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Glossary

ABAP

Advanced Business Application Programming is a programming language that was devel-
oped by SAP for developing commercial applications in the SAP environment. [KK07]

BNF

Backus-Naur Form is a notation used to describe context free grammars. The notation
breaks down the grammar into a series of rules, which are used to describe how the pro-
gramming languages tokens form different logical units.[Coo13]

DM

Design Model is a platform independent UML model representing the main application
logic. It contains model elements defined by application modelers or provided in DPM.
The XOCL expressions specifying behaviors are also stored in design model. Design model
is the most important input for the MOCCA model compiler.

DPM

Design Platform Model is a UML model that comprises a set of ready-to-use data types,
their relationships, and constraints as well as important meta-data, which serve as the
foundation to build a platform independent design model.

DVDL

The Device and Visualization Definition Language is a proprietary script language, which
is developed by the company Apromace data systems GmbH. DVDL is used to develop
Apromace’s own MES product. [Apr13]

EJB

Written in Java programming language, Enterprise Java Beans are server-side components
that encapsulate business logic and take care of transactions and security.

JPA

The Java Persistence API provides Java developers with an object/relational mapping
facility for managing relational data in Java applications.

LALR(1)-Parser and LALR(1)-Grammar

An LALR-parser is a variant of LR Parser, which parses the input from Left to right,
and constructs a Rightmost derivation. Formally the LALR parser generally refers to the
LALR(1)-parser with the "1" denoting one-token lookahead. LALR parsers are bottom-up
parsers. The class of grammars, from which an LALR(1)-parser can be constructed is called
LALR(1)-grammars.
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LL(k)-Parser and LL(k)-Grammar

An LL-parser is a top-down parser for a subset of the context-free grammars. It parses the
input from Left to right, and constructs a Leftmost derivation of the sentence. The class
of grammars which are parsable in this way is known as the LL-grammars. An LL-parser
is called an LL(k) parser if it uses k tokens of lookahead when parsing a sentence. If such
a parser exists for a certain grammar and it can parse sentences of this grammar without
backtracking then it is called an LL(k)-grammar. [Wik13]

Mapping Configuration File

The Mapping Configuration File is an XML file, which defines the elementary mapping
rules between DPM and TPM model elements.

MOCCA Configuration File

The MOCCA Configuration File, which is also called MOCCA Project File, is used to
define the global configuration parameters for the compiler environment.

TM

Target Model is a platform specific UML model that realizes a platform independent DM
with the resources provided on a specific target platform. A TM is produced by a model
mapper for a concrete target platform.

TPM

Target Platform Model is a UML model that describes a concrete technical platform, on
which the implementation language and its API are provided. For example, there are TPM
for the Java Standard Edition platform and TPM for the Java Enterprise Edition, etc.
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1. Introduction

1.1. Motivation

Great progress in the software development was made in the last decade. It is evident from the
fact that it is feasible to build much more complex and larger systems. One important reason
is the adoption of the object-oriented software development paradigm [Bal05] [Bar05] [LR09],
which has profound impact on different activities within software development process. For
implementation Object-Oriented Programming Languages (OOPL) like C++, Java and C# have
been widely used and proven their values in different kinds of projects, ranging from sophisticated
distributed enterprise applications, over personal desktop applications to the recently emerging
smart device based applications. Methodologies for analysis and design have been unified by
adopting object-orientation. As described in [Bal05] Object-Oriented Analysis (OOA) is done
to establish a system model concentrating only on problem domain to reflect user requirements.
Such an OOA model will be refined into an Object-Oriented Design (OOD) model by taking
into account technical constraints on a concrete implementation platform. To build OOA and
OOD models, the Unified Modeling Language (UML) [OMG10b] and the Object Constraint
Language (OCL) [OMG10a] have become the de facto standard. As a visual modeling language,
the UML provides many graphical notations to represent popular object-oriented concepts like
class, interface, inheritance and so on, whereas the OCL is used to write compact expressions
specifying constraints and complex queries.

Even though the methodologies applied in analysis, design and implementation phase have
been unified, transition from an OOA-model to the associated OOD-model and then to the
implementation is not straightforward, because this process has to add plenty of details to an
OOA-model to reflect the technical characteristics of a selected implementation platform. To
explore which kinds of details to be added, a typical application can be dissected into components
dealing with [LB10]:

• Core concern

• Cross-cutting concern

• Plumbing

The core concern comprises the business logic that an application must implement. The
cross-cutting concern contains secondary operations like security assertions, transactional bound-
aries, concurrency policies, which are necessary for core concern running correctly and efficiently.
Plumbing are infrastructures like data transmission over network or methods of database con-
nection. It is obvious that business logic are unique and domain specific whereas cross-cutting
concern and plumbing are platform specific and once implemented well on a platform can be
reused for different applications targeted on this platform.

With these characteristics in mind, the process of refining an OOA-model into an OOD-model
and finally transforming the OOD-model into an implementation can be considered as a closed
interval [OOA − model,OOPL − implementation]. On the one hand, an OOA-model should
be compact and concentrate on business logic only. On the other hand, the OOPL selected as
implementation platform should be rich enough, that means solutions for important cross-cutting
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concern and plumbing should have been provided and their implementation details are hidden
from application developers. Thanks to the reusability and information encapsulation principles
coming with object-orientation the most modern OOPLs and their frameworks, e.g., the Java
Enterprise Edition (JEE) [Ora11b], the .Net framework [Tro07] as well as the SAP Application
Server ABAP [KK07], have been powerful enough to provide such auxiliary services for sophis-
ticated application development. By using such an implementation platform it helps to smooth
the transformation from an OOA-model into its implementation. If the transformation can be
taken over by a tool automatically, then the software development process will be moved from
low-level implementation to high-level modeling. That is where the Model Driven Architecture
(MDA) [OMG03] comes into play.

MDA suggests that software developers model their software products in a platform inde-
pendent way. Such a software model is called Platform Independent Model (PIM). Then an
MDA-tool is used to transform the PIM into one or more Platform Specific Models (PSM). The
PSMs have involved detailed information for implementation. Hence, code generation from a
PSM is straightforward. In order to realize model transformation, two different strategies are
feasible. One of them defines the model transformation process in a high-level specification lan-
guage. The Query, View and Transformation language (QVT) [OMG11b] supported by OMG
is the de facto standard for this strategy. The QVT allows to define a transformation in an
imperative approach. Then, a QVT compiler generates an implementation (e.g., in Java) of this
transformation specified in the QVT source file as a model compiler, which is dedicated to this
transformation. The other strategy is to develop the model compiler itself as an all-purpose
model transformation framework as well as to provide all necessary information about the un-
derlying target platform the PSM based on, in the form of Target Platform Models (TPM).
To prove the second strategy, the model compiler MOCCA (Model Compiler for reConfigurable
Architecture) [Frö07] was developed by Dr. Fröhlich in our institute. The set of applications,
which were initially targeted to MOCCA, are application-specific accelerators for logic optimiza-
tion problems, neural networks, and multimedia applications. These applications expose mixed
control- and data-flow and can be modeled using UML class diagrams together with MOCCA
Action Language (MAL), which is a Java-like action language (AL) designed for MOCCA.

In this thesis MOCCA is enhanced to deal with more general purpose applications like GUI-
based desktop applications and distributed enterprise applications based on the three-layer-
architecture [Fow+02]. Due to these significant enhancements, a new meaning, MOdel Compiler
for generating Complete Application is assigned to MOCCA. In this thesis, the acronym MOCCA
refers always to this new meaning. If the early version of MOCCA developed by Dr. Fröhlich is
meant, enough context will be given to distinguish one from the other.

1.2. Contributions and Constraints

As mentioned in the previous section, the primary objectives of this thesis are enhancements
in the modeling methodology for creating compact PIM as well as the upgrade of the MOCCA
compiler for model transformation in the context of MDA. To accomplish these objectives, major
challenging issues coming with MDA are re-studied carefully and summarized as follows:

1. Creating a PIM compactly, completely and correctly in UML is difficult. Because UML is a
very powerful and universal modeling language that can be used to model different aspects
of a software from many different perspectives in different degrees of detail.

2. The transformation from a PIM into different PSMs is complicated and very difficult to
maintain. Even if a manageable manner of creating PIMs could be found, the technical
details on target platforms, on which PSMs base, can vary from time to time.
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It is easy to find that the first issue involves three aspects:

1. compactness means simplification in comparison with a potential concrete PSM,

2. completeness requires that both structure and behavior of a PIM must be modeled com-
pletely and

3. correctness means that the established PIM is both syntactically and semantically correct
to fulfill the requirements of an application.

The primary objectives of this thesis are to find novel solutions to cope with the challenging
issues above based on the research achievements of Dr. Fröhlich [Frö07]. As an early attempt to
explore the MDA methodology, Dr. Fröhlich created the first complete and consistent approach
to map and synthesize the applications for run-time reconfigurable computer architectures from
their UML-models and realized this approach into his MOCCA model compiler. For the platform
independent modeling, this early version of MOCCA was equipped with a Design Platform Model
(DPM) providing fundamental modeling concepts like primitive data types and their operations,
basic IO-facility, etc., which built the foundation for creating platform independent design models.
To specify behaviors in the design models, a Java-like MOCCA Action Language was developed,
which supported elementary imperative instructions to describe computation-intensive logic in
detail. For model transformation, novel algorithms for mapping, estimation, synthesis, and
run-time management of applications of run-time reconfigurable architectures from UML design
models were developed and implemented in the corresponding compiler components. Hence, the
final achievements of the early version of MOCCA can be highlighted as:

• modeling application-specific accelerators for logic optimization problems, neural networks,
etc., based on software-hardware co-design in a platform independent way,

• transforming such design models into complete and runnable applications targeted to run-
time reconfigurable computer architecture with VHDL script for hardware description and
C++ source code for implementing software modules, respectively.

During my research of enhancing MOCCA to generate software applications with more gen-
eral purpose, several shortcomings of the early version of MOCCA are discovered and can be
summarized as follows:

• The fundamental data types are not based on any well-known standard and lack support for
other common modeling issues in a clean manner, such as modeling collections, modeling
GUI system of an software application, involving design pattern in the application model,
etc.

• The Java-like MOCCA Action Language is considered too elementary to fulfill the require-
ment of compact behavioral modeling.

• The UML metamodel implementation in the early version of MOCCA was developed before
the UML 2 standard was published, Hence, it is not identical to the one used by our own
CASE tool UML 2 Designer [SBL04]. The latter conforms to the latest UML 2 standard
much better. Hence, extra effort is required to translate models between the both tools.

• The elementary mapping rules defining mappings between the model elements in design
platform model (DPM) and target platform model (TPM) are embedded in the TPM
directly by means of dependency between two types, that makes a TPM have always to
know about the DPM.
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The major contributions of this thesis with respect to both efficient modeling and model
transformation can be highlighted as follows:

• The OCL library types and their predefined operations are adopted into the MOCCA DPM
for modeling primitive and collection types.

• For compact behavioral modeling, a new action language based on OCL are developed
by extending OCL with necessary syntactical constructs for the missing action semantics.
The resulted language is named eXecutable OCL (XOCL), which is very OCL-like but a
full-fledged action language.

• A platform independent GUI toolkit is developed by abstracting a limited set of common
GUI elements from diverse target platforms.

• Proposal is given to use the XOCL-expressions to involve the layout information into a
GUI model in a platform independent manner.

• To model event handling, a concise XOCL-event-expression is developed to connect an
event to its handling method in a platform independent way.

• A DPM profile containing diverse domain specific and design pattern based stereotypes is
developed to create design models with high-level semantics.

• MOCCA is enhanced to adopt the metamodel implementation of the UML 2 Designer as
its internal model representation.

• To support XOCL, new front-end components for parsing and validating XOCL-expressions
are developed.

• An XML-based mapping configuration file is developed to define the elementary mappings
between DPM and TPM resources in a more flexible manner, which replaces the elementary
mapping rules in the TPM of the early version of MOCCA.

• New model mappers for the Java Standard Edition platform [Ora12], the Java Enter-
prise Edition platform [Ora11a] and the SAP NetWeaver Application Server ABAP [Kel05]
[KK07] [FK08] platform are developed and integrated into the MOCCA model compiler to
enhance the ability of MOCCA for generating software application.

The MDA itself is a huge research topic. Hence, only restricted aspects of MDA can be studied
in the scope of the presented thesis. Back to the challenging issues exposed at the beginning
of this section, one of notable restrictions to MOCCA is that the correctness of a PIM can be
checked very limited. However, this issue is not considered as a serious issue, because the final
product of MOCCA is the implementation code of an application, which can be compiled and
run directly. Another major restriction of MOCCA concerns dealing with deployment issues
for an application. For example, deploying mission-critical enterprise applications onto different
technical platforms involves usages of diverse artifacts like deployment descriptors of the JEE
platform. The same philosophy is shared by deploying applications targeted on special hard-
ware platforms, e.g., modern smart devices, etc. For certain highly proprietary platform like
SAP NetWeaver Application Server ABAP, a deployment from outside the system is extremely
difficult. Hence, modeling deployment for a software application in UML and generating the cor-
responding deployment plan for a possible target platform remains an interesting and challenging
research topic.
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1.3. Overview

The chapters of this thesis are organized top-down in the order of the typical development flow.
Since each chapter builds on the issues and notations discussed in the previous chapters, the
chapters ought to be read in order.

Chapter 2 - Theoretical Foundation and Related Work discusses the fundamentals and tech-
nological context of the presented work. A brief introduction is given to the Unified Modeling
Language (UML), the Object Constraint Language (OCL) as well as the Model Driven Archi-
tecture (MDA) respectively. The presented thesis is completely based on these three topics.
Moreover, the important related work, especially in terms of the present tools is reviewed.

Chapter 3 - The MOCCA Modeling Framework addresses both structural and behavioral mod-
eling for creating compact and complete platform independent design model in detail. The
complete structure of a design model is created in UML class diagram with the help of a well
defined modeling library called design platform model, whereas behaviors are modeled using a
full-fledged action language called executable OCL (XOCL).

Chapter 4 - The MOCCA Model Compiler presents the tool, which can be considered as a model
compiler, to support the modeling technique developed in Chapter 3. The working principle of
each important compiler component is discussed in detail. For back-end components like model
mapper and code generator, which can be spawned for diverse target platforms but are based on
common developing principle, either the Java Standard Edition or the Java Enterprise Edition is
chosen as target platform to expose the developing principle, depending on the implementation
details in discussion.

Chapter 5 - Experimental Results shows the practical applications of both modeling technique
and the tool support.

Chapter 6 - Conclusions concludes this thesis and discusses import future directions of research
in this field.





27

2. Theoretical Foundation and Related Work

2.1. UML - The de facto Standard Software Modeling Language

2.1.1. Overview of the UML Diagram Types

The UML is a non-proprietary language for the visual specification, design and documentation of
complex software systems. UML is independent of specific domains, architectures, and methods.
This language was introduced in 1997 in response to the demand for uniform and consistent
notations for object-oriented software systems and processes. Since UML was released, there
have been several revisions. The most important revision was the upgrade from UML 1.x to
UML 2.0. The most recent UML 2.5 standard consists of 13 diagram types, which can be
classified as shown in Figure 2.1.

Fig. 2.1.: UML diagram types and their classification

Structure diagrams illustrate the static features of a model, they are used to capture the
physical organization of the things in a system, whereas behavior diagrams describe how the
elements modeled in the structure diagrams interact with each other and how they execute their
capabilities. As explained in [Pen03] and [RQZ07], each of these diagram types finds its usage
to model different aspects of a software system with various degrees of detail. According to our
primary objective of generating complete source code for software application from UML model,
only class diagram and package diagram, which can be merged into class diagram implicitly, are
chosen to establish static model of a software system. The model elements supported by class
diagram and package diagram cover almost all essential concepts coming with OO-technology.
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Instead of using UML behavior diagrams, text-based XOCL is used as AL to create precise and
compact behavior model. About this decision detailed discussion is found in Section 3.1.

2.1.2. The UML Metamodel

The OMG makes difference between four metamodel layers as shown in Figure 2.2:

• Instance-layer (M0) contains concrete data (objects) of a running system, which are in-
stances of the model elements of the M1-layer. For example, the student1 in Figure 2.2 is
an instance of class Student whose attribute studentID is assigned with a concrete value.

• Model-layer (M1) represents the model itself of a software system. The model elements of
this layer have instances on the M0-layer at runtime. The model is created in a modeling
language, e.g., the UML, which is defined by its own metamodel on the M2-layer.

• Metamodel-layer (M2) contains elements defining the modeling language used on M1-layer.
Instances of this layer are model elements on the model-layer. For example the UML class
Student is an instance of the metaclass Class of this layer.

• Metametamodel-layer (M3) is in fact the Meta Object Facility (MOF) [OMG11a] according
to the OMG terminology. The elements of this layer are used to define metamodel of a
language. For example, the UML metaclass Class and Property are instances of the model
element Class of this layer. To avoid an infinite metamodel layering, elements of M3 can
be represented by the concepts on the same layer.

Fig. 2.2.: The OMG four layered metamodel architecture

Up to this point it is clear that metamodel of arbitrary modeling language used on M1-layer
can be defined by using model elements provided in MOF. The UML 2 Metamodel is one of them
and has been defined and documented in [OMG10b] by OMG. Figure 2.3 shows a snippet of the
UML metamodel. The concrete metaclasses represent UML language constructs, which can be
used directly to establish a model, whereas many other abstract metaclasses serve as structuring
and reducing the entire metamodel hierarchy. The composition associations between metaclass
Class and Property, Operation as well as Classifier define that a UML class can own arbitrary
number of properties, operations, even nested classes.

Knowing about UML metamodel is fundamental to understand the internal representation of
UML models in a CASE-Tool like MagicDraw or our own UML 2 Designer on the one hand.
For CASE-Tools implemented in Java programming language, there is a Java implementation
of the (part of) UML metamodel, whose instances represent the actual model being edited. On
the other hand, the model transformation, which is the key topic of this dissertation, is done by
manipulating the PIMs represented in the form of metaclass instances.
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Fig. 2.3.: A snippet of UML metamodel

2.1.3. Profile - Lightweight Extension Mechanism of UML

With the knowledge of the previous section it should be easy to understand that UML can be
extended by creating appropriate metaclasses and metarelationships. An extension in this way
modifies or upgrades the UML metamodel itself, thus, can be considered as heavyweight. A
lightweight extension of UML is the profile mechanism.

A profile defines limited extensions to a reference metamodel with purpose of adapting the
metamodel to a specific platform or domain [OMG10b]. In essence a profile is an extension
package containing stereotypes and constraints. A stereotype defines how an existing metaclass
may be extended, and enables the use of platform or domain specific terminology or notation in
place of or in addition to the ones used for the extended metaclass [OMG10b]. A stereotype can
have properties, which are called tagged values in this context.

Figure 2.4 illustrates a simple example. Stereotype «Application» is defined in the profile
DPMProfile by extending UML metaclass Class. The extension relationship means that an in-
stance of stereotype «Application» can be applied to an instance of the metaclass Class. On the
right hand side of Figure 2.4 the application of this stereotype is shown. By using a stereotype,
additional information can be added onto a normal model element, which is especially significant
for model transformation. For example, the stereotyped UML class Payback can be transformed
into Java class annotated by @Startup for JEE platform or a normal Java class that must con-
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Fig. 2.4.: A simple stereotype definition and its application

tain a public static void main(String[ ] args) method for JSE platform. Because the stereotype
«Application» defined in MOCCA DPM, which will be discussed in detail in Section 3.3.4, has
the semantics marking a UML class as execution entrance. Thus, the platform oriented model
mapper can interpret this stereotype appropriately.

2.1.4. The UML Action Semantics

Early versions of the UML did not prescribe a way of precisely defining behavior. In order to fill
this gap, an action semantics specification has been incorporated into the specification since the
version 1.5 was released. As a response to MDA, which suggests using models for more than just
documentation or informal design sketching, the UML 2.0 provides a much more extensive and
systematic coverage of semantics relative to earlier versions.

However, as explained in [Sel04], the UML specification does not cover the semantic aspects
in a focused fashion. Instead, due to the idiosyncrasies of the format used for standards, the
material is scattered throughout the documents, making it very difficult to develop a consistent
global picture. In order to solve the problem above, a clean defined semantics architecture with
high level view of the semantics definitions of standard UML and their relations was given in
[Sel04] and has been involved in [OMG10b].

Fig. 2.5.: The UML semantics layers

Figure 2.5 [Bro+06] shows this semantics architecture based on the concepts discussed in
[Sel04]. At the highest level of abstraction, it is possible to distinguish three distinct layers of
semantics:
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• Structural foundations reflect the premise that there is no disembodied behavior in UML -
all behavior emanates from the actions of structural entities.

• Behavioral base provides the foundation for the semantic description of all higher level
behavioral formalisms. This layer consists in fact three separate sub-areas arranged into
two sub-layers. The inter-object behavior deals with how structural entities communicate
with each other, whereas the intra-object behavior defines essentials for representing actions
and for combining them. The actions sub-layer defines the semantics of individual actions
and means by which actions are composed to form more complex behavioral specifications.

• The topmost layer in the semantics hierarchy defines the semantics of the behavioral for-
malism of UML: activities, state machines and interactions. In UML behavior diagram
types are provided to support these high level behavioral semantics.

An action is the fundamental unit of behavior specification. An action takes a set of inputs
and converts them into a set of outputs, though either or both sets may be empty. Actions
are contained in behaviors, which provide their context. Behaviors provide constraints among
actions to determine when they execute and what inputs they have. A primitive action like
TestIdentityAction or ReadVariableAction carries out a computation or accesses object memory,
but never both. This approach enables clean mappings to a physical model. It is usually necessary
to combine a number of primitive actions to get an overall desired effect. This requires flow control
organizing primitive actions to produce more complex behavior specification. Both the primitive
actions and control flow elements defined in UML action semantics can be represented with
different graphical notations in different concrete behavior diagrams according to the topmost
layer of the semantics architecture.

Fig. 2.6.: The relationship between structure and behavior in the UML metamodel

Another way to encompass the UML action semantics in a model is to define a surface action
language. A particular AL could implement each semantic construct one-to-one, or it could define
higher level, composite constructs to offer the modeler both power and convenience. For example,
creating an object may involve initializing attribute values or creating objects for mandatory
associations. The specification defines the create action to only create the object, and requires
further actions to initialize attribute values and create objects for mandatory associations. A
high-level AL could choose to define a creation operation with initialization as a single unit as a
shorthand for several actions.
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As mentioned in Section 1.2, one of the primary objectives of this work is to build a complete,
MDA-ready software model covering both static structure and dynamic behavior. It is clear that
static aspects involving operation signature can be modeled well in UML class diagram, whereas
behavior can be modeled from different points of view in both ready-to-use behavior diagram
types and text-based AL. The UML supports a unified way to combine structural modeling
and behavioral modeling smoothly. Figure 2.6 shows this combination on the metamodel (M2)
layer. The actual combination is done by the association between both abstract metaclasses
BehavioralFeature and Behavior. That means, an operation can be further specified by one of
the concrete behaviors. If the activity diagram is used, the operation instance links to an activity
object. If an textual AL is used, the linked behavior instance has the type OpaqueBehavior, whose
meta-attributes indicate the AL in use and the code itself.

2.2. Domain Specific Language

2.2.1. Abstract and Concrete Syntax

The basic idea of a domain specific language (DSL) is a computer language that is targeted to
a particular kind of problem, rather than a general purpose language (Java, C# or UML) that
is aimed at any kind of software problem [Fow08]. The most common DSLs in use today are
textual, e.g., SQL [WC05] and OCL. But graphical DSL [Lab13] exists, too.

Like general purpose language, a DSL is defined by both its abstract syntax and concrete
syntax. The former defines the significant semantic aspects of a DSL, which usually correspond
to the domain, in which this DSL is used, whereas the latter depicts what a DSL looks like.

Fig. 2.7.: Abstract syntax metamodel for OCL-if expression

Figure 2.7 shows a snippet of the official OCL abstract syntax [OMG10a] in the form of the
metamodel. Thus, it is aware that the UML metamodel described in Section 2.1.2 defines the
abstract syntax of the UML language. The abstract syntax shown in the metamodel above defines
that each OCL if -expression contains one OCL expression as condition, one as then-expression
and another one as else-expression. Because the metaclass IfExp is an OclExpression, the OCL
if -expression can be used within both of the then-branch and else-branch to compose a nested
style.

The concrete syntax of a textual DSL is defined by grammar rules written in Backus-Naur
Form (BNF) notations. Listing 2.1 shows the grammar rule deriving the OCL if-expression.
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1 <IfExpCS> : := ’ i f ’ <OCLExpCS> ’ then ’ <OCLExpCS> ’ e l s e ’ <OCLExpCS> ’ end i f ’

Listing 2.1: Grammar rules deriving OCL if–expression

2.2.2. The Object Constraint Language

The Object Constraint Language is a DSL used to describe expressions on UML models. Expres-
sions written in OCL rely on the types (i.e., the classes, interfaces and so on) that are defined
in the UML diagrams. These expressions typically specify invariants that must hold for system
being modeled or queries over objects described in a model. One of the most important pecu-
liarities of OCL is that it is a pure declarative language without side effects, i.e., the state of the
corresponding executing system cannot be altered when OCL expressions are evaluated.

Two reasons make OCL possible to become a compact and complete AL used in this disserta-
tion to model behaviors: OCL is a formal language with rigorous but simple syntax; the OCL
predefined data types and their operations are powerful and easy to use.

Fig. 2.8.: The predefined data types in OCL

Figure 2.8 shows the most important OCL predefined data types, which can be divided into
three groups:

• OclAny and OclVoid are auxiliary types. OclAny defines a number of operations useful for
every type of OCL instance. Therefore, the type OclAny is considered to be the super-type
of all types in the model. All predefined types and all user-defined types inherit its features.
Because OCL is a strongly typed language, if some expression is evaluated as undefined,
the OclVoid can be used to indicate this result.

• Integer, Real, String and Boolean are primitive data types, which find usages in almost
all the software systems. Primitive data types define necessary arithmetic operations and
string manipulation operations.
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• Within OCL there are five collection types. The Set, OrderedSet, Bag and Sequence are
concrete types in expressions. Collection is the abstract super-type of other four and is
used to define the operations common to all collection types.

In OCL expressions collection types can be used explicitly to define local variables or obtained
implicitly by specifying multiplicity of operation parameters, properties of class, and even nav-
igating from one class to another connected by association. Because in object-oriented system,
one-to-one associations are rare, most associations define a relationship between one object and
a collection of other objects. In Figure 2.9 the association navigating from ProgramPartner to
Service defines a property named deliveredServices in ProgramPartner as a collection of Service
objects. Which OCL collection type is exactly in use can be configured as depicted in Table 2.1.

Tab. 2.1.: Taxonomy of the OCL collection types

unique ordered collection type
X Set
X X OrderedSet

Bag
X Sequence

Fig. 2.9.: A simple UML model with complex query operation

As mentioned at the beginning of this section and explained in [OMG10a] in detail, many
OCL predefined operations are given, among which are OCL loop-operations defined in collec-
tion types. These operations are useful and powerful in specifying complex query operations,
which are fundamental services in an Enterprise Information System (EIS). The operation get-
PartnersHaveNoPointsInServ() in the class diagram shown in Figure 2.9 has the semantics to
gather all the program partners, whose all delivered services cannot accumulate points. Listing
2.2 shows that this semantics can be specified by an OCL body-expression with two loop oper-
ations, select() and forAll() used in a nested way. Listing 2.3 shows the Java implementation
of the same operation. It is obvious that the Java counterpart is much more complex than the
corresponding OCL expression. This is important for model - compact and precise.

1 body : s e l f . programPartners−>s e l e c t ( d e l i v e r e dS e r v i c e s
2 −> f o rA l l (not po in t s In ) )

Listing 2.2: OCL expression specifying complex query operation
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1 ArrayList<ProgramPartner> se l e c tResu l t_0= new ArrayList<ProgramPartner >() ;
2 I t e r a t o r <ProgramPartner> itr_0=this . programPartners . i t e r a t o r ( ) ;
3 while ( i tr_0 . hasNext ( ) ) {
4 ProgramPartner itrVar_0= itr_0 . next ( ) ;
5 boolean f o rAl lResu l t_0= true ;
6 I t e r a t o r <Serv ice> itr_1= itrVar_0 . g e tDe l i v e r edS e r v i c e s ( ) . i t e r a t o r ( ) ;
7 while ( i tr_1 . hasNext ( ) ) {
8 Se rv i c e itrVar_1= itr_1 . next ( ) ;
9 f o rAl lResu l t_0= forAl lResu l t_0 && ! itrVar_1 . ge tPo int s In ( ) ;

10 }
11 i f ( forAl lResu l t_0 )
12 s e l e c tResu l t_0 . add ( itrVar_0 ) ;
13 }
14 return s e l e c tResu l t_0 ;

Listing 2.3: Java implementation of the OCL expression in Listing 2.2

As aforementioned, OCL expressions do not change the state of a software system being mod-
eled. That means some important write semantics are not involved in OCL. In order to take
advantage of using OCL’s compact syntax and its powerful predefined operations on the one
hand, and on the other hand to involve the missing semantics in an intuitive manner, the OCL
is upgraded into a full-fledged AL in this work, which is addressed in Section 3.4 thoroughly.

2.3. Model Driven Software Development

2.3.1. Overview and Typical Applications

As the name suggests, model driven software development, also called model driven engineering
(MDE) is a technique to develop software, in which models instead of programs are essential
artifacts created in the corresponding software development process. As next step, programs
implementing the software can be generated from the models automatically [Som12].

In our opinion, the MDE concept can be generalized to describe any software development
scenario, in which some well known aspects have been specified in an abstract, high-level manner
than direct programming, and finally, these specifications (considered as models) are processed
by dedicated tools to generate implementation codes. Careful study of such scenarios helps to
gain important hints for creating PIMs within MDA-methodology, which will be discussed more
detailed in next section.

Scenario 1: The Graphical User Interface (GUI) of a (desktop) application usually consists of
a window, which contains different kinds of GUI elements, e.g., menu items, icons, buttons, input
fields, etc. According to different platforms, these GUI elements may also be called GUI compo-
nents or GUI controls. A GUI element usually has parameters, which concern displaying them on
the screen correctly. Such parameters are position, size, background- and foreground-color, etc.
Most modern OOPLs implement common GUI elements as classes and their important properties
as attributes of the corresponding classes. They are deployed in libraries and the programmers
can use them directly. However, implementing GUI-layout as source code is still time-consuming.
The powerful modern IDEs solve this problem by integrating an additional software component,
which supports visual manipulation of GUI elements. The Form Editor and its successor, the
WPF Editor in Visual Studio and Swing GUI Builder in NetBeans are typical examples. By
using such tools, programmer chooses the required GUI elements from a toolbox, which contains
all the supported GUI elements in the current context, positions them and edits them visually.
The source code implementing GUI-layout is generated automatically.

Scenario 2: Developing data-driven EIS usually involves interactions with relational database.
If its Business Object Layer is developed in the OO-manner, the Data Persistence Layer has to
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map the class structure of the business object layer into the underlying ER-scheme. This process
is called Object Relational Mapping (O/R Mapping). In order to increase the abstraction level
and to simplify the O/R mapping, modern software development frameworks are equipped with
facilities allowing to specify the necessary information for O/R mapping in the phase of develop-
ing the business object layer. For example, the Java Persistence API (JPA) [Gon10] [LB10] uses
annotations to annotate a normal Java class as entity class, whose instances should be persisted
in database, and their foreign key relations, whereas the Propel [Sch09] for PHP 5 uses an XML-
based configuration file to define the entity classes and their relationships. After that the JPA
framework processes the annotations to generate correct ER-scheme and a data access interface,
whereas Propel generates both the implementation code for the entity classes in PHP 5 and the
mapped database scheme.

Scenario 3: Developing parser for a computer language is a time consuming task, so that
in most situations a software tool called parser generator will be used to simplify this process.
Parser generator allows to move the parser development from time consuming and error prone
level of programming to the next higher level of specifying parser in (Extended) Backus-Naur
Form (EBNF). Then the parser generator transforms the parser specification into its imple-
mentation in one of the common programming languages. For example, the Coco/R [JKU13]
can generate LL(k)-parsers based on recursive-decent strategy, whereas GOLD Parsing System
[Coo13] generates LALR(1)-parsers based on LALR parsing table.

All the three scenarios above exploit the advantages gained by moving (a part of) software
development from low level implementation into high level specification. These advantages can
be summarized as follows:

1. The essential logic of a software component is specified in a domain specific manner, so
that both domain experts and non-programmers can participate in the development.

2. These domain specific developments result in software specifications, which are implementa-
tion independent and much more concise and compact than their concrete implementations.

3. A transformation tool or framework, whose internal working is transparent to the end users,
is used to transform these domain specific software specifications into implementations
based on the implementation requirements.

2.3.2. Model Driven Architecture

The MDE concept can deal with all aspects in a software development process, whereas the
Model Driven Architecture concentrates on design and implementation phase [Som12]. As the
three MDE scenarios depict, the modeling mechanisms used in MDE can be diverse and more
or less tool-specific, whereas in MDA the models should be created in UML and its related
concept (e.g., profiles). Figure 2.10 illustrates the essential concepts in MDA from a high-level
perspective.

As defined in [OMG03], a platform independent model is a view of a system from the platform
independent viewpoint. A PIM exhibits a specified degree of platform independence so as to be
suitable for use with a number of different platforms of similar type.

A platform specific model is a view of a system from the platform specific viewpoint. A PSM
combines the specifications in the PIM with the details that specify how that system uses a
particular type of platform.

Model transformation is the process of converting one model to another model of the same
system. Note that the original demonstration of the MDA pattern was given in [OMG03] in
a more generic style, in which the parts known as transformation specification in Figure 2.10
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Fig. 2.10.: High-level perspective of MDA concept

is still a blank. Representing MDA concept in this manner is intended to be suggestive. The
PIM and other information are combined by transformation to produce a PSM. There are many
ways in which such a transformation may be done, leaving the tool designer to develop their own
(innovative)-way realizing the transformation.

2.4. Related Work

2.4.1. Methodology and Tool Support for Efficient Modeling

Since MDA concept was launched in 2001 [OMG03], a lot of approaches and their tool supports
have been developed. As introduced in Section 1.2, the both key issues, which MDA tries to
solve, are efficient modeling and model transformation. In this section, a brief summary of
researches in the both fields and their tool supports is given, in order to provide an overview of
the technological states nowadays.

As well known, if a model contributes to a problem solution, that model must be less compli-
cated than a solution itself. Further more, the model has to be correct for the problem solution
and easy to understand. In the software development, this kind of model can be created by
concentrating only on the problem domain, leaving other IT-infrastructure details unconsidered
at first. Typical examples are Entity-Relationship (ER) diagram used to model data entities
involved in a relational data base and (E)BNF-notations as well as syntax directed translation
[Aho+08] used to specify compiler logic. Both examples originate in the same philosophy: the sig-
nificant characteristics of problem domain being considered must be well studied and then modeled
in a concise manner independent of a concrete implementation. Following this idea, the efficient
modeling means domain specific modeling, along with MDA, means, the PIM or at least, a large
part of PIM must be domain specific. To achieve the domain specificity, either domain specific
language or UML with domain specific profiles together with reusable design platform models can
be used.

As introduced in Section 2.2, DSL is a computer language with special purpose, which may
have no relationship with UML, e.g., SQL for database related operations, DSL for parallel
computing [Suj+11], etc. Other DSLs can be considered as MOF-compliant, e.g., the Scene
Structure and Integration Modeling Language (SSMIL) [Vit08] for modeling 3D-applications,
and the OCL. As domain specific profiles, there are e.g., profiles for GUI modeling [Bla04],
profiles for modeling Service Oriented Architecture (SOA) based applications [HLT03] [Lóp+07],
and profiles for modeling context aware web applications [Kap+09] as well as the OMG EDOC
profile [OMG04] for developing enterprise applications.
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Fig. 2.11.: The tool support for efficient modeling

No matter which method is used, necessary tool support is indispensable. The presented work
concentrates on efficient modeling in UML and the transformation of UML models. Thus, only
the diverse tools in terms of UML modeling are concerned. As Figure 2.11 shows, the tools are
classified into three groups:

1. Eclipse based modeling tools

2. Our own UML tool - the UML 2 Designer

3. Diverse commercial tools

The most academic research projects concerning MDA are based on the first group of modeling
tools. Because Eclipse [Ecl13] is a great open source project, whose purpose is to provide a highly
integrated tool platform. Thus, eclipse is far more than a well-known IDE for Java programming
language, but a framework to implement development tools for diverse programming languages
and even modeling languages [Ste+09]. The Eclipse Modeling Framework (EMF) is its modeling
framework that exploits the facilities provided by Eclipse [Ste+09]. The EMF is not conceived
just as a UML editor. Within EMF arbitrary DSLs can be defined together with their editors
generated. With the OMG four layered meta-model architecture introduced in Section 2.1.2 in
mind, this flexibility can only be obtained by providing an MOF-like meta meta level modeling
facility. That is the Ecore [IBM12] API. For this work, the only important thing is to understand
that Ecore API can be considered as an EMF specific implementation of OMG MOF standard as
illustrated in Figure 2.11. Given Ecore API, the UML meta model can be created. Figure 2.11
shows two EMF-based modeling tools, each of which has its own meta model project conforming
to Ecore. Along with this strategy, even the abstract syntax (meta model) of Ecore-compliant
DSL can be created by using Ecore API. The SSMIL-DSL is a typical example.

In the middle branch of Figure 2.11 are our proprietary CASE-tool UML 2 Designer and its
metamodel project. Both of them belong to our research project UML-TEst Front-End (UTEFE)
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[SBL04], which was financed by the Bayer Business Services GmbH and consisted of 6 project
phases. The primary motivation of UTEFE project was that in early 2004, when the UTEFE
project was started, the most CASE-Tools relied on meta model of either UML 1.x version or
a mixture of 1.x and 2.0 version of UML, and the other research project GEneration of TEst
CAses (GETECA) [Ste+02] would exploit the powerful features of UML 2.0 standard, especially
in behavioral modeling. Thus, a completely UML 2 compliant CASE-tool was developed under
leading of Prof. Steinbach in our institute. With years of continuing development, the UML 2
Designer has become a full-fledged CASE-tool for both software and business process modeling
and has served as the front end in all of our UML-centric research projects.

The rightmost branch of Figure 2.11 represents commercial CASE-tools, among which the
MagicDraw is given as a concrete example. The benefit of using such powerful commercial
CASE-tools is obvious, whereas the disadvantage is the relatively expensive licensing fee and the
lack of full control over the tool in terms of modification and extension.

2.4.2. Methodology and Tool Support for Model Transformation

As introduced in Section 2.3.2, the primary objective of model transformation in the context
of MDA is clear, whereas the possible realization is given in a suggestive manner, to encourage
development of innovative methodologies. Generally speaking, there are two kinds of model
transformations, namely the Model to Model (M2M) transformation and the Model to Text
(M2T) transformation as shown in Figure 2.12. Given a PIM modeled with the technology
and tool addressed in the previous paragraph, both M2M and M2T transformations are usually
involved in one MDA process, transforming an abstract, domain specific PIM into one of the
required PSMs and then into the source code of the target platform.

Fig. 2.12.: The tool support for model transformation

For both the M2M and M2T transformations the regular solution is to develop some kind of
appropriate DSL, i.e., the model transformation language, with which the transformation logic
can be expressed relatively high-level. For both cases there are even recommended standards from
OMG, namely, the QVT [OMG11b] for M2M transformation and MOF To Text [OMG08] for
M2T transformation. Since the M2M transformation is considered as essential and complicated
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in the the entire MDA process, the most MDA researches fall into this branch to work out
efficient M2M transformations. For example, besides QVT, the Atlas Transformation Language
(ATL) [JK06b] is also widely accepted, which shares almost the same idea with QVT and can
be aligned to QVT from the perspective of language architecture [JK06a]. Because such leading
M2M transformation DSLs are usually text-based (the QVT Relations [OMG11b] is equipped
with a graphical concrete syntax, but the primary usage is textual). Researchers like [GMO09]
consider this phenomenon as a paradox that the model-driven community promotes the usage of
models instead of textual code, while the same community dominantly uses textual code to define
the model transformations. As an answer of the question above, M2M transformations relying on
graphical notations [KBC03], based on Triple Graph Grammars [LG08] [GLO09] have also been
developed.

As illustrated in Figure 2.12, all the aforementioned methodologies can be considered as high-
level specification of model transformation logic into some kind of DSL, either textual or graph-
ical. Then, such a specification is compiled into the model compiler for M2M transformation
or code generator for M2T transformation implemented in normal programming language. As
tool supports, there are QVT Operational for QVT Operational Mapping and Acceleo [Acc13]
for MOF To Text respectively. Both of them belong to the large Eclipse ecosystem. Specifying
model transformation in this way requires knowledge of the meta models of both the source and
target models. Although the resulted specification can be reused, even a minor modification
involved in the transformation concerns changing in DSL-source code or DSL-source model in
the case of graphical DSL and the following recompiling.

As shown in the middle of Figure 2.12, the both M2M- and M2T-transformations can be im-
plemented in a tool, which, according to our research, is a model transformation framework.
Because the fundamental of model transformation is well known, the model transformation can
be decomposed into a model mapper hierarchy, with the root model mapper implementing the
most fundamental transformation common among all target platforms and each leaf model map-
per dealing with transformation issues specific to a target platform. Within this transformation
framework, the input model is completely platform independent and created based on a well
designed, highly abstract design platform model and a powerful action language rooted in widely
used OCL. To map model elements from design platform model onto a target platform, an XML-
based mapping configuration file is used, which leads to configurability, whereas novel model
mappers can be added into the framework with their own mapping rules, which support ex-
tensibility. The former will be addressed in Section 4.3.4 and the latter in Section 4.3.3 in the
presented work.
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3. The MOCCA Modeling Framework

3.1. Scope and Design Philosophy

This chapter addresses the first issue raised in Section 1.2 - compact and complete modeling for
MDA. The first attempt towards solving this problem is to fix a reasonable scope for modeling.
As explained in [Som12], a software development process usually encompasses many different
process activities, from initial conception to final deployment and maintenance. Regardless of
which process model is used, there are four fundamental activities common to all the process
models:

1. Software specification defines the functionality of the software and the constraints on its
operation.

2. Software design and implementation produces the software, which meets the specification.

3. Software validation ensures that the produced software does what the customer wants.

4. Software evolution deals with changing customer requirements.

We agree with the author of [Som12] that MDA concentrates on software design and im-
plementation. Because the ultimate goal of MDA is to generate executable applications from
semantically correct and complete models. As key design philosophy, the data-centric, procedu-
ral paradigm usually based on transaction script [Fow+02] design pattern is excluded. Taking
into account these considerations the models created within the MOCCA modeling framework are
defined as object oriented design model, which hides any implementation specific details related to
one concrete platform on the one hand, but involves both structure and behavior completely on
the other hand. Such a model is called Design Model (DM) according to MOCCA terminology.
In contrast to an OOA-model, a MOCCA DM is built under some technical constraints given in
the MOCCA DPM, which will be studied in detail in next section.

Other common activities mentioned above can also be supported by model driven technology,
i.e., model driven requirements engineering, model-based test case generation etc., which do not
belong to the scope of this thesis.

The next step concerning scope and design philosophy is to choose appropriate UML diagram
types to create MOCCA DM. There are thirteen different diagram types coming with UML 2
standard, which cover almost all the aspects of software modeling. The baseline to select diagram
can trace back to the first and second sub-issue of Section 1.2, which can be divided further into
the following four aspects.

Complete structure modeling

A MOCCA design model contains the overall architecture of a software application. Such an
architecture is usually decomposed into layers or components, which can be physically organized
as packages. Package consists of classes, interfaces, data types and their relationships. In order
to make discussion simpler, an umbrella concept classifier is used to refer to the common model
elements in terms of class diagram as a whole, namely class, interface and data type. Based
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on this narration, the UML package diagram and class diagram are inherently good choices for
creating design models. Because UML class diagram also supports the package concept. Hence,
only class diagram is used for modeling structure.

The UML component diagram seems to be a good candidate to model software structure. Be-
cause component diagram shows the cooperating modular parts - the components - in terms of
provided and required interfaces. Moreover, the white-box representation [RQZ07] of a compo-
nent can involve deployment artifact of the actual component. But according to our experience,
the structure modeled in component diagram is yet too coarse-grained to transform into imple-
mentation automatically. It is clear that with the logic of MOCCA model mapper and mapping
rules a significant amount of additional classifiers and their involved elements can be generated
from design model into target model. However, there are always fine-grained details like prop-
erties and operation signatures, which belong to core application structure, have to be modeled
exactly in class diagram. The component diagram is not used to create design model in this the-
sis. However, certain ready-to-use software component like parser for arithmetic expressions can
of course be used to create high-level design model in the class diagram by calling the provided
interface(s) of such a component.

Compact structure modeling

Compared to organize software structure directly on the code base, modeling structure in class
diagram is indeed more compact, in which many classifiers scattered in different source files on
the code base can be involved in a single class diagram on the one hand, the different relation-
ships among those classifiers can also be represented clearly on the other hand. But there are
yet problems coming with class diagram. Essentially speaking, class diagram merely shifts the
textual representation of classifiers into graphical representation, without compressing the infor-
mation itself. That means, the classifiers as well as their contents, which have to be edited on
the code base, must be modeled in class diagram, too. With increasing number of classifiers and
relationships among them, the compactness in class diagram will be lost more or less.

To achieve the compact structure modeling the information involved in class diagram should
be compressed in such a way that the number of classifiers and their relationships should be
minimized without losing structural completeness for model transformation. Inspired by the
analysis in Section 1.1, the classifiers in terms of cross-cutting concerns and plumbing can be
hidden from the core concerns. In this work, two strategies are adopted for this purpose:

1. Similar to the class library of modern OOPLs, classifiers related to cross-cutting concerns
and plumbing can be abstracted and adopted into a reusable and well documented modeling
library, which is actually the MOCCA DPM. Usually, if a classifier in terms of core concerns
has an association with DPM data type, instead of a UML association, the DPM data type
is used to define a normal property in a class.

2. There are situations, in which cross-cutting concerns and plumbing should be involved into
DM by using high-level expressive constructs, to hide unnecessary details. Sharing the
common idea with the first example in Scenario 2 of Section 2.3.1, the UML stereotypes
and their tagged values can decorate any UML element including classifier with additional
(complex) information in a clean way. Stereotypes can be interpreted well by model mapper.
In this work they are defined in dedicated profiles and launched in DPM as well.

Complete behavior modeling

Because the ultimate objective is to generate full-fledged applications implemented in one of
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the OOPLs, complete behavior modeling means that the method implementations must be gen-
erated from their behavioral models. As classified in Figure 2.1, there are seven diagram types
concerning behavior modeling, four of which belong to the subclass interaction diagram. As the
name indicates, the interaction diagrams are good at illustrating message exchanges between
interaction participants from different points of view. For methods with many interactions, i.e.,
events trigger, it is clear that the sequence diagram is able to model the entire behavior. How-
ever, as proven in [Did10], the sequence diagram is not the wise choice for methods concerning
intensive computing. The state machine diagram has been used to model behaviors for embed-
ded systems. However, similar to sequence diagram, it is not and should not be a one-for-all
solution. The sole diagram type that can be used to model method implementation completely
is activity diagram, which supports all the three control flows as well as elementary semantics like
local variables. As an early attempt, in my master thesis [Lia08], the activity diagram was used
together with OCL to model computation intensive methods, e.g., sorting algorithms, for code
generation. Based on our experience, for some complex computation, the activity represented in
diagram seems more complex than its implementation code. Hence, the activity diagram fulfills
the requirement of complete behavior modeling but not the compactness of such a model.

Compact behavior modeling

Continued with the problem above, none of the UML behavior diagrams satisfies the require-
ments of both complete and compact behavior modeling. Inspired by the pseudo code [Dal13],
which is primarily used to formulate algorithms concisely, the decision is made to use high-level
textual action language (AL) for behavior modeling in design model. As illustrated in Figure 2.6,
the overall feasibility of using AL is guaranteed by UML metamodel. The metaclass OpaqueBe-
havior encapsulates AL statements or expressions and associates to an operation as the model
of its implementation. In this work the OCL is chosen as AL for its compactness, which can be
easily aware by comparing Listing 2.2 and Listing 2.3. The small number of missing semantics
in terms of changing system states have been involved into original OCL by additional language
constructs, so that the upgraded OCL, namely XOCL has become a full-fledged AL for both
complete and compact behavior modeling.

3.2. Overview of Platforms and Models

Up to now several important platforms and their models have been mentioned and even defined
in the previous chapters. However, the lack of summarizing these models as well as their rela-
tionships prevents us from understanding the overall design philosophy and the application of
these models. To give this overview, it is necessary to re-mention the methodology used in this
work - the platform based MDA approach. The MDA has been introduced in Section 2.3.2. The
platform based characteristic roots in the work of [SFB05] and similar to the research of [WJ04],
that means the development of applications is based on platforms, whereas different platforms
are used for design, implementation and deployment. Taking into account these considerations,
Figure 3.1 illustrates all the models within the MOCCA modeling framework.

The horizontal separation of Figure 3.1 conforms to the MDA paradigm, in which both PIM
and PSM concepts are defined. Due to the platform-based strategy, Figure 3.1 involves further
more a vertical separation, whose upper part can be summarized as application model, whereas
lower part as platform model. A platform model provides a set of technical concepts, representing
the different kinds of parts that make up a platform and services provided by that platform. An
application model describes a software system using the services provided by the underlying plat-
form. Both application models and platform models can be classified into platform independent
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Fig. 3.1.: Overview of different models within MOCCA modeling framework

and platform specific category.

Design Platform Model

According to the MOCCA terminology, the platform model residing in the PIM branch is called
design platform model. A design platform is an architecture platform that comprises a set of
ready-to-use data types, their relationships, and constraints as well as important meta-data. The
MOCCA DPM is a UML model that represents such a design platform. In the current MOCCA
DPM all the ready-to-use data types and their relationships are modeled using normal UML data
types and relationships in separate class diagrams, constraints are given by OCL expressions and
meta-data are represented by UML profile and stereotypes.

As shown in Figure 3.1, the DPM itself consists of two parts. The Core API model refers to
basic data types common to most applications. Such data types are typically primitive data types,
collection data types, data types concerning IO-operations, etc. Further more, many stereotypes
backed by mature design patterns are also involved into this category. Sharing the similar idea of
the Mercator-Framework [WJ04], the Extended API Model serves as extension point to involve
domain specific functionality for a special group of MOCCA users, e.g., banking branch or 3D-
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development. The crucial requirements for DPM model elements can be summarized as follows:

1. for each DPM data type as well as its attributes and operations there must be either a map-
ping rule defined in Mapping Configuration File, or a piece of core algorithm implemented
as firmware in a corresponding platform specific model mapper,

2. for each meta data defined in the form of stereotype there must be an appropriate core
algorithm in model mapper to interpret such stereotype in a platform specific manner.

Target Platform Model

A Target Platform Model describes a concrete technical platform, on which the implementa-
tion language and its API are provided on the one hand, on the other hand the mechanism to
deploy a generated application should also be given. Based on this separation, the MOCCA
TPM is divided into Implementation Language Platform Model (ILPM) and Target Deployment
Model (TDM). As the name suggests, the MOCCA ILPM abstracts different APIs in the same
target language, which can be divided further into three categories:

1. Standard Language API Model

2. Standard Framework API Model

3. Extended Adapter API Model

The Standard Language API Model encapsulates the latest language status as documented by the
language vendor. Based on the peculiarity of the target language, the UML model representing
this category of ILPM can be very similar to the language API itself or some sophisticated re-
structuring has to be done to smooth some kind of non-OO characteristics in target language. For
Java programming language, both the JSE-API [Ora12] and JEE-API [Ora11a] can be seamlessly
modeled in UML class diagram, because the Java language and its API share almost the same
OO-principle with UML. Even the special language construct annotations and their values, which
are used intensively in JEE applications can be modeled as stereotypes and tagged values.

The Standard Framework API Model sounds a little confused. People also call the Java col-
lection API as collection framework, Java Persistence API (JPA) [Ora11a] as Java persistence
framework, etc. If such frameworks belong to standard language API, they should also be con-
sidered as parts of the language itself. Hence, according to our classification, all the APIs,
frameworks developed and maintained by the original language vendor are considered as stan-
dard language API. Standard Framework API means widely adopted (commercial) framework
written in the same target language but developed and maintained by third-party institution
other than original language vendor. For Java language, the standard framework API model can
be used to encapsulate the famous Spring Framework API [Spr13].

The Extended Adapter API Model is used primarily to abstract some non-OO aspects in target
language like ABAP. As the name suggests, the idea coming with this kind of ILPM sub-model
is based on the adapter design pattern [Gam+95] [FF04].

The Target Deployment Model is reserved for future use and not studied thoroughly in this
thesis. Because modeling and generating deployment plan for modern application, especially,
for distributed enterprise applications, is as sophisticated and complicated as code generation.
For example, how to deploy each component of a generated JEE-application into appropriate
JEE container by using whether the ANT-script [ANT13] or even more powerful Maven Project
Object Model [Mav13] file can be a challenging research topic by itself.
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Design Model

The Design Model is a platform independent UML model representing the main application
logic. It contains model elements defined by application modelers or provided in DPM. The
XOCL expressions specifying behaviors are also stored in design model. Design model is the
most important input for the MOCCA model compiler.

Target Model

The Target Model , which can be further divided into Implementation Model and Deployment
Model, can be considered as the product or output of a concrete model mapper. According
to the current status of MOCCA, the implementation model saves only structural information
given by UML meta-model, but not the graphical information for visualizing a UML model. The
UML model elements involved in an implementation model represent one-to-one mirror of an
OOPL-implementation. Similar to target deployment model, the deployment model is reserved
for future work.

Fig. 3.2.: Primitive data types involved in the MOCCA DPM

3.3. The MOCCA Design Platform Model

3.3.1. The Primitive and Collection Types

The design platform model is the foundation stone for building design models. Similar to devel-
oping applications in programming languages, primitive data types like integer and string as well
as collection type like vector are ubiquitous in modeling, too. Instead of inventing such types
from the ground, the primitive data types and collection types defined in OCL are involved in
MOCCA DPM on the one hand. Other useful elementary data types are selectively adopted
into our XOCL extension to deal with diverse modeling requirements on the other hand. In
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fact, relying on open standard is one of the fundamental design philosophies of MOCCA DPM.
Adopting this strategy helps potential users grasp our technology, saves time to document these
types and their operations.

Figure 3.2 summarizes the primitive data types of MOCCA DPM in a class diagram. To make
clear difference between primitive data types defined in OCL standard and primitive types in-
volved in XOCL extension, they are grouped into corresponding packages with intuitive names.
As shown, the OclAny is modeled as the supertype for all the other types represented here.
In fact, as explained in [WK03], it is considered to be the supertype of all classifiers in both
DPM and DM. That means, all predefined types and all user-defined types inherit the features
of OclAny. Thus, the OclAny finds its common usage like java.lang.Object class in Java and Sys-
tem.Object class in .Net. Detailed information about OclAny can be found in [WK03], because
its semantics and predefined operations are preserved in DPM completely.

1 context XOCLString
2 inv : s e l f . i sFixedLength = f a l s e
3 inv : s e l f . isNumberOnly = f a l s e
4 inv : s e l f . l ength . oc l I sUnde f ined ( )
5 inv : s e l f . isCurrencyKey = f a l s e
6 inv : s e l f . i sUn i t = f a l s e

Listing 3.1: OCL invariants specifying default domain of XOCLString

The primitive types Boolean, Integer, Real and String preserve their original semantics and
predefined operations. As described in [WK03], the Boolean type can only hold one of the two
values: true or false and supports common logical operations like or, and and so on. The Integer
and Real represent the common mathematical concepts respectively. Because OCL is a modeling
language, there are no restrictions on their values. However, the exact domain of the both types
can be retrieved by consulting the corresponding mapping rules for them onto a concrete target
platform. For example, if a design model class, which contains a property defined as DPM
Integer, will be mapped onto Java Platform Standard Edition (JSE), and further more, there is
mapping rule given in JSE mapping configuration file, which stipulates that the DPM Integer is
mapped as Java primitive data type int. In this way, the non-restricted DPM Integer and Real
will be constrained by concrete data types of target platform, onto which they will be mapped.
The String type represents a sequence of printable characters and provides several predefined
operations such as concat().

Fig. 3.3.: A user-defined primitive type with strict domain

In practice, there are occasions, where domain of primitive data types should be defined exactly.
For this purpose, three additional primitive data types derived from original OCL primitive types,
namely, XOCLString, XOCLReal and XOCLInteger are given in Figure 3.2. As their prefix
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indicates, they belong to the XOCL extension. These types take over the original semantics by
inheritance and add extra properties for restricting their domains.

By default all the three XOCL extended primitive types preserve the original semantics in
OCL. For example, the domain of XOCLString is defined via OCL-invariant as shown in Listing
3.1. If a string-based type with special domain must be used in the model, it can be easily
constructed by inheriting XOCLString and defining invariants on it. Figure 3.3 illustrates an
example. A string-based data type called StudentID is defined as five-digit, number-only, which
can be used to define typed elements such as the studentID property and the corresponding
constructor parameter in the Student class. Primitive data types defined in such a way usually
have concrete semantics and strict domain definitions, which are important for some kind of
applications.

The XOCL primitive type Date is used to model time information defined by given year, month
and day. The Time is used to model time information defined by given hour, minute and second.
The TimeStamp represents the current system time.

Fig. 3.4.: Collection types involved in the MOCCA DPM

Figure 3.4 shows the hierarchy of collection types defined in MOCCA DPM. Similar to primitive
types, the original OCL collection types preserve their semantics and operations. They have been
documented in [WK03]. One more collection type, namely the HashTable is added to extend
standard OCL collection types. A HashTable represents a dictionary-based collection, which
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maps keys to values. All data types, except OclVoid can be used as key or as a value. Besides
taking over the operations from the OCL abstract collection type Collection by inheritance, two
more operations put(K,V) and V get(K), which are essential for dictionary-based collections, are
defined.

Fig. 3.5.: Association-End interpreted as HashTable

As introduced in 2.2.2, OCL collection types are generic, or in other words, template-based
types. They must be concretized either by defining local variable in expressions or by inter-
preting additional information wrapped around a typed element. Especially, for navigating via
association-end, a concrete HashTable can be modeled as shown in Figure 3.5, where a class
StudentManagement composition-associates with a data type AllRegisteredStudents, which con-
cretizes the generic HashTable via TemplateBinding relationship. The TemplateBinding substi-
tutes the template parameters K and V with concrete types StudentID and Student respectively.
It is worth noting that the role name, or in other words, the name of the association-end is not
given explicitly. In fact, at the time of model transformation, the name of concrete hash table,
AllRegisteredStudents in this example can be reserved as role name. Because in most popular
OOPLs an anonymous concrete hash table is used to define property in a class. In such a situ-
ation, an identifier must be chosen to name this property. To illustrate this mechanism, a Java
class, which implements the model of Figure 3.5, is shown in Listing 3.2. It is easy to find that
the property AllRegisteredStudents is defined by an anonymous concrete hash table with both
template parameters substituted.

1 public class StudentManagement
2 {
3 private Hashtable<StudentID , Student> Al lReg i s t e r edStudent s ;
4

5 public void reg i s terNewStudent ( StudentID id , Student s ) ;
6 public Student findStudentByID ( StudentID id ) ;
7 }

Listing 3.2: A Java class implementing the model of Figure 3.5

As shown in Figure 3.4, the XOCL HashTable is an OCL Collection with additional operations
in terms of hash table semantics. In concrete syntax, HashTable is used as OCL collection type,
that means defining local variable in expressions like

• lvar:HashTable(StudentID, Student)

and calling operation on it like

• lvar->put(sid, studInst).
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3.3.2. The Platform Independent GUI Toolkit

GUI-based applications are ubiquitous, which cover classical desktop applications, rich Internet
applications as well as applications running on smart devices. In such an application a user
interacts usually with a window containing different kinds of GUI elements, which are typically
(context-)menu items, icons, buttons, input fields etc. According to different platforms, these
GUI elements may also be called GUI components [HC08] or GUI controls [Tro07]. Since the
GUI is a significant part of most applications, it should also be modeled using UML. However,
it is by no means always clear how to model user interfaces using UML [SP01]. It is not easy
to identify how GUI elements are supported in UML models. [SP01] and [Bla04] summarized
several common GUI modeling problems when using UML. To solve these problems, either ad-
ditional diagram notations have been added to the original UML [SP03] or novel UML profile
was developed to enhance GUI modeling using UML [Bla04]. However, all the aforementioned
researches constrained in extending UML with the ability to create UI model completely, but do
not consider UI modeling in the context of MDA. Based on the contributions of [SP01] [SP03]
[Bla04] we try to find the modeling solution of GUI in UML to create complete and compact
PIM on the one hand, on the other hand to transform the platform neutral GUI toolkit involved
in the DPM onto different target platforms efficiently in this work.

Fig. 3.6.: The work-flow, in which common UI aspects were identified and the platform independent modeling
solutions were found

The most important activities that have been performed in this work to find out the solution
of platform independent GUI modeling can be illustrated in an activity diagram shown in Figure
3.6. The region with light-blue background color will be addressed in the next section.

A simple GUI application implemented in C++ with Qt [Qt13] as GUI library, in C# with
WPF [Tro07] as GUI library as well as in Java with Swing [HC08] as GUI library is shown
in Figure 3.7. As starting point, all the three concrete implementations were compared and
decomposed into five important aspects, which are common in developing GUI applications in
different target OOPLs.

The logical structure of GUI means the entire collection of GUI elements and their containing-
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Fig. 3.7.: A simple GUI-based application created in ISO C++ with Qt as GUI library, in C# with WPF as GUI
library as well as in Java with Swing as GUI library respectively

relationships. For example, the out-most window contains a menu-bar, which contains a menu
labeled as File containing further two menu items and so on. Most modern OOPLs implement
common GUI elements as classes and their important properties as attributes of the correspond-
ing classes. They are deployed in libraries and can be used in certain languages. Hence, the
programmers can use them directly. In the current example, the top level window is imple-
mented in Qt library as QMainWindow, in WPF library as Window and in Swing library as
JFrame respectively. For other common GUI elements, the same rule remains.

Independent of concrete GUI libraries, the logical structure of the GUI application above can
be modeled using pseudo GUI elements in UML class diagram as shown on the left hand side
of Figure 3.8. It is obvious that the GUI structure shown here is a tree rooting in the pseudo
GUI element MainWindow. The composition associations between MainWindow and Menu,
MenuItem, Container, TextOutput as well as Button model the creation semantics that such
GUI elements are created and only exist within the life cycle of a MainWindow object. Other
associations build the tree structure of this GUI.

Fig. 3.8.: Two variants of modeling GUI logical structure in UML class diagram
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It is to note that the logical structure modeled in this manner is not that helpful to embody
the final structure illustrated in Figure 3.7. With increasing number of involved GUI elements
and complexity of the internal structure, class diagram like this will reduce its readability dra-
matically. An alternative to cope with increasing complexity of GUI structure is to model all
the involved GUI elements as normal properties instead of association-ends. This solution is
shown on the right hand side of Figure 3.8. However, modeling in this way does not even show
the basic tree structure achieved in the former model. Thus, the conclusion is that modeling
logical structure only using standard UML class diagram is not sufficient, other supplement or
enhancement is necessary.

The visual layout means the visual presentation of the GUI by spatially arranging GUI elements
like buttons, input fields, labels and so on. Typical parameters defining visual layout are position,
size, icon, background- and foreground color of each GUI element involved in the actual user
interface. To configure these parameters, two methods are feasible: programming them directly in
target language and manipulating them visually with the help of a software component classified
as GUI-Wizard.

Programming GUI elements in an object-oriented target language means instantiating them
and setting their properties appropriately. Mainstream GUI frameworks used to create the demo-
example in this section are composite pattern [Gam+95] [FF04] based, so that there are clear
parent-children relationships between involved elements. In this way, both the logical structure
and visual layout can be established in a programmable manner. It is easy to understand that
geometrical layout information like position and size are difficult to obtain when programming
them. To solve this issue, some kind of intelligence, with which position and size information
can be inferred, is achieved by using a technique called layout manager. Layout manager comes
always with container together. For example, in order to line up several buttons in a container,
in Swing, a container configured with FlowLayout can be used, while in Qt QBoxLayout and in
WPF WrapPanel can be used respectively.

Fig. 3.9.: The Swing Designer shipped with NetBeans IDE

Developing GUI in source code is not productive, because the process is not intuitive. A
better way is to use the GUI wizard, which is usually integrated in the IDE and supports
visual manipulation of GUI elements. For each of the three GUI libraries used to create our
example, there is a corresponding GUI wizard. Figure 3.9 shows the Swing Designer shipped
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with NetBeans IDE. All of them support GUI developers in a similar way. For a top-level
container, e.g., a window or a dialog, there is always a design view associating with it. GUI
developer chooses the required GUI elements from a Toolbox, which contains all the supported
GUI elements in this context, positions them on the view, and edits them visually.

To reflect the manipulation of both the logical structure and visual layout, an XML-based
internal representation is usually used by a GUI wizard. In WPF, this XML-representation is
standardized as an declarative language, which can even be directly used by GUI developers
to define the GUI. This language is called eXtensible Application Markup Language (XAML)
[Mac12]. In other GUI libraries, such an XML representation is only used by the tool as an
internal data structure.

The visual manipulation of GUI elements via GUI wizard is in fact only the efficient alterna-
tive to produce source code, which programs the GUI structure and layout in a target language.
Thus, on all the three OOPL-platforms, the internal XML-representation is transformed into
corresponding source code as the final representation in target language by GUI wizard automat-
ically.

Up to this point, it should be clear that the both processes, in which visual layout of GUI
can be developed in a target OOPL, are very difficult and even impossible to be modeled using
UML. Because there is neither appropriate diagram types tailored for GUI layout modeling, nor a
standard DSL shipped with UML to specify the GUI layout, just as OCL for specifying primitive
and collection types.

Taking into account the analysis above, a solution to model GUI in the phase of creating the
PIM of a GUI-based application is proposed, based on the following achievements:

• A platform independent GUI toolkit integrated into the MOCCA DPM

• A Smart GUI Editor integrated into UML 2 Designer, which supports visual manipulation
of the GUI elements adopted in the GUI toolkit

• XOCL expressions used to represent the visual manipulation of GUI elements in the Smart
GUI Editor

The platform independent GUI toolkit is created by reworking and refining the idea of modeling
GUI in class diagram illustrated in Figure 3.8. Common GUI elements, which are ubiquitous on
almost all the target platforms, are selectively adopted into this toolkit. Figure 3.10 summarizes
all the important elements in the current GUI toolkit. The usage of these GUI elements is
easy to understand by reading the class diagram, because they are just a high-level abstraction
and compact restructure of the familiar concepts. To make difference between classes modeled
by software developers in design model and classes belonging to MOCCA DPM, the latter are
modeled always as UML Data Type stereotyped by «DesignType» additionally.

To be compatible with OCL, the abstract GUI element Control, which is the root of all the
others, is derived from OclAny directly. Other abstract elements are introduced to classify GUI
elements into different functional categories:

• Control represents a graphical entity of one kind or another that can be displayed on the
screen. As the base type for all the other concrete GUI elements, properties and operations
that are common for all GUI elements are defined in this type. Similar to concrete GUI
libraries coming with OOPLs, significant properties and their semantics can be aware by
reading the class diagram in Figure 3.10. It is to note that besides common properties
and operations important GUI events are also declared in this base type by using platform
independent event types, which belong to MOCCA DPM as well, and will be described in
next section in detail.
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Fig. 3.10.: Class hierarchy of the MOCCA DPM GUI elements

• ButtonControl represents an interactive element that can be labeled with a text and gen-
erates an click event.

• TextControl abstracts concrete GUI elements in respect of showing as well as editing text.

• Container is a control that can contain other controls. As shown in class diagram, the
inheritance between Container and Control as well as the bidirectional association between
them conform to the composition design pattern. Thus, the containers and their owned
controls can be used in a nested manner.

• We distinguish between TopLevelContainer and LayoutContainer. The former has usually
its own frame and title. Further more, their life cycle should be ended under some control.
That is why the operation dispose() comes into play. The latter is used to arrange GUI
elements with some kind of predictable layout semantics.

It is to note that all the properties (attributes and association-ends) defined in GUI elements
have the public access modifier. So that they can be accessed in XOCL expressions directly. Two
reasons make this decision reasonable: it is compatible with OCL standard and it is intuitive
at the time of modeling. A detailed description for every GUI element in Figure 3.10 could be
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dispensable, because most of them can be considered just as a platform independent wrapper
and preserve the familiar semantics and usages. Thus, only the concrete layout container will be
addressed in detail.

• CanvasContainer has no intelligent predefined layout semantics to arrange GUI elements
involved within it. It is meaningful when this layout container is used together with the
Smart GUI Editor, with which geometrical information like position, size, etc., can be
obtained visually so that the involved GUI elements are arranged according to the user’s
will. The CanvasContainer is similar to the layout container class Canvas of WPF and
JPanel container class of Swing, with layout manager set to null.

• FlowContainer lines up GUI elements within it. If there is on more place to accommodate
GUI elements in one line, the next line will be used. This container type abstracts e.g., the
WrapPanel of WPF and container configured with FlowLayout in Swing.

• BorderContainer arranges and resizes its involving elements to fit in five regions: top, right,
left, bottom and center by assigning the corresponding element to one of the five properties.
This container preserve the semantics of DockPanel of WPF and container configured with
BorderLayout in Swing.

• GridContainer manages GUI elements in a tabular way. The total number of rows and
columns can be configured by invoking the setGrid() operation. This container type can
be considered as the DPM counterpart of Grid of WPM and container configured with
GridLayout in Swing.

• TabbedContainer manages GUI elements by grouping them into a tab with a given title.
The TabControl of WPF and JTabbedPane in Swing can be considered as concrete example
of this GUI container on different target platforms.

• SplitContainer divides its area into two parts, either horizontally or vertically based on the
boolean property isHorizontal. The both GUI elements under its control are assigned to
the properties firstPart and secondPart respectively.

• ScrollContainer provides an additional scrollable view of the element under its control.
Concrete examples are ScrollViewer of WPF and JScrollPane in Swing.

Up to this point a well defined infrastructure in the form of MOCCA DPMGUI toolkit has been
built, atop which the GUI structure can be modeled using these predefined model elements in class
diagram. However, based on the considerations relating to Figure 3.8, without appropriate layout
information only the structure modeled in class diagram is far from satisfaction. Inspired by the
GUI designers shipped with modern IDEs, we suggest modeling GUI structure in class diagram as
shown on the right hand side of Figure 3.8. That means, only the life cycle relationships between
top level container (usually a window or a dialog) and its contained elements will be modeled.
The internal tree structure and the precise layout of these GUI elements are manipulated visually
within an additional software component called Smart GUI Editor.

The first version of the Smart GUI Editor was developed in the bachelor thesis of Mr. Döring
[Dör10] as an add-on component of our UML 2 Designer. Figure 3.11 shows the main editor
area of the Smart GUI Editor. Compared to popular GUI designer integrated into IDE, the
GUI modeling is not driven by the Smart GUI Editor entirely. As aforementioned, a UML
class representing a top level container together with all its involved GUI elements as normal
properties must be created firstly. With this UML class as context, the Smart GUI Editor can
be started and meanwhile a view is associated to it by making all the GUI elements available,
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Fig. 3.11.: The Smart GUI Editor used to visually manipulate the GUI elements modeled in UML class diagram

which have been modeled as properties of this class, on the right hand side of the current view.
From that moment on, all these GUI elements can be manipulated visually, such that both
structure and layout can be established. This strategy is efficient and straightforward according
to our requirement. Because the top level container class and its involved elements are modeled
as normal. After that it should not be restructured by e.g., adding and removing contained
properties, etc. All the visual manipulations in Smart GUI Editor do not change the underlying
UML class structure, but are saved as a part of a design model together. Based on the following
design requirements a solution is found to represent the visual manipulation of GUI elements in
Smart GUI Editor.

1. This intermediate representation must be platform independent, because this representation
is a part of a design model, which is the PIM according to MDA terminology.

2. It should be possible and comfortable to map this intermediate representation onto different
target platforms in the phase of model transformation.

3. At the time of writing this dissertation, the functionality of our Smart GUI Editor is still
limited, so that sophisticated GUI cannot be established solely by using Smart GUI Editor.
However, due to involving important layout containers, it should also be possible to specify
the GUI layout via the intermediate representation manually. That means, the intermediate
representation can also be understood and grasped by software modeler, although the
representation should be generated by the Smart GUI Editor as output automatically.

Taking into account all the requirements above, the XOCL expressions are used in this work
as the intermediate representation to reflect the visual manipulation done within our Smart GUI
Editor on the one hand, on the other hand the expressions can also be edited by UML modeler
to construct complex GUI at the time when the Smart GUI Editor is not powerful enough.



3.3. The MOCCA Design Platform Model 57

The extended language constructs, which upgrade the OCL into XOCL, add only the missing
semantics, but do not affect the original OCL syntax. Thus, in this work, the XOCL imperative
expressions are used as intermediate representation for GUI structure and GUI layout. The
XOCL extension will be addressed in Section 3.4 in detail.

Fig. 3.12.: Part one of the PIM for the GUI application shown in Figure 3.7: GUI structure and layout

Put all together, the simple GUI application introduced at the beginning of this section has
been modeled. Even for a simple GUI application like this, some reasonable design decision
can be made to organize an application in a flexible and maintainable manner, e.g., based on
Model-View-Controller (MVC) [Sch09] design pattern. For the time being, we concentrate on
structure and layout modeling for GUI using technique addressed in this section.

As suggested, the class on the left hand side of Figure 3.12 models the life cycle relationships
between the top level window derived from DPM GUI element Window and its contained GUI
elements. According to MOCCA, properties modeled as private have on getter and setter gen-
erated for them. Further more, public properties constrained by readOnly have either no setter
generated. Thus, GUI elements that are not accessible from outside of the containing class should
be modeled as private properties. The stereotype «View» marks the actual class as a presenta-
tion view according to MVC design pattern. Design pattern based stereotypes will be discussed
in Section 3.3.4 thoroughly.

After creating this view class, the Smart GUI Editor can be started with the current view class
as context to manipulate the involved GUI elements visually. According to our research goal,
the XOCL expressions embodying visual manipulations in Smart GUI Editor will be generated
and saved into a dedicated OpaqueBehavior attached to the view class directly. Further more,
this OpaqueBehavior must be marked with stereotype «GUILayout». On the right hand side of
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Figure 3.12, the XOCL expressions specifying GUI structure and layout are shown together with
the specific opaque behavior. For now, the XOCL expressions are written by software modeler
manually.

3.3.3. Modeling Event Handling with XOCL Event Expression

In the previous section modeling GUI structure and layout in PIM have been addressed, which
cover the first four aspects depicted in Figure 3.6. In this section modeling event handling in
PIM will be discussed, which is the last issue left in Figure 3.6.

Modeling event handling in PIM is inherently challenging. There are diverse event handling
mechanisms in different OOPLs. This diversity has to be hidden on the one hand. The ideal
solution should be able to model event handling in a more intuitive and concise manner compared
to programming event handling in target OOPL on the other hand. This objective can only be
achieved by comparing typical event handling mechanisms in popular OOPLs to find out both
the common aspects and the differences between them. This study has been done and described
well in [LS10]. In this thesis, the important conclusions and the final solution are presented.

From the perspective of modeling, an event enables an object of a class (or a class itself)
to publish changes of its state. Other objects and classes can then react to this change. This
mechanism is usually called Publishing - Subscription model. Despite different implementations
of this model in concrete target languages, the entire event handling process can be divided into
four parts [KK07]:

1. Static publishing requires, that some kinds of events can be specified as members of their
source. For example, events such as Button Click must be specified in GUI element repre-
senting a button. This part is only important for customized events. The most significant
GUI events have been defined by GUI developers.

2. Dynamic publishing allows the transmission of the events. In both Java and C# this part
is realized by a method, which triggers the execution of one or several dedicated event
handling methods. Similar to static publishing, this part has been again implemented by
GUI library designers.

3. Static subscription requires the implementation of all event-handling methods. In fact,
exactly this part specifies what must be performed when an event occurs. This part has to
be modeled by application modeler. Along with dynamic publishing, this part belongs to
behavioral specification of an application model and should be modeled compactly using
some kind of high-level action language, which will be addressed in Section 3.4.

4. Dynamic subscription is done by establishing the connection between the event-source and
the event handling method. Such a process is often called registration of event handlers.
Exactly for this part of the entire event handling process, different target languages rely on
diverse strategies. For example, various listener interfaces are used in Java to connect events
with their handling methods loosely [HC08] while C# delegates set up these connections
directly [Tro07].

To hide the platform specific details exposed in dynamic subscription, this part of event han-
dling is further more decomposed into pieces to find out the most essential elements involved.
Based on our analysis, the following elements can be considered as atomic:

• the event source object, which are usually the GUI elements of a window or the window
itself,
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• different types of event of an event source,

• event handling methods, which are implemented in event handler classes, and

• a connection operator that allows to set up the connection of an event to its event handling
method.

As solution to involve all the essential aspects of dynamic subscription into the PIM in a concise
and intuitive manner, we suggest extending OCL by a new expression, which is labeled by the
key word event. In such an OCL-event-expression the new registration operator "∼" is used to
establish the connection between an event on the left hand side and an event-handling method
on the right hand side of this operator. We defined that the new OCL-event-expression in the
above form has the type OclVoid and consequently no value. Because the OCL event expression
also belongs to XOCL extension, so its rigorous concrete and abstract syntax definition will be
addressed in Section 3.4. For now, we concentrate on its concrete usage in PIM.

Fig. 3.13.: An excerpt of event related types adopted in the current MOCCA DPM GUI toolkit

Following the same principle with platform independent GUI elements involved in MOCCA
DPM, event related types are also given in a sub-package of the superordinate GUI package.
Figure 3.13 shows an excerpt of these types. With these event types defined, the GUI elements
in DPM can be equipped with appropriate events. For example, in abstract type ButtonControl
shown in Figure 3.10, the common event click with type ClickEvent is defined as a normal
property. Taking into account the analysis in this section, it deals with static publishing of event
handling for the platform independent GUI elements.

The design model in Figure 3.12 can be further completed as shown in Figure 3.14. In fact, this
class diagram depicts the complete structure modeling in PIM of this GUI application based on
MVC design pattern. For this simple application with only one string property recording user’s
actions, the Model and the Controller can be merged as a whole, that are expressed by stereo-
typing the design class SimpleGUIApplicationModelController with «Model» and «Controller»
at the same time. For the time being, the attention should be paid to the operations stereo-
typed by «EventHandler» and the operation named dynamicSubscriptionForEventHandling().
The former are event handling operations that must be connected to appropriate GUI events.
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Fig. 3.14.: Part two of the PIM for the GUI application shown in Figure 3.7: event handling

The latter is the operation, whose method takes over the connecting between events and their
handling operations by using XOCL-event-expressions shown in Listing 3.3. Along with class
diagram in Figure 3.14, it is easy to get the idea that the first XOCL event expression registers
the button1_click operation as the event handling operation of the click -event, which can be
launched by button1 property. The corresponding navigation to an event property as well as to
event handling operation abides by classical OCL syntax and semantics [WK03] [OMG10a].

1 begin
2 event : s e l f . view . button1 . c l i c k ~ s e l f . button1_cl ick ;
3 event : s e l f . view . button2 . c l i c k ~ s e l f . button2_cl ick ;
4 event : s e l f . view . menuItem1 . c l i c k ~ s e l f . menuItem1_click ;
5 event : s e l f . view . e x i t . c l i c k ~ s e l f . e x i t_c l i c k ;
6 end

Listing 3.3: XOCL event expressions specifying the dynamic subscription logic in the operation
dynamicSubscriptionForEventHandling()

3.3.4. The Profile in Design Platform Model

As introduced in Section 2.1.3, stereotypes defined in UML profiles extend UML model elements,
on which one or more stereotypes are attached, with extra semantics. This semantic enhance-
ment helps creating compact PIMs by declaring required functions in PIM, which could be very
complicated while being mapped into concrete OOPLs. For example, a normal UML class in
PIM, which models a program partner in some system and contains several properties like name
and description, can be stereotyped as persistence class, if its instances are to be saved in the long
term. In fact both the Annotation in Java and Attribute in .Net languages support providing
development objects with additional information in a non-programming manner, very similar
to the stereotype mechanism in UML. In programming-language-centric systems like Java and
.Net, corresponding compilers interpret annotations or attributes to generate required functions,
whereas in UML modeling a model mapper can process stereotypes in an appropriate manner.
For MOCCA, all the stereotypes, which can be used in the design model, are defined in the pro-
file DPMProfile of MOCCA DPM. Based on their characteristics, these stereotypes are classified
into three categories.
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Design pattern based stereotypes

The design pattern based stereotypes are used to decorate a UML model element with design
pattern related information. A design pattern describes a general solution to a design problem
that recurs in various projects. Design patterns are usually formulated using UML [FF04]. How-
ever, UML does not keep track of pattern-related information when a design pattern is applied.
Thus, it is hard for a designer to identify design patterns in software system design. Using UML
profile and stereotypes to involve design pattern information into UML model is not novel in this
work. A general purpose profile containing stereotypes that support working with object-oriented
design pattern was discussed well in [DY03]. We call the stereotypes defined in [DY03] general
purpose, because, to some extent, they can be considered as meta-level stereotypes to define,
but not to declare, which design pattern related information is in use. For example, instead of
providing a «Singleton» stereotype directly, the meta-level stereotype «PatternClass» with its
tagged value pattern, to which the design pattern name Singleton is assigned, can be used to
mark a class as singleton class. Different from this strategy, the stereotypes defined in this work
are concrete and can be used directly to communicate pattern-related information.

According to the current status of MOCCA, the following design patterns are supported di-
rectly by the corresponding stereotypes. Of course, MOCCA is not restricted to support only
these design patterns, other mature patterns as well as even newly designed patterns can be
added into this group with corresponding mapping rules as prerequisite.

• Three-Layer-Architecture Pattern

• Model-View-Controller Pattern

• Data-Mapper Pattern

• Singleton Pattern

Three-Layer-Architecture is a design pattern that is used primarily to develop enterprise-level
distributed applications. The three layers involved are presentation layer, business objects layer
(also called domain logic layer, application layer etc.) and data persistence layer. According to
MOCCA modeling paradigm, layers are modeled using UML package. Thus, stereotypes with
respect to this design pattern can be applied only to UML package.

• Presentation layer is about how to handle the user interaction with the system and how to
display operation result to the users [Fow+02]. Stereotype «PresentationLayer» is used to
mark a package as the presentation layer. After that, all the child-elements defined in this
package belong to the presentation layer semantically.

• Business objects layer implements the work that this application actually needs to to. The
outermost package of this layer is stereotyped by «BusinessObjectsLayer».

• Data persistence layer serves as interface, through which important data objects coming
with application domain can be saved in and retrieved from diverse data storages, such as
files with different formats or data base systems. Stereotype «PersistenceLayer» marks the
outermost package of this layer.

Figure 3.15 illustrates a classical three layer architecture, in which a single layer knows about
or, in other words, accesses only the layer directly beneath it. This figure shows also the typical
usages of the stereotypes explained before.
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Fig. 3.15.: Package diagram illustrating three layer architecture

Model-View-Controller is a well-known design pattern that goes back to one of the most
important principle of object-oriented design - separate of concerns, that means, don’t make one
object responsible for too much [HC08]. MVC has been used to design GUI library, e.g., Java
Swing, on the one hand, on the other hand can be used to organize a GUI based application very
well. As described in [Gam+95], Model-View-Controller consists of three kinds of objects:

• Model is the application object, which manages or represents the entire data structure of
the application domain. Model can be complicated and consist of many classes. According
to MOCCA, stereotype «Model» is applied to the outermost wrapper class of the entire
domain model.

• View is the screen presentation of the domain model. There can be different views based on
one domain model, representing the domain data from different perspectives. In MOCCA
stereotype «View» is used to mark such one or several view-classes.

• Controller defines the way the user interface reacts to user input. Simply speaking, the
controller-class consists of event handling operations to deal with GUI-events. In MOCCA
stereotype «Controller» is used to mark a class for this purpose.

The example of Figure 3.14, which was used in the previous section to depict modeling GUI
layout and event handling, shows also a typical usage of MVC-related stereotypes defined here.
As explained, in this example, the data model is so simple that it can be merged into controller
class.
Data-Mapper is a design pattern solution to cope with object-relational mapping [Fow+02]

[Sch09]. Objects and relational databases have different mechanisms for structuring data. When
data must be transferred between the two schemes, some kind of conversion is necessary. To
implement such a conversion, ideally, the in-memory objects representing business domain should
know nothing about the underlying data base structure. If not so, changes in one tend to ripple
to the other.

According to [Fow+02], Data-Mapper is defined as a software component that separates the
in-memory objects from the database. Its responsibility is to transfer data between the two and
also to isolate them from each other. With Data Mapper the in-memory objects do not need
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to know even that there’s a database present; they need no SQL interface code, and certainly
no knowledge of the database schema. Since it’s a form of mapper, Data-Mapper itself is even
unknown to the business domain objects. In MOCCA, the stereotype «DataMapper» is defined
to mark a class as the data mapper component. Figure 3.16 shows a typical use case. The
stereotypes applied to operations defined in data mapper class will be addressed later in this
section.

Fig. 3.16.: Data-Mapper class resides in the persistence layer

A concrete implementation of data mapper class in a target language can be very complicated.
However, as mentioned in the second application scenario of Section 2.3.1, O/R mapping as a
common issue has been taken into account in many popular OOPL-platforms, among which, the
JPA in JEE is directly based on Data-Mapper pattern, other platform like SAP ABAP integrates
data base access into the language architecture seamlessly, so that mapping a PIM-data-mapper
into PSM-data-mapper by the corresponding model mapper is feasible.
Singleton Pattern ensures a class has only one instance, and provides a global point of access

to it [FF04]. There are many singleton objects in practice: thread pools, caches, dialog boxes,
objects that handle preferences and registry settings, objects used for logging, and objects that
act as device drivers. As the definition indicates, the «Singleton» stereotype is applied to a design
class directly.

Common function based stereotypes

The Common function based stereotypes are used to enhance model elements in PIM with ad-
ditional semantics, which are ubiquitous on diverse implementation platforms but represented
platform specifically. According to the current status of MOCCA, the following stereotypes are
defined and fall into this category. Analogous to design pattern based stereotypes, more of them
could be added in the later development.

• «Main» can only be applied to an operation in PIM. Such an operation is considered as
execution entry to the entire application modeled. On different platforms, varying require-
ments could be given for this operation. For example, standalone applications implemented
in diverse target OOPLs are usually equiped with a main() method, of course, with varying
signatures in detail, whereas container-controlled application (components) is started by
invoking some kind of life cycle callback operation.

• «EventHandler» marks an operation as event handling method, which implements the logic
for the static subscription part of the entire event handling process. As depicted in Section
3.3.3, the XOCL event expressions do not require complete operation signature on the right
hand side of the connection operator. Because in the most situations, event handling oper-
ations have predefined parameters. By using this stereotype the event handling operations
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can be highlighted on the one hand, on the other hand this stereotype helps the model
mapping by providing useful hints for a special group of operations.

• «GUILayout» is added to special opaque behaviors, which must be attached to view-classes
stereotyped by «View», to record GUI-layout information.

• «Application» is applied to a design class, which is considered as the startup component
of the entire system. For example, the singleton session bean [LB10], which should be
initialized eagerly by annotating it with @Startup can be modeled in PIM with this stereo-
type, whereas on JSE platform, a normal Java class containing main() 1 operation can be
modeled as Application-class.

Figure 3.14 in the previous section shows already an example with typical usages of all the
stereotypes addressed in this section. It is to note that the UML standard stereotype «create»
[RQZ07] marking an operation as constructor is also used in the the MOCCA modeling frame-
work, and can be considered as a stereotype falling into this group. In fact, to specify a common
aspect in PIM, the standard UML stereotypes should be taken into account firstly. If no match-
ing found, a new one will be defined.

Application domain based stereotypes

As the name suggests, this group of stereotypes is designed to simplify modeling software ap-
plications targeted to special domains. This strategy is generally feasible, because for each
application domain, domain specific software have their own characteristics, most of which have
been studied and abstracted well. Platform independent but domain specific stereotypes can be
used intuitively to give model elements domain specific semantics, which can be mapped onto
concrete programming language platforms in the form of boilerplate code. As mentioned in
Section 2.4, just following the idea above, domain specific stereotypes for modeling SOA based
applications [HLT03] [Lóp+07], for modeling context-aware web application [Kap+09], etc. have
been developed in the frame of MDA.

The stereotypes to be addressed in this sections are conceived to model three layered, enter-
prise applications primarily. In this field, functions like persisting data in relational databases,
concurrency management, role-based security are almost indispensable for applications to be
developed. Inspired by OMG EDOC [OMG04], the following stereotypes are involved into the
current DPMProfile:

Fig. 3.17.: Domain logic classes, whose instances are to be saved into RDBMS

• «Persistence» together with «PK» are used to model a class, whose instances are to be
saved into relational database. The former is applied to a design class, the latter denotes

1This main-operation is meant to the actual execution entrance. In Java every class can contain a main operation,
but only one can be set to the startup operation for the entire application. According to the modeling semantics,
whatever this operation is called, it must be constrained by «Main» stereotype.
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one or more properties as primary key according to relational data model. Figure 3.17
shows an example with two such persistence classes.

• «DBInsert», «DBQuery» as well as «DBUpdate» denote operations with exactly the same
semantics as these stereotypes indicate. Usually, database-related operations reside in the
data mapper class highlighted by «DataMapper» as addressed before. The example of a
data mapper class in Figure 3.16 depicts also the typical usages of these three stereotypes.

• «BusinessRole», «AdminRole» and «CommonRole» are used to mark design classes, which
represent the potential system users (also called system actors). Most enterprise applica-
tions are designed to serve a large number of clients, and users are not necessarily equal in
terms of their access rights. An administrator might require hooks into the configuration
of the system, whereas unknown guests may be allowed a read-only view of data [LB10].
Due to this fact, potential users of the application are grouped into categories with defined
roles, access can be then allowed or restricted to the role itself during system configuration.
As name indicates, «AdminRole» denotes a class, whose operations can be executed by ad-
ministrator role of the system. There can be only one class marked by this stereotype. The
«CommonRole» indicates, some of the operations defined in the actual class are general
purpose query operations be called by even non-registered guests. «BusinessRole» marks a
system actor, who can execute some kind of business operations after login into the system.
There can be different business roles involved in a system.

• «BusinessOperation» and «CommonOperation» stereotype transaction-operations that can
be invoked concurrently by different system actors, who are now using the system. The
logic, especially, the non-query logic in transaction operations must be controlled in terms
of transaction management. Common operations are defined into a class, which has been
stereotyped at least by «CommonRole», whereas business operations can exist either in
business role class or administrator role class.

Fig. 3.18.: Role-based classes with transaction operations

Putting all the role-based stereotypes into action, Figure 3.18 shows an example that is only
a piece of a complex PIM to be discussed as experimental result in Section 5.2. For the time
being, only the modeling semantics of the stereotypes aforementioned should be aware. Starting
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with design class ProgramPartner, it is a persistence class and meanwhile represents a business
role. After submitting required information, which must be saved permanently, and login onto
the system, a program partner can do something within the system, e.g., create a brand new
service or update an existent one. Such tasks can be modeled as business operations. Navigating
to the design class Payback, it is a start-up component, which is in charge of initializing the
entire system by means of calling initializeApp() operation. This class models also a common
role, whose common services in the form of common operations can be called by all potential
roles concerned by the system. Further more, this class involves also business operations that
can only be executed by system administrator. This modeling intention is indicated by adding
«AdminRole» stereotype onto the class.

As mentioned at the beginning of this section, there are many well-defined profiles together
with stereotypes for different application domains. MOCCA does not exclude working with
the third party DPM stereotypes. With some effort of configuring and extending the existent
compiler components, it is generally feasible to involve more and more profiles coping with
different modeling problems for different application domains.

3.4. Modeling Behavior in XOCL

As introduced in Section 3.1, for the objective of compact and complete behavior modeling, the
OCL has been extended with a small set of language constructs to become a full-fledged action
language called eXecutable OCL (XOCL). The general support of using textual AL in UML and
the important reasons of choosing OCL as the start point to design an AL have been already
addressed in Section 2.1.4 and 2.2.2 respectively. To help understanding our considerations, the
advantages of OCL are briefed again as follows:

• As a standard part of UML 2 Specification, OCL covers large part of the entire Action
Semantics of UML. Only the semantics involving changing the states in the model and
explicit control flows are missing. Such missing semantics can be easily added to the
standard OCL with new syntax constructs.

• The OCL collection types and their predefined operations are powerful in terms of expres-
siveness and concise in terms of syntax. As depicted in Listing 2.2, together with OCL-body
expression, very complex query operations in PIM can be specified both concisely and ex-
actly.

Towards upgrading OCL to a real action language, three important issues must be addressed:

1. Identification of the action semantics, which are necessary for an action language but not
yet involved in the OCL

2. Definition of concrete syntax to be added to OCL, which can express the identified action
semantics as additional language constructs

3. Extension as well as modification of OCL abstract syntax to represent the language con-
structs brought in by new concrete syntax.

For the first issue, other researchers have worked out a generally accepted result, which were
discussed in [HP04] and [JZM07] well. Moreover, our early research [LS11] on this issue was also
based on these achievements. In this work, the important action semantics, which are either not
involved or only partially covered by OCL, are summarized in Table 3.1 to Table 3.5.
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Tab. 3.1.: Actions with respect to updating states of an object

Actions: Brief description:
AddStructuralFeatureValueAction According to UML terminology, the attributes

and association-ends are structural features.
This action is write action for adding values
to them.

RemoveStructuralFeatureValueAction This action is a write action that removes one
value from the set of values contained in the
specified structural feature.

ClearStructuralFeatureValueAction This action is a write action that removes all
values of a structural feature.

Tab. 3.2.: Actions with respect to updating local variables

Actions: Brief description:
AddVariableValueAction This is a write action for adding values to local

variables.
RemoveVariableValueAction This is a write action that removes one value from

the set of possible variable values.
ClearVariableValueAction This is a write action that removes all values of a

local variable.

Tab. 3.3.: Actions used to create and destroy objects respectively

Actions: Brief description:
CreateObjectAction This action creates an object that conforms to a statically

specified classifier and puts it on an output pin at runtime.
Simply put, it instantiates an object of a class.

DestroyObjectAction In contrast with create object action, this action destroys
an object of a class.

Tab. 3.4.: Actions that are partially covered by OCL

Actions: Brief description:
ReplyAction This action returns the values to the caller of the previous call,

completing execution of the call.
CallOperationAction This action transmits an operation call request to the target

object, where it may cause the invocation of associated
behavior.

The second issue concerns designing textual representation for the action semantics identified in
the previous step. In other words, how the surface language elements corresponding those action
semantics look like. For this issue, different opinions are held by different researchers. Some of
them consider that the syntactical appearance of OCL is strange, because it roots in no widely
spread programming language, and this unfamiliar syntax makes it difficult for developers to roll
in using OCL. Thus, a Java-like modification of OCL syntax was suggested [Rum02] [Rum11].

Based on our own research, we agree to the opinion that the OCL syntax is unfamiliar at the
first glance, but not to that the original syntax has to be aligned with other programming lan-
guage. Because in the spirit, OCL is a declarative modeling language that should be distinguished
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Tab. 3.5.: Action semantics representing explicit control flows

Structured Activities: Brief description:
SequenceNode This is a structured activity node that executes its

actions in order. In other words, it represents sequential
execution of statements in programming language.

ConditionalNode This is a structured activity node that represents an
exclusive choice among some number of alternatives. In
practice, it represents the if-else statement in programming
language.

LoopNode This is a structured activity node that represents a loop
with setup, test against loop condition and execution body.
In practice, it corresponds to diverse loop statement in
programming language.

from imperative programming languages. Further more, OCL is defined and maintained by OMG
as a de facto modeling language, we believe that more and more developers will get familiar to
its concise syntax. Based on these considerations, the XOCL extension in this work abides by an
important design philosophy: the missing semantics for making OCL as AL should be added by
concise and easy to understand concrete syntax elements that can be clearly distinguished from
original OCL and do not modify the original OCL expressions.

Following this philosophy, the grammar rules defining new XOCL language constructs are
summarized in Listing 3.4. A complete list of XOCL grammar rules is given in Appendix A,
whose OCL part is based on [OMG10a]. It is to note that all the grammar rules are given in
the BNF notation, but in the form required by GOLD Parsing System [Coo13]. Because GOLD
Parsing System is used in this thesis to implement an XOCL compiler. According to GOLD,
non-terminals are delimited by the angle brackets and terminals are delimited by single quotes or
not delimited at all. Up to this point, each of the grammar rules in Listing 3.4 can be explained
in conjunction with its action semantics.

The XOCL block-expression is defined by the grammar rules from Line 1 to Line 2 in Listing
3.4. It provides the semantics of sequence node listed in Table 3.5. On the one hand, it can
be used as a top level expression like OCL body expression but taking a non-query-operation as
context, whereas behavior of a query operations can be specified by using OCL body expression.
On the other hand, it can be used as parts in other control-flow-related compound expressions to
be addressed later. In essence, it is the extension point, through which imperative semantics are
added into OCL. According to the grammar rules, a block expression can be empty or enclose
arbitrary number of other expressions. Allowed expressions are defined by grammar rules from
Line 7 to Line 14. It is worth noting that compound expressions have their own end marker,
whereas simple expressions are finished by a semicolon. Instead of using curly braces to denote
the scope of block expressions, two keywords begin and end are brought into XOCL. Because,
firstly, curly braces are used in OCL to define collection literals [WK03] and secondly, OCL uses
keywords like then and endif to denote scope. Thus, we use the same style for XOCL extension.

The XOCL while-expression is defined by the grammar rule at Line 16. It provides the se-
mantics of loop node listed in Table 3.5 and consequently, it models explicit loop semantics. We
highlight "explicit", because the loop semantics is supported by OCL to some extent. The pre-
defined OCL loop operations [WK03] enable to loop over the elements in a collection by taking
each element in the collection and evaluating an expression on it. The while expression can be
used as a generic loop independent of a collection, in contrast.
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The grammar rule at Line 18 turns the OCL predefined iterate() operation into a generic for
each loop [HC08] [Tro07] coming with modern OOPLs. The first part within the generic iterate()
operation defines a iterator variable, whereas the second part is a block expression, in which any
operations can be done for the iterator variable.

The XOCL if-expression is defined by the grammar rules from Line 20 to Line 22 in Listing
3.4. It provides the semantics of conditional node listed in table 3.5. The XOCL if-expression
enhances the original OCL if-expression covered by the Line 22 with the ability to execute non-
query logic in both the then-branch and the optional else-branch.
1 <BlockExpCS> : := ’ begin ’ <ImperativeExpListCS> ’ end ’
2 | ’ begin ’ ’ end ’
3

4 <ImperativeExpListCS> : := <ImperativeExpListCS> <ImperativeExpCS>
5 | <ImperativeExpCS>
6

7 <ImperativeExpCS> : := <WhileExpCS>
8 | <IfExpCS>
9 | <OCLVarDeclarationCS> ’ ; ’

10 | <AssignExpCS> ’ ; ’
11 | <DestroyObjectExpCS> ’ ; ’
12 | <ReplyExpCS> ’ ; ’
13 | <NonQueryFeatureCallExpCS> ’ ; ’
14 | <EventExpCS> ’ ; ’
15

16 <WhileExpCS> : := ’ while ’ <OCLExpCS> <BlockExpCS> ’ endwhile ’
17

18 <OCLIterateExpCS> : := ’ i t e r a t e ’ ’ ( ’ <OCLVarDeclarationCS> ’ | ’ <BlockExpCS> ’ ) ’
19

20 <IfExpCS> : := ’ i f ’ <OCLExpCS> ’ then ’ <BlockExpCS> ’ end i f ’
21 | ’ i f ’ <OCLExpCS> ’ then ’ <BlockExpCS> ’ e l s e ’ <BlockExpCS> ’ end i f ’
22 | ’ i f ’ <OCLExpCS> ’ then ’ <OCLExpCS> ’ e l s e ’ <OCLExpCS> ’ end i f ’
23

24 <AssignExpCS> : := ’ update ’ <OCLFeatureCallExpCS> ’= ’ <OCLExpCS>
25 | ’ update ’ <OCLFeatureCallExpCS> ’= ’ <CreateObjectExpCS>
26

27 <CreateObjectExpCS> : := ’new ’ <OCLFullNameExpCS>
28

29 <DestroyObjectExpCS> : := ’ de l e t e ’ <OCLFeatureCallExpCS>
30

31 <NonQueryFeatureCallExpCS> : := ’ update ’ <OCLFeatureCallExpCS>
32

33 <ReplyExpCS> : := ’ return ’ ID
34

35 <EventExpCS> : := ’ event ’ ’ : ’ <OCLFeatureCallExpCS> ’~ ’ <OCLFeatureCallExpCS>

Listing 3.4: Grammar rules in terms of extending OCL into XOCL

The XOCL assignment-expression is defined by the grammar rules from Line 24 to Line 25
in Listing 3.4. It supports all the write actions listed in Table 3.1 and Table 3.2. With this
expression, the system states represented by properties and local variables can be modified and
consequently, the XOCL can be considered as AL-ready. In modern programming languages,
assignment is usually denoted by the "=" sign. However, in OCL "=" is used as equal to in
logical expression or to define a local variable for the first time. Instead of bringing in a new
symbol to express assignment, like done in [JZM07] and preserved in our early work [LS11], the
keyword update is used to make "=" symbol context-sensitive. That means, if "=" is used as in
programming language for assignment in an XOCL block expression, the update must be prefixed
to give a hint for modification semantics, otherwise it is used as defined in original OCL.

The XOCL create-object-expression is defined by the grammar rule at Line 27 in Listing 3.4.
It implements the create object action listed in Table 3.3. The new operator is used as in most
OOPLs to create an object, after that, the object must be assigned to either property or variable.

The XOCL destroy-object-expression is defined by the grammar rule at Line 29 in Listing 3.4.
It implements the destroy object action listed in Table 3.3. At the time of creating a PIM, the
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application logic cannot rely on the garbage collection system of the later target platform. Thus,
the language construct of modeling destructing an object explicitly is provided by this expression
with the delete operator.

The XOCL non-query-operation-call-expression is defined by the grammar rule at Line 31 in
Listing 3.4. It completes the call operation action described in Table 3.4 with the ability to
call non-query operations in XOCL block expressions. Because non-query operations can modify
system states, the update keyword is used again to express this intention.

The XOCL reply-expression is defined by the grammar rule at Line 33 in Listing 3.4. It
completes the reply action described in Table 3.4 with the ability to return the object to the
caller explicitly. OCL body expression for specifying query operation implies to return an object
or a collection of objects as the query result. To support the reply expression, the keyword return,
whose semantics is identical to return statement in programming language, is brought in.

The XOCL event-expression, whose usage and contribution in the context of modeling GUI in
PIM have been addressed in Section 3.3.3, is defined by the grammar rule at Line 35 in Listing
3.4.
1 begin
2 osToBeSorted : OrderedSet ( In t eg e r ) = OrderedSet { 5 . . 1 } ;
3 indexOfInsertedElem : In t eg e r = 2 ;
4

5 whi le indexOfInsertedElem <= osToBeSorted−>s i z e ( )
6 begin
7 insertedElem : In t eg e r = osToBeSorted−>at ( indexOfInsertedElem ) ;
8 i n s e r tPo s : I n t e g e r = indexOfInsertedElem ;
9

10 whi le i n s e r tPo s > 1
11 begin
12 i f insertedElem < osToBeSorted−>at ( in s e r tPo s − 1) then
13 begin
14 update osToBeSorted−>inse r tAt ( inse r tPos , osToBeSorted−>at ( in s e r tPo s −

1) ) ;
15 update in s e r tPo s = in s e r tPo s − 1 ;
16 end
17 end i f
18 end
19 endwhi le
20

21 update osToBeSorted−>inse r tAt ( inse r tPos , insertedElem ) ;
22 update indexOfInsertedElem = indexOfInsertedElem +1;
23 end
24 endwhi le
25 end

Listing 3.5: XOCL expression specifying the insertion sort algorithm

Before advancing to the next issue, the XOCL expressions addressed above are put together
to specify the Insertion Sort algorithm as shown in Listing 3.5. We know that, OCL has a
predefined sort() operation, which can be used to specify the sort intention on a given collection
but leaving concrete sorting algorithm unknown at modeling time. The purpose of this example is
to illustrate the action-language-enabled aspects of our XOCL extension. The ordered set, whose
integer elements are to be sorted, is defined as local variable in an outermost block-expression. To
keep things complete, a separate XOCL if-expression is nested into an XOCL while-expression,
which in fact can be merged as the second condition into its containing while-expression. This
example shows, with XOCL imperative expressions, complex and detailed behavioral modeling
like this can be accomplished.

After extending OCL with new language constructs, the underlying abstract syntax element
must be enhanced accordingly. Figure 3.19 shows the class hierarchy of XOCL abstract syntax el-
ements. The most important OCL abstract elements are shown as classes with white background
color, which are in fact our own Java implementations of the OCL abstract syntax described in
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Fig. 3.19.: The class hierarchy of XOCL abstract syntax

[OMG10a] with slight modification in order to make the compiling process efficiently. All the
XOCL abstract syntax elements in terms of imperative expressions are shown in light-yellow
background color. The composition pattern is used again to depict the inclusion and possible
nested relationship between an XOCL block expression and its contained imperative expressions.
The single class in light-green background color represents the root of an abstract syntax tree of
XOCL event expression. As defined in [OMG10a], all the OCL expressions are typed elements in
UML. That means, evaluating an OCL expression results always in a type, which must be exis-
tent either in a predefined library, like our MOCCA DPM, or in the actual model. For the XOCL
imperative expressions without meaningful type, like block-, while- and compound if-expression
with block expression in its branches, the OclVoid is always assigned to the abstract syntax
element representing them as the result type.

Besides the inheritance relationships shown in Figure 3.19, there are important associations
between the XOCL abstract syntax elements as well as between them and UML meta model
elements. Instead of listing all the class diagrams modeling these relationships, an abstract
syntax tree (AST) generated by the XOCL parser, which is addressed in Section 4.2, is given in
Figure 3.20 to illustrate the working principle of the XOCL abstract syntax implementation. The
reason for adopting this strategy is that the original OCL abstract syntax has been documented
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well in [OMG10a] on the one hand, on the other hand, the small set of extended XOCL abstract
elements are closely related to its concrete syntax in Listing 3.4, it is easy to find out the
relationships between abstract syntax elements by understanding their concrete syntax.

Back to the given AST example, this AST represents the expression in Listing 2.2 with slight
modification that explicit iterator variables, means, p and s are defined. Both subtrees rooting
in LP1 and LP2 nodes with the AST type OCLLoopExp represent the OCL select() and forAll()
operation, respectively. At the runtime both instances of OCLLoopExp hold the information
to identify the individual OCL loop operation. The OCLFeatureCallExp owns generally two
branches. The one on the left-hand side is the caller, whereas the other one is the callee. The callee
usually uses the type information carried by the caller for type checking and code generation.
Each object in yellow color represents a model element defined in the UML model. At the
time of constructing an AST, each token, which may represent a model element, is type-checked
against the symbol table, which is created based on the underlying UML model. If it is found,
the corresponding model element will be associated with the AST node representing the current
token. For example, the AST node PC2, which represents the token programPartners, has been
linked with the association-end programPartners defined in the class diagram shown in Figure
2.9. It is to note that the same model element can be linked to different AST-nodes, that produces
a circle in an AST. In fact, such a model element linked to AST-nodes should not be considered
as a normal tree node, but an attribute of an AST-node.
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4. The MOCCA Model Compiler

4.1. The Working Principle of MOCCA Model Compiler

This chapter addresses the second issue raised in Section 1.2 - efficient model transformation and
code generation for MDA. For years of research in this field, different algorithms and principles
have been developed by Dr. Fröhlich and me. As a proof-of-concept of these methodologies,
we developed our MOCCA model compiler in Java programming language. As a stand-alone
application, MOCCA dose not rely on any hosting environment like those MDA tools residing
in Eclipse ecosystem, but cooperates with other tools to obtain necessary configuration artifacts,
to feed its output into other down stream tool-set for further processing, etc. Figure 4.1 gives an
overview of the MOCCA development environment. Instead of using high-level context diagram,
the UML activity diagram exploses more details of this environment, which are considered as
helpful to understand the idea behind MOCCA. In Figure 4.1 significant developing tasks and
their possible tool support are depicted in single action, whereas the required input and produced
output are represented as object nodes.

Fig. 4.1.: MOCCA Development Environment

The UML 2 Designer is used to create all the three kinds of UML models for MOCCA as
required inputs. Once the MOCCA design platform model (DPM) and target platform model
(TPM) have been created, they can be reused for different projects, whereas the design models
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(DM) are unique from project to project. The UML 2 Designer exports models either in binary
format or in a dedicated relational database. MOCCA is also equipped with appropriate model
readers to retrieve these models from their repository.

As already addressed, XOCL is the action language designed in this thesis to model behaviors
in MOCCA DM. The XOCL grammar is edited using GOLD Grammar Editor [Coo13], which
exports a .grm file. The GOLD Parser Builder then checks the XOCL grammar file and compiles
the grammar rules into a LALR parsing table [Aho+08], which is used by XOCL parser compo-
nent of MOCCA to check XOCL expressions involved in design model. Unless the XOCL will be
extended or modified, the produced parsing table (saved in a .cgt file) is stable and reusable.

To initialize MOCCA, a global configuration file calledMOCCA Project File is used to save im-
portant parametrization, whose items concern concrete compiler components to be used, project
output folders, etc. This configuration file is also reusable for most cases.

On the right hand side of Figure 4.1 are artifacts in terms of configuring model transformation
and code generation. An XML Schema Definition is created to regulate MOCCA Mapping Con-
figuration File, which is an XML file and will be addressed later in this chapter. Similar to target
platform model, for each concrete target platform, there is at least one mapping configuration
file.

The primary objective of MOCCA is to generate applications implemented in OOPLs. Thus,
MOCCA organizes the produced target language code into classes and interfaces. The Target
Language Template File defines the class layout of a target OOPL. It is intuitive to understand
that target language has its own template, but not target platform. For example, the Java
Standard Edition (JSE), the Java Enterprise Edition (JEE) as well as Google Android API are
considered as different target platforms naturally. However, developing applications atop all of
them means producing code in Java programming language. Thus, one Java template file is
shared by all of these target platforms.

Once all the required inputs are provided, MOCCA can transform a design model into its target
model, which is highlighted in Figure 4.1 with yellow background color. Essentially speaking, the
TM can be considered as some kind of intermediate output of MOCCA, because it only resides
in memory and will be used for code generation directly. The TM is shown here to illustrate that
MOCCA follows the MDA principle in terms of transforming a PIM into PSM then into code.
After code generation, both target language code and possibly necessary configuration files are
fed into target platform specific tools to generate an executable application as the last step.

With understanding of the MOCCA development environment, which builds the context for
MOCCA and other involved tools, the following discussion will concentrate on MOCCA itself.
Figure 4.2 illustrates the most important activities that are performed in a typical compilation
flow. MOCCA conforms to the classical compiler architecture that consists of compiler front
end and back end, is equipped with symbol table, etc [Aho+08]. The most actions and artifacts
in Figure 4.2 are self descriptive and easy to understand. In the rest of this chapter, essential
activities like model validation, model transformation and code generation will be addressed in
their own sections in detail. For now, an overview is given as follows:

• initialize Compiler start-ups the compiler engine and other kernel components, such as
compiler logger, compiler internal model repository, and compiler configurator, which parses
the parameter-settings in project file to integrate appropriate components into the actual
compilation.

• parse PIM reads the design model and design platform model into compiler internal model
representation. Because a DM is always created based on the model elements from DPM,
which is an imported module in DM. Thus, only the DM must be provided and a model
reader separates the both models automatically.
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Fig. 4.2.: MOCCA Compilation Flow

• validate PIM sorts the model elements in class diagrams and records them into the symbol
table in the form of qualified name - model element pair on the one hand. On the other
hand, all the XOCL expressions specifying operation implementations in class diagram are
parsed into the corresponding abstract syntax trees for sub-sequential processing.

• parse TPM and validate TPM repeats almost the same tasks as in the previous two steps.

• transform DM into TM is the most important and complicated operation in a complication
flow. It executes the core algorithms implemented in the model mapper as well as consult-
ing mapping rules defined in the mapping configuration file to map a platform independent
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design model into its platform specific representation. Especially, all the behavior specifi-
cations in TM are already in target language, because the XOCL ASTs created in model
validation have been traversed in a model mapping process for emitting target code.

• generate code in target language is the last step, in which the target model is traversed and
target language code is generated and exported into external files together with necessary
configurations.

Fig. 4.3.: MOCCA Compiler Architecture

Before addressing development issues of each significant compiler component, an overview of
relevant parts of the compiler architecture is illustrated in Figure 4.3. As mentioned earlier,
the presented approach is backed by a flexible compiler architecture that enables the dynamic
integration of user-specific components. Again, instead of using high-level component diagram,
a class diagram with top-level packages for each relevant compiler component is given to explore
some more details, which ought to be helpful to follow the overall compiler architecture.

All the implementation classes denoted with green background color will be bootstrapped
immediately, which build the kernel framework of the compiler. After start-up, MOCCA is
ready for integrating other functional components to accomplish the actual compiling process.
TheModelFacility class is the internal model repository, which stores all the models imported and
generated by accessing both the UML Metamodel sub-component and the XOCL Abstract Syntax
sub-component. Moreover,ModelFacility maintains symbol table for model elements and provides
powerful query mechanisms for efficient model transformation. The Tracer component logs all
the sensitive compiler-behaviors in the form of object hierarchy, instead of plain text. Besides the
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three typical compiler behaviors shown in Figure 4.3, namely, CompilerError, CompilerWarning
and GeneralCompilerAction, there are also component-specific behaviors, which are not shown
here due to restriction of place.

Fig. 4.4.: The initial GUI of MOCCA after bootstrap

MOCCA was designed as a console application in [Frö07]. If MOCCA is started, it runs from
begin to the end. This one-way working principle has a remarkable shortcoming - even error
occurred only in one compiling phase, the entire compilation must be done again. To cope with
this dilemma, the new generation of MOCCA is equipped with a light weight GUI interface, which
provides the intuitive interaction and hence, eases the compilation process. Figure 4.4 illustrates
the MOCCA GUI, which displays the initial status of MOCCA immediately after bootstrap. The
main working area of this GUI is divided into the upper region for displaying normal compiler
behaviors as well as compiler warnings, and the bottom region reserved only for compiler errors.
The order and semantics of the toolbar buttons reflect the compilation flow depicted in Figure
4.2. The operation according to the exclusive radio buttons for selecting target platform merges
the compiler actions for reading and validating TPM.

After the initialization of the compiler framework, the main functional components can be con-
nected to the compiler engine based on the current project configuration. The compiler front-end
takes over the responsibilities of importing UML models from external repositories into native
model representation, establishing symbol tables as well as parsing XOCL expressions into their
AST-representations. The back-end components realize the model transformation and code gen-
eration. All the functional components in charge of a concrete mission couple to the underlying
engine via interface implementation loosely. This architecture leads to a flexible system with wide
spectrum of interchangeable functional components. Figure 4.3 shows a particular configuration
of MOCCA, in which BinaryModelReader for parsing models in binary format and DBModel-
Reader for parsing models saved in a relational database are provided, StandardModelValidator
and its XOCLParser are used, and in back end, both the model mappers for JSE and JEE are
given together with a common Java code generator. Model transformation and code generation
for other platforms can be supported by extending the back end with additional model mappers
and code generators.

4.2. Model Parsing and Validation

MOCCA is designed primarily to work with our own CASE tool UML 2 Designer, which can
persist models either in binary format via Java Object Serialization [HC08] or in a dedicated re-
lational database running on both MySQL and Oracle. The model reader components equipped
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by MOCCA conform to those that are used by UML 2 Designer. Detailed technical documen-
tations about model import and export of UML 2 Designer are provided as according project
reports, and moreover, due to restriction of space, they cannot be explained again. To under-
stand the MDA approach presented in this work, the only important thing is to be aware that
model parsing returns the object representing the top-level package of a UML-modeling project
along with all its subordinate model elements. As mentioned before, the design model contains
application model itself as well as design platform model as imported module. The model parsing
for PIM separates the both models and assign them to m_DPM and m_DM in ModelFacility as
shown in Figure 4.3. It is feasible, because according to MOCCA modeling framework, the UML
package dealing with design model and design platform model have to be labeled by stereotypes
«DesignModel» and «DesignPlatformModel» respectively.

As the next step, a model validator checks all the elements in the parsed model, which may
participate in the following model transformation, to record them into appropriate symbol table
for efficient query. MOCCA is lunched with only one StandardModelValidator together with its
default XOCLParser, as illustrated in Figure 4.3. However, arbitrary sophisticated validation
logic can be involved by either sub-typing the standard model validator or by decorating it via
object composition. These topics belong to extending MOCCA that will not be addressed in this
work in detail. In this section the discussion limits to the preliminary checking in standard model
validator.

Algorithm 4.1 Validate design model elements and record them into symbol table
Require: Package representing the parsed design model: dm
Ensure: Symbol table for DM elements and ASTs of operation-behaviors
1: for all PackageableElement pe ∈ dm do
2: if pe is Package then
3: validate pe as package
4: else if pe is UMLClass then
5: validate pe as class
6: else if pe is DataType then
7: validate pe as data type
8: else
9: validate pe as interface

10: end if
11: end for
12: for all UMLClass cl ∈ dm do
13: for all Association ass coming from or ending at cl do
14: validate ass with cl as its context
15: end for
16: end for
17: for all Operation op ∈ dm do
18: if op has Behavior then
19: validate op’s first behavior only
20: end if
21: end for

Algorithm 4.1 exposes the high-level routines validating the parsed DM model elements. Val-
idation of DPM as well as TPM model elements just follows the same strategy. This algorithm
is considered as high-level due to its dispatcher -characteristics. In the first loop, all the UML
PackageableElements [OMG10b], whose direct container package is the design model itself, are
processed. Based on their concrete type, they are dispatched to the responsible validation rou-
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tines. It is to note that the routine to validate a package in line 3 can be called recursively for its
sub-packages. Because UMLClass, DataType and Interface are NameSpaces [OMG10b], which
can contain other elements like Operation and Property, etc. Hence, the validation routines for
them also start validations for such contained elements, if necessary. After execution of the first
loop in Algorithm 4.1, the Hashtable-based symbol tables listed in lines 5 to 13 in Listing 4.1
have been filled with data in the form of full name → model element pair.

1 package compi le r . model ;
2

3 public class Mode lFac i l i ty
4 {
5 private Hashtable<Str ing , Package> m_SymbolTablePkg ;
6 private Hashtable<Str ing , UMLClass> m_SymbolTablecls ;
7 private Hashtable<Str ing , DataType> m_SymbolTableDT ;
8 private Hashtable<Str ing , Property> m_SymbolTablePty ;
9 private Hashtable<Str ing , Operation> m_SymbolTableOp ;

10 private Hashtable<Str ing , I n t e r f a c e > m_SymbolTableIF ;
11

12 private Hashtable<Str ing , P r o f i l e >m_SymbolTablePr ;
13 private Hashtable<Str ing , Stereotype>m_SymbolTableSt ;
14

15 public void reg i s terModelElement ( S t r ing fullName , Element e ) ;
16

17 public UMLClass findClassByName ( St r ing fullName ) ;
18 public DataType findDataTypeByName ( St r ing fullName ) ;
19 public I n t e r f a c e f indInterfaceByName ( St r ing fullName ) ;
20 public Operation findOperationByName ( St r ing fullName ) ;
21 public Property f i nd PropertyByName ( St r ing fullName ) ;
22 public Stereotype findStereotypeByName ( St r ing fullName ) ;
23

24 public int ge tD i s t anc eBe tweenC la s s i f i e r s ( C l a s s i f i e r subCls , C l a s s i f i e r baseCls ) ;
25 }

Listing 4.1: Symbol table and the according operations defined in model repository component

Because profile is a sub-type of package, the symbol table for Profile is filled by routine vali-
dating packages, whereas the routine validating classes fills data in the Stereotype symbol table
with the same reason.

The second loop in lines 12 to 16 in Algorithm 4.1 resolves all the associations with the current
context class cl as one of its association-ends. For each association-end that is navigable from the
current context class, an additional property is recorded into symbol table m_SymbolTablePty.

In the last loop of Algorithm 4.1, XOCLParser is called to parse the XOCL expressions in the
opaque behavior, which specifies the implementation of an operation in the design model. If an
operation has more than one behavior, only the first one will be taken into account, the others will
be ignored. Parsing behaviors as the last step in model validation is reasonable. Because one of
the most important jobs to do in parsing XOCL is the type checking against the underlying UML
models. The type checking can be done efficiently by using the query-operations defined in lines
17 to 22 in Listing 4.1 after that the classified symbol tables have been established completely.

The most complicated work in model validation is to parse the XOCL expressions to construct
their abstract syntax trees containing all the necessary semantic information for the next step of
model transformation. The XOCLParser component, whose general structure is given in Listing
4.2, takes over this responsibility. As mentioned in Section 3.4 and further addressed in Section
4.1, to simplify the development of an XOCL parser, the GOLD parsing system is used as the
compiler generator, which supports the LALR(1) grammar [Aho+08] and provides the tools to
edit the grammar rules and transform grammar rules into LALR parsing table. Up to this step,
all the work done is completely implementation language independent, but only concerns math-
ematics. Thanks to Matthew Hawkins, a Java Engine [Haw13] for GOLD has been developed,
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which contains a language parser along with concrete syntax tree API in Java.

1 package compi le r . frontEnd . modelVal idator ;
2

3 public class XOCLParser implements GPMessageConstants
4 {
5 private GOLDParser m_Parser ;
6 private Reduction m_CSTree ;
7 private XOCLAST m_ASTree
8 private Mode lFac i l i ty m_Model ;
9

10 public void parseBehaviorForOperat ion ( St r ing xoclCode , Operation context ) ;
11 public void constructConcreteSyntaxTree ( ) ;
12 public void constructAbstractSyntaxTree ( ) ;
13

14 private void i n i t i a l i z e ( ) ;
15 private OCLExpression CSTreeWalker ( Reduction cstNode , IType context ) ;
16 private XOCLCollection der iveCo l l e c t i onType (boolean i sUnique , boolean i sOrdered ) ;
17 private int typeChecker ( FeatureS ignature symbol , IType ca l l e rType , OCLFeatureCallExp

astNode ) ;
18 }

Listing 4.2: The class framework of the XOCLParser

Fig. 4.5.: Wrapper class XOCLAST representing the root of an XOCL abstract syntax tree

With the favor of the Java Engine, the XOCLParser references to a GOLDParser -instance
shown in line 5 of Listing 4.2, whose parse() operation is called in the constructConcreteSyntax-
Tree() operation (line 11 of Listing 4.2) and parses an XOCL expression given by the parseBe-
haviorForOperation() operation (line 10 of Listing 4.2) by consulting the LALR parsing table
saved in XOCLSyntax.cgt file and installed by the initialize() operation (line 14 of Listing 4.2)
into its concrete syntax tree saved in the parser property m_CSTree in line 6 of Listing 4.2. The
Reduction API class, which is the data type of m_CSTree, encapsulates the reduce operation
[Aho+08] in LR parsing with the grammar rule used as well as all the grammar symbols involved
in the current reducing. Hence, a reduction to the start symbol indicates the successful parsing,
meanwhile maintains the root of the constructed concrete syntax tree.

After the concrete syntax tree is constructed, there is no more syntactical error in the parsed
XOCL expression. As the next step, the constructAbstractSyntaxTree() operation in line 12
of Listing 4.2 tries to build the abstract syntax tree by top-down traversing each CST-node
representing a none-terminal grammar symbol. If no further error appears, the above operation
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constructs an XOCLAST -object and saves it in the parser property m_ASTree. As Figure 4.5
illustrates, the XOCLAST is a wrapper class, which references to a top-level XOCL abstract
syntax element that either represents an OCL-body expression or an XOCL-block expression
addressed in Section 3.4. Instead of preserving local variables globally in model facility, this class
maintains an additional symbol table for the resolved local variables, which are only valid in the
scope of one XOCL-expression. Just like the OpaqueBehavior, the XOCLAST is also derived
from the metalclass Behavior. Thus, after constructing AST, it replaces the original opaque
behavior of an operation for further model transformation.

Algorithm 4.2 Check the data type of a node in CST, which may represent an identifier
Require: Identifier with additional information: symbol. Possible context in which symbol may

be defined: callerType. The AST node representing the actual identifier: astNode
Ensure: Model element corresponding to symbol is found and connected to astNode.
1: if symbol is Operation then
2: check if symbol is inherited from OclAny
3: if callerType is one of the OCL primitive data types then
4: check if symbol is OCL predefined operation
5: else
6: opSig ← callerType.fullName+ symbol.signature
7: try to find opSig in the symbol table of operations
8: if opSig not found then
9: call findMSO routine to find a most specific operation matching symbol

10: end if
11: if symbol still not matched as an operation then
12: for all direct super-type superCallerType of callerType do
13: call the same type-checking routine with superCallerType as parameter
14: end for
15: end if
16: end if
17: else
18: try to resolve symbol as LocalV ariable
19: if not found then
20: try to resolve symbol as Parameter defined in the current context operation
21: end if
22: if not found then
23: try to resolve symbol as Property defined in callerType
24: end if
25: if not found then
26: for all direct super-type superCallerType of callerType do
27: call the same type-checking routine with superCallerType as parameter
28: end for
29: end if
30: end if

During the top-down traversal of CST, information must be passed up and down between CST-
nodes. This information exchange is usually realized by using synthesized as well as inherited
attributes [Aho+08]. Different with those recursive descent parsing system in that both inher-
ited and synthesized attributes can be treated simply as input parameter and return value of an
operation denoting a grammar production, a helper operation CSTreeWalker() is provided in our
XOCLParser, whose return value denotes the common synthesized attribute for a constructed
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XOCL AST node and second input parameter is the generally required inherited attribute, be-
cause different none-terminal symbols can have extra inherited attributes. For such situations,
additional stack-based parser properties will be used to store information for the next-level tree-
traversal.

The most important issue during construction of AST is the type checking together with
filling AST node with model element defined in the structural model in class diagram. The type
checking routine is implemented in the typeChecker() operation in line 17 in Listing 4.2. The
first parameter with the type FeatureSignature denotes a wrapper class that encapsulates the
name of an identifier with additional information, like whether it concerns an operation or other
typed element. In the case of an operation, all the arguments used by calling this operation
are involved in this wrapper. The second parameter is the initial type context, in which the
identifier may be defined. The last parameter is the AST node, to which the resolved model
element will be attached. Algorithm 4.2 explores the most necessary details of the type checking
routine implemented in MOCCA.

Algorithm 4.3 Find the most specific operation
Require: Identifier representing an operation: symbol. Context in which symbol may be de-

fined: callerType.
Ensure: Operation msop defined in callerType and most specifically matching symbol
1: retrieve argList, argNumber, opName from symbol
2: msop← ∅
3: opCandidate ← operations defined in callerType, named opName and having argNumber

parameters
4: for all op ∈ opCandidate do
5: paramList← list of parameters of op
6: searchF lag ← true
7: for i← 1, argNumber do
8: argDT ← data type of argument at position i in argList
9: paramDT ← data type of parameter at position i in paramList

10: searchF lag ← searchF lag ∧ (distance(argDT, paramDT ) >= 0)
11: end for
12: if searchF lag then
13: msop← op
14: end if
15: end for

Because at the very beginning it is aware if an identifier concerns an operation or other typed
elements, the type checker is able to make a difference between them that is reflected in Algorithm
4.2 with outermost if and else branches. To search an identifier, the underlying type hierarchy
must be also taken into account. Both inner for -loops in lines 12 to 14 as well as in lines 26 to 28
in Algorithm 4.2 try to search an identifier in all the super types of the current type context in a
recursive manner. For type-checking identifier as operation, if no absolutely matched operation
can be found, a further effort will be made to find a most specific operation. This logic is
illustrated in line 9 of Algorithm 4.2 by calling an extra routine called findMSO, whose logic of
computation is shown in Algorithm 4.3 in detail. For the list of the argument types, an operation
with the best corresponding list of parameter types is searched. In the process of finding the
most specific operation, the distance of the actual argument type to the parameter type of a
candidate operation is computed as shown in line 10 of Algorithm 4.3. The distance is a relation
on types. If the both types are identical, the distance is 0, whereas for two types, they do not
have any relationship in terms of inheritance hierarchy, the distance is defined as -1. Otherwise,
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the distance refers to the minimum number of gereralization relationships between them. The
distance-function is implemented in the getDistanceBetweenClassifiers() operation as defined in
line 24 of Listing 4.1 on page 81.

Fig. 4.6.: Interpreting association-end as XOCL collection

Fig. 4.7.: Wrapper classes handling XOCL collection types

In the process of type checking, the XOCL collection types can be resolved by interpreting
the values set to the meta properties of a typed element, such as attributes, association-ends
(both of them are referred as property, but the difference is made here to make things clearer)
and operation parameters. The exact interpretation rules are given in Table 2.1 on page 34
and implemented in the deriveCollectionType() operation as defined in line 16 in Listing 4.2.
Figure 4.6 shows a concrete setting in UML 2 Designer, which makes the association-end de-
liveredServices be interpreted as OrderedSet containing only objects with data type Service by
the type-checker component. This semantics can be formulated as lv: OrderedSet(Service) for
defining a local variable in the XOCL-expression. As addressed in Section 3.3.1, interpreting and
using XOCL collection type as above concretize a template-based collection raw type defined
in MOCCA DPM with its content type. This concretization can be represented in UML using
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template-binding [RQZ07], which involves relatively complicated meta model structure.
Because all the essential information for the type checking and the following model transfor-

mation are the collection raw type and its content type. Moreover, the internal representation of
a concretized XOCL collection type is only checked in model validation and processed within the
model transformation and never shown in UML graphical model. Hence, two additional wrapper
classes are introduced to maintain all the necessary information at the meta level as depicted
in Figure 4.7. The XOCLCollection is a DataType and associates three times with Classifier to
record the raw type declaring the current collection, the raw type defining the current collection
as well as its content type respectively. In PIM, only the raw type declaration is used, whereas
in PSM both the raw type declaration and definition can be used, such that the former specifies
the type for properties in classes and the latter is used to initialize them. The XOCLHashTable
is an XOCLCollection with an extra association to Classifier to denote the key type. As the
OCL-derive expression specifies, the value type is just a redefinition of content type.

1 public class ProgramPartner
2 {
3 private List<Serv i ce> d e l i v e r e dS e r v i c e s ;
4

5 public ProgramPartner ( ) {
6 this . d e l i v e r e dS e r v i c e s = new ArrayList<Serv i ce >() ;
7 }
8 }

Listing 4.3: Example of mapping XOCL OrderedSet into Java

Listing 4.3 illustrates a possibly generated Java class, which highlights the association-end
deliveredServices in the design model shown in Figure 4.6 after code generation. In type checking,
an XOCLCollection instance referencing the OrderedSet read in from MOCCA DPM and Service
modeled in the DM is created. In the following model transformation, the Java Model Mapper
finds out that the OrderedSet ought to be mapped by List<T>-interface to declare an attribute
but mapped by ArrayList<T> to initialize the according attributes by consulting the mapping
rule table, and finally, creates another XOCLCollection instance to record all those information
in the resulted target model for code generation.

4.3. Model Transformation

4.3.1. General Consideration of Model Transformation

As given in [OMG03] and introduced in Section 2.3.2, the model transformation is the pillar
of the entire MDA methodology, but defined by OMG in a very abstract manner in order to
give tool vendors more freedom to develop innovative technology realizing model transformation.
This strategy results in wide range of researches and diverse methods and tools supporting model
transformation, which have been summarized in Section 2.4 briefly. Despite the diversity of model
transformation principles developed, the primary objective of model transformation is to map
the platform independent design model, which is created by using the modeling facility provided
by design platform model, into a target model, which is backed by the resources as well as services
abstracted in the form of target platform model.

UML is a graphical modeling language and the models created in UML can be considered as
graph according to mathematics. Hence, the mapping operation, which is at the heart of model
transformation, can be defined as a graph morphism, mapping : G1 → G2 [EPE06], in which G1

is the design model whereas G2 is the according target model. There are outstanding researches
studying this mapping from the perspective of graph theory as described in [Sch94] [And+99]
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and [EPT04]. In this thesis, the mapping is discussed only from the view of software engineering
and it is to avoid involving complicated and comprehensive mathematical derivations.

Fig. 4.8.: A mapping transforms a piece of design model into its JEE target model

To expose the working principle of mapping, a concrete example is shown in Figure 4.8. In this
simple demo example, the G1 graph is a piece of design model, which models a ProgramPartner
and its delivered Services in a customer payback system. The G2 graph is the corresponding tar-
get model based on JEE platform. Finally, the mapping itself is only represented as a connection
between them on a very high-level of abstraction. It is to note that the mapping operation in
Figure 4.8 has the direction from G2 to G1. The reason is that the mapping is modeled here as a
stereotyped dependency, which has similar semantics as the predefined UML «refine» [OMG10b]
stereotype. In such a dependency, the G1 graph is the supplier, whereas the G2 graph is the
client refining its supplier with more platform details. Hence, the arrow of the mapping is on the
side of the G1 graph, namely, the source graph.

It is clear that the design model is much more compact than its target model, simply by
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counting the total number of nodes and edges involved in the both graphs. The most complexities
resulted in target model are caused by involving technical details of implementation. Such details
are generated in the mapping by interpreting markers that can be used to decorate nodes and
edges. Markers are stereotypes and their tagged values in UML. Mappings targeted to different
platforms are able to interpret those markers appropriately based on the technical as well as
implementation requirements on one concrete target platform. For example, a mapping targeted
to JEE platform maps each design model class stereotyped by «Persistence» into a Java class
annotated by Entity annotation, which is represented in Java TPM as «Entity» stereotype,
realizing the Serializable interface, containing a default constructor with empty parameter list
and providing getters for all properties and setters for all non-read-only properties with public
access control in design model.

It is worth noting that the nodes in both graphs are not simple as defined in classical graph
theory, but structured with sub-nodes. Typical sub-nodes are properties and operations and
moreover, the latter itself can have sub-nodes - operation parameters, etc. Properties and param-
eters are typed elements with assigned data type, according to UML terminology. As addressed
in Section 3.3, the MOCCA DPM provides diverse pre-defined data types for creating design
model. To map them into the target platform counterparts, the according mapping rules should
be given and accessible to the mapping. As illustrated in Figure 4.8, for example, to map the
DPM primitive type Integer to Java primitive type int, a mapping rule should be defined in the
mapping configuration file, which will be addressed later in this chapter.

UML model is defined by its metamodel. Hence, the both models in Figure 4.8 are maintained
in the form of in-memory instance graph with each node typed by an appropriate UML meta-
class within the both modeling and MDA tool. Therefore, from the perspective of a practical
implementation of mapping, it can be considered as a graph morphism, which transforms an
internal metamodel instance graph of design model into the according metamodel instance graph
of target model.

The example in Figure 4.8 concerns only one aspect of mapping - the structural mapping. The
other one is the behavioral mapping, which traverses each XOCL abstract syntax tree rooted in
an XOCLAST -object maintained by operation, to emit implementation code in target language
and saved again in an opaque behavior, which replaces the previous XOCLAST object as the
final behavior in target model.

Up to this point, the significant features and characteristics of mapping can be summarized as
follows:

1. For one input design model, different mappings are to be developed, each of which is
conceived to a target platform.

2. A mapping is able to transform design models based on predictable object-oriented princi-
ples, such that for each class in design model, a class in target model is to be generated at
least, etc.

3. A mapping is able to interpret DPM stereotypes applied to a design model element appro-
priately, if such stereotypes are meaningful for that target platform.

4. Connections between data types in DPM and their counterparts in TPM are defined in an
external mapping configuration file. A mapping is able to resolve the typed elements in
design model by consulting mapping rule table, which records mapping rules for platform-
data-types.

5. A mapping is able to traverse the XOCLAST -objects for emitting target language codes
either by itself or delegating this traversal to other component in charge.
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4.3.2. Target Platform Issues

Before the design and development issues of a concrete model mapper are addressed, several
crucial aspects common to all the potential target platforms must be considered well in terms
of finding reasonable and efficient mapping strategy to develop a model mapper for that target
platform. As introduced in the previous section, especially, depicted in Figure 4.8, the typical
output of a model mapper is a target model, which is completely based on the building elements
provided by the underlying target platform, conforms to the programming paradigm of the un-
derlying target platform as well as fine-tuned due to the technical constraints coming with the
target platform.

Theoretically speaking, a correct design model can be mapped onto any target platform, which
represents a general purpose programming language like C or Java, with the former a universal
procedural programming language, whereas the latter a universal object-oriented programming
language. It is obvious that the more convergent the design platform and a possible target plat-
form are, the more straightforward a model mapper for that target platform can be developed. In
the ideal situation, for each model element provided by the design platform, a direct counterpart
can be found on an ideal target platform, moreover, both platforms share the same level of ab-
straction, the model mapper for that target platform needs only to execute creating counterparts
for the design model elements in the target model as well as substituting design platform elements
with suitable target platform elements. It is clear that there are always divergences between the
design platform with high-level abstraction and the most practical target platforms. Thus, the
model mapper is to be developed to smooth the differences between them. However, the grade
of the divergence between the both essential platforms must be regulated in the scope of this
work to define a reasonable context, in which the model mapper and the overall model transfor-
mation can be done. The following considerations are made to the target platforms supported
by MOCCA.

• A target platform must base on an object-oriented programming language.

This requirement serves as the baseline for the model transformation addressed in this work.
Exactly speaking, the model mappers involved in MOCCA won’t deal with shifting programming
paradigm. Because from the very beginning, the object-orientation is chosen as the central
modeling and developing paradigm. Hence, the programming language like C, mentioned in the
previous paragraph, is excluded as a possible target platform for the current version of MOCCA1.

• Within the same implementation language platform (the classification in Section 3.2), the
most suitable API or Framework sub-platform must be used to map the domain specific
modeling constructs involved in a design model.

The application modeled in its design model is usually domain specific, which leverages the high-
level, domain specific modeling constructs provided by the design platform. Before a potential
model mapping starts, the target platform reflecting the chosen implementation language is
already known. However, for a universal OOPL like Java, there are diverse APIs as well as
frameworks, which may better suit the design model and ease the mapping process by providing
language constructs with similar abstraction level and domain specificity as design platform
elements provide. For example, within the Java target platform, mapping a «Persistence» class
of a design model directly based on the JDBC API coming with the JSE API platform is much
more complex than mapping it based on the JPA provided by JEE API platform.

1We know that adapting programming paradigm can be a compiler phenomenon, like the early C++ compiler
emitting C as the intermediate code [Aho+08]. However, this strategy is not adopted by the current version
of MOCCA for model transformation.
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• A target platform does not have to represent a universal OOPL, but is allowed to represent
a domain specific OOPL for mapping special kind of applications.

In the both previous considerations, a target platform can be used as the basis to map any kind of
application modeled based on the constructs provided by the design platform by selecting suitable
API or framework sub-platform. This consideration deals with the potential domain specific
OOPL target platforms, which are not universal applicable but best suitable for mapping special
kind of applications. Such target platform can be the ABAP Objects for developing mission-
critical business applications and DVDL for developing Manufacturing Execution Systems (MES)
[Dör13]. It is obvious that a modeled application with the semantics not covered by such domain
specific target platforms cannot be mapped onto those platforms correctly. For example, the
PIM of a 3D-application 2 can neither mapped onto ABAP Objects target platform nor onto
DVDL target platform.

• A target platform accepted by MOCCA does not have to be completely identical to the
original platform specification but can be fine-tuned by adapters and extended by in-house,
ready-to-use building blocks.

For special OOPL target platform like ABAP Objects, some legacy non-OO language constructs
but still intensively in use, can be encapsulated by adapters integrated into the target platform.
The adapters are usually object-oriented wrappers, which have to be developed with the target
language directly for the current version of MOCCA. The in-house, ready-to-use building blocks
refer to the support of iterative modeling and model mapping. For example, a design model,
which involves some kind of standard building blocks for a particular application domain, is
transformed and mapped onto a target platform. The mapped result can be involved into the
according target platform as ready-to-use modules. Typical example is the account for all kinds
of applications in terms of banking management.

2The current MOCCA DPM is not yet equipped with the platform independent modeling facility supporting
modeling 3D applications. However, with the extensible mechanism of DPM, such modeling facility can be
added in the future development of MOCCA.
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4.3.3. The Model Mapper Architecture

In this section, the most complicated and sophisticated component in MOCCA - the model
mapper is addressed. As summarized at the end of Section 4.3.1, for each concrete implementation
platform, there should be an according model mapper. However, as described in Section 3.1 and
4.3.2, the MOCCA modeling framework is completely based on object-oriented paradigm and
the design models created within this modeling framework conform to the best practices of OO-
technology. On the other hand, the platforms supported by MOCCA are also object-oriented.
Hence, despite the diversity of target platforms, there are many common aspects among them,
which lead to a hierarchical model mapper architecture illustrated in Figure 4.9.

Fig. 4.9.: Architecture of the model mapper component

As the root of model mapper, the BasicOOModelMapper takes over the general purpose map-
ping, which is common for all target platforms. All the platform specific mappings are delegated
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to the down-side model mapper(s). Each action done in a model-mapping step results in some
kind of manipulation of the newly constructed target model. Hence, from very beginning on, all
those actions, like creation, modification, etc., are recorded into a sub-component called Map-
pingsTable for further usage. The mapping table will be addressed later in this section. As
the next level of model mapping, model mapper for a concrete implementation language can be
introduced. In this dissertation, model-mappings targeted to Java programming language but on
different API platforms are used to demonstrate the most essential model mapping principles.
Mappings targeted to other implementation language platforms just follow the same idea. In the
Chapter Experimental Results of this thesis, other model mappers, which are developed in the
scope of this dissertation, will be introduced and highlighted with the logic dealing with mapping
issues special to those target platforms.

As modeled in Figure 4.9, the JavaBasicModelMapper maintains a hash-table based Mapping-
RuleTable, whose mapping rules define how the model elements in design platform model can be
mapped into the resources provided and abstracted in the Java target platform model. If a typed
element in design model is defined using a DPM data type, the fixDataTypeForTypedElement()
operation consults the mapping rule for that DPM data type to find the appropriate data type
in Java TPM for mapping this typed element in Java target model. As aforementioned, mapping
rules are defined in the external mapping configuration file and parsed into their abstract syntax
(the meta model). This topic will be addressed in Section 4.3.4 in detail.

For Java model mapper, the target language is known. Hence, the JavaStandardXOCLMapper
is connected to this level of model mapper, whose working principle will be discussed in Section
4.3.5. For now, it is to be aware that each XOCL abstract syntax tree maintained by an operation
in design model will be traversed in the method transformXOCLAST() to generate Java code
reflecting the original XOCL expression and to save it into a fresh constructed opaque behavior
attached to the operation-counterpart in Java target model.

As the last level of model mapper, the API platform model mappers, such as JSEStandard-
ModelMapper and JEEStandardModelMapper, each of which resides in its own sub-package, have
enough knowledge to process the semi-finished model elements handed over by the model mapper
one level before into the final model elements according to the requirements on JSE as well as
JEE platform respectively.

Again, together with the overall compiler architecture depicted in Figure 4.3, it is aware that
functional component like model mapper is dynamically integrated into a compilation flow by the
engine via interface. The sole interface that a non-intermediate model mapper has to implement
is the IModelMapper, which inherits the function from the ICompilerComponent interface. In
fact, the ICompilerComponent interface is the base interface for all the functional interfaces. The
sole operation initialize() injects the compiler engine into each compiler component as context,
in order that the infrastructure component like CompilerConfig, ModelFacility as well as Tracer
are accessible by functional component like model mapper. The compiler engine starts a model
mapping by calling the transformPIM() operation via IModelMapper interface.

Despite the diversity of concrete target platforms, the general mapping strategy implemented
by different model mappers can be high-level depicted in Alogrithm 4.4. The core-steps of a
model mapping consist of the transformations in lines 5 to 9 as well as in line 15 and 21. These
transformations are ubiquitous for almost all the target platforms. The others are optional.
The operations prefixing with transform and implementing the core-transformation logic usually
redefine the operations with the same signatures but defined in the intermediate model mappers
along the inheritance hierarchy, e.g., the ones coming with BasicOOModelMapper as modeled in
Figure 4.9. Both the compulsory and optional mapping steps are organized in a natural order,
in which all the dependent elements in the current mapping step have been generated in the
previous mapping step. For example, at the time of mapping relationships between classifiers
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in design model, all the counterparts of theses DM-classifiers in the target model have been
generated in previous steps. This strategy is feasible, because, as already addressed in Section
4.2, at the time of model validation, a powerful symbol table recording all the model elements
has been created. Hence, querying and retrieving a model element is efficient in model mapping.

Algorithm 4.4 Transform platform independent model
Require: Model facility containing DPM, DM as well as TPM
Ensure: Target Model (TM) is created and saved into model facility
1: if necessary then
2: do some platform-specific pre-processing
3: end if
4:
5: map all the packages dmPkg ∈ DM by calling transformPackage(dmPkg)
6: map all the interfaces dmIntf ∈ DM by calling transformInterface(dmIntf)
7: map all the classes dmCls ∈ DM by calling transformClass(dmCls)
8: map inheritance of each dmCls ∈ DM by calling transformInheritance(dmCls)
9: map all the properties dmPrty ∈ DM by calling transformProperty(dmPrty)

10:
11: if necessary then
12: interpret associations to obtain additional information for platform-specific processing
13: end if
14:
15: map all the operation signature dmOp ∈ DM by calling transformOperation(dmOp)
16:
17: if necessary then
18: do some platform-specific processing before behavioral mapping
19: end if
20:
21: map all the behaviors for dmOp ∈ DM by calling transformBehavior(dmOp)
22:
23: if necessary then
24: do some platform-specific post-processing
25: end if

As aforementioned in this section, each step in model mapping causes one or more manipula-
tions in the constructed target model. Such manipulations are called mapping actions. Mapping
actions in terms of one source model element are combined into one single mapping-object,
which is recorded in the mappings table maintained directly by the top-level model mapper -
the BasicOOModelMapper. The integration of mappings table into model mapper is shown in
Figure 4.9. Figure 4.10 concentrates on the concepts of mapping and its mapping actions. The
MappingAction is able to record semantic actions common among all the platforms, whereas
JEEMappingAction enhances common mapping action with JEE-specific mapping semantics.
Similarly, for each target platform, there can be specific mapping action.

The information recorded in a mapping action object consists of two parts - the model element
involved and the according action done. The involved model element is refered as resultElement
with the type of UML meta class Element. That means all kinds of model elements can be
modified in a model mapping process. The exact semantics of a mapping action is given by
assigning a mapping constant to it, which is defined in one of the mapping constants interfaces.
Listing 4.4 shows the semantic masks, which are common among diverse target platforms. All
the mapping constants are self descriptive. Hence, a further explanation for them is unnecessary.
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Fig. 4.10.: The structure of mapping action

1 package compi le r . backEnd . modelMapper ;
2

3 public interface ICommonMappingConstants
4 {
5 int DefaultOperat ion = 0 ;
6

7 int PackageCreation = 1 ;
8 int ClassCreat ion = 2 ;
9 int I n t e r f a c eCr ea t i on = 3 ;

10

11 int PropertyCreat ion = 4 ;
12 int Operat ionS ignatureCreat ion = 5 ;
13

14 int DataElementCreation = 6 ;
15 int Inhe r i t anceCrea t i on = 7 ;
16 int ImplementationDependencyCreation = 8 ;
17 int Decorat ionByStereotype = 9 ;
18 int TaggedValueApplication = 10 ;
19 int Operat ionImplementat ionCreat ion = 11 ;
20

21 int PackageMoving = 12 ;
22 int ClassMoving = 13 ;
23 int OperationMoving = 14 ;
24

25 int PropertyGetterCreat ion = 15 ;
26 int Proper tySet te rCreat ion = 16 ;
27

28 int Loca lVar iab l eCreat ion = 17 ;
29 int OperationParameterCreation = 18 ;
30 int ModelElementRename = 19 ;
31 }

Listing 4.4: Constants representing concrete mapping semantics in mapping actions

To make discussion simple, the example of model mapping shown in Figure 4.8 is simplified
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by highlighting only the package transformation done for the JEE-platform in Figure 4.11. On
the left hand side is the source package in design model denoted as dmPkgBO, whereas on the
right hand side are resulted packages in JEE-target model, denoted as tmPkgBO, tmPkgCS,
tmPkgRBS, tmPkgEntity and tmPkgEJB respectively. As the stereotyped dependencies denote,
the BasicOOModelMapper generates the tmPkgBO package for dmPkgBO package as its direct
counterpart in JEE target model. After that a mapping object is created with dmPkgBO as
its source element and maintains at this moment a mapping action object with tmPkgBO as
its result element and assigned with PackageCreation as its mapping mask. Due to interpreting
the «BusinessObjectsLayer» stereotype, the JEEStandardModelMapper generates furthermore
the tmPkgCS, tmPkgRBS, tmPkgEntity as well as tmPkgEJB sub-packages and creates their
according mapping action objects recording these manipulations into the same mapping, which
is created by BasicOOModelMapper for the source package dmPkgBO. In this manner, all the
mappings maintaining their respective mapping actions are recorded into mappings table for
efficient queries in the subsequent transformation.

Fig. 4.11.: JEE mapping actions for transforming a package in design model

The Algorithm 4.4 illustrates the overall transformation strategy only on high-level. The
concrete implementations of each transformation step in non-intermediate model mapper can be
very different from platform to platform. To concentrate on essential principles, the core mapping
step transformClass() realized in the JEEStandardModelMapper is used to address the general
idea of implementing such a core transformation step in a concrete model mapper. Algorithm
4.5 exposes the details of this operation to some extent. The most complicated steps involved
in Algorithm 4.5 are to reflect platform specific details on JEE platform. We suppose that
the readers know about the underlying development issues based on JEE. The most steps in
Algorithm 4.5 are self-descriptive. It is worth noting that model mapper, which is more general,
hands over always a fresh created class in target model, which will be processed in the current
class-transformation as shown in line 1. The following logic can be summarized as interpreting
DPM stereotypes into JEE-specific transformation steps. One more thing to remind here is that
due to the clarity of showing algorithm all the creations of mapping action objects and recording
them into mappings table are ignored in Algorithm 4.5. In fact, for the first if -block in lines
2 to 7, four mapping actions representing class movement, annotation adding, implementation
dependency creation and operation signature creation respectively, are generated for the source
class c for further usage.
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Algorithm 4.5 Transform design model class into JEE target model
Require: A design model class: c
Ensure: The counterpart of c in JEE target model: tmCls and other related target model

elements
1: tmCls← super.transformClass(c)
2: if c is stereotyped by «Persistence» then
3: move tmCls into entity package
4: annotate tmCls with JPA @Entity annotation
5: add implementation dependency between tmCls and Serializable interface
6: create a default constructor without parameter for tmCls
7: end if
8:
9: if c is stereotyped by «Application» then

10: move tmCls into ejb package
11: annotate tmCls with EJB @Startup annotation
12: annotate tmCls with EJB @Singleton annotation
13: annotate tmCls with EJB @LocalBean annotation
14: rename tmCls by suffixing SGSB
15: end if
16:
17: if c is stereotyped by «AdminRole» then
18: create EJB @Remote interface in roleBasedService package with naming convention

IAdminRole+ c.name+Remote
19: create EJB @Stateful session bean class in ejb package with naming convention

AdminRole+ c.name+ SFSB
20: add implementation dependency between the @Stateful session bean class and its

@Remote interface
21: associate this @Stateful session bean class with tmCls via a property called app and

annotated by @EJB
22: end if
23:
24: if c is stereotyped by «BusinessRole» then
25: do similar transformation as for «AdminRole»
26: end if
27:
28: if c is stereotyped by «CommonRole» then
29: do similar transformation as for «AdminRole»
30: end if
31:
32: if c is stereotyped by «DataMapper» then
33: annotate tmCls as EJB @Stateless session bean class
34: create EJB @Local interface in the persistenceLayer package with naming convention

I + tmCls.name+ Local

35: add implementation dependency between tmCls and its @Local interface
36: create a property em with the type JPA EntityManager and annotated by

@PersistenceContext
37: end if
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Algorithm 4.6 Interpret association as JPA entity relationship on JEE platform
Require: An association in design model: dmAsso
Ensure: Annotating the TM properties in terms of the association-ends of dmAsso with correct

JPA annotations
1:
2: dmRole1 ← dmAsso.assEnd[1]
3: dmRole2 ← dmAsso.assEnd[2]
4: dmPC1 ← dmRole1.type
5: dmPC2 ← dmRole2.type
6:
7: if dmPC1 is stereotyped by «Persistence» ∧ dmPC2 is stereotyped by «Persistence» then
8: tmPrty1 ← dmRole1.mapping.counterPart
9: tmPrty2 ← dmRole2.mapping.counterPart

10: if tmPrty1 6= null ∧ tmPrty2 6= null then
11: isBidirectional = true
12: else
13: isBidirectional = false
14: end if
15: . All relationships are considered from dmPC1 to dmPC2

16: if dmRole1.multiplicty > 1 then . @OneToMany or @ManyToMany for dmRole1
17: if dmRole2.multiplicty > 1 then
18: if isBidrectional then
19: process as @ManyToMany bidirectional
20: else
21: process as @ManyToMany unidirectional
22: end if
23: else
24: if isBidirectional then . process as @OneToMany bidirectional
25: annotate tmPrty2 with @ManyToOne
26: annotate tmPrty1 with @OneToMany
27: @OneToMany.mappedBy ← tmPrty2.name
28: else
29: process as @OneToMany unidirectional
30: end if
31: end if
32: else . @OneToOne or @ManyToOne for dmRole1
33: if dmRole2.multiplicty > 1 then
34: if isBidrectional then
35: process as @ManyToOne bidirectional
36: else
37: process as @ManyToOne unidirectional
38: end if
39: else
40: if isBidrectional then
41: process as @OneToOne bidirectional
42: else
43: process as @OneToOne unidirectional
44: end if
45: end if
46: end if
47: end if
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Fig. 4.12.: Interpretation of association as JPA entity relationship on JEE platform

As addressed in Section 4.2, the associations have been processed in the phase of model val-
idation, so that their navigable association-ends have been solved into normal properties. In
model transformation, these resolved properties are transformed by according transformProp-
erty() operation into target model. However, for certain target platforms, associations carry
more information than the relationship between classes, which can be broken down into respec-
tive properties. For example, to transform association between two «Persistence»-classes in DM
into JPA entity relationship on JEE platform, the original association in DM has to be analyzed
in detail for annotating properties in JEE target model with correct JPA annotations [Ora11b]
[LB10]. The optional transformation of associations is involved in Algorithm 4.4 by the if -block
in lines 11 to 13. Algorithm 4.6 highlights the most significant logic in the transformAssociation()
operation implemented in JEEStandardModelMapper. To make discussion simple and clear, an
example illustrating JPA bidirectional one to many entity relationship is given in Figure 4.12.
Due to the same reason, only the transformation details for the case recognized as bidirectinal
one to many are represented in lines 24 to 27 in Algorithm 4.6. Other cases just follow the similar
logic.

The model elements in Figure 4.12 follow the same naming convention as in Algorithm 4.6. On
the upper part of Figure 4.12, two «Persistence» classes in design model, denoted as dmPC_1
and dmPC_2 respectively, are connected by a bidirectional association. Bidirectionality is rec-
ognized by the both navigable association-ends, named dmRole_1 and dmRole_2 respectively.
In model transformation, the corresponding JPA entity classes on JEE target platform are gen-
erated and denoted as tmEC_1 and tmEC_2 as shown on the bottom part of Figure 4.12. The
transformationProperty() operation in JEE model mapper transforms the both dmRole_1 and
dmRole_2 into the corresponding properties of each entity class. The rectangles with frames in
red color highlight the correspondence between dmRole_1 and tmPrty_1. It is to note that in
target model there is no association any more. The modeling semantics of association has been
dissolved into normal properties for subsequent code generation. As the next mapping step run
by JEE model mapper, Algorithm 4.6 analyzes the cardinality of both dmRole_1 and dmRole_2
to infer the JPA one to many relationship. In fact, the algorithm always considers the association
from the first end to the second end. If in the real model, the dmPC_1 and dmPC_2 change
their positions, the relationship deduced by Algorithm 4.6 should be many to one. To recognize
the bidirectionality, instead of analyzing navigability of the both association-ends directly, their
generated counterparts as properties are queried via mapping objects as shown in line 8 and
line 9. For non-navigable association-end, no TM-property is generated. Hence, the decision for
bidirectionality can be made as shown in lines 10 to 14 in Algorithm 4.6.

As required by JPA specification [Ora11b] [LB10], for a one to many bidirectional relationship,
not only the @OneToMany and @ManyToOne annotations have to be added to the appropriate
properties in entity classes, but also the mappedBy attribute must be assigned with the property,
which represents a possible foreign key reference in the underlying database schema. This is
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done as shown in line 27 in Algorithm 4.6 and represented in the curly braces in class tmEC_1
of Figure 4.12.

4.3.4. The Mapping Configuration and Its Metamodel

Recall from the general architecture of model mapper illustrated in Figure 4.9 on page 91, the
JavaBasicModelMapper (the same is applied to other implementation language specific intermedi-
ate model mapper) maintains a hash-table based MappingRuleTable, whose mapping rules define
how the model elements in design platform model can be mapped into the resources provided and
abstracted in the Java target platform model. As discussed in Section 3.3, the model elements in
design platform model can be classified in two distinct groups. The profile and its stereotypes are
used to mark a design model element with additional semantics that can be interpreted by model
mapper into resource combination on a target platform to realize the identical semantics added
by such stereotypes. In previous Section, processing of this group of DPM model elements has
been addressed. The other group of DPM model elements are XOCL data types and their fea-
tures. Data types are primarily used to define UML typed elements such as property, operation
parameter, local variable, as well as to specify general classifier in an inheritance and supplier in
a dependency. Features, namely, the properties and operations defined in data types serve as the
steppingstone in XOCL expressions to model behavior compactly. As already known, the XOCL
extends the open standard based OCL with extra types and features. The original OCL types
and their pre-defined operations are completely preserved. Hence, the mappings for platform
data types follow a general strategy consisting of:

• For both original OCL types and extended XOCL types, mapping rules are defined in
mapping configuration file to map them into data types on a concrete target platform.

• For OCL predefined operations, the implementation language specific XOCL mapper is
able to map them into target language code. Because all the OCL predefined operations
are documented in literature like [WK03] and [OMG10a], the exact semantics of OCL
predefined operations are well known for a specific XOCL mapper targeted to a concrete
platform.

• For XOCL features defined in XOCL types, namely properties and operations, mapping
rules are needed to represent or implement them by using the combination of resources
provided on a target platform.

The first and third point of the above mapping strategy are discussed in this section by ex-
amples, whereas the second point will be addressed in the next section in detail. As mentioned
several times before, the mapping rules are defined in a mapping configuration file in XML for-
mat. Listing 4.5 shows the general structure of a mapping configuration file. It is supposed that
readers of this thesis are familiar with XML. Otherwise, introduction about XML can be found
in [FQA12]. As shown in Listing 4.5, a dedicated name space indicates that this XML-based
mapping configuration file is created in the scope of my PHD-study. Furthermore, an XML
schema, namely, mappingConfig.xsd is also defined to validate the elements appeared in this
XML-file and delivered with MOCCA together. The complete usage and valid semantics of the
mapping configuration file can be retrieved by reading the XSD file. Here a brief summary of the
most significant elements are provided. The mapping configuration consists of three parts. The
<targetPlatform> element can be used only once and is followed by the composite element <dp-
mMapping>, in which arbitrary number of sub-elements can be defined. The meaning of these
sub-elements ought to be self-descriptive and will be addressed by examples in the subsequent
discussion. The <dmMapping> is reserved for possible direct mappings between model elements
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in design model and their implementation on a target platform directly. For the time being, this
element is not used.

1 <?xml ve r s i on ="1.0" encoding="utf−8"?>
2 <mappingConfig xmlns="http ://www. tu−f r e i b e r g . de/Promotion/Liang"
3 xmlns : x s i ="http ://www.w3 . org /2001/XMLSchema−i n s t anc e "
4 x s i : schemaLocation="http ://www. tu−f r e i b e r g . de/Promotion/Liang

mappingConfig . xsd" >
5

6 <targetPlat form>JSE</targetPlat form>
7 <dpmMapping>
8 <dpmTypeMappingRule>
9 </dpmTypeMappingRule>

10 . . .
11 <dpmEventMappingRule>
12 </dpmEventMappingRule>
13 . . .
14 <dpmPropertyMappingRule>
15 </dpmPropertyMappingRule>
16 . . .
17 <dpmOperationMappingRule>
18 </dpmOperationMappingRule>
19 </dpmMapping>
20

21 <dmMapping>
22 </dmMapping>
23 </mappingConfig>

Listing 4.5: The general structure of a mapping configuration file

As the <targetPlatform> element in line 6 in Listing 4.5 indicates, in this section, mapping
rules targeted to Java Standard Edition (JSE) are selected to illustrate typical usages of mapping
rules. Mapping rules for other possible target platforms just follow the similar idea. Listing 4.6
shows both mapping rules for the OCL primitive type Integer and the XOCL GUI-Layout type
SplitContainer respectively. Each mapping rule for DPM-types has a <sourceType> element,
to which the current mapping rule is applied. The type surrounded by this element is also the
key-object in the mapping rule table. Following the <sourceType> element comes one of the
elements, which define the counterpart on a target platform on the one hand and the semantics
applied to this counterpart on the other hand. For example, to map the OCL Integer on JSE,
the Java int built-in type can be used to simply substitute the source type. This substitution
semantics is defined by the element <typeSubstitution> and its attribute as gives the mapping
rule parser the hint, how to interpret the JSE int built-in type. The extra attribute isInit in
the <typeSubstitution> of the mapping rule for SplitContainer gives model mapper a necessary
hint that the type on target platform has to be initialized before using it, which usually leads to
platform specific post processing as shown in Algorithm 4.4. It is to note that for both source
type and target type the qualified names have to be given in a type mapping rule.

1 <dpmTypeMappingRule>
2 <sourceType>OCL. Pr im i t i v e s . Integer </sourceType>
3 <typeSubs t i tu t i on as="DataType">java . lang . int </typeSubst i tut ion>
4 </dpmTypeMappingRule>
5

6 <dpmTypeMappingRule>
7 <sourceType>XOCL.GUI . Sp l i tConta iner </sourceType>
8 <typeSubs t i tu t i on as="Class " i s I n i t="true">javax . swing . JSpl itPane</

typeSubst i tut ion>
9 </dpmTypeMappingRule>

Listing 4.6: Mapping rules for Integer and SplitContainer in design platform model
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The mapping rule in Listing 4.7 illustrates the usage of <typeDeclaration> and <typeDefi-
nition> elements. This mapping rule defines that the Java List<T> interface is used to de-
clare a typed element like property, but initialized, for example, in constructor, by the Java
ArrayList<T> class, for the OCL collection type OrderedSet. Listing 4.3 on page 86 shows a
possible result if the above rule is applied.

1 <dpmTypeMappingRule>
2 <sourceType>OCL. Co l l e c t i o n s . OrderedSet</sourceType>
3 <typeDec la ra t ion as="I n t e r f a c e " i s I n i t=" f a l s e ">java . u t i l . L i s t </typeDec larat ion>
4 <typeDe f i n i t i on as="Class " i s I n i t="true">java . u t i l . ArrayList </typeDe f in i t i on>
5 </dpmTypeMappingRule>

Listing 4.7: Mapping rule for the collection type OrderedSet in design platform model

1 <dpmEventMappingRule>
2 <sourceEvent>XOCL.GUI . Event . ClickEvent</sourceEvent>
3 <eventTypeHandling>
4 <tpmEventName>actionPerformed</tpmEventName>
5 <tpmEventOwner as="I n t e r f a c e">java . awt . event . Act ionLi s tener </tpmEventOwner>
6 </eventTypeHandling>
7 </dpmEventMappingRule>

Listing 4.8: Mapping rule for the platform independent ClickEvent into Java

Recall from Section 3.3.3, the XOCL event-expression is introduced to model dynamic sub-
scription part of event handling in a clear and platform independent manner. This mechanism
supports flexible declaration of event handling methods. Specifically, their names do not need
to be pre-coded. However, to map XOCL event-expressions into certain target platform, such
as JSE, difficulty occurs due to the peculiarity of the underlying Java event handling framework
[HC08], which can be summarized as:

• In JSE, a single event on an event source cannot be identified explicitly as in C# via event
keyword.

• In JSE, event handling methods have to be declared in XXXListener -interfaces and connect
to events via method named addXXXListener(). Only methods registered in this way can
be used in the dynamic publishing phase of event handling.

As solution for the first point above, an intuitive candidate may be a Java event object,
e.g., WindowEvent, MouseEvent, etc. However, they are similar to their corresponding listener
interfaces, which group several related events together. It requires an extra effort to select a
single event of such an event-collection. As result of the careful analysis discussed in [LS10], it is
possible to adopt the method name defined in the event listeners to identify a single event. If an
event-source can register several event listeners, the method names in this set of listeners classify
the events exactly.

Following this idea the <dpmEventMappingRule> element is created to define the correspon-
dence between DPM event types and their counterparts in a target platform. Listing 4.8 shows
how this rule can be used to map ClickEvent onto JSE platform. The JSE model mapper knows
how to use information provided in this mapping rule to generate correct Java code.

To overcome the second problem above, which concerns connecting the event handler with the
event, a Java anonymous class [HC08] can be created as a bridge between the fixed method-
name of a Java event-handling method and the free chosen name of the event handler in the
design model. Listing 4.9 shows the relationship between an XOCL event-expression and its
implementation on JSE platform. The Java code is generated automatically by the JavaStan-
dardXOCLMapper to be addressed in the next section. It is to note that the appropriate listener
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interface or adapter class to declare the anonymous class is also given in the event mapping rule
by the <tpmEventOwner> sub-element shown in line 5 in Listing 4.8.

1 begin
2 event : s e l f . view . button1 . c l i c k ~ s e l f . button1_cl ick ;
3 end
4

5 this . getView ( ) . getButton1 . addAct ionLis tener (
6 new Act ionL i s t ene r ( ) {
7 @Override
8 public void act ionPerformed ( ActionEvent e ) {
9 button1_cl ick ( e ) ;

10 }
11 }
12 ) ;

Listing 4.9: An XOCL event expression and its corresponding Java implementation via anonymous class

1 <dpmPropertyMappingRule>
2 <sourceProperty>XOCL.GUI . Sp l i tConta ine r . i sHo r i z on ta l </sourceProperty>
3 <proper tySubs t i tu t i on>
4 <tpmPropertyName>or i en ta t i on </tpmPropertyName>
5 <tpmPropertyGetter>getOr i entat ion </tpmPropertyGetter>
6 <tpmPropertySetter>se tOr i en ta t i on </tpmPropertySetter>
7 <isDi r ec tAss i gned>f a l s e </i sD i r ec tAss i gned>
8 <dpmPV2tpmPV>
9 <dpmPV>f a l s e </dpmPV>

10 <tpmPV>javax . swing . JSpl i tPane .VERTICAL_SPLIT</tpmPV>
11 </dpmPV2tpmPV>
12 <dpmPV2tpmPV>
13 <dpmPV>true</dpmPV>
14 <tpmPV>javax . swing . JSpl i tPane .HORIZONTAL_SPLIT</tpmPV>
15 </dpmPV2tpmPV>
16 </proper tySubs t i tu t i on>
17 </dpmPropertyMappingRule>

Listing 4.10: Mapping rule for the property isHorizontal defined in XOCL GUI–Layout type SplitContainer

1 begin
2 update s e l f . sp l i tPane . i sHo r i z on t a l = f a l s e ;
3 end
4

5 t h i s . sp l i tPane . s e tOr i en t a t i on ( javax . swing . JSpl i tPane .VERTICAL_SPLIT) ;

Listing 4.11: Mapping a property of XOCL type into Java

To map properties of an XOCL type, the <dpmPropertyMappingRule> element can be used.
In most situations, there must be a counterpart for such a property on the target platform, but
the representation on target platform can be different than in design model. The sub-elements
in <dpmPropertyMappingRule> are provided to smooth such differences. Listing 4.10 illustrates
a mapping rule, which defines how to map the isHorizontal property of SplitContainer into
appropriate setting of the orientation property in Java JSplitPane class. Listing 4.11 shows the
mapping result.

Mapping XOCL library operations encounters similar situations to mapping properties. For
most situations, there are direct counterparts on a target platform to substitute XOCL-operations.
If not the case, additional elements of the <dpmOperationMappingRule> can be used to smooth
the differences, just like for mapping properties. The most complicated situation for mapping
XOCL operation is addressed by an example in this section in detail.

Figure 4.13 shows a piece of design model, which represents the model part of the MVC
architecture. The class Module represents a subject provided in a course of a university, whereas
the class ModuleGroup groups the coherent modules as an examination unit. A module group
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Fig. 4.13.: The Model-part of an MVC-based design model

can be nested, recognized by the combination of inheritance and association between Module and
ModuleGroup. The modules are created and maintained by teaching staff and saved in a text
file, which can be in any possible format. In this simple example, a space-separated plain text
file is supposed. At the time of initializing system, the initModules() operation highlighted by a
rectangle, whose frame is in red color, fills in the association-end allModules with fresh created
module-instances by reading all the modules recorded in a file line by line. This semantics is
clear at the time of modeling. Hence, a high-level XOCL operation can be declared as shown in
Listing 4.12.

1 package DesignPlatformModel : :XOCL: : IO
2

3 context InputStream
4 de f : readCol lect ionFromTextFi le ( f i leName : S t r ing ) : Co l l e c t i o n (OclAny ) ;

Listing 4.12: Declaration of an XOCL library operation using OCL–like syntax

1 begin
2 update s e l f . a l lModules = InputStream : : readCol lect ionFromTextFi le ( f i leName ) ;
3 end

Listing 4.13: A concrete usage of XOCL readCollectionFromTextFile() operation

The expression in Listing 4.12 is considered as OCL-like. Because the original OCL-def ex-
pression is used to declare a query operation in the underlying model. There is "="-part after
operation signature, which states the body expression. However, the expression is thought to be
convenient to declare an operation in a platform independent way. That means, the readCollec-
tionFromTextFile() operation belongs to XOCL type InputStream, which is in the IO sub-package
of XOCL, the input parameter is a file name and the operation brings back a collection, both of
whose raw type and involved type are not yet determined. This XOCL operation can be used to
specify the behavior of the initModules() operation as modeled in Listing 4.13. Now, the concrete
return type of the readCollectionFromTextFile() operation can be deduced by the data type of
allModules, which is an OrderedSet of Modules.

It is clear that in JSE there is no direct counterpart for readCollectionFromTextFile() operation.
Furthermore, there is even no operation that can be smoothed to emulate this operation. To
map such an operation onto a target platform, there are generally two possibilities:

1. Model a wrapper class with the counterpart operation in another design model and trans-
form this model into the required target language. After that, the generated wrapper class
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and its operation(s) can be adopted in the Extended Adapter API Model, which is a sub-
model in target platform model already introduced in Section 3.2. From this moment on,
a simple operation mapping rule can be defined between the complex XOCL operation
and its adapter counterpart in target platform model. This strategy is referred as iterative
modeling already mentioned in Section 4.3.2.

2. The semantics of such an operation in XOCL is known meanwhile the resources provided on
a target platform are also known. Thus, this operation can be realized by the combination
of target platform resources. The combination can be represented in the form of code
template in terms of target platform.

1 <dpmOperationMappingRule>
2 <sourceOperat ion>
3 XOCL. IO . InputStream . readCol lect ionFromTextFi l e ( DesignPlatformModel .OCL.

Pr im i t i v e s . S t r ing )
4 </sourceOperat ion>
5

6 <opera t i onSubs t i tu t i on>
7 <useTPMcodeTemplate>true</useTPMcodeTemplate>
8 <tpmCodeTemplate>
9 t ry {

10 java . i o . BufferedReader br = new java . i o . BufferedReader (new java . i o .
Fi leReader ( %Param0% ) ) ;

11 St r ing l i n e ="";
12 whi le ( ( l i n e = br . readLine ( ) ) != nu l l ) {
13 i f ( ! l i n e . isEmpty ( ) ) {
14 St r ing [ ] l ineElem = l i n e . s p l i t (" ") ;
15 i f ( l ineElem . l ength == %Param1% ){
16 %Param2% obj = new %Param2%( %Param3% ) ;
17 %Param4%.add ( obj ) ;
18 }
19 }
20 }
21 } catch ( java . i o . IOException e )
22 {}
23 </tpmCodeTemplate>
24 <tpmCodeTemplateParameter>%Param0%</tpmCodeTemplateParameter>
25 <tpmCodeTemplateParameter>%Param1%</tpmCodeTemplateParameter>
26 <tpmCodeTemplateParameter>%Param2%</tpmCodeTemplateParameter>
27 <tpmCodeTemplateParameter>%Param3%</tpmCodeTemplateParameter>
28 <tpmCodeTemplateParameter>%Param4%</tpmCodeTemplateParameter>
29 </ope ra t i onSubs t i tu t i on>
30 </dpmOperationMappingRule>

Listing 4.14: Mapping rule for XOCL readCollectionFromTextFile() operation onto JSE platform

Listing 4.14 shows the sophisticated mapping rule for the readCollectionFromTextFile() op-
eration onto JSE platform. The most complicated part in this mapping rule is covered by the
template code in Java with required template parameters, which will be replaced by the concrete
contents in the process of XOCL to Java mapping.

Up to this point, the fundamental syntax and semantics of the XML-based mapping configu-
ration file have been introduced by examples. What is not yet addressed concerns the parsing
of those mapping rules and their internal representation in the mapping rule table. Recall from
the UML metamodel discussed in Section 2.1.2 and the abstract syntax of XOCL addressed in
Section 3.4, the mapping rules are internally represented by their metamodel instances created
in the process of parsing the underlying mapping configuration file. Figure 4.14 shows the class
hierarchy of the metamodel of mapping rules. As aforementioned, the MappingRuleTable is a
hash table, which supports efficient query of mapping rule defined for a single model element.
The MappingRule has a sourceElement and maintains one or many MappingRuleItems, each of
which refers to a target platform element as the mapping result. The diverse concrete map-
ping rule items have their own mapping semantics and stores extra information for smoothing
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the differences between DPM and TPM model elements. The sequence diagram in Figure 4.15
illustrates the process of parsing mapping configuration file and establishing the mapping rule
table.

Fig. 4.14.: The metamodel of mapping rules

The process begins with pressing the menu item or toolbar button for transforming the PIM,
which triggers the execution of the corresponding event handling method defined in the Con-
troller -class. First of all, the existence of a model mapper is checked. If the model mapper is
not installed, the entire optional combined fragment will be executed. This occurs usually for
the first time usage after a fresh bootstrap of MOCCA. Otherwise, the transformPIM() oper-
ation is invoked immediately. The installation of an appropriate model mapper for a special
target platform involves the initialization of the mapping rule table storing mapping rules for
that platform. As shown in Figure 4.15, after instantiating the JSEStandardModelMapper, its
loadMappingRules() method is called to parse the mapping configuration file for JSE platform.
The actual parsing is done by a MappingRuleParser object, which is a DOM XML parser. As an
additional guarantee of establishing mapping rule table, an auxiliary component named XXXS-
tandardMappingRuleInitializer, with XXX a platform indicator like JSE or JEE, will be switched
on to take over the initialization process if the previous parsing failed. The mapping rule initial-
izer fills in the mapping rule table with default mapping rules based on the general knowledge
about the underlying target platform.
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Algorithm 4.7 Fix data type of a typed element
Require: A typed element defined in design model: te
Ensure: The correct data type of te mapped on target platform: tmFinalDT
1: dmType← te.type
2:
3: if dmType is XOCLCollection then
4: dmColl← dmType.rawTypeDecl
5: dmContent← dmType.contentType
6: else if dmType is XOCLHashTable then
7: dmColl← dmType.rawTypeDecl
8: dmHTKey ← dmType.keyType
9: dmContent← dmType.valueType

10: else
11: dmContent← dmType
12: if te is Property ∨ te is Parameter then
13: if te.multiplicity > 1 then
14: dmColl ∈ {Set,OrderedSet,Bag, Sequence} by checking te.isOrdered and te.isUnique

marks as shown in Table 2.1
15: end if
16: end if
17: end if
18:
19: if dmColl 6= null then
20: tmCollDecl, tmCollDef ← this.mappingRuleTable.getTypeSubstitutionTPMType(dmColl)
21: if tmCollDecl = null then
22: tmCollDecl← this.mappingRuleTable.getTypeDeclarationTPMType(dmColl)
23: tmCollDef ← this.mappingRuleTable.getTypeDefinitionTPMType(dmColl)
24: end if
25: init← true
26: end if
27:
28: if dmContent 6= null then
29: if dmContent is data type on design platform then
30: retrieve tmContent from the mapping rule for dmContent
31: else
32: retrieve tmContent from the direct counterpart of the mapping created for dmContent

at the time of model transformation
33: end if
34: end if
35:
36: if dmHTKey 6= null then
37: do similar type mapping as for dmContent
38: end if
39:
40: construct tmFinalDT from compulsory tmContent and optional tmCollDecl, tmCollDef

and tmHTKey
41:
42: if init then
43: pre-process the pair (te, tmFinalDT ) as init-block
44: end if
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The fixDataTypeForTypedElement() operation defined in class JavaBasicModelMapper as shown
in Figure 4.9 on page 91 is strongly dependent on both theMappingsTable andMappingRuleTable.
Algorithm 4.7 exploits the essential working principle of this operation. In lines 20, 22 and 23 of
Algorithm 4.7, the concrete query operations of mapping rule table are listed, whereas in line 30
only pseudo instruction is used for simplicity. Line 32 illustrates that the original data type of
a typed element can be a design class, whose TM-counterpart is recorded in the mapping-object
for that class instead of in mapping rule table.

4.3.5. Traversal of XOCL Abstract Syntax Tree For Behavioral Mapping

In the previous sections, the structural mapping for model elements in the class diagram of a
design model into their counterparts on a target platform has been addressed. In this section, the
behavioral mapping for operation specifications in design model will be discussed. The problem
itself can be traced back to classical compiler design [Aho+08]. Hence, this section concentrates
on concrete source-representation as well as target code issue rather than mathematical issues of
compiler design. Another important objective is to provide a general guide for developing this
back-end component, namely, the XOCL mapper for a concrete target language.

Recall from Section 3.4 and Section 4.2, the means used to model behavior in the context
of MOCCA is XOCL. After model parsing and validation, all the XOCL expressions saved in
opaque behaviors attached to their owning operations have been parsed, type-checked as well
as transformed into their abstract syntax trees rooting in XOCLAST objects, which replace the
original opaque behaviors for the subsequent XOCL to target code mapping. To make discussion
simple and clear, an example is used to review important working principles of model mapper
and moreover, to explore the most significant capabilities required by an XOCL Mapper.

Fig. 4.16.: Design model: a simple design model with operations exposing typical mapping issues for XOCL

1 body : s e l f . programPartners−>s e l e c t ( d e l i v e r e dS e r v i c e s
2 −> f o rA l l ( not po in t s In ) )

Listing 4.15: Design model: XOCL expression specifying the query operation getPartnersHaveNoPointsInServ()
in Figure 4.16

Figure 4.16 shows a simple design model for a payback system, in which only the joint-in pro-
gram partners and their delivered services are modeled. Several operations with self-descriptive
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Fig. 4.17.: Design model: the abstract syntax tree generated for the XOCL expression in Listing 4.15

signatures are also defined in this model. The operation highlighted by a red rectangle returns
all the program partners, whose all delivered services cannot accumulate points. This semantics
can be specified clearly and compactly in an XOCL expression given in Listing 4.15. After model
validation, the exact abstract syntax tree as shown in Figure 4.17 in the form of UML object
diagram is generated. In an AST like this, each node has concrete semantics and stores important
information, such as resulted data type and referred model element. Concrete to this example, the
both association-ends denoted by rectangles with green frame color in Figure 4.16 and used as
callers for select() and forAll() operations in Listing 4.15 are represented in the abstract syntax
tree in Figure 4.17 as AST-nodes named PC2 and PC3, each of which is an OCLPropertyCallExp
and references to the actual property (association-ends in both cases) as well as storing the result
data type by evaluating the property.

After model transformation, in this case, a DM to JSE target model transformation, the JSE-
StandardModelMapper constructs the target model on JSE platform as illustrated in Figure 4.18.
With discussions in the both previous sections in mind, the essential structural mappings can be
summarized as:
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Fig. 4.18.: Target model: the corresponding target model on JSE platform of the design model in Figure 4.16

• the counterparts for each design model element have been generated in target model,

• the associations have been dissolved and represented as normal attributes in target model,
which are denoted with the same green-colored rectangles,

• the counterparts for the typed-elements in design model are defined with types in JSE
target model or target platform model,

• the access-modifiers are fixed and their getters and setters are also generated, which are
not shown in Figure 4.18 to make model clean,

• the counterpart of the start-up operation enhanced by «Main» stereotype in design model
is generated with the required signature by JSE platform.

For behavioral mapping, the JavaStandardXOCLMapper emits Java codes for all the opera-
tions, whose behaviors are modeled in XOCL expressions. As a concrete example, the Java code
corresponds to the XOCL expression in Listing 4.15 is shown in Listing 4.16. Compared to the
XOCL expression, the size of generated Java code is several times larger. However, it is not the
case for structural mapping on JSE platform. Because the design model in Figure 4.16 is not
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strongly decorated by DPM stereotypes addressed in Section 3.3.4, which give model elements
in class diagram more information that lead to sophisticated structural enhancement as e.g.,
depicted in Algrithm 4.5.
1 ArrayList<ProgramPartner> se l e c tResu l t_0= new ArrayList<ProgramPartner >() ;
2 I t e r a t o r <ProgramPartner> itr_0=this . programPartners . i t e r a t o r ( ) ;
3 while ( i tr_0 . hasNext ( ) ) {
4 ProgramPartner itrVar_0= itr_0 . next ( ) ;
5 boolean f o rAl lResu l t_0= true ;
6 I t e r a t o r <Serv ice> itr_1= itrVar_0 . g e tDe l i v e r edS e r v i c e s ( ) . i t e r a t o r ( ) ;
7 while ( i tr_1 . hasNext ( ) ) {
8 Se rv i c e itrVar_1= itr_1 . next ( ) ;
9 f o rAl lResu l t_0= forAl lResu l t_0 && ! itrVar_1 . ge tPo int s In ( ) ;

10 }
11 i f ( forAl lResu l t_0 )
12 s e l e c tResu l t_0 . add ( itrVar_0 ) ;
13 }
14 return s e l e c tResu l t_0 ;

Listing 4.16: Target model: Java code emitted by the JavaStandardXOCLMapper for the XOCL expression in
Listing 4.15

Putting the emitted Java code and the abstract syntax tree in Figure 4.17 together, it is
straightforward to understand that the JavaStandardXOCLMapper (as well as other implemen-
tation language specific XOCL mappers) is a tree walker, which traverses all the nodes in the
underlying abstract syntax tree to generate the final Java code. Such a tree walker can be imple-
mented either in classical recursive method based manner or by using visitor pattern [Gam+95]
[Sch09], which is more object-oriented.

For each non-leaf AST-node, the Java code, which implements the semantics of that node, is
generated by assembling the code pieces submitted by all its sub-nodes. For example, the code
piece this.programPartners on the right hand side of the assignment in line 2 in Listing 4.16 is
generated for the FC2 node by assembling this submitted by traversing PC1 node as the caller
for the "." operator, and programPartners submitted by the PC2 node as the callee for the "."
operator.

The AST-nodes denoted in green background color represent the OCL predefined loop oper-
ation select() and forAll() respectively. As summarized in the second point at the beginning of
Section 4.3.4, the mapping routines of original OCL predefined operations are implemented in
the XOCL mapper knowing about a target language rather than specifying them in mapping
configuration file. The mapping routines are template-based, which are inspired by the idea de-
scribed in [WK03] and can be traced back to the early study in [Lia08]. The Java code templates
installed in the JavaStandardXOCLMapper to map the original OCL select() and forAll() loop
operations are shown in Listing 4.17 and Listing 4.18 respectively.

1 //Java code templa te f o r dmSrcColl −> s e l e c t ( boolExp )
2 tmSrcColl . rawTypeDef<tmSrcColl . contentType> selectResult_autoGenNum = new tmSrcColl .

rawTypeDef<tmSrcColl . contentType >() ;
3 I t e r a t o r <tmSrcColl . contentType> itr_autoGenNum = tmSrcColl . r e s u l tLabe l . i t e r a t o r ( ) ;
4 while ( itr_autoGenNum . hasNext ( ) ) {
5 tmSrcColl . contentType itrVar_autoGenNum = itr_autoGenNum . next ( ) ;
6 eva luate boolExp ;
7

8 i f ( boolExp . r e s u l tLabe l ) {
9 selectResult_autoGenNum . add ( itrVar_autoGenNum)

10 }
11 }

Listing 4.17: Java code template for mapping OCL select() loop operation
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1 //Java code templa te f o r dmSrcColl −> fo rA l l ( boolExp )
2 boolean forAllResult_autoGenNum = true ;
3 I t e r a t o r <tmSrcColl . contentType> itr_autoGenNum = itr_autoGenNum . next ( ) ;
4 while ( itr_autoGenNum . hasNext ( ) ) {
5 tmSrcColl . contentType itrVar_autoGenNum = itr_autoGenNum . next ( ) ;
6 forAllResult_autoGenNum = forAllResult_autoGenNum && boolExp . r e s u l tLabe l ;
7 }

Listing 4.18: Java code template for mapping OCL forAll() loop operation

Comparing the emitted Java code in Listing 4.16 with the both template codes shown above,
it is easy to find that the entire Java code in lines 1 to 13 corresponds to the select()-template
with forAll()-template in lines 5 to 10 in Listing 4.16 embedded in it. This code represents a
typical nested usage of OCL predefined operations, which can also be recognized in the abstract
syntax tree in Figure 4.17, with LP2 node the (indirect) right sub-node of LP1 node.

An identifier denoted as dmSrcColl at Line 1 of the both templates represents the caller for the
both loop operations. As required by XOCL, the dmSrcColl must have a collection type consist-
ing of its raw type and content type. Concrete in this example, the dmSrcColl, on which select() is
called, is the programPartners association-end, whose data type is OrderedSet(ProgramPartner),
whereas the dmSrcColl, on which forAll() is called, is the deliveredServics association-end, whose
data type is OrderedSet(Service). All this information have been filled in the corresponding AST-
nodes by the XOCLParser as illustrated in Figure 4.17. At the time of XOCL to Java mapping,
the JavaStandardXOCLMapper traverses the PC2 node and consults the both mapping rule table
and mapping table to find out that on JSE platform, the raw type of the OrderedSet collection
is mapped to ArrayList<T> raw type, whereas the content type ProgramPartner is mapped to
its counterpart generated by the JSE model mapper in the previous structural mapping. After
traversing PC2 node, the final Java code for the FC2 node can be assembled. The JavaStan-
dardXOCLMapper takes the callee data type, which in this case is ArrayList<ProgramPartner>
submitted by traversing PC2 node, as the final data type.

In the next step of mapping, all this information is passed to the LP1 node, which repre-
sents the select() operation. The ArrayList<T> is used by the tree walker to replace all the
tmSrcColl.rawTypeDef pseudo code in Listing 4.17, whereas ProgramPartner to replace tmSr-
cColl.contentType. Furthermore, the Java code this.programPartners emitted for FC2 node is
used to replace the tmSrcColl.resultLabel pseudo code in line 3 in Listing 4.17. The same process
is also applied to the LP2 node of forAll() operation. After that, the final code can be assembled
for the LP1 node by embedding the Java code generated for LP2 node into the select()-template
in lines 6 and 8 in Listing 4.17. It is worth noting that in line 11 in Listing 4.16 the forAllRe-
sult_0, which is a part of the code for forAll()-operation, is used by the select()-template. This
phenomena indicates that both the code segment itself and the result label, which may participate
in other code assembling, have to be kept and passed up and down by the tree walker.

In Listing 4.16, there are identifies named itr_0 as well as itrVar_0, etc. These identifiers
correspond to the ones with autoGenNum-suffix in the both templates. These identifiers are
generated and maintained by the XOCL mapper automatically with the promise to avoid name
conflict in the case of nested and concatenated invocations of OCL predefined operations.

4.4. Code Generation

Up to this point, a platform independent design model has been mapped onto a concrete target
platform. The transformed internal model is saved as the target model, which contains the
complete structure of the application in the form of the UML metaclass instances of packages,
classifiers as well as their features and behaviors in the form of target language code saved in
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the opaque behaviors attached to the corresponding operations. Hence, the code generation
from target model means traversal of all the model elements in target model for assembling code
piece by piece. Depending on the peculiarities of different target languages, the code generator
components targeted to them may function with slight differences. As shown in Figure 4.19,
the JavaStandardCodeGenerator is used to illustrate the general architecture and to expose the
common functionality of a code generator in MOCCA.

Fig. 4.19.: Architecture of the code generator component for the target language Java

The sole requirement for a code generator class is to implement the ICodeGenerator interface,
which defines the generateCodeFromTM() operation that is the start point for the code generation
process. First thing to do is to create the directory structure for the output. Depending on
concrete target platform, this structure may vary. For Java based projects, the SourcePackage



114 4. The MOCCA Model Compiler

for saving Java source codes, the Resources for storing any resources used by the current project
as well as the Configuration for maintaining deployment related artifacts are generated by the
generateProjectDirectoryLayout() operation in JavaStandardCodeGenerator class. This operation
retrieves the path of the project root directory from the config.proj file and calls the static helper
operation createDirectory() provided in the Utility class to make directory physically.

As the next step, the generatePackage() operation is called with target model as input, which
corresponds to the outermost package of the current project. Within this operation, all the pack-
ageable elements are iterated and for the packageable elements recognized as class or interface,
the generateClassifier() operation is called with that element as input, whereas for the case of
sub-package, the generatePackage() operation is called recursively for that package. Generating
a package means creating another directory in the current directory, which is kept by the code
generator class, whereas generating a classifier means creating a Java source file with .java as
file extension. Again, the physical creation of a Java source file is achieved by calling the static
createFile() utility operation.

Because the minimal code generation unit is a classifier, namely, a class or an interface. Hence,
the final Java code is assembled for a classifier. The code is maintained in the m_JavaSourceCode
property of JavaStandardCodeGenerator and after flushing the code into the Java file for the
current classifier, this property is emptied for the next classifier, whose code will be assembled.
The code assembling process is the string concatenation that involves:

1. package signature, namely, the package statement in Java,

2. package importation, namely, the import statement in Java,

3. the optional annotations,

4. the classifier signature, namely, the class or interface keyword and other possible modifiers,

5. the property definitions,

6. the operation signatures as well as

7. the operation implementations for none-abstract operations.

The first six points listed above belong to the important Java code pieces that must be put
together. Each of them will be generated by an dedicated operation in the JavaStandardCode-
Generator class with self-descriptive name as shown in Figure 4.19. It is worth noting that all
these generator operations give back a string representing the Java code piece to be assembled in
the generateClassifier() operation in correct order. The 7th point in the above list referring to the
operation implementation, which is the most complicated task in the entire model transforma-
tion, has been done in model mapping. In code generation, the target language code representing
an operation implementation is simply attached to the operation signature.

What needs to be clarified is that none of the current code generators is able to fulfill "pretty
printing" for the generated code. However, the ultimate goal of MOCCA is complete application
generation, no round-trip engineering is required to post-edit the generated code to complete
an application. In fact, the generated code can be reviewed in any language-aware text editor
conveniently, which usually supports formatting the code.
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5. Experimental Results

5.1. The Simple Transcript Calculator

5.1.1. Problem Description

A desktop application should be developed, with which the students of the bachelor program
Angewandte Informatik (BAI) (English: Applied Computer Science) of the Freiberg University
of Technology and Mining can calculate the current achievements in their study. The BAI
program consists of a wide spectrum of courses (also called module), which cover both theoretical
foundations and diverse application fields in terms of the applied computer science. All these
modules are documented in [BAI09a] and available online under the given address. To guide
the students to establish their course plans in a reasonable way, correlated modules in terms
of a knowledge unit are organized into module groups, which are documented in [BAI09b] and
online available, too. The module groups are distinguished between compulsory and optional.
To receive the degree from the BAI program, all the compulsory module groups and at least one
of the optional module groups must be finished, and the required credits by that group must
be collected. Credits are assigned to single module directly. If the examination of a module is
passed, the corresponding credits are collected. In this way, the totally required credits can be
collected for a module group that involves many modules.

Figure 5.1 shows the general structure described above. It is worth noting that all the names of
modules and module groups are taken from [BAI09a] and [BAI09b] directly without translating
them into English. For the purpose of test, the names can be considered just as the abstract
symbols that distinguish modules. The first three module groups are compulsory, whereas the
module groups with prefix Anwendungsfach are optional. To keep the representation simple and
clear, neither all the modules belonging to a single module group nor all the optional module
groups are shown in Figure 5.1. The ... symbol is used to ignore them. As the optional module
group Anwendungsfach Geo (Courses that are in terms of the application field geology) indicates
that a module group can be nested. Exactly speaking for Anwendungsfach Geo, it consists of two
sub-module-groups, namely the Pflichtmodule Geo, whose all involved modules must be finished,
and the Wahlpflichtmodule Geo, whose required credits must be collected by finishing enough
modules belonging to it. Hence, the module groups and their involved modules compose a tree
structure as represented in Figure 5.1.

GINF.BA.Nr .13 Grundlagen_der_Informatik 9
DIGISYS1 .BA.Nr .504 Digitale_Systeme_1 6

Listing 5.1: Properties of two modules saved in a plain text file

As a simple test example, it is supposed that all the elementary modules are saved in a
plain text file with each line representing a module. The properties of a module are separated
by the space symbol at a line. Listing 5.1 shows an example for two modules, each of which is
composed of an identifier, a name as well as the assigned credits. To initialize the module groups,
the application itself knows how to group the input modules into module groups by providing
appropriate routine for that task.
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Fig. 5.1.: General structure of the module groups and their contained modules of the BAI program
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5.1.2. The Design Model

With the background information given in the previous section in mind, the design issue of the
simple transcript calculator can be addressed. To reflect the structure illustrated in Figure 5.1,
the Module and ModuleGroup are modeled in the class diagram as shown in Figure 5.2. The
properties of Module class ought to be intuitive. The mark is initialized with 0.0, whereas the
others are read in from external file. The standard constructors of the both classes take the input
parameters to initialize their own state-properties. All the properties of Module are modeled with
public access modifiers and moreover, the id of a Module is constrained by read only, so that only
getter will be generated for id, whereas both getters and setters will be generated for the other
properties.

Fig. 5.2.: Class diagram modeling the structure of the simple transcript calculator in design model
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1 body : s e l f . mark<>0 and s e l f . mark<=4.0

Listing 5.2: XOCL body–expression specifying the query operation Module:: isPassed()

1 body : s e l f . g e tCo l l e c t edCr ed i t s ( ) >= s e l f . r equ i r edCred i t

Listing 5.3: XOCL body–expression specifying the redefined query operation ModuleGroup:: isPassed()

1 body : s e l f . involvedModules−>s e l e c t ( i sPas sed ( ) )−>c o l l e c t ( r equ i r edCred i t )−>sum( )

Listing 5.4: XOCL body–expression specifying the query operation ModuleGroup:: getCollectedCredits()

Listing 5.2 specifies the isPassed() operation defined in Module class, which reflects the rule
to check whether a module is finished, whereas Listing 5.3 implements the rule to check whether
a module group is finished. To check finish of a module group, the credits collected until now
must be known that corresponds to a query, which is specified in Listing 5.4.

1 begin
2 c o l l C r e d i t s : I n t eg e r = s e l f . g e tCo l l e c t edCr ed i t s ( ) ;
3 i f c o l l C r e d i t s = 0
4 then begin
5 update s e l f . mark = 5 . 0 ;
6 end
7 e l s e begin
8 update s e l f . mark = s e l f . involvedModules
9 −>s e l e c t ( i sPas sed ( ) )−>c o l l e c t (mark ∗ r equ i r edCred i t )

10 −>sum( ) / c o l l C r e d i t s ;
11 end
12 end i f
13 end

Listing 5.5: XOCL block–expression specifying the non–query operation ModuleGroup:: calculateMark()

MarkModuleGroup =
MarkModule[1] ∗ CreditModule[1] + ...+MarkModule[n] ∗ CreditModule[n]

CreditModule[1] + ...+ CreditModule[n]
(5.1)

The calculateMark() operation defined in ModuleGroup calculates the current mark for module
group and saved the result in the mark property inherited from the base-class Module. Em-
phasizing "current", because for a none-finished module group, the current average mark will
be calculated based on the weighted average method expressed in Equation 5.1. Because this
operation is non-query, the XOCL block -expression must be used to specify its implementation
logic as given in Listing 5.5. The collect() operation in line 9 returns all the weighted elements
as a collection, on which the sum() operation is called to calculate the numerator in Equation
5.1.

To manage and maintain the application data at a central place, the SimpleTranscriptCalcu-
latorModel class is introduced. Due to the applied «Model» stereotype, this class plays the role
as model in the MVC design pattern. The both composition associations indicate that this class
instantiates both the modules and the module groups. The single property transcriptSummary
records the final report about the current achievement in the BAI study. The private operations
initModules() and initModuleGroups() are called within the standard constructor to initialize
the association-ends allModules and elementaryModuleGroups respectively. To specify the init-
Modules() operation, the static XOCL library operation readCollectionFromTextFile() is called
within an XOCL expression as illustrated in Listing 5.6.
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1 begin
2 update s e l f . a l lModules = InputStream : : readCol lect ionFromTextFi le ( f i leName ) ;
3 end

Listing 5.6: XOCL block–expression specifying the SimpleTranscriptCalculatorModel:: initModules()

After modules have been created, the initModuleGroups() operation classifies them into respec-
tive module groups. It is a selection-based logic depicted as in Listing 5.7. For a simple module
group like Pflichtmodule, an instance is defined for that module group at first (line 2 in Listing
5.7), then its involvedModules property is filled with appropriate modules by selecting them from
the allModules property initialized before (lines 3 to 8 in Listing 5.7). To keep listing clean, not
all the selection criteria are given, the igored criteria are represented with ... symbol. After
filling modules into their owner module group, the fresh constructed module group is recorded
into the elementaryModuleGroup property. For nested module group like Anwendungsfach Geo,
its sub-module-groups are created firstly. Concretely speaking, the sub module group Pflichtm-
dule Anwendungsfach Geo is created in lines 11 to 18 in Listing 5.7 and the Wahlpflichtmdule
Anwendungsfach Geo is created in lines 20 to 29 in Listing 5.7. After that, the owner module
group can be created in lines 31 to 38 in Listing 5.7.

1 begin
2 BAI_PM: ModuleGroup = new ModuleGroup ("BAI_PM" , "Pf l i chtmodule " , 132) ;
3 update BAI_PM. involvedModules
4 = s e l f . a l lModules−>s e l e c t ( id = "GINF.BA.Nr .13" or
5 id = "DIGISYS1 .BA.Nr .504" or
6 . . .
7 id = "BAAINF.BA.Nr .983"
8 ) ;
9 update s e l f . elementaryModuleGroups−>inc lud ing (BAI_PM) ;

10

11 BAI_AF_GEO_PM: ModuleGroup = new ModuleGroup ("BAI_AF_GEO_PM" ,
12 "Pf l i chtmodule Anwendungsfach Geo" ,
13 16) ;
14 update BAI_AF_GEO_PM. involvedModules
15 = s e l f . a l lModules−>s e l e c t ( id = "GGEONEB.BA.Nr .124" or
16 id = "ANWGEO1.BA.Nr .200"
17 ) ;
18 update s e l f . elementaryModuleGroups−>inc lud ing ( BAI_AF_GEO_PM) ;
19

20 BAI_AF_GEO_WPM: ModuleGroup = new ModuleGroup ("BAI_AF_GEO_WPM" ,
21 "Wahlpf l ichtmodule Anwendungsfach Geo" ,
22 18) ;
23 update BAI_AF_GEO_WPM. involvedModules
24 = s e l f . a l lModules−>s e l e c t ( id = "MTTGRUN.BA.Nr .722" or
25 id = "PDGLING.BA.Nr .516" or
26 . . .
27 id = "LGSTFMR.BA.Nr .628"
28 ) ;
29 update s e l f . elementaryModuleGroups−>inc lud ing ( BAI_AF_GEO_WPM) ;
30

31 BAI_AF_GEO: ModuleGroup= new ModuleGroup ("BAI_AF_GEO" ,
32 "Anwendungsfach Geo" ,
33 34) ;
34 update BAI_AF_GEO. involvedModules
35 = s e l f . elementaryModuleGroups−>s e l e c t ( id = "BAI_AF_GEO_PM" or
36 id = "BAI_AF_GEO_WPM"
37 ) ;
38 update s e l f . elementaryModuleGroups−>inc lud ing (BAI_AF_GEO) ;
39

40 . . .
41 end

Listing 5.7: XOCL block–expression specifying the SimpleTranscriptCalculatorModel:: initModuleGroups()
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Up to this point, all the classes concerning the application data structure have been addressed.
As the next step, the GUI and the event handling mechanism of this application will be modeled.
The SimpleTranscriptCalculatorView class represents the main window of this desktop applica-
tion, whose properties are completely defined using the GUI elements provided in the GUI toolkit
of the design platform model (Section 3.3.2). The properties, which have to be accessed from
outside of the class, are defined using public modifiers, otherwise as private properties. Listing 5.8
shows the XOCL expressions declaring the GUI layout for the main window. A GridContainer
is used to manage the both TabbedContainers, which manage the compulsory module groups
and optional module groups respectively. The XOCL expressions in lines 5 to 7 in Listing 5.8
model this structure. Furthermore, the both Buttons and the TextArea for the output are put
into a FlowContainer (lines 13 and 14) and a ScrollContainer (line 17) respectively. The both
containers are positioned into an outer SplitContainer (lines 16 and 18), which lies at the bottom
of the main window (line 21).

1 begin
2 update s e l f . useDefau l tCloseOperat ion = true ;
3 update s e l f . s e t S i z e (1000 , 800) ;
4

5 update s e l f . c en t ra lPane l . se tGr id (2 , 1) ;
6 update s e l f . c en t ra lPane l . addChild ( s e l f . compulsoryModulePanel ) ;
7 update s e l f . c en t ra lPane l . addChild ( s e l f . opt ionalModulePanel ) ;
8

9 update s e l f . southPanel . i sHo r i z on t a l = f a l s e ;
10

11 update s e l f . bnSubmit . t ex t = "Submit " ;
12 update s e l f . bnClear . t ex t = "Clear " ;
13 update s e l f . buttonPanel . addChild ( s e l f . bnSubmit ) ;
14 update s e l f . buttonPanel . addChild ( s e l f . bnClear ) ;
15

16 update s e l f . southPanel . f i r s t P a r t = s e l f . buttonPanel ;
17 update s e l f . s c r o l lPane . viewPort = s e l f . taTranscriptSummary ;
18 update s e l f . southPanel . secondPart = s e l f . s c r o l lPane ;
19

20 update s e l f . workingArea . c en te r = s e l f . c en t ra lPane l ;
21 update s e l f . workingArea . bottom = s e l f . southPanel ;
22 end

Listing 5.8: XOCL expressions specifying the GUI Layout

1 begin
2 update s e l f . model . a l lModules
3 −>i t e r a t e ( itrVar_md |
4 begin
5 textField_md : TextFie ld = s e l f . GUIDataBinding−>get ( itrVar_md

) ;
6 sMark : S t r ing = textField_md . text ;
7 i f sMark <> ""
8 then begin
9 update itrVar_md .mark = sMark ;

10 end
11 end i f
12 end
13 ) ;
14 update s e l f . e s t ab l i s hT r an s c r i p t ( ) ;
15 end

Listing 5.9: XOCL expressions specifying the event handling operation SimpleTranscriptCalculatorController::
bnSubmitClick()
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1 begin
2 update s e l f . model . transcriptSummary = "" ;
3 update s e l f . view . taTranscriptSummary . t ex t ="";
4 update s e l f . model . a l lModules
5 −>i t e r a t e ( itrVar_md |
6 begin
7 update itrVar_md .mark = 0 ;
8 textField_md : TextFie ld = s e l f . GUIDataBinding−>get (

itrVar_md ) ;
9 update textField_md . text = "" ;

10 end
11 ) ;
12 end

Listing 5.10: XOCL expressions specifying the event handling operation SimpleTranscriptCalculatorController::
bnClearClick()

1 begin
2 event : s e l f . view . bnSubmit . c l i c k ~ s e l f . bnSubmitClick ;
3 event : s e l f . view . bnClear . c l i c k ~ s e l f . bnClearCl ick ;
4 end

Listing 5.11: XOCL event–expressions connecting events to their handling operations

1 begin
2 update s e l f . model . elementaryModuleGroups
3 −>i t e r a t e ( itrVar_mg |
4 begin
5 update itrVar_mg . ca lcu lateMark ( ) ;
6 i f itrVar_mg . i sPas sed ( ) then begin
7 update s e l f . model . transcriptSummary
8 = s e l f . model . transcriptSummary . concat ( itrVar_mg . name)
9 . concat (" i s t bestanden . Gesamtnote : ")

10 . concat ( itrVar_mg .mark )
11 . concat ("\n") ;
12 end
13 e l s e begin
14 update s e l f . model . transcriptSummary
15 = s e l f . model . transcriptSummary . concat ( itrVar_mg . name)
16 . concat (" i s t noch n i cht bestanden . Es f e h l t noch : ")
17 . concat ( itrVar_mg . r equ i r edCred i t − itrVar_mg .

g e tCo l l e c t edCred i t s ( ) )
18 . concat (" Leistungspunkte . \ n")
19 . concat (" De r z e i t i g e Durchschn i t t snote : ")
20 . concat ( itrVar_mg .mark ) . concat ("\n") ;
21 end
22 end i f
23 end
24 ) ;
25 update s e l f . view . taTranscriptSummary . t ex t = s e l f . model . transcriptSummary ;
26 end

Listing 5.12: XOCL expressions specifying the non–query operation SimpleTranscriptCalculatorController::
establishTranscript()

As the name suggests and the «Controller» stereotype indicates, the SimpleTranscriptCalcu-
latorController class is the controller according to the MVC pattern, which is equipped with
required event handling methods and provides operation to connect events to their handling
operations (the dynamic subscription process).

The event handling operations are enhanced by the «EventHandler» stereotypes in design
model and specified in Listing 5.9 and Listing 5.10 respectively. In Listing 5.9, the extended
XOCL iterate operation is called on allModules collection, whose semantics is identical to the
generic for-each-loop coming with most modern OOPLs, which processes each collection-element
retrieved by the given iterator -variable, here, the itrVar_md, by running the imperative code
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block within the begin-end -block. In design model (Figure 5.2), a HashTable named GUI-
DataBinding with Module as its Key and TextField as its value is established and maintained.
Hence, in each iteration step, the input text field corresponding to a module is queried and the
input data kept by it is retrieved to update the mark property of a module. After all the marks
are assigned to their modules, the establishTranscript() operation can be called to create the final
report. The XOCL-expressions in Listing 5.10 are similar to those in Listing 5.9, but they reset
the marks for all the modules and clear the text fields corresponding to them.

1 begin
2 index_moduleGroup : In t eg e r = 0 ;
3 whi le index_moduleGroup < s e l f . model . elementaryModuleGroups−>s i z e ( ) begin
4 itrVar_moduleGroup : ModuleGroup = s e l f . model . elementaryModuleGroups−>at (

index_moduleGroup ) ;
5 numOfRows : In t eg e r = itrVar_moduleGroup . involvedModules−>s i z e ( ) ;
6 panel_moduleGroup : GridContainer = new GridContainer ( ) ;
7 update panel_moduleGroup . setGr id (numOfRows , 2) ;
8

9 i f itrVar_moduleGroup . id = "BAI_PM" or itrVar_moduleGroup . id = "BAI_WPM_FG" or
itrVar_moduleGroup . id = "BAI_WPM_AP" then

10 begin
11 update s e l f . view . compulsoryModulePanel . addTab( itrVar_moduleGroup . name ,

panel_moduleGroup ) ;
12 end
13 end i f
14

15 i f itrVar_moduleGroup . id = "BAI_AF_GEO" or itrVar_moduleGroup . id = "BAI_AF_MAT"
then

16 begin
17 update s e l f . view . optionalModulePanel . addTab( itrVar_moduleGroup . name ,

panel_moduleGroup ) ;
18 end
19 end i f
20

21 update s e l f . GUIDataBinding−>put ( itrVar_moduleGroup , panel_moduleGroup ) ;
22

23 index_module : I n t eg e r = 0 ;
24 whi le index_module < itrVar_moduleGroup . involvedModules−>s i z e ( ) begin
25 itrVar_module : Module = itrVar_moduleGroup . involvedModules−>at ( index_module ) ;
26 label_module : Label = new Label ( itrVar_module . name) ;
27 update panel_moduleGroup . addChild ( label_module ) ;
28

29 c t r l : Control = s e l f . GUIDataBinding−>get ( itrVar_module ) ;
30 i f c t r l <> OclVoid then
31 begin
32 update panel_moduleGroup . addChild ( c t r l ) ;
33 end
34 e l s e begin
35 textField_module : TextFie ld = new TextFie ld ( ) ;
36 update textField_module . name = itrVar_module . name ;
37 update panel_moduleGroup . addChild ( textField_module ) ;
38 update s e l f . GUIDataBinding−>put ( itrVar_module , textField_module ) ;
39 end
40 end i f
41

42 update index_module = index_module + 1 ;
43 end
44 endwhi le
45 update index_moduleGroup= index_moduleGroup +1;
46 end
47 endwhi le
48

49 update s e l f . dynamicSubscriptionForEventHandl ing ( ) ;
50 update s e l f . view . v i s i b l e = true ;
51 end

Listing 5.13: XOCL expressions initializing part of the GUI dynamically
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Listing 5.11 models the behavior for the dynamicSubscriptionForEventHandling() operation.
The both XOCL event-expressions connect the events to their handling methods. Listing 5.12
specifies the behavior for the establishTranscript() operation. Despite the length of Listing 5.12,
the routine is a string concatenation within a for-each loop.

Listing 5.8 discussed before only defines the general GUI layout in that two TabbedContainer
are used to manage the both compulsory and optional module groups with each tab in the
respective tabbed container reserved for one module group. The concrete contents are not filled
into the tab with the XOCL expressions in Listing 5.8. The GUI elements will be added to
their owner tab dynamically based on the structure (nested or not) and the number of involved
modules of a single module group. The initView() operation, whose behavior is specified as shown
in Listing 5.13, takes over this responsibility. To understand this operation, it had better turn to
the GUI window in Figure 5.5. For each module group (the outer while-expression in lines 3 to
47 in Listing 5.13), a n× 2-GridContainer is created to manage its modules with n the number
of involved modules (in lines 5 to 7 in Listing 5.13). Naturally, the fresh created GridContainer
must be put into the tab belonging to the correct tabbed container (in lines 9 to 19 in Listing
5.13). For each module (the inner while-expression in lines 24 to 44), a Label (line 26) denotes its
name and a TextField (line 35) takes the input as the mark of that module. Both GUI elements
are organized into the grid container that is created before for the module group, which owns
the current module. The text field for taking input for a module is indexed by that module in a
property named GUIDataBinding, which is a hash table. This information is used to retrieve the
mark from the text field and assign it to the correct module for further calculation. As shown in
Figure 5.5, if the module group is nested, the grid containers representing the inner sub module
groups take the place of the text fields, which appear in the case of non-nested module group.

5.1.3. Transformation Result on the JSE Target Platform

The simple transcript calculator example application is mapped onto Java Standard Edition
target platform as a desktop application. Listing 5.14 shows some JSE-specific configuration op-
tions. All these options are self-descriptive. It is worth noting that the value of compiler.jdkPath
option is used to generate a batch-file as deployment descriptor for JSE application.

1 #
2 #Conf igurat ion For JSE Platform
3 #
4 compi le r . jseModelMapper= compi le r . backEnd . modelMapper . java . j s e . JSEStandardModelMapper
5 compi le r . j seCodeGenerator = compi le r . backEnd . codeGenerator . java .

JavaStandardCodeGenerator
6 compi le r . jseCodeOutputFolder = G:\\ temp\\mocca
7 compi le r . jdkPath = C:\\ Program F i l e s \\Java\\ jdk1 . 7 . 0_10\\ bin

Listing 5.14: MOCCA configuration specific to JSE mapping

Figure 5.3 shows the generated directory structure and Java source files. An additional di-
rectory called SimpleTranscriptCalculator and residing in the SourcePackage directory denotes
the root Java package for the currrent project. As illustrated in Figure 5.4, the generated batch
file contains command line instructions that create a directory for Java class files, call the javac
compiler as well as calling java to start the generated application.
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Fig. 5.3.: The generated directory structure of the simple transcript calculator example

Fig. 5.4.: The generated batch file to compile and deploy the JSE application

Before the batch file is clicked to start the application, the text file recording the module infor-
mation must be saved in the generated Resources directory, which will be copied together with all
its contained files into a deployment directory saving Java binary files. The complete generated
Java source code will not be listed in this work. Because the readers are strongly encouraged to
run MOCCA on the given example model to generate this application by themselves. The same
decision is also made for other test examples.
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Fig. 5.5.: GUI of the generated simple transcript calculator desktop application

However, to show the benefit of modeling behaviors using XOCL, two transformed opera-
tions with their Java implementations are given. Listing 5.15 shows the corresponding Java
implementation of the query operation ModuleGroup::getCollectedCredits(), whose behavior is
modeled by an XOCL body-expression in Listing 5.4. The Java code exposes, to some extent,
the working principle of the JavaStandardXOCLMapper. The XOCL expression in Listing 5.4
is a concatenation of three XOCL collection operations. As discussed in Section 4.3.5, the final
Java code is assembled with the three pieces of Java code emitted by traversing the according
AST-nodes. Hence, the Java code in lines 5 to 12 in Listing 5.15 corresponds the template code
for select()-operation, the code in lines 13 to 17 together with line 4 represents the template
for collect()-operation, and the code in lines 18 to 21 including line 3 embodies the usage of
the sum()-template, respectively. Listing 5.16 shows the Java code generated from the XOCL
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event-expressions in Listing 5.11.

1 public int g e tCo l l e c t edCred i t s ( )
2 {
3 int sumResult_0 = 0 ;
4 ArrayList<Integer> co l l e c tResu l t_0 = new ArrayList<Integer >() ;
5 ArrayList<Module> se l e c tResu l t_0 = new ArrayList<Module>() ;
6 I t e r a t o r <Module> itr_0 = this . getInvolvedModules ( ) . i t e r a t o r ( ) ;
7 while ( i tr_0 . hasNext ( ) ) {
8 Module itrVar_0 = itr_0 . next ( ) ;
9 i f ( itrVar_0 . i sPas sed ( ) ) {

10 s e l e c tResu l t_0 . add ( itrVar_0 ) ;
11 }
12 }
13 I t e r a t o r <Module> itr_1 = se l ec tResu l t_0 . i t e r a t o r ( ) ;
14 while ( i tr_1 . hasNext ( ) ) {
15 Module itrVar_1 = itr_1 . next ( ) ;
16 co l l e c tResu l t_0 . add ( itrVar_1 . getRequi redCred i t ( ) ) ;
17 }
18 I t e r a t o r <Integer> itr_2 = co l l e c tResu l t_0 . i t e r a t o r ( ) ;
19 while ( i tr_2 . hasNext ( ) ) {
20 sumResult_0 += itr_2 . next ( ) ;
21 }
22 return sumResult_0 ;
23 }

Listing 5.15: The generated Java code corresponding to the XOCL body–expression in Listing 5.4

1 private void dynamicSubscriptionForEventHandling ( )
2 {
3 this . view . getBnSubmit ( ) . addAct ionLis tener (
4 new Act ionL i s t ene r ( ) {
5 @Override
6 public void act ionPerformed ( ActionEvent e ) {
7 bnSubmitClick ( e ) ;
8 }}) ;
9

10 this . view . getBnClear ( ) . addAct ionLis tener (
11 new Act ionL i s t ene r ( ) {
12 @Override
13 public void act ionPerformed ( ActionEvent e ) {
14 bnClearCl ick ( e ) ;
15 }}) ;
16 }

Listing 5.16: The generated Java code corresponding to the XOCL event–expressions in Listing 5.11

5.1.4. Evaluation

In this experiment, the design model in Figure 5.2 is mapped on the JSE target platform as a
desktop application. As Figure 5.6 shows, the structural mapping is done in almost a one-to-
one manner. There is one more data type, namely, the GUIDataBinding, created in the design
model for concretizing the parameterized HashTable<K, V>. The GUIDataBinding is mapped
as a property of the controller class due to the composition association between them. In Java
implementation, more methods are generated as getters and setters due to the public properties
in design model. Although from the quantitative perspective, the structure mapping targeted
to JSE platform does not add many artifacts, the design model in Figure 5.2 presents a clear
overview of the underlying structure, which is completely platform independent.

To evaluate the mapping result of behaviors, which are specified by XOCL expressions in
design model, methods defined in two design classes are used. As shown in Figure 5.7, Sim-
pleTranscriptCalculatorController contains non-query operations, whose behaviors can only be
specified by the imperative enhancements of the XOCL. In this case, the XOCL enhancement
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Fig. 5.6.: Evaluation of the structural model and its corresponding source code

Fig. 5.7.: Evaluation of the behavioral specification and its corresponding source code for non-query operations

provides a way, in which non-query semantics can be specified with an OCL-like syntax. As
illustrated here, in most situations, the size of generated Java code should be almost the same
as the used XOCL expressions. As shown in Listing 5.12, whose XOCL expressions specify the
behavior of the establishTranscript() operation, long XOCL expressions are usually split into
several lines to improve the readability, that can lead to the circumstances with larger size of
XOCL expression than the generated Java code. Because the current Java code generator takes
into account little about readability of the generated Java code. As presented in Figure 5.7, if
the XOCL expressions of establishTranscript() are formatted similar to the generated Java code,
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Fig. 5.8.: Evaluation of the behavioral specification and its corresponding source code for query and quasi query
operations

both of them have the identical size. The dynamicSubscriptionForEventsHandling() method is
specified using XOCL event expressions, which condense the information obviously.

As shown in Figure 5.8, the behaviors of the query operation like getCollectedCredit() and the
quasi-query operation like calculateMark(), whose primary logic is specified using XOCL library
operations, can be specified using XOCL expressions efficiently.



5.2. The Simple Payback System 129

5.2. The Simple Payback System

5.2.1. Problem Description

Inspired by the "Royal and Loyal System" example from [WK03], a Simple Payback System
should be developed as an enterprise application, which can handle concurrency management,
persist data into relational database, be accessed by diverse front-end applications, say, web-
applications or desktop applications distributed at any physical locations with Internet access.

Fig. 5.9.: The initial data model of the simple payback system

This payback system is an information system that manages the registered program partners
and customers as well as their transactions. Any company offering services to customers can
register into the payback system as a program partner, whose identification information must be
kept by the system. After registration, a program partner can launch, modify and cancel diverse
services. From the perspective of customers there are services, with which they can obtain bonus
points as well as services, with which they must spend bonus points. Any single person, who
will enjoy the payback service, can register into the payback system as a customer by submitting
necessary identification information. After registration, an account to record the actual bonus
points collected by that customer is created. Arbitrary services can be taken on an account in
the form of transactions, which cause the increasing or decreasing of the bonus points based on
the kind of services taken. Additionally, the bonus points, which can be considered as the virtual
currency within the payback system, can be transferred between two payback accounts.

Based on the description above, the initial data model representing the essential structure of the
payback system can be created as given in Figure 5.9. Naturally, this model is a PIM according
to MDA but not yet a full-fledged design model according to MOCCA. With several refinements,
important properties, operations will be added, certain model elements will be stereotyped with
special semantics, etc. In order to make the resulted design model more readable and concentrate
on exploring essential ideas, only the three classes highlighted by a rectangle with red frame color
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will be refined and shown, other classes just follow the same principle.

5.2.2. The Design Model

The three selected design classes have been refined and completed with necessary information
as shown in Figure 5.10. It is clear that the refined design model is based on the three layer
architecture and the current example concentrates on the business object layer and persistence
layer, which will be deployed on the same application server. Thanks to the layered methodology,
it is up to the GUI- or web-designer to model and conceive a best suited presentation to access
the application logic.
1 body : s e l f . programPartners

Listing 5.17: Behavior of the query operation PaybackSystem:: getAllProgramPartners()

1 body : s e l f . programPartners−>any ( programPartnerID = pID )

Listing 5.18: Behavior of the query operation PaybackSystem:: getProgramPartnerByID()

1 body : s e l f . getAl lProgramPartners ( )
2 −>s e l e c t ( d e l i v e r e dS e r v i c e s
3 −>f o rA l l (not po in t s In ) )

Listing 5.19: Behavior of the query operation PaybackSystem:: getPartnersHaveNoPointsInServ()

1 body : s e l f . programPartners . d e l i v e r e dS e r v i c e s

Listing 5.20: Behavior of the query operation PaybackSystem:: getAllServices()

1 body : s e l f . getProgramPartnerByID (pID) . d e l i v e r e dS e r v i c e s

Listing 5.21: Behavior of the query operation PaybackSystem:: getServicesOfAProgramPartner()

1 body : s e l f . g e tA l l S e r v i c e s ( )−>s e l e c t ( not po in t s In )

Listing 5.22: Behavior of the query operation PaybackSystem:: getAllPointsOutServices()

Stereotyped by the «Application», the PaybackSystem is the kernel of the entire system, which
initializes and coordinates all the other components of the system. In the entire life cycle of
the system, there is only one instance of this class. In a distributed system like this, operations
can be classified in two groups: operations called only locally and operations called by different
actors from remote clients. Other special operations include the start-up operation for the entire
system, the constructors as well as the required setters and getters for the properties of the
classes. In the class PaybackSystem, all the operations stereotyped by «CommonOperation»
are bound to the «CommonRole». As explained in Section 3.3.4, the common role indicates
anonymous system users without registration, and their callable operations are usually general
purpose query operations, which can be specified by XOCL expressions very efficiently. Listing
5.17 to Listing 5.22 show the behaviors of all these common operations. The common operations
are remote callable, but due to their non-writable characteristics, they are able to be invoked
concurrently.

In contrast to the common operations belonging to common role, the «BusinessOperation»
in PaybackSystem-class can be called only by a special system actor declared by «AdminRole».
Listing 5.23 and Listing 5.24 show the behaviors of the both business operations defined for the
admin role. In fact, all these operations (common and business operations) build the CRUD
(Create, Read, Update and Delete) operations that are ubiquitous for information systems. For
a real system, all these operations have to be provided, whereas for a simple demonstration
example like this, the delete operation is omitted.
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Fig. 5.10.: Structural model of the simple payback system in its design model

1 begin
2 p : ProgramPartner = new ProgramPartner (pID , pName , pDesc ) ;
3 update s e l f . createProgramPartner (p) ;
4 end

Listing 5.23: Behavior of the non–query operation PaybackSystem:: createProgramPartner()
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1 begin
2 p : ProgramPartner = s e l f . getProgramPartnerByID (pID) ;
3 update p . programPartnerName = pName ;
4 update p . programPartnerDesc = pDesc ;
5 update s e l f . updateProgramPartner (p) ;
6 end

Listing 5.24: Behavior of the non–query operation PaybackSystem:: updateProgramPartner()

In both remote callable business operations shown above, the actual creation (line 3 in Listing
5.23) and update (line 5 in Listing 5.24) of a program partner are delegated to the respective
local operations, which take the object reference as parameter rather than elementary data as in
remote operations. Such local operations belong to the application class rather than any specific
role and can be considered as some kind of auxiliary or utility operations. Listing 5.25 specifies
the actual creation operation that firstly adds the fresh created program partner into the system
cache and then persists it into the underlying database via the persistence manager, which is
modeled in the persistence layer by using «ModelMapper» stereotype and only accessable by the
business object layer via the property dataMapper as illustrated in Figure 5.10. The similar
behavior is specified for the actual update operation shown in Listing 5.26 with an additional
check that guarantees the corresponding object update in the system cache.

1 begin
2 update s e l f . programPartners−>inc lud ing (pp) ;
3 update s e l f . dataMapper . pers i s tProgramPartner (pp) ;
4 end

Listing 5.25: Behavior of the non–query local operation PaybackSystem:: createProgramPartner()

1 begin
2 i f s e l f . programPartners−>exc ludes (pp)
3 then
4 begin
5 p : ProgramPartner = s e l f . programPartners
6 −>any ( programPartnerID = pp . programPartnerID ) ;
7 update p . programPartnerName = pp . programPartnerName ;
8 update p . programPartnerDesc = pp . programPartnerDesc ;
9 update p . d e l i v e r e dS e r v i c e s = pp . d e l i v e r e dS e r v i c e s ;

10 end
11 endif
12

13 update s e l f . dataMapper . updateProgramPartner (pp) ;
14 end

Listing 5.26: Behavior of the non–query local operation PaybackSystem:: updateProgramPartner()

1 begin
2 update s e l f . programPartners = s e l f . dataMapper . queryAllProgramPartners ( ) ;
3 end

Listing 5.27: Behavior of the system start–up operation PaybackSystem:: initializeApp()

The three data base related operations defined in the PersistenceManager class are self-
descriptive. They are enhanced by the corresponding stereotypes, which have been already
addressed in Section 3.3.4. If the default semantics of these stereotypes are reserved, none addi-
tional behavioral modeling are necessary for these operations.

The entrance operation for the entire system is the initializeApp() in PaybackSystem, which
is enhanced by the «Main» stereotype. Listing 5.27 shows its behavior, which is nothing more
than the setup of the system cache of important data entities. For the current example model,
only the cache for program partners is required.
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The class ProgramPartner represents not only the data entity kept by the system as master data
to identify a program partner, but also a system actor, who can invoke some business operations
to do his job. Recall from Section 3.3.4, the «Persistence» stereotype is used to mark a design
class, whose properties must be stored in external medium. The property marked by the «PK»
stereotype indicates the identifier for a data entity. The «BusinessRole» stereotype enhances a
design class with the semantics of a potential system actor, whose available interactions with
the system are defined by the operations enhanced by the «BusinessOperation» stereotype. The
most business operations of the ProgramPartner class are self-descriptive and moreover, their
behaviors are similar to the ones in PaybackSystem very much. Hence, a complete listing of all
these operations is not that valuable. Furthermore, the «Persistence»-class Service is simple, a
detailed explanation is considered as unnecessary.

5.2.3. Transformation Result on the JEE Target Platform

The simple payback system design model can be mapped onto Java Enterprise Edition target plat-
form as a distributed enterprise application. Figure 5.11 shows the generated package structure
and the EJB source files.

Fig. 5.11.: The generated package structure and the EJB source files on JEE platform
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The complete structure of the generated JEE-application is illustrated in Figure 5.12, which
is in fact the internal target model created by the JEEStandardModelMapper. Each of the
classifiers in Figure 5.12 corresponds to a separate Java source file residing in its owning package.
To obtain better readability, all the generated getters and setters are omitted. Compared to
the platform independent design model in Figure 5.10, the transformed interfaces and classes
conform to the JEE programming paradigm in that the data entities continue to be the entity-
classes according to the JPA specification, whereas the role-based business operations are declared
by the respective remote-interface embodying the behavior of that role and implemented in the
EJB -class implementing that remote interface. Moreover, each layer exposes its defined behaviors
only in the form of Java interfaces, which are represented always in green background color in
Figure 5.12, the loose coupling among layers is achieved. The remote interfaces in business object
layer can be injected into or obtained via JNDI mechanism by diverse front-end applications.

The actual MOCCA compilation flow ends in the phase of code generation for JEE applica-
tions. Thus, a default directory structure identical to the one for JSE is created to save the
generated Java source files. Moreover, none of the diverse deployment descriptors, e.g., the per-
sistence.xml, can be generated by MOCCA. With the future development of platform specific
deployment generator, a sophisticated directory structure, e.g., compatible to Apache Maven tool
as well as the Maven pom.xml file will be generated to deploy JEE applications. For the time
being, the generated Java packages including their source files will be imported into an IDE like
NetBeans [Ora13b] to further compile and deploy the application onto a JEE application server
like GlassFish [Ora13a].

1 @Lock( value = LockType .READ)
2 public List<ProgramPartner> getPartnersHaveNoPointsInServ ( ) {
3 ArrayList<ProgramPartner> se l e c tResu l t_0 = new ArrayList<ProgramPartner >() ;
4 I t e r a t o r <ProgramPartner> itr_0 = this . getAl lProgramPartners ( ) . i t e r a t o r ( ) ;
5 while ( i tr_0 . hasNext ( ) ) {
6 ProgramPartner itrVar_0 = itr_0 . next ( ) ;
7 boolean f o rAl lResu l t_0 = true ;
8 I t e r a t o r <Serv ice> itr_1 = itrVar_0 . g e tDe l i v e r edS e r v i c e s ( ) . i t e r a t o r ( ) ;
9 while ( i tr_1 . hasNext ( ) ) {

10 Se rv i c e itrVar_1 = itr_1 . next ( ) ;
11 f o rAl lResu l t_0 = forAl lResu l t_0 && ! itrVar_1 . ge tPo int s In ( ) ;
12 }
13 i f ( forAl lResu l t_0 ) {
14 s e l e c tResu l t_0 . add ( itrVar_0 ) ;
15 }
16 }
17 return s e l e c tResu l t_0 ;
18 }

Listing 5.28: The generated Java code corresponding to the XOCL expression in Listing 5.19

The result of structural mapping is shown in Figure 5.12. As done for the JSE mapping in
the previous section, three transformed Java methods are chosen to explore the benefit of using
XOCL as action language. Listing 5.28 is the Java code corresponding to the XOCL expression
in Listing 5.19 with nested usages of the select() and forAll() (lines 7 to 12) loop operations. It is
worth noting that this operation is enhanced by the «CommonRole» stereotype in design model
and such a distributed query operation is mapped as a transaction-operation with read -lock based
on the EJB container managed transaction. The Java code in Listing 5.29 corresponds to the
very compact XOCL expression in Listing 5.20, which is interpreted as the shorthand notation of
the collect() loop operation. Because the association-end deliveredServices is a collection again,
a nested while-loop (lines 9 to 12) is generated to flatten the final result collection. The Java
code in Listing 5.30 implements the XOCL block expression in Listing 5.26. The Java code in
lines 4 to 12 in Listing 5.30 corresponds with the invocation of the any() loop operation in line
6 in Listing 5.26. It is obvious that the "compression ratio" of XOCL imperative expressions is
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not as high as achieved for query expressions. However, the mapped target code is at least not
more compact than the XOCL imperative counterparts.
1 @Lock( value=LockType .READ)
2 public List<Serv i ce> g e tA l l S e r v i c e s ( )
3 {
4 ArrayList<Serv i ce> co l l e c tResu l t_0= new ArrayList<Serv i ce >() ;
5 I t e r a t o r <ProgramPartner> itr_0 = this . getProgramPartners ( ) . i t e r a t o r ( ) ;
6 while ( i tr_0 . hasNext ( ) ) {
7 ProgramPartner itrVar_0 = itr_0 . next ( ) ;
8 I t e r a t o r <Serv ice> itr_1 = itrVar_0 . g e tDe l i v e r edS e r v i c e s ( ) . i t e r a t o r ( ) ;
9 while ( i tr_1 . hasNext ( ) ) {

10 Se rv i c e itrVar_1 = itr_1 . next ( ) ;
11 co l l e c tResu l t_0 . add ( itrVar_1 ) ;
12 }
13 }
14 return co l l e c tResu l t_0 ;
15 }

Listing 5.29: The generated Java code corresponding to the XOCL expression in Listing 5.20

1 public void updateProgramPartner ( ProgramPartner pp)
2 {
3 i f ( ! this . getProgramPartners ( ) . conta in s (pp) ) {
4 ProgramPartner anyResult_0 = null ;
5 I t e r a t o r <ProgramPartner> itr_0 = this . getProgramPartners ( ) . i t e r a t o r ( ) ;
6 while ( i tr_0 . hasNext ( ) ) {
7 ProgramPartner itrVar_0 = itr_0 . next ( ) ;
8 i f ( itrVar_0 . getProgramPartnerID ( ) . equa l s (pp . getProgramPartnerID ( ) ) ) {
9 anyResult_0 = itrVar_0 ;

10 break ;
11 }
12 }
13 ProgramPartner p = anyResult_0 ;
14 p . setProgramPartnerName (pp . getProgramPartnerName ( ) ) ;
15 p . setProgramPartnerDesc (pp . getProgramPartnerDesc ( ) ) ;
16 p . s e tDe l i v e r e dS e r v i c e s (pp . g e tDe l i v e r edS e r v i c e s ( ) ) ;
17 }
18 this . dataMapper . updateProgramPartner (pp) ;
19 }

Listing 5.30: The generated Java code corresponding to the XOCL expression in Listing 5.26

The data base related operations can be enhanced by special stereotypes like «DBQuery». A
platform specific model mapper like JEEStandardModelMapper can process them and therefore
generate implementation code with some default semantics automatically. Listing 5.31 shows the
default Java implementation based on the JPA query language (line 5) and other JPA API for a
«DBQuery»-operation. As shown in the listing, the sole required information in such a default
JPA query is the entity type, here is the ProgramPartner, that can be inferred from the return
type of the operation.
1 @Override
2 public List<ProgramPartner> queryAllProgramPartners ( )
3 {
4 List<ProgramPartner> queryResult = null ;
5 St r ing qs = "SELECT␣ identVar ␣FROM␣ProgramPartner␣ identVar " ;
6 try {
7 queryResult = em. createQuery ( qs ) . g e tRe su l tL i s t ( ) ;
8 } catch ( Exception e ) {
9 e . pr intStackTrace ( System . e r r ) ;

10 }
11 return queryResult ;
12 }

Listing 5.31: Generated Java implementation for PersistenceManager:: queryAllProgramPartners()
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5.2.4. Transformation Result on the ABAP Target Platform

As a proof of the MDA philosophy that one PIM can be transformed into different PSMs, the same
Simple Payback System design model can also be mapped onto the SAP NetWeaver Application
Server ABAP target platform. It is not supposed that all the possible readers of this thesis
are familiar to this platform. Hence, a short introduction is given, followed by highlighting the
characteristics of this platform, which affect the working principle of the underlying ABAP model
mapper as well as the code generator.

In short, the SAP NetWeaver is the technology platform, with which a much stronger separation
between technology and application has achieved [KK07]. SAP NetWeaver offers an entire group
of so-called usage types, among which Application Server (AS) can be used to develop and deploy
applications within SAP NetWeaver. The Application Server ABAP (AS ABAP) is the part of
the application server usage type in SAP NetWeaver with which applications can be programmed
in ABAP. There is also Application Server Java (AS Java), which can be considered as SAP’s
implementation of the JEE standard to some extent. ABAP (Advanced Business Application
Programming) is a programming language that was developed by SAP for developing commercial
applications in the SAP environment. In the early days (i.e., the 1970s), ABAP stood for
Allgemeiner Berichts-Aufbereitungs Prozessor (Generic Report Generation Processor). ABAP in
this stage was implemented as a macro assembler under R/2, and as the name implies, was used
exclusively for creating reports [KK07].

With decades of evolution, especially to support the object-oriented paradigm, the latest ABAP
has become a full-fledged object-oriented programming language and is called ABAP Objects.
However, unlike Java and C#, which were designed from beginning on for object orientation,
obsolete non-OO language constructs still remain in the ABAP Objects for downward compatibil-
ity. This decision makes ABAP Objects an overstaffed language with more than 500 statements
[FK08]. The reason for this is that ABAP has more than 200 million lines of production applica-
tion code in use by SAP customers worldwide, and SAP guarantees its customers that this code
will be executable under new versions of the language [KK07]. In this thesis, only the latest and
recommended language constructs will be used to map an application design model.

As discussed in Chapter 4, to map the same PIM onto different target platforms, the according
model mapper must be able to handle the platform-specific details. Before the transformation
result is shown, important language characteristics, which must be handled by the ABAP model
mapper, will be highlighted together with the mapping strategy to deal with these characteristics.

• There are special naming conventions and restrictions for ABAP development objects.

In ABAP, the names of all the development objects like package, class, etc, developed by a SAP
partner must begin with a prefix reserved by SAP for that partner. Otherwise a customer must
use "Y" or "Z" for the first letter in their development objects [KK07]. In this thesis, only local
classes 1 will be generated by the ABAP code generator, which can be indicated by the prefix
"lcl_". Besides the required prefix, other restrictions regarding naming conventions have also to
be held. For example, the name of a class (local and global) is allowed to contain maximal 30
characters, whereas 16 characters are allowed for database tables.

Taking into account these conventions and restrictions, the ABAPBasicModelMapper imple-
mented in this thesis renames a local class by prefixing it with "lcl_" and checks the length of
the class name after renaming against the allowed 30. If longer than 30, the first 27 characters

1An ABAP local class is only visible in the program, in which it is defined, while a global class can be used in
every program of the same AS ABAP. The global classes of an AS ABAP form its class library. Furthermore,
local classes can be defined and implemented in ABAP editor, whereas the definition of global classes can only
be generated with the integrated tool Class Builder by filling the relevant template parameters
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will be preserved and suffixed with an auto-generated number, which avoids possible name con-
flict. The same strategy is applied to all the development objects, which have to be renamed
according to the ABAP naming convention. For example, database tables will be prefixed with
"YDBT_", etc. Moreover, ABAP is not case sensitive. Thus, the ABAP environment does not
make difference between uppercase letters and lowercase letters.

• Methods cannot be overloaded in ABAP Objects.

Method overloading occurs if several methods have the same name but different parameters. In
the design model shown in Figure 5.10 on page 131, two methods with the same name createPro-
gramPartner() but different parameter list are defined in the class PaybackSystem. Method
overloading is very useful in both modeling and implementation. Hence, mainstream OOPLs
like Java and C# support method overloading so well, that overloaded methods in PIM can
be mapped onto such platforms seamlessly. However, ABAP Objects does not allow method
overloading. To overcome this restriction, the ABAPBasicModelMapper maintains a list of the
overloaded methods in a design model class, within which only the first overloaded method pre-
serves its name, the others are suffixed with "OLMn", with n an auto-generated number. If
the original method name contains more than 26 characters, only the first 26 characters will be
used to combine with the 4-digit suffix, such that the allowed 30 characters for naming methods
cannot be exceeded.

• Concrete collection types with explicit name can be defined as local types within a class.

Recall from Listing 4.3 and its according explanation on page 86, a concrete XOCL collection such
as OrderedSet(Service) for defining typed elements in design model can be mapped into Java as
ArrayList<Service> to define local variables, properties or operation parameters. In both XOCL
and Java, a concrete collection type is usually used anonymously. In ABAP Objects, the inter-
nal tables [KK07] [Kel05] [FK08] can be considered as the generic collection types. If they are
specialized with concrete data type that will be collected, the resulted concrete collection types
can be defined as local types with explicit names within the class, whose properties or operation
parameters are defined using these concrete collection types. As an example, a concrete collec-
tion type called ltab_lcl_Service with HASHED TABLE as its raw type and the reference to the
class lcl_Service as its content is defined as a local type by the TYPES statement in line 3 in
Listing 5.32. After definition, the ltab_lcl_Service can be used to define property in line 8 and
to declare return value for an operation as shown in line 5 in Listing 5.32.

1 CLASS lcl_ProgramPartner DEFINITION.
2 PUBLIC SECTION.
3 TYPES l tab_lc l_Serv i c e TYPE HASHED TABLE OF REF TO l c l_Se rv i c e WITH UNIQUE KEY

tab l e_ l in e .
4

5 METHODS getMyServices RETURNING value ( r ) TYPE l tab_lc l_Serv i c e .
6

7 PRIVATE SECTION.
8 DATA de l i v e r e dS e r v i c e s TYPE l tab_lc l_Serv i c e .
9 ENDCLASS.

Listing 5.32: Concrete collection type defined as local type in an ABAP local class.

• The functional methods cannot be used as operands in all situations.

According to ABAP, a functional method is a method that can have any number of input pa-
rameters and only one return value that is passed by value [KK07]. Functional methods are
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intended to be used in operand positions. However, in AS ABAP Release 7.0 2, with which
the generated ABAP code is tested, the functional methods can neither be used as parameter
in another method call, nor as target operand for internal table related statements. To solve
this problem, the ABAPStandardXOCLMapper always generates an intermediate local variable
to save the return value of a functional method for the usage as operand in the both situa-
tions mentioned above. Listing 5.33 shows an example for nested method call. Using functional
methods as operands in other not allowed positions just follows the same principle.

1 //a nested XOCL operat i on c a l l
2 update obj1 . opCal l ( obj2 . nestedOpCall ( ) ) ;
3

4 // compi le r generated ABAP so l u t i o n
5 DATA ld_v i r tua l c a l l e r_0 TYPE returnTypeOfNestedOpCall .
6 l d_v i r tua l c a l l e r_0 = obj2−>nestedOpCall ( ) .
7 obj1−>opCal l ( l d_v i r tua l c a l l e r_0 ) .

Listing 5.33: Mapping strategy for ABAP functional methods used as operands in not allowed positions.

Fig. 5.13.: The transformed internal structure of the Business Object Layer in ABAP Objects

2As of the next release of AS ABAP, the functional methods can be used in almost all operand positions, where
it is useful to do so [KK07].
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• Class definition in ABAP Objects is separated into declaration and implementation part.

Different from Java but similar to C++, each class definition in ABAP Objects consists of a dec-
laration part, which describes all the components of a class, and an implementation part, which
implements the methods declared in a class. This syntax phenomena does not affect ABAP model
mapper but the code generator, which must organize and assemble the transformed ABAP classes
in correct order. In the ABAPBasicCodeGenerator implemented in this thesis, separate strings
are maintained to represent class declaration and implementation respectively.

1 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
2 ∗ CLASS lcl_PaybackSystem DEFINITION
3 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
4 ∗ This ABAP c l a s s was generated by [ Compiler Component ABAPBasicCodeGenerator ]
5 ∗ at 8 : 2 7 : 2 3 on 10 . June 2013 .
6 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
7 CLASS lcl_PaybackSystem DEFINITION .
8 PUBLIC SECTION.
9 TYPES ltab_lcl_ProgramPartner TYPE HASHED TABLE OF REF TO lcl_ProgramPartner WITH

UNIQUE KEY tab l e_ l in e .
10 TYPES l tab_lc l_Serv i c e TYPE HASHED TABLE OF REF TO l c l_Se rv i c e WITH UNIQUE KEY

tab l e_ l in e .
11

12 METHODS i n i t i a l i z eApp .
13

14 METHODS getProgramPartners
15 RETURNING value ( r ) TYPE ltab_lcl_ProgramPartner .
16 METHODS setProgramPartners IMPORTING p_programPartners TYPE

ltab_lcl_ProgramPartner .
17

18 METHODS createProgramPartner IMPORTING pID TYPE YDECHAR pName TYPE YDESTRING
pDesc TYPE YDESTRING.

19

20 METHODS createProgramPartnerOLM1 IMPORTING pp TYPE REF TO lcl_ProgramPartner .
21

22 METHODS updateProgramPartner IMPORTING pID TYPE YDESTRING pName TYPE YDESTRING
pDesc TYPE YDESTRING.

23

24 METHODS updateProgramPartnerOLM2 IMPORTING pp TYPE REF TO lcl_ProgramPartner .
25

26 METHODS getA l lPo in t sOutSe rv i c e s
27 RETURNING value ( r ) TYPE l tab_lc l_Serv i c e .
28

29 METHODS getAl lProgramPartners
30 RETURNING value ( r ) TYPE ltab_lcl_ProgramPartner .
31

32 METHODS ge tA l l S e r v i c e s
33 RETURNING value ( r ) TYPE l tab_lc l_Serv i c e .
34

35 METHODS getPartnersHaveNoPointsInServ
36 RETURNING value ( r ) TYPE ltab_lcl_ProgramPartner .
37

38 METHODS getProgramPartnerByID IMPORTING pID TYPE YDESTRING
39 RETURNING value ( r ) TYPE REF TO lcl_ProgramPartner .
40

41 METHODS getServicesOfAProgramPartner IMPORTING pID TYPE YDESTRING
42 RETURNING value ( r ) TYPE l tab_lc l_Serv i c e .
43

44 PRIVATE SECTION.
45 DATA dataMapper TYPE REF TO lc l_Pers i s tenceManager .
46 DATA programPartners TYPE ltab_lcl_ProgramPartner .
47 ENDCLASS.

Listing 5.34: The complete class declaration in ABAP generated from the design class PaybackSystem

Up to this point, the mapping result of the Business Object Layer of the Simple Payback
System can be examined. Mapping persistence layer involves more complex transformation,
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which will be addressed later in this section. As shown in Figure 5.13, compared to the JEE
structural model in Figure 5.12, there is no much structural change in the transformed ABAP
target model. Because the generated ABAP classes will only be run within AS ABAP, which can
be accessed via SAP GUI [KK07] on remote terminal computers. The classes have been renamed
according to the naming convention discussed above. The renaming mechanism of overloaded
methods have been highlighted by the rectangle with red frame color. Moreover, the generated
getters and setters are omitted. It is to note that in ABAP target model, the generic internal
table have been concretized with necessary information. In this example, two concrete collection
types, namely, the ltab_lcl_ProgramPartner, and ltab_lcl_Service have been generated. The
template parameter OF specifies the type, which should be saved by the current collection. The
ABAP-specific pseudo type table_line is used for non-structured line type (here is the object
reference), which turns the entire line into a key [KK07]. The dependencies stereotyped by
«TYPES» indicate that the corresponding concrete collection types should be defined as local
types in the depending classes as recalled from Listing 5.32.

To make the readers get more familiar with the look-and-feel of ABAP, the complete class dec-
laration for the design class PaybackSystem emitted by the ABAPBasicCodeGenerator is shown
in Listing 5.34. Noting that lines 1 to 6 are ABAP multiline comments, which contain some
self-descriptive information generated by the ABAP code generator.

1 METHOD getPartnersHaveNoPointsInServ .
2 DATA ld_se l e c t r e su l t_0 TYPE ltab_lcl_ProgramPartner .
3 DATA ldr_itrvar_0 TYPE REF TO lcl_ProgramPartner .
4

5 DATA ld_v i r tua l c a l l e r_0 TYPE ltab_lcl_ProgramPartner .
6 l d_v i r tua l c a l l e r_0 = me−>getAl lProgramPartners ( ) .
7

8 LOOP AT ld_v i r tua l c a l l e r_0 INTO ldr_itrvar_0 .
9 DATA ld_ fo r a l l r e s u l t_0 TYPE YDEBOOL.

10 l d_ f o r a l l r e s u l t_0 = 1 .
11 DATA ldr_itrvar_1 TYPE REF TO l c l_Se rv i c e .
12 DATA ld_v i r tua l c a l l e r_1 TYPE l tab_lc l_Serv i c e .
13 l d_v i r tua l c a l l e r_1 = ldr_itrvar_0−>ge tDe l i v e r edS e r v i c e s ( ) .
14

15 LOOP AT ld_v i r tua l c a l l e r_1 INTO ldr_itrvar_1 .
16 DATA ld_v i r tua l c a l l e r_2 TYPE YDEBOOL.
17 l d_v i r tua l c a l l e r_2 = ldr_itrvar_1−>getPo int s In ( ) .
18 IF ld_v i r tua l c a l l e r_2 = 1 .
19 l d_v i r tua l c a l l e r_2 = 0 .
20 ELSE.
21 l d_v i r tua l c a l l e r_2 = 1 .
22 ENDIF.
23 IF ld_v i r tua l c a l l e r_2 = 0 .
24 l d_ f o r a l l r e s u l t_0 = 0 .
25 EXIT .
26 ENDIF.
27 ENDLOOP
28

29 IF l d_ f o r a l l r e s u l t_0 = 1 .
30 INSERT ldr_itrvar_0 INTO TABLE ld_se l e c t r e su l t_0 .
31 ENDIF.
32 ENDLOOP.
33 r = ld_se l e c t r e su l t_0 .
34 ENDMETHOD.

Listing 5.35: The generated ABAP code corresponding to the XOCL expression in Listing 5.19

To explore the benefit of using XOCL as action language, the three methods identical to the
ones chosen for JEE are used to show the generated ABAP code for method implementation.
Listing 5.35 shows the ABAP code corresponding with the XOCL expression in Listing 5.19 with
nested forAll() (lines 9 to 27) loop operation in a select() operation. It is to note that the lines
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5 and 6 as well as lines 12 and 13 correspond with the solution for functional method calls as
operand of LOOP AT -statement (lines 8 and 15), which iterates an internal table.

1 METHOD ge tA l l S e r v i c e s .
2 DATA ld_co l l ec tResu l t_0 TYPE l tab_lc l_Serv i c e .
3 DATA ldr_itrvar_0 TYPE REF TO lcl_ProgramPartner .
4

5 LOOP AT me−>programPartners INTO ldr_itrvar_0 .
6 DATA ldr_itrvar_1 TYPE REF TO l c l_Se rv i c e .
7 DATA ld_v i r tua l c a l l e r_1 TYPE l tab_lc l_Serv i c e .
8 l d_v i r tua l c a l l e r_1 = ldr_itrvar_0−>ge tDe l i v e r edS e r v i c e s ( ) .
9

10 LOOP AT ld_v i r tua l c a l l e r_1 INTO ldr_itrvar_1 .
11 INSERT ldr_itrvar_1 INTO TABLE ld_co l l ec tResu l t_0 .
12 ENDLOOP.
13 ENDLOOP.
14 r = ld_co l l ec tResu l t_0 .
15 ENDMETHOD.

Listing 5.36: The generated ABAP code corresponding to the XOCL expression in Listing 5.20

1 METHOD updateProgramPartnerOLM2 .
2 DATA ld_v i r tua l c a l l e r_1 TYPE YDEBOOL.
3 l d_v i r tua l c a l l e r_1 = 0 .
4 DATA ldr_itrvar_0 TYPE REF TO lcl_ProgramPartner .
5

6 READ TABLE me−>programPartners FROM pp INTO ldr_itrvar_0 .
7 IF ldr_itrvar_0 IS INITIAL .
8 l d_v i r tua l c a l l e r_1 = 1 .
9 ENDIF.

10

11 IF ld_v i r tua l c a l l e r_1 = 1 .
12 DATA p TYPE REF TO lcl_ProgramPartner .
13 DATA ld_anyresult_0 TYPE REF TO lcl_ProgramPartner .
14 DATA ldr_itrvar_1 TYPE REF TO lcl_ProgramPartner .
15

16 LOOP AT me−>programPartners INTO ldr_itrvar_1 .
17 DATA ld_v i r tua l c a l l e r_3 TYPE YDECHAR.
18 l d_v i r tua l c a l l e r_3 = pp−>getProgramPartnerID ( ) .
19 IF ldr_itrvar_1−>getProgramPartnerID ( ) = ld_v i r tua l c a l l e r_3 .
20 ld_anyresult_0 = ldr_itrvar_1 .
21 EXIT .
22 ENDIF.
23 ENDLOOP.
24 p = ld_anyresult_0 .
25

26 DATA ld_v i r tua l c a l l e r_5 TYPE YDESTRING.
27 l d_v i r tua l c a l l e r_5 = pp−>getProgramPartnerName ( ) .
28 p−>setProgramPartnerName ( l d_v i r tua l c a l l e r_5 ) .
29

30 DATA ld_v i r tua l c a l l e r_7 TYPE YDESTRING.
31 l d_v i r tua l c a l l e r_7 = pp−>getProgramPartnerDesc ( ) .
32 p−>setProgramPartnerDesc ( l d_v i r tua l c a l l e r_7 ) .
33

34 DATA ld_v i r tua l c a l l e r_9 TYPE l tab_lc l_Serv i c e .
35 l d_v i r tua l c a l l e r_9 = pp−>ge tDe l i v e r edSe r v i c e s ( ) .
36 p−>se tDe l i v e r e dS e r v i c e s ( l d_v i r tua l c a l l e r_9 ) .
37 ENDIF.
38

39 me−>dataMapper−>updateProgramPartner ( p = pp ) .
40 ENDMETHOD.

Listing 5.37: The generated ABAP code corresponding to the XOCL expression in Listing 5.26

Listing 5.36 shows the generated ABAP code for the shorthand notation of the collect() loop
operation in Listing 5.20. Because the association-end deliveredServices is a collection, a nested
LOOP AT (line 10) is generated to flatten the final result collection. The ABAP code in Listing
5.37 implements the XOCL block expression in Listing 5.26. The ABAP code in lines 2 to 9
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implements the code template of the XOCL excludes() operation, whose core logic are the READ
TABLE -statement and the check agains INITIAL. The ABAP code in lines 13 to 23 in Listing
5.37 corresponds with the invocation of the any() loop operation in line 6 in in Listing 5.26. To
deal with nested method call in ABAP, intermediate variables are generated in lines 26, 30 and
34, respectively.

Fig. 5.14.: The transformed internal structure of the Persistence Layer in ABAP Objects

• There is no ready-to-use O/R mapping component based on the data mapper design pattern
in ABAP

The PersistenceManager class residing in the Persistence layer as shown in Figure 5.10 is dec-
orated with «DataMapper» stereotype. In a design model, it expresses clearly that the objects
of a «Persistence» class should be saved into the underlying data repository via data mapper
components [Fow+02] [Sch09]. In the case of relational database, the corresponding data mapper
usually involves necessary SQL statements for CRUD operations. The PersistenceManager serves
as a facade [Bal05] connecting to the underlying concrete data mappers. For a target platform
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like JEE, an O/R mapping component based on the data mapper design pattern is provided. In
this case, transforming PersistenceManager and its involved methods is straightforward as shown
in Listing 5.31. However, there is no ready-to-use O/R mapping component based on the data
mapper design pattern in ABAP3. As addressed in [Bal05], implementing a general purpose O/R
mapping framework based on data mapper pattern is very complicated. Because this framework
should deal with any type of persistence classes that are not predictable to the framework.

To explore how well a model mapper can interpret the modeling elements with high-level
semantics, such as stereotypes, and extract information from a UML model, the ABAPBasic-
ModelMapper attempts to generate a lightweight O/R mapping framework tailored only to the
persistence classes in the current project from the information provided in the design model. It
is feasible because all the persistence classes are known in a design model and at the time of
transforming them the relationships among persistence class, the database table as counterpart,
as well as the generated data mapper class for that persistence class can be maintained and traced
for further usage. On the other hand, ABAP involves a small number of statements called Open
SQL [KK07], which make the database access and manipulation straightforward and efficient.

1 METHOD i n s e r t .
2 DATA wa TYPE YDBT_Service .
3 DATA fkob j0 TYPE REF TO lcl_ProgramPartner .
4 f kob j0 = p−>getowner ( ) .
5

6 wa−owner = fkobj0−>getprogramPartnerID ( ) .
7 wa−po in t s = p−>getpo in t s ( ) .
8 wa−po in t s In = p−>getpo in t s In ( ) .
9 wa−s e rv i c eDes c = p−>ge t s e rv i c eDe s c ( ) .

10 wa−s e rv i c e ID = p−>ge t s e rv i c e ID ( ) .
11 wa−serviceName = p−>getserviceName ( ) .
12

13 INSERT YDBT_Service FROM wa .
14 ENDMETHOD.

Listing 5.38: The generated ABAP code inserting a Service object into its database table

The generated persistence layer on the ABAP target platform is shown in Figure 5.14. The
both collection types in green background color are the same ones as in Figure 5.13. Classes in
white background color belong to the generated framework. It is easy to understand that for
each persistence class in design model, a data mapper class involving all the necessary CRUD
operations is generated. According to the current strategy, two methods, namely find() and find-
All() are provided as the reading operation. The former brings back one object according to the
id -parameter, whereas the latter queries all the objects and saves them in a collection. For an
association-end such as Service::owner, which is resolved as foreign key relationship, an additional
operation named queryPKsFromFK() will be generated in the corresponding data mapper class.
This operation is suffixed with an auto-generated number to deal with the situation with more
than one foreign key relationship. The keyset collection used by this operation as return value
will also be generated. In this example, it is the ltab_pks. In the current version of ABAP model
mapper, combined foreign key are not supported. As a code snippet of the entire generated data
mapper classes, the insert() method of the lcl_datamapper_Service is given in Listing 5.38. It is
to note that the database table YDBT_Service can be used to define variable in line 2 directly.
Such a variable is usually called working area in ABAP. Furthermore, the Open SQL statement
INSERT in line 13 merges with other ABAP statements seamlessly. As presented in Figure 5.14,
all the CRUD operations of both data mapper classes are underlined that marks them as static

3ABAP Objects provides indeed an O/R mapping framework, called Object Services [KK07]. However, the
Object Services framework is based on the active record design pattern [Fow+02] [Sch09], which is considered
not that flexible as data mapper.
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methods. Hence, the generated data mapper classes provide only access to the respective data
base table without recording any data transfer state. That is why they are connected to the the
facade class, namely, PersistenceManager via usage-dependency.

1 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
2 ∗ CLASS lc l_Pers i s tenceManager DEFINITION
3 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
4 ∗ This ABAP c l a s s was generated by [ Compiler Component ABAPBasicCodeGenerator ]
5 ∗ at 8 : 2 7 : 2 3 on 10 . June 2013 .
6 ∗− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − ∗
7 CLASS lc l_Pers i s tenceManager DEFINITION.
8 PUBLIC SECTION.
9 TYPES: BEGIN OF lstct_k2ProgramPartner ,

10 key TYPE YDECHAR,
11 obj TYPE REF TO lcl_ProgramPartner ,
12 END OF lstct_k2ProgramPartner .
13

14 TYPES: BEGIN OF ls t c t_k2Serv i c e ,
15 key TYPE YDECHAR,
16 obj TYPE REF TO lc l_Serv i c e ,
17 END OF l s t c t_k2Se rv i c e .
18

19 TYPES ltab_identmap_ProgramPartner
20 TYPE HASHED TABLE OF lstct_k2ProgramPartner
21 WITH UNIQUE KEY key .
22

23 TYPES ltab_identmap_Service
24 TYPE HASHED TABLE OF l s t c t_k2Se rv i c e
25 WITH UNIQUE KEY key .
26

27 TYPES ltab_lcl_ProgramPartner
28 TYPE HASHED TABLE OF REF TO lcl_ProgramPartner
29 WITH UNIQUE KEY tab l e_ l in e .
30

31 TYPES l tab_lc l_Serv i c e
32 TYPE HASHED TABLE OF REF TO l c l_Se rv i c e
33 WITH UNIQUE KEY tab l e_ l in e .
34

35 METHODS pers i s tProgramPartner IMPORTING p TYPE REF TO lcl_ProgramPartner .
36

37 METHODS queryAllProgramPartners
38 RETURNING value ( r ) TYPE ltab_lcl_ProgramPartner .
39

40 METHODS updateProgramPartner IMPORTING p TYPE REF TO lcl_ProgramPartner .
41

42 PRIVATE SECTION.
43 DATA identMap_ProgramPartner TYPE ltab_identmap_ProgramPartner .
44 DATA identMap_Service TYPE ltab_identmap_Service .
45 ENDCLASS.

Listing 5.39: The transformed PersistenceManager class in ABAP

[Bal05] summarizes the most essential concepts that a general O/R mapping framework based
on data mapper pattern should implement. One of them concerns a cache, with which re-
dundant database access can be avoided. According to [Fow+02] and [Sch09], this cache can
be implemented based on the identity map design pattern, whose core structure is a key to
object mapping for each object loaded in the previous database access. To support this prin-
ciple, the ABAPBasicModelMapper generates for each persistence class an ABAP local struc-
ture and a hash table based local collection type maintaining this structure respectively. As
shown in Figure 5.14, the local structure lstct_k2ProgramPartner and the local collection type
itab_identmap_ProgramPartner are generated by the model mapper for the persistence class
ProgramPartner in design model. After that the identity map for each persistence class can be
defined as property in the lcl_PersistenceManager class as shown in Figure 5.14. The complete
class declaration generated by the ABAPBasicModelMapper is shown in Listing 5.39.
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5.2.5. Evaluation

In this experiment, the design model in Figure 5.10 on page 131 is mapped onto both JEE target
platform and ABAP target platform. Both target platforms provide high-level services that allow
software development to keep away from low-level cross-cutting concerns and plumbing issues on
the one hand. On the other hand, for such application-server based target platforms, there are
special programming models, which support developing software on them. As the JEE target
model in Figure 5.12 as well as ABAP target model in both Figure 5.13 and 5.14 illustrate, the
respective model mapper fills the gap between the application logic modeled in PIM and the
required programming model on a target platform by creating necessary programming elements.
The quantitative results of the structure mapping done by the respective model mapper are
presented in Figure 5.15. It is clear that the application structure created in design model is
more concise than its corresponding implementation on the both target platforms.

Fig. 5.15.: Evaluation of the structural model and its corresponding source code

To evaluate behavioral mapping, the operations of the design class PaybackSystem are classified
into two groups, namely, the query operations and the non-query operations. As summarized
in Figure 5.16, query operations can be specified using XOCL expressions very efficiently. For
non-query operations, the corresponding Java implementations have almost the identical size to
the XOCL expressions. However, due to the characteristics discussed in Section 5.2.4, the size of
the generated ABAP code remains evidently larger than the XOCL counterpart.
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Fig. 5.16.: Evaluation of the behavioral specification and its corresponding source code for query operations

Fig. 5.17.: Evaluation of the behavioral specification and its corresponding source code for non-query operations
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6. Conclusions

This thesis discussed the platform independent modeling together with the corresponding model
transformation as well as code generation in the context of MDA. The theories and methodologies
developed in this work found their origin in the early research of Dr. Föhlich [Frö07]. In the
presented thesis the software architecture of MOCCA created by Dr. Föhlich has been reworked,
refined and enhanced with new components supporting the methodologies developed in this thesis
to prove that a complete generation of executable application from its PIM created only by using
UML/XOCL is feasible.

One of the most remarkable characteristics of the constructive work done in this thesis is that
both modeling and model transformation are practically realized with our own UML-related tool-
set, which have been developed in diverse in-house research projects and commercial projects in
cooperation with our industrial partner as summarized in Section 2.4. In the following, the over-
all achievements in both modeling and model transformation are concluded and the directions
for future research are discussed.

Platform independent modeling

The UML is a powerful language for preparing models of object-oriented software. Such mod-
els can be used as documentation of existing software for their maintenance, and as source of
new software to develop. In order to create precise models the OCL can be used to formulate
constraints and specify complex query operations for the underlying UML model.

The aim of the MDA technology is the generation of program code for a certain platform based
on a complete UML/OCL model. In order to gain benefit from this innovative technology, it is
necessary to create the basic platform independent model (PIM) concisely, uniformly, completely
and especially with low effort. While preparing such UML/OCL - PIMs, several serious problems
have been recognized and in this thesis, the efficient solutions are proposed and realized to cope
with all these modeling problems.

Similar to developing software in programming languages, certain fundamental modeling ele-
ments such as primitive types, collection types as well as their basic operations are ubiquitous in
creating PIM of any kind of applications. To avoid repeated creating these fundamental build-
ing blocks at the time of modeling, a common modeling library called MOCCA design platform
model (DPM) was conceived and its prototype has been built in the work of Dr. Fröhlich. In
this thesis, the MOCCA DPM has been completely reworked to adopt OCL core data types and
their predefined operations as its foundation. Further more, a novel IO facility has been added
to the DPM, and even a platform independent GUI tool-kit including the most fundamental GUI
elements has been created, too.

With introducing the GUI tool-kit, two accompanying issues were recognized and have been
solved accordingly. One of them concerns describing both structural compositions and visual pa-
rameters of GUI elements. This thesis suggests using a normal UML-class of a window to model
the contained GUI elements as their attributes, whereas the concrete parameter values dealing
with composition relationships among the elements (diverse containers and their contained el-
ements to arrange GUI elements within a window) and the visual properties are manipulated
with a separate software component called Smart GUI-Editor binding to the current GUI win-
dow. The resulted parameter values are represented internally with XOCL expressions, which
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are platform independent as well, and can be modified and edited with relatively low effort,
when the Smart GUI Editor is still in its infancy and not that powerful to deal with all kinds
of visual manipulation of GUI elements. The other issue concerns connecting an event to its
handling operation in a platform independent manner. In the presented thesis the OCL has been
enhanced with a new kind of expression called XOCL-event-expression, which allows to model
the registration of handling methods to the source event in a more compact, well understandable,
and uniform manner independent of any potential target platform. This new approach simplifies
the class diagrams strongly without losing completeness [LS10].

It is clear that the UML class diagram, which is used to model structure of an application in
this thesis, contributes little to compress the structural information of the underlying application,
but only shifts representing application structure from the code into its visual counterpart. To
compress the structural model, or in other words, to enhance the information density in class
diagram without losing application semantics, the UML stereotypes are used to enhance model
elements in class diagram with additional semantics. The stereotypes created in this thesis sup-
port domain specific modeling as well as several well defined design patterns. These stereotypes
are involved in a profile, which has been integrated into the MOCCA DPM.

The last issue in terms of creating complete PIM is about modeling behavior both concisely
and compactly. The proposed solution in the presented thesis is a restricted extension of the
OCL. The expressive, declarative OCL has been upgraded into a full-fledged action language,
which is called XOCL. With XOCL, complex query operation can be specified as usual as with
OCL body-expressions, whereas non-query operations with complex control flows can also be
specified using the extended imperative language constructs.

As the future work to support modeling wider spectrum of application category in a platform
independent manner, the current MOCCA DPM has to be extended with more building blocks,
e.g., to support 2D/3D graphics, to deal with network communication, etc. Even for the OCL-
based primitive and collection types adopted by the current DPM, extensions can be made to
exploit the power of the underlying target platform. For example, the most modern OOPL target
platforms support regular expression based string manipulations, which are very useful in diverse
applications. However, the classical OCL String does not support such functions, which can be
involved in the next version of DPM in the XOCLString.

For the GUI tool-kit, more GUI elements must be adopted and the Smart GUI Editor must be
further developed to support the convenient visual manipulation of GUI elements. Adopting a
new platform independent GUI element into the DPM GUI tool-kit is not that straightforward.
Because such a GUI element represents usually a common abstraction of several different GUI
controls (e.g., JButton in Swing, QButton in Qt as well as Button in WPF) with similar functions
on different target platforms. Things get even more difficult, when within the same language
platform there are different GUI frameworks used for different application domains or even for
the same application domain. Typical examples are Swing/JavaFX [Dea11] for desktop appli-
cations developed in Java, GWT [Goo13]/JSF [Ora11b] for web-applications in the Java world,
and JME/Android API for mobile applications; whereas Windows Form/WPF for desktop ap-
plications running on Windows, ASP.Net [Tro07] for Web-application; Qt for traditional C++
desktop applications, etc. However, with years of evolution, a much clearer trend has emerged
that new GUI technology coming with an OOPL platform appears to streamline the creation of
user interfaces for diverse targets like desktop, web and mobile device [Dea11] [Mac12] [Qt13].
This fact leads to reduce the cross-comparing among GUI elements and ease the abstraction of
GUI elements.

To achieve more compact structural modeling, additional stereotypes can be added to hide
cross-cutting concerns and plumbings. For behavioral modeling, XOCL shows its value as a full-
fledged action language with very efficient expressions to specify query operation and bind events
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with their handling operations on the one hand. On the other hand using XOCL to better and
more compact model imperative application logic remains a challenging research objective.

Model transformation and code generation

Model transformation maps an application-specific design model into functionally equivalent
target models involving target platform specific services and peculiarities. The both kinds of
models are internally stored with the identical meta model implementation to the one of UML 2
Designer, such that the PIM created in UML 2 Designer can be processed by MOCCA seamlessly.
For each potential target platform that can be used to map a design model, the target platform
model (TPM), a model mapper with dedicated interface requirements as well as an XML-based
mapping configuration file defining elementary mapping rules between DPM and TPM modeling
elements have to be provided. The model mapper for a special target platform embodies the best
practices of realizing an application based on the services and architecture of that platform.

The current version of MOCCA supports mapping traditional desktop applications onto the
Java Standard Edition target platform, mapping both the business object layer and the persis-
tence layer of a three-layered business application onto the Java Enterprise Edition and onto
SAP NetWeaver Application Server ABAP target platform with certain constraints and limi-
tation. Further more, the attempt to map MES applications onto the DVDL target platform
[Dör13] is also given and the primary experimental results proving the overall feasibility are
optimistic.

In the subsequent development of MOCCA, corresponding model mappers targeting to more
platforms will be developed, especially for the well-known .Net platform. Moreover, within
the same target platform, more sophisticated model mappers can be added by inheriting basic
or standard model mapper for that platform to reflect state-of-the-art evolution within that
platform. Further more, the XML-based mapping configuration file can also be extended to
support more sophisticated DPM to TPM mappings. The current XOCL mappers for different
target languages implement only the most fundamental features to generate target codes correctly.
There is much room to optimize the generated code as well as to exploit the most current language
extension on certain target platform, like LINQ [Tro07] on .Net platform.

Another serious issue in terms of future development of MOCCA concerns generating deploy-
ment for an application to complete the entire automation process of application development.
To generate deployment, necessary information has to be either involved into the design model
or fed into the potential deployment generator via separate configurations. Such considerations
remain as challenging research topics in the future development.
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A. The XOCL Grammar Rules

In this appendix, all the XOCL grammar rules are given in Backus-Naur Form (BNF), but in
the form required by GOLD Parsing System [Coo13]. As addressed in Section 3.4, XOCL is
developed as the action language to model operation implementation in a platform independent
design model. Based on the study in [Lia08], the sole language construct in the original OCL,
which is appropriate to specify operation behavior is the OCL body-expression. Hence, the
XOCL is defined with all the OCL language constructs in terms of body-expression as well as the
imperative extensions, which make XOCL full-fledged action language. Moreover, the original
OCL let-expression [WK03] [OMG10a] is removed, because its semantics can be replaced by the
extended XOCL language construct for defining local variables.

1. <XOCL> ::= <BodyExpCS> | <BlockExpCS>

2. <BodyExpCS> ::= ’body’ ’:’ <OCLExpCS>

3. <BlockExpCS> ::= ’begin’ <ImperativeExpListCS> ’end’
| ’begin’ ’end’

4. <ImperativeExpListCS> ::= <ImperativeExpListCS> <ImperativeExpCS>
| <ImperativeExpCS>

5. <ImperativeExpCS> ::= <WhileExpCS>
| <IfExpCS>
| <OCLVarDeclarationCS> ’;’
| <EventExpCS> ’;’
| <AssignExpCS> ’;’
| <DestroyObjectExpCS> ’;’
| <ReplyExpCS> ’;’
| <NonQueryFeatureCallExpCS> ’;’

6. <EventExpCS> ::= ’event’ ’:’ <OCLFeatureCallExpCS> ’∼’ <OCLFeatureCallExpCS>

7. <WhileExpCS> ::= ’while’ <OCLExpCS> <BlockExpCS> ’endwhile’

8. <IfExpCS> ::= ’if ’ <OCLExpCS> ’then’ <BlockExpCS> ’endif ’
| ’if ’ <OCLExpCS> ’then’ <BlockExpCS> ’else’ <BlockExpCS> ’endif ’
| ’if ’ <OCLExpCS> ’then’ <OCLExpCS> ’else’ <OCLExpCS> ’endif ’

9. <AssignExpCS> ::= ’update’ <OCLFeatureCallExpCS> ’=’ <OCLExpCS>
| ’update’ <OCLFeatureCallExpCS> ’=’ <CreateObjectExpCS>

10. <NonQueryFeatureCallExpCS> ::= ’update’ <OCLFeatureCallExpCS>
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11. <OCLVarDeclarationCS> ::= ID ’:’ <OCLTypeExpCS> ’=’ <OCLExpCS>
| ID ’:’ <OCLTypeExpCS> ’=’ <CreateObjectExpCS>
| ID ’:’ <OCLTypeExpCS>
| ID

12. <CreateObjectExpCS> ::= ’new’ <OCLFullNameExpCS>

13. <DestroyObjectExpCS> ::= ’delete’ <OCLFeatureCallExpCS>

14. <ReplyExpCS> ::= ’return’ ID

15. <OCLExpCS> ::= <OCLImpliesExpCS>

16. <OCLImpliesExpCS> ::= <OCLImpliesExpCS> ’implies’ <OCLLogicalExpCS>
| <OCLLogicalExpCS>

17. <OCLLogicalExpCS> ::= <OCLLogicalExpCS> ’and’ <OCLComparisonExpCS>
| <OCLLogicalExpCS> ’or’ <OCLComparisonExpCS>
| <OCLLogicalExpCS> ’xor’ <OCLComparisonExpCS>
| <OCLComparisonExpCS>

18. <OCLComparisonExpCS> ::= <OCLComparisonExpCS> ’=’ <OCLAdditiveExpCS>
| <OCLComparisonExpCS> ’=’ ’OclVoid’
| <OCLComparisonExpCS> ’<>’ <OCLAdditiveExpCS>
| <OCLComparisonExpCS> ’<>’ ’OclVoid’
| <OCLComparisonExpCS> ’<=’ <OCLAdditiveExpCS>
| <OCLComparisonExpCS> ’>=’ <OCLAdditiveExpCS>
| <OCLComparisonExpCS> ’<’ <OCLAdditiveExpCS>
| <OCLComparisonExpCS> ’>’ <OCLAdditiveExpCS>
| <OCLAdditiveExpCS>

19.<OCLAdditiveExpCS> ::= <OCLAdditiveExpCS> ’+’ <OCLMultExpCS>
| <OCLAdditiveExpCS> ’-’ <OCLMultExpCS>
| <OCLMultExpCS>

20. <OCLMultExpCS> ::= <OCLMultExpCS> ’*’ <OCLUnaryExpCS>
| <OCLMultExpCS> ’/’ <OCLUnaryExpCS>
| <OCLUnaryExpCS>

21. <OCLUnaryExpCS> ::= ’not’ <OCLPrimitiveExpCS>
| ’-’ <OCLPrimitiveExpCS>
| <OCLPrimitiveExpCS>

22. <OCLPrimitiveExpCS> ::= <OCLLiteralExpCS>
| <OCLFeatureCallExpCS>

23. <OCLFeatureCallExpCS> ::= <OCLFeatureCallExpCS> ’->’ <OCLCollectionOpExpCS>
| <OCLFeatureCallExpCS> ’.’ <OCLFullNameExpCS>
| <OCLFullNameExpCS>
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| ’self ’
| ’(’ <OCLExpCS> ’)’

24. <OCLFullNameExpCS> ::= <OCLFullNameExpCS> ’::’ ID ’(’ <OCLArgumentsExpCS> ’)’
| <OCLFullNameExpCS> ’::’ ID
| ID ’(’ <OCLArgumentsExpCS> ’)’
| ID

25. <OCLCollectionOpExpCS> ::= <OCLNonloopOpExpCS>
| <OCLLoopOpExpCS>
| <OCLIterateExpCS>

26. <OCLNonloopOpExpCS> ::= ID ’(’ <OCLExpCS> ’,’ <OCLExpCS> ’)’
| ID ’(’ <OCLExpCS> ’)’
| ID ’(’ ’)’

27. <OCLLoopOpExpCS> ::= ’forAll’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’exist’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’select’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’any’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’isUnique’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’one’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’reject’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’collect’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’sortedBy’ ’(’ <OCLLoopBodyExpCS> ’)’
| ’collectNested’ ’(’ <OCLLoopBodyExpCS> ’)’

28. <OCLIterateExpCS> ::= ’iterate’ ’(’ <OCLVarDeclarationCS> ’;’ <OCLVarDeclarationCS> ’|’
<OCLExpCS> ’)’
| ’iterate’ ’(’ <OCLVarDeclarationCS> ’|’ <BlockExpCS> ’)’

29. <OCLLoopBodyExpCS> ::= <OCLVarDeclarationCS> ’,’ <OCLVarDeclarationCS> ’|’
<OCLExpCS>
| <OCLVarDeclarationCS> ’|’ <OCLExpCS>
| <OCLExpCS>

30. <OCLArgumentsExpCS> ::= <OCLArgumentsExpCS> ’,’ <OCLExpCS>
| <OCLExpCS>
|

31. <OCLTypeExpCS> ::= <OCLPrimitiveTypeExpCS>
| <CollectionTypeExpCS>
| <OCLFullNameExpCS>

32. <OCLPrimitiveTypeExpCS> ::= ’Integer’
| ’Real’
| ’String’
| ’Boolean’
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33. <CollectionTypeExpCS> ::= ’Set’ ’(’ <OCLTypeExpCS> ’)’
| ’Bag’ ’(’ <OCLTypeExpCS> ’)’
| ’OrderedSet’ ’(’ <OCLTypeExpCS> ’)’
| ’Sequence’ ’(’ <OCLTypeExpCS> ’)’

34. <OCLLiteralExpCS> ::= <OCLPrimitiveLiteralExpCS>
| <OCLCollectionLiteralExpCS>

35. <OCLPrimitiveLiteralExpCS> ::= StringLiteral
| IntegerLiteral
| RealLiteral
| ’true’
| ’false’

36. <OCLCollectionLiteralExpCS> ::= ’Set’ ’{’ <OCLCollInitializerExpCS> ’}’
| ’Bag’ ’{’ <OCLCollInitializerExpCS> ’}’
| ’OrderedSet’ ’{’ <OCLCollInitializerExpCS> ’}’
| ’Sequence’ ’{’ <OCLCollInitializerExpCS> ’}’

37. <OCLCollInitializerExpCS> ::= <OCLCollInitializerExpCS> ’,’ <OCLCollInitPartsCS>
| <OCLCollInitPartsCS>
|

38. <OCLCollInitPartsCS> ::= <OCLPrimitiveLiteralExpCS>
| IntegerLiteral ’..’ IntegerLiteral
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