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Abstract 
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Reservoir testing and analysis are fundamental tools in understanding reservoir fluid hydraulics and 

hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual 

model used in investigating the responses under different flowing conditions.  

The use of reservoir testing in the characterization and derivation of reservoir parameters is widely 

established, especially in conventional oil and gas reservoirs. However, with depleting conventional 

reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is 

increasing; has triggered intensive research in the fields of reservoir characterization. Gas hydrate 

reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the 

juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The 

endothermic dissociation of hydrates to gas and water requires addressing multiphase flow and heat 

energy balance, which has made efforts to develop reservoir testing models in this field difficult.  

During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic 

nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just 

heat conduction would be responsible for the heat influx and further hydrate dissociation; yet, the 

moving boundary problem could also be an issue to address in this reservoir, depending on the 

equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary 

condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is 

required.  

In Class 1 and 2, crossflow problems would occur and depending on the layer of production, 

convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate 

layer would be further issues to address. All these phenomena make the derivation of a suitable 

reservoir testing model very complex. Nevertheless, with a strong combination of heat energy and 

mass balance techniques, a representative diffusivity equation can be derived.  

Reservoir testing models have been developed and responses investigated for different boundary 

conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving 

boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the 

reservoir responses have been addressed in detail.  
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Nomenclature 

Symbols 

Symbol Meaning Unit 

a(p) pressure dependent pressure conductivity [1/s] 
B formation volume factor [-] 
bD dimensionless interlayer heat flux coefficient [-] 
cp specific heat capacity [J/kgK] 
c dimensionless heat function [-] 
cT total compressibility [1/Pa] 
cT,w total compressibility of water phase [1/Pa] 

cT,g total compressibility of gas phase [1/Pa] 

cF compressibility of pore space [1/Pa] 
cg gas compressibility [1/Pa] 

cD,H dimensionless hydrate decomposition compressibility [-] 

D(p) pressure dependent diffusion coefficient [kg/m³Pas] 
Eg hydrate-gas volume factor [-] 

Ew hydrate-water volume factor [-] 

eD dimensionless conductive heat flux coefficient [-] 

fm MBM fractional mass flow rate [-] 

fD(p,t) dimensionless compressibility mobility term [-] 

ft(p) pseudo-pressure integral function [kg/m³Pas] 

FCD dimensionless temperature conductivity [-] 

fD dimensionless interlayer crossflow compressibility (NFB+CTOB) [-] 

gD dimensionless interlayer crossflow compressibility (CPOB+CTOB) [-] 

hd hydrate dissociation energy per unit mass [J/kg] 

h, z reservoir thickness [m] 

I0, I1 modified Bessel´s functions of the first kind [-] 

jD dimensionless interlayer mass flux coefficient (CPOB+CTOB) [-] 

k absolute permeability [m²] 

keff effective permeability [m²] 

kr relative permeability [-] 

kg gas effective permeability [m²] 

krg gas relative permeability [-] 

krg
* modified gas relative permeability [-] 

kw water effective permeability [m²] 

krw water relative permeability [-] 

krw
* modified water relative permeability [-] 

kg(p),avg
* apparent effective gas permeability [m²] 

K0, K1 modified Bessel´s functions of the second kind [-] 
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lD dimensionless distance to boundary  [-] 

ṁ mass flow rate [kg/s] 

ṁtD dimensionless total mass flow rate [-] 

nw water relative permeability exponent [-] 

ng gas relative permeability exponent [-] 

N hydrate permeability reduction exponent [-] 

p reservoir pressure [Pa] 

p Laplace complex variable  [-] 

Qst flow rate at standard conditions [m³/s] 

R universal gas constant [J/molK] 

rs(t), rs radius of dissociation [m] 

rw wellbore radius [m] 

rD  dimensionless radius [-] 

reD dimensionless drainage radius [-] 

rsD dimensionless radius of dissociation  [-] 

S saturation [-] 

S storativity [kg/m³Pa] 

Sgirr connate gas saturation  [-] 

Swirr connate water saturation [-] 

Sg,H gas saturation from hydrate dissociation [-] 

Sw,H water saturation from hydrate dissociation [-] 

SD modified dimensionless decomposition compressibility [-] 

SDk  modified dimensionless compressibility [-] 

ss  skin effect due to hydrate dissociation [-] 

T temperature [°K] 

t time [s] 

tD dimensionless time [-] 

tDw, tDwD dimensionless time with respect to wellbore [-] 

tf
* semi-log time for boundary dominated flow with single barrier  [s] 

ttf
* derivative time for boundary dominated flow with single barrier  [s] 

w Darcy velocity [m/s] 

V volume  [m³] 

dTeq/dp temperature gradient for hydrate dissociation [°C/Pa] 

YD  dimensionless interlayer mass flux coefficient (NFB+CTOB) [-] 

zg gas compressibility factor [-] 
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Greek Symbols 

Symbol Meaning Unit 
φ pseudo-pressure [kg/sm³] 

φD dimensionless pseudo pressure,  [-] 
φsD dimensionless dissociation pseudo pressure [-] 
φRPI pseudo pressure normalized rate  [1/m³] 
φPI normalized rate pseudo pressure [m³] 

ΔH hydrate dissociation heat enthalpy [J/mol] 
ϖ geothermal gradient [°C /m] 
ρ density [kg/m³] 

ϕ porosity [-] 

η viscosity [Pas] 

µD dimensionless interlayer compressibility [-] 

γD  dimensionless dissociation rate [-] 

γDe  dimensionless dissociation rate for equilibrium model [-] 
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θD dimensionless convective heat flux dissociation Coefficient [-] 
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Subscripts 

Symbol Meaning 

g gas 

w water 
h, H hydrate 
st standard condition 
t total 

fl fluid 

p pores 

f formation 

avg average 

i, id initial 

wf wellbore flowing 

c critical 

s skin 

MP match point 

eq equilibrium 

iii 



 

Abbreviations 

Symbol Meaning 
MBM Mass Balance Model 

VMBM Volumetric Material Balance Model 
CPOB Constant Pressure Outer Boundary 

NFB  No Flow Boundary 

CTOB Constant Temperature Outer Boundary 

p-NFTB Pseudo No Flow Temperature Boundary 

IAR  Infinite Acting Reservoir 

IACL Infinite Acting Conducting Layer 
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CTHI Constant Temperature Heat Influx 
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Chapter 1: Introduction 

1 Introduction  

In the last decade, a huge quest for unconventional reservoirs was perceived in the oil and gas 

industry, which can be related to the unremittingly increasing energy demand coupled with the 

depleting conventional reservoirs. As a result, unconventional reservoirs have become very attractive 

in meeting up with this energy demand. 

The classification of gas reservoirs as unconventional is mainly based on their low formation 

permeability, to which gas hydrate reservoirs can also be related to. Though the absolute permeability 

of the hydrate formation might be high due to the porous and/or unconsolidated nature, the effective 

permeability of the hydrate layer can be very low as a result of hydrates occupying the pore space of 

the formation, making fluid flow through the pores difficult [1]. Regardless of the low effective 

permeabilities, the hydrate reserves have been widely classified as extremely enormous compared to 

other hydrocarbon reserves as depicted in Figure 1 and Figure 2, which makes them very attractive for 

the energy market as they are found around almost all continental shelves (see Figure 3). 

 

Figure 1: Global Gas Hydrate Inventory [2] 

As depicted in Figure 1, the gas hydrate inventory varies enormously with some authors; nonetheless, 

the amount is still very large. Usually a consensus value of 10000 Gt C is taken and is the most widely 
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Chapter 1: Introduction 

quoted [3]. To have a much better view on the amount of energy available or exploitable from the 

hydrates, a comparison of the hydrate inventory with the fossil energy sources is given in Figure 2. It 

is undisputable that the amount of fossil energy stored in gas hydrates surpasses all other fossil energy 

sources.  

 

Figure 2: Comparison of Gas Hydrate to other Fossil Resources (a, b) [after [4]] 

Regardless of the huge reserves, profuse uncertainties still persists regarding the behavior of gas 

hydrate reservoirs during production and as such, much effort has been invested in recent years to 

characterize the reservoir responses. Owing to the heterogenic nature of the hydrate behavior, much 

effort has however been dedicated in the numerical modeling to investigate the hydrate reservoir 

responses.  
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Chapter 1: Introduction 

match. It should still be emphasized that inaccurate input parameters for any gas hydrate numerical 

simulator can generate misleading predictions that would significantly affect further decisions in 

relevant projects. The inaccuracy in input parameters associated with a numerical simulator can be 

reduced with the use of reservoir testing characterization methods in conjunction with numerical 

simulators for gas hydrates [1], which is as of now a field of great interest in the oil and gas industry. 

However, for this process, a good understanding of the behavior of the hydrates and representative 

conceptual models are required for the reservoir response. Next, we identify a few aspects regarding 

gas hydrate and reservoir testing after which conceptual models will be developed to investigate the 

responses expected from the hydrates during various production scenarios. 

1.1 Gas Hydrates: Occurrence, Properties and Production 

Gas hydrates are classified under the group of clathrates which is used to denote a molecule of a 

substance enclosed in a structure built from molecules of other substances [5]. Hydrates in particular 

are hence crystalline solid compounds with small molecules enclosed in water [5]. Since their 

discovery in the early 19th century, gas hydrates only became of great interest in the oil and gas 

industry with the inception of plugging of gas pipelines and other downstream equipment in the 

1930´s. Gas hydrates were then a big foe for the upstream sector and measures were taken to mitigate 

the occurrence of any hydrates.  

1.1.1 Occurrence 

With the discovery of natural gas hydrate occurrence in marine and permafrost regions in the mid 

1960´s [6], more curiosity grew in the worldwide existence / distribution, which was then investigated 

by many researchers and characterized. Figure 3 depicts the global distribution of gas hydrates.  

 

Figure 3: Global map of recovered and inferred gas hydrates [7] 
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From the global inventory, the next point of interest would be the amount of gas stored in the gas 

hydrates which has been investigated and quantified by various authors [ [5], [8], [9], [10] ]. 

Nonetheless, for 1m³ methane hydrate we get approximately 164-180 Sm³ methane and about 0,8 Sm³ 

water [ [5], [10], [11] ]. The model required to estimate this conversion is developed using a mass 

balance approach in Appendix 2.  

Although huge amounts of gas hydrates are found all over the globe, producing them safely from the 

formation is challenging due to stability of the layer, all depending on the hydrate distribution in the 

formation as depicted in Figure 4. Preferably, hydrates occupying the pore space of the formation will 

be better candidates for much safer production as they have a relatively less significant contribution to 

the stability of the hydrate layer compared to the other microstructural models in Figure 4. Hereafter, 

the conceptual models developed in this work address the reservoir response of porous hydrate 

formations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Microstructural Models for Hydrate Bearing Sediments [after [12]] 
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around 100-300 m depth and the general temperature range is from −10 to 20°C [3]. Figure 5 and 

Figure 6 depict stability zones in permafrost and marine areas respectively.  

 

Figure 5: Gas Hydrate Stability Zone in Permafrost Areas [modified after [3]] 

 

Figure 6: Gas Hydrate Stability Zone in Marine Areas [modified after [3]] 
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Chapter 1: Introduction 

1.1.2 Properties 

As mentioned earlier, gas hydrates are crystalline solid compounds with small molecules enclosed in 

water, meaning a variety of small molecules are capable of being trapped in the crystalline solids 

which is also given in Table 1.  

Table 1: Potential Gas Hydrate Formers and Hydrate Types [5], [13] 

 Hydrate Type 

Type I (X) Type II (X) Type H (Y) 

Potential Gas Hydrate Formers • Methane 

• Ethane 

• Hydrogen 

Sulfide 

• Carbon 

dioxide 

• Oxygen 

• Sulfur dioxide 

• Chlorine 

• Nitrogen  

• Propane  

• iso-Butane 

• Ethylene 

• Propylene 

• Benzene 

• 2-methylbutane 

• 2,2-dimethylbutane 

• 2,3-dimethylbutane  

• 2,2,3-trimethylbutane  

• 2,2-dimethylpentane 

• 3,3-dimethylpentane 

• methylcyclopentane 

• ethylcyclopentane 

• methylcyclohexane 

• cycloheptane 

• cyclooctane 

Theoretical Formula (All Cages Filled) X. 53/4H2O X. 52/3H2O 5X. Y. 34 H2O 

Regardless of the great number of substances capable of forming gas hydrates, of great interest to the 

energy market are the hydrocarbon gas hydrates, most of which is methane hydrate as reported in most 

literature [8] where very high concentrations of methane in the hydrates are perceptible.  

Gas hydrates and ice look physically the same but exhibit different properties which was a field of 

research for many years after its discovery and an extensive coverage of these properties is given 

today in many literatures such as [6], [13], [5], [14].  

 

Figure 7: Gas Hydrates; “Burning Ice Effect” [after Gary Klinkhammer [15]] 
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Apart from the inflammable property of gas hydrate which is not seen with ice, many more 

differences/similarities exist between the two substances, which are summarized in Table 2. 

Table 2: Some peculiarities of ice and gas hydrates [5], [14] 

Properties Hydrocarbon Hydrates Ice 

Thermal Conductivity 0.50-0.01 W/m·K 2.2 W/m·K 

Phase Changes Solid ↔ Fluid Solid ↔ Fluid 

Dissociation Endothermic Endothermic 

Heat of Dissociation/Melting 500-600 kJ/kg 335 kJ/kg 

Volume Expansion When Formed 26-32% 9% 

Density 913-934 kg/m³ 917 kg/m³ 

For reservoir engineering purposes and for developing conceptual well testing models for the hydrate 

reservoir, indispensable knowledge on endothermic dissociation process, i.e. heat of dissociation and 

the hydrate equilibrium curve, is required. This is explicitly handled in Appendix 2 and Appendix 3. 

1.1.3 Production Methods 

Due to the dependence of hydrate stability on pressure and temperature conditions in the reservoir, 

production methods from these reservoirs basically involve maneuvering the p-T conditions in the 

reservoir such that the hydrates are no longer stable. Hence, the main production methods will either 

be to increase the temperature in the hydrate layer (thermal stimulation) or decrease the pressure 

(depressurization) or a combined effect of both. It should be mentioned that thermodynamic inhibitors 

and some gases are known to have an effect on the hydrate stability as depicted in Figure 8, which has 

made them potential candidates for production. With this said, the production methods in hydrate 

reservoirs could be summarized under the following groups [6]: 

• Depressurization 

• Thermal Stimulation (e.g. Supercritical CO2) 

• Inhibitor Injection (e.g. Methanol) 

• Injection of Special Fluids (e.g. N2) 

It is worth mentioning that the applicability of any on the following methods is reservoir and cost 

dependent. Hence a thorough scrutiny of the applicability of any of the above methods has to be 

performed for the reservoir in question.  

Figure 8 depicts the influence of inhibitors and special fluids on the hydrate stability curve. Here, we 

clearly observe the reduction in pressure depressions and thermal energy required when these fluids 

are used. This implies that for a speedy recovery of gas from the hydrates, a combination of the 

methods would be most favorable; yet the cost intensive nature of combining the methods, especially 

for long term purposes, makes it very challenging.  
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Figure 8: Ideology of Gas Hydrate Production Techniques  

Of the production methods mentioned earlier, the depressurization technique is the most widely used 

as in the Messoyakha Gas Field and Japan Nankai Trough. As seen with the Messoyakha Gas Field, 

depressurization is the only method applied to produce a hydrate field for long lasting production 

periods [6] where about 36% of the gas produced was from the hydrate layer [11]. Although the 

Messoyakha Gas Field is a Class 1G hydrate reservoir, .i.e. predominantly free gas below the hydrate 

layer, also called a hydrate-capped gas reservoir [10], which are susceptible to crossflow problems, the 

effects of hydrate dissociation were only significant years after the commencement of production from 

the free gas layer. This implies the conceptual models for such reservoirs have to depict the early and 

late time response such that the effects of hydrate dissociation can be characterized.  

1.2 Reservoir Testing 

Understanding reservoir responses under different flowing conditions is very vital in forecasting 

reservoir performance and technical decisions in the life of the well/reservoir. The information derived 

from the test is very indispensable in reservoir engineering and reservoir management as it reflects the 

in-situ reservoir dynamic properties under realistic production situations [16]. Dynamic reservoir 

properties define the prerequisites to denoting the reservoir as economically viable as it must exhibit 

the capacity for storage and fluid transmissibility [17]. Estimating the fluid transmissibility of the 

reservoir has always been one of the main objectives in reservoir testing. Although numerous 

objectives of reservoir testing exist, they can be grouped into four classes [17]: 

• Permeability and Formation Damage 

• Characterization of Formation Fluid Samples 

• Measurement of Formation Pressure  
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• Reservoir Characterization 

The most common well testing methods include [17]: 

• Open and cased hole wells with no completion string: DST 

• Wireline Formation Testing: WFT 

• Production /Injection Tests with Completion String 

The deployment of any of the well test method is dependent on the objective of the well test and 

highly determined by environment, safety, time and cost [18]. The volume of producible fluid from the 

test method is very important as this defines the depth or radius of investigation of the reservoir. This 

makes WFT restricted compared to DST and Production tests, as just the near wellbore vicinity can be 

investigated with this method. A summary of DST and WFT types with pros and cons are 

meticulously addressed in the literature [17], [19], [16], [18], [20]. 

1.2.1 Methodology of Reservoir Test Analysis 

The methodology of reservoir test analysis is classified under two groups, all based on what 

information is known about the reservoir. These include: the inverse and the direct problem. 

Inverse (reverse) Problem 

The inverse problem is characterized as the method of performing well test data analysis for reservoirs 

with unknown behavior and has therefore a huge role in the characterization of the reservoir. Here, the 

objective is to derive the interpretation model from the responses of the reservoir in question by 

constantly verifying conceptual models which exhibit the same qualitative characteristics as the 

system response [21]. Any false interpretation of the response at this stage will lead to wrong 

forecasting and poor reservoir management. The more complex the reservoir, the more difficult it is to 

identify the right model for the system, as ambiguity and non-uniqueness of the solution usually arises, 

also intensified by the interpretation method implemented. However, conceptual models have to be 

developed in order to properly identify the right reservoir model. Moreover, since diagnostic or 

derivative plots [22] gained wide use in model identification, and more recently the application of 

Deconvolution techniques [23], the identification process is becoming relatively less cumbersome. 

Nonetheless, for this work, we will limit to simpler techniques as the complex reservoir behavior of 

hydrates needs to be addressed first before more rigorous methods like the Convolution, 

Deconvolution and Non-linear parameter estimation techniques [16] and their applicability are later 

investigated.  
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Here the reservoir (system) characterization is derived from the measured reservoir response (output) 

as a result of producing the well (input).  

Direct (forward) Problem 

In the direct problem, the reservoir model is known and hence analytical methods can be used to easily 

solve the problem. Here, if any of the well test interpretation techniques are properly applied for the 

known reservoir, the same results for the parameters will be achieved [21]. It should be noted that at 

this level and due to the absence of field data in this work, just the direct problem can be addressed. 

However, if the conceptual models are properly developed to represent the hydrate reservoir behavior, 

well test analysis with the indirect method becomes easier. 

 

 

 

The workflow for the application of these methods is summarized once more below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Methodology of Reservoir Test Analysis [modified after [24]]  
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The input which refers to the method of triggering reservoir response could either be a production or 

injection process, all depending on the purpose of the test. Be it injection or production methods, the 

controllable input parameters for the test are either the pressure or the flow rate. It should be 

emphasized that gas hydrate reservoirs are prone to two phase flow during the testing phase, hence 

assuring constant sandface rates might not be practically feasible. On the other hand, the dissociation 

of the hydrates is pressure dependent and hence regulating the downhole pressure for example with a 

downhole pump would be more effective for the dissociation process. Nonetheless, the conceptual 

models developed later will address both methods. 

 

 

 

 

 

 

 

 

 

Figure 10: I-S-O for Constant Terminal Rate 

 

 

 

 

 

 

 

 

Figure 11: I-S-O for Constant Terminal Pressure 
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conceptual models the choice of the method of analysis is built to qualitatively investigate the 

behavior of the reservoir.  

Methods of analysis can be classified under the following groups: 

• Straight Lines or Semi-log Plots 

• Type Curves 

• Derivative Plots 

• Deconvolution/Convolution 

• Non-linear Parameter Estimation 

Each of the above methods can be classified according to the accuracy of the analysis of well test data 

and hence quality interpretation and characterization of the reservoir. Table 3 depicts the different 

methods of analysis and strength in identifying reservoir parameters. 

Table 3: Ranking of Well Test Interpretation Methods, after [21] 

Date Analysis Method Identification 

50s Straight lines Poor 

70s Pressure Type Curves Fair 

80s Pressure Derivative Very Good 

Early 00s Deconvolution Much Better 

Before the derivative or diagnostic plot became an indispensable and powerful tool in the analysis of 

well test data, other methods of analysis such as semi-log straight line and type curves existed. The 

evolution of new methods of analysis was backed by the growing complexity of the reservoir 

responses, whereby straight line plots were difficult to obtain, heterogeneity and reservoir boundaries 

were cumbersome to identify.  

As will be shown later the following methods will be addressed for the characterization of gas hydrate 

reservoirs: 

• Solutions in Real Time Domain (Approximate Solutions to the Conceptual Models) 

o semi-log 

o type curves  

o derivative 

• Solutions in Laplace Domain (Exact Solutions to the Conceptual Models) 

o Laplace Domain Well Test Model Recognition Type Curves  

o Laplace Domain Well Test Model Recognition Derivatives  

Although conventional methods such as the semi-log analysis and type curves in real time domain 

have been addressed in this work, their limitations could be very significant due to the complex 
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behavior of the hydrate formations. However, the robust Laplace Domain Well Test Model 

Recognition method proposed by [25] has proven to be a very effective tool in characterizing and 

identifying different reservoir responses. Moreover, the application of derivatives in Laplace Domain 

gives a much clearer representation of the different flow regimes during the hydrate dissociation 

process. 

The absence of field data makes the application of Deconvolution techniques or nonlinear parameter 

estimation not practically feasible at this level. Although this method is becoming very useful and 

robust in the interpretation process, it is still very rigorous at this level and also involves computer 

aided analysis. Nevertheless, the methodology and development of algorithms are explicitly addressed 

in several literatures including [23], [26], [27], [16], [28]. 

Note that the ranking in Table 3 is based on analysis of pressure transient data and shows that very 

much has been done with regard to pressure transient analysis (PTA), which is not the case in rate 

transient analysis (RTA), as PTA has been implemented over decades in the oil and gas industry while 

RTA is still in its juvenile phase. Nonetheless, huge efforts are being made to qualitatively improve on 

the methods of RTA, especially during infinite acting radial flow (IARF).  

As will be shown later, rate transient models have been developed to investigate the response of the 

hydrate reservoirs when subjected to constant wellbore pressure. This is very vital in gas hydrates as a 

controllable dissociation of the hydrates is comparatively guaranteed using this method. 

1.3 Reservoir Testing Challenges in Gas Hydrate Reservoirs 

The complexity of reservoir response when producing from gas hydrate reservoirs is a known 

phenomenon. This is reflected in the endothermic dissociation of the hydrates, gas and water 

generation from the dissociation process and the two phase flow in the reservoirs. Moreover, the 

hydrate layers are known to be unconsolidated which makes the choice of the wellbore flowing 

pressure for dissociation very crucial to mitigate sand production. The choice and design of a well test 

in such a reservoir should hence be carried out with great precaution.  

Well test designs are carried out for each reservoir type in question, which means a characteristic 

behavior of the reservoir needs to be known for a proper design process. 

Though the dissociation of gas hydrates is conventionally handled similarly to the classical Stefan 

problem of melting ice, several other problems may be encountered depending on the reservoir type in 

question. It is still important to depict the main groups under which gas hydrate reservoirs are 

classified. 
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Figure 12: Gas Hydrate Reservoir Classification [after [29]] 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Crossflow Problems in Class 1 and 2 Gas Hydrates 

Figure 13 depicts crossflow problems which might be encountered when producing from Class 1 and 2 

gas hydrate reservoirs. Producing from the free fluid layer below the hydrate layer will cause pressure 

depressions in both layers and hence instigate hydrate dissociation. If the permeability of the free fluid 
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in the hydrate layer. The free fluid layer would act like conventional reservoirs and the crossflow 

problem could be better characterized. Conventionally, type curves are used for analysis of such 

reservoirs. Nonetheless using type curves for such reservoirs requires detailed characterization for the 

reservoir response, especially for the hydrate zone. On the other hand, production from the hydrate 

layer for such a reservoir type has two main problems to deal with. The first problem would be the gas 

and water masses released from the hydrate dissociation process, which could increase the pressure in 
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the reservoir as this would act like a source term in the hydrate layer, all depending on the hydrate 

dissociation rate. Furthermore, if crossflow problems embark, further distortion of production data 

could occur, where fluid influx is expected from the free fluid layer and increased hydrate dissociation 

due to the warmer fluid from the free fluid layer. Though both hydrate dissociation and crossflow 

problems could be quantified in a diffusivity problem and a well test model developed, the analysis of 

such reservoir responses to get reservoir parameters is cumbersome as will be seen later. 

The hydrate dissociation is known to be dependent on the hydrate equilibrium pressure, which is a 

function of the reservoir temperature. For Class 1 and 2 gas hydrates, the presence of fluid below the 

hydrate layer marks the point of hydrate stability and hence the equilibrium pressure for hydrate 

dissociation. In such reservoirs and for developing reservoir testing models, the equilibrium pressure 

can be attributed as being approximately equal to the reservoir pressure at the crossflow point. For 

convenience, these reservoirs will be called normally pressured gas hydrate reservoirs. In Class 3 gas 

hydrates, the same assumption cannot be made due to the absence of free fluid beneath the hydrate 

layer. In this case, the equilibrium pressure for hydrate dissociation becomes very sensitive to the 

geothermal gradient. Figure 14 depicts such a behavior. 

 

Figure 14: Sensitivity of Equilibrium Pressure with Geothermal Gradient [30] 
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To conclude, Class 1 and 2 gas hydrates could be further classified as normally pressured hydrate 

reservoirs and crossflow is possible in these reservoirs. Class 3 gas hydrates could be normally 

pressured or over-pressured, depending on the geothermal gradient. Crossflow problems here are 

excluded. Due to the different responses expected from each reservoir type, well test design and 

analysis have to be carried out depending on the reservoir type in question. The different well test 

models for the different reservoir types will be handled in detail later. 

1.3.1 Sand Production 

Hydrate reservoirs are usually classified as unconsolidated formations, which means the formation 

stability is low and the formation is prone to sand production if measures are not taken to mitigate this. 

On the other hand, the dissociation of hydrates to produce gas and water is highly pressure and 

temperature dependent. The higher the pressure depression, the more hydrates will dissociate to the 

byproducts gas and water. Very high pressure depressions could be very detrimental in the stability of 

the formation, which implies, sand production cases should be considered in the design process of the 

well test.  

1.3.2 Secondary Hydrate Formation in Tubing 

High pressures and low temperatures in the tubing would provide favorable conditions for hydrates to 

form during production of the two phase fluid system. Although depressurization at the sandface will 

cause unfavorable conditions for hydrate formation, the decrease in temperature from the endothermic 

dissociation could influence the formation of the hydrates. Moreover, if pumps are used for 

depressurization and to lift the fluids to the surface, the increase in pressure at the pump outlet coupled 

with the low temperature of the produced fluids (if the heat generated by the pump has little 

significance) could highly influence the formation of secondary hydrates in the production string.  

The formation of hydrates in the production string could highly affect the quality of the well test data 

and furthermore, workover interventions might be needed to remove the hydrate plug in the 

production string. 

1.3.3 Hydrate Dissociation Model 

Hydrates will dissociate to water and gas, meaning the hydrate dissociation process is basically a 

source of water and gas in the porous medium. Describing the diffusivity equation therefore requires a 

good description of the source term (hydrate dissociation); such that reservoir responses during 

pressure depletion could be characterized and as such well test models derived for estimating reservoir 

parameters. As of now, two main models exist in characterizing the hydrate dissociation rate.  

Kinetic Model 

The Kinetic Model for hydrate dissociation was developed by [31] based on laboratory experiments. 

The model depicts the relationship between hydrate dissociation rates and pressure depressions. The 

model proposed is given thus (see Appendix 1 for details):  
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dnh
dt

= KdAH�peq − p�          1. 1 

With: Kd [kmol/m²Pas], AH [m²], p [Pa], n [kmol] 

The kinetic model is readily modified to: 

dmH
dt

= KdMHAH�peq − p� = Koe�
−E
RT
�MHAH�peq − p�      1. 2 

As also depicted in Appendix 4, the kinetic model reflects the dissociation of hydrates considering a 

continuous constant source of heat energy, which limits the different sources of heat energy supplied 

by the reservoir for hydrate dissociation as seen with the equilibrium model described in Appendix 1. 

Hence the kinetic model encompasses all heat flux parameters and hence no further heat flux terms are 

required when using the kinetic model. However, the wrong choice of the dissociation rate might 

either overestimate or underestimate the rate of hydrate dissociation as defined by the equilibrium 

model. Hence precaution should be taken when using the model in numerical simulators. For this 

reason dimensionless parameters will be used to the conceptual models such that the reservoir 

behavior under different dissociation conditions is characterized. 

Equilibrium Model 

The equilibrium model is an energy balance model which quantifies the heat energy available in the 

reservoir and the quantity used up for every pressure depression. The model relates the dependence of 

changes in reservoir heat energy with pressure and the energy required in dissociating the hydrates. 

The application of the model at reservoir scale is much easier as the reservoir parameters can easily be 

quantified; however, the reservoir testing model developed with the equilibrium model is more 

complex as will be seen later. For numerical modeling purposes, where heat flux is better quantified, 

the equilibrium model could be very useful as this better quantifies the heat energy in the reservoir and 

the difficulty in quantifying the activation energy (E) and intrinsic rate constant (Ko) in the kinetic 

model from laboratory scale to reservoir scale is avoided. Details on the equilibrium model are given 

in Appendix 1-Appendix 4 for different production scenarios  

1.4 Objectives and Structure of Thesis 

Objectives of Thesis 

From the various aspects and challenges addressed with regard to the hydrate behavior and problems 

involving well testing in these reservoirs, the following are main objectives of this thesis: 

• Develop conceptual models for gas hydrate reservoir testing which should aid in the 

interpretation and characterization of gas hydrate reservoirs. 

• Quantify different parameters which will affect the hydrate reservoir response during 

production. 

• Understand reservoir responses during production from different hydrate reservoir types. 
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• Investigate the behavior of the hydrate reservoirs with different productions scenarios based on 

dimensionless parameters. 

• Investigate the influential parameters during hydrate dissociation and identify the possible 

influence on reservoir response. 

• Identify non-linear reservoir parameters which might be very determining in applying future 

more rigorous methods of analysis such as Deconvolution or nonlinear parameter estimation 

methods. 

• Assist numerical simulators in narrowing down uncertainties of reservoir parameters and 

behavior from production data and hence reducing the non-uniqueness of the indirect reservoir 

test analysis. 

Structure of Thesis 

Chapter 2 summaries the challenges and methodology involved in developing conceptual models in 

these reservoir, which are also addressed in detail in the appendices. 

Chapter 3 gives an overview of the approximate solutions to normally pressured class 3 gas hydrate 

reservoirs with conventional methods of analysis applicable to specific reservoir responses. 

Chapter 4 depicts the behavior over-pressured class 3 gas hydrate reservoir using similarity solutions 

(approximate solutions). 

Chapter 5 addresses crossflow problems in class 1 and 2 gas hydrate reservoirs considering the 

possibility of producing from either the free fluid layer or the hydrate layer. Approximate solutions in 

real time domain and conventional methods of analysis are addressed here. 

Chapter 6 summarizes and concludes this thesis. 

Appendices give a detailed derivation of the conceptual models for gas hydrate reservoirs. Bourgeois 

and Horne Laplace domain well test model recognition method is addressed in detail for each reservoir 

type, which gives a distinctive picture of the complexity of the reservoir behavior for each reservoir 

type and a much better approach for reservoir characterization.  
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2 Well Testing Models in Gas Hydrate Reservoirs: Challenges and 

Methodology  

As described briefly in Chapter 1, production from hydrate reservoirs and the derivation of well test 

models requires great precaution. The challenges faced with the derivation of conceptual models for 

these reservoirs are summarized below: 

• From the mass conservation principle used in deriving well test models, the hydrate 

dissociation would be the source term in the diffusivity equation which is also endothermic. 

Note that in conventional oil and gas reservoirs, source/sink terms are not commonly 

addressed in reservoir testing models; moreover, the effect of endothermic process means the 

temperature during depletion is not constant like in conventional reservoirs. 

• Due to the hydrate dissociation byproducts, i.e. gas and water, we have two phase flow at 

almost all times, provided the prevailing pressure is below the hydrate equilibrium pressure. 

This implies multiphase flow has to be considered in all the models developed. 

• The presence of gas in the system implies the consideration of the compressibility effects with 

changes in pressure and temperature. 

• The endothermic process during dissociation requires the consideration of heat flux in deriving 

the well test model, which implies an energy balance approach to quantify the rate of heat 

consumption for hydrate dissociation has to be applied. Note that isothermal conditions are 

usually considered in conventional gas reservoirs, which cannot be applied here.  

The dependence of most compressible and slightly compressible fluids with pressure in oil and gas 

reservoirs triggers non-linear reservoir response, as pressure transient also affects reservoir fluid 

properties. This problem was an issue of focus for many decades in the oil and gas industry till Al-

Hussainy [32] introduced the use of the Kirchhoff transformation in linearizing the diffusivity 

equation in gas reservoirs. A further method of addressing the non-linearity of the diffusivity equation 

with the Kirchhoff transformation was given by Agarwal [33] to address the problem of the changes in 

the storativity term with time and pressure. In most of these methods, the permeability or effective 

permeability of the fluids was considered constant and pressure independent. In recent years, with the 

outburst of unconventional reservoirs or even conventional gas condensate reservoirs, the dependence 

of the effective permeability of the phases became crucial and needed to be addressed. Multiphase 

pseudo-pressures were then developed which addressed these effects (see Chapter 2.2 for details). 

The problem of the dependence of the absolute permeability or effective permeability with pressure is 

similar to concentration dependent diffusion coefficient problems addressed by many authors 

including [34], [35], [36], [37], [38] . The authors proposed complex analytical solutions to the non-

linear diffusivity equation, most of which were solved by applying the Boltzmann transformation. It 

should be emphasized that most of these mathematical methods considered single fluid phase 

19 



Chapter 2: Well Testing Models in Gas Hydrate Reservoirs:  
Challenges and Methodology 

diffusivity problems which has however become obsolete in most diffusivity problems existing today, 

whereby multiphase fluid flow has become a standard process. 

In gas hydrate reservoirs, the problem of gas and water flow has to be addressed at almost all 

production stages, as the hydrates will dissociate to gas and water; moreover, the hydrate layer could 

be partly filled with water and gas. This gives the first source of the non-linear behavior. Secondly, the 

endothermic dissociation of the hydrates causes temperature drop, increase in fluid saturation and 

effective permeability. This implies, for a proper linearization of the diffusivity equation for gas 

hydrate reservoirs, these processes need to be identified and quantified in the diffusivity equation.  

Depending on the type of gas hydrate reservoir, different responses could be monitored during 

production. In Class 1 and 2 gas hydrates, crossflow behavior is very possible and hence crossflow 

problems would be addressed later. In Class 3 gas hydrate reservoirs, depending on the well test 

method or the equilibrium pressure of the hydrate layer, different characteristic behaviors will be 

observed such as the moving boundary problem which will be addressed in detail later. 

Deriving the solution to non-linear diffusivity equations is gaining great interest in the oil and gas 

industry due to the complex responses observed with unconventional oil and gas reservoirs. 

For gas hydrate reservoirs, the following approaches will be made in deriving the solution to the 

complex behavior: 

Linearization 

• Kirchhoff Transformation for the Multiphase Pseudo-pressure 

The pressure dependent parameters in the diffusivity equation will be linearized using the Kirchhoff 

transformation, analog [32] for gas pseudo-pressure and for two phase pseudo pressure in gas 

condensate reservoirs [39], [40]. This is further addressed in Chapter 2.2. Note that although the 

pressure dependent diffusion coefficient, reflected later in the mass balance model (MBM) or 

volumetric material balance model (VMBM), is linearized using the Kirchhoff transformation, the 

conceptual model for the gas hydrate has to address the changes in the multiphase pseudo-pressure as 

a result of the dissociation effects as will be seen later. 

Solutions 

• Boltzmann Transformation (Similarity Solution) 

• Laplace Transformations 

The solutions for the diffusivity equation will be derived in dimensionless parameters using both the 

Boltzmann Transformation and the Laplace Transformation for the following boundary conditions: 

Inner Boundary Conditions 

• Constant Rate Inner Boundary (CRIB) or Constant Terminal Rate (constant mass rate).  
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Unlike in conventional oil and gas well test models, the solutions presented here will be given 

in pseudo-pressure and constant mass rate. The definition of the pseudo-pressure will be given 

later. 

• Constant Pressure Inner Boundary (CPIB) or Constant Terminal Pressure (constant multiphase 

pseudo-pressure) 

To develop the rate transient solutions using the CPIB, constant multiphase pseudo pressure conditions 

are imposed on the wellbore, which is a preliminary to applying further well testing methods like 

Deconvolution for changing inner boundary situations.  

Outer Boundary Conditions 

In deriving the solutions to the diffusivity equation, the following reservoir outer boundary 

conditions are considered 

• Infinite Acting Reservoir (IAR): r→∞; z→∞ 

• Constant Pressure Outer Boundary (CPOB): �dp
dr
�
re

> 0; (dp)re = 0 

• No-Flow Outer Boundary (NFB):�dp
dr
�
re

= 0 

• Constant Temperature Outer Boundary (CTOB): �dT
dz
�
ze

> 0; (dT)ze = 0 

• Pseudo No-Flow Temperature Boundary: �dT
dz
�
ze

= 0 

To investigate the effects of the reservoir boundaries on the wellbore response, the image well theory 

is usually applied to the infinite acting solutions of the diffusivity problem. Note that the image well 

theory proposed by [41] is one of the most widely used methods of investigating the wellbore response 

of a reservoir with different kinds of boundaries as seen in the works of [41], [42], [43], [44]; however, 

it is gradually being replaced by the use of Green´s functions. Although solutions for just single 

boundaries are addressed in this work, it is important to develop a general solution for which the 

image well theory could be investigated in future works. The image well theory is briefly discussed in 

Appendix 8 for both similarity and Laplace domain solutions. 

On the other hand, most of the solutions presented in this work for bounded reservoir using the 

Bessel´s functions address reservoirs completely bounded by either a recharge or no-flow boundary 

but not both, for which the well is located at the center. For this reason, the reservoir responses are 

quite different from those derived with a single boundary using the image well theory.  

2.1 Kirchhoff Transformation 

In reservoir engineering, the Kirchhoff transformation is as of date, one of the most widely applied 

methods of linearization of non-linear diffusivity equations. Its application is very much seen in 

describing well test models in gas, gas condensate and Coalbed methane (CBM) reservoirs where the 
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fluid properties and flow are strongly pressure dependent. The diffusivity equation below depicts the 

application of the transformation. 

1
r

∂�r∗D(p)∂p
∂r�  

∂r
= S

𝑘𝑘
∂p
∂t

          2. 1 

From the above equation, the diffusion coefficient is pressure dependent. Instead of incorporating the 

pressure dependent function of the diffusion coefficient, the Kirchhoff transformation is used. 

Although the use of the Kirchhoff transformation is a well-established method of solving many 

mathematical problems such as the pressure dependent diffusion coefficient problems [38], it only 

gained huge significance through the works of [32] and [45]. Unlike other models such as the 

solutions of [35] and [46] where the diffusion coefficient is assumed to behave in a particular manner 

and the diffusivity equation solved, the Kirchhoff transformation offers the use of arbitrary functions 

of the pressure dependent diffusion coefficient. The transformation is given below. 

φ = ∫D(p)dp           2. 2 

The Kirchhoff transformed diffusivity equation is hence: 

1
r

∂�r∂φ∂r�  

∂r
= S

kD(p)
∂φ
∂t

          2. 3 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
= S

kD(p) rw2
∂φ
∂t

         2. 4 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
= 1

a(p)
∂φ
∂t

          2. 5 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
= 1

a(pi)
a(pi)
a(p)

∂φ
∂t

         2. 6 

Although the pressure and the diffusion coefficients have been linearized, the diffusivity coefficient 

can still be pressure dependent. Since the pressure in the reservoir is a function of time and radius, [33] 

proposed the use of the pseudo-time integral by similarly applying the Kirchhoff transformation to the 

time function. Nonetheless, the Agarwal pseudo-time considered just the dependence of the 

Storativity, S; with pressure since gas reservoirs were considered. For incompressible fluids, the 

storativity, S, is approximately constant or pressure independent, but this is not the case for 

compressible fluids such as gas. For this reason, the pseudo-time is usually written thus: 

ta = ∫ a(p)
a�pi�

dt           2. 7 

The precondition in applying these transformations is the functions in the integrals could be derived 

for a given pressure. Recent innovations in the computation of pseudo-time for single phase gas 

reservoirs are given in [47]. 
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With the transformation of time and pressure using the Kirchhoff transformation, the equation is easily 

simplified to the linearized form thus: 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
= 1

a(pi)
∂φ
∂ta

          2. 8 

∂2φ
∂rD

2 + 1
rD

∂φ 
∂rD

= 1
a(pi)

∂φ
∂ta

          2. 9 

Linearization of the models is possible using the above methods of pseudo-pressure and pseudo-time, 

however, analysis of real time and pressure data need a retransformation of the pseudo-parameters into 

real time and pressure models such that reservoir parameters can be obtained. 

Instead of using the Agarwal pseudo-time, other transformations can be made for the diffusivity 

coefficient (with assumptions) such that the effects of hydrate dissociation on the reservoir response 

can be investigated, especially when developing type curves. This will be shown in detail later. 

2.2 Multiphase Diffusivity Equations for Well Testing  

As mentioned earlier, dissociation of hydrates will result to gas and water production; hence, 

multiphase flow is present in the reservoir at almost all times. For well test analysis, many multiphase 

models have been developed with time; yet with limitations depending on the validity of mass 

conservation which is a very useful principle used in many domains of fluid dynamics. The main 

assumptions common in most multiphase well testing models used are negligible capillary pressure 

and gravitation effects. With these assumptions, analytical models were proposed to describe 

multiphase flow in reservoirs. It should be emphasized that existing models have considered several 

other assumptions to simplify the diffusivity equation as much as possible which has also made their 

applicability in some cases very limited. The three mainly used models for two-phase flow in the 

reservoir are given below with validity of mass conservation [48]. 

2.2.1 Mass Balance Model (MBM)-State of the Art 

The MBM, which can also be referred to as the composition model or EOS model type [49], is robust 

and is derived directly from mass conservation principle and no major simplification of fluid 

properties or further assumptions apart from the two stated above are made and is as of now the state 

of the art in addressing multiphase flow in reservoirs. The mass balance model in radial coordinates is 

given thus: 

1
r

∂(r∗�ρ1
k1
ɳ1
+ρ2

k2
ɳ2
�∂p∂r)

∂r
= ∅�ρ1cT,1 + ρ2cT,2�

∂p
∂t

       2. 10 

The diffusivity equation above is developed from mass conservation principle and since no 

simplification of the model has been done, mass conservation will always hold for the model. 

Using the Kirchhoff transformation, pseudo-pressure models can be developed as also seen in CBM 

and gas condensate reservoirs. The pseudo-pressure for this model is given thus: 
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φ = ∫ �ρ1
k1
ɳ1

+ ρ2
k2
ɳ2
�dp         2. 11 

The above model is a simplification of the reservoir integral as given by Jones and Raghavan [50] and 

is the state of the art with regard to pseudo-pressure for multiphase systems also seen in other 

literature such as [51], [52]. 

The general methodology of deriving the MBM pseudo-pressure is given in Table 4 for both rate 

transient and pressure transient. Note that the pseudo-pressure is valid only if the parameters in the 

pseudo-pressure integral are all pressure dependent. 

Table 4: General Methodology of Deriving the MBM Pseudo-Pressure 

RTA PTA 

ṁt = ṁg + ṁw 

↓ 

ṁt = 2πrhkρg
krg∗

ɳg
∂p
∂r

+ 2πrhkρw
krw∗

ɳw
k
∂p
∂r

 

↓ 

ṁt(t)
2πhk

∂r
r

= �ρg
krg∗

ɳg
+ ρw

krw∗

ɳw
�∂p 

↓ 

ṁt(t)
2πhk(φi − φwf)

∂r
r

=
�ρg

krg∗
ɳg

+ ρw
krw∗
ɳw

� ∂p

(φi − φwf)
 

↓ 

ṁtD
∂rD
rD

=
∂φ

(φi − φwf)
 

↓ 

�rD
∂φD

∂rD
�
∂rD
rD

=
∂φ

(φi − φwf)
 

↓ 

φD =
(φi − φ)

(φi − φwf)
 

ṁt = ṁg + ṁw 

↓ 

ṁt = 2πrhkρg
krg∗

ɳg
∂p
∂r

+ 2πrhkρw
krw∗

ɳw
k
∂p
∂r

 

↓ 

ṁt

2πhk
∂r
r

= �ρg
krg∗

ɳg
+ ρw

krw∗

ɳw
� ∂p 

↓ 

∂r
r

=
2πhk

ṁt
�ρg

krg∗

ɳg
+ ρw

krw∗

ɳw
� ∂p 

↓ 

∂r
r

=
2πhk

ṁt
∂φ 

↓ 
∂rD
rD

=
2πhk

ṁt
∂φ = ∂φD 

↓ 

lnrD =
2πhk

ṁt
(φi − φ) = φD 

 

The workflow in Figure 15 depicts the methodology of applying the pseudo-pressure in combination 

with the energy balance model derived in Appendix 1.  

2.2.2 Volumetric Material Balance Model (VMBM) 

The VMBM which can also be referred to as the black oil model type [ [49], [39]] can be considered 

as a simplification of the MBM with the assumption the fluids have approximately equal densities at 

standard or norm conditions and the model is given below:  

1
r

∂(r∗� k1
B1ɳ1

+ k2
B2ɳ2

�∂p∂r)

∂r
= ∅�cT,1

B1
+ cT,2

B2
� ∂p
∂t

         2. 12 

24 



Chapter 2: Well Testing Models in Gas Hydrate Reservoirs:  
Challenges and Methodology 

Since the densities of gas and water vary vastly from another at standard conditions, the model is not 

appropriate for gas hydrate reservoirs. If undersaturated oil reservoirs are considered, with oil and 

water flow, the errors however diminish [48]. The pseudo-pressure for this model is given thus: 

φ = ∫ � k1
B1ɳ1

+ k2
B2ɳ2

�dp          2. 13 

The above model is the obsolete version of the pseudo-pressure used previously to model gas 

condensate and seen in several publications such as Boe [53]. 

2.2.3 Perrine Type VMBM 

Another type of multiphase pseudo-pressure used for well testing is the Perrine Type VMBM, which is 

an obsolete multiphase well testing model and a simplification of the MBM with the assumption that 

the densities of the fluids are approximately equal and pressure independent.  

Once more, the pressure of gas is pressure dependent and very different from that of water; this model 

cannot be used for gas hydrate reservoirs. Nevertheless, with a look at undersaturated oil reservoirs 

with basically oil and water as multiphase systems, the model can be applied to an extent. If the 

Perrine [54] mobility is used, the pseudo-pressure for this model is given thus: 

φ = ∫ �k1ɳ1 + k2
ɳ2
�dp          2. 14 

The pseudo-pressure clearly indicates that the Perrine´s model is a modification of single phase flow 

model [51] with the assumption of incompressible fluids.  

All three models will yield the same results only for a single phase incompressible system. Note that 

other rigorous multiphase diffusivity equations exist to address capillary pressure effects but still 

difficult to implement for well test analysis purposes. A scrutiny of various multiphase diffusivity 

equations is given in [55]. 
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Figure 15: Workflow to Methodology of Applying the MMB Pseudo-pressure and the Energy Balance (Equilibrium) Model 
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2.3 Heat Conduction and Hydrate Dissociation in Class 3 Hydrates 

In Appendix 1, an energy balance model has been used to fully address the heat energy terms 

responsible for hydrate dissociation. Note that the models are developed based on the assumption that 

the inner boundary conditions for heat flux can be defined by a Clausius-Clapeyron Type Equilibrium 

Model, which gives the dependence of pressure depressions to temperature depressions. This implies 

the temperature profile in the hydrate layer is solely pressure dependent as long as hydrates are 

present, as dissociation is endothermic and triggered by pressure depressions and also validates the use 

of a pseudo-pressure model. Figure 16 also gives a comparison of the measured wellbore temperatures 

from the Mallik gas hydrate production test of 2008 [56] with a Clausius Clapeyron type temperature 

depression model and we notice a very small deviation between measured data and predicted data 

(initial pressure of 110.05 bar and initial temperature 11.378°C; hence Peq and (dT/dp)eq can be 

estimated according to Appendix 3). This further implies the model can be used as a relatively good 

estimation without huge falsification of the prediction models. 

 

Figure 16: Comparison of the measured wellbore temperatures from the Mallik gas hydrate production test of 2008 

(Uddin, et al., 2012 [56]) with a Clausius Clapeyron type temperature depression model 

The workflow below depicts the methodology of the application for the Clausius Clapeyron type 

temperature depression model used in this work. 
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Figure 17: Methodology of the Clausius Clapeyron Type Temperature Depression Model 

Using the hydrate prediction model given by [5], the Clausius Clapeyron Type Temperature 

Depression for Methane hydrate can be deduced as given in Figure 18.  

 

Figure 18: Methane Hydrate Equilibrium Curve and the Clausius Clapeyron Type Temperature Depression Model 

From Figure 19 we can deduce that the heat of dissociation lies in the range 500-600 kJ/kg for most 

offshore gas hydrate reservoirs, i.e. 2-20°C [3]. This also endorses the values given in Table 2 by the 

different authors.  
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Figure 19: Methane Hydrate Equilibrium Curve and Methane Hydrate Heat of Dissociation 

The equilibrium model addresses the heat energy sources responsible for hydrate dissociation, one of 

which is heat energy through conduction. Depending on the imposed boundary condition in the 

confining layer, as also given in Appendix 1, heat conduction could be transient, depleting or constant 

at some stage during production. 

 

 

 

 

 

 

 

 

Figure 20: Boundary Conditions for Heat Influx through Conduction (No Fluid Crossflow) 

Imposing one of the outer boundary conditions mentioned earlier to derive the rate of heat influx will 

have a tremendous effect on the rate of hydrate dissociation. Imposing constant temperature outer 

boundary (CTOB) conditions will imply constant continuous dimensionless heat supply from the top 

and bottom confining layers for hydrate dissociation at some time during production. Depending on 

the pressure depression in the hydrate layer and the hydrate saturation, the hydrate dissociation rate 

could increase significantly. Constant temperature outer boundary conditions will however give very 

optimistic predictions as this is seldom the case in the reservoir without any heat source to replenish 

the loss of heat energy at the boundary. 
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Due to the transient behavior of heat influx, the Laplace transformation would be a very useful tool in 

developing the solutions to such a problem. It should be noted that the kinetic model assumes constant 

heat source at all times during hydrate dissociation and is hence equivalent to the CTOB solution at 

late production times. It is once more worth emphasizing that the heat flux in the infinite acting 

vertical plane requires successive superposition of the solutions for each layer interval with a given 

temperature as described by the geothermal gradient. The derivation of the solution to such a problem 

could be very cumbersome, all depending on the thickness of the confining layer in question.  

In general, at a given depth and production time, the temperature at the wellbore equals the 

temperature of the infinite acting overburden as a result of the geothermal profile. The confining layer 

then depicts a pseudo-NFB for heat influx although the system is infinite. This implies, in reality, the 

heat support from the top layer would stop after a given production time and at a given depth as a 

result of the decrease in the temperature of the reservoir with decreasing depth. For this reason, a 

pseudo-NFTB model can be imposed on the reservoir response for the top layer. It is worth 

mentioning that the pseudo-NFTB for heat influx is dependent on the degree of temperature 

depression in the reservoir and the depth at which the reservoir temperature equals the temperature of 

the confining layer. However, for the bottom layer, this would not be the case as temperature increases 

with depth and hence heat influx from the bottom confining layer would be continuous and mask the 

effect of the pseudo-NFB in the top confining layer.  

To facilitate the computation of the heat influx and hence the hydrate dissociation rate, the temperature 

in the confining layers will be assumed constant. As such, IAR, CTOB and p-NFTB conditions will be 

imposed at the outer boundary to investigate the effects of heat influx on hydrate dissociation. This is 

fully addressed in Appendix 12.  

2.4 Heat Conduction, Convection and Hydrate Dissociation in Class 1 and 2 

Hydrates 

In Class 1 and 2 hydrates, the energy influx responsible for hydrate dissociation after pressure and 

temperature drop in the hydrate layer is strongly dependent on the method of production. If the 

reservoir is produced or tested from the free fluid layer, just heat conduction would be the additional 

source of energy needed to be considered for hydrate dissociation as the cap rock above the hydrate 

layer is considered impermeable. On the other hand, if the well is tested from the hydrate layer, heat 

conduction from the top layer and convective heat transfer from the free fluid layer would have to be 

considered as well. 
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Figure 21: Heat Influx Problems in Class 1 and 2 Gas Hydrate Reservoirs 

Though no-flow at the outer boundary of the hydrate layer has been considered, the effects of hydrate 

dissociation at the outer boundary of the hydrate layer could have significant influence on the reservoir 

response. Producing from the free fluid layer induces pressure propagation in the hydrate layer which 

is most often assumed to be dominantly vertical. When pressure depression reaches the upper 

boundary of the hydrate layer, temperature depressions are also experienced due to the endothermic 

hydrate dissociation. For this reason, heat flux from conduction will occur basically at the boundary 

and is controlled by the temperature depression at the boundary. When the hydrates dissociate at the 

boundary, the pressure at the dissociation front increases which implies, depending on the rate of 

hydrate dissociation, the pressure depression at the reservoir boundary could be supported by hydrate 

dissociation due to heat influx, which is a similar phenomenon seen in the production history of the 

Messoyakha Gas Field (Class 1G Gas Hydrate) . The effect of pressure support at the boundary is a 

known phenomenon and usually described as the constant pressure outer boundary condition where 

pressure depression at the boundary is zero due to fluid influx. The solution to such a complex 

problem could be derived with assumptions but however incorporating the solution in the crossflow 

model is very cumbersome. This problem is rigorously addressed in Appendix 14. To reduce the 

complexity of addressing such a system, we can assume the hydrate dissociation at the boundary due 

to heat influx is high enough to cause zero pressure depressions at the hydrate upper boundary; hence 

constant pressure outer boundary is imposed. If the hydrate dissociation due to heat influx is 

insignificant, just the hydrate dissociation due to pressure effects will be considered and true no-flow 

boundary imposed at the boundary. With this assumption, no-flow and constant pressure outer 

boundaries can be imposed at the outer boundaries of the hydrate layer. 

2.5 Absolute, Effective and Relative Permeabilities in Hydrate Formations 

The ability of porous media to allow fluid flow in the interconnected pores is characterized as the 

permeability. The permeability is further classified into subgroups depending on fluid phases present. 

The absolute permeability, k, of the porous media reflects the flow ability of pores fully saturated 
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(100%) with a single fluid phase [57]. In the presence of more than one phase in the pores, the term 

effective permeability is introduced. The effective permeability and absolute permeability are related 

by the following function: 

keff = krk           2. 15 

The term kr, denotes the relative permeability and it reflects the flow ability of a fluid relative to the 

other fluid components present. Hence the effective permeability simply denotes the ability of the 

porous media to allow flow of a given phase in the presence of another phase in the interconnected 

pores.  

In conventional gas reservoirs, two main fluid phases are common, which are gas and water. In 

hydrate reservoirs, the presence of hydrates in the pores of the formation requires a further 

classification of the permeability concepts. Masuda [58] carried out rigorous experimental studies on 

hydrate dissociation and permeability changes and came up with the following correlation which is as 

of now the most widely used in most numerical simulators: 

kH = krHk = (1 − SH)Nk         2. 16 

For convenience, the effective permeability of the gas and water phases will be represented thus: 

kg = krgkH = �krg ∗ krH� ∗ k = krg∗ ∗ k       2. 17 

kw = krwkH = (krw ∗ krH) ∗ k = krw∗ ∗ k       2. 18 

Conventionally, fluid saturation, most especially gas, will decrease with pressure depletion. However; 

in gas hydrates, this will not be the case as hydrates will dissociate to gas and water hence replenishing 

the amount of gas withdrawn through production. The reservoir behavior in this case becomes a little 

complex. The presence of gas, water and hydrate in the system and their changes with depletion 

became an issue of concern as three phase relative permeability models had to be developed to address 

such a response. As of now the most widely used three phase relative permeability model to address 

hydrate behavior is the Stone [59] three phase model, modified by Aziz [55]. The effective and 

relative permeabilities of the gas and water phases using this model are [10], [60]: 

kg = krg∗ ∗ k = �Sg−Sgirr
1−Sgirr

�
ng

k         2. 19 

kw = krw∗ ∗ k = �Sw−Swirr
1−Swirr

�
nw

k        2. 20 

Note that the pseudo-pressures developed earlier relate the dependence of relative permeability with 

pressure. To account for the changes in relative permeability with pressure the material balance 

saturation models in Appendix 4 can be used. 
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Figure 22: Material Balance Saturation and Relative Permeability with Pressure (Sgi =0.8, Swi=0.2, ng=2, nw=4, 

Sgirr=0.02, Swirr=0.18) 

 

Figure 23: Material Balance Saturation and Relative Permeability with Pressure (Class 3 Hydrates, neglecting heat 

conduction, Sgi =0.2, Swi=0.4, SHi=0.4, ng=2, nw=4, Sgirr=0.02, Swirr=0.18) 

2.6 Boltzmann-Transformation (Similarity Variable Method) 

The Boltzmann transformation is a very effective tool in transforming partial differential equations 

into ordinary differential equations. The method simply involves the use a similarity variable, which is 

a function of time and place, such that the derivatives of the variable can easily be incorporated into 

the diffusivity equation, hence transforming it into an ordinary differential equation for which a 

similarity solution can be obtained. In radial coordinates, the conventional Boltzmann similarity 

variable with dimensionless time and radius is given thus: 

vD2 = rD
2

4tDw
           2. 21 
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With the use of the above transformation complex methods of solving diffusivity equations could be 

avoided. On the other hand, the transformation is not applicable in all radial flow problems for well 

testing. The application of the Boltzmann transformation is given in Appendix 8. 

The use of the Boltzmann transformation in solving the diffusivity equation analytically cannot be 

used for all diffusivity problems, hence the use of more rigorous analytical methods such as Laplace 

transforms are used.  Nonetheless, most of the solutions of the diffusivity equations developed here 

will be presented using both the Boltzmann and Laplace transforms. 

2.7 Laplace-Transformation 

The Laplace transformation is one of the most widely used methods of solving partial differential 

equations in oil and gas reservoir engineering problems since its introduction by Van Everdingen and 

Hurst [61]. It involves the transformation of the diffusivity equation in a Laplace domain form. The 

Laplace transformation is given below: 

L{f(t)} = ∫ e−pt∞
0 f(t)dt = f̂(p)         2. 22 

Applying the Laplace transform in the dimensionless diffusivity equation takes the form:  

∂2𝐿𝐿(φ𝐷𝐷)
∂rD

2 + 1
rD

∂𝐿𝐿(φ𝐷𝐷) 
∂rD

= ∫ e−ptDw∞
0

∂φ𝐷𝐷
∂tDw

dtDw       2. 23 

∂2φ𝐷𝐷�
∂rD

2 + 1
rD

∂φ𝐷𝐷�  
∂rD

= ∫ e−ptDw∞
0 ∂φ𝐷𝐷        2. 24 

∂2φ𝐷𝐷�
∂rD

2 + 1
rD

∂φ𝐷𝐷�  
∂rD

= [−φ𝐷𝐷(𝑟𝑟𝐷𝐷, tDw = 0) + 𝑝𝑝φ𝐷𝐷� ]       2. 25 
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3 Conceptual Models for Well Testing in Normally Pressured Class 3 

Gas Hydrates 

The conceptual well testing models developed for the Class 3 gas hydrate reservoirs are developed 
based on the mass conservation principle as done in conventional oil and gas reservoirs, while 
considering the hydrate dissociation rate as the source term in the diffusivity equation. 

As given in Appendix 5, the general mass conservation equation in radial coordinates is given thus: 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) = 2πrh∆r ∆�Sg∅ρg�
∆t

+ 2πrh∆r ∆(Sw∅ρw)
∆t

+ ṁH 3. 1 

Based on the model used in addressing the hydrate dissociation rate, two different models can be 
generated for the response, namely:  

Equilibrium Model 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− �∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧𝐷𝐷=1

− �∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈,𝑧𝑧𝐷𝐷=1

= SD
∂φD
∂tDw

 3. 2 

The above model takes the following form in Laplace domain by applying the temperature inner 

boundary conditions addressed in Appendix 6: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− �SDp + �eDQ̇pD
� �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ �eDQ̇pD

� �
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

�φ�D = 0 3. 3 

The above equation can simply be represented in the following form as also given in Appendix 7 and 

Appendix 12: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− (SDp + γDe)φ�D = 0 3. 4 

Kinetic Model 

In the kinetic model, the hydrate dissociation rate is considered constant and hence the diffusivity 

equation using this approach is written in time domain thus: 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDkφD = SDk
∂φD
∂tDw

 3. 5 

The kinetic model in Laplace domain simply takes the form: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− (SDp + γDk)φ�D = 0 3. 6 

The derivation of diffusivity equations of the normally pressured gas hydrate reservoir using the 

kinetic and the equilibrium model are given in detail in Appendix 5. 

The solutions to the above equation with constant pressure inner boundary (CPIB) and constant rate 

inner boundary (CRIB) conditions using the Boltzmann and Laplace transforms are given in Appendix 

12. The dimensionless pseudo-pressure and rate profiles are now depicted for the similarity solutions. 

A meticulous overview of different and more complex reservoir responses are given in Appendix 12 

with the Laplace domain well test model recognition method. 
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3.1 Part 1: Constant Wellbore Pressure Cases 

Part 1-Case 1: γD<<1  

• Using the equilibrium model: γD= γDe denotes the dimensionless heat leakage rate due to heat 

conduction from the confining layers. 

• Using the kinetic model: γD = γDk denotes the dimensionless hydrate dissociation rate.  

Using the kinetic model, γD<<1 will mean negligible hydrate dissociation whereas the equilibrium 

model still considers hydrate dissociation due to pressure drop and neglects just the heat conduction 

term. Hence the two effects could be handled separately. For cases where heat conduction effects are 

negligible, the similarity solutions can be used.  

Part 1-Case 1a: IAR Response 

Using the equilibrium model and assuming negligible hydrate dissociation due to heat conduction, the 

effects of hydrate dissociation on the reservoir response considering the heat energy used up in the 

hydrate layer can be predicted using the following models (see Appendix 12 for details): 

Pseudo-Pressure 

φD(rD, tDw) = φ(r,t)−φi
φwf−φi

=
�E1�SD

rD
2

4tDw
��

�E1�
SD

4tDw
��

 3. 7 

Transient Rate 

ṁtD = ṁt(t)

2πhk�φi−φwf�
= 2e−vD

2

�E1�
SD

4tDw
��

 3. 8 

 

Figure 24: Transient Rate Profile with Effects of Heat Energy Consumed in Hydrate Layer 
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Figure 25: Derivative Plot for Rate Transient with Effects of Heat Energy Consumed in Hydrate Layer 

To eliminate the influence of the modified dimensionless decomposition compressibility, SD, from the 

reservoir response, the type curve is introduced with a modified time, whereby the modified time is 

given by tDw/SD. The transient rate profile with the modified time is given in Figure 26. 

 

Figure 26: Type-Curve Transient Rate Profile for Infinite Acting Reservoir-Constant Pressure at Wellbore 

As expected, the dimensionless rate transient here has the same profile as in conventional gas 

reservoirs due to the use of dimensionless parameters and the absence of γD. Maximum flow rates will 

be achieved during early time production before pressure depression propagates deep into the 

reservoir. Rate transient analysis for such reservoir types could be performed for the middle time 

region when the infinite acting radial flow begins. The methods of analysis will be described later. 

Using the analytical models developed in Appendix 12, the pressure propagation for the infinite acting 

reservoir is depicted in Figure 27. 
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Figure 27: Dimensionless Pseudo-Profile for Infinite Acting Reservoir-Constant Pressure at Wellbore 

Part 1-Case 1b: Recharge Boundary Response (Constant Pressure Outer Boundary) 

In bounded or finite reservoirs, the rate transient responses are a little different. During recharge 

boundary dominated flow, no rate decline is noticed as pressure support (fluid influx) from the outer 

boundary prevents any pressure depletion in the reservoir. Dimensionless pseudo-pressure and rate 

profiles given in Figure 28 and Figure 29 depict this behavior. 

The following models could be used to predict the reservoir response (see Appendix 12 for details): 

Pseudo-Pressure 

φD(rD, tDw) = φ(r,t)−φi
φwf−φi

=
�E1(SD

rD
2

4tDw
)�−�E1�SD

�2lD−rD�
2

4tDw
��

�E1( SD
4tDw

)�−�E1�SD
�2lD−1�

2

4tDw
��

 3. 9 

Transient Rate 

ṁtD(rD = 1, tDw) = ṁt(t)

2πhk�φi−φwf�
= 2

�e
−�

SD
4tDw

�
+(2lD−1)−1e

−
�2lD−1�

2

4tDw
SD�

E1�
SD

4tDw
�−E1�SD

�2lD−1�
2

4tDw
�

 3. 10 
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Figure 28: Type Curve Transient Rate Profile for Constant Pressure Bounded Reservoir-Constant Pressure at 

Wellbore 

From Figure 28 it is clear that the smaller the drainage radius, the faster boundary dominated flow 

embarks. The dimensionless pseudo-pressure profile for reservoir with a recharge boundary at a 

distance 2lD=3500 from the wellbore is given in Figure 29 and clearly shows that no pressure 

depletion is experienced for tDw/SD>106. 

 

Figure 29: Dimensionless Pseudo-Profile for Constant Pressure Bounded Reservoir-Constant Pressure at Wellbore 
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Part 1-Case 1c: Impermeable Boundary Response (No-Flow Outer Boundary) 

Constant pressure outer boundary conditions are usually modeled to reflect the influence of pressure 

support from a strong aquifer or from an injection well. However, in most bounded reservoirs, this is 

not the case as sealed fault zones are usually present, limiting the influx of fluid at the reservoir 

boundary. To investigate such a problem, no-flow boundary models were developed as also given 

below (see Appendix 12 for details): 

Pseudo-Pressure 

φD(rD, tDw) = φ(r,t)−φi
φwf−φi

=
�E1(SD

rD
2

4tDw
)�+�E1�SD

�2lD−rD�
2

4tDw
��

�E1(
SD

4tDw
)�+�E1�SD

�2lD−1�
2

4tDw
��

 3. 11 

Transient Rate 

ṁtD(rD = 1, tDw) = ṁt(t)

2πhk�φi−φwf�
= 2

�e
−�

SD
4tDw

�
−(2lD−1)−1e

−
�2lD−1�

2

4tDw
SD�

E1�
SD

4tDw
�+E1�SD

�2lD−1�
2

4tDw
�

 3. 12 

Figure 30 and Figure 31 depict the rate transient and the pseudo-pressure profile in the reservoir for 

the no-flow boundary condition. 

 

Figure 30: Type Curve Transient Rate Profile for No-Flow Bounded Reservoir-Constant Pressure at Wellbore 

As depicted in Figure 31 the pressure at the boundary does not remain constant during boundary 

dominated flow as no pressure support is addressed in this model. 
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Figure 31: Dimensionless Pseudo-Profile for No-Flow Bounded Reservoir-Constant Pressure at Wellbore (2lD=3500) 

 

Figure 32: Type Curve Rate Transient Response for Infinite Acting and Bounded Reservoirs 
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Figure 33: Derivative Plot of Rate Transient Response for Infinite Acting and Bounded Reservoirs 

Part 1-Case 2: 0<γD<1  

In Case 1, the dimensionless hydrate dissociation term or the dimensionless heat leakage term was 

neglected, which is now considered here and the influence of hydrate dissociation or heat conduction 

on the transient rate profile investigated. As given in Appendix 12, heat influx effects were considered 

by applying the Laplace transforms for which approximate solutions can be derived in real time 

domain for specific time intervals. 
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The effect of heat conduction on the reservoir response can be investigated with the following models 

(see Appendix 12 and Appendix 18 for details): 
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Where, 

µD = �1 + FCDeD(∆zD−1)
3SD

� = �1 + [FCDeD(∆zD−1)]TL+[FCDeD(∆zD−1)]BL
3SD

� 3. 16 

bD = eD
(∆zD−1) = � eD

(∆zD−1)�TL
+ � eD

(∆zD−1)�BL
 3. 17 

The model hence quantifies the heat sources from both the top and bottom layers (TL & BL) of the 

hydrate. In a similar manner, solutions can also be derived using the kinetic model.  

The Kinetic Model 

Pseudo-Pressure 

φD = φ(r,t)−φi
φwf−φi

= Z �tDw
SDk

, rD,√γDk� 3. 18 

For tDw
SDk √γDk > 1 

φD = φ(r,t)−φi
φwf−φi

=
W�

rD
2

4tDw
SDk,rD�γDk�

W� 1
4tDw

SDk,�γDk�
 3. 19 

Transient Rate at Wellbore 

ṁtD = ṁt(t)

2πhk�φi−φwf�
= G �tDw

SDk
,√γDk� 3. 20 

The Hantush functions Z(μ,β,τ), W(μ,β), G(μ,β,) are given in Appendix 18. 

 

Figure 34: Transient Rate Profile in Gas Hydrates with Sensitivity on Gas hydrate Dissociation Rate (µD=1) 

As seen in Figure 34, the effect of hydrate dissociation from heat conduction could have a noticeable 

effect on the rate transient profile. With very high and constant heat influx rates, rate decline stops and 

the wellbore rate transient remains constant. The reservoir hence behaves similar to constant outer 

boundary pressure reservoirs although this is not the case. Figure 36 shows the true behavior of the 
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constant pressure outer boundary case. Here it is noticeable that the boundary dominated effects 

commingle with hydrate dissociation effects as a distinction between the effects of high dissociation 

rates and boundary dominated flow are difficult to differentiate. However, the models depicted in the 

diagrams are reservoir responses based on the conceptual model and do not show the decrease in 

hydrate saturation due to dissociation. Hence in real data analysis, provided the hydrate saturation is 

very significant compared to the fluid phases and the dissociation rate is slow, boundary dominated 

flow can be identified. The type curve is once more used and the rate transient takes the form: 

 

Figure 35: Type Curve Transient Rate Profile in Bounded Reservoirs with Constant Outer Pressure  

Part 1-Case 2b: Constant Pressure Outer Boundary Reservoirs 

Rate Transient Approximate Solution 
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Figure 36: Type Curve Transient Rate Profile in IAR with two CTOB (√γDk or √eD/(ΔzD-1) =0.0001 ) 
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Hence, if the hydrate reservoir is characterized by a high dissociation rate and a recharge boundary, 

the effect of one of the factors cannot be entirely distinguished from the other with simple analysis of 

well test data, as both factors are pressure support (fluid influx or source) terms. If the hydrate 

dissociation rate is very high, the pressure transient does not travel to the boundary and would make 

the characterization of exploration wells difficult. 
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Figure 37: Type Curve Transient Rate Profile in Bounded Reservoirs with No-Flow at Outer Boundary (√γDk or 

√eD/(ΔzD-1) =0.0001 ) 

Provided the heat influx rate is small as given in Figure 37, the reservoir response is characterized by 

an infinite acting period, after which boundary dominated flow embarks. With reduction in reservoir 

pressure during depletion, heat influx also increases and prohibits a further decline of mass rate. 

 

Figure 38: Transient Rate Profile in Bounded Reservoir with Influence of NFB and Heat Flux  
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Unlike the CPOB cases, the reservoir response with no flow boundaries differs significantly from 

reservoirs with the influence of heat conduction. Hence, performing a derivative plot will depict the 

no-flow boundary effects and if the heat influx rate or the hydrate dissociation rate becomes 

significant, constant outer boundary type responses will be noticed. The rate transient derivative is 

given below to depict this characteristic behavior.  

 

Figure 39: Transient Rate Profile in Bounded Reservoirs with No-Flow at Outer Boundary (√γDk or 

√eD/(ΔzD-1) =0.0001 ) 

It is worth mentioning that the reservoir responses depicted here in real time domain, considering the 

effects of heat flux, are based on approximations using the line source solutions and image well theory 

for the single bounded reservoir. However, for more explicit study of the complex reservoir responses, 

the Laplace domain solutions with the application of the image theory as given in Appendix 8 can be 

used in conjunction with the Laplace domain well test model recognition methods.  

3.2 Part 2: Constant Sandface Rate Cases 

Although maintaining constant rates during well tests in reservoirs with multiphase flow is known to 

be difficult to achieve, the effects of conducting a hypothetical constant rate test in the hydrate 

reservoir are depicted below. 
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Line Source Solution 

φD(rD, tDw) = 2πhk

ṁt
�φi − φ(r, t)� = 1

2
E1 �SD

rD
2

4tDw
� 3. 24 

 

Figure 40: Pseudo-Pressure Transient in Infinite Reservoir 

Note that the transient profiles in Figure 40 assume constant values of SD for which the pressure 

transient is performed; however SD could be changing with time from real reservoir responses, which 

could be identified by computing the average apparent permeability described in Appendix 10. Unlike 

the rate transient model, the pressure transient model does not converge for different values of SD 

during late-time production. 

The derivative plot given in Figure 41 however shows that the infinite acting radial flow (IARF) could 

be noticeable in the middle time region for all the values of SD, although the IARF is masked for 

increasing values of SD. Hence by neglecting heat conduction, the reservoir response could be 

analyzed much easier with the help of type curves and derivative plots. 
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Figure 41: Derivative of Pseudo-Pressure Profile in Infinite Reservoir 

To reduce the number of variables in the reservoir responses, type curves are once more used. The 

general reservoir derivative responses using the line source and finite well bore solutions are given in 

Figure 42 for the infinite acting reservoir.  

 

Figure 42: Generalized Transient Pseudo-Pressure Profile in Infinite Reservoir with Comparison of Finite Wellbore 

Solution and Line Source Solution 

Note that the line source solution and finite wellbore solution are equivalent approximately for 
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The effects of recharge (constant pressure outer boundary) and no-flow at the reservoir boundary are 

depicted in Figure 43. 
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Part 2-Case 1b: Constant Pressure Outer Boundary Reservoir  

φD(rD, tDw) = 2πhk
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 3. 25 

Part 2-Case 1c: No-Flow Outer Boundary Reservoir 
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Figure 43: Transient Pseudo-Pressure Profile in Infinite Reservoir with One Recharge or One No-Flow Boundary at 

Distance lD from Producing Well 

 

Figure 44: Derivative Pseudo-Pressure Profile in Infinite Reservoir with One Recharge or One No-Flow Boundary at 

Distance lD from Producing Well 

0

5

10

15

20

25

30
1E-04 1E-01 1E+02 1E+05 1E+08 1E+11

φD[-] 

tDw/SD[-] 

Pseudo-Pressure Transient Type Curve: IAR and CRIB + 1-CPOB / 1-NFB 

2lD=∞ (Line Source) 
2lD= ∞ 
2lD (CPOB)= 10
2lD (CPOB)= 50
2lD (CPOB)= 250
2lD (CPOB)= 1250
2lD (CPOB)= 6250
2lD(NFB)= 10
2lD(NFB)= 50
2lD(NFB)= 250
2lD(NFB)= 1250
2lD(NFB)= 6250

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1E-04 1E-01 1E+02 1E+05 1E+08 1E+11

D
er

=Δ
(φ

D
)/Δ

ln
(t

D
w
/S

D
)[

-]
 

tDw/SD[-] 

Pseudo-Pressure Transient Type Curve Derivative: IAR and CRIB + 1-CPOB / 1-
NFB 

2lD=∞ (Line Source) 
2lD= ∞ 
2lD (CPOB)= 10
2lD (CPOB)= 50
2lD (CPOB)= 250
2lD (CPOB)= 1250
2lD (CPOB)= 6250
2lD(NFB)= 10
2lD(NFB)= 50
2lD(NFB)= 250
2lD(NFB)= 1250
2lD(NFB)= 6250

50 



Chapter 3: Conceptual Models for Well Testing in Normally Pressured Class 3 Gas Hydrates 

Part 2-Case 2: 0<γD<1  

Part 2-Case 2a: Infinite Acting Reservoir  

The transient pseudo-pressure response considering heat conduction can be estimated with the 

following models: 

Early-Time Response  

φD = 2πhk
ṁt

[φi − φ(r, t)] = H �SDrD
2

4tDw
, rD
4
eD�FCD
�SD

� 3. 27 

Late Time Response 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W �rD
2 SDµD
4tDw

, rD�bD� 3. 28 

The early and late time responses are very dependent on the thickness of the confining layers. As also 

given in Appendix 12 using the Laplace domain well test model recognition, late time solution can be 

conveniently used to describe the reservoir response at any production time provided the confining 

layers are thin.  

Kinetic Model 

With the Kinetic model, no early time and late time approximations are required; yet, the line source 

solution is still used. The solution to the kinetic model takes the form: 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDw
SDk, rD√γDk� 3. 29 

Figure 45 depicts the dimensionless pseudo-pressure drawdown profile in a normally pressured gas 

hydrate reservoir with constant sandface rates. In the beginning, the hydrate dissociation is mainly 

influenced by the heat energy stored in the reservoir and when pressure drawdown is significant at 

later production times, the hydrate dissociation increases accordingly due to heat flux from 

conduction. If the heat flux is constant and the saturation of hydrate is extremely large, the hydrate 

dissociation would act as a strong pressure support and the reservoir responses will be similar to 

constant pressure outer boundary responses as seen in Figure 43.  

From well test analysis, the first slope of the semi-log plot will depict the average reservoir 

permeability without the influence of heat conduction from the confining layers.  
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Figure 45: Transient Pseudo-Pressure Profile in Infinite Reservoir with Constant Sandface Rate 

It should be emphasized that the analytical model does not address the secondary hydrate formation. 

As depicted in Figure 45, high dissociation rates would increase the wellbore flowing pressure. An 

increase in the wellbore flowing pressure will also mean a decrease in hydrate dissociation. Successive 

increase and decrease in hydrate dissociation can possibly occur during pressure drawdown hence 

distorting pressure transient responses significantly. Hence the constant rate method is not advisable 

for well test purposes in gas hydrate reservoirs as such responses would distort well test data and make 

analysis very cumbersome. 

Part 2-Case 2b: Bounded Reservoirs  

The effects of recharge and no-flow boundaries coupled with heat flux can be predicted using the 

image well theory analogue [44]. 

Approximate Line Source Solutions for Recharge Boundary 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W �rD
2 SDµD
4tDw

, rD�bD� −
1
2

W �(2lD−rD)2SDµD
4tDw

, (2lD−rD)
2

�bD� 3. 30 

Using the kinetic model we get: 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDw
SDk, rD√γDk� −

1
2

W �(2lD−rD)2

4tDw
SDk, (2lD−rD)

2 √γDk� 3. 31 

Approximate Line Source Solutions for No-flow Boundary 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W �rD
2 SDµD
4tDw

, rD�bD� + 1
2

W �(2lD−rD)2SDµD
4tDw

, (2lD−rD)
2

�bD� 3. 32 

Using the kinetic model we get: 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDw
SDk, rD√γDk� + 1

2
W �(2lD−rD)2

4tDw
SDk, (2lD−rD)

2 √γDk� 3. 33 
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Figure 46 and Figure 47 depict the reservoir responses when producing in finite reservoirs. Profiles of 

dimensionless pseudo-pressure drawdowns and derivatives for constant pressure outer boundary and 

no-flow outer boundary are depicted.  

 

Figure 46: Transient Pseudo-Pressure Profile in Constant Pressure Bounded Reservoir with Constant 

Sandface Rate (√γDk=√eD/(ΔzD-1)=0.0001) 

From Figure 46, it is noticeable that the influence of heat conduction could have a significant effect on 

the reservoir responses in bounded reservoirs, especially in reservoirs with no-flow barriers and 

significant amount of hydrates. In no-flow barriers, the no-flow boundary response could be masked 

by the hydrate dissociation rate during late time response. Conversely, if the heat dissociation rate is 

small, its influence will be noticeably predominantly in the late time period of flow.  

As expected, hydrate dissociation would act as pressure support to the reservoir when producing with 

constant sandface rates. Hence identifying reservoir boundaries becomes cumbersome. Performing a 

derivative plot in such a reservoir will show both constant pressure outer boundary profiles and no-

flow outer boundary profiles; provided the reservoir is produced for a long period of time and the 

dissociation rate is slow. In such reservoirs, it is therefore important to perform well test with small 

drawdowns such that significant hydrate dissociation effects do not distort well test data analysis for 

identifying the reservoir boundaries. 

For both infinite, no-flow and constant pressure outer boundary conditions, both semi-log and 

derivative plots will exhibit constant pressure outer boundary responses at late time regions.  
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Figure 47: Transient Pseudo-Pressure Profile in Bounded Reservoir with Constant Sandface Rate 

(√γDk=√eD/(ΔzD-1)=0.0001) 

3.3 Reservoir Parameters 

In the models developed in the appendices and shown earlier, some dimensionless parameters 

responsible for dissociation were assumed constant such that type curves could be generated for the 

reservoir responses. However, it is important to investigate the significance of changes in the 

dimensionless parameters during depletion or for different reservoir types. 

Modified Dimensionless Decomposition Compressibility 

The modified decomposition compressibility reflects the total energy change in the hydrate layer 

during dissociation. 

SD =
�ρtk�

kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�
�

�ρcT�eff
�ρcT�eff,id

+ c
hd�ρcT�eff,id

� 3. 34 

c = �cp,gSgρg �
T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1� + SHρH
dhd
dTeq

� �dTeq
dp

� 3. 35 

The presence of water in the hydrate layer is very influential for hydrate dissociation due to its high 

specific heat capacity. Also notice that if the effective compressibility of the free fluid in the reservoir 

is high, coupled with high dissociation energy for the hydrate in question, the hydrate decomposition 

becomes insignificant as the modified dimensionless decomposition compressibility tends to 1, which 

reflects the ideal reservoir response. To summarize, if the free fluid saturation is relatively significant 

compared to the hydrate saturation, the hydrate dissociation effect on the reservoir response will not be 

noticeable. 

Dimensionless Conductive Heat Flux Coefficient 

eD = �λ 1

hdk�ρt�
kr
ɳ �t

�
�dTeq
dp

� rw
2

πh2
� 3. 36 

0

0,25

0,5

0,75

1

1,25

1E-02 1E+00 1E+02 1E+04 1E+06 1E+08 1E+10

D
er

=Δ
(φ

D
)/Δ

ln
(t

D
w
/µ

D
S D

)[
-]

 

tDw/µDSD or tDw/SDk [-] 

Derivative Pseudo-Pressure Transient Type Curve: IAR and CRIB + 1-CPOB / 1-
NFB 

(with Heat Conduction:√γDk or √eD/(ΔzD-1) =0.0001)  

2lD= ∞ 

2lD(NFB)= 10

2lD(NFB)= 50

2lD(NFB)= 250

2lD(NFB)= 1250

2lD(CPOB)= 10

2lD(CPOB)= 50

2lD(CPOB)= 250

2lD(CPOB)= 1250

54 



Chapter 3: Conceptual Models for Well Testing in Normally Pressured Class 3 Gas Hydrates 

The amount of heat flux into the hydrate layer for dissociation is highly dependent on the interlayer 

heat flux coefficient given above. Recognizing the very little changes in the heat conductivity of 

formation rocks, we can conclude that the influence of heat conduction diminishes with increasing 

mobility of the free fluid layer and increasing thickness of the hydrate layer.  

Dimensionless Interlayer Heat Flux Coefficient 

bD = eD
(∆zD−1)

 3. 37 

∆zD = ∆z

�h2�
=

��h2�+hconfining layer�

�h2�
 3. 38 

From the definition of the dimensionless interlayer heat influx coefficient, the smaller the thickness of 

the confining layer coupled with the constant outer temperature imposed on this layer, the higher the 

heat influx rate. This implies even with a small value of the dimensionless heat flux coefficient, the 

value of the dimensionless interlayer coefficient could increase significantly for thin confining layers. 

Dimensionless Interlayer Heat Flux Compressibility 

SDµD = �SD + FCDeD(∆zD−1)
3

� 3. 39 
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4
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�rw
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k�ρt�
kr
ɳ �t
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 3. 40 

eD = �λ 1

hdk�ρt�
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ɳ �t

�
�dTeq
dp

� rw
2

πh2
� 3. 41 

SDµD = SD + �(∆zD−1)
3

�dTeq
dp

�
�ρcp�eff

4hdk�ρt�
kr
ɳ �t

�π
�rw

4 ∅��ρwcT,w�+�ρgcT,g��

k�ρt�
kr
ɳ �t

�
�
i

� 3. 42 

Similarly, hydrate reservoirs with high permeabilities and high dissociation energies will have 

negligible influence from heat conduction as the second term on the right hand side of the equation 

above becomes insignificant especially in the early time period of production. 

3.4 Rate Transient Analysis in Normally Pressured Gas Hydrate Reservoirs 

Pressure and rate transient data provide a good source of understanding reservoir behavior under 

different production scenarios. From test data we strive at obtaining vital reservoir parameters such as 

the permeability. However, the multiphase well test model developed earlier uses total mass rates of 

the whole system. Moreover, the multiphase pseudo-pressure used for linearization should be 

retransformed for well test analysis purposes. Other approaches still exist in analyzing two phase well 

test data such as [53], [62]. 
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Rate Transient Analysis 

The rate transient models developed in this work assumed constant multiphase pseudo pressure as a 

prerequisite for applying future superposition techniques. Hence, the methods of analysis developed 

hereafter address the constant multiphase pseudo-pressure. The next challenge lays in the derivation of 

the rate transient parameters of the different phases in the system. We first address the mass balance 

model as follows: 

Multiphase 

The dimensionless flow rate:  

ṁtD = ρt,stQt,st(t)

2πhk∫ρt�
kr
ɳ �t

dp
= ṁt

2πhk∫ρt�
kr
ɳ �t

dp
 3. 43 

ṁt = ṁtD �2πhk∫ρt �
kr
ɳ
�
t

dp� = ṁtD[2πhk∫ ft(p)dp] 3. 44 

The fractional mass flow:  

ṁt = ṁg,t + ṁw,t 3. 45 

ṁt
ṁt

= ṁg,t

ṁt
+ ṁw,t

ṁt
= fm,g + fm,w = fm,t 3. 46 

Gas Phase 

ṁg,t

ṁt
=

∫�ρg
krg∗

ɳg
�dp

∫ρt�
kr
ɳ �t

dp
= ∫ fg(p)dp

∫ ft(p)dp
= fm,g 3. 47 

k∫ fg(p)dp = ṁg,t

ṁt
k∫ ft(p)dp = fm,gk∫ ft(p)dp 3. 48 

With the introduction of the pressure dependent pseudo-relative permeability [krg*(p)] given in 

Appendix 10, the equation above takes the form: 

kkrg∗ (p)∫
ρg
ɳg

dp = Qg,stρg,st

ṁt
k∫ ft(p)dp 3. 49 

kkrg∗ (p) =
[φPI(t)]g

ṁt
[k∫ ft(p)dp] 3. 50 

Where, 

[φPI(t)]𝑔𝑔 =
Qg,stρg,st

∫
ρg
ɳg

dp
=

Qg,st

∫ 1
Bgɳg

dp
 

The pseudo-pressure normalized rate (pseudo productivity index) representation above gives a 

relationship between the transient flow rate and the pseudo-pressure which is constant in this case for 

constant wellbore pressure tests. 
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Water Phase 

Similarly, the effective permeability of the water phase could be given thus: 

kkrw∗ (p) = [φPI(t)]w
ṁt

[k∫ ft(p)dp] 3. 51 

Rate transient analyses should therefore be performed for the total system response, which is the 

linearized form of the reservoir response. From the derived parameters, the effective permeability of 

the different phases can be derived from the solutions derived for the dimensionless multiphase 

transient mass rate in Appendix 12. 

3.4.1 Semi-log Analysis 

To derive the reservoir parameters, it is essential to define a range for which IARF is easily noticeable 

such that semi-log analysis can be performed. From the models depicted earlier for the reservoir 

responses, the following range can be used:  

Range:  10²<tDw/μDSD<104 and �
eD

(∆zD−1) < 0.01 

The numerical approximation given by [63] for rate transient solution in Appendix 12 can be 

simplified to: 

ṁtD = 1

0.48465ln� tDwSDµD
�+0.64757

 3. 52 

1
ṁt

= 1
2πh[k∫ ft(p)dp] �0.48465ln � tDw

SDµD
� + 0.64757� 3. 53 

By expanding the dimensionless time, relating the gas density with the formation volume factor and 

considering the dimensionless compressibility-mobility, the above equation can be written in terms of 

real time: 

1
ṁt

= 1.1161
2πh[k∫ ft(p)dp] �logt + log � k

∅rw2
ft(pi)
β(pi)

� − log�SDµD� + 0.58018� 3. 54 

Where, 

ft(pi)
β(pi)

=
ρt,i�

kr
ɳ �t,i

��ρw,icT,w,i�+�ρg,icT,g,i��
 3. 55 

Semi-log Plot 

1
ṁt

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡 

A semi-log plot of the reciprocal total mass rate versus the time should give a straight line during 

infinite acting flow, provided the changes in the dimensionless dissociation terms (SDμD) with 

pressure are negligible. The gradient of the line can hence be used to estimate the effective 

permeability of the flowing phases.  
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The gradient of the semi-log plot: 

mlog = 1.1161
2πh[k∫ ft(p)dp] 3. 56 

�k� ft(p)dp� =
1.1161
2πhmlog

 

Effective gas permeability at IARF 

kkrg∗ (p) = kg∗(p) =
[φPI(t)]g

ṁt
[k∫ ft(p)dp] =

[φPI(t)]g
ṁt

1.1161
2πhmlog

 3. 57 

Dimensionless Dissociation Terms (IARF) 

Applying the damage skin approach for well test analysis we get an approximation of the dissociation 

terms for the hydrate layer. 

(SDµD)avg = �SD + FCDeD(∆zD−1)
3

�
avg

≈ exp �−0.434 �
� 1
ṁt
�
t=1s

mlog
− log � k

∅rw2
ft(pi)
β(pi)

∗ 100.58018��� 3. 58 

It is worth mentioning that the above method of analysis just approximately quantifies the degree of 

hydrate dissociation.  

Note that if heat conduction influence is negligible, the following are valid: 

10²<tDw/SD and �
eD

(∆zD−1) ≪ 1 

(SDµD)avg ≈ SD,avg ≈ exp �−0.434 �
� 1
ṁt
�
𝑡𝑡=1𝑠𝑠

mlog
− log � k

∅rw2
ft�pi�
β(pi)

∗ 100.58018���  3. 59 

The rate transient solution can be simplified to: 

ṁtD = 1

0.48465ln�tDwSD
�+0.64757

 3. 60 

The same procedures applied earlier are also applicable. It should be highlighted that some constant 

pressure tests are conducted by adjusting the surface pressure to constant values for example at 

separator point. From pressure profile calculations in wellbores, a constant wellhead pressure and 

changing flow rates will imply the flowing downhole pressure will constantly be changing. With this 

regard, it is vital to modify the rate transient equation for such a system and this could be done by 

applying the superposition principle for multi-pressure solutions [64]. This is though cumbersome for 

multiphase systems and will not be addressed in this work. To avoid complicated analyses, pump 

installations for depressurizing the hydrate layer should be as close to the reservoir producing layer as 

possible.  
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3.4.2 Rate Derivative Analysis  

The derivative plot is principally used for diagnosis of the reservoir behavior and for a better view of 

the different flow regimes and boundary responses. However, the works of Tiab [ [57], [65], [66] ] 

have shown that the derivative analysis can be used in deriving reservoir parameter. Nonetheless, this 

will not be addressed in this work and just derivative responses are highlighted. 

The derivative for RTA is given by: 

d� 1
ṁt
�

dlnt
= 0.5

2πh[k∫ ft(p)dp] = Der 3. 61 

The log-log derivative plot is given by: 

d� 1
ṁt

)�

dlnt
=

d� 1
ṁt
�

dt
t = 0.5

2πh[k∫ ft(p)dp])
= Der 3. 62 

log �
d� 1

ṁt
�

dt
t� = log � 0.5

2πh[k∫ ft(p)dp])
� 3. 63 

Plot 

log �
d� 1

ṁt
�

dt
t�  vs logt 3. 64 

If the derivative is time independent, the log-log plot will remain constant during IARF. 

kg,avg
∗ (p) =

[φPI(t)]g
ṁt

[k∫ ft(p)dp] =
[φPI(t)]g

ṁt

0.5
2πhDer

 3. 65 

Characteristics of Type Curve Derivatives  

Early Time Region 

No skin response from model. 

IARF 

d� 1
ṁtD

�

d�ln� tDw
µDSD

��
= 0.5 3. 66 

Boundary dominated Flow with 1-NFB and negligible heat influx 

𝑑𝑑� 1
ṁtD

�

𝑑𝑑�ln� tDw
𝜇𝜇𝐷𝐷SD

��
= 1 3. 67 

Boundary dominated Flow with 1-CPOB 

𝑑𝑑� 1
ṁtD

�

𝑑𝑑�ln� tDw
𝜇𝜇𝐷𝐷SD

��
= 0 3. 68 
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Boundary dominated Flow with 1-NFB or 1-CPOB and high heat influx 

𝑑𝑑� 1
ṁtD

�

𝑑𝑑�ln� tDw
𝜇𝜇𝐷𝐷SD

��
= 0 3. 69 

3.4.3 Identifying Reservoir Boundaries (Heat conduction effects are negligible) 

ṁtD(rD = 1, tDw) = ṁt(t)

2πhk�φi−φwf�
= 2

�e
−�

SD
4tDw

�
±(2lD−1)−1e
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�2lD−1�

2

4tDw
SD�

E1�
SD

4tDw
�∓E1�SD

�2lD−1�
2

4tDw
�

 3. 70 

ṁtD(rD = 1, tDw) = ṁt(t)

2πhk�φi−φwf�
= 2

�e−(x1)± e−x2
�2lD−1�

�

E1(x1)∓E1(x2)  3. 71 

Boundary dominated flow is perceived when the Ei-function containing the boundary term becomes 

noticeable. This is achieved approximately for values x2 ≤701.828 (where E1(x2)=2.2548E-308) or for 

more practical purposes (which could also be noticed from a derivative plot) at x2=4 (where 

E1(x2)=3.78E-03). The second value of x2 will be considered which actually denotes the transition 

point, much noticeable from a derivative plot; nevertheless, when using the semi-log plots,  lower 

values can be used such as 1.785 [67], which has been described by the authors as the point whereby 

the IARF gradient intersects the boundary dominated flow gradient. With this said, the value of the 

distance to the boundary can be estimated thus: 

SD
(2lD−1)2

4tDw,t
= 4  3. 72 

𝑙𝑙𝐷𝐷 = 𝑙𝑙
rw

= �2 ∗ �
tDw,tf
SD

� + 0.5 3. 73 

𝑙𝑙 = �2 ∗ ��k∅
ft(pi)
β(pi)

𝑡𝑡𝑡𝑡𝑡𝑡∗ �
1
SD
�+ 0.5rw ≈ 2 �∗ ��k∅

ft(pi)
β(pi)

𝑡𝑡𝑡𝑡𝑡𝑡∗ �
1
SD
� 3. 74 

The time ttf
* reflects the time at which the deviation from IARF to boundary dominated flow 

immediately embarks and is best derived from the derivative plot. 

Using the model given by [67] we get: 

𝑙𝑙 = 0.75 ���k∅
ft(pi)
β(pi)

𝑡𝑡𝑓𝑓∗�
1
SD
� 3. 75 

𝑙𝑙 = 0.75rw ��
tDw,f
SD

� 3. 76 

The time tf
* reflects the time whereby the IARF gradient intersects the boundary dominated flow 

gradient and is best derived from a semi-log plot. It should be noted that the intersection time is 

greater than the transition time; as such, the two models should give the same value if the flowing 

times are correctly deduced. 
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For more methods of determining the reservoir boundary, other works such as that of Robert Chapius  

[ [42], [68] ] can be investigated. 

 

Figure 48: Boundary Identification: (a) with semi-log plot; (b) with derivative plot 

3.4.4 Type Curve Matching (Heat Conduction Considered) 

As was shown in Chapter 3.1, recharge boundary dominated flow and the influence of heat conduction 

will have the same reservoir response in the late time region as they are all pressure supporting 

parameters. However, it should be emphasized that the heat influx model is a transient model and if 

the dissociation process is quite significant and there is no rate decline, the pressure propagation in the 

reservoir stops and won´t reach the boundary. This implies the reservoir boundaries cannot be detected 

for such cases. From well test data, it is difficult to distinguish which of the parameters is the more 

influential or the determining parameter for such behavior.  
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For reservoirs with impermeable boundaries (NFB) the no flow boundary behavior might occur before 

the influence of heat conduction has a significant pressure support behavior on the reservoir response 

as seen in Figure 39. In such cases, it is possible to derive both the distance to boundary and make an 

estimate of the heat influx terms.  

For the type curve matching method addressed here, we will ignore the effects of boundary and 

propose the type curve match required to estimate the reservoir parameters during transient flow 

regimes.  

The type curve has an advantage over the semi-log plot in that the reservoir parameters are estimated 

at each time step whereas we obtain average values using the semi-log plot. As seen with the semi-log 

plots, the reciprocal of the rate transient is a much better method of characterizing the reservoir from a 

log scale. Hence, the type-curve matching done on a semi-log scale should be performed using the 

reciprocal of the rate transient. 

Required Plots 

• 1
ṁtD

 Versus tDw 

• 1
ṁt

 Versus t 

• φPI(t) Versus t 

Time Match  

The time match points along the vertical are: 

� tDw
SDµD

�
MP

;  tMP; ��bD�MP 3. 77 

Where, 

tDw = t
k
∅rw2

ft(pi)
β(pi)

 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[SDµD]MP = tDw
� tDwSDµD

�
MP

= k
∅rw2

ft(pi)
β(pi)

tMP

� tDwSDµD
�
MP

 3. 78 

Rate Match 

The match along the horizontal is given by: 

�
1

ṁtD
�
MP

 ; �
1

ṁt
�
MP

; [φPI(t)]g,MP 
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From the match points, the effective permeabilities of the different phases are derived thus: 

[k∫ ft(p)dp]𝑀𝑀𝑀𝑀 =
� 1
ṁtD

�
MP

2πh� 1ṁt
�
MP

 3. 79 

Conventionally, the match point of the multiphase pseudo-pressure at the wellbore would be a 

constant value from the imposed inner boundary condition used in deriving the models for this work. 

If this is not the case, the use of the type curve matching techniques will depict changing values and 

can still be used to derive the effective permeability of the flowing phases.  

kkrg∗ (p) = [φPI(t)]g,MP �
1
ṁt
�
MP

[k∫ ft(p)dp]𝑀𝑀𝑀𝑀 3. 80 

Where, 

[φPI(t)]𝑔𝑔 =
Qg,stρg,st

∫
ρg
ɳg

dp
=

Qg,st

∫ 1
Bgɳg

dp
 

Water Phase 

Similarly, the effective permeability of the water phase could be given thus: 

kkrw∗ (p) = [φPI(t)]w
ṁt

[k∫ ft(p)dp] 3. 81 

For mass conservation to be valid and to improve on the accuracy of the match points, the following 

mass conservation equation must be valid: 

ṁg(t)+ṁw(t)

ṁt
=

2πh���kkrg
∗ (p)�MP�∫

1
Bgɳg

dppi
pwf

��+��kkrw
∗ (p)�MP�∫

1
Bwɳw

dppi
pwf

���[ṁtD]MP

ṁt
= 1 3. 82 

3.5 Pressure Transient Analysis in Normally Pressured Gas Hydrate 

Reservoirs 

As mentioned earlier, pressure transient analysis in normally pressured gas hydrates could be handled 

likewise conventional gas reservoirs, however considering multiphase aspects. It is still worth 

mentioning that the assumptions of constant sandface rate or even surface rates are hardly achieved 

during well test analysis, especially with multiphase systems.  

As was seen with the rate transient solution, the models have to be represented such that the measured 

data during the test (here the pressure) can be analyzed. With RTA, the linearized models were 

represented in terms of the transient total mass rate which is measurable from well test data, whereas 

in PTA the linearized models were represented in terms of the transient total pseudo-pressure which is 

not directly measured. This implies for a proper analysis of the pressure transient data, the 

computation of the pseudo-pressure of the reservoir system should be performed, which is 
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unfortunately not possible for newly tested reservoirs. As a result, the models will further be 

simplified such that effective permeabilities of the different phases can be estimated. 

Multiphase 

φD = 2πhk
∫ρt�

kr
ɳ �t

dp

ṁt
= 2πhk ∫ ft(p)dp

ṁt
 3. 83 

Gas Phase 

Qg,st = 1
φD

[2πhk∫ ft(p)dp]
ρg,st

fm,g 3. 84 

Qg,st = 1
φD

�2πhk∫ fg(p)dp�
ρg,st

 3. 85 

Water Phase 

Qw,st = 1
φD

[2πhk∫ ft(p)dp]
ρw,st

fm,w 3. 86 

Qw,st = 1
φD

[2πhk∫ fw(p)dp]
ρw,st

 3. 87 

Due to the constantly changing flow rate of the different phases during the pressure transient test for 

the multiphase system, the pseudo-pressure normalized rate method is best used to analyze the data as 

will be shown later.  

Pressure Transient Analysis (PTA) 

Depending on the rate of change of relative permeability of the fluid in question, the flow rate could 

be very time dependent, which makes the analysis of pressure transient responses difficult. For this 

reason, the pseudo reciprocal productivity index (rate normalized pseudo-pressure) is once more a 

good tool for analysis. However, Convolution/Deconvolution techniques could be most suitable for 

analysis of such reservoir responses. 

∫
ρg
ɳg

dp

Qg,st(t)ρg,st
=
∫ 1

Bgɳg
dp

Qg,st(t) = �φRPI(t)�𝑔𝑔 =
1

2πhkkrg∗ (p)
φD 

The rate normalized pseudo-pressure (pseudo reciprocal productivity index) representation above 

gives a relationship between the transient flow rate and the pseudo-pressure which is transient in this 

case for constant total sandface rate tests. 

The PTA MBM during IARF is simplified for semi-log analysis thus: 

Range:  10²<tDw/μDSD<104 and �
eD

(∆zD−1) < 0.01 

[φRPI(t)]𝑔𝑔 = 1.1515
2πhkkrg∗ (p) �logt + log � k

∅rw2
ft(pi)
β(pi)

� − log(µDSD) + 0.3513� 3. 88 
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The same methods applied for RTA are applicable here with the above representation of the gas rate 

normalized pseudo-pressure. The characteristics of the rate normalized pseudo-pressure in this case are 

as follows: 

• The pressure transient in the rate normalized pseudo-pressure reflects the reservoir behavior 

and hydrate dissociation effects 

• The rate transient in the model reflects the changes in the effective permeability of the phase 

in question. Hence if the flow rate of a phase remains constant during production, a semi-log 

plot of the analysis could be made for the IARF model given above. However, for changing 

flow rates, the use of semi-log plots becomes impracticable; nonetheless, the semi-log analysis 

will still be addressed. 

3.5.1 Semi-log Analysis 

[φRPI(t)]g Versus t 

The gradient of the semi-log plot: 

mlog = 1.1515
2πhkkrg∗ (p) 3. 89 

Effective gas permeability at IARF 

kkrg∗ (p) = kg∗(p) = 1.1515
2πhmlog

 3. 90 

Dimensionless Dissociation Terms (IARF) 

Applying the damage skin approach for well test analysis we get an approximation of the dissociation 

terms for the hydrate layer. 

(SDµD)avg = �SD + FCDeD(∆zD−1)
3

�
avg

≈ exp �−0.434 �
�[φRPI(t)]g�t=1s

mlog
− log � k

∅rw2
ft(pi)
β(pi)

∗ 100.3513��� 3. 91 

3.5.2 Pressure Derivative Analysis  

Analogue derivative plots seen in RTA, the rate normalized pseudo-pressure can be applied for 

pressure transient analysis. 

d�[φRPI(t)]𝑔𝑔�
dlnt

=
0.5

2πhkkrg∗ (p) = Der 

log �d
[φRPI(t)]𝑔𝑔

dt
t�  vs logt 3. 92 

If the derivative is time independent, the log-log plot will remain constant during IARF. The apparent 

effective gas permeability is given by (see Appendix 10 for details): 

kg,avg
∗ (p) = 0.5

2πhDer
 3. 93 
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3.5.3 Type Curve Matching (Heat Conduction Considered) 

Required Plots 

• φD Versus tDw 

• [φi − φwf(t)] Versus t 

• φRPI(t) Versus t 

Time Match  

The time match points along the vertical are: 

� tDw
SDµD

�
MP

;  tMP; ��bD�MP 3. 94 

Where, 

tDw = t
k
∅rw2

ft(pi)
β(pi)

 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[SDµD]MP = tDw
� tDwSDµD

�
MP

= k
∅rw2

ft(pi)
β(pi)

tMP

� tDwSDµD
�
MP

 3. 95 

Pressure Match 

The match along the horizontal is given by: 

[φD]MP ; [φRPI(t)]g,MP; [φi − φwf]MP  

To perform the pressure matches above requires the use of the pseudo-pressure of the total system 

which is usually an unknown parameter for a newly tested reservoir and cannot be derived directly 

from the well test data as in the case of RTA. Hence, the pressure matching techniques to derive the 

effective permeability for different time could be very cumbersome. 

 

66 



Chapter 4: Conceptual Models for Well Testing in Over-pressured Class 3 Gas Hydrates:  
The Composite Reservoir Moving Boundary Problem 

 

4 Conceptual Models for Well Testing in Over-pressured Class 3 Gas 

Hydrates: The Composite Reservoir Moving Boundary Problem 

As of now, most analytical models addressing over-pressured gas hydrate reservoirs apply the Stefan´s 

Problem. Authors such as Yuri F. Makogon [13] and Goodarz Ahmadi et al. [69], [70] have addressed 

this issue. Limitations of the models developed so far: 

• The models were not developed for multiphase behavior 

• The models did not consider the dependence of reservoir fluid properties to pressure and the 

solutions were presented in a linearized pressure form.  

• The solutions for the dissociated zone considered the initial reservoir pressure as the 

equilibrium pressure. This further implies no fluid production would be expected for bottom-

hole flowing pressures above the equilibrium pressure. Implying, the solutions cannot be used 

for reservoirs with free fluid in the hydrate layer, as fluid will be produced even at pressures 

above the equilibrium pressures. 

• Constant terminal rate solutions were proposed although no free fluid was considered in the 

reservoir prior to dissociation. Constant terminal rate solutions are practically applicable only 

when free fluid is present, as this is the driving mechanism for pressure propagation. 

The challenge with developing solutions to the moving boundary problem is deriving the radius of 

dissociation. In deriving the transient radius of dissociation, the model proposed by Verigin et al. [71] 

is till date most widely used. However, the model basically describes mass conservation at the 

dissociation front. In a similar manner, as also given in Appendix 13, the models derived here with 

different boundary conditions are developed such that mass conservation at the dissociation front and 

the equilibrium pressure are always valid. This boundary condition is analogous to composite reservoir 

systems but the main difference in the unknown radius of dissociation or front. 

The diagrams below depict the behavior of the gas hydrates during dissociation under different 

pressure conditions. 

 

 

 

 

 

 

 

 
 

Peq <Pwf < Pi 
• Entire reservoir is un-dissociated  
• Fluid production is possible if 

mobile fluid is present  

 
  

Pwf < Peq 
Composite Reservoir Model 

• Dissociated Zone: rs(t) (Dynamic skin zone 
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4.1 Constant Pressure Solutions and RTA in Over-pressured Class 3 Gas 

Hydrates  

The solutions presented for such reservoir responses with different boundary conditions have been 

developed analog to the Stefan Problem of melting ice in conjunction with the composite reservoir 

model. The solutions to the problem with different boundary conditions are given in Appendix 13. 

MBM for the Multiphase Diffusivity Equation for Dissociated Zone 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− �SDp + �eDQ̇pD
� �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ �eDQ̇pD

� �
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

�φ�D = 0 4. 1 

MBM for the Multiphase Diffusivity Equation for Undissociated Zone 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− [SDkp]φ�D = 0 4. 2 

The linearization of the above diffusivity equation is done by applying the Kirchhoff transformation as 

was also done with the normally pressured gas hydrate reservoirs.  

With proper definition of the boundary conditions, constant pressure solutions for infinite, constant 

outer boundary and no-flow boundary reservoirs are derived. The solutions to the problem are fully 

addressed in Appendix 13. 

4.1.1 Infinite Acting Reservoirs 

As given in Appendix 13, the boundary conditions at the dissociation front are defined such that mass 

conservation is satisfied and the pressure here equals the equilibrium pressure. With this definition, the 

pressure profile is derived for an infinite acting system. Due to the complexity of the system response, 

heat conduction effects from the confining layers were neglected in deriving similarity solutions. 

However, the solutions to the problem with heat conduction are given in Laplace domain. The Laplace 

domain well test model recognition method has also been applied to the solutions to depict the 

reservoir response and gives the exact solution to the problem. The models derived using the similarity 

variable, as also given in Appendix 13, are basically approximate solutions to the problem and are 

summarized below. For a detailed scrutiny of the reservoir response, the Laplace domain well test 

model recognition method should be used as also given in Appendix 13. 

Dissociated Zone 

Pwf < Peq 

φD = (1 − φsD)
E1�SD

rD2

4tDw
�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
φsDE1�SD

1
4tDw

�−E1�SD
rsD

2

4tDw
�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 4. 3 
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or 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
�E1�SD

rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 4. 4 

The model above gives a slight modification of the moving boundary model developed by [70] and 

[72] , as also given in Appendix 13, with the consideration of the possible mobile fluids in the hydrate 

zone and annulling the assumption of the reservoir pressure in the dissociated zone being equal to the 

equilibrium pressure. The dimensionless rate transient is given thus: 

ṁtD = 2(φsD−1)

�E1�SD
rsD2

4tDw
�−�E1�

SD
4tDw

���
e
−�SD

rD
2

4tDw
�
 4. 5 

Pwf ≥ Peq 

If the reservoir is produced above the equilibrium pressure, the dimensionless equilibrium pressure, 

φsD, equals zero and rsD is infinite and models can be simplified to: 

φD =
E1�SDk

rD2

4tDw
�

E1�
SDk
4tDw

�
 4. 6 

ṁtD = 2

�E1�
SDk
4tDw

��
e
−�SDk

rD
2

4tDw
�
 4. 7 

Undissociated Zone (Peq ≤ Pwf ≤ Pi) 

φD = φsD

�E1�
rD2

4tDw
SDk��

�E1�
rsD2
4tDw

SDk��
 4. 8 

ṁtD = 2φsD

�E1�
rsD2

4tDw
SDk��

e
−�

rD
2

4tDw
SDk�

 4. 9 

Criterion for Valid Radius of Dissociation 

�E1�
rsD

2

4tDw
SDk��e

�SDk−SD�
rsD
2

4tDw

�E1�SD
rsD2

4tDw
�−�E1�

SD
4tDw

���
= φsD

(φsD−1) 4. 10 

From the dimensionless pseudo-pressure profile in Figure 49, we notice a higher pressure depression 

in the dissociated zone compared to the un-dissociated zone as dissociation increases the permeability 

of the dissociated zone and hence imposing constant pressure at the wellbore will cause much higher 

pressure depletion in the dissociation zone. However, notice that the effect becomes insignificant as 

pressure depletion propagates deeper into the reservoir which is also seen in the rate transient 

response. 
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Figure 49: Pseudo-Pressure Profile in Infinite Reservoir with Constant Wellbore Pressure (Moving Boundary 

Problem), φsD=0.3, SDk/SD (≤1)=0.01 

 

Figure 50: Rate Transient Profile in Infinite Reservoir with Constant Wellbore Pressure (Moving Boundary 

Problem), φsD=0.3 

With a look at Figure 50, one would get the impression the reservoir response is similar to the 

normally pressured gas hydrate reservoir; however, the effect of skin or dissociated radius can be 

better seen with the use of type curve derivative plots as depicted in Figure 51. 
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Figure 51: Derivative Plot in Infinite Reservoir with Constant Wellbore Pressure, φsD=0.3 

This implies, using the derivative plot, the effect of increasing radius of dissociation can be observed 

and hence normally and over-pressured gas hydrate reservoirs identified. However, it should be noted 

that over-pressured gas hydrate reservoirs with high dissociation rates would require very long 

production times for IARF to be achieved. This implies, if a 0.5 slope is not observed during transient 

flow, the near wellbore area is highly dissociated compared to the rest of the reservoir. 

4.1.2 Constant Pressure Outer Boundary Reservoirs 

The moving boundary behavior of a reservoir with a recharge at the exterior boundary of the 

un-dissociated zone is given Appendix 13.  
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The models could be summarized below: 

Dissociated Zone 

Pwf < Peq 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
�E1�SD

rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 4. 11 

ṁtD = 2�φsD−1�

�E1�SD
rsD2

4tDw
�−�E1�SD

1
4tDw

���
e−�SD

rD2

4tDw
�
 4. 12 

Pwf ≥ Peq 

φD =
�E1�

rD2

4tDw
SDk��−�E1�

�2lD−rD�
2

4tDw
SDk��

�E1�
1

4tDw
SDk��−�E1�

�2lD−1�
2

4tDw
SDk��

 4. 13 

ṁtD = 2

�E1�
SDk
4tDw

��−�E1�
�2lD−1�

2

4tDw
SDk��

�e
−� rD2

4tDw
SDk� + (2lD − rD)−1rDe−

�2lD−rD�
2

4tDw
SDk� 4. 14 

Undissociated Zone 

φD = φsD
�E1�

rD2

4tDw
SDk��−�E1�

�2lD−rD�
2

4tDw
SDk��

�E1�
rsD2

4tDw
SDk��−�E1�

�2lD−rsD�
2

4tDw
SDk��

 4. 15 

ṁtD = 2φsD

�E1�
rsD2

4tDw
SDk��−�E1�

�2lD−rsD�
2

4tDw
SDk��

�e
−� rD2

4tDw
SDk� + (2lD − rD)−1rDe−

�2lD−rD�
2

4tDw
SDk� 4. 16 

Criterion for Valid Radius of Dissociation (Pavg ≥ Peq) 

e
−SD

rsD
2

4tDw

�e
−�

rsD2
4tDw

SDk�+(2lD−rsD)−1rsDe
−
�2lD−rsD�

2

4tDw
SDk�

�E1�
rsD

2

4tDw
SDk�−E1�

�2lD−rsD�
2

4tDw
SDk��

�E1�
rsD2

4tDw
SD�−�E1�

SD
4tDw

���
= φsD

(φsD−1) 4. 17 
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Figure 52: Rate Transient Profile in Constant Pressure Outer Boundary Reservoir with Constant Wellbore Pressure 

(Moving Boundary Problem), φsD=0.3, SDk/SD (≤1)=0.01 

 

Figure 53: Pseudo-Pressure Profile in Constant Pressure Outer Boundary Reservoir with Constant Wellbore Pressure 

(Moving Boundary Problem), φsD=0.3, 2lD=3500, SDk/SD (≤1)=0.01 

Notice that for a well with recharge at the boundary, dissociation of the reservoir will stop as boundary 

conditions become significant, as no pressure depletion is expected at the boundary; hence no further 

pressure propagation. 
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4.1.3 No-Flow Outer Boundary Reservoirs 

The moving boundary rate transient behavior of a reservoir with barrier boundary is given in 

Appendix 13. The no-flow boundary condition is very complex as the dissociated zone first 

experiences boundary effects before the radius of dissociation reaches the boundary. The model 

responses are summarized thus: 

Dissociated zone 

Pwf ≤ Peq 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
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ṁtD = 2(φsD−1)

�E1�SD
rsD2

4tDw
�−�E1�

SD
4tDw

���
e−�SD

rD2

4tDw
�
 4. 19 

Pwf ≥ Peq 

φD(rD, tDw) =
�E1(

rD
2

4tDw
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 4. 20 

ṁtD(rD, tDw) = 2

�e
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SDk
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−
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 4. 21 

1. Pavg ≤ Peq (during production) 

φD =
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 4. 22 

ṁtD(rD, tDw) = 2

�e
−�

SD
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�

 4. 23 

Such that the solutions to the dissociated zone before and after the reservoir pressure depletes below 

the equilibrium pressure are equal, the dimensionless equilibrium pseudo-pressure during boundary 

dominated flow of the dissociated zone has to be defined thus: 

φsD = 2
�E1�

lD
2

4tDw
SD��

�E1�
1

4tDw
SD��+�E1�

�2lD−1�
2

4tDw
SD��

 4. 24 
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It should be once more emphasized that the model above is only valid when the reservoir pressure 

depletes below the equilibrium pressure and the dissociated radius has reached the NFB. 

Undissociated Zone 

φD = φsD
�E1�

rD
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4tDw
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SDk��
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2

4tDw
SDk��

 4. 25 

ṁtD = 2φsD

�E1�SDk
rsD2

4tDw
�+E1�

�2lD−rsD�
2

4tDw
SDk��

�e
−� SDk

4tDw
rD� − (2lD − rD)−1rDe−

�2lD−rD�
2

4tDw
SDk� 4. 26 

Criterion for Valid Radius of Dissociation 
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2

4tDw
SDk��

�E1�SD
rsD2

4tDw
�−�E1�

SD
4tDw

���

e
−�SD

rsD2
4tDw

�

�e
−�

SDk
4tDw

rsD�−(2lD−rsD)−1rsDe
−
�2lD−rsD�

2

4tDw
SDk�

= φsD
(φsD−1) 4. 27 

The middle and late time response for different boundary distances are depicted below.  

 

Figure 54: Rate Transient Profile in No-Flow Outer Boundary Reservoir with Constant Wellbore Pressure (Moving 

Boundary Problem), φsD=0.3, SDk/SD (≤1)=0.01 
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Figure 55: Rate radius Profile in No-Flow Outer Boundary Reservoir with Constant Wellbore Pressure, 

φsD=0.3, SDk/SD (≤1)=0.01 

 

Figure 56: Derivative Plot in Reservoir with No-flow Boundary, φsD=0.3, SDk/SD (≤1)=0.01 
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Figure 57: Pseudo-Pressure Profile in No-Flow Boundary Reservoir with Constant Wellbore Pressure, 

φsD=0.3, 2lD=500, SDk/SD (≤1)=0.01 

4.2 Rate Transient Analysis for the Dissociated Zone 

The models addressed in Appendix 13 give the exact response to the reservoir behavior whereas the 

similarity solutions basically reflect approximate solutions to the model. Hereafter, the RTA 

performed in this work for the over-pressured gas hydrate reservoirs are based the approximate 

similarity solutions which do not consider heat influx effects. From Appendix 13, the rate transient 

model at the wellbore in the dissociated zone is given by: 

ṁtD = 2(1−φsD)

��E1�
SD

4tDw
��−E1�SD

rsD2

4tDw
��

e−�SD
1

4tDw
�
 4. 28 

In the early time period, i.e. for short production periods, the radius of dissociation is very small and 

hence the arguments in the Ei-function are both large. Approximations of the Ei-function for early 

time response are difficult to analyze, hence late time approximations are made. In the late time 

period, as also given in the Figure 52, the dimensionless time is much higher than the radius of 

dissociation; hence we can assume that the arguments in the Ei-function are small such that the late 

time approximation of the Ei-function can be used and semi-log analysis performed. 

4.2.1 Semi-log Analysis 

Unlike the method of approach used in Chapter 3 for boundary dominated flow, here, the only period 

where boundary dominated flow is negligible would be at the very beginning of production. Since the 

radius of dissociation increases with depletion time, we have a multiple boundary problem which is 

time dependent. For this reason, the following approach is made. 
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1
ṁtD

= 0,5
(1−φsD) e�SD

1
4tDw

�{[E1(x1)]− E1(x2)} 4. 29 

We know that the radius of dissociation is a time function and hence the quotient of the radius of 

dissociation to the dimensionless time is also a function less than 1 for most cases as also shown 

earlier, meaning, with increasing time, the E1-function can be represented for both cases as a log 

function as given below: 

x<0.01 

1
ṁtD

≈ 0,5
(1−φsD)

{−[ln(1,781x1)] + ln(1,781x2)} 4. 30 

Since the relationship between the dimensionless time and the radius of dissociation has not been 

defined, we make the following approach.  

Semi-log Plot and Radius of Dissociation 

1
ṁtD

= 0,5
(1−φsD)

[logtDw + log(x2) − log(0.25SD)] 4. 31 

1
ṁtD

= 0,5
(1−φsD) �logtDw + log �4 x2

SD
�� 4. 32 

1
ṁtD

=
2πhk∫ρt�

kr
ɳ �t

dp

ṁt
= 1,1515

(1−φsD) �logt + log � k
∅rw2

ft(pi)
β(pi)

� + ss� 4. 33 

1
ṁt

= 1,1515

2πh�k∫ρt�
kr
ɳ �t

dp�(1−φsD)
�logt + log � k

∅rw2
ft(pi)
β(pi)

�+ ss� 4. 34 

If the hydrate layer is not severely depressurized, the value of SDk/SD won´t deviate very much from 1 

and hence the skin value ss would be small or approximately constant at some point, with IARF 

noticeable in the middle time region as given in Figure 51 and Figure 58. Hence, for practical reasons, 

it would be advisable to produce the well with stepwise small depressions below the equilibrium 

pressure such that reservoir parameters can be derived. Though the flow rates might be small with this 

approach, a better reservoir characterization could be achieved. 
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Figure 58: Rate Transient Analysis in Over-pressured Gas Hydrates 

The observed gradient from the semi-log plot is given by: 

mlog = 1.1515
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Skin  

ss,avg ≈
� 1ṁt

�
𝑡𝑡=1𝑠𝑠
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− log � k

∅rw2
ft(pi)
β(pi)

� 4. 37 

As seen with the normally pressured gas hydrate reservoirs, the effective gas permeability can be 

estimated from the mass balance approach thus: 

kkrg∗ = kg∗ =
[φPI(t)]g

ṁt
[k∫ ft(p)dp] = 1

(1−φsD)
[φPI(t)]g

ṁt

1,1515
2πhmlog

 4. 38 

Radius of Dissociation during Production 

Deriving a clear gradient on the semi-log plot could be cumbersome; hence we use the average value 

of skin as given above. This implies the use of this model only gives an approximation of the radius of 

dissociation for any given time during IARF. From the total production time, the radius of dissociation 

during IARF is given by: 

ss,avg = log �rsD
2

tDw
� 4. 39 

rs,avg ≈ �rw2[tDw]exp (2,303ss) = ��k∅
ft(pi)
β(pi)

tf� exp (2,303ss,avg) 4. 40 

rs,avg ≈ rw𝑒𝑒(1.1515𝑠𝑠𝑠𝑠)√tDw 4. 41 
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For infinite acting systems, tf denotes the production time; however, the radius of dissociation would 

have maximum values for bounded systems.  

Validity of Method 

• x<0.01 

• mlog can be obtained from semi-log plot 

• The reservoir skin, ss,avg, can be derived 

4.2.2 Identifying Reservoir Boundaries 

Due to the complexity of the reservoir behavior, it would be practically more effective to produce the 

overpressures reservoir above the equilibrium pressure such that conventional RTA techniques can be 

applied to derive the true reservoir boundary. However, producing the reservoir above equilibrium 

pressure can only be possible if a reasonable amount of free fluid is present in the hydrate layer. If this 

is not the case, the following approach can still be made: 

CPOB Over-pressured hydrate layer 

Here, we noticed that the radius of dissociation becomes a constant value when boundary dominated 

flow starts in the un-dissociated zone. At this point, both the dissociated zone and the undissociated 

zone portray constant pressure outer boundary behavior. With this phenomenon, we can easily derive 

the maximum possible radius of dissociation for that reservoir.  

 

Figure 59: Identification of Maximum Radius of Dissociation s in Over-pressured Gas Hydrates (CPOB) 

(SD/SDk=0.001) 
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NFB Over-pressured hydrate layer 

The NFB problem in over-pressured gas hydrates is much more complex compared to the CPOB case. 

As seen in Figure 56 and Appendix 13, the RTA of the model will depict two boundary dominated 

flow periods. Coupled with the effect of dissociation and the moving boundary problem, serious 

challenges can be encountered with the analysis. For this reason it is advisable at this level to apply 

computer aided methods of analysis for such problems as the use of semi-log plots to estimate 

reservoir parameters will not yield satisfactory results. Nonetheless, performing derivative plots for 

reservoir diagnostics would be very beneficial in identifying the complex behavior of NFB over-

pressured gas hydrates as seen in Figure 56.  

4.2.3 Type Curve Analysis 

The conceptual models developed here for the over-pressured gas hydrates using the similarity 

solutions ignored the effect of heat conduction such that the complexity of the model can be reduced. 

With this assumption, solutions to the model were derived and hence a type curve method of analysis 

can be proposed. It should be noted that as long as well test data depict skin response for a long period 

of time, the reservoir could be considered as an over-pressured gas hydrate, which could also be 

verified from temperature depressions (i.e. if the reservoir experiences no temperature depressions 

when produced above the estimated equilibrium pressure). If this is the case, the over-pressured type 

curve can be used for the matching process. 

Required Plots 

• (1−φsD)
ṁtD

 Versus tDw
rsD

 

• 1
ṁt

 Versus t 

• φPI(t) Versus t 

Time Match  

The time match points along the vertical are: 
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 4. 44 

Where, 

tDw = t
k
∅rw2

ft(pi)
β(pi)

 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[rsD]MP = tDw
�tDwrsD

�
MP

= k
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ft(pi)
β(pi)

tMP

�tDwrsD
�
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 4. 45 
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tMP
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�
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 4. 46 

Rate Match 

The match along the horizontal is given by: 
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�
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Where, 
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 4. 48 

kkrg∗ (p) = [φPI(t)]g,MP �
1
ṁt
�
MP

�(1− φsD)k∫ρt �
kr
ɳ
�
t

dp�
𝑀𝑀𝑀𝑀

 4. 49 

4.2.4 Rate Derivative Analysis  

The derivative plot is basically used for diagnosis of the reservoir behavior and for a better view of the 

different flow regimes and boundary responses.  

Early Time Region 

Unlike the normally pressured gas hydrates, the over-pressured gas hydrates show a characteristic skin 

response due to dissociation and the increasing radius of dissociation.  

IARF 

As seen in Figure 51, IARF could be difficult to achieve if the hydrate dissociation is very significant; 

however, the characteristic behavior during IARF is given by: 

d� 1
ṁtD

�

d�ln�tDwSD
��

= f � SD
SDk

,𝜑𝜑𝑠𝑠𝑠𝑠� 4. 50 

Late Time IARF 

d� 1
ṁtD

�

d�ln�tDwSD
��

= 0.5 4. 51 

Boundary dominated Flow with 1-NFB (negligible heat conduction) 

d� 1
ṁtD

�

d�ln�tDwSD
��

= f � SD
SDk

,𝜑𝜑𝑠𝑠𝑠𝑠� 4. 52 
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Reservoirs with NFB will depict the following responses: 

• Double NFB Response: This would occur if the reservoir is produced long enough for the 

reservoir pressure to drop below the equilibrium pressure for the given constant wellbore 

pressure.  

• Single NFB Response: This would occur if the reservoir is produced long enough till the NFB 

is reached but the reservoir pressure is still above the equilibrium pressure. 

Boundary dominated Flow with 1-CPOB (negligible heat conduction) 

𝑑𝑑� 1
ṁtD

�

𝑑𝑑�ln�tDwSD
��

= 0 4. 53 

The rate derivative shows a zero slope during boundary dominated flow.  
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5 Conceptual Models for Well Testing in Class1 & 2 Gas Hydrates: The 

Crossflow Problem 

Gas hydrate reservoirs with free fluid beneath the hydrate reservoir are susceptible to crossflow 

behavior with the presence of a pervious layer separating the hydrate layer and free fluid layer. Free 

fluid beneath the hydrate layer could be water, as in Class 2 hydrates, or gas as in Class 1 hydrates. 

Understanding and describing the reservoir response for such systems is necessary for all production 

forecasting and designing the production economics of the reservoir. In deriving the reservoir 

parameters of the reservoir system, a representative model for the reservoir fluid flow is required. 

Crossflow models in gas hydrate reservoir require a good representation of the dissociation products of 

the hydrates during pressure depressions. As mentioned in Chapter 1, quantifying the dissociation 

products for Class1 and 2 gas hydrate reservoirs depends very much on the layer of production due to 

heat influx. 

5.1 Crossflow Behavior of Class 1 and 2 Gas Hydrate Reservoirs 

The diagrams below show the crossflow effects in hydrate reservoirs Class 1 and 2 due to the pervious 

barrier between the hydrate layer and the underlying free fluid layer. 

 

 

 

 

 

Case 1: Production from Free Fluid Zone 

 

 

 

 

Case 2: Production from Hydrate Zone  

 

 

 

 

Figure 60: Production Scenarios from Class 1&2 Hydrate Reservoirs 
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Different production scenarios have been identified and depicted in the above diagrams. The choice of 

the production method will depend on various factors. One important aspect with the choice of 

production will be the more energy efficient method. With a look at the hydrate reservoirs Class 1 and 

2, it can be noticed that the fluid layer beneath the hydrate zone is more likely to possess a higher 

permeability due to the absence of the hydrates in the pores. With such a case, it would be more 

preferable to produce from the layer beneath the hydrate zone, as depletion here is faster. If we have 

free water beneath the hydrate zone as in Class 2, production from the layer beneath the hydrate zone 

would be predominantly water as in Coal Bed Methane reservoirs and could be called the dewatering 

phase of the reservoir production, before the mobility of gas increases. For Class 1 with free gas 

beneath the hydrate zone, production with Case 1 method will be predominantly gas.  

To develop a more general equation, applicable for both Class 1 and Class 2, which also makes the use 

of multiphase pseudo-pressure appropriate for crossflow problems, water and gas are assumed to be 

present in both the hydrate layer and the layer beneath. With this assumption, mass conservation and 

energy balance models could be used to describe flow in these reservoirs. Due to different outer 

boundary conditions in the crossflow layer, various crossflow models have been developed 

consequently. Most crossflow models are based on the extension of the non-leaky aquifer models. 

Hantush and Jacob [43] first addressed the problem of crossflow using the leaky aquifer type models. 

The influence of the fluid leakage from the confining layer (hydrate layer) to the producing layer (free 

fluid layer) is highly dependent on the permeability and thickness of the hydrate formation as will be 

shown later. The solutions presented by Hantush and Jacob [43] were derived for homogenous wells 

and just ground water flow was considered; hence, linearization of the partial differential equation was 

not necessary. However, dimensionless forms of the solutions have been presented by authors, which 

could be seen in the works of Haefner [73] for different inner boundary conditions. The main 

challenge with the crossflow problem in hydrate-capped reservoirs would be to linearize the equation 

and represent in dimensionless forms, such that the boundary conditions could be modified and the 

existing solutions in dimensionless form implemented. First, mass balance techniques are depicted for 

the crossflow models.  

Description of Pore Contents in Layers 

Hydrate Layer (HL) 

Considering the gas hydrate zone, we assume the pores are filled with three phases, namely: hydrate, 

gas and water and the saturation is hence given by: 

Sg + SH + Sw = Vg
VP

+ VH
VP

+ Vw
VP

= Vg+VH+Vw
Vp

= Vp
Vp

= 1 5. 1 

Considering the three phases in the reservoir, we could modify the storage term thus: 

 mt+∆t−mt 
∆t

=  ∆(ρ∗Vp)
∆t

= ∆(ρ∗∅∗V)
∆t

= ∆(ρg∗∅∗VSg)
∆t

+ ∆(ρH∗∅∗VSH)
∆t

+ ∆(ρw∗∅∗VSw)
∆t

 5. 2 
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This implies the rate of change of mass equation could be written in the form  

 mt+∆t−mt 
∆t

=  � mt+∆t−mt 
∆t

�
g

+  � mt+∆t−mt 
∆t

�
H

+  � mt+∆t−mt 
∆t

�
w

 5. 3 

As demonstrated in Appendix 1, Appendix 2, Appendix 3, the hydrate mass rate change could be 

represented in terms of the dissociation components thus: 

� mt+∆t−mt 
∆t

�
H

= ∆(ρH∗∅∗VSH)
∆t

= � mt+∆t−mt 
∆t

�
w,H

+ � mt+∆t−mt 
∆t

�
g,H

 5. 4 

Free Fluid Layer (FFL) 

Considering the free fluid zone, we assume the pores are filled with two phases, namely: gas and water 

and the saturations are hence given by: 

Sg + Sw = Vg
VP

+ Vw
VP

= Vg+Vw
Vp

= Vp
Vp

= 1 5. 5 

Considering the two phases in the free fluid layer, we could modify the storage term thus: 

 mt+∆t−mt 
∆t

=  ∆(ρ∗Vp)
∆t

= ∆(ρ∗∅∗V)
∆t

= ∆(ρg∗∅∗VSg)
∆t

+ ∆(ρw∗∅∗VSw)
∆t

 5. 6 

This implies the rate of change of mass equation could be written in the form  

 mt+∆t−mt 
∆t

=  � mt+∆t−mt 
∆t

�
g

+  � mt+∆t−mt 
∆t

�
w

 5. 7 

Diffusivity Equation in Producing Layer (Layer 1) 

In developing the equation, the hydrate dissociation rate due to heat conduction and convection should 

be taking into consideration. Appendix 15 fully describes the derivation of the model.  

Diffusivity Equation when producing from the Free Fluid Layer 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− δD �
∂[φD] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ω ∂φD
∂tDwD

 5. 8 

The equation above is represented in Laplace domain thus: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− δD �
∂[φ�D] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ωpφ�D 5. 9 

Diffusivity Equation when producing from the Hydrate Layer 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− �∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧𝐷𝐷=1

− δD �
∂[φD] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

− δDθD �
∂[φD] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ω ∂φD
∂tDwD

 5. 10 

The diffusivity equation when producing from the hydrate layer can be similarly transformed in 

Laplace domain as given below: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− �∂T
�pD
∂zD

�
Caprock,zD=1

− δD �
∂[φ�D] layer2

∂zD
�
zD=1

−δDθD �
∂[φ�D] layer2

∂zD
�
zD=1

= ωpφ�D 5. 11 
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Diffusivity Equation for the Crossflow Layer (Layer 2) 

�
∂2φ�D
∂zD

2 �
layer2

= (1−ω)𝑝𝑝�φ�D�layer 2
 5. 12 

Mass Influx from Hydrate Layer in Free Fluid Layer 

Since the hydrate layer is considered to be bounded at the top with a caprock, NFB is imposed at the 

hydrate layer-caprock interface. Nonetheless, the endothermic dissociations favors heat inflow at this 

interface when pressure propagation reaches the boundary. This effect is considered in the following 

model: 

NFB at top of Hydrate Layer 

�∂
[φD� ]layer2
∂zD

�
zD=1

= ��p[1−ω]Coth�(1− ∆zD)�p[1−ω]�
��p[1−ω]tanh�(1−∆zD)�p[1−ω]�+Q̇pD�eD�

��p[1−ω]Coth�(1−∆zD)�p[1−ω]�+Q̇pD�eD�
� [φD� ]layer1 = Mi[φD� ]layer1 5. 13 

Mass Influx from Free Fluid Layer in Hydrate Layer 

The mass influx rate from the free fluid layer depends basically on the boundary condition imposed at 

the bottom of the free fluid layer. Two boundary conditions have been considered in this work, for 

which the mass influx rate is given by: 

For CPOB at the bottom of the free fluid layer 

�∂
[φD� ]layer2
∂zD

�
zD=1

= ��p[1 −ω]Coth��p[1−ω](1 − ∆zD)��[φD� ]layer1 = 𝑀𝑀𝑖𝑖�φD��
layer1

 5. 14 

For NFB at the bottom of the free fluid layer 

�∂
[φD� ]layer2
∂zD

�
zD=1

= ��p[1 −ω]tanh��p[1−ω](1 − ∆zD)��[φD� ]layer1 = 𝑀𝑀𝑖𝑖�φD��
layer1

 5. 15 

We clearly see the difference in the NFB responses when producing from either one of the layers. 

The final equations then take the form: 

Final Model with Production from Hydrate Layer 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− ��Q̇pD
� eD�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ δD(1 + θD)Mi + ωp� φD� = 0 5. 16 

Final Model with Production from Free Fluid Layer 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− [δDMi + ωp]φD� = 0 5. 17 

The models addressed here assume that flow in the producing layer is mainly horizontal and flow in 

the overlain layer is mainly vertical. In case the hydrate layer is much more permeable compared to 

the free fluid layer, production will be preferably done from the hydrate layer and the problem will be 

handled analog. Coupled with the heat flux from the free fluid zone, more hydrate will be dissociated.  
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5.2 Constant Rate Inner Boundary Solutions and Pressure Transient Analysis 

From the models developed in Appendix 15 and the approximate solutions in real time domain, PTA 

can be performed from the reservoir responses. 

5.2.1 Case 1: Pressure Transient Solutions when Producing from the Free Fluid Layer 

The pseudo-pressure responses when producing from the hydrate layer are given below. Imposing two 

different boundary conditions at the top of the hydrate layer, .i.e. the NFB and CPOB has shown 

significant effects in the reservoir responses. 

Early-Time Response for both No-Flow and Constant Pressure Outer Boundary in HL 

φD = 2πhk
ṁt

[φi − φ(r, t)] = H � rD
2

4tDwD
ω, rDεD

4√ω
� 5. 18 

Where,  

εD = δD�[1 −ω] 5. 19 

Late Time Response for No-Flow Outer Boundary in HL 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

E1 �
rD
2

4tDwD
ωfD� 5. 20 

fD = �1 +
[1−ω]
ω

δD(∆zD − 1)� 5. 21 

 

Figure 61: Reservoir Response in Infinite Acting Free Fluid Layer with NFB in HL (Crossflow from HL) 
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Figure 62: Pseudo-Pressure Transient Derivative Plot for Infinite Acting Free Fluid Layer with NFB in Hydrate 

Layer  

The reservoir response here is similar to that of the normally pressured gas hydrate reservoir. The type 

curves for this reservoir are given in Figure 63. 

 

Figure 63: Type Curve Drawdown Plot for Infinite Acting Free Fluid Layer with NFB in Hydrate Layer (Crossflow 

from Hydrate Layer) 

Late Time Response for Constant Pressure Outer Boundary in HL 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD, rD�jD� 5. 22 

Where, 

gD = �1 + [1−ω]
3ω

δD(∆zD − 1)� 5. 23 

jD = δD
(∆zD−1)

 5. 24 
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Figure 64: Pseudo-Pressure Transient Plot for Infinite Acting Free Fluid Layer with CPOB in Hydrate Layer 

(Crossflow from Hydrate Layer) 

 

Figure 65: Derivative Plot for Infinite Acting Free Fluid Layer with CPOB in Hydrate Layer (Crossflow from 

Hydrate Layer) 

5.2.2 Reservoir Parameters 

For hydrate reservoirs with a no-flow outer boundary at the top, the influence of crossflow is 

predominant in the early time period of production, which is however very short. The significance of 

reservoir parameters in the dimensionless terms presented in the models earlier is now addressed. 
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ω = [ah]𝑖𝑖
ah

�� av
ah+av

��
i
 5. 25 

ah
av

= (1−ω)
ω

 5. 26 

Interporosity Flow Coefficient 

δD = rw2

∆z2∆z1

kv2
kh1

 5. 27 

Dimensionless Early Time Interlayer Mass Flux Coefficient 

εD = δD�[1 −ω] 5. 28 

Dimensionless Interlayer Crossflow Compressibility (NFB in HL) 

fD = �1 +
[1−ω]
ω

δD(∆zD − 1)� = �1 + ah
av

rw2

∆z2∆z1

kv2
kh1

(∆zD − 1)� 5. 29 

With the above equation, we can conclude that the thicker the producing layer, the more insignificant 

the effects of crossflow. Moreover, if the reservoir permeability of the free fluid layer is much higher 

than the hydrate layer, which is also the precondition for producing from this layer and developing the 

model, the influence of the dimensionless interlayer crossflow compressibility diminishes.  

Dimensionless Interlayer Crossflow Storativity Compressibility Product 

ωfD = [ω + (1 − ω)δD(∆zD − 1)] 5. 30 

For hydrate reservoirs with much lower pressure conductivities with respect to the free fluid layer, the 

storativity ratio is very small. As such, the dimensionless interlayer crossflow storativity 

compressibility product could be less than 1, considering the interporosity flow coefficient is far less 

than 1. In this case, the hydrate layer acts similar to a no-flow boundary for the free fluid layer and 

hence the pressure depression in the free fluid layer is much higher as also seen in Figure 61. It should 

however be emphasized that the dissociation of the hydrate layer would lead to an increase in the 

pressure conductivity in the hydrate layer. With this increase, pressure depression in the hydrate layer 

increases more rapidly and hence boundary dominated flow in the hydrate layer is faster achieved. 

Dimensionless Interlayer Crossflow Compressibility (CPOB in HL) 

gD = �1 + [1−ω]
3ω

δD(∆zD − 1)� 5. 31 

Dimensionless Interlayer Mass Flux Coefficient 

jD = δD
(∆zD−1)

 5. 32 
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Where, 

∆zD = ∆z2
�h2�

=
��h2�+hconfining layer�

�h2�
 5. 33 

δD = rw2

∆z2∆z1

kv2
kh1

 5. 34 

As mentioned in the assumptions in deriving the model, NFB conditions at the top of the hydrate layer 

is a precondition for production as this has to serve as the cap rock of the reservoir, which should also 

guarantee safe production. However, if the hydrate dissociation is very high, the effects of pressure 

support in the hydrate layer could lead to a CPOB behavior of the reservoir response. Hence, if the 

hydrate dissociation rate is not that significant, NFB responses will be noticed and the CPOB 

responses will be noticed for high dissociation rates, especially at the top of the hydrate layer when 

heat conduction effects also become substantial.  

PTA 

Semi-log Analysis 

Semi-log analysis as mentioned earlier is valid if and only if a gradient is deducible during IARF. 

However, the IARF period is valid only after a given duration of production.  

NFB Model for the Hydrate Crossflow Layer 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

E1 �
rD
2

4tDwD
ωfD� 5. 35 

Analogue methods of analysis proposed in Chapter 3 for infinite acting systems, we make the same 

approach here.  

The pressure transient solution can be simplified to: 

φD = 0.5 �ln �
tDwD
ωfD

� + 0.80907� 

With the introduction of the pressure dependent pseudo-relative permeability [krg*(p)] given in 

Appendix 10, pressure rate transient analysis could be carried out. 

∫
ρg
ɳg
dp

Qg,st(t)
= ρg,st

4πhkkrg∗ (p) �ln �
tDwD
ωfD

�+ 0.80907� 5. 36 

By expanding the dimensionless time, relating the gas density with the formation volume factor and 

considering the dimensionless compressibility-mobility, the above equation can be written in terms of 

real time. 

∫ 1
Bgɳg

dp

Qg,st(t)
= φRPI(t) = 1.1515

2πhkkrg∗ (p) �logt − log ���ah+av

ahav
��

i
� − log(ωfD) + 0.3513� 5. 37 

Where, 
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1
𝑎𝑎ℎ

= SD
ah,i

=
ρt,i�

kr
ɳ �t

��ρwcT,w�+�ρgcT,g��
= 𝜔𝜔 ��𝑎𝑎ℎ+𝑎𝑎𝑣𝑣

𝑎𝑎ℎ𝑎𝑎𝑣𝑣
��
𝑖𝑖
 5. 38 

A semi-log plot of the gas rate normalized pseudo-pressure versus the time should give a straight line 

during infinite acting flow provided the relative permeability change with time or the changes in the 

dimensionless crossflow terms (ωfD) with pressure is negligible. The gradient of the line can hence be 

used to estimate the effective permeability of the gas phase.  

The gradient of the semi-log plot: 

mlog = 1.1515
2πhkkrg∗ (p)∫ 1

Bgɳg
dp

 5. 39 

Effective gas permeability at IARF 

kkrg∗ (p) = kg∗(p) = 1.1515
2πhmlog ∫

1
Bgɳg

dp
 5. 40 

Skin= Dimensionless Dissociation Terms (IARF) 

Applying the damage skin approach for well test analysis we get an approximation of the dissociation 

terms for the hydrate layer. 

ωfD = [ω + (1 − ω)δD(∆zD − 1)] ≈ exp

⎩
⎪
⎨

⎪
⎧

−0.434

⎣
⎢
⎢
⎢
⎡�
∫ 1
Bgɳg

dp

Qg,st(t) �

𝑡𝑡=1𝑠𝑠
mlog

+ log ���ah+av
ahav

��
i
10−0.3513�

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 5. 41 

CPOB Model for the Hydrate Crossflow Layer 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD, rD�jD� 5. 42 

Although large values of the dimensionless interlayer mass flux coefficient have been used to develop 

the type curve, it is worth mentioning that its value is usually small for real reservoir engineering 

problems as the quotient of the wellbore radius to the layer thickness product is usually far less than 1 

and so is the value of the ratio of the vertical permeability of the hydrate layer to the horizontal 

permeability of the free fluid layer, i.e.: 

rw2

∆z2∆z1
≪ 1 kv2

kh1
< 1 δD = rw2

∆z2∆z1

kv2
kh1

≪ 1  jD = δD
(∆zD−1)

≪ 1 

With this note, we can assume that the crossflow behavior is very significant only in the late time 

region of flow and hence the following approach can be made: 

�jD
tDwD
ωgD

< 2 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD, rD�jD� ≈

1
2

E1 �
rD
2

4tDwD
ωgD� 5. 43 
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�jD ≪ 1 and �jD
tDwD
ωgD

< 2 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD, rD�jD� ≈

1
2

E1 �
rD
2

4tDwD
ω� 5. 44 

The above simplification indicates that semi-log plots applied be used to estimate reservoir parameters 

before crossflow behavior affects the reservoir response significantly in the late time region. Since the 

producing layer is the free fluid layer, changes in reservoir parameter will not be that significant 

compared to if the reservoir was produced from the hydrate layer; hence, reliable values from the 

semi-log plots can be derived. The semi-log analysis given for the NFB above is also applicable here.  

Type Curve Matching  

Note that type curve matching is usually used to identify the reservoir parameters from the Hantush 

leaky aquifer model.  

Time Match for NFB Model for the Hydrate Crossflow Layer 

�tDwD
ωfD

�
MP

;  tMP 5. 45 

Where, 

tDwD =
t

��ah + av
ahav

��
i

 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[ωfD]MP = tDwD

�tDwD
ωfD

�
MP

= 1

��ah+av
ahav

��
i

tMP

�tDwD
ωfD

�
MP

 5. 46 

Time Match for CPOB Model for the Hydrate Crossflow Layer 

�tDw
ωgD

�
MP

;  tMP; ��jD�MP 5. 47 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[ωgD]MP = tDwD

�tDwD
ωgD

�
MP

= 1

��ah+av
ahav

��
i

tMP

�tDwD
ωgD

�
MP

 5. 48 

Pressure Match 

For both the NFB and CPOB, the following match can be gotten. The match along the horizontal is 

given by: 

[φD]MP ; [φRPI(𝑡𝑡)]MP 

As mentioned in Chapter 3.5.3, the use of type curve matching for PTA in this case would be most 

feasibly if the rates of each phase remain constant during production. 
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Derivatives 

The derivatives of the type curve will show the following characteristics for the infinite acting 

reservoir: 

Early Time Region 

No skin response 

IARF (negligible crossflow) 

d[φD]

d�ln�tDwD
ωfD

��
= d[φD]

d�ln�tDwD
ωgD

��
= 0.5 5. 49 

IARF and high crossflow 

d[φD]

d�ln�tDwD
ωfD

��
= d[φD]

d�ln�tDwD
ωgD

��
= 0 5. 50 

5.2.3 Case 2: Pressure Transient Solutions and Analysis when Producing from the Hydrate 

Layer 

From the models developed in Appendix 15, the pseudo-pressure responses when producing from the 

hydrate layer are given below. It should be noted that the combined effects of heat conduction from 

the top of the hydrate layer and mass flux from the free fluid layer are considered in the model. 

Early-Time Response for both No-flow Boundary and Constant Pressure Outer Boundary 

(CPOB) in Crossflow  

φD = 2πhk
ṁt

[φi − φ(r, t)] = H � ωrD
2

4tDwD
, rDεD,2

4√ω
� 5. 51 

Where, 

εD,2 = �𝑒𝑒D�FCD + δD(1 + θD)�[1−ω]� 5. 52 

Late Time Period for Constant Pressure Outer Boundary (CPOB) in Crossflow Layer+Constant 

Temperature Outer Boundary (CTOB) in Top Layer 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD,2, rD�jD,2� 5. 53 

Where, 

gD,2 = �1 + 1
3ω
�𝑒𝑒DFCD�∆zD,TL − 1� + δD(1 + θD)[1 −ω]�∆zD,BL − 1��� 5. 54 

jD,2 = � δD(1+θD)
�∆zD,BL−1�

+ 𝑒𝑒D
�∆zD,TL−1�

� 5. 55 
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Figure 66: Drawdown Response in Infinite Acting Hydrate Layer with CPOB in Free Fluid Layer and CTOB in Top 

Layer (Crossflow from Free Fluid Layer + Heat Conduction from Top Layer) 

Late Time Period for No-flow Boundary (NFB) in Crossflow Layer+Constant Temperature 

Outer Boundary (CTOB) in Top Layer (TL) 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωfD,2, rD√YD� 5. 56 

Where 

fD,2 = �1 + 1
3ω
��𝑒𝑒DFCD�∆zD,TL − 1� + 3�δD(1 + θD)(1 −ω)�∆zD,BL − 1����� 5. 57 

YD = 𝑒𝑒D
�∆zD,TL−1�

 5. 58 

Here, although the free fluid layer consists of a NFB, the reservoir response is much different from 

when the reservoir is produced from the free fluid layer and the hydrate layer is a NFB layer. This is 

solely due to the influence of heat conduction from the top layer which shows a significant influence 

in the reservoir response during the late time period of production. We can hence conclude that when 

producing from the hydrate layer in Class 1&2 gas hydrate reservoirs, we expect a much higher gas 

recovery from the hydrate dissociation compared to Class 3 reservoirs, given the reservoirs have the 

same petro-physical properties and provided the heat influx from the caprock is strong enough to 

influence continuous hydrate dissociation. Note that the imposed CTOB at the caprock is an optimistic 

model analogous to the kinetic model. 
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Figure 67: Drawdown Response in Infinite Acting Hydrate Layer with NFB in Free Fluid Layer and CTOB in Top 

Layer (Crossflow from Free Fluid Layer + Heat Conduction from Top Layer) 

5.2.4 Reservoir Parameters 

The effect of producing from the hydrate layer when crossflow from the free fluid layer is not 

negligible could have a tremendous effect on the reservoir response. This is due to the following: 

• Heat used up in the hydrate layer dissociates the hydrates and would lead to pressure support.  

• Convective heat flux from the fluids in the crossflow layer will lead to further hydrate 

dissociation and hence further pressure support. 

• Mass flux due to fluids from the free fluid layer also serves as pressure support in the hydrate 

layer. 

This implies, when producing from the hydrate layer at constant sandface rates, minimum pressure 

depletions could be experienced due to all these pressure support terms. For this reason, IARF would 

hardly be achieved for semi-log plots to be performed. Hence, the use of type curve matching would 

be very useful to estimate certain reservoir parameters. 

Dimensionless Convective Heat Flux Dissociation Coefficient 

θD =
�cp∆T�avg

hd
 5. 59 

Dimensionless Early Time Interlayer Mass Flux Coefficient 

εD,2 = �𝑒𝑒D�FCD + δD(1 + θD)�[1−ω]� 5. 60 
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Dimensionless Interlayer Crossflow Compressibility 

gD,2 = �1 + 1
3ω
�𝑒𝑒DFCD�∆zD,TL − 1� + δD(1 + θD)[1 −ω]�∆zD,BL − 1��� 5. 61 

Dimensionless Interlayer Mass Flux Coefficient 

jD,2 = � δD(1+θD)
�∆zD,BL−1�

+ 𝑒𝑒D
�∆zD,TL−1�

� 5. 62 

If the pressure depression in the hydrate layer and the interporosity flow coefficient are low, so will 

the mass influx from the free fluid layer. Hence the influence of convective heat influx is negligible. 

However, even with negligible mass flux from the free fluid layer during depressurization, we still 

have conductive heat flux from the upper layer which assists in the dissociation process. This implies 

the assumption of negligible dimensionless interlayer mass flux coefficient cannot be made with 

certainty in this case.  

Notice that both the dimensionless mass flux coefficient and the dimensionless interlayer crossflow 

compressibility are functions of the storativity (energy used in the hydrate layer), the dimensionless 

heat conductive flux coefficient (heat energy used from conduction), dimensionless convective heat 

flux dissociation coefficient (energy used up from warmer fluids in the free fluid layer) and the 

interporosity flow coefficient.  

When the interporosity flow coefficient is negligible, the effects of mass flux from the free fluid layer 

are also trivial and just heat conduction becomes very influential.  

Dimensionless Interlayer Crossflow Compressibility 

fD,2 = �1 + 1
3ω
��𝑒𝑒DFCD�∆zD,TL − 1� + 3�δD(1 + θD)(1 −ω)�∆zD,BL − 1����� 5. 63 

Dimensionless Interlayer Mass Flux Coefficient 

YD = 𝑒𝑒D
�∆zD,TL−1�

 5. 64 

The dimensionless interlayer mass flux coefficient for the NFB case is solely dependent on the heat 

conduction term during late time production. However, if compared to producing from the free fluid 

layer, the influence of heat conduction is better quantified and its influence represented in the model.  

PTA 

CPOB in Crossflow Layer and CTOB in Top Layer 

As was done for the case of producing from the free fluid layer, we make simplifications of the model 

for given ranges. With this note, we can assume that the crossflow behavior is not perceived in the 

early-time region of flow and hence the following approach can be made for the given intervals below:  

�jD,2
tDwD
ωgD,2

< 2 
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φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD,2, rD�jD,2� ≈

1
2

E1 �
rD
2

4tDwD
ωgD,2� 5. 65 

�jD,2 ≪ 1 and �jD,2
tDwD
ωgD,2

< 2 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωgD,2, rD�jD,2� ≈

1
2

E1 �
rD
2

4tDwD
ω� 5. 66 

With the representation of the models in Ei-functions, the methods of analysis in 5.2.1 are also 

applicable here.  

NFB in Crossflow Layer and CTOB in Top Layer 

�YD
tDwD
ωfD,2

< 2 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωfD,2, rD√YD� ≈

1
2

E1 �
rD
2

4tDwD
ωfD,2� 5. 67 

√YD ≪ 1 and √YD
tDwD
ωgD,2

< 2 

φD = 2πhk
ṁt

[φi − φ(r, t)] = 1
2

W � rD
2

4tDwD
ωfD,2, rD√YD� ≈

1
2

E1 �
rD
2

4tDwD
ω� 5. 68 

With the representation of the model in E1-functions, the methods of analysis in Chapter 3 are also 

applicable here.  

5.3 Constant Pressure Solutions and Rate Transient Analysis 

Constant terminal solutions developed for the crossflow problem are now depicted with respect to the 

layer of production. 

5.3.1 Case 1: Producing from the Free Fluid Layer 

Late Time Response for No-flow in HL 

Dimensionless Pseudo-Pressure 

φD = A �tDwD
ωfD

, rD� 5. 69 

For tDwD/(ωfDrD²)>500 

φD =
E1�

rD
2 ωfD
4tDwD

�

E1�
ωfD

4tDwD
�
 5. 70 

Dimensionless Flowrate at Wellbore 

ṁtD = G �tDwD
ωfD

� 5. 71 

For tDwD/(ωfDrD²)>500 
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ṁtD = 2 e
−�

ωfD
4tDwD

rD
2 �

E1�
ωfD

4tDwD
�

 5. 72 

Where, 

fD = �1 + [1−ω]
ω

δD(∆zD − 1)� 5. 73 

 

Figure 68: Rate Transient Response in Infinite Acting Free Fluid Layer and NFB in Hydrate Layer  

 

Figure 69: Rate Transient Derivative Plot in Infinite Acting Free Fluid Layer and NFB in Hydrate Layer  
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Due to NFB effects in the hydrate layer, crossflow will be trivial at the late time period of production 

where the free fluid layer start depleting based on its reservoir content since the rate transient 

responses converge as given in Figure 68. If the crossflow term for a given reservoir remains constant 

throughout production, semi-log plots can be performed. 

Late Time Period for CPOB in HL 

Dimensionless Pseudo-Pressure 

φD = Z �tDw
ωgD

, rD,�jD� 5. 74 

For tDw
ωgD

�jD > 1 

φD =
W�

rD
2 ωgD
4tDwD

,rD�jD�

W� ωgD
4tDwD

,�jD�
 5. 75 

Dimensionless Flowrate at Wellbore 

ṁtD = G �tDw
ωgD

,�jD� 5. 76 

For tDw
ωgD

jD > 1 

ṁtD = 2

W� ωgD
4tDwD

,�jD�
 5. 77 

Where, 

gD = �1 + [1−ω]
3ω

δD(∆zD − 1)� 5. 78 

jD = δD
(∆zD−1)

 5. 79 

 

Figure 70: Rate Transient Response in Infinite Acting Free Fluid Layer and CPOB in Hydrate Layer  
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5.3.2 Rate Transient Analysis when Producing from Free Fluid Layer 

5.3.2.1 Semi-log Analysis 

NFB in Crossflow Layer 

Dimensionless Flowrate at Wellbore 

ṁtD = G �
tDw
ωfD

� 

For tDwD/(ωfD)>500 

ṁtD = 2 e
−�

ωfD
4tDwD

�
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�
 5. 80 

1
ṁt

= 1
2πh[k∫ ft(p)dp] �0.48465ln �tDwD

ωfD
� + 0.64757� 5. 81 

1
ṁt

= 1.1161
2πh[k∫ ft(p)dp] �logt − log ���ah+av

ahav
��

i
� − log(ωfD) + 0.58018� 5. 82 

Where, 

1
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= SD
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ρt,i�
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��ρwcT,w�+�ρgcT,g��
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𝑎𝑎ℎ𝑎𝑎𝑣𝑣
��
𝑖𝑖
 5. 83 

With the above representations, RTA addressed in Chapter 3.4 can be applied here. 

CPOB in Crossflow Layer 

Dimensionless Flowrate at Wellbore 

ṁtD = G �tDw
ωgD

,�jD� 5. 84 

For tDw
ωgD

jD > 1 

ṁtD = 2

W� ωgD
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 5. 85 
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ωgD

�jD < 2 

ṁtD = 2

E1�
ωgD

4tDwD
�
 5. 86 

1
ṁt

= 1
2πh[k∫ ft(p)dp] �0.4846ln �tDwD

ωgD
�+ 0.64757� 5. 87 

With the above representation of the reservoir models, RTA methods in Chapter 3.4 can once more be 

applied here. 
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5.3.2.2 Type Curve Matching 

Time Match for NFB Model for the Hydrate Crossflow Layer 

�tDwD
ωfD

�
MP

;  tMP 5. 88 

Where, 

tDwD =
t

��ah + av
ahav

��
i

 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[ωfD]MP = tDwD

�tDwD
ωfD

�
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�
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 5. 89 

Time Match for CPOB Model for the Hydrate Crossflow Layer 

�tDwD
ωgD

�
MP

;  tMP; ��jD�MP 5. 90 

From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 

[ωgD]MP = tDwD

�tDwD
ωgD

�
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= 1
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tMP

�tDwD
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 5. 91 

Rate Match 

For both the NFB and CPOB, the following match can be gotten. The match along the horizontal is 

given by: 

�
1

ṁtD
�
MP

 ; �
1

ṁt
�
MP

; [φPI(t)]g,MP 

Similarly, the RTA methods in Chapter 3.4 can once more be applied here. 

5.3.2.3 Derivatives 

The derivatives of the type curves will show the following characteristics for the infinite acting 

reservoir:  

Early Time Region 

No skin response 

IARF (negligible crossflow) 

d� 1
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IARF and high crossflow 
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5.3.3 Case 2: Producing from the Hydrate Layer 

Late Time Period for No-flow in Crossflow Layer + Constant Temperature Outer Boundary in 

Top Layer (TL) 
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Dimensionless Flowrate at Wellbore 
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,�YD� 5. 96 
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�
 5. 98 

fD,2 and YD have been described earlier. 
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Figure 71: Rate Transient Response in Infinite Acting Hydrate Layer with NFB in Free Fluid Layer and CTOB in 

Top Confining Layer  
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Dimensionless Flowrate at Wellbore 
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�
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gD,2 and jD,2 have been described earlier. 
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Figure 72: Rate Transient Response in Infinite Acting Hydrate Layer with CPOB in Free Fluid Layer and CTOB in 

Top Confining Layer  
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5.3.4.2 Type Curve Matching 

Time Match for NFB in Crossflow Layer and CTOB in Top Layer 
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Where, 
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From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 
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Time Match for CPOB Model for the Hydrate Crossflow Layer 
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From the match points, the dimensionless interlayer heat flux compressibility is derived thus: 
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Rate Match 

For both the NFB and CPOB, the following match can be gotten. The match along the horizontal is 

given by 

�
1

ṁtD
�
MP

 ; �
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ṁt
�
MP

; [φPI(t)]g,MP 

The RTA methods in Chapter 3.4 can also be applied here. 

5.3.4.3 Derivatives 

The derivatives of the type curves will show the following characteristics for the infinite acting 

reservoir:  

Early Time Region 

No skin response 

IARF (negligible crossflow) 
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IARF and high crossflow 
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ṁtD

�

d�ln�tDwD
ωfD,2

��
=

d� 1
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6 Summary and Outlook 

6.1 Summary 

Conceptual models have been developed for Class 1, 2 and 3 gas hydrate reservoir and the reservoir 

responses under different flowing conditions illustrated. It has been clearly shown that crossflow and 

heat conduction effects in the hydrates can be taking into account in conceptual models as long as the 

MBM pseudo-pressure is used and the temperature dependence on pressure can be characterized using 

the Clausius-Clapeyron-Type hydrate equilibrium models. As depicted earlier, the characterization of 

the gas hydrate reservoir is very complex due to the numerous parameters required to be identified. 

However, the use of dimensionless parameters reduces the number of unknowns required for the 

reservoir characterization.  

6.1.1 Class 3-Normally Pressured Gas Hydrates  

The main advantage of producing from normally pressured gas hydrate reservoirs would be the 

reservoir pressure being considered to be approximately equal to the equilibrium pressure. In this case, 

every pressure depression below the reservoir pressure dissociates the hydrates; hence, a much higher 

recovery would be expected compared to the over-pressured gas hydrates. The absence of a pervious 

free fluid layer beneath the hydrates excludes mass crossflow from the bottom layer but however 

favors heat crossflow from both the top and bottom layers as a result of the endothermic hydrate 

dissociation. The influence of heat influx, though a slow process, could be very significant for long-

term production scenarios as the negative rate declines could be noticed as the hydrate dissociation 

rate increases. The following important aspects can further summarize the Normally Pressured Class 3 

gas hydrate reservoirs as addressed in this work: 

• The energy components responsible for hydrate dissociation in this reservoir are the heat 

stored in the hydrate layer and the heat influx through conduction from the confining layers. 

• Conceptual reservoir testing models have been developed for normally pressured Class 3 gas 

hydrate reservoirs by rigorously combining mass and energy balance techniques. 

• The dimensionless temperature conductivity introduced in this work gives the relationship 

between the temperature and pressure conductivity in the confining and producing layers 

respectively. With this approach, the rate of heat influx with respect to producing layer is 

quantified. For reservoirs with high permeabilities, the pressure conductivity is much higher 

than the heat influx rate; hence hydrate dissociation is slower in this case.  

• Due to decreasing temperature with decreasing depth, as given by the geothermal profile, 

pseudo-no-flow temperature boundaries would better describe the heat influx rate from the cap 

rock whereas constant temperature outer boundary conditions would be more suitable for the 

underlain layer due to increasing temperatures with increasing depths as also given by the 

geothermal profile. The solutions presented in Laplace domain coupled with the Laplace 
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domain well test model identification methods address the effects of the different boundary 

conditions. However, the solutions in real time domain adopted the constant temperature outer 

boundary as an optimistic approach similar to the kinetic model, which depicts continuous 

hydrate dissociation.  

• Constant terminal rate and constant terminal pressure solutions and responses for the normally 

pressured Class 3 gas hydrates have been depicted using dimensionless parameters. 

• The solutions to the diffusivity problem are represented in terms of dimensionless mass rate 

and dimensionless multiphase pseudo-pressures, developed using the mass balance model 

(MBM).  

• The use of the dimensionless mass rates and dimensionless multiphase pseudo-pressures 

provides a huge advantage in the analysis, especially when performing RTA as mass 

conservation can be verified for type curve matching techniques.  

• Semi-log plots of pseudo-pressure normalized rates versus time have been used in the 

estimation of the reservoir parameters in normally pressured Class 3 gas hydrates for specific 

reservoir responses. It should however be strongly emphasized that the use of semi-log plots is 

very limited due to the complex reservoir response, especially when hydrate dissociation is 

significant.  

• Type curve matching techniques for the normally pressured gas hydrates have been developed 

for the derivation of the dimensionless parameters responsible for the hydrate dissociation in 

this gas hydrate reservoir type by applying the Hantush et al. [43] well functions. 

• The Bourdet [51] diagnostic (derivative) plots have been performed for the reservoir responses 

to derive the theoretical characteristic behavior of the reservoir. 

• The influence of heat conduction from the confining layers could have as significant effect of 

the rate or pressure transient due to the increase in hydrate dissociation hence supplementary 

pressure support. 

• Boundary effects on the reservoir responses have been identified with semi-log and derivative 

methods of identifying and estimating the distance to the reservoir boundary for instances with 

reduced heat influx rates.  

• The Bourgeois and Horne [25] Laplace domain well test model recognition method has been 

applied to the exact solution in Laplace domain, including diagnostic plots in the Appendices, 

which also gives a more explicit image of the complex reservoir behavior. 

 

6.1.2 Class 3-Overpressured Gas Hydrates 

Over-pressured gas hydrate reservoirs with reservoir pressures above the equilibrium pressures are 

much more complex in behavior, mainly due to the moving boundary problem which results in a skin 

response as seen on the derivative plots in this work. The reservoir model depicts two distinct zones, 
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analogous to composite reservoir models seen in conventional reservoir; however, the derivation of the 

dissociation radius is another hurdle to overcome. The analytical solutions developed here for the 

model using the similarity variable method neglect the effect of heat influx due to conduction such that 

the complexity of the problem is reduced. Nonetheless, the solutions to the problem considering the 

heat conduction have been developed in Laplace domain which still requires the use of numerical 

inverse transforms to develop the solutions in time domain but have not been further addressed in this 

work. However, Laplace domain well test model recognition methods have been fully addressed to 

depict the reservoir response and aid in the characterization of these reservoirs. Most importantly, for 

the development of the conceptual models for such a reservoir, mass conservation must be defined at 

the dissociation front. In addition, the pressure propagation model for both the dissociated and 

undissociated zone must be equal at the dissociation front. With these conditions, the radius of 

dissociation can be derived for which both conditions hold, as shown in the models developed here. 

For over-pressured gas hydrate reservoirs with a CPOB, just part of the reservoir can be dissociated as 

long as pressure propagation has reached the reservoir boundary and boundary dominated flow is felt. 

At this point, the wellbore, the dissociation front and the exterior boundary of the undissociated zone 

all experience constant pressure boundary conditions. Pressure propagation stops and so does the 

radius of dissociation. The total mass rate at both the wellbore and the dissociation front remain 

constant with time as a result of the replenishment or pressure support at the exterior CPOB. With a 

NFB at the exterior of the reservoir, quite a different phenomenon is seen. Here, the entire hydrate 

reservoir could be dissociated as no pressure support at the reservoir exterior boundary is characterized 

here. However, the undissociated zone first reaches the NFB and a reservoir pressure decline is 

experienced although the dissociated zone is still in the transient flow regime. Due to this effect the 

wellbore flow rate depicts a first boundary dominated decline while the dissociation radius further 

increases. When the dissociation front reaches the NFB, the entire dissociated zone exhibits a second 

boundary dominated responses as the average pressure drops below the equilibrium pressure. The 

reservoir then behaves similarly to the normally pressured gas hydrate reservoir. The characteristic 

behavior of these reservoirs is summarized in the type curve derivative or diagnostic responses in 

Table 5. The following important aspects can further summarize the Over-Pressured Class 3 gas 

hydrate reservoirs as depicted in this work: 

• Like in normally-pressured Class 3 gas hydrates, the energy components responsible for 

hydrate dissociation in this reservoir are the heat stored in the hydrate layer and the heat influx 

through conduction from the confining layers. 

• The moving boundary problem depicts a characteristic skin response from diagnostic plots, 

which is not seen in the normally pressured Class 3 gas hydrate reservoirs, which is due to the 

difference in the storativity of the dissociated and undissociated zones coupled with the 

transient radius of dissociation. 
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• Reservoir boundaries have a significant effect on the moving boundary problem especially 

with the presence no-flow boundaries. 

• Constant pressure outer boundaries limit the extent to which the hydrates will dissociate; i.e. 

only partial hydrate dissociation is possible. 

• In the presence of no-flow boundaries, the reservoir depicts a characteristic double no-flow 

boundary behavior due to the undissociated region reaching the no-flow boundary before the 

entire reservoir is dissociated and depict a second no-flow boundary response.  

• The application of semilog plots for such a case is very limited; especially if the dissociation 

rate is high or the pressure depression at the wellbore is very significant.  

• Derivative or diagnostic plots on the other hand are very vital in such cases as the skin effect 

and the double no-flow boundary response can been easily identified. 

• Type curve matching methods have been developed to estimate reservoir parameters for the 

moving boundary problem. 

• The Bourgeois and Horne [25] Laplace domain well test model recognition method have also 

been applied to the exact solution in Laplace domain, including diagnostic plots for a better 

view of the reservoir responses. 

6.1.3 Class 1 and 2 Gas Hydrates 

Class 1 and 2 gas hydrates reservoirs have been described as hydrate reservoirs demarcated from a free 

fluid beneath the hydrate layer owing to the geothermal gradient or hydrate equilibrium conditions. 

The crossflow problem in such a reservoir is the main issue to address here, coupled with the 

determining factors for hydrate dissociation. As has been addressed in this work, the heat sources 

responsible for hydrate dissociation when producing from the hydrate layer are heat stored in the 

reservoir, heat conduction from the hydrate top layer (cap rock) and heat influx from the warm fluid in 

the free fluid layer beneath the hydrates. All these factors accelerate the dissociation of the hydrates, 

provided the reservoir is produced from the hydrate layer and hence the gas recovery factor for such a 

production scenario could be much faster. The influence of heat conduction can be addressed similar 

to the Class 3 gas hydrates for this case.  

If the hydrate reservoir is produced from the free fluid layer, just heat stored in the hydrate layer and 

heat influx due to heat conduction from the cap rock are responsible for the dissociation process. 

When producing from the free fluid layer, heat conduction only starts when pressure depression in the 

hydrate layer has reached the vertical outer boundary, i.e. the hydrate layer-cap rock interface. This 

implies this will occur in the late time period of production. When hydrates dissociate at the vertical 

outer boundary, this will depict a pressure support which if strong enough, will enable zero pressure 

depressions at the vertical outer boundary. With the identification of these phenomena, a constant 

pressure outer boundary can be imposed at the boundary and the influence of heat conduction 

addressed in the crossflow model. This implies if the reservoir is produced from the free fluid layer, 
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CPOB response will only be seen if hydrate dissociation at the vertical outer boundary becomes 

significant, provided the free fluid layer is not bounded in the horizontal by another CPOB. The 

bounded reservoir models for the crossflow behavior have also been developed in Laplace domain 

which can be transformed in real time domain using a suitable numerical inversion method but have 

not been addressed further in this work. The characteristic behavior of these reservoirs is summarized 

in the type curve derivative or diagnostic responses in Table 5. 

The following important aspects can further summarize the Class 1 & 2 gas hydrate reservoirs as 

depicted in this work: 

• Since the two layers (free fluid and hydrate layer) are separated at the equilibrium point, they 

can be considered as normally pressured, i.e. the reservoir pressure is approximately equal to 

the equilibrium pressure. 

• Production from one of the layers can result to crossflow. 

 

Production Scenario 1: Producing from Hydrate Layer 

• When producing from the hydrate layer, the heat energy balance for the hydrate dissociation 

has to account for the heat conduction from the cap rock, the heat stored in the hydrate layer 

and the heat from the warmer fluids in the free fluid layer moving into the hydrate layer as a 

result of crossflow.  

• The hydrate dissociation would be much faster when producing from the hydrate layer as 

compared to the normally pressured Class 3 due to the supplementary heat source from the 

crossflow fluids. 

• Constant terminal rate methods can be very tedious for such a production scenario due to the 

constant increase in pressure from dissociation, which could further result to a zero depression 

at the sandface. This could make pressure transient analysis very cumbersome, especially with 

significant changes in fractional flow.  

• Constant terminal pressure on the other hand could be more beneficial as the wellbore pressure 

would be maintained constant and the flow rates would increase significantly.  

• Semi-log plots can be made only when the dissociation of crossflow effects are still at 

minimum. 

• Diagnostic plots are still a powerful tool in identifying the flow regimes and reservoir 

characterization. 

• Type curve matching techniques can be used to estimate reservoir parameters. 

• The Bourgeois and Horne (1993) Laplace domain well test model recognition method have 

also been applied to the exact solution in Laplace domain. 

 

Production Scenario 2: Producing from Free Fluid Layer 
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• When producing from the free fluid layer, the heat energy balance for the hydrate dissociation 

has to account for the heat conduction from the cap rock and the heat stored in the hydrate 

layer. 

• The heat energy due to conduction from the top layer occurs only during late time production 

periods when pressure depression has reached the outer boundary of the hydrate layer and a 

temperature depression exists due to dissociation. 

• The complexity of developing the model can be addressed by considering the dissociation of 

the hydrates at the outer boundary in the late time period as a pressure support , which if 

strong enough can lead to constant pressure at the outer boundary of the hydrate layer. 

• Semi-log plots can also be made here if and only if the crossflow effects are still at minimum. 

• Derivative plots can be used to better identify flow regimes and reservoir characterization. 

• The Bourgeois and Horne [25] Laplace domain well test model recognition method have also 

been applied to the exact solution in Laplace domain. 

To conclude, the hydrate dissociation is a pressure or mass source and hence tends to replenish 

pressure or rate declines during production. For this reason, most of the reservoir response models 

with significant hydrate dissociation depict a similar characteristic behavior. However, the parameters 

influencing such a behavior are different for each reservoir type as seen in this work using the 

equilibrium model. Hence, knowledge about the reservoir in question is essential for qualitative 

analysis of rate / pressure data. The well testing models developed here did not consider wellbore 

storage or mechanical skin damage effects on the reservoir behavior such that the true reservoir 

responses can be identified, after which other parameters can be addressed and incorporated in the 

model. 
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Table 5: Summary of Characteristic Behavior of Gas Hydrate Reservoirs from Type Curve Derivatives in Real Time Domain (Total System Response) 

 Type Curve Derivative and 
Skin 

Type Curve Derivative and 
IARF 

Type Curve Derivative and 
1-CPOB 

Type Curve Derivative and 
1-NFB 

Class 3 Normally 
Pressured Gas Hydrates 
(Pi=Peq) 
 
• Heat Stored in Reservoir 

Considered 
• Heat Conduction  

Considered 

No Skin 

0.5 
(1xmlog) 

with negligible heat flux at 
middle time region 

 
0 

with high heat flux at middle 
time region 

0 
 

with negligible heat flux at 
late time region 

 
Not Applicable 

with high heat flux, 
pressure transient does not 

reach boundary 

1 
(2xmlog) 

with negligible heat flux at late 
time region 

 
Not Applicable 

with high heat flux, pressure 
transient does not reach 

boundary 

Class 3 Over- Pressured 
Gas Hydrates 
(Pi>Peq) 
 
• Heat Stored in Reservoir 

Considered 
 

 
Skin Present 

 
Skin = 

f(SD/SDk, Peq) 

 
0.5 

(1xmlog) 
For low dissociation rates or 
at late times infinite acting 

systems 

 
0 

Partial Reservoir 
dissociation due to double 

CPOB 

 
f(SD/SDk, φsD) 

Double NFB response for 
extended flow and Pavg<Peq 

 
Single NFB for extended flow 

but 
Pavg>Peq 

 

Class 1 and 2 Gas 
Hydrates 
(Pi=Peq) 
 
• Heat Stored in Reservoir 

Considered 
• Heat Conduction 

Considered 
• Mass Crossflow 
• Convective Heat Crossflow 

No Skin 

0.5 
(1xmlog) 

For low crossflow rates at 
middle time region 

 
0-Slope 

 
with high crossflow rates at 

middle time region 

Not Considered Not Considered 
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Table 6: Summary of Reservoir Parameters obtained from RTA/PTA in Class 3 Gas Hydrate Reservoirs 

 Modified Dimensionless Decomposition 
Compressibility 

Dimensionless Temperature 
Conductivity 

Dimensionless Conductive Heat 
Flux Coefficient 

Dimensionless 
Early Time 
Interlayer 
Mass Flux 
Coefficient 

Dimensionless Interlayer 
Compressibility  

Dimensionless 
Interlayer Heat 
Flux Coefficient 

Normally 
Pressured 
Class 3 and 
Over-
pressured 
Class 3 

SD =
�ρtk �

kr
ɳ �t

�
id

�ρtk �
kr
ɳ �t

�
�

(ρcT)eff
(ρcT)eff,id

+
c

hd(ρcT)eff,id
� 

When c=0  
(no decomposition or undissociated zone) 
 

SD =
�ρtk �

kr
ɳ �t

�
id

�ρtk �
kr
ɳ �t

�
�

(ρcT)eff
(ρcT)eff,id

� = SDk 

FCD =
h2

4
�ρcp�eff

λ
rw2 (ρcT)eff,id

�ρtk �
kr
ɳ �t

�
id

 eD = �λ
1

hdk �ρt �
kr
ɳ �t

�
�
dTeq
dp �

rw2

πh2
� εD = eD�FCD µD = �1 +

FCDeD(∆zD − 1)
3SD

� 

bD =
eD

(∆zD − 1) 

 
eD

(∆zD − 1) 

= 
�

eD
(∆zD − 1)�TL

 

+ 
�

eD
(∆zD − 1)�BL

 

Table 6 gives a summary of relevant reservoir parameters obtainable from Class 3 gas hydrate reservoir testing as shown on Chapters 3 and 4. Although the 

heat conduction parameters where not addressed in Chapter 4 for the over-pressured gas hydrates, they are still valid for the models addressed in Laplace 

domain given in Appendix 13. 

Table 7: Summary of Reservoir Parameters obtained from RTA/PTA in Class 1&2 Gas Hydrate Reservoirs when producing from the Free Fluid Layer 

In addition to the storativity ratio and interporosity flow coefficient given in Table 7, the relevant reservoir parameters for Class 1&2 Hydrates when 

producing from the hydrate layer are summarized in Table 8. 

 Storativity Ratio Interporosity Flow 
Coefficient 

Dimensionless Early 
Time Interlayer 
Mass Flux 
Coefficient 

Dimensionless Interlayer Crossflow 
Compressibility 

Dimensionless Interlayer Crossflow 
Storativity Compressibility Product 

Dimensionless 
Interlayer Mass 
Flux Coefficient 

Class 1&2 
Producing 
from Free 
Fluid Layer 

NFB in 
Hydrate 
Layer 

ω =
[ah]𝑖𝑖

ah
��

av
ah + av

��
i
 δD =

rw2

∆z2∆z1
kv2
kh1

 εD = δD�[1−ω] fD = �1 +
[1 −ω]
ω

δD(∆zD − 1)� ωfD = [ω + (1 −ω)δD(∆zD − 1)] 0 

CPOB in 
Hydrate 
Layer 

ω =
[ah]𝑖𝑖

ah
��

av
ah + av

��
i
 δD =

rw2

∆z2∆z1
kv2
kh1

 εD = δD�[1−ω] gD = �1 +
[1 −ω]
3ω

δD(∆zD − 1)� ωgD = �ω+
[1 −ω]

3
δD(∆zD − 1)� jD =

δD
(∆zD − 1) 
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Table 8: Summary of Reservoir Parameters obtained from RTA/PTA in Class 1&2 Gas Hydrate Reservoirs when producing from the Hydrate Layer 

 

 
 

Dimensionless 
Convective Heat 
Flux 
Dissociation 
Coefficient 

Dimensionless Early Time Interlayer 
Mass Flux Coefficient Dimensionless Interlayer Crossflow Compressibility Dimensionless Interlayer Mass Flux 

Coefficient 

Class 
1&2 
Producing 
from 
Hydrate 
Layer 

NFB in Free 
Fluid Layer 

+ 
CTOB in 
Cap rock 

θD =
�cp∆T�

avg

hd
 εD,2 = �𝑒𝑒D�FCD + δD(1 + θD)�[1−ω]� fD,2 = �1 +

1
3ω

��𝑒𝑒DFCD�∆zD,TL − 1�+ 3�δD(1 + θD)(1−ω)�∆zD,BL − 1����� YD =
𝑒𝑒D

�∆zD,TL − 1�
 

CPOB in 
Free Fluid 

Layer 
+ 

CTOB in 
Cap rock 

θD =
�cp∆T�

avg

hd
 εD,2 = �𝑒𝑒D�FCD + δD(1 + θD)�[1−ω]� gD,2 = �1 +

1
3ω�

𝑒𝑒DFCD�∆zD,TL − 1�+ δD(1 + θD)[1−ω]�∆zD,BL − 1��� jD,2 = �
δD(1 + θD)
�∆zD,BL − 1�

+
𝑒𝑒D

�∆zD,TL − 1�
� 
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6.2 Outlook 

The constant sandface rate and constant wellbore pressure methods have been addressed in this work 

although maintaining constant sandface rates for multiphase systems is very difficult; moreover, the 

use of constant sandface rates has many disadvantages over the constant pressure method with regard 

to the effective production of gas hydrates and the ease of analyzing the well test data as briefly 

described in Table 9. 

Table 9: Pros and Cons of Applying Different Well Test Techniques in Gas Hydrate Reservoirs 

Constant Flowrate (sandface) Test 
(PTA) 

Constant Wellbore Pressure Test 
(RTA) 

Hydrate dissociation is pressure controlled; hence no 
systematic control of hydrate dissociation since 
pressure is transient. 

Systematic control of hydrate dissociation  
with defined constant wellbore pressure 

Hydrate reservoirs are usually unconsolidated; hence 
the critical flowing pressure for formation 
destabilization has to be known for well test design 
purposes to mitigate sand production. With transient 
pressure in the wellbore, the formation integrity 
cannot be guaranteed if this aspect is not thoroughly 
addressed in the well test design process. 

With known critical flowing pressure for 
formation destabilization, the constant 
wellbore pressure test can be properly and 
easily designed, reducing the possibility of 
sand production, formation destabilization 
and subsidence of reservoirs. 

Even if we assume constant sandface rates, the flow 
rates of the individual phases are usually not constant 
for multiphase systems. Hence we are faced with a 
rate and pressure transient case, for which analysis is 
cumbersome 

As long as the pressure in the wellbore can 
be maintained constant, rate transient even 
with fractional flow of the multiphase system 
can still be performed. 

With rate and pressure transient problems for 
multiphase systems, just convolution/ deconvolution 
techniques will be appropriate for analysis. 

Unless pressure at the wellbore becomes 
transient, convolution/ deconvolution 
techniques are not required.  

The following are vital aspects which could be considered in future works:  

• Wellbore storage and mechanical skin effects were ignored in the conceptual models 

developed in this work, which could be addressed in future works.  

• Just vertical wells were considered in this work; however, with the use of constant wellbore 

pressure tests, horizontal wells could accelerate the hydrate dissociation rate along the 

extensive horizontal length. 

Due to the lack of field data, the true variation of the derived reservoir parameters in this work with 

time and pressure is not feasible; hence, the optimization of the proposed models at this level is 

impossible. The following could help improve on the well test interpretation: 

• Validation and optimization of proposed models with available field data. 

• Application of more rigorous methods of analysis such as Deconvolution (especially for PTA) 

or nonlinear parameter estimation. 

• Computer assisted well testing techniques in the analysis.  
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Appendix 1 

Appendix 1: Introduction to the Thermodynamics of Hydrate Dissociation 

As of now, the kinetic model and the equilibrium model are the most widely used models in 

quantifying the hydrate dissociation rate as a result of pressure depressurization. The kinetic model is 

based on experimental work carried out by Kim et al. [31] to determine the hydrate dissociation rate, 

as also given below. The model was developed based on laboratory experiments and limits a better 

quantification of the heat energy available for hydrate dissociation in the reservoir. The equilibrium 

model is based on the heat energy balance principle. It quantifies the rate of hydrate dissociation by 

addressing the heat used up in the reservoir and heat supplied from the confining layers. These heat 

source terms are related to the heat of hydrate dissociation as given by the Clausius Clapeyron-Type 

Equilibrium model, such that the mass of hydrate dissociated can be quantified. The two models are 

described below: 

Kinetic Dissociation Model [31] 

dnh
dt

= KdAH�peq − pg� A1: 1 

with Kd [kmol/m²Pas], AH [m²], p [Pa], n [kmol] 

d
dt
�mH
MH
� = � 1

MH
� dmH

dt
= KdAH�peq − p� A1: 2 

dmH
dt

= KdMHAH�peq − p� A1: 3 

The quantification of the reaction area has been an issue of discussion for many years since the kinetic 

model was developed on laboratory scale and difficulties were being faced in describing this area at 

reservoir scale. Different definitions of the reaction area have been proposed by several authors, as 

also seen in [74]; however it should be noted that for a producing reservoir and for the purpose of 

developing well test models, the reaction area would be the depleted zone on a macroscopic scale and 

hence needs to be accounted for when developing a well test model. This is shown in Appendix 5. A 

comparison of the numerical results of the reservoir response by using either the kinetic or equilibrium 

model is given in [60]. 

CASE 1: Class 3 Hydrates and Energy Balance /Equilibrium Dissociation Model  

As mentioned above, the equilibrium model is a heat energy balance model which addresses the 

different heat sources in the hydrate layer. Due to the absence on free fluid beneath the hydrate layer 

in Class 3 hydrate reservoirs, convective heat transfer from the underlain layer can be neglected. 

Hence the energy balance model here will consider just heat conduction form confining layers and the 

heat stored in the hydrate layer as the energy sources for hydrate dissociation. 

Energy Balance Model 

�dE
dt
�
total

= �dE
dt
�
Hydrate Layer

+ �dE
dt
�
Heat Conduction (CL)

 A1: 4 
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Part 1: Stored Energy in the Hydrate Layer consumed during Dissociation 

In addressing the rate of heat change stored in the reservoir, the total heat energy available in the 

hydrate reservoir needs to be quantified and is given by [73], [75] and [76]: 

EHydrate Layer = mcpT A1: 5 

The rate of change of the energy with time can hence be quantified and related to the rate of consumed 

energy due to hydrate dissociation. 

�dE
dt
�
Hydrate Layer

= d(mHhd)
dt

= −d�mcpT�
dt

 A1: 6 

Differentiating the first term on the RHS of the above equation leads to: 

d�mcpT�
dt

= d�mcpT�
dp

dp
dt

= �cpT d(m)
dp

+ m d�cpT�
dp

� dp
dt

 A1: 7 

Note that for pure heat conduction problems in reservoirs, the warm fluid flux is zero as there is no 

mass change with pressure or time. As seen with diffusivity equations for well testing, the mass 

change with pressure basically reflects the storativity of the formation which can also be related to the 

pressure conductivity of the reservoir. With this said, we can conclude that the warm fluid flux and 

hydrate dissociation can be well represented in the diffusivity equation. 

The next step involves handling the phases separately and combining since it involves an energy 

balanced system. 

Gas Phase 

d�mgcp,gT�
dt

= �cp,gT d�V∅Sgρg�
dp

+ �V∅Sgρg�
d�cp,gT�

dp
� dp
dt

 A1: 8 

By assuming negligible changes in the heat capacity with pressure, the differential of the above 

equation takes the form: 

d�mgcp,gT�
dt

= cp,gV∅Sgρg �T�cg + cF� + �dTeq
dp

�� dp
dt

 A1: 9 

Water Phase 

d�mwcp,wT�
dt

= cp,wV∅Swρw �T(cw + cF) + �dTeq
dp

�� dp
dt

 A1: 10 

Hydrate Phase 

d�mHcp,HT�
dt

= cp,HV∅SHρH �T(cF) + �dTeq
dp

�� dp
dt

 A1: 11 

Formation (Matrix) 

d�mmcp,mT�
dt

= �cp,FT d(Vm)
dp

+ (Vm) d�cp,mT�
dp

� dp
dt

 A1: 12 
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d�mmcp,mT�
dt

= ρmVmcp,F �Tcm + dTeq
dp

� dp
dt

 A1: 13 

Part 2: Energy Supplied through Heat Conduction from Confining Layers 

�dE
dt
�
Heat Conduction

= Rate of Heat Influx from Confining Layers A1: 14 

Incorporating the heat conduction term could be very cumbersome for the analytical well testing 

model due to its time dependence. As a result, Laplace transforms will be used to address this problem 

such that the effects of heat influx are also quantified. 

From the definition of heat flux through conduction we get [76], [75]: 

�dE
dt
�
Heat Conduction

= Q̇ = −λA dT
dz

 A1: 15 

From the above equation, it is imperative to develop the heat conduction model such that the heat 

energy supplied can be quantified and hence the mass of hydrate dissociated with this energy.  

Note that according to the geothermal gradient and depending on the degree of temperature depression 

in the hydrate layer, heat coming from both layers would be heat source terms as the system was 

initially in temperature equilibrium. Hence temperature depression would result to heat influx. The 

transient heat conduction model in the confining layer is given by: 

∂2T
∂z2

=
�ρcp�eff

λ
∂T
∂t

 A1: 16 

The following dimensionless terms are introduced: 

zD = z

�h2�
 A1: 17 

tDh = � λ
ρcp
�
eff

t

�h2�
2 = 4t

h2
� λ
ρcp
�
eff

 A1: 18 

∂2T
∂zD2

= ∂T
∂tDh

 A1: 19 

The hydrate dissociation process is endothermic, which is triggered by pressure depressions during 

production; hence, the inner boundary condition for conduction or heat flux through conduction from 

the confining layers has to be related to the pressure depression in the producing layer.  

The model assumes that, in the presence of hydrates in the formation and provided the reservoir is 

depressurized below the equilibrium pressure, a temperature depression can always be defined using 

the Clausius-Clapeyron-Type equilibrium model as the process is endothermic. This further implies, 

regardless of energy influx in the depressurized hydrate layer or dissociating region, the energy is all 

used up for hydrate dissociation and the temperature depression is pressure determined. This is also 

verifiable with the comparison made in Chapter 2.3. 

Similarly, the dimensionless heat energy supplied through conduction can be defined thus:  
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Q̇D = hQ̇
2λA(Ti−Twf)

= −dTD
dzD

 A1: 20 

Such that the same dimensionless time is used for both the hydrate layer and the confining layers and a 

more homogenous solution is derived, the above equation is modified using the dimensionless time for 

the hydrate layer as will be seen later. This is done thus: 

dtDw = �
k�ρt�

kr
ɳ �t

�

rw2 ��ρw∅cT,w�+�ρg∅cT,g��
�
i

dt A1: 21 

∂2TD
∂zD2

= h2

4

�ρcp�eff
λ

�rw
2 ��ρw∅cT,w�+�ρg∅cT,g��

k�ρt�
kr
ɳ �t

�
�
i

∂TD
∂tDw

 A1: 22 

∂2TD
∂zD2

= FCD
∂TD
∂tDw

 A1: 23 

Where, 

FCD = h2

4

�ρcp�eff
λ

�rw
2 ��ρw∅cT,w�+�ρg∅cT,g��

k�ρt�
kr
ɳ �t

�
�
i

 A1: 24 

To solve the dimensionless heat conduction equation, the following similarity variable can be used: 

𝑢𝑢D2 = FCD
4tDw

zD
2 A1: 25 

With the similarity variable above, the solutions to the above problem with different boundary 

conditions can be readily gotten, as seen in various literature including [38], [73], [75], [76]. The 

derivative of the solutions to the models gives the rate of heat flux in the hydrate layer.  

The heat lost from the confining layer to the hydrate layer can be written thus: 

Q̇ = −2λ
h
�dTeq
dp

�AQ̇Ddp = −2λ
h
�dTeq
dp

�A dTD
dzD

dp A1: 26 

We can now relate the heat supplied through conduction to the hydrate dissociation rate, but first, we 

differentiate the LHS of the energy balance equation also given below: 

d(mHhd)
dt

= mH
d(hd)
dt

+ hd
d(mH)
dt

= mH
d(hd)
dp

dp
dt

+ hd
d(mH)
dt

 A1: 27 

It should be noted that the hydrate heat of dissociation energy is pressure dependent, hence; the 

changes with pressure depression should be accounted for as this will also determine the amount of 

hydrates dissociated.  

From the derived energy balance components, the energy balance model could hence be written thus:  

dE
dt

= mH
d(hd)
dp

dp
dt

+ hd
d(mH)
dt

= −�d�mgcp,gT�
dt

+ d�mwcp,wT�
dt

+ d�mHcp,HT�
dt

+ d�mmcp,mT�
dt

� − 2λ
h Q̇D �

dTeq
dp �Adp A1: 28 

hd
d(mH)
dt

= −�d�mgcp,gT�
dt

+ d�mwcp,wT�
dt

+ d�mHcp,HT�
dt

+ d�mmcp,mT�
dt

+ mH
d(hd)
dp

dp
dt
� − 2λ

h
Q̇D �

dTeq
dp

�Adp A1: 29 
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hd
dmH

dt
= −∆V∅ ��cp,gSgρg �

T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1�� �dTeq
dp

�� dp
dt
− mH

d(hd)
dp

dp
dt
− 2λ

h
Q̇D �

dTeq
dp

�Adp A1: 30 

Considering positive mass loss (mass injection rate to the system): 

hd
dmH

dt
= ∆V∅��cp,gSgρg �

T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1�� �dTeq
dp

�� dp
dt

+ mH
d(hd)
dp

dp
dt

+ 2λ
h

Q̇D �
dTeq
dp

�Adp A1: 31 

hd
dmH

dt
= ∆V∅��cp,gSgρg �

T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1�� �dTeq
dp

� + SHρH
dhd
dTeq

dTeq
dp � dp

dt
+ 2λ

h
Q̇D �

dTeq
dp

�Adp A1: 32 

hd
dmH

dt
= ∆V∅��cp,gSgρg �

T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1� + SHρH
dhd
dTeq

� �dTeq
dp

�� dp
dt

+ 2λ
h

Q̇D �
dTeq
dp

�Adp A1: 33 

The final equation for the hydrate dissociation rate is given thus: 

dmH
dt

= ∆V∅
hd

��cp,gSgρg �
T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1� + SHρH
dhd
dTeq

� �dTeq
dp

�� dp
dt

+ 2λ

h

Q̇D

hd
�dTeq

dp
�Adp A1: 34 

dmH

dt
= ∆V∅

hd
���cp,gSgρg + cp,wSwρw + cp,HSHρH + cp,m

(1−∅)
∅

ρm�+ T

�
dTeq
dp �

�cp,gSgρg�cg + cF�+ cp,HSHρH(cF) + cp,wSwρw(cw + cF) + cp,m
(1−∅)
∅

ρm(cm)�+ SHρH
dhd
dTeq

� �dTeq
dp

�� dp
dt

+ 2λ
h
Q̇D
hd
�dTeq
dp

�Adp A1: 35 

dmH
dt

= ∆V∅
hd

c dp
dt

+ 2λ
h
Q̇D
hd
�dTeq
dp

�Adp A1: 36 
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We now relate the kinetic model with the equilibrium model. 

dmH
dt

= ∆V∅
hd

c dp
dt

+ 2λ
h
Q̇D
hd
�dTeq
dp

�Adp = KdMHAHdp A1: 37 

Knowing that the kinetic model was developed in the laboratory, considering continuous heat supply, 

the different sources of the heat energy responsible for hydrate dissociation cannot be clearly 

identified. Moreover, maintaining constant temperature in the laboratory for hydrate dissociation and 

quantifying the hydrate dissociation rate with this model might not be applicable in all cases in the 

reservoir. For this reason, the use of the kinetic model does not require incorporating any 

supplementary heat source terms as this is already reflected in the model. 

CASE 2: Class 1&2 Hydrates and Energy Balance /Equilibrium Dissociation Model  

Due to possible crossflow behavior in Class 1 and 2 reservoirs, supplementary heat source terms 

which could influence the hydrate dissociation rate have to be considered. The energy balance model 

is used analogue the previous case. 

Energy Balance Model 

Total Heat Consumed through Dissociation =

[Heat From Hydrate Layer] + [Heat Influx from Confining Layers] A1: 38 

 

 

 

 

 

 

 

 

Figure A1- 1: Heat Flux from Confining Layers of Class 1&2 Gas Hydrates 

[Heat Influx from Confining Layers] = �dE
dt
�
Heat Conduction (TL)

+ �dE
dt
�
Convective Heat Flux

 A1: 39 

The heat components from the hydrate layer and through conduction have been handled in the 

previous section. Hence the flux through convective heat transfer from the free fluid zone to the 

hydrate layer is simply given by: 

[E]Warm Fluidflux = cpTṁ A1: 40 

Fluid Crossflow to Hydrate Layer 

and  

Convective Heat Transfer 

Heat Conduction 

Fluid Crossflow to Free Fluid Layer 

Heat Conduction 

Producing from Hydrate Layer Producing from Free Fluid Layer 
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The representation assumes that the temperature in the free fluid zone is approximately constant 

throughout the depletion period and the rate of hydrate dissociation would be a function of the 

temperature difference between the hydrate layer after endothermic dissociation and the incoming 

fluid. Hence the hydrate dissociation rate from the energy supplied is given by: 

dmH
dt

= cp
hd

ṁz∆T =
�cp∆T�avg

hd
� ∆x ∗ ∆y ∗ ∆(ρg ∗ wg) +  ∆x ∗ ∆y ∗ ∆(ρw ∗ ww)� A1: 41 

Incorporating the above model in the diffusivity equation is addressed comprehensively in Appendix 

14. 

Conventionally, the mass rate of each phase would have to be addressed separately and the specific 

heat capacities as well. However, since the diffusivity equation developed here considers the total 

mass rate, an average specific heat capacity will be assumed and the total mass leakage rate for the 

crossflow layer derived.  

The rate of hydrate dissociation can hence be defined thus: 

dmH
dt

=
�cp∆T�avg

hd
ṁz + ∆V∅

hd
c dp
dt

+ 2λ
h
Q̇D
hd
�dTeq
dp

�Adp A1: 42 

If energy and mass balance hold, the kinetic and equilibrium model should be equal; hence: 

dmH
dt

= KdMHAHdp =
�cp∆T�avg

hd
ṁz + ∆V∅

hd
c dp
dt

+ 2λ
h
Q̇D
hd
�dTeq
dp

�Adp A1: 43 

dmH
dt

= KdMHAHdp = ∆ṁH,2(p, t) + ṁH(p) + ∆ṁH,1(p, t) A1: 44 

This implies, instead of using the different heat energy sources, the kinetic model could be used to 

investigate the rate of hydrate dissociation and hence type curves generated. Nonetheless, the effects 

of the different heat source terms can be comprehensively investigated using the equilibrium model. 
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Appendix 2: Equation of State (EOS) for Hydrate Dissociation 

In Appendix 1, the rate of hydrate dissociation was quantified using the equilibrium model; however, 

it is still essential in depicting the equivalent masses or volumes of the hydrate components generated 

from the dissociation process. The amount of gas generated from the gas hydrate at standard 

conditions could be estimated using the simple EOS as given below: 

Methane Hydrate = CH4*5.75 H2O A2: 1 

Note that water and gas in the hydrate have a non-stoichiometric bond and hence in the Methane 

Hydrate above, a total of 6.75 Moles is usually assumed, as given in [5]. Though this is the case for the 

hydrate, it is usually considered to be equal to a mole of hydrate [6] and the dissociation enthalpies are 

given for this unit mole of Hydrate. 

From mass balance principle, the total mass of the hydrate is the sum of the masses in the hydrates: 

mHydrate = mCH4 + mH2O A2: 2 

This could be represented in form of the moles and molar masses thus: 

MHydrate(nCH4 + nH2O) = nCH4MCH4 + nH2OMH2O A2: 3 

MHydrate = nCH4
(nCH4+nH2O) MCH4 + nH2O

(nCH4+nH2O) MH2O A2: 4 

By assuming the number of moles in the hydrate to be equal 1, which is the case in some literature [6], 

the molar mass deduced equals: 

MHydrate = nCH4MCH4 + nH2OMH2O = 119,61kg/kmol A2: 5 

By assuming the total number of moles in the non-stoichiometric bond of hydrates to be equal to the 

sum of the number of moles present, which is also the case in some literature [5] we get the following: 

MMethane Hydrate = nCH4
(nCH4+nH2O) MCH4 + nH2O

(nCH4+nH2O) MH2O = 17.72 kg/kmol A2: 6 

This is very crucial in determining the heat of dissociation per unit mass of the hydrates as the 

dissociation enthalpies are given in joules per mole hydrate, i.e. ∆H=hF[J/kg]*MHyd [kg/mol]. 

It should strongly be emphasized that the enthalpy of dissociation is derived for the total number of 

moles present in the gas hydrate as given by the Clausius Clapeyron models. Hence caution should be 

taken in deriving the heat of dissociation per unit mass hydrate which is required for the well testing 

model. 

Equivalent Volumes of Byproducts 

The aim of these calculations is to derive the equivalent volumes of water and gas producible from the 

hydrates at standard conditions after depressurization. Mass balance principle is applied for each of the 

phases as given below: 

132 



Appendix 2 

Gas Phase 

From Mass Balance 

mCH4 = PstVCH4,st
RTst

MCH4 A2: 7 

mCH4 = nCH4MCH4 = nCH4
(nCH4+nH2O) ∗

mhydrate

Mhydrate
MCH4 = nCH4

(nCH4+nH2O) ∗
Vhydrateρhydrate

Mhydrate
MCH4 A2: 8 

Applying mass balance to the two equations above yields: 

VCH4,st
Vhydrate

= Eg = nCH4
(nCH4+nH2O) ∗

ρhydrate
Mhydrate

RTst
Pst

= 0.14815 913
17.72

8.314∗288.15∗1000
101325

= 180.47 A2: 9 

From the formation volume factor concept we can get the equivalent volume at reservoir conditions 

thus: 

VCH4
Vhydrate

= EgBg A2: 10 

Water Phase 

As was done with the gas phase, the same mass balance approach is made here: 

Vw,st = nwMw
ρw,st

= nH2O
(nCH4+nH2O) ∗ nhydrate

Mw
ρw,st

= nH2O
(nCH4+nH2O) ∗

ρhydrateVhydrate
Mhydrate

Mw
ρw,st

 A2: 11 

Vw,st
Vhydrate

= Ew = nH2O
(nCH4+nH2O) ∗

ρhydrate
Mhydrate

Mw
ρw,st

= 0.85185 913
17.72

18.015
1000

= 0.79 A2: 12 

Vw
Vhydrate

= EwBw A2: 13 

Equivalent Masses of Byproducts 

Total Gas Concentration and Gas Production Rate 

mg,H

mh
=

ng
�ng+nw�∗

VHρH
MH

Mg

ρHVH
= ng

�ng+nw�
∗ Mg

MH
 A2: 14 

ṁg,H = � ng

�ng+nw�
∗

Mg

MH
� ṁH A2: 15 

Total Water Concentration and Water Production Rate 

mw,H
mh

=
nw

�ng+nw�∗
VHρH
MH

Mw

ρHVH
= nw

�ng+nw�
∗ Mw
MH

 A2: 16 

ṁw,H = � nw

�ng+nw�
∗ Mw

MH
� ṁH A2: 17 

Hydrate Dissociation Rate with Fluid Components 

ṁH = ṁw,H + ṁg,H = �nwMw+ngMg�
�ng+nw�MH

ṁH A2: 18 
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Appendix 3: Clausius Clapeyron Type Equations and the Heat of Hydrate Dissociation  

In Appendix 1 and Appendix 2, the mass dissociation rate is given as a function of the hydrate 

dissociation energy which must be derived from the Clausius-Clapeyron model represented thus [5]: 

dT
dP

=  zRT2

p∆H
=  zRT2

phFMHyd
 A3: 1 

∆H [J/mol] represents the enthalpy of fusion, also denoted by ∆H=hF[J/kg]*MHyd [kg/mol]; P and T 

represent the reservoir pressure and temperature conditions at which the hydrate is stable.  

Integrating the Clausius-Clapeyron equation results to: 

lnp = − ∆H
zRT

 A3: 2 

In order to derive the analytically the hydrate dissociation energy, a Clausius Clapeyron type phase 

equilibrium model is required. For this work, the Carroll and Duan [5] prediction model will be used. 

The model is given below: 

lnP = A + BT + C
T

+ DlnT A3: 3 

Where A, B, C, D are empirical constants, also given below for methane hydrates. 

Differentiating Carroll´s equation with respect to temperature results to: 

d lnp
dT

= B − C
T²

+ D
T

 A3: 4 

Or 

d p
dT

= �B − C
T²

+ D
T
� eA+BT+

C
T+DlnT A3: 5 

dTeq
dp

= 1

�d p
dT�

= 1

��B−C
T²+

D
T�e

A+BT+CT+DlnT�
 A3: 6 

From the model above, the temperature depression due to hydrate dissociation can be estimated as 

given below. 

Temperature Change from Hydrate Dissociation 

T(p) = Teq − �dTeq
dp

� �peq − p� A3: 7 

The equation above suggests that depressurization is the activating mechanism for any heat influx in 

the hydrate layer which will further trigger hydrate dissociation. This further implies, as long as 

hydrates are depressurized, the temperature in the hydrate layer will be pressure controlled and any 

heat flux in the layer will be used up for dissociation and the endothermic process continues. 
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Heat of Fusion/Dissociation for Unit Mass Hydrate 

Using the Clausius-Clapeyron model and Carroll´s equation, we could derive the heat of dissociation 

for a given hydrate at known reservoir p, T conditions thus: 

d lnp
dT

= B − C
T2

+ D
T

= ∆H
zRT2

= hFMHyd

zRT²
 A3: 8 

From Carroll´s Equation for methane hydrate: 

A= -146.1094 [-]; B=0.3165 [1/K]; C=16556.78 [K]; D=0 [-] 

Method 1 

The enthalpy of dissociation is usually derived per unit mole thus:  

MHydrate = nCH4MCH4 + nH2OMH2O = 119,61kg/kmol 

d lnp
dT

= ∆H
 zRT2

= hFMHyd

zRT²
 A3: 9 

Hence the heat of dissociation could be derived thus: 

hF = ∆H
MHyd

= hd A3: 10 

Method 2 

By assuming the total number of moles in the non-stoichiometric bond of hydrates to be equal to the 

sum of the moles, we get: 

MHyd2 = nCH4
(nCH4+nH2O) MCH4 + nH2O

(nCH4+nH2O) MH2O = 17.72 kg/kmol A3: 11 

The heat of dissociation should be derived thus: 

hF = ∆H
(nCH4+nH2O)∗MHyd2

= hd A3: 12 

Change of Dissociation Enthalpy with Temperature / Pressure 

As shown in Appendix 1, the changes in the hydrate dissociation energy with pressure needs to be 

derived in order to better quantify the hydrate dissociation rate. This is derived thus: 

∆H = (BT² − C + DT)zR A3: 13 

d∆H
dT

= (2BT + D)zR A3: 14 

Hence the heat of dissociation could be derived thus: 

dhF
dp

= dhF
dT

∗ dT
dp

= (2BT+D)zR
MHyd

∗ 1

��B−C
T²+

D
T�e

A+BT+CT+DlnT�
 A3: 15 
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Appendix 4: Permeability and Saturation for Hydrate Dissociation 

In the previous appendices, efforts were made to quantify the mass of gas and water generated from 

the hydrate dissociation. In this section, the increase in gas and water saturation will be quantified such 

that this can be incorporated into the relative permeability terms and would give a stronger support for 

future reservoir simulation works and computer aided well testing approaches. This should further 

give a clearer image of the influence of the different heat source terms on the dissociation rate and the 

quantity of water and gas generated. Ignoring convective heat flux due to crossflow, the following 

approach can be made: 

Gas Phase 

ṁg,H = � ng

�ng+nw�
∗

Mg

MH
� ṁH A4: 1 

mg,H = � ng
�ng+nw�

∗ Mg

MH
�mH = � ng

�ng+nw�
∗ Mg

MH
� �V∅

hd
{c} + 2λ

h
Q̇D
hd
�dTeq
dp

�At� �peq − p� A4: 2 

Sg,H(p, t) =  � EgBg
EgBg+EwBw

� �c + 2λ
hV∅

Q̇D �
dTeq
dp

�At� �peq−p�
hdρH

SH A4: 3 

Where, 

� ng
�ng+nw�

∗ Mg

MH
∗
ρH
ρg,eq

� = � EgBg
EgBg+EwBw

� A4: 4 

Without Heat Conduction 

Sg,H(p) =  � EgBg
EgBg+EwBw

� [c] �peq−p�
hdρH

SH A4: 5 

Water Phase 

ṁw,H = � nw

�ng+nw�
∗ Mw

MH
� ṁH A4: 6 

Sw,H(p) =  � EwBw
EgBg+EwBw

� �c + 2λ
hV∅

Q̇D �
dTeq
dp

�At� �peq−p�
hdρH

SH A4: 7 

Where, 

� nw
�ng+nw�

∗ Mw
MH

∗
ρH
ρw,eq

� = � EgBg
EgBg+EwBw

� A4: 8 

Without Heat Conduction 

Sw,H(p) =  � EwBw
EgBg+EwBw

� [c] �peq−p�
hdρH

SH A4: 9 

Let; 

c∗(p, t) = �c + 2λ
hV∅

Q̇D �
dTeq
dp

�At� A4: 10 
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Hydrate Phase 

SH(p, t) =  �1− [c∗] �peq−p�
hdρH

� SH A4: 11 

SH(p, t) =  SH − [c∗] �peq−p�
hdρH

SH = SH − ∆SH A4: 12 

∆SH = �� EwBw
EgBg+EwBw

� [c∗] �peq−p�
hdρH

SH� + �� EgBg
EgBg+EwBw

� [c∗] �peq−p�
hdρH

SH� = [c∗] �peq−p�
hdρH

SH A4: 13 

∆SH = Sw,H + Sg,H A4: 14 

Effective and Relative Permeability of Gas hydrate 

kH = k(1 − SH)N = k ∗ krH A4: 15 

kg = krgkH = �krg ∗ krH� ∗ k = krg∗ ∗ k = �Sgeff−Sgirr
1−Sgirr

�
ng

k A4: 16 

kw = krwkH = (krw ∗ krH) ∗ k = krw∗ ∗ k = �Sweff−Swirr
1−Swirr

�
nw

k A4: 17 

Care should be taken when computing the relative permeabilities as hydrate dissociation causes an 

increase in saturation for both phases and hence conventional relative permeability curves will differ 

from this.  

Gas is a very compressible medium and is hence very pressure sensitive. This implies the volume of 

gas or saturation is also very pressure sensitive. Pressure depletion decreases the saturation of free 

fluid available and simultaneously, fluid is produced through hydrate dissociation, which increases the 

saturation once more. The material balance in terms of saturation can be represented below: 

Swi = 1 − Sgi − SHi A4: 18 

Sw(p) + ∆Sw(p) = 1 − �Sg(p) + ∆Sg(p)� − [SH(p) + ∆SH] A4: 19 

Sw(p) + ∆Sw(p) = 1 − �Sg(p) + ∆Sg(p)� − �SH(p) + Sw,H + Sg,H� A4: 20 

The above equation could be rearranged such that we get the effective changes in saturation as a result 

of production of each phase. The resulting equation would be: 

Sw,eff = 1 − Sg,eff − SH(p) A4: 21 

Where, 

Sw,eff = Sw(p) + Sw,H + ∆Sg(p) A4: 22 

Sg,eff = Sg(p) + Sg,H + ∆Sw(p) A4: 23 

The above equations for the effective saturations depict that a reduction in saturation of one phase 

increases the saturation of the other phase. Although the increase in gas and water saturations as a 
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result of hydrate dissociation have been addressed earlier, the dependence of fluid saturation on 

pressure has not been depicted. 

Material Balance Approach for Fluid Saturation Dependence on Pressure 

The dependence of the hydrate saturation on pressure has been fully discussed in the previous 

appendices. It is now imperative to investigate the changes in free fluid saturation on pressure, which 

is relevant for any simulation calculation and also in investigating the changes in relative permeability 

during depletion.  

Fluid saturation in the pores of the formation could be represented thus: 

Sfl = Vfl
Vp

= VstB
Vp

= Vst
Vp

ρst
ρfl

= Vst
∅V

ρst
ρfl

 A4: 24 

In the above equation, the density of the reservoir fluids and the porosity are pressure dependent. 

Hence, the derivative of the above function with pressure is given by:  

dSfl
dp

= Vstρst
V

d� 1
∅ρfl

�

dp
 A4: 25 

From the above equation, it should be noted that for positive pressure depressions in the reservoir, the 

saturation change is negative. To eliminate this effect, a negative sign is introduced in front of the 

RHS of the above equation. 

dSfl
dp

= −Vstρst
V

d� 1
∅ρfl

�

dp
 A4: 26 

dSfl
dp

= VstB
Vp

�1
∅
d∅
dp

+ 1
ρfl

dρfl
dp
� A4: 27 

∫ 1
Sfl

dSfl = ∫ �1∅ d∅ + 1
ρfl

dρfl� A4: 28 

Sfl = Sfl,i �
∅
∅i
∗ ρfl
ρfl,i
� A4: 29 

Since the porosity and density are pressure dependent parameters, the saturation will also show 

pressure dependent properties. 

Gas Phase 

Sg(p) = Sg,i �
∅
∅i
∗ ρg
ρg,i
� A4: 30 

∆Sg(p) = Sg,i − Sg(p) = Sg,i �1 − �∅
∅i
∗ ρg
ρg,i
�� A4: 31 

Water Phase 

Sw(p) = Sw,i �
∅
∅i
∗ ρw
ρw,i

� A4: 32 
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∆Sw(p) = Sw,i − Sw(p) = Sw,i �1 − �∅
∅i
∗ ρw
ρw,i

�� A4: 33 

It can be easily shown that the above models can be used to derive volumetric material balance 

method used in deriving the original gas in place from p/z-plots, which further validates the above 

model proposed for the dependence of fluid saturation on pressure.  

Material Balance Approach for Fluid Saturation and P/Z-Plot for Gas Reservoirs 

Sfl,i 
Sfl,i 

− Sfl(r,t)

Sfl,i 
= Gp(t) = �∅i

∅i
∗ ρfl,i
ρfl,i
� − �∅

∅i
∗ ρfl
ρfl,i
� A4: 34 

Gp(t) = ρst
ρfl,i∅i

��∅i
piTst
pstTizi

� − �∅ pTst
pstTz

�� A4: 35 

Gp,st(t) = Gp(t)
Bgi

= Tst
pst
�� pi
Tizi

� − �∅
∅i

p
Tz
�� A4: 36 

The porosity change with pressure is given by [77]: 

∅
∅i

= e−cf,i(pi−p) A4: 37 

We write the general material balance equation thus: 

� p
Tz

e−cf,i(pi−p)� = �� pi
Tizi

� − pst
Tst

Gp,st(t)� A4: 38 

For conventional gas reservoirs where the temperature is assumed constant during depletion, the above 

equation is simplified thus: 

p
z
�1 − cf,i(pi − p)� = pi

zi
− pstTi

Tst
Gp,st(t) A4: 39 

p
z
�1 − cf,i(pi − p)� = pi

zi
�1− pstTizi

Tstpi
Gp,st(t)� A4: 40 

p
z
�1 − cf,i(pi − p)� = pi

zi
�1 − Gp,st(t)

G
� A4: 41 

The model has now been represented similar to the material balance model given by Ramagost and 

Farshad [78] with the modification of the apparent compressibility. It should be highlighted at this 

point that the effect of hydrate dissociation will lead to an increase in the amount of gas produced and 

hence a deviation to the right from the normal p/z-plot which is similar to aquifer-drive reservoirs.  

If the porosity change is assumed to be trivial throughout depletion, then the above equation is further 

simplified to the conventional volumetric p/z-plot thus: 

p
z

= pi
zi
− pstT

Tst
Gp,st(t) A4: 42 
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Material Balance Approach for Gas Hydrate Reservoirs 

If the same procedure is applied to the gas hydrate reservoir and considering the multiphase system, 

the following material balance model can be developed for gas hydrate reservoirs: 

Gp
Bg,i

+ Wp
Bw,i

= V∅iSg,i ���
1
Bg,i
� − �∅

∅i
∗ 1
Bg
�� + 1

Bg,i

Sg,H

Sg,i
� + V∅iSw,i

Bw,i
Bg,i

��� 1
Bw,i

� − �∅
∅i
∗ 1
Bw
�� + 1

Bw,i

Sw,H
Sw,i

� A4: 43 
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Appendix 5: Basics of Diffusivity Equations in Gas Hydrate Reservoirs 

The mass balance equation for the hydrate layer is given in cylindrical coordinates thus: 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) = 2πrh∆r ∆�Sg∅ρg�
∆t

+ 2πrh∆r ∆(Sw∅ρw)
∆t

+ Source A5: 1 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) = 2πrh∆r ∆�Sg∅ρg�
∆t

+ 2πrh∆r ∆(Sw∅ρw)
∆t

+ ṁH A5: 2 

The source term in the above mass balance equation is due to hydrate dissociation into its byproducts 

and can be defined using the equilibrium model or the kinetic model as given below and also in 

Appendix 1. 

Kinetic Model 

The kinetic model as given by [31] considers the rate of hydrate dissociation considering the available 

area for reaction and the activation energy needed to initiate hydrate dissociation. It however does not 

quantify the heat energy available in the reservoir and does not define the source of heat responsible 

for hydrate dissociation. However, as shown in Appendix 1, the total heat supplied and the total 

hydrate dissociated could be assumed to be reflected in the kinetic model, and hence the hydrate 

dissociation rate can better be reflected in type curves. Incorporating the kinetic model proposed by 

Kim et al. [31] into the diffusivity equation, we get: 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) − KdMHAH∆p = 2πrh∆r ∆�Sg∅ρg�
∆t

+ 2πrh∆r ∆(Sw∅ρw)
∆t

 A5: 3 

As mentioned in Appendix 1, the hydrate reaction area for a producing reservoir will be defined such 

that it reflects the depleting zone.  

 ∆(r∗ρg∗wg)
r∆r

+ ∆( r∗ρw∗ww)
r∆r

− KdMHπr∆r
2πh

∆p
r∆r

= ∆�Sg∅ρg�
∆t

+ ∆(Sw∅ρw)
∆t

 A5: 4 

1
r

 ∂(r∗ρg∗wg) 
∂r

+ 1
r

 ∂(r∗ρw∗ww) 
∂r

− KdMH

2h
�pi − p� = (ρcT)eff

∂p
∂t

 A5: 5 

Where, 

(ρcT)eff = �Sg∅ρg�cg + cF� + Sw∅ρw[cw + cF]� A5: 6 

 ∂(r∗ρg∗wg) 
∂r

+ 1
r

 ∂(r∗ρw∗ww) 
∂r

− KdMH

2h
�pi − p� = (ρcT)eff

∂p
∂t

 A5: 7 

Considering mass balance and neglecting capillary pressure effects, the above equation takes the form: 

∂�r∗�ρg∗kh
krg
ɳg
+ρw∗kh

krw
ɳw

�∂p∂r� 

∂r
− KdMH

2h
(pi − p) = (ρcT)eff

∂p
∂t

 A5: 8 

By using the pseudo-pressure model, the diffusivity equation can be written in the form: 

1
r

∂�r∂φ∂r�  

∂r
− KdMH

2hk�ρt�
kr
ɳ �t

�
(φi − φ) = (ρcT)eff

∂p
∂t

 A5: 9 
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Such that the effects of changes in the effective compressibility are accounted for in the well test 

model, the following approach is made (It should be noted that other approaches such as the use of 

pseudo-time could be used):  

1
r

∂�r∂φ∂r�  

∂r
− KdMH

2hk�ρt�
kr
ɳ �t

�
(φi − φ) = (ρcT)eff

(ρcT)eff,id
(ρcT)eff,id

∂p
∂t

 A5: 10 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− KdMHrw2

2hkft(𝑝𝑝) φD = (ρcT)eff
(ρcT)eff,id

�ρt�
kr
ɳ �t

�
id

�ρt�
kr
ɳ �t

�

∂φD
∂tDw

 A5: 11 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDkφD = SDk
∂φD
∂tDw

 A5: 12 

Where,  

γDk = KdMHrw2

2hkft(𝑝𝑝) = Koe�
−E
RT�MHrw2

2hk�ρt�
kr
ɳ �t

�
 A5: 13 

SDk =
�ρt�

kr
ɳ �t

�
id

�ρt�
kr
ɳ �t

�
� (ρcT)eff

(ρcT)eff,id
� A5: 14 

tDw =
𝑘𝑘�ρt�

kr
ɳ �t

�
id

rw2(ρcT)eff,id
t A5: 15 

Equilibrium Model 

In the equilibrium model, the source term is quantified using an energy balance approach, such that the 

available energy in the reservoir and its changes are related to the energy required for hydrate 

dissociation. Using the equilibrium model we get: 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) = 2πrh∆r ∆�Sg∅ρg�
∆t

+ 2πrh∆r ∆(Sw∅ρw)
∆t

+ ṁH A5: 16 

Equilibrium Model for Class 3 Gas Hydrate Reservoir 

We first derive the diffusivity equation for Class 3 gas hydrates by incorporating the hydrate 

dissociation rate derived in Appendix 1 into the mass balance equation given above: 

 2πh∆(r ∗ ρg ∗ wg) +  2πh∆(r ∗ ρw ∗ ww) − 2λ
h
Q̇D
hd
�dTeq
dp

�A(pi − p) = 2πrh∆r �∆�Sg∅ρg�
∆t

+ ∆(Sw∅ρw)
∆t

+ ∆(Sh∅ρh)
∆t

� A5: 17 

1
r

∂�r∗�ρg∗k
krg∗

ɳg
+ρw∗

krw∗

ɳw
�∂p∂r� 

∂r
− λ

h2
Q̇D
hd
�dTeq
dp

� �pi − p� = ��ρw∅cT,w�+ �ρg∅cT,g��
∂p
∂t

+ c

hd

∂p
∂t

 A5: 18 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
− λ

h2
Q̇Drw

2

hdk�ρt�
kr
ɳ �t

�
�dTeq
dp

� (φi − φ) = (ρcT)effrw2

�ρtk�
kr
ɳ �t

�

∂φ
∂t

+ c

hd

rw2

�ρtk�
kr
ɳ �t

�

(ρcT)eff,id
(ρcT)eff,id

∂φ
∂t

 A5: 19 
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1
rD

∂�rD
∂φ
∂rD

�  

∂rD
− λ

h2
Q̇Drw

2

hdkft(𝑝𝑝) �
dTeq
dp

� (φi − φ) = (ρcT)effrw2

�ρtk�
kr
ɳ �t

�

∂φ
∂t

+ c

hd

rw2

�ρtk�
kr
ɳ �t

�

(ρcT)eff,id
(ρcT)eff,id

∂φ
∂t

 A5: 20 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
− eDQ̇D(φi − φ) = (ρcT)effrw2

�ρtk�
kr
ɳ �t

�

∂φ
∂t

+ c

hd

rw2

�ρtk�
kr
ɳ �t

�

(ρcT)eff,id
(ρcT)eff,id

∂φ
∂t

 A5: 21 

1
rD

∂�rD
∂φ
∂rD

�  

∂rD
− eDQ̇D(φi − φ) = (ρcT)eff

(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�

rw2(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

∂φ
∂t

+ c
hd(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�

rw2(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

∂φ
∂t

 A5: 22 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDeφD =
�ρtk�

kr
ɳ
�

t
�

id

�ρtk�
kr
ɳ
�

t
�
� (ρcT)eff

(ρcT)eff,id
+ c

hd(ρcT)eff,id
� ∂φD
∂tDw

 A5: 23 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDeφD = SD
∂φD
∂tDw

 A5: 24 

Where, 

(ρcT)eff = �ρw∅cT,w� + �ρg∅cT,g� 

cT,g = Sgcg + SgcF + SHcF �
EgBg

�BgEg+BwEw�
� A5: 25 

cT,w = Swcw + SwcF + SHcF �
EwBw

�BgEg+BwEw�
� A5: 26 

c = �cp,gSgρg �
T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm �
T(cm)

�
dTeq
dp �

+ 1� + SHρH
dhd
dTeq

� �dTeq
dp

� A5: 27 

γDe = λ
h2

Q̇Drw
2

hdk�ρt�
kr
ɳ �t

�
�dTeq
dp

� = λ
h2

Q̇Drw
2

hdk
�dTeq
dφ

� A5: 28 

SD =
�ρtk�

kr
ɳ
�

t
�

id

�ρtk�
kr
ɳ
�

t
�
� (ρcT)eff

(ρcT)eff,id
+ c

hd(ρcT)eff,id
� A5: 29 

SD = � (ρcT)eff
(ρcT)eff,id

�ρtk�
kr
ɳ
�

t
�

id

�ρtk�
kr
ɳ
�

t
�

+ c
hd(ρcT)eff,id

�ρtk�
kr
ɳ
�

t
�

id

�ρtk�
kr
ɳ
�

t
�
� = SDk + cD,H A5: 30 

The model required for deriving solutions in Laplace domain is given thus: 

1
r

∂�r∗�ρg∗k
krg∗

ɳg
+ρw∗

krw∗

ɳw
�∂p∂r� 

∂r
− 1

2ℎ
1
hd
�λ ∂T

∂z
�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

− 1
2ℎ

1
hd
�λ ∂T

∂z
�
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

= ��ρw∅cT,w� + �ρg∅cT,g� + c
hd
� ∂p
∂t

 A5: 31 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− �∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧𝐷𝐷=1

− �∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈,𝑧𝑧𝐷𝐷=1

= SD
∂φD
∂tDw

 A5: 32 
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Appendix 6: Inner Boundary Conditions for Diffusivity Equations in Gas Hydrates 

The inner boundary conditions handled here do not consider any wellbore storage or mechanical skin 

effects.  

Constant Pressure Inner Boundary (CPIB) 

Pseudo-Pressure Transient 

φD(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷) = φi−φ(𝑟𝑟,𝑡𝑡)
(φi−φwf)

= φ(𝑟𝑟,𝑡𝑡)−φi
φwf−φi

 A6: 1 

φD(𝑟𝑟𝐷𝐷 = 1, 𝑡𝑡𝐷𝐷𝐷𝐷) = φi−φwf
φi−φwf

= 1 A6: 2 

Rate Transient 

ṁtD(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷) = ṁt(t)
2πhk(φi−φwf)

= −rD
dφD(𝑟𝑟𝐷𝐷,𝑡𝑡𝐷𝐷𝐷𝐷)

drD
 A6: 3 

Temperature Transient 

T𝑝𝑝𝑝𝑝 = � λ
khd

rw2

h2
1

(φi−φwf)
� (Ti − T) A6: 4 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
1

(φi−φwf)
� �dTeq

dp
� [Pi − P(r, t)] A6: 5 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
1

(φi−φwf)
� �dTeq

dp
� [φi−φ(r,t)]

�ρt�
kr
ɳ �t

�
 A6: 6 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
1

�ρt�
kr
ɳ �t

�
�dTeq
dp

��φD(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷) A6: 7 

Constant Rate Inner Boundary (CRIB) 

Pseudo-Pressure Transient 

φD(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷) = 2πhk
ṁt

[φi − φ(r, t)] A6: 8 

ṁtD(𝑟𝑟𝐷𝐷 = 1, 𝑡𝑡𝐷𝐷𝐷𝐷) = − �rD
dφD(𝑟𝑟𝐷𝐷,𝑡𝑡𝐷𝐷𝐷𝐷)

drD
�
𝑟𝑟𝐷𝐷=1

= 1 A6: 9 

Temperature Transient 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷) = � λ
khd

rw2

h2
2πhk
ṁt

� (Ti − T) A6: 10 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
2πhk
ṁt

� �dTeq
dp

� [Pi − P(r, t)] A6: 11 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
2πhk
ṁt

� �dTeq
dp

� [φi−φ(r,t)]

�ρt�
kr
ɳ �t

�
 A6: 12 

T𝑝𝑝𝑝𝑝(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷, 𝑧𝑧𝐷𝐷 = 1) = � λ
khd

rw2

h2
�dTeq
dp

� 1

�ρt�
kr
ɳ �t

�
� φD(𝑟𝑟𝐷𝐷 , 𝑡𝑡𝐷𝐷𝐷𝐷) A6: 13 
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Appendix 7: Laplace Transformation of the Diffusivity Equation in Class 3 Gas 

Hydrates 

In developing the diffusivity equation in the hydrate layer, the time dependent heat flux due to 

conduction should be taken into account.  

Equilibrium Model 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− ∂TpD
∂zD

= SD
∂φD
∂tDw

 A7: 1 

The above inhomogeneous partial differential equation can be solved by applying different methods 

such as the Green function [77]; however, Laplace transforms are used in this work. The Laplace 

transformed equation takes the form: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− ∂TpD�

∂z𝐷𝐷
= SDpφ�D A7: 2 

From the solutions to the heat leakage rate below, the diffusivity equation in Laplace domain with the 

heat conduction term is given by: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− γDeφ�D = SDpφ�D A7: 3 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− (SDp + γDe)φ�D = 0 A7: 4 

It should be noted that the heat flux rate is also in Laplace domain as will be shown later.  

Kinetic Model 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDkφD = SDk
∂φD
∂tDw

 A7: 5 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− (SDKp + γDK)φ�D = 0 A7: 6 

Both the kinetic and equilibrium models can be transformed in the Bessel equation thus: 

rD2
∂2φ�D
∂rD2

+ rD
∂φ�D 
∂rD

− rD2𝑠𝑠φ�D = 0 A7: 7 

General Solution in Laplace Domain 

φ�D = c1Io(β) + c2Ko(β) A7: 8 

Equilibrium Model 

β = rD�SDp + γDe = rD√𝑠𝑠 A7: 9 

Kinetic Model 

β = rD�SDkp + γDk = rD√𝑠𝑠 A7: 10 
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The behavior of the modified Bessel functions are given in Figure A7- 1. 

 

Figure A7- 1 : Characteristics of the Modified Bessel Functions 

The characteristics of the modified Bessel functions are important in the computation and 

simplification of the Laplace domain well identification models, especially during the early time 

period where the modified Bessel functions of the first kind (I(x;0)=I0(x) and I(x;1)=I1(x)) approach 

infinity and the modified Bessel functions of the second kind (K(x;0)=K0(x) and K(x;1)=K1(x)) 

approach zero. 

Heat Leakage Rate 

The dimensionless heat leakage rate is a constant using the kinetic model and a time function using the 

equilibrium model. However, the dimensionless leakage rate would be constant for CTOB in the 

confining layers after a given period of production. Such that a general correlation is derived for the 

dimensionless heat leakage rate, we represent the solution to the problem in Appendix 1 in Laplace 

domain with a modification of the dimensionless temperature as given in the inner boundary 

conditions and the diffusivity equation. 

∂2TpD
∂zD2

= FCD
∂TpD
∂tDw

 A7: 11 

The Laplace transformed heat conduction equation takes the form:  

�
∂2TpD�

∂zD
2 �

layer2
= pFCD�TpD� � A7: 12 

General Solution for Finite Reservoirs with Linear Flow 

TpD� = ACosh�zD�pFCD� + BSinh�zD�pFCD� A7: 13 

The constant A and B can be derived by implementing the inner and outer boundary condition.  
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Constant Temperature Outer Boundary (CTOB) 

Inner Boundary Condition 

From the dimensionless Temperature given in Appendix 6, we get:  

TpD(rD, tDw, zD = 1) = � λ
hd

rw2

h2
� �dTeq

dp
� 1

k�ρt�
kr
ɳ �t

�
φD A7: 14 

The Laplace transform of the above model is hence: 

TpD� (r𝐷𝐷, p, zD = 1) = �� λhd

rw2

h2 � �
dTeq

dp �
1

k�ρt�
kr
ɳ �t

�
� φ�D = �� λhd

rw2

h2 � �
dTeq

dp �
1

kft(p)
�φ�D = eDφ�D A7: 15 

Outer Boundary Condition 

Ti − T(r, t, zD = ∆zD) = 0 

Using the boundary conditions above, the general equation takes the form:  

TpD� = �Sinh�zD�pFCD�Cosh�∆zD�pFCD�−Sinh�∆zD�pFCD�Cosh�zD�pFCD�
�Sinh��pFCD�Cosh�∆zD�pFCD�−Sinh�∆zD�pFCD�Cosh��pFCD��

� eDφ�D A7: 16 

The above equation can further be simplified thus: 

TpD� = �Sinh��pFCD(zD−∆zD)�
Sinh��pFCD(1−∆zD)�

� eDφ�D = −�Sinh��pFCD(∆zD−zD)�
Sinh��pFCD(∆zD−1)�

� eDφ�D A7: 17 

The heat leakage rate to the hydrate layer in Laplace domain is given thus: 

Q̇D
� = dTpD�

dzD
= ��pFCD

Cosh��pFCD(∆zD−zD)�
Sinh��pFCD(∆zD−1)�

� eDφ�D A7: 18 

At the crossflow point, the above differential is: 

dTpD�

dzD
= ��pFCD

Cosh��pFCD(∆zD−1)�
Sinh��pFCD(∆zD−1)�

� eDφ�D = ��pFCDCoth��pFCD(∆zD − 1)��eDφ�D A7: 19 

dTpD�

dzD
= ��pFCDCoth��pFCD(∆zD − 1)��eDφ�D A7: 20 

dTpD�

dzD
= Q̇pD

� eDφ�D A7: 21 

Pseudo-No Flow Temperature Boundary (p-NFTB) 

The p-NFTB basically considers the effect of temperature drop at the exterior boundary, especially in 

the top confining layer which is sensitive to the geothermal profile and decreases with decreasing 

depth. 

dTD�

dzD
= ��pFCDtanh��pFCD(∆zD − 1)��eDφ�D A7: 22 

dTD�

dzD
= Q̇pD

� eDφ�D A7: 23 
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General Solution for Infinite Outer Boundary  

TD� = Ae−zD�pFCD A7: 24 

Using the inner boundary and considering the temperature dependence on the pressure in the hydrate 

layer, we get the following general equation: 

TD� = �e
−zD�pFCD

e−�pFCD
� eDφ�D A7: 25 

dTD�

dzD
= ��pFCD

e−zD�pFCD

e−�pFCD
� eDφ�D A7: 26 

At the crossflow point, the above differential is: 

dTD�

dzD
= ��pFCD�eDφ�D A7: 27 

dTD�

dzD
= Q̇pD

� eDφ�D A7: 28 

The general dimensionless heat leakage rate is given by: 

γDe = �λ 1

hdk�ρt�
kr
ɳ �t

�
�dTeq
dp

� rw
2

h2
� Q̇pD
� = eDQ̇pD

�  A7: 29 

This could be incorporated in the Laplace transformed diffusivity equation and the solution derived. 

This makes the use of the Laplace transformation for such problems very useful.  

Hence, 

β = rD�SDp + eDQ̇pD
�  A7: 30 
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Appendix 8: Boltzmann Transformation of Diffusivity Equation in Class 3 Gas Hydrates 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

= SD
∂φD
∂tDw

 A8: 1 

The similarity variable for the Boltzmann transformation is given below: 

vD2 = SD
rD
2

4tDw
 A8: 2 

Inserting the above transformations into the diffusivity equation results to the following: 

∂2φD
∂vD2

+ � 1
vD

+ 2vD�
∂φD 
∂vD

= 0 A8: 3 

Note that other representations of the transformed diffusivity equation exist with the similarity 

variable defined earlier, however; the solutions to the diffusivity equation are the same.  

By introducing the parameter below and separating variables, the general solution to the transient 

pseudo-pressure can be derived.  

y = dφD 
dvD

 A8: 4 

The general solution is hence:  

φD = B∫ e−vD
2

vD
dvD

∞
vD

= B
2 ∫

e−u

u
du∞

u + C = B
2

[E1(vD2)] A8: 5 

The derivative of the E1-function as given by Abramowitz and Stegun [80] is:  

dE1(vD2)

dvD2
= −e−vD

2

vD2
 A8: 6 

General Solution for negligible heat influx (Exponential Integral Function) 

φD = B
2

[E1(vD2)] A8: 7 

General Solution for Finite Reservoirs Using the Image Well Theory 

The well image theory proposed by [41] is the most widely used method in reservoir engineering to 

investigate the influence of sealing faults and recharge at reservoir boundaries. The method simply 

involves the application of the superposition principle of the pressure drop from an image well 

opposite the production well where the boundary is located. With this method, multiple boundaries can 

be incorporated at different distances from the producing well and hence the reservoir response 

estimated. Using the line source image well theory with constant rate inner boundary, the general well 

response can be defined thus [41], [81]: 

φD = φD,pumped ± ∑ φDimage,i
n
i=1  A8: 8 

φD = B
2
�E1(vD2) ±∑ E1 �

SD�2lD,i−rD�
2

4tDw
�n

i=1 � A8: 9 
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2lD denotes the dimensionless distance between the producing well and the image well for the 

boundary in question. For a recharging image well (constant pressure outer boundary), the negative 

sign is valid and for no-flow boundaries (sealing boundary), the plus sign is valid. Note that using the 

image well, theory, the inner boundary conditions in the producing well are still imposed. Methods of 

incorporating multiple boundaries have also been given by [41], [81] however; reservoir responses 

with just single boundaries at different distances from the producing well will be developed using the 

similarity solutions. Solutions for confined reservoirs will be given using the Laplace transform.  

Finite Wellbore Image Well Theory for Single Boundary Reservoirs 

The model presented by [41] describes the line source solution of the reservoir response which needs 

modifications when handling finite wellbore problems. In a similar manner, we develop the models for 

the finite wellbore case for both CPIB and CRIB. The general solution for this case is given thus: 

φD = �AE1(vD2) + BE1 �
SD(2lD−rD)2

4tDw
�� A8: 10 

The image well theory can also be applied to the Laplace domain solutions to investigate the effects of 

a single boundary on the reservoir response, as also seen in the works of [82]. The general equation for 

the image well theory in Laplace domain is given thus: 

φ�D = AK0�rD√𝑠𝑠�+ BK0 �(2lD − rD)√𝑠𝑠� A8: 11 

Case 1: Constant Pressure Inner Boundary 

Case 1a: CPIB and CPOB 

CPIB 

φD = 1 = AE1 �SD
1

4tDw
�+ BE1 �SD

(2lD−1)2

4tDw
� A8: 12 

CPOB 

φD = 0 = AE1 �SD
lD
2

4tDw
� + BE1 �SD

lD
2

4tDw
� A8: 13 

A = −B 

φD = �
E1�SD

rD2

4tDw
�−E1�

SD�2lD−rD�
2

4tDw
�

E1�SD
1

4tDw
�−E1�SD

�2lD−1�
2

4tDw
�
� A8: 14 

In Laplace Domain, this is given thus: 

φ�D = √𝑠𝑠
𝑝𝑝
�
K0�rD√𝑠𝑠�−K0�(2lD−rD)√𝑠𝑠�

K0�√𝑠𝑠�−K0�(2lD−1)√𝑠𝑠�
� A8: 15 
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Case 1b: CPIB and NFB 

CPIB 

φD = 1 = AE1 �SD
1

4tDw
� + BE1 �SD

(2lD−1)2

4tDw
� A8: 16 

NFB 

�dφD
drD

�
rD

= −A �2SDrD
4tDw

e
−�SD

rD2
4tDw

�

�SD
𝑟𝑟D2

4tDw
�
� + B

⎣
⎢
⎢
⎢
⎡
2SD(2lD−rD)

4tDw

e
−�

SD�2lD−rD�
2

4tDw
�

�
SD�2lD−rD�

2

4tDw
�
⎦
⎥
⎥
⎥
⎤
 A8: 17 

�dφD
drD

�
rD=lD

= 0 = −A

⎣
⎢
⎢
⎢
⎡
2 e

−�SD
lD

2

4tDw
�

𝑙𝑙D

⎦
⎥
⎥
⎥
⎤

+ B

⎣
⎢
⎢
⎢
⎡
2 e

−�SD
lD

2

4tDw
�

𝑙𝑙D

⎦
⎥
⎥
⎥
⎤
 A8: 18 

A = B 

φD = �
E1�SD

rD2

4tDw
�+E1�

SD�2lD−rD�
2

4tDw
�

E1�SD
1

4tDw
�+E1�SD

�2lD−1�
2

4tDw
�
� A8: 19 

In Laplace domain, this is given thus: 

φ�D = √𝑠𝑠
𝑝𝑝
�
K0�rD√𝑠𝑠�+K0�(2lD−rD)√𝑠𝑠�

K0�√𝑠𝑠�+K0�(2lD−1)√𝑠𝑠�
� A8: 20 

Case 2: Constant Rate Inner Boundary 

Case 2a: CRIB and CPOB 

CPOB 

φD = 0 = AE1 �−SD
reD2

4tDw
�+ BE1 �−SD

lD
2

4tDw
� A8: 21 

A = −B 

−rD �
dφD
drD

�
rD

= rDA

⎩
⎪
⎨

⎪
⎧

�2 e
−�SD

rD
2

4tDw
�

𝑟𝑟D
� +

⎣
⎢
⎢
⎢
⎡
2 e

−�
SD�2lD−rD�

2

4tDw
�

(2lD−rD)

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 A8: 22 

1 = −rD
dφD
drD

= ṁtD = 2A

⎩
⎪
⎨

⎪
⎧

e−�SD
1

4tDw
� +

⎣
⎢
⎢
⎢
⎡
e
−
⎝

⎛
SD�2lD−1�

2

4tDw
⎠

⎞

�2lD−1�

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

 A8: 23 

A = 1
2

1

⎩
⎪⎪
⎨

⎪⎪
⎧

e
−�SD

1
4tDw

�
+

⎣
⎢
⎢
⎢
⎢
⎢
⎡

e
−
⎝

⎛
SD�2lD−1�

2

4tDw
⎠

⎞

�2lD−1�

⎦
⎥
⎥
⎥
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If the well is produced long enough and the distance to the boundary is relatively far from the 

wellbore, the above coefficient takes the line source approximation, i.e.: 

A = 1
2

1

⎩
⎪⎪
⎨

⎪⎪
⎧

e
−�SD

1
4tDw

�
+

⎣
⎢
⎢
⎢
⎢
⎢
⎡

e
−
⎝

⎛
SD�2lD−1�

2

4tDw
⎠

⎞

�2lD−1�

⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪⎪
⎬

⎪⎪
⎫
≈ 1

2
 A8: 25 

φD = 1

2

1

⎩
⎪
⎨

⎪
⎧

e
−�SD

1
4tDw

�
+

⎣
⎢
⎢
⎢
⎡
e
−�

SD�2lD−1�
2

4tDw
�

�2lD−1�

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫
�E1 �SD

rD2

4tDw
� − E1 �

SD(2lD−rD)2

4tDw
�� A8: 26 

In Laplace domain, this is given thus: 

φ�D = 1
𝑝𝑝√𝑠𝑠

�
K0�rD√𝑠𝑠�−K0�(2lD−rD)√𝑠𝑠�

K1�√𝑠𝑠�+K1�(2lD−1)√𝑠𝑠�
� A8: 27 

Case 2b: CRIB and NFB 

By applying the same methodology we get the following representation for the reservoir response: 

φD = 1

2

1

⎩
⎪
⎨

⎪
⎧

e
−�SD

1
4tDw

�
+

⎣
⎢
⎢
⎢
⎡
e
−�

SD�2lD−1�
2

4tDw
�

�2lD−1�

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫
�E1 �SD

rD2

4tDw
� + E1 �

SD(2lD−rD)2

4tDw
�� A8: 28 

In Laplace domain, this is given thus: 

φ�D = 1
𝑝𝑝√𝑠𝑠

�
K0�rD√𝑠𝑠�+K0�(2lD−rD)√𝑠𝑠�

K1�√𝑠𝑠�−K1�(2lD−1)√𝑠𝑠�
� A8: 29 
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Appendix 9: Definition of pseudo-gas relative permeability for rate and pressure 

transient analyses (MBM) 

As defined earlier, the pseudo-pressure model is developed based on mass balance techniques, which 

could be split to different fluid components. In performing well test analysis for the multiphase 

system, such that effective permeability changes during production are quantified, it is important to 

break down the pseudo-pressure model for each phase such that the conventional pseudo-pressure 

model in gas reservoirs can be used. This is done thus: 

∫ �krg∗ � �
ρg
ɳg

dp�𝑝𝑝𝑖𝑖
𝑝𝑝 = ∫ Udv𝑝𝑝𝑖𝑖

𝑝𝑝   A9: 1 

After integrating by parts we get: 

∫ �krg∗ � �
ρg
ɳg

dp�𝑝𝑝𝑖𝑖
𝑝𝑝 = krg∗ (p)∫

ρg
ɳg

dp𝑝𝑝𝑖𝑖
𝑝𝑝  A9: 2 

Where, 

krg∗ (p) = �krg∗ �𝑝𝑝
𝑝𝑝𝑖𝑖 −

∫ ��∫
ρg
ɳg
dp𝑝𝑝𝑖𝑖

𝑝𝑝 �d�krg∗ ��𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖
𝑝𝑝

∫
ρg
ɳg
dp𝑝𝑝𝑖𝑖

𝑝𝑝
� A9: 3 

The pseudo-pressure integral function for the gas phase reduces then to: 

∫ �krg∗ � �
ρg
ɳg

dp�𝑝𝑝𝑖𝑖
𝑝𝑝 = krg∗ (p)∫

ρg
ɳg

dp𝑝𝑝𝑖𝑖
𝑝𝑝 = krg∗ (p)ρg,st ∫

dp
𝐵𝐵gɳg

𝑝𝑝𝑖𝑖
𝑝𝑝  A9: 4 

With the above approximate solution of the pseudo-pressure integral, rate transient analysis for the gas 

phase becomes easier as the approximate solution to the pseudo-pressure integral is very much easier 

to compute.  

Note that for ideal reservoir response, the relative permeability term is pressure independent, i.e.: 

∫ �krg∗ � �
ρg
ɳg

dp�𝑝𝑝𝑖𝑖
𝑝𝑝 = �krg∗ � ∫

ρg
ɳg

dp𝑝𝑝𝑖𝑖
𝑝𝑝  A9: 5 
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Appendix 10: Apparent Effective Gas Permeability for Multiphase Flow in Gas 

Hydrates and Derivatives 

Kome et al [48] introduced the equivalent average effective permeability (or just apparent effective 

permeability) for heterogeneous reservoir behavior which is also applied here. The use of this model is 

applicable to gas class 3 gas hydrate reservoirs with negligible heat flux through conduction. The gas 

phase is analyzed. The methodology applied by [48] is based on the derivative analysis used for 

reservoir diagnosis. Before addressing the model of the equivalent average effective permeability, the 

methods used in derivative analysis are addressed first. 

Rate and Pressure Transient Derivatives 

It is simply the differential of the solutions presented for rate or pressure transient with respect to time 

and is usually computed using the finite difference quotient method as given by [22], [83] and can be 

computed for RTA and PTA thus: 

Der (RTA) = tDw
d� 1

ṁtD
�

dtDw
=

d� 1
ṁtD

�

dlntDw
 A10: 1 

Der(PTA) = tDw
d(φD)
dtDw

= d(φD)
dlntDw

 A10: 2 

Bourdet Differentiation Algorithm  

Der (PTA) =
�

��φD�n+2−�φD�n+1�

��lntDw�n+2−�lntDw�n+1�
[(lntDw)n+1−(lntDw)n]�+�

��φD�n+1−�φD�n�

��lntDw�n+1−�lntDw�n�
[(lntDw)n+2−(lntDw)n+1]�

[(lntDw)n+2−(lntDw)n+1]+[(lntDw)n+1−(lntDw)n]
 A10: 3 

Der (RTA) =

�
�� 1
ṁtD

�
n+2

−� 1
ṁtD

�
n+1

�

��lntDw�n+2−�lntDw�n+1�
[(lntDw)n+1−(lntDw)n]�+�

�� 1
ṁtD

�
n+1

−� 1
ṁtD

�
n
�

��lntDw�n+1−�lntDw�n�
[(lntDw)n+2−(lntDw)n+1]�

[(lntDw)n+2−(lntDw)n+1]+[(lntDw)n+1−(lntDw)n]
 A10: 4 

The smoothness of the Bourdet derivative above is dependent on the consistency of the time spacing 

and would hence show a significant deviation from the exact derivative solutions. 

Exact Derivative 

The exact derivative of the pressure transient solutions can be represented in terms of the generalized 

incomplete gamma function given in Appendix 18 as will be seen later in the solutions to the 

diffusivity equation.  

dΓ(a,µ;β)
dtDw

= dΓ(a,µ;β)
dx

∗ dx
dtDw

= − 1
x1−a exp �−x− β2

4x� ∗
dx

dtDw
 A10: 5 

Der (PTA) = tDw
dΓ(a,µ;β)
dtDw

= − tDw
x1−a exp �−x − β2

4x� ∗
dx

dtDw
 A10: 6 

Conventionally, β represents the influx of mass or increase in saturation in the system. Hence, for all 

values of β>0, the system characterizes an increase in saturation which is also reflected in the effective 

permeability of the phases.  
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To address the changes in the effective permeability during production, the gas pseudo-pressure 

normalized rate representation is used and the derivative during infinite acting radial flow could be 

represented thus: 

∆ � ∆φ
Qg,st

� = ∆�φRPI(t)�
∆lnt

= 0.5pst
πhkg,avg

∗ Tst
[ln(t2) − ln(t1)] A10: 7 

Der =
∆� ∆φ

Qg,st
�

∆lnt
= 0.5pst

πhkg,avg
∗ Tst

 A10: 8 

kg,avg
∗ = 0.5pst

πhDerTst
 A10: 9 

kg,avg
∗ =

kg2∗ kg1∗ [ln(t2)−ln(t1)]

kg1∗ �ln�
�ρt�

kr
ɳ �t

�
id

rw2�ρcT�eff,id

t2
SD2

�+0.80907�−kg2∗ �ln�
�ρt�

kr
ɳ �t

�
id

rw2�ρcT�eff,id

t1
SD1

�+0.80907�

 A10: 10 

The above equation could be simplified by introducing an apparent dimensionless pseudo-skin 

component thus: 

kg,avg
∗ = kg1∗

ln�t2t1
�

sDa+ln��
t2
SD2

�

kg1
∗

kg2
∗
∗SD1t1

�

 A10: 11 

Where, 

sDa = �
kg1∗

kg2∗
− 1� �ln�

�ρt�
kr
ɳ �t

�
id

rw2(ρcT)eff,id
� + 0.80907� A10: 12 

Under ideal conditions, k g1
* = k g2

* and SD1=SD2, hence: 

kg,avg
∗ = kg1∗

ln�t2t1
�

ln�t2t1
�

= kg1∗  A10: 13 

The derivative is therefore a very powerful tool in addressing changes in reservoir behavior or 

permeability which has also been addressed in detail in the works of [84], [85], [86], [65], [66] , 

whereby derivative plots have been used to derive reservoir parameters with the application of the 

Tiabs Direct Synthesis (TDS) Technique.  
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Appendix 11: Multiphase Crossflow Storativity Transformations 

To account for the storativity of the two layers involved in crossflow behavior, the storativity ratio as 

given by Warren and Root [87] is usually used. In a similar manner, the storativity ratio for the hydrate 

and free fluid layer are developed here.  

ω∗ + (1 − 𝜔𝜔∗) = av
ah+av

+ ah
ah+av

= 1 A11: 1 

The storativity in the crossflow layer is given thus: 

1
av

= (1 −ω∗) � 1
ah

+ 1
av
� A11: 2 

1
av

= (1 −ω) ��ah+av
ahav

��
i
 A11: 3 

Similarly, the same can be done for the producing layer thus: 

1
ah

= ω∗ � 1
ah

+ 1
av
� A11: 4 

1
ah

= ω ��ah+av
ahav

��
i
 A11: 5 

Where, 

ω∗ = av
ah+av

 A11: 6 

(1 −ω∗) = ah
ah+av

 A11: 7 

Storativity Ratio  

(1 −ω) = (1 −ω∗)
��ah+avahav

��

��ah+avahav
��
i

= 1
av

1

��ah+avahav
��
i

= [av]𝑖𝑖
av

�� ah
ah+av

��
i
 A11: 8 

ω = ω∗
��ah+avahav

��

��ah+avahav
��
i

= 1
ah

1

��ah+avahav
��
i

= [ah]𝑖𝑖
ah

�� av
ah+av

��
i
 A11: 9 

ah
av

= (1−ω)
ω

 A11: 10 

Interporosity Flow Coefficient 

δD = rw2

∆z2∆z1

kv2
kh1

 A11: 11 
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Appendix 12: Analytical Solutions to Diffusivity Problems in Normally Pressured Gas 

Hydrates  

Diffusivity Equation with Negligible Heat Influx 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

= SD
∂φD
∂tDw

 A12: 1 

The solutions to the above equation will be presented using the Boltzmann transformation (similarity 

solutions) 

Diffusivity Equation with considerable Heat Influx 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDeφD = SD
∂φD
∂tDw

 A12: 2 

Diffusivity Equation with Kinetic Model 

∂2φD
∂rD2

+ 1
rD

∂φD 
∂rD

− γDkφD = SDk
∂φD
∂tDw

 A12: 3 

Case 1: Constant Pressure Inner Boundary Solutions 

General Similarity Solution 

φD = B
2

E1(vD2) = B
2

E1 �
rD
2

4tDw
SD� A12: 4 

Case 1a: Infinite Acting Reservoirs: Constant Pressure Inner Boundary Conditions 

φD(rD, tDw) = 1 at rD=1  and  tDw>0  vD2 = SD
4tDw

 

For the above inner boundary condition, the constant B can be derived thus: 

1

E1�
1

4tDw
�

= B
2
 A12: 5 

Dimensionless Pseudo-Pressure 

φD(rD, tDw) = φ(r,t)−φi
φwf−φi

=
�E1�SD

rD
2

4tDw
��

�E1�
SD

4tDw
��

 A12: 6 

Transient Rate 

ṁtD = −rD
dφD
drD

= −2vD2
dφD
dvD

2 = −2vD2
1

�E1�
SD

4tDw
��

d��E1�vD
2 ���

dvD
2  A12: 7 

Using the differential of the E1-function as given by [80] we get: 

ṁtD = 2e−vD
2

�E1�
SD

4tDw
��

 A12: 8 
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Solutions in Laplace Domain 

φ�D = c1Io(β) + c2Ko(β) A12: 9 

For the infinite acting system, the constants are defined by the following boundary conditions: 

rD→∞   c1=0 

rD=1   φ�D = 1
p
   c2 = 1

pKo�√s�
 

The dimensionless pseudo-pressure and rates are hence given by: 

Dimensionless Pseudo-Pressure 

φ�D = Ko�rD√s�
pKo�√s�

 A12: 10 

Dimensionless Flow rate 

m� tD = −rD
dφ�D
drD

= −rD
d�Ko�rD√s�pKo�√s�

�

drD
 A12: 11 

The solution to the above function is given thus: 

m� tD =
rD√sK1�rD√s�

pKo�√s�
 A12: 12 

Note that the Laplace transformed variable s contains the heat conduction term (using the equilibrium 

model) or the hydrate dissociation rate (using the kinetic model). Due to the time dependence of the 

heat conduction term as given in Appendix 1 and Appendix 7, approximate solutions are usually used 

for small and large time intervals. However, using the Bourgeois and Horne [25] methodology of well 

test model recognition with Laplace space, the reservoir response using any of the heat flux models 

can be thoroughly investigated. 

Rate Transient Plots in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp = Ko(rDλD)
Ko(λD)   Versus  rD 

Der =
∆ � 1

pm� tD
�

∆ �1
p�

    Versus        
1
p

  

A comparison of the rate transient solution in Laplace space using the methodology of [25] and other 

solutions including the similarity solution and the numerical Laplace inverse of the rate solutions as 

given by [64], [63] and [43] is depicted in Figure A12- 1. 
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Figure A12- 1: Comparison of Rate Transient Solutions  

From a look at the various representations, the Hantush [43] flowing well discharge function perfectly 

matches the numerical solutions given by Edwardson [63]. However, with a comparison of the late 

time approximations of both authors, a clear difference is seen.  

The deviation in almost all models is seen in the early phase of production, which diminishes during 

late time periods. The derivative when using the similarity or the late time solutions of Hantush [43] 

perfectly match the derivative given by the Laplace domain method.  However, for the purpose of well 

testing and for consistency, the approximate solutions presented by Edwardson [63] will be considered 

for analysis. 

 

Figure A12- 2: Comparison of Derivatives of Rate Transient Solutions  
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Figure A12- 3: Rate Transient in IAR (HL) and IAR (CL) 

 

Figure A12- 4: Derivative Rate Transient in IAR (HL) and IAR (CL) 
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Figure A12- 5: Rate Transient in IAR (HL) and CTOB (CL) 

 

Figure A12- 6: Derivative Rate Transient in IAR (HL) and CTOB (CL) 
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Figure A12- 7: Rate Transient in IAR (HL) and CTOB (CL) and Effects of Thickness of CL 
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Figure A12- 9: Rate Transient in IAR (HL) and p-NFTB (CL) 

 

Figure A12- 10: Derivative Rate Transient in IAR (HL) and p-NFTB (CL) 
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Figure A12- 11: Rate Transient in IAR (HL) and p-NFTB (CL) and Effects of Thickness of CL 

 

Figure A12- 12: Rate Transient Derivative in IAR (HL) and p-NFTB (CL) and Effects of Thickness of CL 
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As seen with the Laplace Domain Well Recognition models, a thorough investigation of the reservoir 

response can be made which can be very useful in the interpretation of well tests and hence reservoir 

characterization. The use of the p-NFTB is only useful for reservoirs with limited heat influx or 

reservoirs with low hydrate saturation since the heat influx rate has been related to the rate of hydrate 

dissociation, i.e. reservoirs with low hydrate saturation will dissociate much faster and the dual 

porosity behavior will be noticeable with diminishing hydrate saturation.  

To generate more optimistic models for which type curves are more applicable in real time domain 

and which better fit the responses when using the kinetic model, the CTOB models for both confining 

layer are used.  

The Laplace transformed variable s is defined below for the different outer boundary conditions 

imposed in deriving solutions to the heat conduction problem in the hydrate layer during depletion. 

CTOB in Confining Layers 

s = SDp + eD
(∆zD−1)�pFCD(∆zD − 1)Coth��pFCD(∆zD − 1)� A12: 13 

Since the reservoir producing layer is confined by layers responsible for heat supply, the above model 

can be written thus: 

eD
(∆zD−1)�pFCD(∆zD − 1)Coth��pFCD(∆zD − 1)� =

�eD
�pFCD(∆zD−1)Coth��pFCD(∆zD−1)�

(∆zD−1) �
𝑇𝑇𝑇𝑇

+ �eD
�pFCD(∆zD−1)Coth��pFCD(∆zD−1)�

(∆zD−1) �
𝐵𝐵𝐵𝐵

 A12: 14 

 

Figure A12- 13: Approximations for the Leakage Rate Function with Hyperbolic Functions 
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Early Time Production 

For large values of Laplace variable (p) i.e. short production periods, the hyperbolic function has the 

following approximation, [68], [43], [73]: 

Cothx ≈ 1 A12: 15 

With the above approximation, the Laplace variable takes the form: 

s = SDp + eD�FCD�p A12: 16 

Where, 

eD�FCD = �eD�FCD�TL + �eD�FCD�BL 

Late Time Production 

For small values of Laplace time i.e. long production periods, the hyperbolic function has the 

following approximation [68], [43], [73]: 

xCothx ≈ 1 + x2

3
 A12: 17 

With the above representation, the Laplace variable takes the form: 

s = SDp + eD
(∆zD−1)�1 + ��pFCD(∆zD−1)�

2

3
� A12: 18 

s = p �SD + FCD
3

eD(∆zD − 1)� + eD
(∆zD−1) A12: 19 

Where, 

FCD
3

eD(∆zD − 1) = �FCD
3

eD(∆zD − 1)�
TL

+ �FCD
3

eD(∆zD − 1)�
BL

 A12: 20 

eD
(∆zD−1) = � eD

(∆zD−1)�TL
+ � eD

(∆zD−1)�BL
 A12: 21 

Note that if the p-NFTB was imposed on the top confining layer, the above leakage during late time 

would be: 

eD
(∆zD−1) = � eD

(∆zD−1)�BL
 A12: 22 

Nonetheless, the heat leakage from the bottom layer is still influential in the late time behavior. For 

this reason, we will simply impose CTOB on both layers for the solutions in real time domain, which 

gives an optimistic approach to the hydrate dissociation process as also reflected in the kinetic model. 

Another approximation to the above function for the late time period would be: 

xCothx ≈ 1 

With this representation, the Laplace variable takes the form: 
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s = µD2 = pSD + eD
(∆zD−1) A12: 23 

With the approximations made for early and late time periods, solutions to the diffusivity equation can 

also be derived analogue Hantush (1964) and given in the literature [68], [43], [73]. 

Note that late time approximations could occur at different times in both layers, all depending on the 

petrophysical properties of each layer. 

Approximate Solutions to the Heat Flux Problem in Time-Domain 

Late Time Period for Constant Outer Temperature in Confining Layer 

λD = �pSD �1 + FCD
3SD

eD(∆zD − 1)� + eD
(∆zD−1) = �pSDµD + bD A12: 24 

Dimensionless Pseudo-Pressure 

φD = 𝐿𝐿−1(φ�D) = 𝐿𝐿−1

⎩
⎪
⎨

⎪
⎧Ko �rD�p�SDµD� + bD�

pKo ��p�SDµD� + bD�
⎭
⎪
⎬

⎪
⎫

= Z�
tDw
SDµD

, rD,�bD� 

φD = Z � tDw
SDµD

, rD,�bD� = Z� tDw

�1+
FCD
3SD

eD(∆zD−1)�
, rD,�

eD
(∆zD−1)� A12: 25 

By using the other approximation of the hyperbolic function during the late time period we get: 

φD = Z �tDw
SD

, rD,�bD� = Z �tDw
SD

, rD,�
eD

(∆zD−1)� A12: 26 

The above flowing well function for leaky aquifers as given by [43] is expressed fully in Appendix 18. 

Late Time Approximation for Hydrate Layer: 

φD =
W�

rD
2

4tDw
SDµD,rD√bD�

W�SDµD
4tDw

,√bD�
 A12: 27 

The above well function for leaky aquifers as given by [43] is expressed fully in Appendix 18. 

Dimensionless Flowrate  

ṁtD = 𝐿𝐿−1(m� tD) = 𝐿𝐿−1

⎩
⎪
⎨

⎪
⎧

rD�p�SDµD� + bD

K1 �rD�p�SDµD� + bD�

pKo ��p�SDµD� + bD�
⎭
⎪
⎬

⎪
⎫

= G�
tDw

SDµD𝑟𝑟𝐷𝐷
2 , 𝑟𝑟𝐷𝐷�

eD
(∆zD − 1)� 

The above flowing well discharge function for leaky aquifers as given by [43] is expressed fully in 

Appendix 18. 

167 



Appendix 12 

Dimensionless Flowrate at Wellbore 

ṁtD = G � tDw
SDµD

,�
eD

(∆zD−1)� A12: 28 

By using the other approximation of the hyperbolic function during the late time period we get: 

ṁtD = G �tDw
SD

,�
eD

(∆zD−1)� A12: 29 

In a similar manner, solutions can also be derived using the kinetic model.  

The Kinetic Model 

s = µD2 = pSDk + γDk A12: 30 

φD = Z �tDw
SDk

, rD,√γDk� A12: 31 

Late Time Approximation for Producing Layer: 

φD =
W�

rD
2

4tDw
SDk,rD�γDk�

W� 1
4tDw

SDk,�γDk�
 A12: 32 

ṁtD = G �tDw
SD

,√γDk� A12: 33 

Case 1b: Finite Acting Reservoirs with Constant Pressure Outer Boundary 

Constant Pressure Outer Boundary Condition 

Similarity Solutions 

Using the image well theory discussed in Appendix 8, solutions to the constant pressure outer 

boundary problem can be deduced. For a reservoir with one recharge boundary, the reservoir response 

can be estimated thus: 

Dimensionless Pseudo-Pressure 

φD(rD, tDw) =
�E1(SD

rD
2

4tDw
)�−�E1�SD

�2lD−rD�
2

4tDw
��

�E1( SD
4tDw

)�−�E1�SD
�2lD−1�

2

4tDw
��

 A12: 34 

Transient Rate 

ṁtD(rD, tDw) = 2 e
−�SD

rD
2

4tDw
�

E1�
SD

4tDw
�−E1�SD

�2lD−1�
2

4tDw
�

+ 2 (2lD−rD)−1rDe
−
�2lD−rD�

2

4tDw
SD

E1�
SD

4tDw
�−E1�SD

�2lD−1�
2

4tDw
�

 A12: 35 

ṁtD(rD = 1, tDw) = 2 e
−�

SD
4tDw

�
+(2lD−1)−1e

−
�2lD−1�

2

4tDw
SD

E1�
SD

4tDw
�−E1�SD

�2lD−1�
2

4tDw
�

 A12: 36 
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Solutions in Laplace Domain 

φ�D = c1Io�rD√s� + c2Ko�rD√s� A12: 37 

For finite acting reservoirs, the constants c1 is not zero. By imposing the inner and outer boundary 

conditions, the solution to the constant pressure outer boundary problem for the confined layer can be 

deduced. 

reD   φ�D = 0 

rD=1   φ�D = 1
𝑝𝑝
  

c1 = − 1
p
� Ko�reD√s�

�Ko�√s�Io�reD√s��−Io�√s�Ko�reD√s�
� A12: 38 

c2 = 1
p
� Ko�reD√s�Io�reD√s�

�Ko�√s�Io�reD√s��−Io�√s�Ko�reD√s�
� 1
Ko�reD√s�

 A12: 39 

Dimensionless Pseudo-Pressure 

φ�D =
1
p
�
Ko�rD√s�Io�reD√s� − Ko�reD√s�Io�rD√s�

Io�reD√s�Ko�√s� − Io�√s�Ko�reD√s�
� 

Dimensionless Flow rate 

m� tD = rD√s
p
��K1�rD√s�Io�reD√s�+Ko�reD√s�I1�rD√s��

Io�reD√s�Ko�√s�−Io�√s�Ko�reD√s�
� A12: 40 

m� tD(rD = 1, p) = √s
p
�K1�√s�Io�reD√s�+Ko�reD√s�I1�√s�
Io�reD√s�Ko�√s�−Io�√s�Ko�reD√s�

� A12: 41 

Rate Transient Plot in Laplace Domain 

pm� tD  Versus  1
p
 

φ�Dp  Versus  rD 

Der =
∆ � 1

pm� tD
�

∆ �1
p�

    Versus        
1
p

  

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. The image 

well theory can also be applied to the solutions in Laplace domain as given in Appendix 8. 
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Figure A12- 14: Rate Transient in CPOB (HL) and IAR (CL) 

 

Figure A12- 15: Derivative Rate Transient in CPOB (HL) and IAR (CL) 
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rD
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4tDw
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�E1(
SD

4tDw
)�+�E1�SD
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4tDw
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 A12: 42 
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Dimensionless Transient Rate 

ṁtD(rD, tDw) = 2

�e
−�

SD
4tDw

rD�−(2lD−rD)−1rDe
−
�2lD−rD�

2

4tDw
SD�

�E1(
SD

4tDw
)�+�E1�SD

�2lD−1�
2

4tDw
��

 A12: 43 

ṁtD(rD = 1, tDw) = 2

�e
−�

SD
4tDw

�
−(2lD−1)−1e

−
�2lD−1�

2

4tDw
SD�

�E1(
SD

4tDw
)�+�E1�SD

�2lD−1�
2

4tDw
��

 A12: 44 

Solutions in Laplace Domain 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

For finite acting reservoirs, the constants c1 is not zero. For constant inner pressure and no-flow outer 

boundary conditions, the above equation is:  

reD   �dφ�D
drD

�
reD

= 0  �dφ�D
drD

�
reD

= c1√sI1�reD√s� − c2√sK1�reD√s� = 0 

rD=1   φ�D = 1
p
  

With the above boundary conditions, the constants c1 and c2 are given thus: 

c1 = 1
p
� K1�reD√s�
Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�

� A12: 45 

c2 = 1
p
� K1�reD√s�
Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�

� I1�reD√s�
K1�reD√s�

 A12: 46 

Dimensionless Pseudo-Pressure 

φ�D = 1
p
�K1�reD√s�Io�rD√s�+I1�reD√s�Ko�rD√s�

Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�
� A12: 47 

Dimensionless Flow rate 

m� tD = rD√s
p
��I1�reD√s�K1�rD√s�−K1�reD√s�I1�rD√s��

Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�
� A12: 48 

m� tD(rD = 1, p) = √s
p
��I1�reD√s�K1�√s�−K1�reD√s�I1�√s��
Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�

� A12: 49 

Rate Transient Plot in Laplace Domain 

pm� tD  Versus  1
p
 

φ�Dp  Versus  rD 
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Der =
∆ � 1

pm� tD
�

∆ �1
p�

    Versus        
1
p

  

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

 

Figure A12- 16: Rate Transient in NFB (HL) and IAR (CL) 

 

Figure A12- 17: Derivative Rate Transient in NFB (HL) and IAR (CL) 
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assumptions are imposed such that the inverse Laplace transform of the solution is deduced, as will be 

seen later.  

Case 2a: Infinite Acting 

Similarity Solution 

φD =
B
2

E1(vD2) 

Inner Boundary Condition 

rD
∂φD
∂rD

= −1    at rD → 1    vD →
SD
4tDw

 

From the inner boundary condition, the constant B is given thus: 

B = e
SD

4tDw  A12: 50 

φD(rD, tDw) = 1
2

e
1

4tDwE1 �SD
rD
2

4tDw
� A12: 51 

Notice the similarity between the CPIB solution and the CRIB which are simply related thus: 

φD(rD = 1, tDw) = 1
ṁtD(rD=1,tDw) A12: 52 

φwf(rD, tDw) = φi −
ṁt
4πhk

�e
SD

4tDwE1(SD
rD
2

4tDw
)� A12: 53 

φwf(rD = 1, tDw) = φi −
ṁt
4πhk

�e
SD

4tDwE1( SD
4tDw

)� A12: 54 

Solution in Laplace Domain 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

By transforming the Neumann boundary conditions in Laplace domain, the solution to the Bessel 

equation results to: 

rD→∞   c1=0 

rD=1   m� tD = rD
dφ�D
drD

= − 1
p    c2 = 1

p�√sK1�√s��
 

The final equation is hence: 

φ�D = Ko�rD√s�
p�√sK1�√s��

 A12: 55 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp =
Ko�rD√s�
√sK1�√s�

=
1

𝑝𝑝m� tD
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φ�Dp  Versus  1
p
 

Der =
∆(φ�Dp)

∆ �1
p�

    Versus        
1
p

  

 

Figure A12- 18: Pseudo-Pressure Transient in IAR (HL) and IAR (CL) 

 

Figure A12- 19: Pseudo-Pressure Derivative in IAR (HL) and IAR (CL) 
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Figure A12- 20: Pseudo-Pressure in IAR (HL) and CTOB (CL is assumed very thick) 

 

 

Figure A12- 21: Pseudo-Pressure Derivative in IAR (HL) and CTOB (CL is assumed very thick) 
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Figure A12- 22: Pseudo-Pressure in IAR (HL) and CTOB (CL is assumed thin) 

 

Figure A12- 23: Pseudo-Pressure Derivative in IAR (HL) and CTOB (CL is assumed thin) 
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production phase which makes late time approximate solutions given by Hantush [43] applicable for 

both the early and late time periods of production. 

 

Figure A12- 24: Pseudo-Pressure in IAR (HL) and CTOB (CL is assumed thin) 

 

Figure A12- 25: Pseudo-Pressure Derivative in IAR (HL) and p-NFTB in CL (CL is assumed very thick) 
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Figure A12- 26: Pseudo-Pressure in IAR (HL) and p-NFTB in CL (CL is assumed thin) 

 

Figure A12- 27: Pseudo-Pressure in IAR (HL) and p-NFTB in CL (CL is assumed thin) 
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For hydrate reservoir with thin confining layers and p-NFTB, the effects of heat influx can be 

considered as negligible which will be seen in the approximate solutions derived later analogue 

Hantush [43].  

To derive the solution to the diffusivity problem, Hantush [43] proposed the line source solution 

method, which facilitates the inverse Laplace transform of the solution. It should however be noted 

that the line source and finite wellbore radius solutions are equal at late time periods which is also a 

relevant period for most reservoir engineering calculations. 

Line Source Condition 

limrD→0 p�√sK1�√s�� = 1 A12: 56 

The solution in Laplace domain takes the form: 

φ�D = Ko�rD√s� A12: 57 

Using the early and late time approximations of the heat conduction terms given earlier, solutions for 

the pressure response could be deduced. 

Early-Time Response  

λD = �SDp + �eD�FCD�√p A12: 58 

Analogue [43], the solution is given by: 

φD = 𝐿𝐿−1(φ�D) = 𝐿𝐿−1 �Ko �rD�SDp + �eD�FCD��p�� = H�
SDrD2

4tDw
,
rD
4

eD�FCD
�SD

� 

φD = H �SDrD
2

4tDw
, rD
4
eD�FCD
�SD

� A12: 59 

Late Time Period for Constant Outer Pressure in Crossflow Layer 

φD = 𝐿𝐿−1(φ�D) = 𝐿𝐿−1 �Ko �rD��SDµD�p + bD�� = 1
2

W � rD
2

4tDw
SDµD, rD�bD� A12: 60 

or 

φD = 1
2

W � rD
2

4tDw
SD, rD�

eD
(∆zD−1)� A12: 61 

Kinetic Model 

With the Kinetic model, no early time and late time approximations are required however, the line 

source solution is still used. The solution to the kinetic model takes the form: 

φD = 1
2

W � rD
2

4tDw
SDk, rD√γDk� A12: 62 
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Case 2b: Constant Pressure Outer Boundary 

φD =
B
2

E1(vD2)−
B
2

E1 �SD
(2lD − rD)2

4tDw
� 

Inner Boundary Condition 

rD
∂φD
∂rD

= −1    at rD → 1    vD →
SD
4tDw

 

From the inner boundary condition, the constant B is given thus: 

B = 1

e
−� 1

4tDw
�
+(2lD−1)−1e

−
�2lD−1�

2

4tDw

 A12: 63 

From the inner boundary condition, 

φD(rD, tDw) = 0.5 1

�e
−� 1

4tDw
�
+(2lD−1)−1e

−
�2lD−1�

2

4tDw �

�E1 �SD
rD
2

4tDw
� − E1 �SD

(2lD−rD)2

4tDw
�� A12: 64 

φD(rD = 1, tDw) = 0.5 1

�e
−� 1

4tDw
�

+(2lD−1)−1e
−

(2lD−1)2

4tDw �
�E1 �SD

rD
2

4tDw
� − E1 �SD

(2lD−rD)2

4tDw
�� A12: 65 

Late Time Approximation 

φD(rD = 1, tDw) ≈ 0.5 �E1 �SD
rD
2

4tDw
� − E1 �SD

(2lD−rD)2

4tDw
��  A12: 66 

Solutions in Laplace Domain 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

Boundary Conditions 

reD   φ�D = 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

With the above boundary conditions, the constants c1 and c2 can be derived. 

c1 = − Ko�reD√s�
p√s�K1�√s�Io�reD√s�+Ko�reD√s�I1�√s��

 A12: 67 

c2 = Io�reD√s�
p√s�K1�√s�Io�reD√s�+Ko�reD√s�I1�√s��

 A12: 68 

Dimensionless Pseudo-Pressure 

φ�D = �Ko�rD√s�Io�reD√s�−Ko�reD√s�Io�rD√s�
p√s�K1�√s�Io�reD√s�+Ko�reD√s�I1�√s��

� A12: 69 

The rate transient model (CPIB) and pressure transient model (CRIB) are related thus: 
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pm� tD(rD = 1, p) = √s �
K1�√s�Io�reD√s�+ Ko�reD√s�I1�√s�
Io�reD√s�Ko�√s�−Io�√s�Ko�reD√s�

� =
1

pφ�D
 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp  Versus   1
p
 

Der =
∆(φ�Dp)

∆ �1
p�

    Versus        
1
p

  

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

 

Figure A12- 28: Pseudo-Pressure in CPOB (HL) and IAR in CL 
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Figure A12- 29: Pseudo-Pressure Derivative in CPOB (HL) and IAR in CL 

Approximate Line Source Solution Using the Image Well Theory analogue [44] 

φD = 1
2

W � rD
2

4tDw
SDµD, rD�bD� −

1
2

W �(2lD−rD)2

4tDw
SDµD, (2lD − rD)�bD� A12: 70 

Kinetic Model 

φD = 1
2

W � rD
2

4tDw
SDk, rD√γDk� −

1
2

W �(2lD−rD)2

4tDw
SDk, (2lD − rD)√γDk� A12: 71 

Case 2c: No-Flow Outer Boundary 

From the image well theory and using the inner boundary condition to derive the constant B in the 

general solution, the dimensionless pseudo-pressure profile is given by: 

φD(rD, tDw) = 0.5 1

�e
−� 1

4tDw
�
−(2lD−1)−1e

−
�2lD−1�

2

4tDw �

�E1 �
rD
2

4tDw
SD� + E1 �SD

(2lD−rD)2

4tDw
�� A12: 72 

φD(rD = 1, tDw) = 0.5 1

�e
−� 1
4tDw

�
−(2lD−1)−1e

−
�2lD−1�

2

4tDw �

�E1 �
rD
2

4tDw
SD� + E1 �SD

(2lD−rD)2

4tDw
�� A12: 73 

Late Time Approximation 

φD(rD = 1, tDw) ≈ 0.5 �E1 �
rD
2

4tDw
SD�+ E1 �SD

(2lD−rD)2

4tDw
��  A12: 74 
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Solutions in Laplace Domain 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

Boundary Conditions 

reD   �dφ�D
drD

�
reD

= 0  �dφ�D
drD

�
reD

= c1√sI1�reD√s� − c2√sK1�reD√s� = 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

From the boundary conditions, the constants c1 and c2 are given thus: 

c1 = K1�reD√s�

p�√s��K1�√s�I1�reD√s��−�K1�reD√s�I1�√s����
 A12: 75 

c2 = I1�reD√s�

p�√s��K1�√s�I1�reD√s��−�K1�reD√s�I1�√s����
 A12: 76 

Dimensionless Pseudo-Pressure 

φ�D = �K1�reD√s�Io�rD√s��+�Ko�rD√s�I1�reD√s��
p√s��K1�√s�I1�reD√s��−�K1�reD√s�I1�√s���

 A12: 77 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp  Versus   1
p
 

Der =
∆(φ�Dp)

∆ �1
p�

    Versus        
1
p

  

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

The rate transient model (CPIB) and pressure transient model (CRIB) are related thus: 

pm� tD(rD = 1, p) = √s ��I1�reD√s�K1�√s�−K1�reD√s�I1�√s��
Ko�√s�I1�reD√s�+K1�reD√s�Io�√s�

� = 1
pφ�D

 A12: 78 
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Figure A12- 30: Pseudo-Pressure in NFB (HL) and IAR in CL 

 

Figure A12- 31: Pseudo-Pressure in NFB (HL) and IAR in CL 
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Kinetic Model 

φD = 1
2
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2

4tDw
SDk, rD√γDk� + 1

2
W �(2lD−rD)2

4tDw
SDk, (2lD − rD)√γDk� A12: 80 
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Appendix 13: Analytical Solutions to Diffusivity Problems in Over-Pressured Gas 

Hydrates  

We represent the diffusivity equations for both the dissociated and un-dissociated zones in 

dimensionless parameters thus: 

Dissociated Zone Undissociated Zone 

rD = r
rw

  rw ≤ r ≤ rs (t) 

rsD =
rs(t)

rw
≥ 1 

For the dissociation zone, we get  

 1 ≤ rD ≤ rsD 

Constant Terminal Pressure 

φD =
φ(r, t) − φi
φwf − φi

 

Dimensionless Form of the diffusivity Equation 

∂2φ�D
∂rD2

+
1
rD
∂φ�D 
∂rD

− �SDp + �eDQ̇pD
� �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ �eDQ̇pD

� �
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

�φ�D = 0 

rD = r
rw

 rs (t) ≤ r ≤ ∞ 

rD ≥ rsD 

For an infinite acting reservoir, we get  

 rsD ≤ rD ≤ ∞ 

Constant Terminal Pressure 

φD =
φ(r, t) − φi
φwf − φi

 

Dimensionless Form of the diffusivity 

Equation 

∂2φ�D
∂rD2

+
1
rD
∂φ�D 
∂rD

− [SDkp]φ�D = 0 

By transforming the diffusivity equation into dimensionless parameters and redefining the boundary 

conditions as shown earlier, the constant terminal pressure solutions could be derived.  

Constant Terminal Pressure Models for Over-pressured Gas Hydrate Reservoir  

Case 1: Infinite Acting Reservoir 

The dimensionless pseudo-pressures for both the dissociated and un-dissociated zones have been 

similarly defined such that a dimensionless pseudo-pressure at the crossover or dissociation front can 

be characterized. This is defined thus:  

Crossover Point 

φsD(rsD, tDw) = φeq−φi

φwf−φi
 A13: 1 

Note that the dissociated zone will behave similar to constant pressure outer boundary problems; 

hence the solution to the constant pressure outer boundary problem can be applied for the dissociated 

zone. The similarity variable method can be used in addressing such a problem; however with many 

limitations as compared to the Laplace transforms. CPOB cases using the similarity variable are 

usually addressed by applying the image well theory which is in this case very complex as no fixed 
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boundary is actually present for an IAR. Only approximate solutions  can be derived using the 

similarity variable method  and for more accurate results, the Laplace domain solution should be used. 

Solutions with Boltzmann Transformation 

Dimensionless Pseudo-Pressure 

Dissociated Zone  

Although the dissociated zone would act like the constant outer pressure boundary problem, the 

pressure drop at the boundary is not zero. Hence the equilibrium pressure needs to be accounted for in 

the model. 

Boundary Conditions 

φD(rD, tDw) = 1   at rD=1  and tDw>0  vD2 = SD
4tDw

 

φD(rD, tDw) = φsD   at rsD and tDw>0  vD2 = rsD2

4tDw
 

To solve the problem of the moving boundary, the following facts must be considered: 

• The reservoir is infinite acting which implies the dissociated radius will act infinite at some 

point during production  

• When the dissociated zone starts acting infinite, the pressure at the boundary is equal to the 

equilibrium pressure and not zero s seen with the normally pressured reservoir. 

With the above facts, the general solution to the infinite acting system is given thus: 

φD = AE1 �SD
rD2

4tDw
� + BE1 �SD

rsD2

4tDw
� A13: 2 

Using the boundary conditions, the coefficients A and B are derived and the pseudo-pressure solution 

is given thus: 

φD = (1 − φsD)
E1�SD

rD2

4tDw
�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
φsDE1�SD

1
4tDw

�−E1�SD
rsD

2

4tDw
�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 3 

or 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
�E1�SD

rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 4 

Note that if the well is produced at pressures above the equilibrium pressure, provided free fluid is 

present in the hydrate layer, no hydrates will dissociate and the reservoir would behave similar to 

conventional reservoirs.  
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The solution to the problem takes the form:  

Pwf ≥ Peq 

φD =
E1�SDk

rD2

4tDw
�

E1�
SDk
4tDw

�
 A13: 5 

The moving boundary model proposed by [70] and [72] considered the reservoir pressure in the 

dissociated zone to be equal to the equilibrium pressure, making the dimensionless equilibrium 

pressure equal zero at the dissociation front and their model can be represented in terms of pseudo-

pressure thus [70], [72]: 

φD = φ(r,t)−φeq

φwf−φeq
=

�E1�SD
rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 6 

Radius of Dissociation 

The definition of the radius of dissociation has been a challenge for many analytical models for the 

moving boundary problem. Most models used in deriving the transient radius of dissociation are based 

on the model proposed by [71], which simply addresses mass balance at the dissociation front. 

In a similar manner, we address the following boundary conditions at the dissociation front: 

[φD]dissociation front = φsD A13: 7 

[ṁtD] front(dissociated zone) = [ṁtD] front(undissociated zone) A13: 8 

Efforts will now be made to derive the solutions for the rate transient at the fronts. 

Rate Transient 

Dissociated Zone 

ṁtD = −rD
dφD
∂rD

 

From the deduced pressure profile in the dissociated zone, we get: 

ṁtD = (1 − φsD) 2e
−�

rD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 9 

Pwf ≥ Peq 

ṁtD = 2

�E1�
SDk
4tDw

��
e
−�SDk

rD
2

4tDw
�
 A13: 10 

Undissociated Zone 

φD = B �E1 �
rD2

4tDw
SDk�� A13: 11 
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Unlike methods seen earlier in deducing the constant B in the above equation, here, the constant has to 

be derived based on the boundary conditions at the dissociation front and the outer boundary of the 

undissociated zone. 

We now apply the first boundary condition at the crossover point such that the constant B is obtained. 

φD = φsD

�E1�
rD2

4tDw
SDk��

�E1�
rsD2
4tDw

SDk��
 A13: 12 

The mass rate at the dissociation front obtained front the solution of the undissociated region is given 

by: 

ṁtD = 2φsD

�E1�
rsD2

4tDw
SDk��

e
−�

rD
2

4tDw
SDk�

 A13: 13 

By equating the solutions for the dimensionless mass rates for each zone we get the following 

relationship which must always be satisfied. 

ṁtD = 2φsD

�E1�
rsD2

4tDw
SDk��

e
−�

rsD
2

4tDw
SDk�

= (1 − φsD) 2e
−�

rsD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 14 

Criterion for Valid Radius of Dissociation 

2φsD

�E1�
rsD2
4tDw

SDk��
e
−�

rsD
2

4tDw
SDk� = �1−φsD�

2e
−�

rsD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2
4tDw

��
 A13: 15 

For a given value of φsD, tDw and SDk/SD, the above equation should be computed for arbitrary values 

of rsD till the criterion is fulfilled. For all boundary conditions to be valid, the above criterion must be 

obeyed at all times. Note that if φsD=0, the transient rate solution for the dissociated zone reduces to 

the solution for the normally pressured gas hydrates as rsD→∞. 

Solution in Laplace Domain 

The solutions in Laplace domain give the exact solution to the problem. 

Dimensionless Pseudo-Pressure  

Dissociated Zone  

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

Boundary Conditions 

rsD   φ�D = φsD
p

 

rD=1   φ�D = 1
p
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With the defined boundary conditions, the coefficients are hence: 

c1 = Ko�rsD√s�−φsDKo�√s�
p�Io�√s�Ko�rsD√s�−Io�rsD√s�Ko�√s��

 A13: 16 

c2 = φsDIo�√s�−Io�rsD√s�
p�Io�√s�Ko�rsD√s�−Io�rsD√s�Ko�√s��

 A13: 17 

Inserting c1 and c2 in the general equation yields: 

Solution in Laplace Domain 

The solutions in Laplace domain give the exact solution to the problem. 

Dimensionless Pseudo-Pressure  

φ�D = �Ko�rD√s�Io�rsD√s�−Ko�rsD√s�Io�rD√s��−φsD�Ko�rD√s�Io�√s�−Ko�√s�Io�rD√s��
p�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��

 A13: 18 

Rate Transient 

Dissociated Zone  

m� tD = −rD
dφ�D
drD

 

m� tD = rD
√s
p
��K1�rD√s�Io�rsD√s�+Ko�rsD√s�I1�rD√s��−φsD�K1�rD√s�Io�√s�+Ko�√s�I1�rD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� A13: 19 

Undissociated Zone 

φ�D = c1Io�rD�s𝑢𝑢� + c2Ko�rD�s𝑢𝑢� 

Where, 

s𝑢𝑢 = SDkp 

Boundary Condition 

rD→∞   c1=0 

φ�D = c2Ko�rD�s𝑢𝑢� 

As was done in deriving the solutions using the similarity variable, the same boundary conditions are 

imposed at the dissociation front such that the coefficient c2 is derived. 

rD =rsD   φ�D = φsD
p

 

φsD
pKo�rsD�s𝑢𝑢�

= c2 

φ�D = φsD
Ko�rD�s𝑢𝑢�

pKo�rsD�s𝑢𝑢�
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m� tD = −rD
dφ�D
drD

= rDφsD�s𝑢𝑢
K1�rD�s𝑢𝑢�
pKo�rsD�s𝑢𝑢�

 A13: 20 

For mass conservation to be obeyed at the dissociation front, the following must hold: 

m�tD = rsDφsD�s𝑢𝑢
K1�rsD�s𝑢𝑢�

pKo�rsD�s𝑢𝑢�
= �rsD

√s
p
�K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φsD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� A13: 21 

Criterion for Valid Radius of Dissociation 

Such that all boundary conditions are met, the following criterion has to be obeyed at all times: 

φsD = ��
𝑠𝑠

s𝑢𝑢

�K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φsD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� Ko�rsD�s𝑢𝑢�

K1�rsD�s𝑢𝑢�
 A13: 22 

We notice that the use of the Laplace transform in solving the moving boundary problem becomes 

very cumbersome when heat conduction or the kinetic model is used as the inverse Laplace 

transformation is also required for the criterion of valid radius of dissociation. However, using the 

Laplace domain well recognition model, rate transient and derivative plots can be made as given 

below.  

Rate Transient Plots in Laplace Domain for Infinite Acting Hydrate Layer with Moving Boundary 

Rate Transient at Wellbore 

m�tDp = √s �
�K1�√s�Io�rsD√s� + Ko�rsD√s�I1�√s�� − φsD�K1�√s�Io�√s� + Ko�√s�I1�√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
� 

pm� tD    Versus        
1
p  

Pseudo-Pressure Profile for Reservoir 

1. Dissociated Region 

φ�Dp =
�Ko�rD√s�Io�rsD√s� − Ko�rsD√s�Io�rD√s�� − φsD�Ko�rD√s�Io�√s� − Ko�√s�Io�rD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
 

2.Undissociated Region 

φ�Dp = φsD
Ko�rD�s𝑢𝑢�
Ko�rsD�s𝑢𝑢�

 

Criterion for Valid Radius of Dissociation 

φsD = ��
s

su
�K1�rsD√s�Io�rsD√s� + Ko�rsD√s�I1�rsD√s�� − φsD�K1�rsD√s�Io�√s� + Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
�

Ko�rsD�su�
K1�rsD�su�

 

Rate Transient Diagnostic Plot in Laplace Domain: Rate Derivative 

Der =
∆ � 1

pm� tD
�

∆ �𝑙𝑙𝑙𝑙 1
p�

    Versus        
1
p  
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Figure A13- 1: Derivative Rate Transient in Moving Boundary IAR (HL) and IAR in CL 

 

Figure A13- 2: Transient Dissociation Radius in Moving Boundary IAR (HL) and IAR (CL) 
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Figure A13- 3: Derivative Rate Transient in Moving Boundary IAR (HL) and IAR in CL with insignificant Heat flux 

 

Figure A13- 4: Derivative Rate Transient in Moving Boundary IAR (HL) and IAR in CL with insignificant Heat flux 
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Figure A13- 5: Transient Dissociation Radius in Moving Boundary IAR (HL) and IAR (CL) with no Heat flux 

 

Figure A13- 6: Derivative Rate Transient in Moving Boundary IAR (HL) and IAR in CL with Heat flux 

 

1

10

100

1000

10000

100000

0,01 1 100 10000 1000000 100000000 1E+10

r s
D
 [-

] 

1/p 

Laplace Domain  Well Test Model Recognition : Derivative Rate Transient in 
Moving Boundary IAR (HL) with Zero Heat Influx and Influence of Equilibrium 

Pressure: SD=10 

φsD 0,3 

φsD 0,5 

φsD 0,7 

φsD 0,9 

Increasing Radius of 
Dissociation with 

Increasing Equilibrium 
Pressure 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1E-02 1E+00 1E+02 1E+04 1E+06 1E+08 1E+10

D
er

 

1/p 

Laplace Domain  Well Test Model Recognition : Derivative Rate Transient in 
Moving Boundary IAR (HL) and IAR (CL) : eD =0.1 

φsD 0 φsD 0,3 φsD 0,5 φsD 0,9 

Practically no influence of heat 
influx on derivatives due to 

limited radius of dissociation; 
hence limited area of influence 

for considerable hydrate 
dissociation  

IAHI: Der = 0.25 

IAHI: Der = f(φsD <0.5) : 0.25 - 

IARF: Der = 0.5 

193 



Appendix 13 

CTOB Responses 

 

Figure A13- 7: Derivative Rate Transient in Moving Boundary IAR (HL) and CTOB in CL  

 

Figure A13- 8: Transient Dissociation Radius in Moving Boundary IAR (HL) and CTOB (CL)  
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Figure A13- 9: Derivative Rate Transient in Moving Boundary IAR (HL) and CTOB in CL with Influence of Heat 

Flux 

 

Figure A13- 10: Transient Dissociation Radius in Moving Boundary IAR (HL) and CTOB (CL) with Influence of 

Heat Flux 
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p-NFTB Responses 

As shown in the normally pressured gas hydrate reservoir, the p-NFTB is not noticeable when the 

thickness of the confining layer is small. For this reason an extreme case can once more be considered 

and the effects on the rate transient derivative analyzed.  

 

Figure A13- 11: Derivative Rate Transient in Moving Boundary IAR (HL) and p-NFTB in CL  

 

Figure A13- 12: Transient Dissociation Radius in Moving Boundary IAR (HL) and p-NFTB (CL)  
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Case 2: Constant Pressure Outer boundary 

Solutions using the Boltzmann Transformation 

Dissociated Zone 

To develop a solution to the problem using similarity variables, the image well theory can be 

implemented; however, the solution can be very complex if multiple boundaries are used for the 

reservoir. Hence, we consider a reservoir with a single recharge boundary and the effects of this 

boundary on the dissociation. The solutions derived for the infinite acting system are therefore very 

different for this case due to the recharge boundary. The general solution is hence given thus for this 

case: 

φD = AE1 �SD
rD

2

4tDw
� + BE1 �SD

rsD
2

4tDw
� 

Boundary Conditions 

φD(rD, tDw) = 1   at rD=1  and tDw>0  vD2 = SD
4tDw

 

φD(rD, tDw) = φsD   at rsD and tDw>0  vD2 = rsD2

4tDw
 

Dimensionless Pseudo-Pressure 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
�E1�SD

rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 23 

Rate Transient 

Dissociated Zone 

ṁtD = (1 − φsD) 2e
−�

rD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 24 

Pwf ≥ Peq 

φD =
�E1�

rD
2

4tDw
SDk��−�E1�

�2lD−rD�
2

4tDw
SDk��

�E1�
1

4tDw
SDk��−�E1�

�2lD−1�
2

4tDw
SDk��

 A13: 25 

ṁtD = 2

⎩
⎪
⎨

⎪
⎧�e

−�
rD

2
4tDw

SD�
�+(2lD−rD)−1rDe

−
�2lD−rD�

2

4tDw
SD

�E1�SD
1

4tDw
�−E1�SD

�2lD−1�
2

4tDw
��

⎭
⎪
⎬

⎪
⎫

 A13: 26 

Undissociated Zone 

Like was done for the infinite acting well, we make efforts to predict the reservoir behavior for 

constant outer pressure boundary reservoirs. 
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Like the infinite acting reservoir, the following boundary conditions must hold at the crossover point: 

[φD]dissociation front = φsD 

[ṁtD] front(dissociated zone) = [ṁtD] front(undissociated zone) 

Dimensionless Pseudo-Pressure 

Undissociated Zone 

φD = B
2
�E1 �

rD2

4tDw
SDk�� −

B
2
�E1 �

(2lD−rD)2

4tDw
SDk�� A13: 27 

φD = φsD
�E1�

rD2

4tDw
SDk��−�E1�

�2lD−rD�
2

4tDw
SDk��

�E1�−
rsD2

4tDw
SDk��−�E1�

�2lD−rsD�
2

4tDw
SDk��

 A13: 28 

ṁtD = 2φsD

�E1�
rsD2

4tDw
SDk��−�E1�

�2lD−rsD�
2

4tDw
SDk��

�e
−� rD2

4tDw
SDk� + (2lD − rD)−1rDe−

�2lD−rD�
2

4tDw
SDk� A13: 29 

By equating the mass rates at the crossover point, the criterion for the valid radius of dissociation is 

obtained. 

Criterion for Valid Radius of Dissociation 

The validity criterion is given below: 

ṁtD = 2φsD

�e
−�𝑟𝑟sD

2
4tDw

SDk�+(2lD−rsD)−1𝑟𝑟sDe
−
�2lD−𝑟𝑟sD�

2

4tDw
SDk�

�E1�
rsD2
4tDw

SDk��−�E1�
�2lD−𝑟𝑟sD�

2

4tDw
SDk��

= (1 − φsD) 2e
−�

rsD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��
 A13: 30 

Solutions with Laplace Transformation 

Dimensionless Pseudo-Pressure 

Dissociated Zone 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

Boundary Conditions 

rsD   φ�D = φsD
p

 

rD=1   φ�D = 1
p
  

Inserting c1 and c2 in the general equation yields: 

φ�D = �Ko�rD√s�Io�rsD√s�−Ko�rsD√s�Io�rD√s��−φsD�Ko�rD√s�Io�√s�−Ko�√s�Io�rD√s��
p�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��

 A13: 31 
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Rate Transient 

Dissociated Zone  

m� tD = −rD
dφ�D
drD

 

m� tD = rD
√s
p
��K1�rD√s�Io�rsD√s�+Ko�rsD√s�I1�rD√s��−φsD�K1�rD√s�Io�√s�+Ko�√s�I1�rD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� A13: 32 

Undissociated Zone 

φ�D = c1Io�rD�s𝑢𝑢� + c2Ko�rD�s𝑢𝑢� 

For constant outer boundary pressure conditions, the above equation is:  

c1 = −c2
Ko�reD�s𝑢𝑢�
Io�reD�s𝑢𝑢�

 A13: 33 

φ�D = c2
Ko�rD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rD�s𝑢𝑢�

Io�reD�s𝑢𝑢�
 A13: 34 

By imposing the boundary conditions at the dissociation front, the constant c2 can be derived. 

φsD
p

Io�reD�s𝑢𝑢�
Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢�

= c2 A13: 35 

The final equation is hence 

φ�D = φsD
p

Ko�rD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rD�s𝑢𝑢�
Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢�

 A13: 36 

Considering the mass balance at the dissociation front, we obtain the criterion for the valid radius of 

dissociation: 

m� tD = √s
p
��K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φ�sD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� =

φsD
p �s𝑢𝑢

K1�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�+Ko�reD�s𝑢𝑢�I1�rsD�s𝑢𝑢�
Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢�

 A13: 37 

Criterion for Valid Radius of Dissociation 

The criterion for the dissociation radius is given by: 

φsD = �
s
s𝑢𝑢

��K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φ�sD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s���
�Io�√s�Ko�rsD√s�−Io�rsD√s�Ko�√s��

�Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�−Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢��
�K1�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢�+Ko�reD�s𝑢𝑢�I1�rsD�s𝑢𝑢��

 A13: 38 

Rate Transient Plots in Laplace Domain for CPOB Hydrate Layer with Moving Boundary 

Rate Transient at Wellbore 

m�tDp = ṁtD = √s �
�K1�√s�Io�rsD√s� + Ko�rsD√s�I1�√s�� − φsD�K1�√s�Io�√s� + Ko�√s�I1�√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
� 

pm� tD    Versus        
1
p
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Pseudo-Pressure Profile for Reservoir 

1. Dissociated Region 

φ�Dp = φD =
�Ko�rD√s�Io�rsD√s� − Ko�rsD√s�Io�rD√s�� − φsD�Ko�rD√s�Io�√s� − Ko�√s�Io�rD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
 

2.Undissociated Region 

φ�Dp = φD = φsD
Ko�rD�s𝑢𝑢�Io�reD�s𝑢𝑢� − Ko�reD�s𝑢𝑢�Io�rD�s𝑢𝑢�

Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢� − Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢�
 

Criterion for Valid Radius of Dissociation 

φsD

= �
s

s𝑢𝑢
��K1�rsD√s�Io�rsD√s� + Ko�rsD√s�I1�rsD√s�� − φ�sD�K1�rsD√s�Io�√s� + Ko�√s�I1�rsD√s���

�Io�√s�Ko�rsD√s� − Io�rsD√s�Ko�√s��
�Ko�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢� − Ko�reD�s𝑢𝑢�Io�rsD�s𝑢𝑢��
�K1�rsD�s𝑢𝑢�Io�reD�s𝑢𝑢� + Ko�reD�s𝑢𝑢�I1�rsD�s𝑢𝑢��

 

Rate Transient Diagnostic Plot in Laplace Domain: Rate Derivative 

Der =
∆ � 1

pm� tD
�

∆ �ln 1
p�

    Versus        
1
p

 

CPOB (HL) +IAR (CL) 

 

Figure A13- 13: Derivative Rate Transient in Moving Boundary CPOB (HL) and IAR (CL) with insignificant Heat 
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Figure A13- 14: Derivative Rate Transient in Moving Boundary CPOB (HL) and IAR (CL)  

 

Figure A13- 15: Transient Dissociation Radius in Moving Boundary CPOB (HL) and IAR (CL) 

Case 3: No-Flow Outer boundary 

The no-flow boundary case is very complex due to the following reasons: 
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• In the early time of production, before the radius of dissociation reaches the boundary, the 

dissociated zone is characterized by a CPOB while the undissociated zone is a NFB. The 

reservoir response model can be generated for this case. 

• During late time production, the radius of dissociation has reached the boundary and the entire 

reservoir now behaves with the NFB response. Deriving a general solution which 

encompasses both the early time and late time is very cumbersome especially when using the 

similarity solutions.  

Dissociated zone  

Dimensionless Pseudo-Pressure 

φD = φsD
�E1�SD

1
4tDw

�−E1�SD
rD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

+
�E1�SD

rD2

4tDw
�−E1�SD

rsD2

4tDw
��

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 39 

Rate Transient 

ṁtD = (1 − φsD) 2e
−�

rD2
4tDw

SD�

�E1�SD
1

4tDw
�−E1�SD

rsD2

4tDw
��

 A13: 40 

Pwf ≥ Peq 

Producing above the equilibrium pressure needs to consider the effect of no-flow boundary as no 

dissociated zone will exist. Hence by applying the image well theory we get 

φD(rD, tDw) =
�E1(

rD
2

4tDw
SDk)�+�E1�

�2lD−rD�
2

4tDw
SDk��

�E1( SDk
4tDw

)�+�E1�
�2lD−1�

2

4tDw
SDk��

 A13: 41 

The model above is also valid if the reservoir pressure equals the equilibrium pressure prior to 

production (normally pressured gas hydrate). However, it should be emphasized that the reservoir will 

depict a different response if the reservoir pressure depletes below the equilibrium pressure when the 

well is still flowing.  

ṁtD(rD, tDw) = 2

�e
−�

SDk
4tDw

rD�−(2lD−rD)−1rDe
−
�2lD−rD�

2

4tDw
SDk�

E1�
SDk
4tDw

�+E1�SDk
�2lD−1�

2

4tDw
�

 A13: 42 

Undissociated Zone 

The impact of no-flow will first be felt in the undissociated zone hence the flow model is derived for 

no-flow boundary conditions. 

Dimensionless Pseudo-Pressure 

φD = B
2
�E1 �

rD
2

4tDw
SDk� + E1 �

(2lD−rD)2

4tDw
SDk�� A13: 43 
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The equation for the dimensionless pseudo-pressure in the un-dissociated zone is given thus: 

φD = φsD
�E1�

rD
2

4tDw
SDk�+E1�

�2lD−rD�
2

4tDw
SDk��

�E1�SDk
𝑟𝑟sD

2

4tDw
�+E1�SDk

�2lD−rsD�
2

4tDw
��

 A13: 44 

ṁtD = 2φsD

�e
−�

SDk
4tDw

rD
2 �
−(2lD−rD)−1rDe

−
�2lD−rD�

2

4tDw
SDk�

�E1�SDk
𝑟𝑟sD

2

4tDw
�+E1�SDk

�2lD−rsD�
2

4tDw
��

 A13: 45 

Using equating the mass rates at the crossover point the validity criterion for the radius of dissociation 

is derived 

Criterion for Valid Radius of Dissociation 

For the dimensionless pseudo-pressures at the cross over point to be the same, the following condition 

must be valid: 

ṁtD = 2φsD

�e
−�

SDk
4tDw

𝑟𝑟sD
2 �

−(2lD−𝑟𝑟sD)−1rsDe
−
�2lD−rsD�

2

4tDw
SDk�

�E1�SDk
𝑟𝑟sD2

4tDw
�+E1�SDk

�2lD−rsD�
2

4tDw
��

= �1−φsD�
2e

−�
rsD

2
4tDw

SD�

�E1�SDk
𝑟𝑟sD2

4tDw
�+E1�SDk

�2lD−rsD�
2

4tDw
��

 A13: 46 

When the reservoir is fully dissociated and now acts similar to a normally pressured gas hydrate 

reservoir, i.e. the reservoir pressure has depleted below the equilibrium pressure, the dimensionless 

equilibrium pressure at the front is no longer constant but a function of time. By equating the 

dimensionless pseudo-pressure solution for the normally pressured NFB and over-pressured NFB 

reservoir, we get the following correction for the response:  

φsD =
2�E1�SD

lD
2

4tDw
��

�E1�SD
1

4tDw
�+E1�SD

�2lD−1�
2

4tDw
��

 A13: 47 

Solutions with Laplace Transformation (Solutions in Laplace Domain) 

φ�D = c1Io�rD√s� + c2Ko�rD√s� 

Dissociated Zone 

The solutions given in Cases 1 and 2 earlier are also valid here for the dissociated zone. 

Dimensionless Pseudo-Pressure 

φ�D = �Ko�rD√s�Io�rsD√s�−Ko�rsD√s�Io�rD√s��−φsD�Ko�rD√s�Io�√s�−Ko�√s�Io�rD√s��
p�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��

 A13: 48 

Rate Transient 

m� tD = rD√s
p
��K1�rD√s�Io�rsD√s�+Ko�rsD√s�I1�rD√s��−φsD�K1�rD√s�Io�√s�+Ko�√s�I1�rD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� A13: 49 
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Undissociated Zone 

φ�D = c1Io�rD�su� + c2Ko�rD�su� 

Dimensionless Pseudo-Pressure 

The general equation takes the form 

φ�D = c1
�K1�reD�su�Io�rD�su�+I1�reD�su�Ko�rD�su��

K1�reD�su�
 A13: 50 

φsD
K1�reD�su�

𝑝𝑝�K1�reD�su�Io�rsD�su�+ I1�reD�su�Ko�rsD�su��
= c1 

φ�D = φsD
�K1�reD�su�Io�rD�su� + I1�reD�su�Ko�rD�su��
�K1�reD�su�Io�rsD�su� + I1�reD�su�Ko�rsD�su��

 

The constant c1 is hence derived using the inner boundary condition at the dissociation front 

m� tD = −rD
dφ�D
drD

= c1rD�su
�I1�reD�su�K1�rD�su�−K1�reD�su�I1�rD�su��

K1�reD�su�
 A13: 51 

Dissociation front condition 

m� tD = rD
√s
p
�
�K1�rsD√s�Io�rsD√s� + Ko�rsD√s�I1�rsD√s�� − φsD�K1�rsD√s�Io�√s� + Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
� 

m� tD = √s
p
��K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φsD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��
� =

φsD
�su
𝑝𝑝

�I1�reD�su�K1�rsD�su�−K1�reD�su�I1�rsD�su��
�K1�reD�su�Io�rsD�su�+I1�reD�su�Ko�rsD�su��

 A13: 52 

Criterion for Valid Radius of Dissociation 

φsD = �
s
su
𝐴𝐴 �K1�reD�su�Io�rsD�su�+I1�reD�su�Ko�rsD�su��
�I1�reD�su�K1�rsD�su�−K1�reD�su�I1�rsD�su��

 A13: 53 

Where, 

𝐴𝐴 = ��K1�rsD√s�Io�rsD√s�+Ko�rsD√s�I1�rsD√s��−φsD�K1�rsD√s�Io�√s�+Ko�√s�I1�rsD√s��
�Io�rsD√s�Ko�√s�−Io�√s�Ko�rsD√s��

�  A13: 54 

When rsD=reD, the mass balance at the dissociation front reduces to 

�
�K1�reD√s�Io�reD√s� + Ko�reD√s�I1�reD√s��

�K1�reD√s�Io�√s� + Ko�√s�I1�reD√s��
� = φsD 

By inserting the function for the pseudo-pressure at the boundary, the rate transient equation takes the 

following form at the wellbore and boundary: 

m� tD(rD = 1, p) =
√s
p
�
�I1�reD√s�K1�√s�−K1�reD√s�I1�√s��
Ko�√s�I1�reD√s�+ K1�reD√s�Io�√s�

� 
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m� tD(reD = 1, p) = 0 

This further validates the model  

Rate Transient Plots in Laplace Domain for NFB Hydrate Layer with Moving Boundary 

Rate Transient at Wellbore 

m� tD =
√s
p
�
�K1�√s�Io�rsD√s� + Ko�rsD√s�I1�√s�� − φsD�K1�√s�Io�√s� + Ko�√s�I1�√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
� 

Plot 

pm� tD    Versus        
1
p

  

Pseudo-Pressure Profile for Reservoir (Pwf<Peq) 

1. Dissociated Region 

φ�D =
1
p
�Ko�rD√s�Io�rsD√s� − Ko�rsD√s�Io�rD√s�� − φsD�Ko�rD√s�Io�√s� − Ko�√s�Io�rD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
 

2.Undissociated Region 

φ�D =
φsD

p
�K1�reD�su�Io�rD�su� + I1�reD�su�Ko�rD�su��
�K1�reD�su�Io�rsD�su� + I1�reD�su�Ko�rsD�su��

 

For: rsD<reD 

φsD = constant 

For: rsD=reD 

φ�Dp = φsD =
�K1�reD√𝑠𝑠�Io�rD√s� + I1�reD√s�Ko�rD√s��
�K1�reD√s�Io�√s� + I1�reD√s�Ko�√𝑠𝑠��

 

Plot 

𝑝𝑝φ�D    Versus        rD 

Pseudo-Pressure Profile for Reservoir (Pwf ≥ Peq during Production) 

1. Un-dissociated Region (Reservoir depicts a conventional reservoir) 

φ�D =
�K1�reD�su�Io�rD�su� + I1�reD�su�Ko�rD�su��

𝑝𝑝�K1�reD�su�Io�rsD�su� + I1�reD�su�Ko�rsD�su��
 

 

Plot 

𝑝𝑝φ�D    Versus        rD 
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Criterion for Valid Radius of Dissociation(Pwf<Peq and Pavg≥ Peq) 

φsD

= �
s

su
�
�K1�rsD√s�Io�rsD√s� + Ko�rsD√s�I1�rsD√s�� − φsD�K1�rsD√s�Io�√s� + Ko�√s�I1�rsD√s��

�Io�rsD√s�Ko�√s� − Io�√s�Ko�rsD√s��
�
�K1�reD�su�Io�rsD�su� + I1�reD�su�Ko�rsD�su��
�I1�reD�su�K1�rsD�su� − K1�reD�su�I1�rsD�su��

 

Rate Transient Diagnostic Plot in Laplace Domain: Rate Derivative 

Der =
∆ � 1

pm� tD
�

∆ �ln 1
p�

    Versus        
1
p

 

Pseudo-Pressure Profile for Reservoir (Pavg≤ Peq at the beginning of Production) 

1. Dissociated Region (Reservoir is now Normally Pressured at late production time) 

φ�Dp =
�K1�reD√𝑠𝑠�Io�rD√s�+ I1�reD√s�Ko�rD√s��
�K1�reD√s�Io�√s� + I1�reD√s�Ko�√𝑠𝑠��

 

𝑝𝑝m� tD = √s
�K1�√s�I1�reD√s�� − �K1�reD√s�I

1
�√s��

�K1�reD√s�Io�√s� + Ko�√s�I1�reD√s��
 

 

 

Figure A13- 16: Derivative Rate Transient in Moving Boundary NFB (HL) and IAR (CL) 
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Figure A13- 17: Transient Dissociation Radius in Moving Boundary NFB (HL) and IAR (CL) 

 

1

10

100

1000

10000

1E-02 1E+00 1E+02 1E+04 1E+06 1E+08 1E+10

r s
D
 [-

] 

1/p 

Laplace Domain  Well Test Model Recognition : Transient Dissociation Radius in 
Moving Boundary CPOB (HL) and IAR (CL) : SD =10, eD=1E-24, reD=2500 

φsD 0,3 

φsD 0,5 

φsD 0,7 

φsD 0,9 

207 



Appendix 14 

Appendix 14: Solutions to the Diffusivity Equation in Crossflow layer 

Crossflow problems will be expected in Class 1 and 2 gas hydrate reservoirs if the boundary between 

the free fluid layer and the hydrate layer is permeable. Depending on the layer chosen for production, 

different crossflow regimes could be analyzed. Moreover, boundary conditions imposed on outer 

boundaries of the crossflow layer is very dependent on the layer of production. 

Conventionally, for the hydrate reservoir to be considered for production, the layer above the hydrate 

layer should be impermeable (cap rock). For this reason, we consider no-flow at the outer boundary of 

the hydrate layer and just heat influx due to heat conduction from the cap rock is considered for the 

hydrate dissociation process. However, the effects of hydrate dissociation at the outer boundary of the 

hydrate layer could have significant influence of the reservoir response.  

For cases where the production takes place in the free fluid layer, at the time pressure depression 

reaches the upper boundary of the hydrate layer, temperature depressions are also experienced due to 

the endothermic nature of hydrate dissociation. For this reason, dissociation as a result of heat flux 

from conduction will occur basically at the boundary and is controlled by the temperature depression 

at the boundary. When the hydrates dissociate at the boundary, the pressure at the dissociation front 

increases which implies, depending on the rate of hydrate dissociation, the pressure depression at the 

reservoir boundary could be supported by hydrate dissociation due to heat influx. The effect of 

pressure support at the boundary is a known phenomenon is usually described as the constant pressure 

outer boundary condition where pressure depression at the boundary is zero due to fluid influx. With a 

proper definition of the boundary conditions, this effect can be characterized with a rigorous model. 

However, other simplifications of the model can be made from the following assumptions: 

• Constant Pressure Outer Boundary in Hydrate Layer: High hydrate dissociation at the outer 

boundary due to heat influx is very significant and contributes to pressure maintenance.  

• No-flow Outer Boundary in Hydrate Layer: Insignificant hydrate dissociation at the outer 

boundary due to heat influx. 

With these models, we can address the diffusivity equations for the crossflow layers. In the late phase 

of production, the effects of heat conduction could have become noticeable and hence an accelerated 

hydrate dissociation which also caused an increase in gas production.  

Solution to the Diffusivity Equation in Crossflow Layer  

Crossflow Layer is Hydrate Layer 

 ∆x ∗ ∆y ∗ ∆(ρg ∗ wg,T) +  ∆x ∗ ∆y ∗ ∆(ρw ∗ ww,T) =  ∆x ∗ ∆y ∗ ∆z ∆�Sg∅ρg�

∆t
+ ∆x ∗ ∆y ∗ ∆z ∆(Sw∅ρw)

∆t
+ ∆x ∗ ∆y ∗ ∆z ∆(Sh∅ρh)

∆t
 A14: 1 

Crossflow Layer is Free Fluid Layer 

 ∆x ∗ ∆y ∗ ∆(ρg ∗ wg,T) +  ∆x ∗ ∆y ∗ ∆(ρw ∗ww,T) =  ∆x ∗ ∆y ∗ ∆z ∆�Sg∅ρg�
∆t

+ ∆x ∗ ∆y ∗ ∆z ∆(Sw∅ρw)
∆t

 A14: 2 
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After simplification and with consideration of the storativity ratios given in Appendix 11, both mass 

conservation equations take the general form: 

∂2φD
∂zD

2 = [1 − ω] � ∂φD
∂tDwD

�
layer 2

 A14: 3 

Layer 2 simply denotes the crossflow layer while layer 1 represents the producing layer. It should however be 

noted that the compressibility terms in the diffusivity equation above are different for each crossflow layer 

considered. 

Laplace Solution- Diffusivity Equation in Crossflow Layer 

The leakage rate is a time function which makes its incorporation in the diffusivity equation of the 

producing layer and solving with similarity variables inapplicable. For this reason, Laplace transforms 

of the diffusivity equation of the crossflow layer is preferably used to derive the solution to the 

diffusivity equation of the producing layer. Hence, the diffusivity equation of the crossflow layer is 

given in Laplace domain and solved thus:  

�∂
2φD�

∂zD
2 �

layer2
= [1−ω]p�φD� �

layer 2
 A14: 4 

Here, conventional techniques in solving the linear diffusivity equation in Laplace domain for finite 

reservoirs are used.  

The general solution to the linear diffusivity equation in Laplace domain is given by: 

φD� = ACosh�zD�p[1 − ω]� + BSinh�zD�p[1 − ω]� A14: 5 

Case 1: Constant Pressure Outer Boundary in Crossflow Layer 

Boundary conditions 

zD=ΔzD    φD� = 0 

zD=1    φD� = [𝜑𝜑𝐷𝐷� ]𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 

With the above boundary conditions, the coefficients A and B are given thus: 

A = −
[φD� ]layer1Sinh�∆zD�p[1−ω]�

�Sinh��p[1−ω]�Cosh�∆zD�p[1−ω]�−Sinh�∆zD�p[1−ω]�Cosh��p[1−ω]��
 A14: 6 

B =
[φD� ]layer1Cosh�∆zD�p[1−ω]�

�Sinh��p[1−ω]�Cosh�∆zD�p[1−ω]�−Sinh�∆zD�p[1−ω]�Cosh��p[1−ω]��
 A14: 7 

Final Equation in Laplace domain is given thus: 

φD� = [φD� ]layer1
Sinh�zD�p[1−ω]�Cosh�∆zD�p[1−ω]�−Sinh�∆zD�p[1−ω]�Cosh�zD�p[1−ω]�
�Sinh��p[1−ω]�Cosh�∆zD�p[1−ω]�−Sinh�∆zD�p[1−ω]�Cosh��p[1−ω]��

 A14: 8 

The above equation can further be simplified to: 

φD� = [φD� ]layer1
Sinh��p[1−ω](zD−∆zD)�
Sinh��p[1−ω](1−∆zD)�

 A14: 9 
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The leakage rate function for the producing layer in Laplace domain is given thus: 

dφD�
dzD

= �φD��
layer1

�p[1 − ω] Cosh��p[1−ω](zD−∆zD)�
Sinh��p[1−ω](1−∆zD)�

 A14: 10 

At the crossflow point, the above differential takes the form: 

dφD�
dzD

= [φD� ]layer1�p[1 − ω] Cosh��p[1−ω](1−∆zD)�
Sinh��p[1−ω](1−∆zD)�

= [φD� ]layer1�p[1 − ω]Coth��p[1 − ω](1 − ∆zD)� A14: 11 

Case 2: No-Flow Outer Boundary in Crossflow Layer 

Unlike the solutions depicted earlier with the Boltzmann transformation for the no-flow boundary 

condition, where the average reservoir pressure function is required for the outer boundary condition, 

here, this is not required.  

Boundary conditions 

zD=ΔzD    dφD�
dzD

= 0 

zD=1    φD� = [φD� ]layer1 

After simplification we get the following for the coefficients A and B: 

A = [φD� ]layer1
Cosh��p[1−ω](∆zD)�

Cosh��p[1−ω](1−∆zD)�
 A14: 12 

B = −[φD� ]layer1
Sinh��p[1−ω](∆zD)�

Cosh��p[1−ω](1−∆zD)�
 A14: 13 

The final equation in Laplace domain is hence: 

φD� = [φD� ]layer1
Cosh��p[1−ω](zD−∆zD)�
Cosh��p[1−ω](1−∆zD)�

 A14: 14 

The leakage rate function in Laplace domain is given thus: 

dφD�
dzD

= [φD� ]layer1�p[1 −ω] Sinh��p[1−ω](zD−∆zD)�
Cosh��p[1−ω](1−∆zD)�

 A14: 15 

At the crossflow point, the above differential is: 

dφD�
dzD

= [φD� ]layer1�p[1 −ω] Sinh��p[1−ω](∆zD−1)�
Cosh��p[1−ω]i(∆zD−1)�

 A14: 16 

dφD�
dzD

= [φD� ]layer1�p[1 −ω]tanh��p[1−ω](∆zD − 1)� A14: 17 

Case 3: No-Flow Outer Boundary in Hydrate Layer and Heat Flux at Outer Boundary 

Here we consider the effects of heat flux at the outer boundary when pressure depletion reaches the 

outer boundary of the hydrate layer. First it is important to give major modifications of the heat 

leakage rate and hence the mass flux rate at the hydrate outer boundary. 
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∂2TpD
∂zD2

= FCDD
∂TpD
∂tDwD

 A14: 18 

Where, 

FCDD = h2

4

�ρcp�eff
λ��ah+avahav

��
i

 A14: 19 

The above representation of the dimensionless temperature conductivity is modified such that the 

same dimensionless times are used for the crossflow problem in all layers.  

dTD�

dzD
= Q̇pD

� eDφ�D = �dφD�
dzD

�
zD=∆zD

 A14: 20 

The leakage rate function for the producing layer in Laplace domain is given thus: 

Constant Temperature Outer Boundary (CTOB) 

dTD�

dzD
= ��pFCDCoth��pFCDD�∆zD,2 − ∆zD���eDφ�D A14: 21 

Pseudo-No Flow Temperature Boundary (p-NFTB) 

dTD�

dzD
= ��pFCDtanh��pFCDD�∆zD,2 − ∆zD���eDφ�D A14: 22 

Infinite Acting Temperature Outer Boundary  

dTD�

dzD
= ��pFCDD�eDφ�D A14: 23 

Hydrate Dissociation at Hydrate Layer-Caprock Interface When Producing from FFL 

Boundary conditions 

zD = ΔzD  �dφD�
dzD

�
∆zD

= Q̇pD
� eDφ�D = Q̇pD

� eD�ACosh�∆zD�p[1 − ω]� + BSinh�∆zD�p[1 − ω]�� 

zD=1   φD� = �φD��
layer1

 

Notice that the heat flux at the boundary and hence hydrate dissociation have been defined as a 

function of the pseudo-pressure at the boundary and is still defined in terms of the coefficients A and 

B. With the above boundary conditions, the coefficients are given thus: 

B = [φD� ]layer1
��Q̇pD�eDCosh�∆zD�p[1−ω]��−��p[1−ω]Sinh�∆zD�p[1−ω]���

��Q̇pD�eDSinh�(1−∆zD)�p[1−ω]��+��p[1−ω]Cosh�(1−∆zD)�p[1−ω]���
 A14: 24 

A = [φD� ]layer1
���p[1−ω]Cosh�∆zD�p[1−ω]��−�Q̇pD�eDSinh�∆zD�p[1−ω]���

��Q̇pD�eDSinh�(1−∆zD)�p[1−ω]��+��p[1−ω]Cosh�(1−∆zD)�p[1−ω]���
 A14: 25 

The solution to the dimensionless pseudo-pressure is hence given thus: 

φD� = �φD��
layer1

�p[1−ω]Cosh�(zD−∆zD)�p[1−ω]�+Q̇pD
� eDSinh�(zD−∆zD)�p[1−ω]�

�p[1−ω]Cosh�(1−∆zD)�p[1−ω]�+Q̇pD
� eDSinh�(1−∆zD)�p[1−ω]�

 A14: 26 
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The mass flux due to crossflow from the hydrate layer is hence given thus: 

dφD�
dzD

= �φD��
layer1

p[1−ω]Sinh�(zD−∆zD)�p[1−ω]�+Q̇pD
� eD�p[1−ω]Cosh�(zD−∆zD)�p[1−ω]�

�p[1−ω]Cosh�(1−∆zD)�p[1−ω]�+Q̇pD
� eDSinh�(1−∆zD)�p[1−ω]�

 A14: 27 

�dφD�
dzD

�
zD=1

= �φD��
layer1

p[1−ω]Sinh�(1−∆zD)�p[1−ω]�+Q̇pD
� eD�p[1−ω]Cosh�(1−∆zD)�p[1−ω]�

�p[1−ω]Cosh�(1−∆zD)�p[1−ω]�+Q̇pD
� eDSinh�(1−∆zD)�p[1−ω]�

 A14: 28 

�dφD�
dzD

�
zD=1

= [φD� ]layer1�p[1 −ω]Coth�(1 − ∆zD)�p[1 −ω]�
��p[1−ω]tanh�(1−∆zD)�p[1−ω]�+Q̇pD�eD�

��p[1−ω]Coth�(1−∆zD)�p[1−ω]�+Q̇pD�eD�
 A14: 29 

Notice that if the heat influx is assumed to be negligible, the above equation simplifies to the NFB 

solution in Case 2 above and if the heat flux is very significant the equation above also simplifies to 

the solution in Case 1 above 
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Appendix 15: Diffusivity Problems in Class 1 and 2 Gas Hydrate Reservoirs (Crossflow) 

Analogue the diffusivity equation derived in Appendix 1 and Appendix 5 we also derive the 

diffusivity equation for Classes 1 and 2 gas hydrate reservoirs.  

Hydrate Layer is Producing Layer 

Here, the mass influx from the free fluid layer and the hydrate mass dissociated from each heat source 

component has to be considered. 

∂2φ
∂rD

2 + 1
rD

∂ 
∂rD

− λ
h2

Q̇Drw2

hdk�ρt�
kr
ɳ �t

�
�dTeq
dp

� (φi − φ) − �rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

− cp∆T
hd

� rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

= �SDah,i
� ∂φ
∂t

 A15: 1 

∂2φ
∂rD

2 + 1
rD

∂φ 
∂rD

− γD�φ𝑖𝑖 − φ� − � rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

− cp∆T
hd

� rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

= � 1
ah

∂φ
∂t
�
PL

 A15: 2 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− γDφD −
rw2

∆z2∆z1

kv2
kh1

�∂φD
∂zD

�
layer 2

− cp∆T
hd

� rw2

∆z2∆z1

kv2
kh1

∂φD
∂zD

�
layer 2

= � 1
ah

∂φD
∂t
�
PL

 A15: 3 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− γDφD − δD �
∂φD
∂zD

�
layer 2

− cp∆T
hd

δD �
∂φD
∂zD

�
layer 2

= ω� ∂φD
∂tDwD

�
layer 1

 A15: 4 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− γDφD − δD(1 + θD) �∂φD
∂zD

�
layer 2

= ω � ∂φD
∂tDwD

�
layer 1

 A15: 5 

Where,  

δD = rw2

∆z2∆z1

kv2
kh1

 A15: 6 

θD = cp∆T
hd

 A15: 7 

tDwD = t

��ah+av
ahav

��
i

 A15: 8 

1
ah

= SD
ah,id

= (ρcT)eff,id
�ρtk�

kr
ɳ �t

�
id

rw2 �
(ρcT)eff

(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�
+ c

hd(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�
� A15: 9 

(ρcT)eff = �ρgcT,g + ρwcT,w� A15: 10 

cT,g = Sgcg + SgcF + SHcF �
BgEg

�BgEg+BwEw�
� A15: 11 

cT,w = Swcw + SwcF + SHcF �
EwBw

�BgEg+BwEw�
� A15: 12 

c = �cp,gSgρg �
T�cg+cF�

�
dTeq
dp �

+ 1� + cp,wSwρw �
T(cw+cF)

�
dTeq
dp �

+ 1� + cp,HSHρH �
T(cF)

�
dTeq
dp �

+ 1� + cp,m
(1−∅)
∅

ρm + SHρH
dhd
dTeq

� �dTeq
dp

� A15: 13 

γD > 0 and θD > 0 

Note that if the kinetic model is used, the diffusivity equation simply takes the form: 
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Kinetic Model 

∂2φ
∂rD

2 + 1
rD

∂φ 
∂rD

− γDk�φ𝑖𝑖 − φ� − � rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

= �SD𝑘𝑘

ah,i

∂φ
∂t
�
PL

 A15: 14 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− γDkφD − δD �
∂φD
∂zD

�
layer 2

= ω� ∂φD
∂tDwD

�
layer 1

 A15: 15 

Free Fluid Layer is Producing Layer 

Here the mass leakage rate from the hydrate layer is quantified in one term as this is already reflected 

in the diffusivity equation of the crossflow layer (hydrate layer) incorporated in the diffusivity 

equation of the free fluid layer.  

Hence: 

∂2φ
∂rD

2 + 1
rD

∂ 
∂rD

− � rw
2

∆z2

kv2
kh1

∂φ
∂z
�
layer 2

= �𝑆𝑆𝐷𝐷𝐷𝐷ah,i
� ∂φ
∂t

 A15: 16 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− δD �
∂φD
∂zD

�
layer 2

= ω� ∂φD
∂tDwD

�
layer 1

 A15: 17 

Where, 

1
ah

= SDk
ah,id

= (ρcT)eff,id
�ρtk�

kr
ɳ �t

�
id

rw2 �
(ρcT)eff

(ρcT)eff,id

�ρtk�
kr
ɳ �t

�
id

�ρtk�
kr
ɳ �t

�
� A15: 18 

(ρcT)eff = ρgcT,g + ρwcT,w A15: 19 

cT,g = Sgcg + SgcF A15: 20 

cT,w = Swcw + SwcF A15: 21 

δD = rw2

∆z2∆z1

kv2
kh1

 A15: 22 

tDwD = t

��ah+av
ahav

��
i

 A15: 23 

γD = 0 and θD = 0 
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Appendix 16: Solutions to the Diffusivity Equation when producing from the Free Fluid 

Layer 

The diffusivity equation to the crossflow problem when producing from the free fluid layer is given 

by:  

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− δD �
∂[φD] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ω ∂φD
∂tDwD

 A16: 1 

Using the Laplace transformation, the diffusivity equation above takes the form:  

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− δD �
∂[φ�D] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ωpφ�D A16: 2 

From the solutions of the crossflow layer given in Appendix 14, we introduce use the general form of 

the solution for NFB with heat flux which has been shown to consider true NFB and CPOB all 

depending on the rate of heat flux hence hydrate dissociation at the boundary. 

Mass Influx from Hydrate Layer 

�
∂�φD� �layer2

∂zD
�
zD=1

= [φD� ]layer1�p[1 − ω]Coth�(1 − ∆zD)�p[1 − ω]�
��p[1−ω]tanh�(1−∆zD)�p[1−ω]�+Q̇pD�eD�

��p[1−ω]Coth�(1−∆zD)�p[1−ω]�+Q̇pD�eD�
  

The general form of the above equations can be written thus: 

dφD�
dzD

= [φD� ]layer1Mi A16: 3 

Hence the diffusivity equation can be written thus: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− δDMiφD� = ωpφ�D A16: 4 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− (δDMi + ωp)φ�D = 0 A16: 5 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− λD2φ�D = 0 A16: 6 

rD2
∂2φ�D
∂rD2

+ rD
∂φ�D 
∂rD

− rD2λD
2φ�D = 0 A16: 7 

As was done in Appendix 7, the above equation can be transformed into the modified Bessel equation 

given in the form: 

β2φ�D
′′ + β2φ�D

′ − (β2 + 0)φ�D = 0 A16: 8 

The solution to modified Bessel equation is given thus: 

General Solution in Laplace Domain 

φ�D = c1Io(rDλD) + c2Ko(rDλD) A16: 9 
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Where, 

λD = �(δDMi + ωp) A16: 10 

φ�D
′ = ∂φ�D 

∂rD
 A16: 11 

β = rDλD A16: 12 

Case 1: Constant Terminal Pressure Solutions 

Case 1a: Infinite Acting Reservoir 

For the infinite acting system, the coefficient c1 equals zero and by using the inner boundary 

condition, the solutions in Laplace domain are given thus: 

Inner Boundary 

c2 = 1
pKo(λD) A16: 13 

Dimensionless Pseudo-Pressure 

φ�D = Ko(rDλD)
pKo(λD)  A16: 14 

Dimensionless Flow rate 

m� tD = −rD
dφ�D
drD

= rDλDK1(rDλD)
pKo(λD)  A16: 15 

Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
 

 

Hydrate Layer Parameters 

ω ΔzD δD 

1,00E-05 10 0,0001 
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A16- 1: Derivative Rate Transient in Free Fluid Layer + NFB (HL) + p-NFTB (CL): ΔzD (CL) 1E+07 

 

A16- 2: Derivative Rate Transient in Free Fluid Layer + NFB (HL) + CTOB (CL) :ΔzD(CL) 1E+07 
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A16- 3: Derivative Rate Transient in Free Fluid Layer + NFB (HL) with Sensitivity of Storativity Ratio 

 

 

A16- 4: Derivative Rate Transient in Free Fluid Layer + NFB (HL) with Sensitivity of Interporosity Flow Coefficient 
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A16- 5: Derivative Rate Transient in Free Fluid Layer + NFB (HL) +p-NFTB (CL) with Sensitivity of Hydrate Layer 

Thickness 

Solutions in Real-time Domain 

Due to the time dependence of the leakage rate, Hantush [43] proposed approximate solutions for 

given time interval such that solutions to the diffusivity equation above could be easily derived; 

however for CPOB and NFB cases. The solutions are based on the approximations given in Appendix 

12 for the hyperbolic functions. By applying the same methodology, asymptotic solutions analogue 

Hantush [43] are presented for specific time intervals according to the simplifications made for the 

leakage rate function. 

Late Time Response for NFB in Hydrate Layer (No Heat Flux) 

λD = �pω�1 + [1−ω]
ω

δD(∆zD − 1)� = �pωfD A16: 16 

Dimensionless Pseudo-Pressure 
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Ko�rD�p(ωfD)�
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, rD� A16: 17 
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For tD = tDwD/(fDωrD²)>500 

φD =
Ei�

rD
2 fDω
4tDwD

�

Ei� fDω
4tDwD

�
 A16: 18 

Dimensionless Flow rate at Wellbore 

ṁtD = G �tDwD
ωfD

� A16: 19 

Late Time Response for CPOB in Hydrate Layer 

λD = �pω�1 +
[1−ω]
3ω

δD(∆zD − 1)� + δD
(∆zD−1) = �pωgD + jD A16: 20 

Dimensionless Pseudo-Pressure 

φD = Z �tDwD
ωgD

, rD,�jD� A16: 21 

Dimensionless Flow rate at Wellbore 

ṁtD = G �tDw
ωgD

,�jD� A16: 22 

Case 1b: Constant Pressure Outer Boundary Reservoir 

General Solution in Laplace Domain 

φ�D = c1Io(rDλD) + c2Ko(rDλD) 

Boundary conditions 

reD   φ�D = 0 

rD=1   φ�D = 1
𝑝𝑝
  

The coefficients are hence: 

c1 = − 1
p
� Ko(reDλD)
�Ko(λD)Io(reDλD)�−Io(λD)Ko(reDλD)� A16: 23 

c2 = 1
p
� Ko(reDλD)Io(reDλD)
�Ko(λD)Io(reDλD)�−Io(λD)Ko(reDλD)�

1
Ko(reDλD) A16: 24 

Dimensionless Pseudo-Pressure 

φ�D = 1
p
�Ko(rDλD)Io(reDλD)−Ko(reDλD)Io(rDλD)

Io(reDλD)Ko(λD)−Io(λD)Ko(reDλD) � A16: 25 

Dimensionless Flow rate 

m� tD = −rD
dφ�D
drD

= −rD
1
p
� 1
Io(reDλD)Ko(λD)−Io(λD)Ko(reDλD)

� d�Ko(rDλD)Io(reDλD)−Ko(reDλD)Io(rDλD)�
drD

 A16: 26 

m� tD = rD
p
λD �

K1(rDλD)Io(reDλD)+Ko(reDλD)I1(rDλD)
Io(reDλD)Ko(λD)−Io(λD)Ko(reDλD)

� A16: 27 
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Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 1c: No-Flow Outer Boundary Reservoir 

Boundary Conditions 

reD   �dφ�D
drD

�
reD

= 0 

rD=1   φ�D = 1
p
 

The coefficients are hence 

c1 = 1
pλD

� K1(reDλD)
Io(λD)Ko(reDλD)−Ko(λD)I1(reDλD)� A16: 28 

c2 = 1
pλD

� I1(reDλD)
Io(λD)K1(reDλD)−Ko(λD)I1(reDλD)� A16: 29 

Dimensionless Pseudo-Pressure 

φ�D = 1
pλD

�K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)
Io(λD)K1(reDλD)−Ko(λD)I1(reDλD) � A16: 30 

Dimensionless Flow rate 

m� tD = −rD
dφ�D
drD

= −rD
1

pλD
� 1
Io(λD)K1(reDλD)−Ko(λD)I1(reDλD)

� d�K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)�
drD

 A16: 31 

m� tD = rD

p
�K1(reDλD)I1(rDλD)−I1(reDλD)K1(rDλD)

Io(reDλD)Ko(λD)−Io(λD)Ko(reDλD) � A16: 32 

Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
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For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 2: Constant Terminal Rate Solutions 

Case 2a: Infinite Acting Reservoir 

As shown earlier for the infinite acting reservoir, the coefficient c1 equals zero and the pressure 

equation is of the form: 

φ�D = c2Ko(rDλD) 

The derivation of the coefficient c2 for the constant terminal rate problem will depend on the 

definition of the inner boundary condition as finite wellbore radius and line source boundary 

conditions exist in deriving the solutions to the problem.  

For finite wellbore radius solution The line source solution 

lim
rD→1

�rD
d�c2Ko(rDλD)�

drD
� =

−1
p

 

lim
rD→1

[rDc2λDK1(rDλD)] =
1
p

 

c2 =
1

pλDK1(λD) 

Dimensionless Pseudo-Pressure 

φ�D =
Ko(rDλD)

pλDK1(λD) 

lim
rD→0

�rD
d�c2Ko(rDλD)�

drD
� =

−1
p

 

lim
rD→0

[rDc2λDK1(rDλD)] =
1
p

 

c2 =
1
p

 

Dimensionless Pseudo-Pressure 

φ�D =
Ko(rDλD)

p
 

 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  1
p
 

Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

 

Hydrate Layer Parameters Confining Layer 

ΔzD ω ΔzD eD√FCD 

10 1E-03 1E+07 3.16E-03 
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A16- 6: Pseudo-Pressure Transient in Infinite Acting Hydrate Layer + NFB (HL) 

 

 

A16- 7: Pseudo-Pressure Derivative in Infinite Acting Hydrate Layer + NFB (HL) 

Solutions in Real-Time Domain 

Finite Well Radius Inner Boundary Solutions 

φD �rD, tDw
fD

,�jD� = L−1 � Ko(rDλD)
pλDK1(λD)� A16: 33 
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(FFL)+NFB (HL) 

Finite Wellbore (No Crossflow)
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Laplace Domain  Well Test Model Recognition: Pseudo-Pressure Derivative in IAR 
(FFL)+NFB (HL) 

Der (No Crossflow) Der (With Crossflow)
Der-Line Source(With Crossflow and Heatflux at p-NFTB) Der( With Crossflow and Heatflux at p-NFTB)
Der( With Crossflow and Heatflux at CTOB)

Line source 
and finite 
wellbore 
solution 

show 
deviation 
just in the 
early time 

period 
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The solution to the above inverse Laplace can be readily derived by proper application of numerical 

inverse Laplace techniques. However, using the line source solution, the solutions presented by [43] 

are easily applied. Once more the specific cases of CPOB and NFB are used. 

The Line Source Inner Boundary Solutions 

φD = L−1 �Ko(rDλD)
p

� A16: 34 

Early-Time Response for both NFB and CPOB in Hydrate Layer 

λD = �pω + δD�[1 − ω]√p = �pω + εD√p A16: 35 

φD = H � ωrD
2

4tDwD
, rDεD

4√ω
� A16: 36 

Late Time Period for CPOB in Hydrate Layer 

λD = �pω�1 +
[1−ω]
3ω

δD(∆zD − 1)� + δD
(∆zD−1) = �pωgD + jD A16: 37 

φD = 1
2

W � rD
2

4tDw
gD, rD�jD� A16: 38 

Late Time Period for NFB in Hydrate Layer 

λD = �pω�1 +
[1−ω]
ω

δD(∆zD − 1)� = �pωfD A16: 39 

φD = 1
2

E1 �
ωrD

2

4tDwD
fD� A16: 40 

Case 2b: Constant Pressure Outer Boundary Reservoir 

Boundary Conditions 

reD   φ�D = 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

The coefficients are: 

c1 = − 1
pλD

� Ko(reDλD)
K1(λD)Io(reDλD)+I1(λD)Ko(reDλD)� A16: 41 

c2 = 1
pλD

� Io(reDλD)
K1(λD)Io(reDλD)+I1(λD)Ko(reDλD)� A16: 42 

Dimensionless Pseudo-Pressure 

φ�D = 1
pλD

�Ko(rDλD)Io(reDλD)−Ko(reDλD)Io(rDλD)
K1(λD)Io(reDλD)+I1(λD)Ko(reDλD) � A16: 43 
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Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  1
p
 

Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 2c: No-Flow Outer Boundary in Producing Layer 

Boundary Conditions 

reD   �dφ�D
drD

�
reD

= 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

The coefficients are hence: 

c1 = 1
pλD

� K1(reDλD)
K1(λD)I1(reDλD)−I1(λD)K1(reDλD)� A16: 44 

c2 = 1
pλD

� I1(reDλD)
K1(λD)I1(reDλD)−I1(λD)K1(reDλD)� A16: 45 

Dimensionless Pseudo-Pressure 

φ�D = 1
pλD

�K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)
K1(λD)I1(reDλD)−I1(λD)K1(reDλD) � A16: 46 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  1
p
 

Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 
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Appendix 17: Solutions to the Diffusivity Equation when producing from the Hydrate 

Layer 

As derived earlier, the diffusivity equation when the hydrate is the producing layer is given by: 

∂2φD
∂rD

2 + 1
rD

∂φD 
∂rD

− �
∂T𝑝𝑝𝑝𝑝
∂z𝐷𝐷

�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑧𝑧𝐷𝐷=1

− δD(1 + θD) �
∂[φD] layer2

∂zD
�
𝑧𝑧𝐷𝐷=1

= ω� ∂φD
∂tDwD

�
layer 1

 A17: 1 

The above equation is given in Laplace domain thus: 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− Q̇pD
� eDφ�D − δD(1 + θD)MiφD� = ωpφ�D A17: 2 

∂2φ�D
∂rD2

+ 1
rD

∂φ�D 
∂rD

− λD2φ�D = 0 A17: 3 

Where, 

λD = �δD(1 + θD)Mi + Q̇pD
� eD + ωp A17: 4 

It can be noticed that the complex variable λD above is very much different from the case whereby the 

reservoir is produced from the free fluid layer. It is important to investigate the influence of hydrate 

dissociation when producing from the hydrate layer such that representative reservoir response models 

and reservoir parameters for the hydrate layer can be derived.  

The equation above can be transformed into the modified Bessel equation and the solution derived 

accordingly for which the general solution takes the form: 

φ�D = c1Io(rDλD) + c2Ko(rDλD) 

A number of combinations of solutions with different boundary conditions can be made to investigate 

the reservoir response but however needs care in deriving simplifications for the inverse Laplace 

transform. Since just CTOB and p-NFTB have been considered for the confining layer and CPOB and 

NFB for the free fluid layer, four different cases can be handled: 

• CPOB (FFL) + p-NFTP (CL) 

• CPOB (FFL) + CTOB (CL) 

• NFB (FFL) + p-NFTP (CL) 

• NFB (FFL) + CTOB (CL) 

Case 1: Constant Terminal Pressure Solutions 

Case 1a: Infinite Acting Reservoir 

For the infinite acting system, the coefficient c1 equals zero and by using the inner boundary 

condition, the solutions in Laplace domain are given thus: 
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Inner Boundary 

c2 = 1
pKo(λD) A17: 5 

Dimensionless Pseudo-Pressure 

φ�D = Ko(rDλD)
pKo(λD)  A17: 6 

Dimensionless Flow rate 

m� tD = − rDλDK1(rDλD)
pKo(λD) = rDλDK1(rDλD)

pKo(λD)  A17: 7 

Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
 

 

 

A17- 1: Derivative Rate Transient in Infinite Acting Hydrate Layer + NFB (HL) + p-NFTB (CL) 
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Der (No Crossflow)
Der- With Crossflow: NFB (FFL)
Der-With Heat: p-NFTB (CL)
Der-With Crossflow and Heatflux: p-NFTB (CL) & NFB(FFL)

IARF: Der =0.5 

Combined Effects of 
Heat Influx from 
confining layer and 
crossflow from FFL 

Diminishing  Effects 
of Heat Influx  

Crossflow from 
FFL still influential 

Crossflow from 
FFL and Heatflux 
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IARF at late time 

Free Fluid Layer Parameters Confining Layer 

ΔzD ω δD ΔzD eD√FCD 
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A17- 2: Derivative Rate Transient in Infinite Acting Hydrate Layer with different Boundary Conditions in the 

Confining Layers 
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5 1E-04 1E-03 5 3.16E-04 
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A17- 3: Derivative Rate Transient in Infinite Acting Hydrate Layer with different Boundary Conditions in the 

Confining Layers 

 

 

A17- 4: Derivative Rate Transient in Infinite Acting Hydrate Layer with different Boundary Conditions in the Thin 

Confining Layers 
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Laplace Domain  Well Test Model Recognition: Rate Transient Derivative in 
Infinite Acting Hydrate Layer 

Der (No Crossflow)
Der-With Crossflow and Heatflux: p-NFTB(CL) & NFB(FFL)
Der-With Crossflow and Heatflux:  p-NFTB (CL) & CPOB(FFL)
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Free Fluid Layer Parameters Confining Layer 
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Solutions in Real-Time Domain 

To obtain the solutions in real time domain, approximations of the leakage rates have to be made as 

also seen in Appendix 16.  

Usually the effect of CTOB or CPOB overshadows the effects of NFB or p-NFTB all depending on 

the influx rate from both layers. We will however consider the following cases. 

CPOB in Free Fluid Layer (FFL) and CTOB in Confining Layer (CL) 

λD2 = �pω + 𝑒𝑒D𝑄̇𝑄𝑝𝑝𝑝𝑝� + δD(1+θD)
�∆zD,BL−1�

��∆zD,BL − 1��p[1 −ω]�Coth��p[1 −ω]�∆zD,BL − 1��� A17: 8 

As given in Appendix 7, the heat influx rate responsible for hydrate dissociation can be quantified and 

incorporated in the crossflow model.  

λD2 = �pω + �∆zD,TL−1�
�∆zD,TL−1�

𝑒𝑒D�pFCDCoth��pFCD�∆zD,TL − 1�� + δD(1+θD)
�∆zD,BL−1�

��∆zD,BL − 1��p[1−ω]�Coth��p[1 −ω]�∆zD,BL − 1��� A17: 9 

NFB in Free Fluid Layer (FFL) and CTOB in Confining Layer (CL) 

λD2 = �pω + �∆zD,TL−1�
�∆zD,TL−1�

𝑒𝑒D�pFCDCoth��pFCD�∆zD,TL − 1�� + δD(1 + θD)��p[1−ω]�tanh��p[1−ω]�∆zD,BL − 1��� A17: 10 

Late Time Period for CPOB in FFL and CTOB in CL 

λD = �pω�1 + 1
3ω
�𝑒𝑒DFCD�∆zD,TL − 1� + δD(1 + θD)[1−ω]�∆zD,BL − 1��� + � δD(1+θD)

�∆zD,BL−1�
+ 𝑒𝑒D

�∆zD,TL−1�
� = �pωgD,2 + jD,2 A17: 11 

Dimensionless Pseudo-Pressure 

φD = Z �tDwD
ωgD,2

, rD,�jD,2� A17: 12 

Dimensionless Flowrate at Wellbore 

ṁtD = G � tDw
ωgD,2

,�jD,2� A17: 13 

Late Time Period for NFB in FFL and CTOB in CL 

λD = �pω �1 + 1
3ω
��𝑒𝑒DFCD�∆zD,TL − 1� + 3�δD(1 + θD)(1 −ω)�∆zD,BL − 1�����+ 𝑒𝑒D

�∆zD,TL−1�
= �pωfD,2 + YD A17: 14 

Dimensionless Pseudo-Pressure 

φD = Z �tDwD
ωfD,2

, rD,�YD� A17: 15 

Dimensionless Flow rate at Wellbore 

ṁtD = G �tDwD
ωfD,2

,�YD� A17: 16 
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Case 1b: Constant Pressure Outer Boundary Reservoir 

Boundary conditions 

reD   φ�D = 0 

rD=1   φ�D = 1
𝑝𝑝
  

The coefficients are hence: 

c1 = − 1
p
� Ko(reDλD)
�Ko(λD)Io(reDλD)�−Io(λD)Ko(reDλD)� A17: 17 

c2 = 1
p
� Ko(reDλD)Io(reDλD)
�Ko(λD)Io(reDλD)�−Io(λD)Ko(reDλD)�

1
Ko(reDλD) A17: 18 

Dimensionless Pseudo-Pressure 

φ�D = 1
p
�Ko(rDλD)Io(reDλD)−Ko(reDλD)Io(rDλD)

Io(reDλD)Ko(λD)−Io(λD)Ko(reDλD) � A17: 19 

Dimensionless Flow rate 

m� tD = rD
λD
p
�K1(rDλD)Io(reDλD)+Ko(reDλD)I1(rDλD)

Io(λD)Ko(reDλD)−Io(reDλD)Ko(λD) � A17: 20 

m� tD = λD
p
�K1(λD)Io(reDλD)+Ko(reDλD)I1(λD)
Io(λD)Ko(reDλD)−Io(reDλD)Ko(λD)� A17: 21 

Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 1c: No-Flow Outer Boundary in Producing Layer 

reD   �dφ�D
drD

�
reD

= 0 

rD=1   φ�D = 1
p
 

The coefficients are hence: 

c1 = 1
p
� K1(reDλD)
Io(λD)Ko(reDλD)−Ko(λD)I1(reDλD)� A17: 22 
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c2 = 1
p
� I1(reDλD)
Io(λD)K1(reDλD)−Ko(λD)I1(reDλD)� A17: 23 

Dimensionless Pseudo-Pressure 

φ�D = 1
p
�K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)

Io(λD)K1(reDλD)−Ko(λD)I1(reDλD) � A17: 24 

Dimensionless Flow rate 

m� tD = −rD
dφ�D
drD

= −rD
1
p
� 1
Io(λD)K1(reDλD)−Ko(λD)I1(reDλD)

� d�K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)�
drD

 A17: 25 

m� tD = 1
p

rD �
λD[K1(reDλD)I1(rDλD)−I1(reDλD)K1(rDλD)]

Io(λD)Ko(reDλD)−Io(reDλD)Ko(λD)
� A17: 26 

m� tD = 1
p
�λD[K1(reDλD)I1(λD)−I1(reDλD)K1(λD)]

Io(λD)Ko(reDλD)−Io(reDλD)Ko(λD)
� A17: 27 

Rate Transient Plot in Laplace Domain 

pm� tD   Versus  1
p
 

φ�Dp   Versus  rD 

Der =
∆� 1

pm� tD
�

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 2: Constant Terminal Rate Solutions 

Case 2a: Infinite Acting Reservoir 

Inner Boundary Condition 

c2 = 1
p[λDK1(λD)] A17: 28 

Dimensionless Pseudo-Pressure 

φ�D = Ko(rDλD)
p[λDK1(λD)] A17: 29 

Dimensionless Pseudo-Pressure (Line Source) 

φ�D = Ko(rDλD)
p

 A17: 30 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  rD 

φ�Dp   Versus  1
p
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Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

The derivatives given in Case 1a for the rate transient solution are also representative for this case. 

Due to the uniqueness of each reservoir response, several reservoir response models could be 

generated. 

Solutions in Real-Time Domain for Line Source Model 

Early-Time Response for No-flow and Constant Pressure Outer Boundary in Crossflow Layer 

λD = �pω + �𝑒𝑒D�FCD + δD(1 + θD)�[1 −ω]�√p = �pω + εD,2√p A17: 31 

φD = H � ωrD
2

4tDwD
, rDεD,2

4√ω
� A17: 32 

Late Time Period for CPOB in FFL and CTOB in CL 

λD = �pω�1 +
1

3ω�
𝑒𝑒DFCD�∆zD,TL − 1� + δD(1 + θD)[1−ω]�∆zD,BL − 1���+ �

δD(1 + θD)
�∆zD,BL − 1�

+
𝑒𝑒D

�∆zD,TL − 1�
� = �pωgD,2 + jD,2 

φD = 1
2

W � rD
2

4tDwD
ωgD,2, rD�jD,2� A17: 33 

Late Time Period NFB in FFL and CTOB in CL 

λD = �pω �1 + 1
3ω
��𝑒𝑒DFCD�∆zD,TL − 1� + 3�δD(1 + θD)(1 −ω)�∆zD,BL − 1�����+ 𝑒𝑒D

�∆zD,TL−1�
= �pωfD,2 + YD A17: 34 

φD = 1
2

W � rD
2

4tDwD
ωfD,2, rD√YD� A17: 35 

Case 2b: Constant Outer Boundary Pressure in Producing Layer 

Boundary Conditions 

reD   φ�D = 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

The coefficients are hence: 

c1 = − Ko(reDλD)
pλD[K1(λD)Io(reDλD)+Ko(reDλD)I1(λD)] A17: 36 

c2 = Io(reDλD)
pλD[K1(λD)Io(reDλD)+Ko(reDλD)I1(λD)] A17: 37 

Dimensionless Pseudo-Pressure 

φ�D = Ko(rDλD)Io(reDλD)−Ko(reDλD)Io(rDλD)
pλD[K1(λD)Io(reDλD)+Ko(reDλD)I1(λD)] A17: 38 

Pseudo-Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  rD 
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φ�Dp   Versus  1
p
 

Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 

Case 2c: No-Flow Outer Boundary in Producing Layer 

Boundary Conditions 

reD   �dφ�D
drD

�
reD

= 0 

rD=1   rD
dφ�D
drD

= − 1
p
 

The coefficients are hence 

c1 = K1(reDλD)
pλD{[I1(reDλD)K1(λD)]−[K1(reDλD)I1(rDλD)]} A17: 39 

c2 = I1(reDλD)
pλD{[I1(reDλD)K1(λD)]−[K1(reDλD)I1(rDλD)]} A17: 40 

Dimensionless Pseudo-Pressure 

φ�D = K1(reDλD)Io(rDλD)+I1(reDλD)Ko(rDλD)
pλD{[I1(reDλD)K1(λD)]−[K1(reDλD)I1(rDλD)]} A17: 41 

Pressure Transient Plot in Laplace Domain 

φ�Dp   Versus  rD 

φ�Dp   Versus  1
p
 

Der = ∆(φ�Dp)

∆�1p�
      Versus  1

p
 

For large values of p i.e. early time production period where boundary dominated flow has not been 

reached, the reservoir is still acting infinite and from the characteristics of the modified Bessel´s 

functions given in Figure A7- 1, the solutions to the infinite acting reservoir are applicable. 
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Appendix 18: Reservoir Response Functions 

Hantush Functions [43] 

Flowing Well Discharge Function for Leaky Aquifers 

G(µ,β) = ṁt(t)
2πhk(φi−φwf)

= β K1(β)
Ko(β) + 4

π2
exp(−µβ2)∫ exp∞

0 (−µx2) x
(x2+β2)�Jo2(x)+Yo2(x)�

dx A18: 1 

Flowing Well Discharge Function for Non-Leaky Aquifers 

G(µ, 0) = ṁt(t)
2πhk(φi−φwf)

= 4
π2 ∫

exp�−µx2�
�Jo2(x)+Yo2(x)�

dx
x

∞
0  A18: 2 

Flowing Well Function for Non-Leaky Aquifers 

A(µ,β) = 2πhk
ṁt

[φi − φ(r, t)] = 1 − 2
π∫ exp∞

0 (−µx2) [Jo(x)Yo(βx)−Yo(x)Jo(βx)]
�Jo2(x)+Yo2(x)�

dx
x

 A18: 3 

Flowing Well Function for Leaky Aquifers 

Z(µ,β, τ) = 2πhk
ṁt

[φi − φ(r, t)] = β Ko(τβ)
Ko(τ) + 2

π
exp(−µτ2)∫ exp(−µx2)

(x2+τ2)
[Jo(βx)Yo(x)−Yo(βx)Jo(x)]

�Jo2(x)+Yo2(x)�
xdx∞

0   A18: 4 

Well Function for Leaky Aquifers 

W(µ,β) = 2πhk
ṁt

�φi − φ(r, t)� = ∫ 1
𝑥𝑥

exp∞
µ �−x − β2

4x
�dx A18: 5 

W(µ, 0) = E1(µ) = 2πhk
ṁt

�φi − φ(r, t)� = ∫ 1
𝑥𝑥

exp∞
µ (−x)dx A18: 6 

Early Time Well Function for Leaky Aquifers 

H(µ,β) = 2πhk
ṁt

�φi − φ(r, t)� = ∫ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑥𝑥)
𝑥𝑥

erfc∞
µ � β√µ

�x(𝑥𝑥−𝜇𝜇)
�dx A18: 7 

Generalized Incomplete Gamma Function [88] 

Γ(a,µ; b) = ∫ 1
𝑥𝑥1−𝑎𝑎 exp∞

µ �−x− b
x�dx A18: 8 

dΓ(a,µ;b)
dx

= − 1
x1−a exp �−x − b

x� A18: 9 

Γ(0,µ; b) = ∫ 1
𝑥𝑥 exp∞

µ �−x− b
x�dx = W(µ,β) A18: 10 

Γ(0,µ; 0) = ∫ 1
x exp∞

µ (−x)dx = E1(−µ) = −Ei(−µ) A18: 11 
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