 

Logistic 0.8953 80.15% 

Exponential 0.8935 79.83% 

Reciprocal-Y logarithmic-X -0.8851 78.33% 

Multiplicative 0.8844 78.22% 

Square root-Y logarithmic-X 0.8797 77.38% 

Squared-X 0.8792 77.30% 

Logarithmic-X 0.8721 76.05% 

Reciprocal-Y -0.8670 75.17% 

Square root-Y squared-X 0.8643 74.70% 

Squared-Y logarithmic-X 0.8495 72.16% 

Logarithmic-Y squared-X 0.8463 71.63% 

Reciprocal-Y squared-X -0.8030 64.48% 

Double reciprocal 0.7787 60.64% 

S-curve model -0.7582 57.48% 

Square root-Y reciprocal-X -0.7437 55.31% 

Reciprocal-X -0.7267 52.81% 

Squared-Y reciprocal-X -0.6873 47.24% 

Reciprocal-Y square root-X <no fit>  
 


