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1. Introduction

1.1. Background

From the physical point of view hyperbolic equations describe processes in which disturbances
propagate with finite velocity and it also plays a central role in physical modeling in several areas
of science, for instance, in fluid dynamics, electrodynamics, astrophysics, optics, acoustic, theory
of electromagnetic waves. We can list up here physical phenomena which are related with wave
equations, see Graham-Schiesser [G-S09]:

e Acoustic waves in fluids: shock waves in a gases, transmission of waves in liquids, applications
of ultrasound, audible sound, underwater sonar applications, etc., see Elmore [EIm69].

e Chemical waves: concentration variations of chemical species propagating in a system, for
instance, Ross-Muller-Vidal, [Ros88].

e Electromagnetic waves: electricity in various forms, radio waves, light waves in optic fibers,
etc., see A. Shadowitz [ShaT75].

e Gravitational waves: The transmission of variations in a gravitational field in the form of
waves, as predicted by Einstein’s theory of general relativity. Undisputed verification of their
existence is still awaited, see in Chapter 5, Ohanian-Ruffini [Oha94] .

e Seismic waves: Arising from movements in the earth’s crust, passing through the interior
of the earth, studying of various of components of seismic waves from distant earthquakes,
|[Elm69|.

e Traffic flow waves: Small local changes in velocity occurring in high density situations can
result in the propagation of waves and even shocks, see LeVeque [Lev07].

One of a simplified model for a vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3)

is the free wave equation
ug — 2 Au =0, (1.1.1)

where ¢ denotes the speed of propagation and the Laplacian A is taken with respect to the spatial
variables. The d’Alembert’s representation formula is a well-known formula in one space dimension.
Whereas, in two space dimensions we have the Poisson’s formula. For three space dimensions the
explicit representation of solutions was investigated by G. R. Kirchhoff.

One of the methods of studying the Cauchy problem for hyperbolic equations is the energy method.
The wave energy is defined by

1

E.(u)(t) = / (IVult, ) + fuelt, 2)?) da (1.1.2)

for a solution u = u(t, z) of the free wave equation (1.1.1). Physically (in the case n = 3) we have
the following conservation of energy
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Actually, the mathematical model for the free wave equation (1.1.1) is only suitable under ideal
conditions, that is, we idealize the analysis by neglecting the effect of friction, the effect of stiffness,
the effect of gravity, etc. Evidently, the model of elastic waves in many media are not described by
the simple wave equation, but at least they give us some predicable and reasonable mathematical
properties.

1.1.1. L — L? decay estimates for free wave equations

In this thesis we are not only interested in energy estimates but also in LP — L9 decay estimates on
the conjugate line. Let us therefore introduce here various related papers which state results about
LP — L1 decay estimates for the solutions to the following Cauchy problem:

ug — Au =0, u(0,z) = ui(x), w(0,) = uz(z), (1.1.3)

with (t,z) € Ry x R"™, such that the energy solution satisfies the following a priori estimate

_n—1(1_1
100 V)t Mie < 1+ 077 575 (Jnll o + sl ) (110

forn > 2,1 < p <2, (pgq) lying on conjugate line, i.e pg = p+ ¢, and N, is an integer number
satisfies IV, > n(% — %) The first paper we want to mention here is the paper of von Wahl [vWT71],
in that paper he used the explicit representation of solutions in the three-dimensional case. Using
another methods which applied Fourier integral operators and stationary phase, we can see these
estimates in papers of W.Littman [Lit73], R.S. Strichartz [Str70], P. Brenner [Bre75|, and H. Pecher,
[Pec76], to cite only a few.

1.1.2. [” — L7 decay estimates for damped wave equations
We next devote to the Cauchy problem for the damped wave equation
ugp — Au+up = 0, u(0,2) = ug(x), u(0,2) = uz(x), (1.1.5)

with (t,z) € Ry x R"™. In [Mat76, Mat77|, A. Matsumura established better decay estimates by the
aid of the dissipation term on LP — Li-estimates level as follows:

n(l 1 1
1@ Dyutt, Yo < (140767873 (v + sl (116)
p p
for 1 <p <2, (p,q) lying on conjugate line and integer N, > n(% — %)

We will complete this part by pointing readers out that these decay estimates coincide with the
corresponding estimates for the heat equations (see G. Ponce [Pon85]).

1.2. Motivation and some problems of this thesis

The recent papers of J. Wirth, [W06| and [W07a|, are devoted to the study of the Cauchy problem
for the wave equation with time-dependent dissipation

u — Au+ b(t)ur = 0, u(0,z) = u1(z), u(0,2) = ua(z). (1.2.1)

A description of the influence of the coefficient b = b(t) on the qualitative behavior of solutions is
given due to the following classification:
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e Scaltering: If b(t) has a very weak influence, then there is a relation to the free wave equation.
Such relations are described by so-called scattering results.

o Non-effective: If b(t) has a weak influence, then the classical energy decays to 0 and corre-
sponding LP— LY decay estimates are the classical Strichartz decay estimates with an additional
term as a time-dependent coefficient coming from the decay of the energy itself. Such weak
dissipations will be called non-effective.

o FEffective: If b(t) has a stronger influence, then LP — L7 decay estimates are similar to those
ones for the classical damped wave equation but with an additional decay function related to
the dissipation itself. Such dissipations will be called effective.

e Over-damping: If b(t) has a “very strong influence”, then in general we can not expect any
decay estimate of the classical wave type energy.

In both cases, scattering or over-damping, we have in general no energy decay. Roughly speaking,
energy decay only appears for dissipations b(¢)u; with coefficient “between” the conditions b ¢
Li(RY) and 1/b ¢ L1(R") in (1.2.1). But we have to be more precise. This leads to distinguish
between non-effective and effective dissipation. Correspondingly, we only cite here two results from
J. Wirth [WO05|: Assuming the coefficient function b = b(t) is a positive, smooth and monotone
function of ¢, which satisfies .
() b
B0 < o (1)
for all k£ € Ny.

Result 1.2.1. Assume limsup,_, . tb(t) < 1. Then the solution u = u(t,x) of (1.2.1) satisfies the
LP — L9 decay estimate

1 _n=1(1_1
100 Dputt Mus < O+ 077 678 (Junlmons + uallye) — (122)
Jor p € (1,2], q is the corresponding dual index, N, = n(% - %) and \(t) is an auziliary function

which is defined by

() = exp G /O t b(T)dT) .

Result 1.2.2. Assume tb(t) — oo as t — co. Then the solution u = u(t,z) of (1.2.1) satisfies the
LP — L9 decay estimate

tdr _%@_%)_%
@ Dutelu < (14 [ 45 (lalymons + usllygs) — (123)
Jor p € (1,2], q is the corresponding dual indexz and N, = n(% — %)

What about wave models in (1.2.1) without any dissipation? In a series of papers of M. Reissig-
K. Yagdjian-F. Hirosawa (see [R-Y99], [R-Y00a|, [R-YO00b] or [H-W09]) the authors have obtained
results about decay estimates for solutions to the Cauchy problem

ug — a?(t)Au = 0, u(0,z) = u1(z), u(0,z) = us(z). (1.2.4)

Therein a(t) is chosen as a?(t) = A\2(¢)b?(t), where A(¢) is a monotonously increasing function and
b(t) is an oscillating function. In this thesis we shall limit to treat only the case of an increasing
propagation speed and we are not interested in special oscillating parts in the coefficient a(t). We
recall that some results from M. Reissig [Reill| are obtained under the following assumptions to
the coefficient a = a(t):



16 1. Introduction

e (A1) a(t) >0, d'(t) > 0, for t € [0,00),

L4 A = Sa177 ap, ai >07
A(t) — a(t) (t)
" a(t) \?
o (A3) |a"(¥)] < @a(t)(ﬁ ,as >0,
o (Ad)t+ ﬁ is strictly increasing with a positive constant C' and for large t.
a

Here A(t) = 1+ fot a(s)ds is a primitive of a(¢). As an example for this kind of model we can choose
the Anti-de Sitter model of the universe that appears in the Mathematical Cosmology:

uy — €2t Au = 0.
If we inverse the time variable, ¢ — —t, it becomes
uy — e 2tAu = 0.

This equation describes particle in the so-called de Sitter model of the universe. Both of these
examples were introduced in A. Galstian [Gal03].

Our first main goal of the thesis is to combine our knowledge about wave models with time-dependent
speed and without any dissipation with those for wave models with time-dependent dissipation term.
For this reason it seems to be reasonable to devote to the wave model

ug — a(t) Au 4 b(t)uy = 0, u(0,z) = ui(z), u(0,z) = us(z) (1.2.5)

with time-dependent increasing speed of propagation and dissipation. An interesting issue is to
introduce precise descriptions for scattering, non-effective, effective dissipations and over-damping
in model (1.2.5). Such a classification we shall propose in Sections 3.1, 3.2, 3.3 and 3.4, respectively.
In particularly, in the case non-effective and effective dissipations we will derive energy estimates
not only on L? — L? scale but also on LP — L9 scale, in both cases.

Recently, X. Gang and Y. Huicheng, [G-H13], they investigated the global existence and stability
of a smooth supersonic flow with vacuum state at infinity in a 3 — D infinitely long divergent nozzle
of the form

1 20y~ 1)

Ut — (1+1)20-D Au+ 1+¢ ut =0,

for 1 < v < 2. A further topic of interest is the theory for non-linear wave equations which are
demonstrated in the form

ugr — a®(t) Au 4 b(t)ur = f(u, ug, Vo, Vaug, Vau), u(0,z) = uy (x), ug(0,z) = ug(x),  (1.2.6)

with u = u(t, z), time variable ¢ € R and space variable z € R™. Recently, there are several papers
which are devoted to the Cauchy problem for the following non-linear wave equations

ug — a(t)?Au = u? — a(t)?|Vul?, w(0, ) = ui(x), u(0,2) = ua(z). (1.2.7)

In particular, in two papers of K. Yagdjian, [Yag01] and [Yag05], it is explained how the above class
of special semi-linear Cauchy problems can be reduced by Nirenberg’s transformation to a linear
model with constrain condition. The above papers and the paper Ebert and Reissig [E-R11| concern
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with the problem of global existence (in time) for small data solutions to the semi-linear Cauchy
problem
ug — a(t)?Au = u? — a(t)?|Vul?, w(0,z) = ui(z), u (0, 2) = us(x). (1.2.8)

It would be a challenge to apply this approach to the case of non-effective dissipations to the
following semi-linear Cauchy problem

ug — a(t)?Au 4 b(t)uy = u? — a(t)?|Vul?, w(0, ) = ui (x), ue (0, z) = us(x). (1.2.9)

This is done in Section 5.1.
Another interesting application to the case of effective dissipations is the question for global small
data solutions to the following semi-linear model

ug — a(t)?Au 4 b(t)uy = f(u), w(0,2) = ui(z), us(0,2) = ua(z), (1.2.10)

where f(u) ~ |ulP. This is done in Section 5.2. In a recent paper of D’Abbicco and Lucente,
[D-L12], the authors have constructed counter-examples which provide a nonexistence result for
weak solutions to (1.2.10).

Outline of this thesis.  In Chapter 2 we introduce primarily the WKB-analysis, the method of
zones. In particularly, in the second part of this chapter we study very important examples, the
scale-invariant models, by using a lot of techniques from the theory of special functions. Among
other things properties of solutions to the Bessel equation and confluent hypergeometric equation
are used. These examples give us a lot of ideals and some predictions for more general results which
are proved later. The emphasis in Chapter 3 and Chapter 4 is on concentrating a precise description
of classification under the influence of a(t) and b(¢) and their applications to derive LP — L9 decay
estimates. In these chapters some techniques are applied, for example, WKB-analysis, the method
of zones. Besides, we shall also use different micro-energies in different parts of the extended
phase space, the diagonalization procedure, symbol classes and their hierarchies. Theory of Fourier
multipliers or stationary phase method imply the desired a-priori estimates. Afterwards, in Chapter
5 we investigate the global existence of small data solutions of two semi-linear models by applying
directly non-effective and effective results from Chapters 3 and 4. Finally, we introduce in Chapter
6 some further and open problems which are related to the results of the thesis.

1.3. Selected results of this thesis
In order to make our results more understandable here and hereafter we use the notation b(t) =

u(t)j((?)-

1.3.1. L? — ? estimates for linear models

Non-effective dissipation [Theorem 3.2.1]

Let us assume:
(B1) b(t) >0, b¢ L\(R,),

(t
(t)’

=

~—

(B2) |1/ (t)] < Cpup(t)

N
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(B3) limsup,_,. pu(t) < 1.
(B3)” liminf; oo pu(t) > 1.

(C) limsup; o (u(t) + a(t)) < 2, where a(t) is defined by

Result 1.3.1. Let us consider the Cauchy problem (1.2.5) under the assumptions (A1) to (A3),
(B1), (B2), (B3) or (B3)’ and (C). Then we have the following estimates for the energy solution:

10, a()V)ult, )| 2 < C;Zt()t)(llmllm + Juz ).

Here A = \(t) is defined by
¢

/ b(T)dT>. (1.3.1)
0

N | =

A(t) := exp (
Effective dissipation |[Theorem 3.3.14]

We assume:

(B'1) b(t) >0,

k
(®2) [abu(o)] < Cunt) (575 ) for k= 1.2

(B’3) w(t)/A(t) is monotonic and u(t) — oo as t — oo,

(B'4) a?(t)/b(t) = a(t)A(t)/pu(t) ¢ L'(Ry).

Result 1.3.2. Let us assume the conditions (A1) to (A3) and (B’1) to (B’}). Then we have the
following L? — L? estimates:

D=

ta27_ -
I@r a0tz < € Satt) (1+ [ G ar) (ol + el

1.3.2. LP — L9 estimates for linear models

The case of non-effective dissipation [Theorem 4.1.10]

We assume more regularity for a(t) and b(t):

k
mnw\WWMSa@(§8>,k:Lz~w

k
2 W) <o) (G ) k=120
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Result 1.3.3. If the conditions (A1), (A2), (A3)>°, (B1), (B2)>*, (B3) or (B3)  and (C) hold, then
we have the following LP — L1 estimates for the kinetic and the “elastic” energy:
1 _n-i(1_1
10n 6 Putt M, % 55 VAOAO™ T B8 (g + )
with regularity r = n(%J - %), L<p<2, 4Ll =1 andu(),uw(:) € S(R?). Here A(t) =
1+ fg a(t)dr.
The case of effective dissipation [Theorem 4.2.2]

Result 1.3.4. Assume the conditions (B’1) to (B’}). Then for all times t we have the LP — L4
decay estimates

[t .00 Tt )y S a1+ [ b(i))m) B8 sl + o),

1 1 1 1
wherer>n<f—f> with 1 <p<2and —+—-=1.
p q p q

1.3.3. Results for non-linear models

Semi-linear models with non-effective dissipation

We introduce a new assumption which is a modification of assumption (B3) as follows:

(B3) limsup,_,., p(t) < max { limsup,_,,, a(t),1} in the case of space dimension n > 1 and

(B3)” 1 —0a(t) —eog < liminf; o p(t) < limsup, . () < 1 in the case of space dimension n = 1.

Result 1.3.5. Assume a(t) satisfies (A1) to (A3) and b(t) satisfies (B1) to (B3) (n > 1) or (B1)
to (B3)’ (n=1). Then there exists a unique global (in time) classical solution u = u(t,x) to
ug — a(t)?Au 4 b(t)uy = uf — a(t)?|Veul?, u(0,2) = euy(x), u(0,2) = eus(z)

for given ug,u1 € C°(R™),n > 1, and all € € [0,€*) with an in general suitable positive and small

€*.

Semi-linear models with effective dissipation [Theorem 5.2.7]

Result 1.3.6. We assume the Hypotheses (A1) to (A3), (B’1) to (B’5) and (R1). Let us assume
n <4 and

p>p and p>2 if n=1,2,
2<p<3=pen@3) ifn=23, (1.3.2)
p=2=pen(4) if n= 4.

Moreover, if we assume

v(A) (24+ M)n
ag 8 '

Then there erists a constant g > 0 such that data with

A >

(1.3.3)

H(u17 UQ)H.ALI < €0,

imply the existence of a unique solution to (5.2.1) in C([0,00), HY) N C*([0,00), L?). Furthermore,
there exists a constant C > 0 such that this solution satisfies the estimates

lu(t, V2 <C l(u1,u9)lla,, (1+ Ba(0,8) 7%, (1.3.4)
Hvu(tﬂ')HL2 <C H<u17u2)"«41,1<1+Ba(07t)>7%7%ﬂ (1'3'5)
et Nz <O l(ur, u2) a1+ Ba(0,8) 75 a? (1) (b(2) (1.3.6)

Here \, v(\), M, pan and p are introduced in Section 5.2 and in Theorem 5.2.7.
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2. Wave models without any dissipation

2.1. Wave models with strictly increasing speed of propagation

Let us devote to the Cauchy problem
ug — a*(t)Au = 0, u(0,z) = uy(x), u(0,2) = us(x). (2.1.1)
In special cases for a this was done in M. Reissig [Rei97| or A. Galstian [Gal03].

Theorem 2.1.1. Let us consider the Cauchy problem (2.1.1) under the following assumptions to
the coefficient a = a(t) :

(A1) a(t) >0, d'(t) > 0, for t € [0,00),

a(t) _ d(t a(t)
( 2) m t) < alﬁ, ap, a1 > 0,
(A3) ’a//(t)’ < cma(t)(jl(:t))>27 as > 0,

(A4) t+

1s strictly increasing with a positive constant C and for large t.

C
Val(t)

Here A(t) =1+ fo s)ds is a primitive of a(t).
For the kinetic energy we have

Jus(t, )2 < CVa@)(url gy + luzliz2)-

For the “elastic” energy we have
la®)Vu(t, )|z < Cvat)([lurll g + lluzlr2)-

Proof. Applylng partlal Fourier transformation we have i, +a?(t)|£|?@ = 0. Introducing the function
At) = 1+ fo T)dr we denote by t¢ a function of |{| such that A(t¢)|¢| = N with a suitable
constant V. The functlon A(t) is increasing, so t¢ is a decreasing function in |¢]. By the aid of t¢
we divide the extended phase space {(¢,§) € Ry x R?} into two zones, the pseudo-differential zone
Zpa(N) :={(t,€) : A(t)|{] < N} and the hyperbolic zone Zp,,(N) := {(t,£) : A(t)|{| > N}.
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\te Zhyp
o (Al = N)

\
\

Zpa -
(AMlEl < N) L

~

0 N i

Fig. 2.1.: Description for the definition of zones.

Considerations in the pseudo-differential zone

T
Let us define the micro-energy U = (N %@, Dﬂl) . Then the transformed equation can be written

in the form of a system of first order (in Dy)

;%
DU = A(t, &)U, A(t, ) = a

NZ(t)
A(t)a(t)|€]?
(el

(t)

Thus the solution U = U(t,&) can be represented as U(t,§) = E(t,s,&)U(s, &), where E(t,s,§) is
the fundamental solution, that is, the solution to the system

E(t,s,§) = A(t,§)E(t,s,6), E(s,5,§) =1, 0<s <t <t

Denoting by EU¥) the entries of E we get for k = 1,2 the system

a 2
0% paw JrNa(t) ECR. D, pCR — At)a@)IE]” ) EUR (s, 5,€) = 60,
) N ) M )

DER) =
' < Alt)

Integration yields

E(lk)(t,s,g) = 1(411((35))12((58’)) (lk)(ssf + N 7; tEQk (1,8,8)d
EP(t,5,6) = B™(s,5,6)+ 7"5'2/14 )a(r) B9z, 5, €)dr

We are going to prove the following lemma:

Lemma 2.1.2. We have the following estimates for the entries E(kl)(t,O,E) of the fundamental
matriz E(t,0,8):

a(t)
A(t)

(
a(t)
( )t for all t € [0, t¢].

BV (,0,6) + [E®D(1,0,6)] < Cy—5 for all t € [0, 1],

[EU(,0,6)] + B (1,0,6)] < O
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a(s) A(t)
A(s) a(?)

Proof. 1f we introduce y(t,s,&) := ED(t,5,€), then we conclude from the above system

y(t,s,6) =1— y§|2// y(0, s, €)dodr, yts§y<1+// 0)£12|y (0, s, €)|dbdr,

respectively. The desired estimates are basing on the following lemma.

Lemma 2.1.3. Let us assume that a function y = y(t, s,§) satisfies the inequality

yts£<1+// 0)[£12y(0, s, €)|dOdr.

Then the function satisfies the estimate

ly(t, s,£)| < exp / / 0)|¢] dedT)

Proof. By the method of successive approximation it holds

Yk+1(t, 8, <1+ !5\2/ / 0)|yx (0, s,&)|dbdr.

Hence,

0 t prt1 9 9 tog—2  flak—1 9 o
sl <1+ [ [ e [T [T Pttt - drade
kzl S S S S

We will show by induction principle that

9 2 tog—2 plok—1 9 ) 2
/ / 1€]%a”(t2) - / / |€12a® (tog ) dtondtor_1 - - - dtadty < il / / €|7a (t2 dtht1> .

Then the statement of the lemma follows immediately. For &k =1 (¢t = () the statement is clear.
Assume that the statement is true for k = p:

t  pt1 top—2 prtop—1 1 t ot p
// |£|2a2(tz)---/ / |£|2a2(t2p)dt2pdt2p_1~~dt2dt1gp,(// [€Pa(ta)dtadt )

To prove that the statement is valid for K = p 4+ 1 we conclude as follows:

t t1 9 9 top top+1 ) 5
/ / (€[Fa™(t2) - / / €|"a”(tapt2)dtapradtopiy - - - dadty
t t1 1 to ts »
S/ / |‘52“2<t2)p.(/ / [€Pa(t1)dtadts) dtzdts
17742t S 2 rts p
— P! / / di, [/ / a (t4)dt4dt3] (/ / a (t4)dt4dt3> dtodty.

F(t2)

Taking into consideration that F'(t2) > 0 and dy, F'(t2) > 0 we continue to estimate

\€|2p+2 i
/ / d? F(tz) - F(t2)Pdtadty

_ !£I2p+2/ (4, F(t2) - Fta) :_/ A, F(t2) - di, F(12)7

pl s s

e

e / dy, F(t1) - F(t)Pdt

p:

e 1 1 t ot (p+1)
g“p! SO = o €Pa(t2)dtadn)
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This we wanted to prove. O

Applying this lemma to

ly ts§|<1—|—// 0)|£12|y(6, s, €)|dAdr,

where

a(s) @ (11)
A(s) a(t) (t5,),

ly(t,s,€)| < exp (/t /ST a2(0)]§\2d0dr>.

Now we shall estimate the right-hand side. By using the assumptions for the coefficient a = a(t)
and the definition of the pseudo-differential zone it holds

/ / @)l dodr < C / / (0)\¢[2dodr < Cnle] / / 0)dodr

_cha/ )~ a d¢<cN|§r/ r)dr < Culé|A(t) < Cx.

y(t,s,&) =

it follows

So we may conclude that

‘E(ll)(tv 375)‘ < C—=

Now we consider )
B (15,6 = 58 [ Am)a(r) B0, 5,600r

By using the estimate for [E(1 (¢, s, €)| we have

| 21 ( ) 7§ ‘ < ‘€|2/ A ’E(ll (7' S, )’dT < C‘€|2/ A CL(T) A(s)dT

t e o(s)
:c|5jé§ )/s a(r)2dr < |5|2A) d(1)A(7)dr <c|‘5|2A 8)/ d/(7)
= ClEEADAL) () — o) < OPADAC) <t>=cj((?) o 16\2 2() ONQZ(?) 20,
On this way we obtained [E2D(t, s, )| < cj((?)‘;l((j)).

Next we consider the system

(’ ’é- / E(22
B, s,6) =1+ UL ’5‘2 S [ 41802 s, 10

Then we get

a t (3 2
EW(t, 5, ¢) =i A((?)/ (1+‘]§[|/ A(0)a(0)E (12>(9,s,5)d0)dT

NA((’?) (t—s) —’;g|2/ / A(6)a(6)E1D(0, 5, €)dbdr.
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As in the previous steps we estimate as follows:

B000,5,91 < N5+ 201 [ [T a0)a@)1E020, .0t
B Foirvo
<1+|g|2// Q‘a(HNGE(u ,,f‘d@dT

A(t)

So, we see that after setting y(¢,s,§) = E(12) (t,s,€) we are able to apply Lemma 2.1.3. In

a(t)Nt

the same way as we did it for EM (¢, s, €) it follows immediately
A(t)

a(t)Nt

In a similar way we also get

BU(t,5,6)] < O thus [E0(t,5,€)] < O {0t

|EPD (8, 5,6)] < C’Nj((?)t.

This completes the proof. ]
Now let us come back to

U(t, &) = E(t,0,6)U(0,&) for all 0 < t < te. (2.1.2)

Because of a(t)[¢]|u(t,&)| < N t) |a(t,€)] in Zpq(N) from (2.1.2) and Lemma 2.1.2 the following
statement can be concluded:

Corollary 2.1.4. We have in the pseudo-differential zone Zyq(N) the following estimates for all
0<t<te:

: a(t) a(t)

a)lell(t, )] < Cx Garl(0, )]+ On GastiDea(0, ),
: a(t) at)

i, €)| < O s li(0, €)1+ O st Dei(0. ).

Considerations in the hyperbolic zone

Here we use the hyperbolic micro-energy U = (a(t)|¢|4, Dy0)”. Then U satisfies

Dqa a
DU = A(t, &)U = ( a(Eﬂ (’2'5‘ )U. (2.1.3)

Let us carry out the first step of diagonalization. For this reason we set

(1 ! ST ) — g1
M—<1 1>,M —2<_11>, and UV = M~ "U.

So DU = D(t, &)U R(t)UO, where
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and
Dta Dta
1 v _ T
RO=3| Bu o
a a

Let Fy(t) be the diagonal part of R(t). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

Ry : %/
0 i—2t——
NO — R TT—T2 | — , da(t)[¢] ., Ny=I1+NO,
21 0 - 0
s Ha(le]
a 2 a 2
Because of ( a ) ~< A ) < € we can choose a sufficiently large N such that the
sa()e]) "\damigl) SN ©
a 2
determinant of Nj is det N7 = 1_(40,(;)\5]) > % Hence, the matrix V7 is invertible. Set
@,
BY = D,NY — (R — Fp)NW = 8‘1(% | ‘t‘;ﬁ;g‘ﬂ and Ry (t, &) = —N7 ' BW (¢, ¢).
) a a
"da(t)lg]  Ba(t)l¢]

To understand our strategy let us define the following classes of symbols with limited smoothness
with respect to ¢ (mg > 0):

Definition 2.1.1. The time-dependent function c(t,&) belongs to the symbol class
Si{m1, ma, ms} with restricted smoothness l, if it satisfies the following estimates:

a(t) \ms+tk
)

for all a and k < l}.

Sifma, ma, ms} = {e(t,€) : |Dg Dfe(t, )] < Cogle]™ a(t)" in Zyyp(V)

Lemma 2.1.5. The family of symbol classes Sj{m1, ma, m3} generates a hierarchy of symbol classes
having the following properties:

o Si{m1,ma, ms} is a vector space.

o Si{mi,ma, m3}Si{m},m5, m4} C Si{mi1 +ml, ma + mh, ms + m4}.
o Dy DgSi{my, mg, mz} C Si_p{m1 — |, ma, mz + k}.

e So{—-1,-1,2} C L?L%(Zhyp(N)).

Proof. We only verify the fourth property. If a(t,§) € So{—1, —1,2}, then

() 1
/tg alr, §)ldr < / CmA%dT Atole ~ N

due to the definition of the hyperbolic zone. O
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D
Using the above introduced symbol classes and the assumptions for a = a(t) we have 0 ¢

51{0,0,1}, BM Ry € So{—1,—1,2}. Moreover, we conclude ¢
(D — D(t,€) — R(t))N1(t, ) ULV (t,€) = Ni(t,€)(Dy — D(t,€) — Fy(t) — Ra(t,€))UD (2, €).

Hence, we can find the solution U©) (¢, &) =: Ny (¢, )UM (¢, &), where UM (¢, €) is the solution to the
system

(Dt — D(t,€) — Fo(t) — Ri(t,€))V(t,€) = 0.

We can write UM (t,€) = By (t, te, UMD (L, €), where E(t, s,€) is the fundamental solution, that is,
the solution of the system

DtEl(t,S,f) = (Dt - D(t7£) - FU(t) - Rl(t>£))E1(t>5a£)v El(s,s,ﬁ) = Ia t>s2> tf

The solution Ey = Ey(t, s,&) of the “principal part” (concerning the hierarchy of symbol classes)
fulfils

DiEy(t,s,€) = (D(t,€) + Fo(t))Eo(t,S,é), EO(S737§) =I,t>s> Le.

Bolt,s,€) = Y1 ( exp( [ ia()léldr) 0 ) .

a(s) 0 exp< — fst ia(7’)|§\d7)

Thus

Let us set

Ra(t,s,&) = Eo(t,s,&) "Ri(t, &) Eo(t, s, €),
te—1

00 t t1
Q(tvsaé) :I+Zlk/ RQ(tl,S,f) RQ(t%Saé)”' RQ(tkas,g)dtkdthtl
=1 S s

s

Then Q(t, s, &) solves the Cauchy problem

DiQ(t,s,€) = Ra(t,5,§)Q(t,5,8), Qs,s,8) =1, t ==l

The fundamental solution E1 = Ej(t, s, ) is representable in the form Fy (¢, s,§) = Eo(t, s,£)Q(t, s,§).
Analogous to the statement of Lemma 2.1.3 we are able to show the following estimate for Q(¢, s, £):

1Q(t, 5,6)| < exp / e §)|d7) <exp<|§|( -1 ) ) < Cy.

A(T)

Here we use the fourth statement of Lemma 2.1.5 and Rl € So{ 1 —1,2}. The backward trans-
formation yields U(t,€) = MNy(t,€) Eo(t, s,£)Q(t, s, )Ny ' (5,€)M U (s, £),

(08 B e

Corollary 2.1.6. We have in the hyperbolic zone Zp,,(N) the estimate

() =i skt )

for all t > t,.
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Conclusion

From the statements of Corollaries 2.1.4 and 2.1.6 we derive the statement of our theorem.

1.case: {|{| > N}
Then the statement of Corollary 2.1.6 implies immediately

(“Daie” ) =evam|( 5568 )
s igo\' < N}

Then the statements of Corollaries 2.1.6 and 2.1.4 give immediately

awmwﬁﬁﬂSC¢$%QWQHW%£N+wm%£m
< ol (Y a0, + Y i piaco. o).

This inequality together with assumption (A4) implies

a®) €lla(t, &) < CV/al)(1(0, €)] + | Di(0, €)]) for all ¢ > te.
The statements of Corollary 2.1.4 and assumption (A4) yield

a®)€lla(t, &) < CV/alD(1(0, &)] + | Dri(0, €)]) for all ¢ < te.
Summarizing both cases we have shown

a(Olella(t. O] < OV/a(t) (a(0.6)] + D0, €)]) for all (1,) € {t > 0} x B
In the same way we prove
|Dyii(t,€)| < Cv/a(t)(1a(0,€)| + | Dya(0,€)|) for all (¢,€) € {t > 0} x R.

This completes the proof to Theorem 2.1.1. O

Some examples

Typical examples for possible increasing speeds a = a(t) are

a(t) = (141, a(t) =€, a(t) = (M)t = ¢

Ezample 2.1.1. If we choose a(t) = (1 4 t)!, then all assumptions (A1) to (A4) are satisfied. The
solutions to the Cauchy problem for uy — (14 t)2Au = 0 satisfy the following energy estimates:

For the kinetic energy we have
1
[ur(t, )z < O+ )2 ([[urll g + [Juz]|22)-

For the “elastic” energy we have

i
(1 +6)'Vu(t, )2 < OO+ )2 (Jur ]l g + [luzll2)-
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Ezample 2.1.2. Tf we choose for example a(t) = e, then all assumptions (A1) to (A4) are satisfied.
The solutions to the Cauchy problem for uy — e?*Au = 0 satisfy the following energy estimates:

For the kinetic energy we have
1
lue(t, M2 < Cez*(Jluall g + Juzlz2).
For the “elastic” energy we have
1
le"Vu(t, )iz < Ce2*(Jluallm + Jluzllz2).

Ezample 2.1.3. If we choose for example a(t) = (el™)!, then all assumptions (A1) to (A4) are
satisfied. The solutions to the Cauchy problem for wu — (e[”])QtAu = 0 satisfy the following energy
estimates:

For the kinetic energy we have
1
e (¢, )2 < C ™)z (lun || + Juzllz2)-
For the “elastic” energy we have

[l u(t, )2 < Clel™)2 (| + Juzllz2)-

2.2. Critical cases of damped wave models

2.2.1. Some model cases
Increasing speed of potential order
Let us study

a(l+1)
(1+1)

We introduce the energy of the solution in L?:

Ut — (]. + t)QZAU +

ur =0, u(0,z) =ui(x), u(0,z) = uaz(z). (2.2.1)

1

B(u)(t) = 3 /]R (\ut(t,x)F Fl(1+ t)qu(t,x)|2>dx.

We will look for the behavior of the solution u(t,-) and the energy E(u)(t) as t tends to infinity.

First we reduce (2.2.1) by special functions to the Bessel equation. Applying the partial Fourier

transformation with respect to x to (2.2.1) we obtain

a(l+1)
1+41¢

e+ (1+ D |ePa + =0, @(0,€) = @ (€), w(0,€) = a(€): (22.2)

. (1+¢)H! l o
Setting 7 = €| = K (t,€), and p:=a+ —— > 0 then we conclude for @ = a(7)
141 [+1
e+ Lt +a=0.
T
. . N . 1—p 1
We will look for a solution in the form a(7) = 7Pw(7). Choosing p = —5 P <5, wecome to the

Bessel differential equation
T2 wer + Twr 4 (72 — pH)w = 0.
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This equation has two fundamental solutions
wy(T) = TpH;t(T).
So the general solution of (2.2.1) is
a(t,§) = C1(§w+(t,§) + Ca(§w—(t,E).
Here H;r and H, denote the Hankel functions. The solution to (2.2.1) can be represented by

a(t, &) = Vi(t, §)a1(§) + Va(t, §)uz(8).

Introducing ”
H;(\ﬂ ) 6(u-+w+\a
Iz +
\I/k,P,(S(t’g) = ‘ﬂk l[gyl 8 (1 _i;il—l&—l‘ﬂ
m(n) W ()
PNL+1 pto I+1
we have
W) = o (1 Wy, (1,6)
12, a0+ 1,p—1,1(%, &),
_ p(1+1)
VQ(ta é-) 4(l + 1) (1 + t) \IIO,p,O(tu ‘5)7
T
Vl,t(tv f) = 4(l + 1) (1 + t)l+p(l+1)\1/2,p—1,0(t7 ‘5)7
_o__im I4p(l+1)
‘/é,t(tv 5) 4([ + 1) (1 + t) v Lp,*l(t’ 5)

We will use the following properties of the Hankel functions to estimate Vj(t,£) and Vj(t,&):
e For 7 > N (N is a large constant): |H35(7')| < C|7"_%.

7 lel when p # 0,

efor0<r7<c<l: |H;§t(7')|§{ —logT when p=0.

e For an integral value n the Weber function Y,,(7) satisfies
2
Yo(r) = ;Jn(T) log T + An (1),

where 7" A,,(7) is entire and A, (0) # 0. We also have J_, (1) = (=1)"J, (7).
e The function A, (1) = 77"J,(7) is entire in v and 7, furthermore A, (0) # 0.

We divide the extended phase space into three zones:

o Zy={l¢]:|¢| = N} |
|Wjop s (£, )] < I (1 + )20,

o Zo={¢]: [¢] < N < K(t,6)}:

(1+1) 20D if k—[p| > 3,
Wips(t < +00DED g <L o,
(1+¢) kD logle+1t) ifk <L, p=0,
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o Zy—{l¢]: K(1.€) < NY:
In the above relations for Vi(t,§), Va(t,§), Vi(t,§), Va,i(t, ) we have § as an integer 0, £1, so
p and p + ¢ have the same integral property.

Let us assume that p and p+ § are no integers.

To evaluate the Hankel functions we write Hpi(T) = Jo(1) £iY,(7). Then Wy ,5(t,&) =
YP(K(Oa 5)) Yp+5(K(t7 5))
the Bessel functions of the first kind

. For non-integer p the Weber function is determined by

Jp(7) cos(pm) — J_p(7) .

Yolr) = sin(pm)

So the determinant can be substituted by

C(Jp(K(0,8)) T (pr5) (K (2, ) = J-p(K(0,8)) T py5(K (£, €))-
Noting that J,(7) < C1” we arrive at
Thps(t,€)] < CUL+1)THEN (1 4+ ) DR L C((1 4 )1 (1 4 1) DR,
In our case it holds k > |],0 € {0, £1}. Then we have in Z3 the estimate
|Uhps(t, )] < C(1+ ) IA=RERD,

Let us assume that p is an integer.

We use the third property to get

Wi (1,6) = = e log((1+ 0 )T, (K(0,€)) s (K (1,)
+22|€‘k Jp(K(Oag)) Jp+5(K(t7§))
A (0,8) Aps(K(1,) |

For the first part we will sometimes use J_, instead of J, and J_,,4) instead of J,15. Using
the fourth property we have that this term can be estimated by

C(1 + t)HFDVEIRI=R) 00 (e 4 1),
The determinant in the second term can be estimated by

<I(Jp (K (0, DI ) (Aps (B (1, E) K (1, €) ) (1 + 1)~ =)
+ 1 (Ap (K (0, )IE1°) (Tpra (K (8, ) K (2,€)7+D) (1 4+ ) O+AF )]
<C(1+ )P0 |70 1 01 + ¢) P 9,

In our case it holds k& > |6|. By the definition of the zone we can estimate |£[**° < CO(1 +
£)~ (k)41 - Finally, the second term is estimated by (1 4 ¢)(¢+1(el=k),
(1+ t)(l+1)(|p\—k) if p 0,

Hence, in Z3 we have the estimate |¥y, ,5(¢,£)| < { (1+8) D log(e + 1) if p= 0.
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Using the above estimates implies

Va(t, )| <{ (14000 in 2y,

~ 1 in ZQUZ37
‘§| 1( +t) (I+1)(p— 2) in 2y,
1 in ZQ U Z3 p < 0
Val(t, S i ’ |
| 2( €)| ~ Iog(6+t) in ZoUZ3, p=0,
(14 )%(+D in ZoUZs, 5> p>0,

I+(14+1)(p—2) in 7
<) KKl +1) 2 in 7,
|Vlvt(t’£)| ~ { (1 +t)l+max{ﬁ—%;—1}(l+1) in Zy U Z3,

(1 + ) FED=3) in 7,
(1 +t)l+max{/’ 2D 5y 7,
Vo (8,8 S (1 +t)l (+1) in Zs,p <0,
(1+ )= Dlog(e+1)  in Z3,p =0,
(1 + t)H =10+ in 73,0 < p < 3.
Combining the last four cases gives
(1 +t)l+(l+1)(pf%) in 71,

<
[Va,:(t, € N{ (1+t)l+max{p—%,—1}(l+1) in Zo U Zs.

Proposition 2.2.1. We have the following estimates for the solution to (2.2.1):
1 if p<O,
Ju(t, )r2 < Clluallzz + Cllugllg-1 § logle+t) if p=0,
1+ 4fo<p< L
For the kinetic energy we have
lua(t, )| g2 < CQ 4 1) D male=2 =y | o+ C(1 4 ) D maxe= =1y | .
For the “elastic” energy we have
11+ 8)'Vu(t, )| g2 < CO+ 1) made=E =y |y 4+ O(1 4 1) T maxlo=2 | .
Consequently, the energy

E(u)(t) = ;/n<|ut(t,x)]2 + (148 |Vu(t,2)))*) da

can be estimated in the form

E(u)(t) < C(l_|_t)2l+(l+1)max{2p—1,—2}”ul||12ql +C(1+t)2l+(l+1)max{2p—1,—2}||u2”%2
— C(]. +t)2l+(l+1)max{_a_l+%7_2}||U1“%1 +C(1 +t)2l+(l+l)max{—a—l_~_%,—2}”/U/QH%Q.

Proof. Let us begin to prove the estimate for the solution u. We have

[u(t, )2 = ult, )z = IVi(t, ur(§) + Valt, )uz(E) | r2-
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Applying Hélder’s inequality to the right-hand side gives
lut, lzz < Vit )llpee a1 (&)l 2 + 1{E)Va(t, )l oo [1{€) ~ a2 (&)l 2.

We have )
[Vi(t, )| e < max {(1 + ¢)HDe=2) 1},

and we can estimate [|(§)Va(t, )|/~ by the following estimates:

<£>’£‘71(1+t)(l+1)(0—%) in 71,
in Zo U Z <0
Volt < <§> m Zo 3, P )
(V2] = (€)log(e +t) in ZoUZs, p=0,
(€)(1 + t)2eU+D) in ZyUZs, 3 >p>0,
(1 n Zl,
< C in ZoU Z3, p<0,
~ ) log(e+t) in Zo U Z3, p=0,
(14 )20D in Zy U Zs, § > p > 0.

Here we have used the properties (1 + t)(lﬂ)(p_%) <1for p<i;(€) <N (N is a constant) in the
zones Zo U Zs. From the above estimates we can conclude that

1 if p <0,
lu(t, )2 < Clluallrz + Clluz|[g-2 § log(e +t) if p=0,
(1+¢)%UD) if 0 < p < 3.

Now let us prove the statement for (14 ¢)'Vu(t,-). We have in the extended phase space

(1+#)'[elact ) = (1+)'|§Va(t ) () + (1 +1)'|¢|Va(t, €)ta(€), where

VA6 ) = gy (L 07 W2, 10(0.6), 16V2(1,6) = — g5 (1+ 07 D W10(0,6).

Using the above estimates in different zones we have

gla+6~zD iz,
(1+¢)"20+D) in Zyif2—|p—1| >
(1 +t)Ip=1=20+D) in Z, if 2 — |p— 1| <
(1+ t)(lp—ll—Q)(lJrl) in Zs,

1
Vs p—11(t,6)] S 7’
29

and

(1+¢)"20+D) in 7y,
(1+¢)"20+D) in Zy it 1—|p| > &,
(W10t IS (14 ¢)el=DEHD in Zy if 1 - |p| < 3,
(1 + ¢)(pl=D0+D) in Z3 if p # 0,
(1+t)"HDlog(e+t) in Zzif p=0.
Consequently,

1€](1+ )+ =)D iy 7y

(14 )2 in 7, if p e (=3, D),

(1 + )= +D) in Z if p € (—o0, —1],
I+1)

(1 + ) IEIVa(t, 9] S )
(1+ )=+

in Z3,
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and
(1+ ¢)HH = 2) () in 7,
(1 +t)§+ilp—1é)><l+1> in Zy if p € (3, %),1
14 ¢) =0+ in Zy if p € (—o0, —3]
1+ 0)elvalt, )] < 4 ¢ 2l
(L+1)elIvatt &) (1 + t)H =10+ in Zs if p > 0,
(1+t)-0+D) in Z3 if p < 0,
[ (1 + ) D og(e+t) in Zgif p=0.
Summarizing we conclude
~ max{p—2%,— ~ ~
(1+ )l €)] < O+ i) mate=2 =1 ((6) | (€)] + |a2(€)]).
This yields the desired estimate for the elastic energy.
Finally, let us prove the statement for the kinetic energy. We have
(8, )2 = l[we(t, )l 2 = (Vi (8, )un(€) + Vau(t, )ua(é)ll 2.
Using the estimates
Via(t,€)] €1+t i 7,
1,t\Y, ( + t)lerax{pff ;—13(141) in Z2 U Z37
_ @@+ g 7y
~ (1 + t)leraX{pff i—1}3(141) in Z2 U 237
and
1 + ) EHD=3) in 7,
o ,
|‘/2’t(t’£)| ~ { 1+ t)H—maX{p_* ,—1}(1+1) in Z2 U Zg,
then
1 . .
e (2, )l 2 S C(L+ ) ED =27 ()i (€)1 2 + [|82(6) ] 2)-
This completes the proof. O

Remark 2.2.1. The estimate of the solution is determined by the small frequencies from Zs U Z3.
The decay rate with respect to the norm of u; comes from the large frequencies from Zi, and the
decay rate with respect to the norm of uy comes from the small frequencies in Zs U Z3.

Remark 2.2.2. The statement of Proposition 2.2.1 gives a decay estimate for ||Vu(t,-)|/ ;2 even for

l
a > S

Let us compare the result with the result from [W04|. We start again with the Cauchy problem

a(ll+1
uy — (1 + t)2lAu + ((1 n t)) up = 0, w(0,2) = uy(z), u(0,x) = uz(x).
1 t +1
Setting 7 = (l—:—)l we get
I+a(l+1 a+
Urr — Au + +all + )uT =0, Urr —Au-+ iuT =0, respectively.

(1+4t)+t
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Substituting 7 =: 7 + 1, then (2.2.1) becomes

I
1+7

uzz — Au+ uz = 0.

This is exactly the case p = a +

) from [W04]. From [W04] we conclude

(1+5)% f0<p<i,
[u(7, g2 < Clluallze + Cllugllg-+ { logle +7) if p =0,
1 if p<O,

luz(7, )2 < C(L+ 7P 2 |ua || g + C(1 + 7)™~ ug | 2

Transforming back gives

(1 + )10 if 0<p<i;
14+t I+1
Jut, )z < Clluallze + Clluzllz-1 § log (e + (;LJF)1> ~log(e+1t) if p=0;
1 if p < 0;

11+ 6) (8, )| 2 < C(1 + 1) D=5 = 1 gy | gy 4 O (1 + ) D maxo= 371 gy,
lue(t, )l < O+ ) EDmaxto=g =1}y )y 4 O(1 4 1) D maxdo= 3.1,

respectively. These are the same estimates as in Proposition 2.2.1.

Increasing speed of exponential order

Using the transformations from the previous section we are interested in another model case
U — exp(2t) Au~+ aur = 0, w(0,2) = u1(z), w(0,2) = uz(z), a > 0. (2.2.3)

Applying the Fourier transform to (2.2.3) with respect to x and using the change of variables
T = e'l¢] we get

R a+1, .
Urr + ur +u = 0.

Similarly to the first case we introduce

(1€) H, s("l<])

| H
oo &) =T\ el Y g(etlel) |

then
i LT
‘/1(t7 g) = Zetqulypfll(t 5)7 VYQ(ta 5) = _Zetp‘ljoypvo(ta 5)?
_ T 4(pe) T 4(p4)
Vl,t(tv f) - Ze qj2,p—1,0(ta 5)7 V2,t(tv 5) - _Ze \111».07—1(t7 f),
1-— 1
where p := L S < 0. We divide the phase space into three zones and conclude there

2
the following estimates:

o inZ={{: ¢l > K} .
W ps(t,6) < Ol ez,



36 2. Wave models without any dissipation

e in Zy={¢: ¢ < K < effel):

t

e 2 itk+p> %,
(Wi ps(t, ) <O q e thtn) ifk+p<ip#0,
e *logle+1t) ifk<i p=0,

o in Z3={¢: ¢ < K}

e~ ko) if p#£0,

<
‘\I/k,p,é(ta g)‘ <C { etk ]og(e + t) if p=0.

These estimates lead to the following estimates for Vj(¢,£) and Vj.(t,&) for j =1, 2:

Hr=3) in Z
Vit &) <4 ¢ 5
1 .t(p—73) in Z
e < [l :
‘ 2(75)‘/\4{ 1 il’lZQUZ?n

t+t(p—1) in 7
< ‘£|6 2 m Zy,
“/17t(t7§)| ~ { et—i—tmax{p—%, 1} in Z, U Zg,

t+t(p—1) in 7
e 2 m i
< ?
Vou(t, )] S { etHtmax{p=§.-1} iy 7 7,

All estimates together allow to prove the following result:
Proposition 2.2.2. We have the following estimates for the solution to (2.2.3):
[u(t, M2 < Clluallz2 + Cllug| -1
For the kinetic energy we have
et Y2 < Cet 2D lun 1+ M2 o
For the “elastic” energy we have
le'Vu(t, Iz < Certmaem2 fluy |y + Cet =2 U fug| 2.

Consequently, the energy

1

B =5 [ (juta)f + (e Vat.2))?) ds

can be estimated in the form

E(u)(t) < 6«621‘,+1‘max{2pfl,f2}Hulnél_+_Cre2t+tmaux{2p71,f2}HuQH%2

C€2t+t max{—a—1,—2} ||U1 H%—Il + CeZt—i—t max{—a—1,—2} ||u2 ”%2 )

Proof. Let us begin to prove the estimate for the solution u. Applying Hélder’s inequality to the
right-hand side gives

lu(t, Mgz < VA O Lo @(©)llze + I{€)Valt, )l 1(€) ™ a2(€) ]l 2.
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We have )
Vi (t,€) ||z < max {eP72) 1} <1

and we can estimate ||(§)Va(¢,£)|| L~ by using the above estimates

[(E)Va(t, ) S 1.

Here we have used the properties elP=3) < 1 for p < 0; (§) < N (N is a constant) in the zones
Zs U Zs3. From the above estimates we can conclude

lu(t, M2 S Cllurllzz + Clluz -1
Now let us prove the statement for e!Vu(t,-). In the extended phase space we have
e'lela(t, &) = et’f\vl(t )t (&) + €'[€|Va(t, €)iz(E), where

EIVi(t,€) = oW1 (€), €]Va(t,€) = = ' pW1po(t,€).

Using the above estimates in different zones we have

|£|e_% in Zl,
_t . : 1
T t, < e 2 1n221f1+p>§7
V2,116 S e t040) in Zyif14p<1
e—t(+p) ip Zs,
and t
e 3 in Zl,
t
3 in Zyif 14p> 1
N " e 2 m Zso P> 35,
V1008 S e~ ta+0) in 7, if 14+p< 3,
e —t(1+p) in Zg.
Consequently,
EletttP=2) in 7y,
t+t(p—3 i if —%
. e 2 in Z9 if <p<0
elVi(,€)] £ : ’
AMEOISY o itz -1,
et (=t) in Z3,
and

(& % in Zl,

ete2) in Zyif —1 < p <0,
et in Zy if p < -3,
ett(=t) in Zs.

e'lelIValt, )] <

Summarizing we conclude

lefleli(t, €)1 > < CetHmalema b (| (ghin (&)l 2 + l[aa(&)ll2)

This yields the desired estimate for the elastic energy. Finally, let us prove the statement for the
kinetic energy. We have

[as(t, )l 2 = [Vie(t, ©)ur () + Vau(t, §)ua(E)l] 2
< IO Vi, )l (€)@ (E) 2 + [IVare(t, €) | o @2 (8 2

e (2, )| 2
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Using the estimates

_1 :
Vel g T iz,
1,t(t, ~ ) ettmaxle—3i-1} iy 7, U Zs,

flgeed e
~ ettmaxle—5i-1 iy 7z, U Zs,
and
t+t(p— = :
vl <{ e S
then
lus(t, )| 2 S CetHrmate=z =t (| (g)in (€)] 2 + [|2()]12).
This yields the desired estimate for the kinetic energy. O

Remark 2.2.3. The statement of Proposition 2.2.2 gives a decay estimate for ||Vu(t,-)|/ ;2 even for
a>—1.



39

3. Wave models with time dependent
propagation speed and dissipation

3.1. Scattering theory
In this section we concern with conditions for b = b(¢) that the solutions v = u(t, z) of
ug — a* () Au+ b(t)uy = 0, u(0,2) = ug(x), u(0,z) = uz(x) (3.1.1)

behave asymptotically equal to the solution of the corresponding wave equation with strictly in-
creasing speed of propagation

vy — a2(t)Av = 0, v(0,2) = vi(z), v4(0,x) = va(z) (3.1.2)

with some suitable Cauchy data (vi,v2). We will use the operator relating (u1,uz2) to (v1,v2) and
which is denoted as Mgller wave operator which was mentioned in particular in the Lax-Phillips
approach [L-P73] or in the lectures of R.B.Melrose [Mel95]. That means we will construct an
operator Wyu = limy o0 S;*(¢)S(t)u from the energy space H'(R™) x L*(R") for the solution of
(3.1.1) to the energy space H'(R™) x L?(R") for the solution of (3.1.2). The operators are introduced
in the proof of our scattering result.

3.1.1. Result in the L?-scale

Here we introduce the energy space E(R") = H'(R") x L*(R") and we assume (u1,up) € E(R™),
this means, (|D|u,us) € L2(R"™).

Theorem 3.1.1. We assume that the coefficient b = b(t) satisfies b € L*(Ry). Then there exists
the Mpller wave operator Wy : E — E mapping the Cauchy data (a(0)ui,us) € E from (3.1.1) to
Cauchy data (a(0)vi,ve) from (3.1.2) by

(a(0)vr,v2)" = W (a(0)ur,uz)”

such that the asymptotic equivalence of solutions of the problems (3.1.1) and (8.1.2) holds in the
following way:

a(?) H<a(t)“’ Dru) —(a(t)o, Dtv)HE — 0 (3.1.3)

while t — oo. Moreover, we have the decay estimate

1
a(t)

H(a(t)u,Dtu) _ (a(t)v,Dtv)HE < (w1, u2)| /too b(r)dr (3.1.4)

with the convergence rate [ b(T)dT to 0 as t — oc.
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Proof. Let U = (a(t)|€]0, Dya)”. Then U satisfies

Dta
DtU:A@,@U:Z( = a(t)|5|>U. (5.1.5)
a(t)|&|  ib(t)

We carry out one step of diagonalization of the principal part by the matrix of eigenvectors M and
its inverse M1,

(1 S ©) — g1
M_(l 1>,M —2<_1 1>,andwesetU =M"U.

We get DU =D(t,)UO) + R, (1)U + Ry(t)U®), where

D(t, &) = ( “(2'5' _a(ot)m ) Ru(t) = ;Dat“< L > Ry(t) = ;ib(t)< - )

Let E, = E4(t,s,£) be the fundamental solution of the operator Dy — D(t,€) — Rq(t), that is, E,
satisfies the Cauchy problem (D; —D(t,&) — Ra(t)) Eq = 0, Eq(s, s,£) = I. According to the results

Val(t) .
a(s)

from Section 2.1 we have proved that HEa(t,s,g)HLoo(R?) s Moreover, using Liouville’s

formula, see Lemma B.3.4 in section B.3 of Appendix, we obtain

det E,(t, s,&) = exp (z /St tr (D(1,€) + Ra(T))dT> = —=.

The matrix-valued function M E,(t,s,&)M ! generates a Fourier multiplier corresponding to the
operator
Si(t,s, D) : (a(s)|Dlv(s), Dyo(s))" = (a(t)| DJu(t), Dyo(t))"

for solutions v to the Cauchy problem (3.1.2).
Now we construct the fundamental solution to the operator D; —D(t,§) — Rq(t) — Ry (t). Therefore,
let us introduce

P(t,s,€) = B, (t,5,E)Ry(t) Ealt, 5,6).

After application of Peano-Baker formula it follows that

o) t t1 te—1
Qb(t,s,g):I+Zik/ P(t1,s,€) P(tz,s,f)---/ Pltp, s, €)dty - -~ dtadt;  (3.1.6)
k=1

is the solution to the Cauchy problem
Dth(tv S, g) - P(tv S, E)Qb(ta S, g) =0, Qb(sv S, g) = 1.
Let E1i(t,s,8) = Equ(t,s,£)Qp(t,s,£). Then we derive

Dt(EaQb) = (DtEa)Qb + Ea(Dth) = (D(ta 5) + Ra(t))EaQb + EPQy
= (D(t,€) + Ra(t) EaQp + Ro(t) EaQb = (D(t,€) + Ra(t) + Ry (t)) EaQs

and F,(s,s,£)Q(s,s,§) = 1. Thus, Eq(t,s,§) is the desired fundamental solution.
Taking account of ||P(t, s, )||Loo(Rg) < |[|Rs(t)| € L*(Ry) implies the estimate

t
1Qu(t, 5, &) | Loe(mp) < exp (/ H’P(T,S,f)HLw(Rg)dT) <C.



3.1. Scattering theory 41

Consequently,

B2t 5, l1eg) S 1Ealt, )l oe ey | Qo 5, 1wy S LA

ﬁ
—
V)
~—

Moreover, the matrix-valued function M E1(t,s,£)M ! generates a Fourier multiplier to the oper-
ator

S(t,s,D) : (a(s)|Dluls), Deu(s))" = (a(t)|Dlu(t), Deu(t))"
for the solutions u to the Cauchy problem (3.1.1).
Now our aim is to prove that the limit

W (D) = lim St 0,D)S(t,0, D)

exists in E. To describe the behavior of the operator S; '(¢,0, D)S(t,0, D) it is sufficient to study
in the phase space ME,1(t,0,&)E1(t,0,)M 1 = MQy(t,0,§)M~L. Thus the question for the
existence of the Moller wave operator is connected with the study of the limit

tliglo Qb(tv 0, 5)

Furthermore, using formula (3.1.6) for large times s, ¢ we consider the difference

0 t t1 lg—1
(60,9 = Qu(5,0.8) =Y [ P10, [ Pl120.0).. [ Plt, 0.t dhadts
k=1 s 0 0
We obtain from the above considerations the following estimate:

10u0:0.9) ~ @u(5,0. ey < 3 [ 1P01,0.) s
k=1"*¢ '

h E—1
x( / IP(.0,8)llp=@pydr)  dt
0

1 t1 k
< [P0y S5 ([ 1P 0.0llmmgyar)

k=0

S/ ”Rb(tl)”eﬁfl IRe(™lldr gy,

According to the assumption b € L' we have proved R, € L. This leads to ||Q(t,0,&) —
Qp(s,0, §)|]Loo(Rg) — 0 as t,s = oo. Therefore, Qp(c0, 0,£) exists in the Banach space L™ (Rf). We
define

W) = lim MQy(t,0,)M " € L*(Rg).

The operator W (D) has the desired property, that is, (3.1.3) holds by the following considerations:

(a(t)||a, Dytr)" — (a(t)|€]D, Do) = ME,Qu(t,0,6) M~ (a(0)|¢]dy, a2)”
~MEM ™ (a(0)[€lin, 02)7 = MEM ™ (MQy(t,0,0)M ™" = W) (a(0) €l i)™ = 0

as t — oo. Finally, the estimate (3.1.4) can be immediately concluded from the estimate
oo t oo
||Qb(t7 07 g) - Qb(OO, 07 g)HL"O(Rg) S / HRb(tl)Hefol HRb(T)”detl S / b(T)dT
t t

where Qp(00,0,&) = limy_o0 Qp(t, 0,&). The proof is finished. O
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FEzample 3.1.1. If we choose the special case b(t) = (1 +¢)~7 with v > 1, then the assumptions of
Theorem 3.1.1 are satisfied. Moreover, the convergence rate is O(t'~7).

Example 3.1.2. If we choose the coefficient

6teet me[n—l}t(e[n—l]t . 1)

e[n]t

b(t) =

)

n—1]t

here et = ¢! , then in this case we have the convergence rate

0o [n—1]t
/ b(r)dr = —
t

e[n]t

Ezample 3.1.3. We can even consider the convergence rate for

1
b(t) = Ly > 1
() (elm] 4 1) log(elm! 4 t)... log™ U (elm] 4 t)(log[m](e[m] +1))” !

here el0 = 1, elm = <™ 1ogl0) (1) = 7 and log!™(7) = log(log™ ! (7)). The convergence rate is

/ b(r)dr = L(log[m}(e[m] + t))lfv.
t v—1

3.2. Non-effective dissipation
Let us devote to the Cauchy problem
ug — a?(t)Au 4 b(t)uy = 0, w(0,z) = uy (x), u (0, z) = uz(x). (3.2.1)

Our question is, under which assumptions to the coefficient b = b(t) for a given a = a(t) can we call
b a non-effective dissipation? Here non-effective means, that on the one hand we have a dissipation
(classical scattering is excluded), but on the other hand the model is hyperbolic like (from the point
of view of decay estimates) and not parabolic like. Motivated by the considerations from J. Wirth
[W0T7a| we assume:

(B1) b(0) > 0, b(0) = ut) Gk, b L) (R,

(B2) [1/(1)] < cumt)“((i),

(B3) limsup,_,, u(t) < 1.
Besides the assumption (B3) we introduce another assumption
(B3) liminf; oo p(t) > 1.

We will later need this assumption to understand the influence of a different class of dissipations
b(t)us. Finally, we will assume

(€) timsup; o (u(t) +alt) <2,
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where «(t) is defined by
"(t t
(1) =: a(t)@.
a(t) A(t)
Theorem 3.2.1. Let us consider the Cauchy problem (3.2.1) under the assumptions to the coeffi-
cient a = a(t) from Theorem 2.1.1. If the coefficient b(t) satisfies conditions (B1) to (B3) or (B3)’

and a(t),b(t) also satisfy condition (C), then we have the following estimates for the kinetic and
elastic energy:

(. )z < 02D

W(HulHHl + [luzl r2),

()Pt )2 < CY (s + ).

Here A = \(t) is defined by
t
A(t) :=exp <;/0 b(T)dT). (3.2.2)

Proof. Applying partial Fourier transformation we have iy + a?(¢)[£]?@ + b(t)d; = 0. We will later
derive estimates for the fundamental solution E(t,s,&) of an equivalent system of first order by
different approaches in different zones of the extended phase space (0,00) x R™: in the dissipative
zone and the hyperbolic zone. These zones are defined by

 Znyp(N) == {(t,§) :t > t¢},
o Zgiss(N) :={(t,§) : 0 <t <t
where t¢ satisfies A(t¢)|¢| = N.

| te Zhyp
S (Al = N)
Zdiss \\\

(AWl < N>~

~

0 N €]

Fig. 3.1.: Description for the definition of zones in the non-effective dissipation

3.2.1. Considerations in the dissipative zone

t
Let us define the micro-energy U = (N6(t)@, Dyit)”, where we denote 6(t) = jl((t))' Then the
transformed equation can be written in the form of a system of first order (in D)
dio(t
—i ; (E)) (1)
DU = A(t,§U, A(t, &) =
t ( 5) ( 5) a2(t)]§|2

No @) ib(t)
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Thus the solution U = U(t,£) can be represented as U(t,§) = E(t,s,&)U(s, &), where E(t,s,§) is
the fundamental solution, that is, the solution to the system

E(t,$7§> = A(tvé)E(t187€)> E(575>£) = Ia 0<s<t< t{
In the further calculations we use the following statement:
Lemma 3.2.2. 1. The assumption (B3) implies with the auziliary function \(t) the estimate

[ 40 A0
0 V()TN

A(t)

Moreover, the function @) is monotonously increasing if t tends to infinity.

2. The assumption (B3)’ implies )\2(()) € LY(R,) with

[ 4 A
APUCREPY0

Furthermore, )‘\42((?) is monotonously decreasing for large t.

Proof. to 1. Integration by parts yields

/(]t;((TT))dT— tt —1+/ dT.

We conclude for ¢ > ¢y from the condition limsup,_,. () < ¢ < 1 that

/Ot“(ATQ)(“T()T)dTg/OtO (;(“T()T dT+c/ <c+c/t A7) 4

A2(T)
The statement follows from

[ st o

The monotonic behavior is a consequence of

d AQ®) _ a(t)( — p(t)
dt \2(1) N2(1)

(3.2.3)
and p(t) < 1 for large t.

to 2. From liminf,, p(t) > 1 it follows liminf; o p(t) > 14 €. So we can conclude

N (t) = exp < /0 t b(T)dT) > A(t)Fe,

t
which implies the integrability of ;2((2) Furthermore, for large ¢ we have
> a(r) < A()b(7) - a(7) A(t)
dr < dr = :
AR CLEl S (o

The monotonic behavior follows from (3.2.3). The statement is proved. O
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Lemma 3.2.3. Assume that the function a(t) satisfies (A1), (A2), and the function u(t) satisfies
the condition (BS3). Then there exists a constant 6 € (0,1) such that

ta(r)—o At
a(t)® /0 ;227) dr < AQ((t))' (3.2.4)

Proof. The statement follows directly after integration of the following inequalities:

(A Y et e AOHO 5
~\amaewm) ~ @ anmoem T e
a(t)'0 AW

SU=9=aa ~%umag

for large t,

1
where ¢ < 1 due to condition (B3). The latter inequality is true if it exits a constant C' > 1 o

such that

A)d' (t) < (1 —c—C N5 1a?(t).

From that we can choose any ¢ satisfying § < (limsup, A(t)a’(t)/a?(t))~. This supremum is finite
by condition (A2). O

Denoting by EU) the entries of E we get for k = 1,2 the system

idtd(t)

D, EM) — _
t 6<t>

EUR) 4+ N§(t)EZR),

Integration yields

EUR)(t,5,6) = g((?)E(lk)<8 5,&) +iNO(t fE )(1,5,6)d
(2k) N2(8) oy iRt a? . (3.2.5)
FE (t, 75) )\Q(t)E ( ’ 75 N)\2 f (5 E (T737€)d7'

We are going to prove the following lemma:

Lemma 3.2.4. Let us assume (A1) to (A3) for a(t) and (B3) for b(t). Then we have the following
estimates for the entries E®D(t,0,€) of the fundamental solution E(t,0,€) in the dissipative zone :

o a(t) a(t)'—0
_ ( EUV(0,9)] [EM(2,0,¢)] At N2 (t

(|E(t707§)|) T ( \E(Ql)(t,(),fﬂ |E(22)(t 0, f)’ ) ]§|2§()(t) a(t)(lz(s
X2t A2(t)

(3.2.6)

with K(t) = [ a2(r)\(r)dr < A2(t)a(t) A(t).
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Proof. Let us consider

BV (10,6 = B 1 QQ(T)V(T) W(7,0,6)dr
Sl ,
=g () S o5+ [ et [ 2o
3 Nazlf&( \5(’; /Ota A2(r / BECY(9,0,6)dodr
etfgr iy [ [emompemuncs

Rewriting the integral equation gives

OnN () ECD(,0,6) _ /t CnA*(0)ECD (6,0, €)
=i+ [ ki(¢t,0 de 3.2.7
PR N GIR) 327
with kernel
ka(,0,€) = —\ngK(‘g)/t ()N (r)dr, 0 € [0,1] (3.2.8)
(4 Y, K(t))\2(0) P ) ) U] e
Now we estimate
t . K)o < K (6)
sup |ki(¢,0,£)|do < 2/ supiKt—KQ do < |¢]? do
J) g @9 i [ s (0 - K@) < 6 [ 5
te
SIP [ a)A0)d8 = Gl A% 1) <1
0
uniformly in Zg;ss(IN). Therefore, we obtained
2
(21) < [EFK(?)
[EY¥(2,0,8)] < 00) (3.2.9)
Substituting this estimate into the first integral equation implies
2
BO0,0.91 < g+ o) [ LT ar < o) + a0 4% < 000 = 412

Next we consider

2 i 2 t 2
Em)(t,o,&):;((%) + N@(t) i 5(( ))V() E)(r,0,€)dr

_A0) feP tazT 2. (22) .
- /0 <>A<>/0 EC(6,0,¢)dbdr,

2 (22) 1 1e2 ¢ ta27_ 2047 ) E(22)
OB 0.6 = 1- 1 [ ([ arnt(rir) B 0.0.6)a0

t)1-¢
respectively. Our goal is to show that |E®2)(t,0,€)| < a/(\Q)(t) . Therefore, we rewrite the integral
equation as
N (H)E®2)(t,0,€) 1 t AN (0)E?2)(9,0,¢)
2 = ko(t,0 22 df 3.2.10
a(t)1_5 a(t)l_(s +/0 2( ) 75) (Z(Q)l_é ( )
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with the kernel

a 1-6 t
ka(t,0,€) = _|£‘2a(t)@5)\2w)/9 a®(T)A\2(r)dr, 6 € [0,t]. (3.2.11)

The following integral over the kernel satisfies the desired estimate. It holds

)1—5

t B t§ a 0
| sw lkati0.0la < i [ sgpmfg)i_w(ff(w—me))de

0<t<t

t a 1-6 t a 1-6
< [ sup SO E o < Pt At o) [ G

t)!
Alte)
(te)

Here we have used Lemma 3.2.3 and, therefore

S EPA3 (te) Alte) < [€2A%(te) S 1.

>
N

(3.2.12)

Plugging this estimate into the first integral equation and using Lemma 3.2.3 again we have

t 1-6 t)l 1) A(t) a(t)lf&
E12) (4 <6t / o) 7, <o < . 21
This completes the proof. O
Now let us come back to
U(t,§) = E(t,0,£)U(0,¢) forall0 <t < te. (3.2.14)

t
Because of a(t)|¢]]u(t,€)] < le((t))\ﬁ(t,fﬂ in Zg;ss(N) the following statement can be concluded

from (3.2.14) and Lemma 3.2.4:

Corollary 3.2.5. We have the following estimates for all 0 < t < t¢ (the dissipative zone Zgiss(N)):

A aft) o())?
alDlellate, )] < Oy al0.6)| + Cn 3 IDra0, ),
2 1
Pt o) < o 80,91+ o™ Do, o).

Lemma 3.2.6. Let us assume (A1) to (A8) for a(t) and (B3)’ for b(t). Then we have the following
estimates for the entries E®V(t,0,€) of the fundamental solution E(t,0,€) :

a(t) a(t)

[BUD(,0,6) [E1(2,0,6), A() A1)

(\E<21><t,o,s>r |E<22><1t,o,s>>g A | (3.2.15)
A(t) A1)
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Proof. We start by estimating the first column. Plugging the representation for E(Ql)(t, s,€) into
the integral equation for E0 (¢, s, &) gives

Zss((?)) ((£,0,¢) =1- \§|2/ / T; %( g;E (1(0,0,¢)dodr,

6(115)‘ (11) (t 0,9 <1+ ‘§|2/ / Ez 5(10)E(11)(9,0,§)d9d7-,
sl 0.0l g (16 [ [ a2(9)d«9d7> < oxp (JE747(9) S 1

_ alt
500 (1,0,6)] £ 3(1) = G-

Here we have used the definition of dissipative zone and assumption (A2) for a(t).
Let us consider ECV(t,0,€). We have
ot

0.9 5 o [40
27_ a
S leF / ((T)) i(@)) (r)dr <61 A(B)a(t) < On o5
~——

<1

)| EM (1,0, €)|dr

Now we will estimate the entries of the second column. We get

i (12) — N2 Lodr 1e12 ! T)\2<9) a2 1 (12) -
6(t)E (t,0,8) NA2(0) . 22(7) €] /0/0 2(7) (9)5(9)E (0,0,8)d0dr.
1

Because the first integral is uniformly bounded by the second statement from Lemma 3.2.2 we can
obtain by the above reasoning together with assumption (A1) the desired estimate for E(1?). For
F2) we have

1 A ZA
B0 5 e g J, oV

t
At | IEPAQ)
S aoem e /oa(”d“

<Cn

Alt
If we notice A2(t) > A'*4(t), then (t)E\Q)(t) is uniformly bounded for large ¢. This completes the
a

proof. O

3.2.2. Considerations in the hyperbolic zone

Here we use the hyperbolic micro-energy U = (a(t)|¢|, Dy@t)T. Then U satisfies

Dta
DU = A(t, €)U = ( o0l > U. (3.2.16)
a(t)|€]  ib(t)
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Let us carry out the first step of diagonalization. For this reason we set

_ (1 -1 1011 0 . py-1
M_(l 1>,M _2(_1 1>,andU = MLU.

So DU =D(t, &)U + R(t)UO, where

D(t,€) = < E 32 ) - ( a(%m —a(?ﬁ)\ﬁl )

and D D
Ll 2 v — 2 e
R(t) == 5 ta taéb
— = ib(1) +ib(t)

Let Fy(t) be the diagonal part of R(t). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

Ryo 0 . 01(t)
(1) X L — T "Lalt)le] (1)
N = Roy - . 01(t) , NMi=I+N
0 —1 0
T2 — T1 4(1(15)‘5’

!/

Here 61 := e +b. We have
a

/ 2 a 2
(t) Z(ﬂ 1 \2 O
Ta(@lE |~ (4a<t)§> < GoE) <
a(t)

If we use b(t) = ,u(t)m and the assumptions (B3) or (B3)’ and (C), i.e. we have lim sup,_, . p(t) <
1, then

2 2 1 2
( b(t) ) :( p(t)a(t) ) < (7) < %
4a(t)[] 4a(t) A(t)[¢] A(t)¢] N
Thus we can choose a sufficiently large N such that the determinant of Ny is det Ny = 1 —

2
( 42@()'5‘)5') > % Hence, the matrix N; is invertible. Set

SIS

—~

OIS0
a(t !

_ R _ 8a(t)[¢] a(t)[¢] — _N-
P DN (RN = o, 1) 5?@) and Ry (1,) = ~Ni ' BO( )
“a(t)le]  Ba()[¢]

We can conclude that
(D = D(t,€) = R(E)) N1 (t, OUD(t,€) = N1 (t, ) (Dy — D(t,€) — Fo(t) — Ra(t, €))UD(t, ).

Now we shall find the solution U©)(¢,&) := Ny (t,&)UM(t, ), where UM (¢, £) is the solution to the
system
(De = D(t,€) — Folt) — Ra(t,€)) UV (8, €) = 0.
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We can write UM (t, &) = Ey (t,tg,f)U(l)(tg,f), where Fi(t,s,§) is the fundamental solution, that
is, the solution of the system

(D¢ — D(t,€) — Fo(t) — Ri(t,€)) Ei(t,s,€) =0, Ei(s,s,8) =1, t>s>tg.
The solution Ey = Ey(t, s, &) of the “principal diagonal part” fulfils

DtEO(t>Sa€) = (D(tag) + FO(t))EO(tvs7£)a E0(8737£) = I7 t>s2> tf

Thus
a(s) A(t) 0 exp( -/, za(7)|£|d7)
Let us set

R2(t7 S, f) = EO(t> S, 5)_17?'1(75) §)E0(t, S, 5)7

[eS) t t1 tre—1
Q@J£)=I+§:ﬁ/7%@h&9 Rﬂhﬁ@fH/‘ Ra(tk, s,&)dty, - - - diadty.
k=1 S S S

Then Q(t, s, &) solves the Cauchy problem

DtQ(thag) = RQ(tvsaé)Q(ta 575)’ Q(Sv‘S?é) = Ia t Z S 2 tf

The fundamental solution 1 = Ei(t, s, ) is representable in the form F(t,s,§) = Eo(t, s,£)Q(t, s,£).
Analogous to the statement of Lemma 2.1.3 we are able to show the following estimate for Q(t, s, £):

t
) <o
The backward transformation yields U(t, &) = M Ny (t,€)Eo(t, s, €)Q(t, s, )Ny (s, )M U (s, ),

(0 ) S ) v

Va(s) At)
Corollary 3.2.7. We have in the hyperbolic zone Zpy,(N) the estimate

a(t)[¢lat, €) o Val) Ate) | (alte)lélate €)
(“Bate )=z )

Dya(t, €) A(t) Dyate, §)

Valte) Alt)

Q5.0 < e ([ Rilrelir) <o (i (575)

for all t > t¢.

3.2.3. Conclusion
We have the following lemma.

Lemma 3.2.8. Assume that the functions u = u(t) and a = a(t) satisfy the assumption

limsup (pu(t) + a(t)) < 2.

t—o00

Then the following inequality holds:

Aty
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Proof. We have from the definition of A and «

NNt Z((Z)) ds) exp (3 Jg als) Z((?) ds)

KON ¢ als)
exp( 0 A(s)ds)
1 a(s)

= exp (5 /Ot (1(s) + a(s) — 2) A(s)d8>'

According to the assumption (C) it holds u(t) + a(t) — 2 < 0 for ¢ > ¢y with a suitable ¢3. From
that we may conclude

A(t)v/a(t) o als)
TAD < exp (/0 (1(s) + a(s) — 2) A(s)ds> < C(tp). (3.2.17)
This completes the proof. 0

From the statements of Corollaries 3.2.5 and 3.2.7 we derive the statement of our theorem.
I.case {|¢| > N} :

Then the statement of Corollary 3.2.7 implies immediately

[EAEE o /a@ (i)

Dya(t, €) Y0) Dyi(0, )

for all t > 0.
2.case {|{| < N} and {t > t¢}:

Then the statements of Corollary 3.2.7 imply immediately

- o/t Aty

a(t)[€l[a(t, )] + | Dria(r, )| (alte)lellitte, ) + | Deire, €)])

Alte)
a(te)

a(te)lE]lalte, )] +

[Dilte, €)]).
From Corollary 3.2.5 we have for ¢ =t

ate)™°
A2(te)

a(te) €l lte. €)] + | Dyit(te. )] < OZféjm(o,sn e

| Dra(0, )]

Summarizing we get

a a a 370
Olllat. )| + 1Dyt )] < oY (VLD 0,61+ 200 piao. o)

1
for all admissible (¢,&). If we choose d > 3 and apply Lemma 3.2.8, then we may conclude

a(t)
YO

a(t)[g]la(t, §)| + [Dea(t, §)] < Cn (120, )| + | Dyat(0,€)]) for all admissible (t,¢).

3.case {|€] < N} and {t <t¢}:



52 3. Wave models with time dependent propagation speed and dissipation

Then the statements of Corollary 3.2.5 imply immediately

a(t)[Ella(t, )] + [Dea(t, §)] < CNZ((tt))Iﬂ(O,f)! +Cn

1
If we choose 6 > 3 and apply Lemma 3.2.8, then we may conclude
a(t)
A(t)
This completes the proof to Theorem 3.2.1. Ul

a(t)l—é
A% (1)

| Dya(0, )]

a(t)[&l|a(t, )] + [Dra(t, §)] < Cn (1200, ) + [ D¢ (0,£)]) for all admissible (¢, &).

Ezample 3.2.1. Let € (0,1) or p € (1,14 1/(I + 1)]. We choose

1 pu(l+1)
=1+t Alt) = ——(1+ )" b(t) = :
at) = (140, A = 0+ 0", by = EE5
These coefficients satisfy the assumptions of Theorem 3.2.1. Taking in to consideration A(t) =

(+1)
(1+1¢)" > we may conclude

1L+ (e, )t ) o S L4055 (a1 + uzll ).
Ezxample 3.2.2. Let p € (0,1). We choose
a(t) = e, A(t) = €', b(t) = p.
These coefficients satisfy the assumptions of Theorem 3.2.1. Taking into consideration A(t) = eat
we may conclude

(e Vutt, ), uelt, )| 2 S €2 5 (uall g + [Juall 2)-
Example 3.2.3. Let > 0 and m > 1. If we choose

a(t) = (™ + 1), u(t) =

1%

then we have

A(t)

(el™ 4 1)L, b(t) = a

X (el 4 1) log(elm) +t)... logl™ (elm] + ¢)

These coeflicients satisfy the assumptions of Theorem 3.2.1. Thus, we obtain A\(¢) = (log[m] (e[m} +
t))% So, we may conclude

(elm) + 1)z
(log[m] (elm] + 1))
Ezample 3.2.4. Let p € (0,1), and m > 1. If we choose

H ((e[m} + t)qu(t, ')v ut(tv )) HL2 S

r (lulm + lluallz2).

a(t) = e .elm’ wu(t) = u,

then we have ) ) )
A(t) = el b(t) = pete® e

These coefficients satisfy the assumptions of Theorem 3.2.1. Taking into consideration A(t) = e
we may conclude

[m]*

t/20€" /2 o1/2[m]
H(eteet...e[m]tVu(t, ‘),Ut(t,'))HLQ < —— oL et (HUIHHl + ||U2HL2)-

5Im]
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3.3. Effective dissipation

We consider the following Cauchy problem
ug — a®(t)Au 4 b(t)uy = 0, u(0,2) = uy(x), u(0,z) = uz(z). (3.3.1)

In the previous chapters we have concerned with the influence of the dissipation term b(t)u; for a
given a(t) such that the equation (3.3.1) is from the point of view of long time behavior of solutions
and its energies in some sense close to the wave equation with increasing speed of propagation (2.1.1).
We have studied scattering in Section 3.1 and non-effective dissipation in Section 3.2. In this section
we want to understand the so-called effective dissipation. This notion hints to relations to parabolic
models from the point of view of long time behavior of solutions and its energies.

We will apply a transformation of the damped wave equation from (3.3.1) to a wave equation with
time-dependent speed of propagation and potential. Thus, we define the new function

v(t,x) := exp (% /Ot b(T)dT)U(t,:E).

After some calculations we get
v — a2(t)Av — (%zﬁ(t) + %b’(t))v 0.
Applying Fourier transformation we have
Oy +m(t,€)0 =0, (3.3.2)

here
Ly, (3.3.3)

1
m(t,€) = a*()Ie - (0 -

To study the interacting between a(t) and b(t) we assume:

(B'1) b(t) > 0, b{) = u(t)j((tt)),

k
®2) Jabu(o)] < Cun) (535 ) for k= 1.2

(B’3) w(t)/A(t) is monotonic and u(t) — oo as t — oo,
(B'4) (1)/b(t) = a() A1) /(1) ¢ L' (R).

Using assumption (B’1) we can rewrite the formula (3.3.3) by the following formula:

1

a? a /
m(t,§) = Ol - 70 AQ((?) N %(“(t) A((tt))) '

Assumptions (B'2) and (B’3) show that &(¢) is a negligible term in comparison with b%(t), this
means |b/'(t)| = o(b%(t)) as t — oo. Indeed, we have

a(t / a(t a2(t)—a () A(t “ 2
por _ (e055)]  ro5G+e0 " 500w + owo 5
2 - a2 — > < -
b2(t) 12 (1) 5 12(t) 2 w2 (1) o0
2 2
Cu(®) =W 4 oy (1)L
< M( )A2(t) LU( )AQ(t) < ! — 0 for t — oo.
- p2(t) 44 ~ ()
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We introduce the auxiliary symbol

<5>b(t>:=ﬂ léP - \—\/\ léP - ()“((?)- (3:34)

3.3.1. Regions and zones

We define the separating curve t¢ = t(|¢]) by

—{.9:1e= 350}

and introduce the following regions in the extended phase space (0, 00) x ]R?:

the hyperbolic region: Ilp,, = {( €): ¢ > 2A(t)}

the elliptic region: Iy = {( €): €] < 2A(t)}

The auxiliary symbol (&) is differentiable in these regions and satisfies
& (t)at) €] — 0 (20e)’

O (E)pe) = * o  Oe{vr) = T

where the upper sign is taken in the hyperbolic region.
We will also divide both regions of the extended phase space into zones. For this reason we define

a(t)
t

a?(t)[¢]
(b))

(3.3.5)

the hyperbolic zone : Zj,,(N) = {(t £) : vy = Npult)

)
the pseudo-differential zone : Z,4(N,¢) = {(t €€ pt)a(t) < by < Nuéi)lc(bt(;)} N gy,

the dissipative zone : Zg;ss(co) = {(t,f) I

the elliptic zone : Zey(co, ) = {(tvf) gl = COAtt)} N {<§>b(t) > ep(t)

Doaw
t ' tl
\
N Zhyp
AN Zeul
Zen \\
Zr'ed
Zdiss S N Zpd
0 i
a. The case u(t)/A(t) is decreasing b. The case u(t)/A(t) is increasing

Fig. 3.2.: Sketch of zones are used in our approach
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Remark 3.3.1. The dissipative zone can be skipped if we assume the further assumption

a2
(S1) b(t)AS?(t) e LY(R,).

Under this assumption we define Z.j(e) := Zg;(0, €).

3.3.2. The hyperbolic region
Symbols in IIj,,.

Definition 3.3.1. Let us define the following classes of symbols in the hyperbolic zone:

Sﬂmhm%mﬁ:{c:dtgzM@Dﬁﬁfﬂ<C@M®${MMQM+M<2%ymM

for all (t,€) € Znyp(N), o and k < z}.

Lemma 3.3.1. The family of symbol classes S;{m1, ma, m3} generates a hierarchy of symbol classes
having the following properties:

o Si{mi,ma,ms} is a vector space,

o Si{mi,mg, mz}Si{m}, m5, ms} C Si{mi +ml, ma + mh, ms + ms},
o DyDgSi{my, ma, mz} C Sj_p{m1 — |al,ma + |af, ms + k},

e 50{—1,0,2} C L?L%(Zhyp(N))-

Proof. We only verify the fourth property. Indeed, if ¢ = ¢(t,&) € Sp{—1,0, 2}, then

< ~ ) [T @, O _ O
‘Aw@MMSL<%mymd L&wﬂdgmwmgNma<

due to the definition of the hyperbolic zone and assumption (B’3). Remark, that here we used
(E)pr) ~ a(t)|¢] uniformly on Zp,,(N) (3.3.6)

to conclude what we wanted to have. O

Consideration in the hyperbolic zone

Proposition 3.3.2. Let us assume (B’1),(B’2) and (B’3). Then b(t), (§)ye) € S2{1,0,0}.

Proof. Applying assumptions (B’1), (B’2) and the definition of the hyperbolic region we have for
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1=1,2
MO = ) G < el ~ (e 337)
COREOI +u(t)‘(z((i)))/ su ()
eSMl} €51{0,0,2}
S Al ~ o 3.9
by < el o 2| (Ga) o |(50)"
—— —— —_——
€55{0,0,1} €51{0,0,2} €50{0,0,3}
alt) oft) alt)
S ) (3g) =0l (Ga) ~ o () (33.9)

Thanks to (3.3.7), (3.3.8) and (3.3.9) we obtain b(t) € S2{1,0,0}. Next, let us prove (£)yy) €
S2{1,0,0}. By the definition of (§),) we have

b2 (t
€ = 0l — T e 52,001 (33.10)
——
€52{2000  c5,50,0)
We assert that
D] S (€ alt)! (33.11)

for all multi-indices o with || > 0. We apply the principle of induction with respect to |«|. For
la] =1 we have

Dg (€3 = 2D (E)vry (E)ecey- (3.3.12)
Since (3.3.10) implies \D?<§>§(t)| < (€)pwya(t) we conclude from (3.3.12) that
‘Dé bity| S alt) for all |af =1.
Let us assume that the inequality (3.3.11) is valid for all & = (o, ..., o) with |a| < k—1. Then we
prove this inequality for || = k. For convenience we introduce the notation (§)y) := g(t,[£]). After
applying Fad di Bruno’s formula (see Appendix: Lemma B.3.6) and performing straight-forward

calculations we get for |o| < 2 (higher derivatives vanish)

laf J

DePtlE) = D0 > Cas g IEDY T Dt I¢])
7=1 Bi+...+Bj=a i=1
|B51>1
= 205,9(t, |E)Dgg(t. 1) +2 D Cs 5D glt, [E) D2 g(t, |€]). (3.3.13)
+B2=a
s

Owing to (3.3.10) we deduce ‘Dg‘g(t, D2 < gt €))%l a(t) el and taking account of (3.3.11) we
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have ‘D?jg(t, 1EN] < glt, 1£[)118ila(t)B5]) j = 1,2. Returning to (3.3.13) we therefore obtain

g(t.1EN|DEg(t,1€))] S |Deg*tleD] + > |Dlg(t I€D)||D2g(t I€])]

B1+B2=a
|B1],]B2|>1
S gl a4 YT gt )P a()Prg e, €)1 a1
s
< gt L) a4 g(t, )21 a(t)lol. (3.3.14)

Thanks to (3.3.14) we conclude our desired estimate (3.3.11). Next, since Dy (£)? o) = 2D () ()t

and D? (5>b(t) 2DZ ()it (E)pee) + Q(Dt<§>b(t))2 we can easy conclude

|De()piy| S <5>b(t }Dt Evry| < <§>b(t)(jl((i)))2- (3.3.15)

Finally, consequently formula (3.3.13), using Leibniz’s rule we obtain for k£ = 1,2

DFDZg*(t,1E)) = > 2Cs k0 kD gt 1€)) D2 DEg(t, €])
k1+ko=k

k k
> Cﬁl,ﬂg,kl,kQDtnglg(t, ’€|)Dt1D§29(t7 €]). (3.3.16)
kit+ke=k B1+p2=a
‘BlMB?lZI

Due to the formula (3.3.16) and by induction we can prove

e —|a af @ t)\F
| DEDE ()| S (€0 alt) (A((t))) : (3.3.17)
This completes our proof. O

Now we consider the micro-energy

V = ((€)p(eyd, Ded) " (3.3.18)
Then it holds
€ D(€)p(1) 0
0 £ b(t) > v
D,V = V + a(t) ) V. 3.3.19
! < oy O (0 5B) 0 ( )
28 (1)

Lemma 3.3.3. Assuming (B’1), (B’2) and (B’3). Then the following estimate holds for the fun-
damental solution Ev(t,s,§), with (s,8),(t,§) € Zpyp(N),s < t:

Va(t) .
val(s)

Proof. Let us carry out the first step of diagonalization. For this reason we set
(1 -1 41 1 1 ©) _ as—1
M—<1 1>,M —2<_1 1),andV =MV

DVO =D(t, &)V O + R(t,£)V! (3.3.20)

|EV(ta $7£)| 5

Hence,
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where
D(t,§) = < (ot 0 ) € S2{1,0,0}, (3.3.21)
)
Di(€)p(1) b (t) D&t n b (t)
2(&) 48y 2(E)p(t 46
(t,€) <’§(>2<t) ’(<tt) Dt(f)zf((;) b’(t)b(t) € 51{0,0,1}. (3.3.22)
200y o 2(Eb(e) 40

Let Fy(t,&) be the diagonal part of R(t,£). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

0 Rz 0 _Dt<€>2b(t> - bl(;)
1 e | _ Ao 8(8) e
N( ) = ( Ra1 1O ’ > o ( 7Dz<§> b'(t) " H ) = Sl{_laovl}v

b(t)
e 07, T80, 0

Ni(t,€) = T+ ND(t,€) € 51{0,0,0}. For sufficiently large time to = to(c) the matrix Ny(t, &) is
invertible with uniformly bounded inverse Ny (t,€) for t > tg in Zp,,(N) (see Remark 3.3.3). Now
we can follow the usual procedure to diagonalize. Let

W(t,6) = DNW(t,€) — (R(t,€) — Fo(t,&))NW(t,€) € So{-1,0,2},
Ri(t,€) = =Ny '(t,€) B (¢,€) € So{-1,0,2}.
Then we can conclude
(Dy — D(t, &) — R(t,€)) N (t, &)V I (t,€) = Ni(t,€)(Dy — D(t,€) — Fo(t,€) — R1(t,€)) VI (1, €).

Now we shall find the solution V(O (¢, &) =: Ny (t, &)V (¢, €), where VI(t,€) is the solution to the
system

(Di = D(t,€) = Fo(t,€) — Ra(t, )V (£,€) = 0.

We can write VI (t,€) = By (t, te, )V (te, €). Here Ey (¢, s,€) is the fundamental solution to the
following system

(Dy = D(t,€) — Fo(t,€) = R1(t,€)) Eva(t,s,€) =0, Evi(s,s,§) =1, t>5s>t.
The solution Ey = Ey(t, s, &) of the “principal diagonal part” fulfils
DiEo(t,s,6) = (D(t,€) + Fo(t, €)) Eo(t, s,6), Eo(s,s,6) =1, t > s> L.
Thus .
Eult.5,) = oxp (i [ (D) + Ru(r)ar ).

and we can get

O, ) VO Val | atm
sl s ([ s - o V@l Vals)

Let us set

Ra(t, s, &) = Ey ' (t,5,&)Ri(t, &) Eolt, s 5)

[e.9]

t te—1
Q(t,S,g) :I+sz/ R2 tl,S g ’R'Q(t2757£)"'/ R2(tka87£)dtk"'dt2dtl-
k=1 s s
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Then Q(t, s, &) solves the Cauchy problem

DtQ(ta 875) = RQ(t,S,f)Q(t,S,&), Q(8737€> = Iv t Z S Z t£

The fundamental solution Ey (¢, s, §) is representable in the form Ev1(t, s,&) = Ey(t,s,£)Q(t, s, §).
Furthermore, applying the fourth property from Lemma 3.3.1 to Ry € So{—1,0,2} C LgoLtl(Zhyp)
we see that

¢
Q5.9 < e ([ [Ralr€)lar) < C.
This completes the proof. ]

Remark 3.3.2. Transforming back we obtain the following representation for the micro-energy V =
(&) by 0, D)™
V(t,6) = MNi(t,€)Eo(t, 5, £)Q(t, 5, E )Ny (s, )MV (5,€).

Remark 3.3.3. The large constant N guarantees the invertibility of N; in the whole hyperbolic zone.
The remaining problem consists in the understanding of invertibility in the pseudo-differential zone.
For ¢t > ty(e) this zone can be skipped after the choice N = e. The other set {t € (0,¢9(¢)] : (t,€) €
Zpa(N,€)} is compact.

3.3.3. The elliptic region

Symbols in II.;.

The symbols in the elliptic zone are constructed in a similar manner as in the hyperbolic zone with
a little change for the auxiliary symbol (&) which can be estimated

a(t)
2A(t)

(o) ~ - ™ p(t) uniformly on Z;(co, €). (3.3.23)

Definition 3.3.2. Let us define the following classes of symbols in the elliptic zone:

ﬂ)mg—&-k

Si{m1, ma, m3} = {C = c(t,€) : |DEDfe(t, €)| < Ca”f<€>:ztl)_‘a|a(t)m2+‘a| <A(t)

for all (t,§) € Zey(co,€), o and k < l}.

Lemma 3.3.4. The family of symbol classes S;{m1, ma, ms} generates a hierarchy of symbol classes
having the following properties:

o Si{mi,ma,ms} is a vector space,
o Si{mi,ma, m3}Si{m}, m5, m4} C Si{m1 +mi, ma + mf, ms + ms},
o DyDgSi{my, mg, mz} C Sj_p{m1 — ||, ma + |af,ms + k},
e So{-1,0,2} C L?L,}(Ze”(co,a)).
Proof. We only verify the fourth property. Indeed, if ¢ € Sp{—1,0,2}, then

tey 2 aP(r) - 2 a(r) - e V1 - c%a(7) T
/tgl le(r, §)ldT < /tg (g>b(t)A2(7)d /t51 ,u(T)A(T)d < |€1A%(7) !

t61
L <)
~o ’67
€[A(te,) ’
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where t¢,, t¢, denotes the lower, upper boundary of the elliptic zone, respectively. From the def-
2|¢A(t) A
fo

\/—752 rallt e [t&l,t&] and
’£|A(t€1) ~ L [

initions of the elliptic zone and dissipative zone we have u(t) >

Consideration in the elliptic zone

In this region we introduce again the micro-energy

V = ({€)ywyd, Di0)".

Then we can get the system of differential equations

b= ( <€O>b(t) <£>(;)(t) > "

Dt€<>£>b(t) 0
B bl’)E t) V. (3.3.24)
2()p(e)

In a first step we use the diagonalizer of the first matrix, which is defined as follows:

(i =i 1/ =il ©) _ a1
M<1 1>,M 2(@, 1),andV =M"V.

Hence,
DVO =D, ) VO L R(t, £)V (3.3.25)
where
D(t, &) = ( —i<g>b(t) ¢<§(>)b(t> ) € 55{1,0,0}, (3.3.26)
U S i e i
RGO =5 ity . v Do . v | €5{0,0,1} (3.3.27)

t
2&pt) t 4(E)b(t) 2(E)v(e) Z4(€>b(t)

Let Fy = Fy(t,€) be the diagonal part of R = R(t,£). Now we carry out the second step of
diagonalization procedure. Thus, we consider the difference § of the entries of D(t, &) + Fo(t,&). We
have

b'(t) o(b*(t))
2(E)t) 2(E) vt

for t > to with a sufficiently large to = to(¢) by using |¥'(t)| = o(b*(t)). Now we can follow the usual
procedure of diagonalization. Therefore we introduce the matrices

i0(t,§) = 2(§)p(r) + 2(E)pe) + (3.3.28)

0 Riz 0 Z'Dt<§>2b(t) _ bl(;)
N = < % 0 > ,L~Dt<§>b(t) + b (t) 0 € Sl{ 17071},
BGHA 8(&)an)

Ni(t, &) = T+ ND(t,¢€) € $1{0,0,0}. For a sufﬁ(uently large time ¢t > to the matrix Ny(¢,€) is
invertible with uniformly bounded inverse Ny (t,€) in Zey(co,€). Let
(1)(t7£) = DtN(l)(t7§) - (R(tag) - Fo(t,f))N(l)(t,f) € SO{_L 0, 2}7
Ri(t,€) = =Ny (£, €) B (¢, €) € So{~1,0,2}.



3.3. Effective dissipation 61

We can conclude that
(D — D(t,€) — R(t,€))N1(t, )V (t,€) = Ni(t, &) (Dy — D(t,€) — Fo(t,€) — Ra(t,€)) VI (¢, ).

Now we shall find the solution V(¢ &) := N (¢, &)V O (t,€), where VD (¢,€) is the solution to
the system
(Dt - D(tv 5) - FO(ta 5) - Rl(ta g))v(l) (t> g) =0.

We can write VD (t,€) = Evi(t, 5,6)V (N (s,€). Here Evyi(t, s, &) is the fundamental solution, that
is, the solution to the following system:

(Dt *D(tag) - Fo(t,f) *Rl(taé))E(tasvé-) =0, E(S,S,g) =1, t>s> tg-

We transform the system for Ey (¢, s,§) to an integral equation for a new matrix-valued function
Qcu(t, s, &) by considering

exp (z /St (D(7,€) + Fo(r, {))d7> Evi(t,s,€).

Using this ansatz we have after differentiation
D, <exp <z /: (D(7,¢) + FU(T,g))dT> Evi(t, s,g))
= —(D(t,€) + Fo(t,€)) exp <z /: (D(r,€) + FU(T,§)>dT> Eva(t,s,€)
+ exp (z /: (D(7,€) + Fo(T, 5))d7> (D(t,€) + Fo(t,€) + Ri(t,€)) Evalt,s,§)

= exp <z /: (D(T, &)+ FO(T,f))dT> Ri(t,§)Eva(t,s,§).

Consequently,
t
Bralt,s§) =exp (i [ (D9 + Falr)ar ) Bvals.s.©

_i/st exp (z /et (D(r,€) +FO(T,f))dT)Rl(Q,f)EVJ(H,s,f)dﬁ.

We introduce an unknown weight factor to represent Q¢ 1 in the following way:

t
Quia(t,.€) =exp (= [ w(r.dr ) Bua(t,s.€).

Then we get

Qen1(t,s, &) =exp </St (iD(T, &) +ily(1,6) — w(7,§)[)d7'>

+/S exp </9 (iD(T, &) +iFy(1,€) — w(7,§)])d7'> R1(0,8)Qen1(0,s,€)db.

The main entries of the diagonal matrix iD(¢,&) + iFy(t, §) are given by

0oy V(1)
2y A
Iy  V(t)

(1) = —(Epe) + 2 A

(1) = (e +
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For the difference (IT)-(T) we get

v b? b (t) — 4a® 2
(I1) = (I) = =2 )pe) — 2<£§2ﬂ __ P+ 2(2%@) (®)i¢] <0

in Z.(co, ) for t > to by using | (t)| = o(b?(t)). We are choosing the weight w(t, &) = (I). By this
choice the matrix

H(t,s,€) = exp < / t (m(T,g) +iFy (T, €) — w(r, g)l) dT)

— diag <1,exp (/: ( = 2(E)p(r) — 2?;@;1))&)) N < (1) 8 >

as t — oo with a fixed s. Hence, the matrix H(t,s,£) is uniformly bounded for (s,§), (¢,&) €
Ze(co,€). Taking account of Ry € Sp{—1,0,2} is uniformly integrable over the elliptic zone the
matrix which can be represented by Neumann series

CH(t1, £, € R (b2, 5, )

[e'¢) t t
Qell,l(tasag) = H(t,S,g) +sz/ H(t7t17£)R1(t1>8a£)
k=1 s

S

te—1
H(tk—b tk’ g)Rl (tkv S, g)dtk te dt2dt1

S

is uniformly bounded in Z.j(co, €). From the last considerations we can conclude

t
Evi(t,s,§) =exp (/ w(T, §)d7’) Qen1(t,s,§)

= oo ([ (tehtny+ g + i) ) Quna 5.
~ exp (/s (<§>b(r) + 82T<<§>>bi:) + ;;((:)))d7> Qena(t, s, §)

(E)ne)

t
~ m exp </S <£>b(7’)d7’> Qell,l(t, 8,5)_

Summarizing the considerations of this section we have proved the following lemma:

Lemma 3.3.5. Under the assumptions (B’1), (B’2) and (B’3) the fundamental solution Ey (t,s,&)
to the operator Dy — D(taé) - FO(tvf) - Rl(taé) with (ta 5)5 (575) € Zell(covs) N {t > to(&)}, s <t
has the following behavior:

t
EV,l(ta 375) ~ Egizgt)) exp </ <£>b(7’)d7—> Qell,l(ta 875)'

3.3.4. The reduced zone
b(?)

In this zone we can estimate <§>b(t) by 57. Thus, we consider the micro-energy

V= <5b(2t)v Dt@)T. (3.3.29)
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We get the following system of first order

DV = | emler-tem-1v© V. (3.3.30)

PO =3V (1) « b() _ V() < eb(t).

e consequently, =Lo(1) 2 b()

Thus, we can estimate the norm of the coefficient matrix by eb(t) for sufficiently large ¢. Summarizing
the following statement holds:

Lemma 3.3.6. If we assume (B’1) to (B’38), then the fundamental solution Ev(t,s,&) to (3.3.30)
can be estimated by

t
By (t.5,6) S exp (= [ biryar)
for to < s <t with sufficiently large to = to(e) and (¢,£),(s,€) € Zreda(e).

Remark 3.3.4. We can make the reduced zone as small as we want by the control of the constant €.

The dissipative zone

Let us assume that the assumption (S1) does not hold. This means, that u(t) is “very close”
to 1. Thus, we introduced the dissipative zone to ensure integrability of So{—1,0,2} over the
elliptic zone Zgj(co, €). In this case we can apply directly Lemma 3.2.6 to estimate the fundamental
solution E(t, s, &) related to a system of first order for the micro-energy U = (%a, D))", and
relate this estimate to the fundamental solution Ey (t,s,&) related to a system of first order for

V = ((&)pe)0, Ded)T.

3.3.5. Estimates for the fundamental solution

We want to obtain estimates for the energy of the solution to our original Cauchy problem. For this
reason we need to transform back to estimate the fundamental solution E(t,s,€) which is related
to a system of first order for the micro-energy (a(t)|{|w, D).

Outside the reduced zone it holds

E(t,s,&) =T(t,&)Ey(t,s,6)T (s,6), (3.3.31)
where the matrix 7'(¢,&) is defined in the following way:

) h(t,€)
( ht, )i > — [ 8w
D LD @ N

T(t,€)

- =
7 N\
o

>

(orny? > (3.3.32)
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with the inverse matrix

) Sb(D)A(E

Recall that outside the dissipative zone we have h(t,€) = a(t)|£| and especially in the dissipative

t
zone we use h(t,&) = jl((t))' Inside the reduced zone we have estimated (£)y) by € (2) Therefore,
we change the definition of the matrix T'(¢, &) by
2m(tE 1
AP, T~ AT (3.3.34)
YOO

for all (¢,€) € Zyeale).

Remark 3.3.5. We may conclude that in the hyperbolic and reduced zones the fundamental solution
to our original Cauchy problem in the extended phase space can be estimated by

Als)
A(t)

Some auxiliary estimates. We continue with some auxiliary estimates which are used to obtain

(1B, s, 8))) S 735 1BVt 5,6)])-

energy estimates later on.

Lemma 3.3.7. Let us suppose (B’1) to (B’3) and let \(t) = exp ( fo ) . Then the following
holds:

b(t 2(1))¢)?
1. In the elliptic zone it holds (§)y) — (2) < —aé()t’)ﬂ.

i\\((g exp (f;<§>b(7.)d7'> < exp <_|§gz 622(7') d7'> :

3. With A(te,)|€] ~ 1 (separating line between dissipative and elliptic zone) it holds

exp (—]{\2/0% ‘f((:)) dT) ~1.

4. With a(te,)|§] = V1 +e2b(te,)/2 (separating line between reduced zone and pseudo-differential
zone) it holds
M(t§3)

[€lb(te;)

Proof. The first statement is equivalent to the following inequality
v b(t) _ a*(®)I¢f
R A t 2 _ 2 NI

The second statement follows directly from the first one together with the definition of A(¢). The
third statement can be directly obtained from the following estimate:

i [ ey =te [ R <je [T O < 6 A g) S 1

djgtes| 2
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The last statement follows directly after straight-forward calculations by using the definition of t,.
We have

€| ~ b(tés) _ ,U«(t&),) N (dlf\t&s)_l ~ <M(t€3))/

Calty)  Alle) Alte,)
/ a
= |digte, |7 S ‘“AA2 ral < “Aij Ha o %% ~ €] b((isg))_
HATey
The proof is complete. -

A refined estimate for the fundamental solution in the elliptic zone.

Inside the elliptic zone we have

Br(t5.91 5 e [ tennar).

This yields in combination with (3.3.31) the estimate
t b(T) L0

E(t,s, < (o)l O exp (/ ( - )dr) (a(sns )
(1BEs0) S (W) e (| (€ =75 T

t 2 at) a(®)|€]
< exp [ — 2/ a (T)dr) < a(s)  "b(s) ) 3.3.35
< ow (- [ o) (54 (3339

Here we have used the first statement from Lemma 3.3.7. The estimate for the first row seems to
be optimal while the estimate for the second row is not optimal, because at least for increasing
coefficient functions b(t) for fixed £ this estimate is increasing in ¢. This estimate contradicts to our
a-priori knowledge that the wave type energy itself is decreasing. For this reason we need a refined
estimate which will be presented in the following steps. If ®(t,s,&), k = 1,2, are solutions to the
equation @y + a?(t)[£]2® + b(t)®; = 0 with initial values ®F(s, s, &) = 51y, 0,PF(s,s,£) = S, then
we have

a(t) )
<a@MMuQ>:: a(s) 1B 8) dalDiE|2a(h5,8) <M®MM&O)
Dev(t, &) Diits&) i g, s ) Dots:6) /-
a(s)[¢] T
Hence, if we compare with the estimate (3.3.35), then
ta2 T
0Lt 5,6)| < exp (—|§2/8 b((ﬂ)df , (3.3.36)
2 oo (e D),
050 S g p< €] / e ) (3.3.37)
t a2 T
0:"(,5,6)] < b(t)exp <—|£I2/ b((T)>dT>, (3.3.38)
2 @ < [ —l¢12 tGQ(T) -
0:@7(2,5,)] < bs) p< H /S b d ) (3.3.39)

Let W(t,s,&) = 0, ®F(t,5,€), k = 1,2. Then we obtain the equations of first order

QU + b()Ty, = —a®(1)|E]2DF(t,5,6),  Wi(s,s,&) = o
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Applying Duhamel’s principle we get

t 2 T
W56 = I [ 030 0 ar
2 t T a2
s S s [ PO (- [5G Da)
2 T a2
< S [ )
HOIE 2,y 1 o [T a?
s Sa /Sbté(())b exp (-le [ 5 av) ar
a2 ()|&? Tak0)
S e (AZ( )Te p( | T >>
(12 t 2 2 2 T T a2 0
SR [0 (5552 50 om0
<C(r)<1
a2()|¢? fad(r) \ a(b)IE M)
s e (e [ 5Ee) - S e
Here we have used a?(t)|¢|2/b?(t) < 1/2 from the definition of the elliptic zone and g;—((’?) =o(1). We

see that the second summand is subordinate to the first one because

s t a2 T 2 t a2 T 2 (1
I

>0, ifr>tg
for tg < s <t with tg sufficiently large. Thus, we get
1 a®(t)[¢? o [t a*(7)
@ (,5,6)| < 0 6Xp( €] W0 dT). (3.3.40)
Similarly, we can represent Wo in the following way:
)\2 t )\2
Uy(t,s,&) = )\22;) |§’2/s a?(7) )\2((1—))<I>2(T,s,§)d7', (3.3.41)
/\2(5) !€|2 ! 2 [T a*0)
et S Ya) sy ) PO e (< [ an) ar
/\2(5) (t)!£|2 ' a2(T
< 5 + i o (4 [ 55 ) 3342

Thus, we have proved the following lemma:

Lemma 3.3.8. Let (s,£),(t,€) € Zai(co,e) with s < t. Then the fundamental solution E(t,s,&)
can be estimated in the following way:

t 2 a(t) a(t)|€] )2
(5.0 & exo (~Ie” [ ‘;(ffdf)(af??g 0 )+A28 (oV) ©am
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Remark 3.3.6. Let us choose a fixed s. Then the second summand in (3.3.43) is dominated by the
p(t)
A(t)

first one. If we set s = f¢,, then in the two cases ( is increasing or decreasing) we can use

ate,)|€| ~ b(te,) to get the following estimate:

ba?(r aat a(t
(1E(t 1. 6)) S exp <—|5|2 | b(i))df) I - B CERTy
2 a

3.3.6. Gluing procedure

p(t)
A(t)
In the previous sections we have considered the fundamental solution in different zones. Now we
have to glue the estimates from Lemmas 3.2.6, 3.3.8, 3.3.6 and 3.3.3. We obtain for the part of the

hyperbolic zone which contains large frequencies {£ : || > ¢ > 0} the following estimate for the

fundamental solution:
1 /[t 11
(1E(t,0,8)]) S Va(t)exp | —5 [ b(r)dr
2 Jo 11

to our original problem in the extended phase space, cf. Lemma 3.3.3 and Remark 3.3.5. It
remains to consider the influence of the dissipative zone, the elliptic zone, the reduced zone and the
hyperbolic zone for small frequencies. We denote by t¢, ,k = 1,2, 3, the separating lines between
the dissipative zone and the elliptic zone (k = 1), between the elliptic zone and the reduced zone
(k = 2) and between the reduced zone and the hyperbolic zone (k = 3).

Case 1: the function

18 monotonously decreasing

Case 1.1: t <tg,
In this case we follow directly Lemma 3.2.6.

Case 1.2: tg <t <t
Now we have to glue the estimates from Lemmas 3.2.6 and 3.3.6. We have the following corollary:

Corollary 3.3.9. The following estimates hold for all t € [te,, tg,]:

ta?(r a(t alt
seoon < oo (e [ 530) (8 5

+exp (- t b(T)dT> alte,)l€] ( 0y ) .

t§1

Proof. The fundamental solution E(t,0,&) can be represented as E(t,t¢,,&)E(te,,0,€). This yields
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for all (t,€) € Zey(co,e)

(IE(E0,9) < (B te, D E(te,0,6)])

a(t) a(b)le]
t 2 2
o [* a®(7) alle,) B(te,) A(te,) (00
S (eXP (‘ﬂ /t b(r) dT)( ole 2ol |t epy o1
& alte )0(6)  B(te,)b(D)
a(te,) <
t§1
()\ﬁl a(t)[¢]
< exp( |£|2/ b > WIER a2t
T) 0] 5(0)

Here we used a(t¢,)[€| S b(te,), [€] ~ together with the third statement from Lemma 3.3.7

(tﬁl)

to extend the above integral. This completes the proof. O

Case 1.3 te, <t <tg,

Now we will glue the estimates from Lemma 3.3.6 and Corollary 3.3.9.

Corollary 3.3.10. The following estimate holds for all t € [te,,te,]:

(B0 5 e~ [ S ar)owia (] ] )

Proof. From Lemma 3.3.6 and Remark 3.3.5 we have the following estimate:

Alte,) ! 11
(1Bt te,, ) S Aé) exp (s /t&b(T)dT)(l 1>-

Taking account of the representation of the fundamental solution E(t,0,&) as E(t,te,, &) E(te,,0,€)
gives after application of Corollary 3.3.9 the following estimate:

(E#0,8) 5 (1B, ON(E(s,0,9)])

% exp((f—b /t: bWT) <1 1)[@@ (— / b<r>dT> a(t@m(‘j ‘1))
von (i [ 5600 (Sl S0 )
tey tey
< eXP((‘f—;) / b<7>d7)exp<—|512 [ G ar) (e + Sl

+exp <<5 - %) /t: b(r)d7> exp (— /:2 b(T)dT) a(t&)yfg\] ( 1 1 ) .

From the definition of Z,..4(e) with a sufficiently small £ we have

2(WIeP < (5 - )p(0).
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For t < t¢, we use

a(t)[€] < b(t).

tey
exp [ — b(r)dr
b ( / (") )
exp <_§|2 /t52 az(T)dT) )
tfl b(T)

and the last integral can be extended up to t = 0. Using t > t¢, and the increasing behavior of a
we conclude from the last estimates the desired statement. O

Hence, the integral

can be estimated by

Case 1.4: tey <t <oo

From Lemma 3.3.3 and Remark 3.3.5 we obtain the following statement:

Corollary 3.3.11. The following estimate holds for all t € [te,,00):

(B te,, 6))) < (Z)) exp (—; / bWT) (11):

Finally, we have to glue the estimates from Corollaries 3.3.10 and 3.3.11.

Corollary 3.3.12. The following estimate holds for all t € [t¢,,00):

(E(t,0,9)]) < exp <—|§2/0t£3 a;((:))dT> exp (—;/t: b(r)dr) Va(t)\/a(te,)|€| ( 1 1 > _

p(t)
A(t)

Case 2: the function 1§ monotonously increasing

The elliptic part lies on the top of the hyperbolic part in this case. For small frequencies the set

{€ 1 €] < ¢o} lies completely inside the elliptic zone. For this reason we can use the estimates from
the elliptic zone and obtain immediately

a(t) a(t)
1B@0,9) <exp (¢ [ ED0ar) [ 20 50 (3.3.45)
A 0 B(r) e A0l | 3.

a(0)b(t)  a(0)b(t)

It remains to consider the influence of the elliptic zone, the reduced zone and the hyperbolic zone
for large frequencies. We denote by ¢, ,k = 1,2, the separating lines between the hyperbolic zone
and the reduced zone (k = 1) and between the reduced zone and the elliptic zone (k = 2).

Case 2.1: t <t

In this case we conclude directly from Lemma 3.3.3 and Remark 3.3.5

8 o <‘; /0 bWT) ( - > ' (3.3.46)

)

(IE(,0,9))) S
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Case 2.2: tg <t <t

In this case we need to glue the estimate in the hyperbolic zone and the estimate in the reduced
zone. We have

(IE(t,0.6)]) < exp ((s -3) /t b(r)dr - ;/Ot“ b(T)dT> a%)) < L > |
tey a

Case 2.3 g, <t

In this case we need to glue the estimate in the elliptic zone and the estimate in the reduced zone.
Summarizing yields the following corollary:

Corollary 3.3.13. The following estimate holds for all t € [t¢,, 00):

(B40.6))) < exp <_|g|2/t 0;)2((:))d7+ (=-3) /% b(r)dr — ;/Ot“ b(T)dT>
tey tey

a(t) a(t)
a(te,) alte,) alte,)
2(0) RO RO

alte,)b(f)  alte,)b(E)

L? — [? estimates

Theorem 3.3.14. Assume (A1) to (A3) and (B’1) to (B’3). Then we have the following L? — L?
estimates:
For the kinetic energy we have

N

ta2 T -
ot Mzz S a0 (14 [ 55 ar) (sl + el

For the “elastic” energy we have

=

t aQ T -
ottt e S ato) (14 [ 55 ar)  (luslln -+ ual2)

t
Proof. Case 1: the function & 15 monotonously decreasing

A(t)
In the case t € [0,t¢,] we have from Lemma 3.2.6 the estimate
a(t a(t
B.0.0] S 5 S —
1+ fo e dr

This follows directly from

ba*(r) tMT taT e
/0 b(T)dT—/O ) @ 5/0 (1)A(7)dr < A*(t)

for large t.
In the case t € [t¢,,te,] we will estimate separately each row in the estimate from Corollary 3.3.9.
Let us consider the first row. It holds
9 _
a4 (T)dT ,
b(7)

a(t)|€] exp <!£I2 /0 t Cf((:))d7> S alt) (1 - /ot

[SIE
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therefore we get the desired decay estimate. Using the monotonicity of a for the entries of the
second row we can estimate them by those from the first one

OITSIG]S
by 17 = aIE e < alt)lel

a(te,) exp (— /Ot b(T)dT> < alt) exp< €[? /t5 622((T7>)d7> .

In the last inequality we used the third statement from Lemma 3.3.7.

In the case t € [t¢,,t¢,] from Corollary 3.3.10 we can estimate like in the case t € [t¢,, t¢,].

To derive the corresponding estimates from Corollary 3.3.12 we have in the case t € [tg,,00) to
estimate the term

St 1l = lgfewp (g [ 4 har ) e (—§ | b(T)dT> .

This term glues phase function from different zones.

Lemma 3.3.15. For any fized t > t¢, the function S(t, |£]) can be estimated as follows:

st 1) < pax {elewo (i [ 4 Char )}

Proof. To estimate the function S(¢,|¢|) it is important that we will prove that the first partial
derivative 0¢S(t,[|) is negative for [£] small. This follows from

a?( 2(te,) €[ bte,
ogstule) = i) (g - 26l [ G ar - CIOIL g, + Miedage

b(t§3) (t£3)|£‘2
< st (1 + ("5 - e
2
< st (g + L g, ).
here we have used
a2(t€3)‘£‘2 . (1 +52)b(t§3)
b(t&s) B 4 ‘

2
Hence, a sufficiently small € guarantees %

|§\l(>( )) (this property comes from the fourth statement of Lemma 3.3.7) and pu(te,) — oo for |{] — 0

> 0. Taking account of digte; < 0, |digites| >

we have the desired decreasing behavior of the function S(t,[¢]) in [§]. Now let us fix ¢ > 0. Then
the function S(Z, [£]) takes its maximum for |¢] satisfying ¢ = ¢, that is, the second integral vanishes

in S(t,|£]). This completes the proof. B
Consequently,
Va(t)yfalte) €[S, [€]) < \/@\/@E]S(t&,é) = a(t)|€] exp (_,5‘2 /Otéi% Cf((:))dT)
< a(t)

()
s {a0igiom (16 [ 5 )} < Vi ks
0 b(7)
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Corollary 3.3.12 and Lemma 3.3.15 yield the following result:

IE(t,0,6)] < ()<1+/0t(f((:))d7) fort € [te,,00).

[N

In this way all statements are proved.

p(t)

Case 2: the function m 18 monotonously increasing
_ : : A(t)
For small frequencies {£ : €] < ¢} we can apply the estimate in (3.3.45). Here we use that o)
1
is monotonously decreasing. For large frequencies {¢ : €| > ¢o} we consider the estimates from

Corollary 3.3.13, that is, we have

exp (-\512 /t; a;((:)) dr + (= - %) /:2 b(r)dr — % /0% b(T)dT> < exp <_cg /Ot “;((TT)) dT) .

Here we use for e sufficiently small the inequality

(% ) /t e > ¢ /t - “;((:)) dr.

§1 &1

#(0)

7 (0)°

Moreover, the following estimate holds for ¢y <

s
N
—~
~
~—
~

> Za 2(t)@lﬂ (t)

> 2
2 A2() = 0

bty 2

~—

We can see that the first row in the estimate from Corollary 3.3.13 has its maximum for large ¢
inside {£ : || < ¢o}. From that the theorem is completely proved. O

Examples. We will give some examples for special coefficients.

Ezample 3.3.1. Let a(t) = (1 +t)!, b(t) = C(1 +t)* k € (=1,20 4+ 1). Then we have
(1 + )9 ult, ) ue(t, ) 2 S Q4T (ol + [usllz2).
Ezample 3.3.2. Let a(t) = e, b(t) = e, B € (0,2). Then we have
(et ), ua(t, ) llze S €2l + Juallze).
Ezample 3.3.3. Let a(t) = efe®’, b(t) = e'eP¢’, 3 € (0,2). Then we have

t Bt
[(e'e® Vult, ), u(t, )l 2 S e'e2 ([[unllgr + uzl L2).

3.3.7. Comparison of results

Let us compare some results for the scale-invariant case from Section 2.2.1 with results for the cases
of non-effective dissipation from Section 3.2 and of effective dissipation from Section 3.3.



3.3. Effective dissipation 73

Speed of potential order

We start again with the Cauchy problem

ug — (1 + )2 Au + Wut =0, u(0,2) = ui(x), u(0,x) = uz(x) (3.3.47)
for [ > 0. Using the notations from Section 3.2 we have «a(t) = lj%l
Case 1 : mnon-effective dissipation (max{p — 3,1} =p — 7)
With p # 1 we can see that a(t) = (1+1)', b(t) = M((ll:tl)) satisfy all assumptions from Theorem
3.2.1. Otherwise, from the definition of p and the condition max{p — 5,—1} = p — 5 we obtain

w4+ l+1 < 2, i.e., this condition satisfies the condition (C): limsup,_,, ,u( )+ at) < 2.
Applying Theorem 3.2.1 in the case of non-effective dissipation the asymptotic profile for the kinetic
energy |lug(t,-)||;2 and for the “elastic energy” ||(1 + ¢)!Vu(t,-)|| 2 is determined by

l
a(t) (1+1t)2 L_p(+1)
o) p A, — (DR
1+s

This profile coincides with the profiles from the estimates in Proposition 2.2.1.
Case 2. effective dissipation (max{p 5 —1} = —1)

From the definition of p we can see that the above condition implies p+ 14%1 > 2. Thus, the condition
(C) is not satisfied. Applying Theorem 3.3.14 for the case of effective dissipation the asymptotic
profile of the kinetic energy |lus(t,-)||,2 and for the the “elastic energy” |(1 + t)!Vu(t,-)| 2 is

determined by
a?(r) , \ 2 1+t 1
alt) (1 +/ b(7) dT) G 14 d
0 \/1 + fo dr

l+1

-

Due to assumption (B’3) it is not allowed to apply Theorem 3.3.14 directly to the Cauchy problem
(3.3.47). But, if we formally do it for p > 2 — l+17 then this profile coincides with the profiles from
the estimates of Proposition 2.2.1. For the case y = 0 some LP — L1 estimates on the conjugate line
are proposed in M. Reissig [Rei97].

Speed of exponential order

Now we consider another model case to compare with the general results of Theorem 3.2.1 for
non-effective dissipation and of Theorem 3.3.14 for effective dissipation. We devote to the Cauchy
problem

ug — e Au A+ puy = 0, u(0,2) = vy (), ue(0, ) = ug(x). (3.3.48)
Using the notations from Section 3.2 we have a(t) =1,p=-5%.
Case 1: non-effective dissipation (max{p —3,—1} = p— 3)

The assumptions from Theorem 3.2.1 are satisfied for u # 1. Keep in mind that p — % > -1 &
—L& 1 > —1, this condition implies 1+ 1 < 2, i.e., it satisfies the condition (C): limsup,_,., p(t) +
at) < 2.
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Applying Theorem 3.2.1 in the case of non-effective dissipations the asymptotic profile for the kinetic
energy |lut(t,-)||z2 and for the “elastic energy” ||eVu(t,-)||r2 is determined by

1

)‘(t) e% fg pds

This profile coincides with the profiles from the estimates from Proposition 2.2.2.

s
2

Case 2 : effective dissipation (max{p — %, -1} = —1)

From the definition of p we can see that the above condition implies p+1 > 2. Hence, this condition
does not satisfy the condition (C'). Applying Theorem 3.3.14 in the case of effective dissipations
the asymptotic profile of the kinetic energy ||us(t,-)| 2 and of the “elastic energy” ||e'Vu(t, )| 2 is
determined by

=

t 2 - t
wo(ie [0 o4
S S
0 1+ fo 6Tds
Due to assumption (B’3) it is not allowed to apply Theorem 3.3.14 to the Cauchy problem (3.3.48).
But if we formally do it for 4 > 1, then this profile coincides with the profiles from the estimates of

Proposition 2.2.2. For the case u = 0 some LP — L9 estimates on the conjugate line are proposed in
A. Galstian [Gal03].

3.4. Over-damping

We consider now “large” coefficients b = b(t) in the damping term. For this reason we may assume

o0 a2 T
(OD) /0 b((7)> dr < oo.

Then the formal application of Theorem 3.3.14 implies among other things

IVu(t, )z < Cllurl[ g + [luzllz2)-
The following result shows that no more can be expected in this case of so-called over-damping.

Theorem 3.4.1. Assume (A1) to (A3), (B’1) to (B’3) and (OD). Then for (uy,us) € L*(R™) x
H=Y(R") the limit
u(oo, ) = tli}m u(t, )

exists in L2(R™) and is different from zero for non-zero data. Furthermore, under the regularity
assumption (uy,uz) € H2(R™) x H'(R™) it holds

Ju(t, ) — (o0, )2 = O ( / ~ ‘f(f)) dT) |

Proof. The proof is based on the representation of solutions which has been introduced in the
hyperbolic region and elliptic region together with the following statement.

Lemma 3.4.2. Let us assume the conditions (B’1), (B’2) (B’8) and (OD). Then the limit

5 = T lim # 5
S( 75) (170) t1—>oo )‘(t)<€>b(t)EV(t7 75)

exists uniformly on compact sets in & and it is different from zero.
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Proof. The goal of this lemma is to extract @(t,§) from V = ((€)p)A(£), De(A(t)@))T. From the
p(t)
A(t)
assume monotonicity of this function. Thus, it suffices to consider the elliptic region of the extended
phase space and we can use the representation of the fundamental solution in this region. We have
from Lemma 3.3.5 after backward transformation

L UV S LGS ,
Mﬂ@%wva 0 NOIG P(L O@mﬂ 5 )i>Qmp@ ,€).

We see that the exponential term converges uniformly on compact sets in £ as t — oo. Moreover,
Qeir,0(t,5,&) converges to Qep0(00,s,€) for t to oo, and the (11)-entry of this matrix is non-zero.
Therefore, at least the first element of the row S(s, £) is non-zero for large s. If we note the relation
S(s,&) = S(s1,€)Ev (s, s, &), then from the invertibility of Ey (s1, s,£) we can conclude that S(sq,§)
can never be zero for any choice of s; and &. O

over-damping condition we can conclude that is a monotonous increasing function because we

In the case s = 0 the multiplier S(0,&) takes the Cauchy data in the form

A 1 AT
V(0,6) 1= ((€oyiin, iz — ib(0)in )
and maps it to the asymptotic state u (oo, &), that is,
i(00,&) = 5(0,6)V(0,¢). (3.4.1)

The convergence follows at least for data having compact support on the Fourier level, therefore
on a dense subset of L? space. Together with an a-priori bound of the solution we can conclude
that the limit exists for all data from L?(R") x H~'(R"). This a-priori bound can be obtained in
a similar way we have proven the L? — L? estimate for energy solutions.

Now let us assume the regularity assumption on the data (ui,us) € H?(R") x H'(R"). From

formula (3.3.45) by taking out |£| from the last matrix (this needs the better regularity of the data)
2(t

wgﬁ%(ﬂ@@(zg)

Lemma 3.4.3. The second time derivative of 4 satisfies the following estimate:

a*(t) = a(t)y/a(t)
MO0 )(||“1HH2+”“2||H1)- (3.4.2)

et )= S (

Proof. In order to separate the extended phase space we will use a smooth cut-off function ¢ €
C*(Ry) such that ¢ (r) = 1 for r < 1/2,4(r) = 0 for r > 1 and ¢/(r) < 0. Then we define functions
11, Yo and 13 as follows:

w6 = ('fo‘
Ualt,€) = (1_¢<€|)> (A&)t'f’ﬂ?i>

e
wiee = (1-0(8) (oS0 )

such that ¢1 (5) + wQ(tv §) + ¢3(t, 5) =1
Firstly, we devote to the elliptic zone. In order to prove the desired estimate for u; we carry out
one derivative with respect to t in the equation

, + a*(1)[¢[* " + b(t)2F =0
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with initial values ®*(s, s, &) = 611, 0P (s,s,8&) = ap, k = 1,2. Tt yields
0:®y; + b(H) Py, = —2a(t)a’ (1) ®" — a®(1)[¢] By — b/ (1) Df

Applying Duhamel’s principle we get

2 s t 2 T
Bh(t:5.6) = 3a1 ¥h(5:5.)~ [ T (2000 DIV (5. (7)) 5. 6) )

Using estimates (3.3.36), (3.3.37), (3.3.40) and (3.3.42) it holds

2 S t 2 T CL2
Bh(ts € 5 San #5920 S e (<le? [T o) ar

(4)

t 2
+ g [ VOV o (—le [74 Do) ar
L /t)\g(T) at(7)|¢)* ex(j)<§2/7 a2(9)d9> dr
2 ), Dby . ) )

(@)

We notice that ®},(s, s, &) = —a®(s)[£]? and @2 (s, s,£) = —b(s).
Applying the assumptions (A1) and (A2) for a(t) we have

SO [ e L [Ta0) N
4 5 S ), Y2 3 p( < [ Cw)d

07 22(T)

a3 2 a2(6) ¢
bt t>(z)<|£>|k <A2(T>b<r>z<f> p(- '5'2/ o(0) de))
a3 2 t 2 2 / a
S [0 (5 B ) |

<(1/2+e)A~ (1)

a3(1)¢]2 L)\ adWleR A (s)
S bmp(s)- LA P <"5'2/5 b(r) dT) b(s)FA(s) 22(1)

b/ (t)
b*(t)

o(1) and p(t) — oo as t — co. We see also that the second summand is subordinate to the firs
because

s) A(s ta?(r 2 t a?(1)|€? (T a(T
00 50758 o[ 11~ 2508 2

>0, isztO

N
I

Here we have used a?(t)|¢|2/b%(t) < 1/2 (from the definition of the elliptic zone),

for tg < s <t with tg sufficiently large. Thus, we get

S (lel tad(r) \ a0l a(r)
@ 5 s =@ (<68 [ 557) = e oo (<168 [ ). e
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Similarly, we can estimate (B) as follows:
a@Ef [ (7)) " a?(0)
B % i | X g o (-6 [ )
PO [z Lo (e [T PO )
S e ], 40X o (- [ ) a

0:\2(T)
a®(t)[¢]? 2,y 1 2 [T d*(9) ¢
S e (e (- [ ) |
a@)E? [ €[%a*(r) | |1/ (7)] 2 [T d(9)
it | X0 (R * ) = (e | ) o
<(1/2+4e)b(r)/p(T)
a’(t)[€] 2 [MaP(7) a®(t)[E]> N*(s)
S st (6 [ T - e e
Here we have also used a?(t)|€]2/b%(t) < 1/2, ‘é);((i))| < qut) =o(1), | ()] < u(t)jl((?) and p(t) — oo
as t — oo. Obviously we see that the second summand is subordinate to the first one because

(5) La2(r) |\ A1) f ()2 ()
0 <‘5'2/s b(r) dT) v = o ([ (o0 b(r)’ )

>0, if7>tg
for tg < s <t with to sufficiently large. Thus, we get
a®(t)|¢]” " a?(r)
B)S —~>— — €2 dr ). 3.4.4
)5 iy s (16 [ 55 ) 340
Analogously, it is not to difficult to get the estimate for (C') as follows:
a'(t)|€]* " a?(r)
C)S — € dr ). 3.4.5
(©) % gaggeyer @ (~ K / 7 7) (3.45)

From the estimates (3.4.3), (3.4.4) and (3.4.5) we obtain

2WIEP |, a'@lgty 1 " a?()

ok (t < (= - 2/ dr), k=1,2 3.4.6
| tt( 757€)| ~ ( M(t) + b2<t) )b(s)k_l eXp ( |§’ A b(’l’) 7—)7 () ( )

for all (s,&) and (t,&) € Zeyi(0,¢).

Now we devote to the hyperbolic zone. Using the result from Remark 3.3.2 we get

DV (£,€) = Di( MNi(£,€) Eo(t,0,€)Q(t,0, )N; (0,6 M 1V(0,9)),
with V' = ((€)p)0, Dy9)". We keep in mind that
Nl(t7§) € 51{07 07 0} = DtNl(taé) € 50{0707 1}7

DtQ(taoaf) = R2(t707§)Q(ta0a€)

= 1DQ(10,6)] = IRz(t,O,f)IIQ(t,O,E)I=|R1(t,£)|§a’((tt)),
DtEO(tvovg) = ( D(tvg) + Fo(t,g) )Eo(t,o,f)
—— ——

€52{1,0,0} €51{0,0,1}

= [DiEo(t,0,8)] < va) (e ~ Valt)a(t)[E]-
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Thus
vee(t, )z S Vat)alt)(lvoll gz + llorllgr)- (3.4.7)

Now we transform back to uy(¢,z). Using

Vit — b//Q"U + b2/4’U — b’l)t
()

Ugt =
and (3.4.7) we get

(TR

Now we shall derive the final estimate (3.4.2).

Small frequencies: |£] < ¢

< ‘W(kum Tl (348)

LZ

In this case this part of the extended phase space lies completely inside the elliptic zone. For this
reason, it follows from (3.4.6) that

A () a()
or@att e 5 (55 + 50 ) (e + sz
a2
s S (ol + lle). (3.49)

Here, we use the following proposition:

Proposition 3.4.4. Assume (B’1) and (OD). Then it holds
w(t) = A%(t). (3.4.10)

Proof. Due to Assumption (OD) we see that, at least, A(¢)/u(t) is decreasing and for large t we
obtain

LA, AW [ A), o A1) :
C 2/0 () dr > o) /0 a(t)dr > —=(A(t) — A(0)) = = pu(t) > A2(t).

This we wanted to prove. O

Large frequencies : |£] > ¢

Actually, according to our calculations in the reduced zone this zone does not influence our desired
estimates. Thus, we can glue this zone to the hyperbolic zone and call the new zone the hyperbolic
part. Let t¢ be the separating line between the hyperbolic part and the elliptic zone.

Case 1: t <t
In this case we use directly the result (3.4.8).

Case 2: t>1;
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In this case the elliptic zone lies on the top of the hyperbolic part. For this reason we have

ﬂtt(taf) = tt(t t{ f) (tf f)"‘q)tt(t t{af)ﬁt(t&f)-
(1) (2)

Using the estimates (3.4.6) for ®}(¢,t¢, &) and the estimates (3.3.46) for d(te, £), 4 (te, £) we obtain

a()e?  a ()¢l ta? i ()| i ()]
s (S ) (‘w (a&) T Vatle)

Cl2 2 CL2 tCLT
< (oo * zfzit’f‘)exp(—‘ﬁ'?/t 1/5(2& o))

)

% (Iel?[do(€)] + l€ll1 (€)]).

This implies

|71 (02t 00240, 1, 001, ) | < (a%) T ‘5323 (/Ot C‘Q(T)dr)l) (T

p(t) b(7)
(12
< & (ol + luall).

Here, we used the following proposition:

Proposition 3.4.5. Assume (B’1) and (OD). Then it holds

@ ta27_)7_
at)/o o) 7R AW

Proof. We have

b(t) [*a*(r), _ pt) [*a(r)A(T)
at)/o 5 dT—A /0 dr >

the statement is proved.

Analogously, we can prove the following estimate for (2):

a*(t)

() (lwollzzz + lluall ).

HF_1 (wQ(tv LA te, §)n(te, €)> ‘ ~

Summarizing we have

< a*(t)

[1b2(t, E) e (t, )2 S )

(luoll gz + llunll 1)

(3.4.11)

(3.4.12)

From the estimates (3.4.8), (3.4.9) and (3.4.12) we can conclude our desired estimate. This completes

the proof.

O]

1
From Lemma 3.4.3 we obtain 711“ — 0 in L?(R™) under the (H?, H') regularity for the data.

2
a
Now we consider the following differential equation

Gy + a>(t)|€|20 + b(t)iy = 0

(3.4.13)
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for all t. Taking into consideration the existence of 4(t, &) when t — oo we can see that

b B
tliglo aT(t)ut(t’ z) = —Au(oo, x) (3.4.14)

converges in L?(R™). Furthermore,

* a(r)

b(7)

This completes the proof. O

dr.

[u(00, ) = ult, ) L2 < / lue (7, 2) || 2dr < C(Jluall = + Hm!m)/
t t
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4. [P — L7 estimates on the conjugate line

As we did before we will divide our considerations into two cases, the case of non-effective dissipation
in Section 4.1 and the case of effective dissipation in Section 4.2.

4.1. The case of non-effective dissipation

In Section 4.1.1 we present the WKB analysis to get representations of solutions by Fourier multi-
pliers. Here we shall use symbol classes with infinite smoothness with respect to the time variable,
too. However, in Section 4.1.4 we will also study these Fourier multipliers by using stationary phase
method. The principal ideas were introduced by K. Yagdjian, [Yag97|, and M. Reissig - K. Yagdjian,
[R-Y00a].

4.1.1. Higher diagonalization modulo S{—p,—p,p+ 1}

Step 1. We will use again symbol classes which are defined in Definition 2.1.1, but now with
infinite smoothness with respect to phase and time variable (I = oo) as well. We will denote them
by S{mi,mas, ms}. The family of symbol classes S{m, mo, m3} satisfies corresponding properties
to those from Lemma 2.1.5. Starting the diagonalization procedure we recall the treatment in
Section 3.2.2. There we have already performed the first step of diagonalization. By using the new
symbol classes we get

(Dy — D(t,€) — Fo(t) — Ru(t,€)) UV (t,€) =0,

where D € S{1,1,0}, Fp € S{0,0,1}, and R; € S{0,0,1}. This step of diagonalization scheme we
call as the diagonalization mod S{0,0,1}. To prove LP — L9 estimates we need diagonalization mod
S{—p, —p,p + 1}, where p is a suitable chosen (large) number.

Step p+ 1. To carry out further steps of diagonalization we propose the following new conditions:

k
(A3 OO a0 (55 ) k=2

H\"
B2)® |,) < & —1.2....
We have the following lemma:

Lemma 4.1.1. Assume (A1), (A2), (A3)>*, (B1), (B2)>*, (B3) or (B3)’. Then there exist matriz-
valued functions

o Ny(t, &) € 5{0,0,0} are invertible for all (t,§) € Znyy(N) and N, ' (t,€) € S{0,0,0},

o I, 1(t,&) € S{0,0,1} are diagonal with F,_1(t,&) + z;;(é))f — i@[ € S{-1,-1,2},

o R,(t,&) € S{—p,—p,p+1}
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such that the following operator-valued identity holds:

(Dt - D(t7§) - R(t7§))Np(t7£) = Np(tvg) (Dt - D(tvé) - Fp—l“?f) - RP@?S)) (411)
for all (t,&) € Zpyp(N).

Proof. We introduce for Np(t,§) and F,(t,&) the following representations:
P P
Np(t&) :ZN(k)(t7£)¢ Fp(t&) :ZF(k)(t,E),
k=0 k=0

where N(O = [, BO) = R(¢t,¢) and F(O = diag B(") = Fy(t,£). Then we propose the following
scheme:

F®) .= diag(B®),

VD) ( 0 ~BY) /(2a(1)l¢]) )
By /(2a(t)[¢]) 0 ’

B(k+1) = (Dt —D — R>Np+1 — Np+1(Dt —D — Fp)

Now we will prove by induction that N*) € §{—k, —k, k} and B®) € S{—k, —k,k+ 1}. For k=0
we have already

FO €5{0,0,1}, NO e §{-1,-1,1}, BV € §{-1,-1,2}.
For k > 1 we apply an inductive argument, we assume B*) € S{—k, —k, k+1}. Thus, by definition

of N+ we have F*) € S{—k, —k,k+ 1} and N*+D € S{—k —1,—k — 1,k + 1} (from a(t)|¢| €
S{1,1,0}). Furthermore,

k+1 k+1 k
B#+D — (D, —D—R)(ZN@) _ (ZN(i))(Dt ~-D -3 FO)
§=0 j=0 j=0

— B(k) + [N(k+1),D] _ F(k) + DtN(k-‘rl) +RN(1€+1)
k+1

LN i PO _ (Z N(ﬁ) gk
j=0 j=0

Due to the construction scheme B*) 4 [N*+1) D] — F(¥) = 0 for all k, the sum of remaining terms
belongs to the symbol class S{—k — 1, —k — 1,k 4+ 2}. Thus, B*+t1) ¢ S{—k —1,—k — 1,k + 2}.
Consequently, the definition of B® implies the operator-valued identity

(Dt - D(t7 f) - R(t7 g))Np(tv f) = Np(ta 6) (Dt - D(tv f) - Fp—l(t7 6) - Rp(tv 6)) (412)

mod S{—p, —p, p+1}, where we used the notation R, (t,§) = Np_l(t, £)BW(t, &) € S{—p, —p,p+1}.
From the construction scheme we have N(¥) ¢ S{—k,—k, k}. Due to properties of the symbol class
S{—k,—k, k} we conclude ‘Ni(f)‘ < Ci/N*. Hence, for N large enough || N, — I|| < 1/2 in Zyy,(N).
This implies the invertibility of N,. The lemma is proved. O
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4.1.2. Some auxiliary estimates
In order to get estimates for the fundamental solution we need the following propositions:

Proposition 4.1.2. If a function g = g(|£|) satisfies for all £ € R™ and all multi-indices o the
estimates |di¢|g(€))] S €]71°, then it holds |Dgg(I€])| < I&|71e.

Proof. Applying Faa di Bruno’s formula for a multivariate version, see Lemma B.3.6 in section B.3
of Appendix, and performing straight-forward calculations we get

|

J
Degleh] = [X D Con g0 [T D2
j=1 Bl_ﬁé"?—f{:a i=1
1=

|al

J
S Y Caslla? el TTDE
=1

J=1 1+ +Bj=a
1B51>1

IN

|a|

< Z Z ycﬂlwﬁj|mfj‘€|f(\51\+...+\5j\)+j < Camflah

=1 B+ Bi=a

the desired estimate we wanted to prove. O

Due to this proposition, hereinafter we will replace proofs for statements for derivatives in £ by
proofs for statements by derivatives in |£|.

Proposition 4.1.3. Assume that t¢ is the separated line between the hyperbolic zone and the
dissipative zone. Then we have the following estimates:

|Dgtig | < s (4.1.3)

1
altig)
for all multi-indices o with |a| > 0.

Proof. We will apply the principle of induction. Let us consider the first derivative with respect to
€| of t|¢| that can be obtained directly from the following calculations:

Altg) N

A(tie)|€] = N = digtigiatie) €] + Atg) = 0 = digitje) = — =— . (4.1.4)
&l €111 gl &l €11l alte)|€] altie)) €2
Hence, we obtain
diertie = N (4.1.5)
l1b1gl = a(tm)’ﬂg' 1.
Now, let us assume that
k 1-k
’D\glt\il‘ (tlgl 1€~ (4.1.6)
holds for all 1 < k < p. Multiplying (4.1.5) by a(t|¢) and taking p derivatives with respect to |¢|
gives
& (dietiealte)) = chdk“t A2 Fa(te) = (1P (p +1)! N
le| (e[ ble| OT gl \§| ,5|2 lel el g l€| p RES

1=
= |d|€‘ t|§‘a(t‘§|)| S ‘£|p+2 +Z ’dlﬂ t‘ﬂdlf\ (tm)‘ (4.1.7)
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Applying Faa di Bruno’s formula (see Appendix: Lemma B.3.5) we have

n! -
n o (m1+m +.A.+mn) J
digalte) = 2t (ter) H (d\at\ﬂ) ’

where the sum is taken over all n-tuples of nonnegative integers (ml,mg, ...y My satisfying the
constraint

1-mi+2-mag+...4n-my, =n.
The assumption (A3)> together with (4.1.6) yields the estimate

n aftyg) \ ™ L 1 ™3
digaltie)] < Za(t5'><A(t|s) H<W>

< Yalt )(a@m))m”m*“*mn 1
~ €| A(tm) (a(t|§|)|£|)m1+m2+...+mn|£‘m1+2m2+...+nmn
a(tig)
< (4.1.8)
K
Combining (4.1.7) and (4.1.8) we obtain
-1
1 u 1 a(tie) 1
| ejaltie)] S + 7 S
e TN~ e kzoa@mmm [€f=F ~ T+
1
= [P < ————
gl tial S altie)) €2
This completes the proof. O

Proposition 4.1.4. Let us assume that g = g(|&|) with £ € R™\ {0} is an infinitely differentiable
function. Then it holds

di 9 = Cky, ko, ... Ky, 5)edIED Z > Hd‘ﬂg £]) (4.1.9)
J=1 k1+-+kj=mi=1
ijlzl

with k‘i 2 1.
Proof. This proposition will be proved by induction with respect to m. For m = 1 we have
dmeg('é‘) = g/(|§\)eg(|f|).

Now let us suppose that the equality (4.1.9) is valid for all m < k with & > 1. We shall prove this
equality for m = k + 1. We carry out straight-forward calculations to obtain

k J
k+1 k . ki
Al ealh = dal 1) = dig (Clhi b, kg, DS 3 g [T dla(€D)
j=1 k1+.,.+kj:k =1

k J
_ eé](ﬂ)C(kxl’kQ"H7]4;j’j)<z 3 ( (H) Hdmg €1) +d§|de“g'g(|£\)))
i=1

7=1 k1+..‘+kj=k
k+1

R S SR | (Y )

G=1 11+ +l=k+1i=1

The proof is completed. O
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Proposition 4.1.5. Let us introduce A fo T)dr. Then the following estimates hold :
1. |Dg (Alte)IEN)] < Calel~lo
2. |DFA()™| < Crma(t)FA(t)mF
3. |Dfeii‘4(t)‘5|\ < Cr(a(t)|E])F in the hyperbolic zone.

Proof. to 1. In order to prove the first statement we start with the following identity:

DE(AltIEll =] > CopnDe Altie) D
Br+B2=a
Thus, we need to estimate |D?1f~1(t|ﬂ)|. Moreover, from the definition of ¢|¢| we have fl(tm) = @ -1

It clues |D§1/~l(t‘§|)| < |€|71P11=1. This estimate helps us to conclude the desired inequality.
to 2. We will prove this statement by the induction principle with respect to two parameters k and

m. For fixed m and &k = 1 and for fixed k and m = 1 we can check our statement. Let us assume
that it holds for all £ < p with p > 1 and for all m < ¢ with ¢ > 1. We show our statement for
k=p+1,m=q+ 1. Indeed,
DY AR < |DP(a®)A))| = | D CijDial(t)DIA(t)]
i+j p
Cpirgtr Y al ( ) a(tY AT < Cppa gura(t)? A0,
i+j=p

IN

This completes the proof of the second statement.
to 3. In order to prove the third statement we apply directly Proposition 4.1.4 with respect to the

variable t. We get

,Dfema)\a‘ < ’im(t '5'2 Z H DFi(A \fl(

Jj=1k1+-+k;j=ki=1

k P
Wy > [[at 0 (G)" €1 < Cuatolel

J=1ki+- =ki=1

IN

The proof is completed. ]

Definition 4.1.1. The time-dependent function c(t,§) belongs to the symbol class
Stl2my mo, m3} with restricted smoothness 1, 1o, if it satisfies the following estimates:

St g, ma} = {e(t.€) + 1D Delt. )] < Canlé™ a0y (520)™ ™ in Zu()

for all |o] <o and k < ll}.
Obviously, it holds
Stz tmy my,ms} € SY%{my, my, ms} for all 1] <yl <ls.
Using the definition of hyperbolic zone we have
Sll’b{ml —k,mg —k,ms +k} C Sll’b{ml,mg,mg} for all £ > 0.

This property will be essentially used in the diagonalization scheme. We have also corresponding
properties to those ones from Lemma 2.1.5.
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Proposition 4.1.6. The family of symbol classes S22 {m1, mo, m3} generates a hierarchy of symbol
classes having the following properties:

Stl2fmy mo, m3} is a vector space.

o SUl2lmy my my} Stz {m), mlh, ms} € S {my +mi, ma + mh, mg +mh}.

DfDgS" 2 {my, my, mg} € Shklel{m) —|al,mg, ms + k}.

SO0{—1,-1,2} C LE Ly (Zhyp(N)).
Proposition 4.1.7. The following relations hold for all my, mo, ms :
1. eiiA(tm)'ﬂS{ml, ma, m3} — S{ml, ma, mg}.

2. eﬂ‘g(t)mSll’l?{ml, ma, m3} — S2{my +1,mg +1,mz —1}.
Herel =11 + 1s.

Proof. to 1. In order to prove the first statement we choose ¢ = ¢(t,&) € S{mi, ma, m3}. Then
it holds

\Dng(eﬂ%sl)\flc(t,5))\:] > C’al,QQD?leﬂ;‘(t\sl)meDg?c(t,{)

a1 tas=a

by the aid of Proposition 4.1.2, it is enough to consider the following estimates:

| Y CavwDg e A DE D1, )

a1 tas=a
o |

<Y Com(Clap]E 9SS [T (el ) kD)

al1tas=«a J=1 1 +.. A= |eep | i=1

3%

< Y Cam(C@)Y ¥ Hm ") D Dge(t,€)|

altas=« J=ll 4. Hlj=|a ] =1
< Y Copenlel g sateyme (551 = e lageys (501"
P v A(t) A()

In the third line we have used the first statement of Proposition 4.1.5.
to 2. If c(t,€) € S"2{my, ma, ms}, then it holds

DEDE (=A0e(t, 6)) = | 3 Y Chukwann DPDE (54O D D2t €)
k14+ko=k a1to2=a
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We take account of the following estimates:

Z Z Chy ey g DI ot < eiiA(t)Kl) Dk Delt, 5)‘

ki1+ko=k a1t+azc=«

< Y > D Ckmanasalla®) A@®) T D AORI D DE2et, )|

ki1+ko=k c1tas=ai+j=k;

< Z Z Z |Ck1,k27a1,a2,i,j’a(t)iA(t)‘allii(a(t)’5‘)j‘DfQDémc(tv§)‘

k1+ko=k a1tas=aitj=k;

IN

a m3+ka
2 D Cz’cl,@,al,aza(t)’“\£|’“A<t>'“1|§m1a?au)’"Q(A((tt))) ’

k1+ko=k a1t+az=a
— C/ m1+k—k2—\a2| m2+k+\a| kg \a2| a(t m37|a‘+|a2‘+k2
- k17k27a1702|£‘ a( ) (t)

k1+ko=k c1taz=a

< O e[ iad =l (pymart et )(A(t))

< Ck,alamﬁl—laa<t>m2“(ffx(<?)>m‘°’l+k.

)m3+k*(k+|a\)

Here we have used the property A(t)|¢| > N, it comes from the definition of the hyperbolic zone. In
the first line and in the third line the second and the third statement of Proposition 4.1.5 is applied,
correspondingly. This completes the proof of this proposition. O

Remark 4.1.1. The first statement of Proposition 4.1.7 tells us that it is allowed to extent the phase
function £+ ft‘ ¢ 7)dr|€] in exp (i 1 ft " dT\§|> which we use later to get LP — L? estimates to

the phase function + fo T)d7|€| in exp ( +i fo dT]{\) Here we use that the remainder term
exp < +1 fo“sl d7'|§]> satisfies

’D%eiﬂf‘;‘(tlﬂ)’ < Jg[lel. (4.1.10)

+il€| A(t)g))

Thus, we can put the term e into the amplitude.

4.1.3. Construction of a fundamental solution

Now we want to construct the fundamental solution as the solution of the following system

(Dt = D(t,6) — Fp1(t,€) — Rp(t,€)) Ep(t, 5,€) =0, Ep(s,s,€) = 1. (4.1.11)
Let Ey(t, s, &) be the fundamental solution to D; — D(t,£). We have
i [T a(r)dr|é]| O
Eo(t,s,§) = ( e . ol ) (4.1.12)
a(t) Als)

Let us define Ey(t,s,€) = Ey(t,s,€). We can see that this matrix-valued function is

the fundamental solution to

- D(t,€) — FO(t,9). (4.1.13)
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We define

Rp(tv Sa g) E()_l(ta S, E) (prl(tv f) + Rp<t7 5) - F(O) (t7 f))EO(t7 87 5)
= Fpa(t,0) = FO,E) + By ' (L5, Ry(t, §) Eo(t, 5,€). (4.1.14)
Here we recall that the matrix-valued function Q,(¢, s, &) is the solution to

(De = Ry(t,5,)) Qp(t,5,6) = 0, Qp(s,5,6) = 1. (4.1.15)

From the Peano-Baker formula we have that the solution to (4.1.15) can be represented as

00 t t1 tj—1
Qplt, s, &) = I+Zij/ Rp(t1,5,6) | Rp(ta,s,€)--- Ry(tj, s, €)dt;...dty.  (4.1.16)
j=1 s s s
The matrix Ey(t,s,§) can be represented as
~ A
Ep(tvs)f) = EO(tas7£)Qp(t787§) = )\((lt()t) i?l) Eo(tas7§)Qp(t)87€)' (4117)

Lemma 4.1.8. The matriz-valued function R, (t,t¢|,€) satisfies
Rp(t,tie, &) € S"P2{—p+1,—p+1lp+1—1} = S"={-1,-1,2} (4.1.18)
forallli+1lo=1<p-1.
Proof. Due to the representation of R,(t,s,§) in (4.1.14) we have
Rp(t g €) = Fpo1(t.€) = FO(1,6) + g (¢t €) Ry (1, €) Bo(t. gl €)-
As a result of Lemma 4.1.1 we obtain
Fpoa(t,6) — FO(t,€) € S{-1,-1,2},
thus, now only the remainder term
» p 2i[) a(r)drle|
Byl 11,€) = By (1t O Ry, ) Bolt b, ) = | Mg 120
“lel

p p
o€ 792

should be considered. Applying Lemma 4.1.1, Proposition 4.1.7 and Remark 4.1.1 we deduce
Ry(t,te, &) € S {—p+1,—p+1lp+1—1}— Sl{-1,-12} forall [ <p—1. O

Lemma 4.1.9. Assume (A1), (A2), (A3)>, (B1), (B2)*, (B3) or (B3)’. Then the fundamental
solution Ey(t,s,§) to (4.1.11) can be represented as

Ep(t,s,f) = \/%i\\((i))EO(t757§)Qp(t7sa€)

for all t,s > t¢| with an amplitude Qp(t, s,§) satisfying the following estimates:

IDEQp(t, e, )| < Cpan €] t >t

for all multi-indices v satisfying |a| < p— 1.
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Proof. Let us consider the first statement. The Cauchy condition is obviously satisfied. Further-
more, we have

DBy = DtEOQP + EthQp =(D+ F(O))EOQ;: + EORPQP
= D+FO94+F, | +R,— FOEy(ts,6Q,
= (D + Fp—l + Rp)Ep.

The first step of proof of the second statement arises from the unitary behavior of Ey(t,s,&). It
follows

IRy (t, 5, )| S (Fpa=FO) (&, )1+ Ry(t, €)|, where Ry(t,€) € S{—p, —p,p+1} C S{~1,~1,2}.
Applying the fourth statement of Lemma 2.1.5, that is,
S{_lv _172} - L?L%(Zhyp(N)%

we obtain

t
/ IRyt O)lldr < Cy

te|
for all ¢ > )¢. Hence,

t
1Qu(t. 1.l Sexp ([ IRyl €)ldr) <1

te|

Now let us take o derivatives with respect to ¢ in the representation formula for Q,(t,t¢,€) in
(4.1.16). Then

0 ) t t1 ti—1
DgQyp(t,te, &) = ZZ]D?</ Rp(ti, e, &) | Rplta, tg &) - Rp(tj, tiep, §)dtj - .. dt1)-
j=1 Ye| tiel tlel
Let us consider terms of the form
t t1 1
/t De'Rylt e, &) | De*Ryplta e, &)+ | D" Rylty g, )t -
l¢] l¢| l¢|

with Zi:l aj = |a|. Using Lemma 4.1.8 the norm of these terms can be estimated by
t
C'(a, p, N)/

(et G ') (s o (5 ))

X e X /:j_1 <|£—1—|aj|a(tj)—1(j((z)))2> dtj...dt

1€]
< C(a, p, N)|€| 1o,

Here the assumption |a] < p — 1 guarantees that ai < p — 1, which is necessary to apply Lemma
4.1.8. Accordingly, we only have to care for derivatives of the lower integral bound ¢|¢|. Then there

arise terms as D?,,g (Rp(t|§‘,t|£‘,§)D§t|§|) for |3| = 1 which can be estimated as follows:

a—pf o « g+
‘Dg (Rp(f\aat\swf)d\af\a))—‘ Y Caras DI Ryt e ) DE Pty

lar[+|az]=|a|-1

|- _q( altig) \2 1| o
Cla) 3l attg) ™ (G55 ) atte) el < Cavlel .

a1 [+|az|=|a]-1

IN
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To estimate the terms ‘Dg2+ﬂt|§|‘ we have used the result of Proposition 4.1.3. For the other terms
‘D?lRP(t‘ﬂ,tm,ﬁ)‘ we use the following statement:

If all the necessary derivatives are defined, then we have

a 2
| DERy(tie)s el €)| S 16171 altyg) (A(@))) . (4.1.19)

Indeed, due to the representation of R,(t,s,§) in (4.1.14) we have

Ryp(tie)s teps €) = Fp-1(tiep, €) = FO (11, €) + Ry(tyey, €) = Gltjg), €)-

Applying the generalized version of Faa di Bruno’s formula (See Appendix: Lemma B.3.7) we obtain
for the case |a| =n

Gltg €) = ZZ ZC”’%% 3p18a2(t|s\ o I (D)™ (Dgre)™,  (4.1.20)
tie) =1, |a|=1

where the respective sums are taken over all non-negative integer solutions of the Diophantine
equations as follows:

> = ki 42k + -+ nky =n,

Z—>Q11+Q12 =k,
1

Z = Gn1 + qn2 = kn,

n

and

n n
p1= Z%’jy o] = Z%‘%
i=1 i=1
k| =ki+ko+...+ky=p1+ ||

By virtue of 0¢, & = i we may conclude that g2 = 0, for all ¢ > 2 and |az| = g12. This yields the
estimate

e 1— |a2| a( ‘f|) 24P 0 g (lil+1)gin
| DgG(tg), €] ZZ Z|5\ altig) ™ Alte) [Tatte) 1"
i=1

ZZ Zm_l—%za(t )1 (a(tlﬁl))zw1 alte)) "PLE| P
ST S i Altie)) €l

“1- _p (altg) i - —p1—n+
2.0 Dl T altg) (A(t|£|)> altig) e
0 1 n

—1-qi2—pitqi2—n —1-p1 a(tlf\) Z
20321:-";'5 (tiel) <A(t|§)>

a(t 2
< ()
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Therefore || DEQp(t,te),€)|| can be estimated by CopN|EI712l, where we use C, v as a universal
constant depending on «,p, N. This completes the proof of this lemma. O

Remark 4.1.2. From Lemma 4.1.1 and Lemma 4.1.9 we have the following representation of the
micro-energy U (t, &) = (a(t)|€]a, D)1

_ Va(t) Als)

7MNp(t7 f)Eo(t, S, S)Qp(ta S, f)Np_l(Sa S)M_IU(Sa 5)

—Va(s) A1)

4.1.4. [P — [9 estimates

Theorem 4.1.10. If the conditions (A1), (A2), (A3)>*, (B1), (B2)>*, (B3) or (B3)’ and (C) hold,
then we have the following LP — LY estimates for the kinetic and the “elastic” energy:

U(t,¢)

n—1(1_1

1 —  _n-if1_1
ot ) Vult i, S 55 ValDAWD) G5 (s + 1wl o)
with regularity r = n(% — %), 1 <p<2 % —I-% = 1 and uo(-),u1(-) € S(R™). Here A(t) =
1+ fot a(T)dr.

Proof. The strategy of proof is based on the decomposition of the extended phase space into the
following three parts:

1. the dissipative part: Zg;ss := {(¢,€) : A(¢)|¢| < N},
2. the hyperbolic part with small frequencies: Zp,, := {(t,£) : A®)[¢| > § N |¢] < N},
3. the hyperbolic part with large frequencies: Zp,, := {(t,€) : |¢| > §}.

In order to separate the extended phase space we will use a smooth cut-off function ¢ € C*°(Ry)
such that ¥(r) =1 for r < 1/2, ¢(r) =0 for r > 1 and ¢’(r) < 0. Then we define functions 1, 12

and 13 as follows:
A

o = (5 (1-0 (209)).

P3(§) = 1—¢(|§>

such that ¥ (¢,€) + ¥2(t, &) + ¥3(§) = 1. Thus this decomposition corresponds to the definition of
the three parts which we have introduced before.

Estimates for the dissipative part

Let us come back to the micro-energy U(t,§) = (%ﬂ, Dﬂl) in the dissipative zone which can be

represented by
U(t7 f) =1 (t7 f)E(t, 0, f)U(O, 5)

Thus, it is reasonable to consider estimates for

[P (01t Bralt, 0,0 F )|

Y

La
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where v € S, Ej;(t,0,£), k = 1,2, 1 = 1,2 are the entries of the fundamental solution E(t,0,¢). It
holds

IF~1 (W1t €) Bry(t,0,) F(v)) || pa < [[¥1(t,€) Era(t,0,€)F(v)]|
< (O, 2o I Era(t,0,€) ||z [ F(0)llzo < CA(t)” "D | B, 0, €)oo [0 () | o

By Lemma 3.2.4 and Lemma 3.2.6 we get
ﬂ15 a(t)
E ta Oa o S { ( 17}

for all k,1 = 1,2. Summarizing we have shown

)|lze + HF (1/11(1? §a(t)|Elalt, )| La

IF~ (i (t,€ @(S(t :
Alt Y (lur ()l e + [fua ()]l o).

< max { a(t

(4.1.21)

Estimates for the hyperbolic part

Due to the Remark 4.1.2 the micro-energy U(t,€) = (a(t)|¢|d, Dy@)T can be represented as

ZEZ)) /\((i))MNp(t, &) Eo(t, s,€)Qp(t, 5, )N, (5,6) MU (s, €).

U(t> 5) =

For this reason we will investigate the following Fourier multipliers depending on the parameter ¢:

-1 (eﬂfi(tm va(t) As)
At) /a(s)

here we recall that A fo s)ds, r is a real number and v € S.

(L, €)IEl T F (),

An auxiliary result

The key tool to prove in this part is we use the following result, see more detail the Lemma B.2.2
in section B.2 of Appendix.

Lemma 4.1.11. Let us assume that K(t) is a real-valued function and d(t,§) € C§°(RE). Then
there exists a positive integer M such that

|F (emmmd(t,g)) Il < C(1+ K(t

gd(t, &)z~
jal<M

with a constant C which is independent of t and &.

Estimates in the hyperbolic part for large frequencies

In this part we shall study the following Fourier multiplier:

F71<¢( +iA t)lé\\ﬁ b(t, )&l F (v ))
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here the amplitude b = b(t, §) satisfies for all |a] < p — 1 the estimates
|DEB(E, &) < Canlg] ™o,

Here we use Np(t,§) € S{0,0,0} and [DgQp(¢,0,8)| < Conl€]71o for |a| < p—1. Now let us choose
a non-negative function ¢ = ¢(r) € Cg°(R,) with supp¢ C [1,1] such that D ® ¢(27Ir) =
1, r # 0. Furthermore, we define

silleh =o(278)) ez

The strategy of proof in this part is to obtain an LP — L9 estimate by interpolating L' — L and
L? — L? estimates with Riesz-Thorin interpolation theorem. We introduce

I = HF—l(w3<t,s>¢j<rf|>ei“‘“>ﬁ'ma-%(t,s))um,

a0 (1€he= t”f*rm b o)

[Nj
L' — L®estimates. For all j < 0 we have I; = fj = 0. For j > 0 we perform the change of variables

¢ = 2/ Nn and conclude as follows, where v3(¢) = 1 for j > 2:

( (Inl)e +i2i NA t)m\\ﬁ |~ b(t 2JNU>H

< CQ](TL r)

n—1

< AN (142N A()) *F Z | D (stmbinl ot 2 Nm) |
| <M

A(t)

< Czj(nfr)(l_FQJ'NA(t))_nT_l a(t) sup |n’*T*\a|(2J'N)|5|(QJN‘UD*W
M L 1222

< Ooitn=n) gpy-25t Valt)

< C2 A(t)” 2 N0

Here we have used in the second estimate the auxiliary Lemma 4.1.11 with a suitably positive
constant M. The constant M determines the necessary steps of diagonalization. Additional, we take
advantage of 1+ A(t) <142/ NA(t) for all 7 > 0 and N sufficiently large. Summarizing gives

P71 (ws(©)e5(JgherAne @rﬂ% OF)(©)|

LOO

< 2““-”%“(1 FAB) T ).

L2 — L2 estimates. In order to derive an L2 — L? estimate we shall estimate fj. We have

I; C UE) (3 Ny T (. 29 Nop) | < YA o
i < 1/28<u|71f]>|<2¢!77\) (t)( [n)~"[b(t, 22 Nn)| < )

for 7 > 0. Consequently, we arrive at the following estimate:

HF1(w3<s>¢j<\f|>e“<t>'f@\aTb(t,s>F<v><~>)\ 2 Ollze-
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LP — L1 estimates. Applying the above mentioned interpolation argument yields

[P (ws(©@s(lgherAone @ €l7"b(t. P (0)()|

<2090V 1 4wy 6D o) 1

La

Finally, we conclude after fixing the regularity r = n(% — %) and applying Brenner’s lemma for
p € (1, 2] the following estimate

HF—l (1&3(5) +iA(t \§|\/7 tf)|§’_TF( )> < (l(t) (1_i_A(t))*anl(%f%)”v(')HLp'

L~ A\(t)

Therefore, we have

| (wg(g)eimm@b(t, &)1 F (a(O) DI u(0, ) + [D"u(0,)) )|

La

< a(t) (1 4 A(t))*nTilG*%) (HUI(')”LP,T+1 + [Jua ()|l Lr.r)-

Summarizing all estimates which we derived in this part of the extended phase space leads to

5= (€t Dl -+ [ (a0t ) o
< V20 (14 a@) T G0 (Ol s + JuzOllo).

—~

(4.1.22)

Estimates in the hyperbolic part for small frequencies

In this part of the extended phase space we deal with bounded frequencies || < N and unbounded
At)[¢] > & Let us consider the Fourier multiplier

. (wz(t, g)eﬂ-f;‘{‘ a(s)dsle| \A/c(tt()t) A(t(':))bl(t, &) Bultg 0. 5)‘§|_TF(,U)>7
a(tyg

where v € S, Eyi(t),0,€), k,1 = 1,2, are the entries of the fundamental solution E(t¢[,0,§). We
can rewrite this Fourier multiplier in the following form

+iA(t)[¢] V

! (wg(t,g) b(t,&)|E| " F( ))

where we introduced the amplitude b(t,¢) which is defined by

b.6) = o (77 [ aloyisle) Lt .

v elte)

and which satisfies the estimates

|Dgg(t7 5)‘ < Ca,N|§|_‘a|
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for all [a| < p—1. Here we use Ny(t,£) € S{0,0,0}, |[DgQp(t, tg, §)| < Co,
and Remark 4.1.1. We use again a dyadic decomposition by defining

el =o (29208 ez

with ¢ € C§° being introduced as above. Then for all j < 0 the product ¥»(t, §)¢;(t,§) vanishes.
Thus, for j > 0 we will estimate the following L norms:

“lol for all || < p—1

I = HF‘l(wz(t,é)@(t,IEI)eiiA(t)g'@lﬁl‘rw(lﬁlN‘l)E(t,f))HLOO,

I = |patt. 005t lé)em(t“'@!5\‘%(\5!N‘1)5(h€)HLW

We perform the change of variables A(t)¢ = 2/ Nn and estimate as follows:

I < Ctn A

—1<¢(|n|)eﬂ:z‘27'Nln\ erw(?jlnl)g( 72]N17 )HLw

A(t) A(t)
< 2N (1 4 2T NI A ) F Z HD%I DInl~"¥ (A(’?)‘)E(t’ ZZ;?)HLOO
J(mt r—n) V(?) su ~rolal (217 ﬂ *W‘
< o2l L A(t) +ﬁZ|<M1/2§5<2|77| | ‘(A(t)) <A(t))

< ("5 ) Ay ) A‘(‘t(;).

Here we have used in the second estimate the auxiliary Lemma 4.1.11 with a suitably chosen positive
constant M. Thus, we have

|7~ (vatt. 90560150 4D, e m) | £ 20 4D o

L? — L2 estimates. Now we shall estimate fj. We have

N Jall) (2N
hse, Wy (o)

() (e 500 £ Yoo auy

O

for 7 > 0. This implies immediately

[ (. 001,00 YD s, )|

< VA o)l

L2

LP — L7 estimates. Applying again the interpolation argument we get

Va(t)
()

SE A G R LU ) el G ST P

P71 (028,065 (1, )eF A NLL ey ([ N1b(E ) F(0)() ) |

La
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Therefore, we can conclude after the choice r = "T‘H (% — %) and Brenner’s lemma for p € (1,2] the
following estimate uniformly for all 5 > 0:

N—r
—~
—_
~—~
~~
SN—
N
|
-
~
i
Q
~——
=1
—
~
~
b

wf%wmo%“Wfﬁg%w@mTﬂwmms jg

From the last estimate it follows

HF,l (%(t’ g)eiiﬁ(tm@[;(t, g)\gﬁp(m\" (Z((%))u(o, ) + (0, )))) ‘

A,Q?Q+Amr?“*”mmouwmemw

La

Summarizing all estimates which we derived in this part of the extended phase space we may
conclude

1= (2 (8, €)tue(t, ) l|La + 1 F~H(Wha(t, E)alt) gl alt, )| Ls

. L (1 4.1.23
< Va0 (14 40) "7 678 (lusOllos + s 10)- (4.1.23)

Combining and comparing the decay estimates from the three different parts of the extended phase
space we see that the decay in the dissipative part is better than those in the hyperbolic parts.
The desired regularity comes from the hyperbolic part with large frequencies and the desired decay
comes from the the hyperbolic part with small frequencies. In this way the proof is completed. [

4.2. The case of effective dissipation
We recall our model of interest:
ug — a(t)?Au 4 b(t)uy = 0, u(0,z) = uy(x), u(0,2) = uz(x), (4.2.1)

where the propagation speed term a = a(t) satisfies the assumptions (A1) to (A3) and the dissipative
term b = b(t) satisfies the assumptions (B’1) to (B’4). At the beginning we prove the following
auxiliary lemma for large ¢.

Lemma 4.2.1. 1. Under the assumption (B'1) the following inequality holds :

Hmsexp <_‘€’2/0t 622((77))‘17) 8 </Ot “bz((:)) d7>_;_£’_

t
2. If we suppose the assumptions (B'1), (B'3) and i(@)) is a monotonic decreasing function, then

BR(t) [t a(r)
w@A o) "

3. If we suppose the assumptions (B'1) and (B'3) and if we choose a € R, then the following
function is monotonously increasing for large t:

<1 + /O t ‘f((:)) d7> ) (%)

the function

tends to oo for t to oo.
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Proof. Direct calculations will prove the first statement. Indeed, we have

(ferese (=1et [} )" < [ (e (< e [ 550r) e
- /0 "l exp (- plef? / o (( )) )i
/ Cn+ap 1 7p<d§< ) ntap
t 2
(e ) e ) 5
Here we used the change of variables

|£|2/ a(( ))d ac —

To prove the second statement we conclude in the following way:

P M), B [fa@AR)
a2<t>/o o) dT‘A?(t)fo C eIy

S ) @) 1 e /ta
0

here we used the Assumption (B’2): |1/ (t)| < cu(t)a(t)/A(t). From the last estimate we obtain

2 ta(m)A(T ?
7 (t)/ (u)(f)( )Wzic(u(w—“ Y1) 2 o).

We note that % is decreasing and p(t) — oo as t — oo.
To prove the last statement we study the derivative

to2(r N
at(<1+/0 b((T))dT> A(t))
ta2(r a—1g2 tal(r o
:a(1+/0 b((T))dr) 1 b(g)A(tHb(;)(H/o b((T)) ) A
(. [am) \o )
= QbEi) (1 +/0 b(T)) dT) 1>\(t) <2a + b2$>) E?) / (( ] dT)

Combining with the second statement for « is fixed, we can find a sufficiently large time tg = to(«)
such that the expression is positive for all ¢ > ¢y. The lemma is proved. O

The strategy for getting LP — L9 estimates on the conjugate line for effective dissipations is to
estimate the L'-norm of the Fourier multiplier to get a L' — L™ estimate and apply the Riesz-
Thorin interpolation theorem with the previously obtained L? — L? estimates. We have the following
theorem.
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Theorem 4.2.2. Assume the conditions (B’1) to (B’}). Then for all times t we have the LP — L2
decay estimate

(2. )Vt )] S alt)(1+ [ C;((f))dT>—2—z(,,_q)

(HUIHLP’TH + HU2HLW),

1 1 _ 1 1
wherer>n(f—f) withl <p<2and -+ —-=1.
p q b q

Proof. As we mentioned before it remains to derive a L' — L™ estimate. For this reason we devote
to estimate the following L'-norm:

1K) E(t, 0,8 11
We will investigate the localized L'-norm in different zones separately.

Small frequencies

1
Dissipative zone: €] < A0 Inside this zone all entries of E(¢,0,) can be estimated by a((tt)).
Consequently, the desired L'-norm can be estimated by
S a(t) 1
—Zlertdle] S a) AR 4.2.2
| e < aa) (1.2

with &, is the inverse of #¢, .

Region Il N {|€] < co}. In this region we have ({) ~ 1 and from Corollary 3.3.10 we get that all
components of E(t,0,&) can be estimated by

o (~1e? [ S ar)aoiel

After application of the first statement in Lemma 4.2.1 we can estimate the desired L'-norm by

. Ca(r)  \h3

IE@ 0, ) e (arunflel<eo) S a(t)<1 + dT) : (4.2.3)
o b(7)

p(t)

A(t)

then the elliptic region lies on top of the hyperbolic region which is away from frequency 0. In this

case, the small frequencies lie completely in the elliptic zone.

t
Now let us consider the case % decreases and tends to 0 as ¢ — oo. Using Corollary 3.3.12 we

have for large ¢ the following estimates, where &;; denotes the inverse of Z¢,:

Region T, N{|¢] < co}. Let us distinguish two cases. If increases and tends to co as t — oo,

co t3 2 A
120, e S 167 exo (= 6 [ 58 ar) 06Dl fate e

co leg CLQ T % leg CL2 T
[k [ ) e (<1ep [ G e

t3

tes o2(r —nHL A (g, tes 02(r 1
X(/O5 b(T)dT> Ax(ii))a(t)d(m(/og b((f))dT) )
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Here we have used the monotonic increasing behavior of the function

ta2 T _"T'H
( /0 b((f)) dT) A®)

from the third statement of Lemma 4.2.1.

Large frequencies |§| > ¢

In this case the L'-norm of the multiplier can be estimated with 7 > n as follows:

KO E(# 0,y S I B, 0,8) |z < [1E(E, 0, ) zoe-

hyp N {|€] > ¢} : From Lemma 3.3.3 and Remark 3.3.5 we have that the fundamental solution can
be uniformly estimated by

a(t)
|E(t,0,8)] < OB (4.2.4)
Iy N {|&] > ¢} : In this case we have the estimate
' a2(r)
|E(t,0,6)] < a(t) exp ( - cg/o ) dr). (4.2.5)

The decay behaviors in (4.2.2), (4.2.4) and (4.2.5) are not slower than the decay behavior a(t) (1 +
_ntl
g a;((:)) dT) * which we obtained from our considerations for small frequencies. Indeed, in order

to compare the decay behavior in (4.2.2) with the above one we use the following calculation:

tar)  [faAE) ,  [PA@) )
tAwﬂ”‘A () dgﬁ;m““”g“”’

here, due to u(t) — oo as t — oo it exists a constant o such that wu(t) > po for large t.
_n+1

Comparing (4.2.4) with a(t) (14—[5 abz((:)) dT) 2 by the aid of the monotonously increasing property

(6
of <1 + fg a;((:)) d’i‘) A(t) we conclude the desired dominance (with the choice « = —(n+1)/2). The
decay behavior from (4.2.5) is of course faster than the behavior we are interested in because the
exponential function is more dominant than any power function. Thus, the decay behavior appearing

in the L' — L® estimate uniformly for all frequencies is
_ntl

ta2(r 3
a(t)<1+/0 b((T))dT) .

Combining with the estimate of L? — L? in Theorem 3.3.14 by the aid of Riesz-Thorin interpolation
theorem we will get the desired estimate. In this way the theorem is proved. O
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5. Global existence of small data solutions to
semi-linear dissipative wave models

5.1. Semi-linear models with non-effective dissipation

We are interested in the study of global existence (in time) of small data solutions to the following
semi-linear Cauchy problem

ug — a(t)?Au 4 b(t)uy = u? — a(t)?|Veul?, u(0,2) = uy(z), u(0,2) = uz () (5.1.1)
with data u;(z) and ug(z) belonging to C§°(R™). If we apply Nirenberg’s transformation
v(t,z) =1 — exp(—u(t,x)), (5.1.2)
then the Cauchy problem (5.1.1) can be rewritten as the following linear Cauchy problem
vy — a(t)?Av + b(t)v; = 0,
v(0,2) = vi(x) =1 —exp(—ui(z)), vi(0,2) =vo(z) = uz(x) exp(—ui(x))
with data v;(z) and ve(z) belonging to C§°(R™) and with the constrain condition
v(t,z) < 1.

This constrain condition follows from the transformation (5.1.2) and the goal to get global (in time)
solutions. Let us recall the assumptions to the coefficient a = a(t):

e (Al) a(t) >0, d/(t) > 0 for t € [0, 00),

o (A2) ap < a(t) < a1, ag,a; >0, C;/((;)) = oz(t)jl((?),
e (A3) |d"(t)] < aza(t) (1(411((2)27 az > 0,
and b =b(t) := ,u(t)jl(é)) with a little change to assumption (B3) as follows:

(B1) b(t) >0, b¢ L'(R),

(B2) |1(1)] < cumzs)“‘é),

(B3) limsup;_, ., p(t) < max { limsup,_,, a(t),1}.

Then the following statement is true for the case n > 1.
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Theorem 5.1.1. Suppose that the coefficients a = a(t) and b = b(t) satisfy the assumptions (Al)
0 (A3) and (B1) to (B3), respectively. Then the solution v = v(t, ) satisfies the following a-priori
estimate:

[(t, )lloo < Ce(N) (DY =wol|1 + (D)~ wul1) (5.1.3)

foralle >0 and n > 1.

Proof. We will only sketch the proof. Applying partial Fourier transformation we get the equation
Dy + a?(t)|€)?0 + b(t)9; = 0. We carry out the proof in two zones of the extended phase space
(0,00) x R™. These zones are defined as in Section 3.2 as

hd Zhyp(N) ={(t &t = t\ﬂ}’
L Zdiss(N) = {(t,f) 0<t< t|§‘}’

where || satisfies A(t¢))[{| = N. Let V = (a(t)|€]0, Do), Then V satisfies

Dta
DV = A(t,€)V = ( o0l ) 1% (5.1.4)
a(t)|€]  ib(t)

We will derive estimates for the fundamental solution E = E(t,s,£) of this first order system with
data E(s,s,&) = I. Thus,

V(t7 f) = E(t7 87 g)v(87 f)'

In the dissipative zone Zg;ss(IV) straight-forward calculations and the definition of this zone give

B0 < e ( [ 14molr)

t CL,(T) t
< exp | max sup / +a(7)|€|)dr, sup / b(1) + a(7)|€|)dT
< {(tvé)ezdiss 0 (CL(T) ( )| ’> (tvg)ezdiss 0 ( ( ) ( )’ ‘) }>
< Cnexp (max{ sup /t @(7) dr, sup /t,u(T) a(7) d’i‘})
N te(0,00)Jo a(T)  te(0,00) Jo A(T)
S CNa(t).
Here we used pu(t) Z((?) = &t; )) and assumption (B3). Moreover, from the representation of V (¢, €)
we obtain
a(t)[€]0(t, &) = Eni(t, 0,€)a(0)|€]0o — iE12(2, 0, €)1,
thus,
. a(0 X
|U(t7£)‘ = a((t))Ell(t>O>£)U0 ( )‘§|E12(t 0 g ’Ul) < CN|U0‘ + CN|£| 1|U1‘ (515)

In the hyperbolic zone Zj,,(IN) we carry out again two steps of diagonalization as in Section 3.2.2.
Then we obtain the following estimate:

A
at) (% (5.1.6)

|E( te, I S
a(ty)
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for all ¢ > t¢. On the other hand we have the following representation of solution

a®)IElot, &) ) _ a(0)I¢l0 (€)
( Dyis(t, €) )‘E(tv%l’f)E(ﬁs»O,ﬁ)( i (©) > (5.1.7)

Combining the formula (5.1.7) with the estimate (5.1.6) and the estimate in the dissipative zone we

get
" Atig))

a(t)[E][|o(t, €]

IN
IS
—~
S
"~
t/
>
—~
~
SN—

—— g
o)) < on YU VIV 0)a0] 1l fin])

IN

< Cnliol + Cnlel™ ol (5.1.8)

Combining both formula (5.1.5) and (5.1.8) we get the final estimate

[o(t, )]l < H o(t, ‘)Hl < Cn|looll + Clllgl ™ 01 lx
< On (14 "I IE™ “Bolloo + IKE) "~ IEI M I 1) 01 lloo)
< On(I(D)"*“wolly + (D)™~ *€v1 1)
for all n > 1 and v; € C§°(R"™), i = 1,2. This completes the proof. O

We can immediately conclude the global existence of small data solutions for our semi-linear problem
in the case n > 1.

Corollary 5.1.2. Under the assumptions of Theorem 5.1.1 there exists a unique global (in time)
classical solution u = u(t,x) to

ug — a(t)?Au+ b(t)uy = ul — a(t)?|Veul?, u(0,2) = eur(z), u(0,) = eus(x)

for given ug,u; € CF(R™),n > 1, and all € € [0,€") with an in general suitable positive and small

€*.

Now we will formulate the statement for the case of dimension n = 1. In this formulation we use
again assumptions for a(t) and b(¢) which were recalled at the beginning of this section. There is a
small modification of assumption (B3) in the following way: There exists a constant g9 > 0 small
enough such that the following condition

(B3)” 1 —da(t) —ep < liminf; oo p(t) < limsup, o p(t) <1

holds with an arbitrary & satisfying § < liminf;_ o a(t) 1.

Theorem 5.1.3. Letl us suppose that the coefficients a = a(t) and b = b(t) satisfy the assumptions
(A1) to (A3), (B1), (B2) and (B3)’, respectively. Then the solution v = v(t, x) satisfies the following
a-priori estimate:

Jo(t, Yoo < Cs, MDY voll 11 + Cleo, N lon 1 + Cls, N)(DY " on |y (5.1.9)

for all s > 1.
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Proof. In the further calculations we will use the following statement:

Proposition 5.1.4. The assumption (B3)" implies that

Proof. We have

This gives the desired statement. O

We also divide the extended phase space into the dissipative zone Zy;s(/N) and the hyperbolic zone
Zhyp(N). In order to prove our statement we distinguish between two cases:

1.case large frequencies {|§| > N}:

This part of the extended phase space belongs completely to Zp,,(N). Let us choose a smooth
function x(r) =1 for r < 1/2, x(r) = 0 for r > 1. According to the statement of Corollary 3.2.7 in
Chapter 3 we have

alellotr. 1 < 24D (1 (1)) ayieloo] + o)

for all ¢t > 0. Thus

(=Tl

IA

(5.1.10)

1+H(l— (¥)ea,)

*0o/| oo

[ =x(5))ote],
. W(( (K))AO}

< a0 @

+H<,gl>s 1 X(Jfr')) &l o ,.)
< C(IKD)vollpr + I1{DY* Mol 1) (5.1.11)

for all s > 1.
2.case small frequencies {|{| < N}:

Here we have to divide our considerations in those in the dissipative zone and in the hyperbolic

zone.
+ T
Zgiss(IN): We will follow the reasoning in Section 3.2.1. Therefore we define V = (N 51((2) D th)) .
Thus V satisfies e
N t(()) N(S(t)
DV = AL, &)V, A(t,§) = ( )|§|2 ) (5.1.12)
ib(t)

TNo(t)
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here, 0(t) := jl((?)' The solution V' = V (¢, §) can be represented as V(t,€) = E(t, s,£)V (s, &), where

E(t,s,&) is the fundamental solution, that is, the solution to the system
tE(t,5,8) = A(t,§E({, s,€), E(s,5,{) =1, 0<s<t <t

According to Lemma 3.2.4 from Section 3.2.1 we have the following estimate:

=
~—~
~
S~—
S
—~
~~
N—
—
|
9

—~
~~
N—
>
()
N
~+~
S~—

(1E(,0,6)]) S (5.1.13)
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Using the above representation for V(¢,&) we get

a(t)
A(t)

a(0
A(0)

0(t,€) = En1(t,0,8) =X (&l/N)x(t/t1¢)00(§) — iBra(t, 0, )X (IE]/N)x (t/t1¢)01.(E)-

This gives the estimate

66,6 < 120 (8,001 2 (B (Y o)) + 1212, 0,01 22 (B (s @) (5,114
a(t) "\ N tm a(t) \N tu

Thanks to the estimates (5.1.13) and (5.1.14) we obtain the following estimate:

o069 < Ox () (75 )@l + o (WL ) o
Summarizing the application of Proposition 5.1.4 implies
o < ICXGE )i
NG Yol + e (W x ()

OIS GE ol + 12 (5 )x (7 sl

C(N)lvollLr + NHET=xUEl/N) L vall 1
C(N)lvollr + C(e0, N) vl e (5.1.15)

[xX(IDI/N)x(¢/tipo(t, )

IN

Ll

IN

<
<

Zhyp(N): Applying again Corollary 3.2.7 from Chapter 3 we get

alellote)] < © ;gf)) (t(f')) (5 (- x(55) Ctnepititg, 01 + e, )
€]

A
S
=
\_/
A
=k
o
S~—

alte) X
)\(t) a(tlf\) <‘]§7|> ( X(t;)) (Azt?) |0t ) + |Ut<t|§|>£)’>

a®) Altg) ) 5oy + 2D
a > 7) (@)( X<t|tg)><A(tlt||§|)’v0(§)H Agza) ’Ul(ﬁ)’)

N



106 5. Global existence of small data solutions to semi-linear dissipative wave models

Thus

) altie) Ate) /] t 1 1 .
[0(t,6)] < WT <*)( X<t|f)>(W|UO(£)|+a(t|§|)6)\2(t$|)‘§|U1(£)|)

—_——
<1 =1

) Altge) X
() (=g @+ s () (=g eon
In this way we conclude with Proposition 5.1.4 the final estimate
() (- x())eteo | < () (x|
S LCIRCLE

Ll

o PR ()

It

< ;) OGO il + |y (R) (- )
< C(N)llvollr + Cleo, N)[[vallpr- (5.1.16)
Combining (5.1.10), (5.1.15) and (5.1.16) we obtain for all s > 1 the estimate
lo(t, )l < C(s, N)(D)*vol 1 + Cleo, N)Jvi]l 1 + C(s, N)[{D)* il 1.
This completes the proof. O

An immediate consequence of Theorem 5.1.3 is the following statement for our semi-linear Cauchy
problem in the one-dimensional case.

Corollary 5.1.5. Under the assumptions of Theorem 5.1.3 there exists a unique global (in time)
classical solution uw = u(t,x) to

ugy — a(t) gy +0(t)us = u? — a(t)*u?, u(0,z) = eur(z), u(0,2) = eus(x)
for given ug,u; € Cg°(R) and all € € [0,€*) with an in general suitable positive and small €*.

Let us compare our results with the results from Ebert-Reissig [E-R11] for the case b(t) = 0. For this
case, the assumptions (B1) and (B2) disappear and the assumption (B3)’ is automatically satisfied
for any fixed 9 > 0. It turns out that we only need the assumptions (Al) to (A3) in Theorem
5.1.3. Whereas, the a-priori estimate (5.1.9) in Theorem 5.1.3 coincides with a-priori estimate (15)
in Theorem 2.1, [E-R11|. The difference between both theorems is that we herein use the lower

bound
a(t) < a'(t)

“A@) ~ alh)

for large t in the assumption (A2). In their theorem they only use the upper bound. Moreover, the
additional assumption

te = ATH(N/I¢]) € L'(-1,1)

was used there.
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5.2. Semi-linear models with effective dissipation

In this section we will consider the following semi-linear Cauchy problem
ug — a(t)>Au+ b(t)u; = |ulP, u(0,2) = uy (), u(0,2) = uz(x), (5.2.1)

where the coefficient a(t) satisfies the assumptions (A1) to (A3) from the previous section. Let us
recall the assumptions for the time-dependent damping term b(t)u; in the case it is called effective
dissipation term. We suppose

a(t

(B'1) b(t) >0, b(t) = “(t)ﬁ’

k
®2) Jabu(o)] < Cunt) (535 ) for k= 1.2

t
(B’3) M(t) is monotone, and pu(t) — oo as t — oo,

Cl2 a
wy) G = U2 ¢ nwy),
()
b

(B’5) € LY(R,).

5.2.1. Matsumura-type estimates for parameter-dependent linear Cauchy problems

In order to prove results for the semi-linear model we shall derive estimates for solutions to the
following family of parameter-dependent Cauchy problems with suitable initial data (0, g(s,x)):

v — a(t)?Av 4+ b(t)v; = 0, v(s,x) = 0, v(s,x) = g(s,z), (5.2.2)
where ¢ € [s,00), and s > 0.

Definition 5.2.1. We denote by B,(s,t) the primitive of a*(t)/b(t) which vanishes at t = s and
which is defined by

ta2 T
Bals,1) = / b((r)) dr = Ba(0,4) — Ba(0, 5). (5.2.3)

We have the following result for estimates of solutions to (5.2.2):

Theorem 5.2.1. We assume that a(t) satisfies the assumptions (A1) to (A3), b(t) salisfies the
assumptions (B’1) to (B’5) and g(s,-) € L™ N L? for some m € [1,2]. Then the solution v(t,z) to
(5.2.2) satisfies the following Matsumura-type estimates for t > s:

It e < c()(ls)(uBa(s,t))‘?(fn‘%)\g(s,~>||yw, (5.2.0)

IVt e < cbé)(uBa(s,t))’5(715)%Hg<s,->uw, (5.2.5)
(0 331

[oe(t, M2 < b(s)b(t)(1+Ba(s’t)) ( ) lg(ss ) Lmarz- (5.2.6)

The non-negative constant C is independent of s.
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Proof. We apply the partial Fourier transformation to (5.2.2) and use the change of variables

w(t, &) = )\((gﬁ(t,g), () = exp (% /Ot b(r)dr). (5.2.7)
Then we get the Cauchy problem
w” +m(t,)w =0, w(s, &) =0,uw'(s,&) = §(s, &), (5.2.8)
where
b? v
mt6) = @l -2 1Y
_ o 1E()aP(t)  p(t)a(t)y’
= a0l - 4A42()) < 2A(t) ) '
Let us introduce n(t) := % = % and ( = /a2(t)|€|> — b2(t)/4. Similar to the consider-

ations from Section 3.3 we also divide the extended phase space [s,00) x R™ into four zones: the
hyperbolic, pseudo-differential, reduced and elliptic zone. We denote

Noo 1= tlggo n(t) € [0, o).
This limit exists because of the monotonic behavior of n(t).

We define . - <§>b(t) >b t)
(1.6 = x( iy Jeam® + (1=x( iy )) Vim0

where x € C*°[0, +00) localizes: x(p) =1if 0 < p <1/2and x(p) =0if p > 1. By the definition of
Zreq(€), for any (t,€) € Zyeq(€), it implies that |m(t, )| > Cea®(t)n?(t), thus h(t, &) > Crea(t)n(t).
Let W(t,€) = (h(t,)w(t, &), Dyw(t, €))T. Then we get

wie.o = (2SS MG ) wee weso = 0o 629
A(t,€)

We denote by EW(t,t1,€) the fundamental solution to (5.2.9) for any t > t; > s, i.e., the solution
to

DyEY (t,11,€) = A(t, ) BV (t,11,€), BV (t1,11,€) = I. (5.2.10)

It is clear that W (t,&) = EW (t,s,€)(0, —ig(s,€))T and that EW (t,t1,&) = EV (t,te, ) EW (ta, 11, €)
for any t > to > t1 > s. For ty <ty and (t1,£), (t2,€) € Znyp(N, €) we will introduce EW(ty, t1,€) =
E,‘gp(tg, t1,€) and we introduce corresponding notations in the other zones.

Remark 5.2.1. In Section 3.3 we used another energy V (t,€) = (h(t, £)v(t, &), Dyv(t, £)) with
- (o) (o)
= [ A, 1— P S,
(1) = x( iy @m0 + (1= x( ) €
and we have considered the fundamental solution Ey (t,t1,£) as the solution to

DyBy(t,t1,€) = ( Dmfgfgmtg’ "9 )Ev@,tl,f), By(th,©) =1 (3211)

Since h(tvg) ~ m(taé) ~ <£>b(t) ~ ;L(tvg) for all (tvg) ¢ ZTed(E) and h’(taé) = m(t)n(t) = B(ta 5)
for all (t,&) € Zyeq(€) we can use for EW (¢, 1, €) all results which we have proved in Section 3.3 for
Ey (t7 l1, g)
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FEstimates in the zones

Applying in the hyperbolic zone Zp,,(NN) the results from Lemma 3.3.3 leads to

Following Remark 3.3.3 the pseudo-differential zone Z, 4(NN,€) can be skipped (in one part we can
apply the result from the hyperbolic zone, the other part is compact).
In the reduced zone Z,.4(€) we use the result from Lemma 3.3.6. It implies

t2 M(t5)2C€
|ENy(ta,t1,€)| < exp (Cf/ b(T)dT> - )‘Etj;we

t1

In the elliptic zone Zg;(€) by the result from Lemma 3.3.5 it follows

B 21,0 < o ([ bryar)

t1

Representation of the solution
Now we return to our problem (5.2.2). Let us assume that

is the solution to (5.2.8). Together with the representation of the fundamental solution EW (5,1, s)
n (5.2.10) we obtain

(0 pra ) (090, = ding (1/n(0. . DEY (15,0, (5. )".

that is,
U(t,s,€) = —iBYy (t,5,€)/h(t,€), Ui(t,s,€&) =E(t,s,€).

On the other hand we write the Fourier transform of the solution to (5.2.2) as

0(t,€) = d(t,5,)d(s, €).
Recalling (5.2.7) we have

(ﬁ(tvsvf) = ;\((QS;\II( ’ 75) i((j)) h(t £)E12( ’ 76))

bilts,0) = 2 )) Uyt 5,€) —b(;)\lf(t,s,g)) (5.2.13)
_ A( ) ;o)
- W(E22( ’ 75) (t é) ( ’ 75))

In our proof we will distinguish into four cases: n(t) \, 0, n(t) \ Moo > 0, () Moo > 0, and
n(t) / oo. In order to get better overview we prefer to use illustrated figures for these cases.

Case 1. n(t) 0
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t
Zhyp
tred
e
'\\”\ Zred
0 €]

Fig. 5.1.: An illustrated picture for the case n(t) \ 0.

Case 2. n(t) \( Moo > 0,

t
S
07700\/1—52 NooV 1+ €2 ’6‘

Fig. 5.2.: An illustrated picture for the case n(t) \  7oc > 0.

Case 3. n(t) / N > 0,

t
1 I 1

I \// I
: 1 /) :
I r S I
I I I
iZell treay /' T’ed 3
| . | |
I s I I
1 / " Zhyp
1 J/ y 1 |
I 7 Y T hyp ! I

s f — 1 f .

0 n(s)Vi+e2 nevl—e2 [¢

Fig. 5.3.: An illustrated picture for the case n(t) / 1ec > 0.

Case 4. n(t) / oo,
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t,

I - -

| -

| t g

| > P -

| -

| tred' i

| Zell &

! .

|

| ’ g

! // thyp Zhyp

! /

: Ziied

yf ; .
0 I3

Fig. 5.4.: An illustrated picture for the case n(t) / oo.

We first consider the case that 7(t) is decreasing, that is 1(t) “\ 70, and that (s,&) € Zgy(e), i.e.,

€] < n(s)v1— e
o If [¢] > neoV/1 + €2, then for all s,t with s < to; < treq < t we have the representation
EY(t,5,€) = Epy (b, trea, ) Eybg(treas tei, §) Bl (teur, 5, ).
In the case 71, = 0 this relation is valid for any frequency £ # 0.

o If nooV1l —€? < €] < MooV 1+ €2, then for all s, ¢t with s <t <t it follows that
EW(ta S,f) = E,.ng(t,tell,g)Eg;(teu, 575)‘

o If [¢] < ooVl — €2, then EW (t,5,&) = EW (¢, 5,€).

In the other case |¢] > n(s)V1+ €2 we get EW(t,s,£) = E}‘gp(t,s,ﬁ) for any t € [s,00). The
intermediate cases are similar.
If we consider the case of 7(t) ,/ 7o With 7 € (0, 400], then the situation is reversed, that is

EW(tv 375) = E%(@tredaf)Ezd(tredvthymf)Ef%p(thypv 37§>7
for the case 1(s)vV1 + €2 < €] < neoV/1 — €2 (if this set is not empty).
Estimates for the multipliers
In order to estimate our solution we need to estimate |®(t, 5,€)| in each zone of the extended phase
space. The estimates for |®.(¢,s,&)| will be obtained by a more refined approach.

In Zpyp(N) it holds h(t, &) ~ a(t)|¢]. Thus,

. At) 1 a(tz) o 1 A(t1) 1
[tz 00 NS 50 a@lel Jatw) ~ 6 AE) Vatt vat)

whereas in Z,¢q(€) it holds h(t,&) ~ a(t)n(t) ~ a(t)|¢|. Therefore, we obtain

- 1 At) t2 1 A(t1)\ 12
|Dpealta, t1,8)] < WW;) exp (C’e /t1 b(T)dT) < m</\(t;)> , (5.2.15)

(5.2.14)
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where we denote § := Ce. It is not difficult to prove that we can uniformly estimate \(i)hyp(tQ, t1,9)|
in (5.2.14) by the upper bound from (5.2.15). Indeed, this statement can be directly obtained by

the following estimate:
t t
Valtz) < valt) (5.2.16)
A(t2)20 ™ A(t1)%

In order to prove this estimate we consider the monotonic behavior of the function

for large t. We have

1y @) = 20a(t)b(t) _ a'(t) — 25a(t)u(t)‘f§((f>)
f( ) - )\(t)45 - /\(t)45

Due to the assumption (A2) we get a/(t)A(t)/a?(t) < ap for all ¢ and due to assumption (B’3) we
have p(t) — oo as t — oco. Therefore, the function f’(t) satisfies f/(t) < 0 for all ¢ large. This hint
clues us to define

Whyp(€) = Zrea(€) U Zpyp(N),
and we denote by ?|¢ the separating curve between Zey(€) and Iy, (€). This curve is given by
i (te) — €17 = 2P (tig))-

We will consider the following four cases:

Small frequencies [£| < n(s)V1 — €2

e Case 1, t <t : in this case (t,), (s,§) belong to Zgy(e), therefore we can use the estimate
(3.3.37). It holds

B(t,5,€)] < b(ls)exp (= ClePBa(s,1)). (5.2.17)
o (Case 2, t > ble| - it holds
R a A -
1B(t, 5,)] < a(gbf('i)exp (= ClePBa(s. 1)) (A(if)'))l » (5.2.18)

by using the definition of #¢|.

We remark that there is no separating line if || < 700V 1 — €2 (in particular, this is also true if 7(t)
is increasing).

Large frequencies || > n(s)V1 — €%
e Case 3, t <t : in this case (t,£), (s,§) belong to Ilp,,(€). Therefore it holds

R 1 A(s)\1-26
|@(t,5,8)] S 0] (A(t)) : (5.2.19)
o Case 4, t >t : it holds
. 1 A(s) \1-20
B0t €)1 S 57 P (— CIEP Battie 1) ( Aw) (5.2.20)
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We remark that there is no separating line if || > 7.0V 1 — €2 (in particular, this is also true if 7(¢)
is decreasing).

Estimates for the time derivative of the multipliers

In this part we derive estimates for ®;(, s, &) in all zones. In IIpyp(€) we directly use the represen-
tation (5.2.13) together with b(t) < h(t,€). Thus, in the Case 8 we can estimate

|, 5,8)] < (i((;))l%, (5.2.21)

whereas in the Case 2 we get

)\(tm) ) 1726‘

it 5,6)] S [ it 5, €I )

(5.2.22)

We can treat the Case 1 analogously to the proof of Lemma 3.3.8. Thus, we obtain the following
estimate

|®4(t, 5,8)] < (M exp (— Cl¢[*Ba(s,1)). (5.2.23)
) ) ~Y b(s)b(t) )
Plugging this estimate into (5.2.22) we get the following estimate in the Case 2:
. a(t|§\)|f| 9 )‘(t\il) 1-26
) < VRV — CI¢[2B, (s, LA R 2.94
91(t,5,6)] 5 =5 exp (= ClePBats. 1) (5)) (5.2.24)

Here we used b(t¢|) ~ a(te)[€]-
In the Case 4 we put U(t,s,&) = &4(t,s,£). Then we obtain the equation of first order

U, +b(1)T = —a?(t)|¢]*D(t, 5, £), U(tie),s,€) = Pulty, 5, €).

By using (5.2.20) for |®(¢, s, €)| and the estimate (5.2.21) for |fi>t(t‘5|, s,&)| we derive for ¢ > t¢| the
following estimate:

‘é)t<t7 S, E)’

Nte) (¢ As) 12 [T V) [P (A \ B i
=) (Wso) +/ Vit o el (Atg) o

A(s) \1=20 [(N(te) | [€la®(®) 1 (N3(7) ) Ll Bate ) g
’S(A(tﬂ)) (v(t) ) /tg(V(t)b( )5 )

We can now follow the proof for Lemma 3.3.8 in the case of effective dissipation. Consequently, we
obtain the following estimate:

a?(t)[¢] ( Als)

1-26
a(ti)b(t) A(tm)) exp (= Cl¢P*Baltig ). (5.2.25)

D4 (t,5,)] S

Final estimates

Lemma 5.2.2. Let us define

O(s,t) := max{n(s),n(t)}v1 — €
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for any t > s and for any s € [0,00). If |{| > O(s,t), that is, (t,£) € Ilpyp(e) for any t > s,
then |®(t,s,&)| satisfies the estimate (5.2.19), while |®.(t, s,€)| satisfies the estimate (5.2.21). If
€] < O(s,t), then the corresponding estimates are as follows:

®(t,5,6)] b(ls)exp(—C/|§]23a(s,t)), (5.2.26)
. a2 2
Buts € 5 G e (- CUEPBL(s.D) (5.2.27)

Proof. In order to prove (5.2.26) and (5.2.27) for || < O(s,t) we consider three cases:

(A) [¢] < minfn(s), n(t) VI — &

(B) 7 is decreasing and n(t)v1 — €2 < |€] < n(s)V1 — €2

(C) nisincreasing and n(s)v'1 — €2 < [£] < n(t)V1 — €.

In the case (A) we can easily check that (¢,£) € Z.(e). Then the two estimates (5.2.26), (5.2.27)
follow directly from (5.2.17) and (5.2.23). Now let us consider the case (B). Introducing

Altg|)

S(t, 1€]) := exp (= C1lél*Ba(s, tg))) </\(,5))202

the application of Lemma 3.3.15 implies

S(t,1€]) < exp (— min{Ch, C2}€[* Ba(s, t)).

In this way (5.2.26) follows from (5.2.18) by using —c) < L for any t >t > s, and (5.2.27)

o a®)b(s) ~ b(s)
follows from (5.2.24) by using “(tb'fs‘;'ﬂ S “b(g)ﬁft') .

Analogously, in the case (C) we have the following estimate, too:

exp (= C1[¢[*Ba(tye)s ) (;(i;)))m < exp (— min{Cy, Co}¢*Ba(s, ).

Hence, (5.2.26) follows from (5.2.20) by using

11
a(tie)l§] ™ b(s)

for any t > )¢, and (5.2.27) follows from (5.2.25) by using

a®(t)€] _ a®(t)IE
atie)b(t) ~ B(s)b(t)

This completes the proof. O

Matsumura-type estimates

Lemma 5.2.3. The following estimates hold for large frequencies || > O(s,t):

= ~ 1 A 1-26
€1 0.5, 036 Mo S 575 () MM (5228

for1=0,1 and for any |a| > 0.
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Proof. If |a| +1 > 1, then we can estimate

el a5, )l 2 < Nl okB(E, 5. ) s, o, 1505, )2

{lgl=ze} EEC

Since |¢|loIH=1 < (€)le1+=1 for any |a| +1 > 1, then the second term can be estimated by
llg(s, )|l gial+1-1. Thanks to the estimates (5.2.19) and (5.2.21) we obtain

ﬁ) 1-26

01D (t,5,6)| < a(tVHl‘frHl(A(t)

which has a decay uniformly for || > O(s, t).

Let us choose |a] =1 = 0. In the case 7o > 0 it holds O(s,t) > C > 0 for any s < ¢. Thus, it is
reasonable to use [£|71 ~ (¢£)~! uniformly on the set {|¢| > C}. Otherwise, when 7., = 0 we use
b(s) ~ a(s)n(s) < a(t)[€| for large frequencies. Therefore, we can estimate

Bt 00,0, S g (R ot e

This completes the proof. ]

Lemma 5.2.4. The following estimates hold for small frequencies || < ©(s,t):

lIgl ok, 5, )05, Vzz,

o a?t) (Ba(s,1)) " (Ba(s )~ 585 (s, )l (5.2.29)
ST |

for 1 =0,1 and for any |a| > 0.

Proof. Let us define m’ and p by 1/m+1/m’ =1 and 1/p+1/m’ =1/2, thatis, 1/p=1/m —1/2.
Then we have the following estimate:

ol 9lB (4. 5. N5 < Ille]lelaid ~
1105, .35, Mz o, < NIEMOAB(E 5. g o 185

We can estimate ||g(s, )|l ms by ||g(s,-)||Lm. Therefore, we have only to control the LP norm of the
multiplier. Thanks to (5.2.26) and (5.2.27) we have the following estimate:

lal gl P
(SR .
a?l t) 1

() pal2) oy (— Colé 2B (s :
b(s)b(1)! (/M@‘f' b (— Cpl¢Ba(s, 1)) dg)

S Tranit

After using a change of variables 7 = Cp|¢|2B,(s,t) we conclude

/ |£‘p(|a\+2l) exp ( - Cp|§|2Ba(8, t))df 5 (Ba(s, t))(—p(|oz\+2l)+n)/2 /OO ,rp(|a‘+2l)+n_1€_rd7“.
135S 0

The integral on the right-hand side is bounded and we have a decay which is given by

a?l(t) ol _p a®(t) » ol _n(1_1)
b(s)b(t) Cb(s)b() '

This completes the proof. ]
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Now we show that the decay function given in (5.2.29) is worse than the one from (5.2.28). For this

reason we compare
(i\\((:))) - (iig)QCl = exp ( - C’l/S b(T)dT)

with

We distinguish two cases:

o If Z( ) is increasing, then there exists a constant ¢y such that ¢y = A )) < % uniformly for

all t > tg. Thus, we have

a2(t) (58)2 > 2a’(t) = bt) > 3

for all t > tp. Then (5.2.29) is of potential order decay in b(t) while (5.2.28) is of exponential
order decay in b(t). This brings the desired dominance.

o If % is decreasing, then we show the monotonicity of the function

(a0 (55)

We form the derivative of this function
([ )™ <i§z;>”1
[ 2o GGG e [ e ()
o9 é Jar) " () (2o [ D). G2

Now we can see that the second term in the bracket tends to co as t tends to co. Indeed, we

have
P (M), w0 [femAR)
a2<t>/s b(r) dT‘A2<t>/s )
pA() (AX()  A2(s) | [f(7)AR(r)
A2(1) \ 2 t>‘2u<s>+/s 22(7) )i

we obtain

2 t
() / a(r)A(7) p(t)
dr > t)— —=A 2 u(t).
0 ) e T2 () 10 () 2 1)
Here we used that the function % is decreasing and the function A(t) is increasing.

Therefore for « is fixed, we can find a sufficiently large time ¢ty = to(«) such that the expression
(5.2.30) is positive for all ¢ > to. This yields our expected comparison.

Gluing together (5.2.28) and (5.2.29) we conclude the desired estimates. This completes the proof
of Theorem 5.2.1. O
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5.2.2. Properties of the decay function B,(s,t)

Now let us turn back to the Cauchy problem for the semi-linear wave equation (5.2.1). In contem-
plation the proof of the next theorem we shall use the following properties of the function B, (s, t):

Proposition 5.2.5. Let us assume that b(t) satisfies the assumptions (B’1) to (B’5) and the addi-
tional assumption

(R1) There exists a constant vy € [0,2) such that

a(t
W (t) < yul(t) A((t)) for t > 0. (5.2.31)
Then the following statements hold:
1. For any s € [0,t] we have
"a?(1) A%(t)  A%(s)
Bal(s,t :/ dr ~ - : 5.2.32
R AR TOTE 5232

2. For any s € [0, At] with X is fized and X € (0,1) we have

Ba(s.t) ~ Ba(0,1). (5.2.33)

3. For any s € [Mt,t] there exists a constant M > 0 such that

(i%?)HM B,(0,t) < By(0,5) < By(0,1). (5.2.34)

Remark 5.2.2. The Assumption (R1) is stronger than the upper bound of Assumption (B’2) for
k =1 and this assumption also implies the Assumption (B’4).

Ezample 5.2.1. Let us choose a(t) = (1 +t)! with [ > 0. Therefore, we obtain

A(t) =~ 1+t and b(t) = {‘(Jf)t

If we consider functions u(t) satisfying
(log(c+))* < u(t) < (1+ )2 for k > 1,
then assumptions (B’4) and (B’5) hold, whereas the assumption (R1) holds if we choose
w(t) = (log(c+ )" or p(t) =1+t for k>1,0<~ < 2.
Example 5.2.2. Let us choose a(t) = e!. Thus, we obtain
A(t) = €' and b(t) = u(t).
Let us choose functions u(t) satisfying
(1+t)*(og(c+1)" < u(t) < e® for k>1, k+r > 2.
Then the assumptions (B’4) and (B’5) hold, whereas the assumption (R1) holds if we choose

p(t) = (1+t)*log(c+1)* or p(t) =€, fork>1,k+x>20<p<2.
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Proof. 1. Tt follows from the Assumption (R1) that

tar)  [amAR) A A [ HA)
/s o) 1T = / w7 o) 2u<s>+/s 202(r) *
AN A [Mra(mAR)
= () 2u<s>+/s 2u(r) O

Hence,

B ta?(r) . A%(t) 7A2(s)
2= [ G < S

Furthermore, there exists a constant M > 0 such that |/ (¢)] < Mu(t)a(t)/A(t) (Assumption (B’2)).

Consequently, ,
AN [ Ma(n)AG)
A el e e
thus
b a2(7) A%(t)  A2(s)
e [ S =
2. By integrating (5.2.31) over [s,t] we derive
(t) A(t)\
o (A(S)> (5.2.35)

for any s > 0 and t > s. Taking into consideration (5.2.32) we get

Ba(0,t) > Bqy(s,t) =~

AAt)  A%(s) - AXt) A%t (A(s))Q—v
p(t)  ouls) — wp)  op) VA®R)

A(s)\ 27\ A2(t) A2(t)
=(1-G@) ) Sy 2oy = Be00)

2—y
where after application of I’'Hospital we may put cy, = liminf; . (1 - (‘:(é?) ) > 0 since
s € [0, At] with a fixed X € (0,1) and 7 € [0, 2).
3. Using the Assumption (B’2) for k = 1 we conclude

a(t)
> =My (5.2.36)

It is clear that when p(t) is increasing we can take M = 0. By integrating (5.2.36) over [s,t] we

derive A
us) = (A<s>>

for any s > 0 and ¢ > s. For any fixed A € (0,1) it holds

A2(8) A2(t) A(s) 24+M
w(s) = ult) (A(t)) ~

This completes the proof of this statement. O

Ba(0,t) > B,(0,s) ~

R
7 N
‘E
N————
(3]
+
=
oy}
s}
vO
=

Now we introduce an additional assumption which will explain a restriction of damping terms
depending on the term of increasing speed of propagation.
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A%(t)
p(t)

e 0(t) is increasing,

e (1) < po)—L W 5oy

log A(t) A(t)

(R2) The function 6(t) := satisfies the following conditions:

t

Ezample 5.2.3. Let us choose a(t) = e'e?’. Thus, we obtain

At) = e and b(t) = p(t)e'.
We consider functions p(t) satisfying
el (L+1)" < pu(t) < e for k> 1.

Then the assumptions (B’4) and (B’5) hold, whereas the assumption (R2) holds if we choose, for
example,
wu(t) = eQet/eﬁt or u(t) = eQet/log(c +t) for B,¢ > 0.

We have the following proposition:

Proposition 5.2.6. Let us assume that b(t) satisfies the assumptions (B’1) to (B’5) and the addi-
tional assumption (R2). Then the following statements hold:

1. For any s € [0,t] we have

t a2 T
Ba(s,t) = / b((T))dmlog (A(t))0(t) — log (A(s))0(s). (5.2.37)

2. For any s € [0, \t] with X is fired and X € (0,1) we have

Ba(s,t) ~ B,(0,t). (5.2.38)

Proof. 1. It follows from the Assumption (R2) that

ta2(T) = tia(T)A(T) T = tﬂ T)aT = T) 10 T b t /T 0} T)aTt
| G = [0S — [ G emar = onog AL~ [ ¢ 10 A(r)a

> 0(t)log A(t) — 6(s)log A(s) — /3/

a(r)
e O(T)dr.

Hence,

ta2 T
2+ B) / 4 ((T)) dr > 0(t) log A(t) — 6(s) log A(s).

Otherwise, we have 6(¢) is increasing. Thus

t QZ(T) = tia(T)A(T) T = t a(T) T)aT = T ) 1O T b t / T) 10 T)aT
| G = [0S0 ar = [ 4 emar = o og AL~ [ #r) 1o A(r)d

(7)
>0

< log A(1)(t) — log A(s)8(s). )




120 5. Global existence of small data solutions to semi-linear dissipative wave models

2. Taking into consideration (5.2.37) we get for any s > 0 and t > s
B,(0,t) > Bg(s,t) =~ 0(t)log A(t) — 0(s) log A(s) > 6(t) log A(t) — 0(t) log A(s)
_ (1 - logA(S)> 0(t) log A(t) > x0(t) log A(t) ~ ¢ Ba(0,1),

log A(t)
where after application of I’'Hospital we may put ¢y, = liminf; . (1 — l(l)fg‘il(ég)) > ( since s €
[0, \t] with a fixed A € (0,1). This completes the proof. O

In order to classify the sub-exponential case and super-exponential case we introduce

v(\t) = Z((gf(())\\;) and v(\) := liiri)sogp a((%j(/\)\;). (5.2.39)

Then we classify:
1. Sub-exponential case : v(\) <1,
2. Super-exponential case : v(\) = 0.
5.2.3. Global existence of small data solutions for wave models with
sub-exponential propagation speed

We define the following parameters:

2
Pruj = 1+ — for n > 1,
n

2
pi=1+ (1— 2_:13\4)7 for n > 1,
A 2@0
5y = 1 (1 )f for n > 1,
P2 + v 2+ M or n
A2
s = 1, 1 n ( 1 B JOY 2N )2
T 2+M A 24+M 2+M A 24+M
2 2(1 —|- )2+1;1> 2—y + v(A) 2—y 1= 2—y + v(A) 2—v "

2
pGN1=1+72 for n > 3.

In the following we use the notations
Avg = (L'nH") x (L' nL?),
1w )l ary = Nlullpr + l[ull gy + (ol + (ol -

Theorem 5.2.7. (Sub-exponential order case) We assume the Hypotheses (A1) to (A3), (B’1)
to (B’5) and (R1). Let us assume n < 4 and

p>p and p> 2 if n=1,2,
2<p<3=pen(3) ifn=3, (5.2.40)
p=2=pen(4) if n= 4.

Here p is defined as
P := max{p1; p2; P3}, (5.2.41)
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where p1, pa and p3 are defined as above. Moreover, we need the assumption

A (24 M)n

7 ey (5.2.42)

where ag, M and v(\) are defined in (A1), (5.2.36) and (5.2.39), respectively.
Then there exists a constant g > 0 such that data with

H(uh u2)||A1,1 < €0,

imply the existence of a unique solution to (5.2.1) in C([0,00), HY) N C*([0,00), L?). Furthermore,
there exists a constant C > 0 such that this solution satisfies the estimates

lutt, Mz < C l(us,u2)lla, (1+ Ba(0,8) 77, (5.2.43)
IVu(t, Mgz < C I, uo)|lag, (1+ Ba(0,£) 7572, (5.2.44)
lue(t, Mz < C l(ur, uz)]lay, (1+ Ba(0,4)" 5 a? () (b(t) . (5.2.45)
Proof. We introduce the space
X(t) =c([o,t], H' ) nc*([o,t], L?) (5.2.46)

with the norm

lullxco = sup (1 4+ BaO.m)* fur, gz + (L+ Baf0, 1) #1/2Tu(r, )|

(14 Ba(0, 7))+ 10(7) fa? () e, ')HLz)-

We define the operator N in the form
t
Nu(t,z) = E1(t,0,2) %z ui(x) + Ea(t,0, ) %, ua(z) + / Es(t, s, x) %4 f(u(s, J:))ds.
0

Our goal is to prove that

INullx@y < Cll(ur,uz)|ag, + Cllul ), (5.2.47)
INu=Nollxy < Cllu—vllxw (lulky + Ivl%e) (5.2.48)

IN

uniformly with respect to ¢t € [0, 00).
We shall even establish the stronger inequalities than (5.2.47) and (5.2.48), namely,

INullx@y < Cll(ur,u2)llan, + Cllull, ), (5.2.49)
(t)

INu—Nollxey < Cllu—vllxo (el + lolk). (5.2.50)

where

fullxocy = sup (14 Ba(0.7)" Hulr. s + (1 + Ba(0, 7)1 V()] ).

The completion of the proof of Theorem 5.2.7 follows from the next proposition:
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Proposition 5.2.8. Let us assume that the power p and the dimension n satisfy (5.2.40). Let
(ur,uz) € A1 and u € X(t). Then we have for j+1=0,1 the following estimates:

b(t) \' nJA+3/2+1) o i
<a2((t))> (1+ Ba(0,£) "2 I Nu(t, )2 < Cl(ur,u2) |4y s + Clulfyy s (5:251)

l , ‘
(35) (o Bal0.0) 2 0k () = o)

< Cllu — vllxoey (el + lol%y)- (5:252)

Proof. From the Matsumura type estimates for the linear models we get

' 200\ ¢ (A
IwiaiNue e < € () (1 Ba0) )

A B0 —(n/4-+j/2+1) ,

so [T (545) 0+ Buts.0) £ (u(s. ) a2
()
70

t l .
+C (b(s))‘1< )(1—|—Ba(s,t))(]/QH)]f(u(s,-))Hdes (5.2.53)

At
for j+1=0,1. Taking account of f(u) = |u|P brings
1f (ulss Dlpinze S llus, )lI7s + lluls, )72,

and
1 (u(sy Dz S lulss )] 2p-

Applying Gagliardo-Nirenberg inequality we have

(s, 2 S lluls, )2 [ Vus, >||P9<P>, (5.2.54)
0 9
(s, 2oy < luls, )BSP | Wu(s, ) P94 (5.2.55)
where
np—2 np—1
9(1})257, 0(2p) = 5——-

The restriction 6(p) > 0 implies that p > 2, while the restriction §(2p) < 1 implies that p < pan(n)
if n > 3. By using (5.2.54), (5.2.55) and the definition of the function space X (t) we have the
following estimate for || f(u(s, )| 1Ar2:

£ (s, Nllzinze S lulle, o (L Ba(0,9)) 7O =y (14 Ba(0,5)) "2, (5.2.56)
here we have used 6(p) < 0(2p), whereas the following estimate is obtained for ||f(u(s,-))||2:

n/4+0 —(2p—1)n/4
£ (s, Nz < Nl ) (1 + Ba(0,5) 7D~y (14 Bo(0,9) "M (5.2.57)
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Plugging (5.2.56) and (5.2.57) into (5.2.53) we get

a?(t)
b(t)

l
ijaéNU(t, ')HLQ < C ( ) (1 + Ba(o,t))i(n/4+1/2+l)e

At (a2t l i o o
+C]u\|§(0(t)/0 (b(s)) 1< ()) (L4 Ba(s,0)) 4920 (1 1 B (0, 5)) "2

b(t)
A
t aQ l i o1
+ Cllull, /)\t(b<8))1 < b(s:;)) (1 + Ba(s,1)) (J/2+l)(1+Ba(O’S)) (2p—1)n/4

B

Let us derive for j +1 = 0,1 estimates for the case s € [0, At]. We have

O, —n/arifern) [N )1 o))~ Dn/2 5
A~<b(t)> (1+ Ba(0,1)) /0 (b(5))" (1 + Bal0,5)) ds.

Ay
Here, we have used (5.2.33) and we denote aq(p) := (p — 1)n/2. Now we try to find a condition for
the power p which guarantees that the integral term A; remains bounded.

Case 1: ai(p) > 1 (i.e. p> pru;)
We have for j+1=0,1

1
a*(0)

At o-1)n/2 Ba(0,X)
A = / (b(s))—1(1 + B, (0, 5)) p ds < / 1+ r)—(p—l)n/er <C.
0 0

Here we have used the change of variables r = B, (0, s) and the condition p > ppyj(n) guarantees
that the integral term is bounded.

Case 2: a1(p) <1

We perform the following straight-forward calculations:

ar= [0 Bu0,0) (14 B0,9) s

a(s)
1+ B,(0,s)) @)+l A 2 AL —ar(p)+1 @' (s
- e e [ B G
(1+ Ba(0,5)) @1 " L, 2 /At (1+ Ba(0,8))~1@) b(s) (1 + Ba(0, ))
(I —ai(p)a(s) o I a1(p) Jo b(s) a(s)A(s)
(1+ Ba(0,5) 0w+ M 200 / M (14 Bo(0,5))") p(s)a(s)4%(s)
- (—a)a(s) | (T—a@)2+M) Jy b(s) pu(s)a(s)A?(s)
(1+ Bo(0,5) 0w+ % 200 / )1+ Bal0,5)) s
- (—aa)a(s) | (T—a@)+M) Jy “ '

-~

Ay

From the last estimate we obtain

L1 (B0
(12

2a0
((1—041(p))(2+M) 1> A= 1 —ai(p) N

0 00 (5.2.58)
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— 1 > 0. Otherwise G;(\t) := (14 Ba0A0) 1T 4

Since p > p; we may conclude aZ(\D)

2
T=ar (o)) )
strictly decreasing. Indeed, taking the derivative of function G;(t) we get

s (=) a0 — 20/ (Da(t) (1 + Ba(0.0)) ) (1 -+ Ba(0.0)
gl(t) = a4(t)
(1= a1(p) 2052 — 25 Bu(0.) (1 + Ba(0,6)) "
= 220
_ ((1 — ogl(p))“(i)(‘?)() 211](\)/[ Z(’? A2 (t)> 1+ B, (0 t)) a1(p)
- a(t) |

The condition p > p; implies G{(¢) < 0. This gives the boundedness of the right-hand side of
(5.2.58). Therefore, we can obtain our desired estimate for A;.

Case 3: ai(p) =1
We have

B At 1 o~ At wu(s) A(s) o~ A ds At dA(s)
Al_/o b(s)(1+Ba(0,s))d “’/0 22(5) a(s)u(s) N/O a5 AGs) = J, Afsyitea = ¢

Summarizing, for all p > p; we have

l

Now let us carry out necessary estimates for the case s € [\t,t]. We have

_ a’(t) bt -1 —(j/2+0) —(2p—1)n/4
B = < 0 > //\ (b(s)) ™" (1 + Ba(s, 1)) (1 + B,(0, s)) ds

t

a2 Lot . s —az(p)
o < b(gtt))> //\t (1+ Bafe,p) 00 B‘;ff(’s)” d(1+ Ba(s,1)).

Here as(p) := (2p — 1)n/4. We consider the integral term in the last equality. For j =0, =0 and
az(p) # 1 we get

t

B [0 (14 B0.9) i [ (14 B0.9)

¢ At GQ(S)

d(1+ B,(0, s))

(14 B,(0,5)) *2®*! t

— /;(1 + B, (0, s))““”’““l((s)ds

T—am)@() |, 1-axp) Ju a¥(s)
(14 By (0, 5))-02@+1 | 9 /t (1+ Ba(0,5)) 2% b(s) (1 + B,(0, )a(s)
T U—we)e() |, 1-am) (s) a(s) |
(5.2.60)

Case 1: as(p) > 1
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Then from the equality (5.2.60) we have

9 L (14 B,(0,5))~2® b(s) (1 + Ba(0, 5))d'(s) o (L4 B4(0,5)°
B az(p) — 1 /)\t b(s) a’(s) o= (1 —az(p))a ( ) M’
2a (L4 Ba(0,5) "0 p(s)a(s)A%(s) (14 Ba(0,5) "0+ |
B+ (o= D . bs)  Au(saAE) S (- ax()a < > M’
B
2a0 (14 Ba(0, At))=2@FL (1 4 B,(0,t)) @)1
(1 a1 B 2 (M) (1) |
It implies that
(14 B, (0, \t))~ 2@+ (14 B,(0,t))"2@)+1
B < . - . .
a?(\t) a?(t)
Case 2: as(p) <1
Then from the equality (5.2.60) we get
(14 Bo(0,5)) 2w+ [ 2ag " (14 Ba(0,8) 7P p(s)a(s)A>(s)
b= (1- ozz(p))aQ(S) Ny U= am)2+ M) / b(s) A(S)M(S)@(S)A(S)ds
(14 Ba(0,s))2@)+1" 2a0 (14 Ba(0,5))—02)
T (I—oaap ))az(S) “ =)@+ M) / b(s) o
From the last inequality we get
( B - 1> B < L+ Ba(0, M) 702010 (14 By (0,1)) @)
(1 —aa(p)(2+ M) ~ a?(At) a?(t)
Since as(p) = ai1(p) + n/4 we have
2a0 1> 2&0 _
(1= a2(p)(2+ M) (1= o1(p)(2+ M)

. _ . 2
Moreover, by using p > p; we obtain W — 1> 0. Thus, we have

QCLO

T-m)e+m 7

It also implies that

5 < (L+Ba(0, At)) 2L (1 4 B, (0, 1)) 20
~ a?(\t) a?(t) ‘

In order to get our desired estimate for B in both cases it suffices to show the following estimate:

(L + Ba(0,5)™4(1 + By(0,A1)) @1 (14 B,(0,1))=2p)+1+n/d

(14 Ba(0,8))"*B S

a?(At) 2(t)
o (14 Ba(0,6))"4(1 + Ba(0, At))22@F1 (1 4 B,(0, 1))~ ()
~ a2(\t) B a2(t)

o (L Ba(0,0)" 2@ (1 4 By (0, M) 2P (14 Bu(0,6) @ _
~ (14 Bqa(0,t))—22@)+1a2(A\t) a2(t) ~
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By the aid of the decreasing behavior of G (t) for all p > p; the second term in the last inequality is
bounded. Therefore, we only consider the boundedness of the first term for both cases 1 —aa(p) > 0
and 1 — ay(p) < 0. In the case 1 — as(p) > 0 we have

(1+ Ba(0,8))/4H1me2®) (1 4 B, (0, At))"*2F1 (1 4 B,(0, 1))~ (P)F1

(1 + Ba(0,t))—22@)+1g2(\t) ~ a?(At) = G2(t).
We form the derivative of this function
Gi(t) = ((1 () a(i)(x;l)(t) B 2)\2/((;\;)) (1+ ))( 1) —a1(p) a(\t) 2
< (1= aa) "0 — 230 A(a?) e § ) (14 Ba(0.)) ™ Paar) 2
< (- ) S5~ 2 0 Bal0.0) )
(

2Xag \ a(At)A*(t) —a1(p) 1y -2
< _ _
< (- @@ = 53 S O Bal0:0) " Pax)
Since p > pa we have for large times ¢
2)\(10
(1 — al(p))u()\) BEESY; < 0.

This implies G5(t) < 0.
In the other case 1 — ag(p) < 0, our desired estimate can be obtained directly from the case
1 — aa(p) > 0. Therefore, for all p > ps we have

B < (1+ B,(0,8)) ™", (5.2.61)
Case 3: as(p) =1
We have
t - t A(s) bt ds
B:/ 1+ B,(0,s)) 'b(s)"ds ~ (s) ds:/ B
(1 Bal0:9)) 70(e) w205 aam =y am A
bodA(s) 1 B 1
\e A(s)1T2a0 209 A(Nt)200  2agA(t)2a0”
It implies
n/igy — (L4 Ba(0,6))™* (14 B,(0,1))"/*
1+ By (0, B < _
( + (0 t)) ~ A(/\t)an A(t)an
Due to (5.2.42) the functions (”ﬁgg;?g"“ and (1+§(Zf)()2,£2))"/4 are strictly decreasing. Therefore, we
have our desired estimate for B.
For j =1 and [ = 0 we obtain
t
B— / (b(s)) " (14 Ba(s,8)) "> (1 + Ba(0,5)) " **Pas
At
t —az2(p)
~1/2(1 4 Ba(0, 5)) 72
=— 1+ Bgy(s,t d(1 4 Bg(s,t
[ (1 Buls.0) (14 B(s.1)
2(1 + Ba(s, 1)) 2(1 + Ba(0,5))~2® ' ‘ (1 + Ba(0,5))~®)
— - : : + 2/ (1 -+ Ba(s. 1)) ] )
a?(s) N At a?(s)
201+ Bu(s,0)V2(1 + Ba(0,5)) 20 | . /t (14 Bo(s,0)2  d(1+ Ba(0,5))
~ a2(s) N a (14 Ba(0,5)22®a2(s) 1+ Ba(0,5)
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Here we have used

d<(1 + Ba(O,s))““(p)> ~ 1 d(l +Ba(0,s)) a/(s)ds
a2(s) T (14 Ba(0,5)2®a2(s) \ 1+ Ba(0,s) = a(s)
N 1 d(l + B, (0, s)) a(s) s
T (14 Ba(0,5)2®a2(s) \ 1+ B,(0,s) = A(s)
~ 1 d(1+Ba(0,5)) a(s)A(s) pu(s) s
(1 + By(0, s))2)a?(s) 1+ B,(0,s) p(s) A2%(s)
B 1 d(1+4 Be(0,5))  d(1+ Ba(0,5))
T (14 Ba(0,5))22@a2(s) \ 1+ By(0,s) 1+ B,(0,5)
1 d(14 Ba(0,5))

~

T 2(14 B,(0,5))22®)a2(s) 1+ B,(0,s)

It implies

n/a+1/2g (14 Ba(0, £))=22(P) (1 4 B, (0, ¢))V/4+1/2
0
n (1+ Bq(0, /\t))*az(p)(l + Ba(07t))n/4+1/2(1 i Ba()\t,t))l/2
a?(\t)
(1+ Ba(s,t))"*  d(1+ Ba(0,5))
(14 Ba(0,))2Pa2(s) 1+ B,(0,s)

(1+ Ba(0,t))

t
+ (1 4+ B,(0, t))"/4+1/2/
At

Thus
(1 + Ba(0,1))722®) (1 4 B,(0,t))/4+1/2
a?(t)
By
N (1 + Ba(0,Xt))~2®)(1 4+ B,(0,t))™/*+1
a?(\t)
B>
N /t (14 Ba(0,))"*1  d(1+ B,(0,5))
at (1+ Ba(0,8)22Pa2(s) 14 Bqy(0,s)

B3

(14 B,(0,8))41/2B <

Using the definition of as(p) = a1 (p) + n/4 and p > p; it follows
By < (1+ Ba(0,) % < 1.
In order to prove that Bs and Bj3 are bounded to above by a constant it suffices to show that

By < (14 Ba(0,08))°

with a small positive constant €. Thus, we need to show that the following function is bounded

(1 + B, (0, Mt))~20)Te(1 4 B,(0,¢)) 3+
a?(\t) .
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Taking account of (5.2.34) we obtain

(L+ Ba(0.X6) (1 4 B0, (L4 Bu(0,4) T

a?(t) a2()\t)(A(l(Xr(Lf)dat)>(2+M)(a2(p)—e)

= Q’3(t).

Let us consider the monotonicity of Gs(t) by taking the derivative of this function. It holds
a(t)A(t) A(t)

at) . a(M)A()
(0 Ao+ 2+ M) =9 (i A et

al((i\tt)) (1 + Ba (0, t)) 1:&&%) (1 + B, (0, t))n/4+€_a2(p)
(2+M)( )—e)—1
( ) a(\) 2
a(t) B )\a(/\t)A(t)

n (
= ((4 F1- )+ <) ANy T FM)(azp) —e) <A()\t) AZ(N) )
a()\t) 1 Az(t) A(t) > (1 i Ba(o,t))n/4+g_a2(p)

Gi(t) = ((Z +1—as(p) + 5)

x (14 Bq(0,t)) — 2X

2=y u®) ~ TACH 2+ M () AN
( ;14((;)) ) @1
< <(Z +1—as(p) + g> aA((t))Aagg n 2;:]‘74 (as(p) — €) m - )\) ~ 2o :M>
SO S
< <(4 F1man(p) + 2 )0 1) + 2 an(p) — ) (v0 1) — ) - ;ia]?f)
y Z(QA(tA);;l;((g (14 Ba(0, )"/ 402 < ;;1((3 ) MmO
The condition p > p3 implies for large times ¢
(5 +1-ael) +¢)rn) + 2;_]\74 (as(p) — &) (V(N) = X) — 221“;4 <.
Thus G4(t) < 0. Therefore, for all p > p3 we have
B < (14 Ba(0,8)) "2 (5.2.62)

Analogously, for 7 = 0 and [ = 1 we can prove

log (1 + B4(0,t)) (1 + Ba(0, At))~22(P)(1 + B, (0,t))/4+!

b(t) (14 Ba(0,8))"*""'B <

a2(t) a?(\t)
By
N /t log (1 + B,(0,t))(1 + Ba(0,£))"*+1 d(1 + B,(0, s))
At (14 B,(0,5))*2Pa?(s) 1+ B4(0,5)

Bs
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By using ’'Hospital we have

log (14 B,(0,¢t A
lim sup 8 ( (0.) ~ lim sup () = < C. (5.2.63)
oo (14 Ba(0,At))" e eA(1+ Ba(0,A1))
Moreover, since p > p3 we obtain
_ log (1 + B,(0,t log (14 B4 (0,t
g, (4 B.0.0) o los(1+B.0.0) _,

(14 Ba(0,t))° (14 Ba(0,At))"

for large t. Finally, after using the change of variables r = 1 4+ B, (0, s) we get

_ 14+Ba(08) g log (1 + B,(0,t log (1 + B,(0,t
nglog(HBa(o,t))/ - 8 ( )Z— s ( ( )2 <.
1+Ba(0xt) T e(1+ Bo(0,Mt))" (14 Ba(0,t))
Here we use that Bj is related to By and (5.2.63). This implies that
2
t —(n
B< 2L )(1 + Ba(0,1)) /Y, (5.2.64)
b(t)
From (5.2.61), (5.2.62) and (5.2.64) we obtain
200\ ! (n/di
B < <C;)((t))> (1+ Ba(0, 1)) /4240, (5.2.65)
Thanks to (5.2.59) and (5.2.65) we can conclude the statement (5.2.51). O

Now let us prove (5.2.52). We remark that

t
INu— Nojlx = | /0 Ex(t,5,2) %, (f(u(s,)) = f(0(s,2)))ds
Thanks to (5.2.4), (5.2.5) and (5.2.6) we have the following estimates

IVIOLEN(t, 5, 2) %o (f(U(S,fC)) — f(v(s,2)))ll 2

) (59)' 0 Bl ) 00 ) = S0t Do, € 0.3
b(s) (S0 (14 Bals,0) T £ s, ) — Fw(s, 12 se

for j +1=0,1. By using Hdlder’s inequality we obtain

1S (u(s, ) = flos, Dl S lluls, <) = v(s,)llze (Hu(sa " + o (s, -)H”;l),
1f (u(s, ) = f(u(s, )z S lluls, <) —v(s, )HLQP(HU( Mz + llo(s, )I!sz)
We apply Gagliardo-Nirenberg inequality to the following terms:

Hu(sv ) _U(‘S?')Hqu Hu(37')HLq7 HU(S,-)HLq,

with ¢ = p and ¢ = 2p and, analogously, to the proof of the statement (5.2.51) we can conclude the
proof of the statement (5.2.52) by the aid of assumption p > p. In this way our Theorem 5.2.7 is
proved. ]
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Fzxample 5.2.4. Let us choose formally a(t) = 1. Then we have A(t) = 1+t. Let u(t) be an arbitrary
function satisfying the assumptions (B’1l) - (B’5) and (R1). Then we have ap = 0 and v(\) = .
Thus, applying Theorem 5.2.7 formally we have

_ _ 3 2
p1=p2=p3=1+5:pFuj-

These results coincide with results from the paper of D’Abbicco, Lucente and Reissig (see [D-R13]).

Ezample 5.2.5. If we choose a(t) = (I + 1)(1 +t)!, 1 > 0, then we have A(t) = (1 + t)"*! and
v(X\) = A. Let us choose u(t) as in the Example 5.2.1, that is,

w(t) = (Qog(c+ )" or () =1+t for v >1,0< v < 2.
In the case u(t) = (log(c+ t))", kK > 1, we obtain M = 0 and 7 = & with an arbitrary small e.

Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) for the case as(p) = w =1
is satisfied if only if

1
n:1:>l>§andp:g; n:2:>l>1andp:;; n:3:>l>3andp:%.

Whereas, the critical exponent is

So, we have global existence of small data solutions for

p<p ifn=1 and [ € (1/3,1],
2<p ifn=1and [ € (1,00) or if n = 2,
2<p<3=pen(3) ifn=3, (5.2.66)

In the other case u(t) = (1 + )7+, 0 < v < 2, we obtain M = 0, v € [0,2). Thus, applying
Theorem 5.2.7 we also get
2

(I+1)n

So, we have global existence of small data solutions under the same conditions for critical exponent
as in (5.2.66). We remark that the statement of Theorem 5.2.7 holds uniformly for all damped wave
models, where the propagation speed and dissipation satisfy the assumptions. If we focus to the
special case a(t) = (I +1)(1+t)" and p(t) = (1 + )"+, 0 < 4 < 2, with fixed I and +, then the
abstract condition (5.2.42) can be replaced by

p1=p2=p3 =1+ =D

l (2—7)n
1° 8

If we take v — 0, then it implies the condition (5.2.42). This condition is also valid for u(t) =
(log(c + 1), 5> 1.

Ezample 5.2.6. If we choose a(t) = e!, then we have A(t) = e'. So, ap = 1 and v(\) = 1. Let us
choose p(t) as in the Example 5.2.2, that is,

p(t) = (1 +t)*logle + ) or u(t) =€, fork>1, k+rk>2,0<~vy<2.
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In the case u(t) = (1 +t)*(log(e +1))" k > 1, k + k > 2, we obtain M = 0 and v = ¢ with an
arbitrary small €. Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) is satisfied if
only if
A>T
1
So we have to choose such a A. Moreover, we get

1 1 1 1 1 2 _
pr=1<ps— = +*<p3—> + —+ (*—1>E<p.

2\ 2\ A
Choosing A close to 1 gives p > 1. So7 we have global existence of small data solutions for
2<p ifn=1,2,
2<p<3=pen(3) ifn=3, (5.2.67)

In the other case u(t) = €7, 0 < vy < 2, we obtain M = 0, v € [0,2). Thus, applying Theorem
0.2.7 we get

]51:17]32:1"’_ ! +<1_ A )27
sl 1 L 1-a 2

Choosing A close to 1 gives p > 1. So, we have global existence of small data solutions under the
same conditions for critical exponent as in (5.2.67).

Ezample 5.2.7. If we choose a(t) = mt™ e!™ m > 0, then we have A(t) = e!™. So, ap = 1 and
v(A) = 1/X""1 Let us choose functions pu(t) satisfying the assumption (R2), for example,

wu(t) =(1 +t)k(log(e + 1) or u(t) = e fork>m k+rk>m+1,0< v < 2.

In the case u(t) = (1 +t)*(log(e + 1)), k> m, k+x > m + 1, we obtain M = 0 and v = ¢ with
an arbitrary small e. Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) is satisfied if

only if
1\ 1/m
A > (—) .
4
So we have to choose such a A\. Moreover, we get

1 1 1 1 1 2
pr=1<p2— 5 +7<p3—> —i———l—(——l)f:p,

2 \m 2)\m AT n
Choosing X close to 1 gives p > 1. So, we have global existence of small data solutions for
2<p itn=1, 2,
2<p<3=pen(3) ifn =3, (5.2.68)
p=2=pan(4) ifn=4.

In the other case u(t) = ", 0 < v < 2, we obtain M = 0, v € [0,2). Thus, applying Theorem
5.2.7 we get

]51:1,152:1+ ! +<1— A )27
20 2(1- 2 (1-am)) 1—32(1=am)/n
S ORI S
2 2(1- 2 (1-am)) 1o am)n
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Choosing A close to 1 gives p > 1. So, we have global existence of small data solutions under the
same conditions for the critical exponent as in (5.2.68).

5.2.4. Global existence of small data solutions for wave models with
super-exponential propagation speed

Now let us devote to the super-exponential order case v(\) = oo.

Theorem 5.2.9. (Super-exponential order case) We assume the Hypotheses (A1) to (A3),
(B’1) to (B’5) and (R2). Moreover, we assume a growth condition for the function v(\,t):

v(\t) =o(log A(t)) . (5.2.69)
Let us assume n < 4 and
2<p if n=1,2,
2<p<3=pan(3) ifn-3 (5.2.70)
p=2=pen(4) if n= 4.

Then there exists a constant g > 0 such that data with

[ (w1, u2)l|lay, < €0

imply the existence of a unique solution to (5.2.1) in C([0,00), H') N C*([0,00), L?). Furthermore,
there exists a constant C' > 0 such that this solution satisfies the estimates

lu(t, e <€ fl(ur,u)llay , (1+ Ba(0,6) 5, (5.2.71)
IVu(t, Yz <O fl(ur,u)llag, (1 + Ba(0,8) 7573, (5.2.72)
luelt, Mz <O l(ur, un)llagy (1 + Ba(0,6)) "5 a?(0) (b(1)) ™ (5.2.73)

Proof. The scheme to prove this theorem is almost the same which we presented in the proof of
Theorem 5.2.7. The only change is to show that Proposition 5.2.8 remains true, in particular, we
will show the estimates (5.2.51), under the new assumption (R2).

In our proof we need the following result: Let us consider for j +1 = 0,1 estimates in the case
s € [0, At]. We have again

l t
A~ <“;((tt))> (1+ Ba(0,8)) (/4157240 /A (b()) 7 (1 + Ba(0,5)) "4

Here, we have used (5.2.38). We now try to find a condition for the power p which guarantees that
the integral term A; remains uniformly bounded for ¢ — co. We define a1 (p) := (p — 1)n/2.
In the case a;(p) # 1 to handle the integral A; we will use integration by parts and the assumption
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(A2). Thus

At
A :/0 (1+Ba(o,s))‘“1(”>a;®d(1+Ba(o,s))

(1+Ba(0’s))*al(p)+1 At

(1 = en(p))a®(s)

A
(L By(0, )0 |

2 A —an(p)+1 @' (8)
(p)/o (1—|—Ba(0,s)) a3(s)ds

1—041

2 A1+ B,(0,5)) @+ g(s)
J

(1= aip)a®s) |~ 1-a) a?(s) A(s)
o1 1 (14 Ba(0,xt)) @1 A1 4 By (0, 5)) " P+ g(s)
1) <a2<o> a2(\) " 2/0 a*(s) A<s>d5> '

In order to prove that for a fixed A € (0, 1) the integral A; is uniformly upper bounded by a constant
for t — oo it suffices to show that with an arbitrary small positive ¢ we have

(1+ Ba(0,1)) " ®*!

e <A@,
Let us consider )41
o (1 Ba(0,8) TP A
Gi(t) := (1) .

Performing the first derivative of Gi(t) we get

(1= 0 (p) 2050 1 80 (14 Bo(0,1)) — 258 (1 + Ba(0,1) ) A(t)°

=
= a2(t) (1 + Ba(0,£))™1?)
_ (0= o (o) "G + 50555 o A(Y) — 20055 5 o A1) A
" a2(t) (1 + Ba(0,)) "
_ (= (o) "G + e 10g A() — 20 (i tog A1) A0
~ a2(t)(1 + Ba(0,1)) """
< (1= a1(p) + (= — 2a0) og A(1)) %A(t)a.

a2(t)(1+ B,(0,£))*®

The last inequality show us that G|(t) < 0 after choosing & small enough and for large t. Hence,
G1(t) is bounded. Therefore, we can obtain our desired estimate for Aj.
The case a1(p) = 1 can be treated directly. We have

_ ds N At p(s) A(s) o At ds
Al_/o b(s)(1 4+ Ba(0,5)) T Jo A%(s)log A(s) a(s),u(s)d _/0 log A(s)a(s)A(s)

AL dA(s) AL dA(s)
S/o 2ZAG) < ), A <O

Summarizing, we can conclude

2 ! A
A< (02 (t)> (1+ By (0, )~/ 4H/240), (5.2.74)
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Now let us estimate B. We start with the case j = 0 and [ = 0.
Case 1: as(p) #1

t

[ $))-1 $)) 2P g — 2
B_//\(b( )1+ B,(0,)) d /A (1+ Ba(0,))

1
t t a2(s)

d(1+ B,(0, s))

_ (14 Ba(0,8))™ 2()+1]" 2 ! s —042(17)—&-1& S
(1= aa(p)a3(s) Ny + 1 — as(p) /,\t(l + Ba(0,5)) a3(s)d
(L4 By(0,5) 201 [ 2 [T+ Ba(0,8) =P als)
Y w6 |, T w) /M () AT 62D
Thus, we have
1+ B0,y < L B“(O’t))m(zm(l + Ba(0.0)"
IR (0
By
L (L B0, A)) 2P (14 B, (0,1))"
a?(\t)
Bs
(14 Ba(0,5) P (14 B,(0,6)"* a(s) )
+/, %0 ()"

B3
Since as(p) = a1 (p) + n/4 we may conclude for large ¢
B =Gi(t)A[#) T S AT S L

In order to prove that By and Bs are both uniformly upper bounded by a constant it suffices to
show that for a small positive ¢ we have

By S (1+ Ba(0,At) .
Thus, we use the monotonicity behavior of the following function:

(14 Ba(0,20)) P (1 4 BL(0,0)  At)"
Ga(t) := a2(\t)

by the aid of the strictly decreasing behavior of Z((?) ‘2((/’\\:)) log}4(t)' After performing the derivative

G4 (t) we can see that G(t) < 0 for large ¢. It implies that

L1 a(s)
e A(sF A(s) ™ <1

B3 S

for large t. Summarizing for 5 = [ = 0 all the estimates we may conclude

—n/4

B < (1+ B,(0,1)) (5.2.76)

Case 2: as(p) =1
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Here we proceed in the usual way by the aid of the supposed decreasing behavior of the function
lgg(’xz). We have

t

B — /: (1 + Ba(o,s))flb(s)_lds /td<log (1 + B, (0, s)))

t A a®(s)
_ log(1 +Qf‘;(0’5)) + /t log (1 + B4(0, 5)) “;((S;ds
a’(s UV ad(s
< log (1 + Ba(0,1)) _ log (1 + Ba(0,At)) /t log (1 + B,(0,s)) a(s) p
ai S.
a*(t) a?(At) v a?(s) A(s)

It implies

niig < o8 (1+ Ba(0,)) (1 + B, (0,1))™*  log (1 + B, (0, At)) (1 + Bq(0,t))"/*
~ a2(t) a a2(At)

tlog (1 + B4(0,8)) (1 + Ba(0,£))"* a(s)

vor [, a2(s) A(s)

(1+ Ba(0,1))

Analogously, in order to prove (1 + By(0,))*B is bounded, it is enough to prove that for small
positive € we have

log (1 + B, (0,At)) (1 + Bq(0, )"/ o 1
a?(\t) ~AM)E

Thus, for arbitrary small § > 0 we have

log (1 + B (0,M)) (1 + B (0,))"/*A(\t)
a?(\t)

_ log (14 Ba(0,At)) (1+ Ba(0,A))° (1 + Ba(0,£))"/* A(Xt)*
~ (14 Ba(0,At))0 a?(\t)

< (14 Ba(0,A0))°(1 + Ba(0,1))"/* A(A)*

~ a?(\t) '

Taking account of the monotonic behavior of G> we obtain our desired estimate for B.
For j =1 and | = 0 we obtain

B = /t(b(s))l (1+ Ba(s,t))_1/2(1 + Ba(0, 5))—az(p)d8
At

s))—22(p)
== [, O Bt ) PR 4 )
2(1+ Ba(s,£)) > (1 + Ba(0,s)) "%
a?(s)

t

2 [+ oA EA

2
A t a?(s)

N /t (1 + Ba(s, t)) d(l + Ba(()’ 8))
At (1 + Ba(o7 8))a2(p)a2(8) 1+ Ba(07 5)

(14 Ba(s,8) (14 B,(0,5) @ 1/2

2a2(s)

At
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Here we have used

(1 + Ba((), S))_OQ(p) N d(1 + B a/(s) )
d< a*(s) ) T (1+B, (0 5)) % 1+ Baf L a)
N d(l + Ba( a(s)
" (1+B, (0 )220 ( L+ Ba +A<s>d‘9>
~ d(1 + Ba( + a(s)A(s) p(s)
(1+ Ba (0 ) 042(10) 14 Bq( wu(s) A%(s)
- d( 1+B d(1+ B,(0, s))
(1+ B, (0 a2(p 1+B 1+ By(0,s)
o d( a(0, s))
" (14 Balo, s))az% (5) 1+ Ba<0, s)
It implies
w/Ar1j2e, (1 +Ba(0’t))fa2(19) (1 + Ba(07t))n/4+1/2
(14 Bo(0,8))""/*°B ~ s
L (L4 Ba(0, M)~ ®)(1+ B, (( )))"/4“/2(1 + Ba(M, 1))
a?(\t
wart [0 (14 Ba(s,0))? d(14 Ba(0,9))
+ (1 + Ba(oat)) / (1 + Ba(O S))QQ(P)GQ(S) 1+ BQ(O’ S)
Thus

n/4+1/2g < (1+Ba(07t))—a2(p)(1 _’_Ba(07t))n/4+1/2
- a(?)
By
(1 + Ba<0, )\t))io@(p) (1 + Ba(o, t))n/4+1
i a?(\t)
B
/t (Lt Ba(0.)"*" d(1+ Bo(0.5)
+ .
t (14 Ba(0, s))a2(p)a2(8) 1+ By(0, s)

B3

(1+ Ba(0,1))

Since as(p) = a1 (p) + n/4 we may conclude that
— Gi(t)(1+ Bo(0,8)) A1) < (14 Ba(0,8)) A1) S 1.

In order to prove that By and Bs are uniformly (with respect to ¢ — oo) upper bounded by a
constant it suffices to show that for r > 1 we have

By £ (1+ Ba(0,A)) "
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For this reason we consider the monotonicity of the following function:

_ 1+ B, (0, Mt —a2(p)tr g + B, (0.t n/4+1
PR A(RY) G%Ag 0.0)"*
We form the first derivative of this function and take account of u(t) = ( )/0(t) to obtain
g_é(t) = <(Z + 1) a(fjél)(t) (1 + Ba(O7 )\t)) — (Oég(p) — 7«))\(1 + Ba(O,t)) ( zft()/\t)
a/()\t) (1 + Ba(O,t))”/4(1 + B O )\t)) as(p)+r—1

1_%Bao¢n(1+l%ﬂlkﬂ>) a(\E)?

(

n/4 —aa(p)+r—1
x A((i\tt)) (6(t) log A(1)) (O(Mt) logA(At))) (1+ B4(0,2)) (2(4; 5;(& At)
n a(t) A(Xt) 1 (aa(p) —7r)A 1 2)ayg ()\t)

= ((4 “) A(t) a(Mt) log A(t)  2+3  log A(Mt) (2+5)2> A(Xt) 6(1)o(X)

x log A(t)log A(M) (1 + B, (0,£))"* (1 + Ba(0, \t)) P+ 1 g(n) 2

Now, the supposed strictly decreasing behavior of the function Z((t)) (()’T:)) logh(t) implies G5(t) < 0

for large . Summarizing we have shown for j = 1, | = 0 the desired inequality

B < (14 B,(0,8)) "2 (5.2.77)
Analogously, for 7 =0 and [ = 1 we can prove
o2 (t) a\Y ~ CLQ(/\t)
Do
. /t log (1 + Ba(0,£)) (1 + Ba(0,£))™ "1 d(1 + B,(0, 5))
At (1 + B,(0, s))a2(p)a2(s) 1+ B,(0,s)
D3
After applying the rule of I’'Hospital it follows
, log (1 + Ba(0,8)) Z((?)G(t)
lim sup ~ = lim sup —3
t—oo (14 Ba(0, X)) t00 TA(L+ Ba(0,1)) 55000 (1 + Ba(0, M)
a(t
. So)
~ lim sup e prv
t—oo 7 A(6(t) log A(t)) 05 0(A) (1+ Ba(0,t))
. a(t) A(Xt) 1 1
~ lim sup — < 1. (5.2.78)
too  A(t) a(Xt) O(At)log A(t) (14 Ba(0,At))" 1
Thus, we get

log (14 Ba(0,1))

_ log (1 + Ba((),t))
Do = (1+ Ba(0, At))” S

(14 B4(0,At))" ~

Ga(t) <
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for large ¢. Finally, after using the change of variables y = 1 + B,(0, s) it follows

1+Ba(0,¢) log (1 + B,(0,t log (1 + B,(0,t
D3 < log (1+Ba(0,t))/ Cll_g{ _ Lo (14 Bull )2 _ e (1 5ul0 )r) S
14+ B4 (0,0) Y (1 + B,(0,At)) (1 + Ba(0,1))

Here we use that B3 contains By and (5.2.78). This implies

a’(t)
~ (1)

(1+ B, (0,)) "4, (5.2.79)

From (5.2.76), (5.2.77) and (5.2.79) we obtain

l

Thanks to (5.2.74) and (5.2.80) we can conclude the statement (5.2.51). In this way our Theorem
5.2.9 is proved. O

Ezample 5.2.8. If we choose a(t) = ete®, then we have A(t) = €. So, ag = 1 and v(\) = co. Let
us choose p(t) as in the Example 5.2.3, that is,

u(t) = e /et or €*/log(e +t), for B> 0.

Thus, applying Theorem 5.2.9 we see that the condition (5.2.69) is satisfied. Indeed,

v(At) ele? e 1 1

log A(t) e eMee et A

So, we have global existence of small data solutions for

2<p ifn=1, 2,
2<p<3=pen(3) ifn=3, (5.2.81)

t t
Erample 5.2.9. If we choose a(t) = e'e® ¢ | then we have A(t) = e . So, ag = 1 and v(\) = .
Let us choose functions u(t) satisfying the assumption (R2), for example,

et t et
u(t) = €2 /eP¢ or e [log(e +t), for § > 0.

Thus, applying Theorem 5.2.9 we see that the condition (5.2.69) is satisfied. Indeed,

t t et e>\t +
v(At) ele€ e e° 1 e

log A(t) e’ pAtper peet et

e e
So, we have global existence of small data solutions for

2<p ifn—1,2
2<p<3=pen(3) ifn=3, (5.2.82)
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6. Concluding remarks and open questions

6.1. Linear theory

6.1.1. Modified Scattering
We try to establish if there exists a relation between the solution u = u(t, z) of
ug — a(t)?Au 4 b(t)uy = 0, w(0,-) = uy, us(0,-) = us (6.1.1)
and the solution v = v(t, z) of
vy — a(t)?Av = 0, v(0,-) = v, v(0,-) = vy (6.1.2)

not only in the case of scattering dissipation b(t)u; with b(t) € L*(R,) but also in the case of
non-effective dissipation. Our basic idea is that we will construct a Mgller wave operator which
relates (up,ug2) to (vi,v2). The key idea is to multiply the representation E(t, &) which respect to
(6.1.1) and the representation E,(t,£) with respect to (6.1.2) by the decay rate \;%

Theorem 6.1.1 (Conjecture). Assume (Ay), (As), (A3)! with 1 > 1 to a(t) and (By), (Ba), (Bs)
or (Bs)' to b(t) and (C). Then the operator

= lim AD) -1
WD) = Jim S (ke D)) (D)

exists in L?(R"™) — L?(R") and its symbol satisfies
1

W) = o (Fulte ) MQu(o0, 16, N, 06, OM A1 Bl €
for all 1 < k <, such that the asymptotic of solutions of the problem (6.1.1) and (6.1.2) satisfy
i(t) HEa(t,f)(<§>U1,vz)T — E(tf)((@“nm)TﬂL? —0

as t — oo.

6.1.2. Energy estimates of higher order

In the thesis we did not study estimates for energies of higher order. Here we propose LP — L4-
estimates for derivatives of the solutions for the non-effective dissipation case.

Theorem 6.1.2 (Conjecture). Assume (Al) to (A3)!, (B1), B(2)!, (B3) or (B3) together with
(C). Then the LP — L7 estimate

a(t _n=1(1_1
DDt s £ i A0 T 68 (el + ol

holds for dual indices pq = p + q, p € (1,2] and regularity r = n(% — %)
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For the effective dissipation case, there are two conjectured theorems with respect two cases of
monotonic function u(t)/A(t):

Theorem 6.1.3 (Conjecture). Assume (Al) to (A3)!, (B'1), (B'2)!, (B'3) together with % is

N

decreasing function. Then the L? — L? estimate

D03t 5 (58) (1 [ ) (o + sl

holds for all k > 1.
Theorem 6.1.4 (Conjecture). Assume (Al) to (A3)!, (B'1), (B'2)!, (B'3) together with #) g

increasing function. Then the L> — L? estimate

| DiDgu(t, )| < ‘f(%) (j((g)“(l + /0 t ‘f(f)))’a;l ([P T ey

holds for all k > 1> 1.

6.2. Non-linear theory

6.2.1. Blow-up behavior of semi-linear models with effective dissipation

Still open is the question for the blow-up behavior of solutions to the Cauchy problem for damped
waves with time dependent speed of propagation and dissipation in the general case

ug + a? () Au 4 b(t)u; = f(u), u(0,-) = ug, ut(0,-) = uy. (6.2.1)

An effort has been done for proving not only the global existence for (6.2.1) but also the blow-up
behavior for this model. Todorova and Yordanov [T-YO01] and Zhang [Zha0l|, have handled the
case a(t) = b(t) = 1, f(u) = |u|P. These authors proved that the Fujta exponent p. = 1+ 2/n
is the critical exponent. The modified test function method is an effective tool to prove blow-up
in the parabolic like case a(t) = 1, f(u) ~ |ulP and b(t) = bo(1 + )%, with |3| < 1, the exponent
pe = 1+ 2/n is still critical exponent, see J. Lin-K. Nishihara-J. Zhai [LNZ12|. For more general
cases a(t), b(t) we refer to the paper D’Abbicco and Lucente [D-1.12] for blow-up results.

6.3. Abstract problems
The main idea is to understand qualitative properties of solutions to the abstract Cauchy problem
up + a(t)Au + b(t) A%uy = 0, u(0) = up, ur(0) = uq,

where A is a self-adjoint operator on a Hilbert space X, strictly positive, with dense domain D(A).
The term A%u; describes a class of damping terms, if ¢ = 0, it describes the external damping, if
o € (0,1], it describes the structural damping, the case o = 1 is called visco-elastic damping. The
coefficient a = a(t) describes in some cases a propagation speed of waves and b(t)A%u,; describes
a damping effect. In connection with the long time behavior of a(t) up to oo, here decreasing or
increasing or oscillating behaviors are of interest. The case a = b = 1 was studied in a paper of Chen
and Russel [C-R82]. In particular, the case 0 = 0 was motivated by Matsumura [Mat76], while in
the case 0 = 1 we can cite, for example, the papers of Ponce [Pon85|, Shibata [Shi00]|, Ikehata-
Todorova-Yordanov [ITY13b|, Ikehata-Natsume [I-N12|. For the case a = 1 abstract scattering
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results and the diffusion phenomenon are well understood in a series of papers K. Yagdjian [Ya05],
[Ya06] and J. Wirth [W07b]. In a recent paper, X. Lu-M. Reissig [L-R09], energy estimates are
derived for solutions to the Cauchy problem

ug — Au+ b(t)(—A)%up = 0, u(0,x) = ug(x), ut(0,z) = ui(x).

6.4. Damped wave models with decreasing speed of propagation

In the future we are interested in the following Cauchy problem:
ug 4+ a®(t)Au+ b(t)u, = f(u), u(0,-) = ug, u(0,-) = uy,

where a(t) is a decreasing function. Our studies are motivated by the papers Galstian [Gal03] for
the special linear model with a(t) = (1 +¢)~!, a(t) = e~ and the paper X. Gang, Y. Huicheng
|G-H13].

6.5. Wave models with time-dependent and spatial-dependent
coefficients

It seems to be reasonable to attack the Cauchy problem with the dissipation term depending on
time and spatial variables

ug 4 a?(t)Au+ b(t, z)u; = f(u), u(0,-) = ug, ue(0,-) = uy. (6.5.1)

A main goal of this issue could be to find suitable conditions for coefficients a and b, suitable function
spaces for the right-hand side and spaces for initial data (u1, u2) such that we can obtain the critical
exponent power p..;;. Let us introduce here papers which contain some notable approaches to reach
our goal. Firstly, we start with the Cauchy problem (6.5.1) without right-hand side and a = 1. An
approach to handle coefficients depending on ¢ and x bases on so-called weighted energy inequalities
and was used in the papers of Matsumura, [Mat77|, Hirosawa and Nakazawa, [H-N03|. These results
provide L? — L?-estimates under the assumption

b(t,z) > by > 0

for large values of |z|. In the papers of Mochizuki-Nakazawa, [M-N96|, Uesaka, [Ues80|, they
discussed energy decay estimates with the weaker effective assumption for large =

b(t,z) > bo(1+t+|z[)~' > 0.

Recently, Todorova-Yordanov [T-Y09] treated the case b(t,x) = bo(1+ |z|) ™ with a € [0,1). After
that, ITkehata-Todorova-Yordanov [ITY13a] have the optimal decay estimate for the critical case
b(t,z) = bo(1 + |z))~t (a=1).

Now, let us turn back to the case of right-hand side f(u(t,z)) = |u(t,z)[’. When the coefficient
b(t, ) is constant, in two papers of Todorova-Yordanov [T-Y00, T-Y01], the authors have shown
that the critical exponent is perit = pe(N) = 1 4+ 2/N, where N is the dimension. For the case
b(t,x) > 0 and b(t,x) ~ bo(1 + |z|)~ for large values of |z| and a € [0,1) in the paper of Ikehata-
Todorova-Yordanov [ITY09] they have proved that the critical exponent is

2
N—ao

Derit = pc(Nv a) =1+

For the case a > 1 this problem is still open.
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Appendices
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A. Notation

A.l1. General notation in thesis

We will introduce here some notions that appear throughout our thesis. We use C' to denote an
arbitrary constant. The exact value denoted by C may change from line to line in a given com-
putation. The big advantage is that our calculations will be simpler looking, since we continually
absorb “extraneous” factors into the term C. In formulas, the brackets [, (, { are used without
special meaning, {-} is also used to denote sets. Bracket symbols with special meaning are

(-) this Japanese bracket stands for (z) = /1 + |z|?,
[ denotes the smallest integer larger then a given number, [z] = min{m €

Z, st. x <m},

|- denotes the absolute value of a scalar expression,

|- | stands for a vector or a matrix norm, in our thesis we prefer to use the
row sum norm,

(I-1) denotes for a matrix the matrix of the absolute values of its entries,
[ stands for || - || L,

I-lpr  stands for | - |1z,

tr A denotes the trace of matrix A, i.e, the sum of the diagonal entries of the

diagonal matrix A.

For the derivatives we use the following notations:

D,, stands for —10,,, with ¢ =1,...,n, for z € R",

Dy stands for —10y, t € Ry,

D stands for —V, = —1(8I1,8x2, e 8In)T for z € R,

s stands for 0pl0g2?...0g" with a multi-index o = (al,ag,...,an)T,
where each component «; is a non-negative integer and |a| = a1 + ag +
co g,

A denotes the Laplace operator with respect to x € R™: A, = 6%1 4+ 4
92 .

Furthermore, we use the following asymptotic relations

f<g if there exists a positive constant C; such that f < C}g for all arguments,
fzg if there exists a positive constant Cy such that f > Cag for all arguments,
f~y if f<Sgand f2g,

f=o0(g) denotes that limsup,_, % =0,

f=0(g) denotes that limsup,_, % < 00.
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A. Notation

A.2. Function spaces

We introduce here function spaces which are frequently used within thesis with a short definition:

CH(R™)

C>(R™)
Cg°(R™)
D'(R™)

LP(R™)

Lipe(R™)
P (Rn)
Lp,r (Rn)
H*(R"™)

H*(R™)

S(R™)

So(R™)

WP (R?)
Mg (R™)

space of k-times continuously differentiable functions,

space of infinitely continuously differentiable functions,

space of functions belonging to C*°(R"™) with compact support,
space of distributions, continuous dual space to C3°(R"™),
Lebesgue spaces with 1 < p < oo,

LV (R"):={u:R" - R:ue LP(U) for each U CC R"},

Bessel potential space, LP"(R") := (D)""LP(R"), 1 <p < oo, r € R,
Riesz potential space, LP"(R") := |D|~"LP(R"), 1 < p < 0o, r € R,
Sobolev space based on L?(R"), H*(R") = L?%(R"),

special Riesz potential space, H*(R") = L*%(R"),

Schwartz space of rapidly decreasing functions, S(R") = {f € C>*(R") :
SUP,crn 205 f(z)| < o0, Va, B},

space of Schwartz functions satisfying So(R™) = {f € S(R") : Dg‘f(O) =
0,Va},

Sobolev space based on LP(R™) with parameters r > 0,

space of multipliers with parameters 1 < p,q < oo correspond to LP —
Le

A.3. Symbols used throughout the thesis

In order to make a convenience for the readers we pick and choose some of symbols are often used
in our thesis. The following list we will introduced some most important definitions and symbols
in a short way. If the symbols are related to a particular chapter, we give also the corresponding

reference.

Assumptions are used in this thesis:

(A1) a(t) >0, da'(t) > 0, for ¢t € [0, 00)

al(t o a(t
(A2) aOA((t)) < a((f)) < alA((t))’ ag,a; >0

2
(A3) | |a" ()] < ava(t) (5 a2 > 0

(A4) t+C/+/a(t) is strictly increasing with a positive constant C
and for large ¢,

) O\ .
£ e < aja(t)(%> ca;>0,5=1,2,... .k

)
)® | (A)® = (A)F as k — o0
1 b(t) >0, b¢ L'Y(Ry)

1/ ()] < Cupt) 5

lim sup,_, o p(t) < 1

)
3) liminfy o p(t) > 1

) limsup,_, ., (u(t) + a(t)) <2
1) | b(t) >0

(
(
(
(
k
(B2 | [1/(1)] < Cun(t) (425), b =1,2,. .
(
(
(
(
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3
(B2) | [din(t)] < Cun(t) (55 for k=1,2
(B’3) ( )/A(t) is monotonic and u(t) — oo as t — oo
(B4) | a®(t)/b(t) = a()A(t)/u(t) & L' (Ry).
(B5) | s € L'(Ry)
(OD) | [ a(<g> dr < 00
(S1) | gty € L'(RY)

Tab. A.1.: Summarizing assumptions in thesis

Symbols are used throughout our thesis:

a(t) o = a5
A(t) (t) =1+ [ a(r)dr,
1
A1) A(t) = exp (5 NG )df)
50 () = a()/A),
n(t) n(t) = p(t)/A(L), oo = limeee ()
v(\ 1) (A1) = G20 v(N) = limy oo v(, 1)
) (ory = 1/ |17 — b2(t) /4] (SeCtiOH 3.3),
E.(u)(t)  the free wave energy, E (W) (t) = 1 [ (AVu(t,z)* + |u(t, z)|*)dz,
E(u)(t) the energy, E =1 [ (a(t)?|Vu(t,z)|* + |u(t, z)*)dz,
U(t,§) micro-energy, U = (Né( ), Dtu)T. We use this definition for both

zones:Z,q in Chapter 2 and Zg;ss in Chapter 3. U = (a(t)|§|a, Dtﬂ)T for

all Zy,,p in these Chapters. Moreover, D;U = A(t, &)U

E(t,s,¢)  fundamental solution to DU = A(t,§)U, i.e. the matrix-valued solution

to D\E = A(t,&)E, E(s,s,&) =1,
Ey(t,s,§) fundamental solution to, Dy Ey = (D(t,&) + Fo(t))Eo,
E,(t,s,&) fundamental solution to, DiE, = (D(t,&) + Ra(t))Eq,

1, is used to obtain LP — Li-estimates in Section 4.1,
v(t, ) v(t,x) = A(t)u(t, z), is used in Section 3.3

V(t,§) micro-energy, V (t,£) = ((f) 0s Dtv) ,

Evy(t,s,&) fundamental solution to the system D,V = A(t,£)V Section 3.3,
Evi(t,s, &) fundamental solution of the system after the first step of diagonalization

in the elliptic zone, Subsection 3.3.3.

Tab. A.2.: Summarizing symbols are used in thesis

EO(S’ 875) = I:
Ea<87 875) = I7

Ei(t,s,¢) fundamental solution of the system after k steps of diagonalization, k >
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B. Basic tools

B.1. Bessel functions

In part 2 of Chapter 2 we have transformed our partial differential equation to Bessel’s equation
in order to represent solutions explicitly. For this reason we introduce here some formulae used
throughout the calculations in this thesis. Bessel functions are the canonical solutions y(z) of
Bessel’s differential equation

%y + xy + (22 — )y =0 (B.1.1)
for an arbitrary complex number « (the order of the Bessel function). There are several ways to
define the Bessel functions. We introduce firstly Bessel functions of the first kind J,:

:i k+a+1)(2>2k+a. (B.1.2)

On the one hand, for non-integer «, the functions J,(z) and J_,(z) are linearly independent, and
are therefore two linear independent solutions of the differential equation. On the other hand, for
integer order «, the following relationship is valid:

The Bessel functions of the second kind, denoted by Y, (z), occasionally denoted instead by N, (z),
are solutions of the Bessel differential equation that have a singularity at the origin (x = 0). These
are sometimes called Weber functions due to Heinrich Martin Weber. One defines for non-integer
a, Yo () is related to J, by:

Jo(z) cos(am) — J_o(2) .

sin(ar)

Yo(z) = (B.1.3)

The Bessel functions of third kind or Hankel functions which are defined due to N. Nielsen as

HE(x) = Jo(x) £ 1Y, (2). (B.1.4)

HE (@) + HEQ @) = “SHE@) B.15)
H;t—l(x)_H(;t-i-l(x) = (H;E-H)/( )s (B.1.6)
aHE(z) +z(HE) (z) = zHE |(2), (B.1.7)
aHE(z) —x(HE) (x) = zHE (2). (B.1.8)

All this definitions and properties one can see in [Wat22| or in many other books about Bessel
functions.
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B.2. Bessel potential spaces and multiplier spaces

The Bessel potential space LP"(R™), 1 < p < oo, r € R, can be defined as the space of functions (or
distributions) u such that (I — A)r/2u belongs to the Lebesgue space LP(R™) and is endowed with

the corresponding Lebesgue norm. The operator (I — A) v/ 2, which for r > 0 is a kind of fractional

differentiation, is most easily defined by means of the Fourier transform. In fact, it corresponds to
multiplication of the Fourier transform of f by (1 4 |£|?)"/2. For the sake of clarity, we now define
the Bessel potential space [AH96| as follows:

LPT(R") = {f f=(I—A)""?xg, ge PR}, (B.2.1)

In various of lecture books it is shown that C§°(D) and S are dense in LP". It is a theorem of
A.P. Calderén [Cal6l] that for positive integers r and 1 < p < oo the space LP" coincides (with
equivalence of norms) with the Sobolev space WP that is

Lemma B.2.1 (A. P. Calderon). For r € N, 1 < p < oo we have WPT(R"™) = LP"(R™) with
equivalence of norms, i.e., there is a constant C' such that for all f

CYfllzer < IFlworCllf Nl

In order to obtain LP — LY-estimates in this thesis we have used a dyadic decomposition and
stationary phase method. The basic idea here is the following version of Littman’s lemma taken
from the paper of P. Brenner and Pecher, [Bre75, Pec76]. We can conclude the following estimate.

Lemma B.2.2. Let us assume that K = K(t) is a real-valued function and Let P be a real and
smooth function in the neighborhood of supp ¢(t,€), ¢(t,§) € CgO(R?). Assume further, that the
rank of the Hessian Hp(§) = (OP/0¢,0¢,) is at least p on supp ¢. Then, there exists an integer M,
depending on the space dimension, and a constant C > 0, depending on bounds of derivatives of P
on supp ¢, such that

_n-1
|F1 (eKOPO4(1,6) oo < C(1+ K(6) 7T 3 IDEO(EE) o
lal<M
holds with a constant C independent of t and &.

On the other hand, to handle the LP — L%-estimates we often use the Riesz-Thorin interpolation
theorem, see e.g. in the book of E.M. Stein on singular integrals, [Ste70] or in the lectures of Racke,
[Rac92].

Lemma B.2.3. Let the linear operator T satisfy

T : W™ — L, bounded with norm X,
T : L?> — L% bounded with norm X;.

There exists a constant C = C(p,n) such that
T:WNP — L9 bounded with norm X < CX} XY
with1<p<2,pg=p+q,0=2/q, N >n(l—0) and N € N.

Next, we introduce lemmas which help us to estimate the dyadic components. We refer to Lemma
3 in the work by Brenner, [Bre75]. Therefore, we can list up here some important properties which
are related to interpolation theorems.
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Lemma B.2.4. Let us assume ¢ € L.
LI IF7H ()]l < Co, then |F~H(¢F (u))lloo < Collulls-
2. If |9l < Ch, then |[F~H($F (u))l2 < Collull2-

3. If IIF ()l < Co and [|9]loc < C1, then | F~H(F (u))[lq < CCy~C|lull, with 1 < p <2,

pg=p+qand=2/q.

Now, we can summarize Lemma 1 and Lemma 2 in Brenner’s paper, [Bre75|. Therefore, let us
assume x € C§° to be non-negative with support contained in [1/2,2] and

o

Z X(er) =1, r#0.

j=—o0

This functions form a so-called dyadic decomposition. The basic idea of the proof are embedding
relations between Lebesgue and Besov spaces.

Lemma B.2.5. Let ¢ € L>*(R") and assume that

1F~(6(€)x;())llg < Cllv]l
holds uniform for all j and p € (1,2], pg = p+q. Then for a constant M independent of ¢ it follows
HF_1(¢<§)6) lg < MCljv|p.

For completeness of this section we just introduce very briefly the multiplier spaces M, which were
treated in the paper of L. Hérmander, [Hor60]. The multiplier space M, is defined as the set of all
Fourier transforms F(f) of distributions f € L, and the elements F(f) € M are called multipliers.
Here L} is the set of all distributions f € &’ with

1] *ully < Cllullp

forall u € S.

B.3. Further lemmas and useful calculations

Gronwall’s inequality. There are two forms of the lemma, a differential form and an integral
form. The differential form was proven by Grénwall in 1919, [Grol9|. The integral form was proved
by Richard Bellman in 1943, [Bel43|. In our thesis, Gronwall’s inequality is a useful tool for energy
estimates.

Lemma B.3.1 (Integral form). Let I denote an interval of the real line of the form [a,c0) or [a, b
or [a,b) with a <b. Let o, B and u be real-valued functions defined on 1. Assume that 5 and u are
continuous and that the negative part of o is integrable on every closed and bounded sub-interval of

I.
(a) If B is non-negative and if u satisfies the integral inequality
t
u(t) < aflt) + / B(s)u(s)ds, Vtel,

then

u(t) < a(t) + /at a(s)B(s) exp </:ﬁ(r) dr) ds, tel.
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(b) If, in addition, the function « is non-decreasing, then
t
u(t) < a(t) exp </ B(s) ds), tel.

Furthermore, in our thesis we often have to handle homogeneous linear systems of ordinary differ-
ential equations
DU = A(t)U (B.3.1)

with ¢t € Ry. It is well-known, that the Peano-Baker formula can be used for the representation of
the fundamental solution. This approach goes back to Peano, [Pea88], and was further developed
by Baker, [Bak05]. The explicit integral expansions (Peano-Baker series) one can see in Sec. 16.5
of the book of E.L. Ince, [Inc56].

Lemma B.3.2. Let A € L} (R,C" ™). Then the fundamental solution E(t,s) to 9, — A(t) is given

loc

by the Peano-Baker formula
R t t1 tk—1
E(t,s) =1+ Z/ At) | Alty)-- / A(tp)dty - - - dtodty.
k=1 S S S

The proof follows by differentiating the series term by term.

Corollary B.3.3. Let A€ L} _(R,C"™"). Then the fundamental matriz E(t,s) satisfies

loc

Bl <en{ [ 14wl

In order to guarantee the invertibility of the fundamental solution which arises from estimates in
scattering results or statements about asymptotic behavior of fundamental solution it is convenient
to use the Liouville’s formula in the following form.

Lemma B.3.4. Let us assume that E(t,s) is a matriz-valued solution of the system (B.3.1). Then

det E(t,s) = detE(s, s)exp (z /t tr A(T)dT)

for 0 < s <t.

A proof for this lemma one may found in standard text-books on differential equation, for instance,
V. 1. Arnold, [Arn01], or Chicone, [Chi06].
Faa di Bruno’s formula. Perhaps the most well-known form of Faa di Bruno’s formula, F. d.
Bruno [Brub5, Bru57], says the following:

Lemma B.3.5. Let f(g(x)) = (fog)(z) with x € R. Then we have

ar n! Sty i 4 .

ﬁﬂg(w)) - Z mq!1lmimyl2ime . oom, Inlma ’ f(ml " )(g(a:)) ’ H (g(j)(m)) ' (B.3.2)
j=1

where the sum is taken over all n-tuples of non-negative integers (m1,...,my) satisfying the con-

straint

1-mi+2-mo+---n---my =n.
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A multivariate version of Faa di Bruno’s formula, Constantine-Savits [C-S96], Leipnik-Pearce [L-P06],
is given in the next statement.

Lemma B.3.6. Let y = g(z1,...,2,). Then the following identity holds regardless of whether the
n wvartables are all distinct, or all identical, or partitioned into several distinguishable classes of
indistinguishable variables

" o!Bl
D %f I (y y@r 1 ng (B.3.3)
where

o 7 runs through the set II of all partitions of the set {1,...,n},

e B € 7 means the variable B runs through the list of all of the “blocks” of the partition w, and

o |A| denotes the cardinality of the set A (so that || is the number of blocks in the partition
and |B| is the size of the block B).

Let us give some generalizations of the formula of Faa di Bruno for a composite function with a
vector argument, see Mishkhov [Mis00].

Lemma B.3.7. If f and t are scalars, z(t) = [21(t), 22(t), ..., 2. (t)]" is an r-vector and f(z(t)) is
a composite function for which all the necessary derivatives are defined. Then

n 8kf - 1\ i i\ 4qi i\ Gir
D" f(z ZZ ZC n, ki, dig) Ar P OxoP? - - Oz, Pr H(ml)ql(xZ)qz"'(xr)q , (B.3.4)

i=1

where the respective sums are taken over all non-negative integer solutions of the Diophantine equa-
tions as follows:

> k4 2ky + .. nk, =,

Y S aqut gt +aqe =k,
1

Z_>Qn1+Qn2+"'+Qn7‘:kn7
n

and the differential operator D = d/dt, pj-the order of the partial derivative with respect to x;, k-the
order of the partial derivative are

Pi=qy+ @t g =12,

Gagliardo-Nirenberg inequality. The Gagliardo—Nirenberg inequality is a result in the theory
of Sobolev spaces that estimates the weak derivatives of a function. The meaning of this inequality
is the estimates are in terms of L? norms of the function can be estimated by its derivatives, and
these one interpolates among various values of ¢ and orders of differentiation. See Part 1 in A.
Friedman [Fri76|
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Lemma B.3.8. The inequality concerns functions u : R" — R. Fiz 1 < p,r < oo and a natural
number m. Suppose also that a real number a and a natural number j are such that

1 j (1 m l1—a
=24 (== —=)a+

qg n

and )
J
m

Then

1. every function u : R® —» R that lies in LP(R™) with m™ derivative in L"(R™) also has j™*
derivative in LY(R™),

2. and, furthermore, there exists a constant C' depending only on m, n, j, q, r and a such that
. -
D7 uf| e < ClD™ul| 7 [full "
The result has two exceptional cases:

1. If j = 0,mr < n and p = oo, then it is necessary to make the additional assumption that
either u tends to zero at infinity or that u lies in L® for some finite s > 0.

2. If 1 <r < oo and m —j —n/r is a non-negative integer, then it is necessary to assume also
that a # 1.

If we choose j =0,m =1 and r = p = 2, then we obtain

0 1-6
lullze < Ol V] 59 |l 15°.
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