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Abstract

The development of spatio–temporal geoscience information systems (TGSIS)
as the next generation of geographic information systems (GIS) and geoscience
information systems (GSIS) was investigated with respect to the following four
aspects: concepts, data models, software, and applications. These systems are ca-
pable of capturing, storing, managing, and querying data of geo–objects subject
to dynamic processes, thereby causing the evolution of their geometry, topol-
ogy and geoscience properties. In this study, five data models were proposed.
The first data model represents static geo–objects whose geometries are in the
3–dimensional space. The second and third data models represent geological sur-
faces evolving in a discrete and continuous manner, respectively. The fourth data
model is a general model that represents geo–objects whose geometries are n–
dimensional embedding in the m–dimensional space Rm, m ≥ 3. The topology
and the properties of these geo–objects are also represented in the data model.
In this model, time is represented as one dimension (valid time). Moreover,
the valid time is an independent variable, whereas geometry, topology, and the
properties are dependent (on time) variables. The fifth data model represents
multiple indexed geoscience data in which time and other non–spatial dimensions
are interpreted as larger spatial dimensions.

To capture data in space and time, morphological interpolation methods were
reviewed, and a new morphological interpolation method was proposed to model
geological surfaces evolving continuously in a time interval. This algorithm is
based on parameterisation techniques to locate the cross–reference and then
compute the trajectories complying with geometrical constraints. In addition,
the long transaction feature was studied, and the data schema, functions, trig-
gers, and views were proposed to implement the long transaction feature and the
database versioning in PostgreSQL. To implement database versioning tailored
to geoscience applications, an algorithm comparing two triangulated meshes was
also proposed. Therefore, TGSIS enable geologists to manage different versions
of geoscience data for different geological paradigms, data, and authors.

Finally, a prototype software system was built. This system uses the clien-
t/server architecture in which the server side uses the PostgreSQL database man-
agement system and the client side uses the gOcad geomodeling system. The
system was also applied to certain sample applications.
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Chapter 1:

Introduction

1.1 Problem statement

Beginning with computer mapping software in the 1970’s, the current geographic
information systems (GIS) have enormously advanced and have been widely used
in nearly all fields, including science, government, business, and industry. GIS are
systems not only used for capturing, storing, manipulating, analysing, managing,
and presenting all types of geographical data but also for integrating geographic
information into data warehouse as an integrated part of enterprise decision sup-
port systems. Although GIS are primarily considered a technology, the science
behind them is defined by the term geographic information science (GIScience).
GIScience is a field of study that seeks to redefine geographic concepts and their
use in the context of geographic information systems (Goodchild, 2010). Cur-
rently, GIScience has reached a mature level, with its own journals, research in-
stitutes, professional organisations, and conferences (Wright, 2010). However, in
GIScience/GIS, many issues require further research. With respect to data man-
aged by GIS, two primary research directions that have been considered are the
following: (1) “true” 3–dimensional data (Abdul-Rahman and Pilouk, 2008, Bre-
unig and Zlatanova, 2011, Gabriel et al., 2012, GiGa-Infosystems, 2014, Ravada
et al., 2009, Zlatanova, 2000) and (2) temporal data (Erwig et al., 1999, Forlizzi
et al., 2000, Güting and Schneider, 2005, Qi and Schneider, 2012, Raza, 2012,
Schneider, 2009, Sistla et al., 1997, 1998, Xu and Güting, 2013). The first re-
search direction also includes studies on the methodologies and standards of 3D

1



2 Chapter 1. Introduction

spatial databases (OGC, 2010, 2011, Oracle, 2013c, PostGIS, 2014). Currently,
studies in the second research direction are aimed at integrating time with 2–
dimensional spatial data only. With regard to data representations, the primary
research goal is to integrate field–based models and object–based models (Coucle-
lis, 1992, Goodchild et al., 2007, Kjenstad, 2006, Voudouris, 2008, 2011, Yuan,
2001).

Over more than two decades, geoscientists have found that subsurface charac-
terisation did not simply extend the traditional GIS methods. Kelk (1991) defined
the requirements for subsurface characterisation and modelling as follows: “The
industry requires a system for interactive creation of spatial and spatio–temporal
models of the physical nature of portions of the Earth’s crust, i.e., the capability
to effectively model and visualise: the geometry of rock– and time–stratigraphic
units, the spatial and temporal relationships between geo–objects, the variation
in internal composition of geo–objects, the displacements or distortions by tec-
tonic forces, and the fluid flow through rock units”. A series of sophisticated 3–
dimensional modelling technologies that are collectively identified as geoscientific
information systems (GSIS) have been developed to address these requirements
(Turner, 2000, 1991, 2006, Turner and Gable, 2007). The term “geoscientific infor-
mation systems” and its acronym GSIS are preferred because they offer a degree
of parallelism to the widely adopted term “geographic information systems” and
the acronym GIS. Similar to the evolution of GIS, the current GSIS are in the
first phase of their evolution, i.e., computer 3–dimensional mapping, and there-
fore sometime considered as “geomodeling”. The next step in the evolution of
GSIS is to develop primary functions, such as those in GIS. These functions in-
clude storing data in a data centre (database system), querying, analysing, and
representing.

To gain insights into geographical and geological processes, the time factor
must be considered. Therefore, many studies have been aimed at integrating time
into geographical and geological data since the 1990s (Peuquet, 1994, Worboys,
1994). More recently, studies have been established to study GIS/GSIS in larger
dimensions including time (Caumon, 2010, Ohori et al., 2013b, van Oosterom and
Stoter, 2010). In these studies, the fourth dimension can be interpreted as time,
the fifth dimension can be interpreted as scale or uncertainty, and certain larger
dimensions can be interpreted as any non spatial dimensions. In our study, multi–
dimensional time can be represented by these larger dimensions. Unfortunately,



1.1. Problem statement 3

to our knowledge, the statement “In current systems, the temporal dimension
often plays a subordinate role, temporal variation being represented by a series
of static snapshots” (Worboys, 1994) remains true.

The goal of this thesis was to study and contribute to the development of
the next generation of GSIS in which time dimensions are considered. As in-
dicated in the title of this thesis, “Spatio–temporal Information System for the
Geosciences: Concepts, Data models, Software, and Applications”, our approach
includes studying concepts, proposing data models, building prototype software,
and testing software with certain sample applications. We use the term “spatio–
temporal geoscience information systems” (or TGSIS) instead of the GSIS term
to emphasise that these systems consider time to be an integrated component of
the data. By integrating space and time, TGSIS are simpler to process and an-
swer many queries, such as “Given a location (geo–object at a specified location)
and properties, such as temperature and pressure, for what period(s) of time was
the geo–object exposed to the location and the properties?” or “What are the
geometry and properties of a geo–object at a given time?”.

The primary issues raised by TGSIS are as follows. The first issue is how to
manage objects with complex geometries to achieve fast access and processing.
Because a complex geometric object is always partitioned and approximated by a
set of components, the term “micro topology” (hereafter referred to as “topology”)
is introduced to refer to the relationships between the components. Moreover,
the topology should be stored explicitly to achieve fast access and processing of
the object. The second issue is related to the physical properties of the geological
objects. These properties are surveyed or observed at certain locations in the
object. For other places in the object, the properties are estimated, typically
using interpolation algorithms. It is necessary to attach the properties to each
geometric component of the object. These properties can then be used to query
the object or its components or to run numerical simulations. The third issue
involves integrating the time dimension with space. Many questions lead to the
requirement of considering space to be a discrete or continuous function of time.
The fourth issue is data modeling. From the surveyed or interpreted data rep-
resenting an object at certain time points, the question is how to model data
that are representative of the evolution of the object. In addition, operations,
such as model updating in the geosciences may be time intensive and may span
multiple working sessions. Moreover, certain historical states of the data require
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persistent storage. Therefore, the fifth issue is related to database versioning and
long transactions.

1.2 Objectives of the thesis

The goal of this study is to contribute to the development of TGSIS by studying
and proposing solutions for the previously mentioned issues. The objectives of
this study are as follows:

• Study and analyse the 2–dimensional and 3–dimensional geographic infor-
mation science/systems (GIScience/GIS), standards and methodologies of
3D spatial databases, temporal GIS, geomodeling, and surface representa-
tions.

• Propose data models (database schemata) which represent geo–objects with
the geometry, topology, and properties. These data models are required to
represent the integration of time and space in which, sometime, space is
considered as a discrete or continuous function of time.

• Study and propose methods for modeling temporal data that are represen-
tative of the evolution of an object.

• Study and propose solutions to archive persistently certain historical states
of the data and different data versions in a database.

• Build a prototype software operating with primary GIS functions, such as
data capturing, manipulating, and querying.

• Test the software with certain sample applications.

1.3 Methodology

Because the TGSIS have their roots in the GIScience/GIS and geomodeling, the
concepts and requirements of TGSIS can be obtained from studies on these sys-
tems. Primary GIS functionalities, such as data capturing, storing, manipulating,
querying, managing, analysing, and representing, are required in TGSIS. The re-
quirements and difficulties of a geomodeling system must be carefully studied.
Two primary approaches, field–based and object–based, are currently used to
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represent geological phenomena. Moreover, explicit and implicit modelling are
the two methods used to model a geo–object. A mind map of the thesis is shown
in Figure 1.1.
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Many of the advantages of spatial data modeling that have been developed
within computational geometry, computer graphics, computer vision, CAD, and
CAM, must be applied to TGSIS to create and manipulate complex geometries
in the geosciences. Additionally, as GIScience/GIS do, TGSIS must consider the
advantages of spatial and temporal database technologies. Furthermore, consid-
ering as one or multiple dimensions, time is an essential component of TGSIS.
There are certain arguments that the time dimension is significantly different
from spatial dimensions; therefore, time must be distinguished from spatial di-
mensions. In this approach, the geometry, topology, and other properties of
a geo–object should be represented as functions of time (Peuquet, 1994). In
contrast, time can be considered as one or more spatial dimensions; therefore,
multi–dimensional time and space can be represented using a larger spatial di-
mensional representation (Ohori et al., 2013b, Worboys, 1994). In addition to
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time, other dimensions, such as uncertainty, scale, and version, can be considered
in TGSIS. Using database versioning, TGSIS can manage many different versions
of geoscience data for different geological paradigms, source data, and authors.

Based on the concepts and requirements of TGSIS and the methodologies of
object/relational database design, TGSIS data models are proposed. Applications
such as modelling and numerical simulations in structural geology and ground-
water studies have been reviewed. Finally, a proposed software based on gOcad
and PostgreSQL is built and tested.

1.4 Major contributions of the thesis

This thesis concentrates on information systems that address geometry data in
the 3–dimensional space or the multi–dimensional space, the topology and geo-
science properties that discretely or continuously change over time. The primary
contributions are as follows:

• A review of geographic information geoscience/systems (GIScience/GIS),
3–dimensional spatial databases, and temporal GIS is performed.

• The concepts and requirements of geomodeling, and geomodeling processes
are studied.

• Surface representations are reviewed.

• Data models (database schemata) for geoscience data referenced to space
and time are proposed.

• The morphological interpolation theory is presented.

• A new morphological interpolation method based on parameterisation tech-
niques and tailored for geological surfaces is proposed to model temporal
data.

• The long transaction concept is described. A review of the implementations
of long transactions in the ArcGIS/ArcSDE and in the Oracle Workspace
Manager is also presented.

• A new data schema with functions, triggers, and views for the implementa-
tion of long transactions and database versioning is proposed.

• The prototype software was built and tested.



1.5. Structure of the dissertation 7

• Certain sample applications as examples of the software were performed.

• Three papers have been published, namely:

[1] Le, H.H., Gabriel, P., Gietzel, J., Schaeben, H., 2013. An Object-
Relational Spatio-Temporal Data Model. The journal of Computers &
Geosciences 57, 104-115. doi: 10.1016/j.cageo.2013.04.014;

[2] Le, H.H., 2013. Spatio-Temporal Data Construction. ISPRS Inter-
national Journal of Geo-Information 2(3), 837-853. doi: 10.3390/i-
jgi2030837;

[3] Le, H.H., Schaeben, H., Jasper, H., Görz, I., 2014. Database versioning
and its implementation in Geoscience Information Systems. The jour-
nal of Computers & Geosciences 70, 44–54. doi: 10.1016/j.cageo.2014.0-
5.011.

1.5 Structure of the dissertation

This dissertation documents the results of our work. The dissertation is subdi-
vided into eight chapters as follows:

The first chapter (current chapter 1) states the problem, presents the objec-
tive and methodology, and lists the primary contributions of this study.

The second chapter (2) reviews related studies and presents the concepts,
methodologies and standards in 3–dimensional GIScience/GIS, 3D spatial databa-
ses, temporal GIS, geomodeling systems, and surface representations.

The third chapter (3) presents five proposed data models in their object–
relational forms. The data models represent geological objects that exist in the 3–
dimensional space and evolve over time. The data models consider the geometry,
topology, and physical properties of the geological objects.

The fourth chapter (4) concentrates on studying the basis theory of morpho-
logical interpolation methods. Certain methods are based on the mathematical
morphology theory, and operate on multi–dimensional binary images, which is
one type of the implicit representation. A method based on parameterisation
techniques and tailored for geological surfaces is proposed in the scope of this
study.
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The fifth chapter (5) describes long transactions and the database versioning
in theory and technique. The proposed method, called TGSIS database version-
ing, is reviewed in this chapter.

The sixth chapter (6) describes the prototype software with the server–side
module implemented in the PostgreSQL, the client–side module for constructing,
visualising, and querying data implemented as a gOcad plugin, and the client–side
module for management implemented as stand–alone software.

The seventh chapter (7) describes certain sample applications, including a
simulation of tectonic, faulting, deposition, and erosion processes, and a sample
geological structure model.

The eighth chapter (8) is devoted to the conclusions and recommendations.
The primary contributions are summarised, and recommendations are given.



Chapter 2:

Related studies

As indicated by the name of our study, “spatio–temporal geoscience information
systems (TGSIS)”, this research is rooted in geographic information science/sys-
tems (GIScience/GIS), spatial databases, temporal GIS, geomodeling systems,
and surface representations. For the purpose of brevity, the term “2D object” is
referred to as an object whose geometry is 0–, 1–, or 2–dimensional embedding
in 2–dimensional space; the term “3D object” is referred to as an object whose
geometry is 0–, 1–, 2–, or 3–dimensional embedding in 3–dimensional space; the
term “3D surface” is referred to as a 2–dimensional manifold (surface).

Geographic information systems have become a popular tool in many fields
of science, government, business, and industry. GIS were originally developed
to manipulate 2D objects in maps. Currently, there are certain extensions that
enable GIS to store 3D objects. However, many queries for these objects are
not simple to answer. Spatial databases were inspired by GIS, but their suc-
cess extends beyond the original goal. The spatial database technology supports
many spatial data types and in turn motivates the development of 3D GIS. Cur-
rently, efforts have been made to develop temporal GIS integrating time into GIS
to manage the evolution of 2D objects. In these systems, temporal objects are
typically represented as the spatial objects existing or continually changing over
a certain period. Geomodeling systems provide methodologies and techniques
to model geological objects from sparse observed/surveyed data. A geological
model represents geological objects in the truly 3D space with the topologies and
physical properties. Surface representations are grouped together into the follow-

9
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ing two primary categories: parametric and implicit representations. A surface
representation concerns the data structure, the validating rules, and the manipu-
lating operations. TGSIS are based on the systems and methodologies mentioned
above. TGSIS are aimed at managing geological objects in the integrated space of
3–dimensional space and time, and they must provide tools, such as constructors,
accessors, and query operators.

In this chapter, we investigate certain concepts, software, standards, and litera-
ture. Section 2.1 presents certain concepts in GIS, emphasising the 3–dimensional
extension. Section 2.2 reviews certain standards and literature related to 3D
spatial databases. Two spatial databases, Oracle and PostgreSQL/PostGIS, are
reviewed in this section. Temporal GIS are reviewed in Section 2.3. Section 2.4
presents certain techniques used to build geological models. Surface representa-
tions and certain related issues are presented in Section 2.5.

2.1 Two– and three–dimensional GIS

Geographic information systems (GIS) are information systems that manage ob-
jects referenced in the 2D geographical space. GIS has applications in various
fields, including but not limited to managing, planning, engineering, insuring,
and transport/logistics. Originally, GIS were built to manage objects in the
maps, i.e., 2D objects. The geometries of the objects in the GIS are represented
by points, lines, and polygons. In an effort to truly represent objects that ex-
ist in 3–dimensional space (our real world), certain GIS systems have used the
Digital Elevation Model (DEM) to represent terrain surfaces. A DEM can be
represented as a raster (raster DEM) or as a vector–based Triangular Irregular
Network (TIN). Using raster DEM, surfaces are stored in the 2D grid format with
uniformly spaced cells, and height values (elevations) are attached to each cell.
A TIN is constructed by triangulating a set of vertices (points). Examples of a
raster DEM and a TIN are shown in Figure 2.1.

In current GIS systems, a TIN is constructed by first projecting the 3D input
points onto a local planar surface and then applying the 2D Delaunay triangu-
lation method. Therefore, raster DEM and TIN in GIS are only delimited to
represent surfaces with single Z values, i.e., they cannot represent caves, over-
hangs, or arches.
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Figure 2.1: Examples of a raster DEM (a) and a TIN (b) (ESRI, 2014b)

Certain studies have proposed a framework for a 3D GIS (Abdul-Rahman and
Pilouk, 2008, Apel, 2004). Apel (2004) proposed a data model based on the gO-
cad (Paradigm-GOCAD, 2014) data model. The data model added the concept
of observation points to the boundary–representation (BRep)–based data model
of gOcad and is conformable with the GML specification for geospatial data ex-
change using XML format. The Tamino XML database management system
was chosen to implement this data model. Abdul-Rahman and Pilouk (2008)
proposed data structures for TIN and TEtrahedral Networks (TEN) using the
relational and object–oriented approaches. These authors also presented sup-
porting algorithms for these data structures, such as 3D distance transformation,
3D Voronoi tessellation, and TEN generation.

The ArcGIS product family (ESRI, 2014b) with the ArcGIS 3D Analyst module
(ESRI, 2014a) and Esri CityEngine (ESRI, 2014d), provides tools for creating, vi-
sualising, and analysing GIS data in a 3–dimensional context. Three–dimensional
GIS data managed by ArcGIS include feature data and surface data. The 3D
feature data store z–values as part of the coordinates; therefore, they can poten-
tially support many different z–values for each x, y location. The typical types
of 3D feature data include multipatches, 3Dpoint, 3Dpolyline, and 3Dpolygon

(see (ESRI, 2014a) for descriptions of these types). The surface data include
raster DEM and TIN which support only a single z–value for each x, y location.
Typically, the surface data are used to represent topographical surfaces. A 3D
surface is typically derived from sample point, line, or polygon data using in-
terpolation or triangulation. Certain interpolation methods are Inverse Distance
Weighted, Spline, Kriging, and Natural Neighbor. The triangulation method is a
(constrained) Delaunay triangulation of the plan. Note that 3D implemented in
ArcGIS is not “true” 3D in the geosciences’ point of view.
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The GST–Framework developed by GiGa Infosystems (GiGa-Infosystems, 2014)
has its initialization in the geoinformatics working group at the Department of
Geophysics and Geoinformatics, TU Bergakademie Freiberg, which provides com-
ponents for storing, managing and visualizing three dimensional geoscience data
with an emphasis on the interoperability (Gabriel et al., 2012, GiGa-Infosystems,
2014). The 3D geometry model of the GST–Framework is compliant with the
normalised schema of SQL–implementation based on predefined data types, which
is defined in the OpenGIS simple feature access (OGC, 2010, 2011).

2.2 3D spatial databases

GIS have inspired the development of spatial databases, but the success of spa-
tial databases is beyond the original goal. Spatial databases are used in a wide
variety of real–world applications. Breunig and Zlatanova (2011) have presented
a 25–year retrospective and future directions of the geo–database studies. These
authors have emphasised that new 3D geo–databases are required to manage sur-
face and volume models, and geo–databases play a central role as data integration
and handling platforms for geo–referenced 2D and 3D data in applications such as
3D urban planning, environmental monitoring, infrastructure management, and
early warning or disaster management and response systems.

In this study, we review two standards and two database management systems
that support 3–dimensional data. The first standard is OpenGISr simple feature
access (SFA), also called ISO 19125, which specifies a common storage model for
geographic data (OGC, 2010, 2011). The second standard is RESQML which is an
exchange format standard for transferring earth model data between applications
in a vendor neutral, open, and simple format (RESQML, 2012). The two database
management systems selected are Oracle Spatial (Oracle, 2013c) and PostGIS
(PostGIS, 2014).

SFA consists of the following two parts: part 1 is the common architecture, and
part 2 is the SQL option. Part 1 describes the common architecture for simple
feature geometry. The standardised geometric classes are shown in Figure 2.2.

The standard defines 0–, 1–, and 2–dimensional geometric objects that exist
in 2–, 3–, or 4–dimensional space (R2, R3, or R4). Geometry values in R2 have
points with coordinate values for x and y. Geometry values in R3 have points with
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Figure 2.2: Geometric classes in SFA

coordinate values for x, y and z or for x, y and m. Geometry values in R4 have
points with coordinate values for x, y, z, and m. The z coordinate of a point is
typically, but not necessarily, represents altitude or elevation. The m coordinate
represents a measurement. Objects are defined by a finite set of points and
linear or planar interpolations between points. The geometric classes are closed
under the main geometric operators, such as the boundary, intersection, union,
difference, and buffer operators. The standard also defines two important formats,
i.e., well–known text representation and well–known binary representation, which
are the interface to the applications. Although this standard does not define solid
objects, a closed polyhedralsurface can be used to represent them. Moreover, a
polygon with four non–coplanar vertices can be considered a tetrahedron, and a
multipolygon can be used to represent 3–dimensional tetrahedral meshes.

The second part of SFA (the SQL option) defines a standard structured query
language (SQL) schema that supports storage, retrieval, query, and updating of
feature collections via the SQL Call–Level Interface (SQL/CLI). The feature table
schemata are presented in one of the following two SQL implementations: the
implementation based on a classical SQL relational model using only predefined
SQL data types, and the implementation based on SQL with additional types of
geometry. In the first implementation, a geometry value is defined by certain rows
in the geometry table; in the second implementation, a geometry value is defined
by a value of the user–defined type (UDT). A set of SQL accessible routines



14 Chapter 2. Related studies

supports geometric behaviours and queries.

The standard defines a schema for the management of feature tables, geome-
tries, and the spatial reference system information in an SQL–implementation
based on the predefined data types, as shown in Figure 2.3.
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Figure 2.3: Schema for feature tables using predefined data types (figure redrawn from OGC
(2010))

The schema in a SQL–implementation with a Geometry Type extension is
shown in Figure 2.4.

Although it supports 3–dimensional space, the goal of the standard is to stan-
dardise geographic information. Nearly all of the operators are in 2–dimensional
space; objects in 3–dimensional space are projected onto a horizontal surface
that is typically represented on a map. The result of these operators may not be
identical to that of full 3D geometry operators.

RESQML (2012) is the XML grammar defined by Energistics, a global, not–
for–profit, membership organisation that was created to serve as a neutral body
to facilitate and manage open data, information and process standards for the
upstream oil and gas industry. The goal of RESQML is to help petro–technical
professionals address data incompatibility when using the multiple software pack-
ages required for analysis, interpretation, modeling, and simulation along the en-
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Figure 2.4: Schema for feature tables using SQL with Geometry Types (figure redrawn from
OGC (2010))

tire subsurface workflow. This type of workflow is shown in Figure 2.5. RESQML
organises data into horizons, faults, grids, and properties. The data have multi
versions, and each version can have several geometry representations. The ge-
ometry representations for a horizon include 3D point sets, orthogonal 2D grids,
triangulated meshes, and hybrids (an orthogonal grid plus triangles). The ge-
ometry representations for a fault include 3D point sets, orthogonal 2D grids,
triangulated meshes, and pillar sets (a collection of 3D poly–lines). The coor-
dinate lines of a grid are not required to be straight or monotonic functions of
depth. The data in RESQML are stored in plain text format or in HDF5 format
(HDF5, 2014).

Oracle Spatial is one of the database management systems that supports three–
dimensional geometry objects (Oracle, 2013c). Oracle Spatial represents geome-
tries using the object–relational model. This model is compliant with the SQL
implementation with geometry types defined by the Open GIS (OGC, 2010, 2011),
i.e., storing an entire geometry in the native spatial data type, SDO_GEOMETRY.
Many application models follow a workflow consisting of the following three steps:
acquiring point cloud data, building surface models, and building application
models. Oracle Spatial has two new 3D data types, which are SDO_POINT_CLO
UD and SDO_TIN (Ravada et al., 2009). A single object of the types SDO_POI
NT_CLOUD and SDO_TIN can store up to 4× 1018 points by partitioning the
points into fixed–size blocks and storing the blocks as multiple rows in a separate
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Figure 2.5: A subsurface workflow supported by RESQML

block table. The extent and the resolution of each block are stored to support the
spatial index and multi–resolution. Figure 2.6 shows the conceptual model for
SDO_GEOMETRY. The SDO_GEOMETRY type is an array of one or more el-
ements, in which each element represents a point, a line–string, a surface, a solid,
or a collection. A CSurface (composite surface) consists of one or more connected
polygons. One outer surface and zero or more inner surfaces form a simple solid
(SSolid). A CSolid (composite solid) is formed by a number of attached SSolids.
The collection types consist of one or more elements of the appropriate type.

The PostgreSQL/PostGIS is a spatial database capable of handling with 3D ge-
ometries (PostGIS, 2014, PostgreSQL, 2014). The PostGIS is compliant with the
OpenGIS simple feature access (OGC, 2010, 2011). The 3–dimensional geometry
types in PostGIS include POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTILINESTRING, MULTIPOLYGON, TRIANGLE, TIN, POLYHEDRAL-
SURFACE, and GEOCOLLECTION. The well–known text format and the well–
known binary format with the Z value are primarily used for input and output
data. Because the geometry backend of the current version of PostGIS is GEOS
(2014), which supports 2D geometry only, PostGIS has only very basic 3D spatial
functions, e.g., ST_3DDistance and ST_3DIntersects.
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Figure 2.6: Conceptual model for 3D SDO_GEOMETRY

2.3 Temporal GIS

Temporal GIS is one research approach used to extend GIS to support time and
space (2–dimensional data). In temporal GIS, each spatial object has its life span.
Using the object–oriented approach, Raza (2012) proposed a new spatiotemporal
data type. The spatiotemporal class is the aggregation of the spatial and temporal
classes. The spatial class represents spatial objects in 2–dimensional Euclidean
space, and the temporal class represents linear time. Figure 2.7 shows the data
model for the spatiotemporal data type.

The spatiotemporal class contains attributes and operations. The attributes
ts (start time) and te (end time) are used to define the life span of an object
of the class. The operations are further classified into the following three main
categories: constructors, accessors, and operators. The constructor methods are
used to build up objects. The methods are STT_Type(WKTwT, SRID) and
STT_Type(WKB, SRID, T), where WKTwT is an acronym for Well Known
Text with Time, and WKB is an acronym for Well Known Binary. The ac-
cessor methods include STT_AsText(st_type), STT_AsBinary(st_type), and
STT_AsShape(st_type). The operator methods continue to be divided into three
categories: pure temporal, pure spatial, and spatiotemporal operators.

Other studies on temporal GIS have intended to expand the database systems
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Figure 2.7: The data model for Raza’s spatiotemporal data type

to manage moving objects (Güting and Schneider, 2005). Güting and Schneider
categorised moving objects into the following two groups: moving points and
moving regions. Moving points represent objects that change their positions in
the plane but do not change their extents (or shapes); examples include cars,
trucks, ships, and mobile phone users. Moving regions represent objects that not
only change their positions but also grow and shrink, i.e., change their shapes.
Hurricanes and oil spills are examples of this type of object. The term “moving
objects” is used to emphasise that the geometries of the objects can continuously
change. To manage moving objects in database systems, the database technology
was extended using one of two strategies. The first strategy is to build a layer on
top of an existing database management system and map the moving object rep-
resentations and functions to the existing facilities of the database management
system. The second strategy is to extend the database management system by
providing new data structures, methods for querying, and algorithms for indexing
and joining.

To manage mobile objects in a database, the database must be updated fre-
quently to be able to obtain their current positions. Updates that are more fre-
quent decrease the errors between the recorded positions and the actual positions.
Conversely, less frequent updates result in larger errors. A different approach is
to store a moving object not by its position directly but by its motion vector,
i.e., its position as a function of time (Güting and Schneider, 2005, Sistla et al.,
1997, 1998). Therefore, the updates of a motion vector are still required but are
much less frequent than those in the case of storing positions. This approach
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leads to a data model called the “Data model for current and future movement”
or MOST. A concept in MOST is the dynamic attribute, i.e., an attribute whose
values change over time without explicit updates. Simply, a dynamic attribute
A of type T (denoted A : T ) is represented by three sub–attributes, A.value,
A.updatetime, and A.function, where A.value is of type T , A.updatetime is of
time type (e.g., real), and A.function is of function type f : time → T such
that at time t = 0, f(0) = 0. Therefore, the value of A at time t is defined as
value(A, t) = A.value+A.function(t−A.updatetime) for t ≥ A.updatetime. For
applications in which objects move along networks, e.g., vehicles moving along
road networks, the position attribute of an object class can be modeled by an at-
tribute type, denoted as loc, with six sub–attributes, loc.route, loc.startlocation,
loc.starttime, loc.direction, loc.speed, and loc.uncertainty. Of these attributes,
loc.route is a pointer to a line spatial object describing the geometry of a path
over the traffic network. Loc.startlocation is the location of the moving object at
time loc.starttime and is represented as a point on loc.route. Loc.direction is a
Boolean function indicating the direction along the route; loc.speed is a real func-
tion of time that is used to compute the distance along the route. Loc.uncertainty
can be a constant or a function of time used to represent the threshold of the de-
viation of the object; when the threshold is reached, the object sends a location
update. The management of moving objects by storing motion vectors causes
the database to only store recent and very near future information about the
positions; however, no real historical data are stored in the database.

A data model and a query language for the true history of the movements have
been developed based on the strategy of extending the database management
system (Erwig et al., 1999, Forlizzi et al., 2000, Güting and Schneider, 2005). New
data types called spatio–temporal types, such as mpoint, mregion, mreal, mint,
mstring, mbool, where m represents moving, are equipped with a comprehensive
collection of operations and predicates.

In addition to studies on moving objects in environments in which their po-
sitions are not impeded by any spatial constraints (unconstraint environments),
many studies have considered moving objects in constrained environments. In
this case, moving objects are not free to move; they are restricted by certain
spatial constraints, such as spatial networks (Schneider, 2009). Qi and Schnei-
der (2012) proposed a new two–layered data model called the MONET (Moving
Objects in NETworks) model. In this model, the lower layer is a data model for
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spatial networks, and the upper model is a data model for moving objects. A
query language, called the MONET QL (MONET Query Language), was also
proposed to access moving objects in spatial networks and to provide high–level
operations on them. Xu and Güting (2013) considered moving objects that pass
through several real world environments. An example of this movement is a man
walking from the house to a bus stop and taking a bus to the train station, moving
from one city to another by train, and finally walking from the train station to
his office. The movement can be described by a sequence of transportation modes
given by Walk → Bus → Train → Walk → Indoor. In this study, objects can
move in five environments (called infrastructures) namely Free Space, Road Net-
work, Public Transportation Network, Region–based Outdoor, and Indoor. Each
infrastructure consists of a set of infrastructure objects (IFOB) and defines the
available places to move. The study has modeled the available places for each en-
vironment (infrastructure) and has given data types representing its components,
i.e., IFOB. This study is interesting, but it cannot be applied to GSIS, at least
at the present time.

2.4 Geomodeling

In many fields, modeling means numerical analysis and the simulation of continu-
ous systems represented by differential equations. However, as shown in (Hould-
ing, 1994), geomodeling does not contain differential equations but is concerned
with computer techniques for geological interpretation, geostatistical prediction,
and graphical visualisations of inaccessible geological conditions from limited in-
formation. The process of interpretation, prediction, and visualisation is called
geological characterisation. Houlding (1994) stated that the geological charac-
terisation must predict and interpret potentially complex geological conditions
that are discrete and pseudo-continuous in terms of their spatial variability. The
primary steps of a geological characterisation process were presented by Turner
and Gable (2007), as shown in Figure 2.8.

Geomodeling has been defined more strictly by Mallet (2002) as in Defini-
tion 2.1.

Definition 2.1 Geomodeling consists of the set of all the mathematical methods
allowing to model in a unified way the topology, the geometry and the physical
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Figure 2.8: The primary steps of a geological characterisation process (figure redrawn from
(Turner and Gable, 2007))

properties of geological objects while taking into account any type of data related
to these objects.

The goal of geomodeling is to model and understand the subsurface struc-
tures. Geomodeling involves a variety of representations describing the geometry
of geological objects, their neighborhoods (topology) and the properties of their
rock units. Because rock units and their groups (layers, or blocks) are solid
objects, solid models are particularly interesting to geoscientists. In solid model-
ing, a boundary representation (BRep) defines solids by their bounding surfaces,
thereby providing an efficient volume description (Caumon et al., 2004). In the
explicit modelling approach, 3D surfaces are created from observed/surveyed data
and then sewn up to create volumes. In contrast, the implicit modeling approach
builds up volumetric functions (3D implicit functions) from surveyed data. The
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iso–value surfaces of these functions can be extracted to represent the boundary
of the geo–objects and sewn them with other surfaces in the boundary represen-
tations. The volumetric functions can also be used as the primary geometry in
the Constructive Solid Geometry (CSG) (Natali et al., 2013).

2.4.1 Implicit geological modelling

Recently, the implicit modeling approach, i.e., using implicit functions (also called
scalar field functions), has received much attention due to its advantages, such
as noise resistance, automatic hole filling, and support of arbitrary topology.
Two primary types of methods are used to build up these scalar field functions
(Caumon et al., 2013). The first type uses dual kriging and radial basis function
interpolation to estimate the scalar field f as described in the following equation:

f(x) =
L∑
l=1

cl.pl(x) +
N∑
n=1

λn.φ(|x− xn|) (2.1)

where pl(x) are polynomial basis functions, cl are the corresponding drift coeffi-
cients, L is the total number of polynomial terms, N is the total number of data
points, φ(|x−xn|) is either the covariance between the data point xn and the un-
known x (Chilès, 2012) or a basis function such as a thin plate spline or simply the
inverse distance (also called the biharmonic function) (Carr et al., 2001), and λn
are the unknown interpolation coefficients (Caumon et al., 2013). Equation 2.1
leads to a dense linear system of equations that can be quickly solved by the
fast multipole method (Carr et al., 2001). Cowan et al. (2003) used this method
to construct continuous and smooth geological shapes. However, discontinuities,
such as faults, were not considered in this method.

The second type of method used to build up these scalar field functions uses
discrete optimisation to compute the scalar field on a pre–defined volumetric
mesh, e.g., a regular grid or tetrahedral mesh. Frank et al. (2007) computed this
scalar field on tetrahedral meshes conforming to faults. Their method leads to
a linear system of equations of M unknowns, f1, . . . , fM , at the mesh nodes, as
follows:

A.[f1, . . . , fM ]T = [b1, . . . , bC ]T = bT (2.2)

where C is the number of linear constraints applied to the system. The coefficients
of these constraints are stored in the C ×M sparse matrix A and the right–hand
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side vector b (Caumon et al., 2013).

2.4.2 3D surfaces

In the geosciences, 3D surfaces (2–dimensional manifolds embedding in the 3–
dimensional space) are often used to represent horizons, faults, unconformities,
and intrusion boundaries. These surfaces model the primary discontinuities of the
domain of the study. The set of these 3D surfaces makes a structural model that
represents the subsurface structures. Figure 2.9 shows an example of a structural
model.

Horizons

Fault

Area of interest

(a) (b)

(a) (b)

Figure 2.9: A structural model consisting of faults and horizons

Structural models can be used to build 3D volume models for visualisation
(Figure 2.10a) or can be meshed to solve geophysical and geomechanical problems.
Figure 2.10b shows a 3D irregular grid built from the structural model to model
physical properties.

Horizons
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Area of interest

(a) (b)

(a) (b)

Figure 2.10: A 3D volume model (a) and a 3D irregular grid (b) built from surfaces

Because it is difficult to directly access the subsurface, the data for modeling
are always sparse, primarily existing along drilling paths and seismic sections.
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Therefore, the modeling is not straight forward. Caumon et al. (2009) presented
rules and guidelines. Using these rules, each surface should fit the available
observation data within an acceptable range, depending on the type of data, data
precision, and resolution. A consistent structural model does not only consist of
surfaces fitting the observation data, but also the correct relationships between
them. These relationships are called macro–topologies, which are used to model
the borders of the objects.

Some of these rules are listed as follows (Caumon et al., 2009): (1) Geolog-
ical surfaces are always orientable, i.e., have two well–defined sides (because a
geological surface is a boundary between two volumes of rocks with different
characteristics). (2) The rule along common a border surface intersection can be
relaxed by some modeling software packages (Mallet, 2002). (3) Each boundary
between two rocks must lie only on one side of one rock. (4) The only fault
surfaces may have borders that are not connected to other structural model in-
terfaces; stratigraphic surfaces necessarily terminate on faults, unconformities or
model boundaries; and only faults may terminate inside rock units when the fault
displacement becomes zero.

Caumon et al. (2009) indicated that fault surfaces should be built to partition
the studied domain into fault blocks; stratigraphic horizons are subsequently
created, following the rules described above. There are two primary methods for
modeling surfaces: direct triangulation and indirect surface construction. In the
direct triangulation method, triangle strips are created by directly connecting
nodes of the several curves. The mesh quality can be improved by removing
redundant nodes and switching triangles according to the Delaunay criterion. In
the indirect surface construction method, an initial surface is created, e.g., the
average plane. Next, constraints are added. Finally, an interpolation is used
to minimise the data misfit. The Discrete Smooth Interpolation (DSI) used in
gOcad modeling system is this type of interpolation (Mallet, 2002, Paradigm-
GOCAD, 2014). In DSI, the constraints restrict the degrees of freedom of the
surface nodes during the interpolation. For example, a Control Node constraint
is used to freeze a given location; a Straight Line constraint allows a node to
move only along a specified direction. Soft constraints are honoured in a least–
squares sense by DSI, e.g., a Control Point constraint attracts the surface along a
specific direction similar to a rubber band. In addition, DSI uses other constraints
such as Border constraints, Thickness and Range Thickness constraints. Border
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constraints are put on the borders of a surface to prevent its retraction by DSI
and to kept the interaction between surfaces, e.g., horizons and fault contacts.
Thickness and Range Thickness constraints are used to remain a distance or a
range of distance between a surface and another surface.

2.4.3 Automatic building of structured geological models

Brandel et al. (2001, 2005) proposed a method to automatically build struc-
tural models from surfaces. The method includes two steps. In the first step,
geological knowledge is recorded by a graphical language called the “Geological
Evolution Scheme” (GES). The second step automatically builds the model, sur-
face after surface, according to the instructions read from the GES. The input
surfaces are assumed one of the following two types: polarised (POL) surfaces
and non–polarised tectonic (TEC) surfaces. POL surfaces correspond to the lim-
its of sedimentary formations or of intrusions; their two faces are geologically
different such that one face is the older formation (F–old) and the other face is
the younger formation (F–young). The TEC surfaces correspond to the following
tectonic discontinuities: faults or thrust surfaces. The two faces of TEC sur-
faces are geologically equivalent, both facing older formations. The method also
follows two fundamental assumptions that each surface, POL or TEC, has one
well–determined age; therefore, when two surfaces intersect, one of them is neces-
sarily interrupted by the other. The relationships between two intersecting POL
surfaces can be one of the following two configurations: on lap or unconformity.
With the on lap configuration, the older surface (on lap surface 1) interrupts
the younger surface (2), and with the unconformity, the younger surface (uncon-
formable surface 2) interrupts the older surface (1). These two configurations are
shown in Figure 2.11.
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Figure 2.11: The relationships between two intersecting surfaces (a) on lap and (b)
unconformity

To build the intersections between the surfaces as interpreted, the F–old and
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F–young faces of each surface are given a value to determine the intersecting
configuration.

In a GES, the nodes are placed in vertical positions that correspond to their
relative ages (bottom position for old and top position for young). Two nodes
can be joined by arcs of various types, as in Figure 2.12a, i.e., B follows A in the
chronology, and in Figure 2.12b ,i.e, fault A stops on fault B.

1

2

1

2

(a) (b)

B

A

B

A

(a) (b)

Figure 2.12: Edges in a GES

Using the notations mentioned above, a GES defines the partial or total order
relationships between the surfaces of the model based on their relative ages. Be-
cause the older cannot change the younger, it is possible to automatically build
the model by introducing surfaces sequentially, proceeding from the top to the
bottom of the GES, i.e., from young to old.

2.4.4 gOcad: a geomodeling system

In gOcad (Brandel et al., 2005, gOcad, 2014, Mallet, 2002, Paradigm-GOCAD,
2014), a geo–object is represented by its geometry, topology, and geological prop-
erties. A geo–object can be modeled by one or more gOcad objects such as
PointsSet, Curve, Surface, Voxet, SGrid, Well, Solid, 2D–Grid, and Channel.
The primary component of a gOcad object is the node or atom, which refers to
the x, y, and z coordinates (for geometry), to other nodes (for topology), and to
geological properties, except for the SGrid with centre properties. The x, y, and
z can be considered other geological properties and can be used in formulas in
computation functions.

gOcad represents objects by subdividing (or tessellation) them and uses a dis-
crete model and the Boundary Representation model. The most important algo-
rithm is the Discrete Smooth Interpolation (DSI). From an end–user’s viewpoint,
the two parameters of the DSI are the smoothing and fitting factors.
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Understanding the constraints is of most importance for the efficient use of gO-
cad. The primary types of constraints in gOcad include the following: constraints
on border, constraint points, constraint nodes, constraints on surface, vectorial
link constraints, thickness constraints, and range thickness constraints. The con-
cepts of direction of shooting, shooting point, and impact point are important,
as are the optimized shooting direction and the given shooting direction. The
constraints are always established for all of the nodes of an object, but they can
be sequentially modified (by changing the shooting direction or by deactivating
them) one by one by the local constraint editing functions.

Normally, gOcad uses a “smooth” object to represent a geo–object which is
modeled from raw data. Occasionally, an object can be directly manipulated
by tools, such as node/triangle/border extremity/border move/bridge/break/col-
lapse/extend (see (Paradigm-GOCAD, 2014)). The “part/fill holes” function is
also useful. To build the 3D models, knowledge of the geological feature/classifi-
cation is required.

2.4.5 Discrete smooth interpolation (DSI)

In discrete models, each object is modeled as a set of interconnected nodes, main-
taining the geometry and the physical properties of the object. The topology of
an object can be approximated by a graph G(Ω, N) where Ω is the set of all
of the nodes of the graph, each of these nodes being identified with its index
Ω = {1, 2, . . . , α, . . . ,M}, and N is a map from Ω into a subset of Ω such that
β ∈ N(α) indicates that β can be reached in at most s(α) steps from α where
s(α) > 0 is a given function of the node α. The graph G(Ω, N) is always as-
sumed symmetrical, i.e., β ∈ N(α) if and only if α ∈ N(β). The topological
model G(Ω, N) is embedded into 3–dimensional Euclidean space by three func-
tions {ϕx(α), ϕy(α), ϕz(α)}, corresponding to the location of the node α ∈ Ω.
To generalise these functions, each node α ∈ Ω is associated with a series of
n functions, ϕ(α) = {ϕ1(α), . . . , ϕν(α), . . . , ϕn(α)}, and some functions encode
the coordinates to represent the geometry of the object, whereas other functions
encode the physical properties of the object. To model natural objects, another
component, called the constraint set C, must be added to the model with re-
spect to the influence of the heterogeneous input data on the model. Finally,
the discrete model, denoted as Mn(Ω, N, ϕ, C), consists of a triplet composed of
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G(Ω, N), a series of functions ϕ, and a set of constraints C.

The set of constraints C = {c1, c2, . . . } is divided into the three subsets C', C=, C>.
Each constraint c ∈ C is assumed to be linear and to have one of the following
three general forms where {Aνc (α)} and bc are given coefficients defining the con-
straint c:

{c ∈ C'honoured} ⇔
∑
α∈Ω

∑
ν

Aνc (α).ϕν(α) ' bc,

{c ∈ C=honoured} ⇔
∑
α∈Ω

∑
ν

Aνc (α).ϕν(α) = bc,

{c ∈ C>honoured} ⇔
∑
α∈Ω

∑
ν

Aνc (α).ϕν(α) ≥ bc.

(2.3)

These constraint subsets can be considered as follows. Subset C' is the set of
“soft” equality constraints that must be honoured in a least square sense; sub-
set C= is the set of “hard” equality constraints that must be strictly honoured,
and subset C> is the set of “hard” inequality constraints that must be strictly
honoured.

The Discrete Smooth Interpolation (DSI) has been specifically designed for
interpolating the series of functions ϕ of a discrete model Mn(Ω, N, ϕ, C) while
considering all of the constraints c ∈ C. The DSI algorithms converge towards
a solution of minimising a quadratic objective function R∗(ϕ), the generalised
roughness, which is defined as follows:

R∗(ϕ) =
∑
α∈Ω

µ(α).R(ϕ|α) + (φ.ω).
∑
c∈C'

ωc.ρ(ϕ|c) (2.4)

where, R(ϕ|α) is the local roughness at node α, ρ(ϕ|c) is the local degree of
violation of c by ϕ for each soft constraint c, µ is a stiffness coefficient, and ωc,
φ.ω are weight coefficients (ω is the balancing ratio and φ is the fitting factor).
DSI is largely inspired by cubic splines and inquiries from geoscience.
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2.5 Surface representations

2.5.1 Mathematical surface representations

A 2–dimensional surface embedded in the 3–dimensional Euclidian space (3D
space) can be given in one of three forms as follows:

• Explicit form: z = f(x, y).

• Implicit form: F (x, y, z) = 0.

• Parametric form: x = x(u, v), y = y(u, v), z = z(u, v).

In technical applications, the explicit form of a surface is often difficult to deter-
mine. Moreover, the explicit form can be considered a special type of the para-
metric form in which x = u, y = v, z = f(u, v). Therefore, a significant amount
of literature only distinguishes two main classes of surface representations, i.e.,
parametric representations and implicit representations (Botsch et al., 2010). In
the parametric representation, a surface is defined by a vector–valued parame-
terisation function f : Ω → S that maps a 2D parameter domain Ω ∈ R2 to the
surface S = f(Ω) ∈ R3. In implicit representation, a surface is defined to be the
iso–level of a scalar–valued function F : R3 → R2, i.e., S = {x ∈ R3|F (x) = a}.

2.5.2 The surface approximation

Instead of having given surfaces in an analytical formula, most surfaces are given
by sample points and then the applications build up surfaces by either inter-
polation or triangulation. Therefore, in general, only an approximation of the
surface can be found in applications. Because polynomial functions are efficiently
evaluated by arithmetic operators, polynomial functions are the natural choice
for the approximation. Moreover, according to Taylor’s theorem, the asymptotic
approximation error is O(hp+1), where h is the diameter of the domain and p is
the degree of the polynomial (Botsch et al., 2010).

Generally, there are two methods used to improve the accuracy of the approx-
imation, as follows: (1) raising the degree of the polynomial (p–refinement) and
(2) reducing the size of the domain (h–refinement), i.e., by splitting the domain
into smaller segments (Figure 2.13). In h–refinement, for each segment, a poly-
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nomial (a patch) is defined to locally approximate the part of the surface in the
segment and to be sufficiently smooth with the neighbour patches. Because pro-
cessing a large number of simple objects is often faster than processing a smaller
number of more complex objects, many geometry processing applications prefer
h–refinement to p–refinement, although they accept C0 piecewise linear surface
representations, i.e., polygonal or triangular meshes, as the ad–hoc standard. For
implicit representations, a constant–value in each segment (cell) is also accepted
as the ad–hoc standard in many technical applications. The remaining issue is
the sufficient management of the segments (patches), i.e., small storage with a
fast access and rapid processing. Studies on data structures have been dedicated
to this issue.
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Figure 2.13: Splitting the domain into smaller segments

2.5.3 Conversions between representations

Explicit representations to implicit representations

The conversion from an explicit to an implicit representation includes computa-
tion of a signed distance field. When implicit representations use the 3D regular
grid structure, the efficient algorithms for the conversion include those presented
by Kaufman (1987). When parametric representations are presented as trian-
gulated meshes, the distance of a grid node to a given mesh is the distance to
the closest triangle. Computing this distance can be efficiently performed using
spatial data structures, such as octree, k–d tree, AABB tree, locality–sensitive
hashing and many modifications of these structures (Bentley, 1975, CGAL, 2014,
Datar et al., 2004, Liaw et al., 2010, Samet, 1994, Zatloukal et al., 2002). The
sign of the distance field, which determines whether a grid node lies inside or
outside the object, is defined by the normal vector of the closest triangle of the
node. Sethian (1996) proposed a method called fast marching to accelerate the
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computations of the distances in the entire grid.

Implicit representations to explicit representations

The conversion from an implicit to an explicit representation is known as an iso–
surface extraction and is primarily used to convert volumetric representations or
3D images to triangulated meshes. The volumetric representation, which repre-
sents the scalar functions f : R3 → R is often used in many modelling, analysis
and simulation problems in the geosciences. There have been many studies on
iso–surface extraction from this structure for the purpose of visualisation to pro-
vide insight into the data. Iso–surface extractions can also be used to construct
data for spatio–temporal information systems.

Studies on iso–surface extractions can generally be divided into two approaches.
The first approach includes the marching cubes algorithm and its variants (Bischoff
et al., 2005, Kobbelt et al., 2001, Lorensen and Cline, 1987). These algorithms
examine each edge of the cell that intersects the iso–surface S. When an edge
with two endpoints p1, p2 and the values of the scalar f at these points d1 = f(p1),
d2 = f(p2) differ in sign, i.e., d1 ∗ d2 < 0, then the intersection point, s, can be
defined by a linear interpolation, according to the following equation:

s =
|d2|

|d1|+ |d2|
p1 +

|d1|
|d1|+ |d2|

p2. (2.5)

The intersection points of each cell are then connected to a triangulated surface
patch based on 256 standard configurations (that can be deduced from 15 base
configurations). The collection of all of the patches yields a triangulated mesh
approximation of the iso–surface S.

In the second approach, algorithms based on a provable sampling technique are
used, and the samples are then triangulated to obtain the iso–surfaces (Boissonnat
and Oudot, 2005, CGAL, 2014). This approach prevent the problem of high
triangle complexity in marching cubes–like approaches. The resulting surface
contains only well–shaped triangles and faithfully approximates the input surface.



32 Chapter 2. Related studies

2.5.4 Triangulated surface data structures

Data structures organise data in certain configurations so that these data can be
captured, stored, and manipulated effectively and efficiently. Unfortunately, a
data structure does not always simultaneously satisfy these requirements. Some
data structures are simple to construct and have a small storage but are not
sufficiently fast to access the data. Other data structures explicitly store the
topology, i.e., the incident relationships between the vertices, edges, and faces.
Using these data structures, the processing algorithms can have direct access to
the neighbourhood of a vertex, an edge, or a face. However, these data structures
are difficult to construct and use large storage. Several typical data structures
are briefly reviewed below.

Indexed–face–set data structure

The simplest way to represent a triangulated surface is to store its vertices and its
faces (by referencing to the vertices), called an indexed–face–set data structure.
An example of this structure is shown in Figure 2.14.
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Figure 2.14: An example of indexed–face–set data structure

Recall the famous Euler formula about the relationship between the number of
vertices V , edges E, and faces F of a closed and connected mesh is V −E +F =

2(g − 1), where g is the genus of the surface. Because each triangle is bound
by three edges, each interior edge (of the manifold surface) is incident to two
triangles, and g is often a small number, the following formulas can be derived
for triangulated mesh:

F ≈ 2V ; E ≈ 3V ; the average number of incident edges of each vertex is 6.

If each vertex coordinate uses a 32–bit single precision number, then each vertex
is stored in 12 bytes. If each vertex index uses a 32–bit integer number, then each



2.5. Surface representations 33

triangle uses 12 bytes. Generally, storing a surface requires 36 times the number
of vertices of bytes memory.

Because of the simplicity and efficiency in the storage of the indexed–face–set
data structure, it is used in file formats, such as OFF, OBJ, and VRML. The
indexed–face–set data structure is also a favourite for representing triangulated
surfaces in database systems (GiGa-Infosystems, 2014).

Face–based with connectivity information

The face–based with connectivity information data structure is used for the 2D
triangulation data structures of CGAL (CGAL, 2014). In this data structure,
each triangle stores references to its three vertices and its three neighbouring tri-
angles; each vertex stores a reference to one of its incident triangles (Figure 2.15).
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Figure 2.15: Face–based with connectivity information data structure. Each vertex stores its
position and a reference to one of its incident faces. Each face stored references to its three
vertices and its three neighboring triangles

Winged–edge data structure

The winged–edge data structure was invented by Baumgart (1972). In this data
structure, each edge stores references to its two vertices, its two incident faces,
its two next edges on the left and right faces, and its two previous edges on the
left and right faces; each vertex and each face refers to one of its incident edges
(Figure 2.16).

Halfedge data structure

The halfedge data structure has been presented in the literature (Kettner, 1999,
Weiler, 1985), and has been used as the package of the same name in CGAL
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Figure 2.16: Winged–edge data structure. Each vertex and each face refers to one of its incident
edges. Each edge stores references to its two vertices, its two incident faces, its two next edges
on the left and right faces, and its two previous edges on the left and right faces

(CGAL, 2014). The data structure is shown in Figure 2.17. In this data structure,
the halfedge is an edge that is consistently oriented in the counterclockwise order
around each face and along each boundary. Each halfedge refers to the vertex it
points to, its adjacent face (a zero pointer if it is a boundary halfedge), the next
halfedge of the face or boundary (in the counterclockwise direction), the previous
halfedge in the face, and its opposite (or inverse) halfedge.
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STPoint STLine STPolygon STCollection

STMultiPoint STMultiLine STPolygon

Figure 2.17: Halfedge data structure. Each vertex stores an outgoing halfedge. Each face stores
a reference to one of its halfedges. Each halfedge stores references to the vertex it points to, its
adjacent face, the next halfedge of the face or boundary, the previous halfedge in the face, and
its opposite halfedge.

Among surface data structures mentioned above, halfedge data structure is the
most flexible structure. It represents each of the mesh items (vertices, edges,
and faces) explicitly, in order to be able to attach additional attributes and func-
tionality to them. Moreover, it is easy to travel between vertices, edges, and
faces.



Chapter 3:

Data Models

In spatio–temporal geoscience information systems (TGSIS), the data are stored
in database management systems (DBMS). Using DBMS, TGSIS gain many of
the advantages of the DBMS, such as multi–users, concurrent access control,
security, transactions, among others. In this context, data models are object–
relational database schemata that define the structures and integrity constraints
imposed on the databases. Five data models are presented in this chapter. The
first data model represents geo–objects with the assumption that they are static,
i.e., they do not change over time. The geo–objects include their geometries in
3–dimensional space and their physical properties in the components. In the sec-
ond data model, geological surfaces are represented as constants in each period.
The third data model represents geological surfaces by piecewise linear functions
of time. In the framework of this thesis, we have published an object–relational
spatio-temporal geoscience data model, the so–called TGSIS data model. TGSIS
data model is a general data model for geo–objects with an n–dimensional geom-
etry embedded in the m–dimensional Euclidian space Rm,m ≥ n. This model
represents geo–objects that evolve continuously in one–dimensional valid time.
The fifth data model represents multiple indexed geoscience data in which time
and other non–spatial dimensions are interpreted as larger spatial dimensions.

This chapter is organised as follows. Sections 3.1, 3.2, 3.3 present the first,
second, and third data models, respectively. Section 3.4 reviews the TGSIS data
model. The fifth data model is presented in Section 3.5. Section 3.6 is dedicated
to the summary.

35
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3.1 A 3D spatial data model

Geological objects can simply be abstracted by geometric objects in the 3–
dimensional space. Theoretically, geometric objects can be partitioned and ap-
proximated by a set of simplices equipped with appropriate relationships. The
simplices in the 3–dimensional space are as follows: 0–simplex (point), 1–simplex
(line segment), 2–simplex (triangle), and 3–simplex (tetrahedron), and the sets of
these simplices are denoted as multipoint, multilinestring, surface, and multitetra,
respectively. A point can be represented by its three coordinates, x, y, and z,
called a vertex. A line segment, a triangle, and a tetrahedron can be represented
by two, three, or four vertices, respectively. The vertex object class (VRTX) is
used to store positions, and then each point, line segment, triangle, and tetra-
hedron are represented, respectively, by one, two, three, or four pointers to the
positions. Some appropriate operations, such as a buffer or intersection, can be
applied to the geometric objects. To let the set of geometric objects closed under
these operations, the geometry collection object class (GEOCOLLECTION) is
added into data model. A geometry collection object is a set of other geometry
objects. Figure 3.1 shows the simplices and the geometry objects.

Fault throw

???: min, max, median, mean
???: which fault

thickness (z value)

???: min, max, median, mean
???: which surfaces are top surface and 
foot wall of sediment1.

0-simplex
(point)

1-simplex
(line segment)

2-simplex
(triangle)

3-simplex
(tetrahedron)

multipoint multilinestring surface multitetra

geometrycollection

Figure 3.1: Simplices and geometry objects

An object–relational data schema of the geometry objects is shown in Fig-
ure 3.2.
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Figure 3.2: Object–relational data schema of the geometry objects.

In the above data schema, the geotype attribute can receive the following values:
“GEOMETRY”, “MULTIPOINT”, “MULTILINESTRING”, “SURFACE”, “MUL-
TITETRA”, and “GEOMETRYCOLLECTION”. These values are used to deter-
mine the type of concrete geometry object. The topology of an object is not
explicitly stored, but this information can be deduced from the geometry infor-
mation when software systems load the object into the memory.

In many geoscience applications, physical properties, such as porosity and per-
meability, are required to attach to vertices of a surface or to tetrahedrons of a
multitetra (cells of a solid), as shown in Figure 3.3.

We use the term feature to denote a geological object that has geometry, topol-
ogy, and properties. The term feature class denotes the set of features with the
same type of geometry, i.e., multipoint, multilinestring, surface, multitetra, ge-
ometrycollection, the same set of properties defined by names and types, and the
same type of attachment of the properties to the geometry, i.e., attaching to the
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Figure 3.3: An example of attaching the porosity properties onto vertices and cells

vertices or the cells. A feature class is represented by two tables and defined
by applications called <features> and <features>_CELLPROS. In Figure 3.4,
the name <features> can be substituted by any appropriate table that is name
defined by the applications. The only requirement of these tables is the _geoid
attribute in the table <features> and the _geoid attribute and the _idx attribute
in the table <features>_CELLPROS. This requirement is automatically satisfied
by the software described in Chapter 6. The _idx attribute can receive the value
of the attributes vrtxid, pointid, segid, trglid, and tetraid, depending on the type of
geometry and the manner in which the physical properties attach to the geometry
defined by the feature class. Other attributes in the table <features> represent
the physical properties of each feature in the feature class. Other attributes in
table <features>_CELLPROS represent the properties attaching to each vertex
or cell of a feature in the feature class. The goal of the table CATALOG is to
store information defined for each feature class; this information is the name of
the <features> (geotablename), the type of geometry (geotype), the name of the
<features>_CELLPROS (cellprotablename), the manner in which the physical
properties attach to the geometry (proalignment), and the identifier of the spa-
tial reference system (SRS). The proalignment attribute can receive one of the
following two values: “VERTEX” or “CELL”. Figure 3.4 shows the data schema
for the properties required to add to the geometry data schema mentioned above.

For example, an application must manage the geological horizon surfaces with
the name of the interpreter, certain metadata, and the physical properties of
porosity and permeability measured at each vertex of the surface. The data
schema can be defined as follows: Table HORIZONS(_geoid, creator, note); table
HORIZONS_cellpros(_geoid, _idx, porosity, permeability); the values in the ta-
ble CATALOG include “HORIZONS” for geotablename, “SURFACE” for geotype,
“HORIZONS_cellpros” for cellprotablename, and “VERTEX” for proalignment.
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Figure 3.4: Data schema for the properties

3.2 A data model for multi–instance surfaces

The simplest way to expand a data model into the time domain is to add a time
property to the model. Therefore, the model represents objects at points of time
(instances). Assume that a geological surface is defined at time instances, t0, t1,
and t2, t0 < t1 < t2, denoted as G0, G1, and G2, respectively. We also denote G(t)

as a representation of the surface in the interval [t0, t2]. Certain approximations
of G(t) can be defined by Equation 3.1 or Equation 3.2), as follows:

G1(t) =


G0 if t0 ≤ t < t1

G1 if t1 ≤ t < t2

G2 if t = t2

(3.1)

or

G2(t) =


G0 if t = t0

G1 if t0 < t ≤ t1

G2 if t1 ≤ t < t2

(3.2)

Figure 3.5 shows a graphical representation of Equation 3.1.

The table TIMES is added to represent the sequence of time instances for each
object. This table contains the times attribute equipped with the geoid attribute
to uniquely define a geometry of the object at a specific time. A geological



40 Chapter 3. Data Models

times

geoid
times

vrtx

vrtxid
geoid
times
x
y
z

trgl

trglid
geoid
times
vrtxid1
vrtxid2
vrtxid3

<features>

_geoid
...

<features>_cellpros

_geoid
_idx
_times
...

Application

<features>_pros

_geoid
_times
...

catalog

catalogid
geotablename
geotype
protablename
cellprotablename
proalignment
SRS

geometry

geoid
geotype

surface

t

y

x

t0

t1

t2

Figure 3.5: A graphic representation of Equation 3.1

object can have certain properties, such as fault throw and thickness, that have
changing values at each time instance. Table <features>_PROS defined by the
application is used to store these types of properties. The protablename attribute
in table CATALOG is also added to maintain the information of the name of the
<features>_PROS table defined by a feature class. Finally, the data schema for
geological surfaces in multi–time instances is shown in Figure 3.6.

3.3 A data model for continuously evolving

surfaces

There are many geological processes, such as deformation, deposition, erosion in
which objects are continuously change. The data model for multi–instance sur-
faces mentioned above is unsuitable to represent these processes. The new model
must represent objects in the time interval [t0, t1] using a continuous function.
The simplest function is the linear function, i.e., the function

f(t) = f(t0) ∗ t1 − t
t1 − t0

+ f(t1) ∗ t− t0
t1 − t0

(3.3)

for all values t ∈ [t0, t1]. Moreover, while evolving in the time interval [t0, t1],
several geometrical or physical constraints are always imposed on the objects.
To model the objects in these processes more accurately, the selected continuous
function is a piecewise linear function with pre–defined values at g0 ≥ 1 time
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Figure 3.6: Data schema for geological surfaces in multi–time instances

points, {t00, t10, . . . , t
g0
0 } ∈ [t0, t1] where t00 = t0 and tg00 = t1. The algorithms used

to determine this function, based on two instances of the object at time t0 and
t1, are called morphological interpolations, as shown in Chapter 4.

Assume that an object is defined at a sequence of time instances denoted as
TM = {t0, t1, . . . , tk} for a given integer number k > 0. Using morphological
interpolations, the object is defined in the collection of time instance sequences

TG = {{t00, t10, . . . , t
g0
0 }, {t01, . . . , t

g1
1 }, . . . , {t0k−1, . . . , t

gk−1

k−1 }, {t
0
k}}

where t00 = t0, tgii = t0i+1 = ti+1 for all i = 1, . . . , k − 1. In each sequence
{t0i , . . . , t

gi
i }, the topology of the object is unchanged; only the geometry of the

object changes. In the case in which the geometry of the objects is represented
by a triangulated mesh, each triangle is completely determined by its three ver-
tices, the structure of the triangle remains unchanged, and only the coordinates
of the vertices change. Therefore, we model surfaces in the time domain us-
ing the following three tables: NODE(nodeid, goeid, timem); D4DTRGL(trglid,
geoid, timem, nodeid1, nodeid2, nodeid3); and D4DVRTX(goeid, timem, timet,
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nodeid, x, y, z). Table TIMEM represents the sequence TM , and table TIMET
represents the collection of sequences TG. The attributes _timem and _timet
are also added to the tables <features>_PROS and <features>_CELLPROS to
maintain the relationships between the geometry and the properties of the geo-
logical surfaces. Because we typically run queries about an object at time points
after all of its defined time instances, i.e., after tgkk , we assume that if the queried
object still exist at the moment, then its geometry, topology, and other prop-
erties are as defined at time tgkk . The alive attribute in the table GEOMETRY
aims to determine whether an object exists. To support the display of the object
in software systems, the attributes geoname, colorred, colorgreen, and colorblue
are added to the table GEOMETRY. Figure 3.7 shows the data schema for the
geological surfaces continuously evolving in the time domain.
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Figure 3.7: Data schema for geological surfaces continuously evolving in the time domain
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3.4 The TGSIS data model

Within the scope of this study, we have developed an object–relational spatio–
temporal geoscience data model, called TGSIS data model (Le et al., 2013).
The model is developed for spatially and temporally indexed multi–dimensional
geoscience data by first embedding a combinatorial topological model in terms
of G–Maps in the domain Rm × Time (m ∈ N), and then converting it into an
object–relational model which can easily be implemented in an object–relational
database system. In this section, we will review the underlying concepts of this
data model. Note that we substitute the term GST by the term TGSIS to be
consistent with other chapters in this dissertation.

3.4.1 Geometric modeling based on topology – generalised

maps

Modeled geometric objects

The model represents the basic geometric objects which are subsets of m–dimensi-
onal Euclidean space described by n–dimensional quasi–manifolds (0 ≤ n ≤ m).
Before giving a definition of quasi–manifold, some terms need to be recalled.

Let i be an integer, i > 0, Ri be the i–dimensional Euclidean space, and ||.||
be the standard norm in Ri, it is called Bi = {x ∈ Ri : ||x|| < 1} as open i–ball,
Bi = {x ∈ Ri : ||x|| ≤ 1} as closed i–ball, and Si = {x ∈ Ri+1 : ||x|| = 1}
as standard i–sphere. For convenience, the open 0–ball B0 (closed 0–ball B0) is
considered as a single point.

For i ≥ 0, an open (a closed) i–cell is a set homeomorphic to an open (a closed)
i–ball; an i–sphere is a set homeomorphic to a standard i–sphere. The dimension
of an open (a closed) i–cell (or an i–sphere) c is i, denoted as dim(c).

Definition 3.1 Let n be an integer, n ≥ 0, an n–dimensional finite CW(closure–
finite, weak topology)–Complex is a pair (X,P) where X is a Hausdorff space and
P is a finite partition of X into open cells of dimension not greater than n, and
for every open i–cell c, 0 < i ≤ n, in P, exists a continuous map H from the
closed i–ball to X such that

(i) the restriction to the open i–ball is a homeomorphism onto c, and
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(ii) the image of the restriction to the standard (i − 1)–sphere is the union of
open cells in P of dimension less than i.

Lemma 1 in Le et al. (2013) shows that if i > 0, the image of the restriction of
H to the standard (i−1)–sphere is independent of H, and therefore, we can define
the boundary of an i–cell c, denoted ∂c, as this image, H(Si−1). For convenience,
the boundary of 0–cell is empty.

Using the term boundary, terms face, co–face, incidence, adjacency, link, con-
nectivity can be defined. Given a cell α, a cell β is called a face of α if and only
if β ∈ ∂α; in this case, α is called co–face of β. Two cells α, β are incident if
and only if either α is a face of β or β is a face of α. Cells α, β are adjacent if
and only if dim(α) = dim(β) and there exists a cell γ, which is a face of both α
and β. Given a cell α, a link of α is a union of all boundaries of co–faces of α,
which is not incident to α. An n–dimensional finite CW–Complex is connected if
for every two 0–cells α, β a sequence γ0, γ1, ..., γk exists such that α = γ0, β = γk

and γi, γi+1 are incident for any 0 ≤ i < k.

Definition 3.2 Let n be an integer, n ≥ 0, an n–dimensional quasi–manifold is
an n–dimensional finite CW–Complex (X,P) which satisfies the following condi-
tions:

(i) Finite, regular CW-Complex: Every cell is either an n-cell or a face of an
n-cell.

(ii) Pseudo–manifold: If n > 0, every (n − 1)–cell is a face of at most two
n-cells.

(iii) Quasi–manifold: Inductively, 0 and 1–pseudo–manifolds are quasi–manifolds,
for i > 1, a link of each 0–cell is a connected (i− 1)–quasi–manifold.

In topological sense, 0–cells, 1–cells, 2–cells, 3–cells are called vertices, edges,
facets, volumes respectively. i–cells describing cells in Rm, 0 ≤ i ≤ m, are called
real i–cells, for example, 0–cells (points), 1–cells (lines), 2–cells (planar polygons),
3–cells (polytopes).

Symbol Ki is used to define a set of i–cells contained in the partition P of X.

Ki = {c ∈ P : dim(c) = i}
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We recall that a quasi–manifold is a decidable space of arbitrary dimension,
and that the algorithm in Floriani et al. (2002) enables us to decompose any
non–manifold into an assembly of quasi–manifolds.

Generalised Maps (n–GMap)

Graph theory can be used to construct a graph, where vertices represent cells and
edges represent incidence relationships between cells. Such a graph is called an in-
cidence graph. Brisson (1989, 1993) introduced “Cell–Tuple–Structure”, where the
incidence relationships are described in terms of cell–views v = {ci, ci+1, ..., cj},
j > i, or the view of cell ci from cell cj. The cell–view v = {c0, c1, ..., cn} is a view
of vertex c0 from a cell with the largest dimension cn and called “vertex–view”.

The pair (w,w′) of two vertex–views w and w′,

w = {c0, ..., ci−1, ci, ci+1, ..., cn},
w′ = {c0, ..., ci−1, c

′
i, ci+1, ..., cn},

which share the same j–cells for all j 6= i, is called i–adjacent. Then i–adjacency
induces a set of involutions {ai} in the set of vertex–views.

Generalised maps (GMap) are similar to Brisson’s “Cell–Tuple–Structure”, but
have been independently introduced by Lienhardt (cf. Lévy and Mallet, 1999,
Lienhardt, 1989, 1994, Lienhardt et al., 2009, Mallet, 2002). GMap uses two
objects “dart” and “i–involution”, where a dart denotes a path from an n–cell
node to a 0–cell node of the incidence graph, and an i–involution is a mapping
to generate an i–adjacency. Darts are analogous to vertex–views in Cell–Tuple
structure. An involution is a bijection which is its own inverse. GMap is formally
defined as follows (cf. Mallet, 2002).

Definition 3.3 An n–GMap of dimension n, n ≥ 0, is an algebraM(D,α0, α1, . . .

, αn), where D is a finite set of abstract elements called darts, αi, i = 0, ..., n, are
i–involutions on D, satisfying following conditions:

(i) αi(d) 6= d ∀d ∈ D; 0 ≤ i < n;

(ii) αi ◦ αi+2+k {αi ◦ αi+2+k(d)} = d ∀d ∈ D; i ≥ 0; k ≥ 0; i+ 2 + k ≤ n;

(iii) αi ◦ αi+2+k(d) 6= d ∀d ∈ D; i ≥ 0; k ≥ 0; i+ 2 + k ≤ n.

A graphical display of a 2–GMap is shown in Figure 3.8.
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The three conditions of the definition of n–GMap ensure the consistency of
boundary relationships and completeness of “darts sewing” when embedding ge-
ometric objects from n–GMap. Figure 3.9 shows examples of violations of these
conditions.
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Figure 3.9: Violations of the 1st condition (a), the 2nd condition (b), the 3rd condition (c)

An important operation on n–GMap is the “orbit”–operation defined as follows.

Definition 3.4 An orbit < αi1 , αi2 , . . . , αik > (d) of a dart d ∈ D on a subset of
involutions S = {αi1 , αi2 , . . . , αik}, defined on the n–GMapM(D,α0, α1, . . . , αn)

is the set of all darts which are the image of d applying any combination of the
involutions in S. Especially, an i–orbit of d is the orbit of d on all but the i–
involution, < α0, . . . , αi−1, αi+1, . . . , αn > (d) =< /αi > (d).

The i–orbit < /αi > (d) is also referred as an “abstract” i–cell. In the next
subsection we will show that a correspondence exists between an “abstract” i-cell
and a “real” i-cell. Figure 3.10 shows some orbits of the example 2–GMap in
Figure 3.8.

Geometric Model (GModel)

n–GMap and i–orbit operations determine a collection of sets of “abstract” i–cells
{K̃i}, where K̃i = {c̃i =< /αi > (d)} ∀i ∈ [0, n]. The boundary operation of an
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Figure 3.10: Orbits on the example 2–GMap

abstract i–cell c̃i is induced from the definition of n–GMap as

∂c̃i = ∂(< /αi > (d)), for any d ∈ c̃i,

=
{
< /αk > (d′)

∣∣ 0 ≤ k < i, d′ ∈< /αi > (d)
}
.

The boundary operation in {K̃i} enables us to define the incidence and adja-
cency relationships of two abstract cells analogously to the incidence and adja-
cency relationships of geometric cells.

− c̃i and c̃j are incident if and only if either c̃i ∈ ∂c̃j or c̃j ∈ ∂c̃i.

− c̃i and c̃j are adjacent if and only if i = j and there exists c̃k, k = i − 1,
incident to both c̃i and c̃j.

To realize the abstract model in terms of GMap as a geometric object, each
abstract i–cell is mapped onto a real i–cell in Rm. This is done by a series of
(n+1) mappings φ = {φ0, φ1, . . . , φn} from {K̃i} to {Ki} satisfying the following
two conditions for any i ∈ [0, n] (cf. Mallet, 2002, 2.3.4):

(i) φi is a bijection between K̃i and Ki;

(ii) if i > 0, then the bijection φi and φi−1 preserve the incidence relationships:
a′ ∈ ∂a if and only if φi−1(a′) ∈ ∂φi(a) for any “abstract” i-cell a ∈ K̃i and
any of its incident (i− 1)–cells a′ ∈ K̃i−1.
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Such bijections φ are called an embedding of {K̃i} in the embedding space Rm

(m ≥ n). An example of an embedding is shown in Figure 3.11.
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Figure 3.11: An general embedding model

Topology, represented by n–GMap, and embedding, represented by functions
φ, define geometric model (n–GModel).

Definition 3.5 An n–GModel (n ≥ 0) is an algebra G(D,A, φ), comprising the
n–GMapM(D,A) of a set of darts D and a set of involutions A = {α0, α1, . . . , αn},
and the embedding φ.

Following Mallet (2002), linear geometric models can be defined as n–GModels
comprising an embedding φ constituted by φ0 only. This is acceptable because we
always construct embedding φ from valid geometries. In this case, the condition
to ensure the consistency of the map ϕ = φ0 is

ϕ(d) = ϕ(d′) for all d′ ∈< /α0 > (d).

Figure 3.12 shows the embedding of a 2–GMap in 2–dimensional Euclidean
space R2 using a linear embedding model.

3.4.2 Objects in spatio–temporal domain

Objects in spatio–temporal domain can be represented as objects inm–dimensional
Euclidean space Rm evolving along a time axis T . Two kinds of evolutions can
be distinguished:
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Figure 3.12: A linear embedding model

• evolutions which preserve all topological relationships concerning the objects
(such in Figure 3.13a), i.e. homeomorphisms;

• evolutions which alter the topological relationships concerning the objects
(such in Figure 3.13b).
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Figure 3.13: Geometry changes over time; (a) preserving the topology, (b) changing the
topology

Following the suggestion by Polthier and Rumpf (1995), geo–objects are du-
plicated at each temporal instance into pre–object and post–object. They share
a common geometry but differ in their topology. Any pre–object at a given in-
stance has the same topology as the corresponding post–object of the previous
instance, and any post–object at a given instance has the same topology as the
pre–object of the next instance. For example, in Figure 3.14, ti–pre–object is a
triangle and has the same topology as ti−1–post–object; the ti–post–object com-
prises 2 triangles, where one is an ordinary and the other one is a degenerated
triangle, and has the same topology as the ti+1–pre–object; the ti–pre–object and
the ti–post–object share a common geometry.
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Figure 3.14: Topology synchronization

Figure 3.15 depicts the evolution of a geo–object in spatio–temporal domain.
While the discontinuous evolution of topological relationships of an object can be
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Figure 3.15: Example of an geo–object evolving in spatio–temporal domain

described by a step function as shown in Figure 3.16a, the geometrical evolution
of an object can be described by a continuous piecewise linear function, where
“sudden” changes are modeled by linear changes over a very short period of time
as shown in Figure 3.16b.
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Figure 3.16: (a) Topological function and (b) Geometrical function

Figure 3.17 provides a joint view of the topological and geometrical evolu-
tion of the objects in Figure 3.16a and Figure 3.16b. The topology of an object
is a discrete function of t and can be described by a finite set of the topolo-
gies MT = {M(t0),M(t1), . . . ,M(tk)} corresponding to the time series TM =

{t0, t1, . . . , tk}. The geometry of an object is a function of time and by means
of embedding of the object’s topology. It can be described by a set of piece-
wise linear functions (in case of using linear interpolation) on the set of intervals
{(t0, t1), (t1, t2), . . . , (tk−1, tk)} with the condition G(M(ti−1), ti) = G(M(ti), ti)

for any 0 < i ≤ k. Each piecewise linear function G(M(ti), t) on interval (ti, ti+1),
0 ≤ i < k, is defined by the set of values

{G(M(ti), t
0
i ),G(M(ti), t

1
i ), . . . ,G(M(ti), t

gi
i )}

at times {ti = t0i , t
1
i , . . . , t

gi
i = ti+1} and an interpolation method. If t > tk, the

geometry of the object is defined by the set of values

{G(M(tk), t
0
k),G(M(tk), t

1
k), . . . ,G(M(tk), t

gk
k )}

at times {tk = t0k, t
1
k, . . . , t

gk
k }. For convenience, if the object exists after time tgkk

then its geometry and topology are the same as at tgkk , otherwise they are empty
sets.

The calculation of the pre–object and the post–object from an object is the
main task of a construction operation of the model which will be shown in Chap-
ter 4.
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Figure 3.17: Topology and Geometry over time

3.4.3 Geometric model in spatio–temporal domain

Let T be a collection of k + 1, k ≥ 0, sequences, where the ith sequence contains
gi + 1, gi ≥ 0, instances, and the initial instance of any sequence except the first
equals the last instance of the previous sequence, i.e.,

T = {{t00, t10, . . . , t
g0
0 }, {t01, . . . , t

g1
1 } . . . , {t0k, . . . , t

gk
k }},

where t0i+1 = tgii for all 0 ≤ i < k. An example is T = {{1, 2, 3, 4}, {4, 5}, {5, 6, 7, 8, 9}}.
The set TM of initial instances of the sequences of T is

TM = {t0, t1, . . . , tk} with ti = t0i for all i ∈ [0, k].

In the example, TM = {1, 4, 5}.

To generalize the geometric model in Section 3.4.1 from Rm into the domain
Rm × Time, we proceed as follows:

(i) Expand the set of darts D to the set DT such that DT can be partitioned
into k + 1 non-empty and disjoint subsets Di of darts, i.e.,

DT =
k⋃
i=0

Di, Di 6= ∅ and Di ∩Dj = ∅ for all i 6= j.

(ii) Expand the embedding function φ into the collection of sequences, ordered
and indexed according to T above, i.e.,

ΦT = {{φ0
0, φ

1
0, . . . , φ

g0
0 }, {φ0

1, . . . , φ
g1
1 } . . . , {φ0

k, . . . , φ
gk
k }}.
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The domain of φ0
i , φ

1
i , . . . , φ

gi
i is Di.

(iii) Add constraints on the set {αi} such that {αi} is a set of involutions closed
in each partition Dj of DT

αi(dj) ∈ Dj, for all dj ∈ Dj.

Consequently, a new geometric model in the spatio–temporal domain, called
n–TGSIS–Model, is accomplished and defined as follows.

Definition 3.6 Let n, k be integers, n ≥ 0, k ≥ 0, and let gi, i = 0, ..., k, also
be integers greater than or equal to 0. Let DT , ΦT be defined as above, let A
be a set of i–involutions for all i ∈ [0, n]. An n–TGSIS–Model is an algebra
T GSIS(DT , A,ΦT ) satisfying following constraints:

(i) αi(dj) ∈ Dj ∀0 ≤ i ≤ n; 0 ≤ j ≤ k; dj ∈ Dj;

(ii) αi(d) 6= d ∀d ∈ DT ; 0 ≤ i < n;

(iii) αi ◦ αi+2+k{αi ◦ αi+2+k(d)} = d ∀d ∈ DT ; i ≥ 0; k ≥ 0; i+ 2 + k ≤ n;

(iv) αi ◦ αi+2+k(d) 6= d ∀d ∈ DT ; i ≥ 0; k ≥ 0; i+ 2 + k ≤ n;

(v) φji is an embedding ∀0 ≤ i ≤ k; 0 ≤ j ≤ gi.

The n–TGSIS–Model is equipped with an operation called “snapshot” to con-
struct the geometry of an object at any given time instance t.

Definition 3.7 Let T GSIS(DT , A,ΦT ) be an n–TGSIS–Model, its snapshot at
a given instance t is a n–GModel G(D,A, φ), denoted by T GSIS(t), such that

(i) if t0 ≤ t ≤ tgkk , s be a variable whose value be defined by t, then

(1) D =

{
Di if ti ≤ t < ti+1 → s = i

Dk if tk ≤ t ≤ tgkk → s = k,

(2) φ =

{
φjs + φj+1

s −φjs
tj+1
s −tjs

× (t− tjs) if tjs ≤ t < tj+1
s

φgkk if tgkk = t,

(ii) if t < t0, T GSIS(t) = ∅,

(iii) if object exists when t > tgkk , then T GSIS(t) = T GSIS(tgkk ) for t > tgkk . If
not, T GSIS(t) = ∅ for t > tgkk .
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3.4.4 The model in object–relational form

In this section, n–TGSIS–Model is converted into object–relational form. To this
end, the following tasks are done.

First, the collection of sequences T = {{t00, t10, ..., t
g0
0 }, {t01, ..., t

g1
1 }, ..., {t0k, ..., t

gk
k }}

is represented as two relations TimeT and TimeM as follows. The relation TimeT
represents the sequence of time instances at which the geometry of the object has
changed T T = {t00, t10, ..., t

g0−1
0 , t01, ..., t

g1−1
1 , ..., t0k, ..., t

gk
k }, and TimeM represents

the sequence of time instances at which the topology of the object has changed
TM = {t0, t1, ..., tk}. For example, if T = {{1, 2, 3, 4}, {4, 5}, {5, 6, 7, 8, 9}},
then TimeT contains values {1, 2, 3, 4, 5, 6, 7, 8, 9} and TimeM contains values
{1, 4, 5}. Second, the set DT = {Dt0 , Dt1 , . . . , Dtk} is represented as the relation
Dart with an attribute TimeMID in [0, k]. Next, the set A = {α0, α1, . . . , αn}
of involutions is represented as the relation Alpha with attributes level in [0, n],
DartID1, and DartID2 to represent the map from dart d1 to dart d2. Finally,
the set Φ = {{φ0

0, φ
1
0, . . . , φ

g0
0 }, {φ0

1, . . . , φ
g1
1 }, {φ0

k, . . . , φ
gk
k }} is represented as the

relation Phi with attributes TimeID, DartID, CoordinateID to map sets of
darts, e.g. 0-orbits, to geometrical cells in real space Rm.

Figure 3.18 shows the n–TGSIS–Model in object–relational mode, referred to
as n− TGSIS −Model inOR.

The attribute Alive (boolean attribute) in the relation Feature is to define the
object existing after the point of time tgkk or not.

To reduce the number of join operations, and therefore improve the performance
of geometric queries, a relation Node representing abstract 0–cells is added, and
the relations Coordinate, and Phi are merged into a relation named Vertex. The
Figure 3.19 depicts n–TGSIS–Model in OR with redundant relation Node.

3.4.5 Assigning geoscience properties to geometry

Almost all geoscience applications need to assign geological, geophysical, geo-
chemical properties to parts of geometric objects to solve problems. For example,
exploration and production applications in petroleum fields usually require prop-
erties such as porosity, permeability, etc. Therefore, besides modeling geometric
objects evolving in space and time, properties need to be assigned to geometries
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Figure 3.18: Object–relational model of TGSIS
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Figure 3.19: Object–relational model of TGSIS with redundant relation Node
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and they also evolve in time. Properties are assigned to cells, usually either ver-
tices or volumes, of geo–objects. Figure 3.20 shows an example of two geometric
objects with properties assigned either to the vertices (Fig. 3.20a) or to the 3-cells
(Fig. 3.20b).

1.2

1.3

1.1
1.4

1.2

(a) (b)

1.4 1.51.31.2
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Figure 3.20: Porosity values are assigned either to vertices of a horizontal surface (a), or to
3–cells of a geo–object (b)

Users of the TGSIS–Model decide where to archive geo–objects and which prop-
erties should be assigned, i.e., user–defined relations in the database. These rela-
tions and their attributes are designed by database administrators and stored in
user schema. Relation Catalog and a stored procedure called TGSIS_REGISTER
are added to the model to register and keep information connecting between user
schema and internal TGSIS schema. Figure 3.21 shows a TGSIS–Model with
properties.

The “User schema” (see Fig. 3.21) comprises user–defined relations including
<FeatureLayer> and <Properties>. For example, in structural geology, relation
STRUCTURAL_HORIZONTAL is designed to store horizontal surfaces with
attributes ID for identifier, SHAPE for geometry of surface, and NAME for name
of surface. Properties POROSITY and PERMEABILITY are stored in relation
STRUCTURAL_HOR_PROS, and assigned to the vertices of these surfaces.
The stored procedure TGSIS_REGISTER is used to write register information
about user schema to the Catalog relation. The example is described in SQL
language using PostgreSQL as

• Create table STRUCTURAL_HORIZONTAL(ID bigint, SHAPE bigint, N-
AME varchar(50));

• Create table STRUCTURAL_HOR_PROS(POROSITY float, PERMEAB-
ILITY float);
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Figure 3.21: Object–relational model of TGSIS with properties

• Select TGSIS_REGISTER(’STRUCTURAL_HORIZONTAL’, ’SHAPE’, 0,
’STRUCTURAL_HOR_PROS’, 0);

Three attributes FeaID, TimeID, AcellID will be added into relation STRUC-
TURAL_HOR_PROS by procedure TGSIS_REGISTER. The TGSIS schema
comprises internal relations that cannot be changed directly by users. Relation
AbstractCell is added to reduce the number of join operations in property queries.
A node is an abstract cell with dimension (CellLevel) 0, which always assigns to
coordinates, therefore relation Node is kept to get high performance of geometric
query.

3.5 A model for multiple indexed geoscience data

In the more general approach to integrate time into space, one– or multi–dimensional
time is considered as additional spatial dimensions. This approach was used by
Worboys (1994) and, more recently, in the research by Peter van Oosterom’s group
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(Ohori et al., 2013b, van Oosterom and Stoter, 2010). This approach forms larger
dimensional objects. For example, a polygon in a two–dimensional space moving
in time is considered as a polyhedron in a three–dimensional space (two spatial
dimensions and one time dimension). The approach is extensible and generic
because it treats objects in a dimension independent manner. Additional spatial
dimensions can be interpreted as time, scale (Ohori et al., 2013b, van Oosterom
and Stoter, 2010), uncertainty (Caumon, 2010), or any non–spatial properties.

While the approach is theoretically sound, its implementation is problematic
since it requires an appropriate data structure, and methods for data modeling,
querying, and analysing. Ohori et al. (2013b) proposed the use of generalised
maps (GMaps) to represent larger–dimensional GIS datasets because GMaps are
able to represent a wide class of objects in arbitrary dimensions (see Section 3.4.1).
A method to model larger dimensional data, i.e., extrusion, was proposed by
Ohori and Ledoux (2013). Certain techniques that are necessary in order to ex-
tract meaningful 2D/3D information from larger dimensional data were presented
in Ohori et al. (2013a).

Using the method given by Ohori et al. (2013b), we model larger dimensional
geo–objects using generalised maps (Lienhardt, 1989, 1994). The data schema is
shown in Figure 3.22.
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Figure 3.22: A data schema of the model for multiply indexed geoscience data
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3.6 Summary

This chapter has presented five data models for geoscience information systems.
Two of the models represent geological surfaces existing in 3–dimensional space,
evolving in time discretely or continuously. These two data models have been im-
plemented in the PostgreSQL database management system (PostgreSQL, 2014)
to build the prototype software presented in Chapter 6. One data model rep-
resents geological objects with the geometry, topology, and physical properties
in the 3–dimensional space. A similar data model has been implemented in the
GST–Framework (Gabriel et al., 2012, GiGa-Infosystems, 2014). The TGSIS
data model, which is a general data model for objects in the domain Rm × time,
is reviewed in this chapter. The last model was proposed for multiple indexed
geoscience data in which time and other non–spatial dimensions are interpreted
as larger spatial dimensions.

Choosing which data model to be implemented is dependent on types of data.
When the application is only required to manage static 3D objects, the first
data model should be chosen. To manage surfaces changing in time discretely or
continuously, the second or third data model should be used, respectively. The
fourth data model should be used when the application is required to manage
objects with larger spatial dimensional geometries evolving continuously in one
valid time dimension. To manage objects in multiple time dimensions, the fifth
data model should be used. Each data model includes a data structure and
operations, algorithms on this data structure. For the fourth data model, only an
operation, i.e., “snapshot” is described. Other operations and algorithms is the
subject of the future work. For the fifth data model, all operations and algorithms
are also left to the future work. Many operations and algorithms on the first three
data models may immediately be inherited from geomodeling systems, such as
gOcad.





Chapter 4:

Morphological Interpolation

4.1 Introduction

Morphology is the study of the shapes or the forms of objects. In this study, the
term morphological interpolation refers to calculating the intermediate shapes be-
tween two or more known shapes. Morphological interpolation is primarily used
to construct a 3–dimensional object from its sparse 2–dimensional cross–sections
for visualisation or analysis. For example, in tomographic medical imaging, mor-
phological interpolation is used to reconstruct an organ or other object of interest,
such as the heart or a tissue, from a series of 2–dimensional slices; in the geo-
sciences, morphological interpolation provides useful tools for the 3–dimensional
modeling, visualisation, and analysis of geological bodies. Moreover, morpho-
logical interpolation can be used for morphing, decomposition, and many other
purposes.

In the context of a spatio–temporal geoscience information system, a geo–object
can be considered as it exists in the 3–dimensional Euclidean space and evolves
along the real time axis. The evolution of the geo–object is caused by certain
geological processes, such as deposition, erosion, or uplift. To correctly represent
this evolution, physical process models are required. Unfortunately, in many
cases, the physical process models are unavailable or there are insufficient data
to feed these models. The available data merely represent the object in the 3–
dimensional Euclidean space at certain time instances. These data, which include

61
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the geometry, topology, and properties, can be considered as 3–dimensional cross–
sections of a 4–dimensional object. Therefore, morphological interpolation can
aid in the construction of this object. In summary, the issue is stated as follows:

Given two data models (the triangulated mesh model or the voxel model), find
intermediate models that are as similar as possible in shape and size to the given
models.

Mathematical morphology is a theory and technique used for the analysis and
processing of geometrical structures (Heimans and Ronse, 1990, Serra, 1983).
Mathematical morphology is most commonly applied to multidimensional im-
ages. Currently, there are several studies on the application of mathematical
morphology to graphs and simplicial complexes (Cousty et al., 2009, Dias et al.,
2011, 2014). However, these studies are aimed at manipulating the values associ-
ated with the elements of the graph or the simplicial complex but do not change
the shapes of these structures. In the case of representing geo–objects by trian-
gulated mesh surfaces (a type of simplicial complex), mathematical morphology
remains useful when the following procedure is applied. First, the triangulated
mesh surfaces are converted to 3–dimensional images (voxels). Second, mathe-
matical morphology techniques are applied to these images. Finally, the processed
images are converted back to mesh surfaces.

In addition, many mesh processing techniques have been invented to directly
manipulate meshes (Botsch et al., 2010, Hormann et al., 2008). For morpho-
logical interpolation, the related techniques are mesh parameterisation, cross–
parameterisation, compatible remeshing, and mesh morphing. A morphological
interpolation using mesh processing techniques typically contains two steps. The
first step searches for a bijective map between the source mesh and the target
mesh, known as the vertex correspondence or the consistent/compatible meshes.
The second step chooses a set of trajectories along which the corresponding ver-
tices travel as they evolve from the first set of vertices into the second set of ver-
tices. This process is known as vertex path/trajectory (Alexa, 2000, Floater and
Gotsman, 1999, Liu et al., 2011, Yan et al., 2007). Regarding the first step, van
Kaick et al. (2011) provided a recent review of compatible triangulated meshes.
The compatible meshes are typically computed by subdividing two meshes into
their corresponding patches, which are homeomorphic to disks. Second, the pa-
rameterisation of the two meshes on a common base domain is calculated. Third,
the cross–parameterisation is calculated, and finally, the meshes are remeshed
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(Kraevoy and Sheffer, 2004, Praun et al., 2001).

In the scope of this thesis, we developed a new morphological interpolation
algorithm based on mesh processing techniques, tailored for the construction of
geo-objects in 4–dimensional space (Le, 2013). This algorithm includes the follow-
ing four main procedures: (1) cutting the surfaces, (2) setting up the constraints,
(3) partitioning, and (4) calculating the parameterisations and trajectories. The
algorithm especially functions with the geometry constraints in which a surface
always attaches to other surfaces (control surfaces) during its evolution.

This chapter is organised as follows. Section 4.2 reviews the mathematical mor-
phological theory and the morphological interpolation methods in the framework
of the mathematical morphology. In Section 4.3, the concepts and techniques
of mesh processing are presented. Our morphological interpolation algorithm is
reviewed in Section 4.4. Finally, Section 4.5 is devoted to the summary.

4.2 Interpolation using mathematical morphology

4.2.1 Mathematical morphology

Mathematical morphology was invented in 1964 by Georges Matheron and Jean
Serra (Serra, 1983). Mathematical morphology typically address the mathemat-
ical theory of describing shapes using sets. Mathematical morphology provides
a powerful approach to processing images including filtering, segmentation and
interpolation. Heimans and Ronse (1990) extended mathematical morphology
using complete lattices. Since then, this approach has been applied to more
complex digital structures, such as graphs, hyper–graphs, and simplicial com-
plexes. In the remainder of this section, only mathematical morphology on the
sets (multi–dimensional binary images) is presented.

The basic idea of mathematical morphology is the use of a pre–defined shape,
called structuring element, to probe an image to draw conclusions on whether
this shape fits the shapes in the image. A structuring element itself is also a
binary image. The two basis morphological operations are dilation and erosion.
The sequential combination of these two operations gives rise to more complex
operations. Denote the translation of the set X by the vector t as Xt = {p|p− t ∈
X} and the point–inversion of a set B as B̌ = {−b|b ∈ B}. The dilation δ(X) of
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a set (binary image) X by the structuring element B is defined by the formula

δB(X) = {p|Bp ∩X 6= ∅} (4.1)

or
δB(X) =

⋃
b∈B

X−b. (4.2)

The erosion ε(X) of a set X by a structuring element S is defined by the formula

εB(X) = {p|Bp ∈ X} (4.3)

or
εB(X) =

⋂
b∈B

X−b. (4.4)

Using Minkowski sum,
⋃
b∈BXb , and Minkowski difference,

⋂
b∈BXB , dilation

and erosion are
δB(X) = X ⊕ B̌

and
εB(X) = X 	 B̌

Thus, if the structuring element B is symmetrical, i.e. B = B̌, dilation and
erosion are equivalent to Minkowski sum and Minkowski difference, respectively.

4.2.2 Morphological interpolation in the framework of

mathematical morphology

Iwanowski (2014) presented certain interpolation algorithms that were devel-
oped by J. Serra (Serra, 1994, 1998), F.Meyer (Meyer, 1994a,b), and S. Beucher
(Beucher, 1994, 1998).

Morphological interpolation by the Hausdorff distance

J. Serra (Serra, 1994, 1998) used the notation of the Hausdorff distance, defined
as follows. The Hausdorff distance between two sets X and Y is defined according
to the following equation:

ρ(X, Y ) = max{supx∈Xd(x, Y ), supy∈Y d(y,X)} (4.5)
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where d(x, Y ) = inf{d(x, y) : y ∈ Y }. The Hausdorff distance can also be defined
according to the following equation:

ρ(X, Y ) = inf{λ : X ⊆ δλ(Y );Y ⊆ δλ(X)} (4.6)

where δλ(X) is the dilation of X by the compact ball centred at the origin and
the radius λ. The first Hausdorff geodesic interpolation between set X (initial
image) and set Y (final image) is given by the following equation:

Zα = δαρ(X) ∩ δ(1−α)ρ(Y ), α ∈ [0, 1], (4.7)

where ρ is the Hausdorff distance between X and Y and coefficient α determines
the relative position of the interpolated set Zα.

The second Hausdorff geodesic interpolation is restricted only to the case in
which both of the sets X and Y are convex. The formula (1−α)X⊕αY indicate
that the dilation of set X is reduced by the factor (1−α) with the structuring el-
ement equal to set Y reduced by the factor α. The interpolation can be expressed
as follows:

Zα = δαρ(X) ∩ δ(1−α)ρ(Y ) ∩ (1− α)X ⊕ αY, α ∈ [0, 1]. (4.8)

To avoid excessively large sizes of interpolated sets, the Hausdorff distance
between the sets can be reduced. This reduction can be performed by moving
the sets to a common position using a displacement vector. Then, the interpolated
set is produced. Finally, the interpolated set is moved to its proper position using
the displacement vector in the first step.

Morphological median

The morphological median of two sets is a new set (the median set) that has a
shape midway between the shapes of the two initial sets. In this subsection, we
use the notation of the influence zones of the sets. If P1, P2, . . . , Pn are disjointed
sets, then the influence zone of Pi is the locus of those points that are closer to
Pi than to any of the other sets. If only two sets are involved, then P and Q

(Q ⊂ P ), the influence zone of Q with respect to the complement of P , P c, is still
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called the influence zone of Q inside P , according to the following expression:

IZP (Q) = {x : d(x,Q) < d(x, PC)}. (4.9)

The influence zone defined by Equation 4.9 represents a median set between the
two initial sets, one included in the another, according to the following equation:

M(P,Q) = IZP (Q). (4.10)

The median set also satisfies the following equation:

M(P,Q) =
⋃
∀λ

{(Q⊕ λB) ∩ (P 	 λB))}, (4.11)

where ⊕λB is the dilation of size λ and 	λB represents the erosion of size λ,
both with the elementary structuring element B.

In the case of two sets with a non–empty intersection (X ∩Y 6= ∅), the median
set of X and Y is defined by the influence zone of X ∩ Y in X ∪ Y , according to
the following equation:

M(X, Y ) = IZ(X∪Y )(X ∩ Y ) =
⋃
∀λ

{((X ∩ Y )⊕ λB) ∩ ((X ∪ Y )	 λB)}. (4.12)

In the Equation 4.12, the median set M(X, Y ) can be calculated using the fol-
lowing iterative procedure.

First, three auxiliary sets, Z, W , and M are assigned as follows:

Z0 = X ∩ Y,
W0 = X ∪ Y,
M0 = X ∩ Y.

(4.13)

New values of Zi, Wi, and Mi are computed iteratively, as follows:

Zi = Zi−1 ⊕B,
Wi = Wi−1 	B,
Mi = (Zi ∩Wi) ∪Mi−1.

(4.14)

The iterations are performed until idempotence, i.e., Mi = Mi+1.
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Interpolation function

The interpolation function method was introduced by F. Meyer (Meyer, 1994a,b).
The interpolation function is a distance function. The method requires that the
two initial sets have a non–empty intersection. This requirement can be released
by moving both of the sets into a common position.

Let X and Y be the initial and final sets, respectively. The interpolated image
between the sets should be generated as a union of the appropriate intermediary
set between X and X ∩ Y and the appropriate intermediary set between X ∩ Y
and Y . The interpolation function between the set U = X ∩ Y and V = Y is
constructed as follows.

First, the geodesic distance d1 to V C in UC is calculated. The level lines of this
distance can be obtained by successive geodesic erosions of V in UC . Second, the
geodesic distance d2 to U in V is calculated by the successive geodesic dilations of
U in V . The final interpolation function is generated using the following equation:

d =
d1

d1 + d2

. (4.15)

An appropriate interpolator can be defined as follows:

IntVU (α) = {x : d(x) ≤ α}, α ∈ [0, 1]. (4.16)

To obtain the interpolated set between the two sets X and Y (with a non–
empty intersection) at level α, we threshold the interpolation function between
Y ∩X and X at level α and threshold the interpolation function between X ∩ Y
and Y at level (1−α). The final interpolated set is obtained by taking the union
of the results of both of the thresholded distance functions, as follows:

InterpolYX(α) = IntX(X∩Y )(α)
⋃

IntY(X∩Y )(1− α), α ∈ [0, 1]. (4.17)

Morphological shape–based interpolation

Bors et al. (2002) proposed the morphological shape–base interpolation method
to reconstruct the n–dimensional object from a group of (n–1)–dimensional sets
representing sections of that object. Let P and Q be two sets representing two
shapes in an n–dimensional space denoted as E. The goal of this method is to
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construct a sequence of sets showing a gradual transition between the two given
shapes.

The transformation influences the elements located on the boundary of the set
P , as follows:

CP = {c : c ∈ P, ∃c1 ∈ PC , c1 ∈ NB(c)} (4.18)

where NB(c) denotes the neighbourhood of the element c that has the same size
and shape as the structuring element B. In the morphing operation, the element
of a boundary set CP changes differently according to its correspondence with the
other given set Q. This change is defined by a sequence of dilation and erosion
operations. Three possible correspondence cases are defined as follows.

The first case occurs when the border region of one set corresponds to the
interior of the other set. In this case, dilations are applied to the border elements,
as follows:

If pm ∈ CP ∧ qm ∈ Q− CQ
then perform pm ⊕B1

where B1 is the structuring element. The second case occurs when the border
region of one set corresponds to the background of the other set. In this case,
erosions of the boundary elements are performed as follows:

If pm ∈ CP ∧ qm ∈ QC

then perform pm 	B1.

In the last case, both of the corresponding elements are members of their set
boundaries, and no change is required.

If pm ∈ CP ∧ qm ∈ CQ
then perform no change.

The morphing transformation applied to set P depending on set Q and on the
structuring element B1 is defined as follows:

f(P |Q,B1) = [(P 	B1) ∪ ((P ∩Q)⊕B1)] ∩ (P ∪Q). (4.19)

Similarly, the morphing operation is defined on set Q depending on set P and on
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the structuring element B2:

f(Q|P,B2) = [(Q	B2) ∪ ((P ∩Q)⊕B2)] ∩ (P ∪Q). (4.20)

Theorem 4.1 We can always generate an intermediary set between two sets P
and Q, satisfying P ∩Q 6= ∅, by iterating the set transformations defined by two
equals onto their previous iteration output sets until idempotency.

Theorem 4.1 was proven by Bors et al. (2002). Using this theorem, the median
set of two initial sets can be constructed using the same structuring element for
both of the above equations.

4.3 Interpolation using mesh parameterisation

4.3.1 Mesh parameterisation

The parametric representations of a surface S are defined by a vector–value pa-
rameterisation function f : Ω→ R3, where Ω ⊂ R2 is the parameter domain. In
many applications, the function f and the parameter domain Ω are unknown, but
the surface S is given, primarily in triangulated or polygonal mesh forms. Finding
a function f and Ω (in certain cases) from a given S is referred to as parameteri-
sation. The initial application of parameterisation found in computer graphics is
mapping of textures onto surfaces. Beyond this application, parameterisation is
currently used for many mesh processing applications, including detail–mapping,
detail–transfer, morphing, mesh–editing, mesh–completion, remeshing, compres-
sion, surface–fitting, and shape–analysis (Botsch et al., 2010, Hormann et al.,
2008).

Assume that we are given a triangulated mesh S that is a set of triangles
T = {T1, T2, . . . , Tm} that intersect only at common edges E = {E1, E2, . . . , El}
and vertices V = {p1, p2, . . . , pn, . . . , pn+b}. More specifically, the set of vertices
consists of n interior vertices VI = {p1, p2, . . . , pn} and b boundary vertices VB =

{pn+1, pn+2, . . . , pn+b}. Two distinct vertices pi, pj ∈ V are called neighbours if
they are the end points of an edge E = [pi, pj] ∈ E , and for any pi ∈ V , we
denote Ni = {j : [pi, pj] ∈ E} as the set of indices of all of the neighbours of pi.
Because S is known and Ω is unknown, parameterisation methods typically find
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the inverse of f , denoted by g = f−1. Let us review the simplest case in which
S is a triangle defined by three distinct points in R3, T (p1, p2, p3), and Ω is also
a triangle defined by three distinct points in R2, t(u1, u2, u3). Every point p in
S can be written in a unique formula as a barycentric combination of the corner
points, as follows:

p = αp1 + βp2 + γp3, (4.21)

where α + β + γ = 1, α, β, γ ≥ 0.

We can now define a linear mapping f : Ω→ S with the following:

αu1 + βu2 + γu3 → αp1 + βp2 + γp3.

It is simple to prove that the function f is a bijective function from triangle t in
2D space to triangle T in 3D space. Hence, the inverse function of f, g = f−1, is
defined.

From the above review, we can conclude that mapping g is uniquely deter-
mined by specifying the parameter points ui = g(pi) for each vertex pi ∈ V and
demanding that g is continuous and linear for each triangle. Specifically, gT is
the linear map from a surface triangle T [pi, pj, pk] to the corresponding parameter
triangle t[ui, uj, uk], and ft = (gT )−1 is the inverse linear map from t to T . The
parameter domain Ω is the union of all of the parameter triangles. To have a valid
parameterisation f , which is a piecewise linear function defined by a set of ft, it
is required that the parameter domain Ω does not self–intersect, indicating that
the intersection of any two triangles in the parameter space is either a common
edge, a common vertex, or empty.

Briefly, the goal of mesh parameterisation is to find a set of coordinates (ui, vi)

associated with each vertex pi of the mesh such that the image of this mesh in
the parameter space does not self–intersect.

Parameterisations based on barycentric coordinates

Constructing a parameterisation of a triangle mesh can be performed based on
the following physical model. It is imagined that the edges of the triangle mesh
are ideal springs, i.e., the remaining length is zero, and the potential energy is
1
2
Ds2, where D is the spring constant and s is the length of the spring. Then, the

boundary of this spring network is glued somewhere in the plane so the interior of



4.3. Interpolation using mesh parameterisation 71

this network relaxes with the most efficient energy of the configuration. Finally,
we simply assign the positions where the joints of the network have come to as
parameter points.

The overall spring energy is determined by the following formula:

E =
1

2

n+b∑
i=1

∑
j∈Ni

1

2
Dij||ui − uj||2. (4.22)

In this formula, Dij = Dji is the spring constant of the spring between pi and
pj, the parameter positions ui = (ui, vi) are known for all i = n + 1, . . . , n + b,
i.e., the boundary points and are unknown for all i = 1, . . . , n, i.e., the interior
points.

The minimum value of E is obtained when the following expression is true:

∂E

∂ui
= 0, i.e.,

∑
j∈Ni

Dij(ui − uj) = 0 or ui
∑
j∈Ni

Dij =
∑
j∈Ni

Dijuj (4.23)

for all i = 1, . . . , n. This equation shows that each interior parameter point ui is
an affine combination of its neighbours, i.e., according to the following expression:

ui =
∑
j∈Ni

λijuj, (4.24)

with normalised coefficients according to the following expression:

λij = Dij/
∑
k∈Ni

Dik

that sums to 1.

Separating the known and the unknown parameter points on the right hand
side of Equation 4.24 we have the following equation:

ui −
∑

j∈Ni,j≤n

λijuj =
∑

j∈Ni,j>n

λijuj. (4.25)

Computing the coordinates ui and vi of the interior parameter points ui(ui, vi)

requires solving the two following linear systems of equations:

AU = U and AV = V . (4.26)
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In Equations 4.26, U = (u1, . . . , un) and V = (v1, . . . , vn) are the column
vectors of the unknown coordinates, and U = (u1, . . . , un) and V = (v1, . . . , vn)

are the column vectors with the following coefficients:

ui =
∑

j∈Ni,j>n

λijuj and vi =
∑

j∈Ni,j>n

λijvj. (4.27)

The matrix A = (aij)i,j=1,. . . ,n is the n× n matrix with the following elements:

aij =


1 if i = j,
−λij if j ∈ Ni,
0 otherwise.

The two sparse linear systems of equations 4.26 can be solved efficiently by
solvers, including OpenNL (OpenNL, 2014), Eigen (Guennebaud et al., 2010),
and TAUCS (Toledo et al., 2014).

The remaining question is to determine the spring constants Dij in the spring
model or to determine the normalised coefficients λij in Equation 4.24. W. T.
Tutte (Tutte, 1960, 1963) computed straight line embeddings of planar graphs
in which the spring constants were chosen as 1, i.e., Dij = 1. Greiner and
Hormann (1997) chose the spring constants in proportion to the lengths of the
corresponding edges in the triangulated mesh. However, a primary disadvantage
of both of these approaches is that they do not satisfy the following minimum
requirement expected from any parameterisation method.

Definition 4.1 Linear reproduction

Suppose that S is contained in a plane so that its vertices have coordinates
pi = (xi, yi, 0) with respect to an appropriately chosen orthonormal coordinate
frame. Then, a globally isometric (thus, optimal) parameterisation can be defined
using the local coordinates xi = (xi, yi) as the parameter points themselves, that
is, by setting ui = xi for i = 1, ..., n+ b. Because the overall parameterisation is
a linear function, we say that a parameterisation method has linear reproduction
if it produces this isometric mapping in this setting. (Hormann et al., 2008)

The linear reproduction requirement can be achieved if the parameter points
for the boundary vertices are set correctly and the values of λij are chosen such
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that the following expression is true:

xi =
∑
j∈Ni

λijxj and
∑
j∈Ni

λij = 1 (4.28)

for all of the interior vertices. These values, λij, are also called the barycentric
coordinates of xi with respect to its neighbours xj, j ∈ Ni. A. F. Möbius in-
troduced (1827) the concept that any position inside a simplex can be uniquely
defined as the average point, or barycentre, of the masses placed at its vertices.
Therefore, when a vertex xi has exactly three neighbours, its coordinates, λij,
are uniquely defined. This result is false for any polygon with more than three
vertices, i.e., there are certain methods of defining the barycentric coordinates of
a point in the polygon. Floater et al. (2006) presented a common framework for
the determination of the barycentric coordinates that is briefly shown as follows.
Given an interior point xi, let xj be one of its neighbours, let rij = ||xi − xj||
be the length of the edge eij = [xi,xj], and let the angles at the corners of the
triangles adjacent to eij be denoted as shown in Figure 4.1.
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Figure 4.1: Notation of the angles

The most popular formulas used to define the coordinates include the Wachs-
press, the discrete harmonic, and the mean value, as shown below.

• Wachspress coordinates:

wij =
cotαji + cotβij

r2
ij

.

• Discrete harmonic coordinates:

wij = cotγij + cotγji.
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• Mean value coordinates:

wij =
tan

αij

2
+ tan

βji
2

rij
.

From these values, wij, and the barycentric coordinates λij of xi are defined by
the following formula:

λij = wij/
∑
k∈Ni

wik.

The three choices mentioned above can be directly applied to triangulated
meshes without projecting each interior vertex and the neighbours of that vertex
into the plane. In certain configurations, the Wachspress and discrete harmonic
coordinates can receive negative values, whereas the mean value coordinates are
always positive. When certain weights, wij, are negative, the parameter space can
be a self–intersection (invalid parameterisation). However, if all of the weights
are positive, and the parameter points of the boundary vertices form a convex
polygon, then the parameter space cannot be a self–intersection (valid param-
eterisation). The latter fact, i.e., a convex boundary, has first been proven in
the literature (Tutte, 1963) for the special case of λij = 1/ηi where ηi = #Ni is
the number of pi’s neighbours. Moreover Floater (1997) presented that the proof
is also true for arbitrary positive weights λij. The Tutte’s barycentric mapping
theorem is stated as follows:

Theorem 4.2 Given a triangulated surface homeomorphic to a disk, if the (u, v)

coordinates at the boundary vertices lie on a convex polygon, and if the coordinates
of the internal vertices are a convex combination of their neighbours, then the
(u, v) coordinates form a valid parameterisation (without self–intersections).

The solvability of the linear systems of Equations 4.26 is an important issue
that must be addressed. It has been proven that the matrix A is guaranteed
to be non–singular for discrete harmonic (Pinkall et al., 1993) and mean value
coordinates (Floater, 1997).

Parameterisations based on distortion measures

Another approach to find a parameterisation f of a surface S over a parameter
domain Ω is based on the idea of minimising the overall distortion of the parame-
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terisation. Using differential geometry, the distortion is constant per triangle with
the singular values σt1 and σt2, and the overall distortion is given in the following
equation:

E(f) =

∑
t∈Ω E(σt1, σ

t
2)A(t)∑

t∈Ω A(t)
. (4.29)

We also consider the overall distortion of the inverse parameterisation g = f−1,

E(g) =

∑
T∈S E(σT1 , σ

T
2 )A(T )∑

T∈S A(T )
. (4.30)

The advantage of the E(g) is that the sum of the surface triangle areas in the
denominator is constant; therefore, it can be ignored upon minimisation.

Harmonic Maps:

The harmonic map parameterisation method considers the Dirichlet energy of
the inverse parameterisation g, which is given by E(g) in Equation 4.30 with the
local distortion measure given in the following equation:

ED(σ1, σ2) =
1

2
(σ2

1 + σ2
2). (4.31)

In this case, the energy E(g) is quadratic in the parameter points ui. Therefore,
the energy can be minimised by solving a linear system of equations. The inverse
f = g−1 of the solution, the harmonic map g, is exactly the barycentric mapping
with discrete harmonic coordinates. The disadvantage of this method is that the
boundary of the parameterisation must be fixed in advance. If this requirement
is not satisfied, the parameterisation degenerates, because the ED value takes its
minimum for mappings with σ1 = σ2 = 0 so that an optimal parameterisation is
one that maps all of the surface triangles T to a single point.

Conformal Maps:

The conformal maps method uses the conformal energy as a local distortion
measure in Equation 4.30, as follows:

EC(σ1, σ2) =
1

2
(σ1 − σ2)2. (4.32)

Minimising this energy leads to solving a linear system of equations. Only two
of the boundary vertices must be fixed to have a unique solution. It is clear that
the conformal energy EC is minimal when σ1 = σ2; however, it is not the only
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energy that favours conformability. Another energy, called MIPS (Most Isometric
ParametrisationS), was introduced by Hormann and Greiner (2000) and uses the
following equation:

EM(σ1, σ2) =
σ1

σ2

+
σ2

σ1

=
σ2

1 + σ2
2

σ1σ2

. (4.33)

This energy is minimal if and only if σ1 = σ2. An advantage of this distortion
measure is the symmetry with respect to inversion, according to the following
equation:

EM(σT1 , σ
T
2 ) = EM(σt1, σ

t
2).

Thus, this calculation measures the distortion of the mappings ft and gT simulta-
neously. The disadvantage of this method is that it results in solving a non–linear
problem. However, EM(f) is a quadratic rational function in the ui, and EM(g)

is a sum of quadratic rational functions. Both of these energies can be minimised
with standard gradient descent methods. Moreover, this method guarantees the
bijectivity of the resulting map.

4.3.2 Cross–parameterisation and compatible remeshing

Constructing a cross–parameterisation between two meshes involves determining
the bijective mapping between these meshes. The most common approach is to
parameterise both of the meshes on a common base domain, e.g., a simplicial
complex or a sphere. The final map is obtained by the composition of these
parameterisations. Another approach is based on energy functions by which one
mesh is directly attracted towards the other. The energy function consists of
components that pull the vertices of one mesh towards the nearest locations on
the other while attempting to maximally preserve the shape of the mesh.

Praun et al. (2001) presented a method using a simplicial complex as a common
base domain. Given a simplicial complex as a base domain of the two meshes,
users draw a network of paths between the feature vertices corresponding to the
vertices of the simplicial complex to partition both meshes into triangular patches
homeomorphic to disks. A parameterisation function of each patch on the cor-
responding face of the simplicial complex is constructed using a fixed–boundary
parameterisation method. Finally, cross–parameterisation is constructed from
these parameterisations.
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Kraevoy and Sheffer (2004) extended the method of Praun et al. (2001) to
automatically construct the network of paths. Moreover, the method may split
the existing mesh edges when required. The input to the methods includes a set
of correspondences between the feature vertices on the two input models. The
method uses those sets as the vertices of the base complex.

Some methods use an energy–driven approach such as those proposed by Allen
et al. (2003), and Sumner and Popović (2004). These methods require the user
to specify many point–to–point correspondences between the two input models.
These methods work well when the meshes are very similar, and they are sen-
sitive to the weights used inside the energy function, considering the different
components.

In the interpolation and the morphing applications, it is insufficient to obtain
only a cross–parameterisation between the two meshes. For these applications,
the two meshes are required to have the same connectivity. There are three
primary approaches to generate this common connectivity, as shown below.

• Base mesh subdivision: Praun et al. (2001) used the base mesh connec-
tivity and refined it by the one–to–four subdivision pattern. Therefore, the
geometries of both models are captured in as many levels of subdivisions as
required. This method is simple, but the disadvantage is that it depends on
the shape of the base mesh triangles. To reach to an appropriate precision,
the method must generate a large number of triangles, approximately 10
times that of the input mesh sizes.

• Overlay: Intersecting the two input meshes in the parameter domain to
generate a common connectivity is another approach (Alexa, 2000, Schreiner
et al., 2004). The common connectivity is constructed by combining all of
the vertices of the two input meshes and the new vertices generated by
the intersection. The method exactly preserves the input geometries but is
difficult to implement, and the number of triangles is excessively large.

• Remeshing: Kraevoy and Sheffer (2004) proposed an alternative method
in which the connectivity of one input meshes is used as a basis and then
refined as required based on an approximate error with respect to the second
mesh. The resulting mesh depends on the input mesh chosen as the basis,
and it is only an approximation of the target mesh.
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4.4 TGSIS morphological interpolation

This interpolation method was proposed to build up 4–dimensional model from
3–dimensional sections given at time instances. The 4–dimensional models are
the input data for TGSIS. The method directly uses triangulated surfaces which
represent geological objects. It is also tailored for geological interpreted surfaces
with geometrical constraints. In this section, the underlying concepts of the
method are introduced.

Let M be a triangulated mesh in R3. Methods to represent a mesh have been
developed, with examples described in (Botsch et al., 2010). In short, we consider
a mesh to be a pair of a sequence of its vertices and its topology, M = (V, T ). V
is a sequence of n distinct points, vi = (xi, yi, zi) in R3. V can also be considered
a map from the index set I = {1. . . n} to R3, where V (i) = vi for all i =

1, . . . , n. T is the topology or the structure of the mesh entirely defined on the
index set I. The topology defines the set of triangles or faces, the set of edges,
the set of boundaries and the set of interior/boundary vertices of the mesh (see
Section 2.5.4).

The method models data in the time interval [ti, ti+1] from data at time in-
stances ti and ti+1 by smoothly changing a source mesh into a target mesh.
Choosing data at ti as the source mesh and data at ti+1 as the target mesh, or
vice versa, depends on the user. However, the algorithm is designed in a way
that it will become faster (because cutting paths are not required in the target
mesh) when the more complicated mesh (more vertices or complicated topology)
is chosen as the source mesh. We always denote the source mesh as Ms and the
target mesh as Mt. The following paragraphs define some of the special terms
used to describe the algorithm.

A control vertex of the mesh M(V, T ) is a user–selected vertex vi ∈ V . A path
in mesh M(V, T ) is a sequence (vp1 , vp2 , . . . , vph), where pi ∈ I and [vpi , vpi+1

] is
an edge of M for all i = 1, . . . , h − 1. A Boundary path is a path in which all
of its vertices are in the boundaries. The cutting path and fence path are paths
used in the cutting procedure and the partition procedure, respectively.

A unit regular k–polygon, k ≥ 3, is a simple polygon with k vertices in a certain
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plane, such that coordinates of its vertices are defined by the formula,

vi = (cos(
2π

k
(i− 1)), sin(

2π

k
(i− 1)),

for all i in {1. . . k}.

The error ε(M,N) between two meshes, M and N , is defined by the form

ε(M,N) = max{max{dist(x,N) : x ∈ VMI
},max{dist(x,M), : x ∈ VNI

}},

where VMI
is a set of interior vertices of M , VNI

is a set of interior vertices of N
and dist(x, L) (the distance between a point p and a mesh L) is the minimum
distance between the point p and those in L. Note that in this term, we consider
only interior vertices, not boundary vertices.

Definition 4.2 Two meshes, M(V, T ) and N(U,G), are compatible, if (i) V and
U have the same total number of vertices and they are corresponding in their
order, i.e., a trivial map, h, exists, such that h(vi) = ui for all i = 1, . . . , n; and
(ii) T = G.

Definition 4.3 Given m ≥ 2 and an n–vertices mesh M(V, T ), trajectories of
the mesh M(V, T ) that represent its continuous evolution into its compatible mesh
N(U, T ) are n distinct line strings, such that for each line string, m vertices
exist, i.e., the ith line string, pi = (wi1, w

i
2, . . . , w

i
m), and wi1 = vi, w

i
m = ui for all

i = 1, . . . , n.

Definition 4.4 Given m ≥ 2, an n–vertices mesh M(V, T ) and its compatible
mesh N(U, T ), linear trajectories of the mesh M(V, T ) are trajectories of M ,
where each vertex of a trajectory, pi = (wi1, w

i
2, . . . , w

i
m), is defined as

wij = vi +
j − 1

m− 1
(ui − vi)

for all i = 1, . . . , n; j = 1, . . . ,m.

Figure 4.2 presents a block diagram of the algorithm containing the four main
procedures. First, the cutting procedure adds “missing” boundaries to the meshes,
such that the error between the old and new meshes is zero. Second, the setting up
constraints procedure sets up control vertices, the pairs of control vertices between
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the source mesh and the target mesh, fence paths and the attaching constraints
of boundary vertices. Third, the partition procedure subdivides the source mesh
and the target mesh into corresponding pairs of source patches and target patches,
such that every patch is homeomorphic to a disk. Fourth, the calculating pro-
cedure calculates cross–parameterisation, generates compatible meshes and finds
trajectories for each pair of patches. Finally, these results are combined to achieve
the final result for the original source mesh and the original target mesh. The first
two procedures are user interactive procedures, while the last two are automatic.
Moreover, the first two create input data for the last two.
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Figure 4.2: The block diagram of the algorithm

4.4.1 Cutting

Missing boundaries of the source mesh and the target mesh exist, due to the
faulting or fracturing phenomena. Cutting paths are created to represent these
missing boundaries. They are created in the source mesh to represent naturally
occurring faults or fractures that first begin appearing in the source surface and
then evolve into fractures in the target surface. Cutting paths are not required to
be created in the target mesh to represent faults or fractures already existing in
the source surface and evolving to disappear in the target surface. In the latter
situation where cutting paths are not required, fence paths are created instead.

Let P be a set of user–selected cutting paths in M . This procedure cuts the
meshM by P . Three types of cutting paths are supported, as shown in Figure 4.3.
All vertices and edges of cutting paths are duplicated (as in Figure 4.3a), except
for a one–end vertex (as in Figure 4.3b) or two–end vertices (as in Figure 4.3c).
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Blue dashed circles represent duplicated vertices.
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Figure 4.3: Cutting meshes by cutting paths. (a) All vertices and edges are duplicated. (b)
All vertices and edges, except for a one–end vertex, are duplicated. (c) All vertices and edges,
except for two–end vertices, are duplicated

Because the procedure is completed as described above, the error between the
old mesh and the new mesh is zero. After this procedure, we still denote Ms and
Mt as the source mesh and the target mesh, respectively.

4.4.2 Setting up Constraints

The algorithm uses four types of constraints: control vertex, control vertex pair,
fence path, and attaching constraint. The user selects all of the constraints man-
ually with automatic tools, such as finding the shortest path between two–end
vertices. Control vertices and control vertex pairs present fixed (known) corre-
sponding vertices and are used to control the correspondence of other vertices.
Control vertices are often corner vertices. The control vertices in the source mesh
and the target mesh are represented by two sequences of control vertices, Vc and
Wc, respectively, such that they deduce control vertex pairs by their order, i.e.,
(vc,i, wc,i) is a control vertex pair. Fence paths are used to alter cutting paths in
the target mesh or to partition the source mesh and the target mesh into patches
that are homeomorphic to disks. Fence paths are required to connect exactly two
control vertices, for example, a fence path with h vertices in the source mesh, Ms,
p(vp1 , vp2 , . . . , vph), satisfies the following conditions: vp1 , vph ∈ Vc and vpi /∈ Vc

for all i = 2, . . . , h − 1. All fence paths of the source mesh or target mesh cut
each other only at their end vertices. Figure 4.4 depicts an example of control
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vertices, control vertex pairs (by corresponding order) and fence paths.
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Figure 4.4: An example of control vertices, control vertex pairs and fence paths

The attaching constraints present the adhesion of the vertices of the source
mesh to the controlling surfaces during the evolution of the source mesh. If a
1–controlling surface attaching constraint is imposed on a vertex of the source
mesh, this vertex will always be located on the controlling surface during its evo-
lution. Similarly, if a 2–controlling surface attaching constraint is imposed on a
vertex of the source mesh, this vertex will always be located on the line that is
the intersection of the two controlling surfaces. The method delimits that the
attaching constraints are only imposed on boundary vertices of the source mesh
and that there are a maximum of two controlling surfaces involved in each at-
taching constraint. Furthermore, all vertices attached to two surfaces must be
control vertices. Through these attaching constraints, each boundary vertex of
the source mesh attaches to no surface, one surface or two surfaces. Figure 4.5
presents an example of attaching constraints. In this figure, boundary vertices, 1,
2, 3 and 4, attach to one surface (S1), (i.e., 1–controlling surface attaching con-
straint), boundary vertex 5 attaches to two surfaces (S1, S2), (i.e., 2–controlling
surface attaching constraint) and the other boundary vertices do not attach to
any surface, meaning that there are no attaching constraints imposed on these
boundary vertices.

4.4.3 Partition

This procedure starts with the DefinePatches sub–procedure, dividing both the
source mesh and the target mesh into patches by fence paths and their boundaries.
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Figure 4.5: An example of attaching constraints

Procedure DefinePatches(Mesh M, Set_of_Fence F, Set_of_Mesh P)

{

//input a mesh M(V,T); a set of fence paths F

// output a set of meshes or a set of patches P

Attach an integer field named patchid to all edges of M.

For each edge e in M{

if e in any fence f of F then e.patchid = -1;

else e.pathid = 0;

}

PATCH = 0; STACK = Empty;

For each edge e in M{

if (e.pathid == 0) then{

PATCH=PATCH + 1;

e.patchid = PATCH; STACK.push(e);

}

While (not STACK.isEmpty ()){

e1 = STACK.pop();

For each edge e2 in each triangle containing e1

and e2.patchid = 0

{

e2.patchid = PATCH;

STACK.push(e2);

}

}

}

Create a set of mesh P from the values in field patchid

of all edges of M.
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}

After the DefinePatches sub–procedure, the source mesh and the target mesh
are partitioned into two sets of patches. This sub–procedure is consistently suc-
cessful for any type of mesh and set of fence paths. Next, we check if each patch
contains at least three control vertices and that all control vertices are in its
boundary. We also check if each patch is homeomorphic to a disk. If the check
fails, the first two procedures, i.e., cutting and set–up constraints, need to be re-
peated. Some reasons for this failure are as follows: (1) there are too few control
vertices; (2) there exists a control vertex, which is not on the boundaries or fence
paths; or (3) a hole exists in a patch. The requirement of disk homeomorphism
can be satisfied for any type of mesh through the cutting procedure.

After all of the above steps, meshes Ms and Mt are partitioned into the same
number of patches, k. If this condition is not satisfied, all of the above steps
need to be repeated to set up more fence paths. This condition can be satisfied
for any type of mesh through the set of user–defined fence paths. Discovery of
the corresponding patches is accomplished by identifying the control vertices and
their order in each patch. The result of this step is a set of patch pairs (Pi,s, Pi,t)

for all i in {1. . . k}. Once again, if such a set of patch pairs is not found, all of the
above steps are repeated. The cause of this failure is the lack of correspondence
between the control vertices. This step will be successful if the control vertices
and their order are correct.

4.4.4 Calculating

In this procedure, we work with each source patch and its corresponding target
patch pair, denoted by (Ls, Lt). This procedure contains two sub–procedures:
calculating the cross–parameterisation (or constructing compatible meshes) sub–
procedure and the finding trajectories sub–procedure.

Calculating Cross–Parameterisation or Constructing Compatible Meshes

This sub–procedure is used to construct a new mesh that is compatible with the
source mesh and that approximates the target mesh. The new mesh and the
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source mesh are compatible in the sense of having one–to–one correspondence
between their vertices, edges and faces (Definition 4.2). The new mesh and the
target mesh are considered well approximated if the distance or the error between
them is smaller than the user’s threshold. Splitting a few triangles of the source
mesh will reduce the error between the new mesh and the target mesh. In the
following paragraphs, more detailed descriptions of the algorithm are given.

Given two patches or triangle meshes, Ls(V, T ), Lt(W,F ), both are homeomor-
phic to disks. Let Ics = (ics,1. . . ics,k) and Ict = (ict,1. . . ict,k) be index sequences
of k, k ≥ 3, with distinct control vertices in Ls and Lt, respectively; addition-
ally, a correspondence exists between the index sequences by their order. All
control vertices are in the boundary of their meshes and are in a clockwise or
counterclockwise order. To construct compatible meshes, we first find a bijection
between the two meshes and, then, construct a new mesh using this map.

In the first step, we map both patch boundaries to the boundary of a unit
regular k–polygon using the “chord” length method for each boundary path (Fig-
ure 4.6), i.e., mapping f from a path p(vp1 , vp2 , . . . , vph) with h vertices to a
segment s(x1, x2) of the unit regular k–polygon. This method is defined by the
following formula:

f(vp1) = x1; f(vpi) = f(vpi−1
) +

length(vpi , vpi−1
)

length(p)
(x2 − x1)

for all i in 2, . . . , h, where

length(p) =
h∑
j=2

length(vpj , vpj−1
).
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Figure 4.6: An example of the “chord” length method

Subsequently, we use mean value parameterisation (Floater, 1998, 2003) to
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obtain bijective maps, gs and gt, from Ls and Lt, respectively, to this unit regular
k–polygon. The composition map, g = g−1

t × gs, is a bijection from Ls to Lt.
Figure 4.7 displays an example of these parameterisations.
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Figure 4.7: Parameterisations to the unit regular k–polygon

In the second step, we construct a new mesh Lst by a set of its vertices, which
is an image of V through g, U = g(V ), and the topology T of Ls, i.e., Lst(U, T ).
Note that Lst is a compatible mesh of Ls; all of its vertices are on Lt, and it
is an approximate mesh of Lt. We require that Lst is a “good” approximation
of Lt, i.e., the error between Lst and Lt is smaller than the user’s threshold.
Because all of the vertices of Lst are on Lt, the distance from every vertex of
Lst to Lt is zero. Therefore, the error between Lst and Lt is the maximum of
the distances from the interior vertices of Lt to Lst, as shown in the definition
of terms. To obtain a smaller error than the user’s threshold, we complete the
following procedures. For each interior vertex wi of the target mesh Lt(W,F ), if
the distance di from wi to the mesh Lst(U, T ) is greater than the user’s threshold
ε and the triangle (vi, vj, vh) contains a point p where ||wi, p|| = di, we subdivide a
triangle (vi, vj, vh) into three triangles by inserting a new point at its centroid and
updating Ls (clearly, the error between the old Ls and the updated Ls is zero, so
for clarity, we still denote the updated mesh by Ls(V, T )). Figure 4.8 presents an
example of this subdivision. If such a modification has been completed, then the
new mesh Lst would need to be constructed and checked for error again. Notice
that this subdivision reduces the error between Lt and Lst and does not affect
other patches.

After the above two steps, Ls(V, T ) and Lst(U, T ) are compatible meshes, and
the error between Lst and Lt is smaller than the threshold ε. This mesh pair can be
represented by the mesh Ls(V, T ) and a sequence of displacement vectors, where
each displacement vector is the difference of a vertex u in U and its corresponding
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Figure 4.8: Splitting a triangle (vi, vj , vh) into three new triangles, (vi, vj , vc), (vj , vh, vc),
(vh, vi, vc), by inserting a new point, vc, at the centroid of triangle (vi, vj , vh)

vertex v in V .

Finding Trajectories

This sub–procedure is used to find paths in which vertices of the source mesh
evolve into their corresponding target vertices. In the case of no attaching con-
straints, i.e., the source mesh is free to evolve from its original shape into its
target shape, trajectories of all its vertices are defined by their linear trajectories,
and the rest of this calculation can be ignored. When some attaching constraints
are used to constrain the geometry of the source mesh during its evolution, trajec-
tories of vertices need to be calculated from their linear trajectories. Trajectories
of vertices, which impose 1– or 2–controlling surface attaching constraints, are
projected lines of their linear trajectories to the controlling surface or the inter-
section line of the two controlling surfaces, respectively. Trajectories of boundary
vertices without attaching constraints are their linear trajectories. Trajectories of
all interior vertices are calculated by solving sparse linear systems of equations.
The algorithm is described as follows.

Given a triangle mesh Ls(V, T ), where V = (v1, v2, . . . , vn) is a sequence of
n vertices, let m, the number of vertices of each trajectories, be a user–defined
integer, m ≥ 2. By using attaching constraints, the vertices set V of Ls can be
subdivided into disjoint subsets:

V = VI ∪ VB0 ∪ VB1 ∪ VB2

where VI is the set of interior vertices, VB0 is the set of boundary vertices with-
out attaching constraints, VB1 is the set of boundary vertices with 1–controlling
surface attaching constraints and VB2 is the set of boundary vertices with 2–
controlling surface attaching constraints.
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First, trajectories of vertices in VB0 , VB1 and VB2 are initialized by connect-
ing the vertices of VB0 , VB1 and VB2 to their corresponding vertices to create
line segments. Then, we subdivide these line segments into m − 1 equal length
sub–segments, i.e., linear trajectories are constructed for each boundary. Sub-
sequently, trajectories of vertices in VB1 are modified by replacing their vertices
with their projection into controlling surfaces; the trajectory of each vertex in
VB2 is modified by changing its vertices to its projection into the curve, which is
the intersection of the two controlling surfaces of the vertex.

We calculate trajectories of vertices in VI by calculating m − 2 intermediate
meshes when the mesh Ls(V, T ) evolves into its corresponding mesh, Lst(U, T ).
We label Ls with L1, Lst with Lm and intermediate meshes with Lt for each
t = 2, . . . ,m − 1. The boundary of the mesh, Lt, is defined by trajectories of
vertices in VB0 , VB1 and VB2 . We also assume that each interior vertex of Lt is
a convex combination of its neighbors as follows. Let N(i) be the set of vertex
indices of the neighborhood of vertex vti , and let II be the index set of VI . A set
of non–negative real values, λtij, exists, such that:

∑
j∈N(i)

λtij = 1

and Equation 4.34 below is satisfied for all i in II :∑
j∈N(i)

λtijv
t
j = vti . (4.34)

We calculate λtij based on the values, λ1
ij and λmij , from the first mesh and the

last mesh, L1, Lm, as in Equation 4.35:

λtij = λ1
ij +

t− 1

m− 1
(λmij − λ1

ij) (4.35)

Values λ1
ij and λmij are calculated from L1 and Lm using the mean value as de-

scribed in (Floater, 2003) with Equation 4.36 and notations in Figure 4.9.

λij =
wj∑

k∈N(i) wk
, wj =

tan(αj−1/2) + tan(αj/2)

||νj − νi||
(4.36)

Because 0 ≤ αj−1, αj ≤ π, λij in Equation 4.36 is defined and non–negative,
λtij in Equation 4.35 is non–negative for each t = 2, . . . ,m − 1. Equation 4.34
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gives a sparse linear system of equations, which can be solved sufficiently by a
solver, such as OpenNL (OpenNL, 2014) or Eigen (Guennebaud et al., 2010).
This system of equations has a unique solution, proved in (Floater, 1997, 1998).
Because of the unique solution, all trajectories of L have been defined.
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Figure 4.9: Angle notations

Note that by using mesh representations where the topology is explicitly stored,
determining the neighborhood, N(i), of vertex vi is trivial. Such mesh representa-
tions include G–Maps, C–Maps, Cell–Tuple–Structure, Halfedge data structure.

4.5 Summary

In this chapter, we presented two primary approaches for morphological interpo-
lation. One approach is based on the mathematical morphology theory, which
operates on multi–dimensional binary images (sets). This approach can be ap-
plied to triangulated meshes through a converting procedure. Another approach
is based on the mesh processing techniques, which directly manipulate triangu-
lated meshes. Typically, morphological interpolation methods in this approach
include the following two steps: (1) constructing the compatible meshes, and (2)
finding the trajectories.

This chapter also reviewed our morphological interpolation method, called TG-
SIS morphological interpolation that was adapted to represent geological objects
existing in the 3–dimensional Euclidean space and evolving in the 1–dimensional
time axis. The method can be used in TGSIS to roughly model spatio–temporal
data with constraints in terms of geometry (without physical and mechanical con-
straints). This method is useful when no physical or mechanical process models
are available or when there are insufficient data for these models. The method
consists of four primary procedures in which the first two procedures are semi–
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manual and the last two procedures are automatic. The highlights of the method
include a new cutting procedure and a new sub–procedure for finding trajectories
using convex combinations. Due to the cutting procedure, the method can work
with arbitrary meshes. By partitioning meshes into patches, i.e., triangle meshes
homeomorphic to disks, the method reduces the original problem to smaller and
simpler problems. The primary calculations include computing the parameteri-
sation sub–procedure and then finding the trajectories sub–procedure; the com-
plexities of both of these calculations are equal to the complexity of a convex,
fixed–boundary parameterisation method, e.g., the mean value parameterisation
method. The timings of certain parameterisation algorithms are presented in the
literature (Hormann et al., 2008).

The TGSIS morphological interpolation has an advantage is that it manipu-
lates triangulated mesh directly and allows end–users/applications to control the
interpolation through constraints. Currently, this method is the only method im-
plemented in our prototype software to model temporal data. The modeled data
are then stored inside the PostgreSQL system and can be further manipulated
using the gOcad system.



Chapter 5:

Long Transaction

5.1 Introduction

5.1.1 Short and long transactions

A transaction is a key concept of nearly all database management systems (DBMS).
A transaction is a group of queries and modification actions, i.e., SELECT, IN-
SERT, UPDATE, and DELETE actions. A transaction can be characterised in
terms of the so–called “ACID” properties. The first of these properties, Atomic-
ity, indicates the all–or–nothing execution of transactions. The second property,
Consistency, indicates that the transactions transform the database from one con-
sistent state to another. The third property, Isolation, indicates that each trans-
action must appear to be executed as if no other transaction is being executed
simultaneously. The fourth property, Durability, indicates that once a transaction
successfully commits, the DBMS guarantees that its results will never be lost, re-
gardless of system failures (Garcia-Molina et al., 2009, PostgreSQL, 2014). A
module of a DBMS, called the logging module, supports the first and the fourth
properties of a transaction. A module called concurrency control supports the
second and third properties. By compromising the performance of the system,
i.e., the throughput and response time, nearly all database management systems
provide certain levels of isolations and the corresponding consistencies/inconsis-
tencies (Adya et al., 2000, Berenson et al., 1995). The decision of which isolation
level is appropriate for an application depends on the designers of that applica-
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tion.

Because nearly all database management systems use either lock–based or
multi–version methods for the concurrency control module, a transaction duration
is as short as possible, and a transaction is limited to one working session only
(Cahill, 2009, Cahill et al., 2008, Ports and Grittner, 2012). Therefore, trans-
actions in the current database management systems are understood as short
transactions in this chapter. A short transaction begins by performing the BE-
GIN TRANSACTION command implicitly or explicitly and ends by performing
either the COMMIT or ROLLBACK command.

In contrast to a short transaction, long transactions typically span a number
of days and several working sessions. Long transaction can be considered a group
of changes that accumulate over a long working time and are isolated from other
changes. Long transactions are implemented based on the concept of database
versions that are a logical copy of the database with a group of changes. The
CREATEVERSION command starts a new long transaction. Then, there are
certain short transactions that may have occurred in several working sessions on
different days. The long transaction is finished by either the MERGEVERSION
or DELETEVERSION command. In a long transaction, all of the results of
the intermediate actions are persistently stored until the end of the transaction
(ESRI, 2014c, Oracle, 2013a,b).

5.1.2 The benefit of long transactions for TGSIS

Isolating a group of changes

Nearly all data collection/modification processes in TGSIS are in the appropri-
ate workflows. Each workflow involves collections of actions, some executed by
computer alone, some involving human interaction, and perhaps some being hu-
man action alone. The data manipulated by these actions should be shared
among the collaborative working group but should not be published or shared
with other groups until the process is completed. For example, a geological de-
partment starts a project to improve the precision of the structural model in an
area. Long transaction supports the project by first creating a new version, then
managing the intermediate changes and data (seismic profiles and well markers)
and finally updating the production data by the result of the project (Figure 5.1).
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Figure 5.1: A data modification process supported by a long transaction

Storing important historical states

In the geosciences, many important decisions, such as mine production and the as-
sessment of environmental sustainability, are made depending on the state of the
current database. Occasionally, an incorrect decision is made, and the mining op-
eration causes unexpected destruction or pollution. If an insurance event occurs,
an investigation into whether the complication should have been predicted by the
knowledge and data available at the time of the decision must occur. Therefore,
storing important state of the database information must be implemented for
these types of applications.

By creating new versions at specific times, the long transaction creates a logical
copy of the database at those times for the archiving storage purpose. Figure 5.2
shows an example of the storage of two database states, one at the beginning of
a mining event and the other at the time an accident occurred.
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Figure 5.2: Long transaction to store historical states

Creating multiple scenarios

In certain geoscience analyses, simulation scenarios along with data updating
actions should be established. The long transaction can support this ability by
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creating a new version, performing the analysis in this version and, at the end,
removing this version. A diagram of the “what–if” analysis is shown in Figure 5.3.
By creating new versions, the long transaction also provides support for multiple
application testers to use the same data set.
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Figure 5.3: A diagram of the “what–if” analysis

Preventing the “lost–update” phenomenon

The “lost–update” phenomena occur when an application uses obsolete data to
update the data themselves. The result is that the current data appear to have
never been observed or the data are lost. For example, user A using gOcad
(Paradigm-GOCAD, 2014) retrieves a geological surface. Subsequently, it is as-
sumed that user B, also using gOcad, retrieves the same surface. However, user
B’s update is written before user A’s update is written. Therefore, the changes
made by user B are silently overwritten by the changes performed by user A
(Figure 5.4).
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Figure 5.4: Lost–update phenomena

Many geoscience applications modify data using a check–out–check–in work-
flow. In this workflow, large amounts of data must be transferred from a database
to a client computer (check–out) for manipulation for a given time and then
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uploaded back to the database (check–in). Even when the check–out–check–in
workflow occurs in a single working session, this workflow has enormous poten-
tial for the lost–update phenomenon to occur. The long transaction can create
a template version for each check–out action. When the check–in action occurs,
the database will merge the template version into the main database and remove
that template version. This approach prevents the lost–update phenomenon by
notifying the check–in application whether its data have been changed since its
check–out. The check–out–check–in diagram is shown in Figure 5.5.
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Figure 5.5: Check–out–check–in workflow with refreshing and merging actions

5.2 Terminology

As shown in the previous section, a long transaction is a group of short trans-
actions (changes) and is isolated from other long transactions. Therefore, each
long transaction appears to be working in a logical database, and it can view all
of its changes but cannot view changes made by other long transactions. Oracle
Workspace Manager (OWM) calls that working environment a workspace (Ora-
cle, 2013a,b), and ArcGIS/ArcSDE (ESRI, 2014c) and TGSIS call it a version.
To refer to each change in that environment, OWM uses the term version for
each database state, whereas ArcGIS/ArcSDE uses the term state, and TGSIS
uses the term revision. In the remainder of this chapter, we use the terms used by
TGSIS, but when presenting a concept related to OWM and ArcGIS/ArcSDE,
their original terms are used for easy reference. The term “transaction” denotes
the short transaction.

A database version is a logical copy of the database without data duplication.
Each version provides all of the transaction properties to its applications, e.g., the
consistency property in each database version. All of the versions of a database are
maintained under a DBMS as a normal database and have the same data schema
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but their data may be different. For example, a database contains three tables,
SEISMIC, DRILLING, and SURFACE. The SEISMIC table contains the source
seismic profiles surveyed in an interested area. The DRILLING table contains the
drilling markers of the area. The SURFACE table contains the geological horizons
interpreted from the seismic and drilling data. A horizon, which has a specific
age, can be interpreted as a folded surface or a faulted surface, depending on the
authors, the geological paradigms, and the available data at the interpreted time.
All of the different interpreted horizons and their corresponding source data must
be maintained in the database and must be consistent in each group or database
version.

Versions of a database are named by the applications, and they are created
and maintained over the life–time of the database. Each version is distinguished
from other versions by a set of changes made to that version since it was created.
Therefore, versions are always organised as a tree. The root of the version tree is
the pre–defined version, named DEFAULT or LIVE, and is created simultaneously
with the creation of the database. This type of version tree is shown in Figure 5.6.
All of the changes that can be observed by a version are the union of the changes
described as follows: (1) the changes made to that version itself; (2) all of the
changes made to the parent of the version over the duration, from the parent
being created to the time when that version was created; (3) all of the changes
made to the grandparent over the duration from the grandparent being created
to the time that the parent was created; and so on. For example, version VER2.1
in Figure 5.7, at the current time, can view the changes made to VER2.1, changes
made to VER2 over the duration [t2 − t3], and changes made to DEFAULT over
the duration [t0 − t2].
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Figure 5.6: Versions are organised as a tree

Changes made to a version must be grouped into certain sets to define which
changes can be viewed by a child version. These sets are distinguished by the
term revision, which can be understood as a fine–grained level of the version.
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Figure 5.7: The version tree and the creation times of the versions

Revisions are determined by the number and are organised as a tree that is either
independent from the version tree or based on the version tree. ArcGIS/ArcSDE
uses the independent revision tree and maintains the pointers from the version
tree to the revision tree. In Oracle Workspace Manager and TGSIS database
versioning, the revision tree is based on the version tree and there are implicit
pointers from the version tree to the revision tree (Figure 5.8).
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Figure 5.8: Version tree and revision tree. (a) in ArcGIS/ArcSDE; (b) in OWM and TGSIS

A versioned database can contain the normal tables and the versioned tables.
All of the versions of the database view the normal tables identically. Versioned
tables are visible from all of the versions of the database with the same data
schema. The rows of a versioned table that are viewed from different versions
are different. The direct method used to group rows together into versions is the
addition of extra columns to the versioned table and the use of the information
in these columns to determine the version to which a row belongs. This method
is used in the OWM and TGSIS database versioning. Another method is to leave
the versioned table in its original form and store any changes to that table in
separate tables, called the Adds and the Deletes tables. The Adds table stores all
of the additions and modifications that are made by the insert and update actions
to the versioned table. The Deletes table stores all of the references to deleted
and modified rows. ArcGIS/ArcSDE uses this method for database versioning.
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5.3 ArcGIS/ArcSDE versioning

The ArcGIS product family (ESRI, 2014b) is one of the most widespread com-
mercial GIS. The ArcSDE technology (in the ArcGIS for Server product) enables
end–users to manage enterprise geodatabases in database management systems
such as Oracle, DB2, and PostgreSQL, and to perform many useful server–side
functions (ESRI, 2014c). ArcSDE stands as a gateway for ArcGIS Desktop and
other products accessing the database management systems (Figure 5.9).
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Figure 5.9: ArcSDE as a gateway to DBMSs

The database version manager module of ArcSDE called versioning provides
an editing environment for ArcGIS Desktop and other applications. This envi-
ronment supports concurrent multi–user editing without creating multiple copies
of the data. To manage the versions, ArcSDE uses the concepts of state and
state tree. A state is a container for changes to the database. The hierarchical
state tree determines the lineage of a state that determines a specific state of the
database. The tables SDE_STATES and SDE_STATE_LINEAGE store states
and the state tree of the database (Figure 5.10).
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Figure 5.10: ArcSDE states and the state tree

Each version refers to a specific state, thus referring to the lineage that deter-
mines a specific state of the database. Multiple versions may point to the same
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state if desired, and over time, versions will move from one state to another.
The SDE_VERSIONS table stores information about the version tree and its
references to the state tree. Figure 5.11 shows an example of a version tree.
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Figure 5.11: ArcSDE version tree

In ArcGIS desktop, a standard editing workflow starts with the start editing
command, is followed by the zero or certain save editing commands, and finally
ends with the stop editing command. The start editing command registers a
unique editing session of a user (editing user) and in a version (editing version).
When starting an editing session, a template version is created whose parent is the
editing version, e.g., version tmp in Figure 5.12a. Each change, such as creating
a new feature, deleting an existing feature, or updating an existing feature, is
marked by a new state. Figure 5.12b shows versions and states after two changes.
When the save editing command is performed in the editing session, the pointers
of the editing version are changed to refer to the state referenced by the template
version. If the stop editing command is performed without saving, all of the states
created in the session are removed. The template version is not explicitly stored
in the database, and it is removed from the memory when the editing session
stops.
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Figure 5.12: Versions and states in an editing session; (a) in a starting session; (b) after two
edits

In the case of system crashes, e.g., the editing computer is powered off, the
versions and states of the database may be in a configuration, such as that in
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Figure 5.13. ArcSDE provides a tool, named Compress, which removes all of the
unreferenced states that may have occurred in the above situation.
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Figure 5.13: An example of the database after a system crash

ArcSDE manages the versioned and un–versioned tables. A versioned table
must have an integer primary key, normally named objectid, to identify a row or
a feature in the table. This table must also be registered to the database that
stored information in the SDE_TABLE_REGISTRY table. During registration,
two new system table, called delta tables, are created to store changes to the table.
The names of two delta tables are in the following convention. The name of the
Adds table, for insert and update commands, and the name of the Deletes table,
for update and delete commands, start with the character a and d, respectively,
and the postfix is the registration number of the table, e.g., a10 and d10. Once
registered as versioned, the table participates in all of the versions of the database.
The data structure for versioning in ArcSDE is shown in Figure 5.14.

In Figure 5.14, the SDE_MVTABLES_MODIFIED table stores the informa-
tion of which tables have been modified in a state. The information in this table
will improve the performance of queries. Optionally, a versioned view of a ver-
sioned table can be created. The versioned view reconstructs the contents of the
versioned table for a specified version of the database. Figure 5.15 shows the
versioned view of the test1 table (registrationid is 7).
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Figure 5.14: ArcSDE versioning data schema

5.4 TGSIS database versioning and Oracle

Workspace Manager

TGSIS database versioning (Le et al., 2014 (accepted) uses the ideas from Ora-
cle Workspace Manager (OWM) (Oracle, 2013a,b) but is tailored to geoscience
applications in which geological objects, such as surfaces, are considered. TG-
SIS database versioning is implemented in the PostgreSQL system (PostgreSQL,
2014).
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Figure 5-15: An ArcSDE versioned view. 
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Figure 5-16: Version and revision. 

Figure 5.15: An ArcSDE versioned view

5.4.1 Data structure and functions

Like OWM, TGSIS database versioning manages revised data at the row level, i.e.,
only changed rows of an object are updated. For example, when a triangulated
mesh is changed at some vertices, only the changed vertices and its corresponding
triangles (changed rows) are updated; unchanged vertices and unchanged trian-
gles are left unchanged. An identifier number, i.e., revision, is assigned to revised
data to define the version the revised data belong to. Figure 5.16 shows the
relationship between version and revision.
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Figure 5.16: Version and revision

Version DEFAULT and revision 0 are the initial values of the system and cannot
be changed or removed by end–users/applications. Version DEFAULT is the an-
cestor of any other version. Each version, except DEFAULT, has a parent version
and may have child versions. A version has a set of revisions and its working re-
vision, which is the maximum element of its revision set. A version has an initial
revision, except DEFAULT. Revision is an integer number whose value is ob-
tained from an object sequence, REVISION_SEQ, whose starting value is 1 with
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an increment of 1 for each call of a function named nextval(REVISION_SEQ).
The diagram in Figure 5.16 is a result of the following action sequence. (1) At
system initialization, version DEFAULT and revision 0 have been set up. (2)
Version VER1 has been created. Because, at this time, the working revision of
DEFAULT was 0, the initial revision of VER1 is 0. After creating VER1, the
revision set of DEFAULT is {0, 1}, the revision set of VER1 is {2}, the working
revision of DEFAULT is 1, and the working revision of VER1 is 2. (3) Version
VER2 has been created as a child of VER1; the initial revision of VER2 is 2 and
the revision sets of DEFAULT, VER1, VER2 are {0, 1}, {2, 3}, and {4}, respec-
tively. (4) Version VER3 has been created as a child of DEFAULT; its initial
revision is 1 because the working revision of DEFAULT is 1; the revision sets of
DEFAULT, VER1, VER2, VER3 are {0, 1, 5}, {2, 3}, {4}, {6}, respectively. (5)
Version VER4 has been created as a child of VER1; its initial revision is 3; the re-
vision sets of DEFAULT, VER1, VER2, VER3, VER4 are {0, 1, 5}, {2, 3, 7}, {4},
{6}, {8}, respectively; and their working revisions are 5, 7, 4, 6, 8, respectively.

When end–users/applications work with the database, they are working in a
specific version (working version), which is DEFAULT when they do not explicitly
select any. Each modification action, i.e., insert, update, delete, uses the working
revision and the corresponding version. Database queries use the working revision
set to define which data can be viewed on a version. For example, when working
in VER3, all data are data belonging to working revision set {6, 1, 0}. End–
users/applications can also select a revision to retrieve the data of interest, i.e.,
a viewing revision, which is not necessarily the working revision. For example
(see Figur 5.16), after going to VER1, revision 3, the viewing revision is now 3,
but the working revision is 7. Even after going to VER4, revision 2, the viewing
revision is 2, but the working revision is 8, and the viewing revision set and
working revision set are {2, 0} and {8, 3, 2, 0}, respectively.

To store the information about versions, revisions, the working version of an
end–user, the versioned tables and conflicting data between versions, the core
database schema has been designed as shown in Figure 5.17.

Two relations, VERSION and REVISION, contain all data, e.g., those exem-
plified in Figure 5.16. End–users/applications can create a revision with its name
to mark a snapshot point in the database and, therefore, can view data at this
point at any time. Attribute revisionname stores the name of a revision. Relation
USERVERSION stores the data from working end–users including process iden-
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Figure 5.17: Core data schema

tifiers (pid), working versions (versionname) and viewing revisions (revision). If
the viewing revision is not defined, the working revision of the working version
is used instead. The viewing revision, which differs from the working revision of
the working version, is only used for queries.

Initial values of VERSION and REVISION are inserted using the two following
commands.

insert into VERSION(versionname=‘DEFAULT ’, intirevision =0,

parent=‘’);

insert into REVISION(versionname=‘DEFAULT ’, revision=0,

revisionname =‘-’);

In TGSIS, end–users/applications see data as objects or features organized by
object/feature classes, which are a set of related tables. For example, geological
surfaces can be managed in a database as the surface class with three tables:
VRTX, TRGL, and SURFACE, as shown in Sub-section 5.4.2. A surface is iden-
tified by a key, called the object identifier. A surface can be seen with different
shapes on different versions, and each representation on a version is called a ver-
sion of that surface. When a surface has been changed on a version and on the
parent version since the version was created, the surface is a conflicting object on
the version. This conflict may come from either table VRTX, TRGL, SURFACE,
or all of them. The names of these tables are called conflicting parts of the sur-
face. In this case, the version is a conflicting version and cannot merge with its
parent version. Conflict solving actions, which will be presented in Section 5.6,
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14 
 

geological surfaces, three tables SURFACE, VRTX, TRGL need to be versioned. Data in 295 

relation VERSIONEDTABLE are shown in Table 1. 296 

tablename shortname objectkeyfield objectclass iudorder 

postgst.surface_ver surface geoid surface 0 

postgst.vrtx_ver vrtx geoid surface 1 

postgst.trgl_ver trgl geoid surface 2 

Table 1: Sample data from the VERSIONEDTABLE table. 297 

In relation CONFLICT, the type of conflict (conflicttype) is the information about the 298 

conflicting object and identifies the short name of the conflicting tables. The value “vrtx”, for 299 

example, means that two versions of the surface conflict at some vertex. The solution for each 300 

conflicting object is defined by end-users. The values of each solution may be “origin”, 301 

“current” or “unsolved”, meaning that the original or current version should be used, or that 302 

the conflict is unsolved, respectively. 303 

Function getWorkingVersion returns the working version of an end-user/application. This 304 

function uses a system function, pg_backend_pid, to get the process identifier of the database 305 

working session. 306 

string getWorkingVersion(){ 307 

  int m_pid=pg_backend_pid(); 308 

  if (������_���(�����������) = ∅) 309 

    insert into USERVERSION(pid=m_pid, versionname=‘DEFAULT’, revision=-1); 310 

 311 

  return ������������������_���(�����������); 312 

} 313 

Function getWorkingRevision returns the working revision of the working end-user. 314 

int getWorkingRevision() { 315 

  return  ����(��������)������������������������������()(��������); 316 

} 317 

Table 5.1: Sample data from the VERSIONEDTABLE table

need to be performed before merging conflicting versions.

Relation VERSIONEDTABLE contains the name of the table (tablename),
the short name to notify the table of containing conflicts (shortname), the name
of key field of objects (objectkeyfield), the class of objects (objectclass) and the
number assigned to each versioned table in the set of the versioned tables of
a class (iudorder). The numbers in the attribute iudorder are used to control
the order of insert, update, and delete actions to obey foreign key constraints
of versioned tables of an object class. For example, in the database managing
geological surfaces, three tables SURFACE, VRTX, TRGL need to be versioned.
Data in relation VERSIONEDTABLE are shown in Table 5.1.

In the relation CONFLICT, the type of conflict (conflicttype) is the information
about the conflicting object and identifies the short name of the conflicting tables.
The value “vrtx”, for example, means that two versions of the surface conflict at
some vertex. The solution for each conflicting object is defined by end–users.
The values of each solution may be “origin”, “current” or “unsolved”, meaning that
the original or current version should be used, or that the conflict is unsolved,
respectively.

For application tables, each versioned application table has been renamed to
the new name, which is the old name and postfix “_VER”. A new database view
with the old name is then added. Two columns, REVISION (int), LASTREVS
(int[]), are added to the table. The column revision is also added to the primary
keys of the table. Metadata from the application table must be registered in VER-
SIONEDTABLE. Queries and modification commands on table R are redefined
as the following.

Selection:

σ(R) = σrevision∈getRevisions(true)∧(lastrevs∩getRevisions(true))=∅(R_V ER);
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Insertion:
Insert into R = Insert into R_V ER(revision = getWorkingRevision(),

lastrevs = ‘{}′);

Update:
Update Rid=m_id = {

if (σid=m_id∧revision=getWorkingRevision()(R_V ER) 6= ∅)
Update Rid=m_id;

else {
Update R_V ERid=m_id∧revision∈getRevisions()∧(lastrevs∩getRevisions())=∅

(lastrevs = lastrevs ∪ getWorkingRevision());
Insert into R_V ER(Rid=m_id, revision = getWorkingRevision(),

lastrevs = ‘{}′);
}

}

Delete:
Delete Rid=m_id = {

if (σid=m_id∧revision=getWorkingRevision()(R_V ER) 6= ∅)
Delete R_V ERid=m_id∧revision=getWorkindRevision();

else
Update R_V ERid=m_id∧revision∈getRevisions()∧(lastrevs∩getRevisions())=∅

(lastrevs = lastrevs ∪ getWorkingRevision());

}

The following example will explain the previously discussed functions, which
will be implemented as a database view and three database triggers for each
versioned table. Assume we are working on version VER1 before creating version
VER4. At that time, the working revision of VER1 is 3. An insert command to
table R will create a row with the values of fields REVISION and LASTREVS,
which are 3 and ∅, respectively. If an update or delete command is performed
at this time, the row is permanently updated or removed from the data, as is
performed in normal databases. Now, we create version VER4 (see Figure 5.16).
The working revision of VER1 is 7 and the working revision of VER4 is 8. If we
work on VER1 and update the row (the old row has values of fields REVISION
and LASTREVS of 3 and {7}, respectively), a new row is added and values of its
fields REVISION and LASTREVS are 7 and ∅, respectively. If we work on VER1
and delete the row, the row is not removed from the database (because it is being
existing in version VER4), and the values of fields REVISION and LASTREVS
are 3 and {7}, respectively. If we work on VER4 and delete the row, the values
of fields REVISION and LASTREVS are 3 and {8}, respectively.
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5.4.2 Tailoring for geological surfaces

The data schema for geological surfaces is extended to give TGSIS the ability
to maintain different versions of geological surfaces, and therefore support long
transactions. Figure 5.18 shows both the non–versioned schema as well as the
versioned schema of a geological surface database.

surface_ver

geoid: bigint

geoname: varchar(50)

colorred: int

colorgreen: int

colorblue: int

revision: int

lastrevs: int[]

surface

geoid: bigint
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Figure 5.18: Surface schemata

Note that we remove the associations between vrtx_ver and trgl_ver so that a
trigl_version row can refer to three vrtx_ver rows in different versions.

5.5 TGSIS mesh comparison

Mesh comparison, in this study, means finding the parts (vertices, edges, and
triangles in case of triangulated meshes) where the two input meshes differ. This
issue can be performed by a nearest neighbor search, range search, and point lo-
cation. Our algorithm is simpler because it is defined in 3–dimensional Euclidean
space (low dimensionality) using Euclidean distance, and we only need to find a
coincident vertex. Hundreds of publications from researchers in a number of fields
are related to nearest neighbor searching, range searching and point location is-
sues (Clarkson, 2006, Dhanabal and Chandramathi, 2011). In general, a searching
algorithm includes two phases: preprocessing and querying. In the preprocessing
phase, some data structures are used to accelerate the query phase. The most
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famous among these data structures are, for example, octree, k–d tree, AABB
tree, locality–sensitive hashing and many modifications of these (Bentley, 1975,
CGAL, 2014, Datar et al., 2004, Liaw et al., 2010, Samet, 1994, Zatloukal et al.,
2002). Until now, to the best of our knowledge, for a point set in 3–dimensional
Euclidean space and Euclidean distance, the best solutions have, on average, the
complexity of O(log(n)) querying time (for each query), while preprocessing time
and space complexities are O(nlog(n)). The TGSIS mesh comparison algorithm,
which uses the k–d tree, queries in time O(log(n)) in the worst case (for each
query), preprocesses in time O(nlog(n)), and uses space O(n). In the rest of this
subsection, we will review the TGSIS mesh comparison.

In the sense of TGSIS, object comparison aims to compare two representations
of an object. A representation exists in the database and is called the old repre-
sentation. Another representation exists in the memory and is called the edited
representation. The object comparison algorithm identifies the parts of the old
representation which need to be removed from the database and the parts of the
edited representation which need to be added to the database so the revision is
stored in the database. For example, when objects are triangulated meshes, the
mesh comparison identifies vertices and triangles of the old mesh that need to be
removed from the database. These sets are called the set of edited vertices and the
set of edited triangles of the old mesh. The complements of these sets are called
the set of non–edited vertices and the set of non–edited triangles of the old mesh.
The mesh comparison also identifies vertices and triangles of the edited mesh that
need to be added to the database. These sets are called the set of edited vertices
and the set of edited triangles of the edited mesh. Their complements are called
the set of non–edited vertices and the set of non–edited triangles of the edited
mesh. A non–edited vertex is identified by comparing geometrical coordinates,
while assuming that the old mesh and the edited mesh are normal meshes, i.e.,
there are no two coincident vertices and no two coincident triangles in a mesh.
A vertex of the edited mesh is a non–edited vertex if a vertex of the old mesh
exists and is coincident to it. Additionally, the coincident vertex is a non–edited
vertex of the old mesh. Because a triangle is represented by its three vertices, a
non–edited triangle of the old mesh or the edited mesh is a triangle whose three
vertices are non-edited, and a corresponding triangle of the edited mesh or the
old mesh exists, respectively. In Figure 5.19, for example, the triangle in the top
left of the edited mesh, in the result of a flip action, has three non–edited vertices
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but no corresponding triangle of the old mesh, so it is a edited triangle.
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Figure 5.19: Mesh comparison

By using a data structure that allows us to easily access incident triangles from
a vertex, once a coincident vertex pair of the old mesh and the revised mesh
has been identified, two lists of their incident triangles are compared to infer the
non–edited triangles. On average, each vertex has 6 incident triangles, meaning
there are approximately 36 comparisons of triangle pairs. Non–edited vertices
can be identified by solving the following problem.

Problem 5.1 Given two point sets in 3–dimensional Euclidean space, named the
source point set and the target point set, find a subset of the source point set such
that (1) each point of it is coincident to a point of the target point set and (2) it
has a maximum length.

The naive solution to this issue is sequentially comparing each pair of vertices.
The complexity of this solution is O(n2) for time and O(n) for space, when two
point sets have nearly the same number of points, n. Our algorithm identifies
non–revised vertices in time O(nlog(n)) and space O(n) using two steps.

In the preprocessing step, the vertex set of the edited mesh is built as a k–d
tree using a so–called sliding–median–widest–spread strategy. The widest spread
axis is divided using the median value as the division value. If it is coincident to
some vertices, we slide that value so that it is a mid–value of its nearest vertex,
but not coincident along divided axis, and the median value (see Figure 5.20).

Because this k–d tree is of log(n) depth, the coincident querying from the
root node down to the leaf node in the worst case is log(n). To construct k–d
tree of the edited mesh, we first sort the vertices of the edited mesh on each of
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Figure 5.20: An example of k–d tree sliding–median–widest–spread

the dimensions, x, y, z, separately. This task can be done in time O(nlog(n)) and
spaceO(n). We then find the widest spread axis, the median value and the divided
value. The complexity of constructing a k–d tree is in time O(nlog(n)) and space
O(n) (De Berg et al., 2000). The algorithm to construct k–d tree is implemented
as the construction of the k–dtree class and the algorithm to query a coincident
point is implemented as the function of this class, named findCoincidence. This
class is used in the CompareMeshes procedure.

The algorithm is implemented in the CompareMeshes procedure whose input
is the edited mesh and the old mesh. The outputs of this procedure are two sets,
the vertex set and the triangle set of the old mesh, which need to be removed.
The edited mesh was modified in the field dinfo of its vertices and triangles. A
vertex and triangle whose dinfos equal ExistInDB are a non–edited vertex and
triangle, respectively. A vertex and triangle whose dinfos equal NonExistInDB
need to be inserted into the database.

5.6 Version merging strategy

In the database version manager, a version can be merged with its parent version.
An object in a version A is a conflicting object if it was changed in version A and
in the parent version of version A since version A was created. In the merging
process, three options are suggested for each conflicting object.

1. Select current version

2. Select parent version

3. Manually solve (with some helping tools)
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Manually solving a conflict mesh means merging the current mesh and the
parent mesh of an object. This task can be completed using the morphological
interpolation method for intermediate geometries to calculate the average of two
meshes (see (Le, 2013)).

5.7 Summary

A long transaction is a feature extended to traditional database management sys-
tems. Long transactions, for example, isolate a group of long duration changes,
store importance states of the database persistently, support analyses by “what–
if” scenarios, prevent the lost–update phenomenon. Workspace manager or datab-
ase versioning is the basis of long transactions. ArcGIS/ArcSDE versioning cre-
ates a template version for each editing session in ArcGIS/ArcMap, persistently
saves any user interactive change to the database, and reconciles data when clos-
ing the editing session. Therefore, ArcGIS/ArcSDE along with ArcGIS/ArcMap
provide a high performance for concurrent multi–user editing. Oracle Workspace
Manager and TGSIS provide the long transaction feature for general purpose SQL
applications. OWM also supports temporal data with the valid–time. Currently,
TGSIS database versioning is implemented as a prototype in the PostgreSQL
without privilege and lock management.

The TGSIS database versioning is an extension to the PostgreSQL system. It
enables applications to manage data versions without code changing. Currently,
the TGSIS database versioning, equipped with the TGSIS mesh comparison and
the version merging strategy, can be used to manage effectively many versions of
structural geological models, e.g., geological models which are frequently updated
to reflect new surveyed data during a mining excavation.





Chapter 6:

Prototype software

6.1 Introduction

A spatio–temporal geoscience information system (TGSIS) was built as a proto-
type software. TGSIS implemented the theories and algorithms mentioned in the
previous chapters. TGSIS includes the following three modules: TGSIS server
module, TGSIS Manager, and TGSIS gOcad plugin (Paradigm-GOCAD, 2014).
The second and the third data models presented in Chapter 3 were set up in the
TGSIS server module, which used the PostgreSQL system (PostgreSQL, 2014) as
a database management system.

The algorithms of the TGSIS morphological interpolation were implemented
in the TGSIS gOcad plugin module. The software uses the Boost C++ libraries
(Boost, 2014) and the Computational Geometry Algorithms Library (CGAL,
2014). To use CGAL parameterisation when the parameterisation domain is a
unit regular k–polygon, a new class implementing the BorderParameterizer_3
concept was implemented. The software also uses the OpenNL library (OpenNL,
2014) integrated with CGAL as a solver for sparse linear equations to find the
trajectories. The software provides a graphical user interface for the end–user to
input and modify the constraints. The boost graph library is used to find the
shortest path to construct cutting and fence paths.

Functions, triggers, and views were also set up to implement algorithms for long
transactions and the database versioning (Chapter 5). The algorithm comparing

113
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two triangulated meshes presented in Chapter 5 uses the gOcad API library.

In this chapter, Section 6.2 presents the architecture of the prototype software.
Three modules TGSIS server, TGSIS Manager, and TGSIS gOcad plugin, are
briefly described in Sections 6.3, 6.4, 6.5, respectively.

6.2 Architecture

TGSIS was built using a client–server architecture. On the server side, the
database management system is PostgreSQL; the data schema shown in Chap-
ter 3 is set up, and stored–procedures and triggers are implemented. On the
client side, there are two software modules, namely, the TGSIS Manager and
the TGSIS gOcad plugin (Paradigm-GOCAD, 2014). The TGSIS Manager is
primarily used by the application administrators who are responsible for deter-
mining which data should be managed and the structures of these data. TGSIS
Manager also provides certain functions for quick querying data in the database.
The TGSIS gOcad plugin is a software module developed as a gOcad plugin and
operates in the environment of the gOcad system. Using this architecture, the
TGSIS gOcad plugin has all of the functions of the geomodeling from gOcad and
all of its plugins. The TGSIS gOcad plugin is primarily used by the application
operators, who are responsible for capturing, storing, manipulating, queryring,
and reporting data in the database, i.e., performing the select, insert, update, and
delete operations on the database. Figure 6.1 shows the architecture of TGSIS.
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Figure 6.1: The architecture of TGSIS

Applications of TGSIS are typically but not necessarily gOcad plugins that are
inherited from the TGSIS gOcad plugin. Consequently, the applications can use
or extend all of the functions of the TGSIS gOcad plugin.
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6.3 Server side – PostgreSQL

PostgreSQL is an open–source object–relational database management system.
The source code of PostgreSQL is in the C language. User functions running in-
side PostgreSQL can be written in certain languages, such as SQL, C, PL/pgSQL,
PL/Tcl, PL/Perl, and PL/Python. Other procedural languages can also be used
in PostgreSQL using the appropriate methods. C was used to develop the in-
put/output operations for the TGSIS system. Because PL/pgSQL is a simple
and flexible language, it was chosen to write procedures and triggers for database
versioning, as shown in Chapter 5.

6.4 TGSIS Manager

The TGSIS Manager is desktop software. The main graphical user interface
(GUI) of this software is shown in Figure 6.2.
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Figure 6.2: The graphical user interface of TGSIS Manager

The feature classes list shows all of the feature classes defined in the system.
Each feature class is designed with some fixed properties, i.e., properties that are
attached to the whole feature and do not change with time, and some feature cell
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properties, i.e., properties that are attached to vertices or cells of a feature in the
feature class. Administrators can select each property attached to either vertices
or cells when creating a new feature class. A feature class can be temporal with
or without versioning.

The features tab in the main GUI shows all of the existing features of a selected
feature class (Figure 6.3).

4 
 

 

Figure 6-3. The list of features in a feature class. 

Figure 6-4 shows the menus of TGSIS Manager. To login, logout, or exit the 

system, use the system menu. To create or delete a feature class, use the tool menu. 

Select a feature class and then use commands in the feature menu to create, edit, or 

delete a feature in the feature class. We can find out (i) all features and their existing 

time instances by some given properties (see Figure 6-5), (ii) all features and their 

existing time intervals or time points in which a property of a feature first reach while 

the feature evolves in time (see Figure 6-6), and (iii) some interest with the ad hoc 

queries. The query menu provides these tools for querying. The last menu is menu 

help. 

 

Figure 6-4. Menus of TGSIS Manager. 

Figure 6.3: The list of features in a feature class

Figure 6.4 shows the menus of the TGSIS Manager.

(a)

(b)
(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)
(f)

(g)

Figure 6.4: Menus of the TGSIS Manager

To login, logout, or exit the system, use the system menu. To create or delete a
feature class, use the tool menu. Select a feature class and then use commands in
the feature menu to create, edit, or delete a feature in the feature class. Figure 6.5
shows the dialog for editing features.

We can determine the following: (i) all of the features and their existing time
instances by certain given properties (Figure 6.6), (ii) all of the features and their
existing time intervals or time points at which a property of a feature first reaches
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Figure 6.5: Dialog for editing features
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Figure 6-5. Find features and their existing time instances by some given 
properties. 

 

Figure 6-6. Find features and intervals or time points. 

 

Figure 6.6: Find features and their existing time instances by certain given properties
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Figure 6-6. Find features and intervals or time points. 

 

Figure 6.7: Find features and intervals or time points

while the feature evolves in time (Figure 6.7), and (iii) certain interests with the
ad hoc queries. The query menu provides these tools for querying. The last menu
is help menu.

6.5 TGSIS gOcad plugin

The TGSIS gOcad plugin is primarily used by operators responsible for data
manipulation. The menus of TGSIS are shown in Figure 6.8.

The goal of the Feature management function in the system menu is to manage
the features. We can create a new feature, update certain properties of a feature,
or delete a feature. We can also view and remove an instance or a time interval of
the selected feature. Figure 6.9 shows the graphical user interface of this function.

The functions in the 3D menu are used to save and load surfaces that are
instances of certain features at any time instance. When saving a surface into
the database, the time, at which the surface represents the object, is given (Fig-
ure 6.10a). Properties of gOcad surface are stored into appropriate database
properties using a mapping (Figure 6.10b).

Figure 6.11 shows the GUI of the load surface function. Properties can be
loaded with the geometry. Time can be stored as a property of the surface in
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Figure 6.8: The main graphical user interface of the TGSIS gOcad plugin
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(a) (b)

Figure 6.10: Saving a surface into the database

(a) (b)

Figure 6.11: Loading a surface from the database

gOcad or as the name of the surface.

The functions in the 4D menu are used to manipulate surfaces changing con-
tinuously in time. The surface construction function is used to model temporal
surfaces using the TGSIS morphological interpolation method shown in Chap-
ter 4. To perform this function, first build the model, then set up at least three
control vertices; the setup of fence paths or attached constraints are optional
steps. Finally, perform the calculation. All of the setup data can be saved in
external files for later loading. Figure 6.12 shows the graphical user interface of
this function.

The save surface function is use to store temporal surface into the database
(Figure 6.13a). A mapping is use to map gOcad properties to their appropriate
database properties (Figure 6.13b).

The load surface at time and load surface functions are used to load surface
representing the object at a given time and to load temporal surface, respectively.
Figure 6.14a and b show the GUI of these functions.
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Figure 6.12: The GUI of the temporal surface construction

(a) (b)

(a) (b)

Figure 6.13: The GUI of the saving data function

(a) (b)

(a) (b)

Figure 6.14: The GUI of the loading data function
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(a) (b)

(a) (b)

Figure 6.15: The GUI of the function to visualise data from the database

Figure 6.16: The GUI of the function to visialise loaded temporal surfaces

We can visualise temporal surface from the database directly using the view
data from DB function (Figure 6.15) or visualise loaded temporal surface using
the view data from local copy function (Figure 6.16).

The query menu provides functions to determine interesting information from
the system. The cut surface function in the utils menu is to perform the cutting
procedure shown in Chapter 4. The function setup constant data constructs
a temporal surface, which is a constant in a given time interval. The surface
information function is used to show interesting information of a surface. The
apps menu is the graphical entries to functions of an application.



Chapter 7:

Sample applications

7.1 Introduction

This chapter presents certain sample applications, which are running examples
for the prototype of the spatio–temporal geoscience information systems (TG-
SIS). Samples in Section 7.2 and Section 7.3 used fictitious data for testing the
correctness of the algorithms. The sample shown in Section 7.4 used data from
the coal mine project. Section 7.2 presents certain spatio–temporal models of ge-
ological processes. A geological structural model with some versions is presented
in Section 7.3. Section 7.4 describes the application of TGSIS in the coal mine
project.

7.2 Modeling geological processes

7.2.1 Evolution of the geometry of a salt–dome

In this sample, we modeled the evolution of a salt–dome, which evolves during
a gravity driven tectonic process. There are several conceptual models how di-
apirs grow, such as the Trusheim’s model (Trusheim, 1960) and Vendeville and
Jackson’s model (Vendeville and Jackson, 1992). In this sample, we used our
morphological interpolation method to approximate the shapes of the growing
salt dome from an undeformed sedimentary salt unit. This morphological in-
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terpolation does not reconstruct a tectonic process but can aid in reconstructing
changes in geometry of the salt body. The salt body was modeled by its boundary
surface, which continuously changes its shape during diapir growth.

The current stage of the salt–dome was given as a triangulated mesh (at time
t = 1), see Figure 7.1a, and the initial stage of this salt–dome was assumed a
flat triangulated mesh (at time t = 0), see Figure 7.1d. Four control points at
the corners of the mesh at time t = 1 and four corresponding control points at
the corners of the mesh at time t = 0 were given. The software created spatio-
temporal model which represents intermediate stages of the salt–dome at times
between 0 and 1. Figure 7.1b and Figure 7.1c show two intermediate stages of
the salt–dome at time t = 2/3 and t = 1/2, respectively.

By modelling the geometry of the salt–dome as a function of time, the software
can quickly answer questions, such as “What is the shape of the salt–dome at
a specific time?”. The software also models the evolution of the salt–dome by
continuously querying the shape of the salt–dome at consecutive time points.

(a) (b)

(c) (d)

Figure 7.1: A salt dome in time. (a) t = 1, (b) t = 2/3, (c) t = 1/2, (d) t = 0

7.2.2 Geometrical modeling of syn–sedimentary faulting

In this sample, we show the evolution of a sedimentary sequence along a nor-
mal fault which develops during sedimentation. The model was divided into a
downthrown block (hanging wall) and an upthrown block (foot wall) that stays
fixed. While the fault stayed in a constant location, and was active with constant
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Figure 7.2: Given data at time instances. (a) t = 4, (b) t = 3, (c) t = 2, and (d) t = 1

displacement, sedimentary units were deposited. These units were represented
by their top surfaces. During their evolution, the downthrown block accom-
modated more sedimentary material than the time–equivalent of the upthrown
block. Older sedimentary units yielded higher amounts of displacement than
younger units, because they were affected by displacement for a longer time.

The given data included four sets of data at four time instances, t = 1, t = 2, t =

3 and t = 4. At time t = 4, there were six surfaces, namely five geological horizons,
A,B,C,D and E, and the fault (Figure 7.2a). At time t = 3, five surfaces
represented four geological horizons, A,B,C and D, and the fault (Figure 7.2b).
At time t = 2, the given data included four surfaces, A,B and C, and the
fault (Figure 7.2c). At time t = 1, three surfaces represented two geological
horizons A and B, and the fault (Figure 7.2d). The fault was assumed to have
constant displacement throughout the time interval [1, 4]. Each horizon in each
time interval was constructed by our morphological interpolation method. For
example, to construct spatio–temporal data of the geological horizon, B, in time
interval [2, 3] from two of its shapes at time instances t = 2, 3, Figure 7.3a and
Figure 7.3d , we had to set up eight pairs of control vertices at the corners of
the surfaces. Figure 7.3b and Figure 7.4c shows two intermediate surfaces of the
horizon B extracted from the model at time t = 2.67 and t = 2.33, respectively.
By placing all of the results of the constructed data of each horizon in each time
interval in the same space and time coordinates, we modeled geological processes
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Figure 7.3: The geological horizon B in time interval [2, 3]
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Figure 7.4: The geological structure of an area of interest at time t = 2.50

in an area and in a specific time interval. For example, the geological structure
in the area of interest at time t = 2.50 was calculated by the system and shown
in Figure 7.4.

7.2.3 Modeling deposition and erosion of river sedimentary

rocks

In this sample, we want to model sedimentary rocks in a river basin. River basins
are characterized by erosion as well as by deposition of classic rocks with various
grain size. Whether sedimentary material is eroded or deposited depends on
the relation of and flow velocity. Therefore, deposited sedimentary rocks can be
eroded during flooding periods.

In this model, we described the temporal evolution of three sedimentary units
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Figure 7.5: Given data at six time instances. (a) t = 5, (b) t = 4, (c) t = 3, (d) t = 2, (e)
t = 1, and (f) t = 0

each represented by its top surface. We worked with four surfaces, namely, a base-
ment surface and top surfaces, A,B and C, of sediments A,B and C, respectively.
The data were given at the following six time instances: t = 5 (Figure 7.5a), t = 4

(Figure 7.5b), t = 3 (Figure 7.5c), t = 2 (Figure 7.5d), t = 1 (Figure 7.5e) and
t = 0 (Figure 7.5f). The basement surface was assumed constant. We constructed
the data of the surfaces in time interval [0, 5] by constructing the data of each
surface (A,B,C) in each time interval, [0, 1], [1, 2], [3, 4] and [4, 5]. For brevity,
we only describe the procedure to construct the data of surface B in the time
interval [1, 2]. In this case, surface B at time t = 2 was chose as the source
mesh (Figure 7.6d), and surface A at time t = 1 was chosen as the target mesh
(Figure 7.6a). The controlling surface was the basement surface. Attaching con-
straints were used to maintain surface B in constant contact with the basement
surface. Trajectories have been calculated using the finding trajectories sub–
procedure, as shown in Chapter 4. By building the spatio-temporal model of the
surface B in time interval [1, 2], the surface representing the top surface of unit
B can be computed at any time in between 1 and 2. For example, Figure 7.6b
and Figure 7.6c show the top surfaces of unit B at time t = 1.33 and t = 1.66,
respectively. After constructing all of the data, the final data were placed in the
same space and time coordinates to simulate certain geological processes, in this
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Figure 7.6: Top surface B in time interval [1, 2]
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Figure 7.7: The geological structure of an area of interest at time t = 1.5

case, sedimentation and erosion. Figure 7.7 depicts the geological structure in
the area of interest at time t = 1.50 which was queried from the system.

This sample showed that the topology between objects can change when units
are deposited or eroded. For example, at time t = 3 unit B was on top of unit
A, but at time t = 4 unit C was on top of unit A.

7.3 Modeling a geological structure with certain

versions

In this sample, the tectonic modeling aimed to construct a deformed horizon sur-
face in 3D and to perform a surface–restoration to the pre–deformational state.
During restoration, unfolding and unfaulting operations were performed, and the
dilatancy of the surface was computed for each node. Depending on the modeling
purpose, dilatancy can indicate zones of mineralization or zones with microfrac-
tures, such that restoration is an important interpretation step in mineral and
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energy exploration. Two data sets were available to model: Data set 1 is com-
prised of 3 parallel seismic profiles, from which the stratigraphic horizon was
picked and digitized. Data set 2 consists of 13 drillings, which provide well–
markers for the stratigraphic horizon and a thrust fault. The 3D modeling was
first performed using the seismic profiles. The drilling data set was added later,
such that the models represent two states of knowledge.

We started with data set 1, which suggests that the horizon has an anticlinal
structure. By default, data set 1 was added in version DEFAULT with revision 0.
In this version, horizon model 1.1 was created (Figure 7.8). This horizon model
shows a first–order anticline and a series of second–order anticlines and synclines
with fault axes almost perpendicular to the first–order anticline. However, the
second–order structure is not constrained by data and may be an artifact. The
modeler can make three decisions: delete the horizon model 1.1 and proceed with
the version DEFAULT revision 0, create a revision of this model, meaning he can
come back to the model to see it but cannot revise it; after saving the revision,
the modeler can delete the horizon surface and proceed with version DEFAULT
revision 1, or the modeler can create a new version, come back to this model
and work with it later. We opted for the last option because the second–order
folds were not constrained by data, and we could not be sure whether the model
was wrong or not. We created a version 1 to model the same geologic object
(deformed stratigraphic horizon) using another geological concept (first–order
fold only). Additionally, we get the opportunity to work with two models for one
geologic object. When we created version1, revision 0 was used as the initial
revision. Revisions 1 and 2 were automatically created in version DEFAULT and
version1, respectively. Revision 2 became the working revision of version1. We
also created a new horizon model 2.1 without second–order folds. After having
modeled the horizon model 2.1, we restored it and created a restored horizon
model 2.2. By doing this, we stayed in version1 revision 2 and saved the revision
after the restoration was finished. Finally, we decided to compare the results of
the restoration of horizon model 1.1 and 2.1, and went back to version DEFAULT.
At this time, revision 1 was the working revision to add the restored horizon model
1.2. To finalize these works, we saved the revision, creating revision 3 in version
DEFAULT.

After finishing this work, we obtained data set 2. This set of drilling data
provides evidence for the existence of a thrust fault and for the absence of the
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second–order folds that had formed in horizon model 1.1. We re–interpreted the
3D model, including data set 2. Since the data are independent of the modeler
and his interpretations, we added them to version DEFAULT, which had reached
the working revision 3. We saved this revision by creating a new version where we
can build the revised model while keeping the others. When creating version2,
revision 3 is used as the initial revision, and revision 4, revision 5 were created
as working revisions in version DEFAULT and version2, respectively. We then
created a new model of the deformed horizon, which consists of a fault and a
folded horizon. The topology of the horizon differs from horizon models 1.1 and
1.2 because the horizon surface was cut along the fault into an upper and a
lower fault block. We stayed in the working revision and restored the horizon by
unfaulting and unfolding. Finally, version2 was saved.

Data set 1: Picks of a folded stratigraphic horizon from
3 seismic sections.

Horizon model 1.1: The model contains one first-order
anticline and a sequence of  second-order anticlines and
synclines, which are not constrained by data.

second-order syncline
second-order anticline

Horizon model 2.1: The second-order folds are deleted.

Model 1.2 of the restored stratigraphic horizon: After 2-step
unfolding.

Model 2.2. of the restored stratigraphic horizon:
after 1-step  unfolding.

Model 3.2 of the restored stratigraphic horizon: after 1-step
unfaulting and unfolding.

Data set 2: Picks of the horizon from 3 seismic sections
+ markers of the horizon and of a thrust fault in 13 drilling holes.

picks of a
stratigraphic horizon

well path

fault wellmarker

horizon wellmarker

picks of a stratigraphic horizon

fault surface

horizon surface

discontinuity

horizon surface
horizon surfacefirst-order anticline first-order anticline

Model 3.1. of the faulted anticline: The model consists of two
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Figure 7.8: Three versions of one stratigraphic horizon modeled using two states of knowledge

One advantage of using the database combined with the version manager is
that one can query the set of models (cross–version queries) because the data are
stored in a database. In our case, we can ask the following: In which model does
the fault appear for the first time? In which model is dilatancy highest or above
a critical value? For example, the first question can be written in SQL language
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as

“select distinct (s.modelname) from surface_ver as s where s.revision=(select
min(s1.revision) from surface_ver as s1 where s1.type=’fault’);”

with further assumption that table SURFACE_VER has the TYPE column to
define the type of a surface, e.g. fault or horizon, and the MODELNAME column
to define the name of the model in which a surface belong to.

7.4 Managing frequently updated models

The goal of this sample was to manage geological models which are frequently
updated to reflect new surveyed data during mining excavation. At the beginning
of mine, a numerous boreholes were drilled to achieve data in the interesting area.
An initial model representing several horizons and faults were interpreted from
these borehole data. The model was primary data used to make a mining plan.
During the mining excavation, the exposed surfaces, i.e., cross section at the mine
positions were surveyed frequently to present the actual geological conditions.
The new data presented the deviation of the model, and therefore the model
must have been revised for adjusting the mining plan and obtaining a better
understanding of the geological structures of the area.

Using TGSIS database versioning, such a model was considered a model with
certain versions. A database version was created when new data were obtained.
Then, the model was revised by re–interpreting. The revised model reflected
the knowledge of modelers and was believed to be the best representation of
geological conditions in the period from the time it was created to the time it
was substituted by another revised model. Therefore, database versions were
organized as a linear sequence and each version associated with a time period
[starttime, endtime) which is closed at the starttime and opened at endtime.
Endtime could be infinity to present that the version is believed to be true
forever. Figure 7.9 shows the version sequence.

Using database versioning, all historical stages of a model, i.e. old models,
are storage without data duplication. Queries across multiple versions can be
constructed to compare versions of a model.

In this sample, we limited ourselves in geo–objects whose geometries are sur-
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Figure 7.9: A linear sequence of versions

faces. Moreover, a model is a set of geo–objects and a geo–object can belong to
several models. Database schema is shown in Figure 7.10.
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Figure 7.10: Database schema of the sample

By mining excavation, certain parts of the subsurface have gone away. De-
pending on the purpose of the model excavated parts can be cut out from the
revised model to reflect the reality or kept with the revised model for analysing.
In this sample, to be easier for modeling and making mining plan, the revised
models were not cut. One of the difficulties in the operation of this sample is
that sometimes modelers must interpret a new surface (horizon or fault) from an
only cross section. Such surfaces are strictly depended on the knowledge of the
modelers.

In this sample, we did not considered aspects of data uncertainty. If consider
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data uncertainty, a model can be divided into two parts: excavated parts and
non-excavated parts. In excavated parts, data are certainty, i.e. full trust. Data
in non-excavated parts are associated with uncertainty because of measurement
errors and the uncertainty of interpretation and prediction methods. In another
approach, this sample can use the approach of larger dimensions in which new
versions of a model are considered along the “knowledge” dimension and the
uncertainty are another dimension. The multiple indexed data model can be
used in this approach.





Chapter 8:

Conclusions and Recommendations

8.1 Conclusions

Previous chapters have documented our work to study and contribute to the de-
velopment of geoscience information systems (GSIS). The current GSIS, i.e. geo-
modelling or 3D computer mapping, were investigated. We found that geoscien-
tists are interested in both geological volumes and geological variables. Geological
volumes create discontinuities with complex geometries that are results of many
geological processes, such as faulting, erosion, deposition. Geological variables,
such as mineral grades, contaminant concentrations, hydraulic conductivities are
continuous variable within the volume, but discontinuous across boundaries. The
geometry of an irregular geological volume can be represented by its boundaries
using so-called boundary representations (B–Reps) or implicit functions. The
continuous spatial variation of a geological variable can be discretized inside the
volume by regular or irregular meshes. Moreover, to fast access and process the
geometry of an object, the topology relationships between object’s components
are always managed explicitly. Finally, GSIS manage geological objects (geo–
objects) with geometry, topology and properties.

Beyond the current GSIS, which are personal desktop applications, GSIS are
required to be integrated information systems by using the database technol-
ogy and supporting interoperability. To achieve this, our work has reviewed the
spatial database technology and standards for data exchange. Furthermore, two

135
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database systems, namely Oracle spatial and PostgreSQL/PostGIS, which sup-
port 3–dimensional data, have also been reviewed. Finally, the work has proposed
an object–relational data model whose similar data model has been implemented
in the GST–Framework.

Our work has also contributed to the development of GSIS in the aspect of
time integration. We have reviewed temporal GIS systems and studied ideas to
represent time dimension. Time can be considered either one dimension (valid
time) or multi–dimension. One time dimension can be considered as an indepen-
dent dimension which strictly differ from spatial dimensions or a larger spatial
dimension. When an object evolves in time, its geometry, and properties can
be represented as discrete or continuous functions (of time). A number of data
models have been proposed including the so–called TGSIS data model. The TG-
SIS data model is a general data model that represents geological objects in the
domain Rm × time. This data model contains the following features: (i) the
combinatorial topological GMap model, (ii) an embedding model best adapted
to linear geometries, (iii) assignment of geoscience properties to cells of various
dimensions, (iv) instantaneous evolution of the topology, and (v) continuous evo-
lution of the geometry and properties. Because GMap is not restricted in terms
of dimension, GMap was also used in the data model for multiply indexed geo-
science data, in which multi–dimensional time and other non–spatial dimensions
are considered as larger spatial dimensions.

Capturing temporal geological data leads to the issue of modeling 4D data
from certain 3D cross–sectional data. To solve this issue, morphological inter-
polation methods were investigated. Two primary approaches, namely mathe-
matical morphology and the parameterisation approach, were reviewed. In this
work, we proposed a method based on parameterisation techniques and adapted
it for geological surfaces. This method considers only geometrical constraints,
and therefore is useful for the construction of intermediate stages of a geological
object when no physical or mechanical process models are available or when there
is insufficient data for these models.

A characteristic of geological models is that they are always changed (updated)
when having some new data. Especially in mining applications, new cross–
sectional data are frequently received, so the model is changed frequently, too.
These changes may be thought as the changes along the “knowledge time” axis,
that means the changes of our knowledge about the reality in time. To support
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this kind of data, long transactions with their benefits in TGSIS have been stud-
ied. The database versioning is a method to have the long transaction feature
in the database management systems. We proposed a data schema, functions,
triggers, and views to implement the database versioning, long transactions in the
PostgreSQL. The database versioning in turn leads to the issue of comparison of
two triangulated meshes. Our work solved this issue by proposing an algorithm
which runs in time O(nlog(n)) and in space O(n).

A prototypical software has been implemented and tested with some running
examples. The software proved the effectiveness of the data models, the algorithm
of data construction, and the database versioning. The applicability of TGSIS in
the geosciences has been also demonstrated through a number of sample applica-
tions.

8.2 Recommendations

Although this study had certain contributions to the development of GSIS/TG-
SIS, especially in the aspect of time integration. GSIS/TGSIS require a long–term
development strategy and a science behind them. Many issues must be solved
and improved. These include, but are not limited to tools for import/export
data from/to other systems, theories and tools for user–guided geological model
building including implicit modeling, operations for data querying, analysing, vi-
sualising, and output. In the near future, some algorithms and solutions should
be proposed to

• capture data from numerical simulation systems,

• user-guided build geological models from raw data,

• query using topology, geometry, and properties,

• accelerate queries using index access methods, and

• perform “geoprocessing tools”, such as intersection, cut, and buffer.

In another direction, the following researches can be considered:

• extending a database management system by providing spatio–temporal
data structures, methods for evaluating operations, specialised indeces and
join algorithms and
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• studying other time dimensions, scale, and uncertainty in an unified ap-
proach.



References

Abdul-Rahman, A., Pilouk, M., 2008. Spatial Data Modelling for 3D GIS.
Springer, Berlin.

Adya, A., Liskov, B., O’Neil, P., 2000. Generalized isolation level definitions, in:
Data Engineering, 2000. Proceedings. 16th International Conference on, IEEE.
pp. 67–78.

Alexa, M., 2000. Merging polyhedral shapes with scattered features. The Vi-
sual Computer 16, 26–37. URL: http://dx.doi.org/10.1007/PL00007211,
doi:10.1007/pl00007211.

Allen, B., Curless, B., Popović, 2003. The space of human body shapes: recon-
struction and parameterization from range scans, in: SIGGRAPH ’03 ACM
SIGGRAPH 2003 Papers, ACM. pp. 587–594. doi:10.1145/1201775.882311.

Apel, M., 2004. A 3d geoscience information system framework. Ph.D. thesis.
Cotutelle de thèse, TU Bergakademie Freiberg, Germany, and ENSG.

Baumgart, B.G., 1972. Winged edge polyhedron representation. Stanford Univer-
sity, Stanford, CA, USA. URL: http://www.dtic.mil/dtic/tr/fulltext/
u2/755141.pdf. (accessed 02 June 2014).

Bentley, J.L., 1975. Multidimensional binary search trees used for associative
searching. Communications of the ACM 18, 509–517.

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P., 1995. A
critique of ansi sql isolation levels, in: ACM SIGMOD Record, ACM. pp. 1–10.

Beucher, S., 1994. Interpolation d’ensembles, departitions et de fonctions. Report.
Centre de Morphologie Mathematique, Ecole des Mines de Paris.

Beucher, S., 1998. Interpolation of sets, of partitions and of functions, in:
H.Heimans, J.Roedink (Eds.), Mathematical Morphology and its Applications
to Image and Signal Processing. Kluwer.

Bischoff, S., Pavic, D., Kobbelt, L., 2005. Automatic restoration of polygon
models. ACM Transactions on Graphics 24, 1332–1352. doi:10.1145/1095878.
1095883.

139

http://dx.doi.org/10.1007/PL00007211
http://dx.doi.org/10.1007/pl00007211
http://dx.doi.org/10.1145/1201775.882311
http://www.dtic.mil/dtic/tr/fulltext/u2/755141.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/755141.pdf
http://dx.doi.org/10.1145/1095878.1095883
http://dx.doi.org/10.1145/1095878.1095883


140 References

Boissonnat, J.D., Oudot, S., 2005. Provably good sampling and meshing of sur-
faces. Graphical Models 67, 405–451. doi:10.1016/j.gmod.2005.01.004.

Boost, 2014. Boost c++ libraries. URL: http://www.boost.org. (accessed 21
February 2014).

Bors, A.G., Kechagias, L., Pitas, I., 2002. Binary morphological shape–based in-
terpolation applied to 3–d tooth reconstruction. IEEE Transactions on Medical
Imaging 21, 100–108. doi:10.1109/42.993129.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B., 2010. Polygon mesh
processing. A K Peters, Natick, Mass.

Brandel, S., Perrin, M., Rainaud, J.F., Schneider, S., 2001. Geological interpre-
tation makes earth models easier to build. URL: http://liris.cnrs.fr/
~sbrandel/old_site/recherche/articles/Article_Amsterdam_5.3.pdf.
(accessed 02 June 2014).

Brandel, S., Schneider, S., Perrin, M., Guiard, N., Rainaud, J.F., Lienhard,
P., Bertrand, Y., 2005. Automatic building of structured geological mod-
els. Journal of Computing and Information Science in Engineering 5, 138.
doi:10.1115/1.1884145.

Breunig, M., Zlatanova, S., 2011. 3d geo–database research: Retrospective and
future directions. Computers & Geosciences 37, 791–803. doi:10.1016/j.
cageo.2010.04.016.

Brisson, E., 1989. Representing geometric structures in d dimensions: topology
and order, in: SCG ’89 Proceedings of the fifth annual symposium on Compu-
tational geometry, ACM. pp. 218–227. doi:10.1145/73833.73858.

Brisson, E., 1993. Representing geometric structures ind dimensions: Topology
and order. Discrete & Computational Geometry 9, 387–426. URL: http:
//dx.doi.org/10.1007/BF02189330, doi:10.1007/bf02189330.

Cahill, M.J., 2009. Serializable isolation for snapshot databases. Ph.D. thesis.
University of Sydney.

Cahill, M.J., Röhm, U., Fekete, A.D., 2008. Serializable isolation for snapshot
databases, in: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, ACM, New York, NY, USA. pp. 729–738.
doi:10.1145/1376616.1376690.

Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R., 2001. Reconstruction and representation of 3d objects
with radial basis functions, in: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM. pp. 67–76.

Caumon, G., 2010. Towards stochastic time–varying geological modeling. Math-
ematical Geosciences 42, 555–569.

http://dx.doi.org/10.1016/j.gmod.2005.01.004
http://www.boost.org
http://dx.doi.org/10.1109/42.993129
http://liris.cnrs.fr/~sbrandel/old_site/recherche/articles/Article_Amsterdam_5.3.pdf
http://liris.cnrs.fr/~sbrandel/old_site/recherche/articles/Article_Amsterdam_5.3.pdf
http://dx.doi.org/10.1115/1.1884145
http://dx.doi.org/10.1016/j.cageo.2010.04.016
http://dx.doi.org/10.1016/j.cageo.2010.04.016
http://dx.doi.org/10.1145/73833.73858
http://dx.doi.org/10.1007/BF02189330
http://dx.doi.org/10.1007/BF02189330
http://dx.doi.org/10.1007/bf02189330
http://dx.doi.org/10.1145/1376616.1376690


References 141

Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., Sausse,
J., 2009. Surface-based 3d modeling of geological structures. Mathematical
Geosciences 41, 927–945. doi:10.1007/s11004-009-9244-2.

Caumon, G., Gray, G., Antoine, C., Titeux, M.O., 2013. Three-dimensional
implicit stratigraphic model building from remote sensing data on tetrahedral
meshes: Theory and application to a regional model of la popa basin, ne mexico.
Geoscience and Remote Sensing, IEEE Transactions on 51, 1613–1621.

Caumon, G., Lepage, F., Sword, C.H., Mallet, J.L., 2004. Building and editing a
sealed geological model. Mathematical Geology 36, 405–424. doi:10.1023/B:
MATG.0000029297.18098.8a.

CGAL, 2014. Computational geometry algorithms library. URL: http://www.
cgal.org/. (accessed 20 February 2014).

Chilès, Jean-Paul., D.P., 2012. Geostatistics : modeling spatial uncertainty. Wi-
ley, Hoboken, N.J.

Clarkson, K.L., 2006. Nearest-neighbor searching and metric space dimensions.
Nearest-neighbor methods for learning and vision: theory and practice , 15–59.

Couclelis, H., 1992. People manipulate objects (but cultivate fields): beyond
the raster–vector debate in gis, in: Theories and methods of spatio–temporal
reasoning in geographic space. Springer, pp. 65–77.

Cousty, J., Najman, L., Serra, J., 2009. Some morphological operators in graph
spaces, in: ISMM ’09 Proceedings of the 9th International Symposium on
Mathematical Morphology and Its Application to Signal and Image Processing,
Springer-Verlag. pp. 149–160. doi:10.1007/978-3-642-03613-2_14.

Cowan, E., Beatson, R., Ross, H., Fright, W., McLennan, T., Evans, T., Carr, J.,
Lane, R., Bright, D., Gillman, A., 2003. Practical implicit geological modelling,
in: Fifth International Mining Geology Conference, pp. 17–19.

Datar, M., Immorlica, N., Indyk, P., Mirrokni, V., 2004. Locality–sensitive hash-
ing scheme based on p-stable distributions, in: SCG ’04 Proceedings of the
twentieth annual symposium on Computational geometry, ACM New York,
NY, USA c©2004. pp. 253–262. doi:10.1145/997817.997857.

De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C., 2000. Compu-
tational geometry: algorithms and applications. 2 ed., Springer.

Dhanabal, S., Chandramathi, S., 2011. Review of various k-nearest neighbor
query processing techniques. International Journal of Computer Applications
31, 14–22.

Dias, F., Cousty, J., Najman, L., 2011. Some morphological operators on simpli-
cial complex spaces, in: DGCI’11 Proceedings of the 16th IAPR international
conference on Discrete geometry for computer imagery, Springer-Verlag. pp.
441–452.

http://dx.doi.org/10.1007/s11004-009-9244-2
http://dx.doi.org/10.1023/B:MATG.0000029297.18098.8a
http://dx.doi.org/10.1023/B:MATG.0000029297.18098.8a
http://www.cgal.org/
http://www.cgal.org/
http://dx.doi.org/10.1007/978-3-642-03613-2_14
http://dx.doi.org/10.1145/997817.997857


142 References

Dias, F., Cousty, J., Najman, L., 2014. Dimensional operators for mathematical
morphology on simplicial complexes. CoRR abs/1401.5602.

Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M., 1999. Spatio–temporal
data types: an approach to modeling and querying moving objects in databases.
GeoInformatica 3, 269–296. doi:10.1023/a:1009805532638.

ESRI, 2014a. The arcgis 3d analyst. URL: http://www.esri.com/software/
arcgis/extensions/3danalyst. (accessed 15 February 2014).

ESRI, 2014b. The arcgis software family. URL: http://www.esri.com/. (ac-
cessed 15 February 2014).

ESRI, 2014c. Arcsde 10 developer help. URL: http://help.arcgis.com/en/
geodatabase/10.0/sdk/arcsde/welcome.htm. (accessed 15 February 2014).

ESRI, 2014d. Esri cityengine. URL: http://www.esri.com/software/
cityengine. (accessed 20 June 2014).

Floater, M., Hormann, K., Kós, G., 2006. A general construction of barycentric
coordinates over convex polygons. Advances in Computational Mathematics 24,
311–331. URL: http://dx.doi.org/10.1007/s10444-004-7611-6, doi:10.
1007/s10444-004-7611-6.

Floater, M.S., 1997. Parametrization and smooth approximation of surface
triangulations. Comput. Aided Geom. Des. 14, 231–250. doi:10.1016/
s0167-8396(96)00031-3.

Floater, M.S., 1998. Parametric tilings and scattered data approximation. Int.
J. Shape Model. 04, 165–182. doi:10.1142/S021865439800012X.

Floater, M.S., 2003. Mean value coordinates. Comput. Aided Geom. Des. 20,
19–27. doi:10.1016/S0167-8396(03)00002-5.

Floater, M.S., Gotsman, C., 1999. How to morph tilings injectively. J. Comput.
Appl. Math. 101, 117–129. doi:10.1016/s0377-0427(98)00202-7.

Floriani, L.D., Mesmoudi, M.M., Morando, F., Puppo, E., 2002. Non-manifold
decomposition in arbitrary dimensions, in: DGCI ’02 Proceedings of the
10th International Conference on Discrete Geometry for Computer Imagery,
Springer-Verlag. pp. 69–80.

Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M., 2000. A data model and
data structures for moving objects databases, in: Dunham, M., Naughton,
J.F., Chen, W., Koudas, N. (Eds.), the 2000 ACM SIGMOD international
conference. ACM, pp. 319–330.

Frank, T., Tertois, A.L., Mallet, J.L., 2007. 3d–reconstruction of complex geo-
logical interfaces from irregularly distributed and noisy point data. Computers
& Geosciences 33, 932–943.

http://dx.doi.org/10.1023/a:1009805532638
http://www.esri.com/software/arcgis/extensions/3danalyst
http://www.esri.com/software/arcgis/extensions/3danalyst
http://www.esri.com/
http://help.arcgis.com/en/geodatabase/10.0/sdk/arcsde/welcome.htm
http://help.arcgis.com/en/geodatabase/10.0/sdk/arcsde/welcome.htm
http://www.esri.com/software/cityengine
http://www.esri.com/software/cityengine
http://dx.doi.org/10.1007/s10444-004-7611-6
http://dx.doi.org/10.1007/s10444-004-7611-6
http://dx.doi.org/10.1007/s10444-004-7611-6
http://dx.doi.org/10.1016/s0167-8396(96)00031-3
http://dx.doi.org/10.1016/s0167-8396(96)00031-3
http://dx.doi.org/10.1142/S021865439800012X
http://dx.doi.org/10.1016/S0167-8396(03)00002-5
http://dx.doi.org/10.1016/s0377-0427(98)00202-7


References 143

Gabriel, P., Gietzel, J., Le, H.H., Schaeben, H., 2012. Kom-
ponenten einer 3d gdi. gis.Science Ausgabe 4/2012. Wich-
man Verlag, Journal 4/2012 , 155–160URL: http://www.
wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2012/
gis-science-ausgabe-04-2012/komponenten-einer-3d-gdi.html.

Garcia-Molina, H., Ullman, J.D., Widom, J., 2009. Database systems: The
complete book. 2nd ed., Pearson Prentice Hall, Upper Saddle River, N.J.

GEOS, 2014. Geos - geometry engine, open source. URL: http://trac.osgeo.
org/geos/. (accessed 17 February 2014).

GiGa-Infosystems, 2014. Gst R© geosciences in space and time. URL: http:
//www.giga-infosystems.com/. (accessed 17 February 2014).

gOcad, 2014. Gocad research group. URL: http://www.gocad.org. (accessed 18
February 2014).

Goodchild, M.F., 2010. Twenty years of progress: Giscience in 2010. Journal of
Spatial Information Science 1, 3–20.

Goodchild, M.F., Yuan, M., Cova, T.J., 2007. Towards a general theory of geo-
graphic representation in gis. International journal of geographical information
science 21, 239–260.

Greiner, G., Hormann, K., 1997. Interpolating and Approximating Scattered 3D-
data with Hierarchical Tensor Product B-Splines. Vanderbilt University Press.
pp. 163–172.

Guennebaud, G., Jacob, B., others., 2010. Eigen v3. URL: http://eigen.
tuxfamily.org. (accessed 18 February 2014).

Güting, R.H., Schneider, M., 2005. Moving objects databases. Morgan Kaufmann
series in data management systems, Morgan Kaufmann, San Francisco, Calif.;
London.

HDF5, 2014. Hierarchical data format (hdf) version 5. URL: http://www.
hdfgroup.org/HDF5/. (accessed 17 February 2014).

Heimans, H.J.A.M., Ronse, C., 1990. The algebraic basis of mathematical mor-
phology. i. dilations and erosions. Comput. Vision Graph. Image Process. 50,
245–295. doi:10.1016/0734-189x(90)90148-o.

Hormann, K., Greiner, G., 2000. MIPS: An efficient global parametrization
method. Report. DTIC Document.

Hormann, K., Polthier, K., Sheffer, A., 2008. Mesh parameterization: Theory
and practice, in: SIGGRAPH ASIA 2008 Course Notes, pp. 1–87.

Houlding, S.W., 1994. 3D Geoscience Modeling Computer Techniques for Geo-
logical Characterization. Springer.

http://www.wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2012/gis-science-ausgabe-04-2012/komponenten-einer-3d-gdi.html
http://www.wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2012/gis-science-ausgabe-04-2012/komponenten-einer-3d-gdi.html
http://www.wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2012/gis-science-ausgabe-04-2012/komponenten-einer-3d-gdi.html
http://trac.osgeo.org/geos/
http://trac.osgeo.org/geos/
http://www.giga-infosystems.com/
http://www.giga-infosystems.com/
http://www.gocad.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1016/0734-189x(90)90148-o


144 References

Iwanowski, M., 2014. Morphological interpolation. URL: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.140.4506&rep=rep1&type=
pdf. (accessed 14 February 2014).

van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D., 2011. A survey on
shape correspondence. Comput. Graph. Forum 30, 1681–1707. doi:10.1111/
j.1467-8659.2011.01884.x.

Kaufman, A., 1987. Efficient algorithms for 3d scan–conversion of parametric
curves, surfaces, and volumes. SIGGRAPH Comput. Graph. 21, 171–179.
doi:10.1145/37402.37423.

Kelk, B., 1991. 3d modelling with geoscientific information systems: The prob-
lem, in: Turner, A. (Ed.), Three–Dimensional Modeling with Geoscientific In-
formation Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands.
volume 354, pp. 29–38.

Kettner, L., 1999. Using generic programming for designing a data structure
for polyhedral surfaces. Computational Geometry 13, 65–90. doi:10.1016/
s0925-7721(99)00007-3.

Kjenstad, K., 2006. On the integration of object-based models and field-based
models in gis. International Journal of Geographical Information Science 20,
491–509.

Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P., 2001. Feature sensitive
surface extraction from volume data, in: Pocock, L. (Ed.), SIGGRAPH ’01
Proceedings of the 28th annual conference on Computer graphics and interac-
tive. ACM New York, NY, USA, pp. 57–66.

Kraevoy, V., Sheffer, A., 2004. Cross–parameterization and compatible remesh-
ing of 3d models. ACM Trans. Graph. 23, 861–869. doi:10.1145/1015706.
1015811.

Le, H.H., 2013. Spatio–temporal data construction. ISPRS International Journal
of Geo–Information 2, 837–853. doi:10.3390/ijgi2030837.

Le, H.H., Gabriel, P., Gietzel, J., Schaeben, H., 2013. An object-relational
spatio-temporal geoscience data model. Computers & Geosciences 57, 104–
115. doi:10.1016/j.cageo.2013.04.014.

Le, H.H., Schaeben, H., Jasper, H., Görz, I., 2014 (accepted). Database version-
ing and its implementation in geoscience information systems. Computers &
Geosciences doi:10.1016/j.cageo.2014.05.011.

Lévy, B., Mallet, J., 1999. Cellular modeling in arbitrary dimension using gen-
eralized maps. URL: http://alice.loria.fr/publications/papers/1999/
g_maps/g_maps.pdf. (accessed 16 May 2012).

Liaw, Y.C., Leou, M.L., Wu, C.M., 2010. Fast exact k nearest neighbors search
using an orthogonal search tree. Pattern Recognition 43, 2351–2358.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.4506&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.4506&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.4506&rep=rep1&type=pdf
http://dx.doi.org/10.1111/j.1467-8659.2011.01884.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01884.x
http://dx.doi.org/10.1145/37402.37423
http://dx.doi.org/10.1016/s0925-7721(99)00007-3
http://dx.doi.org/10.1016/s0925-7721(99)00007-3
http://dx.doi.org/10.1145/1015706.1015811
http://dx.doi.org/10.1145/1015706.1015811
http://dx.doi.org/10.3390/ijgi2030837
http://dx.doi.org/10.1016/j.cageo.2013.04.014
http://dx.doi.org/10.1016/j.cageo.2014.05.011
http://alice.loria.fr/publications/papers/1999/g_maps/g_maps.pdf
http://alice.loria.fr/publications/papers/1999/g_maps/g_maps.pdf


References 145

Lienhardt, P., 1989. Subdivisions of n-dimensional spaces and n-dimensional
generalized maps, in: SCG ’89 Proceedings of the fifth annual symposium on
Computational geometry, ACM. pp. 228–236. doi:10.1145/73833.73859.

Lienhardt, P., 1994. N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. International Journal of Computational Geometry & Appli-
cations 04, 275–324. URL: http://www.worldscientific.com/doi/abs/10.
1142/S0218195994000173, doi:doi:10.1142/S0218195994000173.

Lienhardt, P., Fuchs, L., Bertrand, Y., 2009. Combinatorial models for topology–
based geometric modeling. URL: http://hal-unilim.archives-ouvertes.
fr/docs/00/58/07/08/PDF/8qm22.pdf. (accessed 16 May 2012).

Liu, Y., Yan, H., Martin, R., 2011. As–rigid–as–possible surface morphing. J.
Comput. Sci. Technol. 26, 548–557. doi:10.1007/s11390-011-1154-3.

Lorensen, W.E., Cline, H.E., 1987. Marching cubes: A high resolution 3d surface
construction algorithm, in: Stone, M.C. (Ed.), ACM SIGGRAPH Computer
Graphics, ACM New York, NY, USA. pp. 163–169.

Mallet, J.L., 2002. Geomodeling. Applied geostatistics series, Oxford University
Press, Oxford; New York.

Meyer, F., 1994a. Interpolations. Report. Centre de Morphologie Mathematique,
Ecole des Mines de Paris.

Meyer, F., 1994b. Morphological interpolation of mosaic images, in: P.Maragos
(Ed.), Mathematical Morphology and its Applications to Image and Signal
Processing. Kluwer.

Natali, M., Lidal, E.M., Parulek, J., Viola, I., Patel, D., 2013. Modeling terrains
and subsurface geology, in: Eurographics 2013-State of the Art Reports, The
Eurographics Association. pp. 155–173.

OGC, 2010. Opengis implementation standard for geographic information –
simple feature access – part 2: Sql option (06-104r4). URL: http://www.
opengeospatial.org/standards/sfs. (accessed 16 May 2012).

OGC, 2011. Opengis implementation standard for geographic information –
simple feature access – part 1: Common architecture (06-103r4). URL:
http://www.opengeospatial.org/standards/sfa. (accessed 16 May 2012).

Ohori, K.A., Biljecki, F., Stoter, J., Ledoux, H., 2013a. Manipulating higher
dimensional spatial information, in: Proceedings of the 15th AGILE Interna-
tional Conference on Geographic Information Science - Geographic Information
Science at the Heart of Europe, AGILE. pp. 1–7.

Ohori, K.A., Ledoux, H., 2013. Using extrusion to generate higher–dimensional
gis datasets, in: Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ACM. pp. 398–
401.

http://dx.doi.org/10.1145/73833.73859
http://www.worldscientific.com/doi/abs/10.1142/S0218195994000173
http://www.worldscientific.com/doi/abs/10.1142/S0218195994000173
http://dx.doi.org/doi:10.1142/S0218195994000173
http://hal-unilim.archives-ouvertes.fr/docs/00/58/07/08/PDF/8qm22.pdf
http://hal-unilim.archives-ouvertes.fr/docs/00/58/07/08/PDF/8qm22.pdf
http://dx.doi.org/10.1007/s11390-011-1154-3
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfa


146 References

Ohori, K.A., Ledoux, H., Stoter, J., 2013b. Modelling higher dimensional data
for gis using generalised maps, in: Computational Science and Its Applica-
tions–ICCSA 2013. Springer, pp. 526–539.

van Oosterom, P., Stoter, J., 2010. 5d data modelling: full integration of 2d/3d
space, time and scale dimensions, in: Geographic information science. Springer,
pp. 310–324.

OpenNL, 2014. Open numerical library. URL: http://alice.loria.fr/index.
php/software/4-library/23-opennl.html. (accessed 21 February 2014).

Oracle, 2013a. Oracle database 12c: Workspace manager (white paper ). URL:
http://download.oracle.com/otndocs/products/workspace_manager/
pdf/workspace_manager_12c_twp.pdf. (accessed 15 February 2014).

Oracle, 2013b. Oracle Database: Workspace Manager Developer’s Guide 12c
Release 1 (12.1) - E17893-07. Oracle.

Oracle, 2013c. Oracle R©Spatial Developer’s Guide 11g Release 2 (11.2): E11830-
14. Oracle. URL: http://docs.oracle.com/cd/E11882_01/appdev.112/
e11830/toc.htm.

Paradigm-GOCAD, 2014. Gocad – the framework for subsurface modeling. URL:
http://www.pdgm.com/products/GOCAD. (accessed 16 February 2014).

Peuquet, D.J., 1994. It’s about time: A conceptual framework for the represen-
tation of temporal dynamics in geographic information systems. Annals of the
Association of american Geographers 84, 441–461.

Pinkall, U., Juni, S.D., Polthier, K., 1993. Computing discrete minimal surfaces
and their conjugates. Experimental Mathematics 2, 15–36.

Polthier, K., Rumpf, M., 1995. A concept for time–dependent processes, in:
Göbel, M., Müller, H., Urban, B. (Eds.), Visualization in Scientific Computing.
SpringerVerlag, pp. 137–153.

Ports, D.R., Grittner, K., 2012. Serializable snapshot isolation in postgresql.
Proceedings of the VLDB Endowment 5, 1850–1861.

PostGIS, 2014. Spatial and geographic objects for postgresql. URL: http://
postgis.net/. (accessed 17 February 2014).

PostgreSQL, 2014. Postgresql - the world most advanced open source database.
URL: http://www.postgresql.org/. (accessed 16 February 2014).

Praun, E., Sweldens, W., Schröder, P., 2001. Consistent mesh parameterizations,
in: Proceedings of the 28th annual conference on Computer graphics and in-
teractive techniques - SIGGRAPH ’01, Los Angleles, CA, USA, 12-17 August,
ACM Press: New York, NY, USA. pp. 179–184.

http://alice.loria.fr/index.php/software/4-library/23-opennl.html
http://alice.loria.fr/index.php/software/4-library/23-opennl.html
http://download.oracle.com/otndocs/products/workspace_manager/pdf/workspace_manager_12c_twp.pdf
http://download.oracle.com/otndocs/products/workspace_manager/pdf/workspace_manager_12c_twp.pdf
http://docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
http://www.pdgm.com/products/GOCAD
http://postgis.net/
http://postgis.net/
http://www.postgresql.org/


References 147

Qi, L., Schneider, M., 2012. Monet: modeling and querying moving objects in
spatial networks, in: Ali, M., Banaei-Kashani, F., Hoel, E. (Eds.), the Third
ACM SIGSPATIAL International Workshop. ACM, pp. 48–57.

Ravada, S., Kazar, B., Kothuri, R., 2009. Query processing in 3d spatial
databases: Experiences with oracle spatial 11g, in: Lee, J., Zlatanova, S. (Eds.),
3D Geo–Information Sciences. Springer Berlin Heidelberg. Lecture Notes in
Geoinformation and Cartography, pp. 153–173. URL: http://dx.doi.org/
10.1007/978-3-540-87395-2_10, doi:10.1007/978-3-540-87395-2_10.

Raza, A., 2012. Working with spatio–temporal data type. Esri, 380 New York
Street, Redlands, California 92373-8100 USA. pp. XXXIX–B2:5–10.

RESQML, 2012. Resqml version 1.1 specifications. URL: http://www.
energistics.org/reservoir/resqml-standards/current-standards. (ac-
cessed 14 November 2012).

Samet, H., 1994. The Design and Analysis of Spatial Data Structures. Addison–
Wesley Pub.

Schneider, M., 2009. Moving objects in databases and gis: State-of-the-art
and open problems, in: Navratil, G. (Ed.), Research Trends in Geographic
Information Science. Springer Berlin Heidelberg. Lecture Notes in Geoinfor-
mation and Cartography, pp. 169–187. URL: http://dx.doi.org/10.1007/
978-3-540-88244-2_12, doi:10.1007/978-3-540-88244-2_12.

Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H., 2004. Inter–surface mapping.
ACM Trans. Graph. 23, 870–877. doi:10.1145/1015706.1015812.

Serra, J., 1983. Image Analysis and Mathematical Morphology. Academic Press,
Inc.

Serra, J., 1994. Interpolations et distance de Hausdorff. Report. Centre de Mor-
phologie Mathematique, Ecole des Mines de Paris.

Serra, J., 1998. Hausdorff distance and interpolations, in: H.Heimans, J.Roedink
(Eds.), Mathematical Morphology and its Applications to Image and Signal
Processing. Kluwer.

Sethian, J.A., 1996. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences 93, 1591–1595. URL:
http://www.pnas.org/content/93/4/1591.abstract.

Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S., 1997. Modeling and Querying
Moving Objects. IEEE Computer Society, Washington, DC, USA. ICDE 97,
pp. 422–432. URL: http://dl.acm.org/citation.cfm?id=645482.653301.

Sistla, P., Wolfson, O., Chamberlain, S., Dao, S., 1998. Querying the Uncertain
Position of Moving Objects. Springer. pp. 310–337.

http://dx.doi.org/10.1007/978-3-540-87395-2_10
http://dx.doi.org/10.1007/978-3-540-87395-2_10
http://dx.doi.org/10.1007/978-3-540-87395-2_10
http://www.energistics.org/reservoir/resqml-standards/current-standards
http://www.energistics.org/reservoir/resqml-standards/current-standards
http://dx.doi.org/10.1007/978-3-540-88244-2_12
http://dx.doi.org/10.1007/978-3-540-88244-2_12
http://dx.doi.org/10.1007/978-3-540-88244-2_12
http://dx.doi.org/10.1145/1015706.1015812
http://www.pnas.org/content/93/4/1591.abstract
http://dl.acm.org/citation.cfm?id=645482.653301


148 References

Sumner, R.W., Popović, J., 2004. Deformation transfer for triangle meshes, in:
ACM Transactions on Graphics (TOG) – Proceedings of ACM SIGGRAPH
2004, ACM. pp. 399–405. doi:10.1145/1186562.1015736.

Toledo, S., Chen, D., Rotkin, V., 2014. Taucs: A library of sparse linear
solvers. URL: http://www.tau.ac.il/~stoledo/taucs/. (accessed 14 Febru-
ary 2014).

Trusheim, F., 1960. Mechanism of salt migration in northern germany. AAPG
Bulletin 44, 1519–1540.

Turner, A., 2000. Geoscientific modeling: past, present, and future. Geographic
information systems in petroleum exploration and development. AAPG com-
puter applications in geology 4, 27–36.

Turner, A.K., 1991. Three-dimensional modeling with geoscientific information
systems. volume 354. Springer.

Turner, A.K., 2006. Challenges and trends for geological modelling and visuali-
sation. Bulletin of Engineering Geology and the Environment 65, 109–127.

Turner, A.K., Gable, C.W., 2007. A review of geological modeling. Three-
dimensional geologic mapping for groundwater applications. Minnesota Geo-
logical Survey Open-file Report , 07–4.

Tutte, W.T., 1960. Convex representations of graphs, in: Proc. London Math.
Soc. (3) 10, pp. 304–320.

Tutte, W.T., 1963. How to draw a graph, in: London Math. Soc., 13(52), pp.
743–767.

Vendeville, B.C., Jackson, M.P., 1992. The rise of diapirs during thin-skinned
extension. Marine and Petroleum Geology 9, 331–354.

Voudouris, V., 2008. Geospatial Modelling of Indeterminate Phenomena: The
Object–Field Model with Uncertainty and Semantics. Ph.D. thesis. City Uni-
versity London. URL: http://dx.doi.org/10.2139/ssrn.1292262.

Voudouris, V., 2011. Towards a conceptual synthesis of dynamic and geospatial
models: fusing the agent–based and object–field models. Environment and
Planning–Part B 38, 95–114.

Weiler, K., 1985. Edge-based data structures for solid modeling in curved-surface
environments. IEEE Computer Graphics and Applications 5, 21–40. doi:10.
1109/mcg.1985.276271.

Worboys, M.F., 1994. A unified model for spatial and temporal information. The
Computer Journal 37, 26–34.

http://dx.doi.org/10.1145/1186562.1015736
http://www.tau.ac.il/~stoledo/taucs/
http://dx.doi.org/10.2139/ssrn.1292262
http://dx.doi.org/10.1109/mcg.1985.276271
http://dx.doi.org/10.1109/mcg.1985.276271


References 149

Wright, D., 2010. Giscience. URL: http://ir.library.oregonstate.edu/
xmlui/bitstream/handle/1957/19044/GIScience_all.pdf?sequence=1.
(accessed 02 June 2014).

Xu, J., Güting, R.H., 2013. A generic data model for moving objects. GeoInfor-
matica 17, 125–172. doi:10.1007/s10707-012-0158-7.

Yan, H., Hu, S., Martin, R., 2007. 3d morphing using strain field interpolation.
J. Comput. Sci. Technol. 22, 147–155. doi:10.1007/s11390-007-9020-z.

Yuan, M., 2001. Representing complex geographic phenomena in gis. Cartography
and Geographic Information Science 28, 83–96.

Zatloukal, K., Johnson, M., Ladner, R., 2002. Nearest neighbor search for data
compression, in: Goldwasser, M., Johnson, D., McGeoch, C. (Eds.), Data
Structures Near Neighbor Searches, and Methodology: Fifth and Sixth DI-
MACS Implementation Challenges. AMS. volume 59, pp. 69–86.

Zlatanova, S., 2000. 3D GIS for Urban Development. Ph.D. thesis. ITC Disserta-
tion Series No. 69, The International Institute for Aerospace Survey and Earth
Sciences, The Netherlands.

http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/19044/GIScience_all.pdf?sequence=1
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/19044/GIScience_all.pdf?sequence=1
http://dx.doi.org/10.1007/s10707-012-0158-7
http://dx.doi.org/10.1007/s11390-007-9020-z

	Introduction
	Problem statement
	Objectives of the thesis
	Methodology
	Major contributions of the thesis
	Structure of the dissertation

	Related studies
	Two– and three–dimensional GIS
	3D spatial databases
	Temporal GIS
	Geomodeling
	Implicit geological modelling
	3D surfaces
	Automatic building of structured geological models
	gOcad: a geomodeling system
	Discrete smooth interpolation (DSI)

	Surface representations
	Mathematical surface representations
	The surface approximation
	Conversions between representations
	Triangulated surface data structures


	Data Models
	A 3D spatial data model
	A data model for multi–instance surfaces
	A data model for continuously evolving surfaces
	The TGSIS data model
	Geometric modeling based on topology – generalised maps
	Objects in spatio–temporal domain
	Geometric model in spatio–temporal domain
	The model in object–relational form
	Assigning geoscience properties to geometry

	A model for multiple indexed geoscience data
	Summary

	Morphological Interpolation
	Introduction
	Interpolation using mathematical morphology
	Mathematical morphology
	Morphological interpolation in the framework of...

	Interpolation using mesh parameterisation
	Mesh parameterisation
	Cross–parameterisation and compatible remeshing

	TGSIS morphological interpolation
	Cutting
	Setting up Constraints
	Partition
	Calculating

	Summary

	Long Transaction
	Introduction
	Short and long transactions
	The benefit of long transactions for TGSIS

	Terminology
	ArcGIS/ArcSDE versioning
	TGSIS database versioning and Oracle Workspace Manager
	Data structure and functions
	Tailoring for geological surfaces

	TGSIS mesh comparison
	Version merging strategy
	Summary

	Prototype software
	Introduction
	Architecture
	Server side – PostgreSQL
	TGSIS Manager
	TGSIS gOcad plugin

	Sample applications
	Introduction
	Modeling geological processes
	Evolution of the geometry of a salt–dome
	Geometrical modeling of syn–sedimentary faulting
	Modeling deposition and erosion of river sedimentary rocks

	Modeling a geological structure with certain versions
	Managing frequently updated models

	Conclusions and Recommendations
	Conclusions
	Recommendations


