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ABSTRACT 

The key to success in separation of liquid mixtures is the efficient creation and utilization of 

vapour-liquid contact area. By packing the column with gas-liquid contact devices such as 

structured packing, the vapour-liquid contact area can be increased. However, the efficiency of 

these packed columns depends strongly on the local flow behaviour of the liquid and vapour 

phase inside the packing. 

The aim of this work was to develop three-dimensional CFD models to study the hydrodynamic 

behaviour on the corrugated sheets of packing. Different approaches are possible to simplify 

the problem and to extend it for more complex flow scenarios. In this work, three-dimensional 

CFD simulations were performed to study the complete fluid-dynamic behaviour. This was 

performed in two steps.  

As a first step, the developed model was validated with experimental studies using a simplified 

geometry i.e., an inclined plate. The three-dimensional Volume-of-Fluid (VOF) model was 

utilized to study the flow behaviour of the gas-liquid countercurrent flow. The influence of the 

liquid surface tension was taken into consideration using the Continuum Surface Force (CSF) 

model. The wetting characteristics of liquids with different viscosity (1 and 5 mPas) and 

contact angle (70  and 7 ) were studied for different flow rates. Three different mixtures (water, 

water-glycerol (45 wt. %) and silicon-oil (DC5)) were considered. Initially, the rivulet width of 

experiments and simulations were compared and an error of 5 % maximum was determined. 

The results were also in good agreement with earlier studies. The percentage of wetting due to 

changes in flow rate, viscosity and contact angle was compared and discussed. For all tested 

systems, excellent agreement between the experiments and simulation studies was found. In 

addition, profiles of the velocity in the film at film flow conditions over a smooth inclined plate 

obtained from simulations were compared with experimental profiles obtained using a PIV 

technique. A detailed sensitivity study was also performed in order to understand the changes 

in the velocity profiles due to small change in liquid flow rate, temperature and inclination 

angle. 

As a next step, the developed model was extended to geometries resembling real corrugated 

sheets of packing used in industrial applications. In earlier numerical studies of structured 

packing, geometries were simplified to enable easy meshing and faster computation. In this 

work, the geometries of corrugated sheets of packing were developed without any 
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simplification and the flow behaviour was studied using the model validated in the first step. 

The flow behaviour on sheets with different geometrical modifications such as smooth and 

triangular crimp surfaces as well as perforations on the sheets were numerically studied and 

quantitatively compared with experimental studies for the three different fluid test systems. The 

agreement between the simulations and experiments was within an acceptable range for all 

system. The difference in the interfacial area between the corrugated sheets of a packing with 

and without perforation was analyzed and the prediction ability of different empirical 

correlations for the interfacial area available in literature was also compared and discussed.  

Furthermore, the numerical study was extended to understand the influence of the second 

corrugated sheet. Studying the flow behaviour between two sheets experimentally is very 

challenging, especially inside opaque packing. The model proved to be a very suitable tool to 

study the hold-up of the liquid between two sheets, the change in wetting behaviour due to 

small change in liquid inlet position. The results are also in good agreement with the earlier 

experimental studies, where researchers measured the liquid hold-up mainly in the region 

where two corrugated sheets touch each other.  

The three-dimensional CFD model was validated to study the flow behaviour on corrugated 

sheets of packing. The results from the simulations agree very well with findings from the 

experimental studies in terms of wetting and hold-up. 
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ZUSAMMENFASSUNG 

Der Schlüssel zum Erfolg bei der Trennung von Flüssigkeitsgemischen ist die Ausbildung von 

Dampf-Flüssig-Kontaktflächen und deren Nutzung. Durch die Installation von Einbauten zur 

Gas-Flüssig-Kontaktierung in Kolonnen, wie beispielsweise strukturierte Packungen, kann die 

Kontaktfläche vergrößert werden. Zusätzlich hängt die Trenneffizienz jedoch stark von dem 

Fließverhalten der Dampf- und Flüssigphase in der Packung ab. 

Das Ziel dieser Arbeit war die Entwicklung dreidimensionaler CFD-Modelle, um das 

hydrodynamische Verhalten von Flüssigkeiten in Packungen, bestehend aus Wellblechen, zu 

untersuchen. Verschiedene Ansätze sind möglich, um das Problem zunächst zu vereinfachen 

und dann für komplexe Strömungsszenarien zu erweitern. In dieser Arbeit wurden 

dreidimensionale CFD-Simulationen durchgeführt, um das komplette fluiddynamische 

Verhalten zu studieren. Dies erfolgte in zwei Schritten. 

Im ersten Schritt wurde das entwickelte Modell anhand experimenteller Studien unter 

Verwendung einer geneigten Platte als vereinfachte Geometrie validiert. Das dreidimensionale 

Volume-of-Fluid-Modell (VOF) wurde verwendet, um das Strömungsverhalten im Gas-

Flüssig-Gegenstrom zu untersuchen. Der Einfluss der Oberflächenspannung wurde anhand des 

Continuum Surface Force Modells (CSF) berücksichtigt. Die Benetzungseigenschaften von 

Flüssigkeiten unterschiedlicher Viskosität (1 und 5 mPas) und Kontaktwinkel (70° und 7°) 

wurden für verschiedene Fließgeschwindigkeiten untersucht. Drei verschiedene 

Testmischungen (wasser, wasser-glycerin und silikonöl) wurden betrachtet. Zunächst wurde die 

Rinnsalbreite von Experiment und Simulation verglichen, wobei der Fehler bei maximal     5 % 

lag. Die Ergebnisse sind in guter Übereinstimmung mit früheren Studien. Der Benetzungsgrad 

in Abhängigkeit von Durchfluss, Viskosität und Oberflächenspannung wurde verglichen und 

diskutiert. Für alle Testsysteme wurde eine sehr gute Übereinstimmung zwischen Experiment 

und Simulation festgestellt. Zusätzlich wurden simulierte Geschwindigkeitsprofile in den 

Flüssigkeitsfilmen auf einer glatten geneigten Platte mit denen verglichen, die mittel μPIV-

Technik experimentell ermittelt wurden. Eine detaillierte Sensitivitätsstudie wurde ebenfalls 

durchgeführt, um die Änderung im Geschwindigkeitsprofil aufgrund kleiner Änderungen in der 

Durchflussrate, der Temperatur und dem Neigungswinkel besser zu verstehen. 

Im nächsten Schritt wurde das entwickelte Modell auf Geometrien erweitert, die Wellblechen 

realer Packungen in industriellen Anwendungen ähnlich sind. In früheren numerischen Studien 
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zu strukturierten Packungen wurde deren Geometrie vereinfacht, um die Gittergenerierung zu 

erleichtern und Simulationsrechnungen zu beschleunigen. In dieser Arbeit wurde die Geometrie 

der Wellbleche ohne jegliche Vereinfachung implementiert und das Fließverhalten anhand der 

vorher validierten Modelle untersucht. Das Strömungsverhalten bei unterschiedlichen 

geometrischen Modifikationen, wie beispielsweise glatter und dreieckig gewellter Oberflächen 

sowie mit Perforationen wurde mithilfe von Simulationen untersucht und quantitativ mit 

experimentellen Studien für drei verschiedenen Testsystemen verglichen. Die 

Übereinstimmung zwischen Simulationen und Experimenten war in einem akzeptablen Bereich 

für alle Testsysteme. Der Unterschied in der Grenzfläche zwischen den gewellten 

Packungslagen mit und ohne Perforation wurde analysiert und die Vorhersagefähigkeit von 

empirischen Korrelationen aus der Literatur verglichen und diskutiert 

Darüber hinaus wurden die numerischen Studien erweitert, um den Einfluss einer zweiten 

gewellten Lage  zu verstehen. Die experimentelle Untersuchung des Fließverhaltens zwischen 

zwei Lagen ist aufgrund der fehlenden optischen Zugänglichkeit sehr schwierig. Das Modell 

erweist sich hier als sehr hilfreiches Tool, um die Änderungen in der Mikro-Skala Ebene und 

auch den Einfluss auf Benetzungsverhalten, Geschwindigkeitsprofile und Veränderungen in der 

Strömung zu studieren, wenn die Flüssigkeit durch die Kontaktpunkte der zwei welligen 

Packungslagen fließt. Die Ergebnisse sind in guter Übereinstimmung mit früheren 

experimentellen Studien, in denen die meisten Flüssigkeitsanteile in den Regionen festgestellt 

wurden, an denen sich die beiden Lagen berühren. 

Das dreidimensionale CFD-Modell wurde validiert, um das Fließverhalten auf Wellblechen 

von Packungen zu untersuchen. Die Ergebnisse der Simulationen sind in sehr guter 

Übereinstimmung mit experimentellen Daten zur Benetzung und zum Holdup. 
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1 INTRODUCTION 

The key to success in separation of liquid mixtures by distillation depends on the creation and 

utilization of vapour-liquid contact area. The three major types of distillation equipment’s are: 

Trays, Random packing and Structured packing. Structured packing increased its market share 

rapidly during the last two decades. Even though the first generation of structured packing was 

introduced as early as 1940s, it was not used more in industrial applications. The second 

generation of structured packing began in late 1950s and started penetrating into market by 

claiming its advantages of low pressure drop per theoretical stages (Kister, 1992). However, 

their high cost, high sensitivity to solids and low capacity hindered its application in industry. 

The corrugated-sheet of packing, introduced in the late 1970s, became competent by claiming 

higher capacity and lower sensitivity to solids while retaining the high efficiency. Therefore, by 

1980s, the corrugated sheet of structured packing have drawn accelerated rise in industry 

(Kister, 1992). The reason for the improvement in efficiency with structured packing is 

reported as increase in interfacial area created by liquid spreading over the packing surface 

which is available for mass transfer. Even though the structured packing is well established, the 

local flow behaviour inside the packing is still not yet well understood. Various efforts have 

been undertaken by researchers around the world with different approaches to understand more 

about the local flow behaviour which helps to design the packed column and to increase their 

efficiency.   

The efficiency of the packed column strongly depends on the local flow behaviour of the liquid 

inside the packing. Since the flow can rapidly change due to the small changes in dimensions of 

corrugated sheets, it is reasonable to consider the local flow behaviour as a major factor (Repke 

and Wozny, 2002). Most of the efficiency criteria for structured packing are not known, as the 

supplier of the packing does not disclose any technical data. Researches were conducted in a 

different dimension to understand the flow behaviour in micro scale, macro scale and in large 

scale. Few researchers concentrated on the material of the packing based on the application. 

Some of the examples of non-metallic packings are ceramic, polymers, gauze packing and SiC 

packing (Ivanova et al., 2007). Many researchers focused on the geometrical features of the 

structured packing to improve their performance. To improve the capacity of packing, 

inclination angle of 60° was proposed (Olujic et al., 2004). Various small changes in the 

geometry, such as straight edges in the bottom of packing element or in the top of packing 
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element or in both the side of packing element were proposed (Bender and Moll, 2003). The 

change in efficiency due these modifications was studied in detail and recommendations were 

made for further studies. Detailed theoretical review of state of the art will be presented in 

Chapter 2. To increase the wetting characteristics, the surface of the packing was roughened 

using microstructures (Kister, 1992). Initially, the surface was roughened using two 

dimensional structures and later it was further extended to three dimensional structures. A 

detailed analysis of the influence of the size of the microstructures on transport phenomena was 

presented recently (Kohrt et al., 2011). As discussed above, various efforts have been 

undertaken to understand the flow in structured packing and to increase their capacity. 

Due to the recent improvement in computational power, Computational Fluid Dynamics has 

been used to calculate the flow behaviour in these structured packing (van Baten et al., 2001a). 

CFD is foreseen as one of the major tools to complement the experimental efforts. Also, 

various computational tools help us to understand the flow behaviour in microscopic scale. On 

the other hand, even this enormous improvement in computational power is not sufficient to 

study the flow behaviour in whole column as in real industrial applications. Hence, various 

theories have been presented to simplify and understand the problem better with available 

computational facility. However, the computational results need to be validated with 

experimental studies. To understand the hydrodynamics of the liquid-phase flow in structured 

packing filled with catalyst pellets resembling KATAPAK-S, a Toblerone model was presented 

and a detailed CFD study was performed to understand the transversal dispersion in structured 

packed bed. Similarly, efforts have been extended to study the radial and axial liquid phase 

dispersion and liquid and gas-phase mass transfer within the sandwich structures (Higler et al., 

1999;van Baten et al., 2001b;van Baten et al., 2001a;van Baten and Krishna, 2002;van Baten 

and Krishna, 2001).  

The primary aim of this work is to develop a computational model to understand the flow 

behaviour in corrugated sheet of packing with countercurrent gas flow and to validate it 

experimentally. To validate the model, initially a simple geometry of smooth inclined plate was 

used and then the model was further extended to the complex corrugated sheet of packing.  
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Outline of this thesis 

In Chapter 2, theoretical background and various dimensionless correlation used in this work 

are presented. Various parameters like contact angle and their influence on wetting area and 

detailed literature review of different hypothesis available for contact angle is presented. 

Various empirical correlations are available in the literature to determine the effective 

interfacial surface area. Different approaches proposed by other researchers and the approach 

used in this work are also discussed. Extensive literature review of experimental and CFD 

studies contributed to the study of flow behaviour of liquid and gas phase are presented in 

detail.  

In Chapter 3, various geometries resembling the corrugated sheet of packing used in this work 

are shown along with model equations and their corresponding boundary conditions.  

In Chapter 4, the fluid dynamic behaviour of different liquids on the inclined plate is discussed 

and compared with experimental studies. The hydrodynamics of the inclined plate is studied in 

two different ways. First, wetting studies for different testing mixtures and secondly, detailed 

analysis of velocity profiles using PIV method. The comparisons between experimental and 

simulation studies are presented and the agreement is found to be very good. The detailed 

sensitivity analysis was performed to understand the change in velocity profile due to change in 

flow rate, temperature and inclination angle. Furthermore, the model was also extended to 

study the influence of the countercurrent flow in the velocity profile.  

The model developed in Chapter 4 was extended to study the flow behaviour on corrugated 

sheet of packing which is presented in Chapter 5. While studying the hydrodynamics of 

corrugated sheets of packing, different geometrical modifications are considered and studied 

using simulations. The influence in the flow behaviour due to the modification of triangular and 

smooth crimp and the changes in wetting due to the presence of perforations were discussed. 

Various empirical correlations presented in literature for predicting the effective interfacial area 

was compared and analyzed. Furthermore, the change in liquid flow, hold-up and wetting due 

to the presence of second corrugated sheet was also discussed. In Chapter 6, some conclusions 

were presented based on this work and outlook was presented for further studies.  

The model developed and utilized in this work serves as a good basis for experimental 

validation to study the flow behaviour in corrugated sheets of packing. This will help to reduce 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

4 

the experimental effort and to understand the change in fluid-dynamic and in transport 

phenomena in micro and macro level.  
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2 

2.1 Different flow regimes 

The flow of thin liquid layer along the wall with a thickness in the range of 1 mm is known as 

liquid film.  Based on the formation of liquid film, it can be categorized as falling films, shear-

driven films, condensing films and impinging jets (Dietze, 2010). Such flows are complex as 

depicted in Fig. 2.1 and can happen in many of industrial applications including nuclear 

reactors, condensers, gas turbines, etc. In distillation and absorption columns equipped with 

structured packing, more such complex flows appear where the liquid film does not develop 

smooth interface.  

Figure 2.1 Classification of different flow regimes. 

Flow regimes can be classified as laminar and turbulent. When the liquid load is very low, it 

forms a very thin film near the wall and the clear interface between the gas and liquid phase can 

be seen. With increasing liquid load, the film translates to small waves of the same amplitude in 

the transient region and develops further to turbulent region where strong waves with different 

amplitudes arise.  As described in Fig. 2.2, the flows in laminar region are considered within 

Falling films
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waves
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the scope of this thesis. Flow regimes can be described using the dimensionless Reynolds 

number, which is a function of liquid load ( , kinematic viscosity ( ) and width of the plate 

(w). Reynolds number is defined as follows: 

          (2.1) 

Figure 2.2 Schematic representation of different flow regimes. 

   

Nusselt theory (Nusselt, 1916a;Nusselt, 1916b) defined velocity u(y) as a parabolic profile for 

laminar flow with wall y = 0 to film thickness of y = . (Brauer, 1971) included the influence of 

inclination angle  to the gravity term. So the velocity profile can be written as  

                 (2.2) 

The film thickness can be calculated using the equation  

        (2.3) 

With the average velocity of  

        (2.4) 
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and maximum velocity of  

                      (2.5) 

Where, g is the acceleration due to gravity (9.81 m/s2), w is the width of the plate and  is the 

volumetric flow rate (m3/s). 

Other dimensionless numbers were also used while describing the film flow behaviour. To 

describe the gravity driven flow, Froude number (Fr) is used which is defined as  

          (2.6) 

Another number utilized while analyzing the interface between two phases in multiphase flows 

and in the flow where surface tension plays a vital role is Weber number (We).  Weber number 

can be defined as  

          (2.7) 

Kapitza number is used to describe the film flow behaviour with waves by including the 

influence of the surface tension. It is defined as 

         (2.8) 

where,  is Kapitza number.  

2.2 Approach to the problem 

Due to the very complex geometry and big size, it is very tedious to study the flow behaviour 

inside the packed columns directly. It is also very complicated and tedious to understand the 

flow behaviour in the whole column. However, it is very important to understand the local flow 

behaviour inside the small packing structure and then to use the results for further scale up 

studies. Recent improvement in computational speed is also not enough to measure the 

behaviour inside a completely packed column.  

The approach utilised in this work is shown in Fig. 2.3. To simplify the problem, 3D smooth 

inclined plate will be initially used to study the flow behaviour using a CFD model (Fig. 2.3) 

and validate it with experimental studies using μPIV method. Further, the validated model can 
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be extended to real industrial corrugated sheets of packing that resembles the packing used in 

industrial applications.  

Figure 2.3 Approach adapted in this work to study the flow behaviour. 

2.3 Wetting/Contact Angle 

2.3.1 Contact angle 

Wetting is the ability of the liquid to maintain contact with a solid surface, resulting from 

intermolecular interaction between the solid surface and the liquid. The force balance between 

adhesive and cohesive forces determines the degree of wetting as shown in Fig. 2.4.  The 

wetting phenomenon can be explained in terms of contact angle. The contact angle is the 

angle in which the liquid-vapour interface meets the solid-liquid interface. Young (Young, 

1805) defined the contact angle as the ratio between difference to the surface tension of solid-

gas and solid-liquid interaction and surface tension of liquid-gas interaction. Young’s contact 

angle is shown in Eq. (2.9) 

                   (2.9) 

Where, = Young contact angle. 

 = surface tension of solid-gas interaction. 

 = surface tension of solid-liquid interaction. 

 = surface tension of liquid-gas interaction. 
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Figure 2.4 The pictorial representation for the contact angle measurement. 

A contact angle less than 90° (low contact angle), the fluid will spread over a large area of the 

surface, and the wetting will be high. Contact angles greater than 90° (high contact angle) 

generally means that wetting of the surface is unfavorable so the fluid will minimize the contact 

with the surface and form a compact liquid droplet.

Table 2.1 The various degrees of wetting and their strength of solid-liquid and liquid-vapour interactions 
with respect to contact angle (Young, 1805) 

Contact Angle Degree of 
Wetting 

Strength of 
Solid-liquid 
interaction 

Liquid-vapour 
interaction 

Perfect wetting Strong Weak 

High wetting Strong Strong 
Weak Weak 

Low wetting Weak Strong 
No wetting Weak Strong 

Young’s contact angle measurements were performed on smooth surface. However, in most of 

the practical circumstances, liquid interacts with a rough surface that causes deviation of the 

contact angle (Wenzel, 1936). Wenzel was the first researcher to express the influence of 

roughness on contact angle. He defined the contact angle including roughness factor R.  

                   (2.10) 

where,  =  Wenzel contact angle (rough surface)  

 = Young contact angle (smooth surface) 

R = Roughness factor; ratio of effective surface to the geometric surface.  

(Cassie and Baxter, 1944) later studied in detail the influence of roughness on contact angle. 

(Cassie, 1948) defined contact angle ’ for heterogeneous surface as  

                (2.11) 
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Where  and are the maximum and minimum possible angles and Q1 is the fraction of the 

surface having contact angle  and Q2 is the fraction having angle .  

The influence of surface tension gradients on the performance of a small distillation column 

was studied in detail (Zuiderweg and Harmens, 1958). A ‘positive system’ as a binary one in 

which the liquid surface tension increases as the volatile component is removed from the liquid 

mixture. A ‘negative system’ would show the reverse effect. Thus, for a positive system, 

transfer to the vapour phase of a low-surface-tension component would locally increase the 

surface tension such that liquid from elsewhere would be attracted to that place, causing better 

liquid spreading and increased mass transfer area. Conversely, loss of a high surface tension 

component would cause liquid to flow away from that spot, possibly leaving dry patches.   

 A series of theoretical studies on the effect of roughness on wetting of an idealized sinusoidal 

surface were published (Johnson and Dettre, 1964a;Johnson and Dettre, 1964b;Dettre and 

Johnson, 1964;Dettre and Johnson, 1965). A hypothesis of advancing angle and receding angle 

was proposed and confirmed that roughening a surface increases the advancing angle and 

decreases the receding angle.  

(Ponter et al., 1967) studied the effect of different wetted wall lengths and surface roughness 

during absorption. After a series of studies, they reported that increase of surface roughness 

increases the wetting and along with surface roughness, texturing of surface can improve 

wetting.  

(Oliver et al., 1980) studied the influence of liquid spreading for different surface roughness 

experimentally. The hysteresis was observed in all the surface roughness studies. Defining a 

single contact angle for all these different situations was questioned.  

(Ponter and Au-Yeung, 1984) studied the influence of liquid viscosity on effective interfacial 

area in packed columns and compared with other theoretical correlations present in the 

literature. High order of disagreement was observed between each method.  

After extensive experimental study, (Shi and Mersmann, 1985) developed a correlation for the 

effective interfacial area in packed columns taking into account the influence of liquid 

properties like surface tension, contact angle and viscosity. They have studied eight different 

materials from stainless steel to different polymers, 4 different liquids ranging in viscosity from 

1 to 21 cP and surface tension of 23 to 72 mN/m. They have reported the strong influence of 
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contact angle on the effective interfacial area and the fact that these properties change 

considerably during long-time operation of the distillation column, which may be problematic 

for the column designers.  

(McGlamery, 1988), in his studies on film flow characteristics on textured metal surfaces, 

measured the contact angles of water, ethylene glycol and ethanol in the presence of carbon 

dioxide or oxygen. Eight different types of textured surfaces were tested and concluded that 

roughness (grooves) parallel to the direction of spreading decreases the apparent contact angle, 

whereas roughness normal to the direction of spreading has the reverse effect.  

(Stoter et al., 1993) studied the maldistribution of structured packing. In their work, they 

discussed the wetting characteristics of structured packing and the influence of liquid properties 

on wetting. Different testing mixtures were selected in order to study the influence of surface 

tension, viscosity and wetting tests on the effective area. They developed discrete cell model 

based on average mass, momentum and energy equations which enables the prediction of 

velocity profiles. 

The flow behaviour of liquid on textured surfaces especially considering the influence of 

contact angle was studied experimentally. Both smooth and corrugated surfaces were used and 

the contact angle was measured using the Wilhelmy plate method by (Shi and Mersmann, 

1985). They reported the hysteresis effect on measuring contact angle similar to the report of 

(Shi and Mersmann, 1985) and (McGlamery, 1988). They also compared the wetting behaviour 

of liquids with similar surface tension and different viscosities. It was observed that a contact 

angle decreases with an increase in surface roughness or surface texturing which is in 

accordance to Wenzel Equation (Nicolaiewsky and Fair, 1998).  

The influence of surface tension on the performance of packing was reported as the change in 

effective packing area. When the surface tension was increased, the fractional area decreases by 

approximately a factor of 2 on going from 250Y to 500Y packing.  The similar tests at reduced 

surface tension showed that the area of 250Y was unchanged, whereas that of 500Y increased 

by 50%. This indicates that, at high surface tension, access to the surface of the 500Y packing 

was being inhibited and lowering the surface tension served to maximize the effective area of 

the packing (Tsai et al., 2008). 
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There is a gap in predicting the wetting behaviour on corrugated sheets of packing by taking 

surface tension, contact angle and other material properties into account. This will be addressed 

in next sections. 

2.3.2 Effective Interfacial area  

 The effective interfacial area (aeff) is the surface area available for mass transfer and can be 

related to the magnitudes of both individual mass transfer coefficients and liquid holdup. This 

is also related to the total packing surface area per unit volume, ap. 

For completely wetted surface, (Bravo et al., 1985)

                  (2.12) 

For partially wetted packing eg., gauze packing  (Fair and Bravo, 1990) 

                  (2.13) 

where, w is the discount factor that is the function of liquid rate and surface wettability.  

w  = 0.1 – 0.3 , for poorly wetted surface. 

w  = 0.8 – 1.2 , for well wetted surface. 

An interfacial area in the case of structured packing was found to be relatively independent of 

gas flow rate but highly dependent on the liquid flow rate (Rocha et al., 1993). 

The effective interfacial area was modelled as the primary function of total packing area ap, and 

the contact angle between the liquid-solid interface based on the fluid hydraulics over an 

inclined plane. (Shi and Mersmann, 1985). Equation 2.14 was given by (Rocha et al., 1996). 

                      (2.14) 

where, FSE = surface enhancement factor (for mellapak, FSE = 0.35). 

Later, the expression for interfacial area was developed that could be applied for any kind of 

packing in counter-current flow (Billet and Schultes, 1999).  

             (2.15) 
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where, ReL, WeL, FrL are the dimensionless Reynolds, Weber and Froude number for the liquid 

phase and deq is the equivalent diameter.  

Another technique of CO2-NaOH absorption-chemical reaction technique was used to 

determine the effective interfacial area for Mellapak structured packings (de Brito et al., 1994). 

Based on the results, the ratio of effective interfacial area and the total packing area can be 

related as  

             (2.16) 

Another simple relationship was given by (Olujic et al., 1999) to determine the effective 

interfacial area for Montz-pak B1-250 type of packings based on the experimental results of 

(Stoter et al., 1993).  

                      (2.17) 

where, is a void fraction of the packing surface i.e., the fraction of surface area occupied by 

holes (0.1 for Montz-pak BSH, Mellapak). A and B are constants dependent on packing type 

and size (e.g. A = 2.143*10-6 and B = 1.5 for Montz-pak BSH). 

After analyzing many organic and aqueous systems for reliable HETP or HTU values, an 

empirical correlation for the effective interfacial area that holds good for all types of Mellapak 

was derived (Duss et al., 1997). 

                      (2.18) 

where, z1, z2, z3, z4 and z5 is dimensionless constants, fL, a (QL/ap) is a dimensionless function 

of the specific liquid load and the total packing area and fF(F) is a dimensionless function of the 

F-factor, F. 

The interfacial area was also modelled as a function of liquid superficial velocity and density 

(Spiegel and Meier, 1988). 

              (2.19) 

The proportionality constant for the above relation need to evaluate from the test data.  
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Another model considering the flow channel similar to the bundle of column with diameter de, 

the inclination angle of  with respect to the horizontal, film thickness based on Nusselt film 

thickness  was presented (Brunazzi et al., 1995). 

                          (2.20) 

For random packing, (Onda et al., 1968) presented a correlation  

          (2.21) 

Considering the Onda model, (Olujic et al., 2004) presented a correlation for effective 

interfacial area.  

                         (2.22) 

Where,  

         (2.23) 

                                 (2.24) 

These correlations described in this section will be discussed in detail in section 5.2 to 

understand the prediction of wetting area.   

2.4 Geometrical parameters of the Corrugated Sheet of Packing 

Geometrical features of corrugated sheets of packing plays a crucial role in flow behaviour 

inside the packing. The surface of the corrugated sheets can be grooved, lanced, textured or 

smooth. The sheets may be perforated or unperforated. The sheets on each element are arranged 

at a fixed angle to vertical. Adjacent elements are rotated so that the sheets of one element at a 

fixed angle to layer below (Kister, 1992). 

The corrugation size defines the opening between adjacent corrugated layers (see Fig. 2.5). The 

ratio of B to h, S to h, and the crimp angle ( ) define the geometry of the flow channel and of 

the vapour-liquid contact zone. Packing can be classified based on the specific surface area. 

Crimp angle varies from 28˚ to 45˚ and base-to-height ratios range from 2:1 to 4:1. Most of the 
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packing are not a strictly triangle as shown below but is the rounded top apex. Corrugation 

angle ( ) also plays important role in deciding the capacity of the packing.  

Figure 2.5 Elementary geometry details of the corrugated sheet of packing. 

2.4.1 Element Geometry 

Due to corrugations, vapour and liquid flow through a single element spreads in a series of 

parallel planes. To have better spreading, each element is rotated at a certain angle with respect 

to the element below. The angle of rotation and element height affect the extent of vapour and 

liquid spread in a structured packing. For this reason, element height is relatively short 

(typically 20 to 28 cm) and the angle of rotation is around 90˚. As mentioned earlier, 

corrugation angle of about 45˚ to the vertical, enables good drainage of liquid and avoid 

stagnant and liquid accumulation, and small enough to prevent gas from bypassing the metal 

surfaces.  

The liquid hold-up of three different structured packing with different crimp angle and specific 

surface area using gamma ray absorption technique was measured. Also, derived the empirical 

equation for the hold-up as a function of liquid load, liquid viscosity and specific surface area  

(Suess and Spiegel, 1992).  

The result of two different packing series from Montz GmbH namely, B1 (embossed sheet 

metal, non-perforated) and BSH (expanded metal, perforated) packing were studied. In total, 

six different packing with two different corrugation angles of 45° and 60° and two different 

specific surface areas of 250 and 400 m2/m3 was investigated. The outcome showed that 
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increasing the corrugation angle decreases the pressure drop, increases the capacity and 

decreases the mass transfer. BSH packing showed a slight larger capacity than B1 packing and 

the reason can be attributed to the presence of holes in the surface. The influence of the 

corrugation angle on the performance of the packing was presented (Olujic et al., 2000).  

An idea of inserting a monolith like structure between the two corrugated sheets of packing has 

also been studied. In this way, specific surface area was observed to be increased considerably. 

Although, the increase in surface area led to significant reduction in pressure drop, 

accompanied by an appreciable capacity increase with respect to that of original packing. 

However, the closed channel structure proved to be a detrimental effect on mass transfer 

efficiency (Behrens et al., 2001). 

The influence of change in geometry in both capacity and pressure drop was investigated 

extensively. Various modifications were made in the geometry like height-staggering, packing 

sheets flattened end of the bottom part, both flattened ends, with only end flattened, packing 

sheets in which the corrugation on the bottom and top is bent vertically, with only the bottom 

part is bent vertically (see Fig. 2.6). For the modification with flattened edges of packing 

sheets, the capacity increase was about 55%.  Height staggered sheets and sheets in which the 

corrugations at the bottom and top side are bent to the vertical showed an increase in capacity 

of about 38%. While the use of the modifications on the top side only reduced the pressure drop 

but did not enhance the capacity, these tested modifications at the bottom side resulted in the 

substantial capacity increase (Bender and Moll, 2003).  

Figure 2.6 Different elementary geometrical modification of corrugated structured packing. 

The effect of opening on the performance of the structured packing was studied. Two different 

opening angles of 90° and 20° were studied both numerically and experimentally. It was also 

presented that when the opening angle was decreased from 90° to 20°, pressure drop of the 
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packing could reduce by 35% and mass transfer could increase by 13% compared to Mellapak 

packing having the same specific surface area (Luo et al., 2008).  

2.4.2 Surface features 

Most of the structured packing surface have roughened, or enhanced surfaces that assists the 

lateral spread of liquid, promotes film turbulence and enhances the area available for the mass 

transfer. The measurements performed in the laboratory scale showed that mass transfer 

efficiency and wetter area are enhanced by textured surfaces. The extent to which mass transfer 

was improved varies with type of texturing. Texturing is of various types like grooving, 

lancing, shallow embossing and deep embossing. The different examples of the surface textures 

are shown in Fig. 2.7. In Fig. 2.7 (a) and (b) represents the corrugated sheet with 2 D textures, 

Fig. 2.7 (c) represents the corrugated sheets without micro textures, Fig. 2.7 (d) shows the 

corrugated sheets with 3D microtextures and perforations, whereas Fig. 2.7 (e) shows the 

corrugated sheets with 3D microtextures without perforations.  

Figure 2.7 Different packing used in industrial applications; (a) & (b) 2D surface textures, (c) Smooth, 
perforated; unperforated (d) Grooved, perforated; (e) 3D – Embossed, unperforated. 

The surface of most of the structured packing contains perforations. The holes serve as 

communication channels between the upper and lower surface of each sheet. When there are no 
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holes, both sides of a sheet will be wet only at low liquid rates. At high liquid flow rates, the 

liquid will run down the top surface with little liquid wetting the bottom surface. This may 

cause a reduction in efficiency as liquid flow rates are raised.  

Some major types of packing are tabulated in Table 2.2. Various microstructures such as 

grooves, lances, embossed surfaces are seen along with the presence of perforations and 

corrugation of 45° and 60°. Due to complication in meshing, the influence of microstructures 

was not considered within the scope of this work. 

Table 2.2 Different corrugated sheet of packing available in industrial application 

Name of packing Supplier Surface 
textures 

Crimp 
apex 

Perforations Corrugation 
angle 

Mellapak Sulzer 
Chemtech Grooved Sharp Yes;  

holes 
45˚ or  

60˚ 

Gempak Glitsch Inc Lanced Sharp Yes;  
holes 45˚ 

Montz B1 Julius Montz Embossed Sinusoidal No 45˚ 

MAX-PAC Jaeger Products Smooth Sharp Yes ;  
W-shape 45˚ 

Montz BSH Julius Montz 
Expanded 

metal 
surface 

Sharp No 45˚ 

Flexeramic 
Koch 

Engineering 
company 

Smooth Round No 45˚ 

Intalox high 
performance 

structured packing 

Norton 
Company 

Deeply 
embossed Flat Yes; tiny 45˚ 

Various research studies mainly experimental work have been contributed exclusively to study 

the influence of surface textures on flow behaviour and their further impact on mass transfer.  

The effect of 2 dimensional roughness on the flow behaviour and hence in gas-liquid 

absorption was reported (Davies and Warner, 1969). They observed that the rate of absorption 

of CO2 into water flowing over a plate with large scale roughness can go up to 3.5 times faster 

than a smooth plate. The results are also compared with theoretical correlations. Two 

dimensional roughness considered and other factors are shown in Fig. 2.8.  
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Similarly, various research contributions are presented to know the influence of film flow over 

complex and periodic surfaces (Zhao and Cerro, 1992;Shetty and Cerro, 1993;Shetty and 

Cerro, 1998).  

Figure 2.8 Different 2D roughness behaviour studies by (Davies and Warner, 1969). 

Different discussion regarding the instability and eddies in viscous flow over inclined wavy 

planes are reported (Wierschem and Aksel, 2003;Wierschem et al., 2008). 

The gravity-driven flow of a liquid film down an inclined wall with oblique two-dimensional, 

orthogonal three-dimensional, hexagonal three-dimensional corrugation was considered. A 

perturbation analysis for small-amplitude corrugations was performed where in the wall 

geometry was expressed as Fourier series consisting of linear superposition. The reduction in 

surface deformation was reported for three-dimensional geometry than two-dimensional 

corrugations (Luo and Pozrikidis, 2007;Luo, 2006;Blyth, 2006). 

Recently, the influence of two dimensional and three dimensional textures on the structured 

packing was studied at microscopic level using micro PIV and PTV (Paschke, 2011). Velocity 

profiles on the three dimensional microstructures in Montz Pak and the change in velocity 

vectors on a different region of small textures for was analyzed systematically using PIV.  

Three dimensional microstructure analyzed is shown in Fig. 2.9.  
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The impact of liquid-side controlled mass transfer in falling liquid films was quantified 

experimentally. Micro textures used in industrial applications close to 1mm were analyzed.  It 

was also reported that texture can significantly influence the mass transfer coefficient and it can 

increase up to 90% comparing the flat smooth surface. More detailed review of various two and 

three dimensional surface textures on film flows have been presented elsewhere (Kohrt, 2011). 

Figure 2.9 Closeup view of tetrahedral microstructure (Paschke, 2011). 

In general, it is very clear that the presence of surface textures increases the interfacial area and 

wetting which in turn increases the mass transfer. Even though lot of experimental studies are 

available, no empirical correlations or theoretical models are available in-order to describe the 

wetting on corrugated sheet of packing with micro textures on the surfaces.  

2.5 CFD studies and other approaches 

2.5.1 Mesoscale - Microscale approach 

A new predictive combined mesoscale-microscale methodology was developed to study the 

fluid dynamics occurring on the macro scale in structured packing in the column. (Petre et al., 

2003;Larachi et al., 2003). The entire structured packing is divided into five different 

Representative Element Units (REU) as shown in Fig. 2.10 and hence the dry pressure drop can 

be calculated individually and the total pressure drop can be calculated by summing up all the 
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individual pressure drop in different REU’s. This requires less computing power. The approach 

was validated using experimental dry pressure drop for five different packing types.   

Later, a two-fluid hydrodynamic model was developed based on volume average mass and 

momentum balance equations for the counter-current gas-liquid structured packing. The two 

parameters i.e., the laminar and turbulent Ergun constants were estimated using the above 

mentioned mesoscale-microscale approach and the results were validated with published 

literature data related to pressure drop, liquid holdup and wetted area under various conditions 

(Iliuta et al., 2004;Iliuta and Larachi, 2001). 

Figure 2.10 Typical REU's (a) Montz pack (b-e) 5 different REU's as proposed by (Petre et al., 2003). 

Recently, the same methodology was adopted to study the dry pressure drop for developed Gas 

flow in structured packing using CFD. Different turbulence models were tested to match with 

the theoretical correlations and the mean relative error was around 6% (Said et al., 2011). 

One of the REU’s presented in the above work i.e., the criss cross junctions were further 

extended to have 4 channels as shown in Fig. 2.11 and the flow behaviour and mass transfer 

was studied (Chen et al., 2009). Liquid holdup, wetted area and HETP was compared between 

experiment data, CFD study and the model developed by (Gualito et al., 1997). 
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Figure 2.11 Representative element unit studied by (Chen et al., 2009). 

2.5.2 Multiscale approach 

A multi-scale approach for analyzing the gas-liquid flows in structured packing was presented 

(Raynal et al., 2004b) as shown in Fig. 2.12. Due to the limitation in the computational 

resources, two phase flow calculations with a large 3D geometry is presently impossible. 

Calculations are therefore performed by combining 2D and 3D geometry. At first step, the 

irrigated packing calculations, i.e. two-phase gas-liquid flow, are carried out in a 2D geometry 

to determine liquid holdup. In the second step, dry packing calculations i.e., only gas flow is 

carried out in 3D geometries to determine pressure drop. Finally, combining these two pieces of 

information in the last step, two-phase flow pressure drop across the packing is calculated.  

Further, simulations are carried out on a very large scale considering the packed bed as porous 

media, the latter being characterized by pressure drop coefficients obtained from earlier steps 

(Raynal et al., 2004b). Pressure drop calculations from simulations are compared with 

experiments conducted using gamma tomography and all the model values from CFD were 

within 20% of experimental values.  

The same method was further extended to study the influence of texture on corrugated sheets of 

packing. As described above, the influence of textures was incorporated in the first step of CFD 

simulations and the rest of the calculations are carried out (Raynal et al, 2004). 
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Figure 2.12 Schematic representation of calculation strategy using multiscale approach                        
(Raynal et al., 2007). 

2.5.3 Hydrodynamic Analogy approach 

The Hydrodynamic Analogy (HA) approach was proposed to describe the hydrodynamics and 

transport of the process where the exact location of the phase boundaries is not available. The 

idea of this approach is to replace complex hydrodynamics in column with geometrically 

simple flow patterns. The idea of this hydrodynamic approach is presented in Fig. 2.13 (Shilkin 

and Kenig, 2005).  

Figure 2.13 Hydrodynamic modelling approach presented by (Shilkin et al., 2006). 

The simplified geometric representation of packing was considered in the physical model. It 

consists of a bundle of channels with identical cross sections as shown in Fig. 2.14. The inner 

surfaces of these channels are wetted by downward flowing liquid, whereas the rest of the 

volume is occupied by a countercurrent vapour flow. Both flows are presumed to be laminar 
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and fully developed within intervals of certain length and totally mixed between the channels. 

The interval lengths for each phase represent the packing specific model parameters and are 

derived from the packing geometry (Shilkin et al., 2006). 

The Hydrodynamic Analogy model is extended to govern a reactive stripping process with 

heterogeneously catalyzed liquid-phase reactions. It is also compared with experimental 

investigation and proved that the extension of the Hydrodynamic Analogy model to the reactive 

column internal is possible (Brinkmann et al., 2010). 

Recently, the HA method was also extended to develop an energy efficient packing for vacuum 

distillation. A two-step procedure was adopted. As the first step, the pressure drop and the local 

eddy viscosity distribution was calculated using CFD methods. These are used as input for 

hydrodynamic approach to calculate the packing separation efficiency (Shilkin et al., 2010). 

Figure 2.14 Schematic representation of model presented by (Shilkin et al., 2006). 

2.6 CFD Studies on Structured packing – a short review 

The mathematical model (Arbogast et al., 1990) developed to calculate flow in porous media 

was extended to study the two-phase flow (Mewes et al., 1999). The model is based on the idea 

that the entire porous structure can be subdivided into elementary cells. An elementary cell is a 
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representative volume typically comprising several pores. The whole work was dedicated to 

study the same in random packing (Loser, 2002). As a continuation to that, the same model was 

extended to study the two-phase flow in structured packing in macroscopic level (Mahr and 

Mewes, 2007;Mahr and Mewes, 2006a). The geometry representing the column of 960 mm 

height and 288 mm inner diameter was meshed. Four elements of packing, rotated against each 

other by 90  with an effective corrugation angle of 19  were used. The model of packing of 

MELLAPAK 250Y made from polypropylene was considered. Simulations are carried out 

using CFX 10.0 to study the counter-current two phase flow (Mahr, 2007).   

Figure 2.15 Liquid fed from a point source at specific liquid load (Mahr, 2007). 

The numerical result of the liquid flow is shown in Fig. 2.15, which shows the flow of liquid 

through the packing and the redistribution of liquid when it meets the joint of the packing 

elements. The flow behaviour was also studied experimentally using X-ray tomographic 

visualization technique using contrast agent tracer (Mahr and Mewes, 2006b).  

(Gu et al., 2004) studied the hydrodynamics of falling film flow on inclined and wavy plates 

corresponding to the surface texture of structured packing using 2D CFD simulation. It was 

reported that the liquid flow patterns are dependent on the microstructures of plate when there 

is no gas flow. 

(Yuan et al., 2005) proposed a novel internal for packed columns and performed both 2D CFD 

simulation and experimental analysis of two phase cross/countercurrent flow. The installation 

of this new internal increase the radial gas velocity and decreases the axial velocity which in 

turn reduces the pressure drop.  
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An exclusive study was performed to study the flow behaviour of liquid film and rivulets on 

inclined planes. A Volume-of-fluid like model in CFX 5.0 was utilized to study the same. The 

influence of the surface tension was taken into account and the simulation studies were 

validated with experimental work (Repke et al., 2007;Hoffmann et al., 2005;Hoffmann et al., 

2006;Xu et al., 2008).  

The three dimensional model to predict the gas flow field in corrugated sheet of packing by 

dividing the packing into cells and solving mass, momentum and energy balances was 

presented (Stoter et al., 1993). An extensive study to know the reason for both small and large 

scale maldistribution in structured packing and to model was performed. Two different types of 

packing, MONTZ-PAK B1-250 and RALU-PAK 250YC were considered for the study. The 

first one has an embossed surface without perforations while the second one has jalousie like 

opening. The predicted distribution was compared with an experimental study. The distributor 

model was developed to realize the estimate of initial liquid distribution (Stoter, 1993). 

(van Baten and Krishna, 2002) analyzed the gas and liquid phase mass transfer in KATAPAK-

S structures using CFD simulations. The gas phase mass transfer was in good agreement with 

the theoretical correlation of (Subawalla et al., 1997), whereas the liquid phase mass transfer 

was one order of magnitude less than the correlation.  

Liquid flow on smooth and structured packing was simulated using 2D CFD simulations and 

compared with experimental results. The mechanism of droplet formation and liquid-film 

breakup over flat and corrugated vertical plates with the influence of countercurrent gas-liquid 

flow was performed (Szulczewska et al., 2003). 

The behaviour of complex film flow on the packing surfaces was studied extensively using 

CFD and compared with experimental results. The sensitivity of the film hydrodynamics to 

change in fluid and surface properties was tested using the model. The results of the gas-liquid 

interface were in good agreement with the theory. Various geometries have been developed to 

resemble the corrugated sheet of packing and hydrodynamics were studied using CFD tool 

CFX (Valluri et al., 2002;Valluri et al., 2005;Valluri, 2004). 

The three dimensional CFD study was performed for one component single phase flow and 

two-component single-phase flow with species dispersion and the model was developed based 

on the details of the packing geometry. Experiments were performed on Flexipac 3Y packing 

and the circular and rectangular column with different structured packing –BX packing with 
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corrugation angles of 30° and 45° and Flexipac 3Y. Simulation predicted good agreement for 

pressure drop between experiment and models (Wen et al., 2007).  

A direct numerical simulation to study physical and reactive absorption in gas-liquid flow on 

structured packing was recently published. It also showed that the liquid side mass transfer is 

well predicted by the Higbie theory. The numerical results are compared to approximate 

solution presented in the literature (Haroun et al., 2010a;Haroun et al., 2010b). 

To predict the effective area in structured packing available for transport processes, CFD was 

utilized and the results are compared with different available empirical equations            

(Shojaee et al., 2011). 

The gap between understanding the wetting behaviour, velocity deviation, holdup due to 

change in modifications in geometry of corrugated sheets of packing and liquid distributors still 

exist and there is no universal rule for the same. This work is completely devoted to the better 

understanding and to develop one model to study the influence of all different parameters 

which in turn will give better idea for column design.  

2.7 Experimental Studies – a short review 

Various experimental efforts were carried to study the hydrodynamics of flow in corrugated 

sheet of packing. Different types of optical measurement methods like Laser Induced 

Fluorescence (LIF), Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV) and 

Tomographic methods were used to understand the liquid velocity profile, holdup and film 

thickness in different corrugated sheet of packing with and without surface textures. These 

studies gave good insight about the flow behaviour and thus more detail about the key 

parameters to improve the efficiency of the packing. Here, brief reviews of various 

experimental studies are summarized. Earlier studies were conducted to formulate a universal 

model equation to describe nonlinear nonstationary waves on the surface of liquid films for the 

broad range of Reynolds numbers. Experiments were performed using shadow method 

(Alekseenko et al., 1985). It was also concluded that full two-wave equations could describe all 

two-dimensional nonlinear wave regimes observed on the surface of falling liquid films.   

The hydrodynamics of the three dimensional waves in laminar flow was studied using 

Fluorescent imaging technique and PIV method. The formation of waves and their interaction 
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with each other was studied and explained extensively for very broad range of flow rates  

(Adomeit and Renz, 2000;Adomeit, 1996). 

The effect of physical properties of liquids and of surface treatment on wetter area of structured 

packings was studied experimentally. Several wetting tests were performed on metallic and 

ceramic plates with flat, smooth or textured surfaces. The experimental results show that the 

liquid film width, and hence the wetter area, decreased with liquid viscosity contrary to the 

earlier correlations in the literature. A new statistical correlation for the estimation of the wetter 

area and for the liquid film thickness was presented (Nicolaiewsky et al., 1999). 

The importance of operating and design parameters to mass transfer in the column equipped 

with four different structured packing namely Gempak 4A, Mellapak 500Y, Mellapak 500X, 

and Optiflow was compared using pilot plant measurements (Aroonwilas et al., 2001). 

The usage of X-ray computed Tomography to determine the Gas-liquid contact area and liquid 

hold up for structured packing was demonstrated (Green et al., 2007). They compared the 

liquid holdup of Mellapak 250Y with their experiments.  

 To measure the liquid film thickness another method using fibre optic sensor was presented 

(Alekseenko et al., 2003). A detailed experimental investigation was performed using this 

technique to measure the film thickness inside the column equipped with corrugated structured 

packing. The results showed that the maximum liquid film thickness is near the contact points 

of two sheets where the liquid will be redistributed over the surfaces (Alekseenko et al., 2008). 

To determine the mass transfer characteristics of structured packing, two different methods, a 

physical method using high-resolution gamma-ray tomorography and chemical method 

developed by (Danckwerts, 1970) was utilised. The experimental results are compared with 

Higbie-Bravo model and a new adapted Higbie model. From these results, it can be seen that 

the gas side mass transfer is not a rate limiting (Raynal et al., 2004a). 

A further detailed work on the measurement of the film velocity of periodically excited two-

dimensional-wave films with the Particle Image Velocimetry (PIV) was done. The influence of 

the wave surface on the heat transfer was examined (Al-Sibai et al., 2003;Al-Sibai, 2005). 

Wetting behaviour of structured packing was studied both theoretically using CFD and 

experimentally using optically assisted mechanical sensor using needle which is perpendicular 

to the plate surface. Hydrodynamics of flow behaviour in Rombopak 4M was studied both 
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theoretically and experimentally. The liquid hold-up, wetting behaviour and interfacial area 

was studied and compared with model available in literature (Ataki et al., 2006;Ataki and Bart, 

2006;Ataki, 2006). 

Single phase flow behaviour of glycerol solution over the structured packing was studied 

experimentally using Laser Doppler Velocimetry and validated using CFD simulations. 

Experiments were performed on Plexiglas corrugated sheets and the simulations are also 

performed in the similar geometry. Author concluded that the velocity distribution along the 

horizontal plane show good special periodicity (Chen et al., 2007). 

Optical measurement methods such as Particle-Tracking-Velocimetry (PTV) and Laser-

Induced-Fluorescence methods were further extended to study the multiphase flow behaviour 

(Ausner, 2006). In addition, the concurrent flow behaviour of immiscible liquids were also 

studied. Experimental results are also compared with CFD simulations and are validated. 

(Hoffmann et al., 2005;Hoffmann et al., 2006). A new micro Particle Image Velocimetry was 

developed which enables to measure the film flow on both smooth and textured surface. The 

results are compared and validated with CFD simulations. (Repke et al., 2007;Paschke et al., 

2007;Paschke, 2011).   

A gamma ray tomography measuring method was proposed to measure the liquid holdup and 

understand the liquid distribution in two different packings such as high capacity Mellapak 

252.Y and Koch Glitsch third generation random packing IMTP50 (Alix and Raynal, 2008). 

The influence of two-dimensional and three-dimensional micro textures on the surface of the 

corrugated sheet of packing was studied in relation to liquid holdup and impact on the mass 

transfer in countercurrent operations. Here, the importance of textures on the surface in 

increasing the efficiency of the packing has been discussed extensively (Kohrt et al., 

2011;Kohrt, 2011). 

A novel structured packing using carbon fibers called Sepcarb was patented (Patent, 2005). 

Detailed analysis of this structured packing including hydrodynamics and mass transfer 

characteristics was presented (Bessou et al., 2010;Alix et al., 2011). 

Recently, a practical methodology was developed to overcome the common problems 

encountered in X-ray tomography measurements to measure hydrodynamics in catalytic 

packings (Viva et al., 2011a). Two catalytic packing were analysed and the results were 
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published. The details regarding the liquid holdup and effective interfacial area distribution of 

catalytic packing were presented as shown in Fig. 2.16 (Aferka et al., 2011;Viva et al., 2011b). 

Figure 2.16 Dry and irrigated images for (a) Mellapak 752 Y ; (b) Katapak-SP 11 from  X-tomographic 
studies (Viva et al., 2011). 

Even though, various works have been performed to understand the flow behaviour in 

structured packing, the gap exists in order to understand the local velocity profile. This works 

enables us to give some deep insight on the flow behaviour especially on wetting and local 

velocity profiles for different testing systems.   
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3 NUMERICAL BACKGROUND AND EXPERIMENTAL 
DETAILS 

The aim of the work is to study the local flow behaviour in corrugated sheets of packing 

computationally. In this chapter, details of the numerical background, geometry details and 

experimental setup will be described. In section 3.1, two different geometries namely the 

inclined plate and the corrugated sheets of packing will be presented along with their 

dimensions and boundary conditions. In section 3.2, details of the Volume of Fluid model and 

Continuum Surface Force model along with mathematical equations will be explained. Further, 

in Chapter 3.3, details of the experimental set up used to study the wetting behaviour of 

different corrugated sheets of packing and PIV to study velocity profiles will be presented.     

3.1 Geometry 

As explained in Chapter 2, two major geometries were considered, namely inclined plate and 

corrugated sheets of packing. Inclined plate geometry was studied in order to validate the 

model with experimental studies.  

3.1.1 Inclined plate 

To analyse the fluid flow behaviour, a three dimensional smooth inclined plate was considered. 

The dimensions of the plate are 0.12 × 0.01× 0.05 m as shown in Fig. 3.1, which resembles the 

inclined plate used in experimental studies. The details of the dimensions and number of cells 

are shown in Table 3.1. 

The whole geometry is meshed using Gambit 2.3, a meshing tool from Ansys Inc. (ANSYS 

INC., 2009b).  The geometry consists of two different meshing zones. The mesh is very fine 

i.e., approximately 2.9 × 10-5 m in the liquid region and the interface around the gas and liquid. 

A coarser mesh was used in the region more than half the height of the plate, which contains 

only gas phase. The very fine mesh enables to capture the gas-liquid interface. The geometry 

consists of 516,000 cells and the inclination angle ( ) to the base of the plate is 60 . The 

boundary conditions on the sides of the plate assigned as walls to resemble the experimental set 

up held by steel supports on the left and on the right side. 
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Figure. 3.1 Geometry details of inclined plate. (a) Isometric view, (b) Meshes in the fine zone. 

To study the wetting behaviour, geometry similar to the one shown in Fig. 3.1 except for the 

width of 100 mm was considered. Details of the dimensions of the two different geometries are 

listed below:  

Table 3.1 Dimensions of the two different inclined plate geometry considered in this work. 

Geometry Length (mm) Width (mm) Height (mm) No. of cells 

1 120 50 10 516,000 

2 120 100 10 600,000 

Boundary conditions considered in these simulations are as follows.  

Table 3.2 Details of boundary conditions utilised for wetting studies and velocity profiles studies. 

Without countercurrent – 
wetting studies 

Without countercurrent – 
velocity profile 

With countercurrent – 
velocity profiles 

Inlet Pressure outlet Velocity inlet Pressure inlet

Outlet Pressure outlet Pressure outlet Pressure inlet 

Top Velocity inlet Pressure outlet Wall 

Bottom Wall (with contact angle) Wall (with contact angle) Wall (with contact angle) 

Sides Wall (with contact angle) Wall (with contact angle) Wall (with contact angle) 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

33 

3.1.2 Corrugated sheets of packing 

To study the flow behaviour in corrugated sheet of packing, four different modifications are 

considered. List of geometries used in this work are tabulated in Table 3.3. Four major 

modifications such as Triangular crimp, Sinusoidal crimp with and without perforations and 

with two corrugated sheets of packing are taken into consideration. These modifications are 

chosen to avoid simplification of geometry and to resemble the real corrugated sheets of 

packing.  

Table 3.3 List of different geometrical modifications considered in this work. 

S. No. No. of sheets Crimp apex Perforations Surface textures Crimp angle 
1 One Triangle No Smooth 45° 
2 One Sinusoidal No Smooth 45° 
3 One Sinusoidal Yes Smooth 45° 
4 Two Sinusoidal No Smooth 45° 

In most of the computational studies until now, major simplification was in the crimp apex of 

the corrugated sheet of packing. To reduce the complexity in meshing, crimp apex was 

considered as strict triangular as shown in Fig.3.2 (black line).  However, most of the real 

industrial packing have smooth crimp surface (red line in Fig. 3.2). To understand the 

difference in flow behaviour due to this modification, two different geometries with both 

triangular crimp and smooth surface are developed. 

Figure 3.2 Line sketch showing of Triangular (black) and Smooth (red) crimp apex. 

Table 3.4 Dimensions of different geometries resembling corrugated sheet of packing studied in this work. 

Geometry Height 
(mm) 

Base 
(mm) 

Crimp 
angle (°) 

Crimp apex 
diameter 

(mm) 

Perforations 
diameter 

(mm) 

No. of cells 

C1 7 31.11 45° 0 0 129291 

C2 7 31.11 45° 0.7 0 1143600 

C3 7 31.11 45° 0.7 4 1143600 

These modifications are meshed using ICEM CFD 12.0 (ANSYS INC., 2009b).  
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The geometrical details of the sketch with triangular crimp are shown in Fig. 3.3 and the 

smooth crimp is shown in Fig. 3.4. Overall dimension of the rectangular geometrical domain is 

132 × 88 × 17 mm. Corrugation angle used in all the geometries are 45˚. As shown in Fig. 3.4, 

gap of 5 mm on the top and bottom of the corrugation facilitates to measure the liquid hold-up 

and to understand the change in liquid flow pattern. Fig. 3.5 shows the meshing of the 

geometry and it consists of 1,143,600 cells.  Another major geometrical modification 

considered is the perforation of 4 mm diameter with pitch of 10 mm along the length and width 

of the geometry which is  shown in Fig. 3.6. The geometry shown in Fig. 3.6 is two-in-one 

geometry in which the influence of the perforations can be included by changing the boundary 

conditions. In most cases, the film thickness does not exceed 1 mm and hence the width or gap 

is sufficient. This further helps in giving a closed geometry for corrugated sheet with 

perforations.  

Fig. 3.7 shows the geometry in which two corrugated sheets are arranged. As in practical 

applications, one corrugated sheet is rotated 90° with respect to another. The details of the 

crisscross junctions are explained in detail Chapter 5.3. 

Figure 3.3 Schematic of corrugated sheet of packing with triangular crimp. (a) top view, (b) side view,        
(c) isometric view. Dimensions are same as shown in Fig 3.4. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

35 

Figure 3.4 Schematic view of corrugated sheet of packing without holes. (a) top view, (b) side view,             
(c) isometric view. 

Figure 3.5 Meshes shown in detail for corrugated sheet of packing. (a) top view, (b) side view,                      
(c) isometric view. 

(a)

(b)

(c)
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Figure 3.6 Schematic view of corrugated sheet of packing with holes. Dimensions are same as in Fig 3.4.    
(a) top view, (b) isometric view. 

Figure 3.7 Schematic view of two corrugated sheets of packing with smooth crimp. (a) top view,                 
(b) side view, (c) isometric view. 

Details of the boundary conditions used in the simulations of corrugated sheet of packings are 

as listed in Table 3.5.  The influence of perforations has been introduced in simulation by 
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changing the boundary conditions of the holes in the geometry. For the simulation with 

perforations, boundary conditions of the perforations will be considered  assigned as interior, 

otherwise it will be assigned as wall. This method helps in using the same geometry for both 

the simulations and helps in comparing the influence later.  

Table 3.5 Boundary conditions used in simulation of corrugated sheet of packing with and without holes. 

Simulations without 
perforations 

Simulations with 
perforations 

Inlet Velocity inlet Velocity inlet 

Top Pressure outlet Pressure outlet 

Bottom Pressure outlet Pressure outlet 

Corrugation – base Wall (with contact angle) Wall (with contact angle) 

Corrugation – holes Wall (with contact angle) Interior 

Sides Symmetry Symmetry 

Details of the boundary conditions used in the simulations of corrugated sheets with triangular 

crimp and two corrugated sheets are shown in Table 3.6. For the simulation with two 

corrugated sheets of packing, both the sheets was assumed wall boundary condition with 

contact angle which enables to include the influence of contact angle in the flow behaviour.  

Table 3.6 Boundary conditions for geometry with triangular crimp and two corrugated sheets of packing.

Triangular crimp geometry Two corrugated sheet geometry 

Top Pressure outlet Wall 

Bottom Wall ( with ontact angle) Wall (With contact angle) 

Inlet Velocity inlet Velocity inlet 

Outlet Pressure outlet Pressure outlet 

Sides Symmetry Symmetry 

3.2 Details of the model 

The simulations were carried out with the commercial tool ANSYS Fluent 12.0, ANSYS Inc. 

The Volume of Fluid (VOF) model (Hirt and Nichols, 1981) with geometric reconstruction 

scheme was used which is one of the limiting cases of Euler-Euler homogenous model.  The 

VOF model considers that the gas and liquid phase are not interpenetrating.  



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

38 

3.2.1 Volume of Fluid (VOF) model 

The VOF model is utilised based on the assumption that two or more fluids are not 

interpenetrating. For each phase that is added, a new variable is introduced: the volume fraction 

of the phase in the computational cell. In each control volume, the volume fractions of all 

phases sum to unity. The fields for all variables and properties are shared by the phases and 

represent volume-averaged values, as long as the volume fraction of each of the phases is 

known at each location. Thus, the variables and properties in any given cells are either purely 

representative of one of the phases, or representative of a mixture of the phases depending upon 

the volume fraction values. In other words, if the qth fluid volume fraction in the cell is denoted 

as q, then the following three conditions are possible:

• q = 0 ; The cell is empty (of the qth fluid). 

• q = 1 ; The cell is full (of the qth fluid).  

• 0 < q < 1 ; The cell contains the interface between the qth fluid and one or more other 

fluids. 

Volume Fraction Equation 

The tracking of the interface(s) between the phases is accomplished by the solution of a 

continuity equation for the volume fraction of one (or more) of the phases. For the qth phase, this 

equation has the following form: 

    (3.1) 

where, mqp is the mass transfer from phase q to phase p and mpq is the mass transfer from phase 

p to phase q.  is the source term.    

The volume fraction equation will not be solved for the primary phase; the primary-phase 

volume fraction will be computed based on the following constraint.  

          (3.2) 

The properties appearing in the volume fraction equations are determined by the presence of 

the component phases in each control volumes. In a two-phase system, for example, with 

phases represented by subscripts 1 and 2, where the volume fraction of the second of these is 

being tracked, the density in each cell is given by  
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        (3.3) 

In general, for an n-phase system, the volume-averaged density can be defined as  

          (3.4) 

All other properties are computed in this manner.  

The volume fraction equation can be solved using explicit time discretization.  

Explicit Discretization 

In this approach, finite difference interpolation schemes are applied to the volume fraction 

values that were computed at the previous time step.  

  (3.5) 

where, (n+1) is the index of the new (current) time step, n is the previous time step,  is the 

face value of the qth fraction, V is the volume of the cell, is volume flux through the face, 

based on normal velocity.  

Momentum Equation 

A single momentum equation is solved throughout the domain, and the resulting velocity field 

is shared among the phases. The momentum equation, shown in Eq. 3.6 is dependent on the 

volume fractions of all the phases through the definition of  and μ. 

    (3.6) 

Interpolation near the interface 

Geometric reconstruction scheme was utilised in this work. In geometric reconstruction 

scheme, ANSYS Fluent applies a special interpolation treatment to the cells that lie near the 

interface between two phases. Fig. 3.8 shows an actual interface shape along with the interfaces 

assumed during geometric construction scheme. In Fig. 3.8, left represents the real interface 

and the right shows the interface interpolation due to geometric reconstruction scheme. Both 

are in very close agreement also in comparison to other interpolation schemes.  
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Figure 3.8 Comparison of real surface and geometrical interpolation scheme.  

The geometric construction scheme represents the interface between fluids using a piecewise-

linear approach. It assumes that the interface between two fluids has a linear slope within each 

cell and uses the linear shape for calculation of the advection of fluid through the cell faces. 

The first step in this reconstruction scheme is determining the position of the linear interface 

relative to the centre of each partially filled cell, based on information about the volume 

fraction and its derivatives in the cell. The second step is calculating the advecting amount of 

fluid through each face using the computed linear interface representation and information 

about the normal and tangential velocity distribution on the face. The third step is calculating 

the volume fraction in each cell using the balance fluxes determined during the previous step. 

ANSYS FLUENT will refine the time step for VOF automatically, based on the input for 

maximum Courant number allowed near the free surface. The Courant number (Co) is a 

dimensionless number that compares the time step in a calculation to the characteristic time of 

transit of a fluid element across a control volume.  

Co =           (3.7) 

In the region near the fluid interface, ANSYS FLUENT divides the volume of each cell by sum 

of the outgoing fluxes. The resulting time represents the time it would take for the fluid to 

empty the cell.  

3.2.2 Continuum Surface Model 

The VOF model can also include the effects of surface tension along the interface between each 

pair of phases. The model can be augmented by the additional specification of the contact 

angles between the phases and the walls. The influence of surface tension is taken into account 

by the Continuum Surface Force Model (CSF) proposed by  (Brackbill et al., 1992). With this 

model, the addition of surface tension to the VOF calculation results in a source term in the 

momentum equation.  
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In CSF model, where the surface curvature is computed from local gradients in the surface 

normal at the interface. Let n be the surface normal, defined as the gradient of q, the volume 

fraction of the qth phase. 

           (3.8) 

The curvature, , is defined in terms of the divergence of the unit normal,  : 

           (3.9) 

where,  

                     (3.10) 

The surface tension can be written in terms of the pressure jump across the surface. The force at 

the surface can be expressed as a volume force using the divergence theorem. It is this volume 

force that is the source term, which is added to the momentum equation. It can be written as  

                (3.11) 

This expression allows for a smooth superposition of forces near cells where more than two 

phases are present. If only two phases are present in a cell, then  and 

and Eq. 3.11 reduces to  

                  (3.12) 

where,  is the volume-averaged density computed using Eq. 3.4. Eq. 3.12 shows that the 

surface tension source term for a cell is proportional to the average density in the cell.  

3.2.3 Drag force source term 

Since the aim of this work is to analyse the local flow behaviour of the gas-liquid 

countercurrent flow, the influence of mass and heat transfer has been neglected. The influence 

of the drag force cannot be neglected while studying the hydrodynamic behaviour. (Woerlee et 

al., 2001) developed a model for frictional pressure drop, which can be described as 

              (3.13) 
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where, aeff is the effective interfacial area per unit volume and fi is the interfacial friction factor.   

(Stephan and Mayinger, 1992) developed a new correlation to describe the interfacial friction in 

counter-current flow which can be described as  

                (3.14) 

where, Reg is the gas phase Reynolds number defined as Reg = (  × g × Dh)/ g ; N = 

3.95×(1.8+3.0/Bo). Dh is the hydraulic diameter and * is the dimensionless ratio of film 

thickness and Bo is the Bond number.  

These models have been implemented in Fluent by using User Defined Function (UDF). Since 

the two phases share a common velocity field, the algebraic sign of the drag force source term 

is opposite to the interfacial velocity to ensure it as resistance. The flow in the simulation was 

considered as laminar, as the liquid phase Reynolds numbers is always lower than 300 and the 

velocities of the gas phase are also not very high.  

(Nicolaiewsky et al., 1999) illustrated that experiments with decreasing liquid loads were more 

reproducible than increasing liquid loads. Therefore, the same strategy was adapted in the 

simulations. The simulation without countercurrent gas flow was continued until it reaches 

quasi-stable state. To confirm the quasi-stable state, parameters such as mass flow rate and 

force on the plate were also monitored along with residuals.   

3.2.4 Parallel computing 

ANSYS Fluent’s parallel solver allows computing a solution using multiple processers that are 

on the same computer or different computers in the network.  Parallel processing involves an 

interaction between ANSYS FLUENT, a host process, and a set of compute-node 

processes. ANSYS FLUENT interacts with the host process and the collection of compute 

nodes using a utility called cortex that manages ANSYS FLUENT's user interface and basic 

graphical functions. Parallel ANSYS FLUENT splits up the mesh and data into multiple 

partitions, and then assigns each mesh partition to a different compute process (or node). The 

number of partitions is an integral multiple of the number of compute nodes available (ANSYS 

Inc., 2009a) .   

All the simulations are performed on IBM pSeries 690 super computers with SGI Altix XE 250 

and in 32 parallel nodes of the HLRN (High Performance Computing Network of Northern 

Germany) at Regional computing clusters available at Berlin. It is worth mentioning that 
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simulations performed for inclined plate needs at least 72 hours of computation time and for the 

geometry of corrugated sheet of packing with 1.1 million cells needs at least 168 hours of 

computation time. Job i.e., each simulation will be queued in the cluster and simulations are 

performed batch wise with the availability of licenses and free nodes. An example of the code 

for batch job is shown in Appendix A.  

3.3 Experimental set up 

3.3.1 Study of the wetting behaviour 

The wetting behaviour of four different corrugated sheets was studied along with inclined 

smooth plate for reference. In order to study the influence of different geometrical parameters, 

corrugated sheets from real industrial applications were selected considering the parameters 

such as microstructures, perforations and specific surface area.  

The details of the smooth plate and corrugated sheets are listed below:  

Table 3.7 Details of different corrugated sheets of packing studied experimentally. (*) inclination angle. 

Packing Specific surface 
area (m2/m3) 

Corrugation 
angle (°) 

Microstructure Perforations 

Smooth plate - 45(*) No No 

Mellapak.350.Y-A 350 45 No Yes 

Mellapak.250.Y-B 250 45 Yes Yes 

Mellapak.350.Y 350 45 Yes Yes 

Montz B1-300 300 45 Yes No 

Three different fluids with big difference in viscosity and contact angle were selected for this 

study. The details of the liquids are listed below in Table 3.8. water-glycerol (45  wt%) has 

similar contact angle like water but more viscous. Silicon-oil (DC5) has very low contact angle 

but similar viscosity as water-glycerol (45 wt%). To capture the wetting behaviour, 

Rhodamine-B was used as colouring pigments in water and water-glycerol solution. As the 

colour of the testing system is pink, the wetting can be studied without the help of UV-light. 

The usage of this colouring pigment has been studied earlier (Paschke, 2011) and it will not 

influence any of the physical parameters of the testing system. For silicon-oil (DC5), Coumarin 
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was used as a colouring agent, which gave blue reflections when studied with the help of UV-

light. However, the corrugated sheet must be coated with black colour to capture the UV light.  

Table 3.8 Properties of testing system used in this work. 

Viscosity 
 [mPa s] 

Density 
 [kg/m³] 

Surface Tension 
  [mN/m] 

Contact Angle  
[°] 

Water 1 997 72.7 76.6 

Water-glycerol 
(45 Wt%) 4.6 1113 70 69 

Silicon-oil 
(DC5) 4.6 915 18.5  7 

The flow diagram of the experimental setup is shown in Fig. 3.9. Test liquid was pumped from 

the solution tank (T01) to flow through the testing material. Before flowing through the testing 

material, it passes through the flow meter (F1) and buffer tank (B01). The buffer tank was used 

in order to avoid pulsations that arose from the pump. The camera was placed in the stand 

opposite to the corrugated sheet, which enables to take pictures. The picture of the experimental 

set up utilised for studying the silicon-oil (DC5) with UV light is shown in Fig. 3.10.  

Figure 3.9 Experiment set-up for wetting studies. Sample picture from water-glycerol study. P01 – Pump; 
T01 – Solution tank ; TC - Testing cell ; FI - Flow meter ; C- Camera ; B01 – Buffer tank. 
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Figure 3.10 Sample picture from silicon-oil DC5 Study with UV light in a dark room. 

3.3.2 Velocity Profile measurement 

In order to validate the simulation with experimental studies, μPIV experiments were 

performed separately within our group (Paschke et al., 2007). For the experimental analysis of 

the countercurrent flow behaviour, a measuring cell was built and the new micro Particle Image 

Velocimetry (μ-PIV) method was used. The sketch of the experimental setup is shown in Fig. 

3.11 and the detailed description can be found in (Paschke et al., 2007).  

This method was characterised by the fact that the measurements are carried out through the 

gas-liquid interface, so that the measurements on non-transparent smooth and structured solid 

surface materials are enabled. The setup enables the countercurrent flow analysis in a wide 

working range and for different material systems. With the aid of an overflow weir (G), the 

liquid is fed on the top of the stainless steel plate and flows down the measurement cell as a 

closed free liquid film flow. The flow was measured using the Rotameter (F). High speed CCD 

camera (D) was used to take high resolution pictures which will be processed separately later 

and reconstructed as velocity profiles. The width and height of the plate is same as mentioned 

above, but the length is 300mm. The measuring area is approximately 3 x 2.3 mm. The gas 

inlet is close to the liquid outlet at the end of the plate. To minimize the wall effects and take 

the entrance area into account the measurement position is in the middle of the plate and 11cm 
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behind the inlet weir. The time–weighted average velocity profile can be calculated after 

processing the images from optical measurements.   

Figure 3.11 Schematic diagram of experiment setup used for velocity measurements. A - Laser 
(ND:YAG); B - Mirror (Light Arm); C - Laser Light Optic; D - CCD Camera with band-pass Filter 
and microscopic lens; E - Collecting Water Tanks; F - Peristaltic Pump with Rotameter; G - Feed 

Tubes;  - Inclination angel (Paschke et al., 2007). 
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4 HYDRODYNAMICS ON INCLINED PLATE 

The hydrodynamic behaviour on an inclined smooth plate as described in the section 3.1.1 is 

studied for three different testing materials. These materials differ in viscosity and contact 

angle as shown in table 3.8. The hydrodynamics are characterized in two parts:  

1. The wetting characteristics.  
2. The velocity profile in the thin liquid film.  

In section 4.1, the results of wetting characteristics of the three different test systems from 

simulation are compared with experimental studies. In section 4.2, velocity profiles obtained 

from CFD simulations are compared with profiles obtained from PIV experimental studies  

given by (Paschke, 2011). In order to understand the differences between the results of 

experiments and simulations, detailed sensitivity analysis was performed by selecting the most 

important parameters which influence the velocity profile. Further, a comparison is presented 

for countercurrent flow. After validating the model, it will be further extended to study more 

complex geometries resembling corrugated sheets of packing utilized in industry for distillation 

and absorption. The results for these geometries will be explained in detail in the next chapter.  

4.1 Wetting characteristics of different testing system

In this section, the wetting characteristics of water, water-glycerol and silicon oil flowing over 

a smooth inclined plate will be discussed. Here, the plate is inclined at 45° to the base and the 

liquids flow through a pipe of 4 mm diameter. Fig. 4.1, 4.2, and. 4.3 shows the pictorial 

comparison of the experimentally observed wetting characteristics of water, water-glycerol and 

silicon-oil DC5 respectively with simulation results. Fig. 4.4 shows the rivulet width for all 3 

above mentioned test mixtures along the length of the plate in flow direction. For all materials, 

wetting is studied for at least two different flow rates i.e., one high and another low flow rate. 

From Fig. 4.1 – Fig 4.5, the difference in wetting behaviour due to a change in flow rate, 

viscosity and contact angle is clearly visible.  

The comparisons of experimental and simulation results for the flow of water in three different 

flow rates are shown in Fig. 4.1. One observes that first the width of the rivulet increases, then 

the liquid stream narrows and after a certain distance in flow direction, it forms a lump. This 
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characteristic is common for all different flow rates; however, the width of the rivulet decreases 

with decreasing flow rate.  

Figure 4.1 Comparison between experiment and simulation of wetting behaviour of water on inclined plate 
for three different flow rates. 

Moreover, the position at which a lump forms is also influenced by the flow rate, i.e., lumps 

form earlier at lower flow rates and more such lumps are observed periodically. For low rates, 

more such lumps were observed in experimental studies but the simulation failed to predict 

those lumps. The simulation findings match very well with the experimental results. Also, this 

rivulet flow behaviour is in agreement with other works in literature (Hoffmann et al., 2006). 

Hence, simulations are also performed for other testing mixtures such as water-glycerol         

(45 wt. %) and silicon-oil to check the model prediction for different liquid properties such as 

viscosity and contact angle.  

The comparisons for the water-glycerol mixture at two different flow rates are presented in  

Fig. 4.2. The maximum width of the rivulet formed is around 20 mm range at very high flow 

rates. It should be mentioned that the viscosity of the water-glycerol (45 wt. %) mixture is 

approximately five times higher than water, whereas, the contact angle remain almost in the 

same range of around 70 . Compared to the results obtained for water, similar trends like the 

formation of lumps can also be noticed for water-glycerol as liquid but the rivulet width is 

found to be much less, as mentioned earlier. At very low flow rates, except for one small lump, 

the flow is almost straight. Also here the simulation can predict the same behaviour along with 
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the lump in the beginning. But, the later lumps are not predicted accurately as mentioned in the 

water case.  

Figure 4.2 Comparison between experiment and simulation of wetting behaviour of water-glycerol on 
inclined plate for two different flow rates. 

Figure 4.3 Comparison between experiment and simulation of wetting behaviour of silicon-oil on inclined 
plate for two different flow rates. 
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The comparison between simulation and experiment for silicon-oil (DC5) for two different 

flow rates is shown in Fig. 4.3. Compared to water and water-glycerol mixture, silicon-oil 

(DC5) has a very low contact angle of around 7  and therefore shows a completely different 

wetting behaviour. The rivulet width increases along the length of the plate for both high and 

low flow rates. The lump cannot be seen in contrast to the other two fluids. Also, the area of 

wetting is very high compared to water and water-glycerol.  

Pictures taken during the experimental measurement are further analyzed using the freeware 

called Sigma scan. The analysis was based on the pixel rate present in the area in comparison to 

the pixel rate from the calibration, and further calculated to find the rivulet width. The error 

range for this analysis is +/- 1 mm. In the simulation, the rivulet width is calculated based on 

the volume of fraction of liquid on the bottom of the plate. In Fig. 4.4, the change of the rivulet 

width along the length of the plate in the flow direction is plotted for water, water-glycerol and 

silicon-oil (DC5). The simulation results are in good agreement with the experimental studies. 

In simulations the first lump that is formed is correctly predicted, but the additional lumps that 

form at low flow rates are not clearly visible. However, the trend of reduction in the rivulet 

width with increasing distance from the inlet in flow direction can be noticed. In the case of 

water, the range of error is observed to be around 5% for both the flow rates. At very low flow 

rates, the water flow is very chaotic without the formation of any rivulet sometimes it even 

flows as droplets (Not shown here). 

The difference between experiment and simulation is around 5% which can be explained very 

well based on the sensitivity studies performed in the next section for velocity profiles. It is 

worth mentioning that the wetting characteristics from simulation match very nicely with 

experiments for a wide range of fluid properties; like low and high viscosity, low and high 

contact angle.  

The comparison of the wetted area for three test mixtures water, water-glycerol and silicon-oil 

(DC5) is shown in Fig. 4.5. The agreement between the experiment and simulation is very 

good. The deviation is in the range of 3 – 5% for all three testing mixtures. The reason for this 

error can be studied while studying the velocity distribution profiles in section 4.2., where a 

detailed sensitivity analysis has been done for the influential factors.   
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Figure 4.4 Rivulet Width along length of the plate in the flow direction for water, water-glycerol and 
silicon-oil (DC5). 

From Fig. 4.5., the change in wetting due to change in viscosity and surface tension is clearly 

seen while comparing the percentage of the wetted area for water, water-glycerol and silicon-

oil. For the liquid with low contact angle (i.e., silicon-oil here), the wetted area is almost 6 

times more than liquid with high contact angle (i.e., water-glycerol (45 wt. %). The percentage 

of wetting can also be understood by comparing the width of the rivulets shown in Fig. 4.4. The 

increase of the width of rivulets for silicon-oil (DC5) as shown in Fig. 4.4 can be interpreted to 

the maximum % of wetting in comparison to other testing liquids (water and water-glycerol).  
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Figure 4.5 Comparison between experiment and simulation for the percentage of wetting of water, water-
glycerol and silicon-oil in inclined plate (Note different scales for different fluids). 

4.2 Study of velocity profile without countercurrent gas flow 

4.2.1 Comparison for different Reynolds number 

The velocity profile obtained from simulations with the water-glycerol mixture has been 

compared with experimental results for three different Reynolds numbers (ReL = 64, 32 and 

20) as shown in Fig. 4.6. The experimental measurements from (Paschke et al., 2007) are 

considered for comparison. The agreement between experiment and simulation is adequate as 

both exhibit a similar parabolic profile, but the difference between the profile from experiment 

and simulation is found to be high near the interface. Some specific fluid parameters might 

influence the deviation of the velocity profile and film thickness.  

In order to explore the reason for this deviation, sensitivity analysis was performed considering 

the specific parameters. These parameters were selected based on the theoretical background of 

the flow behaviour which will be explained in next section.  
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Figure 4.6 Comparison of velocity profile between experiment and simulation for water-glycerol. 

4.2.2 Sensitivity Analysis 

Parameters selected for sensitivity study are as follows:  

a. Volumetric flow rate.  
b. Temperature – viscosity.  
c. Inclination angle. 
d. Tilting angle. 
e. Mass fraction. 
f. Surface tension. 

From the theoretical background, it is clear that the factors (a), (b) and (c) are more influential 

than (d), (e) and (f). The ranges of error are chosen according to the limitation of the 

experimental set up and considering possible measurement errors.  
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Table 4.1 An example of Sensitivity details for ReL = 32. 

ReL
Flow rate 
(mL/min) 

Temperature  
(  C) 

Inclination 
angle ( ) 

Base case 32 436.54 25 60 

Flow rate  

(5% dec.) 
30.40 414.71 25 60 

Flow rate  

(5% inc.) 
33.60 458.36 25 60 

Temperature  

(3 dec.) 
29.50 436.54 22 60 

Temperature  

(3  inc.) 
36.25 436.54 28 60 

Inclination angle 

IA (2˚ inc.) 
32 436.54 25 62 

Inclination angle 

IA (2˚ dec.) 
32 436.54 25 58 

The change of the velocity profile due to the 5% increase and decrease of the flow rate from the 

base case is shown in Fig. 4.7. The whole velocity profile shifts according to the change in flow 

rate as well as the change in maximum velocity at the interface. For example, the decrease in 

flow rate leads to the decrease in maximum velocity at the interface.  

The influence of the change in temperature of +/- 3  C from the base case on the computed 

velocity profiles is shown in Fig. 4.8. The change in temperature affects the viscosity, which in 

turn, influences the whole velocity profile from the bottom of the plate up to the interface. With 

a high temperature, viscosity reduces slightly and hence velocity increases.  

Fig. 4.9 shows the velocity profile for the change in inclination angle (IA) of +/- 2  from the 

base case. Within this error range, the change in the profile is not predominant. 
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Figure 4.7 Sensitivity study of change in flow rate with 5% error range. 

Figure 4.8 Sensitivity study of temperature with +/- 3 C difference. 
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Figure 4.9 Sensitivity study of velocity due to change in inclination angle of +/- 2 . 

A sensitivity study on the influence of flow rate, temperature and inclination angle has been 

performed for two different flow rates (ReL = 64 and 32) and the trends are similar.  This study 
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performed for different gas phase velocities. The F-factor which is commonly used to express 

countercurrent gas velocity in distillation and absorption can be defined as 

5.0
gguF ρ⋅=            (4.1) 

The liquid flow in the simulation and experiment is laminar, as the liquid phase Reynolds 

numbers are always lower than 300 and the velocities of the gas phase i.e., F-factor is also in 

the range of 1.5 and 2.5 Pa0.5. This resembles the range used in industrial operating conditions. 

The position-weighted average profiles are calculated in simulation by analyzing the local 

profiles on different positions along the length and width of the plate. The measuring position 

is around center of the plate along the width and around 110 mm along the length, which is the 

same as the experimental measuring position.  

In Fig. 4.10, the velocity profiles from experiment and simulation for both the cases with and 

without countercurrent flow is compared. In Fig. 4.10, dots represent the experiment and the 

line represents the simulation.    

Figure 4.10 Comparison of velocity profile flow with and without countercurrent for water-glycerol          
(45 wt. %) with ReL = 64. 

The different between the simulation and experiment for the case without countercurrent gas 

i.e., F-factor 0 (Red line and Red triangles in Fig. 4.10) was discussed in the earlier section. 

Here, the difference between the experiment and simulation due to countercurrent gas flow i.e., 

F-factor 1.5 and 2.5 Pa0.5 will be discussed. While discussing the influence of countercurrent 

gas flow, the difference due to other factors such as viscosity and flow rate as shown in section 
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4.2.2 should be kept in mind. In the simulation, the influence of countercurrent gas flow can be 

noticed around the interface of the phases. The velocity at the gas-liquid interface reduces due 

to the influence of countercurrent gas velocity and in turn increases the film thickness. The 

increase in thickness is not visible here as it is in the range of 0.02 to 0.04 mm. The profile 

shown in Fig. 4.10 has been cut up to the liquid film height and the gas region is not shown. 

The standard deviation between the experiment and simulation is around 5 – 8%. This 

difference is within the acceptable range considering the challenges in the experimental 

measurement.  

The velocity profile obtained from the experiment which starts like parabolic profile at bottom 

of the plate changes to a linear profile near the gas liquid interface. The linear profile near the 

interface obtained from the experiments has two main reasons. Firstly, the deceleration due to 

the countercurrent gas phase. Secondly, due to formation of waves as observed in the 

experiments. The profile is obtained by averaging images, from all the wave and film regions. 

Hence, the possibility of the averaging error plays a major role. Simulations are performed for 

shorter duration than experiments due to the restriction in computational power and time 

constraints. To confirm the formation of waves using simulation, simulations should be 

performed for a considerably longer time and the profiles must be compared.  

The experimental film thickness is slightly higher than in the simulation. Experimental 

measurements have an error in the y direction that is the same as the depth of focus which is 

almost equal to +/- 0.04 mm. This error depends on the properties of the testing system such as 

refractive index.   

Overall, the VOF model gives good agreement between experiments and simulations for both 

the case with and without countercurrent flow. The detailed sensitivity analysis also confirmed 

the influences of various fluid properties and flow parameters on the liquid velocity and liquid 

film thickness. This model should be extended for studying the flow behaviour in the complex 

geometry which resembles the industrial packing such as corrugated sheets of packing.  
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5 HYDRODYNAMICS ON CORRUGATED SHEET OF 
PACKING 

The hydrodynamic behaviour on corrugated sheets of packing with different geometrical 

modifications (see section 3.1.2) was analysed for three different testing systems (see section 

3.3.1.). Different modifications in corrugated sheet considered in this study are 

• Triangular crimp surface.  

• Curve crimp surface. 

• Influence of perforations. 

• Influence of second corrugated sheet. 

In section 5.1, the results from the CFD simulations on corrugated sheets of packing with 

triangular crimp surface will be described. In section 5.2, different parameters such as film 

thickness, holdup and velocity profiles from simulations are compared with experimental 

studies for both corrugated sheets of packing with and without perforations. The influence of 

perforation on wetting behaviour will be discussed in detail. In section 5.3, the influence of 

second corrugated sheet on liquid hold up and wetting will be explained.  

5.1 Flow on corrugated sheet with Triangular Crimp surface 

As explained in section 3.1.2 and shown in Fig. 3.3, simulations are performed for geometry 

with triangular crimp surface. Here simulation results are presented for two different testing 

systems i.e., water and silicon oil. Fig. 5.1 and Fig. 5.2, shows the velocity vectors for the flow 

of water and silicon oil, respectively. Here, simulations are performed considering the 

corrugation sheet of packing is at 90° and the flow is from top of the sheet flowing parallel to 

the sheet. Liquid flows through two circular inlets of 4 mm diameter, which resembles the 

distributors utilized in industrial applications.  

From Fig 5.1 and Fig 5.2, it was that in triangular crimp the liquid deflects outside the 

corrugation and does not flow in the direction of corrugation. It is also true that the triangular 

edge has more influence on deflecting the liquid flowing over it. Further, the velocity of the 

liquid also increases drastically after meeting the triangular crimp. In addition, the difference of 

flow due to smooth crimp surface can be clearly visualized from the next section. The same 

behaviour was noticed in another lesser flow rate for both the liquids (Not shown here).   



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

60 

Figure 5.1 Velocity vector of water on geometry resembling corrugated sheet of packing with triangular 
crimp surface (Flow rate - 386 mL/min, ReL - 2033). 

Figure 5.2 Velocity vector of silicon-oil (DC5) on geometry resembling corrugated sheet of packing with 
triangular crimp surface (Flow rate - 241 mL/min, ReL - 230). 

In general, the industries uses corrugated sheet with smooth crimp surface and most of the real 

corrugated sheet are made of stainless steel. Only very few packings are made of ceramics 

which has strict triangular crimp surface. Overall, the general simplifications of corrugated 
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sheet of packing with smooth crimp surface to triangular crimp surface for meshing purpose 

needs to be reconsidered.  

5.2 Flow on Corrugated sheet with smooth crimp surface with and without 

perforations 

The flow behaviour on corrugated sheets of packing was analyzed to understand four different 

parameters such as flow direction, wetting, film thickness and velocity distribution. 

5.2.1 Flow direction 

The change in flow direction for the corrugated sheets of packing without perforation is shown 

in Fig. 5.3. It is clear that the liquid mainly follows the corrugation and sometimes drips from 

one crest to another.  

Figure 5.3 Flow direction for silicon-oil (ReL - 241), water-glycerol (ReL - 386) and water (ReL - 386) in 
corrugated sheets of packing without perforations. 

The liquid flow direction did not change much with the change in physical properties of the 

liquid, especially viscosity and contact angle. For the liquid with low contact angle, liquid 

flows over the crest than just following the direction of corrugation. This is also in relevance 

with the finding of (Shetty and Cerro, 1997) where they presented the flow direction to 

calculate the exposure time of liquid film and compared it with empirical correlation for 

effective flow angle developed by (Spekuljak, 1986).  
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In Fig. 5.4., the change in liquid flow direction for the corrugated sheet of packing with 

perforations is shown. It can be noticed that the liquid flow follow the corrugation both in front 

and back side of the corrugated sheet. The phenomenon is similar to corrugated sheet without 

perforations.  

Figure 5.4 Flow direction for silicon-oil (ReL - 241) in corrugated sheets of packing with perforations. 

The phenomenon of wetting was studied (Battista and Böhm, 2003) experimentally and 

compared with the empirical correlation developed earlier in the literature (Shetty and Cerro, 

1997). In the next section, the phenomenon of wetting is described in detail. 

5.2.2 Wetting 

In this section, the change in wetting behaviour of three different liquids due to change in flow 

rate and contact angle without the influence of gas flow is shown for corrugated sheets of 

packing with and without perforations. The comparisons of interfacial area predicted by various 

empirical equations are also shown.  

Geometry utilized in the simulation is similar as shown in Fig. 3.4. As explained in the section 

5.1, liquid flows through 4 mm circular inlet which flows over the corrugated sheet at 90° 

parallel to the sheet. The influence of liquid inlet is taken into consideration via velocity 

boundary condition rather than using the geometry. The details of the flow rate and ReL used in 
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this work are shown in Table 5.1. Two flow rates are used for each testing liquid. Experiments 

are performed on Montz B1-300 packing. These packing are without perforation, but contain 

microstructure on the surface. However, the geometry used in the simulation is built without 

microstructure on the surface of the packing. Hence, these differences should be considered 

while comparing the results of simulation with experiment. In simulations, three dimensional 

microstructures are not considered for now because it is very complicated to mesh the geometry 

and in turn increases the computational time extensively. The liquid flow requires only less 

energy to flow over and through the corrugation and it does not deflect highly as it can be seen 

in triangular crimp. This is also in accordance with experimental studies performed. The flow 

of the silicon-oil over corrugated sheets of packing with smooth crimp for two different flow 

rate is presented in Fig. 5.5.  

Table 5.1 Details of the flow rate and Reynolds number used in this work. 

Flow rate 
(mL/min) ReL

Water 
386 2033 

623 3291 

Water-glycerol (45%) 386 486 

590 743 

Silicon-oil (DC5) 241 230 

508 486 

Fig. 5.6 and 5.7 shows the comparison between experiment and simulation for flow of water, 

water glycerol and silicon-oil over real corrugated sheet of packing with smooth crimp and 

without perforation. Rectangular box shown in red colour is the geometry considered in 

simulation studies.  

Fig. 5.8, 5.9 and 5.10 shows the comparison between experiment and simulation for flow of 

water, water-glycerol and silicon-oil over a corrugated sheet of packing with smooth crimp and 

perforation.  

Simulations are performed for all three testing liquids with two different flow rates. Fig. 5.11 

summarizes the percentage of wetting for all three liquids for corrugated sheet of packing with 

and without perforations.  
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Influence of Flow rate 

The change in wetting behaviour due to change in flow rate for silicon-oil (DC5) is shown in 

Fig. 5.5. As seen in chapter 4 for inclined plate, the percentage of wetting increases with 

increase in flow rate. This phenomenon was also noticed in experimental studies and in other 

literature (Battista and Böhm, 2003). The change in the wetting for all three liquids due to flow 

rate is summarized in Fig. 5.11. For low viscous liquid like water, influence of flow rate is 

more predominant than for high viscous liquid like water-glycerol and silicon-oil, i.e., 

increasing the flow rate by two times from 386 mL/min to 623 mL/min increases the wetting by 

almost 2.5 times from 4.23 to 11.33 % for water, but on other hand, for high viscous liquids 

like silicon-oil, it is only around 1.5 times. For high viscous liquid with high contact angle like 

water-glycerol, the change in wetting area changes only around 0.5%  even with change in flow 

rate of almost twice. For water, in the case of the corrugated sheets with perforations, the 

percentage of wetting increases from 6.67 to 12.83 due to increase in flow rate by almost 2 

times from 386 to 623 mL/min. The same trend of wetting was noticed for corrugated sheet of 

packing with and without perforations.  

Figure 5.5 Comparison of wetting for silicon-oil (DC5) for two different flow rates from CFD simulations. 
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Influence of viscosity 

The influence of viscosity on wetting can be noticed by comparing the wetting behaviour of 

water and water-glycerol shown in Fig. 5.6. The change in the wetting for all the three liquids 

due to flow rate is summarized in Fig. 5.11. For the low flow rate, the change in percentage of 

wetting is significant for high viscous liquid. For the same flow rate, the percentage of wetting 

is 4.75 and 10.0 for water and water-glycerol respectively (see Fig. 5.11). On the other hand, 

for higher flow rate, the percentage of wetting is 11.5 and 10.5 for water and water-glycerol 

respectively. The trend looks similar for corrugated sheets of packing with and without 

perforations.  

Figure 5.6 Comparison between simulation and experiment for flow of water on corrugated sheet of 
packing without holes. 

Influence of Contact Angle 

The fluid with low contact angle i.e., silicon-oil (DC5) has high wetting in comparison to water 

and water-glycerol (45 wt. %), which has very high contact angle and is visible while 

comparing Fig. 5.6 and 5.7. The influence of contact angle is very clear when water-glycerol 

and silicon-oil is compared as they are in the same viscosity range. For the same flow rate, 

percentage of wetting for silicon-oil is almost twice than water-glycerol (see Fig. 5.11) 
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Figure 5.7 Comparison between simulation and experiment for flow of silicon-oil (DC5) on corrugated sheet 
of packing without holes. 

Influence of perforation 

In this section, the influence of the perforations in wetting is discussed in detail. The 

comparison between experiment and simulation for flow of water, water-glycerol (45 wt. %) 

and silicon-oil (DC5) on corrugated sheet of packing with perforations is shown in Fig. 5.8 to 

5.10 respectively. The change in flow and in wetting can be seen while comparing with the Fig. 

5.8 and 5.10. It is rather tedious and difficult to capture the flow on back side of the corrugated 

sheet experimentally. Hence, only qualitative experiments were performed as a part of this 

work. Using CFD simulations, wetting on both the sides of corrugated sheets of packing can be 

studied. The flow on front side of the sheet is shown in comparison with experiment and 

simulation. Simulation area is similar to the one mentioned in earlier section. (Red box in Fig. 

5.6 and Fig. 5.7). To capture the flow behaviour on the back side of the packing and to study 

the influence of perforations on velocity, wetting and holdup, CFD gives good opportunity.  

Fig. 5.11 shows the wetting on both front and back side of corrugated sheet with perforations in 

comparison with wetting of corrugated sheet without perforations. Due to perforations, both 

sides of the corrugated sheets are wetted. Even though, the percentage of wetting for corrugated 

sheets without perforations in the front side is higher than the percentage of wetting for 

corrugated sheets with perforations, the total percentage of wetting (i.e., sum of both front and 
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back) for corrugated sheets of packing with perforations is higher than total percentage of 

wetting (here only front side) for corrugated sheets without perforations. There is an increase of 

about 2 – 5% (see Fig. 5.11) in the wetting area for the corrugated sheet with perforation in 

comparison to the one without perforations.  

As mentioned earlier, the liquid with low contact angle (silicon-oil) utilizes both the sides of 

corrugated sheets than the liquid with high contact angle (water and water-glycerol).  

The wetting is higher for high flow rates both on the front and back side of the packing. Hence 

the wetting of liquid on the back side of the packing is high for high flow rate. For the high 

viscous liquid like water-glycerol, the difference in wetting on the back side of the packing is 

not very high even with increase in flow rate. For testing system with low contact angle i.e., 

silicon-oil, the increase in flow rate also increases the wetting area on the back side of the 

corrugated sheet.  

Figure 5.8 Comparison between simulation and experiment for flow of water on corrugated sheet of 
packing with perforations. Flow rate - 386 mL/min ; ReL - 2033. 
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Figure 5.9 Comparison between simulation and experiment for flow of water-glycerol on corrugated sheet
of packing with perforations. Flow rate - 386 mL/min ; ReL - 486. 

Figure 5.10 Comparison between simulation and experiment for flow of silicon-oil on corrugated sheet of 
packing with perforations. Flow rate - 241 mL/min; ReL - 256 
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Figure 5.11 Comparison of percentage of wetting for corrugated sheet of packing with and without 
perforations for water, water-glycerol and silicon-oil using CFD. 

Comparison of different empirical correlations 

The comparison of five different empirical correlations available in the literature for the ratio of 

interfacial area to total packing area as a function of different flow rate for all three testing 

liquids water, water-glycerol and silicon-oil is shown in Fig. 5.12. Here, five different empirical 

correlations explained in section 2.3.2 have been compared. It is clear that all the correlations 

predict the increase in interfacial area with increase in flow rate. In Fig. 5.11, when (ae/ap) is 

greater than 1, it indicates that the packing is completely wetted. (de Brito et al., 1994) 

correlation predicts the complete wetting for almost all flow rates. In experiments and in 

simulation, it is not the case. This behaviour of complete wetting is shown for all three testing 

liquids. The correlation shown in Eq. 2.16, considers only the liquid density and viscosity but 

the other important wetting parameter such as surface tension and contact angle was not 

considered. The wetting of water-glycerol and silicon-oil looks the same. These results are in 

accordance with earlier findings from the literature (Pangarkar et al., 2008). 

The correlation proposed by (Rocha et al., 1996) as given in Eq.  2.14 is an extension of the one 

proposed by (Shi and Mersmann, 1985). In his correlation, (Rocha et al., 1993) considered 
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influence of liquid properties like density, viscosity along with surface tension and contact 

angle. The geometry of the packing was also taken into consideration by including the length of 

the corrugation side and corrugation angle. The influence of the microstructure was included by 

using surface enhancement factor (FSE) but the perforations were not considered while 

calculating the interfacial area.  In this correlation, the influence of contact angle is strong that 

it predicts complete wetting even for low rates.  

(Billet and Schultes, 1999) developed a theoretical model that can be applied to random and 

structured packing and the correlation is shown in Eq. 2.15. The influence of the surface 

tension was taken into consideration by Weber number but the contact angle was neglected. 

The influence of the surface tension was very strong, that it predicted the complete wetting 

even for low flow rates. In high flow rates, the results from (Billet and Schultes, 1999) 

correlation were in accordance with (Rocha et al., 1993) correlation as described earlier. For 

the liquids with high surface tension, it did not match with the (Rocha et al., 1993) correlation.  

The correlation proposed by (Olujic et al., 2004) for structured packing is an extension of 

correlation proposed by (Onda et al., 1968) for random packing as shown in Eq. 2.22. Here, 

none of the packing specific parameter was required to define the interfacial area. Also, 

influence of the perforation was taken into consideration by  which considered almost 10% of 

the surface area of wetting. Usually the perforation size in the packing is 4 mm. This equation 

suggests 10% of less wetting for the corrugated sheet of packing with perforations. From our 

earlier simulation, it is clear that even though the wetting in the front side is less for the sheets 

with perforations, the total wetting including the back side of the packing is more.  

(Brunazzi et al., 1995) proposed a correlation for interfacial area from film thickness and liquid 

holdup values which is shown in Eq. 2.20. They utilized the correlation of holdup from the 

(Suess and Spiegel, 1992) and included other parameters such as density, viscosity, corrugation 

angle. This analogy missed the influence of contact angle and surface tension. This can be 

noticed in Fig. 5.11 as it predicts almost the similar wetting for water and silicon-oil.   
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Figure 5.12 Comparison of different empirical correlations for the ratio of effective interfacial area to 
packing area vs. flow rate for different testing liquids. 

Even though, there are many empirical and semi empirical correlations available in literature 

but none of them are universally acceptable for the different corrugated sheet of structured 

packing. Especially, these correlations does not consider all the liquid properties like density, 

viscosity, surface tension, contact angle and packing specific parameters like microstructures 

and perforations. Hence, still a long gap exists in order to determine the effective interfacial 

area available for mass transfer in structured packing.  

The influence of microstructure in the packing is not considered in the simulation part of this 

work. However, in general, microstructure on the surface of the packing enhances homogeneity 

of surface wetting and hence the wetting area. Due to the complexity in meshing the geometry 

in CFD tools, the influence of microstructure is not considered in this work. But the influence 

of microstructure on wetting is briefly tested experimentally and is explained in the next 

sections. Qualitative agreement is found between CFD simulations and experimental findings.  
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5.2.3 Film Thickness  

In this section, the change in film thickness for three testing liquids and corrugated sheets with 

and without perforations is discussed. The film thickness is shown for different positions in the 

geometry. Liquid flows in the direction of Z-axis. Results are shown for both ZY and XY 

plane. As shown in Fig. 5.13, four planes are chosen in XY direction at Z equals to 44, 69, 80 

and 90 mm and three planes are chosen in YZ direction at X equals to 44, 55 and 66 mm.  XY 

planes shows the pictures of liquid hold up at different heights along the flow direction and this 

can be interpreted as liquid holdup at different heights. Fig. 5.14, 5.15 and 5.16 shows the film 

thickness for water, water-glycerol and silicon-oil respectively in the corrugated sheet of 

packing without perforations. Fig. 5.17, 5.18 and 5.19 shows the film thickness of water, water-

glycerol and silicon-oil respectively in the corrugated sheet of packing with perforations. The 

results are shown for two flow rates. In all the figures, blue line corresponds to the high flow 

rate and the red line to the low flow rate.    

Figure 5.13 Representation of planes used to analyse film thickness in this section. 

The comparison between Fig. 5.14 and 5.15 to Fig. 5.16 clearly shows the difference in film 

thickness which arises due to the change in contact angle. For the liquid with high contact angle 

(i.e., water and water-glycerol in Fig. 5.14 and 5.15), smooth film flow was not seen like in 

liquid with low contact angle (silicon-oil in Fig. 5.16).  The film thickness and hold up was 

completely different for these two sets of liquid. For silicon-oil, film thickness was almost same 

both in the crest and in the well of the corrugated sheet of packing. On other hand, for water 
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and water-glycerol, film thickness was not uniform but tends to hold-up more inside the 

corrugation of the sheet.  

In most of the numerical models and empirical correlations, film thickness was calculated 

based on the Nusselt theory which is based on flow over smooth plane. From the simulations, it 

is clear that the final film thickness do not match the prediction based on Nusselt theory. 

Hence, it should be seriously discussed whether the extrapolation of Nusselt film thickness to 

the calculation of film thickness in corrugated sheets of packing is still valid or more extra 

terms need to be included for the calculation.  

Fig. 5.17 to 5.19 shows the film thickness for the corrugated sheets of packing with 

perforations. It should be noted that the perforations did not change the trend of film thickness 

for water and water-glycerol to a major extent, but for silicon-oil the presence of hole in the 

corrugation side increases the film thickness and hold up near the corrugation and also in the 

back side of the corrugated sheet. For water and water-glycerol, as noticed earlier in the case of 

corrugated sheet without perforations, liquid hold up is high near inside the corrugation. Again, 

Nusselt theory does not hold valid for this case as well.  

In the Delft model developed by (Olujic et al., 2004), hold up is calculated as the product of the 

film thickness and the area of corrugated sheets of packing. This model holds the assumption 

that the packing is completely wetted and the film thickness is calculated based on the 

extension of Nusselt film thickness. From simulations, it is clear that the packing is not 

completely wetted and the extension of Nusselt film thickness also needs to be reanalyzed.  

(Brunazzi et al., 1995) extended the correlation developed by (Suess and Spiegel, 1992) for 

random packing to calculate the hold up for structured packing. In this model, (Suess and 

Spiegel, 1992) calculated the holdup considering the ratio of the viscosity of testing liquid to 

water at 20°C as reference but the influence of surface tension was completely neglected. 

As discussed earlier, in the case of wetting, huge differences exist between different empirical 

correlations available in literature for holdup values. This trend of liquid film thickness and 

hold-up needs to validated with detailed experimental studies using X-ray tomography.  
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Figure 5.14 Film thickness for water along XY and ZY plane for corrugated sheet of packing without 
perforations (Blue - ReL = 3291; Red - ReL = 2033). 

Figure 5.15 Film thickness for water-glycerol along XY and ZY plane for corrugated sheet of packing 
without perforations (Blue - ReL = 743; Red - ReL = 486). 
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Figure 5.16 Film thickness for silicon-oil along XY and ZY plane for corrugated sheet of packing without 
perforations (Blue - ReL = 486; Red - ReL = 256). 

Figure 5.17 Film thickness for water along XY and ZY plane for corrugated sheet of packing with 
perforations (Blue - ReL = 3291; Red - ReL = 2033). 
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Figure 5.18 Film thickness for water-glycerol along XY and ZY plane for corrugated sheet of packing with 
perforations (Blue - ReL = 743; Red - ReL = 486). 

Figure 5.19 Film thickness for silicon-oil along XY and ZY plane for corrugated sheet of packing with 
perforations (Blue - ReL = 486; Red - ReL = 256). 
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5.2.4 Velocity 

The local velocity profile for water, water-glycerol (45 wt. %) and silicon-oil on corrugated 

sheet of packing without perforations is shown in Fig. 5.20. The film thickness is plotted 

against velocity of the liquid in the flow direction and it has been normalised to understand the 

film thickness. The profile shown here is from middle of the geometry i.e., Z = 66 mm; X = 44 

mm and only up to the height of liquid film which is decided based on the volume fraction of 

the liquid from the simulation. The local velocity profile clearly resembles the parabolic profile 

similar to results from the simulation on the inclined smooth plate in the last chapter (see 

section 4.2.1). The comparison of the velocity profiles with the experiment is not available.  

The difference between the two flow rates is huge for water in comparison to water-glycerol 

(45 wt. %) and silicon-oil (DC5). The film thickness is very low for silicon-oil in comparison to 

other two test mixtures. As described earlier, all the empirical correlations available in the 

literature predicts the film thickness to be around 1 mm, which is valid for water in our case.  

Figure 5.20 Local velocity profile for water, water-glycerol (45 wt. %), silicon-oil (DC5) on corrugated sheet 
of packing without perforations at Z = 66 mm and X = 44 mm. 
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On the other hand, simulation predicts low film thickness of around 0.4 mm for silicon-oil 

(DC5) on corrugated sheet of packing. The influence of the contact angle can be taken into 

consideration while calculating the film thickness. These local velocity profiles need to validate 

with experimental studies.  

The local velocity profile for silicon-oil (DC5) on corrugated sheet of packing with perforations 

is shown in Fig. 5.21. The profile shown here is from middle of the geometry i.e., Z = 66 mm; 

X = 44 mm. Gray line in the Fig. 5.21 indicates the surface of the corrugated sheet of packing. 

Positive value of the film thickness indicates the liquid film above the sheet and the negative 

value indicates the liquid film below the sheet. While comparing Fig. 5.20 and 5.21 for silicon-

oil (DC5), it is clear that the velocity at the surface of the film decreased due to the presence of 

the perforation. The velocity on the surface of the film both on above and below the sheet 

remains in the same range.  

Figure 5.21 Local velocity profile for silicon-oil (DC5) on corrugated sheet of packing with perforations at  
Z = 66mm and X = 44 mm.  

It is very clear that simulation gives very good opportunity to get good insight to understand the 

local velocity in detail. Precise experimental study is needed to validate the model and hence to 

understand the necessary improvements.  
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5.3 Influence of Second Corrugated Sheet 

The major aim of this section is to study the extent of wetting on two corrugated sheets of 

packing. In reality, corrugated sheets of packing are arranged in such a way that one sheet is 

placed 90° opposite to the other one i.e., corrugation lies in the opposite direction helping the 

fluids to change its direction.  Fig. 5.22 shows the geometry used in simulation in comparison 

with real packing segment. As shown, only part of the packing segment is considered for 

simulation in order to understand the influence of second sheet in the liquid-holdup and in the 

wetting pattern. The main region to be considered is the points where two corrugated sheet 

meet each other which is explained in Fig. 5.23.  

Figure 5.22 Comparison of domain used in simulation from real packing geometry. 

To resemble the real industrial condition, Inlet conditions are considered as follows: 

a. 4 mm diameter liquid distributors on the top of the packing sheets and the liquid 
flow through the corrugation.  

b. Four inlet distributors are considered in order to understand the maximum wetting 
possible for two corrugated sheets of packing.  

c. Two different inlet positions are explained in Fig. 5.24. Two inlet positions are 
chosen in such a way that one position is inside the corrugation of the bottom sheet 
(Position 1) and the other position is outside the corrugation of bottom sheet 
(Position 2). By this, the influence of meeting point due to second corrugated sheet 
on the flow of liquid can be clearly seen.  

d. Silicon-oil with volumetric flow rate of 811 mL/min showed the maximum wetting 
in our earlier studies.   
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Figure 5.23 Explanation of meeting points from two corrugated sheet of packing and interest of our study. 

Figure 5.24 Two inlet positions used in the simulation. 

5.3.1 Wetting 

Fig. 5.25 and 5.26 shows the wetting of bottom and top sheet for simulation with two 

corrugated sheet of packing and for two different inlet positions mentioned earlier for the same 

flow rate. It is interesting to note that along with the liquid hold up, small change in inlet 

positions make a huge impact on wetting of the corrugated sheet.  For position 1, i.e., most 

portion of the inlet inside the corrugation of the top sheet only wets the top packing sheet and 

the bottom sheets remains mostly dry. For position 2, i.e., the portion of the inlet was equally 

on both the corrugated sheets, both the packing on the top and bottom got wetted. The 

comparison of total wetting in percentage between the two inlet positions is shown in Fig. 5.27.  
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Figure 5.25 Wetted area on the bottom packing for two inlet positions. Left - position 1; Right - position 2; 
Vol. flow rate = 811mL/min. 

Figure 5.26 Wetted area on the top packing for two inlet positions. Left - position 1; Right - position 2;    
Vol. flow rate = 811mL/min. 
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It is clear that from position 1, only 54% of the top sheet and 5.07% of the bottom sheet is 

wetted. Moreover, from position 2, 15.36 % and 39.06% for bottom and top sheet is wetted 

respectively. Overall, only 55 to 60% of the packing area is utilised. 

As shown, maximum of 60% of the packing area is utilised for wetting of testing system with 

low contact angle (which usually wets easily), for maximum inlet possible i.e., four inlets 

through four corrugations and relatively high flow rate of around 811 mL/min  

Figure 5.27 Comparison of percentage of wetting for two inlet positions in two corrugated sheet of packing. 

It is clear that around 40% of the area can be utilised and hence efficiency of the packing can 

be further improved. The influence of the surface textures is not considered in the simulation, 

which can be considered further in the simulation study to understand the wetting behaviour 

better. 

5.3.2 Film Thickness 

Fig. 5.28 and 5.29, shows the volume fraction of silicon oil at different XY and ZY planes of 

the corrugated sheet of packing along the flow direction and the direction perpendicular to the 

flow direction. As discussed in earlier sections, the planes are chosen in such a way to study the 

influence of corrugation, meeting point of two crimps and the change in liquid hold-up due to 

inlet positions. It can be seen that the liquid holds up in corrugation and at the criss-cross 

junction i.e., around the meeting point of the two sheets. Moreover, the holdup is more near the 

inlet than in the outlet.  
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Figure 5.28 Volume fraction of silicon oil fraction at different heights of corrugated sheet of packing along 
the flow direction for inlet position 1. Vol. flow rate = 811mL/min. 

Figure 5.29 Volume fraction of silicon oil at different heights of corrugated sheet of packing along the flow 
direction for inlet position 2. Vol. flow rate = 811mL/min. 

The liquid holdup on the different level of the corrugated sheets of packing along the flow 

direction is shown in Fig. 5.30. The level at Z = 22 mm is the one which is closer to the inlet 
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and Z = 113 mm to the outlet. Hold up is calculated as the sum of the liquid fraction available 

at that particular plane. It is clear that the liquid holdup is high near the inlet and it reduces at 

the outlet.  

Figure 5.30 Liquid holdup along the flow direction at different heights for Position 1 and Position 2.

The holdup of liquid near the junction of two sheets was observed in the experimental studies 

as well. This phenomenon of liquid holding up near this junction was elaborated in 

experimental study  (Viva et al., 2011b) performed using X-ray tomography for Mellapak 

752.Y. 
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6 CONCLUSION AND OUTLOOK 

The main objective of this work was to develop a three-dimensional CFD model to study the 

hydrodynamics on the corrugated sheet of structured packing. In-order to understand the same, 

two steps procedure was adopted. It is very challenging to validate the model with corrugated 

sheet of packing directly. As a first step to develop a validated model, a simplified geometry of 

smooth inclined plate was considered. Three testing fluids water, water-glycerol (45 wt. %) and 

silicon-oil (DC5) were studied with different flow rates. The wetting characteristics of liquids 

with different viscosity range (1 – 5mPas) and contact angle (70  and 7 ) were considered. 

Initially, the rivulet width of experiments and simulations were compared and an agreement 

within an error of 5% maximum was determined. The percentage of wetting from simulation 

was also compared with experimental results. From the wetting, the role of contact angle and 

surface tension can be clearly understood. The percentage of wetting was around 30% of the 

total area for liquid with low contact angle i.e., silicon-oil (DC5) compared to 9% for liquid 

with high contact angle i.e., water and water-glycerol for the same flow rate. These results were 

also in accordance to earlier observations in literature (Raynal et al., 2004a). The comparison 

showed that VOF model predicts close to the reality for all three different testing system.  

After a qualitative comparison, simulations were extended to compare the velocity profiles 

obtained from simulation with experimental profiles obtained from PIV measurements 

(Paschke, 2011). There were few differences in velocity profiles which were also explained by 

performing detailed sensitivity analysis. From the experimental experience, few parameters 

which significantly influence the velocity profile was chosen and simulated for the possible 

error range. Based on the sensitivity study, it was understood that even the small modification 

in flow rate and temperature influences the velocity profile considerably. The change in flow 

rate influences only the interface region but the change in temperature influences also the 

velocity inside the film region. It was also shown that very small changes in inclination angle 

did not show much influence in the velocity profile. Now, this validated model was extended to 

study the flow behaviour in corrugated sheet of packing.  

To study the fluid dynamics of the flow in the corrugated sheets of packing, the geometry 

resembling real industrial packing was developed in Gambit and in ICEM CFD. In initial 

studies, corrugated sheet of packing with strict triangular crimp was utilized to simplify the 
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meshing. The geometry with strict triangular crimp showed completely different flow pattern 

than the real packing. Hence, the geometry with smooth crimp surface was developed and 

utilized for further studies. A single geometry and mesh which enables to perform simulation in 

corrugated sheets of packing with and without perforation was built. As mentioned in the 

earlier section, three different liquids were studied. The simulations were performed for two 

different flow rates to understand the influence of flow rate on wetting and in film thickness. 

The major flow direction was in the direction of corrugation and also in accordance to 

empirical correlation available in the literature which was developed after experimental studies 

(Spekuljak, 1986). 

The comparison of wetting showed good agreement with experiments. The change in wetting 

showed the same trend as seen in inclined plate i.e., the liquid with low contact angle had more 

wetting than liquid with high contact angle. The significant change in percentage of wetting 

was noticed for low viscous liquid due to change in flow rate but the change was considerably 

smaller for high viscous liquid. 

The influence of the perforations on the wetting of the corrugated sheet was also studied. The 

presence of the perforations enables the liquid to wet both the sides. The wetting area on the 

front side of the corrugated sheet was less for the sheet with perforations but on the other hand, 

the total wetting i.e., the sum of front and back side was more compared to the sheet without 

perforations.  

Five different empirical correlations available in literature to predict the effect interfacial area 

was selected and compared. All the five correlations predicted different interfacial area. It is 

recommended to include the influence of the contact angle and surface tension on the empirical 

correlations to predict the wetting area. With the CFD simulations as basis, the correlation for 

interfacial area can be developed which helps to predict the mass transfer studies. 

The influence of the micro textures and pre wetting was studied experimentally and their 

benefits are listed. It is shown clearly that the pre wetting increases the wetting area and hence 

the interfacial area available for transport processes as well. It was also recommended from the 

industrial experience to start up the process with maximum liquid load possible to pre wet the 

packing and to run the process at normal working conditions. This gives the opportunity to 

maximize the utilization of the packing area (Raynal et al., 2004b). 
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As a final step, the second corrugated sheet was introduced to the simulation domain to 

understand the influence of crisscross junctions when both the sheets touch each other as seen 

in real processes. It is also shown that the minor change in position of the inlet distributors 

affects the wetting and the direction of flow liquid. It is very important to notice that the 

complete area of the packing was not wetted. This clearly shows the chance to improve the 

efficiency by utilizing more area of the packing. Liquid hold-up near the junctions of the two 

sheets were high as also noticed in some experimental studies performed using X-ray 

tomography (Viva et al., 2011b).  

CFD studies gives better understanding to the flow behaviour and even small things which is 

not seen in experiments can also be noticed with more precision. With the computation power 

available till now, it is highly impossible to simulate the whole packed column. But the 

simulations can be performed in macro scale to understand the flow behaviour better. The 

results observed from the macro scale can be extended to large scale studies.  

Outlook 

It is highly recommended to study the influence of the microstructures using the CFD 

simulations. There are various micro textures both 2D and 3D textures are available in the 

market. Recently, many experimental works are completely devoted to study the influence of 

micro textures on spreading of liquid and in wetting of the packing (Kohrt et al., 2011). The 

validated model will help to understand the influence of micro textures in micro and macro 

scale. This will help to develop new surface textures and complement the experimental studies. 

With validated model, experiment efforts can be reduced considerably. More qualitative 

experiments to measure the flow in micro scale need to be developed.  

In the simulations, only the static contact angle is taken into consideration. Usually, the contact 

angle is measured on the smooth surface. The presence of micro textures less than micro meters 

will influence the contact angle measured. In future, the influence of dynamic contact angle 

should be taken into consideration.  

This can also be further extended to study the transport processes in distillation and absorption. 

To help the packing and column designers, a complete flow map considering the influence of 

liquid parameters such as density, viscosity, surface tension, contact angle and geometry 
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parameters such as corrugation side, height, base width, specific surface area, perforations, 

micro textures can be developed. 
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APPENDIX.A.  CODE FOR BATCH JOBS IN SUPER COMPUTER AT 
HLRN 

#!/bin/bash 

#PBS -S /bin/bash 
#PBS -o name_by_user.out 
#PBS -j oe 
#PBS -l nodes=4:ppn=8 
#PBS -l walltime=24:00:00 
#PBS -l feature=xe 

# provide FLUENT through modules call:  
. $MODULESHOME/init/bash 
module load fluent/12.0 
# change to work dir (on the global file system): 
cd $WORK/Name_working_directory/ 

# start solver for 3Ddp, no gui, parallel;  
# read commands from here document until "EOFluentInput", 
# write log output to file "name_by_user.log": 
fluent 3ddp -g -t32 -pib.dapl -mpi=hp -ssh -
cnf=$PBS_NODEFILE<<EOFluentInput>name_by_user.log 
/define/user-defined/compiled-functions/compile libudf1 yes   
udf.c 

/file/read-case-data "name_cas_dat_file.cas" 
/define/user-defined/compiled-functions/load libudf1 

/parallel/partition/method/cartesian-axes 32 
/file/auto-save/data-frequency 100 
/file/confirm-overwrite n 
/file/autosave/append-file-name-with flow-time 6 
/solve/set/time-step 5e-05 
/solve/dual-time-iterate 100000 40 
exit 
y 
EOFluentInput 
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APPENDIX.B.  

Figure B.1 Comparison between simulation and experiment for flow of water on corrugated sheet of 
packing with perforations. Flow rate - 623mL/min.; ReL – 3291. 

Figure B.2 Comparison between simulation and experiment for flow of water-glycerol on corrugated sheet 
of packing with perforations. Flow rate – 590 mL/min.; ReL – 743. 
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APPENDIX.C.  

Figure C.1 Velocity contours for water along XY and ZY plane for corrugated sheet of packing without 
perforations. 

Figure C.2 Velocity contours for water-glycerol along XY and ZY plane for corrugated sheet of packing 
without perforations. 

  

Figure C.3 Velocity contours for silicon-oil along XY and ZY plane for corrugated sheet of packing without 
perforations. 
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Figure C.4 Velocity contours for water along XY and ZY plane for corrugated sheet of packing with 
perforations. 

Figure C.5 Velocity contours for water-glycerol along XY and ZY plane for corrugated sheet of packing 
with perforations. 

Figure C.6 Velocity contours for silicon-oil along XY and ZY plane for corrugated sheet of packing with 
perforations. 
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Figure C.7 Velocity contours for water along XY and ZY plane for corrugated sheet of packing without 
perforations. 

FigureC.8 Velocity contours for water-glycerol along XY and ZY plane for corrugated sheet of packing 
without perforations. 

Figure C.9 Velocity contours for silicon-oil along XY and ZY plane for corrugated sheet of packing without 
perforations. 
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Figure C.10 Velocity contours for water along XY and ZY plane for corrugated sheet of packing with 
perforations. 

Figure C.11 Velocity contours for water-glycerol along XY and ZY plane for corrugated sheet of packing 
with perforations. 

Figure C.12 Velocity contours for silicon-oil along XY and ZY plane for corrugated sheet of packing with 
perforations. 
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APPENDIX.D. INFLUENCE OF PRE-WETTING 

The influence of the pre-wetting on the two different types corrugated sheet of packing has 

been done experimentally using the wetting test. Fig. D.1 and D.2 show the influence of pre-

wetting on the wetting characteristics for Montz B1-300 and Mellapak 350Y corrugated sheet 

of packing. In both the cases, water-glycerol (45 wt.%) solution is used as a testing system.  In 

Fig. D.1, the impact of pre-wetting for two different flow rates can be seen. As expected, 

increasing the flow rate also increases the wetting area and hence the interfacial area available 

for transport processes. The increase in wetting area due to pre-wetting is quite high even for 

the low flow rate and hence the wetting area with pre-wetting for low rate is even more than 

wetting area from high flow rate without pre-wetting. This is also in accordance with the result 

from (Raynal et al., 2009). They also recommended that the industrial operations should be run 

at maximum liquid load before running at nominal conditions to bring the influence of pre-

wetting into the real conditions.  

Figure D.1 Comparison of wetting due to pre-wetting for water-glycerol system in corrugated sheet without 
perforations 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

96 

In Fig. D.2, the influence of pre-wetting for Mellapak- 250Y is shown.  Here, the influence of 

prewetting along with the perforations can be seen. Even though the trend is similar as seen in 

Fig. D.2, i.e., wetting area increases with pre-wetting but the influence is considerably less in 

comparison to Montz pak without perforations.  The influence is only due to the perforations. 

Perforations reduce the influence of pre-wetting on one side of the packing. Nevertheless, the 

major influence of perforations as mentioned in earlier chapter is also to wet the back side of 

the packing which also plays a crucial role in transport processes. While considering the 

corrugated sheet with perforations but without microstructures, former gives better wetting and 

more stable film than the later.  

Figure D.2 Comparison of wetting due to pre-wetting for water-glycerol in corrugated sheet with 
perforations. 
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APPENDIX.E. INFLUENCE OF MICRO TEXTURES 

Fig. E.1 and E.2 shows the wetting characteristics of three different testing liquids such as 

water and water-glycerol on two different kinds of packing namely Mellapak 350Y which has 

no microstructures on the surface and Mellapak 350.YB which has microstructures on the 

surface of the packings. Also the comparison is presented for three different liquid flow rates in 

all the cases. The trend of wetting for the packing with and without microstructure can be 

clearly seen in these figures. It is obvious that the packing with microstructures has slightly 

more wetting than the packing without microstructure. As all the packing studied 

experimentally has holes, the wetting on the back side of the packing need to be considered and 

it is technically difficult to capture the picture on the back side of the packing. Hence, we are 

restricted to present pictures of front side of the packing alone. Liquid spreads homogenous in 

the case of packing with microstructure which is also noted while performing the experiments.  

Figure E.1 Wetting behaviour for water in two different corrugated sheets with and without 
microstructures. Top – Mellapak 350Y without microstructures ; Bottom – Mellapak 350Y B with 

microstructures. 

Figure E.1  
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Figure E.2 Wetting behaviour for water-glycerol in two different Corrugated sheets with and without 
microstructures. Top – Mellapak 350Y without microstructures ; Bottom – Mellapak 350Y B with 

microstructures. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

99 

REFERENCES 

ADOMEIT, P. 1996. Experimentelle Untersuchung der Strömung laminar-welliger Rieselfilme.
Dissertation, RWTH Aachen. 

ADOMEIT, P. & RENZ, U. 2000. Hydrodynamics of three-dimensional waves in laminar 
falling films. International Journal of Multiphase Flow, 26, 1183-1208. 

AFERKA, S., VIVA, A., BRUNAZZI, E., MARCHOT, P., CRINE, M. & TOYE, D. 2011. 
Tomographic measurement of liquid hold up and effective interfacial area distributions 
in a column packed with high performance structured packings. Chemical Engineering 
Science, 66, 3413-3422. 

AL-SIBAI, F. 2005. Experimentelle Untersuchung des Wärme- und Impulstransports in 
welligen Rieselfilmen. Dissertation, RWTH Aachen. 

AL-SIBAI, F., LEEFKEN, A., LEL, V. & RENZ, U. 2003. Measurements of Transport 
Phenomena in Thin Wavy Films. Conference on Transport Phenomena with Moving 
Boundaries. Berlin. 

ALEKSEENKO, S. V., BOBYLEV, A. V., EVSEEV, A. R., KARSTEN, V. M., 
MARKOVICH, D. M. & TARASOV, B. V. 2003. Measurements of the Liquid-Film 
Thickness by a Fiber-Optic Probe. Instruments and Experimental Techniques, 46, 260-
264. 

ALEKSEENKO, S. V., MARKOVICH, D. M., EVSEEV, A. R., BOBYLEV, A. V., 
TARASOV, B. V. & KARSTEN, V. M. 2008. Experimental investigation of liquid 
distribution over structured packing. AIChE Journal, 54, 1424-1430. 

ALEKSEENKO, S. V., NAKORYAKOV, V. E. & POKUSAEV, B. G. 1985. Wave formation 
on vertical falling liquid films. International Journal of Multiphase Flow, 11, 607-627. 

ALIX, P. & RAYNAL, L. 2008. Liquid distribution and liquid hold-up in modern high capacity 
packings. Chemical Engineering Research and Design, 86, 585-591. 

ALIX, P., RAYNAL, L., ABBE, F., MEYER, M., PREVOST, M. & ROUZINEAU, D. 2011. 
Mass transfer and hydrodynamic characteristics of new carbon carbon packing: 
Application to CO2 post-combustion capture. Chemical Engineering Research and 
Design, 89, 1658-1668. 

ANSYS INC. 2009a. Ansys Fluent 12.0 User Guide. 

ANSYS INC. 2009b. ICEM CFD 12.1 User Guide. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

100 

ARBOGAST, T., DOUGHLAS, J. & HORNUNG, U. 1990. Derivation of the double porousity 
model of single phase flow via homogenization theory. SIAM J Math Anal., 21, 823-
836. 

AROONWILAS, A., TONTIWACHWUTHIKUL, P. & CHAKMA, A. 2001. Effects of 
operating and design parameters on CO2 absorption in columns with structured 
packings. Separation and Purification Technology, 24, 403-411. 

ATAKI, A. 2006. Wetting of Structured Packing Elements - CFD and Experiment.
Dissertation, Technischen Universität Kaiserslautern. 

ATAKI, A. & BART, H.-J. 2006. Experimental and CFD Simulation Study for the Wetting of a 
Structured Packing Element with Liquids. Chem. Eng. Techn., 29, 336-347. 

ATAKI, A., KOLB, P., BÜHLMANN, U. & BART, H.-J. Wetting Performance and Pressure 
Drop of Structured Packings: CFD and Experiment.  IChemE Symp. Series No., 2006. 

AUSNER, I. 2006. Experimentelle Untersuchungen mehrphasiger Filmströmungen.
Dissertation, TU Berlin. 

BATTISTA, J. & BÖHM, U. 2003. Mass Transfer In Trickle-Bed Reactors With Structured 
Packing. Chemical Engineering & Technology, 26, 1061-1067. 

BEHRENS, M., SARABER, P. P., JANSEN, H. & OLUJIC, Z. 2001. Performance 
Characteristics of a Monolith-like Structured Packing. Chem. Biochem. Eng. Q, 15, 8. 

BENDER, P. & MOLL, A. 2003. Modifications to Structured Packings to Increase Their 
Capacity. Chemical Engineering Research and Design, 81, 58-67. 

BESSOU, V., ROUZINEAU, D., PRÉVOST, M., ABBÉ, F., DUMONT, C., MAUMUS, J. & 
MEYER, M. 2010. Performance characteristics of a new structured packing. Chemical 
Engineering Science, 65, 4855-4865. 

BILLET, R. & SCHULTES, M. 1999. Prediction of Mass Transfer Columns with Dumped and 
Arranged Packings: Updated Summary of the Calculation Method of Billet and 
Schultes. Chemical Engineering Research and Design, 77, 498-504. 

BLYTH, M. G. 2006. Film flow down an inclined plane over a three-dimensional obstacle. 
Phys. Fluids, 18, 052104. 

BRACKBILL, J. U., KOTHE, D. B. & ZEMACH, C. 1992. A continuum method for modeling 
surface tension. J. Comput. Phys., 100, 335-354. 

BRAUER, H. 1971. Grundlagen der Einphasen- und Mehrphasenströmung. Sauerländer 
Verlag. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

101 

BRAVO, J. L., ROCHA, J. A. & FAIR, J. R. 1985. Mass transfer in gauze packings. 
Hydrocarbon Processing, 64 (1), 91-95. 

BRINKMANN, U., SCHILDHAUER, T. J. & KENIG, E. Y. 2010. Hydrodynamic analogy 
approach for modelling of reactive stripping with structured catalyst supports. Chemical 
Engineering Science, 65, 298-303. 

BRUNAZZI, E., NARDINI, G., PAGLIANTI, A. & PETARCA, L. 1995. Interfacial area of 
mellapak packing: Absorption of 1,1,1-trichloroethane by Genosorb 300. Chemical 
Engineering & Technology, 18, 248-255. 

CASSIE, A. B. D. 1948. Contact angles. Discussions of the Faraday Society, 3, 11-16. 

CASSIE, A. B. D. & BAXTER, S. 1944. Wettability of porous surfaces. Transactions of the 
Faraday Society, 40, 546-551. 

CHEN, J., LIU, C., LI, Y., HUANG, Y., YUAN, X. & YU, G. 2007. Experimental 
Investigation of Single-phase Flow in Structured Packing by LDV. Chinese Journal of 
Chemical Engineering, 15, 821-827. 

CHEN, J., LIU, C., YUAN, X. & YU, G. 2009. CFD Simulation of Flow and Mass Transfer in 
Structured Packing Distillation Columns. Chinese Journal of Chemical Engineering, 17,
381-388. 

DANCKWERTS, P. V. 1970. Gas-Liquid Reactions, Mc-Graw Hill Ed., New York. 

DAVIES, J. T. & WARNER, K. V. 1969. The effect of large-scale roughness in promoting gas 
absorption. Chemical Engineering Science, 24, 231-240. 

DE BRITO, M. H., VON STOCKAR, U., BANGERTER, A. M., BOMIO, P. & LASO, M. 
1994. Effective Mass-Transfer Area in a Pilot Plant Column Equipped with Structured 
Packings and with Ceramic Rings. Industrial & Engineering Chemistry Research, 33,
647-656. 

DETTRE, R. H. & JOHNSON, R. E. 1964. Contact Angle Hysteresis. Contact Angle, 
Wettability, and Adhesion. AMERICAN CHEMICAL SOCIETY. 

DETTRE, R. H. & JOHNSON, R. E. 1965. Contact Angle Hysteresis. IV. Contact Angle 
Measurements on Heterogeneous Surfaces1. The Journal of Physical Chemistry, 69,
1507-1515. 

DIETZE, G. 2010. Flow Separation in Falling Liquid Films. Dissertation, RWTH Aachen. 

DUSS, M., MEIERHOFER, H. & BOMIO, P. Comparison between random and structured 
packings and a model to predict the efficiency of structured packing in distillation and 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

102 

absorption applications.  Distillation and Absorption '97, 1997 Maastrict, the 
Netherlands. Inst. Chem. Eng. Symp. Ser. No. 142, 439 - 452. 

FAIR, J. R. & BRAVO, J. L. 1990. Distillation columns containing structured packing. 
Chemical Engineering Progress, 86(1). 

GREEN, C. W., FARONE, J., BRILEY, J. K., ELDRIDGE, R. B., KETCHAM, R. A. & 
NIGHTINGALE, B. 2007. Novel Application of X-ray Computed Tomography:
Determination of Gas/Liquid Contact Area and Liquid Holdup in Structured Packing. 
Industrial & Engineering Chemistry Research, 46, 5734-5753. 

GU, F., LIU, C. J., YUAN, X. G. & YU, G. C. 2004. CFD Simulation of Liquid Film Flow on 
Inclined Plates. Chemical Engineering & Technology, 27, 1099-1104. 

GUALITO, J. J., CERINO, F. J., CARDENAS, J. C. & ROCHA, J. A. 1997. Design Method 
for Distillation Columns Filled with Metallic, Ceramic, or Plastic Structured Packings. 
Industrial & Engineering Chemistry Research, 36, 1747-1757. 

HAROUN, Y., LEGENDRE, D. & RAYNAL, L. 2010a. Direct numerical simulation of 
reactive absorption in gas-liquid flow on structured packing using interface capturing 
method. Chemical Engineering Science, 65, 351-356. 

HAROUN, Y., LEGENDRE, D. & RAYNAL, L. 2010b. Volume of fluid method for 
interfacial reactive mass transfer: Application to stable liquid film. Chemical 
Engineering Science, 65, 2896-2909. 

HIGLER, A. P., KRISHNA, R., ELLENBERGER, J. & TAYLOR, R. 1999. Counter-current 
operation of a structured catalytically packed-bed reactor:: Liquid phase mixing and 
mass transfer. Chemical Engineering Science, 54, 5145-5152. 

HIRT, C. W. & NICHOLS, B. D. 1981. Volume of fluid (VOF) method for the dynamics of 
free boundaries. Journal of Computational Physics, 39, 201-225. 

HOFFMANN, A., AUSNER, I., REPKE, J.-U. & WOZNY, G. 2005. Fluid dynamics in 
multiphase distillation processes in packed towers. Computers & Chemical 
Engineering, 29, 1433-1437. 

HOFFMANN, A., AUSNER, I., REPKE, J. U. & WOZNY, G. 2006. Detailed Investigation of 
Multiphase (Gas-Liquid and Gas-Liquid-Liquid) Flow Behaviour on Inclined Plates. 
Chemical Engineering Research and Design, 84, 147-154. 

ILIUTA, I. & LARACHI, F. 2001. Mechanistic Model for Structured-Packing-Containing 
Columns:  Irrigated Pressure Drop, Liquid Holdup, and Packing Fractional Wetted 
Area. Industrial & Engineering Chemistry Research, 40, 5140-5146. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

103 

ILIUTA, I., PETRE, C. F. & LARACHI, F. 2004. Hydrodynamic continuum model for two-
phase flow structured-packing-containing columns. Chemical Engineering Science, 59,
879-888. 

IVANOVA, S., LOUIS, B., MADANI, B., TESSONNIER, J. P., LEDOUX, M. J. & PHAM-
HUU, C. 2007. ZSM-5 Coatings on -SiC Monoliths:  Possible New Structured Catalyst 
for the Methanol-to-Olefins Process. The Journal of Physical Chemistry C, 111, 4368-
4374. 

JOHNSON, R. E. & DETTRE, R. H. 1964a. Contact Angle Hysteresis. Contact Angle, 
Wettability, and Adhesion. AMERICAN CHEMICAL SOCIETY. 

JOHNSON, R. E. & DETTRE, R. H. 1964b. Contact Angle Hysteresis. III. Study of an 
Idealized Heterogeneous Surface. The Journal of Physical Chemistry, 68, 1744-1750. 

KISTER, H. 1992. Distillation Design, McGraw-Hill. 

KOHRT, M. 2011. Experimentelle Untersuchung von Stoff transport und Fluiddynamik bei 
Riesellmströmungen auf mikrostrukturierten Oberflächen. Dissertation, TU Berlin. 

KOHRT, M., AUSNER, I., WOZNY, G. & REPKE, J.-U. 2011. Texture influence on liquid-
side mass transfer. Chemical Engineering Research and Design, 89, 1405-1413. 

LARACHI, F., PETRE, C. F., ILIUTA, I. & GRANDJEAN, B. 2003. Tailoring the pressure 
drop of structured packings through CFD simulations. Chemical Engineering and 
Processing, 42, 535-541. 

LOSER, T. 2002. Berechnung der zweiphasigen Strömung in Schichtungen. Dissertation, 
Leibnitz Universität Hannover. 

LUO, H. 2006. Effect of inertia on film flow over oblique and three-dimensional corrugations. 
Phys. Fluids, 18, 078107. 

LUO, H. & POZRIKIDIS, C. 2007. Gravity-driven film flow down an inclined wall with three-
dimensional corrugations. Acta Mechanica, 188, 209-225. 

LUO, S. J., FEI, W. Y., SONG, X. Y. & LI, H. Z. 2008. Effect of channel opening angle on the 
performance of structured packings. Chemical Engineering Journal, 144, 227-234. 

MAHR, B. 2007. Numerisches Berechnen und tomographisches Messen zwei-phasiger 
Strömugsfelder in geordneten Schichtungen. Dissertation, Leibnitz Universität 
Hannover. 

MAHR, B. & MEWES, D. Modelling and measurement of macroscopic flow fields in 
structured packings.  Distillation and Absorption, 2006a London, UK. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

104 

MAHR, B. & MEWES, D. X-ray tomographic visualization of liquid spreading in structured 
packings using contrast-agent tracer.  International Heat Transfer Conference IHTC-13, 
2006b Australia. 

MAHR, B. & MEWES, D. 2007. CFD Modelling and Calculation of Dynamic Two-Phase 
Flow in Columns Equipped with Structured Packing. Chemical Engineering Research 
and Design, 85, 1112-1122. 

MCGLAMERY, G. G. 1988. Liquid Film Transport Characteristics of Textured metal 
Surfaces. Dissertatino, The University of Texas at Austin. 

MEWES, D., LOSER, T. & MILLIES, M. 1999. Modelling of two-phase flow in packings and 
monoliths. Chem. Eng. Sci., 54, 4729-4747. 

NICOLAIEWSKY, E. M. A. & FAIR, J. R. 1998. Liquid Flow over Textured Surfaces. 1. 
Contact Angles. Industrial & Engineering Chemistry Research, 38, 284-291. 

NICOLAIEWSKY, E. M. A., TAVARES, F. W., RAJAGOPAL, K. & FAIR, J. R. 1999. 
Liquid film flow and area generation in structured packed columns. Powder 
Technology, 104, 84-94. 

NUSSELT, W. 1916a. Die Oberflächenkondensation des Wasserdampfes. Vereines deutscher 
Ingenieure-Zs, 60, 541-546. 

NUSSELT, W. 1916b. Die Oberflächenkondensation des Wasserdampfes. Vereines deutscher 
Ingenieure-Zs, 60, 569-575. 

OLIVER, J. P., HUH, C. & MASON, S. G. 1980. An experimental study of some effects of 
solid surface roughness on wetting. Colloids and Surfaces, 1, 79-104. 

OLUJIC, Z., BEHRENS, M., COLLI, L. & PAGLIANTI, A. 2004. Predicting the Efficiency of 
Corrugated Sheet Structured packings with large specific surface area. Chem. Biochem. 
Eng. Q, 18, 89. 

OLUJIC, Z., KAMERBEEK, A. B. & DE GRAAUW, J. 1999. A corrugation geometry based 
model for efficiency of structured distillation packing. Chemical Engineering and 
Processing, 38, 683-695. 

OLUJIC, Z., SEIBERT, A. F. & FAIR, J. R. 2000. Influence of corrugation geometry on the 
performance of structured packings: an experimental study. Chemical Engineering and 
Processing, 39, 335-342. 

ONDA, K., TAKEUCHI, H. & OKUMOTO, Y. 1968. Mass transfer Coefficients between Gas 
and Liquid phases in packed columns. J. Chem. Eng. Jpn., 1, 56. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

105 

PANGARKAR, K., SCHILDHAUER, T. J., VAN OMMEN, J. R., NIJENHUIS, J., 
KAPTEIJN, F. & MOULIJN, J. A. 2008. Structured Packings for Multiphase Catalytic 
Reactors. Industrial & Engineering Chemistry Research, 47, 3720-3751. 

PASCHKE, S. 2011. Experimentelle Analyse ein- und zweiphasiger Filmströmungen auf 
glatten und strukturierten Oberflächen. Dissertation, TU Berlin. 

PASCHKE, S., REPKE, J. U. & WOZNY, G. 2007. Analyse heterogener Filmströmungen auf 
Packungsmaterialien mittels einer neuen  microPIV- Methode. Chem. Ing. Tech. 79. 

PATENT, S. 2005. SPS Patent. 

PETRE, C. F., LARACHI, F., ILIUTA, I. & GRANDJEAN, B. P. A. 2003. Pressure drop 
through structured packings: Breakdown into the contributing mechanisms by CFD 
modeling. Chemical Engineering Science, 58, 163-177. 

PONTER, A. B. & AU-YEUNG, P. H. 1984. Influence of Liquid Viscosity on Effective 
Interfacial Area in Packed Columns. Chemie Ingenieur Technik, 56, 701-703. 

PONTER, A. B., DAVIES, G. A., BEATON, W. & ROSS, T. K. 1967. The measurement of 
contact angles under equilibrium and mass-transfer conditions. International Journal of 
Heat and Mass Transfer, 10, 733-736. 

RAYNAL, L., BALLAGUET, J.-P. & BARRERE-TRICCA, C. 2004a. Determination of mass 
transfer characteristics of co-current two-phase flow within structured packing. 
Chemical Engineering Science, 59, 5395-5402. 

RAYNAL, L., BEN RAYANA, F. & ROYON-LEBEAUD, A. 2009. Use of CFD for CO2 
absorbers optimum design : from local scale to large industrial scale. Energy Procedia,
1, 917-924. 

RAYNAL, L., BOYER, C. & BALLAGUET, J.-P. 2004b. Liquid Holdup and Pressure Drop 
Determination in Structured Packing with CFD Simulations. The Canadian Journal of 
Chemical Engineering, 82, 871-879. 

REPKE, J. U., AUSNER, I., PASCHKE, S., HOFFMANN, A. & WOZNY, G. 2007. On the 
Track to Understanding Three Phases in One Tower. Chemical Engineering Research 
and Design, 85, 50-58. 

REPKE, J. U. & WOZNY, G. 2002. Experimental Investigations of Three-Phase Distillation in 
a Packed Column. Chemical Engineering & Technology, 25, 513-519. 

ROCHA, J. A., BRAVO, J. L. & FAIR, J. R. 1993. Distillation columns containing structured 
packings: a comprehensive model for their performance. 1. Hydraulic models. 
Industrial & Engineering Chemistry Research, 32, 641-651. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

106 

ROCHA, J. A., BRAVO, J. L. & FAIR, J. R. 1996. Distillation Columns Containing Structured 
Packings:  A Comprehensive Model for Their Performance. 2. Mass-Transfer Model. 
Industrial & Engineering Chemistry Research, 35, 1660-1667. 

SAID, W., NEMER, M. & CLODIC, D. 2011. Modeling of dry pressure drop for fully 
developed gas flow in structured packing using CFD simulations. Chemical 
Engineering Science, 66, 2107-2117. 

SHETTY, S. & CERRO, R. L. 1993. Flow of a thin fiom over a periodic surface. International 
Journal of Multiphase Flow, 19, 1013-1027. 

SHETTY, S. & CERRO, R. L. 1997. Fundamental Liquid Flow Correlations for the 
Computation of Design Parameters for Ordered Packings. Industrial & Engineering 
Chemistry Research, 36, 771-783. 

SHETTY, S. & CERRO, R. L. 1998. Spreading of a Liquid Point Source over a Complex 
Surface. Industrial & Engineering Chemistry Research, 37, 626-635. 

SHI, M. G. & MERSMANN, A. 1985. Effective interfacial area in packed columns, Weinheim, 
ALLEMAGNE, VCH. 

SHILKIN, A., HEINEN, K., GROßMANN, C., LAUTENSCHLEGER, A., JANZEN, A. & 
KENIG, E. Y. On the development of an energy efficient packing for vacuum 
distillation. In: DE HAAN, A. B., KOOIJMAN, H. & GORAK, A., eds. Distillation and 
Absorption 2010, 2010 Eindhoven, The Netherlands. 653 - 658. 

SHILKIN, A. & KENIG, E. Y. 2005. A new approach to fluid separation modelling in the 
columns equipped with structured packings. Chemical Engineering Journal, 110, 87-
100. 

SHILKIN, A., KENIG, E. Y. & OLUJIC, Z. 2006. Hydrodynamic-analogy-based model for 
efficiency of structured packing columns. AIChE Journal, 52, 3055-3066. 

SHOJAEE, S., HOSSEINI, S. H., RAFATI, A. & AHMADI, G. 2011. Prediction of the 
Effective Area in Structured Packings by Computational Fluid Dynamics. Industrial & 
Engineering Chemistry Research, 50, 10833-10842. 

SPEKULJAK, Z. 1986. Modelacion de Rellenos Regullares de Alta Eficienca Para la 
Transferencia de Materia. Ph.D. , Universidad Nacional del Litoral. 

SPIEGEL, L. & MEIER, W. Correlations of the performance characteristics of the various 
Mellapak types.  Distillation and Absorption 1987, 1988 Brighton, UK. Inst. Chem. 
Symp. Ser. 104, A203 - A215. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

107 

STEPHAN, M. & MAYINGER, F. 1992. Experimental and Analytical Study on 
Countercurrent Flow Limitation in Vertical Gas/Liquid Flows. Chem. Eng. Tech., 15,
51 - 62. 

STOTER, F. 1993. Modeling of maldistribution in structured packings: from detail to column 
design. Dissertation Delft University of Technology. 

STOTER, F., OLUJIC, Z. & DE GRAAUW, J. 1993. Modelling and measurement of gas flow 
distribution in corrugated sheet structured packings. The Chemical Engineering Journal 
and the Biochemical Engineering Journal, 53, 55-66. 

SUBAWALLA, H., GONZÁLEZ, J. C., SEIBERT, A. F. & FAIR, J. R. 1997. Capacity and 
Efficiency of Reactive Distillation Bale Packing:  Modeling and Experimental 
Validation. Industrial & Engineering Chemistry Research, 36, 3821-3832. 

SUESS, P. & SPIEGEL, L. 1992. Hold-up of mellapak structured packings. Chemical 
Engineering and Processing, 31, 119-124. 

SZULCZEWSKA, B., ZBICINSKI, I. & GÓRAK, A. 2003. Liquid Flow on Structured 
Packing: CFD Simulation and Experimental Study. Chemical Engineering & 
Technology, 26, 580-584. 

TSAI, R. E., SCHULTHEISS, P., KETTNER, A., LEWIS, J. C., SEIBERT, A. F., 
ELDRIDGE, R. B. & ROCHELLE, G. T. 2008. Influence of Surface Tension on 
Effective Packing Area. Industrial & Engineering Chemistry Research, 47, 1253-1260. 

VALLURI, P. 2004. Multiphase Fluid Dynamics in Structured Packings. Imperial College 
London. 

VALLURI, P., MATAR, O. K., HEWITT, G. F. & MENDES, M. A. 2005. Thin film flow over 
structured packings at moderate Reynolds numbers. Chemical Engineering Science, 60,
1965-1975. 

VALLURI, P., MATAR, O. K., MENDES, M. A. & HEWITT, G. F. 2002. Modelling 
Hydrodynamics and Mass Transfer in Structured Packings - A Review. Multiphase 
Science and Technology, 14. 

VAN BATEN, J. M., ELLENBERGER, J. & KRISHNA, R. 2001a. Hydrodynamics of reactive 
distillation tray column with catalyst containing envelopes: experiments vs. CFD 
simulations. Catalysis Today, 66, 233-240. 

VAN BATEN, J. M., ELLENBERGER, J. & KRISHNA, R. 2001b. Radial and axial dispersion 
of the liquid phase within a KATAPAK-S® structure: experiments vs. CFD 
simulations. Chemical Engineering Science, 56, 813-821. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

108 

VAN BATEN, J. M. & KRISHNA, R. 2001. Liquid-phase mass transfer within KATAPAK-
S® structures studied using computational fluid dynamics simulations. Catalysis Today,
69, 371-377. 

VAN BATEN, J. M. & KRISHNA, R. 2002. Gas and liquid phase mass transfer within 
KATAPAK-S® structures studied using CFD simulations. Chemical Engineering 
Science, 57, 1531-1536. 

VIVA, A., AFERKA, S., BRUNAZZI, E., MARCHOT, P., CRINE, M. & TOYE, D. 2011a. 
Processing of X-ray tomographic images: A procedure adapted for the analysis of phase 
distribution in MellapakPlus 752.Y and Katapak-SP packings. Flow Measurement and 
Instrumentation, 22, 279-290. 

VIVA, A., AFERKA, S., TOYE, D., MARCHOT, P., CRINE, M. & BRUNAZZI, E. 2011b. 
Determination of liquid hold-up and flow distribution inside modular catalytic 
structured packings. Chemical Engineering Research and Design, 89, 1414-1426. 

WEN, X., AKHTER, S., AFACAN, A., NANDAKUMAR, K. & CHUANG, K. T. 2007. CFD 
modeling of columns equipped with structured packings: I. Approach based on detailed 
packing geometry. Asia-Pacific Journal of Chemical Engineering, 2, 336-344. 

WENZEL, R. N. 1936. Resistance of Solid surfaces to wetting by water. Industrial & 
Engineering Chemistry, 28, 988-994. 

WIERSCHEM, A. & AKSEL, N. 2003. Instability of a liquid film flowing down an inclined 
wavy plane. Physica D: Nonlinear Phenomena, 186, 221-237. 

WIERSCHEM, A., BONTOZOGLOU, V., HEINING, C., UECKER, H. & AKSEL, N. 2008. 
Linear resonance in viscous films on inclined wavy planes. International Journal of 
Multiphase Flow, 34, 580-589. 

WOERLEE, G. F., BERENDS, J., OLUJIC, Z. & DE GRAAUW, J. 2001. A comprehensive 
model for the pressure drop in vertical pipes and packed columns. Chemical 
Engineering Journal, 84, 367-379. 

XU, Y. Y., PASCHKE, S., REPKE, J. U., YUAN, J. Q. & WOZNY, G. 2008. Portraying the 
Countercurrent Flow on Packings by Three-Dimensional Computational Fluid 
Dynamics Simulations. Chemical Engineering & Technology, 31, 1445-1452. 

YOUNG, T. 1805. An Essay on the Cohesion of Fluids. Philosophical Transactions of the 
Royal Society of London, 95, 65-87. 

YUAN, Y., HAN, M., CHENG, Y., WANG, D. & JIN, Y. 2005. Experimental and CFD 
analysis of two-phase cross/countercurrent flow in the packed column with a novel 
internal. Chemical Engineering Science, 60, 6210-6216. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

109 

ZHAO, L. & CERRO, R. L. 1992. Experimental characterization of viscous film flows over 
complex surfaces. International Journal of Multiphase Flow, 18, 495-516. 

ZUIDERWEG, F. J. & HARMENS, A. 1958. The influence of surface phenomena on the 
performance of distillation columns. Chemical Engineering Science, 9, 89-103. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

110 

LIST OF PUBLICATIONS/CONFERENCES AND WORKSHOP 
ATTENDED/WORK SUPERVISED 

List of Publications 

Subramanian, K.; Paschke, S.; Repke, J.-U.; Wozny, G.;  Drag Modelling in CFD Simulation 

to gain insight of Packed Columns, In: Chemical Engineering Transactions, 17, 561 – 566,  doi: 

10.3303/CET0917094.

Paschke , S.; Subramanian, K.; Repke, J.-U.; Wozny, G.; Effect of Countercurrent Gas Flow 

on Liquid Films, 5th International Berlin Workshop on Transport Phenomena with moving 

boundaries; ISBN : 978 – 3 – 18 – 392003 -7.    

Subramanian, K.; Wozny, G.; Analysis of Hydrodynamics of Fluid flow in Corrugated Sheets 

of Packing, International Journal of Chemical Engineering, Volume 2012 (2012), doi: 

10.1155/2012/838965. 

Conference and Workshop Attended 

Subramanian, K.; Paschke, S.; Repke, J.-U.; Wozny, G.;  Drag Modelling in CFD Simulation 

to gain insight of Packed Columns, 9th International Conference on Chemical and Process 

Engineering (Icheap9); Rome, Italy ; 10th – 13th May 2009. 

Subramanian,K.; Multiphase Flow- Simulation, Experiment and Applications; Dresden;  26th

– 28th May 2009.

Paschke , S.; Subramanian, K.; Repke, J.-U.; Wozny, G.; Effect of Countercurrent Gas Flow 

on Liquid Films, 5th International Berlin Workshop on Transport Phenomena with moving 

boundaries; Berlin; 8th – 9th October 2009.  

Subramanian, K.; Paschke, S.; Repke, J.-U.; Wozny, G.;  Computational Analysis of 

Corrugated Sheets of Packing, 10AIChE  - 2010 AIChE Annual Meeting, Salt Lake City, Utah; 

7th – 12th November 2010. 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

111 

Works Supervised 

Sommerwerk, T.; Woltmann, P.; Benetzungsexperimente an komplexen Oberflachen; 

Praktikum (2011). 

Vogt, A.; Lepenies, E.; Drescher, A.; Benetzungsexperimente an komplexen Oberflachen; 

Praktikum (2011). 



Analysis of homogeneous on inclined surfaces  
and on packing segments using CFD 

112 

DECLARATION 

I hereby declare that I completed this work without any improper help from a third party and 

without using any aids other than those cited. All ideas derived directly or indirectly from other 

sources are identified as such.  

I did not seek the help of a professional doctorate-consultant. Only persons identified as having 

done so received any financial payment from me for any work done for me.  

This thesis has not previously been submitted to another examination authority in the same or 

similar form in Germany or abroad.  

April 15, 2015        Kumar Subramanian 


