Olivin-Typ Lithiumeisenphosphat (Li_{1-x}FePO₄) -Synthese, Li-Ionentransport und Thermodynamik

Von der Fakultät für Chemie und Physik

der Technischen Universität Bergakademie Freiberg

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

doctor rerum naturalium

Dr. rer. nat.,

vorgelegt

von Dipl.-Nat. Stefan Loos, geboren am 03.09.1985 in Schlema

> Gutachter: Prof. Dr. Florian Mertens, Freiberg Prof. Dr. habil. Hans Jürgen Seifert, Karlsruhe

Tag der Verleihung: 05.02.2015

Diese Arbeit entstand zwischen Januar 2011 und September 2014 und wurde am Institut für Physikalische Chemie der Technischen Universität Bergakademie Freiberg bei Herrn Prof. Dr. Florian Mertens im Rahmen des DFG-Schwerpunktprogramms 1473 (WeNDeLIB) angefertigt.

weitere Mitglieder der Promotionskommission: Prof. Dr. habil. Michael Schlömann (Vorsitzender), Prof. Dr. habil. Edwin Kroke, Prof. Dr. habil. Klaus Bohmhammel

"Der Spaß fängt erst dann an, wenn man die Regeln kennt. Im Universum aber sind wir momentan noch dabei, die Spielanleitung zu lesen." [1]

...

"Übrigens grenzt die Tatsache, dass überhaupt Regelhaftigkeiten existieren, die überprüft werden können, an ein Wunder; die Möglichkeit, eine Regel … aufzustellen, kommt einem Wunder gleich. Man versteht sie überhaupt nicht, doch sie ermöglicht Vorhersagen - das heißt, sie sagt einem, womit bei einem Experiment zu rechnen ist, das man noch nicht durchgeführt hat." [2]

(Richard P. Feynman, Nobelpreis für Physik 1965)

Vorwort

Bald sind es tatsächlich schon neun Jahre, in denen ich bereits in Freiberg lebe. Nun wird man natürlich sagen, dass sei selbstverständlich, Studium und danach Promotion. Eben der Lebensabschnitt der Ausbildung und des Lernens (das heißt nicht, dass man bis zum Abitur nichts gelernt hätte). Das stimmt auch, aber bei genauerem Hinsehen ist deutlich mehr geschehen.

Es ist die Zeit in der man erwachsen wird, zumindest glaubt, es geworden zu sein, von zu Hause auszieht, seine berufliche Zukunft mindestens grob festlegt, wahrscheinlich für etwa 40 Jahre.

Es ist auch die Zeit in der man vielleicht das letzte Mal Freunde fürs Leben gewinnen kann, auch wenn der Ausdruck in Zeiten von sozialen Netzwerken sicher nicht mehr modern ist und man eher von Lebensabschnittsbekannten spricht.

Das Weltbild ist geformt, möglicherweise irreversibel. Manche Illusionen die man als Kind (zum Glück) noch hatte, lösen sich in Luft auf, und manchmal nicht einmal das.

Wahrscheinlich wird man, trotz lebenslangen Lernens, nie wieder so viel in so kurzer Zeit lernen. Ausnahmen mag es geben. Einmal sagte ein Schachspieler über seinen etwas älteren Gegner, er könne niemals soviel lernen, wie der andere schon vergessen hat [3]. Im Übrigen gewann der Ältere. Bleibt zu hoffen, dass das Lernen etwas schneller geht als das Vergessen. Was auf jeden Fall bleibt, ist die Erinnerung an die schönste Zeit des Lebens, wie manche sagen, und damit wohl auch Recht behalten.

Neben der Wissenschaft als "Hobby Nummer eins", durfte man sich auch in Anderem probieren und über viele Dinge mit anderen austauschen (etwa bei Bier und Kartoffelecken in der Stawi oder im Dunkelhof).

Menschen sind zu Vorbildern geworden, in allen Bereichen. Auch solche Menschen, die eigentlich gar nicht da waren, vielleicht gerade deshalb und dadurch noch mehr. Einige, die es sicher kaum ahnen.

Man ist älter geworden, in mancherlei Hinsicht allerdings auch jünger und vor allem zeitgemäßer. Einfach deshalb, weil man mehr gesehen hat. Der Blick über den berühmten Tellerrand fällt bei einer Kugel eben am leichtesten. "*Die Menschen sind nicht weiß oder schwarz, sie sind grau.* "[4]

Nachdem man etwas Zeit in der großen weiten Welt verbracht hat, weiß man, sie ist wirklich

bedrückend groß, irgendwie aber auch sehr klein, und überall gleich. Das liegt weniger daran, dass es Berge und Täler (nicht nur topographisch) fast überall gibt, sondern daran, dass Menschen auf der ganzen Welt wohl in erster Linie eben diese sind.

Die Linien des Lebens sind nun (zumindest schemenhaft) vorgezeichnet. In der Freiberger Zeit haben sich die großen Dinge des Lebens entschieden. Eigentlich erstaunlich. In nicht einmal neun Jahren.

Freiberg, im September 2014

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Florian Mertens für die Vergabe dieses ambitionierten und sehr interessanten Themas sowie für das in mich gesetzte Vertrauen. Die Diskussionen über Physikalische Chemie und die Naturwissenschaft ganz allgemein bereicherten meine Zeit im Institut sehr.

Sehr herzlich danke ich Herrn Prof. Dr. Hans Jürgen Seifert für die Übernahme der Zweitgutachtertätigkeit. Darüber hinaus danke ich ihm für die Organisation und Durchführung zahlreicher Workshops im Rahmen des SPP 1473 (WeNDeLIB).

Frau Dr. Regina Hüttl und Herrn Dr. Jürgen Seidel danke ich für Hinweise und Anregungen, sowie für die Übernahme und Klärung so mancher bürokratischer Angelegenheit. Herrn Prof. Dr. Klaus Bohmhammel danke ich für seine Hilfe bei thermodynamischen Berechnungen und seine ständige Gesprächsbereitschaft.

Herrn M. Sc. Christian Thomas, der von Anfang an im "Lithium-Projekt" mit dabei war, möchte ich sehr herzlich danken für mehr als drei Jahre fruchtbarer Zusammenarbeit, viele gute Ideen und ein hervorragendes, ergebnisorientiertes Arbeitsklima im Labor 128. Herrn Dr. Christian Reller, Herrn Dr. Alexander Münch, Herrn Dr. Tony Böhle (danke für vier Jahre im gemeinsamen Büro), Frau Dr. Claudia Liebold und Herrn Dr. Steffen Hausdorf danke ich für ein ganz besonderes Arbeitsklima in "der 217" und auch für unvergessene, schöne Stunden in der Oberlausitz und im Erzgebirge. Vieles, was ich über Chemie weiß, weiß ich von euch!

Des Weiteren danke ich Herrn Dipl.-Chem. Daniel Thomas, Herrn M. Sc. Stephan Glante, Frau Dipl.-Chem. Maria Lohse, Herrn M. Sc. Tobias Müller, Herrn B. Sc. Christian Schmidt und Herrn B. Sc. Thomas Naumann, Herrn Dr. Conrad Fischer und Herrn Dr. Marcus Schwarz.

Ich danke den folgenden Personen für die Anfertigung, Durchführung und Ermöglichung von Messungen sowie für wertvolle Hinweise: Frau Anja Obst (REM), Frau Karin Volkmann (ICP-OES), Frau Dipl.-Nat. Katharina Strecker (ICP-OES), Herrn Dipl.-Phys. Gerhard Schreiber (PXRD), Herrn Dr. Hartmut Stöcker (PXRD), Herrn Dipl.-Phys. Eric Mehner (PXRD), Frau Beate Kutzner (Ionenchromatographie), Herrn Dipl.-Chem. Michael Günthel (XPS), Frau Anett Kästner (Laserbeugung), Herrn Dr. Bernd Kubier (Laserbeugung), Herrn Dipl.-Nat. Christian Röder (Raman), Frau Regina Moßig (Raman), Frau Heidrun Hahn (ATR-IR), Herrn Dr. Ullrich Bläß, Herrn Joachim Riedel (Werkstatt), Herrn Andre Damm (Werkstatt), Herrn Thomas Pohnert (Werkstatt), Herrn Dipl.-Chem. Erik Hennings (Raman), Herrn Dr. Wilhelm Seichter (Einkristallstrukturanalyse), Frau Lange (TG-DSC, IR, C_p), Herrn Dr. Frank Schneider (Mößbauer), Frau Anke Haubold, Frau Dagmar Süßner, Herrn Dipl.-Ing. Matthias Jobst, Herrn Dipl.-Ing. Robert Adam, Herrn Hendrik Wulfmeier (LFP-Dünnschichten), Herrn Dipl.-Phys. Daniel Gruner (IFW Dresden, C_p), Herrn Dr. Mahmoud Abdel-Hafiez (IFW, Dresden, C_p), Frau Dr. Anja Wolter-Giraud (IFW Dresden, C_p).

Bei der Deutschen Forschungsgemeinschaft (DFG) bedanke ich mich sehr für die Finanzierung und die Unterstützung des Projektes.

Der gesamten Arbeitsgruppe des Instituts für Physikalische Chemie gilt mein Dank für die angenehme Arbeitsatmosphäre in den vergangenen Jahren.

Bei Dozenten und Kommilitonen bedanke ich mich mit Hochachtung und fast ausschließlich guten Erinnerungen an die Studienzeit. Insbesondere danke ich Frau Dipl.-Nat. Franziska Mortensen und Herrn Dipl.-Chem. Bert Käbisch.

Allen SMDlern sei für die unbeschreiblich schöne Zeit und den Blick fürs Wesentliche in den vergangenen Jahren gedankt. Ich danke Maria, Björn, Tschuli, Julia, Judith, Ignaz, Maria, Mathe und Timme.

Den größten Dank schulde ich meiner Freundin Ariane und meinen Eltern, sowie meiner Schwester, ohne die alle Höhen nicht möglich und alle Tiefen nicht überwindbar gewesen wären.

In der Hoffnung niemanden vergessen zu haben.

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts habe ich Unterstützungsleistungen von folgenden Personen erhalten:

Dr. Jürgen Seidel

Weitere Personen waren an der Abfassung der vorliegenden Arbeit nicht beteiligt. Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere Personen haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als solche kenntlich gemacht worden sind.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Kurzdarstellung und Thesen

Kurzdarstellung

Die vorliegende Dissertation beschäftigt sich mit der Synthese, den Li⁺-Transporteigenschaften und der Thermodynamik von Olivin-Typ LiFePO₄.

Es werden verschiedene Solvothermalsynthesen untersucht. Neben der Einstellung von Partikelgröße und Partikelmorphologie steht die Analyse der Hydrothermalsynthese aus Li₃PO₄ und Vivianit durch *in situ* Messung der elektrolytischen Leitfähigkeit im Vordergrund.

Die Untersuchung des Li⁺-Transportes geschieht auf Basis von Redoxreaktionen. Die formalkinetische Auswertung von Lithiierungs- und Delithiierungsreaktionen und eine Nukleations-Kristallisations-Analyse werden durch ein Modell zur Auswirkung von antisite-Defekten auf die Kapazität des Elektrodenmaterials ergänzt. Ramanspektroskopie und Lösungskalorimetrie werden zur Identifizierung reaktiver Spezies herangezogen.

Schwerpunkt der thermodynamischen Charakterisierung ist die experimentelle Ermittlung der Wärmekapazität. Diese wird unter Berücksichtigung einer magnetischen Phasenumwandlung bei 49,2 K im Bereich von 2 K bis 773 K ermittelt und mit DFT-Rechnungen verglichen. Die Anpassung der experimentellen Daten erlaubt die Berechnung wichtiger thermodynamischer Funktionen.

Thesen zur Dissertation

1. Für die Solvothermalsynthese von Olivin-Typ LiFePO₄ ist die Umsetzung von Li_3PO_4 mit Vivianit ein Schlüsselschritt.

2. Die Partikelgröße des LiFePO₄ kann durch die Art der Precursorfällung, die Wahl des Lösungsmittels und die Art der postsynthetischen Behandlung zwischen 20 nm und etwa 1 μ m eingestellt werden. Die Partikelmorphologie hängt hauptsächlich vom verwendeten Lösungsmittel ab.

3. Die Oberfläche von LiFePO₄ ist insbesondere nach Kontakt mit Sauerstoff durch Polyphosphatspezies gekennzeichnet.

4. Für die Hydrothermale Bildung des LiFePO₄ ist die Fe²⁺-Konzentration in Lösung ein geschwindigkeitsbestimmender Parameter.

5. Die Homologen LiMnPO₄, LiCoPO₄ und LiNiPO₄ lassen sich wie LiFePO₄ durch Solvothermalsynthese aus Methanol und anschließendem Kalzinieren bei 500 °C erhalten. Nur für LiFePO₄ ist die Kristallstruktur bereits nach der solvothermalen Behandlung des vorher gefällten Precursors ausgebildet.

6. Die Delithiierung von LiFePO₄ mit Kaliumperoxodisulfat in Wasser und die Lithiierung von FePO₄ mit LiI in Acetonitril lassen sich kinetisch durch Leitfähigkeitsmessungen in Lösung charakterisieren.

7. Die Aktivierungsenergien für die Lithiierung und die Delithiierung von $Li_{1-x}FePO_4$ betragen 42 kJ mol⁻¹ bzw. 25 kJ mol⁻¹.

8. Die kinetische Analyse mit einem Nukleationsmodell nach Avrami-Johnson-Mehl und Kolmogorow bestätigt den eindimensionalen Li⁺-Transport in Li_{1-x}FePO₄.

9. Die Delithiierung von LiFePO₄ mit Cer(IV)ammoniumnitrat in Acetonitril läuft mit einer Geschwindigkeit von mehreren hundert C auch bei großen LiFePO₄ Partikeln (> 100 nm) ab. Für diese Reaktion kann ramanspektroskopisch ein Hexanitratocer(IV)-Komplex als reaktive Spezies nachgewiesen werden, die in Wasser in dieser Form nicht existiert. Dies wird durch Lösungsenthalpien für Cer(IV)ammoniumnitrat in Acetonitril und Wasser unterstützt. 10. Die Delithiierung von LiFePO₄ mit Cer(IV)ammoniumnitrat ist am ehesten mit dem "Domino-Kaskaden-Modell" erklärbar.

11. Die Erhöhung der kinetisch verfügbaren Kapazität von LiFePO₄ durch Kalzinieren bei 500 °C kann durch die Minimierung von antisite-Defekten begründet werden. Diese Beobachtung kann durch ein auf der Struktur des LiFePO₄ beruhenden Modells quantitativ gefasst werden.

12. Ein prinzipieller Unterschied im kinetischen Verhalten beschichteter und unbeschichteter LiFePO₄-Proben existiert im hier untersuchten Rahmen nicht.

13. Die hydrothermale Bildung von LiFePO₄ aus Li₃PO₄ und Fe₃(PO₄)₂ · 8 H₂O ist mit etwa 35 kJ mol⁻¹ endotherm. Dies befindet sich in Übereinstimmung mit thermodynamischen Berechnungen (39 kJ mol⁻¹).

14. Durch Wärmekapazitätsmessungen kann für LiFePO₄ eine Entropie von 130,95 J K⁻¹ mol⁻¹ (298,15 K) angegeben werden.

15. LiFePO₄ durchläuft bei einer Néel-Temperatur von 49,2 K eine magnetische Phasenumwandlung von antiferromagnetisch nach paramagnetisch.

16. Die Phasenumwandlungsentropie beträgt 10,1 J K⁻¹ mol⁻¹. Die Differenz dieses Wertes zum erwarteten Wert kann durch die Partikelgrößenabhängigkeit, wie sie auch für die Néel-Temperatur existiert, des effektiven magnetischen Momentes erklärt werden.

17. Aus den experimentellen Daten zur Wärmekapazität können neben der Debye-Temperatur(930 K) und der Einstein-Temperatur (235 K) auch die thermodynamischen FunktionenEntropie, Enthalpie und freie Enthalpie ermittelt werden.

18. Die experimentellen C_p-Daten stimmen bis 400 K sehr gut mit first-principles DFT-Rechnungen überein. Bei höheren Temperaturen unterschätzt die Theorie die experimentellen Daten auf Grund der Vernachlässigung anharmonischer Effekte.

Inhaltsverzeichnis

V	orwor	·t		5		
Ľ	Danksagung					
V	ersich	erung		9		
K	Kurzda	rstellu	ng und Thesen	11		
A	bbild	ungsver	zeichnis	19		
T	abelle	nverzei	chnis	23		
A	bkürz	zungsve	rzeichnis	25		
S	ymbol	lverzeic	hnis	27		
1	1 Hinführung und Motivation 29					
2	Star	nd der l	Literatur und grundsätzliche Aspekte	33		
	2.1	Warur	n Lithium?	34		
	2.2	Lithiu	mionenbatterien	35		
		2.2.1	Allgemeines und Begriffliches	35		
		2.2.2	Aufbau und Funktionsweise	36		
		2.2.3	Batterieproduktion	37		
	2.3	Katho	denmaterialien	38		
	2.4	Olivin	-Typ Lithiumeisenphosphat und seine Homologen	42		
		2.4.1	Gründe für die Wahl von Olivin-Typ Lithiumeisenphosphat	42		
		2.4.2	Struktur und Eigenschaften	44		
	2.5	Darste	ellung von Lithiumeisenphosphat	47		
		2.5.1	Verfahren	47		
		2.5.2	Hydrothermalsynthese	49		
		2.5.3	Beschichtung und Nanostrukturierung	51		
		2.5.4	Dotierung	53		

	2.6	Kineti	k der Li ⁺ -Insertion/-Extraktion	54
		2.6.1	Überblick über mögliche chemische Reaktionen	54
		2.6.2	Interkalations-/Deinterkalationsmechanismen	56
	2.7	Therm	odynamik des Systems LiFePO ₄ - FePO ₄	62
		2.7.1	Phasendiagramm	62
		2.7.2	Bildungsenthalpien	64
		2.7.3	Hysterese	64
	2.8	Elektr	o- und nasschemische Untersuchungen	65
	2.9	Bewer	tung der vorliegenden Literatur	67
3	Ziel	e		69
4	Erg	ebnisse	und Diskussion	71
	4.1	Synthe	ese	71
		4.1.1	Solvothermalsynthesen	71
		4.1.2	Partikelgrößen, Kristallitgrößen und Partikelmorphologie	77
		4.1.3	Wirtschaftlichkeit	83
		4.1.4	Mechanistische Überlegungen zur LFP-Synthese - in situ Messung	
			der elektrolytischen Leitfähigkeit	85
		4.1.5	Die Homologen des Lithiumeisenphosphats	97
	4.2	Li+-Tr	ansport	101
		4.2.1	Möglichkeiten zur Untersuchung/Verfolgung heterogener Lithiierungs	-
			und Delithiierungsreaktionen	101
		4.2.2	Formalkinetik	108
		4.2.3	Heterogene Nukleation - Das Avrami-Modell	110
		4.2.4	Delithiierung von Lithiumeisenphosphat mit Cer(IV)ammoniumnitrat	
			- mechanistische Überlegungen und reaktive Spezies	117
		4.2.5	Titrationskalorimetrie - Auswirkung von antisite-Defekten auf die	
			Li ⁺ -Extraktion	125
		4.2.6	Abschließende Bemerkungen	131
	4.3	Therm	odynamik	133
		4.3.1	Thermodynamische Berechnungen zur Synthese	133
		4.3.2	Wärmekapazität und Entropie von LiFePO ₄	135
5	Zus	ammen	fassung	145
6	Aus	blick		149

7	Exp	erimenteller Teil	151
	7.1	Methoden	151
	7.2	Synthesevorschriften	160
	7.3	Chemikalien	163
	7.4	Software	167
8	Anh	ang	169
	8.1	Kristallstruktur von Ce(III)nitrat@18-Krone-6	169
	8.2	In situ Messung der elektrolytischen Leitfähigkeit - Hysterese	170
	8.3	Formulierung der elektrolytischen Leitfähigkeit von LiI in Acetonitril als	
		Funktion von Temperatur und Konzentration	171
	8.4	Ramanspektroskopische Untersuchung der Wechselwirkungen zwischen Ace-	
		tonitril und Lithiumiodid	172
	8.5	Elektrolytische Leitfähigkeit von $K_2S_2O_8$ und LiKSO ₄ und die maximale	
		Differenzleitfähigkeit	174
	8.6	Avrami-Exponenten nach Humphreys und Hatherly	175
	8.7	XPS-Studie an LFP - die Cl 2s -Region	176
	8.8	Delithiierung von LiFePO ₄ mit KMnO ₄	177
	8.9	C_p von LiFePO ₄ - experimentelle Daten und thermodynamische Funktionen	177
Li	terati	ırverzeichnis	182
Le	bens	auf	205
Pu	blika	tionen	207

17

Abbildungsverzeichnis

1.1	Tägliche Last im Stromnetz innerhalb einer Woche	30
1.2	Anwendungen von Lithiumionenbatterien	30
1.3	Synthese, Thermodynamik und Li ⁺ -Transport	31
2.1	Publikationslage seit 1960	33
2.2	Ragone-Diagramm für verschiedene Energiespeichermaterialien	35
2.3	Vereinfachter Aufbau einer Li-Ionen-Batterie	36
2.4	Komponenten und ausgewählte Schritte zur Fertigung einer Li-Ionen-Batterie	38
2.5	Klassifikation verschiedener Interkalationskathodenmaterialien	40
2.6	Potential verschiedener Kathodenmaterialien als Funktion des Ladezustandes	41
2.7	Relative Energieniveaus von Fe ³⁺ /Fe ²⁺ -Redoxpaaren in verschiedenen Ei-	
	senphosphaten	43
2.8	Übertragung der Kristallstruktur des natürlich vorkommenden Olivin auf Li-	
	thiumeisenphosphat	44
2.9	Hexagonal dichteste Kugelpackung von Sauerstoffatomen im Lithiumeisen-	
	phosphat	44
2.10	Räumliche Anordnung der Element-Sauerstoffpolyeder im Olivin-LFP	45
2.11	Methoden zur Darstellung von LiFePO ₄ \ldots \ldots \ldots \ldots \ldots \ldots \ldots	48
2.12	In situ Untersuchung der Hydrothermalsynthese von LiFePO ₄ [5]	50
2.13	Von Qin postulierter Mechanismus der Hydrothermalsynthese von LiFePO ₄	
	[6]	51
2.14	Entwicklung des Verhältnisses von Oberfläche zu Volumen als Funktion der	
	Partikelgröße bei konstantem Gesamtvolumen	52
2.15	Einfluss von Beschichtung und Partikelgröße auf elektrochemische Eigen-	
	schaften von Lithiumeisenphosphat	53
2.16	Klassifizierung kinetischer Studien an Lithiumeisenphosphat	57
2.17	Core-Shell-Modell	58
2.18	Domino-Kaskaden-Modell	58
2.19	Bestätigung des Domino-Kaskaden-Modells durch Elektronenbeugung	59
2.20	Li-Staging	60

2.21	Mosaik-Modell	60
2.22	Anisotropie der Aktivierungsbarriere für den Li ⁺ -Transport	61
2.23	Partikelgrößenabhängige Mischungslücke im System LiFePO ₄ - FePO ₄	63
2.24	Phasendiagramm LFP - FP	63
2.25	Thermodynamischer Ursprung der Hysterese bei Insertionselektroden	65
2.26	Vergleich elektrochemischer und nasschemischer Methoden	66
4.1	Röntgenpulverdiffraktogramm des Precursors	72
4.2	Ramanspektren der wässrigen Filtrate des Precursors	73
4.3	Röntgendiffraktogramm nach der Hydrothermalsynthese	74
4.4	Hydrothermalsynthese von LiFePO ₄ aus Li ₃ PO ₄ und Vivianit	75
4.5	Röntgendiffraktogramm nach der Solvothermalsynthese	76
4.6	Einfluss der Precursorfällung auf die Kristallitgröße	78
4.7	Einfluss des Lösungsmittels auf die Kristallitgröße	78
4.8	Einfluss des Lösungsmittels auf die Partikelmorphologie	79
4.9	Verminderung der Kristallitgröße von LFP durch Mahlen	80
4.10	Elektrochemische Aktivität zweier LFP-Proben	81
4.11	Elektrochemisch aktives und inaktives LFP	82
4.12	Reaktionsschema zur LFP-Synthese	84
4.13	Leitfähigkeitsmessungen in verschiedenen chemischen Systemen	85
4.14	Elektrolytische Leitfähigkeit verschiedener Substanzen und Gemische in Was-	
	ser als Funktion der Temperatur	87
4.15	Elektrolytische Leitfähigkeit bei der Hydrothermalsynthese bei unterschied-	
	lichen Konzentrationen an Lithiumphosphat	88
4.16	Elektrolytische Leitfähigkeit in Wasser als Funktion der Zeit und der Tem-	
	peratur	89
4.17	Röntgenpulverdiffraktogramme von verschiedenen Produkten nach der Syn-	
	these	90
4.18	Löslichkeiten der schwerlöslichen Salze Lithiumphosphat, Vivianit und Li-	
	thiumeisenphosphat	91
4.19	Avramianalyse der hydrothermalen Bildung von Lithiumeisenphosphat aus	
	Lithiumphosphat und Vivianit in Wasser	92
4.20	Vergleich der Systeme Precursor - Wasser und Precursor - Methanol: Leitfä-	
	higkeit	94
4.21	Vergleich der Systeme Precursor - Wasser und Precursor - Methanol: Rönt-	
	genpulverdiffraktometrie	95

4.22	Anomalie der elektrolytischen Leitfähigkeit von LiCl in MeOH oberhalb von etwa 150 °C	96
4.23	Zusammenfassende Darstellung des Ablaufes verschiedener LFP-Synthesen	
	in Wasser	96
4.24	Zusammenfassende Darstellung des Ablaufes verschiedener LFP-Synthesen	
	in MeOH	97
4.25	Pulverdiffraktometrische Analyse der Synthese von LFP und seinen Homo-	
	logen	98
4.26	Zellparameter von LFP und seinen Homologen	99
4.27	REM-Aufnahmen von Lithiumeisenphosphat und ausgewählter Homologer	100
4.28	Auftretende Phasen und Stoffübergänge bei der chemischen Lithiierung/ De-	
	lithiierung von Lithiumeisenphosphat/Eisenphosphat	102
4.29	Verfolgung der Delithiierung von LiFePO ₄ mit NO ₂ BF ₄	103
4.30	Kalibrierung elektrolytischer Leitfähigkeiten für die Delithiierung von LFP	
	mit $K_2S_2O_8$ in Wasser	104
4.31	Entwicklung des pH-Wertes bei der Delithiierung von unbeschichtetem LFP	
	mit Peroxodisulfat in Wasser	105
4.32	UV-Vis-Spektren verschiedener Spezies in Acetonitril	107
4.33	Kalibrierung der elektrolytischen Leitfähigkeit $\kappa(T, c)$ für die Lithiierung	
	von FP mit LiI in Acetonitril	107
4.34	Reaktionsordnungen für die Delithiierung von LFP mit $K_2S_2O_8$	109
4.35	Reaktionsordnungen für die Lithiierung von FePO ₄ mit Lithiumiodid	109
4.36	Lithiierung von FP mit LiI in Acetonitril bei verschiedenen Temperaturen .	114
4.37	Sharp-Hancock-Plot und Aktivierungsenergie für die Lithiierung mit LiI	115
4.38	Sharp-Hancock-Plot und Aktivierungsenergie für die Delithiierung mit Per-	
	oxodisulfat	116
4.39	Modell zur Delithiierung und Lithiierung von (L)FP	117
4.40	UV-Vis Spektren von CAN und LCAN in Acetonitril	118
4.41	Nachweis der Kristallisation eines schwerlöslichen Salzes	119
4.42	Detektion der Li ⁺ -Konzentration in Acetonitril während der Delithiierung	
	von LFP mit CAN	120
4.43	Chemische Delithiierung von LFP mit CAN in Acetonitril	120
4.44	Raman-Spektren von CAN und CAN gelöst in Acetonitril und Wasser	122
4.45	Lösungsenthalpien von CAN und LCAN in Acetonitril und Wasser	124
4.46	Modell zu antisite-Defekten, in Olivin-Typ Materialien $M_1M_2XO_4$	127
4.47	Verfügbare Kapazität als Funktion der Häufigkeit von antisite-Defekten für	
	verschiedene Partikelgrößen	128

4.49	Verfügbare Kapazität verschiedener LFP-Proben	128
4.48	Simulierte Röntgenpulverdiffraktogramme der Idealstruktur und der Grenz-	
	struktur mit 100 % antisite-Defekten	129
4.50	Röntgenpulverdiffraktogramme und REM-Aufnahmen von Lithiumeisenphos-	
	phat	129
4.51	Reaktionsgeschwindigkeiten und C-Raten verschiedener Reaktionen	131
4.52	DSC-Messung der hydrothermalen LFP-Bildung aus LP und Vivianit	134
4.53	Charakterisierung von LiFePO ₄ für C_p -Messungen	135
4.54	REM-Aufnahmen von LFP	137
4.55	Wärmekapazität von LFP	138
4.56	Wärmekapazität von LFP zwischen 0 K und 70 K	140
4.57	Thermodynamische Funktionen von LFP als Funktion der Temperatur	144
7.1	Messung der elektrolytischen Leitfähigkeit unter erhöhten Temperaturen und	
	Drücken	153
7.2	Kalibrierung der Li ⁺ -selektiven Elektrode	154
7.3	Thermal Activity Monitor (TAM) mit Titrationseinheit	156
7.4	Herstellung von Miniaturtiegeln aus Kupfer	158
7.5	Kupfertiegel und Tablette zur Messung von C _p von 2 - 300 K $\ldots \ldots \ldots$	158
7.6	Glasapparatur zur Verfolgung der Delithiierung von LiFePO ₄ mit NO_2BF_4 .	159
7.7	Certificate of analysis LiFePO ₄ , P1	165
7.8	Certificate of analysis LiFePO ₄ , P2	166
8.1	Ce(NO ₃) ₃ @18-Krone-6: Kugel-Stab-Modell	169
8.2	Leitfähigkeitshysterese beim Auflösen und Kristallisieren am Beispiel von	
	Lithiumphosphat	170
8.3	Güte des 3d-Fits	171
8.4	Ramanspektren von Lithiumiodid in Acetonitril	172
8.5	We chselwirkung zwischen Li ⁺ und Acetonitril	173
8.6	Kalibrierung der elektrolytischen Leitfähigkeit von $K_2S_2O_8$ und $LiKSO_4$	174
8.7	Anfangsgeschwindigkeit der Delithiierung von LFP mit Peroxodisulfat für	
	verschiedene Partikelgrößen	174
8.8	Typische Kristallisationskinetik	175
8.9	XPS-Studie der Cl2s - Region: anionische Verunreinigungen in LFP	176
8.10	UV-Vis-Studie der Delithiierung von LFP mit KMnO ₄	177

Tabellenverzeichnis

2.1	Eigenschaften von Lithiumeisenphosphat - LiFePO ₄	46
2.2	Redoxpotentiale verschiedener M^{3+}/M^{2+} -Redoxpaare gegen Li/Li ⁺ [7]	47
2.3	Standardpotentiale verschiedener Redoxpaare (relativ zur SHE)	56
2.4	Systematisierung von verschiedenen Modellen zum Mechanismus der Li+-	
	Interkalation (verändert nach [8])	62
2.5	Bildungsenthalpien von orthorhombischem LiFePO ₄ und FePO ₄ [9] \ldots .	64
2.6	Stärken und Schwächen elektrochemischer und nasschemischer Methoden	
	zur Untersuchung der Li ⁺ -(De-)Interkalation	66
4.1	Ramanbanden wässriger Filtrate und deren Zuordnung	73
4.2	Zusammensetzung von Bulk und Oberfläche - XPS	83
4.3	Partikel- und Kristallitgrößen verschiedener LiMPO ₄ -Homologer	100
4.4	Avrami-Koeffizienten und Wachstumsmodelle für Festkörper	113
4.5	Thermodynamische Berechnungen zur Synthese von LiFePO ₄ \ldots \ldots \ldots	134
4.6	Beobachtete IR-Banden von LFP mit Zuordnung	136
4.7	Chemische Analyse von Lithiumeisenphosphat	136
4.8	Zellparameter und Kristallit-/Partikelgrößen von LFP	136
4.9	Fit für $C_p(T)$ von 0 K bis 10 K (Fehler < 10 %)	139
4.10	Fit-Parameter für $C_p(T)$ von 70 K bis 300 K (Fehler < 2 %)	142
4.11	Fit-Parameter für $C_p(T)$ von 70 K bis 300 K (Fehler < 2 %)	143
7.1	Löslichkeiten von Natrium- und Kaliumsalzen in Wasser [10, 11, 12]	162
7.2	Verwendete Chemikalien: Reinheit, Hersteller und molare Masse	164
8.1	Mittels Minimierung der Fehlerquadrate ermittelte Koeffizienten aus Glei-	
	chung 8.3	171
8.2	Ideale JMAK-Exponenten	175
8.3	Wärmekapazität von Lithiumeisenphosphat - experimentelle Daten; a - PPMS,	
	b - Micro-DSC, c - Sensys	178
8.4	Thermodynamische Funktionen von Lithiumeisenphosphat	180

Abkürzungsverzeichnis

AFM - antiferromagnetisch	LD - Laserbeugung
AN - Acetonitril	LFP - Lithiumeisenphosphat
ATR - abgeschwächte Totalreflexion	LIB - Lithiumionenbatterie(n)
BuLi - Butyllithium	LM - Lösungsmittel
CAN - Cer(IV)diammoniumnitrat	LMP - Lithiummanganphosphat
CCD - charge-coupled-device	LNP - Lithiumnickelphosphat
dp - depolarisiert	LP - Lithiumphosphat
DFT - Dichtefunktionaltheorie	MeOH - Methanol
DSC - Difference Scanning Calorimetry	MS - Massenspektroskopie
EL - elektrolytische Leitfähigkeit	NIST - National Institute of Standards and
EDX - energiedispersive Röntgenspektrosko-	Technology
pie	NMR - Nuclear Magnetic Resonance
EG - Ethylenglykol	NPD - Neutronenpulverdiffraktometrie
Fk - Festkörper	OES - optische Emissionsspektroskopie
FP - orthorhombisches Eisenphosphat	PVC - Polyvinylchlorid
(FePO ₄) oder Vivianit (Fe ₃ (PO ₄)) ₂ \cdot 8 H ₂ O)	PTFE - Polytetrafluorethylen
GITT - galvanostatic intermittant titration	PXRD - Röntgenpulverdiffraktometrie
technique	p - polarisiert
HR-TEM - hochauflösende Transmissions-	pp - teilweise polarisiert
elektronenmikroskopie	REM - Rasterelektronenmikroskopie
HWZ - Halbwertszeit	rpm - Umdrehungen pro Minute
hf - heat flow	SEI - Solid Electrolyte Interface (Interphase)
ICP - induktiv gekoppeltes Plasma	SHE - Standard-Wasserstoff-Elektrode
IR - infrarot	SNFIM - Scanning near field Infrarotmikro-
ISE - ionenselektive Elektrode	skopie
JMAK - Johnson-Mehl-Avrami-Kolmogorov	TAM - Thermal Activity Monitor
KZ - Koordinationszahl	TEG - Tetraethylenglycol
LCAN - Lithiumcer(III)diammoniumnitrat	TG - Thermogravimetrie
LCP - Lithiumcobaltphosphat	UV-Vis - ultraviolett-sichtbar

vw - sehr schwach	XANES - X-ray absorption near edge
WW - Wechselwirkung	structure
XAS - Röntgenabsorptionsspektroskopie	XPS - Röntgenphotoelektr.spektroskopie

Symbolverzeichnis

Lateinische Symbole

A - Oberfläche	te, Boltzmannkonstante
a - Zellparameter	$\Delta_{\rm L}{ m H}$ - Lösungsenthalpie
a _{0, 1, 2, 3, 4, 5} - Fit-Koeffizienten	M - molare Masse, Magnetisierung
B - magnetische Flussdichte	m - Koeffizient der Debye-Funktion
b - Zellparameter	m _{ref} - Masse der Referenz
B _{3,5,7} - Koeffizienten des Gitterbeitrags	m _{sample} - Masse der Probe
zu C _p	N - Anzahl der Keimbildungszentren
C _p - Wärmekapazität bei konstantem Druck	N0 - Anzahl der zu Beginn vorhandenen
c ¹ - Zellparameter, Konzentration	Keimbildungszentren
c ₀ - Anfangskonzentration	NMR - nuclear magnetic resonance
D - Diffusionskoeffizient, Debye-Funktion	n - Reaktionsordnung, Avrami-Exponent,
d - (Partikel)durchmesser	Koeffizient der Einstein-Funktion
E - elektrische Feldstärke, Einstein-Funktion	P - Anzahl auftretender Phasen
E _A - Aktivierungsenergie	Q - elektrische Ladung
e - Elementarladung	R - Radius
F - Faraday-Konstante, Anzahl der Freiheits-	R _m - spezifischer Widerstand
grade	S - Spin
F _{el} - Kraft im elektrischen Feld	Δ_{mag} S - magnetische Entropie
ΔG° - freie Standardreaktionsenthalpie	S_{m}° - molare Standardentropie
$\Delta_{\rm B} { m H}$ - Bildungsenthalpie	$\Delta_{\mathbf{R}} \mathbf{S}^{\circ}$ - Standardreaktionsentropie
$\Delta_{R, m} H^{\circ}$ - Standard(reaktions)enthalpie	s - Weg
I - Nukleationsrate	T - Temperatur
K - Anzahl der Komponenten, Gleichge-	T _N - Néel-Temperatur
wichtskonstante	t - Zeit
k - Geschwindigkeitskonstante, Zeitkonstan-	t _i /t _{i+1} - Start-/Endzeit des entsprechenden

¹Einige wenige Symbole werden zugunsten ihrer in der Literatur üblichen Verwendung mehrfach genutzt. Die jeweilige Bedeutung geht aus dem Kontext hervor.

Wärmeflusses	W - Arbeit
U - Potential, innere Energie	\mathbf{X}_{lpha} - Volumenanteil der $lpha$ -Phase
u - Beweglichkeit	\mathbf{X}_{eta} - Volumenanteil der eta -Phase
V - (Zell)volumen	Z - Anzahl der Formeleinheiten pro Ele-
v - Geschwindigkeit	mentarzelle
v ₀ - Anfangsgeschwindigkeit	z - Wertigkeit

Griechische Symbole

α - Konstante	
β - Konstante	Λ - Äquivalentleitfähigkeit
$\beta_{\rm asw}$ - Koeffizient des anisotropen Spin-	λ - Zeitkonstante
Wellenbeitrags zu C _p	$\mu_{\rm eff}$ - effektives magnetisches Moment
Δ - Spin-Wellen-Gap	σ - elektrische bzw. ionische Leitfähigkeit
ϵ - Dielektrizitätskonstante	$\Theta_{\rm D}$ - Debye-Temperatur
γ - Sommerfeld-Koeffizient, Oberflächen-	$\Theta_{\rm E}$ - Einstein-Temperatur
energie	θ - Glanzwinkel
η - Wirkungsgrad, Viskosität	au - (Diffusions)zeit
κ - elektrolytische Leitfähigkeit, thermische	
Leitfähigkeit	

1 Hinführung und Motivation

"Es geht nicht darum, die Zukunft vorauszusagen. Es geht darum, sie zu schaffen." (Johann Gottfried Herder) [13]

Die mit der angestrebten Energiewende benötigten regenerativen Energien wie Wind- und Solarenergie stehen nicht kontinuierlich zur Verfügung. Eine ständige Verfügbarkeit, ohne dass dabei hohe Überschussenergien entstehen, wird allerdings für den nachhaltigen Erfolg dieser Technologien und einer ökonomischen Rentabilität entscheidend sein.

Dabei können wiederaufladbare elektrochemische Energiespeicher nicht nur Schwankungen im Stromnetz durch Zwischenspeicherung ausgleichen, sondern ebenso eine saubere Energie im Bereich der Elektromobilität anbieten, ohne auf fossile Rohstoffe angewiesen zu sein.

Lithiumionenbatterien haben sich seit der Markteinführung durch Sony zu Beginn der neunziger Jahre [14] mehr und mehr durchgesetzt. Dennoch sind mit der noch relativ jungen Technologie der Li-Ionen-Batterien (LIBs) noch immer große Sicherheitsbedenken verbunden. Das dies nicht ganz unberechtigt ist, zeigen beispielsweise einige Vorfälle in der Luftfahrt [15, 16]. Gerade im Hinblick auf die große thermische Stabilität und der damit verbundenen Sicherheit, der geringen Toxizität und der Rohstoffverfügbarkeit (insbesondere für Eisen) hat das Elektrodenmaterial LiFePO₄ (LFP) im Vergleich zu bisher gängigen Kathodenmaterialien wie LiCoO₂ bessere Eigenschaften.

Darüber hinaus unterliegen elektrochemische Energiespeicher im Gegensatz zu Wärmekraftmaschinen nicht der Carnot'schen Limitierung des maximalen Wirkungsgrades gemäß

$$\eta = 1 - \frac{\mathrm{T}_{\mathrm{T}}}{\mathrm{T}_{\mathrm{H}}}.\tag{1.1}$$

Diese Einschränkung gilt allerdings nicht für Systeme, die (nahezu) isotherm arbeiten. Sie können einen deutlich höheren Wirkungsgrad erreichen [17].

Abb. 1.1 illustriert die auftretenden Schwankungen im Stromnetz, die durch die Verwendung von Lithiumionenbatterien vermittelt werden könnten.

Abbildung 1.1: Typischer Energieverbrauch und damit verbundene tägliche Schwankungen der Last im Stromnetz innerhalb einer Woche [17]. Die schraffierten Bereiche kennzeichnen mögliche Lade- bzw. Entladezeiten für Lithiumionenbatterien.

Abb. 1.2 zeigt einige Anwendungen von Lithium-Ionen-Batterien, die die Allgegenwärtigkeit dieser Technologie aufzeigen.

Abbildung 1.2: Anwendungen von Lithiumionenbatterien. Die Verwendung von LIBs geht von Laptops, Smartphones und dem Akku an sich heute bis zum Flugzeug und zum Elektroauto. Für die nur temporär verfügbaren Energieträger wie Wind oder Sonne können LIBs als Zwischenspeicher fungieren. Bildnachweise: [18, 19, 20, 21, 22, 23]

Außer diesen sehr anwendungsorientierten Aspekten ist die Untersuchung der thermodynamischen Eigenschaften und die Aufklärung der Transportprozesse in Interkalationsmaterialien wie Li_{1-x}FePO₄ von materialwissenschaftlichem Interesse. Obwohl mittlerweile auf eine stattliche Anzahl von Untersuchungen zum Kathodenmaterial LFP verwiesen werden kann, gibt es in den verschiedenen Bereichen noch erhebliche Lücken. Die vorliegende Arbeit soll deshalb Aspekte aus den Teilbereichen Synthese, Li⁺-Transport und Thermodynamik, die für die Produktion, die Anwendung und die fundamental materialwissenschaftliche Erforschung dieser Stoffklasse von Bedeutung sind, aus physikalisch-chemischer Sicht beleuchten. Daraus leitet sich die Grundkonzeption der Arbeit ab.

Konzeption der Arbeit

Die Dissertation ist in drei große Themenblöcke eingeteilt: Synthese, Li⁺-Transport und Thermodynamik. Diese Struktur soll sowohl im Ergebnisteil als auch im Stand der Literatur eingehalten werden. Eine teilweise Überschneidung der einzelnen Bereiche kann sicherlich nicht vollständig vermieden werden. Die Bereiche bedingen sich und sind nicht voneinander unabhängig (Abb. 1.3).

Abbildung 1.3: Wechselbeziehung zwischen Synthese, Thermodynamik und Li⁺-Transport.

Die Darstellung eines Materials in entsprechender Qualität wirkt sich nicht nur auf die Zuverlässigkeit thermodynamischer Daten, sondern auch auf Defekte und Partikelgrößen, die sich wiederum direkt in den Transporteigenschaften widerspiegeln, aus. Weiterhin ist die Kinetik über die Boltzmann-Statistik mit der Thermodynamik verknüpft (vgl. [24, 25]). Daraus folgt, dass die Rate, mit der Atome einen Zustand verlassen, von deren Eigenschaften in diesem Zustand abhängt [24].

Eine ganzheitliche Betrachtung von sowohl Thermodynamik als auch Kinetik (Transporteigenschaften) unter Berücksichtigung einer entsprechenden Materialsynthese erscheint daher empfehlenswert.

2 Stand der Literatur und grundsätzliche Aspekte

Die Geschichte des Lithiumeisenphosphates beginnt im Grunde erst 1997, eigentlich schon in den Siebzigern und formal sogar noch etwa 40 Jahre früher. Damit ist gemeint, dass die Verbindung spätestens 1941 erfolgreich synthetisiert wurde [26], allerdings seit der Entdeckung des ersten Lithiuminterkalationsmaterials, Li_xTiS_2 , 1976 (z.B. [27]) noch etwa 20 Jahre vergingen, bis die "Elektrochemie" des LiFePO₄ im Jahr 1997 von Padhi *et al.* [28] untersucht und publiziert wurde.

Abbildung 2.1: Publikationslage für verschiedene Schlagwörter auf Grundlage von Sci-Finder seit 1960 (Stand: Januar 2014). Mit Pfeilen sind drei markante Punkte gezeigt. Zunächst beschäftigte man sich seit etwa 1960 mit grundlegenden Problemen bei Lithium-Sekundärzellen. Als die Aktivitäten bereits wieder geringer wurden, sorgte Lithiumtitansulfid als erstes Interkalationsmaterial für einen Aufschwung im ganzen Forschungsbereich, der im Grunde noch anhält. Die Explosion der jährlichen Publikationszahlen in den vier- und fünfstelligen Bereich tritt mit der Markteinführung der Lithiumionenbatterien auf Basis von LiCoO₂ und Kohlenstoff [14] und der Entdeckung der Elektrochemie des Lithiumeisenphosphates [28] in den 90er Jahren ein. Es ist die logarithmische Skalierung zu beachten.

Die Publikationsübersicht zeigt, welch enormes Interesse an dieser Verbindung seitdem besteht (Abb. 2.1). Vor 1997 hatte das Material praktisch keine Bedeutung. Die Fülle an Literatur zeigt, dass ein vollständiger Überblick in diesem Abschnitt unmöglich ist. Es soll deshalb versucht werden, die wesentlichen Entwicklungen seit 1997 darzustellen.

Warum gerade das Element Lithium für eine Verwendung in Primär- und Sekundärzellen von großer Relevanz ist, beleuchtet der nächste Abschnitt.

2.1 Warum Lithium?

Für die Nutzung von Lithium(ionen) anstatt anderer Elemente gibt es im Wesentlichen drei Gründe:

- niedriges Standardpotential (-3,05 V) [29] und damit hohe Zellspannungen,
- hohe Beweglichkeit im Festkörper (z.B. [30]) und in Lösung,¹
- geringe Masse, kleines Volumen und damit hohe gravimetrische und volumetrische Energiedichte.

Lithium besitzt das negativste Standardpotential (wässrige Lösung, pH = 0). Als Schätzung lässt sich dies auch auf den Festkörper übertragen. Die hohe Beweglichkeit der Li⁺-Ionen resultiert hauptsächlich aus dem geringen Ionenradius (76 pm, KZ = 6 [31]) und dem damit relativ großen Verhältnis von Ladung zu Radius.

Mit Li als sehr leichtem Element erreichen Elektrodenmaterialien schnell hohe Energiedichten. Neben der Energiedichte ist die Leistungsdichte ein wichtiger Parameter zur Charakterisierung solcher Energiespeichermaterialien. Beide Größen werden in sogenannten Ragone-Diagrammen zusammengeführt (Abb. 2.2), wodurch ein Vergleich verschiedener Konzepte ermöglicht wird. Jede Technologie befindet sich dann in dem für sie charakteristischen Bereich. Je nach Anwendung kann eine hohe Leistungs- oder eine hohe Energiedichte günstig sein [32].

Vereinfacht könnte man am Beispiel eines Autos sagen, die Leistungsdichte bestimmt die Beschleunigung und Höchstgeschwindigkeit, die Energiedichte die Reichweite (vgl. [33]). Lithiumionenbatterien (LIBs) besitzen besonders im Bereich hoher Energiedichten ihre Stärken.

¹Dies gilt insbesondere für nichtwässrige Medien. Diffusionskoeffizienten und Ionenbeweglichkeiten in Wasser sind aufgrund der starken Hydratation der Li⁺Ionen nicht ungewöhnlich hoch [29].

Abbildung 2.2: Ragone-Diagramm für verschiedene Energiespeichermaterialien [32].

2.2 Lithiumionenbatterien

Lithiumionenbatterien sind elektrochemische Energiespeicher. Sie sind (im Fall von Akkumulatoren reversibel) in der Lage, chemische Energie in elektrische Energie umzuwandeln und umgekehrt.

2.2.1 Allgemeines und Begriffliches

Auf Grund der in der Literatur üblichen Nomenklatur von Materialien und Prozessen in Lithiumionenbatterien, besteht eine gewisse Uneindeutigkeit.

Das liegt unter anderem daran, dass das hier zu untersuchende Elektrodenmaterial LiFePO₄ als Kathodenmaterial beschrieben wird, und zwar unabhängig davon, ob es in der lithiierten Form oder der delithiierten Form vorliegt. Liegt es in der lithiierten Form vor und wird delithiiert (Li⁺-Extraktion), und damit oxidiert (Fe²⁺ \rightarrow Fe³⁺), fungiert es natürlich nicht als Kathode, sondern als Anode. Auch der Begriff positive oder negative Elektrode ist dann nicht eindeutig. Die Begriffe sind eher mit Prozessen als mit Materialien verknüpft. Dennoch wird Li_{1-x}FePO₄ auch in dieser Arbeit ganz allgemein als Kathodenmaterial bezeichnet, da sich diese Bezeichnung vollständig in der Literatur durchgesetzt hat.

Ähnlich verhält es sich bei der Verwendung des Begriffes "Batterie", obwohl in den allermeisten, hier diskutierten Fällen ein Akkumulator gemeint ist.

Bei den allermeisten Li-Ionenbatteriesystemen tritt kein Memory-Effekt² und keine Selbstentladung und auf. Dies gilt insbesondere auch für das hier untersuchte LiFePO₄-System.

²Kürzlich wurde von Sasaki *et al.* dennoch von einem Memory-Effekt in LFP berichtet [34].

2.2.2 Aufbau und Funktionsweise

Li-Ionenbatterien bestehen aus den Elektrodenmaterialien (Anode und Kathode), dem Elektrolyt und dem Separator, der die beiden Elektroden voneinander trennt. Die reinen Elektrodenmaterialien werden auch Aktivmaterial genannt. Der Elektrolyt stellt eine Art Filter dar. Es werden nur Ionen, aber keine Elektronen transportiert. Die Elektronen können über eine externe Anordnung zum Verrichten von Arbeit dienen, wenn ein Verbraucher angeschlossen wird. Der Separator ist mit Elektrolytlösung getränkt und verhindert den Kontakt zwischen Anode und Kathode, der zu einem Kurzschluss führen kann (Abb. 2.3).

Abbildung 2.3: Vereinfachter Aufbau einer Li-Ionen-Batterie (verändert nach [35]).

Ist der Stromkreis geschlossen, so wandern Li-Ionen in Richtung der Kathode, wo sie unter Reduktion des Wirtmaterials interkaliert werden. Dient metallisches Lithium als Anode, so werden diese Atome dort zu Li⁺-Ionen oxidiert. Das zur Verfügung stehende Potential wird durch die Differenz der freien Enthalpie der Anodenseite und der Kathodenseite bestimmt.

$$U = -\frac{\Delta G^{\circ}}{z F}$$
(2.1)

Entscheidend ist der gleichzeitige Transport von Elektronen und Ionen. Kann ein Teilprozess nicht stattfinden, kommt es zu keiner Reaktion. Wichtige Parameter sind demnach sowohl die elektronische als auch die ionische Leitfähigkeit der Elektrodenmaterialien. Auf Grund dessen werden in vielen Fällen den Elektroden noch Zusätze beigemischt, um die Kontaktierung der Partikel untereinander sowie deren (vor allem) elektronische Leitfähigkeit zu verbessern. Ein weiterer Punkt ist die Stabilität des den Elektrolyten enthaltenden Lösungsmittels. Es muss, gerade auf Grund der bei Li-Ionenbatterien höheren Spannungen, sehr stabil sein, ohne dass es zu Zersetzungsreaktionen kommt. Wässrige Systeme kommen von daher, nicht nur wegen der heftigen Reaktion mit Wasser, nicht in Frage. Es werden organische Lösungs-
mittel wie Dimethylcarbonat und Ethylcarbonat verwendet (z.B. [36]).

Zur Charakterisierung der Lade- und Entladeprozesse wird die sogenannte C-Rate verwendet. Sie wird als C/K (C über K) ausgedrückt, wenn K die Zeit in Stunden ist, die für einen vollständigen Lade- bzw. Entladeprozess benötigt wird [35]. Eine hohe C-Rate bedeutet demnach eine geringe Ladezeit und damit hohe Ströme (ionisch und elektronisch). Eine C-Rate von 0,1 C bedeutet einen Ladezyklus (oder Entladezyklus) innerhalb von 10 Stunden. Damit wird klar, dass thermodynamische und kinetische Aspekte zu einer vollständigen Charakterisierung zu berücksichtigen sind. Sowohl die abfallende Spannung, die durch die verwendeten Elektrodenmaterialien bestimmt wird, als auch der schnelle und reversible Transport von Li⁺-Ionen und Elektronen tragen zur Leistungsfähigkeit des Elektrodenmaterials bei. Des Weiteren sind detaillierte Kenntnisse über die Synthese des Elektrodenmaterials nötig, um beispielsweise Defekte zu vermeiden (oder sie gezielt einzubauen), die großen Einfluss auf den Ionentransport im Elektrodenmaterial haben können.

2.2.3 Batterieproduktion

Vom Rohstoff bis zur fertigen Batterie sind mehrere Schritte notwendig. Alle sind für die Qualität der Batterie von Bedeutung.

In dieser Arbeit wird u.a. die Synthese von Lithiumeisenphosphat untersucht. Dabei sollen auch wirtschaftliche und ökologische Aspekte zum Tragen kommen. Es soll daher ein schematischer Überblick zu den Produktionsschritten der Batterieherstellung gegeben werden, um zu zeigen, wie viele Ansatzpunkte zur Verbesserung dienen können. In Kapitel vier wird dann nur auf die eigentliche Synthese des reinen Aktivmaterials eingegangen.

Das nachfolgende Schema (Abb. 2.4) zeigt außerdem das komplexe Zusammenwirken verschiedener Komponenten unter mehreren Gesichtspunkten. Zunächst müssen die Elektrodenmaterialien (Aktivmaterialien und verschiedene Zusätze zur Verbesserung der Transporteigenschaften [37, 38, 39, 40, 41]) in ausreichender Qualität und Reinheit vorliegen. Weitere wesentliche Bestandteile sind der Elektrolyt, der meist aus einer definierten Mischung mehrerer organischer Lösungsmittel [42] und einem Li-Salz besteht und der Separator, der den direkten Kontakt von Anode und Kathode verhindert [43].

Die Aktivmaterialien müssen teilweise noch postsynthetisch behandelt werden (Trocknen, Beschichten, Mahlen) ([44] u.v.m.), bevor sie in die gewünschte Form gebracht werden und mit Elektrolyt und Separator zur eigentlichen elektrochemischen Zelle verarbeitet und kontaktiert werden können. Alle Teilschritte können die Eigenschaften der Batterie insgesamt beeinflussen und sind somit für die thermodynamischen und kinetischen Eigenschaften der Zelle verantwortlich. So kann bei hervorragender Reinheit des Aktivmaterials, aber nur mäßiger Qualität der Beschichtung und/oder des Elektrolyten und umgekehrt die elektrochemische Leistungsfähigkeit trotzdem mangelhaft sein. Die elektrochemische Zelle ist dann höchstens so gut wie ihr schlechtester Bestandteil.

Abbildung 2.4: Komponenten, Prozesse und ausgewählte Eigenschaften bis zur fertigen Li-Ionen-Batterie [42, 43, 44, 45, 46]. Die vorliegende Arbeit versucht, das reine Kathodenmaterial unabhängig von den zahlreichen anderen Komponenten einer Batterie zu untersuchen. Die Abbildung erhebt keinen Anspruch auf Vollständigkeit.

Oft werden mehrere Zellen zu größeren Modulen zusammengeführt. Sind alle Tests erfolgreich verlaufen, kann die Batterie zum Einsatz kommen.

Über all den angesprochenen Punkten stehen dann noch die mehr oder weniger globalen Forderungen nach geringen Kosten, hoher Sicherheit und Umweltverträglichkeit.

2.3 Kathodenmaterialien

Akkumulatoren sind wiederaufladbar und sollen dem Anwender für viele Zyklen zur Verfügung stehen. Voraussetzung dafür ist die Umkehrbarkeit der an (und in) den Elektroden ablaufenden Prozesse. Die beim Entladen der Batterie freiwillig ablaufenden chemischen Reaktionen laufen dann beim Laden der Batterie unter Aufwendung von elektrischer Arbeit in umgekehrter Richtung ab.

Eine Möglichkeit zur Klassifikation von Elektrodenmaterialien ist die Betrachtung der Art der ablaufenden Reaktionen während des Lade- bzw. Entladeprozesses [17, 35]. Zunächst kann es sich um Bildungs-/Zersetzungsreaktionen handeln (Li-Al-Legierungen, Zn-O₂-

Zellen).

$$A + B \rightleftharpoons AB. \tag{2.2}$$

Des Weiteren sind Substitutionsreaktionen gemäß

$$A + BY \rightleftharpoons AY + B \tag{2.3}$$

möglich, wenn die Phase AY eine größere Stabilität aufweist als die Phase BY (z.B. Li-Cu₂O). Ein weiterer Reaktionstyp sind Interkalationsreaktionen, in denen eine Spezies (Gast) reversibel in ein mehr oder weniger vorgebildetes Wirtmaterial insertiert wird, welches unbesetzte Leerstellen besitzt. Dabei bleibt die Kristallstruktur des Wirtmaterials im Wesentlichen erhalten.

$$x A + BY \rightleftharpoons A_x BY$$
 (2.4)

Neben dem meist vorhandenen Wechsel der Oxidationsstufe kann es zu kleineren Volumenänderungen kommen. Beispiele hierfür sind die Systeme LiTiS₂, LiFePO₄ oder LiCoO₂. Es ist damit prinzipiell nicht unterschieden, ob es sich um kristalline oder amorphe Phasen handelt. Unter Berücksichtigung der Gibbs'schen Phasenregel kann die Einlagerung im Regime einer Festkörperlösung, aber auch als Mehrphasensystem erfolgen.

Innerhalb der Interkalationselektroden kann eine weitere Einteilung nach der Anordnung der zu interkalierenden Spezies im Wirtmaterial getroffen werden (Abb. 2.5) [47, 48], wobei eher die Anzahl der Dimensionen gemeint ist, in denen eine Beweglichkeit der Li⁺-Ionen innerhalb des Wirtmaterials (und aus diesem heraus) gegeben ist (formal ist eine Beweglichkeit immer in drei Raumrichtungen möglich, die Aktivierungsenergien für solche "Sprünge" sind aber zum Teil sehr hoch). Üblicherweise können neben Li⁺-Ionen auch H⁺-Ionen und Na⁺-Ionen interkaliert werden [35].

Je nach Anforderung verschieden, lassen sich dennoch allgemeine Kriterien zur Auswahl eines Interkalationselektrodenmaterials formulieren. Diese sind nach Bruce (ergänzt nach Bruce [49]):

- die Fähigkeit Lithium zu interkalieren,
- geringes Fermi-Niveau und damit verbunden hohe Zellspannungen,
- geringe Variation der Zellspannung mit dem Lithiumgehalt (siehe Entladekurven, Abb. 2.6),
- hohe Lithiuminterkalationsdichte und damit hohe Kapazität,
- geringe molare Masse und damit hohe gravimetrische Energiedichte,

Abbildung 2.5: Klassifikation verschiedener Interkalationskathodenmaterialien.

a) Schichtstruktur: Zwischen den Metall-Sauerstoff-Oktaedern sind die Li⁺-Ionen in Ebenen angeordnet, innerhalb der sie sich bewegen können und somit extrahiert werden können. b) Spinelstruktur: In diesem Strukturtyp sind die Gastspezies in allen drei Raumrichtungen abwechselnd von Metall-Sauerstoff-Oktaedern flankiert. Damit ist formal eine Insertion dieser Ionen in das Wirtgitter entlang dieser Wege möglich. c) Olivinstruktur: Die annähernd zweidimensional angeordneten Metall-Sauerstoff-Oktaeder werden durch Phosphat-Tetraeder verbunden. Diese sind wiederum so platziert, dass die Mobilität der interkalierten Ionen nicht mehr zweidimensional, sondern nur noch entlang einer Dimension gewährleistet ist (erweitert nach [47]).

- geringes molares Volumen und damit hohe volumetrische Dichte,
- hohe Lade-/Entladeraten (bedeutet hohe Kapazitäten auch noch bei hohen Strömen),
- ein hohes Maß an Reversibilität,
- keine Co-Interkalation des Lösungsmittels,
- Stabilität bei Elektrolytkontakt (bzw. definierte SEI-Ausbildung),³
- gute elektronische und ionische Leitfähigkeit,

³Unter SEI versteht man das Solid-Electrolyte-Interface (Interphase). Während der ersten Lade- und Entladezyklen bildet sich zwischen Elektrolyt und Elektrode dieses SEI. Man hat herausgefunden, dass es eine nicht unwesentliche Rolle spielt [50, 51, 52]. In dieser Arbeit wird es von geringer Bedeutung sein.

- geringe Kosten (Beschaffung und Produktion) und
- Umweltverträglichkeit (und geringe Toxizität).

Wesentliches Merkmal von Kathodenmaterialien sind deren Entladekurven (Abb. 2.6). Aus ihnen kann man nicht nur Aussagen über die Anzahl der während des Prozesses auftretenden Phasen gewinnen, sondern auch die nutzbare elektrische Arbeit in Abhängigkeit des Ladezustandes (Li-Gehalt) entnehmen.

Die verrichtbare Arbeit

$$\mathrm{dW} = \mathrm{F}_{\mathrm{el}} \, \mathrm{ds} \tag{2.5}$$

ist mit der elektrischen Feldstärke E verknüpft,

$$F_{el} = Q E = Q \frac{U}{s}, \qquad (2.6)$$

sodass ersichtlich wird, dass die als chemische Energie gespeicherte, maximal nutzbare elektrische Arbeit gemäß

$$W = \int U \, dQ \tag{2.7}$$

der Fläche unter der Kurve im U-Q-Diagramm entspricht (Abb. 2.6).

Abbildung 2.6: Potential verschiedener Kathodenmaterialien als Funktion des Ladezustandes (nach [17]). Aufgrund der Phasenthermodynamik im System LiFePO₄-FePO₄ sind die Entladekurven vom Typ b).

Das Gibbs'sche Phasengesetz,

$$F = K - P + 2,$$
 (2.8)

erklärt den wesentlichen Verlauf der Entladekurven. Ist ein System mindestens univariant $(F \ge 1)$, so kann sich die Zellspannung mit variierender Zusammensetzung ändern. Ist das System nonvariant (F = 0), so kann sich das chemische Potential (in Abhängigkeit des Ladezustandes) und damit die Zellspannung nicht mehr ändern. Das bedeutet, dass man aus der Form der Entladekurve unter Berücksichtigung des Phasengesetzes Informationen zu den im System vorliegenden Phasen erhalten kann.

2.4 Olivin-Typ Lithiumeisenphosphat und seine Homologen

2.4.1 Gründe für die Wahl von Olivin-Typ Lithiumeisenphosphat

Verschiedene Probleme im Li/LiTiS₂-System (Elektrolyt, reversible Abscheidung an der Anode) verringerten die Praktikabilität solcher Batterien [53]. Ein Ersatz des Lithiums auf der Anodenseite ist unweigerlich mit kleineren Zellspannungen verbunden. Aus diesem Grund erschien eine Optimierung der Li⁺-Insertionselektroden aussichtsreich. Es ist erstrebenswert, für die (oben bereits diskutierte) Reaktion

$$x A + MX_n \rightleftharpoons A_x MX_n$$
 (2.9)

ein stärker negatives ΔG zu erzielen. Dafür muss A möglichst elektropositiv und klein sein. In MX_n sollte M einen hohen Oxidationszustand besitzen und X möglichst klein und elektronegativ sein. Die gefundenen Übergangsmetalloxide Li_{1-x}MO₂ (M = Co, Ni) und Li_{1-x}Mn₂O₄ liefern etwa 4 V (gegen Li/Li⁺) [54, 55, 56]. Die Stabilität der Materialien im vollständig geladenen Zustand und eine mögliche Oxidation des Elektrolyten sind allerdings problematisch.

Des Weiteren würde man gerne die verwendeten Übergangsmetalle durch günstigere und umweltfreundlichere Elemente ersetzen. Ein Einsatz des reichlich vorhandenen Eisens als LiFeO₂ ist möglich, die Batterieeigenschaften dieser Verbindung sind allerdings nicht zufriedenstellend [57]. Man versuchte deshalb auf Polyanionen vom XO_4^- -Typ (X = P, S, As, Mo, W) und Verbindungen wie M₂(XO₄)₃ mit Nasicon-Struktur und hoher Li⁺-Mobilität zu setzen. Darüber hinaus hat die Wahl des Übergangsmetalls und des Redoxpaares einen wesentlichen Einfluss auf die erreichbaren Zellspannungen.

Am naheliegendsten sind sicherlich Phosphat-Anionen und das Redoxpaar Fe³⁺/Fe²⁺. Die starke Polarisation der O-Atome gegenüber den X-Kationen der XO₄-Tetraeder und die damit verbundene Verminderung des kovalenten Anteils in der M-O-Bindung (insbesondere auch der π -Bindungs-Fe-O-Kovalenz) verringern die Energie des Fe³⁺/Fe²⁺-Redoxpaares

und erhöhen damit die Zellspannung [53].

Relative Redox Energies

Abbildung 2.7: Relative Energieniveaus von Fe³⁺/Fe²⁺-Redoxpaaren gegen Li/Li⁺ in verschiedenen Eisenphosphaten [53]. Mit 3,5 V für LiFePO₄ sind die größten Zellspannungen erreichbar. Es soll noch bemerkt sein, dass bei diesem Potential die Gefahr von Zersetzungen des Elektrolyten nicht so hoch ist, wie oben für andere Systeme (4 V) diskutiert.

Mit anderen Worten, je stärker die P-O-Bindung in ···· -O-Fe-O-P-O- ···· Strukturen, desto schwächer die Fe-O-Bindung bei hohen Zellspannungen.⁴ Eine Untersuchung der Arbeitsgruppe um Goodenough [53] dokumentiert den Einfluss der Struktur mehrerer Eisenphosphatstrukturen auf die Leerlaufspannung gegen Li/Li⁺ (Abb. 2.7).

Das Ergebnis ist eindeutig. Für Olivin-Typ LiFePO₄ lassen sich die größten Spannungen erreichen. Ein weiterer Vorteil gegenüber den anderen abgebildeten Verbindungen ist die reversible Interkalierbarkeit von einem Li-Ion pro Eisenatom. Für die anderen Strukturen ist dieser Wert geringer [53].

Damit ist in mehrerlei Hinsicht (Potential gegen Li/Li⁺, Stabilität (thermisch und chemisch), Toxizität, Kosten) eine deutliche Präferenz für die Olivin-Struktur und deren Untersuchung vor anderen Strukturen gegeben.

Für das Verständnis der Prozesse bei Lithiierung (Li⁺-Insertion) und Delithiierung (Li⁺-Extraktion) des Kathodenmaterials, also den entsprechenden Entlade- bzw. Ladeprozessen in einer Batterie, ist eine genauere Kenntnis der Kristallstruktur von großer Wichtigkeit. Deshalb wird im folgenden Abschnitt darauf eingegangen.

⁴Eine ausführlichere Diskussion ist bei Padhi [53] zu finden. Die Bindungssituation am Eisen wird genauer aufgeschlüsselt und die Bedeutung der minority-spin-Elektronen (oktaedrische Umgebung der nächsten Nachbarn, high-spin) für die Fe-O-π-Bindung erklärt.

2.4.2 Struktur und Eigenschaften

LiFePO₄ und seine Homologen (Fe = Mn, Co, Ni, ...) kristallisieren orthorhombisch in einer Struktur vom Olivin-Typ. Diese leitet sich vom natürlich vorkommenden MgFe-Silikat, (Mg, Fe)₂SiO₄, ab [31] (Abb. 2.8).

Abbildung 2.8: Analog zum Mg, Fe-Silikat treten Lithium und Eisen an die Stelle der Magnesium- und Eisenatome. Als Anion übernimmt Phosphat die Rolle des Silikats.

LiFePO₄ kristallisiert orthorhombisch in der Raumgruppe Pnma, Nr. 62 (auch in *Pnmb* beschreibbar, allerdings mit anderer kristallographischer Orientierung [58]). Im Ionenkristall bilden Sauerstoffatome⁵ eine hexagonal dichteste Kugelpackung (Abb. 2.9).

Abbildung 2.9: Hexagonal dichteste Kugelpackung von Sauerstoffatomen im Lithiumeisenphosphat. In jeder achten Tetraederlücke befindet sich ein Phosphoratom und in jeder zweiten Oktaederlücke ein Lithium- bzw. Eisenatom.

Ein Achtel der Tetraederlücken sind mit Phosphoratomen gefüllt, jede zweite der Oktaederlücken mit Li/Fe-Atomen. Pro n Packungsatomen existieren 2n Tetraederlücken und n Oktaederlücken. Betrachtet man zum Beispiel vier Sauerstoffatome (n = 4) der hexagonal

⁵Lithiumeisenphosphat ist ein Ionenkristall. Alle Atome tragen Ladungen und treten als Ionen auf. Im folgenden sind demnach immer Ionen gemeint, auch wenn von Eisenatomen oder Sauerstoffatomen die Rede ist. Dabei soll es sich ausschließlich um Li⁺-, Fe²⁺-, PO₄³⁻- bzw. O²⁻-Ionen handeln. In der delithiierten Form, FePO₄, treten Fe³⁺-Ionen an die Stelle der Fe²⁺-Ionen.

dichtesten Kugelpackung, so ergibt sich genau ein Phosphoratom $(2n \cdot 1/8 = 1)$ und zwei Li/Fe-Atome $(n \cdot 1/2 = 2)$, ein Lithiumatom und ein Eisenatom. Somit ergibt sich die Summenformel LiFePO₄.

Im Olivin-Typ LiFePO₄ sind die Fe²⁺- und Li⁺-Ionen allerdings nicht wie im natürlich vorkommenden Mineral statistisch verteilt. Beide Ionensorten sitzen auf definierten Plätzen (M1- und M2-Plätze). Li⁺-Ionen besetzen M1-Plätze, Fe²⁺-Ionen M2-Plätze. Alle Kationen sind in der ersten Koordinationssphäre von O²⁻-Ionen umgeben. Es ergeben sich PO₄-Tetraeder, LiO₆-Oktaeder und FeO₆-Oktaeder. Die Oktaeder sind leicht verzerrt.

Abbildung 2.10: Räumliche Anordnung der Element-Sauerstoffpolyeder im Olivin-LFP. Links oben: Idealstruktur. Rechts oben: Realstruktur. [28] Die verschiedenen Ebenen sind durch die Farbabstufungen von weiß über hellgrau nach grau angedeutet. Unten: Lithiierte (links) und delithiierte Form (rechts).

Die LiO₆-Oktaeder sind kantenverknüpft (Punktsymmetrie i). FeO₆-Oktaeder sind eckenverknüpft (Punktsymmetrie m), sie sind etwas größer als die LiO₆-Oktaeder. Benachbarte FeO₆-Oktaeder werden durch PO₄-Tetraeder verbunden. Daher resultiert auch die große chemische und thermische Stabilität des Olivin-LiFePO₄ und die reversible Interkalation der Li⁺-Ionen unter Oxidation bzw. Reduktion der Fe-Ionen.

M1-O₆-Oktaeder sind kantenverknüpft mit zwei M2-O₆-Oktaedern und zwei PO₄-Tetraedern. M2-O₆-Oktaeder sind nur mit einem PO₄-Tetraeder kantenverknüpft. Die Verzerrung der M-O₆-Oktaeder wird auf Kation-Kation (Coulomb)-Wechselwirkungen zurückgeführt und ist bei den M1-O₆-Oktaedern etwas geringer ausgeprägt als bei den M2-O₆-Oktaedern (Abb. 2.10).

Die asymmetrische Einheit besteht aus sechs Atomen (Li, Fe, P, 3x O). Jede Elementarzelle enthält vier Formeleinheiten (Z = 4).

Li-Ionen sind, insofern sie ausschließlich M1-Plätze besetzen, eindimensional entlang einer kristallographischen Achse in "Kanälen" angeordnet. Es soll bereits an dieser Stelle darauf hingewiesen werden, dass auf Grund der sehr ähnlichen chemischen Umgebung von Li- und Fe-Atomen und der mindestens bei Li-Ionen vorhandenen hohen Beweglichkeit, die Ausbildung von antisite-Defekten (Li_{Fe} oder Fe_{Li}) möglich erscheint.

Die delithiierte Phase FePO₄ unterscheidet sich nur geringfügig von LiFePO₄. Die Raumgruppe bleibt erhalten, die Zellparameter ändern sich kaum (- 7 Vol.% Zellvolumen, z.B. [28]). Unter Oxidation des Fe²⁺-Ions werden die Li⁺-Ionen extrahiert.

Die Olivin-Phase kann sich bei höheren Temperaturen und Drücken in verschiedene Spinelphasen umwandeln [58]. Die folgende Tabelle fasst einige Eigenschaften des Lithiumeisenphosphates zusammen (Tab. 2.1).

Eigenschaft	Spezifikation	
Art des Kathodenmaterials	Interkalationselektrode [17]	
molare Masse	157,76 g mol ⁻¹	
Dichte (Bulk)	$3,6 \text{ g cm}^{-3}[59]$	
Kapazität	170 mAh g ⁻¹	
Raumgruppe	Nr. 62 (Pnma) [28]	
Kristallsystem	orthorhombisch [28]	
Li ⁺ -Anordnung	1-dim. in Kanälen	
Zellparameter	a = 10,33 Å, b = 6,01 Å, c = 4,69 Å	
Zellvolumen	291,2 Å ³	
Zellspannung (vs. Li/Li+)	3,4 V [28]	
Schmelzpunkt	960 °C [60], 976 °C [61]	
elektrische Leitfähigkeit	10 ⁻¹¹ - 10 ⁻⁶ Scm ⁻¹ (z.T. größer) ⁶ [62, 63]	
Bandlücke	3,7 - 4,0 eV [64]	
thermische Stabilität	> 800 °C (Ar-Atmosphäre) [65]	

Tabelle 2.1: Eigenschaften von Lithiumeisenphosphat - LiFePO₄

In Anschluss an die zu Beginn des Abschnitts besprochenen M³⁺/M²⁺-Redoxpotentiale ver-

⁶In einigen Publikationen sind deutlich höhere elektrische Leitfähigkeiten angegeben. Dies ist meist durch Dotierungen (Mg, Al, Nb, Ti, W, ...) erreicht worden. Auch wenn die Dotierkonzentrationen relativ gering sind (z.B. 1 %), kann man nicht mehr von reinem LiFePO₄ sprechen und diese Werte wurden deshalb nicht mit aufgenommen.

schiedener Eisenphosphate sollen nun die entsprechenden Potentiale der Homologen verglichen werden. Es sind nur die für die Batterieanwendung in Frage kommenden Strukturen aufgeführt (Tab. 2.2).

Olivin-Typ-Verbindung	M ³⁺ /M ²⁺ -Redoxpotential gegen Li/Li ⁺ /V
LiMnPO ₄	4.1
LiFePO ₄	3.4
LiCoPO ₄	4.8
LiNiPO ₄	5.1

Tabelle 2.2: Redoxpotentiale verschiedener M³⁺/M²⁺-Redoxpaare gegen Li/Li⁺ [7]

Lithiumeisenphosphat besitzt darunter das kleinste Potential. Dies begünstigt allerdings die Stabilität der Elektrolytlösung, da keine Spannungen > 4 V notwendig sind.

2.5 Darstellung von Lithiumeisenphosphat

Für die Herstellung von orthorhombischem Lithiumeisenphosphat sind zahlreiche Methoden bekannt. Es wird zunächst eine Systematisierung vorgenommen und ein Blick auf mechanistische Untersuchungen zu Solvothermalsynthesen geworfen werden. Neben der phasenreinen Synthese haben sich verschiedene Strategien zur Verbesserung der Eigenschaften hinsichtlich einer Anwendung in Li-Ionenbatterien entwickelt, die im Anschluss kurz dargestellt werden.

2.5.1 Verfahren

In der Literatur werden verschiedenste Methoden beschrieben. Diese lassen sich allerdings fast ohne Einschränkung auf zwei Verfahren zurückführen: Festkörpersynthese und lösungsbasierte Methoden. Darüber hinaus kann man einige Varianten, zum Beispiel die Herstellung durch Lithiierung orthorhombischen Eisen(III)phosphats, als Sonderfälle bezeichnen. Dazu soll auch die Präparation von Dünnfilmen, die auch aus bereits fertigem LiFePO₄ erfolgen kann, gezählt werden.⁷ Auch die unter "spezielle Methoden" angegebenen Verfahren sind zumeist Festkörpersynthesen oder Solvothermalsynthesen. Alle hier aufgeführten Verfahren

⁷Leider geht aus der Publikation von Ni *et* al. [66] nicht hervor, ob der bei 450°C vorgesinterte Precursor bereits Lithiumeisenphosphat ist. Sollte dies der Fall sein, so hat die dort angegebene Synthese unter Verwendung von KCl-Schmelzen nur Einfluss auf Morphologie und möglicherweise auf elektrochemische Eigenschaften des Produktes.

und Methoden lassen sich diesen beiden Linien zuordnen.⁸

Abbildung 2.11: Methoden zur Darstellung von LiFePO₄. Es lassen sich alle beschriebenen Methoden in Festkörpersynthesen oder lösungsbasierte Synthesen einordnen. Daneben existieren spezielle Verfahren beispielsweise zur Präparation von Dünnfilmen. [44, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]

Die wohl am häufigsten verwendete Festkörpersynthese geht von Li_2CO_3 , FeC_2O_4 und $NH_4H_2PO_4$ aus gemäß [64]:

$$\frac{1}{2} \operatorname{Li}_{2} \operatorname{CO}_{3} + \operatorname{FeC}_{2} \operatorname{O}_{4} \cdot 2 \operatorname{H}_{2} \operatorname{O} + \operatorname{NH}_{4} \operatorname{H}_{2} \operatorname{PO}_{4} \rightarrow \operatorname{Li} \operatorname{FePO}_{4} + \operatorname{CO}_{2} + \operatorname{NH}_{4} \operatorname{CO}_{3} + \operatorname{H}_{2} + \frac{1}{2} \operatorname{CO} + 2 \operatorname{H}_{2} \operatorname{O}.$$

$$(2.10)$$

Neben den für Festkörpersynthesen notwendigen hohen Temperaturen ist auch die Bildung von Kohlenstoffmonoxid ein erheblicher Nachteil dieser Synthese. Darüber hinaus sind Morphologie und Partikelgröße nicht gut steuerbar. Nachfolgend sollen deshalb hauptsächlich solvothermale Routen im Mittelpunkt stehen. Für Solvothermalsynthesen (oder oft Hydro-

⁸In der Publikation von Wang *et al.* [67] ist die Bezeichnung "*In Situ* Polymerization Restriction" hochgradig irreführend. Gemeint ist die vorgelagerte Synthese von FePO₄ mit Polyanilinbeschichtung (aus Anilin) und der nachfolgenden Lithiierung mit Lithiumacetat im Ar/H₂-Strom bei 700°C unter gleichzeitiger Kohlenstoffbeschichtung. Unter "Restriction" soll die Verhinderung des Partikelwachstums (durch Polyanilin) von FePO₄ im ersten Schritt und LiFePO₄ (durch Kohlenstoff) im zweiten Schritt gemeint sein. Es handelt sich also im Grunde genommen um eine spezielle Festkörpersynthese.

Sonochemische Synthesen [68] sind Solvothermalsynthesen unter Einwirkung von Ultraschall.

thermalsynthesen) kann man schematisch den folgenden Weg angeben:

$$3 \operatorname{LiX} + \operatorname{H}_3 \operatorname{PO}_4 + \operatorname{Fe}^{II} Y \to \operatorname{LiFePO}_4 + \operatorname{Li}_2 Y (\operatorname{oder} 2 \operatorname{Li} Y) + 3 \operatorname{HX},$$
 (2.11)

beziehungsweise am konkreten Beispiel, [6]

$$3 \operatorname{LiOH} \cdot \operatorname{H}_2O + \operatorname{H}_3PO_4 + \operatorname{FeSO}_4 \cdot 7 \operatorname{H}_2O \rightarrow \operatorname{LiFePO}_4 + \operatorname{Li}_2SO_4 + 13 \operatorname{H}_2O$$
 (2.12)

Die angegebene Reaktionsgleichung ist nur schematisch korrekt. Zumeist wird aus den Ausgangsstoffen zunächst ein Precursor gefällt, der dann weiter zum LiFePO₄ umgesetzt wird. Oft werden zusätzlich Reduktionsmittel eingesetzt, um Fe³⁺-Spezies zu eliminieren (z.B. [77]). Typisch für diese lösungsbasierten Methoden ist das fast immer verwendete molare Verhältnis von Li:Fe:PO₄ = 3:1:1 (vgl. [44]). Dies wird im Ergebnisteil noch eine Rolle spielen, deshalb sei jetzt schon darauf hingewiesen. Auch in der Industrie wird unter anderem ein solches Verfahren genutzt [78]. Für solche Solvothermalsynthesen sind verschiedenste Lösungsmittel (H₂O, Ethylenglycol, Ethanol, ...) zum Einsatz gekommen. Wünschenswert ist aus mehrerlei Hinsicht eine Synthese im wässrigen Medium. Da die Hydrothermalsynthese später genauer untersucht wird, soll hier etwas detaillierter auf den Kenntnisstand eingegangen werden.

2.5.2 Hydrothermalsynthese

Prinzipiell ist in zahlreichen Veröffentlichungen festgestellt worden, dass folgende Parameter Einfluss auf die Qualität des Produktes haben (gilt auch für nichtwässrige Synthesen), bzw. überhaupt erst darüber entscheiden ob sich Lithiumeisenphosphat⁹ bildet.

- Temperatur (Defekte, Löslichkeiten, Kristallinität),
- Lösungsmittel/-gemische und Fällungsmethode (Morphologie, Partikelgröße),
- Zeit (Partikelgröße) und
- pH-Wert (thermodynamische Stabilität).

Die Temperatur hat beispielsweise Einfluss auf die Ausbildung von Defekten. Chen *et al.* [80] untersuchten das Auftreten von Antisitedefekten (Li_{Fe} oder Fe_{Li}) während des postsynthetischen Temperns einer hydrothermal hergestellten Probe und stellten fest, dass die Antisitedefekte von rund acht Prozent oberhalb von etwa 450°C nahezu schlagartig verschwinden, was auch an der Verminderung des Zellvolumens zu sehen ist. Ebenso von der

⁹Mit hydrothermalen Methoden sind auch Homologe wie LiMnPO₄, LiCoPO₄ und LiNiPO₄ synthetisierbar [79].

Arbeitsgruppe um Jason Graetz erschien noch im selben Jahr eine weitere Publikation [5], in der antisite-Defekte während der Hydrothermalsynthese untersucht wurden. Dem ist zu entnehmen, dass die Antisitedefekte ab etwa 200°C ebenfalls eliminiert sind (rund fünf Prozent bei 160°C). Darüber hinaus bleibt die Rolle des co-gefällten Lithiumphosphats zunächst unklar. Eine Umwandlung von Vivianit (Fe₃(PO₄)₂ · 8H₂O) in LiFePO₄ ist so nicht möglich. Axmann *et al.* stellten darüber hinaus fest, dass Li⁺-Überschuss immer zu Li₃PO₄-Verunreinigungen führt. Zu geringe Li-Konzentrationen führen oft zu einem antisite-Defekt und einer Li-Leerstelle, Fe⁻_{Li} + V⁻_{Li} in Kröger-Vink Notation [81].

Es ist sicherlich klar, dass Hydrothermalsynthese und postsynthetische Kalzinierungsprozesse nicht unbedingt vergleichbar sind. Dennoch stellt sich die Frage, warum dieser Defekttyp während der Hydrothermalsynthese verschwindet, es aber trotzdem zu antisite-Defekten kommt, die erst bei 500°C vollständig ausgeheilt sind. Die Studien zeigen dennoch die große Bedeutung von antisite-Defekten bei diesem Strukturtyp auf (Abb. 2.12).

Abbildung 2.12: In situ Untersuchung der Hydrothermalsynthese von LiFePO₄ [5].

Darüber hinaus wurde von Lee festgestellt, dass je nach Fällungsmethode verschiedene Morphologien (und Sekundärstrukturen) und Partikelgrößen entstehen, die sich auch in der elektrochemischen Charakterisierung widerspiegeln [82]. Aufgrund der Struktur (Anordnung in Kanälen, siehe Kap. 2.4.2) von LiFePO₄ und dem Ziel der reversiblen Interkalation von Li⁺ ist die Partikelgröße auch anisotrop von Interesse. Solche Textureffekte wurden von Ou [83] untersucht. Kurze Transportwege sind vor allem in kristallographischer b-Richtung wünschenswert.

He *et al.* stellten in ihren thermodynamischen Berechnungen fest [84], dass sich, entgegen bisher publizierter Arbeiten, LiFePO₄ bei Raumtemperatur herstellen lässt, dies allerdings mit sehr geringer Geschwindigkeit. Für praktische Zwecke ist dies nicht durchführbar. Eine thermodynamische Analyse der oben angegebenen Festkörperreaktion findet sich bei Churi-

kov et al. [85].

Lin *et al.* fanden heraus, dass LiFePO₄ nur in einem pH-Bereich zwischen 6,5 und 8,1 stabil ist [86]. Dies deckt sich in etwa mit den Berechnungen von Delacourt [87].

Mechanistische Untersuchungen zum Ablauf der Hydrothermalsynthese gibt es relativ wenige [5, 6, 86]. Der von Qin vorgeschlagene Auflösungs-Fällungsmechanismus legt nahe, dass das Kristallwachstum in b-Richtung auf Grund der höheren Oberflächenenergie der (010)-Ebene [88] langsamer abläuft als für andere Orientierungen. Dies erklärt auch die plättchenartige Morphologie.

Abbildung 2.13: Von Qin postulierter Mechanismus der Hydrothermalsynthese von LiFePO₄ [6].

Man hat unabhängig von der gewählten Synthesevariante festgestellt, dass man die elektrochemischen Eigenschaften von Lithiumeisenphosphat durch Beschichtung (meist mit Kohlenstoff), Nanostrukturierung und Dotierung verbessern kann.

2.5.3 Beschichtung und Nanostrukturierung

Die Beschichtung mit Kohlenstoff (Graphit, Carbon black, Acetylen black, ...) und das Mischen mit Bindern ist seit langem gängige Strategie für die Präparation von Elektrodenmaterialien in Batterien (z.B. [28]). Damit wird nicht nur der Kontakt zwischen Stromsammler und Elektrodenmaterial verbessert, sondern ebenso zwischen den einzelnen Partikeln. Des Weiteren spielen hier auch Benetzungseffekte zwischen Elektrode und Elektrolytlösung eine Rolle. Damit wird im Wesentlichen die elektronische Leitfähigkeit innerhalb der Kompositelektrode verbessert. Auf den Transport von Elektronen und Ionen durch das Elektrodenmaterial sollte diese Beschichtung allerdings keinen (oder einen untergeordneten) Einfluss haben.

Ein weiteres Konzept zur Optimierung der Transportprozesse in Elektrodenmaterialien ist die Nanostrukturierung. Es beruht einfach auf der Minimierung der Transportwege für Elektronen und Ionen. Dies kann intuitiv an der Diffusionszeit eines Teilchens auf einem 2-dimensionalen Gitter (zufällige Sprungsequenz) klar werden [89].

$$\tau(\mathbf{d}, \mathbf{D}) = \frac{1}{6} \frac{\mathbf{d}^2}{\mathbf{D}} \tag{2.13}$$

Diese wird klein sein, wenn die Sprunglänge d klein und/oder der Diffusionskoeffizient D groß ist. Von daher erscheint es sehr aussichtsreich, kleine Partikel herzustellen, in denen dass Verhältnis von Oberfläche zu Volumen möglichst groß ist (Abb. 2.14). Insbesondere spielt die Partikelgröße auch eine entscheidende Rolle beim Auftreten von antisite-Defekten (siehe Kapitel 4.2.5).

Abbildung 2.14: Entwicklung von Oberfläche und Volumen als Funktion der Partikelgröße bei konstantem Gesamtvolumen von 1 μ m³. Es ist ein Partikelgrößenbereich von 1 nm bis 1 μ m dargestellt. Die blau gestrichelten Linien geben den durch Synthese in etwa zugänglichen Partikelgrößenbereich (bzw. Kristallitgrößenbereich) an (Die Idee stammt aus: [90]).

Die Studie von Gaberscek [91] analysiert zahlreiche Publikationen verschiedener Arbeitsgruppen [59, 69, 87, 92, 93, 94, 95, 96, 97], um zu klären, ob Kohlenstoffbeschichtung oder Partikelgröße einen größeren Einfluss auf die elektrochemisch nutzbare Kapazität (bei 1 C) haben (siehe Abb. 2.15).

Das Ergebnis fällt (erwartungsgemäß) eindeutig aus. Unabhängig von einer etwaigen Beschichtung hängt die Kapazität ausschließlich von der Partikelgröße ab. Eine mögliche Begründung ist, dass der spezifische Widerstand von der Partikelgröße abhängt ($R_m \sim d^2$). Eine (vollständige) Beschichtung des Aktivmaterials ist nicht notwendig. Nimmt man an, dass die ionische Leitfähigkeit im LiFePO₄ geringer ist als die elektronische Leitfähigkeit [91, 98], so wird dieses Ergebnis ebenso verständlich. Man stellt fest, dass eine Beschichtung lediglich punktuell zur Herstellung des Kontaktes zwischen Aktivmaterial und Stromsammler benötigt wird.

Die geringere ionische Leitfähigkeit wird prozessbestimmend sein, wenn man berücksichtigt, dass auf Grund der Ladungserhaltung Elektronen und Ionen gleichzeitig transportiert

Abbildung 2.15: Einfluss von Beschichtung und Partikelgröße auf elektrochemische Eigenschaften von Lithiumeisenphosphat [91]. a) perfekte Beschichtung, b) punktuelle Beschichtung, $\sigma_{\text{electron}} \ll \sigma_{\text{ion}}$ c) punktuelle Beschichtung, $\sigma_{\text{electron}} \gg \sigma_{\text{ion}}$. Auf der linken Seite sind die Kapazität und der spezifische Widerstand als Funktion des Partikeldurchmessers gezeigt.

werden müssen.

Eine Diskussion von antisite-Defekten und Transporteigenschaften (Kinetik der Li⁺-Insertion/Extraktion) wurde dort nicht vorgenommen, könnte allerdings gerade für die Kapazität von entscheidender Bedeutung sein. Des Weiteren bleibt unklar, welche Auswirkung der bei der Synthese (unfreiwillig) eingebrachte Kohlenstoff spielt (z.B. bei Verwendung von FeC₂O₄ als Fe-Quelle) [99].

2.5.4 Dotierung

Der Austausch von Kationen, also Li⁺ (M1-Position) oder Fe²⁺ (M2-Position), und die sich daraus ergebenden Folgen für Struktur und elektrochemische Eigenschaften von LiFePO₄ werden außerordentlich kontrovers diskutiert.

Im Jahr 2002 veröffentlichten Chung *et al.* [63] hochrangig die Erhöhung der elektrischen Leitfähigkeit in Lithiumeisenphosphat durch Dotierung mit Zr, Ti, Nb und Mg um mehrere Größenordnungen. Dies steht in Analogie mit Bekanntem des Systems Li_{1-x}CoO₂ [100] (Erzeugung von p-Leitung/n-Leitung). Ein sehr kritischer Kommentar ließ allerdings, wiederum einhergehend mit einer Gegendarstellung, nicht lange auf sich warten [99, 101]. Unter anderem wird in Frage gestellt, dass die drastische Erhöhung der Leitfähigkeit nur durch Dotierung erreicht wird und ob dies nicht auch durch Kohlenstoff (Eisenoxalat als Quelle, Disproportionierung von CO) hervorgerufen werden kann.

Mehrere Autoren stellten fest, dass Dotierung eine Erhöhung der verfügbaren Kapazität be-

wirkt [102, 103, 104].

Meethong konnte 2009 die erfolgreiche aliovalente Dotierung mit bis zu 12 % Zr publizieren [105]. Auch dazu gibt es einen veröffentlichten Kommentar in der gleichen Zeitschrift, in dem insbesondere die Interpretation der Röntgenbeugungsdaten angezweifelt wird [106]. Der erfolgreichen Dotierung widerspricht ebenfalls ein Artikel von Islam *et al.* mit dem Ergebnis: LiFePO₄ "is not tolerant to aliovalent doping … on either Li … or Fe … sites" [107]. Einzig isovalente Dotierung (Mg²⁺, Mn²⁺) scheint denkbar. Wang und Kollegen stellten für das System LiZr_{0.01}Fe_{0.99} fest, dass sich zwar die p-Typ-Leitfähigkeit erhöht, allerdings die verfügbare Kapazität des Materials nicht verbessert [108].

Eine Erhöhung der Zyklenstabilität durch Dotierung ist das Ergebnis der Studien von Hua (V-Dotierung), Ge (Ni-Dotierung) und Zhao (Nd-Dotierung) [103, 104, 109].

Die Arbeitsgruppe um Maier beschäftigte sich mit der Dotierung von LiFePO₄-Einkristallen (Al- und Si-Dotierung) [110, 111].

Eine objektive Gesamtbeurteilung des Dotierungskonzeptes fällt von daher schwer, da die Ergebnisse von verschiedenen Wissenschaftlern offensichtlich sehr unterschiedlich bewertet werden. Dies ist auch ein Grund, weshalb sich die vorliegende Arbeit ausschließlich mit phasenreinem LiFePO₄ beschäftigt.

2.6 Kinetik der Li⁺-Insertion/-Extraktion

Ein Schwerpunkt der Arbeit soll die Untersuchung der chemischen Delithiierung und Lithiierung von LiFePO₄/FePO₄ sein. Dazu sind einige Reaktionen in der Literatur bekannt. Diese werden in diesem Zusammenhang auch als chemische Ersatzreaktionen bezeichnet.

2.6.1 Überblick über mögliche chemische Reaktionen

Neben der elektrochemischen Insertion/Extraktion von Li⁺ stehen auch chemische Reaktionen zur Verfügung. Wie in der elektrochemischen Zelle handelt es sich um Redoxprozesse.

Delithiierung von LiFePO₄

Für die Delithiierung von LiFePO₄ wird ein Oxidationsmittel benötigt, um unter Oxidation des Fe²⁺-Ions (zu Fe³⁺) eine Extraktion des Li⁺ zu erreichen. Das Oxidationsmittel wird dann

entsprechend reduziert. Es sind folgende Reaktionen beschrieben [112, 113, 114, 115]:

$$\text{LiFePO}_4 + \frac{1}{2} \text{K}_2 \text{S}_2 \text{O}_8 \rightarrow \text{FePO}_4 + \text{LiKSO}_4,$$
 (2.14)

$$LiFePO_4 + NO_2BF_4 \rightarrow FePO_4 + NO_2 \uparrow + LiBF_4,$$
 (2.15)

$$\text{LiFePO}_4 + \frac{1}{2} \text{Br}_2 \rightarrow \text{FePO}_4 + \text{LiBr.}$$
 (2.16)

Das Standardpotential von Fe³⁺/Fe²⁺ in LiFePO₄ liegt bei etwa 0,4 V¹⁰ [29]. Auf Grund der geringen Löslichkeit des Peroxodisulfats (Standardpotential $S_2O_8^{2^-}$: 2,0 V) [116] ist diese Reaktion nur im wässrigen Medium möglich. Für eine Delithiierung mit Nitroniumsalzen [74, 75, 117, 118] (Standardpotential: 2,1 V (geschätzt) [119]) und Brom [120, 121] (Standardpotential: 1,1 V geschätzt [119]) dient Acetonitril als Reaktionsmedium. In den meisten Fällen dienten diese Reaktionen den Autoren in der Literatur zur Darstellung von definierten Phasen Li_{1-x}FePO₄.

Für eine erfolgreiche Delithiierung von LiFePO₄ muss das Oxidationsmittel ein Standardpotential $E^{\circ} > 0,4$ V aufweisen.

Lithiierung von FePO₄

Eine Lithiierung des orthorhombischen FePO₄ gelingt üblicherweise mit LiI als Reduktionsmittel [74, 118, 122, 123, 124]. Darüber hinaus ist auch eine Li⁺-Insertion mit Butyllithium bekannt [75].¹¹

$$FePO_4 + \frac{3}{2} LiI \rightarrow LiFePO_4 + \frac{1}{2} LiI_3$$
 (2.17)

$$FePO_4 + BuLi \rightarrow LiFePO_4 + \frac{1}{2}C_8H_{18}$$
 (2.18)

Der Vorteil der Reduktion mit Lithiumiodid ist, dass das zu interkalierende Li⁺-Ion bereits Teil des Reduktionsmittels ist. Tabelle 2.3 fasst die relevanten Standardpotentiale zusammen. Man kann sehen, dass das Kriterium für eine erfolgreiche Lithiierung von FePO₄ ein Standardpotential des Reduktionsmittels von $E^{\circ} < 0.4$ V ergibt. Das bedeutet erstens, dass die Lithiierung in Acetonitril nicht bis zum Iod, sondern nur bis zum Triiodid erfolgt, und zweitens, dass eine Lithiierung in Acetonitril möglich, in Wasser allerdings nicht möglich sein sollte.

¹⁰Die in diesem Abschnitt angegebenen Potentiale beziehen sich auf die Standard-Wasserstoffelektrode. Sonst wird für Lithiumionenbatterien gerne das Potential gegen Li/Li⁺ als Referenz genutzt, dies ist dann jeweils mit vermerkt.

¹¹Es wird in der Literatur keine Reaktionsgleichung angegeben. Dass die Reaktion in dieser Art abläuft, ist nicht sicher.

Dies sind auch tatsächlich die experimentellen Befunde, wie sich später noch zeigen wird. Solvatationseffekte des Li⁺-Ions sollten bei der Bewertung keine Rolle spielen, da es beim Austritt aus dem Festkörper zwar solvatisiert wird, beim Wiedereintritt aber die Solvatationshülle abgestreift werden muss. Für die hier gemachten Untersuchungen spielt es allerdings für das Standardpotential eine Rolle, in welchem "Zustand" sich das Reduktionsmittel/Oxidationsmittel befindet, führte man beispielsweise die Delithiierung mit NO₂BF₄ und die Lithiierung mit LiI (jeweils in Acetonitril) durch.

Redoxpaar	Medium	Standardpotential/V
Fe^{3+}/Fe^{2+} (pH = 0)	H_2O	0,77 [29]
Fe ³⁺ /Fe ²⁺ (FePO ₄ /LiFePO ₄)	-	0,4 (z.B. [122])
I ₃ ⁻ /I ⁻	H_2O	0,54 [125]
	CH ₃ CN	0,35 [125]
	-	0,0 [122]
	CH ₃ CN	0,35 [126]
	H_2O	0,53 [29]
I_2/I_3^-	CH ₃ CN	0,95 [126]
	-	0,7 [122]
I_2/I^-	H_2O	0,54 [29]
	CH ₃ CN	0,55 [126]

Tabelle 2.3: Standardpotentiale verschiedener Redoxpaare (relativ zur SHE)

Zu beachten ist dennoch, dass sich das Potential von Fe³⁺/Fe²⁺ im Olivin im Falle des Vorliegens einer Festkörperlösung (siehe Kap. 2.7) auf Grund des weiteren Freiheitsgrades im System stark ändern kann.

2.6.2 Interkalations-/Deinterkalationsmechanismen

Zentraler Prozess im Batteriebetrieb unter Nutzung von Olivin-Typ Elektrodenmaterialien ist die Insertion und Extraktion von Lithiumionen in Li_xFePO₄.

Bereits seit Erscheinen der Arbeit von Padhi [28] 1997 entwickelte sich ein lebhafter wissenschaftlicher Austausch zum Ablauf dieser Lithiierungs und Delithiierungsprozesse, der bis heute andauert.

Neben der Vielzahl elektrochemischer Untersuchungen in der Literatur wird sich diese Arbeit auf die nasschemische Evaluierung der Interkalationsprozesse beschränken. Es wird stets an Pulvern gearbeitet werden, die den Realbedingungen in der Batterie im Vergleich zu Einkristallen näher kommen. Das die Unterscheidung zwischen Viel-Partikel-Systemen und Ein-Partikel-Systemen Sinn macht, wird im Abschnitt 2.7 zur Thermodynamik klar werden. Hier soll ein kurzer Überblick zu den vorgeschlagenen Mechanismen gegeben werden. Die in der Literatur beschriebenen Untersuchungen können wie folgt klassifiziert werden (Abb. 2.16).

Abbildung 2.16: Klassifizierung kinetischer Studien an LiFePO₄ nach methodischen und systemischen Gesichtspunkten. Die umrandeten Felder werden Gegenstand dieser Arbeit sein.
 Es können dabei sowohl Einkristalle untersucht werden als auch Pulver, die sicher den Gegebenheiten in einer Elektrode näher kommen.

Die Unterscheidung (für Modellbildung) zwischen Ein-Partikel-Systemen und Viel-Partikel-Systemen hat auch für thermodynamische Betrachtungen eine große Bedeutung (vgl. Kap. 2.7).

Methodisch gesehen existieren nasschemische, kinetische Studien (chemische Ersatzreaktionen) und (mehrheitlich) elektrochemische Tests in elektrochemischen Zellen. Dabei muss noch zwischen *in situ* und *ex situ* Methoden differenziert werden. Darüber hinaus gibt es auch theoretische Arbeiten zur Interkalation und Deinterkalation von Li⁺ in Li_xFePO₄.

Core-Shell-/Shrinking-Core-Modell

Die intuitiv am meisten naheliegende Vorstellung des Lithiierung-/Delithiierungsvorganges folgt einem "Core-Shell-Modell". Dabei geht man davon aus, dass ein einzelner Partikel beginnend an der Oberfläche nach und nach lithiiert/delithiiert wird (Abb. 2.17). In den Rechnungen von Srinivasan [127] wird auch die bei sehr großen und sehr kleinen Lithiumkonzentrationen auftretende Festkörperlösung berücksichtigt. Über den restlichen Zusammensetzungsbereich koexistieren lithumreiche und lithiumarme Phase.

Abbildung 2.17: Core-Shell Modell [28, 127].

Dieses "Core-Shell-Modell" ist mit anderen experimentellen Befunden, wie beispielsweise im "Domino-Kaskaden-Modell" (Abb. 2.18) nicht vereinbar bzw. mindestens unvollständig.

Domino-Kaskaden-Modell

Delmas [128] berichtete erstmals vom Domino-Kaskaden Modell (Abb. 2.18).

Abbildung 2.18: Domino-Kaskaden-Modell [128]. Auf der linken Seite ist die instabile Zone zwischen delithiierter Phase und lithiierter Phase gezeigt. Lithiumionen werden in b-Richtung extrahiert, die Phasengrenze bewegt sich in a-Richtung (rechts).

Die wesentliche Konsequenz dieses Modells ist, dass man nur vollständig delithiierte oder vollständig lithiierte Kristallite findet. Es existiert demnach eine Zone zwischen LiFePO₄ und FePO₄ in der sich Li⁺-Leerstellen und Fe²⁺/Fe³⁺-Polaronen häufen. Dieser Bereich ist instabil und bewegt sich sehr schnell, wellenartig durch den Kristallit.

Die Triebkraft für dieses Phänomen ist der strukturelle Versatz zwischen beiden Phasen. Bedingungen für den Ablauf dieses Prozesses sind den Autoren nach Nanopartikel und geringe Konzentrationen an strukturellen Defekten, da sonst ein Abbruch erfolgt. Die Autoren interpretieren auch die Analyse von Allen (Avrami-Kinetik, elektrochemisch, phasengrenzenkontrolliertes eindimensionales Wachstum) als Bestätigung ihrer Arbeit [129]. Es sei bemerkt, dass die dort angegebene, sehr geringe Aktivierungsenergie für den Lithiierungsprozess von 13 kJ mol⁻¹ auf 29 kJ mol⁻¹ korrigiert wurde [130].

Dieses Modell (mit der genannten Konsequenz für die Zusammensetzung der Kristallite) konnte etwas später von Brunetti [131] mittels Elektronenbeugung bestätigt werden (Abb. 2.19). Eine eingehende Betrachtung der Aufnahmen zeigt zwar, dass für die Mehrzahl der zu erkennenden Kristallite entweder die eine oder die andere Phase auftritt, allerdings nicht für alle. Man erkennt deutlich Kristallite, die aus beiden Phasen zusammengesetzt sind.

LiFePO4 EPO4

Abbildung 2.19: Bestätigung des Domino-Kaskaden-Modells durch Elektronenbeugung [131]. Der überwiegende Teil der Kristallite bestehen entweder aus der einen oder der anderen Phase. Es sind allerdings auch Kristallite erkennbar, die Li-reiche und Li-arme Phase enthalten (gelbe Kreise).

Notwendige Voraussetzung für die Gültigkeit dieses Modells ist ein interpartikulärer Transport von Li⁺-Ionen zwischen verschiedenen Partikeln (bzw. Kristalliten). Dies konnte 2009 von der Arbeitsgruppe um Linda Nazar [132] gezeigt werden.

Trifft dieses Modell zu, so kann man einen sehr schnellen Delithiierungsprozess erwarten.

Li⁺-Staging

Das sogenannte Staging von Li-Ionen in Li_xFePO_4 wurde in teildelithiierten Phasen von mehreren Arbeitsgruppen beobachtet. Die Phasen wurden jeweils auf elektrochemischem Weg erhalten. Man beobachtete dann bei diesen Phasen, dass Li-Ionen nicht etwa statistisch in Li-armer und Li-reicher Phase verteilt waren, sondern zum Teil in Schichten angeordnet sind. Es wechseln sich dann vollständig lithiierte und vollständig delithiierte Schichten (oder Kanäle) ab (Abb. 2.20).

Abbildung 2.20: Li⁺-Staging während der Delithiierung von LiFePO₄ [133].

Die Arbeit von Gu *et al.* wurde 2012 mit einer weiteren Arbeit von Suo *et al.* bestätigt [134]. Diese Ergebnisse stellen andere Mechanismen, die von einem Standard-Mehrphasenmodell ausgehen, vor eine Herausforderung. Es bleibt allerdings auch hier die prinzipielle Frage offen, ob Relaxationsphänomene im Nachgang zum eigentlichen Delithiierungsprozess auftreten, da hochauflösende Elektronenmikroskopie sicher erst Stunden (oder Tage) nach der Delithiierung zum Einsatz kommen kann.

Mosaik-Modell

Ein sogenanntes Mosaik-Modell wurde zuerst von Andersson und Thomas vorgeschlagen, um den Kapazitätsverlust vom ersten zum zweiten Zyklus zu erklären (Abb. 2.21).

Abbildung 2.21: Mosaik-Modell zur Erklärung des Kapazitätsverlustes in Lithiumeisenphosphat während des ersten Interkalationszkylus [135]. Man geht davon aus, dass die Extraktion innerhalb eines Partikels an mehreren Stellen beginnen kann. Dort wo die Reaktionsfronten aufeinandertreffen, bleiben lithiierte Bereiche zurück, die dann im nächsten Zyklus nicht zugänglich sind, da sich auf den "gefangenen" Bereichen eine amorphe Schicht bilden kann. Alternativ schlagen die Autoren auch ein Radial-Modell vor.

Man kann sich dies leicht vorstellen, wenn man annimmt, dass beim Delithiieren (2-dimensional) remanente Bereiche an LiFePO₄ zurückbleiben, die dann nicht wieder vollständig lithiiert werden können, falls sich beispielsweise eine amorphe Grenzschicht ausbildet [135, 136].

Anisotropie des Li⁺-Transports

Begründet in der Kristallstruktur von Olivin-Typ-LiFePO₄ gibt es eine Anisotropie der Aktivierungsbarriere für den Li⁺-Transport. Diese Feststellung gilt zunächst unabhängig vom Mechanismus des Li⁺-Transportes. Berechnungen von Islam [107] erhalten für den Transport eines Lithiumions entlang verschiedener Richtungen im LFP-Kristall (*Pnma*) etwa 3,36 eV (101), 0,55 eV (010) und 2,89 eV (001).¹² Unabhängig von den Absolutwerten zeigt dies, dass ein Transport in b-Richtung deutlich favorisiert ist. Dies wird auch intuitiv bei Ansicht der Struktur in verschiedene Richtungen klar (Abb. 2.22).

Abbildung 2.22: Anisotropie der Aktivierungsbarriere für Li⁺-Transport. Gezeigt ist die Struktur von Lithiumeisenphosphat entlang der drei kristallographischen Achsen. In b-Richtung (Mitte) ist die Aktivierungsenergie für den Sprung eines Li⁺-Ions am geringsten. (Farben: gelb - Phosphor, rot - Sauerstoff, orange - Eisen, blau - Lithium)

Die Arbeitsgruppe um Ceder kommt 2004 für den (bevorzugten) 1D-Transport in b-Richtung (010) auf einen Wert von 0,27 eV [137].

Systematisierung

Die nachstehende Tabelle systematisiert die verschiedenen Modelle zur (De-)lithiierung von Li_xFePO₄.¹³ Innerhalb mehrerer Modelle wird mitunter eine amorphe/ungeordnete Grenzschicht beschrieben. Aus diesem Grund wurde dieser Punkt in die nachstehende Tabelle

¹²Ein Elektronenvolt entspricht einer Aktivierungsenergie von etwa 100 kJ mol⁻¹.

¹³Verwendete Abkürzungen: C - chemisch, EC - elektrochemisch, T - Theorie, XRD - X-ray diffraction, HR-TEM - high resolution raster electron microscopy, SNFIM - scanning near field infrared microscopy, NPD - neutron powder diffraction, STEM - scanning transmission electron microscopy, XAS - X-ray absorption spectroscopy, XANES - X-ray absorption near edge structure, GITT - galvanostatic intermittant titration technique

Mechanismus	(De)lithiierung	Interface	Methode	Partikel	Literatur
Core-Shell	С	ja/nein	XRD, HRTEM	ein-Partikel	[28, 124]
Shrinking-Core	C/T	unklar	SNFIM	ein-Partikel	[8, 127]
Domino-Cascade	EC/T	nein	XRD/NPD	viele Partikel	[128, 131]
Li ⁺ -Staging	EC	ja	STEM	ein-Partikel	[133, 134]
Mosaic	EC/T	ja	XAS, XANES	ein Partikel	[135, 136]
Diffusion	EC/C	-	XAS, GITT	viele Partikel	[138, 139]

(Tab. 2.4) mit aufgenommen.

 Tabelle 2.4: Systematisierung von verschiedenen Modellen zum Mechanismus der Li⁺-Interkalation (verändert nach [8])

Insgesamt lässt sich festhalten, dass sich auch nach etwa 15 Jahren intensiver Forschung keine eindeutige Aussage machen lässt. Der Mechanismus ist immer noch umstritten. Hinzu kommt die große Diversität bei den eingesetzten Methoden. Auch bei Unterscheidung zwischen *ex situ* und *in situ* Methoden bzw. elektrochemische und nasschemische Methoden lässt sich keine Systematik ableiten.

2.7 Thermodynamik des Systems LiFePO₄ - FePO₄

2.7.1 Phasendiagramm

Schwerpunkt der thermodynamischen Untersuchungen war bisher das Phasendiagramm des Systems LiFePO₄-FePO₄. Neben der Abhängigkeit von Temperatur und Zusammensetzung hat man festgestellt, dass die Breite der Mischungslücke von der Partikelgröße abhängt. Je kleiner die Partikelgröße, desto schmaler die Mischungslücke (Abb. 2.23). Dies wurde von mehreren Arbeitsgruppen erkannt [74, 75, 118, 140, 141, 142].

Die Zellparameter im Bereich der Festkörperlösungen folgen laut Kobayashi dem Vegardschen Gesetz [118]. Wagemaker stellte allerdings deutliche Abweichungen fest [75]. Die partikelgrößenabhängige Phasenthermodynamik verändert somit auch die Form der (Ent-)Ladekurven (Abb. 2.6). Die Partikelgröße hat demnach nicht nur Einfluss auf Transporteigenschaften, sondern ebenso auf thermodynamische Größen.

Vor kurzem wurde die direkte Konkurrenz von Festkörperlösung und 2-Phasensystem [143] gezeigt. Demnach können beide Regime gleichzeitig vorkommen. Dies befindet sich im Grunde genommen in Übereinstimmung mit dem vorher Gesagten, wenn man eine reale (polydisperse) Partikelgrößenverteilung annimmt (vgl. [144]). Ebenfalls von Wagemaker wurde ein ähnliches Phänomen für das System Li_xTiO₂ gefunden [145].

Abbildung 2.23: a) Die Breite der Mischungslücke ist eine Funktion der Partikelgröße [118]. Die Mischungslücke ist nicht symmetrisch. b) Aufgrund der Phasenregel hat dies auch Einfluss auf die Form der (Ent-)Ladekurven, je nachdem ob man sich im Bereich der Festkörperlösung oder im 2-Phasensystem aus Li-armer und Li-reicher Phase befindet.

Ausführliche Rechnungen zum Li-Fe-P-O₂ Phasendiagramm unter verschieden stark reduzierenden Bedingungen (verschieden große O₂-Partialdrücke) wurden 2008 von der Arbeitsgruppe um Ceder vorgenommen [146]. Interessanterweise kommen die beiden Grenzphasen LiFePO₄ und FePO₄ gar nicht gleichzeitig (beim selben O₂-Partialdruck) vor. Dies kann als weiteres Indiz für die Richtigkeit des Domino-Kaskaden-Modells gewertet werden. Eine ausführliche Analyse des Phasendiagramms findet sich allerdings schon bei Dodd 2006 [112]. Dort wird ein typisches eutektoides System zwischen Triphylit (LiFePO₄) und Heterosit (FePO₄) gefunden (Abb. 2.24).

Abbildung 2.24: Phasendiagramm LFP - FP [112]. Man erkennt ein Eutektikum bei etwa x = 0,6. Oberhalb von etwa 320 °C herrscht vollständige Löslichkeit.

Aus magnetischen Messungen ist bei tiefen Temperaturen eine Phasenumwandlung von antiferromagnetisch nach paramagnetisch bekannt (auch für andere Homologe) [147, 148, 149]. Diese sollte sich auch in der Wärmekapazität widerspiegeln.

Eine weitere orthorhombische Modifikation von LiFePO₄, allerdings mit der Raumgrup-

pe *Cmcm*, wurde 2001 entdeckt [150]. Diese unterscheidet sich unter anderem durch einen größeren kürzesten Li⁺-Li⁺ Abstand. Einer anderen Arbeitsgruppe gelang es vor kurzem, die eigentlich nur unter hohem Druck (65 kbar, 900 °C) zu erhaltende Phase durch Mikrowellensynthese zu erhalten. Je nach dem Verhältnis der Lösungsmittel Benzylalkohol und 2-Pyrrolidon konnte die gewünschte Modifikation erhalten werden [151].

2.7.2 Bildungsenthalpien

Einen wichtigen Beitrag zur Thermodynamik des Systems LFP-FP lieferten Iyer *et al.* [9]. Ihnen gelang die Bestimmung der Bildungsenthalpien der vollständig lithiierten und der delithiierten Phase (Tab. 2.5). Der angegebene Fehler erscheint sehr gering.

Tabelle 2.5: Bildungsenthalpien von orthorhombischem LiFePO₄ und FePO₄ [9]

Substanz	Bildungsenthalpie $\Delta_B H$ in kJ mol ⁻¹
LiFePO ₄	$-1616,0 \pm 2,1$
FePO ₄	$-1279,2 \pm 1,4$

Die Bildungsenthalpien wurden aus Hochtemperatureinwurfkalorimetrie erhalten. Des Weiteren haben die Autoren für das orthorhombische FePO₄ eine Umwandlung in trigonales FePO₄ bei etwas mehr als 700 °C beschrieben.

2.7.3 Hysterese

In verschiedenen Elektrodenmaterialien für LIB kommt es zu einer Spannungshysterese zwischen Lade- und Entladekurve. In einem Artikel der Zeitschrift *Nature Materials* wurde 2010 die thermodynamische Ursache dieses Phänomens beschrieben. Diese Hysterese kann zwar durch Minimierung der Partikelgröße und Ströme sowie Optimierung der Elektrodengeometrie verringert werden, allerdings bleibt eine endliche Spannungsdifferenz bestehen (etwa 20 mV für LFP im 2-Phasengebiet) [152] (Abb. 2.25a)).

Dreyer konnte zeigen, dass diese Hysterese auftritt, wenn man von einem Viel-Teilchen-System ausgeht, in dem Li⁺-Austausch zwischen den Partikeln stattfinden kann (vgl. auch [132]).

Abbildung 2.25: Thermodynamischer Ursprung der Hysterese bei Insertionselektroden [152]. a) Hysterese zwischen Lade- und Entladekurve. b) Chemisches Potential als Funktion der Zusammensetzung für Ein- und Viel-Teilchensystem. c) Mögliche Szenarien der Phasenbildung. Szenario 1 ist das weitgehend angenommene, Szenario 2 das laut [152] wahrscheinlichere und stimmt teilweise mit dem Domino-Kaskaden-Modell für die Delithierung überein.

Wird nur ein einzelner Partikel delithiiert, würde man erwartungsgemäß das 2-Phasensystem erreichen (Szenario 1). Im (realen) Fall von vielen Partikeln ist ein weiteres Gleichgewicht zu berücksichtigen, nämlich der (mehr oder weniger schnelle) Austausch von Li⁺-Ionen zwischen den Partikeln bis ein thermodynamisch stabiler Zustand erreicht ist (Szenario 2 in Abb. 2.25 c).

Diese Erkenntnisse (Szenario 2) stehen im übrigen auch in Übereinstimmung mit dem Domino-Kaskaden-Modell [128].

2.8 Elektro- und nasschemische Untersuchungen

Gerade für Untersuchungen zum Li⁺-Transport stellt sich die Frage, ob elektrochemische Messungen den nasschemischen äquivalent sind oder ob die erhaltenen Ergebnisse nicht auch eine Funktion vom gewählten Verfahren sind. Man kann sowohl Gemeinsamkeiten als auch Unterschiede ausmachen.

Ein prinzipieller Unterschied zwischen elektrochemischer und chemischer (De-)Lithiierung ist folgender: für chemische Reaktionen ist ein Doppelkontakt nötig (zwischen Probe und Reagenz), für elektrochemische (De-)Lithiierung ein Dreifachkontakt (zwischen Probe, Elektrolyt und elektrischem Leiter) [128] (vgl. Abb. 2.26).

Jedoch ist einer der wichtigsten Punkte identisch: die notwendige Bedingung des simultanen Transports von Elektronen und Ionen durch das Wirtmaterial. In beiden Fällen müssen die Ladungsträger in irgendeiner Weise durch das Material wandern. Tab. 2.6 fasst Vor- und

Nachteile chemischer und elektrochemischer Methoden zusammen.¹⁴

Abbildung 2.26: Vergleich elektrochemischer und nasschemischer Methoden. Schematisch sind die Systeme in der Batterie (a)) und unter Nutzung chemischer Ersatzreaktionen (b)) gezeigt.

Tabelle 2.6:	: Stärken und	d Schwächen elektrochemischer und nasschemischer Methoden zur U	Intersuchung
	der Li+-(De-	e-)Interkalation	

	elektrochemische Methoden	nasschemische Methoden
Komplexität		+ +
spezifische Aussagekraft		+ +
C-Raten	+ +	-
Zyklenzahl	+ +	-
Analytik		+ +
Charakterisierung		+ +
definiertes Potential	+ +	-
Übertragbarkeit	+	-
Literatur		+ +

Die Komplexität des Systems in einer fertigen Batteriezelle ist deutlich höher als beispielsweise eine Suspension von Aktivmaterial mit Oxidationsmittel/Reduktionsmittel (vgl. Abb. 2.6). Obwohl die in der eigentlichen Batterie stattfindenden Prozesse deutlich näher an der "Realität" liegen, ist es sehr schwierig die gemessenen Effekte eindeutig einem Bestandteil zuzuordnen, da nicht nur das Aktivmaterial, sondern auch andere Bestandteile wie Elektrolytlösung, Separator, Binder, Kontaktierung, Bauart und Beschichtung zu berücksichtigen sind.

¹⁴Symbolik: + vorteilhaft; - nachteilig (im Sinne dieser Arbeit)

C-Raten sind elektrochemisch gut einstellbar. Für chemische Reaktionen bleibt die Einstellung von Temperatur und Konzentration. Die Geschwindigkeiten der chemischen Ersatzreaktionen können zum Vergleich leicht in die äquivalente C-Rate umgerechnet werden.

Die Analytik ist allerdings äußerst anspruchsvoll, entweder man nutzt *in situ* Methoden oder man demontiert die Zelle nach den entsprechenden Lade-/Entladezyklen und analysiert das Aktivmaterial im Nachgang. Ein Vorteil der Elektrochemie ist die relativ einfache Messung vieler Zyklen.

Bei chemischen Reaktionen ist das anliegende (chemische) Potential von den jeweiligen Reaktionspartnern abhängig. Elektrochemisch-kinetische Untersuchungen gibt es deutlich mehr. Chemische Ersatzreaktionen wurden meist nur zur Darstellung definierter Phasen genutzt. Kinetische Aspekte der Ersatzreaktionen, gerade im Hinblick auf die Eigenschaften des Aktivmaterials, sind weitgehend unerforscht.

Die wesentlichen Argumente für die Beschäftigung mit chemischen (De-)Lithiierungen sind: Reduktion der Komplexität, spezifische Aussagekraft zum Aktivmaterial, verhältnismäßig unkomplizierte Analytik (Charakterisierung) und das Schließen einer Literaturlücke.

2.9 Bewertung der vorliegenden Literatur

Bei der Betrachtung der vorliegenden Literatur fallen folgende Dinge auf: zur Synthese von LiFePO₄ stehen zahlreiche Methoden zur Verfügung. Es gibt einige Publikationen, die sich mit der Thematik der Beschichtung, Partikelgröße und den daraus resultierenden elektrochemischen Eigenschaften beschäftigen. Das Feld der Dotierung wird eher kontrovers diskutiert. Mechanistische Betrachtungen zu Solvo-/Hydrothermalsynthesen gibt es vergleichsweise wenige. Es wird ein Auflösungs-Rekristallisations-Mechanismus vorgeschlagen.

Kinetische Studien zum Li⁺-Transport in Li_xFePO_4 werden fast ausschließlich elektrochemisch durchgeführt. Nasschemische Reaktionen zur Delithiierung/Lithiierung werden genutzt, um (mehr oder weniger) definierte Phasen zu erhalten, die dann weiteren Untersuchungen zugeführt werden.

Beiträge zur Kinetik der chemischen Ersatzreaktionen am reinen (oder beschichteten) Aktivmaterial, bzw. daraus abgeleitete Aussagen über Transportprozesse innerhalb des Aktivmaterials gibt es fast keine. Die Wahl, insbesondere des Oxidationsmittels, scheint eher zufällig. Es existieren zahlreiche elektrochemische Studien zur Untersuchung des Transportmechanismus.

Thermodynamische Fragestellungen sind zum Teil zur Bilanzierung einiger Synthesemethoden bearbeitet worden. Darüber hinaus wurden die Bildungsenthalpien der beiden Grenzphasen (LiFePO₄ und FePO₄) bestimmt.

Einige wenige Arbeiten befassen sich mit dem Phasenübergang von Festkörperlösung in ein Zweiphasensystem. Zuverlässige Daten, zu fundamentalen thermodynamischen Größen, beispielsweise der Wärmekapazität (und der Entropie) gibt es, mit Ausnahme theoretischer Arbeiten [153], nicht. In einer Arbeit wird die Partikelgrößenabhängigkeit der Néel-Temperatur und des effektiven magnetischen Moments [154] diskutiert.

Weiterhin sind Phasenumwandlungen zu einer trigonalen Form der delithiierten Phase und eine weitere Modifikation der vollständig lithiierten Phase bekannt [9].

Von diesen Bemerkungen ausgehend sollen nun wesentliche Ziele der Arbeit formuliert werden.

3 Ziele

Bei der Formulierung der Zielstellung bietet sich wie bisher die Unterteilung in Synthese, Li⁺-Transport und Thermodynamik an.

Synthese

Mit Synthese seien hier ausschließlich hydrothermale und solvothermale LFP-Synthesen gemeint. Folgende Aspekte sind von Bedeutung:

- die Identifizierung wesentlicher Komponenten und Spezies in Lösung und als Festkörper,
- die Modifizierung der Partikelgröße und -morphologie,
- die Charakterisierung der entscheidenden Prozesse während der Synthese und
- die phasenreine Darstellung von LiFePO₄, insbesondere für Wärmekapazitätsmessungen.

Li⁺-Transport

Zweiter Schwerpunkt ist die nasschemische Delithiierung und Lithiierung von Li_{1-x} FePO₄ in geeigneten Lösungmitteln. Zentral ist dabei:

- die Entwicklung und Evaluierung chemischer Redoxreaktionen zur De-/Interkalation von Lithiumionen in Li_xFePO₄,
- das Auffinden von Gemeinsamkeiten und Unterschieden zwischen chemischen und elektrochemischen Verfahren, Übertragung der Erkenntnisse auf die Anwendung in der Batterie,
- die kinetische Charakterisierung von Lithiierung und Delithiierung von Li_{1-x}FePO₄
- und die Kenntnis grundsätzlicher Abhängigkeiten und Limitierungen.

Thermodynamik

Die thermodynamische Charakterisierung von Materialien ist nicht nur aus materialwissenschaftlicher Sicht, sondern auch aus Sicherheitsgründen von essentieller Bedeutung. Schwerpunkt der Arbeit sollen sein:

- die Ermittlung zuverlässiger Daten zur Wärmekapazität und damit zur Entropie von Olivin-Typ LiFePO₄ unter Berücksichtigung der magnetischen Phasenumwandlung zur Charakterisierung des Elektrodenmaterials und
- die thermodynamische Charakterisierung der Synthese, welche für großtechnische Verfahren von Bedeutung ist.

4 Ergebnisse und Diskussion

4.1 Synthese

"Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Dasein, sondern das Hinkommen, was den größten Genuß gewährt." (Carl-Friedrich Gauß) [155]

Eine reproduzierbare Synthese phasenreinen Lithiumeisenphosphates ist nicht nur die Grundlage für die Bestimmung zuverlässiger, thermodynamischer Daten, sondern ebenso notwendige Prämisse für aussagekräftige, kinetische Studien zur (De-)Interkalation von Li⁺ in Li_{1-x}FePO₄.

Reinheit und geringe Defektkonzentrationen sind wünschenswert. Darüber hinaus ist, wie bereits in Kapitel 2 deutlich geworden ist, die Variation der Partikelgröße und -morphologie von Bedeutung, da sie die elektrochemischen Eigenschaften des Elektrodenmaterials und damit die Funktionsfähigkeit der Batterie wesentlich beeinflussen. Für eine gezielte Steuerung dieser Parameter ist das Verständnis der Synthese der Schlüssel. Mit anderen Worten, es müssen die auftretenden Komponenten, Spezies und limitierenden Prozesse bekannt sein. Die vorliegende Arbeit konzentriert sich ausschließlich auf solvothermale Methoden zur Präparation von Olivin-Typ Lithiumeisenphosphat. Niedrigere Synthesetemperaturen und das Vermeiden toxischer Nebenprodukte wie Kohlenmonoxid sind die Gründe dafür.

4.1.1 Solvothermalsynthesen

Die meisten Solvo- und Hydrothermalsynthesen haben die Gemeinsamkeit, dass zunächst eine Precursormischung hergestellt wird, die dann in einem weiteren Schritt zum Produkt Lithiumeisenphosphat bei etwa 200 °C unter Autoklavenbedingungen umgesetzt wird. Die verwendete Ausgangsstöchiometrie der einzelnen Komponenten beträgt zumeist Li:Fe:PO₄ = 3:1:1. So auch bei der Synthese aus LiOH \cdot H₂O, FeSO₄ \cdot 7 H₂O und H₃PO₄ [6]. Nach Auflösen des Eisensalzes in Wasser wird Phosphorsäure hinzugegeben. Gelöstes LiOH wird anschließend der Mischung zugetropft. Es fällt ein weißer Feststoff aus. Dabei handelt es sich um eine co-gefällte Mischung aus $Fe_3(PO_4)_2 \cdot 8 H_2O$ (Vivianit) und Lithiumphosphat (Abb. 4.1). Durch die Zugabe des Hydroxids wird der pH-Wert kontinuierlich erhöht und es fallen LP und FP nebeneinander aus. Die Reflexe des Lithiumphosphats sind wenig intensiv, können aber alle zugeordnet werden. Es finden sich keine weiteren (kristallinen) Komponenten in der Mischung.

Abbildung 4.1: Röntgenpulverdiffraktogramm des Precursors aus der Hydrothermalsynthese mit FeSO₄ \cdot 7 H₂O. Der Precursor besteht aus co-gefälltem Li₃PO₄ und Fe₃(PO₄)₂ \cdot 8 H₂O.

Damit besitzt der gefällte Precursor, bei Annahme quantitativer Fällung, bereits die Stöchiometrie des Produktes. Es lässt sich folgende Reaktionsgleichung formulieren.

$$\frac{1}{3} \operatorname{Li}_{3} \operatorname{PO}_{4} + \frac{1}{3} \operatorname{Fe}_{3} (\operatorname{PO}_{4})_{2} \cdot 8 \operatorname{H}_{2} \operatorname{O} \to \operatorname{Li} \operatorname{Fe} \operatorname{PO}_{4} + \frac{8}{3} \operatorname{H}_{2} \operatorname{O}$$
(4.1)

Das Sulfat-Anion bleibt damit als Lithiumsulfat in Lösung und ist an der darauffolgenden Reaktion nicht beteiligt. Das überschüssige LiOH wird durch die Phosphorsäure neutralisiert.

$$2 \operatorname{LiOH} + \operatorname{SO_4}^{2-} + 2 \operatorname{H}^+ \to \operatorname{Li}_2 \operatorname{SO}_4 + 2 \operatorname{H}_2 \operatorname{O}$$
 (4.2)

Das entsprechende wässrige Filtrat der Precursorsuspension sollte nach dem hier Gesagten nur SO₄²⁻-Spezies enthalten. Dies wurde mittels Ramanspektroskopie überprüft. Abb. 4.2 zeigt die Ramanspektren der Filtrate von Prekursoren verschiedener Stöchiometrie.

Abbildung 4.2: Ramanspektren der wässrigen Filtrate verschiedener Precursoren. Es ist nur der Bereich zwischen 700 cm⁻¹ und 1300 cm⁻¹ gezeigt.

Die Spektren bestätigen das Auftreten von (ausschließlich) SO_4^{2-} -Spezies für die verwendete 3:1:1 Stöchiometrie. Für die anderen Ausgangszusammensetzungen treten sowohl SO_4^{2-} als auch PO_4^{3-} -Spezies im Filtrat auf.¹

Wellenzahl/cm ⁻¹	Z	uordnung	Filtrat 1:1:1	Filtrat 2:1:1	Filtrat 3:1:1
450 dp	SO4 ²⁻	ν ₂ (Ε)	Х	Х	Х
499 pp	H_3PO_4	$\nu_3(A_1)$	Х	Х	-
515 pp	$H_2PO_4^-$	$\nu_3(A_1)+\nu_4(A_1)$	Х	-	-
595 p	HSO ₄ ⁻	$\nu_3(A_1)+\nu_5(E)$	Х	Х	-
612 dp	SO4 ²⁻	$\nu_4(T_2)$	Х	Х	Х
877 p	$H_2PO_4^-$	$\nu_2(A_1)$	Х	-	(vw)
890 p	H_3PO_4	$\nu_1(A_1)$	Х	Х	-
981 p	SO4 ²⁻	$\nu_1(A_1)$	Х	Х	Х
1052 p	HSO_4^-	$\nu_1(A_1)$	Х	Х	-
1077 p	$H_2PO_4^-$	$\nu_1(A_1)$	Х	-	(vw)
1106 dp	SO4 ²⁻	$\nu_3(T_2)$	-	-	-
1179 p	H_3PO_4	$\nu_2(A_1)$	Х	Х	-

Tabelle 4.1: Ramanbanden wässriger Filtrate und deren Zuordnung

Die zugehörigen Precipitate weisen folglich eine ungeeignete Zusammensetzung auf, um

¹Symbolik: x ... beobachtet, - ... nicht beobachtet, dp ... depolarisiert, p - polarisiert, pp ... teilweise polarisiert, vw ... sehr schwach (very weak) [156, 157, 158, 159, 160] Der pH-Wert lag für alle Lösungen bei etwa 3.

reines LFP zu erhalten. Die Deformationsmoden des SO_4^{2-} -Ions bei 612 cm⁻¹ und HSO_4^{-} bei 595 cm⁻¹ [161] sind ebenso wie die Banden von H_3PO_4 (499 cm⁻¹) und $H_2PO_4^{-}$ (515 cm⁻¹) [162, 163] sehr ähnlich. Dies und die teils geringe Intensität machen die Zuordnung in diesem Bereich schwierig. Zudem sind Position, Halbwertsbreite und Intensität eine Funktion von Konzentration und pH-Wert. Dennoch ist die Zuordnung der Banden im gezeigten Bereich eindeutig (Tabelle 4.1).

Damit lässt sich ramanspektroskopisch belegen, dass das Filtrat der Stöchiometrie 3:1:1 lediglich Sulfatspezies enthält, wohingegen bei anderer Stöchiometrie auch Phosphatspezies auftreten. Nur der Precursor der Ausgangsstöchiometrie 3:1:1 führt damit zur Zielsubstanz. Tabelle 4.1 trifft eine Zuordnung der Ramanbanden zu den entsprechenden Spezies.

Die nötige Verwendung der Stöchiometrie 3:1:1 führt damit allerdings dazu, dass nur ein Drittel des eingesetzten Lithiums im Produkt erscheint und der Rest zunächst ungenutzt bleibt. Zudem kann festgestellt werden, dass bei der Verwendung von FeSO₄ als Eisenquelle leicht Sulfatverunreinigungen im Produkt auftreten, wenn die gesamte Precursormischung (auch die Filtrate) hydrothermal zu LFP umgesetzt wird (Abb. 4.3). Auch durch Waschen konnten die genannten Verunreinigungen nicht vollständig eliminiert werden.

Abbildung 4.3: Ein auf Basis von Eisensulfat hydrothermal hergestelltes Produkt. Es sind Verunreinigungen mit Li₂SO₄ · H₂O zu erkennen. Nicht zuzuordnende Verunreinigungen sind mit einem Dreieck gekennzeichnet.

Das heißt, das Präzipitat sollte vor der hydrothermalen Synthese zu LFP besser vom Filtrat separiert werden. Daraus resultiert dann allerdings die Erkenntnis, dass die Fällung eines

Precursors wenig sinnvoll ist, wenn mehr als notwendig Lithium verwendet wird. Zudem werden Sulfatverunreinigungen riskiert. Alternativ kann man auch direkt von Lithiumphosphat und Eisenphosphat (Vivianit) ausgehen, um phasenreines LFP zu erhalten.

Es wurden daraufhin FP und LP als reine Komponenten eingesetzt, um zum Produkt LFP zu gelangen. Die Darstellung des $Fe_3(PO_4)_2 \cdot 8 H_2O$ gelingt am einfachsten aus Eisenpulver und Phosphorsäure in Wasser. Die Säure muss im Überschuss eingesetzt werden.

$$3 \operatorname{Fe} + 2 \operatorname{H}_3 \operatorname{PO}_4 + 8 \operatorname{H}_2 \operatorname{O} \xrightarrow{\operatorname{KOH}} \operatorname{Fe}_3(\operatorname{PO}_4)_2 \cdot 8 \operatorname{H}_2 \operatorname{O} + 3 \operatorname{H}_2$$
(4.3)

Unter Nutzung der reinen Komponenten Lithiumphosphat und Vivianit, kann dann bei vollständiger Nutzung des eingesetzten Lithiums und ohne zusätzliche Fällung eines Precursors, der noch Fremdionen enthält, phasenreines LFP hergestellt werden (Abb. 4.4, Gleichung 4.4).

Abbildung 4.4: Röntgenpulverdiffraktogramme zur Hydrothermalsynthese von LiFePO₄ aus LP und FP. Die hydrothermale Umsetzung von LP und FP führt vollständig zu Olivin-Typ-LFP.

Damit gelangt man zu einer Gesamtreaktionsgleichung

$$Fe + \frac{2}{3} H_3 PO_4 + \frac{1}{3} Li_3 PO_4 \rightarrow LiFePO_4 + H_2, \qquad (4.4)$$

die die genannten Vorteile gegenüber der Precursor basierten Synthese besitzt.

Diese Syntheseroute ist, bei allen ihren Vorzügen, allerdings für viele nichtwässrige Medien ungeeignet. Nichtwässrige Medien sind allerdings unverzichtbar, um Partikelgröße und -morphologie gezielt einzustellen.² Aus diesem Grund wurde noch eine weitere Syntheseroute entwickelt, um das Spektrum verwendbarer Lösungsmittel zu erweitern. Es hat sich herausgestellt, dass die Verwendung von FeCl₂, anstatt des bereits diskutierten Sulfats in der Precursor basierten Methode günstig ist. Die Darstellung von LiFePO₄ ist in vielen Lösungsmitteln möglich (H₂O, MeOH, Ethylenglycol (EG), Tetraethylenglycol (TEG), ...).³ Die erfolgreiche Darstellung phasenreinen LFPs ist evident (Abb. 4.5).

$$3 \operatorname{LiOH} + \operatorname{H}_3\operatorname{PO}_4 + \operatorname{FeCl}_2 \to \operatorname{LiFePO}_4 + 2 \operatorname{LiCl} + 3 \operatorname{H}_2\operatorname{O}$$
 (4.5)

Abbildung 4.5: Ein auf Basis von Eisenchlorid synthetisiertes Produkt zeigt keinerlei Verunreinigungen. Die Darstellung ist sowohl in Wasser als auch in Methanol und anderen nichtwässrigen Lösungsmitteln möglich.

XP-Spektren können keine Chlorid-Verunreinigungen im Produkt nachweisen (siehe Anhang, Abb. 8.9). Die höhere Löslichkeit des LiCl im Vergleich zum Li₂SO₄ wirkt sich günstig auf die Minimierung anionischer Verunreinigungen im Festkörper aus.

²Es sei an dieser Stelle bemerkt, dass bei Nutzung der Methode im wässrigen System zwar relativ große Kristallite erhalten werden, diese aber postsynthetisch, beispielsweise durch Mahlen, bis auf etwa 35 nm verkleinert werden können, sodass die angestrebte, geringe Partikelgröße bei dieser Methode letztendlich kein Problem darstellt.

³Die Verwendung von Alkoholen hat den Vorteil, dass diese bei höheren Temperaturen als Reduktionsmittel wirken und so Fe³⁺-Verunreinigungen vermieden werden können.

4.1.2 Partikelgrößen, Kristallitgrößen und Partikelmorphologie

Es ist bekannt, dass die Art der Fällung des Precursors, also die Reihenfolge der Zugabe, im wässrigen System Einfluss auf die Partikelgröße hat [164]. Es soll zunächst geprüft werden, ob dieses Konzept auf Methanol übertragbar ist. Methanol ist von Interesse, da es verhältnismäßig hohe Konzentrationen erlaubt, trotzdem aber das wässrige Medium vermieden werden kann. Anschließend wird, unabhängig von der Art der Fällung, der Einfluss des Lösungsmittels (LM) (bzw. der LM-Kombination) auf Größe und Morphologie der Partikel betrachtet. Abschließend werden die Auswirkungen postsynthetischer Behandlungen (Mahlen, Tempern) besprochen.

Es wird die beschriebene Methode auf Basis von FeCl₂ angewendet.

Einfluss der Precursor-Fällung auf die Partikelgröße

Zur Fällung eines Precursors aus LiOH, H_3PO_4 und FeCl₂ gibt es prinzipiell mehrere Möglichkeiten, wovon zwei von Interesse sind: Erstens die Fällung von FP und LP mit LiOH nach Vorlage von FeCl₂ und H_3PO_4 und zweitens die Fällung von LP mit LiOH und H_3PO_4 gefolgt von der Zugabe des FeCl₂ (inverse Fällung). Beide Methoden unterscheiden sich durch die Konzentration von Fe²⁺-Ionen in Lösung. Mit erstgenannter Methode ist die Konzentration sehr klein, da sich fast alle Fe²⁺-Ionen im sehr schwer löslichen Vivianit befinden. Eine höhere Konzentration der Fe²⁺-Ionen in Lösung erreicht man mit der Zugabe von FeCl₂ zum bereits gefällten LP. Da nunmehr ein erheblicher Anteil des Phosphats im LP gebunden ist, verbleibt ein Großteil der Fe²⁺-Ionen in Lösung (vgl. [165]).

Dieser Ansatz hat sich für die Synthese aus Methanol bestätigt, da man für die inverse Fällung eine kleinere Kristallitgröße erhält. Aufgrund der höheren Konzentration von Fe²⁺ in Lösung ist die Keimbildung schnell und das Keimwachstum wird unterdrückt (Abb. 4.6).

Demnach ist mit der inversen Fällung aus Methanol im 25 g l⁻¹ Maßstab eine Kristallitgröße von etwa 57 nm erreichbar (normale Fällung: 99 nm). Nach dem bisher Gesagten sollte die Konzentration der Fe²⁺-Ionen für die normale Fällung bei 200 °C die geschwindigkeitsbestimmende Größe für die Kristallisation des LFP sein. Dies wird in Kapitel 4.1.4 noch ausführlicher diskutiert.

Einfluss des Lösungsmittels auf Partikelgröße

Es wurden nun mehrere, "invers gefällte" Precursorsuspensionen dahingehend variiert, dass neben reinem MeOH, eine Mischung aus Methanol und Ethylenglycol (EG) und reines EG verwendet werden. Durch Verwendung von EG konnte die Kristallitgröße weiter reduziert werden. In der 1:1-Mischung beider LM wurde eine Kristallitgröße von 44 nm erreicht, bei Verwendung reinen EGs sogar nur 22 nm (Abb. 4.7).

Abbildung 4.6: Röntgenpulverdiffraktometrie: Einfluss der Precursorfällung auf die Kristallitgröße. Bei der "inversen Fällung" ist die Fe²⁺-Konzentration in Lösung höher und sorgt so für eine geringere Partikelgröße des Produktes. Die Kristallitgröße wurde, wie im Folgenden auch, aus der Reflexverbreiterung bestimmt.

Die Verwendung, insbesondere von viskosen LM führt demnach zu einer Verringerung der Partikelgröße, indem es das Partikelwachstum erschwert. Von Nachteil ist die aufwendige Aufarbeitung des Produktes, da hochsiedende Lösungsmittel nur schwer vollständig zu entfernen sind.

Abbildung 4.7: Röntgenpulverdiffaktometrie: Einfluss des Lösungsmittels auf die Kristallitgröße. Durch Einsatz des deutlich viskoseren EGs, statt MeOH, kann die Kristallitgröße auf bis zu 22 nm reduziert werden. Allen Synthesen ging eine "inverse Fällung" eines Precursors voraus.

Einfluss des Lösungsmittels auf die Partikelmorphologie

Neben der Partikelgrößenabhängigkeit findet sich auch eine Abhängigkeit der Morphologie vom Lösungsmittel. Mit MeOH als LM erhält man überwiegend sphärische Partikel. Dies gilt ebenso für Mischungen mit EG und für reines Ethylenglycol. Aus einer Mischung von MeOH und Toluen kristallisieren Plättchen mit sehr rauher Oberfläche (Abb. 4.8).

Wässrige Ansätze und Mischungen mit TEG liefern zumeist Plättchen oder Rhomboeder. Die Oberflächenenergie der einzelnen kristallographischen Orientierungen entscheidet dann darüber, welche Fläche bevorzugt erscheint (vgl. z.B. [88]).

Abbildung 4.8: Rasterelektronenmikroskopie: Einfluss des Lösungsmittels auf die Partikelmorphologie.

Wang *et al.* konnten zeigen [165], dass die Art der Fällung (invers oder normal) auch für die Partikelmorphologie entscheidend sein kann, was hier nicht weiter untersucht wurde.

Einfluss der postsynthetischen Behandlung auf Partikelgröße- und morphologie

Eine postsynthetische Behandlung der LFP-Pulver kann unterschiedlich motiviert sein. Dies kann eine Beschichtung mit Kohlenstoff sein, die Entfernung von adsorbiertem Restlösungsmittel oder die Eliminierung von Defekten.

Oft führt der Temperprozess zu einem Wachstum der Partikel, was zumeist unerwünscht ist. Andererseits verschwinden Defekte, insbesondere antisite-Defekte, die für die Interkalation von Li⁺-Ionen in Li_{1-x}FePO₄ ein großes Hindernis darstellen, da sie die Transportwege blockieren können (siehe Kapitel 4.47).

Das Partikelwachstum beim Tempern kann minimiert werden, wenn zunächst nur bis etwa 200°C erhitzt wird und dann langsam (15 K min⁻¹) auf etwa 500°C, was, wie bereits diskutiert, das Verschwinden von antisite Defekten sicherstellt. Möchte man bei höheren Temperaturen arbeiten (700 °C), und dennoch sehr kleine Partikel erhalten, so bietet sich nach dem Tempern eine Zerkleinerung der Partikel durch Mahlen an (Abb. 4.9).

Abbildung 4.9: Röntgenpulverdiffraktometrie an verschiedenen LFP-Proben: Verminderung der Kristallitgröße durch Mahlen. Nach etwa 72 h konvergiert die durch Mahlen erreichbare Kristallitgröße auf etwa 40 nm.

So kann die Kristallitgröße durch 72 stündiges Mahlen bis auf etwa 40 nm verringert werden.

Die Morphologie bleibt zumeist erhalten und wird durch das Tempern nicht stark verändert. Hinzu kommt noch ein weiterer Punkt, der gesondert erwähnt werden soll. In einigen wenigen Fällen stellt man fest, dass eine (chemische) Delithiierung des Kathodenmaterials LFP ohne postsynthetisches Tempern (überhaupt) nicht möglich ist (Abb. 4.10). Das Material ist dann elektrochemisch inaktiv.

Dies kann mehrere Ursachen haben:

- eine sehr große antisite-Defektkonzentration (siehe Kapitel 4.47),
- eine z.B. durch LM-Spezies blockierte Oberfläche (sodass das Oxidationsmittel nicht angreifen kann) oder auch

Abbildung 4.10: Elektrochemische Aktivität zweier LFP-Proben: Das obere Diffraktogramm zeigt elektrochemisch aktives Material (getempert) nach der erfolgreichen Delithiierung mit Peroxodisulfat in Wasser. Die unbehandelte Probe (nicht getempert) ist nicht delithiierbar (unten), elektrochemisch inaktiv.

• eine sehr schlechte Benetzbarkeit der LFP-Oberfläche mit LM.⁴

Der letztgenannte Punkt kann vermutlich vernachlässigt werden. Neben den genannten antisite-Defekten können weitere Defekte eine Rolle spielen, die allerdings nicht genauer untersucht wurden. Die elektrochemische Aktivität kann durch die ausschließliche Betrachtung des Röntgenpulverdiffraktogramms nicht ohne Weiteres eingeschätzt werden. Die Quantifizierung von antisite Defekten ist zwar prinzipiell möglich, wenn Textureffekte ausgeschlossen werden, erklärt aber nicht die vollständige Inaktivität des Materials gegenüber starken Oxidationsmitteln. Abbildung 4.11 zeigt einige IR-Spektren von aktiven und inaktiven Materialien.

Im Vergleich mit aktiven Materialien erkennt man im oberen Spektrum, dass zwar im Deformations- und Gerüstschwingungsbereich alle Banden vorhanden sind, allerdings im Bereich der PO₄-Streckschwingungen keine scharfen Banden auftreten. Sie sind sehr breit und sprechen für einen geringen Ordnungsgrad mit variierenden Bindungslängen. Im zweiten Spektrum einer inaktiven Probe sind die Banden relativ scharf ausgeprägt, es kommt aber eine kleine zusätzliche Bande bei etwa 1237 cm⁻¹ hinzu, die charakteristisch für die delithiierte Phase FePO₄ ist und im LiFePO₄ nicht erscheint [166]. Sind diese "leeren Bereiche"

⁴In einer Batterie ist die Benetzbarkeit des Aktivmaterials auch eine wichtige Voraussetzung. Da dort alle verwendeten Materialien mit Kohlenstoff beschichtet sind, und man meist Elektrolytlösungen auf Basis organischer LM verwendet, tritt das Problem jedoch kaum auf.

Abbildung 4.11: ATR-IR-Spektroskopie: Elektrochemisch aktives und inaktives LFP. Eine zusätzliche Bande bei 1237 cm⁻¹ oder eine Verschiebung mehrerer Banden im PO₄-Streckschwingungsbereich können eine elektrochemische Inaktivität einer LFP-Probe anzeigen.

ohne Li⁺-Ionen auch an der Oberfläche vorhanden, so kann dies eine Ursache für Inaktivität des LFPs sein.

Laut den Autoren in [166] kann es sich bei der zusätzlichen Bande auch um terminale PO_3 -Einheiten oder Polyphosphat-Komplexe der Form $P_2O_7^{4-}$ bzw. $P_3O_{10}^{5-}$ handeln. Aus XPS-Spektren gibt es Hinweise, dass solche Spezies tatsächlich an der Oberfläche existieren könnten. Sie tauchen allerdings z.T. auch bei getemperten Proben auf (Tab. 4.2).

Um die Zusammensetzung der Oberfläche und im Bulk abschätzen zu können, bieten sich XP-Spektren an. Leider kann Lithium nicht neben Eisen bestimmt werden, da sich das Li 1s-Signal (54,9 eV) und das Fe 3p-Signal (52,6 eV) [167] überlagern. Dennoch können aus der Quantifizierung des Fe:P:O-Verhältnisses einige Rückschlüsse gezogen werden. Tabelle 4.2 zeigt die ermittelten Fe:P:O-Verhältnisse für getemperte und unbehandelte LFP Proben.

Die Ergebnisse der ungesputterten Proben spiegeln die Zusammensetzung der Oberfläche wieder. Nach dem Sputtern wird die Bulk-Zusammensetzung bestimmt.

Probe	Verhältnis Fe : P : O
LFP unbehandelt (Oberfläche)	1:2,0:6,8
LFP unbehandelt & 5 Min. gesputtert (Bulk)	1:1,3:4,0
LFP unbehandelt & 10 Min. gesputtert (Bulk)	1:1,0:3,4
LFP getempert (Oberfläche)	1:1,7:5,6
LFP getempert & 5 Min. gesputtert (Bulk)	1:1,1:3,6
LFP getempert & 10 Min. gesputtert (Bulk)	1:1,0:3,2

Tabelle 4.2: Zusammensetzung von Bulk und Oberfläche - XPS

Berücksichtigt man darüber hinaus das zu den ATR-IR-Spektren Gesagte, so sprechen auch die XP-Spektren für einen Unterschied zwischen Bulk- und Oberflächenzusammensetzung. Die oberflächliche Zusammensetzung der unbehandelten LFP-Probe spricht ebenfalls für (Li)Fe^{III}P₂O₇-spezies bzw. (Li₂)Fe^{II}P₂O₇, die getemperte Probe eher für (Li)Fe^{III}₂P₃O₁₀. Im Bulk besitzen die Proben in etwa die erwartete Zusammensetzung von (Li)Fe^{II}PO₄. Die Unsicherheit der Methode bei der quantitativen Elementbestimmung ist allerdings relativ groß (etwa 10 %).

4.1.3 Wirtschaftlichkeit

Am Ende wird über eine flächendeckende Nutzung und eine industrielle Produktion im Tonnenmaßstab auch die ökonomische Rentabilität entscheiden. Dies betrifft insbesondere die Elektromobilität und den Einsatz als Kapazitätsregler im Stromnetz [168].

Das Problem der Lithiumvorkommen ist weniger ihr Gesamtumfang, sondern eher die geringen Konzentrationen. Die meisten Studien gehen davon aus, dass es einen "Engpass nicht geben wird" [168]. Dennoch ist, neben der Notwendigkeit von Recyclingverfahren, eine effiziente Nutzung von großem Interesse.

Abbildung 4.12: Vergleichendes Reaktionsschema zur LFP-Synthese. In der Precursor basierten Methode werden zwei Drittel des eingesetzten Lithiums nicht im Produkt verarbeitet.

Neben den Li-Ressourcen sollte man auch die Phosphatvorkommen nicht überschätzen. So wurde für das Jahr 2033 der "Peak Phosphorous" prognostiziert [168]. Berücksichtigt man den momentanen Jahresverbrauch und die Weltvorräte, so reichen diese noch für etwa 300 Jahre [169].

Das Schema (Abb. 4.12) bilanziert aus diesem Grund die oben bereits diskutierten Reaktionspfade: auf der einen Seite die direkte LFP-Synthese aus Vivianit und LP und auf der anderen Seite die weit verbreitetere Variante mit Precursor als Vorstufe. Das auf Basis von FeSO₄ aufgeführte Beispiel steht dabei stellvertretend für zahlreiche Methoden (Festkörpermethoden auf Basis von Li₂CO₃ und FeC₂O₄ werden hier nicht betrachtet).

Man erkennt, dass in der Variante aus LP und Vivianit alle eingesetzten Li-Komponenten vollständig in das Produkt umgewandelt werden, wohingegen die Precursor basierten Methoden mindestens der Aufarbeitung des Lithiums aus dem Reaktionsgemisch bedürfen. Dabei ist es nicht unwichtig, dass die Li-Quelle möglichst eine Base (also LiOH) ist, um den für die Synthese günstigen pH-Wert (in Kombination mit H₃PO₄) einzustellen. Dies macht die direkte Wiederverwendung des zurückerhaltenen Li₂SO₄ schwierig.

Für die thermodynamische Bilanzierung der Routen, welche für großtechnische Synthesen essentiell sind, sei auf den Teil Thermodynamik verwiesen. Es wird dort die in Abb. 4.12 verwendete Symbolik weitergeführt.

4.1.4 Mechanistische Überlegungen zur LFP-Synthese - *in situ* Messung der elektrolytischen Leitfähigkeit

Die bisher gewonnenen Erkenntnisse sollen noch etwas ausgebaut werden. Die Bildung von Lithiumeisenphosphat durch Solvothermalsynthesen erfolgt auf eine zunächst nicht bekannte Art und Weise aus Ionen. A priori ist nicht klar, ob die Kristallisation des LiFePO₄ (LFP) vollständig aus sich in Lösung befindlichen Ionen erfolgt oder ob eine gelöste Komponente an der Oberfläche einer festen Phase reagiert o. Ä. Darüber hinaus ist es möglich oder sogar wahrscheinlich, dass der Bildungsmechanismus des LiFePO₄ eine Funktion des Lösungsmittels und der Reaktanten ist. Aus diesem Grund bieten sich besonders *in situ* Messungen der elektrolytischen Leitfähigkeit⁵ des Reaktionsgemisches an, um detailliertere Informationen zum Ablauf der verschiedenen Solvothermalsynthesen zu bekommen.

Dabei sollen insbesondere folgende Systeme untersucht werden (Abb. 4.13).

Abbildung 4.13: Schematische Darstellung der durch *in situ* Messungen der elektrolytischen Leitfähigkeit untersuchten chemischen Systeme zur Darstellung von LiFePO₄.

Sowohl im wässrigen System als auch in MeOH werden zunächst die Synthesen aus den reinen, kristallinen Komponenten Li₃PO₄ (LP) und Fe₃(PO₄)₂ · 8 H₂O (FP) betrachtet. Darüber hinaus erscheinen die ebenso äußerst zuverlässigen Synthesen aus einer vorher gefällten Precursormischung interessant (siehe frühere Kapitel). Mit Precursor soll damit eine Mischung aus im jeweiligen Lösungsmittel gefälltem Li₃PO₄ und Fe₃(PO₄)₂ · 8 H₂O und solvatisiertem LiCl gemeint sein. Alle gezeigten Messwerte beziehen sich auf 25 mmol LiFePO₄ pro Liter Lösungsmittel gemäß

$$\frac{1}{3} \operatorname{Li}_{3} \operatorname{PO}_{4} + \frac{1}{3} \operatorname{Fe}_{3} (\operatorname{PO}_{4})_{2} \cdot 8 \operatorname{H}_{2} \operatorname{O} \to \operatorname{Li} \operatorname{Fe} \operatorname{PO}_{4} + \frac{8}{3} \operatorname{H}_{2} \operatorname{O},$$
(4.6)

⁵Wird in diesem Kapitel von Leitfähigkeit gesprochen, so ist immer die elektrolytische Leitfähigkeit des betreffenden Systems in Wasser oder MeOH gemeint.

beziehungsweise, im Fall des gefällten Precursors, gemäß:

$$3 \operatorname{LiOH} + \operatorname{H}_3 \operatorname{PO}_4 + \operatorname{FeCl}_2 \cdot 4 \operatorname{H}_2 \operatorname{O} \rightarrow \frac{1}{3} \operatorname{Li}_3 \operatorname{PO}_4 + \frac{1}{3} \operatorname{Fe}_3 (\operatorname{PO}_4)_2 \cdot \operatorname{x} \operatorname{H}_2 \operatorname{O} + 2 \operatorname{LiCl}$$

$$(4.7)$$

$$\rightarrow$$
 LiFePO₄ + 2 LiCl + x H₂O. (4.8)

Die Reaktionsmischungen wurden im Autoklav mit integrierter Messzelle für elektrolytische Leitfähigkeit auf 200 °C erhitzt und nach einiger Zeit wieder auf Raumtemperatur abgekühlt. Neben der Temperatur wurde die elektrolytische Leitfähigkeit online aufgezeichnet.

Es soll an dieser Stelle noch darauf hingewiesen werden, dass es beim Auflösen (Erhitzen) und Kristallisieren (Abkühlen) der hier untersuchten, zumeist schwer löslichen Substanzen aus kinetischen Gründen zu einer Art Hysterese kommen kann. Beim Erhitzen misst man aufgrund verzögerten Auflösens eine zu kleine Leitfähigkeit, beim Abkühlen misst man eine zu große Leitfähigkeit auf Grund verzögerten Kristallisierens (Anhang, Abb. 8.2).

Das System Li₃PO₄ - Fe₃(PO₄)₂ - H₂O

Das, wie sich im Nachhinein herausstellte, interessanteste und auch einfachste System zur LFP-Synthese ist eine wässrige Suspension aus FP und LP. Zudem lassen sich mehrere Routen, wie oben beschrieben, im Grunde auf die Reaktion von Lithiumphosphat mit Vivianit zurückführen.

Die Ausgangsstoffe liegen kristallin vor und werden hydrothermal erhitzt. Um aus der Leitfähigkeitskurve Informationen entnehmen zu können, wurden zunächst alle an der Reaktion beteiligten reinen Stoffe einzeln bis auf 200 °C erhitzt und deren elektrolytische Leitfähigkeit aufgezeichnet (Abb. 4.14).⁶

Neben FP und LP ist dies auch mit dem Produkt LFP geschehen. LFP zeigt die geringste Leitfähigkeit. Die elektrolytische Leitfähigkeit des LFPs sollte der Leitfähigkeit des FP-LP-Systems nach erfolgter Synthese entsprechen. Abb. 4.14 und Abb. 4.16 bestätigen dies in etwa.

Erwartungsgemäß steigt die Leitfähigkeit aller Systeme mit steigender Temperatur an. Es fällt auf, dass die rechnerische Summe der Leitfähigkeiten von FP und LP über den gesamten Temperaturbereich größer ist als die gemessene Leitfähigkeit einer entsprechenden, aus beiden Substanzen bestehenden Mischung. Dafür gibt es zwei Gründe. Erstens nehmen die Aktivitätskoeffizienten von gelösten Ionen mit steigender Ionenstärke der Lösung gemäß der Debye-Hückel-Theorie ab, und zweitens kann, gerade bei höheren Temperaturen nicht

⁶Alle hier gezeigten Leitfähigkeitsdaten sind dynamische Daten. Es handelt sich nicht um thermodynamische Gleichgewichtsdaten.

Abbildung 4.14: Elektrolytische Leitfähigkeit verschiedener Substanzen und Mischungen in Wasser als Funktion der Temperatur.

ausgeschlossen werden, dass sich ein Teil der Ionen schon zum Produkt (mit erheblich geringerer Löslichkeit und damit geringerer elektrolytischer Leitfähigkeit) umgesetzt hat. Zudem spielen die PO₄³⁻-HPO₄²⁻-Gleichgewichte eine Rolle, die den pH-Wert verändern und so ein (weiteres) Auflösen unterdrücken können (vgl. Diskussion weiter unten in diesem Abschnitt).

Die Auflösung des LP-FP-Gemisches verläuft in zwei Stufen. Man kann davon ausgehen, dass sich zunächst LP auflöst und danach FP, da FP die (zumindest bei geringen Temperaturen) deutlich geringere Löslichkeit besitzt. Da die Temperaturabhängigkeit der Löslichkeitsprodukte beider Substanzen über einen so großen Temperaturbereich allerdings nicht bekannt ist, bleibt dies zunächst eine Vermutung. Man kann allerdings durch Variation der LP-Konzentration ein starkes Indiz dafür liefern, dass die erste Stufe (ausschließlich) von der Auflösung des LP herrührt (Abb. 4.15). Die Erhöhung der elektrolytischen Leitfähigkeit (die mutmaßlich von FP stammt) in der zweiten Stufe bleibt bei einer höheren LP-Ausgangskonzentration unverändert.

Der Verlauf dieser Kurve lässt sich nicht aus den Einzelmessungen (Abb. 4.14) ableiten. Man kann von daher sagen, dass die Abweichung vom idealen Verhalten bereits bei den hier verwendeten Konzentrationen relativ groß ist und sowohl die interionische als auch die Wechselwirkungen zwischen Ionen und Lösungsmittel stark ausgeprägt sind.

Der weitere Verlauf in Abb. 4.16 zeigt, dass die elektrolytische Leitfähigkeit ab 170 °C nahezu konstant bei etwa 4300 μ S cm⁻¹ ist. Sie nimmt dann innerhalb von 30 Minuten (T = konst. = 200 °C) leicht ab. Dieser Bereich kann als Keimbildungsphase interpretiert werden. Die-

Abbildung 4.15: Elektrolytische Leitfähigkeit bei der Synthese von LFP aus FP und LP bei unterschiedlichen Konzentrationen an Lithiumphosphat. Der Verlauf legt erwartungsgemäß nahe, dass sich zunächst Lithiumphosphat auflöst, danach das Eisenphosphat, bevor die Reaktion zu Lithiumeisenphosphat wieder für eine Abnahme der elektrolytischen Leitfähigkeit sorgt (hier nicht gezeigt).

se kleinen LFP-Keime sorgen dafür, dass die Leitfähigkeit in geringem Maße abnimmt. Sie haben allerdings noch nicht den kritischen Radius überschritten, wonach ein Keimwachstum einsetzt. Solche Hemmungserscheinungen sind insbesondere auch für heterogene Systeme typisch [170].

Nach einiger Zeit sind die Keime so groß, das sie thermodynamisch stabil sind. Sie beginnen zu wachsen (vgl. Abschnitt zur Nukleation Kap. 4.2.3). Die Leitfähigkeit nimmt folglich stark ab. Der gesamte Prozess der LFP-Kristallisation (inklusive der Keimbildungsphase) dauert etwa zwei Stunden. Dies deckt sich in etwa mit den DSC-Messungen im Abschnitt 4.3.1. Die sich einstellende elektrolytische Leitfähigkeit nach erfolgter LFP-Kristallisation entspricht erwartungsgemäß in etwa der des Lithiumeisenphosphates aus Abb. 4.14.

Wenn sich tatsächlich, wie oben beschrieben, FP erst bei höheren Temperaturen in größeren Mengen auflöst, wohingegen LP bereits vollständig gelöst ist, so liegt die Vermutung nahe, dass die Auflösung des FP, neben der LFP-Keimbildung, die erst einsetzen kann, wenn sich genügend Fe²⁺-Ionen in Lösung befinden, für die LFP-Synthese ein geschwindigkeitsbestimmender Schritt ist.

Dies befindet sich auch in Übereinstimmung mit dem über den Vergleich der "normalen Fällung" und der "inversen Fällung" weiter oben Gesagten, wonach die inverse Fällung klei-

Abbildung 4.16: Elektrolytische Leitfähigkeit in Wasser als Funktion der Zeit und der Temperatur. Man erkennt deutlich vier verschiedene Bereiche: Auflösung von Li₃PO₄, Auflösung von Fe₃(PO₄)₂·8H₂O, LiFePO₄-Keimbildung, LiFePO₄-Kristallisation.

nere LFP-Partikelgrößen liefert als die normale Fällung [164] (größere Konzentration an Fe²⁺-Ionen in Lösung).

Bei anderen Konzentrationen wird man Abweichungen im zeitlichen Ablauf dieser Teilschritte erwarten. Die Auflösung der einzelnen Substanzen wird darüber hinaus eine Funktion der Partikelgröße sein.

Abb. 4.17 zeigt eine erfolgreiche Lithiumeisenphosphatsynthese. Bei unvollständigem Umsatz des Vivianits (FP) kann es im wässrigen System zu geringen Verunreinigungen mit Fe₂PO₄(OH) kommen.

Ergänzend zu den bisherigen Überlegungen sollen die Löslichkeiten der beteiligten Komponenten LP, FP und LFP einbezogen werden. Diese, bzw. die entsprechenden Gleichgewichtskonstanten, wurden als Funktion der Temperatur berechnet. Die Lage des Gleichgewichtes (ln K) für die Dissoziation in Wasser gemäß:

$$\mathrm{Li}_{3}\mathrm{PO}_{4} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons 3\,\mathrm{Li}^{+} + \mathrm{H}\mathrm{PO}_{4}^{2-} + \mathrm{OH}^{-} \tag{4.9}$$

$$Fe_3(PO_4)_2 \cdot 8 H_2O \rightleftharpoons 3 Fe^{2+} + 2 HPO_4^{2-} + 2 OH^- + 6 H_2O$$
 (4.10)

$$LiFePO_4 + H_2O \rightleftharpoons Li^+ + Fe^{2+} + HPO_4^{2-} + OH^-$$
(4.11)

gibt Abb. 4.18 wieder.

Am leichtesten löslich ist LP, FP dagegen ist deutlich schwerer löslich. Diese Studie zeigt

Abbildung 4.17: Röntgenpulverdiffraktogramme von verschiedenen Produkten. Man erkennt bei Synthese 1 geringe Verunreinigungen durch Fe₂PO₄OH. Die Ursache dafür liegt wahrscheinlich in der Synthese des Vivianits (Fe₃(PO₄)₂·8 H₂O), wenn bei der Fällung mit KOH ein pH-Wert deutlich größer als sieben erreicht wird. Eine andere Ursache kann eine von Gleichung 4.6 abweichende der Stöchiometrie sein.

erneut, dass die Konzentration von Fe²⁺-Ionen in Lösung limitierend für die LFP-Darstellung ist.

Normalerweise erwartet man eine mit der Temperatur ansteigende Leitfähigkeit (für nicht zu große Konzentrationen), wie es in den Experimenten auch der Fall ist. Dieser Unterschied zwischen den Berechnungen und dem Experiment tritt auf, weil die Temperaturabhängigkeit der Viskosität des LM, die hauptsächlich für einen Leitfähigkeitsanstieg verantwortlich ist, in den Rechnungen nicht berücksichtigt ist. Beispielsweise ist die fallende Leitfähigkeit für LFP eine Folge der mit der Temperatur steigenden freien Reaktionsenthalpie für die Dissoziationsreaktion. Diese Abnahme der LF wird allerdings von einer Zunahme der LF durch die exponentielle Abnahme der Viskosität überlagert.

Die spezifische elektrolytische LF κ ist der Ionenbeweglichkeit u proportional, welche wiederum indirekt proportional zur Viskosität des LM η ist. Die Viskosität selber nimmt mit

Abbildung 4.18: Berechnete Löslichkeiten der schwerlöslichen Salze Lithiumphosphat, Vivianit und Lithiumeisenphosphat als Funktion der Temperatur.

steigender Temperatur exponentiell ab.

$$\kappa = c z \left(\Lambda_+ + \Lambda_- \right) \tag{4.12}$$

$$\kappa = c F (u_+ + u_-) \tag{4.13}$$

$$u = \frac{v}{E} \tag{4.14}$$

Berücksichtigt man das Gleichgewicht zwischen elektrischer Kraft und Reibungskraft (Stokes'sches Gesetz)

$$F_{\rm el} = F_{\rm R},\tag{4.15}$$

$$z e E = 6 \pi \eta v R \tag{4.16}$$

und die beschriebene T-Abhängigkeit der Viskosität

$$\eta = \alpha \exp(-\beta T), \tag{4.17}$$

kommt man zu dem Schluss, dass der letztgenannte Effekt überwiegen kann und die elektrolytische LF mit der Temperatur zunimmt, obwohl K für die Dissoziation leicht abnimmt.

Bei hohen Temperaturen ist die Reaktion zum LFP dann offenbar möglich. Es stellt sich nun die prinzipielle Frage, welcher Prozess die Bildung des LiFePO₄ limitiert. Führt die Auflö-

sung des Vivianits zu einer Transportlimitierung oder ist die Kristallisation des Produktes so langsam, dass sie den Bildungsprozess limitiert?

Eine Möglichkeit zur Untersuchung bietet eine kinetische Analyse nach Avrami, Johnson, Mehl und Kolmogorow (Herleitung siehe Teil Li⁺-Transport, Kap. 4.2.3). Diese zeigt für den Bereich der Kristallisation einen Exponent von 2,45 bei 200 °C (Abb. 4.19 a)).

Abbildung 4.19: a) Avramianalyse der Bildung von Lithiumeisenphosphat aus Lithiumphosphat und Vivianit in Wasser. Der rot gekennzeichnete Bereich wurde zur Ermittlung des Avrami-Exponenten herangezogen. Eine lineare Regression ergibt einen Avramiexponent von 2,45, entsprechend eines 3-dimensionalen, diffusionskontrollierten Prozesses (I = konst., Tab. 4.4). Aus dem Achsenabschnitt lässt sich die Geschwindigkeitskonstante bestimmen. Für die kinetische Auswertung wurde angenommen, dass die elektrolytische Leitfähigkeit κ konzentrationsproportional ist.

b) REM-Aufnahmen des Produktes nach der Synthese. Die würfelartige Morphologie unterstützt die These eines 3-dimensionalen Wachstums. Die Pfeile zeigen eine Länge von 1 μ m an.

c) REM-Aufnahmen des Produktes nach der Synthese bei 210 °C. Die Erhöhung des Avramiexponenten auf drei wäre mit einem 3-dimensionalen, phasengrenzenkontrollierten Wachstum (I = 0, nun abgeschlossen) interpretierbar. Die Aufnahmen zeigen deutlich ausgeprägte Rhomboeder. Dies würde man auch so erwarten da nun nicht mehr die Diffusion das Wachstum limitiert, sondern die unterschiedliche Wachstumsgeschwindigkeit für verschiedene Kristallflächen (vgl. [88]), also die Kristallisation des Produktes. Man vergleiche hierzu auch eine Übersicht möglicher Avramiexponenten im Kapitel zur Nukleation im Teil Li⁺-Transport (Kap. 4.2.3).

Man erwartet für einen 3-dimensionalen, diffusionskontrollierten Prozess einen Wert von 2,5 [171]. Im Rahmen des experimentellen Fehlers entspricht dies den Ergebnissen. Der Transport von Ionen zur Festkörperoberfläche scheint die Geschwindigkeit der Reaktion zu bestimmen. In einer anderen Arbeit wurde aus Röntgenbeugungsdaten ebenfalls auf einen

diffusionslimitierten Prozess geschlossen [5], allerdings wurde dort auf Grundlage eines anderen Exponenten (um 0,5) und einer Publikation von Francis [172] bei Annahme einer abnehmenden Nukleationsrate gearbeitet. Es sei noch bemerkt, dass in der dort angegebenen Quelle ein mikroporöses Gallophosphat untersucht wurde.

Die REM Aufnahmen des Produktes zeigen eine würfelartige Morphologie des Produktes (Abb. 4.19). Dieses Ergebnis unterstützt die These eines 3-dimensionalen Wachstums. Für 2- oder 1-dimensionales Wachstum würde man Plättchen bzw. Nadeln erwarten. Bei noch höheren Temperaturen (210 °C) steigt der Exponent auf etwa drei an. Auch dies ist mit einem dreidimensionalen Wachstum vereinbar. Nunmehr ist allerdings die Diffusion so schnell, dass die eigentliche Kristallisation von LFP geschwindigkeitsbestimmend wird (phasengrenzenkontrollierter Prozess).

Das System Li₃PO₄ - Fe₃(PO₄)₂ · 8 H₂O – MeOH

Unter identischen Bedingungen, nur mit anderem Lösungsmittel (MeOH), war eine Darstellung von LFP nicht möglich. Dies liegt offensichtlich an den deutlich schlechteren Löslichkeiten der beiden Substanzen in diesem Medium.

Die erreichbaren elektrolytischen Leitfähigkeiten (bei gleicher Konzentration) sind etwa 25 mal kleiner als im wässrigen System. Dieser Sachverhalt ist insofern bedeutend, als das eine LFP-Synthese in MeOH, wie man im Folgenden sehen wird, nicht grundsätzlich unmöglich ist.

Die entsprechenden Röntgenpulverdiffraktogramme der Ausgangsmischung und des Produktes (LP + amorphes FP) sind im nächsten Abschnitt gezeigt.

Das System Precursor - H₂O und das System Precursor - Methanol

Analog zu den bereits untersuchten Systemen wurden die nach Reaktionsgleichung 4.7 gefällten Precursormischungen untersucht. Abb. 4.20 zeigt beide Leitfähigkeitskurven als Funktion der Zeit und der entsprechenden Temperatur.

Im wässrigen System sind die Leitfähigkeiten etwa doppelt so hoch. Die Grundleitfähigkeiten sind aufgrund des sich immer in Lösung befindlichen LiCl ebenfalls deutlich höher als im System LP-FP-H₂O (s.o.). Am Ende der Reaktion stellen sich in beiden Fällen wieder die Ausgangsleitfähigkeiten ein. Das bedeutet, dass sich zunächst fast ausschließlich LiCl in Lösung befindet. Im wässrigen System beobachtet man im Gegensatz zum oben Besprochenen nicht nur keine Stufen während des Erhitzens, sondern auch keine Kristallisationsphase bei T = 200 °C. Die Leitfähigkeit nimmt erst mit sinkender Temperatur wieder ab. Dies legt eine Kristallisation des Produktes LFP erst während des Abkühlens nahe. Interessanterweise steht dies im Widerspruch zum vorher behandelten System mit den reinen Komponenten (LP +

Abbildung 4.20: Vergleich der Systeme Precursor - Wasser und Precursor - Methanol: elektrolytische Leitfähigkeit. Beide Systeme erlauben eine Darstellung von phasenreinem LFP. Dennoch unterscheidet sich zum Einen der Verlauf der LF-Kurven der wässrigen Systeme untereinander und zum Anderen auch die LF im MeOH-Precursor-System vom H₂O-Precursor-System. Für letztgenannten Effekt mag hauptsächlich die LF-Anomalie bei höheren Temperaturen im System LiCl-MeOH verantwortlich sein.

FP) in Wasser. Der (ebenfalls kristalline) Precursor besteht auch aus LP und FP verhält sich aber als co-gefälltes Gemisch in wässriger LiCl-Lösung völlig anders als reines LP und FP in Wasser.

Etwas komplizierter gestaltet sich die Interpretation desselben Precursor-Systems in Methanol. Oberhalb einer Temperatur von etwa 150 °C kommt es zu einer ausgeprägten Leitfähigkeitsanomalie. Die elektrolytische Leitfähigkeit nimmt mit steigender Temperatur ab. In weitergehenden Experimenten konnte gezeigt werden, dass dieser Effekt allein auf das System MeOH-LiCl zurückzuführen ist (siehe Abb. 4.22).

Dieser Umstand macht eine Aussage über das Verhalten dieses Systems quasi unmöglich. Es scheint prinzipiell so zu sein, dass sich das System Precursor - Methanol (unter Vernachlässigung der genannten Anomalie) ähnlich verhält wie das System Precursor - Wasser. Möglicherweise setzt auch in diesem Fall die Kristallisation des LFP erst während des Abkühlens ein.

Abbildung 4.21 zeigt die Röntgenpulverdiffraktogramme der eingesetzten Precursoren (da diese filtriert wurden, ist kein LiCl erkennbar) und der erhaltenen Produkte.

In beiden ist LFP phasenrein isolierbar. Als Ergänzung zum vorherigen Abschnitt zum System LP - FP - MeOH sind auch die dazugehörigen Diffraktogramme mit aufgeführt.

Der im wässrigen System gefällte Precursor besteht aus kristallinem LP (geringe Intensität) und FP. Der in Methanol hergestellte Precursor ist amorph. Dies könnte auch der entscheidende Grund dafür sein, dass die Synthese an dieser Stelle erfolgreich ist (und bei Vorlage der reinen, kristallinen Reaktanten LP + FP eben nicht). Es ist bekannt, dass amorphe Stoffe

Abbildung 4.21: Vergleich der Systeme Precursor - Wasser und Precursor - Methanol: Röntgenpulverdiffraktogramme der Produkte und der eingesetzten Precursoren bzw. Reaktanten. Zusätzlich ist gezeigt, dass eine LFP-Synthese in MeOH nicht erfolgreich ist, wenn die reinen, kristallinen Komponenten (LP + FP) eingesetzt werden.

eine zum Teil deutlich erhöhte Löslichkeit im Vergleich zu den kristallinen Formen besitzen. Dies macht man sich zum Beispiel in der Pharmazie zu Nutze, wenn es um Bioverfügbarkeit von Medikamenten geht [173, 174, 175]. Dennoch ist diese Erkenntnis bemerkenswert. Es ist festzuhalten, dass sich die drei Systeme (LP + FP - Wasser, Precursor - Wasser und Precursor - Methanol), trotz erfolgreicher Synthese in allen drei Fällen, im Mechanismus voneinander unterscheiden.

Besonderheiten im System LiCl – Methanol

Die im vorangegangenen Abschnitt aufgetauchte Anomalie der Leitfähigkeit lässt sich, wie bereits angedeutet, auf das System MeOH - LiCl zurückführen (Abb. 4.22). Andere Messungen (LF, NMR) haben gezeigt, dass es sich auch nicht um eine Zersetzung des Lösungsmittels o.Ä. handeln kann. Die Abnahme der elektrolytischen Leitfähigkeit kann möglicherweise mit Assoziatbildungen von Ionen oder auch des Lösungsmittels erklärt werden [176]. Wie Abbildung 4.22 zeigt, ist der Effekt umkehrbar, wenn die Temperatur abgesenkt bzw. wieder erhöht wird. Es handelt sich von daher eher um die thermodynamisch begünstigte Bildung von Assoziaten o.Ä., als um einen kinetischen Effekt. Spektroskopische Untersuchungen (z.B. Raman) könnten an dieser Stelle mehr Aufschluss über das Verhalten dieses Systems geben. Dies wird in der vorliegenden Arbeit nicht weiter vertieft.

Abbildung 4.22: Anomalie der elektrolytischen Leitfähigkeit von LiCl in MeOH oberhalb von etwa 150 °C. Das hier untersuchte System enthielt lediglich LiCl und MeOH. Reines Methanol zeigt diese Anomalie erwartungsgemäß nicht.

Zusammenfassung und Systematisierung

Bemerkenswert ist, dass die Synthesemechanismen sich in Wasser offensichtlich deutlich voneinander unterscheiden, je nachdem, ob man mit der Precursormischung arbeitet oder mit den Reaktanten Li_3PO_4 und Vivianit (Abb. 4.23).

Fall 2: Synthese aus wässrigem Precursor: co-gefälltes LP und FP, LiCl in Lösung

$FP(s) + LP(s) + LiCl(aq.) \xrightarrow{\Delta T}$	FP (aq.) + LP (aq.) + LiCl (aq.)	$\xrightarrow{-\Delta T}$	LFP (s)* + LiCl (aq.)
	$ \int FP(s) + LP(s) $		

Das Symbol '(s)' hinter Verbindungen, soll bedeuten, dass diese in festem, kristallinen Zu-

stand vorliegen. Für amorphe Verbindungen ist dies als Index vermerkt. ΔT steht für Erhitzen, $-\Delta T$ steht für Abkühlen. ^{*}Im Fall 2 ist nicht prinzipiell klar, woher die Li⁺-Ionen kommen, die in LFP eingebaut werden. Hauptsächlich aus LiCl oder Li₃PO₄? Hier könnten Markierungsexperimente helfen.

Die Synthese in MeOH gelingt nur unter Verwendung eines amorphen Precursors (Abb. 4.24).

Fall 3: Synthese aus amorphem MeOH-Precursor ("normale" Fällung)

Fall 4: Synthese aus MeOH und den reinen kristallinen Komponenten LP und FP

Abbildung 4.24: Zusammenfassende Darstellung des Ablaufes verschiedener LFP-Syntheserouten in MeOH.

4.1.5 Die Homologen des Lithiumeisenphosphats

Neben dem aktuell für Anwendungszwecke sicherlich bedeutendsten LiFePO₄ existieren noch weitere Homologe. Ein Ersatz des Eisens durch andere Elemente kann durch etwaige höhere Zellspannungen bzw. schnelleren Li-Transport oder höhere Leitfähigkeiten motiviert sein. Vorstellbar sind Mischungen verschiedener Übergangsmetalle.

Es soll nun geklärt werden, ob die für LiFePO₄ bekannte Synthese auf andere Homologe übertragen werden kann. Dabei sollen nur für Batteriesysteme aussichtsreiche Homologe LiMPO₄ (M = Mn, Co, Ni) untersucht werden. Es wurde für alle Systeme zunächst ein Precursor aus MeOH gefällt gemäß:

$$3 \operatorname{LiOH} + \operatorname{H}_{3}\operatorname{PO}_{4} + \operatorname{M}^{\mathrm{II}}\operatorname{Cl}_{2} \cdot \operatorname{x} \operatorname{H}_{2}\operatorname{O} \rightarrow \frac{1}{3}\operatorname{Li}_{3}\operatorname{PO}_{4} + \frac{1}{3}\operatorname{M}_{3}^{\mathrm{II}}(\operatorname{PO}_{4})_{2} \cdot \operatorname{x} \operatorname{H}_{2}\operatorname{O} + 2\operatorname{LiCl}$$

$$(4.18)$$

$$\rightarrow \text{LiM}^{\text{II}}\text{PO}_4 + 2 \text{LiCl} + x \text{ H}_2\text{O}.$$
(4.19)

Die röntgenographische Analyse der solvothermal behandelten Precursoren zeigt, dass sich lediglich für LiFePO₄ die Zielverbindung bildet. Für alle anderen Homologen schloss sich dann, nach Abtrennung des Feststoffes, ein Temperprozess an (2 h, 500 °C, Ar-Strom), um die gewünschte Phase zu erhalten (Abb. 4.25).

Abbildung 4.25: Pulverdiffraktometrische Analyse der Synthese von LFP und seinen Homologen. Nur für LFP lässt sich die Olivin-Struktur bereits solvothermal, ohne Tempern, erhalten.

Leitfähigkeitsmessungen (siehe Kapitel 4.1.4) könnten Aufschluss darüber geben, warum sich LFP bereits solvothermal bilden kann, während die Homologen auf diesem Weg nicht zu erhalten sind.

Die Ermittlung der Zellparameter bestätigt das erwartete Ergebnis. Diese nehmen entsprechend der Ionenradien der Übergangsmetallionen (high-spin, oktaedrisches Ligandenfeld) von Mn²⁺ über Fe²⁺ und Co²⁺ zum Ni²⁺-Homologen hin ab [116] (Abb. 4.26).

Damit ist es gelungen, alle praktisch relevanten Homologen auf die gleiche Art und Weise herzustellen. Darüber hinaus ist allerdings auch klar geworden, dass sich eine einfache Über-

Abbildung 4.26: Durch Röntgenbeugung ermittelte Zellparameter von LFP und seinen Homologen. Silicium diente als interner Standard. Die Differenz zwischen den Messdaten und der Anpassung ist in blau jeweils unter dem Diffraktogramm dargestellt.

tragung der Erkenntnisse vom LFP-System nicht möglich ist.

Für Mischungen der Art LiFe_xMn_yCo_zNi_kPO₄ mit einem relativ großen Anteil an Eisen, wären sowohl Untersuchungen zur Synthese als auch kinetische Untersuchungen zur Li⁺-Interkalation interessant.

Für kinetische Untersuchungen ist die Größe der an den Lithiierung- und Delithiierungsreaktionen beteiligten "Teilchen" (Kristallite, Partikel, Agglomerate) von Bedeutung. Die Homologen weisen dabei, obwohl soweit wie möglich auf gleiche Art hergestellt, deutliche Unterschiede auf.

Bei ähnlicher, nahezu sphärischer Morphologie der Partikel aller Homologen sind unterschiedliche Partikelgrößen entstanden. Für LNP und LCP entstehen sehr kleine Primärpartikel um 50 nm. LFP besitzt bei dieser Synthesevariante eine etwa doppelt so große Partikelgröße, LMP liegt bereits bei etwa 200 nm. Es wird deutlich, dass sich die Ergebnisse der Röntgenbeugung und der elektronenmikroskopischen Aufnahmen im Rahmen des Fehlers gleichen (Abb. 4.3).

Darüber hinaus wurden Agglomeratgrößen in Suspension durch Laserbeugung ermittelt. Für die kinetischen Untersuchungen, bei denen Lithiierung und Delithiierung in Suspension

 $\frac{x 30.000}{100 \text{ nm}} \xrightarrow{3} + \frac{1}{100 \text{ nm}} \xrightarrow{3}$

Abbildung 4.27: REM-Aufnahmen von Lithiumeisenphosphat und ausgewählter Homologer. Die Partikelgröße für die nachstehende Tabelle wurde durch Mittelwertbildung über eine endliche Menge an Partikeln (grüne Steifen, 20-30 Partikel) ermittelt.

stattfinden, spielt dieser Wert eine wichtige Rolle, da er ein Maß für die durch das Lösungsmittel und damit für Oxidations- und Reduktionsmittel zugängliche Oberfläche ist. Zudem werden so auch die Stabilität der Suspension und die Benetzbarkeit charakterisiert. Die Ergebnisse zeigen nicht nur, dass die Werte deutlich über denen der REM-Aufnahmen und der Röntgenbeugung liegen, sondern auch, dass man nicht vom Wert der Röntgenbeugung auf den entsprechenden (natürlich immer größeren) Wert der in Suspension vorliegenden Agglomeratgröße schließen kann (Tab. 4.3).

Tabelle 4.3: Partikel- und Kristallitgrößen verschiedener LiMPO₄-Homologer

Substanz	LiMnPO ₄	LiFePO ₄	LiCoPO ₄	LiNiPO ₄
d(PXRD)/nm	199	111	55	56
d(REM)/nm	173	99	51	75
d(LD)/nm	2000	900	12300	1500

Neben der Darstellung von LFP in entsprechender Qualität ist der Transport von Li⁺-Ionen im Wirtmaterial ein entscheidendes Kriterium zur Beurteilung der Leistungsfähigkeit des Kathodenmaterials. Diese Transportprozesse bilden den Schwerpunkt des nächsten Abschnitts.

4.2 Li⁺-Transport

"Kinetics is the bad guy." (Robert A. Huggins) [177]

In Kapitel 2.6.1 wurden bereits mehrere Reaktionen zur Delithiierung und Lithiierung von Li_xFePO_4 vorgestellt. Anhand eines Teils dieser Redoxreaktionen soll nun zunächst einiges Prinzipielles gesagt werden. Es wird im Anschluss evaluiert, welche Reaktionen und Methoden sich am besten für eine kinetische Charakterisierung des Li⁺-Transports in Olivin-Typ LFP eignen.

Die Deinterkalation von Li⁺ aus LiFePO₄ ist dabei dem Ladeprozess der Batterie äquivalent, die Li⁺-Interkalation in FePO₄ dem Entladeprozess.

4.2.1 Möglichkeiten zur Untersuchung/Verfolgung heterogener Lithiierungs- und Delithiierungsreaktionen

Für die kinetische Untersuchung der Lithiuminterkalation bzw. -deinterkalation bieten sich nicht nur verschiedene chemische Reaktionen an, sondern zunächst auch ganz verschiedene prinzipielle Möglichkeiten der Verfolgung des allgemeinen Reaktionsfortganges:

$$LiFe^{II}PO_4 \rightleftharpoons Fe^{III}PO_4 + Li^+ + e^-.$$
 (4.20)

Während der Reaktionen liegen mindestens drei (zwei feste Phasen, eine Gasphase) und höchstens vier (zwei feste Phasen, eine Flüssigphase, eine Gasphase) verschiedene Phasen vor.

Ein sehr direkter Zugang ist die Untersuchung der beiden festen (kristallinen) Phasen (Potential des Festkörpers). Da bei den Redoxvorgängen Lithiumionen in den Festkörper interkaliert (Li⁺-Verbrauch in Lösung) oder extrahiert (Li⁺-Anreicherung in Lösung) werden, bietet sich ebenfalls die Untersuchung der Zusammensetzung der flüssigen, die Festkörperpartikel suspendierenden Phase an. Sollten gasförmige Reaktionsprodukte auftreten, kann der Übertritt dieser Komponente entweder direkt aus einer festen oder aus der flüssigen Phase verfolgt werden (Abb. 4.28).

Welche Methode gewählt wird, hängt vom jeweiligen Reaktionssystem ab. Es lassen sich folgende Anforderungen an das System stellen:

- ein definierter Ausgangszustand,
- eine homogene Verteilung der (L)FP-Partikel und der Reduktions-/Oxidationsmittel im Reaktionsmedium,

Abbildung 4.28: Auftretende Phasen, Phasengrenzen und Stoffübergänge bei der chemischen Lithiierung/Delithiierung von Eisenphosphat/Lithiumeisenphosphat.

- keine Reaktion zwischen Reaktionsmedium und den festen Phasen sowie den verwendeten Reduktions- und Oxidationsmitteln,
- die Verfolgung der Reaktion mit einer Methode, die der Reaktionsgeschwindigkeit gerecht wird und möglichst direkt konzentrationsproportional ist,
- wenn möglich, die Verwendung von *in situ*-Methoden *ex situ*, da sie keinen Reaktionsabbruch benötigen, Relaxationseffekte ausschließen und zeitlich wesentlich effektiver sind.

Es sollen nun einige Lithiierungs- bzw.- Delithiierungsreaktionen und die sich ergebenden methodischen Möglichkeiten zur Verfolgung vorgestellt werden. Anschließend werden die aussichtsreichsten Varianten ausgewählt, um sie für formalkinetische Untersuchungen zu verwenden.

Delithiierung mit NO₂BF₄

Die in der Literatur vielleicht am häufigsten verwendete Reaktion zur Delithiierung von LiFePO₄ ist die Oxidation mit Nitroniumtetrafluoroborat. Für eine kinetische Untersuchung ist dieses System allerdings relativ ungeeignet. Korrosives NO_2 macht beispielsweise eine Anwendung im Kalorimeter unmöglich.

Prinzipiell kann die Reaktion durch die Verfolgung des entstehenden NO₂ in der Gasphase durch Massenspektrometrie charakterisiert werden. Diese Messungen sind allerdings ungenau, da das NO₂ erst aus der Flüssigphase in die Gasphase übergehen muss, bevor es detektiert werden kann (Abb. 4.29 b)).

Erwähnenswert ist, dass das verwendete Nitroniumsalz und LFP bereits als Festkörper, ohne Lösungsmittel, miteinander reagieren.

Eine bessere Möglichkeit zur kinetischen Charakterisierung stellt die Messung der Li⁺-Konzentration in Acetonitril dar (Abb. 4.29 a)). Dazu können zu definierten Zeiten Proben aus der Suspension entnommen werden. Wird diese Lösung sofort vom Festkörper getrennt, so kann die Konzentration an Li⁺ in der Lösung Auskunft über den Reaktionsfortgang geben. Diese Methode findet allerdings *ex situ* statt und bringt einen großen experimentellen Fehler mit sich.

$$LiFePO_4 + NO_2BF_4 \rightarrow FePO_4 + NO_2 \uparrow + LiBF_4$$
 (4.21)

Es lässt sich aus diesen beiden Messungen bereits erkennen, dass die Delithiierung sehr schnell (innerhalb weniger Minuten) beendet ist.⁷

Abbildung 4.29: Verfolgung der Delithiierung von LiFePO₄ mit NO₂BF₄. a) Detektion extrahierter Li⁺ Ionen mittels Ionenchromatographie b) Massenspektrometrische Detektion von NO⁺.
 Gezeigt ist der integrale Ionenstrom. Die Reaktion erscheint aufgrund des nötigen
 Stoffübergangs von NO₂ aus AN in die Gasphase etwas langsamer als man es ionen chromatographisch abschätzen kann.

Für eine reproduzierbare kinetische Beurteilung des Systems ist die Delithiierung mit NO_2^+ allerdings insgesamt nicht gut geeignet.

Delithiierung mit K₂S₂O₈

In wässrigem Medium gelingt die Delithiierung von LiFePO₄ mit Peroxodisulfat. Es können je zwei Elektronen pro Formeleinheit des Oxidationsmittels übertragen werden. Das führt

⁷Die Versuche in Abb. 4.29a) wurden mit Herrn Christian Thomas durchgeführt. Bei Thomas [178] kann des Weiteren ein Reaktionsabbruch durch Amine nachgelesen werden.

zur folgenden Reaktionsgleichung.

$$\text{LiFePO}_4 + \frac{1}{2} \text{K}_2 \text{S}_2 \text{O}_{8, \text{ solv.}} \rightarrow \text{FePO}_4 + \text{LiKSO}_{4, \text{ solv.}}$$
 (4.22)

Kaliumperoxodisulfat und das formale Produkt LiKSO₄ liegen dabei dissoziiert in Wasser vor. LFP ist in Wasser unlöslich.

Die eleganteste Möglichkeit der kinetischen Auswertung bieten Messungen der elektrolytischen Leitfähigkeit in wässriger Lösung. Nimmt man an, dass sowohl LFP als auch FP keinen Beitrag zur elektrolytischen Leitfähigkeit (EL) liefern, so kann die Differenz der EL zwischen $K_2S_2O_8$ und LiKSO₄ als Maß für den Reaktionsfortgang dienen (Abb. 4.30). Für verschiedene Temperaturen wurden die EL von $K_2S_2O_8$ und LiKSO₄ kalibriert. Die jeweilige Differenz gibt dann die maximal (bei 100 % Umsatz) zu erwartende Leitfähigkeitszunahme an. Erhöhung deshalb, weil LiKSO₄ eine höhere Leitfähigkeit besitzt als das Äquivalent $K_2S_2O_8$ (bzw. die Hälfte, siehe Reaktionsgleichung).

Abbildung 4.30: Kalibrierung der elektrolytischen Leitfähigkeit für die Delithiierung mit $K_2S_2O_8$ in Wasser. Die Differenz der elektrolytischen Leitfähigkeit zwischen $K_2S_2O_8$ und LiKSO₄ kann als Reaktionskoordinate behandelt werden.

Aufgrund der geringen Löslichkeit des Peroxodisulfates in nichtwässrigen Medien, ist man auf Wasser als LM beschränkt.

Folglich sind nur (mit Kohlenstoff) beschichtete LFP-Proben charakterisierbar, da mit unbeschichteten Materialien in Wasser (insbesondere bei Anwesenheit von Fe²⁺/Fe³⁺, also während der Delithiierung) die teilweise Zersetzung von H2O gemäß

$$S_2 O_8^{2-} + H_2 O \rightarrow 2 H^+ + \frac{1}{2} O_2 + 2 SO_4^{2-}$$
 (4.23)

zu einer Verminderung des pH-Wertes und damit zu einem zusätzlichen LF-Anstieg führt. Der durch die Wasserzersetzung entstehende LF-Anstieg überlagert den Anstieg der LF durch die Delithiierung und macht eine kinetische Auswertung damit unmöglich (Abb. 4.31).⁸

Abbildung 4.31: Entwicklung des pH-Wertes bei der Delithiierung von unbeschichtetem LFP mit Peroxodisulfat. Der sigmoidale Verlauf der LF-Zeit-Kurve entsteht durch die Überlagerung von Delithiierung und Wasserzersetzung und der damit verbundenen Änderung des pH-Wertes.

Untersucht man stattdessen beschichtete LFP-Proben, findet diese Nebenreaktion nicht statt.⁹ So wird die kinetische Charakterisierung möglich.¹⁰ Vorteil dieser LF-Messungen ist darüber hinaus, dass sie *in situ* den Delithiierungsprozess beschreibt.

⁸Dieses Experiment wurde in Zusammenarbeit mit Herrn M. Sc. Christian Thomas durchgeführt.

⁹Die Oberfläche des LFP ist so für das Oxidationsmittel nicht mehr direkt zugänglich, sodass die Hydrolyse von Peroxodisulfat (wahrscheinlich durch Fe²⁺/Fe³⁺ katalysiert) nicht mehr stattfindet. Die Delithiierung, dass heißt der Elektronentransfer zwischen Fk und Oxidationsmittel, läuft trotzdem ab.

¹⁰Die homogene Suspension von C-beschichteten LFP Proben in Wasser stellt allerdings eine Herausforderung dar.

Lithiierung mit Lithiumiodid

Für Lithiierungsreaktionen kommt im Wesentlichen nur die Reduktion mit LiI in Frage. Es muss in nichtwässrigem Medium gearbeitet werden (Acetonitril), da durch die starke Solvatation der Li⁺-Ionen in Wasser eine Lithiierung von FePO₄ nicht möglich ist.

In Acetonitril ist die Wechselwirkung (WW) zwischen Li⁺-Ionen und LM allerdings relativ schwach (relativ geringe Donorzahl von AN und eher kleine Dielektrizitätskonstante [179]). Die Löslichkeit ist allerdings aufgrund der relativ großen Löslichkeit von Iodid gut.

Für große Konzentrationen kann man eine stärkere Wechselwirkung von Li⁺ mit dem Lösungsmittel AN ramanspektroskopisch nachweisen (siehe Anhang, Kap. 8.4). Das sollte sich auch auf die Interkalationskinetik für große LiI-Konzentrationen widerspiegeln, wurde in dieser Arbeit aber nicht detaillierter untersucht. Für sehr große Konzentrationen wird auch die durch die LF-Elektrode gewährleistete Auflösung schlechter.

Aufgrund der Standardpotentiale der verschiedenen Redoxpaare sollte, in Einklang mit der Literatur (siehe Kap. 2.6.1 und [122]), bei der Reduktion des $FePO_4$ LiI₃ entstehen. Das dies in Acetonitril der Fall ist, kann durch UV-Vis Spektroskopie nachgewiesen werden (Abb. 4.32), sodass statt der naheliegenden Reaktion

$$FePO_4 + LiI \rightarrow LiFePO_4 + \frac{1}{2}I_2$$
 (4.24)

folgende Spezies vorliegen:

$$\text{FePO}_4 + \frac{3}{2} \text{LiI} \rightarrow \text{LiFePO}_4 + \frac{1}{2} \text{LiI}_3.$$
 (4.25)

Wiederum kann davon ausgegangen werden, dass FePO₄ und LiFePO₄ keine Beiträge zur EL liefern.

Für die Kalibrierung der EL für verschiedene Temperaturen macht man sich zu Nutze, dass die EL von Iodid und Triiodid fast identisch sind. Der Unterschied liegt bei etwa 1 %. Dies lässt sich formal sogar ohne Messung aus der Tatsache ableiten, dass die EL bei stöchiometrischer Einwaage von FP und LiI (1:1) ziemlich genau um zwei Drittel abnimmt. Das eingesetzte LiI ist vollständig zu LiI₃ oxidiert, liefert aber im Vergleich zum LiI noch genau ein Drittel der elektrolytischen Leitfähigkeit (vgl. Reaktion 4.25). Dem folgend genügt es, die als konzentrationsproportionale Größe angenommene elektrolytische Leitfähigkeit von LiI in Acetonitril zu kalibrieren (Abb. 4.33).

Abbildung 4.32: UV-Vis-Spektren verschiedener Spezies in Acetonitril. Iod unterscheidet sich deutlich durch eine Bande bei 460 nm. LiI absorbiert erst unterhalb von etwa 280 nm. Die grüne Kurve zeigt das UV-Vis Spektrum von LiI₃, was durch Reaktion von I₂ mit LiI hergestellt wurde. Die beiden intensiven Banden bei 291 nm und 361 nm haben die gleiche Lage, wie die während der Reaktion auftretenden Spezies (zunehmende Absorption aufgrund des entstehenden LiI₃). Sie Stimmen mit Literaturangaben zu I₃⁻ überein [180, 181, 182]

Abbildung 4.33: Kalibrierung der elektrolytischen Leitfähigkeit für die Lithiierung von FP mit LiI in Acetonitril. Für sieben verschiedene Temperaturen (0 - 30 °C, 5 K Schritte) wurde die EL von LiI für verschiedene Konzentrationen gemessen.

Im Anhang (Kap. 8.3)wird eine Funktion für κ (T, c) angegeben, da es wünschenswert ist, auch zwischen den hier kalibrierten Temperaturen oder Konzentrationen (bzw. auch etwas außerhalb) schnell auf die entsprechende Leitfähigkeit schließen zu können oder umgekehrt.

Temperierung und Homogenisierung

Für Kinetikstudien an heterogenen Systemen sind u.a. die genaue Temperierung und die Homogenisierung des Reaktionssystems zentrale Voraussetzung. Die Temperatur wurde mit einem Thermostat auf etwa $T_{ist} = T_{soll} \pm 0,1$ K eingestellt. Das System wird intensiv gerührt und der Feststoff (LFP) vor Beginn der Reaktion mit Ultraschall (US) dispergiert.

4.2.2 Formalkinetik

Die mathematische Beschreibung der experimentell ermittelten Umsatz-Zeit-Kurven bzw. der daraus hervorgehenden Reaktionsgeschwindigkeit ist für kinetische Studien Grundvoraussetzung. Ohne Kenntnis der Elementarreaktionen sind mechanistische Aussagen allerdings nicht möglich. Dennoch erhält man aus den Reaktionsordnungen der einzelnen Reaktanten Aussagen über Limitierungen der Reaktion.

Aus der Reaktionsgeschwindigkeit

$$v = -\frac{dc_a}{dt} = k c_a^{n}$$
(4.26)

lässt sich durch logarithmieren

$$\lg v = \lg k + n \lg c_a \tag{4.27}$$

die formale Reaktionsordnung n bezüglich der Komponente a bestimmen, wenn man über mehrere Anfangsgeschwindigkeits-Ausgangskonzentrations-Wertepaare verfügt:

$$\mathbf{n} = \frac{\lg \left(\frac{\mathbf{v}_1}{\mathbf{v}_2}\right)}{\lg \left(\frac{c_{a1}}{c_{a2}}\right)}.$$
(4.28)

Einfacher ist die Auftragung von lg v gegen lg $c_{a,0}$ für verschiedene Anfangskonzentrationen, bei konstanter Konzentration der anderen Reaktanten. Damit lässt sich aus dem Anstieg die Reaktionsordnung n bezüglich der Komponente a ablesen. Dies wird für alle Reaktanten durchgeführt.

In Abbildung 4.34 ist das Ergebnis dieser Untersuchung für die Delithiierung mit Peroxodisulfat gezeigt. Ausgewertet wurden jeweils die Anfangsgeschwindigkeiten.

Abbildung 4.34: Reaktionsordnung bezüglich der Reaktanten für die Delithiierung von LFP mit K₂S₂O₈.

Im Rahmen der Unsicherheit erhält man eine Reaktionsordnung von etwa eins für das Oxidationsmittel Peroxodisulfat. Für LFP ist die formal ermittelte Reaktionsordnung noch etwas größer.

Die Reaktionsordnung bezüglich des Oxidationsmittels beträgt fast über den gesamten Zusammensetzungsbereich des Festkörpers $Li_{1-x}FePO_4$ knapp eins [178]. Die Delithiierung verläuft bei kleinerer Partikelgröße schneller (siehe Anhang, Kap. 8.5).

Abbildung 4.35: Reaktionsordnung bezüglich der Reaktanten für die Lithiierung von FP mit Lithiumiodid.

Ein etwas anderes Bild ergibt sich für die Lithiierungsreaktion von FP mit LiI. In diesem

Fall hängt die Reaktionsgeschwindigkeit nicht vom Reduktionsmittel, sondern ausschließlich vom Festkörper FePO₄ ab (Abb. 4.35).

Darüber hinaus lässt sich experimentell zeigen, dass die Anfangsreaktionsgeschwindigkeit der Lithiierung eine Funktion der absoluten Menge des Festkörpers FP ist, und nicht der Konzentration an sich (Stoffmenge pro Volumen LM). Mit anderen Worten ist die verfügbare Oberfläche an FePO₄ und damit die Partikelgröße entscheidend.

Aktivierungsparameter werden im nächsten Abschnitt behandelt.

4.2.3 Heterogene Nukleation - Das Avrami-Modell

Die bisher beschriebenen Festkörperphasenumwandlungen können im Sinne einer heterogenen Nukleation (und eines Wachstums) einer Phase innerhalb einer anderen Phase aufgefasst werden. Der Fortgang dieser Umwandlung kann man mit den Johnson-Mehl-Avrami-Gleichungen beschreiben. Diese sollen kurz abgeleitet werden (verändert und ergänzt nach [24]).¹¹

Einschub: Ableitung der Johnson-Mehl-Avrami-Gleichungen¹²

Es werden zunächst eine konstante Keimbildungs- und Wachstumsgeschwindigkeit v der Partikel mit dem Radius R angenommen.

$$\mathbf{R} = \mathbf{v}(\mathbf{t} - \tau) \tag{4.29}$$

$$dX_{\alpha} = \frac{4}{3}\pi [v(t-\tau)]^{3}I d\tau \qquad (v, I = \text{const.})$$
(4.30)

$$X_{\alpha} = \frac{4}{3}\pi v^{3}I \int_{0}^{t} (t - \tau)^{3} d\tau$$
(4.31)

$$= \frac{4}{3}\pi v^{3} I \left[-\frac{1}{4} (t-\tau)^{4} \right]_{0}^{t}$$
(4.32)

$$=\frac{4}{3}\pi v^{3}I\frac{1}{4}t^{4}$$
(4.33)

- ¹¹Symbolik: R Radius eines Partikels, X_{α} Volumenanteil der α -Phase, X_{β} Volumenanteil der β -Phase, t - Zeit, dX_{α} - umgewandelter Volumenanteil nach der Zeit t infolge der zwischen der Zeit $\tau + d\tau$ gebildeten Keime, I - Nukleationsrate, v - Wachstumsgeschwindigkeit, λ - Zeitkonstante, N - Anzahl Keimbildungszentren, N₀ - Anzahl der zu Beginn vorhandenen Keimbildungszentren, n - Avrami-Exponent, k -Zeitkonstante
- ¹²In diesem Zusammenhang werden verschiedene Begrifflichkeiten verwendet. Je nach Quelle spricht man von Avrami-Gleichung, Johnson-Mehl-Avrami-Gleichung oder auch von der Johnson-Mehl-Avrami-Kolmogorow Gleichung.

$$X_{\alpha} = \frac{1}{3}\pi v^3 It^4 \tag{4.34}$$

Daraus ist ersichtlich, dass wegen

$$\lim_{t \to \infty} X_{\alpha} = \infty \tag{4.35}$$

eine Normierung notwendig ist. Diese sorgt dafür, dass das umgewandelte Volumen nicht das Volumen der ursprünglichen Phase übersteigt:

$$\mathrm{dX}_{\beta} = (1 - \mathrm{X}_{\beta})\mathrm{dX}_{\alpha} \tag{4.36}$$

$$\int \frac{\mathrm{dX}_{\beta}}{1 - \mathrm{X}_{\beta}} = \int \mathrm{dX}_{\alpha} \tag{4.37}$$

$$-\ln(1 - X_{\beta}) = X_{\alpha} \tag{4.38}$$

$$\ln(1 - X_{\beta}) = -X_{\alpha} \tag{4.39}$$

$$1 - X_{\beta} = \exp(-X_{\alpha}) \tag{4.40}$$

$$X_{\beta} = 1 - \exp(-X_{\alpha}) \tag{4.41}$$

$$X_{\beta} = 1 - \exp\left(-\frac{\pi}{3}v^{3}It^{4}\right).$$
(4.42)

Diese Formulierung wurde von Avrami modifiziert. Es wird von einer zunächst konstanten, sich mit der Zeit verbrauchenden Anzahl an Nukleationszentren N ausgegangen. Die Keimbildungsrate I ist eine Funktion der Zeit, I = I(t), sie nimmt ab.

$$N = N_0 \exp(-\lambda t) \tag{4.43}$$

$$I = -\frac{dN}{dt}$$
(4.44)

$$=\lambda N_0 \exp(-\lambda t) \tag{4.45}$$

$$=\lambda N \tag{4.46}$$

Damit wird mit Gleichung (4.31) und der Nukleationsgeschwindigkeit zur Zeit τ :

$$-d(1 - X_{\beta}) = \frac{4}{3}\pi v^{3} \int_{0}^{t} \left[I(\tau)(t - \tau)^{3} \right] d\tau, \qquad (4.47)$$

$$= \frac{4}{3}\pi v^3 N_0 \lambda \int_0^t \left[\exp(-\lambda t)(t-\tau)^3 \right] d\tau.$$
(4.48)

Dreimalige partielle Integration und Vereinfachung liefern:

$$X_{\beta} = 1 - \exp\left[\frac{-8\pi N_0 v^3}{\lambda^3} \left(\exp(-\lambda t) + \frac{\lambda^3 t^3}{6} - \frac{\lambda^2 t^2}{2} + \lambda t - 1\right)\right].$$
(4.49)

Die Exponentialfunktion in Gleichung (4.49) kann als Taylor-Reihe ausgedrückt werden, sodass sich mit:

$$\exp(\mathbf{x}) \approx \sum_{i=0}^{\infty} \frac{\mathbf{x}^{i}}{i!} = 1 + \mathbf{x} + \frac{\mathbf{x}^{2}}{2} + \frac{\mathbf{x}^{3}}{6} + \frac{\mathbf{x}^{4}}{24} + \dots$$
(4.50)

$$\exp(-\lambda t) = 1 - \lambda t + \frac{\lambda^2 t^2}{2} - \frac{\lambda^3 t^3}{6} + \frac{\lambda^4 t^4}{24} - \dots$$
(4.51)

die ersten vier Terme in Gleichung (4.51) mit den letzten vier Termen aus Gleichung (4.49) aufheben

$$X_{\beta} = 1 - \exp\left[\frac{-8\pi N_0 v^3}{\lambda^3} \left(\frac{\lambda^4 t^4}{24}\right)\right].$$
(4.52)

Mit der Näherung

$$N \approx N_0 (1 - \lambda t) \tag{4.53}$$

und damit:

$$I = -\frac{dN}{dt} = N_0 \lambda \tag{4.54}$$

wird Gleichung (4.52) zu:

$$X_{\beta} = 1 - \exp\left(-\frac{\pi}{3}Iv^{3}t^{4}\right), \qquad (4.55)$$

was bereits von Johnson und Mehl erhalten wurde. Dies gilt insbesondere für kleine λ . Betrachtet man Gleichung (4.49) und nimmt große λ an, so reicht die Verwendung des dominierenden t³-Terms aus (die Annäherung der e-Funktion durch eine Reihe ist nicht mehr valide).

$$X_{\beta} = 1 - \exp\left(-\frac{4}{3}\pi N_0 \lambda^3 t^3\right)$$
(4.56)

Oft wird dann nur noch die allgemeine Form dieses Gleichungstyps angegeben:

$$X_{\beta} = 1 - \exp\left[-(kt)^{n}\right].$$
 (4.57)

Eine Linearisierung macht die Parameter n und k zugänglich, wenn man in der Lage ist, den zeitlichen Fortgang der Phasenumwandlung experimentell zu verfolgen:

$$1 - X_{\beta} = \exp\left[-(\mathrm{kt})^{\mathrm{n}}\right],\tag{4.58}$$

$$\frac{1}{1 - X_{\beta}} = \frac{1}{\exp\left[-(\mathrm{kt})^{\mathrm{n}}\right]},\tag{4.59}$$

$$\ln\left(\frac{1}{1-X_{\beta}}\right) = \ln 1 - \ln\left[\exp\left(-(\mathrm{kt})^{\mathrm{n}}\right)\right],\tag{4.60}$$

$$=(\mathrm{kt})^{\mathrm{n}},\tag{4.61}$$

$$\ln\left[\ln\left(\frac{1}{1-X_{\beta}}\right)\right] = n\ln k + n\ln t.$$
(4.62)

Trägt man die linke Seite über ln t auf, so erhält man die Parameter n und k aus dem Anstieg bzw. aus dem Ordinatenschnitt dieser Darstellung. Um die der Phasenumwandlung zugehörige Aktivierungsenergie zu ermitteln, kann die Reaktion wie üblich bei verschiedenen Temperaturen verfolgt und nach Arrhenius ausgewertet werden. Tabelle 4.4 zeigt eine Zusammenfassung der verschiedenen Wachstumsmodelle mit den entsprechenden Exponenten n nach Hulbert [171].

phasengrenzenkontrolliert diffusionskontrolliert 3-dim. Wachstum I = const.4 2,5 I = 03 1,5 I abnehmend 3 - 4 1,5 - 2,5 2-dim. Wachstum I = const.3 2 I = 02 1 I abnehmend 2 - 3 1 - 2 1-dim. Wachstum I = const.2 1,5 1 I = 00,5 I abnehmend 1 - 2 0,5 - 1,5

 Tabelle 4.4:
 Avrami-Koeffizienten und Wachstumsmodelle f
 ür Festk
 örper

Es sei auf weitere Literatur zur Auswertung der Avrami-Exponenten hingewiesen [183, 184, 185]. Neben der Nukleationsrate und der Geometrie ist der Exponent n natürlich eine Funktion des Reaktionsmechanismus allgemein [171].

Für die nachfolgende Auswertung der heterogenen Lithiierungs- und Delithiierungsreaktionen wurden die linearen Bereiche der Sharp-Hancock-Darstellung ausgewertet. Gegen Ende der Reaktion weicht selbst die doppelt logarithmische Darstellung deutlich von einer Gerade ab, da sich mehrere Reaktionsfronten im Festkörper begegnen und so das Modell nicht mehr vollumfänglich Gültigkeit besitzt.

Lithiierung mit Lithiumiodid

Wie auch die formalkinetischen Betrachtungen, sind diese Studien an $(Li)FePO_4$ am nasschemischen System, also dem reinen Kathodenmaterial, ohne andere für den Batteriebetrieb notwendige Komponenten, bisher nicht beschrieben.

Die elektrolytische Leitfähigkeit nimmt aufgrund des Verbrauchs an LiI ab. Daraus lassen sich die Umsatz-Zeit-Kurven und die linearisierte Sharp-Hancock-Darstellung konstruieren. Die Auswertung des Sharp-Hancock-Plots (Abb. 4.36) für die Lithiierung ergab in verschiedenen Versuchen Avrami-Exponenten zwischen 0,6 und 0,9 (mit I = 0, was sinnvoll erscheint). Damit liegt man für ein anzunehmendes eindimensionales Wachstum zwischen einem phasengrenzen- und einem diffusionskontrollierten Wachstum.

Wiederum ließe sich auch ohne Annahme eines eindimensionalen Wachstums, aufgrund des ermittelten Avrami-Exponenten auf ein 1-D-Wachstum schließen.

Die Aktivierungsenergie E_A für die Lithiierung bewegt sich bei (45 ± 5 kJ mol⁻¹).

Abbildung 4.36: Lithiierung von FePO₄ mit LiI in Acetonitril bei verschiedenen Temperaturen. a) Gemessene elektrolytische Leitfähigkeit b) Umsatz-Zeit-Kurven

Eine Analyse der elektrochemischen Lithiierung von FePO₄ von Allen ergab eine etwas nied-

rigere Aktivierungsenergie von 29 kJ mol⁻¹, [129]. Der von Takahashi gefundene Wert von 39 kJ mol⁻¹ [186] fällt im Rahmen des Fehlers mit der hier ermittelten Aktivierungsbarriere zusammen. Noch etwas besser passt der von Oyama [187] erhaltenen Wert von 40 bzw. 42 kJ mol⁻¹.

Über den Vergleich der Absolutwerte mit der Literatur hinaus, zeigt das Ergebnis auch die Vergleichbarkeit der hier verwendeten nasschemischen Methoden mit den in der Literatur fast ausschließlich verwendeten elektrochemischen Verfahren.

Abbildung 4.37: a) Sharp-Hancock-Plot und b) Arrhenius-Diagramm zur Lithiierung von FePO4 mit LiI

Betrachtet man nochmals die Frage nach der Interpretation des Avrami-Exponenten, so sei auf die formalkinetische Erkenntnis verwiesen, wonach die Geschwindigkeit der Lithiierungsreaktion einzig und allein von der vorhandenen Oberfläche an FP abhängt. Dies deutet eher in Richtung eines durch die Diffusion (bzw. etwas allgemeiner gesagt den Transport) der Li⁺-Ionen in den Festkörper bestimmten Prozesses.

Delithiierung mit K₂S₂O₈

Für die Delithiierung ergeben sich Avrami-Exponenten, die ziemlich genau bei 1,0 liegen (Abb. 4.38). Die Aktivierungsenergie liegt bei etwa 25 kJ mol⁻¹. Die erhaltene Aktivierungsenergie ist allerdings relativ unsicher, liegt aber erwartungsgemäß unterhalb der Aktivierungsbarriere für die Lithiierung. Diese Unsicherheit ist auf die Heterogenität des Systems, welches in Wasser schwer zu handhaben ist, zurückzuführen (s.o.).

Abbildung 4.38: Sharp-Hancock-Plot für die Delithiierung mit Peroxodisulfat

Der Avrami-Exponent von 1,0 spricht für eine reaktionslimiterte eindimensionale Li^+ -Extraktion. Sowohl für die Lithiierung als auch für die Delithiierung kann vom Fall I = 0 ausgegangen werden. Es ist evident, dass die Reaktion an der Oberfläche beginnt. Diese bildet den Ausgangspunkt der Reaktion (Keim) und ändert sich während der Reaktion nicht. Man spricht in diesem Zusammenhang von "site-saturation-nucleation", wie es von Humphreys und Hatherly [184] dargelegt wird (siehe Anhang, Tab. 8.2).

Die Delithiierung von LFP mit Kaliumperoxodisulfat ist auch eine Funktion der Partikelgröße (Abb. 8.7). Für kleinere Partikel ist die Anfangsgeschwindigkeit der Delithiierung größer. Es soll noch ergänzt werden, dass die Autoren dabei zumeist keinen Unterschied zwischen Interkalation oder Deinterkalation machen. Die Richtigkeit dieser Annahme ist fraglich, da die Li⁺-Extraktion mit einer Zellkontraktion verbunden ist, und die Interkalation mit einer Zellweitung (7 Vol.%). Diese Aufweitung muss bei der Lithiierung vor der Einlagerung der Li-Ionen stattfinden. Für die Relaxation des Gitters nach der Delithiierung hat das System im Grunde "lange Zeit,, - für die Lithiierung muss die Aufweitung unmittelbar vor oder während der Interkalation der Li⁺-Ionen stattfinden (Abb. 4.39).

Ein Unterschied in den Aktivierungsenergien zwischen Lithiierung und Delithiierung ist wahrscheinlich und wurde auch so konstatiert.

Abbildung 4.39: Modell zur Delithiierung und Lithiierung von (L)FP. Bei der Delithiierung von LFP werden die Li⁺-Ionen bei gleichzeitiger Oxidation des Fe²⁺ aus dem Wirtmaterial transportiert. Unabhängig vom genauen Mechanismus relaxiert das Gitter nach der Li⁺-Extraktion zum FP mit dem etwas kleineren Zellvolumen. Umgekehrt wird für die Lithiierung ein aufgeweitetes Gitter bereits vor bzw. während der Interkalation der Li⁺-Ionen notwendigerweise benötigt. Damit wird eine etwas geringere Aktivierungsbarriere für die Delithiierung verständlich. Für die nachfolgend beschriebene Delithiierung mit Cer(IV)ammoniumnitrat (CAN) zeigt Abb. 4.42 zum Beispiel, dass die Temperaturabhängigkeit der Reaktionsgeschwindigkeit sehr gering ausgeprägt ist, was für eine kleine Aktivierungsbarriere spricht. Die Höhe der Aktivierungsbarriere hängt natürlich auch vom verwendeten Oxidations- und Reduktionsmittel ab. Aus thermodynamischer Sicht sind die Prozesse natürlich äquivalent.

4.2.4 Delithiierung von Lithiumeisenphosphat mit Cer(IV)ammoniumnitrat - mechanistische Überlegungen und reaktive Spezies

Bisher wurden in der Literatur bereits bekannte Reaktionen zur Lithiierung und Delithiierung von $Li_{1-x}FePO_4$ untersucht. Insbesondere für die Delithiierung ist die Entstehung von NO_2 , bzw. die Notwendigkeit des Arbeitens in wässrigem Medium und die damit verbundene geringe Suspensionsstabilität (Agglomerationsneigung) bzw. die starken pH-Wert-Änderungen nachteilig. Dies gilt insbesondere auch für kalorimetrische Anwendungen.

Da die Lithiierung mit LiI in Acetonitril definiert und reproduzierbar abläuft, ist eine Delithiierungsreaktion im gleichen LM wünschenswert. Es erleichtert auch einen Vergleich von Lithiierung und Delithiierung untereinander.

Aus diesem Grund wurde eine Delithiierungsreaktion entwickelt, die auf Basis des in AN gut löslichen und sehr stabilen Cerammoniumnitrat (CAN) als Oxidationsmittel abläuft. Formal beruht diese Reaktion auf folgender Redoxreaktion:

$$Fe^{2+} + Ce^{4+} \to Fe^{3+} + Ce^{3+}.$$
 (4.63)

bzw. ausführlich

$$\mathrm{LiFe^{II}PO_4} + \mathrm{Ce^{IV}(NH_4)_2(NO_3)_{6, \text{ solv.}}} \rightarrow \mathrm{Fe^{III}PO_4} + \mathrm{LiCe^{III}(NH_4)_2(NO_3)_{6, \text{ solv.}}}$$
(4.64)

Bei ausreichender Qualität des Kathodenmaterials verläuft die Reaktion nahezu quantitativ. Die Delithiierung führt zu orthorhombischem FePO₄. UV-Vis Spektren der Reaktionslösung zeigen das Vorliegen von Ce⁴⁺-Spezies vor und Ce³⁺-Spezies nach der Delithiierung mit CAN in Acetonitril (Abb. 4.40).¹³

Abbildung 4.40: UV-Vis Spektren von CAN und LCAN in Acetonitril. Während der Delithiierung entfärbt sich die Lösung von gelb (Ce⁴⁺) nach farblos (Ce³⁺). [189, 190]

Das bei der Delithiierung entstehende Ce(III)-Salz (LCAN) ist in AN weniger gut löslich als CAN. Insbesondere für kalorimetrische Untersuchungen ist es deshalb sinnvoll, unterhalb der Löslichkeitsgrenze zu arbeiten. Leitfähigkeitsmessungen ergaben eine Löslichkeit von etwa 9,8 mmol 1⁻¹ LCAN in AN. Wird diese Konzentration überschritten, so erhält man in titrationskalorimetrischen Experimenten ein zusätzliches exothermes Signal durch die Kristallisation des Produktsalzes (Abb. 4.41).

Das Produktsalz kann auch durch Reduktion von CAN mit LiBr hergestellt werden. Die Struktur des entstehenden Ce(III)-Salzes ist nicht bekannt. Nach Umkristallisieren aus Wasser können unter anderem die Bestandteile $(NH_4)_2Ce(NO_3)_5 \cdot 4 H_2O$ und NH_4NO_3 identifi-

¹³Die Extinktionskoeffizienten von CAN und LCAN unterscheiden sich etwa um den Faktor 90. CAN besitzt den deutlich größeren Extinktionskoeffizienten (bei gleicher Wellenlänge) [188].

ziert werden (weitere Details finden sich in [188]).

a) Messung der elektrolytischen Leitfähigkeit: Bei jeder Zugabe von CAN steigt die LF der Lösung um einen bestimmten Betrag an. Überschreitet man die Löslichkeitsgrenze des Produktsalzes, so folgt auf den Anstieg der LF infolge der Zugabe von CAN eine Abnahme dieser auf Grund der Kristallisation des Produktsalzes.

b) Dieses Kristallisieren macht sich als zusätzliches exothermes Wärmeereignis bemerkbar. Es taucht dann nach Überschreiten der Löslichkeitsgrenze bei jeder neuen Zugabe als Schulter am Wärmesignal auf.

Bei den folgenden Untersuchungen ist stets darauf geachtet worden, dass lediglich gelöste Ce-Spezies vorliegen.

Abb. 4.41 zeigt bereits, dass die Delithiierung mit CAN sehr schnell erfolgt. Aus den entfalteten Wärmeleistungs-Zeit-Kurven kann man eine Halbwertszeit (HWZ) von etwa 10 - 20 s bestimmen. Dies ist außergewöhnlich wenig. Die kinetische Auswertung ist allerdings nicht sehr genau, da die HWZ der Reaktion deutlich kleiner als die Zeitkonstante des Kalorimeters ist.

Es soll nun nachgewiesen werden, dass das kalorimetrisch von Natur aus unspezifische Signal tatsächlich der Li⁺-Extraktion aus LiFePO₄ zugeordnet werden kann. Dazu muss nachgewiesen werden, dass die Li⁺-Konzentration in AN tatsächlich zunimmt. Dies geschah durch eine Li⁺-selektive Elektrode (ISE), die kalibriert und auf Querempfindlichkeiten untersucht wurde (siehe Kap. 7).

Diese Messungen zeigen ein ähnliches Bild. Innerhalb weniger Sekunden steigt die Li⁺-Konzentration in AN stark an und bleibt dann konstant. Damit ist gezeigt, dass die Delithiierung von LFP mit CAN in AN mit sehr hoher Geschwindigkeit ablaufen kann. Für eine detaillierte kinetische Auswertung, wozu eine Vielzahl an Messpunkten notwendig ist, ist die Reaktion zu schnell. Höchstwahrscheinlich läuft die Delithiierung noch deutlich schneller, als es hier durch die Li⁺-Elektrode erscheint. Zudem ist die hier verwendete Partikelgröße

Abbildung 4.42: Detektion der Li⁺-Konzentration in Acetonitril während der Delithiierung mit Cer(IV)ammoniumnitrat. Der Abstand zwischen zwei Messpunkten beträgt drei Sekunden. Es ist erkennbar, dass die Reaktion (Extraktion von Li⁺-Ionen) für beide Temperaturen nach weniger als 10 Sekunden beendet scheint. Das entspricht in etwa 400 C. Für die mit dieser Methode zu erreichenden zeitlichen Auflösung ist zwischen 0 °C und 25 °C noch keine wesentliche Änderung der Reaktionsgeschwindigkeit zu verzeichnen.

von > 500 nm zu berücksichtigen.

Abb. 4.43 zeigt die erfolgreiche chemische Delithiierung von LFP mit CAN in AN.

Abbildung 4.43: Struktureller Nachweis der chemischen Delithiierung von LFP mit CAN in AN durch Röntgenbeugung.

Bestätigt dies das "Domino-Kaskaden-Modell"? Das beschriebene "Domino-Kaskaden-Modell" (Kap. 2.6.2) führt zwar zum Vorliegen von entweder LFP oder FP in einem Partikel, dennoch ist es nur eine Frage der zeitlichen Auflösung, ob man die (sehr schnell) wandernde Phasengrenze innerhalb eines Partikels beobachten kann. Die hier gemachten Messungen legen nahe, dass man dafür eine zeitliche Auflösung braucht, die mindestens im Millisekundenbereich liegt. Sowohl für die Batterieforschung als auch für das grundlegende Verständnis von Phasenumwandlungen in Festkörpern stellt dies eine völlig neue Perspektive dar (vgl. [191]).

Was bedeutet diese Erkenntnis für die Nutzung von LFP in einer Lithium-Ionen-Batterie? Zur Einordnung der Entladegeschwindigkeiten wird die C-Rate angegeben. Rechnet man die bei der Delithiierung mit CAN erhaltene Reaktionsgeschwindigkeit in eine äquivalente C-Rate um, so stellt man fest, dass eine Delithiierung in 10 s einer C-Rate von 360 C gleichkommt. In anbetracht der Tatsache, dass in elektrochemischen Tests üblicherweise mit maximal 10 C entladen/geladen wird, ist das Ergebnis umso erstaunlicher.

Des Weiteren ist zu ergänzen, dass die bei den elektrochemischen Tests mit 10 C erreichte Kapazität oft nur einem Bruchteil der theoretisch verfügbaren Kapazität entspricht (z.B. [165, 192, 193], um nur einige zu nennen).

Delmas *et al.* beschreiben in ihrem Domino-Kaskaden-Modell [128] eine Delithiierung "without any energy barrier … at a very high rate" [128]. Diese Aussage deckt sich auch mit der Erkenntnis, dass die Li⁺-Extraktion im hier untersuchten Bereich (0 - 25 °C) in keiner Weise thermisch aktiviert zu sein scheint (Abb. 4.42). Dieses Modell stimmt auch mit den Arbeiten von Allen [129] und mit unseren Ergebnissen überein (Nukleationsrate I = 0) (vgl. Kap. 4.2.3). Die elektrochemischen und chemischen Methoden zur Delithiierung führen also möglicherweise, entgegen mancher Bedenken [128], zu ähnlichen Ergebnissen. Es sei explizit erwähnt, dass Delmas in Übereinstimmung mit der hier besprochenen Oxidation mit CAN, die Delithiierung von LFP untersucht hat. Für die Lithiierung kann der Mechanismus anders sein.

Dieses Ergebnis erscheint auf den ersten Blick etwas außergewöhnlich, bestätigt aber eine Publikation aus dem Jahr 2009 [70], in der auch elektrochemische Test mit mehreren hundert C durchgeführt wurden. Dort wurden bei 200 C allerdings nur etwa zwei Drittel der verfügbaren Kapazität erreicht. Die hier gezeigte Delithiierung mit CAN erreichte eine Kapazität von über 90 % (etwa 150 mAh g⁻¹).

Diese Ergebnisse motivieren eine genauere Untersuchung der reagierenden Spezies in Lösung. Dies kann durch Ramanstreuung geschehen. Es sind Ramanspektren von CAN als Festkörper, als Lösung in Acetonitril und Wasser und von reinem Acetonitril gezeigt (Abb. 4.44).

In Abb. 4.44 a) ist für festes CAN und für CAN gelöst in AN eine Ce-O-Bande bei 251 cm⁻¹ bzw. 242 cm⁻¹ sichtbar [194]. Für CAN in Wasser tritt diese nicht auf, woraufhin man von solvatisiertem Ce⁴⁺ ausgehen kann.

Abbildung 4.44: Raman-Spektren von Acetonitril, CAN und CAN gelöst in Acetonitril und Wasser.

Dies ist ein erstes Indiz für das Auftreten eines Ce-O-Komplexes in Lösung, da für festes CAN die Kristallstruktur bekannt ist [195] und dort ebenfalls Ce-O-Bindungen vorliegen. Die Bindung ist bei gelöstem CAN etwas schwächer als im Fk, die Ramanverschiebung ist etwas kleiner. In Abb. 4.44 b) kann diese Argumentation fortgesetzt werden. Bei Miller wird eine Bande bei 741 cm⁻¹ für Ce-NO₃⁻-Komplexe beschrieben [194]. Diese Bande ist sowohl im Fk als auch im in AN gelösten CAN erkennbar. Im wässrigen System tritt sie nicht auf. Zudem wird von Chang *et al.* [196] eine durch Symmetrieerniedrigung entstandene Aufspaltung dieser Bande um 750 cm⁻¹ für koordiniertes NO₃⁻ in AN beschrieben. Auch diese Aufspaltung kann ramanspektroskopisch nachgewiesen werden (747 + 755 cm⁻¹). Banden bei 707 cm⁻¹ und 708 cm⁻¹ sind ebenfalls im Fk und in Acetonitrillösung vorhanden. In der NO₃⁻-Streckschwingungsregion erscheinen für CAN in AN und im CAN-Fk identische Verschiebungen, die NO₃⁻-Streckschwingung im wässrigen System ist um 10 cm⁻¹ zu größeren Energien verschoben.

Die Zuordnung der Banden im höheren Wellenzahlenbereich (c)) ist schwierig, da eine Vielzahl von Moden zusammenfallen [194]. Dennoch beobachtet man für CAN (Fk) und für CAN in AN eine charakteristische Bande bei 1563 bzw. 1549 cm⁻¹, die erneut im wässrigen System nicht erscheint und bidentat koordiniertem Nitrat zugeordnet werden kann [197, 198].

Fazit: Die Existenz eines dem im Fk ähnlichen $[Ce(NO_3)_6]^{2}$ -Komplexes in Acetonitril ist sehr wahrscheinlich. In Wasser sind die Ionen lediglich von Wasser solvatisiert. Es bilden sich keine charakteristischen Ce-NO₃-Komplexe.

Offensichtlich trägt der in AN vorliegende Hexanitratokomplex zur ungewöhnlich hohen Geschwindigkeit der Delithiierung bei. Für die Existenz dieses Komplexes spricht darüber hinaus die relativ große Löslichkeit von etwa 0,4 mol l⁻¹ CAN in AN, da LiNO₃ und NH₄NO₃ in AN quasi unlöslich sind [199, 200].

Hieraus ergibt sich die Fragestellung, ob diese fest-flüssig-Redoxreaktion und der damit verbundene Elektronentransfer zwischen LFP und CAN mit einem inner-sphere oder outersphere Mechanismus erklärt werden könnte, wie er von Komplexen in Lösung bekannt ist. Mit Hilfe der Marcus-Theorie [201] sind die insbesondere für das Redoxpaar Fe²⁺/Fe³⁺ und Ce⁴⁺/Ce³⁺ hohe Geschwindigkeiten mit experimentellen Funden vereinbar. Dennoch ist die hohe Geschwindigkeit der Reaktion, die ja mit einer Fk-Phasenumwandlung einhergeht, überraschend. Die große Stabilität des [Ce(NO₃)₆]²⁻-Komplexes in AN spricht möglicherweise eher für einen outer-sphere Mechanismus (zumindest bzgl. des Cer-Komplexes). Es sei noch angemerkt, dass die chemische Delithiierung von LFP mit CAN auch in Wasser abläuft, dort allerdings langsamer als in AN. Der Einfluss der Kohlenstoffbeschichtung auf die Delithiierung mit CAN wurde nicht untersucht.

Wie sind die Erkenntnisse aus der Ramanstreuung mit den für CAN und LCAN ermittelten

Lösungsenthalpien¹⁴ vereinbar (Abb. 4.45)?

Die Lösungsenthalpien des Produktsalzes LCAN sind in Wasser und Acetonitril im Rahmen der Unsicherheit der Methode gleich. Sie sind leicht exotherm. In erster Näherung ist dies ein Indiz, dass beide Komponenten in ähnlicher Form vorliegen.

In Acetonitril ist die Auflösung von CAN exotherm. In Wasser ist dieser Prozess deutlich endothermer als für das entsprechende LCAN-Salz. Möglicherweise unterscheidet sich die Speziation der beiden Salze in Lösung deutlich.

Erklärung für Wasser: Das Auflösen von NO₃⁻-Ionen ist in Wasser zumeist endotherm. Werden also diese Ionen in Wasser aufgelöst (und solvatisiert), so erwartet man eine endotherme Lösungsenthalpie, wie für CAN in Wasser (6 NO₃⁻-Ionen) auch experimentell bestätigt. Der deutlich exothermere Effekt der Auflösung von LCAN ist mit der stark exothermen Auflösung (Hydratation) von Li⁺-Ionen begründbar [116].

Abbildung 4.45: a) Lösungsenthalpien $\Delta_L H$ von Cer(IV)ammoniumnitrat (CAN) und Lithiumcer(III)ammoniumnitrat (LCAN) in Acetonitril und Wasser [144]. b) Struktur des [Ce(NO₃)₆]²⁻-Anions in CAN [195, 202].

Erklärung für Acetonitril: Da in Acetonitril die NO_3^- -Ionen nicht frei solvatisiert vorliegen, sondern im $[Ce(NO_3)_6]^{2-}$ -Komplex, sollte die Lösungsenthalpie sehr viel exothermer sein als in Wasser, was man auch experimentell so beobachtet. In Acetonitril ist aufgrund der geringeren Stabilität des hypothetischen $[Ce(NO_3)_6]^{3-}$ -Komplexes (geringere Ladung des Ce³⁺ und damit höhere Ladung des entsprechenden Nitrat-Komplexes) davon auszugehen, dass

¹⁴Die Lösungsenthalpien von CAN und LCAN in Acetonitril und Wasser sind von Herrn Christian Thomas im Rahmen seiner Masterarbeit experimentell bestimmt worden [144].

mindestens ein Großteil der Nitrationen frei vorliegt, was die Endothermie im Vergleich zum CAN erklärt. Dieser Trend wird allerdings vom exothermen Auflösen des Li⁺ überlagert. Zusammenfassend lässt sich die Existenz eines $[Ce(NO_3)_6]^{2-}$ -Komplexes in Acetonitril als

reaktive Spezies postulieren. Das geht sowohl aus ramanspektroskopischen Experimenten, als auch aus den Lösungsenthalpien hervor.

Dieses Redoxsystem ermöglicht die Delithiierung von Olivin-Typ-LiFePO₄ mit sehr hohen Geschwindigkeiten. Es sei noch ergänzt, dass das durch Delithiierung mit CAN entstandene FePO₄ auch wieder lithiiert werden kann, was für den Einsatz in der Batterie unerlässlich ist.

4.2.5 Titrationskalorimetrie - Auswirkung von antisite-Defekten auf die Li⁺-Extraktion

Bisher sind aus Kapitel zwei und aus den bisherigen Ergebnissen bereits folgende Dinge ersichtlich geworden:

- in der Olivin-Struktur des LFP befinden sich Lithiumionen und Eisenionen nicht auf identischen Plätzen (M1- und M2-Plätze),
- eine Vertauschung der beiden Ionensorten ist allerdings aufgrund der recht ähnlichen chemischen (und kristallographischen) Umgebung möglich und führt zu antisite-Defekten, die durch postsynthetische Behandlung bei etwa 450-500 °C nahezu vollständig eliminiert werden können (siehe auch Kapitel 2),
- man kann bei der Lithiierung/Delithiierung von einem eindimensionalen Transport der Li⁺-Ionen durch den Festkörper ausgehen.

Es soll nun ein Modell entwickelt werden, um den Einfluss von antisite-Defekten auf die Verfügbarkeit von Li⁺-Ionen (elektrochemische Kapazität) zu quantifizieren. Die daraus gewonnenen Erkenntnisse sollen mittels Titrationskalorimetrie bestätigt werden.

Ein quantitatives Modell zur Beschreibung der Auswirkungen von antisite-Defekten auf die nutzbare Kapazität von Olivin-Typ-Kathodenmaterialien in Abhängigkeit der Partikelgröße des Aktivmaterials

Der Titel dieses Abschnitts zeigt, dass das im Folgenden beschriebene Modell über eine reine Anwendbarkeit auf Olivin-Typ-LiFePO₄ hinausgeht. Es lässt sich ohne Einschränkung auf die Homologen anwenden. Eine Übertragung des Modells auf ähnliche Problemstellungen, z.B. andere Insertionselektrodenmaterialien bzw. Interkalationsphänomene ganz allgemein, ist denkbar.

Dem Modell liegen folgende Annahmen zu Grunde:

- Es liegt ein ausschließlich eindimensionaler Transport von Li⁺-Ionen vor. Dieser findet entlang der ausgezeichneten kristallographischen b-Achse statt (Raumgruppe: *Pnma*). Dies ist im Einklang mit der Literatur und den bisher gewonnenen Erkenntnissen.
- Die antisite-Defekte (Li_{Fe} und damit Fe_{Li}) sind zufällig verteilt. Eine Anreicherung von Defekten an der Oberfläche oder Ähnliches findet nicht statt.
- Es existieren keine kooperativen Effekte, wie z. B. der bevorzugte Einbau eines Defektes in der Nähe eines zweiten antisite-Defektes.
- Sprünge von Li⁺-Ionen über antisite-Defekte sind aufgrund sehr hoher Aktivierungsbarrieren unwahrscheinlich.
- Es liegen keine anderen Defekte außer den antisite-Defekten vor, die die verfügbare Kapazität verändern können.

Die Konsequenzen dieser Annahmen werden sofort klar. Entscheidend sind oberflächennahen antisite-Defekte innerhalb eines Partikels. Es stehen nur noch die Li⁺-Ionen zur Verfügung, die außerhalb (links und rechts) der äußersten Defekte liegen. Abb. 4.46 zeigt die denkbaren Grenzfälle auf.

Darüber hinaus wird die Verminderung der verfügbaren Kapazität durch antisite-Defekte eine Funktion der Partikelgröße sein. Große Partikel werden viel stärker von dieser Art von Defekt betroffen sein als kleinere (Abb. 4.47).¹⁵

Ein Beispiel: ein Partikel mit einer Ausdehnung von 100 Li⁺-Ionen (in b-Richtung) und zwei Prozent antisite-Defekten (also genau zwei) besitzt im Durchschnitt noch etwa 66 % der maximal verfügbaren Kapazität. Ein Partikel der Größe 1000 Li⁺-Ionen besitzt dagegen nur noch rund 12 % elektrochemisch aktives Material.¹⁶

Eine quantitative Analyse der vorhandenen antisite Defekte kann durch Röntgenpulverdiffraktometrie erfolgen. Bei gleicher Struktur hat die Vertauschung von Li- und Fe-Atomen deutliche Unterschiede in den Reflexintensitäten zur Folge. Dies kann leicht modelliert werden (Abb. 4.48). Es wird dabei implizit davon ausgegangen, dass keine Textureffekte auftreten.

Es wird nun versucht, mittels chemischer Delithiierung dieses Modell in den Grundzügen zu bestätigen. Die Delithiierung von Lithiumeisenphosphat wird dabei titrationskalorimetrisch

¹⁵Ich danke Herrn M. Sc. Christian Thomas für die Umsetzung der Idee in Matlab.

¹⁶Es wurden für dieses Beispiel 2 % anti-site Defekte durch das Generieren von Zufallszahlen simuliert. Für den kleineren Partikel bedeutet dies zwei Defekte, für den großen 20 Defekte. Die Differenz der kleinsten Zahl zu Eins und der größten Zahl zu 100 (bzw. 1000) wurden addiert. Das Verhältnis dieser Summe zur Gesamtzahl an Ionen ergibt dann den Wert der noch verfügbaren Kapazität. Für dieses Beispiel wurde der Mittelwert für zehn Durchläufe als repräsentativ angenommen. Auf dieser Methode basieren auch die folgenden Rechnungen. Pro Elementarzelle gibt es zwei Li⁺-Ionen. Die Ausdehnung einer Zelle in b-Richtung beträgt etwa 6 Å.

Abbildung 4.46: Modell zum Einfluss von anti-site Defekten, hier Fe_{Li} , in Olivin-Typ Materialien $M_1M_2XO_4$ auf die Verfügbarkeit von M_1 -Ionen

a) Defektfreie Struktur: die volle Kapazität ist erreichbar

b) Defekte am Rand (Oberfläche): die verfügbare Kapazität ist Null

c) antisite-Defekte im Kristallit vermindern die Kapazität deutlich, da nur noch die Li-Ionen links (1 ... 2) und rechts (n - 3 ... n) des äußersten Defektes verfügbar sind. Es ist des weiteren zu beachten, dass die hier gezeichneten "Zellen" dem Li⁺-Li⁺-Abstand in b-Richtung entsprechen. Dieser ist nicht mit der Elementarzelle von LiFePO₄ (zwei Li⁺-Ionen pro Zelle in b-Richtung) identisch.

verfolgt. Diese Methode erlaubt eine in Bezug auf die Zusammensetzung Li_xFePO_4 gut aufgelöste Ermittlung der erreichbaren Kapazität. Wird bei einer Zugabe (bis auf Zugabe- und Verdünnungseffekte) kein Wärmesignal gemessen, so kann man davon ausgehen, dass eine weitere Delithiierung nicht möglich ist.

Es wird eine Suspension von LiFePO₄ in Acetonitril vorgelegt. Das Aktivmaterial wird dann durch Zugabe einer CAN-Lösung delithiiert. Die Konzentrationen werden so gewählt, dass eine vollständige Delithiierung möglich ist, ohne dass das Löslichkeitsprodukt des bereits beschriebenen schwerlöslichen Salzes überschritten wird. Die Suspension wird kräftig gerührt. Pro Zugabe werden etwa 3 - 4 % delithiiert. In Abb. 4.49 sind die Kapazitäten einiger LiFePO₄-Proben dargestellt. Danach ist nach dem Tempern der Proben bei 500 °C eine Kapazitätserhöhung um etwa 30 % zu verzeichnen.

Abbildung 4.47: Modellierung der verfügbaren Kapazität als Funktion der Konzentration von antisite-Defekten für verschiedene Partikelgrößen. Es ist zu erkennen, dass bei etwa einem Prozent antisite-Defekten, je nach Partikelgröße, noch fast die vollständige Kapazität vorhanden ist (Nanopartikel) oder aber das Kathodenmaterial praktisch elektrochemisch inaktiv ist (Partikel > 1 μm).

Abbildung 4.49: Verfügbare Kapazität verschiedener LFP-Proben. Die postsynthetische Behandlung der Proben bei 500 °C bewirkt einen deutlichen Anstieg der verfügbaren Kapazität.

Die Kristallitgröße der hier untersuchten Proben beträgt etwa 100 nm. Die postsynthetisch getemperten Proben liegen bei rund 130 nm.

Abbildung 4.48: Simulierte Röntgenpulverdiffraktogramme der Idealstruktur und der Grenzstruktur mit100 % antisite-Defekten (FeLi). Für die gekennzeichneten Reflexe bewirken antisite-
Defekte einen besonders großen Unterschied in der Intensität.

Abbildung 4.50: Röntgenpulverdiffraktogramme und REM-Aufnahmen von Lithiumeisenphosphat vor und nach dem Tempern. Man vergleiche mit den simulierten Röntgenpulverdiffraktogrammen (Abb. 4.48).

Schwächen des Modells

Das verwendete Modell¹⁷ geht strikt von einem eindimensionalen Transport aus. Es unterschätzt des Weiteren die mögliche Li⁺-Mobilität über Fe²⁺ hinweg. Andere Arten von Defekten bleiben unberücksichtigt. Formal kann nicht unbedingt zwischen Textureffekten und den Veränderungen im Röntgenpulverdiffraktogramm durch antisite-Defekte unterschieden werden. Es verbleibt eine Unsicherheit bei der herangezogenen Partikel-/Kristallitgröße. Zudem können Agglomeration und Aggregation von Partikeln in der Suspension eine falsche Kapazität vortäuschen.

Stärken des Modells

Das Modell ist quantitativ, es erklärt den drastischen Einfluss einer geringen Konzentration von antisite-Defekten auf die verfügbare Kapazität. Es liefert ein weiteres Argument zur Nanostrukturierung, das über die reine Minimierung von Transportwegen hinaus geht. Die Simulation ist auf andere Interkalationsphänomene übertragbar. Weiterhin kann es auf zwei Dimensionen ausgeweitet werden. Die getroffenen Annahmen werden von der Literatur motiviert und folgen unmittelbar aus der Struktur der Phospho-Olivine. Es liegt eine direkte Struktur-Eigenschafts-Korrelation vor.

Kinetik

Neben der verfügbaren elektrochemischen Kapazität ist auch die Kinetik der Li⁺-Extraktion von Bedeutung. Die aus den titrationskalorimetrischen Messungen erhaltenen Kurven können, beispielsweise mit der Tian-Gleichung entfaltet werden, um den realen Reaktionsfortgang zu erhalten. Die Auswertung dieser Daten liefert allerdings kein eindeutiges Ergebnis. Das hat im Wesentlichen damit zu tun, dass die Suspensionsstabilität nicht nur eine Funktion der Rührgeschwindigkeit, sondern auch der Zeit ist. Für spätere Zugaben treten Sedimentation und Agglomeration mehr und mehr in den Vordergrund. Dies führt zu einer verzögerten Reaktion. Insgesamt lässt sich allerdings sagen, dass C-beschichtete Pulver keinen nennenswerten Vorteil im Vergleich zu unbeschichteten Proben aufweisen. Materialien mit kleinerer Partikelgröße lassen, zumindest zu Beginn, eine schnellere Delithiierung zu.

¹⁷Ein ähnliches Modell wurde 2010 von Malik *et al.* vorgeschlagen [203]. Qualitativ werden dort ähnliche Resultate beschrieben. Es wurde für verschiedene "Kanallängen" die verfügbare Kapazität bei unterschiedlichen Defektkonzentrationen aufgetragen. Es wurden zwar verschiedene Diffusivitäten erhalten, dennoch ist der experimentelle Befund, also die Reduktion der verfügbaren Kapazität durch antisite-Defekte, ausstehend.

Eine kinetische Auswertung wird weiterhin dadurch erschwert, dass die HWZ der Delithiierung von LFP mit CAN in Acetonitril deutlich kleiner als die Zeitkonstante des Kalorimeters ist.

4.2.6 Abschließende Bemerkungen

Wie lassen sich diese Ergebnisse bewerten? Es ist zunächst festzuhalten, dass chemische (Ersatz-)Reaktionen für eine kinetische Charakterisierung des Kathodenmaterials LiFePO₄ sehr gut geeignet sind (Abschätzung der verfügbaren Kapazität und der kinetischen Verfügbarkeit). Sie sind in der Lage, ohne den komplizierten Aufbau einer Batterie mit einer Vielzahl an Komponenten die Qualität des reinen Kathodenmaterials zu bewerten.

Delithiierungsreaktionen scheinen gegenüber der Lithiierung (wozu leider nur eine Reaktion untersucht werden konnte) sehr viel schneller ablaufen zu können (Abb. 4.51). Insbesondere die Delithiierung mit CAN zeigt die hohe Leistungsfähigkeit des Kathodenmaterials (hohe C-Raten möglich).

Abbildung 4.51: Reaktionsgeschwindigkeiten und C-Raten verschiedener Delithiierung- und Lithiierungsreaktionen bei 25 °C. Oxidationsmittel und Reduktionsmittel wurden stöchiometrisch zu (Li)FePO₄ eingesetzt.

Diese sehr schnelle Reaktion kann auch als Indiz für das in der Literatur beschriebene Domino-Kaskaden-Modell bewertet werden. Als reaktive Spezies konnte ein in Acetonitril stabiler $[Ce(NO_3)_6]^{2}$ -Komplex ramanspektroskopisch nachgewiesen werden.

Die kinetische Beschreibung der Delithiierung/Lithiierung mit einem Nukleationsansatz belegt den eindimensionalen Li⁺-Ionentransport. Demnach kann die Delithiierung als phasengrenzenlimitiert und die Lithiierung als transportlimitiert eingeordnet werden. Damit ergibt sich insbesondere für die Li⁺-Interkalation die Notwendigkeit der Nanoskalierung. Für die Lithiierung wurde gefunden, dass die Reaktionsgeschwindigkeit ausschließlich von der zur Verfügung stehenden Oberfläche abhängt. Für die Delithiierung hängt die Reaktionsgeschwindigkeit z.T. auch von der Konzentration des Oxidationsmittels ab.

Es konnte darüber hinaus ein Modell etabliert werden, welches die dramatischen Auswirkungen von Fe_{Li} antisite-Defekten auf die Verfügbarkeit von Li⁺-Ionen quantitativ beschreibt.

4.3 Thermodynamik

"Thermodynamik ist ein komisches Fach. Das erste Mal, wenn man sich damit befasst, versteht man nichts davon. Beim zweiten Durcharbeiten denkt man, man hätte nun alles verstanden, mit Ausnahme von ein oder zwei kleinen Details. Das dritte Mal, wenn man den Stoff durcharbeitet, bemerkt man, dass man fast gar nichts davon versteht, aber man hat sich inzwischen so daran gewöhnt, dass es einen nicht mehr stört." (Arnold Sommerfeld) [204]

Es wurde bereits auf die Verbindung zwischen Elektrochemie und Thermodynamik hingewiesen. Für ein rationales Design, die Entwicklung und Bewertung von Elektrodenmaterialien sind zuverlässige thermodynamische Daten unabdingbar. Dabei stellt die Wärmekapazität eine Schlüsselgröße dar. Nicht nur aus fundamental materialwissenschaftlicher Sicht, sondern auch zur Ermittlung anderer thermodynamischer Funktionen wie Entropie, Enthalpie und freier Enthalpie und damit zur Konstruktion von Phasendiagrammen. Wärmekapazitätsmessungen bilden daher den Schwerpunkt dieses Abschnitts.

Zuvor soll aber nochmals auf die thermodynamische Charakterisierung der Synthese von LFP eingegangen werden. Dies wird in Zukunft, insbesondere für die industrielle Produktion entsprechend des Ausmaßes der Elektromobilität und der damit verbundenen Herstellung im Tonnenmaßstab (Flugzeuge und Autos), wichtig werden.

4.3.1 Thermodynamische Berechnungen zur Synthese

Bezug nehmend auf Abb. 4.12 im Teil "Synthese" wurden Reaktionsenthalpie, -entropie und freie Reaktionsenthalpie für die zu Grunde liegenden Prozesse berechnet (Tabelle 4.5). Beide Synthesevarianten enthalten den Schritt der LFP-Bildung aus Vivianit und Lithiumphosphat. Die Auflösung des Eisens im ersten Schritt ist erwartungsgemäß stark exotherm. Ob die dabei entstehende Wärme für industrielle Zwecke eher hinderlich ist oder ob diese beispielsweise mittels Kraft-Wärme-Kopplung für andere Prozesse konserviert werden kann, soll hier nicht bewertet werden. Beispielsweise könnte auch der bei der Auflösung des Eisens entstehende Wasserstoff weitergenutzt werden (zum Beispiel beim Kalzinieren, zur Vermeidung von Fe³⁺-Verunreinigungen).

Die Bildung des LFP aus FP und LP ist offensichtlich stark entropisch bedingt. Dies liegt im Wesentlichen an der Freisetzung des Kristallwassers (8x) aus Vivianit.

Die angestellten Rechnungen sollen nun exemplarisch für den für beide Prozesse (thermodynamisch) identischen zweiten Schritt experimentell überprüft werden (Gl. 4.1). Dies

	Synthese über Precursor	Synthese aus H ₃ PO ₄ , Li ₃ PO ₄ und Fe
$\Delta_{\rm R} {\rm H}_1/{\rm kJ} \ {\rm mol}^{-1}(25 \ {\rm ^\circ C})$	- 32	- 186
$\Delta_{\rm R}S_1/{\rm kJ} \ {\rm mol}^{-1}(25 \ {\rm ^\circ C})$	27	- 53
$\Delta_{\rm R}G_1/kJ \text{ mol}^{-1}(25 \ ^{\circ}{\rm C})$	- 40	- 170
$\Delta_{\rm R} {\rm H}_2/{\rm kJ} {\rm mol}^{-1}(180 {\rm ~^\circ C})$	39	
$\Delta_{\rm R}S_2/{\rm kJ} \ {\rm mol}^{-1}(180 \ {\rm ^\circ C})$	148	
$\Delta_{\rm R}G_2/{\rm kJ} \ {\rm mol}^{-1}(180 \ {\rm ^\circ C})$		-28
$\Sigma \Delta_{\rm R}$ H/kJ mol ⁻¹ (25 °C)	7	- 147
$\Sigma \Delta_{\rm R}$ S/kJ mol ⁻¹ (25 °C)	175	95
$\Sigma \Delta_{\rm R} {\rm G/kJ} \text{ mol}^{-1}(25 \ ^{\circ}{\rm C})$	- 68	- 198

Tabelle 4.5: Thermodynamische Berechnungen zur Synthese von LiFePO₄

ist durch Erhitzen einer äquimolaren Mischung aus FP und LP im Wärmeflusskalorimeter (C 80) geschehen. Dabei wurden aus mehreren Experimenten Reaktionsenthalpien von 30-35 kJ mol⁻¹ erhalten (Abb. 4.52).¹⁸

Abbildung 4.52: DSC-Messung der Reaktion von LP mit Vivianit zu LFP. Das Röntgenpulverdiffraktogramm des Produktes zeigt, dass die Darstellung von phasenreinem LFP erfolgt ist. Mit "Kristallisation" ist der Gesamtprozess der hydrothermalen LFP-Bildung gemeint. Die reine Kristallisation von LFP ist sicher exotherm. Die Dehydratation des Li⁺ sollte allerdings einen stark endothermen Beitrag zur Reaktionsenthalpie liefern.

¹⁸Korrekt ist, dass sich Größe es bei der hier bestimmten die Reaktionsenergie um und nicht um die Reaktionsenthalpie handelt, da die Experimente unter konstantem Volumen durchgeführt wurden (Hydrothermalbedingungen). Man kann allerdings davon ausgehen, dass $\Delta_R H \approx \Delta_R U$, da die Reaktion in kondensierten Phasen stattfindet und damit $\Delta_R V$ klein ist.

Die Reaktionsdauer entspricht in etwa der im Abschnitt 4.1.4 im Syntheseteil ermittelten Reaktionszeit. Wie aus den *in situ* Leitfähigkeitsmessungen postuliert, kann hier eine der eigentlichen LFP-Kristallisation vorausgehende Nukleationsphase erkannt werden. Die Reaktionsenthalpie weist erwartungsgemäß eine endotherme Reaktion aus.

4.3.2 Wärmekapazität und Entropie von LiFePO₄

Neben der für Lithiumeisenphosphat bereits bestimmten Bildungsenthalpie stellt die Wärmekapazität, und damit verbunden weitere thermodynamische Größen wie die Entropie, eine Schlüsselgröße dar. Dabei geht es nicht nur um fundamental materialwissenschaftliche Erkenntnisse, die aus Wärmekapazitätsmessungen gewonnen werden können, sondern auch um die mit Sicherheitsfragen verbundenen thermischen Eigenschaften, die für eine Anwendung von Lithiumeisenphosphat in Flugzeugen und Autos eine entscheidende Rolle spielen. Die Herstellung des LiFePO₄ für C_p-Messungen erfolgte über den bereits beschriebenen Weg mit FeCl₂ · 4 H₂O in Methanol. Das Material wurde nach der Synthese bei 500 °C für 2 h getempert.

Insbesondere für Wärmekapazitätsmessungen ist die strukturelle Integrität und chemische Reinheit wichtig. Deshalb soll an dieser Stelle nochmals explizit darauf eingegangen werden.

Abbildung 4.53: Charakterisierung von LiFePO₄ für C_p-Messungen. a) PXRD - simuliertes Röntgendiffraktogramm unten, b) Schwingungsspektrum (ATR-IR)

In Abbildung 4.53 ist der strukturelle Nachweis orthorhombischen LFPs durch Röntgenbeugung gezeigt. Des Weiteren ist dem Schwingungsspektrum zu entnehmen, dass keinerlei Banden für typische Verunreinigungen wie Fe₂P [205, 206] und Li₃PO₄ [207] auftreten. Eine nur für die delithiierte Phase FePO₄ (und nicht für LiFePO₄) auftretende Bande bei

Bande	Wellenzahl/cm ⁻¹
ν ₃ PO ₄ [208]	1138
ν ₃ PO ₄ [208]	1093
ν ₃ PO ₄ [208]	1055
$\nu_1 \mathrm{PO}_4 [208]$	943
FeO ₆ [166] + ν_4 [209]	635
$(\nu_2 + \nu_4)$ [166]	579
$(\nu_2 + \nu_4)$ [209]	550
$(\nu_2 + \nu_4)$	498
$(\nu_2 + \nu_4)$	465

1237 cm⁻¹ erscheint auch nicht (Tab. 4.6).

Tabelle 4.6: Beobachtete IR-Banden von LFP mit Zuordnung

Neben einer definierten Struktur ist die chemische Zusammensetzung entscheidend für die Qualität der Wärmekapazitätsmessungen. Diese konnte analytisch mittels ICP-OES ermittelt werden (Tab. 4.7). Im Rahmen der Unsicherheit der Methode kann von einer Stöchiometrie von Li:Fe:P = 1:1:1 ausgegangen werden.

Tabelle 4.7: Chemische Analyse von Lithiumeisenphosphat

Element	Konzentration% (ber.)	Konzentration/% (gem.)
Li	4,4	$4,\!4\pm0,\!3$
Fe	35,4	$35,4\pm0,6$
Р	19,6	$19{,}0\pm0{,}6$

Aus der Reflexlage und der Linienverbreiterung der Röntgenbeugungsreflexe konnten die Zellparameter und die erhaltene Kristallitgröße bestimmt werden. Die Partikelgröße wurde aus REM-Aufnahmen abgeschätzt (Abb. 4.54).

Die ermitttelten Partikelgrößen, Kristallitgrößen und Zellparameter können Tabelle 4.8 entnommen werden.

Tabelle 4.8: Zellparameter und Kristallit-/Partikelgrößen von LFP

Parameter	Wert
a/Å	10.3358(6)
b/Å	6.0073(3)
c/Å	4.6946(3)
V/Å ³	291.48(5)
d(PXRD)/nm	70 ± 5
d(REM)/nm	200 ± 30

Abbildung 4.54: REM-Aufnahmen von LFP. Auszählen einiger Partikel ergab eine durchschnittliche Partikelgröße von etwa 200 nm. Diese entspricht der durchschnittlichen Partikelgröße von rund 20 zufällig ausgewählten Partikeln, die aus den Aufnahmen ermittelt wurde. Die Morphologie ist überwiegend sphärisch.

Diese Untersuchung trägt dem Umstand Rechnung, dass das effektive magnetische Moment und die Néel-Temperatur für LFP in gewissen Grenzen eine Funktion der Partikelgröße sind [154]. Im Folgenden sind die ermittelten Wärmekapazitäten gezeigt (Abb. 4.55).

Die theoretischen Daten stimmen bis etwa 400 K sehr gut mit den experimentellen Daten überein.¹⁹ Bei höheren Temperaturen wird die reale Wärmekapazität größer als die berechnete, was u.a. an folgenden, in den Berechnungen nicht berücksichtigten anharmonischen Effekten liegen kann [210, 211]:

- Phonon-Phonon-Wechselwirkungen,
- thermische Ausdehnung,
- Temperaturabhängigkeit von elastischen Konstanten und
- Defektbildung.

Bei 700 K liegt die Differenz zwischen Theorie und Experiment bei etwa 5%.

Eine geringe Abweichung ist bei Temperaturen knapp unter 300 K zu erkennen. Für diesen Fehler gibt es zwei Gründe. Der sehr große Gradient zwischen der Probentemperatur und der He-Referenz und die Verwendung von Apiezon N Gries. Dazu sei auf die Wärmekapazität von Apiezon N Gries [212, 213] und eine Bemerkung von Quantum Design [214] verwiesen.

Es sollen nun die verschiedenen Temperaturbereiche im Detail diskutiert werden. Die erhaltenen Daten wurden in vier Teilbereiche unterteilt, um eine bestmögliche Präzision und physikalische Interpretierbarkeit zu gewährleisten.

¹⁹Vielen Dank an Prof. Z. K. Liu und seine Arbeitsgruppe von der Pennsylvania State University f
ür die Bereitstellung der first-principles DFT-Daten.

Abbildung 4.55: Wärmekapazität von LFP. Die gestrichelte Linie zeigt theoretische Daten (DFT) von Shang *et al.* [153]. Diese stimmen bis 400 K sehr gut mit den experimentellen Daten überein. Bei etwa 50 K ist die AFM-Phasenumwandlung zu erkennen. Zusätzlich sind die Abweichungen der verwendeten Fits von den experimentell ermittelten Daten gezeigt. Im Tieftemperaturbereich ist ein Fehler bis etwa 10% möglich. Für höhere Temperaturen liegt die Abweichung vom Fit bei weniger als 2 %.

Auswertung des Tieftemperaturbereichs (0 - 10 K)

Im Tieftemperaturbereich müssen verschiedene Beiträge zur Wärmekapazität berücksichtigt werden.

Zunächst wird ein Gitterschwingungsanteil der Form $C_p(T) = B_3T^3 + B_5T^5 + B_7T^7 + ...$ angesetzt. Darüber hinaus kann ein elektronischer Beitrag zur Wärmekapazität der Form γT einbezogen werden.

Bei antiferromagnetischen Materialien, wie hier der Fall, tragen magnetische Spinwellen (Magnonen) zur Wärmekapazität bei. Bei auftretender Anisotropie hat dieser Term die Form $\beta_{asw}T^3exp(-\Delta/T)$ [215, 216, 217], sodass man insgesamt schreiben kann:

$$C_{p}(T) = B_{3}T^{3} + B_{5}T^{5} + B_{7}T^{7} + \dots + \gamma T + \beta_{asw}T^{3}e^{(-\Delta/T)}.$$
(4.65)

An dieser Stelle taucht ein Problem auf. Verschiedene Fits können, obwohl sie unterschiedliche Parameter besitzen, die experimentellen Daten in Summe ähnlich gut repräsentieren. Dies spielt dann bei der Berechnung der magnetischen Entropie (Phasenumwandlungsentropie) eine große Rolle, weil diese wesentlich davon abhängt, wie die Basislinie, also der Anteil der Gitterschwingungen, angenommen wird. Dies ist ein Grund dafür, dass die in der Literatur erhaltene magnetische Entropie oft deutlich von der Theorie abweicht.

Der Beitrag der Gitterschwingungen zur Wärmekapazität wurde deshalb separat ermittelt, indem die theoretischen Daten von Shang *et al.* für die Ermittlung zu Grunde gelegt werden. Dies erscheint sinnvoll, da der Vergleich der beiden Kurven bis über die magnetische Phasenumwandlung hinaus eine gute Übereinstimmung zeigt.

Die so ermittelten Parameter B_3 , B_5 und B_7 wurden dann konstant gehalten und die Parameter γ , B_{asw} und Δ ermittelt. Tabelle 4.9 fasst die so erhaltenen Parameter zusammen.

Parameter	Wert
B ₃ /J K ⁻⁴ mol ⁻¹	1,2583521 · 10 ⁻⁴
B ₅ /J K ⁻⁶ mol ⁻¹	2,6266803 · 10 ⁻⁸
B ₇ /J K ⁻⁸ mol ⁻¹	5,3419516 · 10 ⁻¹¹
γ /J K ⁻² mol ⁻¹	8,984761 · 10 ⁻³
$\beta_{\rm asw}$ /J K ⁻⁴ mol ⁻¹	$4,0574343 \cdot 10^{-4}$
Δ/K	12,759695
R ²	0,998

Tabelle 4.9: Fit für $C_p(T)$ von 0 K bis 10 K (Fehler < 10 %)

Der elektronische Beitrag sollte sehr klein sein. Vergleicht man den Sommerfeld-Koeffizienten γ mit den in der Literatur erhaltenen Werten [216, 218, 219] für ähnliche Strukturen (Eisen-Phosphat-Strukturen), so findet man dort noch deutlich höhere elektronische Beiträge.

Das erhaltene Spinwellen-gap von etwa 13 K liegt im Bereich der bereits zitierten Arbeiten. Für FePO₄, das ebenfalls eine antiferromagnetische Phasenumwandlung zeigt, liegt der Wert bei 5 K [218].

Auf Grund der sehr kleinen Absolutwerte erhöht sich der Fehler des Fits auf 5 - 10 %.

Auswertung des Bereiches der magnetischen Phasenumwandlung (10 - 70 K)

Der Bereich der magnetischen Phasenumwandlung²⁰ (antiferromagnetisch zu paramagnetisch) wurde mit einer Spline-Interpolation angepasst, um die experimentellen Daten möglichst gut wiederzugeben. Berücksichtigt man die magnetische Entropie nicht, so erhält man für 300 K eine etwa um 5 % zu niedrige Entropie. Um die magnetische Entropie Δ_{mag} S zu berechnen, wurden wiederum die bereits diskutierten Daten aus der Arbeit von Shang *et al.*

²⁰Auf die Natur der magnetischen Phasenumwandlung soll hier nicht im Detail eingegangen werden. Es sei auf die Literatur verwiesen. [220, 221, 222]

verwendet und von den experimentellen Daten subtrahiert.

$$\Delta_{\rm mag} S = \int_{0 \ \rm K}^{70 \ \rm K} \left(\frac{C_{\rm p} - C_{\rm p, \ Gitter}}{\rm T} \right) \, \rm dT \tag{4.66}$$

Die Néel-Temperatur wurde zu $(49,2 \pm 0,4)$ K bestimmt. Abbildung 4.56 zeigt zwei verschiedene Messungen im Temperaturbereich zwischen 0 K und 70 K. Diese unterscheiden sich lediglich in der Präparation der Probe. Eine (rote Kurve), wurde als Tablette gepresst und so auf der Messplattform befestigt. Eine andere (blaue Kurve) wurde als Pulver mit Apiezon N Gries in einem Kupfertiegel präpariert (siehe Kap. 7). Letztere Variante wird für schlecht leitende Proben im Tieftemperaturbereich empfohlen [223]. Die Auswertung des Tieftemperaturbereiches geschah auch mit diesen Daten.

Man erkennt, dass die experimentellen Daten für beide Präparationsmöglichkeiten recht gut übereinstimmen. Die Messung mit Apiezon N Gries zeigt geringfügig größere C_p-Werte nahe der Néel-Temperatur. Dies hat auch geringen Einfluss auf die Berechnung der magnetischen Entropie. Sie wurde für die beiden Messungen zu 9,8 J K⁻¹mol⁻¹ (gepresste Tablette) bzw. 10,4 J K⁻¹mol⁻¹ (Kupfertiegel mit Apiezon und Probe) bestimmt.

Abbildung 4.56: Wärmekapazität von LFP zwischen 0 K und 70 K. Es sind zwei verschiedene Messungen gezeigt (siehe Kap. 7). Die schwarze Basislinie stellt die Daten aus theoretischen Rechnungen dar [153]. Das Auftreten der magnetischen Phasenumwandlung von antiferromagnetisch zu paramagnetisch kann durch magnetische Messungen belegt werden. In einem äußeren Magnetfeld findet die Phasenumwandlung bei kleineren Temperaturen statt.

Man erwartet für die magnetische Entropie (Spin S) einen Wert von [216, 217, 224, 225]

$$\Delta_{\text{mag}}S = R \ln (2 S + 1). \tag{4.67}$$

Die Kristallstruktur von LiFePO₄ enthält Fe^{II}O₆-Oktaeder. Mit Fe²⁺ (high-spin) als Zentralatom (Elektronenkonfiguration d⁶) mit einem Spin von S = 2 ergibt sich damit eine magnetische Entropie von $\Delta_{mag}S = 13,38$ J K⁻¹mol⁻¹. Ein Vergleich mit den experimentell erhaltenen magnetischen Entropien zeigt, das diese nur 73 % bzw. 78 % des zu erwarteten Wertes betragen. Dies ist in der Literatur durchaus nicht ungewöhnlich [218, 219].

Ein Grund dafür kann die falsche Abschätzung des Gitterbeitrages zur Wärmekapazität sein, der, wenn er überschätzt wird, zu einer zu geringen magnetischen Entropie führt.

Beim Lithiumeisenphosphat ist ein weiterer Punkt zu berücksichtigen. Wie bereits zu Beginn des Abschnittes angedeutet, wurde festgestellt, dass das effektive magnetische Moment μ_{eff} und die Néel-Temperatur von der Partikelgröße abhängen [154]. Demnach sinkt das effektive magnetische Moment mit abnehmender Partikelgröße. Ebenso ist die Néel-Temperatur für Einkristalle (52 K) größer als für Nanopartikel (49 K).

Die hier beschriebenen Ergebnisse bestätigen diesen Trend. Die von uns ermittelte Néel-Temperatur von 49,2 K (70 nm Kristallitgröße, 200 nm Partikelgröße) liegt im zu erwartenden Bereich.

Quantitativ ist die Verminderung der magnetischen Entropie durch ein vermindertes effektives magnetisches Moment nicht eindeutig. Nimmt man einen linearen Zusammenhang an, so lässt sich mit Shu *et al.* [154] eine korrigierte zu erwartende magnetische Entropie von etwa 11,2 J K⁻¹mol⁻¹ abschätzen. Die experimentell ermittelte magnetische Entropie liegt damit bei rund 90 % des Sollwertes. Mit Berücksichtigung des experimentellen Fehlers erscheint dies ausreichend genau.

Die Abschwächung des magnetischen Moments für kleine Partikel wird als Ergebnis der Minimierung der freien Enthalpie interpretiert. Die Abweichung vom perfekten Kristall bei Nanopartikeln führt zu einer Erhöhung der Oberflächenenergie γ dA. Diese wird dann teilweise durch die Verringerung der magnetischen Energie B dM kompensiert (vgl. [154]).

Auswertung des Bereiches zwischen 70 und 300 K

Für den Temperaturbereich zwischen 70 K und 300 K wurde eine Summe aus einer Einsteinund einer Debye-Funktion zur Auswertung der experimentellen Daten genutzt. Damit lassen sich die entsprechenden charakteristischen Temperaturen θ_D und θ_E ermitteln.

$$C_{p}(T) = m \cdot D(x) + n \cdot E(x)$$
(4.68)

Die Verwendung von mehrerer Einstein-Funktionen, wie zum Teil üblich, [216, 218] war nicht notwendig. Der Auswertung liegen folgende Gleichungen zu Grunde (z.B. in [226]):

$$C_{Debye}(T) = 3 Nk \cdot D(x), \qquad (4.69)$$

$$D(x) = 3 \left(\frac{1}{x}\right)^3 \cdot \int_0^x \frac{x^4 e^x}{(e^x - 1)^2} dx,$$
(4.70)

$$C_{\text{Einstein}}(T) = 3 \text{ Nk} \cdot E(x), \qquad (4.71)$$

$$E(x) = x^2 \cdot \frac{e^x}{(e^x - 1)^2},$$
 (4.72)

$$\mathbf{x} = \frac{\theta_{\rm D}}{\rm T}; \ \mathbf{x} = \frac{\theta_{\rm E}}{\rm T}.$$
(4.73)

Insbesondere die Debye-Temperatur ist relativ empfindlich gegenüber kleinen Änderungen in den zu Grunde gelegten experimentellen Daten. Tabelle 4.10 fasst die so erhaltenen Koeffizienten zusammen.

Tabelle 4.10: Fit-Parameter für $C_p(T)$ von 70 K bis 300 K (Fehler < 2 %)

Parameter	Wert
m/mol	3,89
$\theta_{\rm D}/{\rm K}$	929,61
n/mol	2,52
$\theta_{\rm E}/{\rm K}$	235,10
\mathbb{R}^2	0,9995

Ein Vergleich der Debye-Temperatur mit den DFT-Rechnungen (986 K) [153] zeigt gute Übereinstimmung.

Die Koeffizienten n und m sollten in Summe die Anzahl der Atome pro Formeleinheit, hier sieben, ergeben. Mit einem Wert von m + n = 6,41 ist dies ausreichend gut erfüllt. In der Literatur werden meist ähnlich große Abweichungen gefunden [216, 218, 219].

Auswertung des Bereiches zwischen 300 K und 773 K

Die Auswertung des oberen Temperaturbereiches wurde mit dem von NIST empfohlenen Polynom durchgeführt [227].

$$C_{p}(T) = a_{0} + a_{1}T + a_{2}T^{2} + a_{3}T^{3} + a_{4}T^{-2}$$
(4.74)

Der Fehler liegt wiederum bei < 2% (Tabelle 4.11).

Parameter	Wert
a ₀	-41,881336
a ₁	0,78278483
a ₂	-1,0255433 · 10 ⁻³
a ₃	5,0862948 · 10 ⁻⁷
a 4	890694,39

Tabelle 4.11: Fit-Parameter für $C_p(T)$ von 70 K bis 300 K (Fehler < 2 %)

Thermodynamische Funktionen

Unter Verwendung der Fits können nun die thermodynamischen Funktionen berechnet werden. Die Entropie wird durch Integration gemäß:

$$S_{\rm m}^{\circ} = \Delta_0^{\rm T} S_{\rm m}^{\circ} = \int_0^{\rm T} \frac{C_{\rm p}}{\rm T} \, \mathrm{dT}, \qquad (4.75)$$

sowie die Enthalpie gemäß:

$$\Delta_0^{\mathrm{T}} \mathrm{H}_{\mathrm{m}} = \int_0^{\mathrm{T}} \mathrm{C}_{\mathrm{p}} \,\mathrm{dT} \tag{4.76}$$

und:

$$\phi_{\rm m}^{\circ} = -\frac{\Delta_0^{\rm T} G_{\rm m}}{\rm T} = \Delta_0^{\rm T} S_{\rm m} - \frac{\Delta_0^{\rm T} H_{\rm m}}{\rm T}$$
(4.77)

erhalten (Abb. 4.57).

Im Anhang (Kap. 8.9) befinden sich sowohl die experimentellen Daten als auch die Zahlenwerte der thermodynamischen Funktionen.²¹

Für LiFePO₄ wurde eine Entropie von 130,95 J K⁻¹mol⁻¹ für 298,15 K ermittelt. Dieses Ergebnis liegt etwa 7 J K⁻¹mol⁻¹ über dem von Shang *et al.* berechneten Wert [153]. Diese Differenz lässt sich mit der dort nicht berücksichtigten magnetischen Entropie erklären. Aus den entsprechenden Oxiden lässt sich für LiFePO₄ eine Entropie von 136,75 J K⁻¹mol⁻¹ abschätzen [85]. Die Differenz zum hier bestimmten Wert lässt sich teilweise auf den Parti-kelgrößeneffekt der magnetischen Entropie zurückführen.

²¹Die verwendete Literatur zur Korrektur des Apiezon N Gries und des Kupfers (nur bei einer Präparationsmethode nötig) findet sich bei Schnelle *et al.* [213] und White *et al.* [228].

Abbildung 4.57: Thermodynamische Funktionen von Olivin-Typ LiFePO₄ als Funktion der Temperatur (vgl. [153]).
5 Zusammenfassung

Die vorliegende Arbeit beschäftigte sich neben der Darstellung von Olivin-Typ LiFePO₄ mit dem Li⁺-Transport in diesem Kathodenmaterial und darüber hinaus mit ausgewählten thermodynamischen Eigenschaften des Li⁺-Interkalationsmaterials.

Synthese

Die Untersuchung von Solvothermalsynthesen identifizierte die Umsetzung von Lithiumphosphat und Vivianit zu Lithiumeisenphosphat als Schlüsselschritt.

Mögliche Sulfatverunreinigungen im Festkörper können durch die Nutzung von wesentlich besser löslichen Chloriden umgangen werden.

Als alternative zu Precursor-basierten Synthesen wurde die Darstellung von LiFePO₄ aus Eisenpulver, Phosphorsäure und Lithiumphosphat vorgeschlagen, was insbesondere aus Gründen der Wirtschaftlichkeit und Ressourceneffizienz sinnvoll erscheint.

Die Partikelgröße der LiFePO₄-Pulver kann durch die Art der Fällung, die Wahl des Lösungsmittels und die Art der postsynthetischen Behandlung zwischen 20 nm und etwa 1 μ m eingestellt werden. Die Partikelmorphologie ist durch die Wahl des Lösungsmittels beeinflussbar.

Neben der Röntgenpulverdiffraktometrie bietet sich zur Charakterisierung die Infrarotspektroskopie an, um Verunreinigungen wie Fe_2P und $FePO_4$ zu erkennen, die Auswirkungen auf die elektrochemische Aktivität haben können.

Die Untersuchung der Oberfläche des LiFePO₄ mittels XP-Spektroskopie lässt Polyphosphatspezies vermuten.

Eine weitere Charakterisierung der Solvo- bzw. Hydrothermalsynthesen wurde durch *in situ* Messung der elektrolytischen Leitfähigkeit vorgenommen. Diese Studien ergaben für die Hydrothermalsynthese eine Einteilung in vier Schritte: Auflösung des Lithiumphosphates, Auflösung des Vivianits, Nukleation und Kristallisation von LiFePO₄. Die Messungen weisen darauf hin, dass die Konzentration von Fe²⁺-Ionen in Lösung bis 200 °C die limitierende Größe der LiFePO₄-Bildung ist. Dies befindet sich in Übereinstimmung mit den Erkenntnissen verschiedener Fällungsarten für Precursor-basierte Methoden der LiFePO₄-Synthese.

Eine kinetische Analyse der LFP-Synthese aus Li_3PO_4 und $Fe_3(PO_4)_2 \cdot 8 H_2O$ ergab in Analogie mit elektronenmikroskopischen Aufnahmen ein dreidimensionales Wachstum von LFP aus wässriger Lösung.

Für die Homologen LiMnPO₄, LiCoPO₄ und LiNiPO₄ wurde wie für LFP auch, eine Solvothermalsynthese etabliert, sodass alle genannten Olivin-Strukturen auf gleiche Art und Weise dargestellt werden können.

Li⁺-Transport

Die kinetische Charakterisierung der Delithiierungsreaktion von beschichtetem LiFePO₄ mit Peroxodisulfat in Wasser kann durch die Messung der elektrolytischen Leitfähigkeit erfolgen. Als Reaktionskoordinate dient der entsprechende Unterschied der Leitfähigkeiten von Kaliumperoxodisulfat und dem Produkt LiKSO₄ in Wasser.

Die formalkinetische Reaktionsordnung bezüglich der Reaktanten liegt für Kaliumperoxodisulfat und LiFePO₄ bei etwa eins. Eine Nukleationsanalyse nach Avrami-Johnson-Mehl-Kolmogorow legt nahe, dass der Li⁺-Transport eindimensional entlang der durch die Kristallstruktur vorgegebenen Kanäle erfolgt.

Für die Lithiierung mit LiI in Acetonitril lassen sich ebenfalls durch Leitfähigkeitsmessungen Aussagen zur Kinetik gewinnen. Die Kalibrierung kann mit LiI erfolgen, da sich Iodid und das bei der Reaktion entstehende Triiodid kaum in ihren elektrolytischen Leitfähigkeiten unterscheiden. Die Entstehung von Triiodid statt Iod kann zudem UV-Vis-spektroskopisch nachgewiesen werden. Die Nukleationsanalyse bestätigt für die Lithiierung ebenfalls einen eindimensionalen Prozess, allerdings im Gegensatz zur Delithiierung mit $K_2S_2O_8$, transportlimitiert.

Die Aktivierungsenergien für die Lithiierung und Delithiierung liegen bei 42 kJ mol⁻¹ bzw. 25 kJ mol⁻¹.

Für die Delithiierung konnte neben der Oxidation mit Permanganat, die sich für kinetische Untersuchungen schlecht eignet, die Delithiierung mit Cerammoniumnitrat in Acetonitril etabliert werden. Für kinetische Untersuchungen ist in diesem System darauf zu achten, dass die Sättigungskonzentration für das entstehende Produktsalz von etwa 9,8 mmol 1⁻¹ nicht überschritten wird. Durch titrationskalorimetrische Messungen und die Bestimmung der Li⁺-Konzentration in Acetonitril durch eine Li⁺-selektive Elektrode konnte festgestellt werden, dass diese Reaktion sehr schnell abläuft. Sie ist nach etwa 10 s vollständig abgeschlossen, wahrscheinlich sogar noch deutlich schneller. Für die genaue, kinetische Charakterisierung muss eine Methode mit sehr guter zeitlicher Auflösung gefunden werden.

Diese sehr schnelle Delithiierung im Bereich von mehreren hundert C kann am ehesten mit dem "Domino-Kaskaden-Modell" erklärt werden.

Mittels Ramanspektroskopie konnte ein Hexanitratokomplex ($[Ce(NO_3)_6]^{2-}$, ähnlich wie im festen Cer(IV)ammoniumnitrat) in Acetonitril als reaktive Spezies identifiziert werden, die in wässrigen Systemen nicht nachweisbar ist.

Das Vorliegen unterschiedlicher Spezies in Wasser und Acetonitril wird durch die entsprechenden Lösungsenthalpien des Oxidationsmittels (CAN) unterstützt.

Es wurde des Weiteren ein quantitatives Modell vorgeschlagen, um die Auswirkung von Fe_{Li}-antisite-Defekten auf die verfügbare Kapazität des Aktivmaterials LiFePO₄ in Abhängigkeit der Partikelgröße und der antisite-Defektkonzentration zu beschreiben. Das Modell wurde in Grundzügen durch titrationskalorimetrische Messungen bestätigt. Postsynthetisches Kalzinieren bei 500 °C bewirkt offensichtlich, in Übereinstimmung mit der Literatur, eine Minimierung der antisite-Defekte und damit eine größere elektrochemische Kapazität. Ein prinzipieller Unterschied im Verhalten beschichteter und unbeschichteter LiFePO₄-Proben wurde nicht festgestellt.

Insbesondere die sehr schnelle, nahezu quantitative Delithiierung von LiFePO₄ mit CAN erfordert eine Betrachtung von Festkörperphasenumwandlungen aus einer völlig neuen Perspektive. Sie zeigt auch, dass LiFePO₄-Proben in entsprechender Qualität in der Lage sind, sehr hohe Lade-/Entladeraten zu tolerieren, was lange Zeit als unmöglich und damit als nachteilig im Vergleich mit anderen Elektrodenmaterialien angesehen wurde.

Nasschemische Methoden sind demnach wertvolle Werkzeuge, um qualitative und quantitative Aussagen über die elektrochemischen Eigenschaften des Aktivmaterials zu generieren.

Thermodynamik

Thermodynamische Berechnungen zur Darstellung von LiFePO₄ über zwei verschiedene Routen konnten experimentell durch kalorimetrische Messungen bestätigt werden. Dies gilt insbesondere für die hydrothermale Bildung von LiFePO₄ aus Li₃PO₄ und Fe₃(PO₄)₂ · 8 H₂O, welche mit etwa 35 kJ mol⁻¹ endotherm ist.

Die Wärmekapazität von Olivin-Typ LiFePO₄ wurde im Temperaturbereich zwischen 2 K und 773 K experimentell ermittelt. Es wurden drei verschiedene Kalorimeter verwendet (Physical Property Measurement System: 2 - 300 K, Micro-DSC: 293 K - 353 K, Sensys: 273 K - 773 K).

Der Tieftemperaturbereich (2 - 10 K) wurde mit einer Funktion der Form $C_p(T) = B_3 T^3 + B_5 T^5 + B_7 T^7 + \gamma T + \beta_{asw} T^3 \exp(-\Delta/T)$ gefittet, da neben dem Gitterbeitrag auch Spinwellen (Phasenumwandlung antiferromagnetisch zu paramagnetisch bei 49,2 K) und ein geringer elektronischer Beitrag berücksichtigt werden müssen. Für den Tieftemperaturbereich wurde eine für Isolatoren empfohlene Präparationsmethode mit Apiezon N Gries und miniaturisierten Kupfertiegeln erfolgreich angewendet.

Die Ermittlung der magnetischen Entropie der Phasenumwandlung lieferte einen Wert von $10,1 \text{ J K}^{-1} \text{ mol}^{-1}$. Die Differenz zum theoretischen Wert von $\Delta S_{mag} = R \ln (2 \text{ S} + 1) = 13,38 \text{ J K}^{-1} \text{ mol}^{-1}$ kann durch die Partikelgrößenabhängigkeit des effektiven magnetischen Moments erklärt werden. Die erhaltene Néel-Temperatur von 49,2 K bestätigt diesen Trend. Sie ist ebenfalls eine Funktion der Partikelgröße.

Der Temperaturbereich zwischen 70 K und 300 K wurde durch Kombination einer Einsteinund einer Debye-Funktion angepasst. Es konnten eine Debye-Temperatur von 930 K und eine Einstein-Temperatur von 235 K angegeben werden.

Für den Fit des Hochtemperaturbereiches bis 773 K wurde das Polynom $C_p(T) = a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^{-2}$ verwendet.

Aus den Fits für die experimentellen C_p -Daten wurden die thermodynamischen Funktionen Entropie, Enthalpie und freie Enthalpie berechnet. Für LiFePO₄ kann eine Entropie von 130,95 J K⁻¹ mol⁻¹ (298,15 K) angegeben werden.

Ein Vergleich der experimentellen Daten mit first-principles DFT-Rechnungen zeigt bis 400 K eine hervorragende Übereinstimmung. Für höhere Temperaturen wird die Wärmekapazität von den theoretischen Rechnungen etwas unterschätzt, da anharmonische Effekte nicht berücksichtigt werden.

6 Ausblick

Obgleich die vorliegende Arbeit einen gewissen geschlossenen Rahmen abdeckt, sind weitere Untersuchungen von hohem Interesse. Das betrifft sicherlich die Ausweitung der hier auf LiFePO₄ beschränkten Studien auf ausgewählte Homologe.

Des Weiteren wurde das Konzept der Dotierung, dass ja sehr kontrovers diskutiert wird, in dieser Arbeit nicht verfolgt. Über die Auswirkung von Dotierungen auf kinetische Eigenschaften des LFP ist bisher relativ wenig berichtet worden.

Besonders aussichtsreich erscheint die Oberflächenchemie des LiFePO₄. Sei es die gezielte Oberflächenfunktionalisierung zur Verbesserung der Li⁺-Transporteigenschaften oder die experimentelle Bestimmung der Oberflächenenergie.

Ebenso mit der Thematik der Oberfläche verbunden, ist die Partikelgrößenabhängigkeit der Breite der Mischungslücke im System $\text{Li}_{\alpha}\text{FePO}_4$ - $\text{Li}_{\beta}\text{FePO}_4$. Der Übergang von Festkörperlösung in ein Zweiphasensystem sollte (thermodynamisch und kinetisch) noch weiter charakterisiert werden.

Auch der in der Literatur intensiv diskutierte Mechanismus der Lithiierung/Delithiierung ist nicht vollständig geklärt. Hier gibt es auch nasschemisch bereits Hinweise auf den interpartikulären Li⁺-Ionentransport, wie er beispielsweise für das "Domino-Kaskaden-Modell" benötigt wird (hier nicht gezeigt). In diesem Zusammenhang ist die Aufklärung des Mechanismus der Delithiierung von LFP mit Cer(IV)ammoniumnitrat sehr reizvoll, da so sehr schnelle Delithiierungen erzielt werden konnten. Wie bereits angedeutet stellt die Li⁺-Extraktion mit solch hohen Geschwindigkeiten die Materialwissenschaft vor reizvolle Aufgaben.

Sollten einige Homologe für die Batterietechnologie an Bedeutung gewinnen, so ist natürlich die Kenntnis der Bildungsenthalpien, der Wärmekapazität und der damit verknüpften thermodynamischen Funktionen von hoher Wichtigkeit.

7 Experimenteller Teil

7.1 Methoden

Röntgenpulverdiffraktometrie

- D2 Phaser (Bruker); Cu Kα-Strahlung; Bragg-Brentano Anordnung; Lynxeye Liniendetektor (untere Diskriminante für Fe-haltige Proben: 0,18; Öffnungswinkel: 5 °; kein Monochromator (LP = 0)); 0,6 mm Divergenzblende; Messkreisradius: 141,4 mm; 30 kV; 10 mA
- D500 (Siemens); Cu Kα-Strahlung; Bragg-Brentano Anordnung
- X'Pert (Phillips); Cu Kα-Strahlung; Punktdetektor; Graphit-Monochromator; Bragg-Brentano Anordnung
- Seifert-FPM RD7; Cu Kα-Strahlung; Bragg-Brentano Anordnung

Für Messungen unter Inertgas wurde eine verschließbare Kuppel aus Kunststoff genutzt (Bruker).

Rietveld-Methode

verwendetes Programm: TOPAS 4.2; interner Standard: Silicium

Ausgangspunkt für die Verfeinerungen waren bekannte Strukturen für LiFePO₄ und FePO₄ [120]. Alle Messungen wurden am D2 Phaser angefertigt.

Die Basislinie wurde mit einem Chebychev-Polynom der Ordnung fünf angepasst. Als Emissionsprofil wurde CuKa5.lam genutzt. Unter Berücksichtigung des "sample displacements" wurden die Zellparameter aus der Reflexlage und die Kristallitgröße aus der Reflexverbreiterung bestimmt.

Einkristall-Röntgendiffraktometrie

Einkristall-4-Kreisdiffraktometer X8 APEX II mit CCD Area Detektor; Firma: Bruker; Mo $K\alpha$ -Strahlung

Röntgenphotoelektronenspektroskopie - XPS

Gerät: Phoobos 150 MCD-9; Firma: Specs; Al K α -Quelle (1486,6 eV), Halbkugelanalysator; Probenpräparation auf Mo-Träger; p < 5 \cdot 10⁻¹⁰ mbar; Auswertung der Spektren: CasaXPS Version 2.3.15; Referenzierung der Spektren auf 531,8 eV (BE) O1s

Messung der elektrolytischen Leitfähigkeit

a) Normalbedingungen

- Gerät: inoLab Cond 730; Firma: WTW; keine Temperaturkorrektur Es können Messwerte in einem Abstand von minimal 5s aufgezeichnet werden. Das Gerät rechnet die Eingangsgröße direkt in eine elektrolytische Leitfähigkeit um. Die angegebene Zellkonstante wurde mit KCl-Lösungen verifiziert. Die Messgenauigkeit beträgt 1 μ Scm⁻¹ im Bereich bis 2000 μ Scm⁻¹. Darüber sinkt die Genauigkeit auf 10 μ Scm⁻¹. Für kinetische Messungen wurde die Elektrode vor Start der Reaktion in das Reaktionsgemisch eingetaucht und bis zum Einstellen einer konstanten Leitfähigkeit gewartet. Temperatur und elektrolytische LF wurden parallel aufgezeichnet.
- Gerät: Microprocessor Conductivity Meter LF 537; Firma: WTW; keine Temperaturkorrektur

Des Weiteren gilt das oben Gesagte.

Die Temperierung des Reaktionssystems erfolgte durch ein Doppelmantelgefäß mit Isopropanol als Thermostatierflüssigkeit. Die Genauigkeit beträgt etwa 0,1 bis 0,2 K. Es wurden immer elektrolytische Leitfähigkeit und Temperatur aufgezeichnet.

b) Messung unter erhöhten Drücken und Temperaturen

Für *in situ* Messungen der elektrolytischen Leitfähigkeit unter hydrothermalen Bedingungen wurde eine in einen PTFE/Edelstahl-Schaft integrierte 4-Polanordnung (Evo Stratos) der Firma Knick Elektronische Messgeräte GmbH & Co. KG benutzt (siehe Abb. 7.1).

Abbildung 7.1: Aufbau zur Messung der elektrolytischen Leitfähigkeit unter erhöhten Temperaturen und Drücken.

Sie besitzt einen außergewöhnlich großen Messbereich (0,5 μ Scm⁻¹ bis 600 mScm⁻¹) und wurde in den Deckel eines Stahlautoklaven (V=120 ml, PTFE-Insert) verbaut.

Die Ermittlung der Zellkonstante der Anordnung erfolgte durch Kalibrierung mit KCl-Lösungen verschiedener Konzentrationen (10⁻³, 10⁻², 10⁻¹ und 1 mol l⁻¹) und wurde zu 0,25 cm⁻¹ bestimmt.

Die online Aufzeichnung der Temperatur wurde über den Temperaturregler und Datenlogger BTC-3000 der Firma Berghof realisiert. Die Leitfähigkeit wurde über ein Multiparameter-Prozessanalysegerät registriert. Beide Messgrößen wurden alle 10 s aufgezeichnet.

Ionenselektive Li⁺-Elektrode

Es wurde eine Ionenselektive Elektrode (DX207-Li) der Firma Mettler Toledo verwendet. Als Referenzelektrode zu dieser Halbzelle wurde eine Silber/Silberchlorid-Elektrode genutzt. Die Elektrode wurde vor dem Einsatz in 10 mM LiCl-Lösung konditioniert. Ansprechzeit: < 20 s¹ (98 %) < 2 s² (98 %); Detektionsgrenze (log c/M): 0,01 mM; Membran: PVC; Elektrolyt: vom Hersteller geliefert (nicht angegeben); Anstieg (25 °C): > 57 mV

¹Vom Hersteller zertifiziert. Abhängig von Anwendung, Lagerung, Nutzung und Alter.

²Ergebnis von Werktests nach Herstellung.

Abbildung 7.2: Kalibrierung der Li⁺-selektiven Elektrode. a) Kalibrierung für Li⁺-Ionen b) Kalibrierung der Querempfindlichkeit für H⁺-, K⁺- und NH₄⁺-Ionen. Man erkennt für Li⁺-Ionen eine etwa um zwei Größenordnungen größere Empfindlichkeit.

pH - Glaselektrode

Gerät: pH 211 Microprocessor pH Meter; Firma: Hanna Instruments; pH-Meter mit integrierter Temperaturmessung; Messungen bei 25 °C

Infrarotspektroskopie

Gerät: FT-IR-Spektrometer Nicolet 380 Firma: Thermo Scientific; Modus: ATR-IR, Auflösung: 2 cm⁻¹

Raman Spektroskopie

- Gerät: FT Ramanspektrometer RFS/100; Firma: Bruker; Laser: Neodym-YAG (1064 nm); Messung unter Argon; 200 Scans
- Gerät: innoRam-532(H); Firma: Polytec; Laser: Diode-Laser (532 nm); Messbereich: bis 3000 cm⁻¹
- Gerät: T 64000 Horiba Jobin Yvon (Villeneuve d'Ascq, France); Laser: Ar⁺ (514,5 nm)

Raman Messungen wurden bei Raumtemperatur in 90° Streugeometrie aufgenommen. Für die wässrigen Filtrate wurden Glasküvetten genutzt. Probe und Laser (4 W) wurden genau ausgerichtet. Der linear polarisierte Laser wurde durch ein Laserobjektiv fokussiert. Das gestreute Licht wurde nach Porto's Notation in x(zz)y oder x(zx)yKonfiguration analysiert. Eine zusätzliche Quarzplatte dreht die Polarisationsachse in geeigneter Weise. Nach Verlassen des Gerätes durch ein Gitter trifft das gestreute Licht auf einen CCD Detektor. Die Spektren wurden mit einer HeNe-Lampe kalibriert.

UV-Vis Spektroskopie

Gerät: Evolution 60; Firma: Thermo Scientific; Quarzglasküvetten

Optische Atomemissionsspektroskopie (ICP-OES)

Probenvorbereitung: Pulverproben wurden in Königswasser aufgeschlossen und mit Wasser verdünnt (1:25) Gerät: iCAP 6500 ICP-Atomemissionspektrometer; Firma: Thermo Electron; Zerstäuber-, Plasma- und Hilfsgas: Argon

Rasterelektronenmikroskopie

Gerät: Joel JSM 7001F Rasterelektronenmikroskop mit EDX-Detektor; Firma: Bruker Pulverproben wurden auf dem Träger (meist Carbon-tape) aufgebracht und Gold oder Graphit als Leitfähigkeitsschicht aufgesputtert.

Thermogravimetrie

Gerät: Sensys; Firma: Setaram Alle Proben wurden in Korundtiegel eingewogen (rund 10 mg) und mit 5 K min⁻¹ erhitzt.

Titrationskalorimetrie

Für Delithiierungsreaktionen mit CAN wurde ein Mikroreaktionssystem (Baureihe 2250) mit Titrationseinheit (2277, TAM) verwendet. Es handelt sich um ein Wärmeleitungskalorimeter (Zwillingsbauweise, Calvet-Typ). Der Austausch von Wärme geschieht über Thermosäulen. Es wurden 1 ml-Zellen aus V4A-Stahl oder Hastelloy C22 verwendet. Nur die Probenseite ist mit der Titrationseinheit ausgestattet. Eine Rührwelle (PTFE-Lager, Eigenbau) wird von einem Elektromotor betrieben und realisiert Drehzahlen bis zu 1080 rpm. Der Propellerrührer besteht aus Gold und soll die Homogenität des Systems sicherstellen. Lösungen des Oxidationsmittels (meist in AN) werden über eine Spritzenpumpe mit Schrittmotor zutitriert. Das jeweils zutitrierte Volumen beträgt 8 μl. Üblicherweise wurden Experimente bei einer Drehzahl von 630 rpm durchgeführt. Die Kalibrierung des Kalorimeters erfolgt elektrisch.

Firma: Thermometric; Temperaturstabilität: \pm 0,1 mK (24 h)

Abbildung 7.3: Thermal Activity Monitor (TAM) a) mit Titrationseinheit b).

Dynamische Differenzkalorimetrie

C80 (Setaram)

Wärmeflusskalorimeter (Calvet-Typ)

Referenzseite und Probenseite (Hastelloy C276 Hochdruckzellen) wurden jeweils mit 5 ml des verwendeten Lösungsmittels (meist entgastes und entionisiertes Wasser) befüllt. Die Probenseite enthielt noch 50 mg (0,096 mmol) $Fe_3(PO_4)_2 \cdot 8 H_2O$ und 11 mg (0.096 mmol) Li_3PO_4 . Nach einer isothermen Einlaufphase (2 h, 30 °C) wurden beide Seiten mit 0,5 K min⁻¹ erhitzt und für 12 h bei 200 °C gehalten. Danach wurden die Tiegel abgekühlt.

Micro-DSC II (Setaram)

Die Micro-DSC wurde für Wärmekapazitätsmessungen zwischen 283 K und 353 K genutzt. Die Proben (etwa 600 mg) und eine Referenzsubstanz (Saphir, Pulver) wurden in Hastelloy -Tiegel (1 cm³) eingewogen. Es wurde folgendes Temperaturprogramm gefahren: nach einer isothermen Periode von einer Stunde wurde die Temperatur mit einer Geschwindigkeit von 0,05 K min⁻¹ um 1 K erhöht, gefolgt von einer isothermen Periode von wiederum einer Stunde. Diese Prozedur wurde wiederholt.

Es folgt die Integration des Wärmeflusses. Es wurden die von NIST [227] empfohlenen

Referenzdaten zur Auswertung genutzt (Gleichung 7.1).

$$\overline{C}_{p} = \frac{\int_{t_{i}}^{t_{i+1}} hf_{sample} dt - \int_{t_{i}}^{t_{i+1}} hf_{blank} dt}{\int_{t_{i}}^{t_{i+1}} hf_{ref} dt - \int_{t_{i}}^{t_{i+1}} hf_{blank} dt} \cdot \frac{m_{ref}}{m_{sample}} \cdot \overline{C}_{p,ref}$$
(7.1)

Sensys (Setaram)

Die Sensys wurde für Wärmekapazitätsmessungen zwischen 278 K und 773 K genutzt. LFP-Proben (etwa 150 mg) sowie die Saphir-Referenz wurden in Edelstahltiegel eingewogen und mit einem Nickelring dicht verschlossen. Tiegel und Ringe wurden auf möglichst identische Massen gebracht (im Vergleich zur Referenzseite). Das Temperaturprogramm besteht aus einer Reihe von Temperaturschritten (10 K, 3 K min⁻¹) mit vorausgehender und nachfolgender Isotherme von 30 Minuten.

Die Wärmeflusspeaks wurden integriert und die Wärmekapazitäten mittels Gleichung 7.1 erhalten.

Miniaturtiegel aus Kupfer und Probenpräparation für Tieftemperatur C_p-Messungen

Für Tieftemperaturmessungen der Wärmekapazität von 2 K bis 300 K wurde ein Physical Property Measurement System (PPMS) von Quantum Design genutzt. Es wurden verschiedene Messungen durchgeführt. Zunächst Wärmekapazitätsmessungen an einer gepressten Tablette. Für schlecht leitende Proben bei tiefen Temperaturen wurde von der Arbeitsgruppe um Brian Woodfield [223] eine Methode ausgearbeitet, in der sich die Probe in einem Kupfertiegel (aus Kupferfolie, 25 μm Stärke, 99,999 %, Alfa Aesar) mit Apiezon N Gries (M&I Materials LTD, UK) befindet. Dafür haben wir Miniaturtiegel aus Kupfer präpariert. Zunächst wird ein Kupfertiegel und ein einzelner Deckel aus Kupferfolie (25 μm) hergestellt (Abb. 7.4).

Der Tiegel und der Deckel werden leer gewogen. Danach wird der Tiegel mit Pulver befüllt. Apiezon N Gries wird in eine Spritze überführt und mit einer regelbaren Heißluftpistole auf etwa 50 °C erwärmt. Ein Tropfen des erwärmten Apiezons wird in den Tiegel getropft. Dieser wird dann mit einer Pinzette zugebogen. Der befüllte Tiegel wird nun in eine Matrize aus Edelstahl gesetzt, und der einzelne Deckel aus Kupfer aufgelegt. Mit dem Matrizennegativ wird der Kupfertiegel zu einer etwa 3 mm dicken Tablette zusammengedrückt.

Abbildung 7.4: Herstellung von Miniaturtiegeln aus Kupfer. a) Metallstift zum fertigen der Mantelfläche. Das vorher ausgeschnittene Stück Kupferfolie wird um den Stift gewickelt, sodass etwa ein Viertel der Mantelfläche überlappt. Danach wird die Mantelfläche an einem Ende bis über das Ende des Stiftes geschoben und umgebogen, sodass etwa die Hälfte des Bodens mit Cu-Folie bedeckt ist. Dieser Teil des Tiegels wird in die Matrize d) gesteckt. Die Tiefe dieser Matrize ist mit einem Inbusschlüssel c) einstellbar (an Unterseite der Matrize). Ein ausgestanzter Boden aus Kupferfolie (s.u.) wird in den Tiegel gelegt, mit dem Stift a) in die Matrize geführt und mit einem leichten Hammerschlag am Tiegel fixiert. Der fertige Tiegel kann nun aus der Matrize herausgedreht und mit einer Pinzette b) entnommen werden.

Abbildung 7.5: Kupfertiegel, Tablette und Matrize zur Messung von C_p von 2-300 K und Probenpräparation. a) Gepresste, fertige Tablette mit Pulverprobe und Apiezon N Gries im Kupfertiegel mit Deckel. b) Einzelner Tiegel aus Kupferfolie (25 μm) mit Deckel. Durchmesser: 2,9 mm, Höhe: 6 mm c) Matrize zum Pressen der Tablette

Der Messmodus des PPMS beruht auf einer Relaxationstechnik. Es wird die Antwort der Probe (+ Probenplattform) auf einen Wärmeimpuls ausgewertet. Die Wärmekapazität kann dann aus der Zeitkonstante τ bestimmt werden:

$$\tau = \frac{c + c_{add}}{\kappa_{\omega}}.$$
(7.2)

Die Probenmenge beträgt etwa 10 mg. Der Kontakt zwischen Probe und Plattform wird ebenfalls durch Apiezon N Gries sichergestellt. PPMS Messungen können durch Messung hochreinen Kupfers validiert werden [228, 229, 230, 231].

Thermodynamische Berechnungen

Die thermodynamische Berechnung der Gleichgewichte wurde mit dem Software-Packet "ChemSage" durchgefüfhrt [232]. Der Algorithmus minimiert die freie Enthalpie des Reaktionssystems bei konstanter Gesamtmasse (geschlossenes System). Die Standardwerte für die G(T)-Funktion wurden für alle Spezies aus der Datenbank HSC 7.1 entnommen [233]. Das nicht ideale Verhalten der wässrigen Mischphasen wurde durch die erweiterte Debye-Hückel-Theorie berücksichtigt. Werte für Vivianit wurden aus Löslichkeitsdaten abgeschätzt [234]. Für LiFePO₄ wurde die Bildungsenthalpie experimentell von Iyer *et al.* bestimmt [9]. Die Entropie von LFP wurde durch summation aus den entsprechenden Oxiden (Li₂O, Fe₂O₃, P₂O₅) erhalten (siehe auch [85]).

Die relativ hohen Temperaturen während der Hydrothermalsynthese und die Reaktionen zwischen ionischen Spezies erlauben die Annahme von Gleichgewichtsbedingungen und motivieren so thermodynamische Berechnungen. Folgende Spezies wurden berücksichtigt: Li⁺, Fe²⁺, PO₄³⁻, HPO₄²⁻, H₂PO₄⁻, festes Li₃PO₄ und festes Fe₃(PO₄)₂ · 8 H₂O. Entsprechend der hydrothermalen Bedingungen (V = const.) wurde eine Veränderung der Gasphase ausgeschlossen.

Massenspektroskopie

Gerät: OmniStarTM; Gasanalysen-System; Firma: Pfeiffer Vacuum

Für die Gasphasenanalytik wurde eine Suspension von LiFePO₄ in Acetonitril vorgelegt. Danach wurde NO_2BF_4 in Acetonitril gelöst zugegeben. Die Suspension wurde gerührt und durch eine Fritte mit Argon durchströmt (Abb. 7.6) und in das Gas-Analysen System geleitet.

Abbildung 7.6: Glasapparatur zur Verfolgung der Delithiierung von LiFePO₄ mit NO₂BF₄.

Ionenchromatographie

Gerät: ICS-1000 und ICS-2000; Firma: Dionex; Detektor: Leitfähigkeit

Laserbeugung

Gerät: Helios (H0735) Firma Sympatec; Laser: He-Ne (632,8 nm); Detektor: semizirkularer Multielementphotodetektor; bestimmbare Partikelgrößen: 0,18 - 35 μ m Die Proben wurden mittels Ultraschall in einer Küvette dispergiert (Nassdispergierer Qixel).

7.2 Synthesevorschriften

Alle Synthesen wurden unter Inertgas (Argon 5.0) durchgeführt. Falls nicht näher beschrieben, sind die verwendeten Lösungsmittel entgast worden. Proben wurden unter Schutzatmosphäre gelagert.

Solvothermalsynthese von LiFePO₄ aus FeSO₄ \cdot 7 H₂O in Methanol

2,085 g (7,5 mmol) FeSO₄ · 7 H₂O werden mit 0,5 ml Phosphorsäure (85 %, 7,5 mmol) und 25 ml entgastem und entionisiertem Wasser versetzt. Dazu werden 0,944 g (22,5 mmol) LiOH · H₂O, gelöst in 15 ml entgastem und entionisierten Wasser, zugetropft. Die weiße Suspension wird in einen Stahlautoklaven mit Glasinsert und PTFE-Dichtungen überführt und für 18 h auf 180 °C erhitzt. Nach dem Abkühlen wird der Feststoff durch Filtration isoliert, mit Wasser gewaschen und getrocknet. Ausbeute: 79 %.

Precursorsynthese aus $FeSO_4\cdot 7\ H_2O$ in Wasser

1,043 g FeSO₄ · 7 H₂O (3,75 mmol) und 0,43 g (3,75 mmol) H₃PO₄ werden in 12,5 ml entgasten und entionisierten Wasser gelöst. Zu dieser Lösung werden 0,472 g (11,25 mmol) in 7,5 ml entionisiertem und entgastem Wasser gelöstes LiOH · H₂O (11,25 mmol) zugetropft. Es entsteht ein weißer Niederschlag, der durch Filtration isoliert und anschließend getrocknet wird. Das entstandene Filtrat wird nochmals filtriert und für die ramanspektroskopische Analyse in Glasküvetten überführt.

Für andere Zusammensetzungen (Li:Fe:PO₄ = 2:1:1 und 1:1:1) wird entsprechend verfahren.

Solvothermalsynthese von LiFePO₄ aus FeCl₂ · 4 H₂O

Es sind Ansätze zwischen 0,5 und 5 g/100 ml erfolgreich durchgeführt worden (Methanol, als Lösungsmittel). Des weiteren sind Wasser, Ethylenglycol, Tetraethylenglycol und Lösungsmittelmischungen (Methanol/Toluen, Methanol/Ethylenglycol, Wasser/Ethylenglycol, Wasser/Methanol) möglich. Zur erfolgreichen Synthese mit vorheriger Precursorherstellung aus MeOH reicht eine Synthesezeit von etwa 2 h bei 180-200 °C aus. Es wird im Folgenden ein typischer Ansatz aus Methanol beschrieben.

2,596 g FeCl₂ · 4 H₂O werden im Schlenkkolben vorgelegt. 1,243 g Phosphorsäure werden gemeinsam mit 20 ml Methanol entgast und zur Vorlage zugetropft. Es entsteht eine klare, farblose Lösung. Anschließend werden 1,596 g LiOH · H₂O in 40 ml MeOH gelöst und entgast. Die Lösung wird zur vorliegenden Lösung zugetropft, woraufhin ein weißer Niederschlag ausfällt. Die Suspension wird zeitnah in einen Autoklaven überführt und für drei Stunden auf 200 °C erhitzt. Der Autoklav wird anschließend in Eiswasser abgekühlt. die Suspension wird zentrifugiert und die überstehende Lösung abgenommen. Der weiße Feststoff wird drei mal in je 25 ml MeOH (entgast) aufgenommen und erneut zentrifugiert. Das Produkt wird anschließend im Vakuum bei etwa 50 °C getrocknet (2 - 3 h). Typische Ausbeute: 91 %.

Solvothermalsynthese von LiFePO₄ aus Li₃PO₄ und Fe₃(PO₄)₂ · 8 H₂O in Wasser

Synthesen dieser Art sind in einem Konzentrationsbereich von rund 5 g LFP/Liter in Wasser durchgeführt worden. Für einen typischen Ansatz werden 92,3 mg (80 mmol) Li₃PO₄ und 400 mg (80 mmol) Vivianit im Autoklav vorgelegt. Es folgt die Zugabe von etwa 50 ml entgastem, entionisierten Wasser. Der Autoklav wird verschlossen und für zwölf Stunden auf 200 °C erhitzt. Nach dem Abkühlen wird der Feststoff durch Zentrifugieren isoliert, mit Wasser gewaschen und bei 50 °C im Vakuum getrocknet. Typische Ausbeute: 86 %.

Synthese von $Fe_3(PO_4)_2 \cdot 8 H_2O$ (Vivianit)

1 g (17,91 mmol) Fe-Pulver werden in einem 100 ml Schlenkkolben mit 2,84 g (24 mmol) Phosphorsäure versetzt. Dazu werden schrittweise 20 ml entgastes, entionisiertes Wasser gegeben (5 ml zu Beginn, weitere 5 ml nach zwei, vier und sechs Stunden). Eine Gasentwicklung wird sichtbar. Nach etwa 20 Stunden ist das Fe-Pulver vollständig aufgelöst. Der pH-Wert der trüben Suspension beträgt etwa zwei. Eine quantitative Fällung der Zielsubstanz wird durch Neutralisation mit KOH erreicht (25 ml). Der weiße Feststoff wird abzentrifugiert und mit je 25 ml Wasser, Methanol und Diethylether (alle entgast) gewaschen und im Vakuum getrocknet.

Ausbeute: 90 %.

Aufgrund der bei der Fällung mit Lauge entstehenden Salze sei auf die Verwendung von KOH statt NaOH hingewiesen, da die Löslichkeit der entstehenden Phosphate und Hydrogenphosphate des Kaliums größer sind als die korrespondierenden Natriumsalze (Tabelle 7.1).

Verbindung	Löslichkeit in mol l ⁻¹
KH ₂ PO ₄	1,7
K_2HPO_4	9,2
K_3PO_4	4,5
NaH ₂ PO ₄	7,1
Na ₂ HPO ₄	0,5
Na ₃ PO ₄	1,7

Tabelle 7.1: Löslichkeiten von Natrium- und Kaliumsalzen in Wasser [10, 11, 12]

Schlenkzentrifuge

Gerät: Laborzentrifuge 3-16P mit Ausschwingrotor bis max. 2000 U min⁻¹ (728xg) Firma: Sigma Laborzentrifugen GmbH Schlenkgefäße wurden passgenau zu den Rotorbechern angefertigt.

Lithiierungs- und Delithiierungsreaktionen

Für kinetische Untersuchungen (CAN, $K_2S_2O_8$, LiI) wurden alle Reaktionssysteme mit einem Thermostat temperiert ($T_{ist} = T_{soll} \pm 0,1$ K) und intensiv gerührt (etwa 1000 rpm). Das Aktivmaterial wurde mit Ultraschall im LM dispergiert, der Start der Reaktion erfolgte durch Zugabe des Oxidations- oder Reduktionsmittels gelöst in einer gegenüber des Gesamtreaktionssystems geringen Menge LM.

Delithiierung von LiFePO₄

a) mit NO₂BF₄

Diese Reaktion wurde im Wesentlichen zur Darstellung der FePO₄-Phase aus LFP verwendet. In einem typischen Ansatz wurden 3 g (19,02 mmol LFP mit 2,8 g (0,21 mmol) NO_2BF_4

eingewogen und in 50 - 100 ml Acetonitril gelöst bzw. suspendiert. Die Reaktionsmischung wurde für 24 h unter Schutzgasatmosphäre (Ar) gerührt. Nach der Filtration wurde der Feststoff mehrmals mit sauberem AN gewaschen, getrocknet und unter Argon aufbewahrt.

b) mit K₂S₂O₈

In einem typischen Ansatz wurden 200 mg (1,27 mmol) LFP in Wasser suspendiert und mit 171 mg (0,63 mmol) $K_2S_2O_8$ (in Wasser) versetzt.

c) mit $Ce(NH_4)_2(NO_3)_6$

In einem typischen Ansatz wurden 100 mg (0,63 mmol) LFP in AN suspendiert und mit 348 mg (0,63 mmol) CAN (in AN) versetzt.

d) mit KMnO₄

In einem typischen Ansatz wurden 100 mg (0,63 mmol) LFP in 150 ml Wasser suspendiert und mit 33,3 mg (0,21 mmol) KMnO₄ (in Wasser) versetzt.

Lithiierung von FePO₄ mit LiI

In einem typischen Ansatz wurden 100 mg (0,63 mmol) LFP in 150 ml AN suspendiert und mit 126,5 mg (0,95 mmol) LiI (in AN) versetzt.

7.3 Chemikalien

Alle aufgeführten Chemikalien wurden, wenn nicht gesondert angegeben, ohne weitere Reinigung verwendet.

Verbindung	Reinheit/%	Hersteller	Molmasse/g mol ⁻¹
Argon	99,999	Praxair	39,95
Formiergas (10 % H ₂)	-	Praxair	-
Acetonitril	99	VWR	41,05
	99,5 (< 10 ppm H ₂ O)	Carl Roth	41,05
Diethylether	99	VWR	74,12
Ethanol	99	VWR	46,07
Ethylenglycol	99	Grüssing	62,07
HCl (konz.)	p.a.	VWR	36,46
HNO ₃ (konz.)	p.a.	VWR	63,01
H ₃ PO ₄ (85 %)	-	VEB Laborchemie Apolda	97.99
Methanol	99	VWR	32,04
Tetraethylenglycol	99	Alfa Aesar	194,22
Toluol	99	Chem Solute	92,15
Apiezon N Gries	-	M&I Materials LTD	-
$Ce(NH_4)_2(NO_3)_6$	99.5	Acros Organics	548,23
CoCl ₂	98	Sigma Aldrich	129,83
$FeCl_2\cdot 4\ H_2O$	99	Sigma Aldrich	198,83
Fe-Pulver	99	Alfa Aesar	55,85
$FeSO_4\cdot 7 \ H_2O$	99,5	Acros Organics	278,02
H_3PO_4	-	Acros Organics	97,99
Iod	-	eigene Bestände	126,90
KCl	99	Fluka	74,55
KMnO ₄	-	eigene Bestände	158,03
КОН	85,2	VWR	56,11
18-Krone-6	99	Sigma Aldrich	264,12
$K_2S_2O_8$	99,99	Alfa Aesar	270,32
Kupfer-Folie (25 μ m)	99,999	Alfa Aesar	63,55
LiCl	98	Riedel-de Haën	42,39
LiFePO ₄	certificate of analysis	Süd Chemie/PhosTech Lithium	157,76
LiI	99	Alfa Aesar	133,85
$LiOH\cdot H_2O$	56 (LiOH)	Acros Organics	41,96
LiOH	98	Acros Organics	23,95
Li ₃ PO ₄	98	ABCR	115,79
MnCl ₂	99	Sigma Aldrich	125,84
NH ₄ Cl	99	Fluka	53,49
$NiCl_2 \cdot 6 \; H_2O$	-	eigene Bestände	237,68
NO_2BF_4	96	ABCR	132,81
Silicium	99,999	Alfa Aesar	28,09

 Tabelle 7.2: Verwendete Chemikalien: Reinheit, Hersteller und molare Masse

Phostech Lithium

Certificate of Analysis

1. Identification

Material : formula :	Lithium Iron Phosphate LiFePO ₄
trademark	Life Power ®*
CAS Number :	15365-14-7
Origin :	Phostech Lithium Inc., 1475 Marie Victorin, St-Bruno de Montarville, Québec, Canada, J3V 687
Grade :	P1
Lot number :	BLE09274
Order confirmation:	OC-2010-369
Date :	2010-11-05

2. Chemical Composition

Main Components	Components Measured value		Analysis method	
LiFePO ₄ Phase purity	98,1	%	XRD	
Carbon (C)	1,30	wt %	Carbon analyzer Leco	

3. Impurities

Elements	Measured value	Unit	Analysis method	
Sulfur (S)	0,004	wt %	Sulfur analyzer Leco	
Residual moisture (H ₂ O)	450	ppm	Arizona	

4. Electrochemical Properties

	Measured value	Unit	Analysis method
Specific capacity	145	mAh/g	Room Temperature Electrochemistry,C/12

5. Physical Properties

Particle size distribution	Measured value	Unit	Analysis method
D10	0,92	μm	Laser diffraction Microtrac
D50	2,55	μm	Laser diffraction Microtrac
D90	4,91	μm	Laser diffraction Microtrac
D100	11,23	μm	Laser diffraction Microtrac
pH			The set of the set of the set
Specific surface (BET)	12,24	m²/g	BET analyser

*: registered in the following countries: Canada, Germany, EU 25, Korea, Japan, Russia, Taiwan, USA

Approved by:

Nathalie Ravet, Qualité

Phostech Lithium Inc 1475 Marie Victorin, St-Bruno de Montarville, Québec, Canada, J3V 6B7 Tel : (450)-653-1810 Fax : (450)-653-4203

F_00017_R01

Abbildung 7.7: Certificate of analysis LiFePO₄, P1

TU Bergakademie Freiberg Leipziger Strasse 29 09596 Freiberg Deutschland

Phostech Lithium

Certificate of Analysis

Product: Origin: Lot number: Date: LiFePO₄ Süd-Chemie AG 0787 PX 195 08.11.2010

Parameter	Measured Value
Discharge Spec. Capacity * (RT, C/12, 2.5V-4.0V, mAh/g)	154
Carbon Content (%)	2.5
Specific surface (m^2/g)	15
Particle size, D10 (microns)	0.2
Particle size, D50 (microns)	0.5
Particle size, D90 (microns)	2.4
tap density (g/l)	525
pH (5 min. H ₂ O)	9.1
Sieve Residue (%) (100 microns)	0.0
Moisture KF (%)	0.03

 $^{\circ}$ please note new voltage range of 2.5V – 4.0V for determination of spec. capacities (old voltage range: 2.9V – 4.0V); in comparison to previous CoAs' spec. capacities are slightly larger by 2 – 3 mAby;

Approved by: j.A. Selven Michan

Süd-Chemie AG Ostenrieder Strasse 15 85368 Moosburg GERMANY

cito Chemie B **Battery Materials** QC

Phostech Lithium Inc 1475, Rue Marie-Victorin St-Bruno, Canada, J3V 6B7 Tel : (450)-653-1810 Fax : (450)-653-4203

Abbildung 7.8: Certificate of analysis LiFePO₄, P2

7.4 Software

Textsatz: LAT_EX, Distribution: MikTex 2.9 Literaturverwaltung: JabRef 2.9.2 Abbildungen: SigmaPlot 10, MS Office, Mercury 2.2 Auswertung: Table Curve 2D, Matlab, MS Office, Match, ACDlabs, crystaldiffrac, TOPAS 4.2, PowderCell, CasaXPS, Diamond, LabView

8 Anhang

8.1 Kristallstruktur von Ce(III)nitrat@18-Krone-6

Komplexierungsversuche von Cer(IV)ammoniumnitrat mit 18-Krone-6 (18 C 6) unter Reduktion mit Ethanol führen zur teilweisen Abspaltung von Nitratliganden. Die folgende Kristallstruktur wurde gefunden.

Abbildung 8.1: Kugel-Stab-Modell von Ce(NO₃)₃@18-Krone-6. weiß: Wasserstoff; grau: Kohlenstoff; rot: Sauerstoff; orange: Cer

Der Komplex ist in Acetonitril fast unlöslich. Das Ce³⁺-Ion ist 12-fach mit Sauerstoff koordiniert. Es können folgende Reaktionsgleichungen angegeben werden:

$$Ce^{IV}(NH_4)_2(NO_3)_6 + \frac{1}{2}CH_3CH_2OH \rightarrow \frac{1}{2}CH_3CHO + H^+ + NO_3^- + Ce^{III}(NH_4)_2(NO_3)_5,$$

(8.1)

$$Ce^{III}(NH_4)_2(NO_3)_5 + 18 C 6 \rightarrow Ce^{III}(NO_3)_3@18 C 6 + 2 NH_4NO_3.$$
 (8.2)

8.2 *In situ* Messung der elektrolytischen Leitfähigkeit -Hysterese

Schwerlösliche Salze können durch Temperaturerhöhung mindestens teilweise in Lösung gebracht werden. Diese Prozesse dauern oft relativ lang, sodass sich beim Vergleich der Aufheiz- und Abkühlkurven eine Hysterese zeigt. Beim Erhitzen kann der Auflösungsprozess nicht mit der Temperaturerhöhung schritthalten. Beim Abkühlen kann die Kristallisation kinetisch gehemmt sein.

Abbildung 8.2: Leitfähigkeitshysterese beim Auflösen und Kristallisieren am Beispiel von Lithiumphosphat. Über etwa 150 °C ist die Hysterese verschwunden, da die Auflöse-/Kristallisationsprozesse schnell genug ablaufen. Zumal ist die Auflösung des Lithiumphosphats bis 150 °C wahrscheinlich fast vollständig abgelaufen. Ähnliche Effekte wurden allerdings auch bei anderen Systemen beobachtet.

8.3 Formulierung der elektrolytischen Leitfähigkeit von LiI in Acetonitril als Funktion von Temperatur und **Konzentration**

Die elektrolytische Leitfähigkeit κ von Lithiumiodid in Acetonitril hängt von der Konzentration c und der Temperatur T ab. In den meisten Fällen reicht es, bei einer konstanten Temperatur die jeweilige Kalibrierung zu nutzen, um auf die vorliegende Konzentration in Lösung zu schließen. Wünschenswert ist, zum Beispiel aufgrund von Temperaturschwankungen durch Zugaben, eine Formulierung der elektrolytischen Leitfähigkeit als Funktion von Temperatur und Konzentration in einer Gleichung. Diese besitzt dann die folgende Form, wenn man voraussetzt, dass die Abhängigkeit der elektrolytischen Leitfähigkeit von je einer Größe durch ein Polynom zweiten Grades hinreichend genau wiedergegeben wird.

$$\kappa(\mathbf{T}, \mathbf{c}) = \mathbf{a}_0 \mathbf{T}^2 + \mathbf{a}_1 \mathbf{c}^2 + \mathbf{a}_2 \mathbf{T} \mathbf{c} + \mathbf{a}_3 \mathbf{T} + \mathbf{a}_4 \mathbf{c} + \mathbf{a}_5$$
(8.3)

Es gilt, die Koeffizienten a₀ bis a₅ aus den vorliegenden diskreten Einzelmessungen zu ermitteln [235]. Tabelle 8.1 zeigt die ermittelten Koeffizienten. Sie gelten für folgende Einheiten im Bereich von 0 - 30 °C bis rund 8 mmol 1⁻¹: [T] = °C, [c] = mmol 1⁻¹, $[\kappa] = \mu$ S cm⁻¹.

Tabelle 8.1: Mittels Minimierung der Fehlerquadrate ermittelte Koeffizienten aus Gleichung 8.3

Abbildung 8.3: Beurteilung der Güte des 3-dimensionalen Fits. Es ist aufgetragen, die experimentell gemessene elektrolytische Leitfähigkeit über dem entsprechenden Wert der Fit-Funktion. Die Übereinstimmung der Werte ist gut. Auf der rechten Seite ist der prozentuale Fehler des Fits als Funktion der LiI-Konzentration gezeigt. Er liegt für fast alle Werte unter zwei Prozent.

8.4 Ramanspektroskopische Untersuchung der Wechselwirkungen zwischen Acetonitril und Lithiumiodid

Für die Lithiierungsreaktion, bei der die Beweglichkeit der Li⁺-Ionen von entscheidender Bedeutung ist, und auch als Modellsystem ganz allgemein, wurden verschieden konzentrierte Lösungen von LiI in Acetonitril untersucht.

Abbildung 8.4: Ramanspektren von Lithiumiodid in Acetonitril. Die untere Kurve (schwarz) zeigt jeweils das Ramanspektrum reinen Acetonitrils (AN). Darüber sind die Ramanspektren von Lithiumiodid in Acetonitril mit steigender Konzentration angeordnet.

In der Region der $\nu(C\equiv N)$ -Streckschwingung (2250 cm⁻¹) (Zuordnung siehe [236]) sieht man eine mit zunehmender Konzentration immer intensiver werdende Bande bei 2274 cm⁻¹, die von Acetonitrilmolekülen in erster Solvatationshülle von Li⁺-Ionen herrührt (vgl. [179]). Man erkennt für verschiedene Schwingungsmoden (hauptsächlich entlang der Längsachse des Acetonitrilmoleküls, vgl. Abb. 8.5) das Auftauchen einer weiteren Bande, die zu höheren Wellenzahlen verschoben ist. Diese Effekte spielen allerdings erst oberhalb einer Konzentration von etwa 100 mmol l⁻¹ eine Rolle. Insbesondere in Elektrolytlösungen mit relativ großen Konzentrationen, wie sie in LIBs verwendet werden, sollten solche Wechselwirkungen erheblichen Einfluss auf den Li⁺-Transport haben. Soll beispielsweise während eines Entladevorganges das Kathodenmaterials lithiiert werden, so muss vor der Interkalation der Li⁺-Ionen in das FePO₄-Wirtmaterial zunächst die Solvenshülle abgestreift werden, bevor eine Einlagerung möglich wird. Das kann zu einer merklichen kinetischen Hemmung des Prozesses führen.

Abb. 8.5 veranschaulicht die Wechselwirkung zwischen Li⁺-Ionen und dem Lösungsmittel Acetonitril, wie sie aus den Ramanspektren hervorgeht. In zweiter Koordinationssphäre des Li⁺-Ions sind die Lösungsmittelmoleküle dann vermutlich weniger definiert angeordnet.

Abbildung 8.5: Wechselwirkung zwischen Li⁺ und Acetonitril. Die Zuordnung der Banden kann zum Beispiel bei Neelakantan [236] eingesehen werden.

8.5 Elektrolytische Leitfähigkeit von K₂S₂O₈ und LiKSO₄ und die maximale Differenzleitfähigkeit

Zur kinetischen Charakterisierung der Delithiierung von LFP mit Peroxodisulfat müssen sowohl die elektrolytische LF von $K_2S_2O_8$ als auch die des Produktes LiKSO₄ kalibriert werden. Die Leitfähigkeitsdifferenz der beiden Kurven kann als Reaktionskoordinate aufgefasst werden (Abb. 8.6).

Abbildung 8.6: Kalibrierung der elektrolytischen Leitfähigkeit von K₂S₂O₈ und LiKSO₄. Die Differenz der beiden Kurven kann als Reaktionskoordinate für die Verfolgung der Delithiierung von LFP in Wasser genutzt werden.

Es ist die Stöchiometrie der Delithiierungsreaktion zu berücksichtigen:

$$\text{LiFePO}_4 + \frac{1}{2} \text{K}_2 \text{S}_2 \text{O}_8 \rightarrow \text{FePO}_4 + \text{LiKSO}_4.$$
 (8.4)

Abbildung 8.7: Anfangsgeschwindigkeit der Delithiierung von LFP mit Peroxodisulfat für verschiedene Partikelgrößen.

Es wird des Weiteren davon ausgegangen, dass der Beitrag von LFP zur elektrolytischen Leitfähigkeit vernachlässigbar ist. Mit kleinerer Partikelgröße des LFP läuft die Delithiierung schneller (Abb. 8.7).

8.6 Avrami-Exponenten nach Humphreys und Hatherly

Eine weitere formalkinetische Darstellung der möglichen Avrami-Exponenten und deren Bedeutung findet sich bei Humphreys und Hatherly [184] nach der allgemeinen Form

$$X_V = 1 - \exp(-Bt^n).$$
 (8.5)

Wachstumsdimensionalität	Site Saturation	konstante	abnehmende
	Nukleation	Nukleationsrate	Nukleationsrate
3-dim.	3	4	3 - 4
2-dim.	2	3	2 - 3
1-dim.	1	2	1 - 2

Tabelle 8.2: Ideale JMAK-Exponenten

Unter "site saturation nucleation" soll der Fall einer sehr schnell abnehmenden Nukleationsrate zu Beginn des Prozesses verstanden werden. Dies ist zum Beispiel der Fall, wenn die Reaktion (Phasenumwandlung) an einer bestehenden Oberfläche beginnt, und damit alle "Keime" bereits vorhanden sind. Der Fall einer zunehmenden Nukleationsrate ist demnach durch die Theorie nicht abgedeckt. Nach einer Nukleationsphase setzt das Wachstum der neuen Phase ein. Durch den Zusammenstoß mehrerer wachsender Bereiche nimmt die Wachstumsgeschwindigkeit der neu zu bildenden Phase dann irgendwann zwangsläufig wieder ab (Abb. 8.8).

Abbildung 8.8: Typische Kristallisationskinetik (erweitert nach [184]).

8.7 XPS-Studie an LFP - die Cl 2s - Region

Von LFP angefertigte XP-Spektren zeigen, dass keinerlei Cl-Spezies (unterhalb der Nachweisgrenze) im Produkt eingebaut werden (Abb. 8.9). Dies ist ein großer Vorteil der Chloridbasierten Synthese, da, wie im Teil Synthese gezeigt, die Gefahr von Sulfatverunreinigungen relativ groß ist.

Abbildung 8.9: XPS-Studie der Cl2s - Region: anionische Verunreinigungen in LFP.

8.8 Delithiierung von LiFePO₄ mit KMnO₄

Die Delithiierung mit KMnO₄ erfolgt gemäß der Reaktionsgleichung

$$2 H_2O + 3 \text{LiFePO}_4 + \text{KMnO}_4 \rightarrow \text{MnO}_2 + 3 \text{FePO}_4 + \text{KOH} + 3 \text{LiOH}$$
 (8.6)

Bei den vorherrschenden Bedingungen wird das Permanganat-Ion bis zum Braunstein reduziert. Im UV-Vis Spektrum ist ein isosbestischer Punkt bei 473 nm erkennbar. Dieser kann als Gleichgewicht zwischen Mn(VII)-Spezies und Mn(IV)-Spezies interpretiert werden (vgl. [237, 238]).

Abbildung 8.10: UV-Vis-Studie der Delithiierung von LFP mit KMnO₄.

Das Entstehen von Braunstein und die starke Änderung des pH-Wertes machen eine kinetische Untersuchung wenig vielversprechend.

8.9 C_p von LiFePO₄ - experimentelle Daten und thermodynamische Funktionen

Tab. 8.3 zeigt die experimentell erhaltenen C_p -Daten und die entsprechenden thermodynamischen Funktionen für Olivin-Typ LiFePO₄.

T/K	C _p /J K ⁻¹ mol ⁻¹	T/K	C _p /J K ⁻¹ mol ⁻¹	T/K	C _p /J K ⁻¹ mol ⁻¹
2,0323a	0,0162	19,9752a	3,4843	46,1408a	31,6489
2,2007a	0,0187	20,4891a	3,7465	46,3353a	32,1708
2,3832a	0,0224	21,0062a	3,9854	46,5546a	32,6824
2,5837a	0,0243	21,5126a	4,2599	46,7498a	33,2373
2,8033a	0,0271	22,0254a	4,5499	46,9687a	33,7666
3,0384a	0,0309	22,5378a	4,8336	47,1631a	34,333
3,2889a	0,0325	23,0498a	5,1327	47,3807a	34,9028
3,5643a	0,0401	23,564a	5,4312	47,5763a	35,5266
3,8627a	0,048	24,0763a	5,7426	47,7969a	36,1441
4,1858a	0,0562	24,5877a	6,0568	47,9912a	36,7903
4,5374a	0,059	25,0998a	6,4017	48,2083a	37,4305
4,9167a	0,0709	25,6117a	6,7477	48,4005a	38,1054
5,3317a	0,0742	26,1251a	7,0944	48,6194a	38,7014
5,7772a	0,0903	26,639a	7,451	48,815a	39,3007
6,2608a	0,10048	27,1504a	7,8352	49,0298a	39,7219
6,7839a	0,11964	27,6654a	8,2205	49,2221a	40,0276
7,3512a	0,13786	28,1807a	8,6261	49,442a	39,7324
7,9671a	0,17338	28,6917a	9,0354	49,6388a	38,8286
8,6377a	0,219701	29,2029a	9,4703	49,851a	36,6389
9,3603a	0,27637	29,7107a	9,9166	50,047a	33,8419
10,1438a	0,36436	30,2234a	10,3613	50,2696a	30,6863
10,2324a	0,4603	30,7347a	10,8222	50,4658a	28,5174
10,7501a	0,5352	31,2449a	11,3059	50,6892a	26,6603
11,2601a	0,6153	31,7555a	11,7765	50,8867a	25,5946
11,7715a	0,7056	32,2659a	12,2789	51,0845a	24,8608
12,2837a	0,8082	32,7782a	12,7776	51,2944a	24,3029
12,7989a	0,9167	33,2916a	13,2849	51,4989a	23,89
13,314a	1,0384	33,8015a	13,8081	51,7046a	23,5843
13,8253a	1,1713	34,3119a	14,3462	51,8999a	23,3564
14,339a	1,3143	34,8245a	14,9043	52,1196a	23,13
14,8517a	1,4665	35,3353a	15,4578	52,3183a	22,9896
15,3636a	1,6311	35,8464a	16,0255	52,5293a	22,8822
15,876a	1,7973	37,0196a	17,1849	52,7199a	22,8341
16,3886a	1,977	38,8878a	19,1864	52,9434a	22,7379
16,9011a	2,1686	40,7539a	21,7984	53,1392a	22,6885
17,4129a	2,3633	42,6191a	24,7426	53,3516a	22,6616
17,9262a	2,5711	44,4836a	28,1003	53,5516a	22,6625
18,4393a	2,7898	45,5014a	30,1824	53,7665a	22,656
18,9514a	3,0145	45,7215a	30,6682	53,9645a	22,6585
19,4654a	3,2493	45.9245a	31.152	54.1753a	22.6909

Tabelle 8.3: Wärmekapazität von Lithiumeisenphosphat - experimentelle Daten; a - PPMS, b - Micro-DSC, c - Sensys

T/K	C _p /J K ⁻¹ mol ⁻¹	T/K	C _p /J K ⁻¹ mol ⁻¹	T/K	C _p /J K ⁻¹ mol ⁻¹
54,3797a	22,6825	117,2244a	59,2968	354,182c	136,2731
54,5891a	22,7292	119,2741a	60,3904	364,098c	137,8822
54,793a	22,7683	119,9644a	60,8659	374,012c	140,1855
55,0015a	22,8164	120,6939a	61,1226	383,927c	142,87797
55,2018a	22,8517	121,4049a	61,5547	393,842c	145,4547
55,4106a	22,9061	122,1178a	61,9291	403,757c	147,0323
55,6169a	22,9497	122,8294a	62,2438	413,671c	148,9254
56,6084a	23,2846	123,54a	62,6345	423,587c	150,3453
57,7064a	23,6854	124,2498a	63,0975	433,505c	151,5548
58,7865a	24,1726	124,9643a	63,4536	443,42c	152,8169
59,8944a	24,6657	125,6784a	63,8432	453,337c	154,0263
60,9741a	25,1946	126,3597a	64,115	463,252c	155,0255
62,0647a	25,7793	127,0706a	64,4882	473,162c	156,2876
63,1501a	26,3565	127,8104a	64,9566	483,068c	157,5497
64,2423a	26,9675	131,3619a	66,8199	492,976c	159,0221
65,3256a	27,5947	141,3153a	71,8189	502,886c	159,9686
66,4157a	28,2029	151,4607a	76,8042	512,794c	160,9678
67,5059a	28,8415	161,5447a	81,2347	522,702c	162,2299
68,5913a	29,4839	171,5987a	85,3586	532,611c	163,4394
69,6777a	30,1215	181,6757a	89,2059	542,518c	165,017
70,7693a	30,7777	191,7759a	93,1552	552,429c	166,2265
71,1537a	31,2609	201,8411a	97,4932	562,346c	167,1204
73,2423a	32,5345	211,7786a	100,3002	572,263c	168,3299
75,3419a	33,86	222,0116a	103,2694	582,173c	169,592
77,4316a	35,1687	232,1017a	105,6603	592,078c	170,3808
79,532a	36,4587	242,0414a	108,2194	601,987c	171,0644
81,6178a	37,8028	252,1495a	110,6047	611,902c	172,9575
83,7183a	39,1483	262,3364a	112,6691	621,814c	173,5886
85,8144a	40,4141	272,4308a	114,9676	631,729c	174,2196
87,9021a	41,686	282,5597a	117,7939	641,648c	174,9033
90,0006a	42,913	292,5537a	120,0637	651,561c	175,7446
92,0904a	44,2398	302,664a	120,4903	661,467c	176,7964
94,1931a	45,5903	293,16b	120,85193	671,377c	177,4274
96,2827a	46,8908	313,16b	125,3927	681,295c	178,0059
98,3753a	48,1772	333,16b	127,9697	691,229c	178,7421
100,4693a	49,4411	353,16b	130,0525	701,161c	179,4257
102,563a	50,6714	284,868c	120,7916	711,076c	180,6352
104,6512a	52,0777	294,78c	122,5269	720,998c	181,5818
106,7328a	53,1712	304,611c	126,1449	730,926c	182,3706
108,8455a	54,3715	314,529c	128,2273	740,847c	183,4749
110,9423a	55,5352	324,445c	129,6787	750,771c	184,5266
113,0165a	56,6162	334,358c	132,1713	760,692c	185,7361
115,1326a	58,0549	344,269c	134,7586	770,606c	186,893

T/K	C _p /J K ⁻¹ mol ⁻¹	$\Delta S^{\circ}_{m}/J~K^{-1}~mol^{-1}$	$\Delta H/T_{\rm m}^{\circ}/J~{ m mol}^{-1}$	$\phi^{\circ}_{ m m}$ /J K ⁻¹ mol ⁻¹
5	0,0481	0,0577	0,0281	0,0296
10	0,3419	0,1645	0,0977	0,0668
15	1,5136	0,5534	0,382	0,1714
20	3,4978	1,2408	0,8945	0,3463
25	6,3336	2,3092	1,6837	0,6255
30	10,1688	3,7848	2,7598	1,025
35	15,0936	5,7078	4,1491	1,5587
40	20,6866	8,0782	5,842	2,2362
42	23,7297	9,1583	6,605	2,5533
45	29,1332	10,9624	7,8787	3,0837
46	31,3083	11,6258	8,3503	3,2755
47	33,8899	12,327	8,8519	3,4751
48	36,7739	13,07	9,3863	3,6837
49	39,7269	13,8588	9,9547	3,9041
49,24	39,9896	14,0554	10,096	3,9593
50	34,5244	14,6967	10,5115	4,1852
51	25,145	15,2088	10,8115	4,3973
52	23,2506	15,6739	11,0586	4,6153
53	22,7179	16,1079	11,2777	4,8302
54	22,6625	16,5304	11,4865	5,0439
55	22,816	16,948	11,6907	5,2573
60	24,7146	19,0146	12,6989	6,3157
65	27,4092	21,0879	13,7275	7,3604
70	30,3126	23,2292	14,8001	8,4291
80	36,8352	27,7095	17,1585	10,551
90	43,3894	32,4113	19,6849	12,7264
100	49,48	37,2747	22,3217	14,953
110	55,2097	42,2453	25,0267	17,2186
120	60,6522	47,2793	27,7663	19,513
130	65,8507	52,3426	30,5138	21,8288
140	70,8261	57,4092	33,2474	24,1618
150	75,5854	62,4595	35,9495	26,51
160	80,1287	67,479	38,6064	28,8726
170	84,4538	72,4569	41,2076	31,2493
180	88,5589	77,3853	43,7459	33,6394
190	92,444	82,2586	46,2163	36,0423
200	96,1114	87,0728	48,6164	38,4564
210	99,5655	91,8251	50,9458	40,8793
220	102,8127	96,514	53,2055	43,3085

Tabelle 8.4: Thermodynamische Funktionen von Lithiumeisenphosphat
T/K	C _p /J K ⁻¹ mol ⁻¹	$\Delta \mathbf{S}^{\circ}_{\mathrm{m}}$ /J K ⁻¹ mol ⁻¹	Δ H/T $_{ m m}^{\circ}$ /J mol $^{-1}$ K $^{-1}$	$\phi^{\circ}_{ m m}$ /J K ⁻¹ mol ⁻¹
230	105,861	101,1384	55,3978	45,7406
240	108,7192	105,698	57,5258	48,1722
250	111,3969	110,1929	59,5935	50,5994
260	113,9043	114,6234	61,6049	53,0185
270	116,2513	118,9902	63,5643	55,4259
280	118,448	123,2942	65,4759	57,8183
290	120,5041	127,5365	67,3437	60,1928
298,15	122,0825	130,9489	68,836	62,1129
300	122,4291	131,718	69,1712	62,5468
320	128,9591	139,9035	72,7174	67,1861
340	133,4088	147,8607	76,1333	71,7274
360	137,6141	155,5995	79,4298	76,1697
380	141,5662	163,1299	82,6108	80,5191
400	145,2648	170,4615	85,6758	84,7857
420	148,7151	177,6035	88,6221	88,9814
440	151,9266	184,5647	91,4476	93,1171
460	154,912	191,3532	94,152	97,2012
480	157,6864	197,977	96,7387	101,2383
500	160,2667	204,4432	99,2143	105,2289
520	162,6712	210,7588	101,5883	109,1705
540	164,9194	216,9301	103,8717	113,0584
560	167,0315	222,9632	106,075	116,8882
580	169,0285	228,8636	108,2067	120,6569
600	170,9321	234,6366	110,2722	124,3644
620	172,7642	240,2871	112,2731	128,014
640	174,5471	245,8199	114,2084	131,6115
660	176,3037	251,2391	116,0761	135,163
680	178,0568	256,5489	117,8758	138,6731
700	179,8295	261,7532	119,6121	142,1411
720	181,6452	266,8555	121,2959	145,5596
740	183,5273	271,8592	122,6952	149,164
760	185,4995	276,7676	124,5655	152,2021

Literaturverzeichnis

- [1] http://www.zitate-online.de/autor/feynman-richard-p/ (Januar 2014).
- [2] LENNOX, JOHN: *Stephen Hawking, das Universum und Gott.* SCM R. Brockhaus, 3. Auflage, S. 31, 2014.
- [3] Schachgroßmeister Jörg Hickel über seinen Gegner Arthur Jussupow in der Fernsehsendung "Schach der Großmeister" 1999, WDR.
- [4] SCHIRACH, FERDINAND VON: *Der Fall Collini*. Piper Verlag, 2011.
- [5] JIAJUN CHEN, JIANMING BAI, HAIYAN CHEN und JASON GRAETZ: In Situ Hydrothermal Synthesis of LiFePO₄ Studied by Synchrotron X-ray Diffraction. J. Phys. Chem. Lett., 2:1874–1878, 2011.
- [6] XUE QIN, XIAOHUI WANG, HUIMIN XIANG, JIE XIE, JINGJING LI und YANCHUN ZHOU: Mechanism for Hydrothermal Synthesis of LiFePO₄ Platelets as Cathode Materials for Lithium-Ion Batteries. J. Phys. Chem., 114:16806–16812, 2010.
- [7] JINGSI YANG, JUN JOHN XU: Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO₄ (M = Fe, Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route. J. Electrochem. Soc., 153:A716–A723, 2006.
- [8] COREY T. LOVE, ANNA KOROVINA, CHRISTOPHER J. PATRIDGE, KAREN E. SWIDER-LYONS, MARK E. TWIGG und DAVID E. RAMAKER: *Review of LiFePO₄ Phase Transition Mechanism and New Observations from X-ray Absorption Spectroscopy.* J. Electrochem. Soc., 160:A3153–A3161, 2013.
- [9] RATNASABAPATHY G. IYER, CHARLES DELACOURT, CHRISTIAN MASQUELIER, JEAN-MARIE TARASCON und ALEXANDRA NAVROTSKY: Energetics of LiFePO₄ and Polymorphs of Its Delithiated Form, FePO₄. Electrochem. Solid-State Lett., 9:A46–A48, 2006.
- [10] K. RAUSCHER, J. VOIGT, I. WILKE, K.-T. WILKE und R. FRIEBE: *Chemische Tabellen und Rechentafeln für die analytische Praxis*. Verlag Harri Deutsch, 2000.

- [11] GESTIS Stoffdatenbank, Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (14.02.2014).
- [12] Sigma Aldrich Sicherheitsdatenblatt K₃PO₄ (abgerufen am 12.02.2014).
- [13] https://schuldatenbank.sachsen.de/index.php?id=420&extern_eid=995 (September 2014).
- [14] K. SEKAI, H. AZUMA, A. OMARU, S. FUJITA, H. IMOTO, K.YAMAURA und Y. NISHI: Lithium ion rechargeable cells with LiCoO₂ and carbon electrodes. J. Power Sources, 43:241–244, 1993.
- [15] Boeing: Dreamliner absolviert ersten Testflug nach Batteriepanne. Spiegel Online, 10. 02. 2013.
- [16] Boeings Batterie-Probleme: Feuer im Dreamliner ließ sich nicht löschen. Spiegel Online, 08.03.2013.
- [17] HUGGINS, ROBERT A.: Energy Storage. Springer, 2010.
- [18] http://globalaviationreport.com/2014/06/29/boeing-787-dreamliner-is-reachingnew-heights-a-video-report/.
- [19] http://www.das-energieportal.de/startseite/nachrichtendetails/datum/2006/09/12/ intrag/windenergie-als-job-maschine/.
- [20] http://plpnetwork.com/2012/11/21/teaching-smartphones/.
- [21] http://www.reichelt.de/Industriezellen/LIFEPO4-26650FPZ/3//index.html? ACTION=3&GROUPID=4084&ARTICLE=86863&OFFSET=16&.
- [22] http://samsungnotebook2.wordpress.com/tag/samsung-notebook-phone/.
- [23] http://www.stuttgarter-nachrichten.de/inhalt.wie-klingt-die-zukunft-die-suche-nachdem-sound-fuer-e-autos.97d390a9-db87-4aba-a83e-dddc03749c28.html.
- [24] JACKSON, KENNETH A.: Kinetic Prosseses. WILEY-VCH, 2004.
- [25] FEYNMAN, RICHARD: Feynman Vorlesungen über Physik, Band 1 Mechanik, Strahlung, Wärme. Oldenburg, 2007.
- [26] THIELO, E.: Über die Isotypie zwischen Phosphaten der allgemeinen Zusammensetzung MeLi[PO₄] und Silikaten der Olivin-Monticellit-Reihe. Naturwissenschaften, 29:239, 1941.

- [27] WHITTINGHAM, M. S.: *Electrical Energy Storage and Intercalation Chemistry*. Science, 192:1126–1127, 1976.
- [28] A. K. PADHI, K. S. NANJUNDASWAMY, J. B. GOODENOUGH: Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc., 144:1188–1194, 1997.
- [29] PETER W. ATKINS, JULIO DE PAULA: Physikalische Chemie. WILEY-VCH, 2006.
- [30] GREGORY C. FARRINGTON, JAQUELINE L. BRIANT: *Fast Ionic Transport in Solids*. Science, 204:1371–1379, 1979.
- [31] MÜLLER, U.: Anorganische Strukturchemie. Teubner, 1996.
- [32] THOMAS CHRISTEN, MARTIN W. CARLEN: Theory of Ragone plots. J. Power Sources, 91:210–216, 2000.
- [33] RAGONE, D. V.: Mid-Year Meeting of the Society of Automotive Engineers, Detroit, MI, Review of Battery Systems for Electrically Powered Vehicles. 1968.
- [34] TSUYOSHI SASAKI, YOSHIO UKYO, PETR NOVAK: *Memory effect in a lithium-ion battery*. Nature Mater., 12:569–575, 2013.
- [35] HUGGINS, ROBERT A.: Advanced Batteries. Springer, 2009.
- [36] SHOUFENG YANG, PETER Y. ZAVALIJ, M. STANLEY WHITTINGHAM: *Hydrother*mal synthesis of lithium iron phosphate cathodes. Electrochem. Commun., 3:505–508, 2001.
- [37] NIKOLAY DIMOV, SATOSHI KUGINO, MASAKI YOSHIO: Carbon-coated silicon as anode material for lithum ion batteries: advantages and limitations. Electrochimica Acta, 48:1579–1587, 2003.
- [38] HOSSEIN MALEKI, GUOPING DENG, INNA KERZHNER-HALLER, ANABA ANANI und JASON N. HOWARD: Thermal Stability Studies of Binder Materials in Anodes for Lithium-Ion Batteries. J. Electrochem. Soc., 147:4470–4475, 2000.
- [39] MASAKI YOSHIO, HONGYU WANG, KENJI FUKADA, TATSUO UMENO, NIKOLAY DIMOV und ZEMPACHI OGUMI: Carbon-Coated Si as Lithium-Ion Battery Anode Material. J. Electrochem. Soc., 149:1598–1603, 2002.
- [40] ROBERT DOMINKO, MIRAN GABERSCEK, JERNEJ DROFENIK, MARJAN BELE und STANE PEJOVNIK: A Novel Coating Technology for Preparation of Cathodes in Li-Ion Batteries. Electrochem. Solid-State Lett., 4:A187–A190, 2001.

- [41] A. GUERFI, M. KANEKO, M. PETITCLERC, M. MORI und K. ZAGHIB: LiFePO₄ water-soluble binder electrode for Li-ion batteries. J. Power Sources, 163:1047–1052, 2007.
- [42] XU, KANG: Nonaqueous Liquid Electrolyte for Lithium-Based Rechargeable Batteries. Chem. Rev., 104:4303–4417, 2004.
- [43] ZHANG, SHENG SHUI: A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources, 164:351–364, 2007.
- [44] OZAN TOPRAKCI, HATICE A. K. TOPRAKCI, LIWEN JI und XIANGWU ZHANG: Fabrication and Electrochemical Characteristics of LiFePO₄ Powders for Lithium-Ion Batteries. KONA Powder and Particle Journal, 28:50–73, 2010.
- [45] D. LINDEN, T. B. REDDY: Handbook of Batteries. McGraw-Hill, 2002.
- [46] MASAKI YOSHIO, RALPH J. BRODD, AKIYA KOZAWA: *Lithium Ion Batteries*. Springer, 2009.
- [47] TSUTOMU OHZUKU, RALPH J. BRODD: An overview of positive-electrode materials for advanced lithium ion batteries. J. Power Sources, 174:449–456, 2007.
- [48] OZAWA, KAZUNORI (Herausgeber): *Lithium Ion Reachargeable Batteries*. WILEY-VCH, 2009.
- [49] BRUCE, PETER G.: Solid-state chemistry of lithium power sources. Chem. Commun., Seiten 1817–1824, 1997.
- [50] PELED, E.: The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems - The Solid Electrolyte Interphase Model. J. Electrochem. Soc., 126:2047–2051, 1979.
- [51] SHENGSHUI ZHANG, MICHAEL S. DING, KANG XU, JAN ALLEN und T. RICHARD JOW: Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes. Electrochem. Solid-State Lett., 4:A206–A208, 2001.
- [52] K. EDSTRÖM, T. GUSTAFSSON, J. O. THOMAS: The cathode-electrolyte interface in the Li-ion Battery. Electrochimica Acta, 50:397–403, 2004.
- [53] A. K. PADHI, K. S. NANJUNDASWAMY, C. MASQUELIER, S. OKADA und J. B. GOODENOUGH: Effect of Structure on the Fe³⁺/Fe²⁺ Redox Couple in Iron Phosphates. J. Electrochem. Soc., 144:1609–1613, 1997.

- [54] TSUTOMU OHZUKU, MASAKI KITAGAWA, TAKETSUGU HIRAI: Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. J. Electrochem. Soc., 137:769– 775, 1990.
- [55] M. G. S. R. THOMAS, W. I. F. DAVID, J. B. GOODENOUGH: Synthesis and Structural Characterization of the Normal Spinel Li[Ni₂]O₄. Mat. Res. Bull., 20:1137–1146, 1985.
- [56] K. MIZUSHIMA, P. C. JONES, P. J. WISEMAN und J. B. GOODENOUGH: Li_xCoO₂ (0<x<1): A New Cathode Material for Batteries of High Energy Density. Mat. Res. Bull., 15:783–789, 1980.
- [57] YASUO TAKEDA, KAZUAKI NAKAHARA, MOTOAKI NISHIJIMA, NOBUYUKI IMA-NISHI und OSAMU YAMAMOTO: Sodium Deintercalation from Sodium Iron Oxide. Mater. Res. Bull., 29:659–666, 1994.
- [58] GRIFFEN, DANA T.: Silicate Crystal Chemistry. Oxford University Press, 1992.
- [59] DENIS Y. W. YU, CHRISTOPHER FIETZEK, WOLFGANG WEYDANZ, KAZUNO-RI DONOUE, TAKAO INOUE, HIROSHI KUROKAWA und SHIN FUJITANI: Study of LiFePO₄ by Cyclic Voltammetry. J. Electrochem. Soc., 154:A253–A257, 2007.
- [60] M. GAUTHIER, C. MICHOT, N. RAVET, M. DUCHESNEAU, J. DUFOUR, G. LIANG, J. WONTCHEU, L. GAUTHIER und D. D. MACNEIL: *Melt Casting LiFePO₄ I. Synthesis and Characterization.* J. Electrochem. Soc., 157:A453–A462, 2010.
- [61] BENJAMIN DAHERON, DEAN D. MACNEIL: Study of LiFePO₄ synthesized using a molten method with varying stoichiometries. J. Solid State Electrochem., 15:1217– 1225, 2011.
- [62] G. X. WANG, S. L. BEWLEY, K. KONSTANTINOV, H. K. LIU, S. X. DOU und J.-H. AHN: *Physical and electrochemical properties of doped lithium iron phosphate electrodes*. Electrochimica Acta, 50:443–447, 2004.
- [63] SUNG-YOON CHUNG, JASON T. BLOKING, YET-MING CHIANG: Electronically conductive Phospho-olivines as lithium storage electrodes. Nature Materials, 1:123– 128, 2002.
- [64] FEI ZHOU, KISUK KANG, THOMAS MAXISCH, GERBRAND CEDER und DANE MORGAN: *The electronic structure and band gap of LiFePO₄ and LiMnPO₄*. Solid State Commun., 132:181–186, 2004.

- [65] A. YAMADA, S. C. CHUNG, K. HINOKUMA: Optimized LiFePO₄ for Lithium Battery Cathodes. J. Electrochem. Soc., 148:A224–A229, 2001.
- [66] JIANG-FENG NI, HENG-HUI ZHOU, JI-TAO CHEN und XIN-XIANG ZHANG: Molten salt synthesis and electrochemical properties of spherical LiFePO₄ particles. Materials Letters, 61:1260–1264, 2007.
- [67] YONGGANG WANG, YARONG WANG, EIJI HOSONO, KAIXUE WANG und HAOS-HEN ZHOU: The design of a LiFePO₄/Carbon Nanocomposite With a Core-Shell Strucure and Its Synthesis by an In Situ Polymerization Restriction Method. Angew. Chem. Int. Ed., 47:7461–7465, 2008.
- [68] DRAGANA JUGOVIC, MIODRAG MITRIC, NIKOLA CVJETICANIN, BOSTJAN JAN-CAR, SLAVKO MENTUS und DRAGAN USKOKOVIC: Synthesis and characterization of LiFePO₄/C composite obtained by sonochemical method. Solid State Ionics, 179:415–419, 2008.
- [69] DONG-HAN KIM, JAEKOOK KIM: Synthesis of LiFePO₄ Nanoparticles in Polyol Medium and Their Electrochemical Properties. Electrchem. Solid-State Lett., 9:A439– A442, 2006.
- [70] BYOUNGWOO KANG, GERBRAND CEDER: Battery materials for ultrafast charging and discharging. Nature, 458:190–193, 2009.
- [71] VERONICA PALOMARES, AINTZANE GONI, IZASKUN GIL DE MURO, IRATXE DE MEATZA, MIGUEL BENGOECHEA, OSCAR MIGUEL und TEOFILO ROJO: New freeze-drying method for LiFePO₄ synthesis. J. Power Sources, 171:879–885, 2007.
- [72] F. SAUVAGE, E. BAUDRIN, M. MORCRETTE und J.-M. TARASCON: Pulsed Laser Deposition and Electrochemical Properties of LiFePO₄ Thin Films. Electrochem. Solid-State Lett., 7:A15–A18, 2004.
- [73] J. XIE, N. IMANISHI, T. ZHANG, A. HIRANO, Y. TAKEDA und O. YAMAMOTO: Li-ion diffusion kinetic in LiFePO₄ thin film prepared by radio frequency magnetron sputtering. Electrochim. Acta, 54:4631–4637, 2009.
- [74] ATSUO YAMADA, HIROSHI KOIZUMI, SHIN-ICHI NISHIMURA, NORIYUKI SO-NOYAMA, RYOJI KANNO, MASAO YONEMURA, TATSUYA NAKAMURA und YO KOBAYASHI: *Room-temperature miscibility gap in Li_xFePO₄*. Nature Mater., 5:357–360, 2006.

- [75] MARNIX WAGEMAKER, DEEPAK P. SINGH, WOUTER J. H. BORGHOLS, UGO LAFONT, LUCAS HAVERKATE, VANESSA K. PETERSON und FOKKO M. MUL-DER: Dynamic Solubility Limits in Nanosized Olivine LiFePO₄. J. Am. Chem. Soc., 133:10222–10228, 2011.
- [76] H. MAZOR, D. GOLODNITSKY, L. BURSTEIN, A. GLADKICH und E. PELED: Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3Dmicrobatteries. J. Power Sources, 198:264–272, 2012.
- [77] BO JIN, HAL-BO GU: Preparation and characterization of LiFePO₄ cathode materials by hydrothermal method. Solid State Ionics, 178:1907–1914, 2008.
- [78] German patent: DE10353266A1 2005, Lithiumeisenphosphat, Verfahren zu seiner Herstellung und seine Verwendung als Elektrodenmaterial, Süd-Chemie.
- [79] JIAJUN CHEN, MICHAEL J. VACCHIO, SHIJUN WANG, NATALYA CHERNOVA, PE-TER Y. ZAVALIJ und M. STANLEY WHITTINGHAM: The Hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics, 178:1676–1693, 2008.
- [80] JIAJUN CHEN, JASON GRAETZ: Study of Antisite Defects in Hydrothermal Prepared LiFePO₄ by in Situ X-ray Diffraction. Appl. Mater. Interfaces, 3:1380–1384, 2011.
- [81] P. AXMANN, C. STINNER, M. WOHLFAHRT-MEHRENS, A. MAUGER, F. GENDRON und C. M. JULIEN: Nonstoichiometric LiFePO₄: Defects and Related Properties. Chem. Mater., 21:1636–1644, 2009.
- [82] MYEONG-HEE LEE, TAE-HEE KIM, YOUNG SOO KIM und HYUN-KON SONG: Precipitation Revisited: Shape Control of LiFePO₄ Nanoparticles by Combinatorial Precipitation. J. Phys. Chem. C, 115:12255–12259, 2011.
- [83] XIUQIN OU, HAICHEN GU, YICHEN WU, JIANWEI LU und YANJUN ZHENG: Chemical and morphological transformation through hydrothermal process for LiFePO₄ preparation in organic-free system. Electrocimica Acta, 96:230–236, 2013.
- [84] LI-HUA HE, ZHONG-WEI ZHAO, XU-HENG LIU, AI-LIANG CHEN und XIU-FEN SI: Thermodynamic analysis of LiFePO₄ precipitation from Li-Fe(II)-P-H₂O system at 298 K. Trans. Nonferrous Met. Soc. China, 22:1766–1770, 2012.
- [85] ALEXEI V. CHURIKOV, ALEXANDER V. IVANISHCHEV, ARSENI V. USHAKOV, IRI-NA M. GAMAYUNOVA und ILYA A. LEENSON: Thermodynamic of LiFePO₄ Solid-Phase Synthesis Using Iron(II) Oxalate and Ammonium Dihydrophosphate as Precursors. J. Chem. Eng. Data, 58:1747–1759, 2013.

- [86] LIN LIN, YAQIONG WEN, JUNKE O, YONG GUO und DAN XIAO: X-ray diffraction study of LiFePO₄ synthesized by hydrothermal method. RSC Advances, 3:14652– 14660, 2013.
- [87] C. DELACOURT, P. POIZOT, S. LEVASSEUR und C. MASQUELIER: Size Effects on Carbon-Free LiFePO₄ Powders. Electrochem. Solid-State Lett., 9:A352–A355, 2006.
- [88] CRAIG A. J. FISHER, M. SAIFUL ISLAM: Surface structures and crystal morphologies of LiFePO₄: relevance to electrochemical behavior. J. Mater. Chem., 18:1209– 1215, 2008.
- [89] MEHRER, HELMUT: Diffusion in Solids, Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer, 2007.
- [90] NEIL A. CAMPBELL, JANE B. REECE: *Biologie*. Pearson, 2009.
- [91] MIRAN GABERSCEK, ROBERT DOMINKO, JANEZ JAMNIK: Is small particle size more important than carbon coating? An example study on LiFePO₄ cathodes. Electrochemistry Communications, 9:2778–2783, 2007.
- [92] CHARLES R. SIDES, FAUSTO CROCE, VANEICA Y. YOUNG, CHARLES R. MAR-TIN und BRUNO SCROSATI: A High-Rate, Nanocomposite LiFePO₄/Carbon Cathode. Electrochem. Solid-State Lett., 8:A484–A487, 2005.
- [93] HO CHUL SHIN, WON IL CHO, HO JANG: Electrochemical properties of carboncoated LiFePO₄ cathode using graphite, carbon black, and acetylene black. Electrochim. Acta, 52:1472–1476, 2006.
- [94] DEYU WANG, HONG LI, ZHAOXIANG WANG, XIAODONG WU, YUCHENG SUN, XUEJIE HUANG und LIQUAN CHEN: New solid-state synthesis routine and mechanism for LiFePO₄ using LiF as lithium Precursor. J. Solid State Chem., 177:4582– 4587, 2004.
- [95] ROBERT DOMINKO, MIRAN GABERSCEK, JERNEJ DROFENIK, MARJAN BELE, STANE PEJOVNIK und JANKO JAMNIK: The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources, 119-121:770–773, 2003.
- [96] JAE-KWANG KIM, GOURI CHERUVALLY, JAE-WON CHOI, JONG-UK KIM, JOU-HYEON AHN, GYU-BONG CHO, KI-WON KIM und HYO-JUN AHN: Effect of mechanical activation process parameters on the properties of LiFePO₄ cathode material. J. Power Sources, 166:211–218, 2007.

- [97] H. LIU, Q. CAO, L. J. FU, C. LI, Y. P. WU und H. Q. WU: Doping effects of zinc on LiFePO₄ cathode material for lithium ion batteries. Electrochem. Commun., 8:1553– 1557, 2006.
- [98] RUHUL AMIN, PALANI BALAYA, JOACHIM MAIER: Anisotropy of Electronic and Ionic Transport in LiFePO₄ Single Crystals. Electrochem. Solid-State Lett., 10:A13– A16, 2007.
- [99] NATHALIE RAVET, ALI ABOUIMRANE, MICHAEL ARMAND: From our readers: On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature Mater., 2:702, 2003.
- [100] JANINA MOLENDA, ADRZEJ STOKLOSA, TADEUSZ BAK: Modifications in the electronic structure of cobalt bronze Li_xCoO_2 and the resulting electrochemical properties. Solid State Ionics, 36:53–58, 1989.
- [101] SUNG-YOON CHUNG, JASON T. BLOKING, YET-MING CHIANG: From our readers: On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature Mater., 2:702–703, 2003.
- [102] G. X. WANG, S. BEWLEY, JANE YAO, J. H. AHN, S. X. DOU und H. K. LIU: Characterization of $LiM_xFe_{1-x}PO_4$ (M=Mg, Zr, Ti) Cathode Materials Prepared by the Sol-Gel Method. Electrochem. Solid-State Lett., 7:A503–A506, 2004.
- [103] YUCUI GE, XUEDONG YAN, JING LIU, XIANFA ZHANG, JIAWEI WANG, XING-GUANG HE, RONGSHUN WANG und HAIMING XIE: An optimized Ni doped LiFePO₄/C nanocomposite with excellent rate performance. Electrochim. Acta, 55:5886–5890, 2010.
- [104] XIAN ZHAO, XIAOZHEN TANG, LI ZHANG, MINSHOU ZHAO und JING ZHAI: Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO₄. Electrochim. Acta, 55:5899–5904, 2010.
- [105] NONGLAK MEETHONG, YU-HUA KAO, SCOTT A. SPEAKMAN und YET-MING CHIANG: Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Adv. Funct. Mater., 19:1060–1070, 2009.
- [106] BRIAN ELLIS, MARNIX WAGEMAKER, FOKKO M. MULDER und LINDA F. NA-ZAR: Comment on "Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties". Adv. Funct. Mater., 20:186–188, 2010.

- [107] M. SAIFUL ISLAM, DANIEL J. DRISCOLL, CRAIG A. J. FISHER und PETER R. SLATER: Atomic-Scale Investigation of Defects, Dopants and Lithium Transport in the LiFePO₄ Olivine-Type Battery Material. Chem. Mater., 17:5085–5092, 2005.
- [108] G. X. WANG, S. NEEDHAM, J. YAO, J. Z. WANG, R. S. LIU und H. K. LIU: A study on LiFePO₄ and its doped derivatives as cathode materials for lithium-ion batteries. J. Power Sources, 159:282–286, 2006.
- [109] NING HUA, CHENYUN WANG, XUEYA KANG, TUERDI WUMAIR und YING HAN: Studies of V doping for the LiFePO₄-based Li Ion batteries. J. Alloys Comp., 503:204– 208, 2010.
- [110] RUHUL AMIN, CHENGTIAN LIN, JOACHIM MAIER: Aluminium-doped LiFePO₄ single crystrals. Phys. Chem. Chem. Phys., 10:3519–3529, 2008.
- [111] RUHUL AMIN, CHENGTIAN LIN, JUBO PENG, KATJA WEICHERT, TOLGA ACAR-TÜRK, ULRICH STARKE und JOACHIM MAIER: Silicon-Doped LiFePO₄ Single Crystals: Growth, Conductivity Behavior, and Diffusivity. Adv. Funct. Mater., 19:1697– 1704, 2009.
- [112] J. L. DODD, R. YAZAMI, B. FULTZ: Phase Diagram of LiFePO₄. Electrochem. Solid-State Lett., 9:A151–A155, 2006.
- [113] V. LEMOS, S. GUERINI, J. MENDES FILHO, S. M. LALA, L. A. MONTORO und J. M. ROSOLEN: A new insight into the LiFePO₄ delithiation process. Solid State Ionics, 177:1021–1025, 2006.
- [114] H. J. TAN, J. L. DODD, B. FULTZ: Thermodynamic and Kinetic Stability of the Solid Solution Phase in Nanocrystalline Li_xFePO₄. J. Phys. Chem. C, 113:20527–20530, 2009.
- [115] C. V. RAMANA, A. MAUGER, F. GENDRON, C. M. JULIEN und K. ZAGHIB: Study of the Li-insertion/extraction process in LiFePO₄. J. Power Sources, 187:555–564, 2009.
- [116] N. WIBERG, E. WIBERG, E. HOLLEMAN: *Lehrbuch der Anorganischen Chemie*. Walter de Gruyter, 2007.
- [117] CHARLES DELACOURT, PHILIPPE POIZOT, JEAN-MARIE TARASCON und CHRIS-TIAN MASQUELIER: *The existence of a temperature-driven solid solution in* Li_xFePO_4 *for* $0 \le x \le 1$. Nature Mater., 4:254–260, 2005.

- [118] GENKI KOBAYASHI, SHIN-ICHI NISHIMURA, MIN-SIK PARK, RYOJI KANNO, MASATOMO YASHIMA, TAKASHI IDA und ATSUO YAMADA: *Isolation of Solid Solution Phases in Size-Controlled* Li_xFePO_4 at Room Temperature. Adv. Funct. Mater., 19:395–403, 2009.
- [119] ABIGAIL R. WIZANSKY, PAUL E. RAUCH, FRANCIS J. DISALVO: Powerful Oxidizing Agents for the Oxidative Deintercalation of Lithium from Tranistion-Metal Oxides. J. Solid State Chem., 81:203–207, 1989.
- [120] ANNA S. ANDERSSON, BEATA KALSKA, LENNART HÄGGSTRÖM und JOHN O. THOMAS: Lithium extraction/insertion in LiFePO₄: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics, 130:41–52, 2000.
- [121] GUOYING CHEN, XIANGYUN SONG, THOMAS J. RICHARDSON: Electron Microscopy Study of the LiFePO₄ to FePO₄ Phase Transition. Electrochem. Solid-State Lett., 9:A295–A298, 2006.
- [122] SHO FURUTSUKI, SAI-CHEONG CHUNG, SHIN-ICHI NISHIMURA, YUSUKE KUDO, KOICHI YAMASHITA und ATSUO YAMADA: Electrochromism of Li_xFePO₄ Induced by Intervalence Charge Transfer Transition. J. Phys. Chem. C, 116:15259–15264, 2012.
- [123] ATSUO YAMADA, HIROSHI KOIZUMI, NORIYUKI SONOYAMA und RYOJI KANNO: Phase Change in Li_xFePO₄. Electrochem. Solid-State Lett., 8:A409–A413, 2005.
- [124] L. LAFFONT, C. DELACOURT, P. GIBOT, M. YUE WU, P. KOOYMAN, C. MASQUE-LIER und J. MARIE TARASCON: Study of the LiFePO₄/FePO₄ Two-Phase System by High Resolution Electron Energy Loss Spectroscopy. Chem. Mater., 18:5520–5529, 2006.
- [125] GERRIT BOSCHLOO, ELIZABETH A. GIBSON, ANDERS HAGFELDT: Photomodulated Voltammetry of Iodide/Triiodide Redox Electrolyte and Its Relevance to Dye-Sensitized Solar Cells. J. Phys. Chem. Lett., 2:3016–3020, 2011.
- [126] JAYATI DATTA, ABHIJIT BHATTACHARYA, KIRON KUMAR KUNDU: Relative Standard Electrode Potentials of I₃⁻/I⁻, I₂/I₃⁻, and I₂/I⁻ Redox Couple and the Related Formation Constants of I₃⁻ in Some Pure and Mixed Dipolar Aprotic Solvents. Bull. Chem. Soc. Jpn., 61:1735–1742, 1988.
- [127] VENKAT SRINIVASAN, JOHN NEWMAN: Discharge Model for the Lithium Iron Phosphate Electrode. J. Electrochem. Soc., 151:A1517–A1529, 2004.

- [128] C. DELMAS, M. MACCARIO, L. CROGUENNEC, F. LE CRAS und F. WEILL: Lithium deintercalation in LiFePO₄ nanoparticles via a domino-cascade model. Nature Mater., 7:665–671, 2008.
- [129] JAN L. ALLEN, T. RICHARD JOW, JEFFREY WOLFENSTINE: Kinetic Study of the Electrochemical FePO₄ to LiFePO₄ Phase Transition. Chem. Mater., 19:2108–2111, 2007.
- [130] JAN L. ALLEN, T. RICHARD JOW, JEFFREY WOLFENSTINE: Correction to Kinetic Study of the Electrochemical FePO₄ to LiFePO₄ Phase Tranistion. Chem. Mater., 24:1400, 2012.
- [131] G. BRUNETTI, D. ROBERT, P. BAYLE-GUILLEMAUD, J. L. ROUVIERE, E. F. RAUCH, J. F. MARTIN, J. F. COLIN, F. BERTIN und C. CAYRON: Confirmation of the Domino-Cascade Model by LiFePO₄/FePO₄ Precession Electron Diffraction. Chem. Mater., 23:4515–4524, 2011.
- [132] KYU TAE LEE, WANG H. KAN, LINDA F. NAZAR: Proof of Intercrystallite Ionic Transport in LiMPO₄ Electrodes (M = Fe, Mn). J. Am. Chem. Soc., 131:6044–6045, 2009.
- [133] LIN GU, CHANGBAO ZHU, HONG LI, YAN YU, CHILIN LI, SUSUMU TSUKIMOTO, JOACHIM MAIER und YUICHI IKUHARA: Direct Observation of Lithium Staging in Partially Delithiated LiFePO₄ at Atomic Resolution. J. Am. Chem. Soc., 133:4661– 4663, 2011.
- [134] LIUMIN SUO, WENZE HAN, XIA LU, LIN GU, YONG-SHENG HU, HONG LI, DONGFENG CHEN, LIQUAN CHEN, SUSUMU TSUKIMOTO und YUICHI IKUHA-RA: *Highly ordered staging structural interface between LiFePO₄ and FePO₄*. Phys. Chem. Chem. Phys., 14:5363–5367, 2012.
- [135] A. S. ANDERSSON, J. O. THOMAS: The source of first-cycle capacity loss in LiFePO₄. J. Power Sources, 97-98:498–502, 2001.
- [136] C. DELACOURT, M. SAFARI: Analysis of lithium deinsertion/insertion in Li_yFePO₄ with a simple mathematical model. Electrochim. Acta, 56:5222–5229, 2011.
- [137] D. MORGAN, A. VAN DER VEN, G. CEDER: *Li Conductivity in* Li_xMPO_4 (M = Mn, *Fe, Co, Ni*) *Olivine Materials*. Electrochem. Solid-State Lett., 7:A30–A32, 2004.
- [138] XIQIAN YU, QI WANG, YONGNING ZHOU, HONG LI, XIAO-QING YANG, KYUNG-WAN NAM, STEVEN N. EHRLICH, SYED KHALID und YING SHIRLEY MENG: *High*

*rate delithiation behavior of LiFePO*₄ *studied by quick X-ray absorption spectroscopy*. Chem. Commun., 48:11537–11539, 2012.

- [139] PIER PAOLO PROSINI, MARIDA LISI, DANIELA ZANE und MAURO PASQUALI: Determination of the chemical diffusion coefficient of lithium in LiFePO₄. Solid State Ionics, 148:45–51, 2002.
- [140] DAMIAN BURCH, MARTIN Z. BAZANT: Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles. Nano Lett., 9:3795–3800, 2009.
- [141] NONGLAK MEETHONG, HSIAO-YING SHADOW HUANG, W. CRAIG CARTER und YET-MING CHIANG: Size-Dependent Lithium Miscibility Gap in Nanoscale Li_{1-x}FePO₄. Electrochem. Solid-State Lett., 10:A134–A138, 2007.
- [142] PIERRE GIBOT, MONTSE CASAS-CABANAS, LYDIA LAFFONT, STEPHANE LEVAS-SEUR, PHILIPPE CARLACH, STEPHANE HAMELET, JEAN-MARIE TARASCON und CHRISTIAN MASQUELIER: *Room-temperature single-phase Li insertion/extraction in nanoscale Li_xFePO₄*. Nature Mater., 7:741–747, 2008.
- [143] NEERAJ SHARMA, XIANWEI GUO, GUODONG DU, ZAIPING GUO, JIAZHOU WANG, ZHAOXIANG WANG und VANESSA K. PETERSON: Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO₄. J. Am. Chem. Soc., 134:7867–7873, 2012.
- [144] THOMAS, CHRISTIAN: *Thermochemische Untersuchungen zur Delithiierung von LiFePO*₄. Masterarbeit, TU Bergakademie Freiberg, 2013.
- [145] MARNIX WAGEMAKER, WOUTER J. H. BORGHOLS, FOKKO M. MULDER: Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li_xTiO₂. J. Am. Chem. Soc., 129:4323–4327, 2007.
- [146] SHYUE PING ONG, LEI WANG, BYOUNGWOO KANG und GERBRAND CEDER: Li-Fe-P-O₂ Phase Diagram from First Principles Calculations. Chem. Mater., 20:1798– 1807, 2008.
- [147] J. G. CREER, G. J. TROUP: The Magnetic Susceptibility of LiFePO₄ and LiCoPO₄.
 Phys. Lett., 32A:439–440, 1970.
- [148] JIYING LI, WEI TIAN, YING CHEN, JEREL L. ZARESTKY, JEFFREY W. LYNN und DAVID VAKNIN: Antiferromagnetism in the magnetoelectric effect single crystal LiMnPO₄. Phys. Rev. B, 79:144410, 2009.

- [149] IN KYU LEE, CHIN MO KIM, SAM JIN KIM und CHUL SUNG KIM: Structural and magnetic phase transition of mixed oilvines Li_xFe_{1-y}Ni_yPO₄ by lithium deintercalation.
 J. Appl. Phys., 111:07D722, 2012.
- [150] O. GARCIA-MORENO, M. ALVAREZ-VEGA, F. GARCIA-ALVARADO, J. GARCIA-JACA, J. M. GALLARDO-AMORES, M. L. SANJUAN und U. AMADOR: Influence of the Structure on the Electrochemical Performance of Lithium Tranistion Metal Phosphates as Cathodic Materials in Rechargeable Lithium Batteries: A New High-Pressure Form of LiMPO₄ (M = Fe and Ni). Chem. Mater., 13:1570–1576, 2001.
- [151] GUOBO ZENG, RICCARDA CAPUTO, DANIEL CARRIAZO, LI LUO und MARKUS NIEDERBERGER: Tailoring Two Polymorphs of LiFePO₄ by Efficient Microwave Synthesis: A Combined Experimental and Theoretical Study. Chem. Mater., 25:3399– 3407, 2013.
- [152] WOLFGANG DREYER, JANKO JAMNIK, CLEMENS GUHLKE, ROBERT HUTH, JO-ZE MOSKON und MIRAN GABERSCEK: *The thermodynamic origin of hysteresis in insertion batteries*. Nature Mater., 9:448–453, 2010.
- [153] S. L. SHANG, Y. WANG, Z. G. MEI, X. D. HUI und Z. K. LIU: Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO₄ (M = Mn, Fe, Co, and Ni): a comparative first-principles study. J. Mater. Chem., 22:1142– 1149, 2012.
- [154] G. J. SHU, M. W. WU, F. C. CHOU: Finite-size effect of antiferromagnetic transition and electronic structure in LiFePO₄. Phys. Rev. B, 86:161106(R), 2012.
- [155] http://gutezitate.com/autor/Carl-Friedrich-Gauß (September 2014).
- [156] E. STEGER, K. HERZOG: Infrarot- und Raman-Spektren von Phosphatlösungen. Z. Allg. Anorg. Chem., 331:169–182, 1964.
- [157] ALIAN WANG, JOHN J. FREEMAN, BRADLEY L. JOLLIFF und I-MING CHOU: Sulfates on Mars: A system Raman spectroscopic study of hydration state of magnesium sulfates. Geochimica et Cosmochimica Acta, 70:6118–6135, 2006.
- [158] B. S. W. DAWSON, D. E. IRISH, G. E. TOOGOOD: Vibrational Spectral Studies of Solutions at Elevated Temperatures and Pressures. 8. A Raman Spectral Study of Ammonium Hydrogen Sulfate Solutions and the HSO₄⁻-SO₄²⁻ Equilibrium. J. Phys. Chem., 90:334–341, 1986.

- [159] D. E. IRISH, H. CHEN: Equilibria and Proton Transfer in the Bisulfate-Sulfate System. J. Phys. Chem., 74:3796–3801, 1970.
- [160] VORTISCH, HERMANN: Beobachtung von Phasenübergängen in einzeln levitierten Schwefelsäuretröpfchen mittels Raman-Spektroskopie und elastischer Lichtstreuung. Doktorarbeit, Freie Universität Berlin, 2002.
- [161] RUDOLPH, W.: Structure and Dissociation of the Hydrogen Sulphate Ion in Aqueous Solution over a Broad Temperature Range. Z. Physikal. Chemie, 195:73–96, 1996.
- [162] RUDOLPH, WOLFRAM W.: Raman- and infrared-spectroscopic investigation of dilute aqueous phosphoric acid solutions. Dalton Trans., 39:9642–9653, 2010.
- [163] RUDOLPH, WOLFRAM W.: Raman-Spectroscopic Measurements of the First Dissociation Constant of Aqueous Phosphoric Acid Solution from 5 to 301 °C. J. Solution Chem., 41:630–645, 2012.
- [164] XUE QIN, JIEMIN WANG, JIE XIE, FANGZHI LI, LEI WEN und XIAOHUI WANG: Hydrothermal synthesized LiFePO₄ crystals with enhanced electrochemical properties: simultaneous suppression of crystal growth along [010] and antisite defect formation. Phys. Chem. Chem. Phys., 14:2669–2677, 2012.
- [165] LI WANG, XIANGMING HE, WENTING SUN, JIANLONG WANG, YADONG LI und SHOUSHAN FAN: Crystal Orientation Tuning of LiFePO₄ Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Lett., 12:5632–5636, 2012.
- [166] A. AIT-SALAH, J. DODD, A. MAUGER, R. YAZAMI, F. GENDRON und C. M. JU-LIEN: Structural and Magnetic Properties of LiFePO₄ and Lithium Extraction Effects. Z. Anorg. Allg. Chem., 632:1598–1605, 2006.
- [167] Handbook of The Elements and Native Oxides, 1999 XPS International, Inc.
- [168] PETER KAUSCH, MARTIN BERTAU, JENS GUTZMER und JÖRG MATSCHULLAT (Herausgeber): *Strategische Rohstoffe - Risikovorsorge*. Springer, 2014.
- [169] STAFFEL, THOMAS: Phosphate mehr als Dünger und Reiniger. Nachrichten aus der Chemie, 62:862–865, 2014.
- [170] KLAUS SCHWETLICK, HELGA DUNKEN, GERHARD PRETZSCHNER, KLAUS SCHERZER und HANS-JÜRGEN TILLER: Chemische Kinetik. VEB Deutscher Verlag für Grundstoffindustrie, 1975.

- [171] HULBERT, S. F.: Models for Solid state Reactions in Powdered Compacts: A Review.J. Br. Ceram. Soc., 6:11–20, 1969.
- [172] ROBIN J. FRANCIS, STEPHEN O'BRIEN, ANDREW M. FOGG, P. SHIV HALASYA-MI, DERMOT O'HARE, THIERRY LOISEAU und GERARD FEREY: *Time-Resolved In-Situ Energy and Angular Dispersive X-ray Studies of the Formation of the Microporous Gallophosphate ULM-5 under Hydrothermal Conditions*. J. Am. Chem. Soc., 121:1002–1015, 1999.
- [173] SHARAD B. MURDANDE, MICHAEL J. PIKAL, RAVI M. SHANKER und ROBIN H. BOGNER: Solubility Advantage of Amorphous Pharmaceutical: II. Application of Quantitative Thermodynamic Relationships for Prediction of Solubility Enhancement in Structurally Diverse Insoluble Pharmaceuticals. Pharm. Res., 27:2704–2714, 2010.
- [174] PIYUSH GUPTA, GARIMA CHAWLA, ARVIND K. BANSAL: Physical Stability and Advantage from Amorphous Celocoxib: The Role of Thermodynamic Quantities and Molecular Mobility. Molecular Pharmaceutics, 1:406–413, 2004.
- [175] BRUNO C. HANCOCK, MICHAEL PARKS: What is the true Solubility Advantage for Amorphous Pharmaceuticals? Pharm. Res., 17:397–404, 2000.
- [176] KE LIN, XIAOGUO ZHOU, YI LUO und SHILIN LIU: *The Microscopic Structure of Liquid Methanol from Raman Spectroscopy*. J. Phys. Chem. B, 114:3567–3573, 2010.
- [177] Prof. Robert A. Huggins während eines Vortrages der Summer School des SPP 1473 im September 2011 in Marktheidenfeld.
- [178] THOMAS, CHRISTIAN: Untersuchungen zur kinetischen Charakterisierung des Delithiierungsprozesses von LiFePO₄. Bacherlorarbeit, 2011.
- [179] IZUTSU, KOSUKE: Electrochemistry in Nonaqueous Solutions. WILEY-VCH, 2002.
- [180] XIAOGUANG WANG, DAVID M. STANBURY: Oxidation of Iodide by a Series of *Fe*(III) Complexes in Acetonitrile. Inorg. Chem., 45:3415–3423, 2006.
- [181] A. KÖLBL, M. KRAUT, K. SCHUBERT: *The Iodide Iodate Method to Characterize Microstructured Mixing Devices*. AIChE Journal, 54:639–645, 2008.
- [182] BERND NOWACK, URS VAN GUNTEN: Determination of chlorate at low μg/l levels by ion-chromatography with postcolumn reaction. J. Chromatogr. A, 849:209–215, 1999.

- [183] RUDOLPHI, MARIO: Untersuchungen zur Phasenbildung und Kristallisation auf der Konode $SiC \rightarrow Si_3N_4$. Doktorarbeit, Johann Wolfgang Goethe Universität, Frankfurt a.M., 2005.
- [184] F. J. HUMPHREYS, M. HATHERLY: *Recrystallization and Related Annealing Phenomena*. Elsevier, 2004.
- [185] CHRISTIAN, J. W.: The Theory of Transformations in Metals and Alloys Part I and II. Pergamon, 2002.
- [186] M. TAKAHASHI, S. TOBISHIMA, K. TAKEI und Y. SAKURAI: Reaction Behavior of LiFePO₄ as a cathode material for rechargeable lithium batteries. Solid State Ionics, 148:283–289, 2002.
- [187] GOSUKE OYAMA, YUKI YAMADA, RYU-ICHI NATSUI, SHIN ICHI NISHIMURA und ATSUO YAMADA: *Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of Li_xFePO*₄. J. Phys. Chem. C, 116:7306–7311, 2012.
- [188] THOMAS, CHRISTIAN: Problemorientierte Projektarbeit: Energetische Aspekte der Delithiierung von LiFePO₄. 2013.
- [189] YANG ZHANG, ROBERT A. FLOWERS: Mechanistic Investigation of Substrate Oxidation by Ce(IV) Reagents in Acetonitrile. J. Org. Chem., 68:4560–4562, 2003.
- [190] FENG ZHANG, YUHUA WANG, YE TAO: VUV spectroscopic properties of $Ba_2Gd_2Si_4O_{13}$: Re^{3+} ($Re^{3+} = Ce^{3+}$, Tb^{3+} , Dy^{3+} , Eu^{3+} , Sm^{3+}). Materials Research Bulletin, 48:1952–1956, 2013.
- [191] MILLER, JOHANNA L.: A battery material charges via an unexpected mechanism. Physics Today, 67:11–12, 2014.
- [192] DAVID LEPAGE, CHRISTOPHE MICHOT, GUOXIAN LIANG, MICHAEL GAUTHIER und STEEN B. SCHOUGAARD: A Soft Chemistry Approach to Coating of LiFePO₄ with a Conducting Polymer. Angew. Chem. Int. Ed., 50:6884–6887, 2011.
- [193] ZHANG, WEI-JUN: Structure and performance of LiFePO₄ cathode materials: A review. J. Power Sources, 196:2962–2970, 2011.
- [194] J. T. MILLER, D. E. IRISH: Infrared and Raman spectra of the cerium(IV) ion nitrate ion - water system. Can. J. Chem., 45:147–155, 1967.
- [195] T. A. BEINEKE, J. DELGAUDIO: *The Crystal Structure of Ceric Ammonium Nitrate*. Inorg. Chem., 7:715–721, 1968.

- [196] T.-C. GODFREY CHANG, DONALD E. IRISH: Solvation and Ion Association in the System AgNO₃-CH₃CN. J. Solution Chem., 3:161–174, 1974.
- [197] JÖRG P. THIELEMANN, JUTTA KRÖHNERT, CHRISTIAN HESS: Nitric Oxide Adsorption and Oxidation on SBA-15 Supported Molybdenum Oxide: A Transmission IR-Study. J. Phys. Chem. C, 114:17092–17098, 2010.
- [198] THOMAS WEIGAND, STEFAN KUBA, KONSTANTIN HADJIIVANOV und HELMUT KNÖZINGER: Nature and Reactivity of the Surface Species Formed after NO Adsorption and NO + O₂ Coadsorption on a WO₃-ZrO₂ Catalyst. J. Catal., 209:539–546, 2002.
- [199] A. NAUMANN, A. SCHIER: *Reaktionen in nichtwässrigen Lösungen VI. In Acetonitril.* Chemische Berichte, 47:247–256, 1914.
- [200] D. M. SEO, O. BORODIN, S.-D. HAN, Q. LY, P. D. BOYLE und W. A. HENDER-SON: Electrolyte Solvation and Ionic Association I. Acetonitrile-Lithium Salt Mixtures: Intermediate and Highly Associated Salts. J. Electrochem. Soc., 159:A553–A565, 2012.
- [201] MARCUS, RUDOLPH A.: Electron transfer reations in chemistry. Theory and Experiment. Reviews of Modern Physics, 65:599–610, 1993.
- [202] http://de.wikipedia.org/wiki/Cer(IV)-ammoniumnitrat (September 2014).
- [203] RAHUL MALIK, DAMIAN BURCH, MARTIN BAZANT und GERBRAND CEDER: *Particle Size Dependence of the Ionic Diffusivity*. Nano Lett., 10:4123–4127, 2010.
- [204] http://www.wie-sagt-man-noch.de/zitat/18409/thermodynamik+ist+ein+komisches+ fach.+das+erste+m.html (08. September 2014).
- [205] G. ARNOLD, J. GARCHE, R. HEMMER, S. STRÖBELE, C. VOGLER und M. WOHLFAHRT-MEHRENS: Fine-particle lithium iron phosphate LiFePO₄ synthesized by a new low-cost aqueous precipitation technique. J. Power Sources, 119-121:247-251, 2003.
- [206] SEUNG-AH HONG, SU JIN KIM, JAEHOON KIM, KYUNG YOON CHUNG, BYUNG-WON CHO und JEONG WON KANG: Small decay of lithium iron phosphate (LiFePO₄) synthesized continuously in supercritical water: Comparison with solidstate method. J. of Supercritical Fluids, 55:1027–1037, 2011.
- [207] JAEWOON LEE, AMYN S. TEJA: Characteristics of lithium iron phosphate (LiFePO₄) particles synthesized in subcritical water. J. of Supercritical Fluids, 35:83–90, 2005.

- [208] M. T. PAQUES-LEDENT, P. TARTE: Vibrational studies of olivine type compounds-II Orthophosphates, -arsenates and -vanadates A^IB^{II}X^VO₄. Spectrochimica Acta A, 30:673–689, 1974.
- [209] CHRISTOPHER M. BURBA, ROGER FRECH: *Raman and FTIR Spectroscopic Study* of *Li_xFePO*₄. J. Electrochem. Soc., 151:A1032–A1038, 2004.
- [210] KITTEL, CHARLES: Einführung in die Festkörperphysik. Oldenburg Verlag, 2006.
- [211] KOBAYASHI, KOICHI: *Heat Capacity and Lattice Defects of Silver Chloride*. Phys. Rev., 85:150–151, 1952.
- [212] J. G. BUNTING, T. ASHWORTH, H. STEEPLE: *The specific heat of Apiezon N grease*. Cryogenics, 9:385–386, 1969.
- [213] W. SCHNELLE, J. ENGELHARDT, E. GMELIN: Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass. Cryogenics, 39:271–275, 1999.
- [214] Quantum Design Application Note: Non-smotth Specific Heat Between 200 and 300 K due to Anomalous Specific Heat of Apiezon N-grease, 2014.
- [215] C. L. SNOW, K. I. LILOVA, A. V. RADHA, Q. SHI, S. SMITH, A. NAVROTSKY und B. F. WOODFIELD: *Heat capacity and thermodynamic of a synthetic two-line ferrihydrite FeOOH* · 0.027 H₂O. J. Chem. Thermodynamics, 58:307–314, 2013.
- [216] QUAN SHI, LIYING ZHANG, MARK E. SCHLESINGER, JULIANA BOERIO-GOATES und BRIAN F. WOODFIELD: Low temperature heat capacity Study of $Fe(PO_3)_3$ and $Fe_2P_2O_7$. J. Chem. Thermodynamics, 61:51–57, 2013.
- [217] GOPAL, E. S. R.: Specific heats at low temperatures. Plenum Press New York, 1966.
- [218] QUAN SHI, LIYING ZHANG, MARK E. SCHLESINGER, JULIANA BOERIO-GOATES und BRIAN F. WOODFIELD: Low temperature heat capacity study of $FePO_4$ and $Fe_3(P_2O_7)_2$. J. Chem. Thermodyn., 62:35–42, 2013.
- [219] QUAN SHI, LIYING ZHANG, MARK E. SCHLESINGER, JULIANA BOERIO-GOATES und BRIAN F. WOODFIELD: Low temperature study of Fe_3PO_7 and $Fe_4(P_2O_7)_3$. J. Chem. Thermodyn., 62:86–91, 2013.
- [220] R. P. SANTORO, R. E: NEWNHAM: Antiferromagnetism in LiFePO₄. Acta Cryst., 22:344–347, 1967.

- [221] D. P. CHEN, XIAOLIN WANG, Y. S. HU, C. T. LIN, S. X. DOU und R. NIGAM: Magnetic anisotropy in doped and undoped LiFePO₄ single crystals. J. Appl. Phys., 101:09N512, 2007.
- [222] J. YAO, K. KONSTANTINOV, G. X. WANG und H. K. LIU: Electrochemical and magnetic characterization of LiFePO₄ and Li_{0.95}Mg_{0.05}FePO₄. J. Solid State Electrochem., 11:177–185, 2007.
- [223] QUAN SHI, CLAINE L. SNOW, JULIANA BOERIO-GOATES und BRIAN F. WOOD-FIELD: Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement System. J. Chem. Thermodynamics, 42:1107– 1115, 2010.
- [224] STOUT, J. W.: *Magnetic transitions at low temperatures*. Pure and Applied Chemistry, 2:287–296, 1961.
- [225] J. A. HOFMANN, A. PASKIN, K. J. TAUER und R. J. WEISS: Analysis of ferromagnetic and antiferromagnetic second-order transitions. J. Phys. Chem. Solids, 1:45–60, 1956.
- [226] WOLFGANG GÖPEL, HANS-DIETER WIEMHÖFER: *Statistische Thermodynamik*. Spektrum Akademischer Verlag, 2000.
- [227] W. G: Mallard, P. J. Linstrom (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institut of Standard and Technology, Gaithersburg, MD, 1998 http://webbook.nist.gov.
- [228] G. K. WHITE, S. J. COLLOCOTT: *Heat Capacity of Reference Materials. Cu and W.* J. Phys. Chem. Ref. Data, 13:1251–1257, 1984.
- [229] MARTIN, D. L.: *The specific heat of copper from 20 K to 300 K*. Can J. Phys., 38:14–24, 1960.
- [230] MARTIN, DOUGLAS L.: Specific Heat of Copper, Silver, and Gold below 30 K. Phys. Rev., 141:576–582, 1966.
- [231] MARTIN, DOUGLAS L.: Tray type calorimeter for the 15-300 K temperature range: Copper as a specific heat standard in this range. Rev. Sci. Instrum., 58:639–646, 1987.
- [232] G. Erikson und K. Hack, Chem Sage, Gibbs Energy Minimizer and Optimization Routiner, Version 4.1, GTT Technologies.

- [233] HSC 7.1., Chemical Reaction and Equilibrium Software, Outkumpu Oy, 28101 Pori, Finland.
- [234] A. AL-BORNO, M. B. TOMSON: *The temperature dependence of the solubility product constant of vivianite*. Geochimica et Cosmochimica Acta, 58:5373–5378, 1994.
- [235] Ein herzliches Dankeschön für die Hilfe geht an Herrn M. Sc. Martin Haustein, Frau Dipl.-Geophys. Julia Weißflog und Herrn Dipl.-Geophys. Mathias Scheunert.
- [236] NEELAKANTAN, P.: Raman Spectrum of Acetonitrile. Proceedings of the Indian Academy of Sciences - Section A, 60:422–424, 1964.
- [237] FILLMORE FREEMAN, CHARLES O. FUSELIER, CHARLES R. ARMSTEAD, CHAR-LOTTE E. DALTON, PAMELA A. DAVIDSON, ELAINE M. KARCHESFSKI, DEBO-RAH E. KROCHMAN, MICHAEL N. JOHNSON und NIKOLA K. JONES: Permanganate Ion Oxidation. 13. Soluble Manganese (IV) Species in the Oxidation of 2,4(1H,3H)-Pyrimidinediones (Uracils). J. Am. Chem. Soc., 103:1154, 1981.
- [238] L. I. SIMANDI, M. JAKY, C. R. SAVAGE und Z. A. SCHELLY: Kinetic and Mechanism of the Permanganate Ion Oxidation of Sulfite in Alkaline Solutions. The Nature of Short-Lived Intermediates. J. Am. Chem. Soc., 107:4220–4224, 1985.

Lebenslauf

Persönliche Daten

Name: Stefan Loos Straße: Berggasse 14 Wohnort: 09599 Freiberg Geburtsdatum: 03.09.1985 Geburtsort: Schlema

Schulausbildung

1992-1996: Grundschule Hans-Marschwitza in Schneeberg1996-2004: Johann-Gottfried-Herder-Gymnasium in Schneeberg, Erwerb der allgemeinenHochschulreife (Abitur)

Zivildienst

August 2004 - Mai 2005: Zivildienst im Helios Klinikum in Aue

Akademischer Werdegang

- 2005-2010: Studium der Angewandten Naturwissenschaft an der Technischen Universität Bergakademie Freiberg, Abschluss: Diplom-Naturwissenschaftler (Dipl.-Nat.), Note: 1,4
- 2008 Studienarbeit: "*Präparation und kinetische Charakterisierung von Katalysatoren auf Basis metallorganischer Gerüstverbindungen*" (Institut für Physikalische Chemie, Prof. Mertens)
- 2010 Diplomarbeit: "*Postsynthetische Modifizierung von IRMOF-3 zur Darstellung von Katalysatoren"* (Institut für Physikalische Chemie, Prof. Mertens)
- seit Januar 2011 Promotion in Physikalischer Chemie bei Prof. Dr. Florian Mertens

Praktikum

Juli-August 2008: Roth & Rau AG, Wüstenbrand

Mitgliedschaften

seit 2004: Mitglied der Deutschen Physikalischen Gesellschaft e.V. (DPG) seit 2011: Mitglied der Gesellschaft Deutscher Chemiker e.V. (GDCh)

Weiterbildung

Februar 2011: Thermochemie Fact Sage (Prof. Dr. Klaus Hack) Mai 2012: Aufbaukurs Pulverdiffraktometrie in Frankfurt a. M. (Prof. Dr. Robert Dinnebier), veranstaltet von der GDCh

Sprachkenntnisse

Englisch: gut Russisch: Grundkenntnisse

Hobbys

Schach Musik (Gitarre) Fußball

Publikationen

Zeitschriftenbeiträge

- Stefan Loos, Wilhelm Seichter, Tony Böhle, Edwin Weber, Florian Mertens *Struct. Chem. Commun.* 2 (2011) 122-125 "*Synthesis and X-ray Structural Characterization of a Salicylideneaniline Based Air Stable Co(II)-complex*"
- Tony Böhle, Wilhelm Seichter, Benjamin Schwarz, Tobias Weling, Kurt Herklotz, Stefan Loos, Alexander Münch, Claudia Liebold, Edwin Weber, Florian Mertens Struct. Chem. Commun. 2 (2011) 150-155 , Characteriation and XPS study of two Cobalt(II)-Coordination Polymers with Unusual Coordination Modes Based on Dimethoxy Dicarboxylates"
- Stefan Loos, Wilhelm Seichter, Edwin Weber, Florian Mertens *Acta Cryst.* E68 (2012) o2501 "*Aminoterephthalic acid N,N-Dimethylformamide disolvate*"
- Stefan Loos, Christian Thomas, Florian Mertens Z. Allg. Anorg. Chem. (2014) 2331 "Hydrothermal Synthesis of Lithium Iron Phosphate - An in situ Electrolytic Conductivity Study"
- Stefan Loos, Daniel Gruner, Mahmoud Abdel-Hafiez, Jürgen Seidel, Regina Hüttl, Anja U. B. Wolter, Klaus Bohmhammel, Florian Mertens *"Heat Capacity (C_p) and Entropy of Olivine-Type LiFePO₄ in the Temperature Range (2 - 773) K"* accepted to *J. Chem. Thermodyn.* 2015
- Stefan Loos, Christian Thomas, Jürgen Seidel, Regina Hüttl, Florian Mertens "Fast Chemical Delithiation of LiFePO₄ with Ceric Ammonium Nitrate" in preparation

Vorträge

- MSE Tagung in Darmstadt, September 2012: Stefan Loos, Christian Thomas, Jürgen Seidel, Regina Hüttl, Florian Mertens "*Kinetic and Thermokinetic Investigations of the Chemical Delithiation/Lithiation of* Li_{1-x}FePO₄"
- Tagung "Innovative Materialsynthesen" (50 Jahre Fachgruppe Festkörperchemie und Materialforschung der GDCh) Dresden, September **2014**: Stefan Loos, Christian Thomas, Florian Mertens "*Hydrothermal Synthesis of Lithium Iron Phosphate An in situ Electrolytic Conductivity Study*"

Posterbeiträge

- MOF10 in Marseille, September 2010: Steffen Hausdorf, David Rafaja, Tony Böhle, Maria Lohse, Alexander Münch, Stefan Loos and Florian Mertens "Alternative Syntheses of IRMOFs and its Main Group and Transition Metal Homologues"
- Bunsenkolloquium in Goslar, Februar 2011: Stefan Loos, Daniel Thomas, Regina Hüttl, Jürgen Seidel, and Florian Mertens *"Thermodynamic and kinetic investigations: Li_xFePO₄ and Li_xSi as electrode materials in Li-Ion-Batteries"*
- Freiberg, Kalorimetrietage Februar **2013**: Stefan Loos, Christian Thomas, Jürgen Seidel, Regina Hüttl, Florian Mertens "*Synthese und Titrationskalorimetrische Untersuchung von Lithiumeisenphosphat*"
- mehrere Poster zu Workshops des SPP 1473