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1. Introduction

1.1. Background

From the physical point of view hyperbolic equations describe processes in which disturbances
propagate with �nite velocity and it also plays a central role in physical modeling in several areas
of science, for instance, in �uid dynamics, electrodynamics, astrophysics, optics, acoustic, theory
of electromagnetic waves. We can list up here physical phenomena which are related with wave
equations, see Graham-Schiesser [G-S09]:

• Acoustic waves in �uids: shock waves in a gases, transmission of waves in liquids, applications
of ultrasound, audible sound, underwater sonar applications, etc., see Elmore [Elm69].

• Chemical waves: concentration variations of chemical species propagating in a system, for
instance, Ross-Muller-Vidal, [Ros88].

• Electromagnetic waves: electricity in various forms, radio waves, light waves in optic �bers,
etc., see A. Shadowitz [Sha75].

• Gravitational waves: The transmission of variations in a gravitational �eld in the form of
waves, as predicted by Einstein's theory of general relativity. Undisputed veri�cation of their
existence is still awaited, see in Chapter 5, Ohanian-Ru�ni [Oha94] .

• Seismic waves: Arising from movements in the earth's crust, passing through the interior
of the earth, studying of various of components of seismic waves from distant earthquakes,
[Elm69].

• Tra�c �ow waves: Small local changes in velocity occurring in high density situations can
result in the propagation of waves and even shocks, see LeVeque [Lev07].

One of a simpli�ed model for a vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3)
is the free wave equation

utt − c2∆u = 0, (1.1.1)

where c denotes the speed of propagation and the Laplacian ∆ is taken with respect to the spatial
variables. The d'Alembert's representation formula is a well-known formula in one space dimension.
Whereas, in two space dimensions we have the Poisson's formula. For three space dimensions the
explicit representation of solutions was investigated by G. R. Kirchho�.
One of the methods of studying the Cauchy problem for hyperbolic equations is the energy method.
The wave energy is de�ned by

Ec(u)(t) :=
1

2

∫
Rn

(
c2|∇u(t, x)|2 + |ut(t, x)|2

)
dx (1.1.2)

for a solution u = u(t, x) of the free wave equation (1.1.1). Physically (in the case n = 3) we have
the following conservation of energy

Ec(u)(t) = Ec(u)(0).
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Actually, the mathematical model for the free wave equation (1.1.1) is only suitable under ideal
conditions, that is, we idealize the analysis by neglecting the e�ect of friction, the e�ect of sti�ness,
the e�ect of gravity, etc. Evidently, the model of elastic waves in many media are not described by
the simple wave equation, but at least they give us some predicable and reasonable mathematical
properties.

1.1.1. Lp − Lq decay estimates for free wave equations

In this thesis we are not only interested in energy estimates but also in Lp−Lq decay estimates on
the conjugate line. Let us therefore introduce here various related papers which state results about
Lp − Lq decay estimates for the solutions to the following Cauchy problem:

utt −∆u = 0, u(0, x) = u1(x), ut(0, x) = u2(x), (1.1.3)

with (t, x) ∈ R+ × Rn, such that the energy solution satis�es the following a priori estimate

‖(∂t,∇)u(t, .)‖Lq . (1 + t)
−n−1

2

(
1
p
− 1
q

)(
‖u1‖WNp+1

p
+ ‖u2‖WNp

p

)
(1.1.4)

for n ≥ 2, 1 < p ≤ 2, (p, q) lying on conjugate line, i.e pq = p + q, and Np is an integer number
satis�es Np > n

(
1
p −

1
q

)
. The �rst paper we want to mention here is the paper of von Wahl [vW71],

in that paper he used the explicit representation of solutions in the three-dimensional case. Using
another methods which applied Fourier integral operators and stationary phase, we can see these
estimates in papers of W.Littman [Lit73], R.S. Strichartz [Str70], P. Brenner [Bre75], and H. Pecher,
[Pec76], to cite only a few.

1.1.2. Lp − Lq decay estimates for damped wave equations

We next devote to the Cauchy problem for the damped wave equation

utt −∆u+ ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x), (1.1.5)

with (t, x) ∈ R+×Rn. In [Mat76, Mat77], A. Matsumura established better decay estimates by the
aid of the dissipation term on Lp − Lq-estimates level as follows:

‖(∂t,∇)u(t, .)‖Lq . (1 + t)
−n

2

(
1
p
− 1
q

)
− 1

2

(
‖u1‖WNp+1

p
+ ‖u2‖WNp

p

)
(1.1.6)

for 1 < p ≤ 2, (p, q) lying on conjugate line and integer Np > n
(

1
p −

1
q

)
.

We will complete this part by pointing readers out that these decay estimates coincide with the
corresponding estimates for the heat equations (see G. Ponce [Pon85]).

1.2. Motivation and some problems of this thesis

The recent papers of J. Wirth, [W06] and [W07a], are devoted to the study of the Cauchy problem
for the wave equation with time-dependent dissipation

utt −∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (1.2.1)

A description of the in�uence of the coe�cient b = b(t) on the qualitative behavior of solutions is
given due to the following classi�cation:
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• Scattering: If b(t) has a very weak in�uence, then there is a relation to the free wave equation.
Such relations are described by so-called scattering results.

• Non-e�ective: If b(t) has a weak in�uence, then the classical energy decays to 0 and corre-
sponding Lp−Lq decay estimates are the classical Strichartz decay estimates with an additional
term as a time-dependent coe�cient coming from the decay of the energy itself. Such weak
dissipations will be called non-e�ective.

• E�ective: If b(t) has a stronger in�uence, then Lp − Lq decay estimates are similar to those
ones for the classical damped wave equation but with an additional decay function related to
the dissipation itself. Such dissipations will be called e�ective.

• Over-damping: If b(t) has a �very strong in�uence�, then in general we can not expect any
decay estimate of the classical wave type energy.

In both cases, scattering or over-damping, we have in general no energy decay. Roughly speaking,
energy decay only appears for dissipations b(t)ut with coe�cient �between� the conditions b /∈
L1(R+) and 1/b /∈ L1(R+) in (1.2.1). But we have to be more precise. This leads to distinguish
between non-e�ective and e�ective dissipation. Correspondingly, we only cite here two results from
J. Wirth [W05]: Assuming the coe�cient function b = b(t) is a positive, smooth and monotone
function of t, which satis�es

|b(k)(t)| ≤ Ckb(t)
(

1

1 + t

)k
for all k ∈ N0.

Result 1.2.1. Assume lim supt→∞ tb(t) < 1. Then the solution u = u(t, x) of (1.2.1) satis�es the

Lp − Lq decay estimate

‖(∂t,∇)u(t, ·)‖Lq ≤ C
1

λ(t)
(1 + t)

−n−1
2

(
1
p
− 1
q

) (
‖u1‖WNp+1

p
+ ‖u2‖WNp

p

)
(1.2.2)

for p ∈ (1, 2], q is the corresponding dual index, Np = n
(

1
p −

1
q

)
and λ(t) is an auxiliary function

which is de�ned by

λ(t) := exp

(
1

2

∫ t

0
b(τ)dτ

)
.

Result 1.2.2. Assume tb(t) → ∞ as t → ∞. Then the solution u = u(t, x) of (1.2.1) satis�es the

Lp − Lq decay estimate

‖(∂t,∇)u(t, ·)‖Lq ≤ C
(

1 +

∫ t

0

dτ

b(τ)

)−n
2

(
1
p
− 1
q

)
− 1

2 (
‖u1‖WNp+1

p
+ ‖u2‖WNp

p

)
(1.2.3)

for p ∈ (1, 2], q is the corresponding dual index and Np = n
(

1
p −

1
q

)
.

What about wave models in (1.2.1) without any dissipation? In a series of papers of M. Reissig-
K. Yagdjian-F. Hirosawa (see [R-Y99], [R-Y00a], [R-Y00b] or [H-W09]) the authors have obtained
results about decay estimates for solutions to the Cauchy problem

utt − a2(t)∆u = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (1.2.4)

Therein a(t) is chosen as a2(t) = λ2(t)b2(t), where λ(t) is a monotonously increasing function and
b(t) is an oscillating function. In this thesis we shall limit to treat only the case of an increasing
propagation speed and we are not interested in special oscillating parts in the coe�cient a(t). We
recall that some results from M. Reissig [Rei11] are obtained under the following assumptions to
the coe�cient a = a(t):
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• (A1) a(t) > 0, a′(t) > 0, for t ∈ [0,∞),

• (A2) a0
a(t)

A(t)
≤ a′(t)

a(t)
≤ a1

a(t)

A(t)
, a0, a1 > 0,

• (A3) |a′′(t)| ≤ a2a(t)
( a(t)

A(t)

)2
, a2 ≥ 0,

• (A4) t+
C√
a(t)

is strictly increasing with a positive constant C and for large t.

Here A(t) = 1+
∫ t

0 a(s)ds is a primitive of a(t). As an example for this kind of model we can choose
the Anti-de Sitter model of the universe that appears in the Mathematical Cosmology:

utt − e2t∆u = 0.

If we inverse the time variable, t→ −t, it becomes

utt − e−2t∆u = 0.

This equation describes particle in the so-called de Sitter model of the universe. Both of these
examples were introduced in A. Galstian [Gal03].
Our �rst main goal of the thesis is to combine our knowledge about wave models with time-dependent
speed and without any dissipation with those for wave models with time-dependent dissipation term.
For this reason it seems to be reasonable to devote to the wave model

utt − a2(t)∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x) (1.2.5)

with time-dependent increasing speed of propagation and dissipation. An interesting issue is to
introduce precise descriptions for scattering, non-e�ective, e�ective dissipations and over-damping

in model (1.2.5). Such a classi�cation we shall propose in Sections 3.1, 3.2, 3.3 and 3.4, respectively.
In particularly, in the case non-e�ective and e�ective dissipations we will derive energy estimates
not only on L2 − L2 scale but also on Lp − Lq scale, in both cases.
Recently, X. Gang and Y. Huicheng, [G-H13], they investigated the global existence and stability
of a smooth supersonic �ow with vacuum state at in�nity in a 3−D in�nitely long divergent nozzle
of the form

utt −
1

(1 + t)2(γ−1)
∆u+

2(γ − 1)

1 + t
ut = 0,

for 1 < γ < 2. A further topic of interest is the theory for non-linear wave equations which are
demonstrated in the form

utt − a2(t)∆u+ b(t)ut = f(u, ut,∇xu,∇xut,∇2
xu), u(0, x) = u1(x), ut(0, x) = u2(x), (1.2.6)

with u = u(t, x), time variable t ∈ R+ and space variable x ∈ Rn. Recently, there are several papers
which are devoted to the Cauchy problem for the following non-linear wave equations

utt − a(t)2∆u = u2
t − a(t)2|∇u|2, u(0, x) = u1(x), ut(0, x) = u2(x). (1.2.7)

In particular, in two papers of K. Yagdjian, [Yag01] and [Yag05], it is explained how the above class
of special semi-linear Cauchy problems can be reduced by Nirenberg's transformation to a linear
model with constrain condition. The above papers and the paper Ebert and Reissig [E-R11] concern
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with the problem of global existence (in time) for small data solutions to the semi-linear Cauchy
problem

utt − a(t)2∆u = u2
t − a(t)2|∇u|2, u(0, x) = u1(x), ut(0, x) = u2(x). (1.2.8)

It would be a challenge to apply this approach to the case of non-e�ective dissipations to the
following semi-linear Cauchy problem

utt − a(t)2∆u+ b(t)ut = u2
t − a(t)2|∇u|2, u(0, x) = u1(x), ut(0, x) = u2(x). (1.2.9)

This is done in Section 5.1.
Another interesting application to the case of e�ective dissipations is the question for global small
data solutions to the following semi-linear model

utt − a(t)2∆u+ b(t)ut = f(u), u(0, x) = u1(x), ut(0, x) = u2(x), (1.2.10)

where f(u) ≈ |u|p. This is done in Section 5.2. In a recent paper of D'Abbicco and Lucente,
[D-L12], the authors have constructed counter-examples which provide a nonexistence result for
weak solutions to (1.2.10).

Outline of this thesis. In Chapter 2 we introduce primarily the WKB-analysis, the method of
zones. In particularly, in the second part of this chapter we study very important examples, the
scale-invariant models, by using a lot of techniques from the theory of special functions. Among
other things properties of solutions to the Bessel equation and con�uent hypergeometric equation

are used. These examples give us a lot of ideals and some predictions for more general results which
are proved later. The emphasis in Chapter 3 and Chapter 4 is on concentrating a precise description
of classi�cation under the in�uence of a(t) and b(t) and their applications to derive Lp − Lq decay
estimates. In these chapters some techniques are applied, for example, WKB-analysis, the method
of zones. Besides, we shall also use di�erent micro-energies in di�erent parts of the extended
phase space, the diagonalization procedure, symbol classes and their hierarchies. Theory of Fourier
multipliers or stationary phase method imply the desired a-priori estimates. Afterwards, in Chapter
5 we investigate the global existence of small data solutions of two semi-linear models by applying
directly non-e�ective and e�ective results from Chapters 3 and 4. Finally, we introduce in Chapter
6 some further and open problems which are related to the results of the thesis.

1.3. Selected results of this thesis

In order to make our results more understandable here and hereafter we use the notation b(t) =

µ(t)
a(t)

A(t)
.

1.3.1. L2 − L2 estimates for linear models

Non-e�ective dissipation [Theorem 3.2.1]

Let us assume:

(B1) b(t) > 0, b /∈ L1(R+),

(B2) |µ′(t)| ≤ Cµµ(t)
a(t)

A(t)
,
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(B3) lim supt→∞ µ(t) < 1.

(B3)' lim inft→∞ µ(t) > 1.

(C) lim supt→∞
(
µ(t) + α(t)

)
< 2, where α(t) is de�ned by

a′(t)

a(t)
=: α(t)

a(t)

A(t)
.

Result 1.3.1. Let us consider the Cauchy problem (1.2.5) under the assumptions (A1) to (A3),

(B1), (B2), (B3) or (B3)' and (C). Then we have the following estimates for the energy solution:

‖(∂t, a(t)∇)u(t, ·)‖L2 ≤ C
√
a(t)

λ(t)

(
‖u1‖H1 + ‖u2‖L2

)
.

Here λ = λ(t) is de�ned by

λ(t) := exp
(1

2

∫ t

0
b(τ)dτ

)
. (1.3.1)

E�ective dissipation [Theorem 3.3.14]

We assume:

(B'1) b(t) > 0,

(B'2)
∣∣dkt µ(t)

∣∣ ≤ Ckµ(t)

(
a(t)

A(t)

)k
for k = 1, 2,

(B'3) µ(t)/A(t) is monotonic and µ(t)→∞ as t→∞,

(B'4) a2(t)/b(t) = a(t)A(t)/µ(t) /∈ L1(R+).

Result 1.3.2. Let us assume the conditions (A1) to (A3) and (B'1) to (B'4). Then we have the

following L2 − L2 estimates:

‖(∂t, a(t)∇)u(t, ·)‖L2 ≤ C . a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2 (
‖u1‖H1 + ‖u2‖L2

)
.

1.3.2. Lp − Lq estimates for linear models

The case of non-e�ective dissipation [Theorem 4.1.10]

We assume more regularity for a(t) and b(t):

(A3)∞ |a(k)(t)| . a(t)

(
a(t)

A(t)

)k
, k = 1, 2, · · · ,

(B2)∞ |µ(k)(t)| . µ(t)

(
a(t)

A(t)

)k
, k = 1, 2, · · · .
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Result 1.3.3. If the conditions (A1), (A2), (A3)∞, (B1), (B2)∞, (B3) or (B3)' and (C) hold, then
we have the following Lp − Lq estimates for the kinetic and the �elastic� energy:

‖(∂t, a(t)∇)u(t, ·)‖Lq .
1

λ(t)

√
a(t)A(t)

−n−1
2

(
1
p
− 1
q

)(
‖u1‖Lp,r+1 + ‖u2‖Lp,r

)
with regularity r = n

(
1
p −

1
q

)
, 1 < p ≤ 2, 1

p + 1
q = 1 and u0(·), u1(·) ∈ S(Rn). Here A(t) =

1 +
∫ t

0 a(τ)dτ .

The case of e�ective dissipation [Theorem 4.2.2]

Result 1.3.4. Assume the conditions (B'1) to (B'4). Then for all times t we have the Lp − Lq
decay estimates∥∥(ut(t, ·), a(t)∇xu(t, ·))

∥∥
Lq

. a(t)
(

1 +

∫ t

0

a2(τ)

b(τ)
dτ
)− 1

2
−n

2

(
1
p
− 1
q

)(
‖u1‖Lp,r+1 + ‖u2‖Lp,r

)
,

where r > n
(1

p
− 1

q

)
with 1 < p ≤ 2 and

1

p
+

1

q
= 1.

1.3.3. Results for non-linear models

Semi-linear models with non-e�ective dissipation

We introduce a new assumption which is a modi�cation of assumption (B3) as follows:
(B3) lim supt→∞ µ(t) < max

{
lim supt→∞ α(t), 1

}
in the case of space dimension n > 1 and

(B3)' 1− δα(t)− ε0 ≤ lim inft→∞ µ(t) ≤ lim supt→∞ µ(t) < 1 in the case of space dimension n = 1.

Result 1.3.5. Assume a(t) satis�es (A1) to (A3) and b(t) satis�es (B1) to (B3) (n > 1) or (B1)
to (B3)' (n = 1). Then there exists a unique global (in time) classical solution u = u(t, x) to

utt − a(t)2∆u+ b(t)ut = u2
t − a(t)2|∇xu|2, u(0, x) = εu1(x), ut(0, x) = εu2(x)

for given u0, u1 ∈ C∞0 (Rn), n > 1, and all ε ∈ [0, ε∗) with an in general suitable positive and small

ε∗.

Semi-linear models with e�ective dissipation [Theorem 5.2.7]

Result 1.3.6. We assume the Hypotheses (A1) to (A3), (B'1) to (B'5) and (R1). Let us assume

n ≤ 4 and 
p > p̄ and p ≥ 2 if n=1,2,

2 ≤ p ≤ 3 = pGN (3) if n= 3,

p = 2 = pGN (4) if n= 4.

(1.3.2)

Moreover, if we assume

λ >
ν(λ)

a0

(2 +M)n

8
. (1.3.3)

Then there exists a constant ε0 > 0 such that data with

‖(u1, u2)‖A1,1 ≤ ε0,

imply the existence of a unique solution to (5.2.1) in C([0,∞), H1) ∩ C1([0,∞), L2). Furthermore,

there exists a constant C > 0 such that this solution satis�es the estimates

‖u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4 , (1.3.4)

‖∇u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
− 1

2 , (1.3.5)

‖ut(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
−1a2(t)(b(t))−1. (1.3.6)

Here λ, ν(λ), M , pGN and p̄ are introduced in Section 5.2 and in Theorem 5.2.7.
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2. Wave models without any dissipation

2.1. Wave models with strictly increasing speed of propagation

Let us devote to the Cauchy problem

utt − a2(t)∆u = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (2.1.1)

In special cases for a this was done in M. Reissig [Rei97] or A. Galstian [Gal03].

Theorem 2.1.1. Let us consider the Cauchy problem (2.1.1) under the following assumptions to

the coe�cient a = a(t) :

(A1) a(t) > 0, a′(t) > 0, for t ∈ [0,∞),

(A2) a0
a(t)

A(t)
≤ a′(t)

a(t)
≤ a1

a(t)

A(t)
, a0, a1 > 0,

(A3) |a′′(t)| ≤ a2a(t)
( a(t)

A(t)

)2
, a2 ≥ 0,

(A4) t+
C√
a(t)

is strictly increasing with a positive constant C and for large t.

Here A(t) = 1 +
∫ t

0 a(s)ds is a primitive of a(t).
For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ C
√
a(t)(‖u1‖H1 + ‖u2‖L2).

For the �elastic� energy we have

‖a(t)∇u(t, ·)‖L2 ≤ C
√
a(t)(‖u1‖H1 + ‖u2‖L2).

Proof. Applying partial Fourier transformation we have ûtt+a2(t)|ξ|2û = 0. Introducing the function
A(t) = 1 +

∫ t
0 a(τ)dτ we denote by tξ a function of |ξ| such that A(tξ)|ξ| = N with a suitable

constant N . The function A(t) is increasing, so tξ is a decreasing function in |ξ|. By the aid of tξ
we divide the extended phase space {(t, ξ) ∈ R+ ×Rnξ } into two zones, the pseudo-di�erential zone
Zpd(N) := {(t, ξ) : A(t)|ξ| ≤ N} and the hyperbolic zone Zhyp(N) := {(t, ξ) : A(t)|ξ| ≥ N}.
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|ξ|

t

0

Zhyp(
A(t)|ξ| ≥ N

)
Zpd(

A(t)|ξ| ≤ N
)

tξ

N

Fig. 2.1.: Description for the de�nition of zones.

Considerations in the pseudo-di�erential zone

Let us de�ne the micro-energy U =
(
N a(t)

A(t) û, Dtû
)T

. Then the transformed equation can be written

in the form of a system of �rst order (in Dt)

DtU = A(t, ξ)U, A(t, ξ) =

 −i
∂t

a
A
a
A

N a(t)
A(t)

A(t)a(t)|ξ|2
N 0

 .

Thus the solution U = U(t, ξ) can be represented as U(t, ξ) = E(t, s, ξ)U(s, ξ), where E(t, s, ξ) is
the fundamental solution, that is, the solution to the system

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ.

Denoting by E(jk) the entries of E we get for k = 1, 2 the system

DtE
(1k) = −i

∂t
a
A
a
A

E(1k) +N
a(t)

A(t)
E(2k), DtE

(2k) =
A(t)a(t)|ξ|2

N
E(1k), E(jk)(s, s, ξ) = δjk.

Integration yields

E(1k)(t, s, ξ) =
a(t)

A(t)

A(s)

a(s)
E(1k)(s, s, ξ) + iN

a(t)

A(t)

∫ t

s
E(2k)(τ, s, ξ)dτ,

E(2k)(t, s, ξ) = E(2k)(s, s, ξ) +
i|ξ|2

N

∫ t

s
A(τ)a(τ)E(1k)(τ, s, ξ)dτ.

We are going to prove the following lemma:

Lemma 2.1.2. We have the following estimates for the entries E(kl)(t, 0, ξ) of the fundamental

matrix E(t, 0, ξ):

|E(11)(t, 0, ξ)|+ |E(21)(t, 0, ξ)| ≤ CN
a(t)

A(t)
for all t ∈ [0, tξ],

|E(12)(t, 0, ξ)|+ |E(22)(t, 0, ξ)| ≤ CN
a(t)

A(t)
t for all t ∈ [0, tξ].
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Proof. If we introduce y(t, s, ξ) :=
a(s)

A(s)

A(t)

a(t)
E(11)(t, s, ξ), then we conclude from the above system

y(t, s, ξ) = 1− |ξ|2
∫ t

s

∫ τ

s
a2(θ)y(θ, s, ξ)dθdτ, |y(t, s, ξ)| ≤ 1 +

∫ t

s

∫ τ

s
a2(θ)|ξ|2|y(θ, s, ξ)|dθdτ,

respectively. The desired estimates are basing on the following lemma.

Lemma 2.1.3. Let us assume that a function y = y(t, s, ξ) satis�es the inequality

|y(t, s, ξ)| ≤ 1 +

∫ t

s

∫ τ

s
a2(θ)|ξ|2|y(θ, s, ξ)|dθdτ.

Then the function satis�es the estimate

|y(t, s, ξ)| ≤ exp
(∫ t

s

∫ τ

s
a2(θ)|ξ|2dθdτ

)
.

Proof. By the method of successive approximation it holds

|yk+1(t, s, ξ)| ≤ 1 + |ξ|2
∫ t

s

∫ τ

s
a2(θ)|yk(θ, s, ξ)|dθdτ.

Hence,

|y(t, s, ξ)| ≤ 1 +
∞∑
k=1

∫ t

s

∫ t1

s
|ξ|2a2(t2) · · ·

∫ t2k−2

s

∫ t2k−1

s
|ξ|2a2(t2k)dt2kdt2k−1 · · · dt2dt1.

We will show by induction principle that∫ t

s

∫ t1

s
|ξ|2a2(t2) · · ·

∫ t2k−2

s

∫ t2k−1

s
|ξ|2a2(t2k)dt2kdt2k−1 · · · dt2dt1 ≤

1

k!

(∫ t

s

∫ t1

s
|ξ|2a2(t2)dt2dt1

)k
.

Then the statement of the lemma follows immediately. For k = 1 (t = t0) the statement is clear.
Assume that the statement is true for k = p:∫ t

s

∫ t1

s
|ξ|2a2(t2) · · ·

∫ t2p−2

s

∫ t2p−1

s
|ξ|2a2(t2p)dt2pdt2p−1 · · · dt2dt1 ≤

1

p!

(∫ t

s

∫ t1

s
|ξ|2a2(t2)dt2dt1

)p
.

To prove that the statement is valid for k = p+ 1 we conclude as follows:∫ t

s

∫ t1

s
|ξ|2a2(t2) · · ·

∫ t2p

s

∫ t2p+1

s
|ξ|2a2(t2p+2)dt2p+2dt2p+1 · · · dt2dt1

≤
∫ t

s

∫ t1

s
|ξ|2a2(t2)

1

p!

(∫ t2

s

∫ t3

s
|ξ|2a2(t4)dt4dt3

)p
dt2dt1

=
|ξ|2p+2

p!

∫ t

s

∫ t1

s
d2
t2

[ ∫ t2

s

∫ t3

s
a2(t4)dt4dt3

]
︸ ︷︷ ︸

F (t2)

(∫ t2

s

∫ t3

s
a2(t4)dt4dt3

)p
dt2dt1.

Taking into consideration that F (t2) ≥ 0 and dt2F (t2) ≥ 0 we continue to estimate

=
|ξ|2p+2

p!

∫ t

s

∫ t1

s
d2
t2F (t2) · F (t2)pdt2dt1

=
|ξ|2p+2

p!

∫ t

s

[
dt2F (t2) · F (t2)p

∣∣∣t1
s
−
∫ t1

s
dt2F (t2) · dt2F (t2)p

]
≤ |ξ|

2p+2

p!

∫ t

s
dt1F (t1) · F (t1)pdt1

≤ |ξ|
2p+2

p!

1

p+ 1
F (t)p+1 =

1

(p+ 1)!

(∫ t

s

∫ t1

s
|ξ|2a2(t2)dt2dt1

)(p+1)
.
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This we wanted to prove.

Applying this lemma to

|y(t, s, ξ)| ≤ 1 +

∫ t

s

∫ τ

s
a2(θ)|ξ|2|y(θ, s, ξ)|dθdτ,

where

y(t, s, ξ) :=
a(s)

A(s)

A(t)

a(t)
E(11)(t, s, ξ),

it follows

|y(t, s, ξ)| ≤ exp
(∫ t

s

∫ τ

s
a2(θ)|ξ|2dθdτ

)
.

Now we shall estimate the right-hand side. By using the assumptions for the coe�cient a = a(t)
and the de�nition of the pseudo-di�erential zone it holds∫ t

s

∫ τ

s
a2(θ)|ξ|2dθdτ ≤ C

∫ t

s

∫ τ

s
a′(θ)A(θ)|ξ|2dθdτ ≤ CN |ξ|

∫ t

s

∫ τ

s
a′(θ)dθdτ

= CN |ξ|
∫ t

s
(a(τ)− a(s))dτ ≤ CN |ξ|

∫ t

s
a(τ)dτ ≤ CN |ξ|A(t) ≤ CN .

So we may conclude that

|E(11)(t, s, ξ)| ≤ C a(t)

A(t)

A(s)

a(s)
.

Now we consider

E(21)(t, s, ξ) =
i|ξ|2

N

∫ t

s
A(τ)a(τ)E(11)(τ, s, ξ)dτ.

By using the estimate for |E(11)(t, s, ξ)| we have

|E(21)(t, s, ξ)| ≤ |ξ|
2

N

∫ t

s
A(τ)a(τ)|E(11)(τ, s, ξ)|dτ ≤ C |ξ|

2

N

∫ t

s
A(τ)a(τ)

a(τ)

A(τ)

A(s)

a(s)
dτ

= C
|ξ|2A(s)

a(s)

∫ t

s
a(τ)2dτ ≤ C |ξ|

2A(s)

a(s)

∫ t

s
a′(τ)A(τ)dτ ≤ C |ξ|

2A(t)A(s)

a(s)

∫ t

s
a′(τ)dτ

= C
|ξ|2A(t)A(s)

a(s)
(a(t)− a(s)) ≤ C |ξ|

2A(t)A(s)

a(s)
a(t) = C

a(t)

A(t)

A(s)

a(s)
|ξ|2A2(t) ≤ CN2 a(t)

A(t)

A(s)

a(s)
.

On this way we obtained |E(21)(t, s, ξ)| ≤ C a(t)

A(t)

A(s)

a(s)
.

Next we consider the system

E(12)(t, s, ξ) = iN
a(t)

A(t)

∫ t

s
E(22)(τ, s, ξ)dτ,

E(22)(t, s, ξ) = 1 +
i|ξ|2

N

∫ t

s
A(τ)a(τ)E(12)(τ, s, ξ)dτ.

Then we get

E(12)(t, s, ξ) = iN
a(t)

A(t)

∫ t

s

(
1 +

i|ξ|2

N

∫ τ

s
A(θ)a(θ)E(12)(θ, s, ξ)dθ

)
dτ

= iN
a(t)

A(t)
(t− s)− a(t)

A(t)
|ξ|2

∫ t

s

∫ τ

s
A(θ)a(θ)E(12)(θ, s, ξ)dθdτ.
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As in the previous steps we estimate as follows:

|E(12)(t, s, ξ)| ≤ N a(t)

A(t)
t+

a(t)

A(t)
|ξ|2

∫ t

s

∫ τ

s
A(θ)a(θ)|E(12)(θ, s, ξ)|dθdτ,∣∣∣ A(t)

a(t)Nt
E(12)(t, s, ξ)

∣∣∣ ≤ 1 +
|ξ|2

t

∫ t

s

∫ τ

s
θa(θ)2

∣∣∣ A(θ)

a(θ)Nθ
E(12)(θ, s, ξ)

∣∣∣dθdτ
≤ 1 + |ξ|2

∫ t

s

∫ τ

s
a(θ)2

∣∣∣ A(θ)

a(θ)Nθ
E(12)(θ, s, ξ)

∣∣∣dθdτ.
So, we see that after setting y(t, s, ξ) :=

A(t)

a(t)Nt
E(12)(t, s, ξ) we are able to apply Lemma 2.1.3. In

the same way as we did it for E(11)(t, s, ξ) it follows immediately∣∣∣ A(t)

a(t)Nt
E(12)(t, s, ξ)

∣∣∣ ≤ CN thus |E(12)(t, s, ξ)| ≤ CN
a(t)

A(t)
t.

In a similar way we also get

|E(22)(t, s, ξ)| ≤ CN
a(t)

A(t)
t.

This completes the proof.

Now let us come back to

U(t, ξ) = E(t, 0, ξ)U(0, ξ) for all 0 ≤ t ≤ tξ. (2.1.2)

Because of a(t)|ξ||û(t, ξ)| ≤ N
a(t)

A(t)
|û(t, ξ)| in Zpd(N) from (2.1.2) and Lemma 2.1.2 the following

statement can be concluded:

Corollary 2.1.4. We have in the pseudo-di�erential zone Zpd(N) the following estimates for all

0 ≤ t ≤ tξ :

a(t)|ξ||û(t, ξ)| ≤ CN
a(t)

A(t)
|û(0, ξ)|+ CN

a(t)

A(t)
t|Dtû(0, ξ)|,

|Dtû(t, ξ)| ≤ CN
a(t)

A(t)
|û(0, ξ)|+ CN

a(t)

A(t)
t|Dtû(0, ξ)|.

Considerations in the hyperbolic zone

Here we use the hyperbolic micro-energy U = (a(t)|ξ|û, Dtû)T . Then U satis�es

DtU = A(t, ξ)U :=

(
Dta
a a(t)|ξ|

a(t)|ξ| 0

)
U. (2.1.3)

Let us carry out the �rst step of diagonalization. For this reason we set

M =

(
1 −1
1 1

)
, M−1 =

1

2

(
1 1
−1 1

)
, and U (0) = M−1U.

So DtU
(0) = D(t, ξ)U (0) +R(t)U (0), where

D(t, ξ) :=

(
τ1 0
0 τ2

)
=

(
a(t)|ξ| 0

0 −a(t)|ξ|

)
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and

R(t) =
1

2

 Dta

a
−Dta

a

−Dta

a

Dta

a

 .

Let F0(t) be the diagonal part of R(t). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

N (1) =

 0
R12

τ1 − τ2
R21

τ2 − τ1
0

 =

 0 i
a′

a

4a(t)|ξ|

−i
a′

a

4a(t)|ξ|
0

 , N1 = I +N (1).

Because of
( a′

a

4a(t)|ξ|

)2
∼
( a

A

4a(t)|ξ|

)2
6 C

N we can choose a su�ciently large N such that the

determinant of N1 is detN1 = 1−
( a′

a

4a(t)|ξ|

)2
≥ 1

2 . Hence, the matrix N1 is invertible. Set

B(1) = DtN
(1) − (R− F0)N (1) =


(a
′

a )2

8a(t)|ξ|
∂t

a′

a

4a(t)|ξ|

−∂t
a′

a

4a(t)|ξ|
(a
′

a )2

8a(t)|ξ|

 and R1(t, ξ) = −N−1
1 B(1)(t, ξ).

To understand our strategy let us de�ne the following classes of symbols with limited smoothness
with respect to t (m3 ≥ 0):

De�nition 2.1.1. The time-dependent function c(t, ξ) belongs to the symbol class

Sl{m1,m2,m3} with restricted smoothness l, if it satis�es the following estimates:

Sl{m1,m2,m3} =
{
c(t, ξ) : |Dα

ξD
k
t c(t, ξ)| 6 Cα,k|ξ|m1−|α|a(t)m2

( a(t)

A(t)

)m3+k
in Zhyp(N)

for all α and k ≤ l
}
.

Lemma 2.1.5. The family of symbol classes Sl{m1,m2,m3} generates a hierarchy of symbol classes

having the following properties:

• Sl{m1,m2,m3} is a vector space.

• Sl{m1,m2,m3}Sl{m′1,m′2,m′3} ⊂ Sl{m1 +m′1,m2 +m′2,m3 +m′3}.

• Dk
tD

α
ξ Sl{m1,m2,m3} ⊂ Sl−k{m1 − |α|,m2,m3 + k}.

• S0{−1,−1, 2} ⊂ L∞ξ L1
t (Zhyp(N)).

Proof. We only verify the fourth property. If a(t, ξ) ∈ S0{−1,−1, 2}, then∫ ∞
tξ

|a(τ, ξ)|dτ ≤
∫ ∞
tξ

C
1

|ξ|
a(τ)

A2(τ)
dτ =

1

A(tξ)|ξ|
= CN

due to the de�nition of the hyperbolic zone.
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Using the above introduced symbol classes and the assumptions for a = a(t) we have
Dta

a
∈

S1{0, 0, 1}, B(1),R1 ∈ S0{−1,−1, 2}. Moreover, we conclude(
Dt −D(t, ξ)−R(t)

)
N1(t, ξ)U (1)(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ)− F0(t)−R1(t, ξ)

)
U (1)(t, ξ).

Hence, we can �nd the solution U (0)(t, ξ) =: N1(t, ξ)U (1)(t, ξ), where U (1)(t, ξ) is the solution to the
system (

Dt −D(t, ξ)− F0(t)−R1(t, ξ)
)
V (t, ξ) = 0.

We can write U (1)(t, ξ) = E1(t, tξ, ξ)U
(1)(tξ, ξ), where E(t, s, ξ) is the fundamental solution, that is,

the solution of the system

DtE1(t, s, ξ) =
(
Dt −D(t, ξ)− F0(t)−R1(t, ξ)

)
E1(t, s, ξ), E1(s, s, ξ) = I, t ≥ s ≥ tξ.

The solution E0 = E0(t, s, ξ) of the �principal part� (concerning the hierarchy of symbol classes)
ful�ls

DtE0(t, s, ξ) = (D(t, ξ) + F0(t))E0(t, s, ξ), E0(s, s, ξ) = I, t ≥ s ≥ tξ.

Thus

E0(t, s, ξ) =

√
a(t)√
a(s)

 exp
( ∫ t

s ia(τ)|ξ|dτ
)

0

0 exp
(
−
∫ t
s ia(τ)|ξ|dτ

)  .

Let us set

R2(t, s, ξ) = E0(t, s, ξ)−1R1(t, ξ)E0(t, s, ξ),

Q(t, s, ξ) = I +

∞∑
k=1

ik
∫ t

s
R2(t1, s, ξ)

∫ t1

s
R2(t2, s, ξ) · · ·

∫ tk−1

s
R2(tk, s, ξ)dtk · · · dt2dt1.

Then Q(t, s, ξ) solves the Cauchy problem

DtQ(t, s, ξ) = R2(t, s, ξ)Q(t, s, ξ), Q(s, s, ξ) = I, t ≥ s ≥ tξ.

The fundamental solutionE1 = E1(t, s, ξ) is representable in the formE1(t, s, ξ) = E0(t, s, ξ)Q(t, s, ξ).
Analogous to the statement of Lemma 2.1.3 we are able to show the following estimate for Q(t, s, ξ):

|Q(t, s, ξ)| ≤ exp
(∫ t

s
|R1(τ, ξ)|dτ

)
≤ exp

( 1

|ξ|

( −1

A(τ)

)∣∣∣t
s

)
≤ CN .

Here we use the fourth statement of Lemma 2.1.5 and R1 ∈ S0{−1,−1, 2}. The backward trans-
formation yields U(t, ξ) = MN1(t, ξ)E0(t, s, ξ)Q(t, s, ξ)N−1

1 (s, ξ)M−1U(s, ξ),∣∣∣∣( a(t)|ξ|û(t, ξ)
Dtû(t, ξ)

)∣∣∣∣ ≤
√
a(t)√
a(s)

∣∣∣∣( a(s)|ξ|û(s, ξ)
Dtû(s, ξ)

)∣∣∣∣ for all t ≥ s ≥ tξ.

Corollary 2.1.6. We have in the hyperbolic zone Zhyp(N) the estimate∣∣∣∣( a(t)|ξ|û(t, ξ)
Dtû(t, ξ)

)∣∣∣∣ ≤ C
√
a(t)√
a(tξ)

∣∣∣∣( a(tξ)|ξ|û(tξ, ξ)
Dtû(tξ, ξ)

)∣∣∣∣
for all t ≥ tξ.
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Conclusion

From the statements of Corollaries 2.1.4 and 2.1.6 we derive the statement of our theorem.

1.case: {|ξ| ≥ N}
Then the statement of Corollary 2.1.6 implies immediately∣∣∣∣( a(t)|ξ|û(t, ξ)

Dtû(t, ξ)

)∣∣∣∣ ≤ C√a(t)

∣∣∣∣( |ξ|û(0, ξ)
Dtû(0, ξ)

)∣∣∣∣
for all t ≥ 0.
2.case: {|ξ| ≤ N}
Then the statements of Corollaries 2.1.6 and 2.1.4 give immediately

a(t)|ξ||û(t, ξ)| ≤ C
√
a(t)√
a(tξ)

(
a(tξ)|ξ||û(tξ, ξ)|+ |Dtû(tξ, ξ)|

)
≤ CN

√
a(t)

(√a(tξ)

A(tξ)
|û(0, ξ)|+

√
a(tξ)

A(tξ)
tξ|Dtû(0, ξ)|

)
.

This inequality together with assumption (A4) implies

a(t)|ξ||û(t, ξ)| ≤ C
√
a(t)(|û(0, ξ)|+ |Dtû(0, ξ)|) for all t ≥ tξ.

The statements of Corollary 2.1.4 and assumption (A4) yield

a(t)|ξ||û(t, ξ)| ≤ C
√
a(t)(|û(0, ξ)|+ |Dtû(0, ξ)|) for all t ≤ tξ.

Summarizing both cases we have shown

a(t)|ξ||û(t, ξ)| ≤ C
√
a(t)

(
|û(0, ξ)|+ |Dtû(0, ξ)|

)
for all (t, ξ) ∈ {t ≥ 0} × Rnξ .

In the same way we prove

|Dtû(t, ξ)| ≤ C
√
a(t)

(
|û(0, ξ)|+ |Dtû(0, ξ)|

)
for all (t, ξ) ∈ {t ≥ 0} × Rnξ .

This completes the proof to Theorem 2.1.1.

Some examples

Typical examples for possible increasing speeds a = a(t) are

a(t) = (1 + t)l, a(t) = et, a(t) = (e[n])t := ee
··
et

.

Example 2.1.1. If we choose a(t) = (1 + t)l, then all assumptions (A1) to (A4) are satis�ed. The
solutions to the Cauchy problem for utt − (1 + t)2l∆u = 0 satisfy the following energy estimates:

For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ C(1 + t)
l
2 (‖u1‖H1 + ‖u2‖L2).

For the �elastic� energy we have

‖(1 + t)l∇u(t, ·)‖L2 ≤ C(1 + t)
l
2 (‖u1‖H1 + ‖u2‖L2).
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Example 2.1.2. If we choose for example a(t) = et, then all assumptions (A1) to (A4) are satis�ed.
The solutions to the Cauchy problem for utt − e2t∆u = 0 satisfy the following energy estimates:

For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ Ce
1
2
t(‖u1‖H1 + ‖u2‖L2).

For the �elastic� energy we have

‖et∇u(t, ·)‖L2 ≤ Ce
1
2
t(‖u1‖H1 + ‖u2‖L2).

Example 2.1.3. If we choose for example a(t) = (e[n])t, then all assumptions (A1) to (A4) are
satis�ed. The solutions to the Cauchy problem for utt − (e[n])2t∆u = 0 satisfy the following energy
estimates:

For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ C(e[n])
t
2 (‖u1‖H1 + ‖u2‖L2).

For the �elastic� energy we have

‖(e[n])t∇u(t, ·)‖L2 ≤ C(e[n])
t
2 (‖u1‖H1 + ‖u2‖L2).

2.2. Critical cases of damped wave models

2.2.1. Some model cases

Increasing speed of potential order

Let us study

utt − (1 + t)2l∆u+
a(l + 1)

(1 + t)
ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (2.2.1)

We introduce the energy of the solution in L2:

E(u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + |(1 + t)l∇u(t, x)|2

)
dx.

We will look for the behavior of the solution u(t, ·) and the energy E(u)(t) as t tends to in�nity.

First we reduce (2.2.1) by special functions to the Bessel equation. Applying the partial Fourier
transformation with respect to x to (2.2.1) we obtain

ûtt + (1 + t)2l|ξ|2û+
a(l + 1)

1 + t
ût = 0, û(0, ξ) = û1(ξ), ût(0, ξ) = û2(ξ). (2.2.2)

Setting τ =
(1 + t)l+1

1 + l
|ξ| = K(t, ξ), and µ := a+

l

l + 1
> 0 then we conclude for û = û(τ)

ûττ +
µ

τ
ûτ + û = 0.

We will look for a solution in the form û(τ) = τρω(τ). Choosing ρ =
1− µ

2
, ρ <

1

2
, we come to the

Bessel di�erential equation
τ2wττ + τwτ + (τ2 − ρ2)w = 0.
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This equation has two fundamental solutions

w±(τ) = τρH±ρ (τ).

So the general solution of (2.2.1) is

û(t, ξ) = C1(ξ)w+(t, ξ) + C2(ξ)w−(t, ξ).

Here H+
ρ and H−ρ denote the Hankel functions. The solution to (2.2.1) can be represented by

û(t, ξ) = V1(t, ξ)û1(ξ) + V2(t, ξ)û2(ξ).

Introducing

Ψk,ρ,δ(t, ξ) = |ξ|k

∣∣∣∣∣∣∣
H−ρ

( |ξ|
l + 1

)
H−ρ+δ

((1 + t)l+1|ξ|
l + 1

)
H+
ρ

( |ξ|
l + 1

)
H+
ρ+δ

((1 + t)l+1|ξ|
l + 1

)
∣∣∣∣∣∣∣

we have

V1(t, ξ) =
iπ

4(l + 1)
(1 + t)ρ(l+1)Ψ1,ρ−1,1(t, ξ),

V2(t, ξ) = − iπ

4(l + 1)
(1 + t)ρ(l+1)Ψ0,ρ,0(t, ξ),

V1,t(t, ξ) =
iπ

4(l + 1)
(1 + t)l+ρ(l+1)Ψ2,ρ−1,0(t, ξ),

V2,t(t, ξ) = − iπ

4(l + 1)
(1 + t)l+ρ(l+1)Ψ 1,ρ,−1(t, ξ).

We will use the following properties of the Hankel functions to estimate Vj(t, ξ) and Vj,t(t, ξ):

• For τ ≥ N (N is a large constant): |H±ρ (τ)| ≤ C|τ |−
1
2 .

• For 0 < τ ≤ c < 1: |H±ρ (τ)| ≤
{
τ−|ρ| when ρ 6= 0,
− log τ when ρ = 0.

• For an integral value n the Weber function Yn(τ) satis�es

Yn(τ) =
2

π
Jn(τ) log τ +An(τ),

where τnAn(τ) is entire and An(0) 6= 0. We also have J−n(τ) = (−1)nJn(τ).

• The function Λν(τ) = τ−νJν(τ) is entire in ν and τ , furthermore Λν(0) 6= 0.

We divide the extended phase space into three zones:

• Z1 = {|ξ| : |ξ| ≥ N}:
|Ψk,ρ,δ(t, ξ)| ≤ C|ξ|k−1(1 + t)−

1
2

(l+1),

• Z2 = {|ξ| : |ξ| ≤ N ≤ K(t, ξ)}:

|Ψk,ρ,δ(t, ξ)| ≤

 (1 + t)−
1
2

(l+1) if k − |ρ| > 1
2 ,

(1 + t)(|ρ|−k)(l+1) if k − |ρ| ≤ 1
2 , ρ 6= 0,

(1 + t)−k(l+1) log(e+ t) if k ≤ 1
2 , ρ = 0,
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• Z3 = {|ξ| : K(t, ξ) ≤ N}:
In the above relations for V1(t, ξ), V2(t, ξ), V1,t(t, ξ), V2,t(t, ξ) we have δ as an integer 0, ±1, so
ρ and ρ+ δ have the same integral property.

Let us assume that ρ and ρ+ δ are no integers.

To evaluate the Hankel functions we write H±ρ (τ) = Jρ(τ) ± iYρ(τ). Then Ψk,ρ,δ(t, ξ) =

2i|ξ|k
∣∣∣∣ Jρ(K(0, ξ)) Jρ+δ(K(t, ξ))
Yρ(K(0, ξ)) Yρ+δ(K(t, ξ))

∣∣∣∣ . For non-integer ρ the Weber function is determined by

the Bessel functions of the �rst kind

Yρ(τ) =
Jρ(τ) cos(ρπ)− J−ρ(τ)

sin(ρπ)
.

So the determinant can be substituted by

C(Jρ(K(0, ξ))J−(ρ+δ)(K(t, ξ))− J−ρ(K(0, ξ))Jρ+δ(K(t, ξ)).

Noting that Jρ(τ) ≤ Cτρ we arrive at

|Ψk,ρ,δ(t, ξ)| ≤ C((1 + t)l+1|ξ|)k−δ(1 + t)(l+1)(−k−ρ) + C((1 + t)l+1|ξ|)k+δ(1 + t)(l+1)(−k+ρ).

In our case it holds k ≥ |δ|, δ ∈ {0,±1}. Then we have in Z3 the estimate

|Ψk,ρ,δ(t, ξ)| ≤ C(1 + t)(|ρ|−k)(l+1).

Let us assume that ρ is an integer.

We use the third property to get

Ψk,ρ,δ(t, ξ) = − 4i

π
|ξ|k log((1 + t)l+1)Jρ(K(0, ξ))Jρ+δ(K(t, ξ))

+ 2i|ξ|k
∣∣∣∣ Jρ(K(0, ξ)) Jρ+δ(K(t, ξ))
Aρ(K(0, ξ)) Aρ+δ(K(t, ξ))

∣∣∣∣ .
For the �rst part we will sometimes use J−ρ instead of Jρ and J−(ρ+δ) instead of Jρ+δ. Using
the fourth property we have that this term can be estimated by

C(1 + t)(l+1)(−|ρ|−k) log(e+ t).

The determinant in the second term can be estimated by

≤|(Jρ(K(0, ξ))|ξ|−ρ)(Aρ+δ(K(t, ξ))K(t, ξ)(ρ+δ))(1 + t)−(δ+ρ)(l+1)|ξ|−δ|
+ |(Aρ(K(0, ξ))|ξ|ρ)(Jρ+δ(K(t, ξ))K(t, ξ)−(ρ+δ))(1 + t)(δ+ρ)(l+1)|ξ|δ|
≤C(1 + t)(−ρ−δ)(l+1)|ξ|−δ + C(1 + t)(ρ+δ)(l+1)|ξ|δ.

In our case it holds k ≥ |δ|. By the de�nition of the zone we can estimate |ξ|k±δ ≤ C(1 +
t)−(k±δ)(l+1). Finally, the second term is estimated by (1 + t)(l+1)(|ρ|−k).

Hence, in Z3 we have the estimate |Ψk,ρ,δ(t, ξ)| ≤
{

(1 + t)(l+1)(|ρ|−k) if ρ 6= 0,
(1 + t)−k(l+1) log(e+ t) if ρ = 0.
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Using the above estimates implies

|V1(t, ξ)| .

{
(1 + t)(l+1)(ρ− 1

2
) in Z1,

1 in Z2 ∪ Z3,

|V2(t, ξ)| .


|ξ|−1(1 + t)(l+1)(ρ− 1

2
) in Z1,

1 in Z2 ∪ Z3, ρ < 0,
log(e+ t) in Z2 ∪ Z3, ρ = 0,
(1 + t)2ρ(l+1) in Z2 ∪ Z3,

1
2 > ρ > 0,

|V1,t(t, ξ)| .

{
|ξ|(1 + t)l+(l+1)(ρ− 1

2
) in Z1,

(1 + t)l+max{ρ− 1
2

;−1}(l+1) in Z2 ∪ Z3,

|V2,t(t, ξ)| .



(1 + t)l+(l+1)(ρ− 1
2

) in Z1,

(1 + t)l+max{ρ− 1
2
,−1}(l+1) in Z2,

(1 + t)l−(l+1) in Z3, ρ < 0,
(1 + t)l−(l+1) log(e+ t) in Z3, ρ = 0,
(1 + t)l+(2ρ−1)(l+1) in Z3, 0 < ρ < 1

2 .

Combining the last four cases gives

|V2,t(t, ξ)| .

{
(1 + t)l+(l+1)(ρ− 1

2
) in Z1,

(1 + t)l+max{ρ− 1
2
,−1}(l+1) in Z2 ∪ Z3.

Proposition 2.2.1. We have the following estimates for the solution to (2.2.1):

‖u(t, ·)‖L2 ≤ C‖u1‖L2 + C‖u2‖H−1


1 if ρ < 0,
log(e+ t) if ρ = 0,

(1 + t)2ρ(l+1) if 0 < ρ < 1
2 .

For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ C(1 + t)l+(l+1) max{ρ− 1
2
,−1}‖u1‖H1 + C(1 + t)l+(l+1) max{ρ− 1

2
,−1}‖u2‖L2 .

For the �elastic� energy we have

‖(1 + t)l∇u(t, ·)‖L2 ≤ C(1 + t)l+(l+1) max{ρ− 1
2
,−1}‖u1‖H1 + C(1 + t)l+(l+1) max{ρ− 1

2
,−1}‖u2‖L2 .

Consequently, the energy

E(u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 +

(
(1 + t)l|∇u(t, x)|

)2)
dx

can be estimated in the form

E(u)(t) ≤ C(1 + t)2l+(l+1) max{2ρ−1,−2}‖u1‖2H1 + C(1 + t)2l+(l+1) max{2ρ−1,−2}‖u2‖2L2

= C(1 + t)2l+(l+1) max{−a− l
l+1

,−2}‖u1‖2H1 + C(1 + t)2l+(l+1) max{−a− l
l+1

,−2}‖u2‖2L2 .

Proof. Let us begin to prove the estimate for the solution u. We have

‖u(t, ·)‖L2 = ‖û(t, ·)‖L2 = ‖V1(t, ξ)û1(ξ) + V2(t, ξ)û2(ξ)‖L2 .



2.2. Critical cases of damped wave models 33

Applying Hölder's inequality to the right-hand side gives

‖u(t, ·)‖L2 ≤ ‖V1(t, ξ)‖L∞‖û1(ξ)‖L2 + ‖〈ξ〉V2(t, ξ)‖L∞‖〈ξ〉−1û2(ξ)‖L2 .

We have
‖V1(t, ξ)‖L∞ . max

{
(1 + t)(l+1)(ρ− 1

2
), 1
}
,

and we can estimate ‖〈ξ〉V2(t, ξ)‖L∞ by the following estimates:

|〈ξ〉V2(t, ξ)| .


〈ξ〉|ξ|−1(1 + t)(l+1)(ρ− 1

2
) in Z1,

〈ξ〉 in Z2 ∪ Z3, ρ < 0,
〈ξ〉 log(e+ t) in Z2 ∪ Z3, ρ = 0,
〈ξ〉(1 + t)2ρ(l+1) in Z2 ∪ Z3,

1
2 > ρ > 0,

.


1 in Z1,
C in Z2 ∪ Z3, ρ < 0,
log(e+ t) in Z2 ∪ Z3, ρ = 0,
(1 + t)2ρ(l+1) in Z2 ∪ Z3,

1
2 > ρ > 0.

Here we have used the properties (1 + t)(l+1)(ρ− 1
2

) ≤ 1 for ρ ≤ 1
2 ; 〈ξ〉 ≤ N (N is a constant) in the

zones Z2 ∪ Z3. From the above estimates we can conclude that

‖u(t, ·)‖L2 ≤ C‖u1‖L2 + C‖u2‖H−1


1 if ρ < 0,
log(e+ t) if ρ = 0,
(1 + t)2ρ(l+1) if 0 < ρ < 1

2 .

Now let us prove the statement for (1 + t)l∇u(t, ·). We have in the extended phase space

(1 + t)l|ξ|û(t, ξ) = (1 + t)l|ξ|V1(t, ξ)û1(ξ) + (1 + t)l|ξ|V2(t, ξ)û2(ξ), where

|ξ|V1(t, ξ) =
iπ

4(l + 1)
(1 + t)ρ(l+1)Ψ2,ρ−1,1(t, ξ), |ξ|V2(t, ξ) = − iπ

4(l + 1)
(1 + t)ρ(l+1)Ψ1,ρ,0(t, ξ).

Using the above estimates in di�erent zones we have

|Ψ2,ρ−1,1(t, ξ)| .


|ξ|(1 + t)−

1
2

(l+1) in Z1,

(1 + t)−
1
2

(l+1) in Z2 if 2− |ρ− 1| > 1
2 ,

(1 + t)(|ρ−1|−2)(l+1) in Z2 if 2− |ρ− 1| ≤ 1
2 ,

(1 + t)(|ρ−1|−2)(l+1) in Z3,

and

|Ψ1,ρ,0(t, ξ)| .



(1 + t)−
1
2

(l+1) in Z1,

(1 + t)−
1
2

(l+1) in Z2 if 1− |ρ| > 1
2 ,

(1 + t)(|ρ|−1)(l+1) in Z2 if 1− |ρ| ≤ 1
2 ,

(1 + t)(|ρ|−1)(l+1) in Z3 if ρ 6= 0,
(1 + t)−(l+1) log(e+ t) in Z3 if ρ = 0.

Consequently,

(1 + t)l|ξ||V1(t, ξ)| .


|ξ|(1 + t)l+(ρ− 1

2
)(l+1) in Z1,

(1 + t)l+(ρ− 1
2

)(l+1) in Z2 if ρ ∈ (−1
2 ,

1
2),

(1 + t)l−(l+1) in Z2 if ρ ∈ (−∞,−1
2 ],

(1 + t)l−(l+1) in Z3,
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and

(1 + t)l|ξ||V2(t, ξ)| .



(1 + t)l+(ρ− 1
2

)(l+1) in Z1,

(1 + t)l+(ρ− 1
2

)(l+1) in Z2 if ρ ∈ (−1
2 ,

1
2),

(1 + t)l−(l+1) in Z2 if ρ ∈ (−∞,−1
2 ],

(1 + t)l+(2ρ−1)(l+1) in Z3 if ρ > 0,
(1 + t)l−(l+1) in Z3 if ρ < 0,
(1 + t)l−(l+1) log(e+ t) in Z3 if ρ = 0.

Summarizing we conclude

(1 + t)l|ξ||û(t, ξ)| ≤ C(1 + t)l+(l+1) max{ρ− 1
2
,−1}(〈ξ〉|û1(ξ)|+ |û2(ξ)|

)
.

This yields the desired estimate for the elastic energy.

Finally, let us prove the statement for the kinetic energy. We have

‖ut(t, ·)‖L2 = ‖ût(t, ·)‖L2 = ‖V1,t(t, ξ)û1(ξ) + V2,t(t, ξ)û2(ξ)‖L2 .

Using the estimates

|V1,t(t, ξ)| .

{
|ξ|(1 + t)l+(l+1)(ρ− 1

2
) in Z1,

(1 + t)l+max{ρ− 1
2

;−1}(l+1) in Z2 ∪ Z3,

.

{
〈ξ〉(1 + t)l+(l+1)(ρ− 1

2
) in Z1,

(1 + t)l+max{ρ− 1
2

;−1}(l+1) in Z2 ∪ Z3,

and

|V2,t(t, ξ)| .

{
(1 + t)l+(l+1)(ρ− 1

2
) in Z1,

(1 + t)l+max{ρ− 1
2
,−1}(l+1) in Z2 ∪ Z3,

then

‖ut(t, ·)‖L2 . C(1 + t)l+(l+1) max{ρ− 1
2
,−1}(‖〈ξ〉û1(ξ)‖L2 + ‖û2(ξ)‖L2

)
.

This completes the proof.

Remark 2.2.1. The estimate of the solution is determined by the small frequencies from Z2 ∪ Z3.
The decay rate with respect to the norm of u1 comes from the large frequencies from Z1, and the
decay rate with respect to the norm of u2 comes from the small frequencies in Z2 ∪ Z3.

Remark 2.2.2. The statement of Proposition 2.2.1 gives a decay estimate for ‖∇u(t, ·)‖L2 even for
a > − l

l+1 .

Let us compare the result with the result from [W04]. We start again with the Cauchy problem

utt − (1 + t)2l∆u+
a(l + 1)

(1 + t)
ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x).

Setting τ =
(1 + t)l+1

l + 1
we get

uττ −∆u+
l + a(l + 1)

(1 + t)l+1
uτ = 0, uττ −∆u+

a+ l
l+1

τ
uτ = 0, respectively.
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Substituting τ =: τ̃ + 1, then (2.2.1) becomes

uτ̃ τ̃ −∆u+
µ

1 + τ̃
uτ̃ = 0.

This is exactly the case µ = a+
l

l + 1
from [W04]. From [W04] we conclude

‖u(τ̃ , ·)‖L2 ≤ C‖u1‖L2 + C‖u2‖H−1


(1 + τ̃)2ρ if 0 < ρ < 1

2 ,
log(e+ τ̃) if ρ = 0,
1 if ρ < 0,

‖uτ̃ (τ̃ , ·)‖L2 ≤ C(1 + τ̃)ρ−
1
2 ‖u1‖H1 + C(1 + τ̃)max{ρ− 1

2
,−1}‖u2‖L2 .

Transforming back gives

‖u(t, ·)‖L2 ≤ C‖u1‖L2 + C‖u2‖H−1


(1 + t)(l+1)(2ρ) if 0 < ρ < 1

2 ;

log
(
e+

(1 + t)l+1

l + 1

)
∼ log(e+ t) if ρ = 0;

1 if ρ < 0;

‖(1 + t)−lut(t, ·)‖L2 ≤ C(1 + t)(l+1) max{ρ− 1
2
,−1}‖u1‖H1 + C(1 + t)(l+1) max{ρ− 1

2
,−1}‖u2‖L2 ,

‖ut(t, ·)‖L2 ≤ C(1 + t)l+(l+1) max{ρ− 1
2
,−1}‖u1‖H1 + C(1 + t)l+(l+1) max{ρ− 1

2
,−1}‖u2‖L2 ,

respectively. These are the same estimates as in Proposition 2.2.1.

Increasing speed of exponential order

Using the transformations from the previous section we are interested in another model case

utt − exp(2t)∆u+ aut = 0, u(0, x) = u1(x), ut(0, x) = u2(x), a > 0. (2.2.3)

Applying the Fourier transform to (2.2.3) with respect to x and using the change of variables
τ = et|ξ| we get

ûττ +
a+ 1

τ
ûτ + û = 0.

Similarly to the �rst case we introduce

Ψk,ρ,δ(t, ξ) = |ξ|k
∣∣∣∣∣ H−ρ (|ξ|) H−ρ+δ(e

t|ξ|)
H+
ρ (|ξ|) H+

ρ+δ(e
t|ξ|)

∣∣∣∣∣ ,
then

V1(t, ξ) =
iπ

4
etρΨ1,ρ−1,1(t, ξ), V2(t, ξ) = − iπ

4
etρΨ0,ρ,0(t, ξ),

V1,t(t, ξ) =
iπ

4
et(ρ+1)Ψ2,ρ−1,0(t, ξ), V2,t(t, ξ) = − iπ

4
et(ρ+1)Ψ1,ρ,−1(t, ξ),

where ρ :=
1− (a+ 1)

2
= −a

2
< 0. We divide the phase space into three zones and conclude there

the following estimates:

• in Z1 = {ξ : |ξ| ≥ K}:
|Ψk,ρ,δ(t, ξ)| ≤ C|ξ|k−1e−

t
2 ,
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• in Z2 = {ξ : |ξ| ≤ K ≤ et|ξ|}:

|Ψk,ρ,δ(t, ξ)| ≤ C

 e−
t
2 if k + ρ > 1

2 ,
e−t(k+ρ) if k + ρ ≤ 1

2 , ρ 6= 0,
e−tk log(e+ t) if k ≤ 1

2 , ρ = 0,

• in Z3 = {ξ : et|ξ| ≤ K}:

|Ψk,ρ,δ(t, ξ)| ≤ C
{
e−t(k+ρ) if ρ 6= 0,
e−tk log(e+ t) if ρ = 0.

These estimates lead to the following estimates for Vj(t, ξ) and Vj,t(t, ξ) for j = 1, 2:

|V1(t, ξ)| .
{
et(ρ−

1
2

) in Z1,
1 in Z2 ∪ Z3,

|V2(t, ξ)| .
{
|ξ|−1et(ρ−

1
2

) in Z1,
1 in Z2 ∪ Z3,

|V1,t(t, ξ)| .

{
|ξ|et+t(ρ−

1
2

) in Z1,

et+tmax{ρ− 1
2
,−1} in Z2 ∪ Z3,

|V2,t(t, ξ)| .

{
et+t(ρ−

1
2

) in Z1,

et+tmax{ρ− 1
2
,−1} in Z2 ∪ Z3.

All estimates together allow to prove the following result:

Proposition 2.2.2. We have the following estimates for the solution to (2.2.3):

‖u(t, ·)‖L2 ≤ C‖u1‖L2 + C‖u2‖H−1 .

For the kinetic energy we have

‖ut(t, ·)‖L2 ≤ Cet+tmax{ρ− 1
2
,−1}‖u1‖H1 + Cet+tmax{ρ− 1

2
,−1}‖u2‖L2 .

For the �elastic� energy we have

‖et∇u(t, ·)‖L2 ≤ Cet+tmax{ρ− 1
2
,−1}‖u1‖H1 + Cet+tmax{ρ− 1

2
,−1}‖u2‖L2 .

Consequently, the energy

E(u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + (et|∇u(t, x)|)2

)
dx

can be estimated in the form

E(u)(t) ≤ Ce2t+tmax{2ρ−1,−2}‖u1‖2H1 + Ce2t+tmax{2ρ−1,−2}‖u2‖2L2

= Ce2t+tmax{−a−1,−2}‖u1‖2H1 + Ce2t+tmax{−a−1,−2}‖u2‖2L2 .

Proof. Let us begin to prove the estimate for the solution u. Applying Hölder's inequality to the
right-hand side gives

‖u(t, ·)‖L2 ≤ ‖V1(t, ξ)‖L∞‖û1(ξ)‖L2 + ‖〈ξ〉V2(t, ξ)‖L∞‖〈ξ〉−1û2(ξ)‖L2 .
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We have
‖V1(t, ξ)‖L∞ . max

{
et(ρ−

1
2

), 1
}
. 1,

and we can estimate ‖〈ξ〉V2(t, ξ)‖L∞ by using the above estimates

|〈ξ〉V2(t, ξ)| . 1.

Here we have used the properties et(ρ−
1
2

) ≤ 1 for ρ ≤ 0; 〈ξ〉 ≤ N (N is a constant) in the zones
Z2 ∪ Z3. From the above estimates we can conclude

‖u(t, ·)‖L2 . C‖u1‖L2 + C‖u2‖H−1 .

Now let us prove the statement for et∇u(t, ·). In the extended phase space we have

et|ξ|û(t, ξ) = et|ξ|V1(t, ξ)û1(ξ) + et|ξ|V2(t, ξ)û2(ξ), where

|ξ|V1(t, ξ) =
iπ

4
etρΨ2,ρ−1,1(t, ξ), |ξ|V2(t, ξ) = − iπ

4
etρΨ1,ρ,0(t, ξ).

Using the above estimates in di�erent zones we have

|Ψ2,ρ−1,1(t, ξ)| .


|ξ|e−

t
2 in Z1,

e−
t
2 in Z2 if 1 + ρ > 1

2 ,
e−t(1+ρ) in Z2 if 1 + ρ ≤ 1

2 ,
e−t(1+ρ) in Z3,

and

|Ψ1,ρ,0(t, ξ)| .


e−

t
2 in Z1,

e−
t
2 in Z2 if 1 + ρ > 1

2 ,
e−t(1+ρ) in Z2 if 1 + ρ ≤ 1

2 ,
e−t(1+ρ) in Z3.

Consequently,

et|ξ||V1(t, ξ)| .


|ξ|et+t(ρ−

1
2

) in Z1,

et+t(ρ−
1
2

) in Z2 if −1
2 < ρ < 0,

et+(−t) in Z2 if ρ ≤ −1
2 ,

et+(−t) in Z3,

and

et|ξ||V2(t, ξ)| .


et+t(ρ−

1
2

) in Z1,

et+t(ρ−
1
2

) in Z2 if −1
2 < ρ < 0,

et+(−t) in Z2 if ρ ≤ −1
2 ,

et+(−t) in Z3.

Summarizing we conclude

‖et|ξ|û(t, ξ)‖L2 ≤ Cet+tmax{ρ− 1
2
,−1}(‖〈ξ〉û1(ξ)‖L2 + ‖û2(ξ)‖L2

)
.

This yields the desired estimate for the elastic energy. Finally, let us prove the statement for the
kinetic energy. We have

‖ut(t, ·)‖L2 = ‖ût(t, ·)‖L2 = ‖V1,t(t, ξ)û1(ξ) + V2,t(t, ξ)û2(ξ)‖L2

. ‖〈ξ〉−1V1,t(t, ξ)‖L∞‖〈ξ〉û1(ξ)‖L2 + ‖V2,t(t, ξ)‖L∞‖û2(ξ)‖L2 .
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Using the estimates

|V1,t(t, ξ)| .

{
|ξ|et+t(ρ−

1
2

) in Z1,

et+max{ρ− 1
2

;−1} in Z2 ∪ Z3,

.

{
〈ξ〉et+t(ρ−

1
2

) in Z1,

et+max{ρ− 1
2

;−1} in Z2 ∪ Z3,

and

|V2,t(t, ξ)| .

{
et+t(ρ−

1
2

) in Z1,

et+max{ρ− 1
2

;−1} in Z2 ∪ Z3,

then

‖ut(t, ·)‖L2 . Cet+tmax{ρ− 1
2
,−1}(‖〈ξ〉û1(ξ)‖L2 + ‖û2(ξ)‖L2

)
.

This yields the desired estimate for the kinetic energy.

Remark 2.2.3. The statement of Proposition 2.2.2 gives a decay estimate for ‖∇u(t, ·)‖L2 even for
a > −1.
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3. Wave models with time dependent

propagation speed and dissipation

3.1. Scattering theory

In this section we concern with conditions for b = b(t) that the solutions u = u(t, x) of

utt − a2(t)∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x) (3.1.1)

behave asymptotically equal to the solution of the corresponding wave equation with strictly in-
creasing speed of propagation

vtt − a2(t)∆v = 0, v(0, x) = v1(x), vt(0, x) = v2(x) (3.1.2)

with some suitable Cauchy data (v1, v2). We will use the operator relating (u1, u2) to (v1, v2) and
which is denoted as Møller wave operator which was mentioned in particular in the Lax-Phillips
approach [L-P73] or in the lectures of R.B.Melrose [Mel95]. That means we will construct an
operator W+u = limt→∞ S

−1
1 (t)S(t)u from the energy space Ḣ1(Rn) × L2(Rn) for the solution of

(3.1.1) to the energy space Ḣ1(Rn)×L2(Rn) for the solution of (3.1.2). The operators are introduced
in the proof of our scattering result.

3.1.1. Result in the L2-scale

Here we introduce the energy space E(Rn) = Ḣ1(Rn) × L2(Rn) and we assume (u1, u2) ∈ E(Rn),
this means, (|D|u1, u2) ∈ L2(Rn).

Theorem 3.1.1. We assume that the coe�cient b = b(t) satis�es b ∈ L1(R+). Then there exists

the Møller wave operator W+ : E → E mapping the Cauchy data (a(0)u1, u2) ∈ E from (3.1.1) to

Cauchy data (a(0)v1, v2) from (3.1.2) by

(a(0)v1, v2)T = W+(a(0)u1, u2)T

such that the asymptotic equivalence of solutions of the problems (3.1.1) and (3.1.2) holds in the

following way:
1√
a(t)

∥∥∥(a(t)u,Dtu)− (a(t)v,Dtv)
∥∥∥
E
→ 0 (3.1.3)

while t→∞. Moreover, we have the decay estimate

1√
a(t)

∥∥∥(a(t)u,Dtu)− (a(t)v,Dtv)
∥∥∥
E
. ‖(u1, u2)‖E

∫ ∞
t

b(τ)dτ (3.1.4)

with the convergence rate
∫∞
t b(τ)dτ to 0 as t→∞.



40 3. Wave models with time dependent propagation speed and dissipation

Proof. Let U = (a(t)|ξ|û, Dtû)T . Then U satis�es

DtU = A(t, ξ)U :=

( Dta

a
a(t)|ξ|

a(t)|ξ| ib(t)

)
U. (3.1.5)

We carry out one step of diagonalization of the principal part by the matrix of eigenvectors M and
its inverse M−1,

M =

(
1 −1
1 1

)
, M−1 =

1

2

(
1 1
−1 1

)
, and we set U (0) = M−1U.

We get DtU
(0) = D(t, ξ)U (0) +Ra(t)U (0) +Rb(t)U (0), where

D(t, ξ) =

(
a(t)|ξ| 0

0 −a(t)|ξ|

)
, Ra(t) =

1

2

Dta

a

(
1 −1
−1 1

)
, Rb(t) =

1

2
ib(t)

(
1 1
1 1

)
.

Let Ea = Ea(t, s, ξ) be the fundamental solution of the operator Dt − D(t, ξ) −Ra(t), that is, Ea
satis�es the Cauchy problem

(
Dt−D(t, ξ)−Ra(t)

)
Ea = 0, Ea(s, s, ξ) = I. According to the results

from Section 2.1 we have proved that ‖Ea(t, s, ξ)‖L∞(Rnξ ) .

√
a(t)√
a(s)

. Moreover, using Liouville's

formula, see Lemma B.3.4 in section B.3 of Appendix, we obtain

detEa(t, s, ξ) = exp
(
i

∫ t

s
tr
(
D(τ, ξ) +Ra(τ)

)
dτ
)

=
a(t)

a(s)
.

The matrix-valued function MEa(t, s, ξ)M
−1 generates a Fourier multiplier corresponding to the

operator
S1(t, s,D) : (a(s)|D|v(s), Dtv(s))T 7→ (a(t)|D|v(t), Dtv(t))T

for solutions v to the Cauchy problem (3.1.2).
Now we construct the fundamental solution to the operator Dt−D(t, ξ)−Ra(t)−Rb(t). Therefore,
let us introduce

P(t, s, ξ) := E−1
a (t, s, ξ)Rb(t)Ea(t, s, ξ).

After application of Peano-Baker formula it follows that

Qb(t, s, ξ) = I +

∞∑
k=1

ik
∫ t

s
P(t1, s, ξ)

∫ t1

s
P(t2, s, ξ) · · ·

∫ tk−1

s
P(tk, s, ξ)dtk · · · dt2dt1 (3.1.6)

is the solution to the Cauchy problem

DtQb(t, s, ξ)− P(t, s, ξ)Qb(t, s, ξ) = 0, Qb(s, s, ξ) = I.

Let E1(t, s, ξ) = Ea(t, s, ξ)Qb(t, s, ξ). Then we derive

Dt(EaQb) = (DtEa)Qb + Ea(DtQb) = (D(t, ξ) +Ra(t))EaQb + EaPQb
=

(
D(t, ξ) +Ra(t)

)
EaQb +Rb(t)EaQb =

(
D(t, ξ) +Ra(t) +Rb(t)

)
EaQb

and Ea(s, s, ξ)Qb(s, s, ξ) = I. Thus, E1(t, s, ξ) is the desired fundamental solution.
Taking account of ‖P(t, s, ξ)‖L∞(Rnξ ) ≤ ‖Rb(t)‖ ∈ L1(R+) implies the estimate

‖Qb(t, s, ξ)‖L∞(Rnξ ) ≤ exp
(∫ t

s
‖P(τ, s, ξ)‖L∞(Rnξ )dτ

)
≤ C.
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Consequently,

‖E1(t, s, ξ)‖L∞(Rnξ ) . ‖Ea(t, s, ξ)‖L∞(Rnξ )‖Qb(t, s, ξ)‖L∞(Rnξ ) .

√
a(t)√
a(s)

.

Moreover, the matrix-valued function ME1(t, s, ξ)M−1 generates a Fourier multiplier to the oper-
ator

S(t, s,D) : (a(s)|D|u(s), Dtu(s))T 7→ (a(t)|D|u(t), Dtu(t))T

for the solutions u to the Cauchy problem (3.1.1).
Now our aim is to prove that the limit

W+(D) := lim
t→∞

S−1
1 (t, 0, D)S(t, 0, D)

exists in E. To describe the behavior of the operator S−1
1 (t, 0, D)S(t, 0, D) it is su�cient to study

in the phase space ME−1
a (t, 0, ξ)E1(t, 0, ξ)M−1 = MQb(t, 0, ξ)M

−1. Thus the question for the
existence of the Møller wave operator is connected with the study of the limit

lim
t→∞

Qb(t, 0, ξ).

Furthermore, using formula (3.1.6) for large times s, t we consider the di�erence

Qb(t, 0, ξ)−Qb(s, 0, ξ) =
∞∑
k=1

ik
∫ t

s
P(t1, 0, ξ)

∫ t1

0
P(t2, 0, ξ) . . .

∫ tk−1

0
P(tk, 0, ξ)dtk . . . dt2dt1.

We obtain from the above considerations the following estimate:

‖Qb(t, 0, ξ)−Qb(s, 0, ξ)‖L∞(Rnξ ) ≤
∞∑
k=1

∫ t

s
‖P(t1, 0, ξ)‖L∞(Rnξ )

1

(k − 1)!

×
(∫ t1

0
‖P(τ, 0, ξ)‖L∞(Rnξ )dτ

)k−1
dt1

≤
∫ t

s
‖P(t1, 0, ξ)‖L∞(Rnξ )

∞∑
k=0

1

k!

(∫ t1

0
‖P(τ, 0, ξ)‖L∞(Rnξ )dτ

)k
dt1

≤
∫ t

s
‖Rb(t1)‖e

∫ t1
0 ‖Rb(τ)‖dτdt1.

According to the assumption b ∈ L1 we have proved Rb ∈ L1. This leads to ‖Qb(t, 0, ξ) −
Qb(s, 0, ξ)‖L∞(Rnξ ) → 0 as t, s→∞. Therefore, Qb(∞, 0, ξ) exists in the Banach space L∞(Rnξ ). We
de�ne

W+(ξ) = lim
t→∞

MQb(t, 0, ξ)M
−1 ∈ L∞(Rnξ ).

The operatorW+(D) has the desired property, that is, (3.1.3) holds by the following considerations:

(a(t)|ξ|û, Dtû)T − (a(t)|ξ|v̂, Dtv̂)T = MEaQb(t, 0, ξ)M
−1(a(0)|ξ|û1, û2)T

−MEaM
−1(a(0)|ξ|v̂1, v̂2)T = MEaM

−1
(
MQb(t, 0, ξ)M

−1 −W+

)
(a(0)|ξ|û1, û2)T → 0

as t→∞. Finally, the estimate (3.1.4) can be immediately concluded from the estimate

‖Qb(t, 0, ξ)−Qb(∞, 0, ξ)‖L∞(Rnξ ) .
∫ ∞
t
‖Rb(t1)‖e

∫ t1
0 ‖Rb(τ)‖dτdt1 .

∫ ∞
t

b(τ)dτ,

where Qb(∞, 0, ξ) = limt→∞Qb(t, 0, ξ). The proof is �nished.
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Example 3.1.1. If we choose the special case b(t) = (1 + t)−γ with γ > 1, then the assumptions of
Theorem 3.1.1 are satis�ed. Moreover, the convergence rate is O(t1−γ).

Example 3.1.2. If we choose the coe�cient

b(t) =
etee

t
...e[n−1]t(e[n−1]t − 1)

e[n]t
,

here e[n]t = ee
[n−1]t

, then in this case we have the convergence rate∫ ∞
t

b(τ)dτ =
e[n−1]t

e[n]t
.

Example 3.1.3. We can even consider the convergence rate for

b(t) =
1

(e[m] + t) log(e[m] + t)... log[m−1](e[m] + t)
(

log[m](e[m] + t)
)γ , γ > 1

here e[0] = 1, e[m] = ee
[m−1]

, log[0](τ) = τ and log[m](τ) = log(log[m−1](τ)). The convergence rate is∫ ∞
t

b(τ)dτ =
1

γ − 1

(
log[m](e[m] + t)

)1−γ
.

3.2. Non-e�ective dissipation

Let us devote to the Cauchy problem

utt − a2(t)∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (3.2.1)

Our question is, under which assumptions to the coe�cient b = b(t) for a given a = a(t) can we call
b a non-e�ective dissipation? Here non-e�ective means, that on the one hand we have a dissipation
(classical scattering is excluded), but on the other hand the model is hyperbolic like (from the point
of view of decay estimates) and not parabolic like. Motivated by the considerations from J. Wirth
[W07a] we assume:

(B1) b(t) > 0, b(t) = µ(t)
a(t)

A(t)
, b /∈ L1(R+),

(B2) |µ′(t)| ≤ Cµµ(t)
a(t)

A(t)
,

(B3) lim supt→∞ µ(t) < 1.

Besides the assumption (B3) we introduce another assumption

(B3)' lim inft→∞ µ(t) > 1.

We will later need this assumption to understand the in�uence of a di�erent class of dissipations
b(t)ut. Finally, we will assume

(C) lim supt→∞
(
µ(t) + α(t)

)
< 2,
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where α(t) is de�ned by
a′(t)

a(t)
=: α(t)

a(t)

A(t)
.

Theorem 3.2.1. Let us consider the Cauchy problem (3.2.1) under the assumptions to the coe�-

cient a = a(t) from Theorem 2.1.1. If the coe�cient b(t) satis�es conditions (B1) to (B3) or (B3)'

and a(t), b(t) also satisfy condition (C), then we have the following estimates for the kinetic and

elastic energy:

‖ut(t, ·)‖L2 ≤ C
√
a(t)

λ(t)

(
‖u1‖H1 + ‖u2‖L2

)
,

‖a(t)∇u(t, ·)‖L2 ≤ C
√
a(t)

λ(t)

(
‖u1‖H1 + ‖u2‖L2

)
.

Here λ = λ(t) is de�ned by

λ(t) := exp
(1

2

∫ t

0
b(τ)dτ

)
. (3.2.2)

Proof. Applying partial Fourier transformation we have ûtt + a2(t)|ξ|2û+ b(t)ût = 0. We will later
derive estimates for the fundamental solution E(t, s, ξ) of an equivalent system of �rst order by
di�erent approaches in di�erent zones of the extended phase space (0,∞) × Rn: in the dissipative
zone and the hyperbolic zone. These zones are de�ned by

• Zhyp(N) := {(t, ξ) : t ≥ tξ},

• Zdiss(N) := {(t, ξ) : 0 ≤ t ≤ tξ},

where tξ satis�es A(tξ)|ξ| = N.

|ξ|

t

0

Zhyp(
A(t)|ξ| ≥ N

)
Zdiss(
A(t)|ξ| ≤ N

)

tξ

N

Fig. 3.1.: Description for the de�nition of zones in the non-e�ective dissipation

3.2.1. Considerations in the dissipative zone

Let us de�ne the micro-energy U = (Nδ(t)û, Dtû)T , where we denote δ(t) =
a(t)

A(t)
. Then the

transformed equation can be written in the form of a system of �rst order (in Dt)

DtU = A(t, ξ)U, A(t, ξ) =

 −i
dtδ(t)

δ(t)
Nδ(t)

a2(t)|ξ|2

Nδ(t)
ib(t)

 .
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Thus the solution U = U(t, ξ) can be represented as U(t, ξ) = E(t, s, ξ)U(s, ξ), where E(t, s, ξ) is
the fundamental solution, that is, the solution to the system

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ.

In the further calculations we use the following statement:

Lemma 3.2.2. 1. The assumption (B3) implies with the auxiliary function λ(t) the estimate∫ t

0

a(τ)

λ2(τ)
dτ .

A(t)

λ2(t)
.

Moreover, the function A(t)
λ2(t)

is monotonously increasing if t tends to in�nity.

2. The assumption (B3)' implies a(t)
λ2(t)

∈ L1(R+) with∫ ∞
t

a(τ)

λ2(τ)
dτ .

A(t)

λ2(t)
.

Furthermore, A(t)
λ2(t)

is monotonously decreasing for large t.

Proof. to 1. Integration by parts yields∫ t

0

a(τ)

λ2(τ)
dτ =

A(t)

λ2(t)
− 1 +

∫ t

0

A(τ)µ(τ) a(τ)
A(τ)

λ2(τ)
dτ.

We conclude for t ≥ t0 from the condition lim supt→∞ µ(t) ≤ c < 1 that∫ t

0

a(τ)µ(τ)

λ2(τ)
dτ ≤

∫ t0

0

a(τ)µ(τ)

λ2(τ)
dτ + c

∫ t

t0

a(τ)dτ

λ2(τ)
≤ C + c

∫ t

0

a(τ)

λ2(τ)
dτ.

The statement follows from ∫ t

0

a(τ)dτ

λ2(τ)
≤ 1

1− c

(
C +

A(t)

λ2(t)

)
.
A(t)

λ2(t)
.

The monotonic behavior is a consequence of

d

dt

A(t)

λ2(t)
=
a(t)(1− µ(t))

λ2(t)
(3.2.3)

and µ(t) < 1 for large t.

to 2. From lim inft→∞ µ(t) > 1 it follows lim inft→∞ µ(t) ≥ 1 + ε. So we can conclude

λ2(t) = exp

(∫ t

0
b(τ)dτ

)
& A(t)1+ε,

which implies the integrability of
a(t)

λ2(t)
. Furthermore, for large t we have

ε

∫ ∞
t

a(τ)

λ2(τ)
dτ ≤

∫ ∞
t

A(τ)b(τ)− a(τ)

λ2(τ)
dτ =

A(t)

λ2(t)
.

The monotonic behavior follows from (3.2.3). The statement is proved.
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Lemma 3.2.3. Assume that the function a(t) satis�es (A1), (A2), and the function µ(t) satis�es

the condition (B3). Then there exists a constant δ ∈ (0, 1) such that

a(t)δ
∫ t

0

a(τ)1−δ

λ2(τ)
dτ .

A(t)

λ2(t)
. (3.2.4)

Proof. The statement follows directly after integration of the following inequalities:

a(t)1−δ

λ2(t)
.

(
A(t)

a(t)δλ2(t)

)′
=
a(t)1−δ

λ2(t)
− δ A(t)a′(t)

a(t)1+δλ2(t)
−
A(t)µ(t)

a(t)

A(t)

a(t)δλ2(t)

. (1− c)a(t)1−δ

λ2(t)
− δ A(t)a′(t)

a(t)1+δλ2(t)
for large t,

where c < 1 due to condition (B3). The latter inequality is true if it exits a constant C >
1

1− c
such that

A(t)a′(t) ≤ (1− c− C−1)δ−1a2(t).

From that we can choose any δ satisfying δ < (lim suptA(t)a′(t)/a2(t))−1. This supremum is �nite
by condition (A2).

Denoting by E(jk) the entries of E we get for k = 1, 2 the system

DtE
(1k) = −idtδ(t)

δ(t)
E(1k) +Nδ(t)E(2k),

DtE
(2k) =

a2(t)|ξ|2

Nδ(t)
E(1k) + ib(t)E(2k), E(jk)(s, s, ξ) = δjk.

Integration yields
E(1k)(t, s, ξ) =

δ(t)

δ(s)
E(1k)(s, s, ξ) + iNδ(t)

t∫
s
E(2k)(τ, s, ξ)dτ,

E(2k)(t, s, ξ) =
λ2(s)

λ2(t)
E(2k)(s, s, ξ) +

i|ξ|2

Nλ2(t)

t∫
s

a2(τ)

δ(τ)
λ2(τ)E(1k)(τ, s, ξ)dτ.

(3.2.5)

We are going to prove the following lemma:

Lemma 3.2.4. Let us assume (A1) to (A3) for a(t) and (B3) for b(t). Then we have the following

estimates for the entries E(kl)(t, 0, ξ) of the fundamental solution E(t, 0, ξ) in the dissipative zone :

(|E(t, 0, ξ)|) :=

(
|E(11)(t, 0, ξ)| |E(12)(t, 0, ξ)|
|E(21)(t, 0, ξ)| |E(22)(t, 0, ξ)|

)
.


a(t)

A(t)

a(t)1−δ

λ2(t)
|ξ|2K(t)

λ2(t)

a(t)1−δ

λ2(t)

 (3.2.6)

with K(t) :=
∫ t

0 a
2(τ)λ2(τ)dτ ≤ λ2(t)a(t)A(t).



46 3. Wave models with time dependent propagation speed and dissipation

Proof. Let us consider

E(21)(t, 0, ξ) =
i|ξ|2

Nλ2(t)

∫ t

0

a2(τ)

δ(τ)
λ2(τ)E(11)(τ, 0, ξ)dτ

=
i|ξ|2

Nλ2(t)

(∫ t

0

a2(τ)

δ(τ)
λ2(τ)

δ(τ)

δ(0)
dτ +

∫ t

0

a2(τ)

δ(τ)
λ2(τ)iNδ(τ)dτ

∫ τ

0
E(21)(θ, 0, ξ)dθ

)
=

i|ξ|2

Nδ(0)λ2(t)
K(t)− |ξ|

2

λ2(t)

∫ t

0
a2(τ)λ2(τ)

∫ τ

0
E(21)(θ, 0, ξ)dθdτ

=
i|ξ|2

CNλ2(t)
K(t)− |ξ|

2

λ2(t)

∫ t

0

(∫ t

θ
a2(τ)λ2(τ)dτ

)
E(21)(θ, 0, ξ)dθ.

Rewriting the integral equation gives

CNλ
2(t)E(21)(t, 0, ξ)

|ξ|2K(t)
= i+

∫ t

0
k1(t, θ, ξ)

CNλ
2(θ)E(21)(θ, 0, ξ)

|ξ|2K(θ)
dθ (3.2.7)

with kernel

k1(t, θ, ξ) = −|ξ|2 K(θ)

K(t)λ2(θ)

∫ t

θ
a2(τ)λ2(τ)dτ, θ ∈ [0, t]. (3.2.8)

Now we estimate∫ t

0
sup
θ≤t̃≤t

|k1(t̃, θ, ξ)|dθ . |ξ|2
∫ tξ

0
sup
t̃

K(θ)

λ2(θ)K(t̃)

(
K(t̃)−K(θ)

)
dθ ≤ |ξ|2

∫ tξ

0

K(θ)

λ2(θ)
dθ

. |ξ|2
∫ tξ

0
a(θ)A(θ)dθ =

1

2
|ξ|2A2(tξ) . 1

uniformly in Zdiss(N). Therefore, we obtained

|E(21)(t, 0, ξ)| . |ξ|
2K(t)

λ2(t)
. (3.2.9)

Substituting this estimate into the �rst integral equation implies

|E(11)(t, 0, ξ)| ≤ δ(t)

δ(0)
+Nδ(t)

∫ t

0

|ξ|2K(τ)

λ2(τ)
dτ . δ(t) + |ξ|2δ(t)A2(t) . δ(t) =

a(t)

A(t)
.

Next we consider

E(22)(t, 0, ξ) =
λ2(0)

λ2(t)
+

i|ξ|2

Nλ2(t)

∫ t

0

a2(τ)

δ(τ)
λ2(τ)E(12)(τ, 0, ξ)dτ

=
λ2(0)

λ2(t)
− |ξ|

2

λ2(t)

∫ t

0
a2(τ)λ2(τ)

∫ τ

0
E(22)(θ, 0, ξ)dθdτ,

λ2(t)E(22)(t, 0, ξ) = 1− |ξ|2
∫ t

0

(∫ t

θ
a2(τ)λ2(τ)dτ

)
E(22)(θ, 0, ξ)dθ,

respectively. Our goal is to show that |E(22)(t, 0, ξ)| . a(t)1−δ

λ2(t)
. Therefore, we rewrite the integral

equation as
λ2(t)E(22)(t, 0, ξ)

a(t)1−δ =
1

a(t)1−δ +

∫ t

0
k2(t, θ, ξ)

λ2(θ)E(22)(θ, 0, ξ)

a(θ)1−δ dθ (3.2.10)
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with the kernel

k2(t, θ, ξ) = −|ξ|2 a(θ)1−δ

a(t)1−δλ2(θ)

∫ t

θ
a2(τ)λ2(τ)dτ, θ ∈ [0, t]. (3.2.11)

The following integral over the kernel satis�es the desired estimate. It holds∫ t

0
sup
θ≤t̃≤t

|k2(t̃, θ, ξ)|dθ . |ξ|2
∫ tξ

0
sup
t̃

(a(θ))1−δ

(a(t̃)1−δ)λ2(θ)

(
K(t̃)−K(θ)

)
dθ

≤ |ξ|2
∫ tξ

0
sup
t̃

(a(θ))1−δK(t̃)

(a(t̃))1−δλ2(θ)
dθ ≤ |ξ|2λ2(tξ)A(tξ)(a(tξ))

δ

∫ tξ

0

(a(θ))1−δ

λ2(θ)
dθ

. |ξ|2λ2(tξ)A(tξ)
A(tξ)

λ2(tξ)
≤ |ξ|2A2(tξ) . 1.

Here we have used Lemma 3.2.3 and, therefore

|E(22)(t, 0, ξ)| . a(t)1−δ

λ2(t)
. (3.2.12)

Plugging this estimate into the �rst integral equation and using Lemma 3.2.3 again we have

|E(12)(t, 0, ξ)| . δ(t)

∫ t

0

a(τ)1−δ

λ2(τ)
dτ .

a(t)1−δ

A(t)

A(t)

λ2(t)
.
a(t)1−δ

λ2(t)
. (3.2.13)

This completes the proof.

Now let us come back to

U(t, ξ) = E(t, 0, ξ)U(0, ξ) for all 0 ≤ t ≤ tξ. (3.2.14)

Because of a(t)|ξ||û(t, ξ)| ≤ N
a(t)

A(t)
|û(t, ξ)| in Zdiss(N) the following statement can be concluded

from (3.2.14) and Lemma 3.2.4:

Corollary 3.2.5. We have the following estimates for all 0 ≤ t ≤ tξ (the dissipative zone Zdiss(N)):

a(t)|ξ||û(t, ξ)| ≤ CN
a(t)

A(t)
|û(0, ξ)|+ CN

a(t)1−δ

λ2(t)
|Dtû(0, ξ)|,

|Dtû(t, ξ)| ≤ CN
|ξ|2K(t)

λ2(t)
|û(0, ξ)|+ CN

a(t)1−δ

λ2(t)
|Dtû(0, ξ)|.

Lemma 3.2.6. Let us assume (A1) to (A3) for a(t) and (B3)' for b(t). Then we have the following

estimates for the entries E(kl)(t, 0, ξ) of the fundamental solution E(t, 0, ξ) :

(
|E(11)(t, 0, ξ)| |E(12)(t, 0, ξ)|
|E(21)(t, 0, ξ)| |E(22)(t, 0, ξ)|

)
.


a(t)

A(t)

a(t)

A(t)
a(t)

A(t)

a(t)

A(t)

 . (3.2.15)
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Proof. We start by estimating the �rst column. Plugging the representation for E(21)(t, s, ξ) into
the integral equation for E(11)(t, s, ξ) gives

δ(0)

δ(t)
E(11)(t, 0, ξ) = 1− |ξ|2

∫ t

0

∫ τ

0

λ2(θ)

λ2(τ)
a2(θ)

δ(0)

δ(θ)
E(11)(θ, 0, ξ)dθdτ,

1

δ(t)
|E(11)(t, 0, ξ)| . 1 + |ξ|2

∫ t

0

∫ τ

0

λ2(θ)

λ2(τ)︸ ︷︷ ︸
≤1

a2(θ)
1

δ(θ)
E(11)(θ, 0, ξ)dθdτ,

1

δ(t)
|E(11)(t, 0, ξ)| . exp

(
|ξ|2

∫ t

0

∫ τ

0
a2(θ)dθdτ

)
. exp

(
|ξ|2A2(t)

)
. 1,

|E(11)(t, 0, ξ)| . δ(t) =
a(t)

A(t)
.

Here we have used the de�nition of dissipative zone and assumption (A2) for a(t).
Let us consider E(21)(t, 0, ξ). We have

|E(21)(t, 0, ξ)| .
|ξ|2

λ2(t)

∫ t

0

a2(τ)

δ(τ)
λ2(τ)|E(11)(τ, 0, ξ)|dτ

. |ξ|2
∫ t

0

a2(τ)

δ(τ)

λ2(τ)

λ2(t)︸ ︷︷ ︸
≤1

δ(τ)dτ . |ξ|2A(t)a(t) ≤ CN
a(t)

A(t)
.

Now we will estimate the entries of the second column. We get

1

δ(t)
E(12)(t, 0, ξ) = iNλ2(0)

∫ t

0

dτ

λ2(τ)
− |ξ|2

∫ t

0

∫ τ

0

λ2(θ)

λ2(τ)︸ ︷︷ ︸
≤1

a2(θ)
1

δ(θ)
E(12)(θ, 0, ξ)dθdτ.

Because the �rst integral is uniformly bounded by the second statement from Lemma 3.2.2 we can
obtain by the above reasoning together with assumption (A1) the desired estimate for E(12). For
E(22) we have

1

δ(t)
|E(22)(t, 0, ξ)| .

A(t)

a(t)λ2(t)
+
|ξ|2A(t)

a(t)λ2(t)

∫ t

0
a2(τ)λ2(τ)dτ

.
A(t)

a(t)λ2(t)
+
|ξ|2A(t)

a(t)

∫ t

0
a2(τ)dτ︸ ︷︷ ︸

≤CN

.

If we notice λ2(t) & A1+ε(t), then
A(t)

a(t)λ2(t)
is uniformly bounded for large t. This completes the

proof.

3.2.2. Considerations in the hyperbolic zone

Here we use the hyperbolic micro-energy U = (a(t)|ξ|û, Dtû)T . Then U satis�es

DtU = A(t, ξ)U :=

( Dta

a
a(t)|ξ|

a(t)|ξ| ib(t)

)
U. (3.2.16)



3.2. Non-e�ective dissipation 49

Let us carry out the �rst step of diagonalization. For this reason we set

M =

(
1 −1
1 1

)
, M−1 =

1

2

(
1 1
−1 1

)
, and U (0) := M−1U.

So DtU
(0) = D(t, ξ)U (0) +R(t)U (0), where

D(t, ξ) :=

(
τ1 0
0 τ2

)
=

(
a(t)|ξ| 0

0 −a(t)|ξ|

)
and

R(t) =
1

2

 Dta

a
+ ib(t) −Dta

a
+ ib(t)

−Dta

a
+ ib(t)

Dta

a
+ ib(t)

 .

Let F0(t) be the diagonal part of R(t). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

N (1) =

 0
R12

τ1 − τ2
R21

τ2 − τ1
0

 =

 0 i
δ1(t)

4a(t)|ξ|
−i δ1(t)

4a(t)|ξ|
0

 , N1 = I +N (1).

Here δ1 :=
a′

a
+ b. We have

 a′

a
(t)

4a(t)|ξ|


2

.

 a

A
(t)

4a(t)|ξ|

2

.
( 1

A(t)|ξ|

)2
6

C

N2
.

If we use b(t) = µ(t)
a(t)

A(t)
and the assumptions (B3) or (B3)′ and (C), i.e. we have lim supt→∞ µ(t) .

1, then ( b(t)

4a(t)|ξ|

)2
=
( µ(t)a(t)

4a(t)A(t)|ξ|

)2
.
( 1

A(t)|ξ|

)2
≤ C

N2
.

Thus we can choose a su�ciently large N such that the determinant of N1 is detN1 = 1 −(
δ1(t)

4a(t)|ξ|

)2
≥ 1

2 . Hence, the matrix N1 is invertible. Set

B(1) = DtN
(1) − (R− F0)N (1) =

 − δ2
1(t)

8a(t)|ξ|
i∂t

δ1(t)

4a(t)|ξ|

−i∂t
δ1(t)

4a(t)|ξ|
δ2

1(t)

8a(t)|ξ|

 and R1(t, ξ) = −N−1
1 B(1)(t, ξ).

We can conclude that(
Dt −D(t, ξ)−R(t)

)
N1(t, ξ)U (1)(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ)− F0(t)−R1(t, ξ)

)
U (1)(t, ξ).

Now we shall �nd the solution U (0)(t, ξ) := N1(t, ξ)U (1)(t, ξ), where U (1)(t, ξ) is the solution to the
system (

Dt −D(t, ξ)− F0(t)−R1(t, ξ)
)
U (1)(t, ξ) = 0.



50 3. Wave models with time dependent propagation speed and dissipation

We can write U (1)(t, ξ) = E1(t, tξ, ξ)U
(1)(tξ, ξ), where E1(t, s, ξ) is the fundamental solution, that

is, the solution of the system(
Dt −D(t, ξ)− F0(t)−R1(t, ξ)

)
E1(t, s, ξ) = 0, E1(s, s, ξ) = I, t ≥ s ≥ tξ.

The solution E0 = E0(t, s, ξ) of the �principal diagonal part� ful�ls

DtE0(t, s, ξ) = (D(t, ξ) + F0(t))E0(t, s, ξ), E0(s, s, ξ) = I, t ≥ s ≥ tξ.

Thus

E0(t, s, ξ) =

√
a(t)√
a(s)

λ(s)

λ(t)

 exp
( ∫ t

s ia(τ)|ξ|dτ
)

0

0 exp
(
−
∫ t
s ia(τ)|ξ|dτ

)  .

Let us set

R2(t, s, ξ) = E0(t, s, ξ)−1R1(t, ξ)E0(t, s, ξ),

Q(t, s, ξ) = I +

∞∑
k=1

ik
∫ t

s
R2(t1, s, ξ)

∫ t1

s
R2(t2, s, ξ) · · ·

∫ tk−1

s
R2(tk, s, ξ)dtk · · · dt2dt1.

Then Q(t, s, ξ) solves the Cauchy problem

DtQ(t, s, ξ) = R2(t, s, ξ)Q(t, s, ξ), Q(s, s, ξ) = I, t ≥ s ≥ tξ.

The fundamental solutionE1 = E1(t, s, ξ) is representable in the formE1(t, s, ξ) = E0(t, s, ξ)Q(t, s, ξ).
Analogous to the statement of Lemma 2.1.3 we are able to show the following estimate for Q(t, s, ξ):

|Q(t, s, ξ)| ≤ exp
(∫ t

s
|R1(τ, ξ)|dτ

)
≤ exp

( 1

|ξ|

( 1

A(τ)

)∣∣∣t
s

)
≤ CN .

The backward transformation yields U(t, ξ) = MN1(t, ξ)E0(t, s, ξ)Q(t, s, ξ)N−1
1 (s, ξ)M−1U(s, ξ),∣∣∣∣( a(t)|ξ|û(t, ξ)

Dtû(t, ξ)

)∣∣∣∣ ≤
√
a(t)√
a(s)

λ(s)

λ(t)

∣∣∣∣( a(s)|ξ|û(s, ξ)
Dtû(s, ξ)

)∣∣∣∣ for all t ≥ s ≥ tξ.

Corollary 3.2.7. We have in the hyperbolic zone Zhyp(N) the estimate∣∣∣∣( a(t)|ξ|û(t, ξ)
Dtû(t, ξ)

)∣∣∣∣ ≤ C
√
a(t)√
a(tξ)

λ(tξ)

λ(t)

∣∣∣∣( a(tξ)|ξ|û(tξ, ξ)
Dtû(tξ, ξ)

)∣∣∣∣
for all t ≥ tξ.

3.2.3. Conclusion

We have the following lemma.

Lemma 3.2.8. Assume that the functions µ = µ(t) and α = α(t) satisfy the assumption

lim sup
t→∞

(
µ(t) + α(t)

)
< 2.

Then the following inequality holds:
λ(t)

√
a(t)

A(t)
≤ C.
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Proof. We have from the de�nition of λ and α

λ(t)
√
a(t)

A(t)
.

exp
(

1
2

∫ t
0 µ(s)

a(s)

A(s)
ds
)

exp
(

1
2

∫ t
0 α(s)

a(s)

A(s)
ds
)

exp
( ∫ t

0

a(s)

A(s)
ds
)

= exp
(1

2

∫ t

0

(
µ(s) + α(s)− 2

) a(s)

A(s)
ds
)
.

According to the assumption (C) it holds µ(t) + α(t) − 2 ≤ 0 for t ≥ t0 with a suitable t0. From
that we may conclude

λ(t)
√
a(t)

A(t)
. exp

(∫ t0

0

(
µ(s) + α(s)− 2

) a(s)

A(s)
ds
)
≤ C(t0). (3.2.17)

This completes the proof.

From the statements of Corollaries 3.2.5 and 3.2.7 we derive the statement of our theorem.
1.case {|ξ| ≥ N} :

Then the statement of Corollary 3.2.7 implies immediately∣∣∣∣( a(t)|ξ|û(t, ξ)
Dtû(t, ξ)

)∣∣∣∣ ≤ C
√
a(t)

λ(t)

∣∣∣∣( |ξ|û(0, ξ)
Dtû(0, ξ)

)∣∣∣∣
for all t ≥ 0.
2.case {|ξ| ≤ N} and {t ≥ tξ}:
Then the statements of Corollary 3.2.7 imply immediately

a(t)|ξ||û(t, ξ)|+ |Dtû(t, ξ)| ≤ C
√
a(t)√
a(tξ)

λ(tξ)

λ(t)

(
a(tξ)|ξ||û(tξ, ξ)|+ |Dtû(tξ, ξ)|

)
≤ CN

√
a(t)

λ(t)

( λ(tξ)√
a(tξ)

a(tξ)|ξ||û(tξ, ξ)|+
λ(tξ)√
a(tξ)

|Dtû(tξ, ξ)|
)
.

From Corollary 3.2.5 we have for t = tξ

a(tξ)|ξ||û(tξ, ξ)|+ |Dtû(tξ, ξ)| ≤ C
a(tξ)

A(tξ)
|û(0, ξ)|+ C

a(tξ)
1−δ

λ2(tξ)
|Dtû(0, ξ)|.

Summarizing we get

a(t)|ξ||û(t, ξ)|+ |Dtû(tξ, ξ)| ≤ C
√
a(t)

λ(t)

(√a(tξ)λ(tξ)

A(tξ)
|û(0, ξ)|+ C

a(tξ)
1
2
−δ

λ(tξ)
|Dtû(0, ξ)|

)
for all admissible (t, ξ). If we choose δ ≥ 1

2
and apply Lemma 3.2.8, then we may conclude

a(t)|ξ||û(t, ξ)|+ |Dtû(t, ξ)| ≤ CN
√
a(t)

λ(t)
(|û(0, ξ)|+ |Dtû(0, ξ)|) for all admissible (t, ξ).

3.case {|ξ| ≤ N} and {t ≤ tξ}:
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Then the statements of Corollary 3.2.5 imply immediately

a(t)|ξ||û(t, ξ)|+ |Dtû(t, ξ)| ≤ CN
a(t)

A(t)
|û(0, ξ)|+ CN

a(t)1−δ

λ2(t)
|Dtû(0, ξ)|.

If we choose δ ≥ 1

2
and apply Lemma 3.2.8, then we may conclude

a(t)|ξ||û(t, ξ)|+ |Dtû(t, ξ)| ≤ CN
√
a(t)

λ(t)
(|û(0, ξ)|+ |Dtû(0, ξ)|) for all admissible (t, ξ).

This completes the proof to Theorem 3.2.1.

Example 3.2.1. Let µ ∈ (0, 1) or µ ∈ (1, 1 + 1/(l + 1)]. We choose

a(t) = (1 + t)l, A(t) =
1

l + 1
(1 + t)l+1, b(t) =

µ(l + 1)

1 + t
.

These coe�cients satisfy the assumptions of Theorem 3.2.1. Taking in to consideration λ(t) =

(1 + t)
µ(l+1)

2 we may conclude∥∥((1 + t)l∇u(t, ·), ut(t, ·)
)∥∥
L2 . (1 + t)

l
2
−µ(l+1)

2
(
‖u1‖H1 + ‖u2‖L2

)
.

Example 3.2.2. Let µ ∈ (0, 1). We choose

a(t) = et, A(t) = et, b(t) = µ.

These coe�cients satisfy the assumptions of Theorem 3.2.1. Taking into consideration λ(t) = e
µ
2
t

we may conclude ∥∥(et∇u(t, ·), ut(t, ·)
)∥∥
L2 . e

t
2
−µ

2
t
(
‖u1‖H1 + ‖u2‖L2

)
.

Example 3.2.3. Let µ > 0 and m ≥ 1. If we choose

a(t) = (e[m] + t)l, µ(t) =
µ

(l + 1) log(e[m] + t)... log[m](e[m] + t)
,

then we have

A(t) =
1

l + 1
(e[m] + t)l+1, b(t) =

µ

(e[m] + t) log(e[m] + t)... log[m](e[m] + t)
.

These coe�cients satisfy the assumptions of Theorem 3.2.1. Thus, we obtain λ(t) =
(

log[m](e[m] +

t)
)µ

2 . So, we may conclude

∥∥((e[m] + t)l∇u(t, ·), ut(t, ·)
)∥∥
L2 .

(e[m] + t)
l
2(

log[m](e[m] + t)
)µ

2

(
‖u1‖H1 + ‖u2‖L2

)
.

Example 3.2.4. Let µ ∈ (0, 1), and m ≥ 1. If we choose

a(t) = etee
t
...e[m]t , µ(t) = µ,

then we have
A(t) = e[m]t , b(t) = µetee

t
...e[m−1]t .

These coe�cients satisfy the assumptions of Theorem 3.2.1. Taking into consideration λ(t) = e
µ
2

[m]t

we may conclude∥∥(eteet ...e[m]t∇u(t, ·), ut(t, ·)
)∥∥
L2 .

et/2ee
t/2...e1/2[m]t

e
µ
2

[m]t

(
‖u1‖H1 + ‖u2‖L2

)
.



3.3. E�ective dissipation 53

3.3. E�ective dissipation

We consider the following Cauchy problem

utt − a2(t)∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (3.3.1)

In the previous chapters we have concerned with the in�uence of the dissipation term b(t)ut for a
given a(t) such that the equation (3.3.1) is from the point of view of long time behavior of solutions
and its energies in some sense close to the wave equation with increasing speed of propagation (2.1.1).
We have studied scattering in Section 3.1 and non-e�ective dissipation in Section 3.2. In this section
we want to understand the so-called e�ective dissipation. This notion hints to relations to parabolic
models from the point of view of long time behavior of solutions and its energies.
We will apply a transformation of the damped wave equation from (3.3.1) to a wave equation with
time-dependent speed of propagation and potential. Thus, we de�ne the new function

v(t, x) := exp
(1

2

∫ t

0
b(τ)dτ

)
u(t, x).

After some calculations we get

vtt − a2(t)∆v −
(1

4
b2(t) +

1

2
b′(t)

)
v = 0.

Applying Fourier transformation we have

v̂tt +m(t, ξ)v̂ = 0, (3.3.2)

here

m(t, ξ) := a2(t)|ξ|2 − 1

4
b2(t)− 1

2
b′(t). (3.3.3)

To study the interacting between a(t) and b(t) we assume:

(B'1) b(t) > 0, b(t) = µ(t)
a(t)

A(t)
,

(B'2)
∣∣dkt µ(t)

∣∣ ≤ Ckµ(t)

(
a(t)

A(t)

)k
for k = 1, 2,

(B'3) µ(t)/A(t) is monotonic and µ(t)→∞ as t→∞,

(B'4) a2(t)/b(t) = a(t)A(t)/µ(t) /∈ L1(R+).

Using assumption (B'1) we can rewrite the formula (3.3.3) by the following formula:

m(t, ξ) = a2(t)|ξ|2 − 1

4
µ2(t)

a2(t)

A2(t)
− 1

2

(
µ(t)

a(t)

A(t)

)′
.

Assumptions (B'2) and (B'3) show that b′(t) is a negligible term in comparison with b2(t), this
means |b′(t)| = o(b2(t)) as t→∞. Indeed, we have

|b′(t)|
b2(t)

=

∣∣∣(µ(t) a(t)
A(t)

)′∣∣∣
µ2(t) a

2(t)
A2(t)

=

∣∣∣µ′(t) a(t)
A(t) + µ(t)a

2(t)−a′(t)A(t)
A2(t)

∣∣∣
µ2(t) a

2(t)
A2(t)

≤
|µ′(t)| a(t)

A(t) + C1µ(t) a
2(t)
A2(t)

µ2(t) a
2(t)
A2(t)

≤
Cµ(t) a

2(t)
A2(t)

+ C1µ(t) a
2(t)
A2(t)

µ2(t) a
2(t)
A2(t)

.
1

µ(t)
→ 0 for t→∞.
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We introduce the auxiliary symbol

〈ξ〉b(t) :=

√∣∣∣a2(t)|ξ|2 − b2(t)

4

∣∣∣ =

√∣∣∣a2(t)|ξ|2 − µ2(t)

4

a2(t)

A2(t)

∣∣∣. (3.3.4)

3.3.1. Regions and zones

We de�ne the separating curve tξ = t(|ξ|) by

Γ =
{

(t, ξ) : |ξ| = 1

2

µ(t)

A(t)

}
,

and introduce the following regions in the extended phase space (0,∞)× Rnξ :

the hyperbolic region: Πhyp =
{

(t, ξ) : |ξ| > 1
2
µ(t)
A(t)

}
,

the elliptic region: Πell =
{

(t, ξ) : |ξ| < 1
2
µ(t)
A(t)

}
.

The auxiliary symbol 〈ξ〉b(t) is di�erentiable in these regions and satis�es

∂t〈ξ〉b(t) = ±
a′(t)a(t)|ξ|2 − µ(t)a(t)

2A(t)

(
µ(t)a(t)
2A(t)

)′
〈ξ〉b(t)

, ∂|ξ|〈ξ〉b(t) = ±a
2(t)|ξ|
〈ξ〉b(t)

, (3.3.5)

where the upper sign is taken in the hyperbolic region.
We will also divide both regions of the extended phase space into zones. For this reason we de�ne

the hyperbolic zone : Zhyp(N) =
{

(t, ξ) : 〈ξ〉b(t) ≥ Nµ(t)
a(t)

2A(t)

}
∩Πhyp,

the pseudo-di�erential zone : Zpd(N, ε) =
{

(t, ξ) : ε
µ(t)a(t)

2A(t)
≤ 〈ξ〉b(t) ≤ N

µ(t)a(t)

2A(t)

}
∩Πhyp,

the dissipative zone : Zdiss(c0) =
{

(t, ξ) : |ξ| ≤ c0
1

A(t)

}
∩Πell,

the elliptic zone : Zell(c0, ε) =
{

(t, ξ) : |ξ| ≥ c0
1

A(t)

}
∩
{
〈ξ〉b(t) ≥ εµ(t)

a(t)

2A(t)

}
∩Πell,

the reduced zone : Zred(ε) =
{

(t, ξ) : 〈ξ〉b(t) ≤ εµ(t)
a(t)

2A(t)

}
.

|ξ|

t

0

Γ
Zhyp

Zpd
Zred

Zell

Zdiss

a. The case µ(t)/A(t) is decreasing

|ξ|

t

0

Γ

Zhyp

Zred

Zell

Zpd

b. The case µ(t)/A(t) is increasing

Fig. 3.2.: Sketch of zones are used in our approach
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Remark 3.3.1. The dissipative zone can be skipped if we assume the further assumption

(S1)
a2(t)

b(t)A2(t)
∈ L1(R+).

Under this assumption we de�ne Zell(ε) := Zell(0, ε).

3.3.2. The hyperbolic region

Symbols in Πhyp.

De�nition 3.3.1. Let us de�ne the following classes of symbols in the hyperbolic zone:

Sl{m1,m2,m3} =
{
c = c(t, ξ) : |Dα

ξD
k
t c(t, ξ)| 6 Cα,k〈ξ〉

m1−|α|
b(t) a(t)m2+|α|

( a(t)

A(t)

)m3+k

for all (t, ξ) ∈ Zhyp(N), α and k ≤ l
}
.

Lemma 3.3.1. The family of symbol classes Sl{m1,m2,m3} generates a hierarchy of symbol classes

having the following properties:

• Sl{m1,m2,m3} is a vector space,

• Sl{m1,m2,m3}Sl{m′1,m′2,m′3} ⊂ Sl{m1 +m′1,m2 +m′2,m3 +m′3},

• Dk
tD

α
ξ Sl{m1,m2,m3} ⊂ Sl−k{m1 − |α|,m2 + |α|,m3 + k},

• S0{−1, 0, 2} ⊂ L∞ξ L1
t (Zhyp(N)).

Proof. We only verify the fourth property. Indeed, if c = c(t, ξ) ∈ S0{−1, 0, 2}, then

∫ ∞
tξ

|c(τ, ξ)|dτ .
∫ ∞
tξ

a2(τ)

〈ξ〉b(τ)A2(τ)
dτ ∼

∫ ∞
tξ

a(τ)

|ξ|A2(τ)
dτ ≤ C

A(tξ)|ξ|
≤ C

Nµ(tξ)
<∞

due to the de�nition of the hyperbolic zone and assumption (B'3). Remark, that here we used

〈ξ〉b(t) ∼ a(t)|ξ| uniformly onZhyp(N) (3.3.6)

to conclude what we wanted to have.

Consideration in the hyperbolic zone

Proposition 3.3.2. Let us assume (B'1),(B'2) and (B'3). Then b(t), 〈ξ〉b(t) ∈ S2{1, 0, 0}.

Proof. Applying assumptions (B'1), (B'2) and the de�nition of the hyperbolic region we have for
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l = 1, 2

b(t) = µ(t)
a(t)

A(t)
≤ a(t)|ξ| ∼ 〈ξ〉b(t), (3.3.7)

|b(t)′| ≤ |µ(t)′| a(t)

A(t)︸ ︷︷ ︸
∈S2{0,0,1}

+µ(t)
∣∣∣( a(t)

A(t)

)′∣∣∣︸ ︷︷ ︸
∈S1{0,0,2}

. µ(t)
( a(t)

A(t)

)2

. a(t)|ξ| a(t)

A(t)
∼ 〈ξ〉b(t)

a(t)

A(t)
, (3.3.8)

|b(t)′′| ≤ |µ(t)′′| a(t)

A(t)︸ ︷︷ ︸
∈S2{0,0,1}

+2|µ(t)′|
∣∣∣( a(t)

A(t)

)′∣∣∣︸ ︷︷ ︸
∈S1{0,0,2}

+µ(t)
∣∣∣( a(t)

A(t)

)′′∣∣∣︸ ︷︷ ︸
∈S0{0,0,3}

. µ(t)
( a(t)

A(t)

)3
. a(t)|ξ|

( a(t)

A(t)

)2
∼ 〈ξ〉b(t)

( a(t)

A(t)

)2
. (3.3.9)

Thanks to (3.3.7), (3.3.8) and (3.3.9) we obtain b(t) ∈ S2{1, 0, 0}. Next, let us prove 〈ξ〉b(t) ∈
S2{1, 0, 0}. By the de�nition of 〈ξ〉b(t) we have

〈ξ〉2b(t) = a2(t)|ξ|2︸ ︷︷ ︸
∈S2{2,0,0}

− b2(t)

4︸ ︷︷ ︸
∈S2{2,0,0}

∈ S2{2, 0, 0}. (3.3.10)

We assert that ∣∣Dα
ξ 〈ξ〉b(t)

∣∣ . 〈ξ〉1−|α|b(t) a(t)|α| (3.3.11)

for all multi-indices α with |α| > 0. We apply the principle of induction with respect to |α|. For
|α| = 1 we have

Dα
ξ 〈ξ〉2b(t) = 2Dα

ξ 〈ξ〉b(t)〈ξ〉b(t). (3.3.12)

Since (3.3.10) implies
∣∣Dα

ξ 〈ξ〉2b(t)
∣∣ . 〈ξ〉b(t)a(t) we conclude from (3.3.12) that

∣∣Dα
ξ 〈ξ〉b(t)

∣∣ . a(t) for all |α| = 1.

Let us assume that the inequality (3.3.11) is valid for all α = (α1, . . . , αn) with |α| ≤ k−1. Then we
prove this inequality for |α| = k. For convenience we introduce the notation 〈ξ〉b(t) := g(t, |ξ|). After
applying Faà di Bruno's formula (see Appendix: Lemma B.3.6) and performing straight-forward
calculations we get for |α| ≤ 2 (higher derivatives vanish)

Dα
ξ g

2(t, |ξ|) =

|α|∑
j=1

∑
β1+...+βj=α
|βj |≥1

Cβ1,...,βjg
2(t, |ξ|)(j)

j∏
i=1

Dβi
ξ g(t, |ξ|)

= 2Cβ1g(t, |ξ|)Dα
ξ g(t, |ξ|) + 2

∑
β1+β2=α
|β1|,|β2|≥1

Cβ1,β2D
β1

ξ g(t, |ξ|)Dβ2

ξ g(t, |ξ|). (3.3.13)

Owing to (3.3.10) we deduce
∣∣Dα

ξ g(t, |ξ|)2
∣∣ . g(t, |ξ|)2−|α|a(t)|α| and taking account of (3.3.11) we
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have
∣∣Dβj

ξ g(t, |ξ|)
∣∣ . g(t, |ξ|)1−|βj |a(t)|βj |, j = 1, 2. Returning to (3.3.13) we therefore obtain

g(t, |ξ|)
∣∣Dα

ξ g(t, |ξ|)
∣∣ .

∣∣Dα
ξ g

2(t, |ξ|)
∣∣+

∑
β1+β2=α
|β1|,|β2|≥1

∣∣Dβ1

ξ g(t, |ξ|)
∣∣∣∣Dβ2

ξ g(t, |ξ|)
∣∣

. g(t, |ξ|)2−|α|a(t)|α| +
∑

β1+β2=α
|β1|,|β2|≥1

g(t, |ξ|)1−|β1|a(t)|β1|g(t, |ξ|)1−|β2|a(t)|β2|

. g(t, |ξ|)2−|α|a(t)|α| + g(t, |ξ|)2−|α|a(t)|α|. (3.3.14)

Thanks to (3.3.14) we conclude our desired estimate (3.3.11). Next, sinceDt〈ξ〉2b(t) = 2Dt〈ξ〉b(t)〈ξ〉b(t)
and D2

t 〈ξ〉2b(t) = 2D2
t 〈ξ〉b(t)〈ξ〉b(t) + 2

(
Dt〈ξ〉b(t)

)2
we can easy conclude

∣∣Dt〈ξ〉b(t)
∣∣ . 〈ξ〉b(t) a(t)

A(t)
,
∣∣D2

t 〈ξ〉b(t)
∣∣ . 〈ξ〉b(t)( a(t)

A(t)

)2
. (3.3.15)

Finally, consequently formula (3.3.13), using Leibniz's rule we obtain for k = 1, 2

Dk
tD

α
ξ g

2(t, |ξ|) =
∑

k1+k2=k

2Cβ1,k1,k2D
k1
t g(t, |ξ|)Dk2

t D
α
ξ g(t, |ξ|)

+2
∑

k1+k2=k

∑
β1+β2=α
|β1|,|β2|≥1

Cβ1,β2,k1,k2D
k1
t D

β1

ξ g(t, |ξ|)Dk1
t D

β2

ξ g(t, |ξ|). (3.3.16)

Due to the formula (3.3.16) and by induction we can prove∣∣Dk
tD

α
ξ 〈ξ〉b(t)

∣∣ . 〈ξ〉1−|α|b(t) a(t)α
( a(t)

A(t)

)k
. (3.3.17)

This completes our proof.

Now we consider the micro-energy
V = (〈ξ〉b(t)v̂, Dtv̂)T . (3.3.18)

Then it holds

DtV =

(
0 〈ξ〉b(t)

〈ξ〉b(t) 0

)
V +

 Dt〈ξ〉b(t)
〈ξ〉b(t)

0

−
(
µ(t)

a(t)
A(t)

)′
2〈ξ〉b(t)

0

V. (3.3.19)

Lemma 3.3.3. Assuming (B'1), (B'2) and (B'3). Then the following estimate holds for the fun-

damental solution EV (t, s, ξ), with (s, ξ), (t, ξ) ∈ Zhyp(N), s ≤ t:

|EV (t, s, ξ)| .
√
a(t)√
a(s)

.

Proof. Let us carry out the �rst step of diagonalization. For this reason we set

M =

(
1 −1
1 1

)
, M−1 =

1

2

(
1 1
−1 1

)
, and V (0) := M−1V.

Hence,
DtV

(0) = D(t, ξ)V (0) +R(t, ξ)V (0), (3.3.20)



58 3. Wave models with time dependent propagation speed and dissipation

where

D(t, ξ) =

(
〈ξ〉b(t) 0

0 −〈ξ〉b(t)

)
∈ S2{1, 0, 0}, (3.3.21)

R(t, ξ) =

 Dt〈ξ〉b(t)
2〈ξ〉b(t)

− b′(t)
4〈ξ〉b(t)

−Dt〈ξ〉b(t)
2〈ξ〉b(t)

+ b′(t)
4〈ξ〉b(t)

−Dt〈ξ〉b(t)
2〈ξ〉b(t)

− b′(t)
4〈ξ〉b(t)

Dt〈ξ〉b(t)
2〈ξ〉b(t)

+ b′(t)
4〈ξ〉b(t)

 ∈ S1{0, 0, 1}. (3.3.22)

Let F0(t, ξ) be the diagonal part of R(t, ξ). Now we carry out the second step of diagonalization
procedure. Therefore we introduce the matrices

N (1) =

(
0 R12

τ1−τ2
R21
τ2−τ1 0

)
=

 0 −Dt〈ξ〉b(t)
4〈ξ〉2

b(t)

− b′(t)
8〈ξ〉2

b(t)

−Dt〈ξ〉b(t)
4〈ξ〉2

b(t)

+ b′(t)
8〈ξ〉2

b(t)

0

 ∈ S1{−1, 0, 1},

N1(t, ξ) = I + N (1)(t, ξ) ∈ S1{0, 0, 0}. For su�ciently large time t0 = t0(ε) the matrix N1(t, ξ) is
invertible with uniformly bounded inverse N−1

1 (t, ξ) for t ≥ t0 in Zhyp(N) (see Remark 3.3.3). Now
we can follow the usual procedure to diagonalize. Let

B(1)(t, ξ) = DtN
(1)(t, ξ)−

(
R(t, ξ)− F0(t, ξ)

)
N (1)(t, ξ) ∈ S0{−1, 0, 2},

R1(t, ξ) = −N−1
1 (t, ξ)B(1)(t, ξ) ∈ S0{−1, 0, 2}.

Then we can conclude(
Dt −D(t, ξ)−R(t, ξ)

)
N1(t, ξ)V (1)(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)

)
V (1)(t, ξ).

Now we shall �nd the solution V (0)(t, ξ) =: N1(t, ξ)V (1)(t, ξ), where V (1)(t, ξ) is the solution to the
system (

Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)
)
V (t, ξ) = 0.

We can write V (1)(t, ξ) = EV,1(t, tξ, ξ)V
(1)(tξ, ξ). Here EV (t, s, ξ) is the fundamental solution to the

following system(
Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)

)
EV,1(t, s, ξ) = 0, EV,1(s, s, ξ) = I, t ≥ s ≥ tξ.

The solution E0 = E0(t, s, ξ) of the �principal diagonal part� ful�ls

DtE0(t, s, ξ) =
(
D(t, ξ) + F0(t, ξ)

)
E0(t, s, ξ), E0(s, s, ξ) = I, t ≥ s ≥ tξ.

Thus

E0(t, s, ξ) = exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
,

and we can get

|E0(t, s, ξ)| . exp

(∫ t

s

∂t〈ξ〉b(τ)

2〈ξ〉b(τ)
dτ

)
=

√
〈ξ〉b(t)√
〈ξ〉b(s)

∼
√
a(t)|ξ|√
a(s)|ξ|

∼
√
a(t)√
a(s)

.

Let us set

R2(t, s, ξ) = E−1
0 (t, s, ξ)R1(t, ξ)E0(t, s, ξ),

Q(t, s, ξ) = I +

∞∑
k=1

ik
∫ t

s
R2(t1, s, ξ)

∫ t1

s
R2(t2, s, ξ) · · ·

∫ tk−1

s
R2(tk, s, ξ)dtk · · · dt2dt1.



3.3. E�ective dissipation 59

Then Q(t, s, ξ) solves the Cauchy problem

DtQ(t, s, ξ) = R2(t, s, ξ)Q(t, s, ξ), Q(s, s, ξ) = I, t ≥ s ≥ tξ.

The fundamental solution EV,1(t, s, ξ) is representable in the form EV,1(t, s, ξ) = E0(t, s, ξ)Q(t, s, ξ).
Furthermore, applying the fourth property from Lemma 3.3.1 to R1 ∈ S0{−1, 0, 2} ⊂ L∞ξ L

1
t (Zhyp)

we see that

|Q(t, s, ξ)| ≤ exp
(∫ t

s
|R1(τ, ξ)|dτ

)
≤ CN .

This completes the proof.

Remark 3.3.2. Transforming back we obtain the following representation for the micro-energy V =
(〈ξ〉b(t)v̂, Dtv̂)T :

V (t, ξ) = MN1(t, ξ)E0(t, s, ξ)Q(t, s, ξ)N−1
1 (s, ξ)M−1V (s, ξ).

Remark 3.3.3. The large constant N guarantees the invertibility of N1 in the whole hyperbolic zone.
The remaining problem consists in the understanding of invertibility in the pseudo-di�erential zone.
For t ≥ t0(ε) this zone can be skipped after the choice N = ε. The other set {t ∈ (0, t0(ε)] : (t, ξ) ∈
Zpd(N, ε)} is compact.

3.3.3. The elliptic region

Symbols in Πell.

The symbols in the elliptic zone are constructed in a similar manner as in the hyperbolic zone with
a little change for the auxiliary symbol 〈ξ〉b(t) which can be estimated

〈ξ〉b(t) ∼
b(t)

2
∼ µ(t)

a(t)

2A(t)
uniformly onZell(c0, ε). (3.3.23)

De�nition 3.3.2. Let us de�ne the following classes of symbols in the elliptic zone:

Sl{m1,m2,m3} =
{
c = c(t, ξ) : |Dα

ξD
k
t c(t, ξ)| 6 Cα,k〈ξ〉

m1−|α|
b(t) a(t)m2+|α|

( a(t)

A(t)

)m3+k

for all (t, ξ) ∈ Zell(c0, ε), α and k ≤ l
}
.

Lemma 3.3.4. The family of symbol classes Sl{m1,m2,m3} generates a hierarchy of symbol classes

having the following properties:

• Sl{m1,m2,m3} is a vector space,

• Sl{m1,m2,m3}Sl{m′1,m′2,m′3} ⊂ Sl{m1 +m′1,m2 +m′2,m3 +m′3},

• Dk
tD

α
ξ Sl{m1,m2,m3} ⊂ Sl−k{m1 − |α|,m2 + |α|,m3 + k},

• S0{−1, 0, 2} ⊂ L∞ξ L1
t (Zell(c0, ε)).

Proof. We only verify the fourth property. Indeed, if c ∈ S0{−1, 0, 2}, then∫ tξ2

tξ1

|c(τ, ξ)|dτ .
∫ tξ2

tξ1

a2(τ)

〈ξ〉b(t)A2(τ)
dτ ∼

∫ tξ2

tξ1

a(τ)

µ(τ)A(τ)
dτ .

∫ tξ2

tξ1

√
1− ε2a(τ)

|ξ|A2(τ)
dτ

.
1

|ξ|A(tξ1)
. C(ε, c0),
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where tξ1 , tξ2 denotes the lower, upper boundary of the elliptic zone, respectively. From the def-

initions of the elliptic zone and dissipative zone we have µ(t) ≥ 2|ξ|A(t)√
1− ε2

for all t ∈ [tξ1 , tξ2 ] and

|ξ|A(tξ1) ∼ 1.

Consideration in the elliptic zone

In this region we introduce again the micro-energy

V = (〈ξ〉b(t)v̂, Dtv̂)T .

Then we can get the system of di�erential equations

DtV =

( 0 〈ξ〉b(t)
−〈ξ〉b(t) 0

)
+

 Dt〈ξ〉b(t)
〈ξ〉b(t)

0

− b′(t)
2〈ξ〉b(t)

0

V. (3.3.24)

In a �rst step we use the diagonalizer of the �rst matrix, which is de�ned as follows:

M =

(
i −i
1 1

)
, M−1 =

1

2

(
−i 1
i 1

)
, and V (0) := M−1V.

Hence,
DtV

(0) = D(t, ξ)V (0) +R(t, ξ)V (0), (3.3.25)

where

D(t, ξ) =

(
−i〈ξ〉b(t) 0

0 i〈ξ〉b(t)

)
∈ S2{1, 0, 0}, (3.3.26)

R(t, ξ) =
1

2

 Dt〈ξ〉b(t)
2〈ξ〉b(t)

− i b′(t)
4〈ξ〉b(t)

−Dt〈ξ〉b(t)
2〈ξ〉b(t)

+ i b′(t)
4〈ξ〉b(t)

−Dt〈ξ〉b(t)
2〈ξ〉b(t)

− i b′(t)
4〈ξ〉b(t)

Dt〈ξ〉b(t)
2〈ξ〉b(t)

+ i b′(t)
4〈ξ〉b(t)

 ∈ S1{0, 0, 1}. (3.3.27)

Let F0 = F0(t, ξ) be the diagonal part of R = R(t, ξ). Now we carry out the second step of
diagonalization procedure. Thus, we consider the di�erence δ of the entries of D(t, ξ) +F0(t, ξ).We
have

iδ(t, ξ) = 2〈ξ〉b(t) +
b′(t)

2〈ξ〉b(t)
∼ 2〈ξ〉b(t) +

o(b2(t))

2〈ξ〉b(t)
∼ 〈ξ〉b(t) (3.3.28)

for t ≥ t0 with a su�ciently large t0 = t0(ε) by using |b′(t)| = o(b2(t)). Now we can follow the usual
procedure of diagonalization. Therefore we introduce the matrices

N (1) =

(
0 −R12

δ
R21
δ 0

)
∼

 0 i
Dt〈ξ〉b(t)
4〈ξ〉2

b(t)

− b′(t)
8〈ξ〉2

b(t)

i
Dt〈ξ〉b(t)
4〈ξ〉2

b(t)

+ b′(t)
8〈ξ〉2

b(t)

0

 ∈ S1{−1, 0, 1},

N1(t, ξ) = I + N (1)(t, ξ) ∈ S1{0, 0, 0}. For a su�ciently large time t ≥ t0 the matrix N1(t, ξ) is
invertible with uniformly bounded inverse N−1

1 (t, ξ) in Zell(c0, ε). Let

B(1)(t, ξ) = DtN
(1)(t, ξ)−

(
R(t, ξ)− F0(t, ξ)

)
N (1)(t, ξ) ∈ S0{−1, 0, 2},

R1(t, ξ) = −N−1
1 (t, ξ)B(1)(t, ξ) ∈ S0{−1, 0, 2}.
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We can conclude that(
Dt −D(t, ξ)−R(t, ξ)

)
N1(t, ξ)V (1)(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)

)
V (1)(t, ξ).

Now we shall �nd the solution V (1)(t, ξ) := N−1
1 (t, ξ)V (0)(t, ξ), where V (1)(t, ξ) is the solution to

the system (
Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)

)
V (1)(t, ξ) = 0.

We can write V (1)(t, ξ) = EV,1(t, s, ξ)V (1)(s, ξ). Here EV,1(t, s, ξ) is the fundamental solution, that
is, the solution to the following system:(

Dt −D(t, ξ)− F0(t, ξ)−R1(t, ξ)
)
E(t, s, ξ) = 0, E(s, s, ξ) = I, t ≥ s ≥ tξ.

We transform the system for EV,1(t, s, ξ) to an integral equation for a new matrix-valued function
Qell(t, s, ξ) by considering

exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
EV,1(t, s, ξ).

Using this ansatz we have after di�erentiation

Dt

(
exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
EV,1(t, s, ξ)

)
= −

(
D(t, ξ) + F0(t, ξ)

)
exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
EV,1(t, s, ξ)

+ exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)(
D(t, ξ) + F0(t, ξ) +R1(t, ξ)

)
EV,1(t, s, ξ)

= exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
R1(t, ξ)EV,1(t, s, ξ).

Consequently,

EV,1(t, s, ξ) = exp

(
i

∫ t

s

(
D(τ, ξ) + F0(τ, ξ)

)
dτ

)
EV,1(s, s, ξ)

−i
∫ t

s
exp

(
i

∫ t

θ

(
D(τ, ξ) + F0(τ, ξ)

)
dτ
)
R1(θ, ξ)EV,1(θ, s, ξ)dθ.

We introduce an unknown weight factor to represent Qell,1 in the following way:

Qell,1(t, s, ξ) = exp
(
−
∫ t

s
w(τ, ξ)dτ

)
EV,1(t, s, ξ).

Then we get

Qell,1(t, s, ξ) = exp

(∫ t

s

(
iD(τ, ξ) + iF0(τ, ξ)− w(τ, ξ)I

)
dτ

)
+

∫ t

s
exp

(∫ t

θ

(
iD(τ, ξ) + iF0(τ, ξ)− w(τ, ξ)I

)
dτ

)
R1(θ, ξ)Qell,1(θ, s, ξ)dθ.

The main entries of the diagonal matrix iD(t, ξ) + iF0(t, ξ) are given by

(I) = 〈ξ〉b(t) +
∂t〈ξ〉b(t)
2〈ξ〉b(t)

+
b′(t)

4〈ξ〉b(t)
,

(II) = −〈ξ〉b(t) +
∂t〈ξ〉b(t)
2〈ξ〉b(t)

− b′(t)

4〈ξ〉b(t)
.
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For the di�erence (II)-(I) we get

(II)− (I) = −2〈ξ〉b(t) −
b′(t)

2〈ξ〉b(t)
= − b

2(t) + b′(t)− 4a2(t)|ξ|2

2〈ξ〉b(t)
≤ 0

in Zell(c0, ε) for t ≥ t0 by using |b′(t)| = o(b2(t)). We are choosing the weight w(t, ξ) = (I). By this
choice the matrix

H(t, s, ξ) = exp

(∫ t

s

(
iD(τ, ξ) + iF0(τ, ξ)− w(τ, ξ)I

)
dτ

)
= diag

(
1, exp

(∫ t

s

(
− 2〈ξ〉b(τ) −

b′(τ)

2〈ξ〉b(τ)

)
dτ

))
→
(

1 0
0 0

)
as t → ∞ with a �xed s. Hence, the matrix H(t, s, ξ) is uniformly bounded for (s, ξ), (t, ξ) ∈
Zell(c0, ε). Taking account of R1 ∈ S0{−1, 0, 2} is uniformly integrable over the elliptic zone the
matrix which can be represented by Neumann series

Qell,1(t, s, ξ) = H(t, s, ξ) +

∞∑
k=1

ik
∫ t

s
H(t, t1, ξ)R1(t1, s, ξ)

∫ t1

s
H(t1, t2, ξ)R1(t2, s, ξ)

· · ·
∫ tk−1

s
H(tk−1, tk, ξ)R1(tk, s, ξ)dtk · · · dt2dt1

is uniformly bounded in Zell(c0, ε). From the last considerations we can conclude

EV,1(t, s, ξ) = exp

(∫ t

s
w(τ, ξ)dτ

)
Qell,1(t, s, ξ)

= exp

(∫ t

s

(
〈ξ〉b(τ) +

∂τ 〈ξ〉b(τ)

2〈ξ〉b(τ)
+

b′(τ)

4〈ξ〉b(τ)

)
dτ

)
Qell,1(t, s, ξ)

∼ exp

(∫ t

s

(
〈ξ〉b(τ) +

∂τ 〈ξ〉b(τ)

2〈ξ〉b(τ)
+
b′(τ)

2b(τ)

)
dτ

)
Qell,1(t, s, ξ)

∼
〈ξ〉b(t)
〈ξ〉b(s)

exp

(∫ t

s
〈ξ〉b(τ)dτ

)
Qell,1(t, s, ξ).

Summarizing the considerations of this section we have proved the following lemma:

Lemma 3.3.5. Under the assumptions (B'1), (B'2) and (B'3) the fundamental solution EV (t, s, ξ)
to the operator Dt − D(t, ξ) − F0(t, ξ) − R1(t, ξ) with (t, ξ), (s, ξ) ∈ Zell(c0, ε) ∩ {t ≥ t0(ε)}, s ≤ t
has the following behavior:

EV,1(t, s, ξ) ∼
〈ξ〉b(t)
〈ξ〉b(s)

exp

(∫ t

s
〈ξ〉b(τ)dτ

)
Qell,1(t, s, ξ).

3.3.4. The reduced zone

In this zone we can estimate 〈ξ〉b(t) by ε
b(t)

2
. Thus, we consider the micro-energy

V =
(
ε
b(t)

2
v̂, Dtv̂

)T
. (3.3.29)
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We get the following system of �rst order

DtV =

 Dtb(t)
b(t) ε b(t)2

a2(t)|ξ|2− 1
4
b2(t)− 1

2
b′(t)

ε 1
2
b(t)

V. (3.3.30)

To estimate the entries of this matrix we will use:

• |b′(t)| = o(b2(t)),

• 〈ξ〉b(t) . ε b(t)2 ,

• consequently,
a2(t)|ξ|2− 1

4
b2(t)− 1

2
b′(t)

ε 1
2
b(t)

. ε b(t)2 −
b′(t)
εb(t) . εb(t).

Thus, we can estimate the norm of the coe�cient matrix by εb(t) for su�ciently large t. Summarizing
the following statement holds:

Lemma 3.3.6. If we assume (B'1) to (B'3), then the fundamental solution EV (t, s, ξ) to (3.3.30)

can be estimated by

|EV (t, s, ξ)| . exp
(
ε

∫ t

s
b(τ)dτ

)
for t0 ≤ s ≤ t with su�ciently large t0 = t0(ε) and (t, ξ), (s, ξ) ∈ Zred(ε).

Remark 3.3.4. We can make the reduced zone as small as we want by the control of the constant ε.

The dissipative zone

Let us assume that the assumption (S1) does not hold. This means, that µ(t) is �very close�
to 1. Thus, we introduced the dissipative zone to ensure integrability of S0{−1, 0, 2} over the
elliptic zone Zell(c0, ε). In this case we can apply directly Lemma 3.2.6 to estimate the fundamental
solution E(t, s, ξ) related to a system of �rst order for the micro-energy U = ( a(t)

A(t) û, Dtû)T , and
relate this estimate to the fundamental solution EV (t, s, ξ) related to a system of �rst order for
V = (〈ξ〉b(t)v̂, Dtv̂)T .

3.3.5. Estimates for the fundamental solution

We want to obtain estimates for the energy of the solution to our original Cauchy problem. For this
reason we need to transform back to estimate the fundamental solution E(t, s, ξ) which is related
to a system of �rst order for the micro-energy (a(t)|ξ|û, Dtû).
Outside the reduced zone it holds

E(t, s, ξ) = T (t, ξ)EV (t, s, ξ)T−1(s, ξ), (3.3.31)

where the matrix T (t, ξ) is de�ned in the following way:

(
h(t, ξ)û
Dtû

)
=

 h(t,ξ)
λ(t)〈ξ〉b(t)

0

i b(t)
2λ(t)〈ξ〉b(t)

1
λ(t)


︸ ︷︷ ︸

T (t,ξ)

(
〈ξ〉b(t)v̂
Dtv̂

)
(3.3.32)
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with the inverse matrix

T−1(t, ξ) =

(
λ(t)〈ξ〉b(t)
h(t,ξ) 0

−i b(t)λ(t)
2h(t,ξ) λ(t)

)
. (3.3.33)

Recall that outside the dissipative zone we have h(t, ξ) = a(t)|ξ| and especially in the dissipative

zone we use h(t, ξ) =
a(t)

A(t)
. Inside the reduced zone we have estimated 〈ξ〉b(t) by ε

b(t)
2 . Therefore,

we change the de�nition of the matrix T (t, ξ) by(
2h(t,ξ)
ελ(t)b(t) 0

i 1
λ(t)

1
λ(t)

)
, |T (t, ξ)| ∼ λ−1(t) (3.3.34)

for all (t, ξ) ∈ Zred(ε).
Remark 3.3.5. We may conclude that in the hyperbolic and reduced zones the fundamental solution
to our original Cauchy problem in the extended phase space can be estimated by

(|E(t, s, ξ)|) . λ(s)

λ(t)
(|EV (t, s, ξ)|).

Some auxiliary estimates. We continue with some auxiliary estimates which are used to obtain

energy estimates later on.

Lemma 3.3.7. Let us suppose (B'1) to (B'3) and let λ(t) = exp
(

1
2

∫ t
0 b(τ)dτ

)
. Then the following

holds:

1. In the elliptic zone it holds 〈ξ〉b(t) −
b(t)

2
≤ −a

2(t)|ξ|2

b(t)
.

2.
λ(s)

λ(t)
exp

(∫ t
s 〈ξ〉b(τ)dτ

)
≤ exp

(
−|ξ|2

t∫
s

a2(τ)

b(τ)
dτ

)
.

3. With A(tξ1)|ξ| ∼ 1 (separating line between dissipative and elliptic zone) it holds

exp

(
−|ξ|2

∫ tξ1

0

a2(τ)

b(τ)
dτ

)
∼ 1.

4. With a(tξ3)|ξ| =
√

1 + ε2b(tξ3)/2 (separating line between reduced zone and pseudo-di�erential

zone) it holds

|d|ξ|tξ3 | &
µ(tξ3)

|ξ|b(tξ3)
.

Proof. The �rst statement is equivalent to the following inequality√
b2(t)

4
− a2(t)|ξ|2 − b(t)

2
≤ −a

2(t)|ξ|2

b(t)
.

The second statement follows directly from the �rst one together with the de�nition of λ(t). The
third statement can be directly obtained from the following estimate:

|ξ|2
∫ tξ1

0

a2(τ)

b(τ)
dτ = |ξ|2

∫ tξ1

0

a(τ)A(τ)

µ(τ)
dτ ≤ |ξ|2

∫ tξ1

0

a(τ)A(τ)

µ0
dτ . |ξ|2A2(tξ1) . 1.
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The last statement follows directly after straight-forward calculations by using the de�nition of tξ3 .
We have

|ξ| ≈
b(tξ3)

a(tξ3)
=
µ(tξ3)

A(tξ3)
⇒
(
d|ξ|tξ3

)−1 ≈
(
µ(tξ3)

A(tξ3)

)′
⇒ |d|ξ|tξ3 |−1 .

∣∣∣∣µ′A− µaA2

∣∣∣∣ . µ aAA+ µa

A2
.
µ

A

a

A
≈ |ξ|

b(tξ3)

µ(tξ3)
.

The proof is complete.

A re�ned estimate for the fundamental solution in the elliptic zone.

Inside the elliptic zone we have

|EV (t, s, ξ)| . b(t)

b(s)
exp

(∫ t

s
〈ξ〉b(τ)dτ

)
.

This yields in combination with (3.3.31) the estimate

(|E(t, s, ξ)|) .
(
a(t)|ξ| 0
b(t) b(t)

)
exp

(∫ t

s

(
〈ξ〉b(τ) −

b(τ)

2

)
dτ

)(
1

a(s)|ξ| 0

1
a(s)|ξ|

1
b(s)

)
. exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)(
a(t)
a(s)

a(t)|ξ|
b(s)

b(t)
a(s)|ξ|

b(t)
b(s)

)
. (3.3.35)

Here we have used the �rst statement from Lemma 3.3.7. The estimate for the �rst row seems to
be optimal while the estimate for the second row is not optimal, because at least for increasing
coe�cient functions b(t) for �xed ξ this estimate is increasing in t. This estimate contradicts to our
a-priori knowledge that the wave type energy itself is decreasing. For this reason we need a re�ned
estimate which will be presented in the following steps. If Φk(t, s, ξ), k = 1, 2, are solutions to the
equation Φtt + a2(t)|ξ|2Φ + b(t)Φt = 0 with initial values Φk(s, s, ξ) = δ1k, ∂tΦ

k(s, s, ξ) = δ2k, then
we have

(
a(t)|ξ|v(t, ξ)
Dtv(t, ξ)

)
=


a(t)

a(s)
Φ1(t, s, ξ) ia(t)|ξ|Φ2(t, s, ξ)

DtΦ1(t, s, ξ)

a(s)|ξ|
iDtΦ2(t, s, ξ)

( a(s)|ξ|v(s, ξ)
Dtv(s, ξ)

)
.

Hence, if we compare with the estimate (3.3.35), then

|Φ1(t, s, ξ)| . exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
, (3.3.36)

|Φ2(t, s, ξ)| .
1

b(s)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
, (3.3.37)

|∂tΦ1(t, s, ξ)| . b(t) exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
, (3.3.38)

|∂tΦ2(t, s, ξ)| .
b(t)

b(s)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
. (3.3.39)

Let Ψk(t, s, ξ) = ∂tΦ
k(t, s, ξ), k = 1, 2. Then we obtain the equations of �rst order

∂tΨk + b(t)Ψk = −a2(t)|ξ|2Φk(t, s, ξ), Ψk(s, s, ξ) = δk2.



66 3. Wave models with time dependent propagation speed and dissipation

Applying Duhamel's principle we get

Ψ1(t, s, ξ) = −|ξ|2
∫ t

s
a2(τ)

λ2(τ)

λ2(t)
Φ1(τ, s, ξ)dτ,

|Ψ1(t, s, ξ)| .
|ξ|2

λ2(t)

∫ t

s
a2(τ)λ2(τ) exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

λ2(t)

∫ t

s
λ2(τ) exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

λ2(t)

∫ t

s
b(τ)λ2(τ)︸ ︷︷ ︸
∂τλ2(τ)

1

b(τ)
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

λ2(t)

(
λ2(τ)

1

b(τ)
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

))t
s

+
a2(t)|ξ|2

λ2(t)

∫ t

s
λ2(τ)

(
|ξ|2a2(τ)

b2(τ)
+
b′(τ)

b2(τ)

)
︸ ︷︷ ︸

.C(τ)<1

exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

b(t)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
− a2(t)|ξ|2

b(s)

λ2(s)

λ2(t)
.

Here we have used a2(t)|ξ|2/b2(t) ≤ 1/2 from the de�nition of the elliptic zone and b′(t)
b2(t)

= o(1). We
see that the second summand is subordinate to the �rst one because

b(s)

b(t)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
λ2(t)

λ2(s)
= exp

(∫ t

s

(
b(τ)− a2(τ)|ξ|2

b(τ)
− b′(τ)

b(τ)︸ ︷︷ ︸
>0, if τ≥t0

)
dτ
)

for t0 ≤ s ≤ t with t0 su�ciently large. Thus, we get

∣∣Φ1
t (t, s, ξ)

∣∣ . a2(t)|ξ|2

b(t)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
. (3.3.40)

Similarly, we can represent Ψ2 in the following way:

Ψ2(t, s, ξ) =
λ2(s)

λ2(t)
− |ξ|2

∫ t

s
a2(τ)

λ2(τ)

λ2(t)
Φ2(τ, s, ξ)dτ, (3.3.41)

|Ψ2(t, s, ξ)| .
λ2(s)

λ2(t)
+
|ξ|2

λ2(t)

∫ t

s
a2(τ)λ2(τ)

1

b(s)
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
λ2(s)

λ2(t)
+
a2(t)|ξ|2

b(t)b(s)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
. (3.3.42)

Thus, we have proved the following lemma:

Lemma 3.3.8. Let (s, ξ), (t, ξ) ∈ Zell(c0, ε) with s ≤ t. Then the fundamental solution E(t, s, ξ)
can be estimated in the following way:

(|E(t, s, ξ)|) . exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)( a(t)
a(s)

a(t)|ξ|
b(s)

a2(t)|ξ|
a(s)b(t)

a2(t)|ξ|2
b(s)b(t)

)
+
λ2(s)

λ2(t)

(
0 0
0 1

)
. (3.3.43)
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Remark 3.3.6. Let us choose a �xed s. Then the second summand in (3.3.43) is dominated by the

�rst one. If we set s = tξ2 , then in the two cases
( µ(t)

A(t)
is increasing or decreasing

)
we can use

a(tξ2)|ξ| ∼ b(tξ2) to get the following estimate:

(|E(t, tξ2 , ξ)|) . exp

(
−|ξ|2

∫ t

tξ2

a2(τ)

b(τ)
dτ

) a(t)
a(tξ2 )

a(t)
a(tξ2 )

a2(t)|ξ|
a(tξ2 )b(t)

a2(t)|ξ|
a(tξ2 )b(t)

 . (3.3.44)

3.3.6. Gluing procedure

Case 1: the function
µ(t)

A(t)
is monotonously decreasing

In the previous sections we have considered the fundamental solution in di�erent zones. Now we
have to glue the estimates from Lemmas 3.2.6, 3.3.8, 3.3.6 and 3.3.3. We obtain for the part of the
hyperbolic zone which contains large frequencies {ξ : |ξ| > c > 0} the following estimate for the
fundamental solution:

(|E(t, 0, ξ)|) .
√
a(t) exp

(
−1

2

∫ t

0
b(τ)dτ

)(
1 1
1 1

)

to our original problem in the extended phase space, cf. Lemma 3.3.3 and Remark 3.3.5. It
remains to consider the in�uence of the dissipative zone, the elliptic zone, the reduced zone and the
hyperbolic zone for small frequencies. We denote by tξk , k = 1, 2, 3, the separating lines between
the dissipative zone and the elliptic zone (k = 1), between the elliptic zone and the reduced zone
(k = 2) and between the reduced zone and the hyperbolic zone (k = 3).

Case 1.1: t ≤ tξ1
In this case we follow directly Lemma 3.2.6.

Case 1.2: tξ1 ≤ t ≤ tξ2
Now we have to glue the estimates from Lemmas 3.2.6 and 3.3.6. We have the following corollary:

Corollary 3.3.9. The following estimates hold for all t ∈ [tξ1 , tξ2 ]:

(|E(t, 0, ξ)|) . exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)(
a(t)|ξ| a(t)|ξ|
a2(t)|ξ|2
b(t)

a2(t)|ξ|2
b(t)

)

+ exp

(
−
∫ t

tξ1

b(τ)dτ

)
a(tξ1)|ξ|

(
0 0
1 1

)
.

Proof. The fundamental solution E(t, 0, ξ) can be represented as E(t, tξ1 , ξ)E(tξ1 , 0, ξ). This yields
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for all (t, ξ) ∈ Zell(c0, ε)

(|E(t, 0, ξ)|) . (|E(t, tξ1 , ξ)|)(|E(tξ1 , 0, ξ)|)

.

exp

(
−|ξ|2

∫ t

tξ1

a2(τ)

b(τ)
dτ

) a(t)
a(tξ1 )

a(t)|ξ|
b(tξ1 )

a2(t)|ξ|
a(tξ1 )b(t)

a2(t)|ξ|2
b(tξ1 )b(t)

+
λ2(tξ1)

λ2(t)

(
0 0
0 1

)
×
a(tξ1)

A(tξ1)

(
1 1
1 1

)
. exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)(
a(t)|ξ| a(t)|ξ|
a2(t)|ξ|2
b(t)

a2(t)|ξ|2
b(t)

)

+ exp

(
−
∫ t

tξ1

b(τ)dτ

)
a(tξ1)|ξ|

(
0 0
1 1

)
.

Here we used a(tξ1)|ξ| . b(tξ1), |ξ| ∼ c0

A(tξ1)
together with the third statement from Lemma 3.3.7

to extend the above integral. This completes the proof.

Case 1.3: tξ2 ≤ t ≤ tξ3

Now we will glue the estimates from Lemma 3.3.6 and Corollary 3.3.9.

Corollary 3.3.10. The following estimate holds for all t ∈ [tξ2 , tξ3 ]:

(|E(t, 0, ξ)|) . exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)
a(t)|ξ|

(
1 1
1 1

)
.

Proof. From Lemma 3.3.6 and Remark 3.3.5 we have the following estimate:

(|E(t, tξ2 , ξ)|) .
λ(tξ2)

λ(t)
exp

(
ε

∫ t

tξ2

b(τ)dτ

)(
1 1
1 1

)
.

Taking account of the representation of the fundamental solution E(t, 0, ξ) as E(t, tξ2 , ξ)E(tξ2 , 0, ξ)
gives after application of Corollary 3.3.9 the following estimate:

(|E(t, 0, ξ)|) . (|E(t, tξ2 , ξ)|)(|E(tξ2 , 0, ξ)|)

. exp

((
ε− 1

2

)∫ t

tξ2

b(τ)dτ

)(
1 1
1 1

)[
exp

(
−
∫ tξ2

tξ1

b(τ)dτ

)
a(tξ1)|ξ|

(
0 0
1 1

)

+ exp

(
−|ξ|2

∫ tξ2

0

a2(τ)

b(τ)
dτ

)( a(tξ2)|ξ| a(tξ2)|ξ|
a2(tξ2 )|ξ|2
b(tξ2 )

a2(tξ2 )|ξ|2
b(tξ2 )

)]

.

[
exp

((
ε− 1

2

)∫ t

tξ2

b(τ)dτ

)
exp

(
−|ξ|2

∫ tξ2

0

a2(τ)

b(τ)
dτ

)(
a(tξ2)|ξ|+

a2(tξ2)|ξ|2

b(tξ2)

)

+ exp

((
ε− 1

2

)∫ t

tξ2

b(τ)dτ

)
exp

(
−
∫ tξ2

tξ1

b(τ)dτ

)
a(tξ1)|ξ|

](
1 1
1 1

)
.

From the de�nition of Zred(ε) with a su�ciently small ε we have

a2(t)|ξ|2 ≤
(1

2
− ε
)
b2(t).
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For t ≤ tξ2 we use
a(t)|ξ| . b(t).

Hence, the integral

exp

(
−
∫ tξ2

tξ1

b(τ)dτ

)
can be estimated by

exp

(
−|ξ|2

∫ tξ2

tξ1

a2(τ)

b(τ)
dτ

)
,

and the last integral can be extended up to t = 0. Using t ≥ tξ2 and the increasing behavior of a
we conclude from the last estimates the desired statement.

Case 1.4: tξ3 ≤ t <∞

From Lemma 3.3.3 and Remark 3.3.5 we obtain the following statement:

Corollary 3.3.11. The following estimate holds for all t ∈ [tξ3 ,∞):

(|E(t, tξ3 , ξ)|) .
√
a(t)√
a(tξ3)

exp

(
−1

2

∫ t

tξ3

b(τ)dτ

)(
1 1
1 1

)
.

Finally, we have to glue the estimates from Corollaries 3.3.10 and 3.3.11.

Corollary 3.3.12. The following estimate holds for all t ∈ [tξ3 ,∞):

(|E(t, 0, ξ)|) . exp

(
−|ξ|2

∫ tξ3

0

a2(τ)

b(τ)
dτ

)
exp

(
−1

2

∫ t

tξ3

b(τ)dτ

)√
a(t)

√
a(tξ3)|ξ|

(
1 1
1 1

)
.

Case 2: the function
µ(t)

A(t)
is monotonously increasing

The elliptic part lies on the top of the hyperbolic part in this case. For small frequencies the set
{ξ : |ξ| ≤ c0} lies completely inside the elliptic zone. For this reason we can use the estimates from
the elliptic zone and obtain immediately

(|E(t, 0, ξ)|) . exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)( a(t)
a(0)

a(t)
a(0)

a2(t)|ξ|
a(0)b(t)

a2(t)|ξ|
a(0)b(t)

)
. (3.3.45)

It remains to consider the in�uence of the elliptic zone, the reduced zone and the hyperbolic zone
for large frequencies. We denote by tξk , k = 1, 2, the separating lines between the hyperbolic zone
and the reduced zone (k = 1) and between the reduced zone and the elliptic zone (k = 2).

Case 2.1: t ≤ tξ1

In this case we conclude directly from Lemma 3.3.3 and Remark 3.3.5

(|E(t, 0, ξ)|) .
√
a(t)√
a(0)

exp

(
−1

2

∫ t

0
b(τ)dτ

)(
1 1
1 1

)
. (3.3.46)
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Case 2.2: tξ1 ≤ t ≤ tξ2

In this case we need to glue the estimate in the hyperbolic zone and the estimate in the reduced
zone. We have

(|E(t, 0, ξ)|) . exp

((
ε− 1

2

)∫ t

tξ1

b(τ)dτ − 1

2

∫ tξ1

0
b(τ)dτ

) √
a(tξ1)√
a(0)

(
1 1
1 1

)
.

Case 2.3: tξ2 ≤ t

In this case we need to glue the estimate in the elliptic zone and the estimate in the reduced zone.
Summarizing yields the following corollary:

Corollary 3.3.13. The following estimate holds for all t ∈ [tξ2 ,∞):

(|E(t, 0, ξ)|) . exp

(
−|ξ|2

∫ t

tξ2

a2(τ)

b(τ)
dτ +

(
ε− 1

2

)∫ tξ2

tξ1

b(τ)dτ − 1

2

∫ tξ1

0
b(τ)dτ

)

×
√
a(tξ1)√
a(0)

 a(t)
a(tξ2 )

a(t)
a(tξ2 )

a2(t)|ξ|
a(tξ2 )b(t)

a2(t)|ξ|
a(tξ2 )b(t)

 .

L2 − L2 estimates

Theorem 3.3.14. Assume (A1) to (A3) and (B'1) to (B'3). Then we have the following L2 − L2

estimates:
For the kinetic energy we have

‖ut(t, ·)‖L2 . a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2 (
‖u1‖H1 + ‖u2‖L2

)
.

For the �elastic� energy we have

‖a(t)∇u(t, ·)‖L2 . a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2 (
‖u1‖H1 + ‖u2‖L2

)
.

Proof. Case 1: the function
µ(t)

A(t)
is monotonously decreasing

In the case t ∈ [0, tξ1 ] we have from Lemma 3.2.6 the estimate

|E(t, 0, ξ)| . a(t)

A(t)
.

a(t)√
1 +

∫ t
0
a2(τ)
b(τ) dτ

.

This follows directly from∫ t

0

a2(τ)

b(τ)
dτ =

∫ t

0

a(τ)A(τ)

µ(τ)
dτ .

∫ t

0
a(τ)A(τ)dτ . A2(t)

for large t.
In the case t ∈ [tξ1 , tξ2 ] we will estimate separately each row in the estimate from Corollary 3.3.9.
Let us consider the �rst row. It holds

a(t)|ξ| exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)
. a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2

,
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therefore we get the desired decay estimate. Using the monotonicity of a for the entries of the
second row we can estimate them by those from the �rst one

a2(t)

b(t)
|ξ|2 = a(t)|ξ|a(t)|ξ|

b(t)
. a(t)|ξ|,

a(tξ1) exp

(
−
∫ t

0
b(τ)dτ

)
. a(t) exp

(
−|ξ|2

∫ t

tξ1

a2(τ)

b(τ)
dτ

)
.

In the last inequality we used the third statement from Lemma 3.3.7.
In the case t ∈ [tξ2 , tξ3 ] from Corollary 3.3.10 we can estimate like in the case t ∈ [tξ1 , tξ2 ].
To derive the corresponding estimates from Corollary 3.3.12 we have in the case t ∈ [tξ3 ,∞) to
estimate the term

S(t, |ξ|) := |ξ| exp

(
−|ξ|2

∫ tξ3

0

a2(τ)

b(τ)
dτ

)
exp

(
−1

2

∫ t

tξ3

b(τ)dτ

)
.

This term glues phase function from di�erent zones.

Lemma 3.3.15. For any �xed t ≥ tξ3 the function S(t, |ξ|) can be estimated as follows:

S(t, |ξ|) ≤ max
ξ∈Rn

{
|ξ| exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)}
.

Proof. To estimate the function S(t, |ξ|) it is important that we will prove that the �rst partial
derivative ∂|ξ|S(t, |ξ|) is negative for |ξ| small. This follows from

∂|ξ|S(t, |ξ|) = S(t, |ξ|)
(

1

|ξ|
− 2|ξ|

∫ tξ3

0

a2(τ)

b(τ)
dτ −

a2(tξ3)|ξ|2

b(tξ3)
d|ξ|tξ3 +

b(tξ3)

2
d|ξ|tξ3

)
< S(t, |ξ|)

(
1

|ξ|
+
(b(tξ3)

2
−
a2(tξ3)|ξ|2

b(tξ3)

)
d|ξ|tξ3

)
< S(t, |ξ|)

(
1

|ξ|
+

(1− ε2)b(tξ3)

4
d|ξ|tξ3

)
,

here we have used
a2(tξ3)|ξ|2

b(tξ3)
=

(1 + ε2)b(tξ3)

4
.

Hence, a su�ciently small ε guarantees
(1−ε2)b(tξ3 )

4 > 0. Taking account of d|ξ|tξ3 < 0, |d|ξ|tξ3 | ≥
µ(tξ3 )

|ξ|b(tξ3 ) (this property comes from the fourth statement of Lemma 3.3.7) and µ(tξ3)→∞ for |ξ| → 0

we have the desired decreasing behavior of the function S(t, |ξ|) in |ξ|. Now let us �x t > 0. Then
the function S(t, |ξ|) takes its maximum for |ξ̃| satisfying t = tξ̃3 , that is, the second integral vanishes
in S(t, |ξ|). This completes the proof.

Consequently,

√
a(t)

√
a(tξ3)|ξ|S(t, |ξ|) ≤

√
a(t)

√
a(tξ̃3)|ξ̃|S(tξ̃3 , ξ̃) = a(t)|ξ̃| exp

(
−|ξ̃|2

∫ tξ̃3

0

a2(τ)

b(τ)
dτ

)
≤ max

ξ∈Rn

{
a(t)|ξ| exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)}
.

a(t)√
1 +

∫ t
0
a2(τ)
b(τ) dτ

.
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Corollary 3.3.12 and Lemma 3.3.15 yield the following result:

|E(t, 0, ξ)| . a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2

for t ∈ [tξ3 ,∞).

In this way all statements are proved.

Case 2: the function
µ(t)

A(t)
is monotonously increasing

For small frequencies {ξ : |ξ| ≤ c0} we can apply the estimate in (3.3.45). Here we use that
A(t)

µ(t)
is monotonously decreasing. For large frequencies {ξ : |ξ| ≥ c0} we consider the estimates from
Corollary 3.3.13, that is, we have

exp

(
−|ξ|2

∫ t

tξ2

a2(τ)

b(τ)
dτ +

(
ε− 1

2

)∫ tξ2

tξ1

b(τ)dτ − 1

2

∫ tξ1

0
b(τ)dτ

)
. exp

(
−c2

0

∫ t

0

a2(τ)

b(τ)
dτ

)
.

Here we use for ε su�ciently small the inequality(1

2
− ε
)∫ tξ2

tξ1

b(τ)dτ ≥ |ξ|2
∫ tξ2

tξ1

a2(τ)

b(τ)
dτ.

Moreover, the following estimate holds for c0 <
1√
2

µ(0)

A(0)
:

b(t)

2
≥ c2

0

a2(t)

b(t)
⇔ b2(t)

2
≥ c2

0a
2(t)⇔ 1

2

µ2(t)

A2(t)
≥ c2

0.

We can see that the �rst row in the estimate from Corollary 3.3.13 has its maximum for large t
inside {ξ : |ξ| ≤ c0}. From that the theorem is completely proved.

Examples. We will give some examples for special coe�cients.

Example 3.3.1. Let a(t) = (1 + t)l, b(t) = C(1 + t)k, k ∈ (−1, 2l + 1). Then we have

‖
(
(1 + t)l∇u(t, ·), ut(t, ·)

)
‖L2 . (1 + t)

k−1
2
(
‖u1‖H1 + ‖u2‖L2

)
.

Example 3.3.2. Let a(t) = et, b(t) = eβt, β ∈ (0, 2). Then we have

‖
(
et∇u(t, ·), ut(t, ·)

)
‖L2 . e

β
2
t
(
‖u1‖H1 + ‖u2‖L2

)
.

Example 3.3.3. Let a(t) = etee
t
, b(t) = eteβe

t
, β ∈ (0, 2). Then we have

‖
(
etee

t∇u(t, ·), ut(t, ·)
)
‖L2 . ete

β
2
et
(
‖u1‖H1 + ‖u2‖L2

)
.

3.3.7. Comparison of results

Let us compare some results for the scale-invariant case from Section 2.2.1 with results for the cases
of non-e�ective dissipation from Section 3.2 and of e�ective dissipation from Section 3.3.
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Speed of potential order

We start again with the Cauchy problem

utt − (1 + t)2l∆u+
µ(l + 1)

(1 + t)
ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x) (3.3.47)

for l > 0. Using the notations from Section 3.2 we have α(t) = l
l+1 .

Case 1 : non-e�ective dissipation
(
max{ρ− 1

2 ,−1} = ρ− 1
2

)
With µ 6= 1 we can see that a(t) = (1 + t)1+l, b(t) =

µ(l + 1)

(1 + t)
satisfy all assumptions from Theorem

3.2.1. Otherwise, from the de�nition of ρ and the condition max{ρ − 1
2 ,−1} = ρ − 1

2 we obtain
µ+ l

l+1 < 2, i.e., this condition satis�es the condition (C): lim supt→∞ µ(t) + α(t) < 2.
Applying Theorem 3.2.1 in the case of non-e�ective dissipation the asymptotic pro�le for the kinetic
energy ‖ut(t, ·)‖L2 and for the �elastic energy� ‖(1 + t)l∇u(t, ·)‖L2 is determined by√

a(t)

λ(t)
=

(1 + t)
l
2

e
1
2

∫ t
0
µ(l+1)

1+s
ds

= (1 + t)
l
2
−µ(l+1)

2 .

This pro�le coincides with the pro�les from the estimates in Proposition 2.2.1.

Case 2 : e�ective dissipation
(
max{ρ− 1

2 ,−1} = −1
)

From the de�nition of ρ we can see that the above condition implies µ+ l
l+1 ≥ 2. Thus, the condition

(C) is not satis�ed. Applying Theorem 3.3.14 for the case of e�ective dissipation the asymptotic
pro�le of the kinetic energy ‖ut(t, ·)‖L2 and for the the �elastic energy� ‖(1 + t)l∇u(t, ·)‖L2 is
determined by

a(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)− 1
2

=
(1 + t)l√

1 +
∫ t

0
(1+τ)2l+1

µ(l+1) dτ
∼

1

1 + t
.

Due to assumption (B'3) it is not allowed to apply Theorem 3.3.14 directly to the Cauchy problem
(3.3.47). But, if we formally do it for µ ≥ 2− l

l+1 , then this pro�le coincides with the pro�les from
the estimates of Proposition 2.2.1. For the case µ = 0 some Lp−Lq estimates on the conjugate line
are proposed in M. Reissig [Rei97].

Speed of exponential order

Now we consider another model case to compare with the general results of Theorem 3.2.1 for
non-e�ective dissipation and of Theorem 3.3.14 for e�ective dissipation. We devote to the Cauchy
problem

utt − e2t∆u+ µut = 0, u(0, x) = u1(x), ut(0, x) = u2(x). (3.3.48)

Using the notations from Section 3.2 we have α(t) ≡ 1, ρ = −µ
2 .

Case 1 : non-e�ective dissipation
(
max{ρ− 1

2 ,−1} = ρ− 1
2

)
The assumptions from Theorem 3.2.1 are satis�ed for µ 6= 1. Keep in mind that ρ − 1

2 > −1 ⇔
−µ

2 −
1
2 > −1, this condition implies µ+ 1 < 2, i.e., it satis�es the condition (C): lim supt→∞ µ(t) +

α(t) < 2.
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Applying Theorem 3.2.1 in the case of non-e�ective dissipations the asymptotic pro�le for the kinetic
energy ‖ut(t, ·)‖L2 and for the �elastic energy� ‖et∇u(t, ·)‖L2 is determined by√

a(t)

λ(t)
=

e
t
2

e
1
2

∫ t
0 µds

= e
t
2
−µt

2 .

This pro�le coincides with the pro�les from the estimates from Proposition 2.2.2.

Case 2 : e�ective dissipation
(
max{ρ− 1

2 ,−1} = −1
)

From the de�nition of ρ we can see that the above condition implies µ+1 ≥ 2. Hence, this condition
does not satisfy the condition (C). Applying Theorem 3.3.14 in the case of e�ective dissipations
the asymptotic pro�le of the kinetic energy ‖ut(t, ·)‖L2 and of the �elastic energy� ‖et∇u(t, ·)‖L2 is
determined by

a(t)

(
1 +

∫ t

0

a2(s)

b(s)
ds

)− 1
2

=
et√

1 +
∫ t

0
e2s

µ ds
∼ C.

Due to assumption (B'3) it is not allowed to apply Theorem 3.3.14 to the Cauchy problem (3.3.48).
But if we formally do it for µ ≥ 1, then this pro�le coincides with the pro�les from the estimates of
Proposition 2.2.2. For the case µ = 0 some Lp−Lq estimates on the conjugate line are proposed in
A. Galstian [Gal03].

3.4. Over-damping

We consider now �large� coe�cients b = b(t) in the damping term. For this reason we may assume

(OD)

∫ ∞
0

a2(τ)

b(τ)
dτ <∞.

Then the formal application of Theorem 3.3.14 implies among other things

‖∇u(t, ·)‖L2 ≤ C(‖u1‖H1 + ‖u2‖L2).

The following result shows that no more can be expected in this case of so-called over-damping.

Theorem 3.4.1. Assume (A1) to (A3), (B'1) to (B'3) and (OD). Then for (u1, u2) ∈ L2(Rn) ×
H−1(Rn) the limit

u(∞, x) = lim
t→∞

u(t, x)

exists in L2(Rn) and is di�erent from zero for non-zero data. Furthermore, under the regularity

assumption (u1, u2) ∈ H2(Rn)×H1(Rn) it holds

‖u(t, ·)− u(∞, ·)‖L2 = O
(∫ ∞

t

a2(τ)

b(τ)
dτ

)
.

Proof. The proof is based on the representation of solutions which has been introduced in the
hyperbolic region and elliptic region together with the following statement.

Lemma 3.4.2. Let us assume the conditions (B'1), (B'2) (B'3) and (OD). Then the limit

S(s, ξ) = (1, 0)T lim
t→∞

1

λ(t)〈ξ〉b(t)
EV (t, s, ξ)

exists uniformly on compact sets in ξ and it is di�erent from zero.
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Proof. The goal of this lemma is to extract û(t, ξ) from V = (〈ξ〉b(t)λ(t)û, Dt(λ(t)û))T . From the

over-damping condition we can conclude that
µ(t)

A(t)
is a monotonous increasing function because we

assume monotonicity of this function. Thus, it su�ces to consider the elliptic region of the extended
phase space and we can use the representation of the fundamental solution in this region. We have
from Lemma 3.3.5 after backward transformation

1

λ(t)〈ξ〉b(t)
EV (t, s, ξ) ∼

1

λ(s)〈ξ〉b(s)
exp

(∫ t

s

(
〈ξ〉b(τ) −

b(τ)

2

)
dτ

)
Qell,0(t, s, ξ).

We see that the exponential term converges uniformly on compact sets in ξ as t → ∞. Moreover,
Qell,0(t, s, ξ) converges to Qell,0(∞, s, ξ) for t to ∞, and the (11)-entry of this matrix is non-zero.
Therefore, at least the �rst element of the row S(s, ξ) is non-zero for large s. If we note the relation
S(s, ξ) = S(s1, ξ)EV (s1, s, ξ), then from the invertibility of EV (s1, s, ξ) we can conclude that S(s1, ξ)
can never be zero for any choice of s1 and ξ.

In the case s = 0 the multiplier S(0, ξ) takes the Cauchy data in the form

V (0, ξ) :=
(
〈ξ〉b(0)û1, û2 − i

1

2
b(0)û1

)T
and maps it to the asymptotic state û(∞, ξ), that is,

û(∞, ξ) = S(0, ξ)V (0, ξ). (3.4.1)

The convergence follows at least for data having compact support on the Fourier level, therefore
on a dense subset of L2 space. Together with an a-priori bound of the solution we can conclude
that the limit exists for all data from L2(Rn) ×H−1(Rn). This a-priori bound can be obtained in
a similar way we have proven the L2 − L2 estimate for energy solutions.

Now let us assume the regularity assumption on the data (u1, u2) ∈ H2(Rn) × H1(Rn). From
formula (3.3.45) by taking out |ξ| from the last matrix (this needs the better regularity of the data)

we get ‖ût(t, ·)‖L2 ≤ O
(
a2(t)

b(t)

)
.

Lemma 3.4.3. The second time derivative of û satis�es the following estimate:

‖ûtt(t, ·)‖L2 .
(a2(t)

µ(t)
+
a(t)

√
a(t)

λ(t)

)(
‖u1‖H2 + ‖u2‖H1

)
. (3.4.2)

Proof. In order to separate the extended phase space we will use a smooth cut-o� function ψ ∈
C∞(R+) such that ψ(r) = 1 for r ≤ 1/2, ψ(r) = 0 for r ≥ 1 and ψ′(r) ≤ 0. Then we de�ne functions
ψ1, ψ2 and ψ3 as follows:

ψ1(ξ) = ψ
( |ξ|
c0

)
,

ψ2(t, ξ) =

(
1− ψ

( |ξ|
c0

))
ψ
(A(t)|ξ|
µ(t)

2√
1− ε2

)
,

ψ3(t, ξ) =

(
1− ψ

( |ξ|
c0

))(
1− ψ

(A(t)|ξ|
µ(t)

2√
1− ε2

))
such that ψ1(ξ) + ψ2(t, ξ) + ψ3(t, ξ) = 1.
Firstly, we devote to the elliptic zone. In order to prove the desired estimate for ûtt we carry out
one derivative with respect to t in the equation

Φk
tt + a2(t)|ξ|2Φk + b(t)Φk

t = 0
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with initial values Φk(s, s, ξ) = δ1k, ∂tΦ
k(s, s, ξ) = δ2k, k = 1, 2. It yields

∂tΦ
k
tt + b(t)Φk

tt = −2a(t)a′(t)|ξ|2Φk − a2(t)|ξ|2Φk
t − b′(t)Φk

t .

Applying Duhamel's principle we get

Φk
tt(t, s, ξ) =

λ2(s)

λ2(t)
Φk
tt(s, s, ξ)−

∫ t

s

λ2(τ)

λ2(t)

(
2a(τ)a′(τ)|ξ|2Φk(τ, s, ξ)+(b′(τ)+a2(τ)|ξ|2)Φk

τ (τ, s, ξ)
)
dτ.

Using estimates (3.3.36), (3.3.37), (3.3.40) and (3.3.42) it holds

|Φk
tt(t, s, ξ)| .

λ2(s)

λ2(t)
Φk
tt(s, s, ξ) +

1

λ2(t)

∫ t

s
λ2(τ)a(τ)a′(τ)

|ξ|2

b(s)k−1
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ︸ ︷︷ ︸

(A)

+
1

λ2(t)

∫ t

s
λ2(τ)|b′(τ)| a

2(τ)|ξ|2

b(τ)b(s)k−1
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ︸ ︷︷ ︸

(B)

+
1

λ2(t)

∫ t

s
λ2(τ)

a4(τ)|ξ|4

b(τ)b(s)k−1
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ︸ ︷︷ ︸

(C)

.

We notice that Φ1
tt(s, s, ξ) = −a2(s)|ξ|2 and Φ2

tt(s, s, ξ) = −b(s).
Applying the assumptions (A1) and (A2) for a(t) we have

(A) .
a3(t)|ξ|2

λ2(t)b(s)k−1

∫ t

s
b(τ)λ2(τ)︸ ︷︷ ︸
∂τλ2(τ)

1

A(τ)b(τ)
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a3(t)|ξ|2

λ2(t)b(s)k−1

(
λ2(τ)

1

b(τ)A(τ)
exp

(
− |ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ
)) ∣∣∣t

s

+
a3(t)|ξ|2

λ2(t)b(s)k−1

∫ t

s
λ2(τ)

(
|ξ|2a2

b2A
+
|b′|
b2A

+
a

bA2

)
︸ ︷︷ ︸

≤(1/2+ε)A−1(τ)

exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a3(t)|ξ|2

b(t)b(s)k−1A(t)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
− a3(t)|ξ|2

b(s)kA(s)

λ2(s)

λ2(t)
.

Here we have used a2(t)|ξ|2/b2(t) ≤ 1/2 (from the de�nition of the elliptic zone),
|b′(t)|
b2(t)

.
1

µ(t)
=

o(1) and µ(t)→∞ as t→∞. We see also that the second summand is subordinate to the �rst one
because

b(s)

b(t)

A(s)

A(t)
exp

(
− |ξ|2

∫ t

s

a2(τ)

b(τ)
dτ
)λ2(t)

λ2(s)
= exp

(∫ t

s

(
b(τ)− a2(τ)|ξ|2

b(τ)
− b′(τ)

b(τ)
− a(τ)

A(τ)︸ ︷︷ ︸
>0, if τ≥t0

)
dτ
)

for t0 ≤ s ≤ t with t0 su�ciently large. Thus, we get

(A) .
a3(t)|ξ|2

b(t)b(s)k−1A(t)
exp

(
− |ξ|2

∫ t

s

a2(τ)

b(τ)
dτ
)

=
a2(t)|ξ|2

µ(t)b(s)k−1
exp

(
− |ξ|2

∫ t

s

a2(τ)

b(τ)
dτ
)
. (3.4.3)
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Similarly, we can estimate (B) as follows:

(B) .
a2(t)|ξ|2

λ2(t)b(s)k−1

∫ t

s
λ2(τ)

|b′(τ)|
b(τ)

exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

λ2(t)b(s)k−1

∫ t

s
b(τ)λ2(τ)︸ ︷︷ ︸
∂τλ2(τ)

1

µ(τ)
exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

λ2(t)b(s)k−1

(
λ2(τ)

1

µ(τ)
exp

(
− |ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ
)) ∣∣∣t

s

+
a2(t)|ξ|2

λ2(t)b(s)k−1

∫ t

s
λ2(τ)

(
|ξ|2a2(τ)

b(τ)µ(τ)
+
|µ′(τ)|
µ2(τ)

)
︸ ︷︷ ︸
≤(1/2+ε)b(τ)/µ(τ)

exp

(
−|ξ|2

∫ τ

s

a2(θ)

b(θ)
dθ

)
dτ

.
a2(t)|ξ|2

µ(t)b(s)k−1
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
− a2(t)|ξ|2

µ(s)b(s)k−1

λ2(s)

λ2(t)
.

Here we have also used a2(t)|ξ|2/b2(t) ≤ 1/2,
|b′(t)|
b2(t)

.
1

µ(t)
= o(1), |µ′(t)| . µ(t)

a(t)

A(t)
and µ(t)→∞

as t→∞. Obviously we see that the second summand is subordinate to the �rst one because

µ(s)

µ(t)
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
λ2(t)

λ2(s)
= exp

(∫ t

s

(
b(τ)− a2(τ)|ξ|2

b(τ)
− µ′(τ)

µ(τ)︸ ︷︷ ︸
>0, if τ≥t0

)
dτ
)

for t0 ≤ s ≤ t with t0 su�ciently large. Thus, we get

(B) .
a2(t)|ξ|2

µ(t)b(s)k−1
exp

(
−|ξ|2

∫ t

s

a2(τ)

b(τ)
dτ

)
. (3.4.4)

Analogously, it is not to di�cult to get the estimate for (C) as follows:

(C) .
a4(t)|ξ|4

b2(t)b(s)k−1
exp

(
− |ξ|2

∫ t

s

a2(τ)

b(τ)
dτ
)
. (3.4.5)

From the estimates (3.4.3), (3.4.4) and (3.4.5) we obtain

|Φk
tt(t, s, ξ)| .

(a2(t)|ξ|2

µ(t)
+
a4(t)|ξ|4

b2(t)

) 1

b(s)k−1
exp

(
− |ξ|2

∫ t

s

a2(τ)

b(τ)
dτ
)
, k = 1, 2, (3.4.6)

for all (s, ξ) and (t, ξ) ∈ Zell(0, ε).
Now we devote to the hyperbolic zone. Using the result from Remark 3.3.2 we get

DtV (t, ξ) = Dt

(
MN1(t, ξ)E0(t, 0, ξ)Q(t, 0, ξ)N−1

1 (0, ξ)M−1V (0, ξ)
)
,

with V = (〈ξ〉b(t)v̂, Dtv̂)T . We keep in mind that

N1(t, ξ) ∈ S1{0, 0, 0} ⇒ DtN1(t, ξ) ∈ S0{0, 0, 1},

DtQ(t, 0, ξ) = R2(t, 0, ξ)Q(t, 0, ξ)

⇒ |DtQ(t, 0, ξ)| = |R2(t, 0, ξ)||Q(t, 0, ξ)| = |R1(t, ξ)| . a(t)

A(t)
,

DtE0(t, 0, ξ) =
(
D(t, ξ)︸ ︷︷ ︸
∈S2{1,0,0}

+ F0(t, ξ)︸ ︷︷ ︸
∈S1{0,0,1}

)
E0(t, 0, ξ)

⇒ |DtE0(t, 0, ξ)| .
√
a(t)〈ξ〉b(t) ∼

√
a(t)a(t)|ξ|.
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Thus
‖vtt(t, ·)‖L2 .

√
a(t)a(t)

(
‖v0‖H2 + ‖v1‖H1

)
. (3.4.7)

Now we transform back to utt(t, x). Using

utt =
vtt − b′/2v + b2/4v − bvt

λ(t)

and (3.4.7) we get∥∥∥∥(1− ψ
(A(t)‖ξ|

µ(t)

2√
1− ε2

))
ûtt(t, ·)

∥∥∥∥
L2

.

√
a(t)a(t)

λ(t)

(
‖u0‖H2 + ‖u1‖H1

)
. (3.4.8)

Now we shall derive the �nal estimate (3.4.2).

Small frequencies: |ξ| ≤ c0

In this case this part of the extended phase space lies completely inside the elliptic zone. For this
reason, it follows from (3.4.6) that

‖ψ1(ξ)ûtt(t, ·)‖L2 .

(
a2(t)

µ(t)
+
a4(t)

b2(t)

)(
‖u0‖L2 + ‖u1‖L2

)
.

a2(t)

µ(t)

(
‖u0‖L2 + ‖u1‖L2

)
. (3.4.9)

Here, we use the following proposition:

Proposition 3.4.4. Assume (B'1) and (OD). Then it holds

µ(t) & A2(t). (3.4.10)

Proof. Due to Assumption (OD) we see that, at least, A(t)/µ(t) is decreasing and for large t we
obtain

C ≥
∫ t

0

a(τ)A(τ)

µ(τ)
dτ ≥ A(t)

µ(t)

∫ t

0
a(τ)dτ ≥ A(t)

µ(t)
(A(t)−A(0)) &

A2(t)

µ(t)
⇒ µ(t) & A2(t).

This we wanted to prove.

Large frequencies : |ξ| ≥ c0

Actually, according to our calculations in the reduced zone this zone does not in�uence our desired
estimates. Thus, we can glue this zone to the hyperbolic zone and call the new zone the hyperbolic

part. Let tξ be the separating line between the hyperbolic part and the elliptic zone.

Case 1: t ≤ tξ

In this case we use directly the result (3.4.8).

Case 2: t ≥ tξ
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In this case the elliptic zone lies on the top of the hyperbolic part. For this reason we have

ûtt(t, ξ) = Φ1
tt(t, tξ, ξ)û(tξ, ξ)︸ ︷︷ ︸

(1)

+ Φ2
tt(t, tξ, ξ)ût(tξ, ξ)︸ ︷︷ ︸

(2)

.

Using the estimates (3.4.6) for Φk
tt(t, tξ, ξ) and the estimates (3.3.46) for û(tξ, ξ), ût(tξ, ξ) we obtain

(1) .

(
a2(t)|ξ|2

µ(t)
+
a4(t)|ξ|4

b2(t)

)
exp

(
− |ξ|2

∫ t

tξ

a2(τ)

b(τ)
dτ
)( |û0(ξ)|√

a(tξ)λ(tξ)
+

|û1(ξ)|√
a(tξ)|ξ|λ(tξ)

)

.

(
a2(t)

µ(t)
+
a4(t)|ξ|2

b2(t)

)
exp

(
−|ξ|2

∫ t

tξ

a2(τ)

b(τ)
dτ − 1

2

∫ tξ

0

( a(τ)

A(τ)
+ b(τ)

)
dτ

)
×
(
|ξ|2|û0(ξ)|+ |ξ||û1(ξ)|

)
.

This implies∥∥∥F−1
(
ψ2(t, ξ)Φ1

tt(t, tξ, ξ)û(tξ, ξ)
)∥∥∥ .

(
a2(t)

µ(t)
+
a4(t)

b2(t)

(∫ t

0

a2(τ)

b(τ)
dτ
)−1

)(
‖u0‖H2 + ‖u1‖H1

)
.
a2(t)

µ(t)

(
‖u0‖H2 + ‖u1‖H1

)
.

Here, we used the following proposition:

Proposition 3.4.5. Assume (B'1) and (OD). Then it holds

b(t)

a(t)

∫ t

0

a2(τ)

b(τ)
dτ & A(t). (3.4.11)

Proof. We have

b(t)

a(t)

∫ t

0

a2(τ)

b(τ)
dτ =

µ(t)

A(t)

∫ t

0

a(τ)A(τ)

µ(τ)
dτ ≥ µ(t)

A(t)

A(t)

µ(t)
(A(t)−A(0)) & A(t),

the statement is proved.

Analogously, we can prove the following estimate for (2):∥∥∥F−1
(
ψ2(t, ξ)Φ2

tt(t, tξ, ξ)ût(tξ, ξ)
)∥∥∥ .

a2(t)

µ(t)

(
‖u0‖H2 + ‖u1‖H1

)
.

Summarizing we have

‖ψ2(t, ξ)ûtt(t, ·)‖L2 .
a2(t)

µ(t)

(
‖u0‖H2 + ‖u1‖H1

)
. (3.4.12)

From the estimates (3.4.8), (3.4.9) and (3.4.12) we can conclude our desired estimate. This completes
the proof.

From Lemma 3.4.3 we obtain
1

a2(t)
ûtt → 0 in L2(Rn) under the (H2, H1) regularity for the data.

Now we consider the following di�erential equation

ûtt + a2(t)|ξ|2û+ b(t)ût = 0 (3.4.13)
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for all t. Taking into consideration the existence of û(t, ξ) when t→∞ we can see that

lim
t→∞

b(t)

a2(t)
ut(t, x) = −∆u(∞, x) (3.4.14)

converges in L2(Rn). Furthermore,

‖u(∞, ·)− u(t, ·)‖L2 ≤
∫ ∞
t
‖ut(τ, x)‖L2dτ ≤ C

(
‖u1‖H2 + ‖u2‖H1

) ∫ ∞
t

a2(τ)

b(τ)
dτ.

This completes the proof.



81

4. Lp − Lq estimates on the conjugate line

As we did before we will divide our considerations into two cases, the case of non-e�ective dissipation
in Section 4.1 and the case of e�ective dissipation in Section 4.2.

4.1. The case of non-e�ective dissipation

In Section 4.1.1 we present the WKB analysis to get representations of solutions by Fourier multi-
pliers. Here we shall use symbol classes with in�nite smoothness with respect to the time variable,
too. However, in Section 4.1.4 we will also study these Fourier multipliers by using stationary phase
method. The principal ideas were introduced by K. Yagdjian, [Yag97], and M. Reissig - K. Yagdjian,
[R-Y00a].

4.1.1. Higher diagonalization modulo S{−p,−p, p+ 1}

Step 1. We will use again symbol classes which are de�ned in De�nition 2.1.1, but now with
in�nite smoothness with respect to phase and time variable (l =∞) as well. We will denote them
by S{m1,m2,m3}. The family of symbol classes S{m1,m2,m3} satis�es corresponding properties
to those from Lemma 2.1.5. Starting the diagonalization procedure we recall the treatment in
Section 3.2.2. There we have already performed the �rst step of diagonalization. By using the new
symbol classes we get (

Dt −D(t, ξ)− F0(t)−R1(t, ξ)
)
U (1)(t, ξ) = 0,

where D ∈ S{1, 1, 0}, F0 ∈ S{0, 0, 1}, and R1 ∈ S{0, 0, 1}. This step of diagonalization scheme we
call as the diagonalization mod S{0, 0, 1}. To prove Lp −Lq estimates we need diagonalization mod

S{−p,−p, p+ 1}, where p is a suitable chosen (large) number.

Step p+ 1. To carry out further steps of diagonalization we propose the following new conditions:

(A3)∞ |a(k)(t)| . a(t)

(
a(t)

A(t)

)k
, k = 1, 2, · · · ,

(B2)∞ |µ(k)(t)| . µ(t)

(
a(t)

A(t)

)k
, k = 1, 2, · · · .

We have the following lemma:

Lemma 4.1.1. Assume (A1), (A2), (A3)∞, (B1), (B2)∞, (B3) or (B3)'. Then there exist matrix-

valued functions

• Np(t, ξ) ∈ S{0, 0, 0} are invertible for all (t, ξ) ∈ Zhyp(N) and N−1
p (t, ξ) ∈ S{0, 0, 0},

• Fp−1(t, ξ) ∈ S{0, 0, 1} are diagonal with Fp−1(t, ξ) + i a
′(t)

2a(t)I − i
b(t)
2 I ∈ S{−1,−1, 2},

• Rp(t, ξ) ∈ S{−p,−p, p+ 1}
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such that the following operator-valued identity holds:(
Dt −D(t, ξ)−R(t, ξ)

)
Np(t, ξ) = Np(t, ξ)

(
Dt −D(t, ξ)− Fp−1(t, ξ)−Rp(t, ξ)

)
(4.1.1)

for all (t, ξ) ∈ Zhyp(N).

Proof. We introduce for Np(t, ξ) and Fp(t, ξ) the following representations:

Np(t, ξ) =

p∑
k=0

N (k)(t, ξ), Fp(t, ξ) =

p∑
k=0

F (k)(t, ξ),

where N (0) = I,B(0) = R(t, ξ) and F (0) = diag B(0) = F0(t, ξ). Then we propose the following
scheme:

F (k) := diag(B(k)),

N (k+1) :=

(
0 −B(k)

12 /(2a(t)|ξ|)
B

(k)
21 /(2a(t)|ξ|) 0

)
,

B(k+1) := (Dt −D −R)Np+1 −Np+1(Dt −D − Fp).

Now we will prove by induction that N (k) ∈ S{−k,−k, k} and B(k) ∈ S{−k,−k, k + 1}. For k = 0
we have already

F (0) ∈ S{0, 0, 1}, N (1) ∈ S{−1,−1, 1}, B(1) ∈ S{−1,−1, 2}.

For k ≥ 1 we apply an inductive argument, we assume B(k) ∈ S{−k,−k, k+1}. Thus, by de�nition
of N (k+1) we have F (k) ∈ S{−k,−k, k + 1} and N (k+1) ∈ S{−k − 1,−k − 1, k + 1} (from a(t)|ξ| ∈
S{1, 1, 0}). Furthermore,

B(k+1) = (Dt −D −R)
( k+1∑
j=0

N (j)
)
−
( k+1∑
j=0

N (j)
)

(Dt −D −
k∑
j=0

F (j))

= B(k) + [N (k+1),D]− F (k) +DtN
(k+1) +RN (k+1)

+N (k+1)
k∑
j=0

F (j) −
( k+1∑
j=0

N (j)
)
F (k).

Due to the construction scheme B(k) + [N (k+1),D]−F (k) = 0 for all k, the sum of remaining terms
belongs to the symbol class S{−k − 1,−k − 1, k + 2}. Thus, B(k+1) ∈ S{−k − 1,−k − 1, k + 2}.
Consequently, the de�nition of B(p) implies the operator-valued identity(

Dt −D(t, ξ)−R(t, ξ)
)
Np(t, ξ) = Np(t, ξ)

(
Dt −D(t, ξ)− Fp−1(t, ξ)−Rp(t, ξ)

)
(4.1.2)

mod S{−p,−p, p+1}, where we used the notation Rp(t, ξ) = N−1
p (t, ξ)B(p)(t, ξ) ∈ S{−p,−p, p+1}.

From the construction scheme we have N (k) ∈ S{−k,−k, k}. Due to properties of the symbol class
S{−k,−k, k} we conclude

∣∣∣N (k)
ij

∣∣∣ ≤ Ck/Nk. Hence, for N large enough ‖Np− I‖ ≤ 1/2 in Zhyp(N).

This implies the invertibility of Np. The lemma is proved.
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4.1.2. Some auxiliary estimates

In order to get estimates for the fundamental solution we need the following propositions:

Proposition 4.1.2. If a function g = g(|ξ|) satis�es for all ξ ∈ Rn and all multi-indices α the

estimates
∣∣d|α||ξ| g(|ξ|)

∣∣ . |ξ|−|α|, then it holds |Dα
ξ g(|ξ|)| . |ξ|−|α|.

Proof. Applying Faà di Bruno's formula for a multivariate version, see Lemma B.3.6 in section B.3
of Appendix, and performing straight-forward calculations we get

∣∣Dα
ξ g(|ξ|)

∣∣ =
∣∣∣ |α|∑
j=1

∑
β1+...+βj=α
|βj |≥1

Cβ1,...,βjg
(j)(|ξ|)

j∏
i=1

Dβi
ξ |ξ|

∣∣∣

≤
|α|∑
j=1

∑
β1+...+βj=α
|βj |≥1

|Cβ1,...,βj ||g
(j)(|ξ|)|

∣∣∣ j∏
i=1

Dβi
ξ |ξ|

∣∣∣

≤
|α|∑
j=1

∑
β1+...+βj=α

|Cβ1,...,βj ||ξ|
−j |ξ|−(|β1|+...+|βj |)+j ≤ Cα|ξ|−|α|,

the desired estimate we wanted to prove.

Due to this proposition, hereinafter we will replace proofs for statements for derivatives in ξ by
proofs for statements by derivatives in |ξ|.

Proposition 4.1.3. Assume that t|ξ| is the separated line between the hyperbolic zone and the

dissipative zone. Then we have the following estimates:∣∣Dα
ξ t|ξ|

∣∣ . 1

a(t|ξ|)
|ξ|−1−|α| (4.1.3)

for all multi-indices α with |α| > 0.

Proof. We will apply the principle of induction. Let us consider the �rst derivative with respect to
|ξ| of t|ξ| that can be obtained directly from the following calculations:

A(t|ξ|)|ξ| = N ⇒ d|ξ|t|ξ|a(t|ξ|)|ξ|+A(t|ξ|) = 0⇒ d|ξ|t|ξ| = −
A(t|ξ|)

a(t|ξ|)|ξ|
= − N

a(t|ξ|)|ξ|2
. (4.1.4)

Hence, we obtain

d|ξ|t|ξ| = −
N

a(t|ξ|)|ξ|2
. (4.1.5)

Now, let us assume that

|Dk
|ξ|t|ξ|| .

1

a(t|ξ|)
|ξ|−1−k (4.1.6)

holds for all 1 ≤ k ≤ p. Multiplying (4.1.5) by a(t|ξ|) and taking p derivatives with respect to |ξ|
gives

dp|ξ|
(
d|ξ|t|ξ|a(t|ξ|)

)
= −dp|ξ|

(
N

|ξ|2

)
⇒

p∑
k=0

Ckpd
k+1
|ξ| t|ξ|d

p−k
|ξ| a(t|ξ|) = (−1)p+1(p+ 1)!

N

|ξ|p+2

⇒ |dp+1
|ξ| t|ξ|a(t|ξ|)| .

1

|ξ|p+2
+

p−1∑
k=0

∣∣dk+1
|ξ| t|ξ|d

p−k
|ξ| a(t|ξ|)

∣∣. (4.1.7)
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Applying Faà di Bruno's formula (see Appendix: Lemma B.3.5) we have

dn|ξ|a(t|ξ|) =
∑ n!

m1!1!m1m2!2!m2 . . .mn!n!mn
.a(m1+m2+...+mn)(t|ξ|)

n∏
j=1

(
dj|ξ|t|ξ|

)mj
,

where the sum is taken over all n-tuples of nonnegative integers (m1,m2, ...,mn) satisfying the
constraint

1 ·m1 + 2 ·m2 + . . .+ n ·mn = n.

The assumption (A3)∞ together with (4.1.6) yields the estimate

|dn|ξ|a(t|ξ|)| .
∑

a(t|ξ|)

(
a(t|ξ|)

A(t|ξ|)

)m1+m2+...+mn n∏
j=1

(
1

a(t|ξ|)|ξ|j+1

)mj
.

∑
a(t|ξ|)

(
a(t|ξ|)

A(t|ξ|)

)m1+m2+...+mn 1

(a(t|ξ|)|ξ|)m1+m2+...+mn |ξ|m1+2m2+...+nmn

.
a(t|ξ|)

|ξ|n
. (4.1.8)

Combining (4.1.7) and (4.1.8) we obtain

|dp+1
|ξ| t|ξ|a(t|ξ|)| .

1

|ξ|p+2
+

p−1∑
k=0

1

a(t|ξ|)|ξ|k+2

a(t|ξ|)

|ξ|p−k
.

1

|ξ|p+2

⇒ |dp+1
|ξ| t|ξ|| .

1

a(t|ξ|)|ξ|p+2
.

This completes the proof.

Proposition 4.1.4. Let us assume that g = g(|ξ|) with ξ ∈ Rn \ {0} is an in�nitely di�erentiable

function. Then it holds

dm|ξ|e
g(|ξ|) = C(k1, k2, . . . , kj , j)e

g(|ξ|)
m∑
j=1

∑
k1+···+kj=m
|kj |≥1

j∏
i=1

dki|ξ|g(|ξ|) (4.1.9)

with ki ≥ 1.

Proof. This proposition will be proved by induction with respect to m. For m = 1 we have

d|ξ|e
g(|ξ|) = g′(|ξ|)eg(|ξ|).

Now let us suppose that the equality (4.1.9) is valid for all m ≤ k with k ≥ 1. We shall prove this
equality for m = k + 1. We carry out straight-forward calculations to obtain

dk+1
|ξ| e

g(|ξ|) = d|ξ|d
k
|ξ|e

g(|ξ|) = d|ξ|

(
C(k1, k2, . . . , kj , j)e

g(|ξ|)
k∑
j=1

∑
k1+...+kj=k

d|ξ|

j∏
i=1

dki|ξ|g(|ξ|)
)

= eg(|ξ|)C̄(k1, k2, . . . , kj , j)

( k∑
j=1

∑
k1+...+kj=k

(
g′(|ξ|)

j∏
i=1

dki|ξ|g(|ξ|) + d|ξ|

j∏
i=1

dki|ξ|g(|ξ|)
))

= C ′(k1, k2, . . . , kj , j)e
g(|ξ|)

k+1∑
j=1

∑
l1+...+lj=k+1

j∏
i=1

dli|ξ|g(|ξ|).

The proof is completed.
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Proposition 4.1.5. Let us introduce Ã(t) =
∫ t

0 a(τ)dτ . Then the following estimates hold :

1. |Dα
ξ

(
Ã(t|ξ|)|ξ|

)
| ≤ Cα|ξ|−|α|.

2. |Dk
t Ã(t)m| ≤ Ck,ma(t)kA(t)m−k.

3. |Dk
t e
±iÃ(t)|ξ|| ≤ Ck(a(t)|ξ|)k in the hyperbolic zone.

Proof. to 1. In order to prove the �rst statement we start with the following identity:

|Dα
ξ

(
Ã(t|ξ|)|ξ|

)
| =

∣∣ ∑
β1+β2=α

Cβ1,β2D
β1

ξ Ã(t|ξ|)D
β2

ξ |ξ|
∣∣.

Thus, we need to estimate |Dβ1

ξ Ã(t|ξ|)|. Moreover, from the de�nition of t|ξ| we have Ã(t|ξ|) = N
|ξ|−1.

It clues |Dβ1

ξ Ã(t|ξ|)| . |ξ|−|β1|−1. This estimate helps us to conclude the desired inequality.
to 2. We will prove this statement by the induction principle with respect to two parameters k and

m. For �xed m and k = 1 and for �xed k and m = 1 we can check our statement. Let us assume
that it holds for all k ≤ p with p ≥ 1 and for all m ≤ q with q ≥ 1. We show our statement for
k = p+ 1,m = q + 1. Indeed,∣∣Dp+1

t Ã(t)q+1
∣∣ .

∣∣Dp
t

(
a(t)Ã(t)q

)∣∣ =
∣∣ ∑
i+j=p

C̃i,jD
i
ta(t)Dj

t Ã(t)q
∣∣

≤ Cp+1,q+1

∑
i+j=p

a(t)
( a(t)

A(t)

)i
a(t)jA(t)q−j ≤ Cp+1,q+1a(t)p+1A(t)q+1−(p+1).

This completes the proof of the second statement.
to 3. In order to prove the third statement we apply directly Proposition 4.1.4 with respect to the

variable t. We get

∣∣Dk
t e
±iÃ(t)|ξ|∣∣ ≤ C(k)

∣∣∣e±iÃ(t)|ξ|
k∑
j=1

∑
k1+···+kj=k

j∏
i=1

Dki
t (Ã(t)|ξ|)

∣∣∣
≤ C̃(k)

k∑
j=1

∑
k1+···+kj=k

j∏
i=1

a(t)
( a(t)

A(t)

)ki−1
|ξ| ≤ Cka(t)k|ξ|k.

The proof is completed.

De�nition 4.1.1. The time-dependent function c(t, ξ) belongs to the symbol class

Sl1,l2{m1,m2,m3} with restricted smoothness l1, l2, if it satis�es the following estimates:

Sl1,l2{m1,m2,m3} =
{
c(t, ξ) : |Dα

ξD
k
t c(t, ξ)| ≤ Cα,k|ξ|m1−|α|a(t)m2

( a(t)

A(t)

)m3+k
in Zhyp(N)

for all |α| ≤ l2 and k ≤ l1
}
.

Obviously, it holds

Sl1,l2{m1,m2,m3} ⊂ Sl
′
1,l
′
2{m1,m2,m3} for all l′1 ≤ l1, l′2 ≤ l2.

Using the de�nition of hyperbolic zone we have

Sl1,l2{m1 − k,m2 − k,m3 + k} ⊂ Sl1,l2{m1,m2,m3} for all k ≥ 0.

This property will be essentially used in the diagonalization scheme. We have also corresponding
properties to those ones from Lemma 2.1.5.
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Proposition 4.1.6. The family of symbol classes Sl1,l2{m1,m2,m3} generates a hierarchy of symbol

classes having the following properties:

• Sl1,l2{m1,m2,m3} is a vector space.

• Sl1,l2{m1,m2,m3}Sl1,l2{m′1,m′2,m′3} ⊂ Sl1,l2{m1 +m′1,m2 +m′2,m3 +m′3}.

• Dk
tD

α
ξ S

l1,l2{m1,m2,m3} ⊂ Sl1−k,l2−|α|{m1 − |α|,m2,m3 + k}.

• S0,0{−1,−1, 2} ⊂ L∞ξ L1
t (Zhyp(N)).

Proposition 4.1.7. The following relations hold for all m1,m2,m3 :

1. e±iÃ(t|ξ|)|ξ|S{m1,m2,m3} ↪→ S{m1,m2,m3}.

2. e±iÃ(t)|ξ|Sl1,l2{m1,m2,m3} ↪→ Sl1,l2{m1 + l,m2 + l,m3 − l}.
Here l = l1 + l2.

Proof. to 1. In order to prove the �rst statement we choose c = c(t, ξ) ∈ S{m1,m2,m3}. Then
it holds ∣∣Dk

tD
α
ξ

(
e±iÃ(t|ξ|)|ξ|c(t, ξ)

)∣∣ =
∣∣∣ ∑
α1+α2=α

Cα1,α2D
α1
ξ e±iÃ(t|ξ|)|ξ|Dk

tD
α2
ξ c(t, ξ)

∣∣∣
by the aid of Proposition 4.1.2, it is enough to consider the following estimates:

∣∣∣ ∑
α1+α2=α

Cα1,α2D
|α1|
|ξ| e

±iÃ(t|ξ|)|ξ|Dk
tD

α2
ξ c(t, ξ)

∣∣∣
≤

∑
α1+α2=α

Cα1,α2

(
C ′(α1)

∣∣∣e±iÃ(t|ξ|)|ξ|
|α1|∑
j=1

∑
l1+...+lj=|α1|

j∏
i=1

dli|ξ|
(
Ã(t|ξ|)|ξ|

)∣∣∣)∣∣Dk
tD

α2
ξ c(t, ξ)

∣∣
≤

∑
α1+α2=α

Cα1,α2

(
C ′(α1)

|α1|∑
j=1

∑
l1+...+lj=|α1|

j∏
i=1

|ξ|−li
)∣∣Dk

tD
α2
ξ c(t, ξ)

∣∣
≤

∑
α1+α2=α

C̃α1,α2 |ξ|−|α1||ξ|m1−|α2|a(t)m2

( a(t)

A(t)

)m3+k
= Cα|ξ|m1−|α|a(t)m2

( a(t)

A(t)

)m3+k
.

In the third line we have used the �rst statement of Proposition 4.1.5.

to 2. If c(t, ξ) ∈ Sl1,l2{m1,m2,m3}, then it holds

∣∣∣Dk
tD

α
ξ

(
e±iÃ(t)|ξ|c(t, ξ)

)∣∣∣ =
∣∣∣ ∑
k1+k2=k

∑
α1+α2=α

Ck1,k2,α1,α2D
k1
t D

α1
ξ

(
e±iÃ(t)|ξ|

)
Dk2
t D

α2
ξ c(t, ξ)

∣∣∣
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We take account of the following estimates:∣∣∣ ∑
k1+k2=k

∑
α1+α2=α

Ck1,k2,α1,α2D
k1
t D

α1

|ξ|

(
e±iÃ(t)|ξ|

)
Dk2
t D

α2
ξ c(t, ξ)

∣∣∣
≤

∑
k1+k2=k

∑
α1+α2=α

∑
i+j=k1

|Ck1,k2,α1,α2,i,j ||a(t)iA(t)|α1|−iDj
t e
±iA(t)|ξ|||Dk2

t D
α2
ξ c(t, ξ)|

≤
∑

k1+k2=k

∑
α1+α2=α

∑
i+j=k1

|Ck1,k2,α1,α2,i,j |a(t)iA(t)|α1|−i(a(t)|ξ|)j
∣∣Dk2

t D
α2
ξ c(t, ξ)

∣∣
≤

∑
k1+k2=k

∑
α1+α2=α

C ′k1,k2,α1,α2
a(t)k1 |ξ|k1A(t)|α1||ξ|m1−|α2|a(t)m2

( a(t)

A(t)

)m3+k2

=
∑

k1+k2=k

∑
α1+α2=α

C ′k1,k2,α1,α2
|ξ|m1+k−k2−|α2|a(t)m2+k+|α|−k2−|α2|

( a(t)

A(t)

)m3−|α|+|α2|+k2

≤ C ′k,α|ξ|m1+(k+|α|)−|α|a(t)m2+(k+|α|)
( a(t)

A(t)

)m3+k−(k+|α|)

≤ Ck,α|ξ|m1+l−|α|a(t)m2+l
( a(t)

A(t)

)m3−l+k
.

Here we have used the property A(t)|ξ| ≥ N , it comes from the de�nition of the hyperbolic zone. In
the �rst line and in the third line the second and the third statement of Proposition 4.1.5 is applied,
correspondingly. This completes the proof of this proposition.

Remark 4.1.1. The �rst statement of Proposition 4.1.7 tells us that it is allowed to extent the phase

function ±
∫ t
t|ξ|
a(τ)dτ |ξ| in exp

(
± i
∫ t
t|ξ|
a(τ)dτ |ξ|

)
which we use later to get Lp − Lq estimates to

the phase function ±
∫ t

0 a(τ)dτ |ξ| in exp
(
± i
∫ t

0 a(τ)dτ |ξ|
)
. Here we use that the remainder term

exp
(
± i
∫ t|ξ|

0 a(τ)dτ |ξ|
)
satis�es ∣∣∣Dα

|ξ|e
±i|ξ|Ã(t|ξ|)

∣∣∣ . |ξ|−|α|. (4.1.10)

Thus, we can put the term e±i|ξ|Ã(t|ξ|) into the amplitude.

4.1.3. Construction of a fundamental solution

Now we want to construct the fundamental solution as the solution of the following system(
Dt −D(t, ξ)− Fp−1(t, ξ)−Rp(t, ξ)

)
Ep(t, s, ξ) = 0, Ep(s, s, ξ) = I. (4.1.11)

Let E0(t, s, ξ) be the fundamental solution to Dt −D(t, ξ). We have

E0(t, s, ξ) =

(
ei
∫ t
s a(τ)dτ |ξ| 0

0 e−i
∫ t
s a(τ)dτ |ξ|

)
. (4.1.12)

Let us de�ne Ẽ0(t, s, ξ) =

√
a(t)

λ(t)

λ(s)√
a(s)

E0(t, s, ξ). We can see that this matrix-valued function is

the fundamental solution to
Dt −D(t, ξ)− F (0)(t, ξ). (4.1.13)
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We de�ne

Rp(t, s, ξ) = Ẽ−1
0 (t, s, ξ)

(
Fp−1(t, ξ) +Rp(t, ξ)− F (0)(t, ξ)

)
Ẽ0(t, s, ξ)

= Fp−1(t, ξ)− F (0)(t, ξ) + E−1
0 (t, s, ξ)Rp(t, ξ)E0(t, s, ξ). (4.1.14)

Here we recall that the matrix-valued function Qp(t, s, ξ) is the solution to(
Dt −Rp(t, s, ξ)

)
Qp(t, s, ξ) = 0, Qp(s, s, ξ) = I. (4.1.15)

From the Peano-Baker formula we have that the solution to (4.1.15) can be represented as

Qp(t, s, ξ) = I +

∞∑
j=1

ij
∫ t

s
Rp(t1, s, ξ)

∫ t1

s
Rp(t2, s, ξ) · · ·

∫ tj−1

s
Rp(tj , s, ξ)dtj . . . dt1. (4.1.16)

The matrix Ep(t, s, ξ) can be represented as

Ep(t, s, ξ) = Ẽ0(t, s, ξ)Qp(t, s, ξ) =

√
a(t)

λ(t)

λ(s)√
a(s)

E0(t, s, ξ)Qp(t, s, ξ). (4.1.17)

Lemma 4.1.8. The matrix-valued function Rp(t, t|ξ|, ξ) satis�es

Rp(t, t|ξ|, ξ) ∈ Sl1,l2{−p+ l,−p+ l, p+ 1− l} ↪→ Sl1,l2{−1,−1, 2} (4.1.18)

for all l1 + l2 = l ≤ p− 1.

Proof. Due to the representation of Rp(t, s, ξ) in (4.1.14) we have

Rp(t, t|ξ|, ξ) = Fp−1(t, ξ)− F (0)(t, ξ) + E−1
0 (t, t|ξ|, ξ)Rp(t, ξ)E0(t, t|ξ|, ξ).

As a result of Lemma 4.1.1 we obtain

Fp−1(t, ξ)− F (0)(t, ξ) ∈ S{−1,−1, 2},

thus, now only the remainder term

R̃p(t, t|ξ|, ξ) := E−1
0 (t, t|ξ|, ξ)Rp(t, ξ)E0(t, t|ξ|, ξ) =

 rp11 rp12e
2i
∫ t
t|ξ|

a(τ)dτ |ξ|

rp21e
−2i

∫ t
t|ξ|

a(τ)dτ |ξ|
rp22


should be considered. Applying Lemma 4.1.1, Proposition 4.1.7 and Remark 4.1.1 we deduce
R̃p(t, t|ξ|, ξ) ∈ Sl1,l2{−p+ l,−p+ l, p+ 1− l} ↪→ Sl1,l2{−1,−1, 2} for all l ≤ p− 1.

Lemma 4.1.9. Assume (A1), (A2), (A3)∞, (B1), (B2)∞, (B3) or (B3)'. Then the fundamental

solution Ep(t, s, ξ) to (4.1.11) can be represented as

Ep(t, s, ξ) =

√
a(t)√
a(s)

λ(s)

λ(t)
E0(t, s, ξ)Qp(t, s, ξ)

for all t, s ≥ t|ξ| with an amplitude Qp(t, s, ξ) satisfying the following estimates:

‖Dα
ξQp(t, t|ξ|, ξ)‖ ≤ Cp,α,N |ξ|−|α|, t ≥ t|ξ|

for all multi-indices α satisfying |α| ≤ p− 1.



4.1. The case of non-e�ective dissipation 89

Proof. Let us consider the �rst statement. The Cauchy condition is obviously satis�ed. Further-
more, we have

DtEp = DtẼ0Qp + Ẽ0DtQp = (D + F (0))Ẽ0Qp + Ẽ0RpQp
= (D + F (0) + Fp−1 +Rp − F (0))Ẽ0(t, s, ξ)Qp

= (D + Fp−1 +Rp)Ep.

The �rst step of proof of the second statement arises from the unitary behavior of E0(t, s, ξ). It
follows

‖Rp(t, s, ξ)‖ . ‖(Fp−1−F (0))(t, ξ)‖+‖Rp(t, ξ)‖, where Rp(t, ξ) ∈ S{−p,−p, p+1} ⊂ S{−1,−1, 2}.

Applying the fourth statement of Lemma 2.1.5, that is,

S{−1,−1, 2} ⊂ L∞ξ L1
t (Zhyp(N)),

we obtain ∫ t

t|ξ|

‖Rp(τ, t|ξ|, ξ)‖dτ ≤ CN

for all t ≥ t|ξ|. Hence,

‖Qp(t, t|ξ|, ξ)‖ . exp
(∫ t

t|ξ|

‖Rp(τ, s, ξ)‖dτ
)
. 1.

Now let us take α derivatives with respect to ξ in the representation formula for Qp(t, t|ξ|, ξ) in
(4.1.16). Then

Dα
ξQp(t, t|ξ|, ξ) =

∞∑
j=1

ijDα
ξ

(∫ t

t|ξ|

Rp(t1, t|ξ|, ξ)
∫ t1

t|ξ|

Rp(t2, t|ξ|, ξ) · · ·
∫ tj−1

t|ξ|

Rp(tj , t|ξ|, ξ)dtj . . . dt1
)
.

Let us consider terms of the form∫ t

t|ξ|

Dα1
ξ Rp(t1, t|ξ|, ξ)

∫ t1

t|ξ|

Dα2
ξ Rp(t2, t|ξ|, ξ) · · ·

∫ tj−1

t|ξ|

D
αj
ξ Rp(tj , t|ξ|, ξ)dtj . . . dt1

with
∑j

k=1 αk = |α|. Using Lemma 4.1.8 the norm of these terms can be estimated by

C ′(α, p,N)

∫ t

t|ξ|

(
|ξ|−1−|α1|a(t1)−1

( a(t1)

A(t1)

)2
)∫ t1

t|ξ|

(
|ξ|−1−|α2|a(t2)−1

( a(t2)

A(t2)

)2
)

× · · · ×
∫ tj−1

t|ξ|

(
|ξ|−1−|αj |a(tj)

−1
( a(tj)

A(tj)

)2
)
dtj . . . dt1

≤ C(α, p,N)|ξ|−|α|.

Here the assumption |α| ≤ p − 1 guarantees that αk ≤ p − 1, which is necessary to apply Lemma
4.1.8. Accordingly, we only have to care for derivatives of the lower integral bound t|ξ|. Then there

arise terms as Dα−β
ξ

(
Rp(t|ξ|, t|ξ|, ξ)D

β
ξ t|ξ|

)
for |β| = 1 which can be estimated as follows:∣∣∣Dα−β

ξ

(
Rp(t|ξ|, t|ξ|, ξ)d|ξ|t|ξ|

)∣∣∣ =
∣∣∣ ∑
|α1|+|α2|=|α|−1

Cα1,α2D
α1
ξ Rp(t|ξ|, t|ξ|, ξ)D

α2+β
ξ t|ξ|

∣∣∣
≤ C(α)

∑
|α1|+|α2|=|α|−1

|ξ|−|α1|−1a(t|ξ|)
−1
( a(t|ξ|)

A(t|ξ|)

)2
a(t|ξ|)

−1|ξ|−|α2|−2 ≤ Cα,N |ξ|−|α|.
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To estimate the terms
∣∣Dα2+β

ξ t|ξ|
∣∣ we have used the result of Proposition 4.1.3. For the other terms∣∣Dα1

ξ Rp(t|ξ|, t|ξ|, ξ)
∣∣ we use the following statement:

If all the necessary derivatives are de�ned, then we have

∣∣Dα
ξRp(t|ξ|, t|ξ|, ξ)

∣∣ . |ξ|−1−|α|a(t|ξ|)
−1

(
a(t|ξ|)

A(t|ξ|)

)2

. (4.1.19)

Indeed, due to the representation of Rp(t, s, ξ) in (4.1.14) we have

Rp(t|ξ|, t|ξ|, ξ) = Fp−1(t|ξ|, ξ)− F (0)(t|ξ|, ξ) +Rp(t|ξ|, ξ) := G(t|ξ|, ξ).

Applying the generalized version of Faa di Bruno's formula (See Appendix: Lemma B.3.7) we obtain
for the case |α| = n

Dα
ξG(t|ξ|, ξ) =

∑
0

∑
1

· · ·
∑
n

C(n, ki, qij)
∂κG

∂p1
t|ξ|
∂α2
ξ

(t|ξ|, ξ)
n∏

i=1, |αi|=i

(
Dαi
ξ t|ξ|

)qi1(Dαi
ξ ξ
)qi2 , (4.1.20)

where the respective sums are taken over all non-negative integer solutions of the Diophantine
equations as follows: ∑

0

→ k1 + 2k2 + · · ·+ nkn = n,∑
1

→ q11 + q12 = k1,

...∑
n

→ qn1 + qn2 = kn,

and

p1 =
n∑
i=1

qij , |α2| =
n∑
i=1

qi2,

|κ| = k1 + k2 + . . .+ kn = p1 + |α2|.

By virtue of ∂ξkξl = δkl we may conclude that qi2 = 0, for all i ≥ 2 and |α2| = q12. This yields the
estimate

|Dα
ξG(t|ξ|, ξ)| .

∑
0

∑
1

. . .
∑
n

|ξ|−1−|α2|a(t|ξ|)
−1

(
a(t|ξ|)

A(t|ξ|)

)2+p1 n∏
i=1

a(t|ξ|)
−qi1 |ξ|−(|αi|+1)qi1

=
∑

0

∑
1

. . .
∑
n

|ξ|−1−q12a(t|ξ|)
−1

(
a(t|ξ|)

A(t|ξ|)

)2+p1

a(t|ξ|)
−p1 |ξ|−p1−iqi1

=
∑

0

∑
1

. . .
∑
n

|ξ|−1−q12a(t|ξ|)
−1

(
a(t|ξ|)

A(t|ξ|)

)2+p1

a(t|ξ|)
−p1 |ξ|−p1−n+q12

=
∑

0

∑
1

. . .
∑
n

|ξ|−1−q12−p1+q12−na(t|ξ|)
−1−p1

(
a(t|ξ|)

A(t|ξ|)

)2+p1

. |ξ|−1−na(t|ξ|)
−1

(
a(t|ξ|)

A(t|ξ|)

)2

.
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Therefore ‖Dα
ξQp(t, t|ξ|, ξ)‖ can be estimated by Cα,p,N |ξ|−|α|, where we use Cα,p,N as a universal

constant depending on α, p,N . This completes the proof of this lemma.

Remark 4.1.2. From Lemma 4.1.1 and Lemma 4.1.9 we have the following representation of the
micro-energy U(t, ξ) = (a(t)|ξ|û, Dtû)T :

U(t, ξ) =

√
a(t)√
a(s)

λ(s)

λ(t)
MNp(t, ξ)E0(t, s, ξ)Qp(t, s, ξ)N

−1
p (s, ξ)M−1U(s, ξ).

4.1.4. Lp − Lq estimates

Theorem 4.1.10. If the conditions (A1), (A2), (A3)∞, (B1), (B2)∞, (B3) or (B3)' and (C) hold,

then we have the following Lp − Lq estimates for the kinetic and the �elastic� energy:

‖ut(t, ·), a(t)∇u(t, ·)‖Lq .
1

λ(t)

√
a(t)A(t)

−n−1
2

(
1
p
− 1
q

)(
‖u1‖Lp,r+1 + ‖u2‖Lp,r

)
with regularity r = n

(
1
p −

1
q

)
, 1 < p ≤ 2, 1

p + 1
q = 1 and u0(·), u1(·) ∈ S(Rn). Here A(t) =

1 +
∫ t

0 a(τ)dτ .

Proof. The strategy of proof is based on the decomposition of the extended phase space into the
following three parts:

1. the dissipative part: Zdiss := {(t, ξ) : A(t)|ξ| ≤ N},

2. the hyperbolic part with small frequencies: Zhyp := {(t, ξ) : A(t)|ξ| ≥ N
2 ∩ |ξ| ≤ N},

3. the hyperbolic part with large frequencies: Zhyp := {(t, ξ) : |ξ| ≥ N
2 }.

In order to separate the extended phase space we will use a smooth cut-o� function ψ ∈ C∞(R+)
such that ψ(r) = 1 for r ≤ 1/2, ψ(r) = 0 for r ≥ 1 and ψ′(r) ≤ 0. Then we de�ne functions ψ1, ψ2

and ψ3 as follows:

ψ1(t, ξ) = ψ

(
|ξ|
N

)
ψ

(
A(t)|ξ|
N

)
,

ψ2(t, ξ) = ψ

(
|ξ|
N

)(
1− ψ

(
A(t)|ξ|
N

))
,

ψ3(ξ) = 1− ψ
(
|ξ|
N

)
such that ψ1(t, ξ) + ψ2(t, ξ) + ψ3(ξ) = 1. Thus this decomposition corresponds to the de�nition of
the three parts which we have introduced before.

Estimates for the dissipative part

Let us come back to the micro-energy U(t, ξ) =
(
a(t)
A(t) û, Dtû

)
in the dissipative zone which can be

represented by
U(t, ξ) = ψ1(t, ξ)E(t, 0, ξ)U(0, ξ).

Thus, it is reasonable to consider estimates for∥∥∥F−1
(
ψ1(t, ξ)Ek,l(t, 0, ξ)F (v)

)∥∥∥
Lq
,
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where v ∈ S, Ek,l(t, 0, ξ), k = 1, 2, l = 1, 2 are the entries of the fundamental solution E(t, 0, ξ). It
holds

‖F−1 (ψ1(t, ξ)Ek,l(t, 0, ξ)F (v)) ‖Lq ≤ ‖ψ1(t, ξ)Ek,l(t, 0, ξ)F (v)‖Lp

≤ ‖ψ1(t, ξ)‖
L

pq
q−p
‖Ek,l(t, 0, ξ)‖L∞‖F (v)‖Lq ≤ CA(t)

−n( 1
p
− 1
q

)‖Ek,l(t, 0, ξ)‖L∞‖v(.)‖Lp .

By Lemma 3.2.4 and Lemma 3.2.6 we get

‖Ek,l(t, 0, ξ)‖L∞ . max
{a(t)1−δ

λ2(t)
,
a(t)

A(t)

}
for all k, l = 1, 2. Summarizing we have shown

‖F−1(ψ1(t, ξ)ût(t, ·))‖Lq + ‖F−1(ψ1(t, ξ)a(t)|ξ|û(t, ·))‖Lq
. max

{
a(t)1−δ

λ2(t)
, a(t)
A(t)

}
A(t)

−n( 1
p
− 1
q

)(‖u1(·)‖Lp + ‖u2(·)‖Lp
)
.

(4.1.21)

Estimates for the hyperbolic part

Due to the Remark 4.1.2 the micro-energy U(t, ξ) = (a(t)|ξ|û, Dtû)T can be represented as

U(t, ξ) =

√
a(t)√
a(s)

λ(s)

λ(t)
MNp(t, ξ)E0(t, s, ξ)Qp(t, s, ξ)N

−1
p (s, ξ)M−1U(s, ξ).

For this reason we will investigate the following Fourier multipliers depending on the parameter t:

F−1
(
e±iÃ(t)|ξ|

√
a(t)

λ(t)

λ(s)√
a(s)

b(t, ξ)|ξ|−rF (v)
)
,

here we recall that Ã(t) =
∫ t

0 a(s)ds, r is a real number and v ∈ S.

An auxiliary result

The key tool to prove in this part is we use the following result, see more detail the Lemma B.2.2
in section B.2 of Appendix.

Lemma 4.1.11. Let us assume that K(t) is a real-valued function and d(t, ξ) ∈ C∞0 (Rnξ ). Then
there exists a positive integer M such that

‖F−1
(
eiK(t)|ξ|d(t, ξ)

)
‖L∞ ≤ C(1 +K(t))−

n−1
2

∑
|α|≤M

‖Dα
ξ d(t, ξ)‖L∞

with a constant C which is independent of t and ξ.

Estimates in the hyperbolic part for large frequencies

In this part we shall study the following Fourier multiplier:

F−1
(
ψ3(ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b(t, ξ)|ξ|−rF (v)

)
,
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here the amplitude b = b(t, ξ) satis�es for all |α| ≤ p− 1 the estimates

|Dα
ξ b(t, ξ)| ≤ Cα,N |ξ|−|α|.

Here we use Np(t, ξ) ∈ S{0, 0, 0} and |Dα
ξQp(t, 0, ξ)| ≤ Cα,N |ξ|−|α| for |α| ≤ p−1. Now let us choose

a non-negative function φ = φ(r) ∈ C∞0 (R+) with suppφ ⊆ [1
2 , 1] such that

∑∞
j=−∞ φ(2−jr) =

1, r 6= 0. Furthermore, we de�ne

φj(|ξ|) = φ
(

2−j
|ξ|
N

)
, j ∈ Z.

The strategy of proof in this part is to obtain an Lp − Lq estimate by interpolating L1 − L∞ and
L2 − L2 estimates with Riesz-Thorin interpolation theorem. We introduce

Ij =
∥∥∥F−1

(
ψ3(t, ξ)φj(|ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rb(t, ξ)

)∥∥∥
L∞
,

Ĩj =
∥∥∥ψ3(ξ)φj(|ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rb(t, ξ)

∥∥∥
L∞
.

L1−L∞estimates. For all j < 0 we have Ij = Ĩj = 0. For j ≥ 0 we perform the change of variables
ξ = 2jNη and conclude as follows, where ψ3(ξ) ≡ 1 for j ≥ 2:

Ij ≤ C2j(n−r)
∥∥∥F−1

(
φ(|η|)e±i2jNÃ(t)|η|

√
a(t)

λ(t)
|η|−rb(t, 2jNη)

)∥∥∥
L∞

≤ C2j(n−r)
(
1 + 2jNÃ(t)

)−n−1
2

√
a(t)

λ(t)

∑
|α|≤M

∥∥∥Dα
η

(
φ(|η|)|η|−rb(t, 2jNη)

)∥∥∥
L∞

≤ C2j(n−r)
(
1 + 2jNÃ(t)

)−n−1
2

√
a(t)

λ(t)

∑
|α+β|≤M

sup
1/2≤|η|≤2

|η|−r−|α|(2jN)|β|(2jN |η|)−|β|

≤ C2j(n−r)A(t)−
n−1

2

√
a(t)

λ(t)
.

Here we have used in the second estimate the auxiliary Lemma 4.1.11 with a suitably positive
constant M. The constantM determines the necessary steps of diagonalization. Additional, we take
advantage of 1 +A(t) . 1 + 2jNA(t) for all j ≥ 0 and N su�ciently large. Summarizing gives∥∥∥F−1

(
ψ3(ξ)φj(|ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rb(t, ξ)F (v)(ξ)

)∥∥∥
L∞

. 2j(n−r)
√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2 ‖v(·)‖L1 .

L2 − L2 estimates. In order to derive an L2 − L2 estimate we shall estimate Ĩj . We have

Ĩj ≤ C sup
1/2≤|η|≤2

φ(|η|)
√
a(t)

λ(t)
(2jN |η|)−r|b(t, 2jNη)| .

√
a(t)

λ(t)
2−jr

for j ≥ 0. Consequently, we arrive at the following estimate:∥∥∥F−1
(
ψ3(ξ)φj(|ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rb(t, ξ)F (v)(·)

)∥∥∥
L2

.

√
a(t)

λ(t)
2−jr‖v(·)‖L2 .
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Lp − Lq estimates. Applying the above mentioned interpolation argument yields

∥∥∥F−1
(
ψ3(ξ)φj(|ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rb(t, ξ)F (v)(·)

)∥∥∥
Lq

. 2
j
(
n
(

1
p
− 1
q

)
−r
)√

a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)
‖v(·)‖Lp .

Finally, we conclude after �xing the regularity r = n
(

1
p −

1
q

)
and applying Brenner's lemma for

p ∈ (1, 2] the following estimate

∥∥∥F−1
(
ψ3(ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b(t, ξ)|ξ|−rF (v)

)∥∥∥
Lq

.

√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)
‖v(·)‖Lp .

Therefore, we have

∥∥∥F−1
(
ψ3(ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b(t, ξ)|ξ|−rF

(
a(0)|D|r+1u(0, ·) + |D|rut(0, ·)

))∥∥∥
Lq

.

√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)(
‖u1(·)‖Lp,r+1 + ‖u2(·)‖Lp,r).

Summarizing all estimates which we derived in this part of the extended phase space leads to

‖F−1(ψ3(ξ)ût(t, ·))‖Lq + ‖F−1(ψ3(ξ)a(t)|ξ|û(t, ·))‖Lq

.
√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)(
‖u1(·)‖Lp,r+1 + ‖u2(·)‖Lp,r

)
.

(4.1.22)

Estimates in the hyperbolic part for small frequencies

In this part of the extended phase space we deal with bounded frequencies |ξ| ≤ N and unbounded
A(t)|ξ| ≥ N

2 . Let us consider the Fourier multiplier

F−1
(
ψ2(t, ξ)e

±i
∫ t
t|ξ|

a(s)ds|ξ|
√
a(t)

λ(t)

λ(t|ξ|)√
a(t|ξ|)

b1(t, ξ)Ekl(t|ξ|, 0, ξ)|ξ|−rF (v)
)
,

where v ∈ S, Ekl(t|ξ|, 0, ξ), k, l = 1, 2, are the entries of the fundamental solution E(t|ξ|, 0, ξ). We
can rewrite this Fourier multiplier in the following form

F−1
(
ψ2(t, ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b̃(t, ξ)|ξ|−rF (v)

)
,

where we introduced the amplitude b̃(t, ξ) which is de�ned by

b̃(t, ξ) := exp
(
∓ i
∫ t|ξ|

0
a(s)ds|ξ|

) λ(t|ξ|)√
a(t|ξ|)

b1(t, ξ)

and which satis�es the estimates

|Dα
ξ b̃(t, ξ)| ≤ Cα,N |ξ|−|α|
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for all |α| ≤ p−1. Here we use Np(t, ξ) ∈ S{0, 0, 0}, |Dα
ξQp(t, t|ξ|, ξ)| ≤ Cα,N |ξ|−|α| for all |α| ≤ p−1

and Remark 4.1.1. We use again a dyadic decomposition by de�ning

φj(t, |ξ|) = φ

(
2−j

A(t)|ξ|
N

)
, j ∈ Z,

with φ ∈ C∞0 being introduced as above. Then for all j < 0 the product ψ2(t, ξ)φj(t, ξ) vanishes.
Thus, for j ≥ 0 we will estimate the following L∞ norms:

Ij =
∥∥∥F−1

(
ψ2(t, ξ)φj(t, |ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rψ(|ξ|N−1)b̃(t, ξ)

)∥∥∥
L∞
,

Ĩj =
∥∥∥ψ2(t, ξ)φj(t, |ξ|)e±iÃ(t)|ξ|

√
a(t)

λ(t)
|ξ|−rψ(|ξ|N−1)b̃(t, ξ)

∥∥∥
L∞
.

We perform the change of variables A(t)ξ = 2jNη and estimate as follows:

Ij ≤ C2j(n−r)A(t)(r−n)
∥∥∥F−1

(
φ(|η|)e±i2jN |η|

√
a(t)

λ(t)
|η|−rψ

(2j |η|
A(t)

)
b̃
(
t,

2jNη

A(t)
)
)∥∥∥

L∞

≤ C2j(n−r)(1 + 2jN)−
n−1

2 A(t)(r−n)

√
a(t)

λ(t)

∑
|α|≤M

∥∥∥Dα
η φ(|η|)|η|−rψ

(2j |η|
A(t)

)
b̃
(
t,

2jNη

A(t)

)∥∥∥
L∞

≤ C2j(
n+1

2
−r)A(t)(r−n)

√
a(t)

λ(t)

∑
|α+β|≤M

sup
1/2≤|η|≤2

|η|−r−|α|
(2jN

A(t)

)|β|(2jN

A(t)

)−|β|
≤ C2j(

n+1
2
−r)A(t)(r−n)

√
a(t)

λ(t)
.

Here we have used in the second estimate the auxiliary Lemma 4.1.11 with a suitably chosen positive
constant M . Thus, we have∥∥∥F−1

(
ψ2(t, ξ)φj(t, ξ)e

±iÃ(t)|ξ|
√
a(t)

λ(t)
b̃(t, ξ)|ξ|−rF (v)

)∥∥∥
L∞

. 2j(
n+1

2
−r)A(t)(r−n)

√
a(t)

λ(t)
‖v(·)‖L1 .

L2 − L2 estimates. Now we shall estimate Ĩj . We have

Ĩj ≤ C sup
1/2≤|η|≤2

φ(|η|)
√
a(t)

λ(t)

(2jN |η|
A(t)

)−r∣∣∣ψ(2j |η|
A(t)

)∣∣∣∣∣∣b̃(t, 2jNη

A(t)

)∣∣∣ . √
a(t)

λ(t)
2−jrA(t)r

for j ≥ 0. This implies immediately∥∥∥F−1
(
ψ2(t, ξ)φj(t, ξ)e

±iÃ(t)|ξ|
√
a(t)

λ(t)
|ξ|−r b̃(t, ξ)F (v)(·)

)∥∥∥
L2

.

√
a(t)

λ(t)
2−jrA(t)r‖v(·)‖L2 .

Lp − Lq estimates. Applying again the interpolation argument we get∥∥∥F−1
(
ψ2(t, ξ)φj(t, ξ)e

±iÃ(t)|ξ|
√
a(t)

λ(t)
|ξ|−rψ(|ξ|N−1)b̃(t, ξ)F (v)(·)

)∥∥∥
Lq

. 2
j
(
n+1

2

(
1
p
− 1
q

)
−r
)√

a(t)

λ(t)

(
1 +A(t)

)r−n( 1
p
− 1
q

)
‖v(·)‖Lp .
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Therefore, we can conclude after the choice r = n+1
2

(
1
p −

1
q

)
and Brenner's lemma for p ∈ (1, 2] the

following estimate uniformly for all j ≥ 0:∥∥∥F−1
(
ψ2(t, ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b̃(t, ξ)|ξ|−rF (v)

)∥∥∥
Lq

.

√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)
‖v(·)‖Lp .

From the last estimate it follows∥∥∥F−1
(
ψ2(t, ξ)e±iÃ(t)|ξ|

√
a(t)

λ(t)
b̃(t, ξ)|ξ|−rF

(
|D|r

( a(0)

A(0)
u(0, ·) + ut(0, ·)

)))∥∥∥
Lq

.

√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)(
‖u1(·)‖Lp + ‖u2(·)‖Lp

)
.

Summarizing all estimates which we derived in this part of the extended phase space we may
conclude

‖F−1(ψ2(t, ξ)ût(t, ·))‖Lq + ‖F−1(ψ2(t, ξ)a(t)|ξ|û(t, ·))‖Lq

.
√
a(t)

λ(t)

(
1 +A(t)

)−n−1
2

(
1
p
− 1
q

)(
‖u1(·)‖Lp + ‖u2(·)‖Lp

)
.

(4.1.23)

Combining and comparing the decay estimates from the three di�erent parts of the extended phase
space we see that the decay in the dissipative part is better than those in the hyperbolic parts.
The desired regularity comes from the hyperbolic part with large frequencies and the desired decay
comes from the the hyperbolic part with small frequencies. In this way the proof is completed.

4.2. The case of e�ective dissipation

We recall our model of interest:

utt − a(t)2∆u+ b(t)ut = 0, u(0, x) = u1(x), ut(0, x) = u2(x), (4.2.1)

where the propagation speed term a = a(t) satis�es the assumptions (A1) to (A3) and the dissipative
term b = b(t) satis�es the assumptions (B'1) to (B'4). At the beginning we prove the following
auxiliary lemma for large t.

Lemma 4.2.1. 1. Under the assumption (B′1) the following inequality holds :∥∥∥∥|ξ|s exp

(
−|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ

)∥∥∥∥
Lp

.

(∫ t

0

a2(τ)

b(τ)
dτ

)− s
2
− n

2p

.

2. If we suppose the assumptions (B′1), (B′3) and
µ(t)

A(t)
is a monotonic decreasing function, then

the function
b2(t)

a2(t)

∫ t

0

a2(τ)

b(τ)
dτ

tends to ∞ for t to ∞.

3. If we suppose the assumptions (B′1) and (B′3) and if we choose α ∈ R, then the following

function is monotonously increasing for large t:(
1 +

∫ t

0

a2(τ)

b(τ)
dτ

)α
λ(t)
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Proof. Direct calculations will prove the �rst statement. Indeed, we have

(∥∥∥|ξ|s exp
(
− |ξ|2

∫ t

0

a2(τ)

b(τ)
dτ
)∥∥∥

Lp

)p
.
∫ ∞

0

(
|ξ|s exp

(
− |ξ|2

∫ t

0

a2(τ)

b(τ)
dτ
))p
|ξ|n−1d|ξ|

=

∫ ∞
0
|ξ|sp+n−1 exp

(
− p|ξ|2

∫ t

0

a2(τ)

b(τ)
dτ
)
d|ξ|

=
1

2

∫ ∞
0

ζ
n+sp

2
−1e−pζdζ

(∫ t

0

a2(τ)

b(τ)
dτ
)−n+sp

2

. Γ
(
n+

sp

2

)(∫ t

0

a2(τ)

b(τ)
dτ
)−n+sp

2
.
(∫ t

0

a2(τ)

b(τ)
dτ
)− sp

2
−n

2
.

Here we used the change of variables

ζ = |ξ|2
∫ t

0

a2(τ)

b(τ)
dτ, dζ = 2|ξ|d|ξ|

∫ t

0

a2(τ)

b(τ)
dτ.

To prove the second statement we conclude in the following way:

b2(t)

a2(t)

∫ t

0

a2(τ)

b(τ)
dτ =

µ2(t)

A2(t)

∫ t

0

a(τ)A(τ)

µ(τ)
dτ =

µ2(t)

A2(t)

(A2(t)

2µ(t)
− 1

2µ(0)
+

∫ t

0

µ′(τ)A2(τ)

2µ2(τ)
dτ
)

=
µ(t)

2
− µ2(t)

A2(t)

1

2µ(0)
+
µ2(t)

A2(t)

∫ t

0

µ′(τ)A2(τ)

2µ2(τ)
dτ

≥ µ(t)

2
− µ2(t)

A2(t)

1

2µ(0)
− c µ

2(t)

A2(t)

∫ t

0

a(τ)A(τ)

2µ(τ)
dτ,

here we used the Assumption (B'2): |µ′(t)| ≤ cµ(t)a(t)/A(t). From the last estimate we obtain

µ2(t)

A2(t)

∫ t

s

a(τ)A(τ)

µ(τ)
dτ ≥ 1

2 + c

(
µ(t)− µ2(t)

A2(t)

1

µ(0)

)
& µ(t).

We note that µ(t)
A(t) is decreasing and µ(t)→∞ as t→∞.

To prove the last statement we study the derivative

∂t

((
1 +

∫ t

0

a2(τ)

b(τ)
dτ
)α
λ(t)

)
= α

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ
)α−1a2(t)

b(t)
λ(t) +

b(t)

2

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ
)α
λ(t)

=
a2(t)

2b(t)

(
1 +

∫ t

0

a2(τ)

b(τ)
dτ
)α−1

λ(t)
(

2α+
b2(t)

a2(t)
+
b2(t)

a2(t)

∫ t

0

a2(τ)

b(τ)
dτ
)
.

Combining with the second statement for α is �xed, we can �nd a su�ciently large time t0 = t0(α)
such that the expression is positive for all t ≥ t0. The lemma is proved.

The strategy for getting Lp − Lq estimates on the conjugate line for e�ective dissipations is to
estimate the L1-norm of the Fourier multiplier to get a L1 − L∞ estimate and apply the Riesz-
Thorin interpolation theorem with the previously obtained L2−L2 estimates. We have the following
theorem.



98 4. Lp − Lq estimates on the conjugate line

Theorem 4.2.2. Assume the conditions (B'1) to (B'4). Then for all times t we have the Lp − Lq
decay estimate

∥∥(ut(t, ·), a(t)∇xu(t, ·))
∥∥
Lq

. a(t)
(

1 +

∫ t

0

a2(τ)

b(τ)
dτ
)− 1

2
−n

2

(
1
p
− 1
q

)(
‖u1‖Lp,r+1 + ‖u2‖Lp,r

)
,

where r > n
(1

p
− 1

q

)
with 1 < p ≤ 2 and

1

p
+

1

q
= 1.

Proof. As we mentioned before it remains to derive a L1 −L∞ estimate. For this reason we devote
to estimate the following L1-norm:

‖〈ξ〉−rE(t, 0, ξ)‖L1 .

We will investigate the localized L1-norm in di�erent zones separately.

Small frequencies

Dissipative zone: |ξ| . 1

A(t)
. Inside this zone all entries of E(t, 0, ξ) can be estimated by

a(t)

A(t)
.

Consequently, the desired L1-norm can be estimated by∫ ξt1

0

a(t)

A(t)
|ξ|n−1d|ξ| . a(t)A(t)−1−n (4.2.2)

with ξt1 is the inverse of tξ1 .

Region Πell ∩ {|ξ| ≤ c0}. In this region we have 〈ξ〉 ∼ 1 and from Corollary 3.3.10 we get that all
components of E(t, 0, ξ) can be estimated by

exp
(
− |ξ|2

∫ t

0

a2(τ)

b(τ)
dτ
)
a(t)|ξ|.

After application of the �rst statement in Lemma 4.2.1 we can estimate the desired L1-norm by

‖E(t, 0, ξ)‖L1(Πell∩{|ξ|≤c0}) . a(t)
(

1 +

∫ t

0

a2(τ)

b(τ)
dτ
)− 1

2
−n

2
. (4.2.3)

Region Πhyp ∩ {|ξ| ≤ c0}. Let us distinguish two cases. If
µ(t)

A(t)
increases and tends to ∞ as t→∞,

then the elliptic region lies on top of the hyperbolic region which is away from frequency 0. In this
case, the small frequencies lie completely in the elliptic zone.

Now let us consider the case
µ(t)

A(t)
decreases and tends to 0 as t → ∞. Using Corollary 3.3.12 we

have for large t the following estimates, where ξt3 denotes the inverse of tξ3 :

‖E(t, 0, ξ)‖L1(Πhyp∩{|ξ|≤c0}) .
∫ c0

ξt3

|ξ|n exp
(
− |ξ|2

∫ tξ3

0

a2(τ)

b(τ)
dτ
)λ(tξ3)

λ(t)

√
a(t)

√
a(tξ3)d|ξ|

.
∫ c0

ξt3

(
|ξ|2

∫ tξ3

0

a2(τ)

b(τ)
dτ
)n

2
exp

(
− |ξ|2

∫ tξ3

0

a2(τ)

b(τ)
dτ
)

×
(∫ tξ3

0

a2(τ)

b(τ)
dτ
)−n+1

2 λ(tξ3)

λ(t)
a(t)d

(
|ξ|
(∫ tξ3

0

a2(τ)

b(τ)
dτ
) 1

2
)

. a(t)
(

1 +

∫ t

0

a2(τ)

b(τ)
dτ
)−n+1

2
.
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Here we have used the monotonic increasing behavior of the function(∫ t

0

a2(τ)

b(τ)
dτ
)−n+1

2
λ(t)

from the third statement of Lemma 4.2.1.

Large frequencies |ξ| ≥ c
In this case the L1-norm of the multiplier can be estimated with r > n as follows:

‖〈ξ〉−rE(t, 0, ξ)‖L1 . ‖〈ξ〉−r‖L1‖E(t, 0, ξ)‖L∞ . ‖E(t, 0, ξ)‖L∞ .

Πhyp ∩ {|ξ| ≥ c} : From Lemma 3.3.3 and Remark 3.3.5 we have that the fundamental solution can
be uniformly estimated by

|E(t, 0, ξ)| .
√
a(t)

λ(t)
. (4.2.4)

Πell ∩ {|ξ| ≥ c} : In this case we have the estimate

|E(t, 0, ξ)| . a(t) exp
(
− c2

0

∫ t

0

a2(τ)

b(τ)
dτ
)
. (4.2.5)

The decay behaviors in (4.2.2), (4.2.4) and (4.2.5) are not slower than the decay behavior a(t)
(

1 +∫ t
0
a2(τ)
b(τ) dτ

)−n+1
2

which we obtained from our considerations for small frequencies. Indeed, in order

to compare the decay behavior in (4.2.2) with the above one we use the following calculation:∫ t

0

a2(τ)

b(τ)
dτ =

∫ t

0

a(τ)A(τ)

µ(τ)
dτ .

∫ t

0

A(τ)

µ0
d (A(τ)) . A(t)2,

here, due to µ(t)→∞ as t→∞ it exists a constant µ0 such that µ(t) ≥ µ0 for large t.

Comparing (4.2.4) with a(t)
(

1+
∫ t

0
a2(τ)
b(τ) dτ

)−n+1
2

by the aid of the monotonously increasing property

of
(

1 +
∫ t

0
a2(τ)
b(τ) dτ

)α
λ(t) we conclude the desired dominance (with the choice α = −(n+ 1)/2). The

decay behavior from (4.2.5) is of course faster than the behavior we are interested in because the
exponential function is more dominant than any power function. Thus, the decay behavior appearing
in the L1 − L∞ estimate uniformly for all frequencies is

a(t)
(

1 +

∫ t

0

a2(τ)

b(τ)
dτ
)−n+1

2
.

Combining with the estimate of L2−L2 in Theorem 3.3.14 by the aid of Riesz-Thorin interpolation
theorem we will get the desired estimate. In this way the theorem is proved.
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5. Global existence of small data solutions to

semi-linear dissipative wave models

5.1. Semi-linear models with non-e�ective dissipation

We are interested in the study of global existence (in time) of small data solutions to the following
semi-linear Cauchy problem

utt − a(t)2∆u+ b(t)ut = u2
t − a(t)2|∇xu|2, u(0, x) = u1(x), ut(0, x) = u2(x) (5.1.1)

with data u1(x) and u2(x) belonging to C∞0 (Rn). If we apply Nirenberg's transformation

v(t, x) = 1− exp(−u(t, x)), (5.1.2)

then the Cauchy problem (5.1.1) can be rewritten as the following linear Cauchy problem

vtt − a(t)2∆v + b(t)vt = 0,

v(0, x) = v1(x) = 1− exp(−u1(x)), vt(0, x) = v2(x) = u2(x) exp(−u1(x))

with data v1(x) and v2(x) belonging to C∞0 (Rn) and with the constrain condition

v(t, x) < 1.

This constrain condition follows from the transformation (5.1.2) and the goal to get global (in time)
solutions. Let us recall the assumptions to the coe�cient a = a(t):

• (A1) a(t) > 0, a′(t) > 0 for t ∈ [0,∞),

• (A2) a0 ≤ α(t) ≤ a1, a0, a1 > 0,
a′(t)

a(t)
:= α(t)

a(t)

A(t)
,

• (A3) |a′′(t)| ≤ a2a(t)
( a(t)

A(t)

)2
, a2 ≥ 0,

and b = b(t) := µ(t)
a(t)

A(t)
with a little change to assumption (B3) as follows:

(B1) b(t) > 0, b /∈ L1(R+),

(B2) |µ′(t)| ≤ Cµµ(t)
a(t)

A(t)
,

(B3) lim supt→∞ µ(t) < max
{

lim supt→∞ α(t), 1
}
.

Then the following statement is true for the case n > 1.
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Theorem 5.1.1. Suppose that the coe�cients a = a(t) and b = b(t) satisfy the assumptions (A1)
to (A3) and (B1) to (B3), respectively. Then the solution v = v(t, x) satis�es the following a-priori
estimate:

‖v(t, ·)‖∞ ≤ Cε(N)
(
‖〈D〉n+εv0‖1 + ‖〈D〉n−1+εv1‖1

)
(5.1.3)

for all ε > 0 and n > 1.

Proof. We will only sketch the proof. Applying partial Fourier transformation we get the equation
v̂tt + a2(t)|ξ|2v̂ + b(t)v̂t = 0. We carry out the proof in two zones of the extended phase space
(0,∞)× Rn. These zones are de�ned as in Section 3.2 as

• Zhyp(N) := {(t, ξ) : t ≥ t|ξ|},

• Zdiss(N) := {(t, ξ) : 0 ≤ t ≤ t|ξ|},

where t|ξ| satis�es A(t|ξ|)|ξ| = N. Let V = (a(t)|ξ|v̂, Dtv̂)T . Then V satis�es

DtV = A(t, ξ)V :=

( Dta

a
a(t)|ξ|

a(t)|ξ| ib(t)

)
V. (5.1.4)

We will derive estimates for the fundamental solution E = E(t, s, ξ) of this �rst order system with
data E(s, s, ξ) = I. Thus,

V (t, ξ) = E(t, s, ξ)V (s, ξ).

In the dissipative zone Zdiss(N) straight-forward calculations and the de�nition of this zone give

‖E(t, 0, ξ)‖ ≤ exp
(∫ t

0
‖A(τ, ξ)‖dτ

)
≤ exp

(
max

{
sup

(t,ξ)∈Zdiss

∫ t

0

(a′(τ)

a(τ)
+ a(τ)|ξ|

)
dτ, sup

(t,ξ)∈Zdiss

∫ t

0
(b(τ) + a(τ)|ξ|)dτ

})
≤ CN exp

(
max

{
sup

t∈(0,∞)

∫ t

0

a′(τ)

a(τ)
dτ, sup

t∈(0,∞)

∫ t

0
µ(τ)

a(τ)

A(τ)
dτ
})

≤ CNa(t).

Here we used µ(t) a(t)
A(t) = µ(t)

α(t)
a′(t)
a(t) and assumption (B3). Moreover, from the representation of V (t, ξ)

we obtain
a(t)|ξ|v̂(t, ξ) = E11(t, 0, ξ)a(0)|ξ|v̂0 − iE12(t, 0, ξ)v̂1,

thus,

|v̂(t, ξ)| =
∣∣∣a(0)

a(t)
E11(t, 0, ξ)v̂0 − i

1

a(t)|ξ|
E12(t, 0, ξ)v̂1

∣∣∣ ≤ CN |v̂0|+ CN |ξ|−1|v̂1|. (5.1.5)

In the hyperbolic zone Zhyp(N) we carry out again two steps of diagonalization as in Section 3.2.2.
Then we obtain the following estimate:

‖E(t, t|ξ|, ξ)‖ .
√
a(t)√
a(t|ξ|)

√
λ(t|ξ|)√
λ(t)

(5.1.6)
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for all t ≥ t|ξ|. On the other hand we have the following representation of solution(
a(t)|ξ|v̂(t, ξ)
Dtv̂(t, ξ)

)
= E(t, t|ξ|, ξ)E(t|ξ|, 0, ξ)

(
a(0)|ξ|v̂0(ξ)
−iv̂1(ξ)

)
. (5.1.7)

Combining the formula (5.1.7) with the estimate (5.1.6) and the estimate in the dissipative zone we
get

a(t)|ξ|||v̂(t, ξ)| ≤
√
a(t)√
a(t|ξ|)

√
λ(t|ξ|)√
λ(t)

CNa(tξ)
(
a(0)|ξ||v̂0|+ |v̂1|

)
,

|v̂(t, ξ)| ≤ CN

√
a(tξ)√
a(t)︸ ︷︷ ︸
.1

√
λ(t|ξ|)√
λ(t)︸ ︷︷ ︸
.1

(
a(0)|v̂0|+ |ξ|−1|v̂1|

)

. CN |v̂0|+ CN |ξ|−1|v̂1|. (5.1.8)

Combining both formula (5.1.5) and (5.1.8) we get the �nal estimate

‖v(t, ·)‖∞ ≤ ‖v̂(t, ·)‖1 ≤ CN‖v̂0‖1 + CN‖|ξ|−1v̂1‖1
≤ CN

(
‖〈ξ〉−n−ε‖1‖〈ξ〉n+εv̂0‖∞ + ‖〈ξ〉1−n−ε|ξ|−1‖1‖〈ξ〉n−1+εv̂1‖∞

)
≤ CN

(
‖〈D〉n+εv0‖1 + ‖〈D〉n−1+εv1‖1

)
for all n > 1 and vi ∈ C∞0 (Rn), i = 1, 2. This completes the proof.

We can immediately conclude the global existence of small data solutions for our semi-linear problem
in the case n > 1.

Corollary 5.1.2. Under the assumptions of Theorem 5.1.1 there exists a unique global (in time)

classical solution u = u(t, x) to

utt − a(t)2∆u+ b(t)ut = u2
t − a(t)2|∇xu|2, u(0, x) = εu1(x), ut(0, x) = εu2(x)

for given u0, u1 ∈ C∞0 (Rn), n > 1, and all ε ∈ [0, ε∗) with an in general suitable positive and small

ε∗.

Now we will formulate the statement for the case of dimension n = 1. In this formulation we use
again assumptions for a(t) and b(t) which were recalled at the beginning of this section. There is a
small modi�cation of assumption (B3) in the following way: There exists a constant ε0 > 0 small
enough such that the following condition

(B3)' 1− δα(t)− ε0 ≤ lim inft→∞ µ(t) ≤ lim supt→∞ µ(t) < 1

holds with an arbitrary δ satisfying δ < lim inft→∞ α(t)−1.

Theorem 5.1.3. Let us suppose that the coe�cients a = a(t) and b = b(t) satisfy the assumptions

(A1) to (A3), (B1), (B2) and (B3)', respectively. Then the solution v = v(t, x) satis�es the following
a-priori estimate:

‖v(t, ·)‖∞ ≤ C(s,N)‖〈D〉sv0‖L1 + C(ε0, N)‖v1‖L1 + C(s,N)‖〈D〉s−1v1‖1 (5.1.9)

for all s > 1.
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Proof. In the further calculations we will use the following statement:

Proposition 5.1.4. The assumption (B3)′ implies that

A(t)a(0)δ

a(t)δλ2(t)
≤ A(t)ε0 .

Proof. We have

A(t)a(0)δ

a(t)δλ2(t)
= exp

(∫ t

0

( a(s)

A(s)
− δ a

′(s)

a(s)
− b(s)

)
ds
)

= exp
(∫ t

0

(
1− δα(s)− µ(s)

) a(s)

A(s)
ds
)
≤ A(t)ε0 .

This gives the desired statement.

We also divide the extended phase space into the dissipative zone Zdiss(N) and the hyperbolic zone
Zhyp(N). In order to prove our statement we distinguish between two cases:

1.case large frequencies {|ξ| ≥ N}:

This part of the extended phase space belongs completely to Zhyp(N). Let us choose a smooth
function χ(r) = 1 for r ≤ 1/2, χ(r) = 0 for r ≥ 1. According to the statement of Corollary 3.2.7 in
Chapter 3 we have

a(t)|ξ||v̂(t, ξ)| ≤ C
√
a(t)

λ(t)

(
1− χ

( |ξ|
N

))(
a(0)|ξ||v̂0|+ |v̂1|

)
for all t ≥ 0. Thus∥∥∥(1− χ

( |D|
N

))
v(t, ·)

∥∥∥
∞
≤

∥∥∥(1− χ
( |ξ|
N

))
v̂(t, ·)

∥∥∥
L1

(5.1.10)

≤ C√
a(t)λ(t)

(∥∥∥(1− χ
( |ξ|
N

))
v̂0

∥∥∥
L1

+
∥∥∥(1− χ

( |ξ|
N

))
|ξ|−1v̂1

∥∥∥
L1

)
≤ C√

a(t)λ(t)

(∥∥∥(1− χ
( |ξ|
N

)) 1

〈ξ〉s
∥∥∥
L1
‖〈ξ〉sv̂0‖L∞

+
∥∥∥ 1

〈ξ〉s
∥∥∥
L1

∥∥∥(1− χ
( |ξ|
N

))
〈ξ〉s|ξ|−1v̂1

∥∥∥
L∞

)
≤ C

(
‖〈D〉sv0‖L1 + ‖〈D〉s−1v1‖L1

)
(5.1.11)

for all s > 1.

2.case small frequencies {|ξ| ≤ N}:

Here we have to divide our considerations in those in the dissipative zone and in the hyperbolic
zone.

Zdiss(N): We will follow the reasoning in Section 3.2.1. Therefore we de�ne V =
(
N
a(t)

A(t)
v̂, Dtv̂

)T
.

Thus V satis�es

DtV = A(t, ξ)V, A(t, ξ) =

 −i
dtδ(t)

δ(t)
Nδ(t)

a2(t)|ξ|2

Nδ(t)
ib(t)

 , (5.1.12)
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here, δ(t) :=
a(t)

A(t)
. The solution V = V (t, ξ) can be represented as V (t, ξ) = E(t, s, ξ)V (s, ξ), where

E(t, s, ξ) is the fundamental solution, that is, the solution to the system

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ.

According to Lemma 3.2.4 from Section 3.2.1 we have the following estimate:

(
|E(t, 0, ξ)|

)
.


a(t)

A(t)

a(t)1−δ

λ2(t)
a(t)

A(t)

a(t)1−δ

λ2(t)

 . (5.1.13)

Using the above representation for V (t, ξ) we get

a(t)

A(t)
v̂(t, ξ) = E11(t, 0, ξ)

a(0)

A(0)
χ(|ξ|/N)χ(t/t|ξ|)v̂0(ξ)− iE12(t, 0, ξ)χ(|ξ|/N)χ(t/t|ξ|)v̂1(ξ).

This gives the estimate

|v̂(t, ξ)| . |E11(t, 0, ξ)|A(t)

a(t)
χ
( |ξ|
N

)
χ
( t

t|ξ|

)
|v̂0(ξ)|+ |E12(t, 0, ξ)|A(t)

a(t)

( |ξ|
N

)
χ
( t

t|ξ|

)
|v̂1(ξ)|. (5.1.14)

Thanks to the estimates (5.1.13) and (5.1.14) we obtain the following estimate:

|v̂(t, ξ)| ≤ Cχ
( |ξ|
N

)
χ
( t

t|ξ|

)
|v̂0(ξ)|+ A(t)

a(t)δλ2(t)

( |ξ|
N

)
χ
( t

t|ξ|

)
|v̂1(ξ)|.

Summarizing the application of Proposition 5.1.4 implies

∥∥χ(|D|/N)χ(t/t|D|)v(t, ·)
∥∥
∞ ≤

∥∥( |ξ|
N

)
χ
( t

t|ξ|

)
v̂(t, ·)

∥∥
L1

≤ C‖
( |ξ|
N

)
χ
( t

t|ξ|

)
v̂0‖L1 +

∥∥∥ A(t)

a(t)δλ2(t)

( |ξ|
N

)
χ
( t

t|ξ|

)
v̂1

∥∥∥
L1

≤ C‖
( |ξ|
N

)
χ
( t

t|ξ|

)
‖L1‖v̂0‖∞ + ‖A(t)ε0

( |ξ|
N

)
χ
( t

t|ξ|

)
‖L1‖v̂1‖∞

≤ C(N)‖v0‖L1 +N‖|ξ|−ε0χ(|ξ|/N)‖L1‖v1‖L1

≤ C(N)‖v0‖L1 + C(ε0, N)‖v1‖L1 . (5.1.15)

Zhyp(N): Applying again Corollary 3.2.7 from Chapter 3 we get

a(t)|ξ||v̂(t, ξ)| ≤ C

√
a(t)

λ(t)

λ(t|ξ|)√
a(t|ξ|)

χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))(
a(t|ξ|)|ξ||v̂(t|ξ|, ξ)|+ |v̂t(t|ξ|, ξ)|

)
.

√
a(t)

λ(t)

λ(t|ξ|)√
a(t|ξ|)

χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))(a(t|ξ|)

A(tξ)
|v̂(t|ξ|, ξ)|+ |v̂t(t|ξ|, ξ)|

)

.

√
a(t)√
a(t|ξ|)

λ(t|ξ|)

λ(t)
χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))( a(t|ξ|)

A(t|ξ|)
|v̂0(ξ)|+

a(t|ξ|)
1−δ

λ2(t|ξ|)
|v̂1(ξ)|

)
.



106 5. Global existence of small data solutions to semi-linear dissipative wave models

Thus

|v̂(t, ξ)| .

√
a(t|ξ|)√
a(t)︸ ︷︷ ︸
≤1

λ(t|ξ|)

λ(t)︸ ︷︷ ︸
≤1

χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))( 1

A(t|ξ|)|ξ|
|v̂0(ξ)|+ 1

a(t|ξ|)δλ2(t|ξ|)|ξ|
|v̂1(ξ)|

)

≤ 1

N
χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))
|v̂0(ξ)|+

A(t|ξ|)

Na(t|ξ|)δλ2(t|ξ|)
χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))
|v̂1(ξ)|.

In this way we conclude with Proposition 5.1.4 the �nal estimate∥∥∥χ( |D|
N

)(
1− χ

( t

t|D|

))
v(t, ·)

∥∥∥
∞
≤
∥∥∥χ( |ξ|

N

)(
1− χ

( t

t|ξ|

))
v̂(t, ·)

∥∥∥
L1

≤ 1

N

∥∥∥χ( |ξ|
N

)(
1− χ

( t

t|ξ|

))
v̂0

∥∥∥
L1

+
∥∥∥A(t|ξ|)

ε0

N
χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))
v̂1

∥∥∥
L1

≤ 1

N

∥∥∥χ( |ξ|
N

)(
1− χ

( t

t|ξ|

))∥∥∥
L1
‖v̂0‖∞ +

∥∥∥ 1

N1−ε0 |ξ|ε0
χ
( |ξ|
N

)(
1− χ

( t

t|ξ|

))∥∥∥
L1
‖v̂1‖∞

≤ C(N)‖v0‖L1 + C(ε0, N)‖v1‖L1 . (5.1.16)

Combining (5.1.10), (5.1.15) and (5.1.16) we obtain for all s > 1 the estimate

‖v(t, ·)‖∞ ≤ C(s,N)‖〈D〉sv0‖L1 + C(ε0, N)‖v1‖L1 + C(s,N)‖〈D〉s−1v1‖L1 .

This completes the proof.

An immediate consequence of Theorem 5.1.3 is the following statement for our semi-linear Cauchy
problem in the one-dimensional case.

Corollary 5.1.5. Under the assumptions of Theorem 5.1.3 there exists a unique global (in time)

classical solution u = u(t, x) to

utt − a(t)2uxx + b(t)ut = u2
t − a(t)2u2

x, u(0, x) = εu1(x), ut(0, x) = εu2(x)

for given u0, u1 ∈ C∞0 (R) and all ε ∈ [0, ε∗) with an in general suitable positive and small ε∗.

Let us compare our results with the results from Ebert-Reissig [E-R11] for the case b(t) = 0. For this
case, the assumptions (B1) and (B2) disappear and the assumption (B3)′ is automatically satis�ed
for any �xed ε0 > 0. It turns out that we only need the assumptions (A1) to (A3) in Theorem
5.1.3. Whereas, the a-priori estimate (5.1.9) in Theorem 5.1.3 coincides with a-priori estimate (15)
in Theorem 2.1, [E-R11]. The di�erence between both theorems is that we herein use the lower
bound

a0
a(t)

A(t)
≤ a′(t)

a(t)

for large t in the assumption (A2). In their theorem they only use the upper bound. Moreover, the
additional assumption

tξ = A−1(N/|ξ|) ∈ L1(−1, 1)

was used there.
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5.2. Semi-linear models with e�ective dissipation

In this section we will consider the following semi-linear Cauchy problem

utt − a(t)2∆u+ b(t)ut = |u|p, u(0, x) = u1(x), ut(0, x) = u2(x), (5.2.1)

where the coe�cient a(t) satis�es the assumptions (A1) to (A3) from the previous section. Let us
recall the assumptions for the time-dependent damping term b(t)ut in the case it is called e�ective
dissipation term. We suppose

(B'1) b(t) > 0, b(t) = µ(t)
a(t)

A(t)
,

(B'2)
∣∣dkt µ(t)

∣∣ ≤ Ckµ(t)

(
a(t)

A(t)

)k
for k = 1, 2,

(B'3)
µ(t)

A(t)
is monotone, and µ(t)→∞ as t→∞,

(B'4)
a2(t)

b(t)
=
a(t)A(t)

µ(t)
/∈ L1(R+),

(B'5)
a2(t)

A2(t)b(t)
∈ L1(R+).

5.2.1. Matsumura-type estimates for parameter-dependent linear Cauchy problems

In order to prove results for the semi-linear model we shall derive estimates for solutions to the
following family of parameter-dependent Cauchy problems with suitable initial data (0, g(s, x)):

vtt − a(t)2∆v + b(t)vt = 0, v(s, x) = 0, vt(s, x) = g(s, x), (5.2.2)

where t ∈ [s,∞), and s ≥ 0.

De�nition 5.2.1. We denote by Ba(s, t) the primitive of a2(t)/b(t) which vanishes at t = s and

which is de�ned by

Ba(s, t) :=

∫ t

s

a2(τ)

b(τ)
dτ = Ba(0, t)−Ba(0, s). (5.2.3)

We have the following result for estimates of solutions to (5.2.2):

Theorem 5.2.1. We assume that a(t) satis�es the assumptions (A1) to (A3), b(t) satis�es the

assumptions (B'1) to (B'5) and g(s, ·) ∈ Lm ∩ L2 for some m ∈ [1, 2]. Then the solution v(t, x) to

(5.2.2) satis�es the following Matsumura-type estimates for t ≥ s:

‖v(t, ·)‖L2 ≤ C
1

b(s)

(
1 +Ba(s, t)

)−n
2

(
1
m
− 1

2

)
‖g(s, ·)‖Lm∩L2 , (5.2.4)

‖∇v(t, ·)‖L2 ≤ C
1

b(s)

(
1 +Ba(s, t)

)−n
2

(
1
m
− 1

2

)
− 1

2 ‖g(s, ·)‖Lm∩L2 , (5.2.5)

‖vt(t, ·)‖L2 ≤ C
a2(t)

b(s)b(t)

(
1 +Ba(s, t)

)−n
2

(
1
m
− 1

2

)
−1‖g(s, ·)‖Lm∩L2 . (5.2.6)

The non-negative constant C is independent of s.
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Proof. We apply the partial Fourier transformation to (5.2.2) and use the change of variables

w(t, ξ) =
λ(t)

λ(s)
v̂(t, ξ), λ(t) := exp

(1

2

∫ t

0
b(τ)dτ

)
. (5.2.7)

Then we get the Cauchy problem

w′′ +m(t, ξ)w = 0, w(s, ξ) = 0, w′(s, ξ) = ĝ(s, ξ), (5.2.8)

where

m(t, ξ) = a2(t)|ξ|2 − b2(t)

4
− b′(t)

2

= a2(t)|ξ|2 − µ2(t)a2(t)

4A2(t)
−
(µ(t)a(t)

2A(t)

)′
.

Let us introduce η(t) := b(t)
2a(t) = µ(t)

2A(t) and 〈ξ〉b(t) :=
√
a2(t)|ξ|2 − b2(t)/4. Similar to the consider-

ations from Section 3.3 we also divide the extended phase space [s,∞) × Rn into four zones: the

hyperbolic, pseudo-di�erential, reduced and elliptic zone. We denote

η∞ := lim
t→∞

η(t) ∈ [0,∞].

This limit exists because of the monotonic behavior of η(t).
We de�ne

h(t, ξ) = χ
( 〈ξ〉b(t)
εa(t)η(t)

)
εa(t)η(t) +

(
1− χ

( 〈ξ〉b(t)
εa(t)η(t)

))√
|m(t, ξ)|,

where χ ∈ C∞[0,+∞) localizes: χ(ρ) = 1 if 0 ≤ ρ ≤ 1/2 and χ(ρ) = 0 if ρ ≥ 1. By the de�nition of
Zred(ε), for any (t, ξ) /∈ Zred(ε), it implies that |m(t, ξ)| ≥ Cε2a2(t)η2(t), thus h(t, ξ) ≥ C1εa(t)η(t).
Let W (t, ξ) = (h(t, ξ)w(t, ξ), Dtw(t, ξ))T . Then we get

DtW (t, ξ) =

(
Dth(t, ξ)/h(t, ξ) h(t, ξ)
m(t, ξ)/h(t, ξ) 0

)
︸ ︷︷ ︸

A(t,ξ)

W (t, ξ), W (s, ξ) = (0,−iĝ(s, ξ))T . (5.2.9)

We denote by EW (t, t1, ξ) the fundamental solution to (5.2.9) for any t ≥ t1 ≥ s, i.e., the solution
to

DtE
W (t, t1, ξ) = A(t, ξ)EW (t, t1, ξ), E

W (t1, t1, ξ) = I. (5.2.10)

It is clear that W (t, ξ) = EW (t, s, ξ)(0,−iĝ(s, ξ))T and that EW (t, t1, ξ) = EW (t, t2, ξ)E
W (t2, t1, ξ)

for any t ≥ t2 ≥ t1 ≥ s. For t1 ≤ t2 and (t1, ξ), (t2, ξ) ∈ Zhyp(N, ε) we will introduce EW (t2, t1, ξ) =
EWhyp(t2, t1, ξ) and we introduce corresponding notations in the other zones.

Remark 5.2.1. In Section 3.3 we used another energy V (t, ξ) = (h̃(t, ξ)v(t, ξ), Dtv(t, ξ)) with

h̃(t, ξ) := χ
( 〈ξ〉b(t)
εa(t)η(t)

)
εa(t)η(t) +

(
1− χ

( 〈ξ〉b(t)
εa(t)η(t)

))
〈ξ〉b(t),

and we have considered the fundamental solution EV (t, t1, ξ) as the solution to

DtEV (t, t1, ξ) =

(
Dth̃(t, ξ)/h̃(t, ξ) h̃(t, ξ)

m(t, ξ)/h̃(t, ξ) 0

)
EV (t, t1, ξ), EV (t1, t1, ξ) = I. (5.2.11)

Since h(t, ξ) ∼
√
m(t, ξ) ∼ 〈ξ〉b(t) ∼ h̃(t, ξ) for all (t, ξ) /∈ Zred(ε) and h(t, ξ) = εa(t)η(t) = h̃(t, ξ)

for all (t, ξ) ∈ Zred(ε) we can use for EW (t, t1, ξ) all results which we have proved in Section 3.3 for
EV (t, t1, ξ).
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Estimates in the zones

Applying in the hyperbolic zone Zhyp(N) the results from Lemma 3.3.3 leads to

‖EWhyp(t2, t1, ξ)‖ ≤ CN
√
a(t2)√
a(t1)

. (5.2.12)

Following Remark 3.3.3 the pseudo-di�erential zone Zp.d(N, ε) can be skipped (in one part we can
apply the result from the hyperbolic zone, the other part is compact).
In the reduced zone Zred(ε) we use the result from Lemma 3.3.6. It implies

‖EWred(t2, t1, ξ)‖ ≤ exp
(
Cε

∫ t2

t1

b(τ)dτ
)

=
λ(t2)2Cε

λ(t1)2Cε
.

In the elliptic zone Zell(ε) by the result from Lemma 3.3.5 it follows

‖EWell(t2, t1, ξ)‖ ≤ C
b(t2)

b(t1)
exp

(∫ t2

t1

b(τ)dτ
)
.

Representation of the solution

Now we return to our problem (5.2.2). Let us assume that

w(t, s, ξ) = Ψ(t, s, ξ)ĝ(s, ξ)

is the solution to (5.2.8). Together with the representation of the fundamental solution EW (t2, t1, s)
in (5.2.10) we obtain(

0 Ψ
0 DtΨ

)
(0, ĝ(s, ξ))T = diag (1/h(t, ξ), 1)EW (t, s, ξ)(0,−iĝ(s, ξ))T ,

that is,
Ψ(t, s, ξ) = −iEW12 (t, s, ξ)/h(t, ξ), Ψt(t, s, ξ) = EW22 (t, s, ξ).

On the other hand we write the Fourier transform of the solution to (5.2.2) as

v̂(t, ξ) = Φ̂(t, s, ξ)ĝ(s, ξ).

Recalling (5.2.7) we have

Φ̂(t, s, ξ) =
λ(s)

λ(t)
Ψ(t, s, ξ) = −iλ(s)

λ(t)

1

h(t, ξ)
EW12 (t, s, ξ),

Φ̂t(t, s, ξ) =
λ(s)

λ(t)

(
Ψt(t, s, ξ)−

b(t)

2
Ψ(t, s, ξ)

)
(5.2.13)

=
λ(s)

λ(t)

(
EW22 (t, s, ξ) + i

b(t)

2h(t, ξ)
EW12 (t, s, ξ)

)
.

In our proof we will distinguish into four cases: η(t) ↘ 0, η(t) ↘ η∞ > 0, η(t) ↗ η∞ > 0, and
η(t)↗∞. In order to get better overview we prefer to use illustrated �gures for these cases.
Case 1. η(t)↘ 0
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|ξ|

t

0

Zhyp

Zred
s

Zell
tell

t

tred

Fig. 5.1.: An illustrated picture for the case η(t)↘ 0.

Case 2. η(t)↘ η∞ > 0,

|ξ|

t

0

Zhyp

η∞
√

1 + ε2

Zred

η∞
√

1− ε2

s

Zell
tell

tred

Fig. 5.2.: An illustrated picture for the case η(t)↘ η∞ > 0.

Case 3. η(t)↗ η∞ > 0,

|ξ|

t

0

Γ
Zhyp

ZredZell

s

t

tred

thyp

η(s)
√

1 + ε2 η∞
√

1− ε2

Fig. 5.3.: An illustrated picture for the case η(t)↗ η∞ > 0.

Case 4. η(t)↗∞,
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|ξ|

t

0

Γ

Zhyp

Zred

Zell

s

t

tred

thyp

Fig. 5.4.: An illustrated picture for the case η(t)↗∞.

We �rst consider the case that η(t) is decreasing, that is η(t) ↘ η∞, and that (s, ξ) ∈ Zell(ε), i.e.,
|ξ| ≤ η(s)

√
1− ε2.

• If |ξ| > η∞
√

1 + ε2, then for all s, t with s ≤ tell < tred ≤ t we have the representation

EW (t, s, ξ) = EWhyp(t, tred, ξ)E
W
red(tred, tell, ξ)E

W
ell(tell, s, ξ).

In the case η∞ = 0 this relation is valid for any frequency ξ 6= 0.

• If η∞
√

1− ε2 ≤ |ξ| ≤ η∞
√

1 + ε2, then for all s, t with s ≤ tell ≤ t it follows that

EW (t, s, ξ) = EWred(t, tell, ξ)E
W
ell(tell, s, ξ).

• If |ξ| ≤ η∞
√

1− ε2, then EW (t, s, ξ) = EWell(t, s, ξ).

In the other case |ξ| ≥ η(s)
√

1 + ε2 we get EW (t, s, ξ) = EWhyp(t, s, ξ) for any t ∈ [s,∞). The
intermediate cases are similar.
If we consider the case of η(t)↗ η∞ with η∞ ∈ (0,+∞], then the situation is reversed, that is

EW (t, s, ξ) = EWell(t, tred, ξ)E
W
red(tred, thyp, ξ)E

W
hyp(thyp, s, ξ),

for the case η(s)
√

1 + ε2 ≤ |ξ| ≤ η∞
√

1− ε2 (if this set is not empty).

Estimates for the multipliers

In order to estimate our solution we need to estimate |Φ̂(t, s, ξ)| in each zone of the extended phase
space. The estimates for |Φ̂t(t, s, ξ)| will be obtained by a more re�ned approach.
In Zhyp(N) it holds h(t, ξ) ∼ a(t)|ξ|. Thus,

|Φ̂hyp(t2, t1, ξ)| .
λ(t1)

λ(t2)

1

a(t2)|ξ|

√
a(t2)√
a(t1)

.
1

|ξ|
λ(t1)

λ(t2)

1√
a(t1)

√
a(t2)

, (5.2.14)

whereas in Zred(ε) it holds h(t, ξ) ∼ a(t)η(t) ∼ a(t)|ξ|. Therefore, we obtain

|Φ̂red(t2, t1, ξ)| .
1

a(t2)|ξ|
λ(t1)

λ(t2)
exp

(
Cε

∫ t2

t1

b(τ)dτ
)
.

1

a(t2)|ξ|

(λ(t1)

λ(t2)

)1−2δ
, (5.2.15)
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where we denote δ := Cε. It is not di�cult to prove that we can uniformly estimate |Φ̂hyp(t2, t1, ξ)|
in (5.2.14) by the upper bound from (5.2.15). Indeed, this statement can be directly obtained by
the following estimate: √

a(t2)

λ(t2)2δ
.

√
a(t1)

λ(t1)2δ
. (5.2.16)

In order to prove this estimate we consider the monotonic behavior of the function

f(t) =
a(t)

λ(t)4δ

for large t. We have

f ′(t) =
a′(t)− 2δa(t)b(t)

λ(t)4δ
=
a′(t)− 2δa(t)µ(t)a

2(t)
A(t)

λ(t)4δ
.

Due to the assumption (A2) we get a′(t)A(t)/a2(t) ≤ a1 for all t and due to assumption (B'3) we
have µ(t)→∞ as t→∞. Therefore, the function f ′(t) satis�es f ′(t) ≤ 0 for all t large. This hint
clues us to de�ne

Πhyp(ε) = Zred(ε) ∪ Zhyp(N),

and we denote by t|ξ| the separating curve between Zell(ε) and Πhyp(ε). This curve is given by

η2(t|ξ|)− |ξ|2 = ε2η2(t|ξ|).

We will consider the following four cases:

Small frequencies |ξ| ≤ η(s)
√

1− ε2:

• Case 1, t ≤ t|ξ| : in this case (t, ξ), (s, ξ) belong to Zell(ε), therefore we can use the estimate
(3.3.37). It holds

|Φ̂(t, s, ξ)| . 1

b(s)
exp

(
− C|ξ|2Ba(s, t)

)
. (5.2.17)

• Case 2, t ≥ t|ξ| : it holds

|Φ̂(t, s, ξ)| .
a(t|ξ|)

a(t)b(s)
exp

(
− C|ξ|2Ba(s, t|ξ|)

)(λ(t|ξ|)

λ(t)

)1−2δ
(5.2.18)

by using the de�nition of t|ξ|.

We remark that there is no separating line if |ξ| ≤ η∞
√

1− ε2 (in particular, this is also true if η(t)
is increasing).
Large frequencies |ξ| ≥ η(s)

√
1− ε2:

• Case 3, t ≤ t|ξ| : in this case (t, ξ), (s, ξ) belong to Πhyp(ε). Therefore it holds

|Φ̂(t, s, ξ)| . 1

a(t)|ξ|

(λ(s)

λ(t)

)1−2δ
. (5.2.19)

• Case 4, t ≥ t|ξ| : it holds

|Φ̂(t, s, ξ)| . 1

a(t|ξ|)|ξ|
exp

(
− C|ξ|2Ba(t|ξ|, t)

)( λ(s)

λ(t|ξ|)

)1−2δ
. (5.2.20)
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We remark that there is no separating line if |ξ| ≥ η∞
√

1− ε2 (in particular, this is also true if η(t)
is decreasing).

Estimates for the time derivative of the multipliers

In this part we derive estimates for Φ̂t(t, s, ξ) in all zones. In Πhyp(ε) we directly use the represen-
tation (5.2.13) together with b(t) . h(t, ξ). Thus, in the Case 3 we can estimate

|Φ̂t(t, s, ξ)| .
(λ(s)

λ(t)

)1−2δ
, (5.2.21)

whereas in the Case 2 we get

|Φ̂t(t, s, ξ)| . |Φ̂t(t|ξ|, s, ξ)|
(λ(t|ξ|)

λ(t)

)1−2δ
. (5.2.22)

We can treat the Case 1 analogously to the proof of Lemma 3.3.8. Thus, we obtain the following
estimate

|Φ̂t(t, s, ξ)| .
a2(t)|ξ|2

b(s)b(t)
exp

(
− C|ξ|2Ba(s, t)

)
. (5.2.23)

Plugging this estimate into (5.2.22) we get the following estimate in the Case 2 :

|Φ̂t(t, s, ξ)| .
a(t|ξ|)|ξ|
b(s)

exp
(
− C|ξ|2Ba(s, t|ξ|)

)(λ(t|ξ|)

λ(t)

)1−2δ
. (5.2.24)

Here we used b(t|ξ|) ∼ a(t|ξ|)|ξ|.
In the Case 4 we put Ψ(t, s, ξ) = Φ̂t(t, s, ξ). Then we obtain the equation of �rst order

Ψt + b(t)Ψ = −a2(t)|ξ|2Φ̂(t, s, ξ), Ψ(t|ξ|, s, ξ) = Φ̂t(t|ξ|, s, ξ).

By using (5.2.20) for |Φ̂(t, s, ξ)| and the estimate (5.2.21) for |Φ̂t(t|ξ|, s, ξ)| we derive for t ≥ t|ξ| the
following estimate:

|Φ̂t(t, s, ξ)|

.
λ2(t|ξ|)

λ2(t)

(( λ(s)

λ(t|ξ|)

)1−2δ
+

∫ t

t|ξ|

λ2(τ)

λ2(t|ξ|)

|ξ|2a2(τ)

a(t|ξ|)|ξ|

( λ(s)

λ(t|ξ|)

)1−2δ
e−C|ξ|

2Ba(t|ξ|,τ)dτ

)

.
( λ(s)

λ(t|ξ|)

)1−2δ
(
λ2(t|ξ|)

λ2(t)
+
|ξ|a2(t)

a(t|ξ|)

∫ t

t|ξ|

(λ2(τ)

λ2(t)
b(τ)

) 1

b(τ)
e−C|ξ|

2Ba(t|ξ|,τ)dτ

)
.

We can now follow the proof for Lemma 3.3.8 in the case of e�ective dissipation. Consequently, we
obtain the following estimate:

|Φ̂t(t, s, ξ)| .
a2(t)|ξ|
a(t|ξ|)b(t)

( λ(s)

λ(t|ξ|)

)1−2δ
exp

(
− C|ξ|2Ba(t|ξ|, t)

)
. (5.2.25)

Final estimates

Lemma 5.2.2. Let us de�ne

Θ(s, t) := max{η(s), η(t)}
√

1− ε2
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for any t ≥ s and for any s ∈ [0,∞). If |ξ| ≥ Θ(s, t), that is, (t, ξ) ∈ Πhyp(ε) for any t ≥ s,

then |Φ̂(t, s, ξ)| satis�es the estimate (5.2.19), while |Φ̂t(t, s, ξ)| satis�es the estimate (5.2.21). If

|ξ| ≤ Θ(s, t), then the corresponding estimates are as follows:

|Φ̂(t, s, ξ)| .
1

b(s)
exp

(
− C ′|ξ|2Ba(s, t)

)
, (5.2.26)

|Φ̂t(t, s, ξ)| .
a2(t)|ξ|2

b(s)b(t)
exp

(
− C ′|ξ|2Ba(s, t)

)
. (5.2.27)

Proof. In order to prove (5.2.26) and (5.2.27) for |ξ| ≤ Θ(s, t) we consider three cases:
(A) |ξ| ≤ min{η(s), η(t)}

√
1− ε2;

(B) η is decreasing and η(t)
√

1− ε2 ≤ |ξ| ≤ η(s)
√

1− ε2;
(C) η is increasing and η(s)

√
1− ε2 ≤ |ξ| ≤ η(t)

√
1− ε2.

In the case (A) we can easily check that (t, ξ) ∈ Zell(ε). Then the two estimates (5.2.26), (5.2.27)
follow directly from (5.2.17) and (5.2.23). Now let us consider the case (B). Introducing

S(t, |ξ|) := exp
(
− C1|ξ|2Ba(s, t|ξ|)

)(λ(t|ξ|)

λ(t)

)2C2

the application of Lemma 3.3.15 implies

S(t, |ξ|) ≤ exp
(
−min{C1, C2}|ξ|2Ba(s, t)

)
.

In this way (5.2.26) follows from (5.2.18) by using
a(t|ξ|)

a(t)b(s) . 1
b(s) for any t ≥ t|ξ| ≥ s, and (5.2.27)

follows from (5.2.24) by using
a(t|ξ|)|ξ|
b(s) . a2(t)|ξ|2

b(s)b(t) .
Analogously, in the case (C) we have the following estimate, too:

exp
(
− C1|ξ|2Ba(t|ξ|, t)

)( λ(s)

λ(t|ξ|)

)2C2

≤ exp
(
−min{C1, C2}|ξ|2Ba(s, t)

)
.

Hence, (5.2.26) follows from (5.2.20) by using

1

a(t|ξ|)|ξ|
.

1

b(s)

for any t ≥ t|ξ|, and (5.2.27) follows from (5.2.25) by using

a2(t)|ξ|
a(t|ξ|)b(t)

.
a2(t)|ξ|2

b(s)b(t)
.

This completes the proof.

Matsumura-type estimates

Lemma 5.2.3. The following estimates hold for large frequencies |ξ| ≥ Θ(s, t):

‖|ξ||α|∂ltΦ̂(t, s, ξ)ĝ(s, ·)‖L2
{|ξ|≥Θ}

.
1

b(s)

(λ(s)

λ(t)

)1−2δ
‖g(s, ·)‖

H[|α|+l−1]+ (5.2.28)

for l = 0, 1 and for any |α| ≥ 0.
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Proof. If |α|+ l ≥ 1, then we can estimate

‖|ξ||α|∂ltΦ̂(t, s, ξ)‖L2
{|ξ|≥Θ}

≤ ‖|ξ|1−l∂ltΦ̂(t, s, ξ)‖L∞{|ξ|≥Θ}
‖|ξ||α|+l−1ĝ(s, ·)‖L2

{|ξ|≥Θ}
.

Since |ξ||α|+l−1 ≤ 〈ξ〉|α|+l−1 for any |α| + l ≥ 1, then the second term can be estimated by
‖g(s, ·)‖H|α|+l−1 . Thanks to the estimates (5.2.19) and (5.2.21) we obtain

|∂ltΦ̂(t, s, ξ)| . a(t)−1+l|ξ|−1+l
(λ(s)

λ(t)

)1−2δ

which has a decay uniformly for |ξ| ≥ Θ(s, t).
Let us choose |α| = l = 0. In the case η∞ > 0 it holds Θ(s, t) ≥ C > 0 for any s ≤ t. Thus, it is
reasonable to use |ξ|−1 ∼ 〈ξ〉−1 uniformly on the set {|ξ| ≥ C}. Otherwise, when η∞ = 0 we use
b(s) ∼ a(s)η(s) . a(t)|ξ| for large frequencies. Therefore, we can estimate

|Φ̂(t, s, ξ)|L2
{|ξ|≥Θ}

.
1

b(s)

(λ(s)

λ(t)

)1−2δ
‖g(s, ·)‖L2 .

This completes the proof.

Lemma 5.2.4. The following estimates hold for small frequencies |ξ| ≤ Θ(s, t):

‖|ξ||α|∂ltΦ̂(t, s, ξ)ĝ(s, ·)‖L2
{|ξ|≤Θ}

.
a2l(t)

b(s)b(t)l
(Ba(s, t))

−l(Ba(s, t))
− |α|

2
−n

2

(
1
m
− 1

2

)
‖g(s, ·)‖Lm (5.2.29)

for l = 0, 1 and for any |α| ≥ 0.

Proof. Let us de�ne m′ and p by 1/m+ 1/m′ = 1 and 1/p+ 1/m′ = 1/2, that is, 1/p = 1/m− 1/2.
Then we have the following estimate:

‖|ξ||α|∂ltΦ̂(t, s, ·)ĝ(s, ·)‖L2
{|ξ|≤Θ}

≤ ‖|ξ||α|∂ltΦ̂(t, s, ·)‖Lp{|ξ|≤Θ}
‖ĝ(s, ·)‖

Lm
′
{|ξ|≤Θ}

.

We can estimate ‖ĝ(s, ·)‖Lm′ by ‖g(s, ·)‖Lm . Therefore, we have only to control the Lp norm of the
multiplier. Thanks to (5.2.26) and (5.2.27) we have the following estimate:

‖|ξ||α|∂ltΦ̂(t, s, ·)‖Lp{|ξ|≤Θ}

.
a2l(t)

b(s)b(t)l

(∫
|ξ|≤Θ

|ξ|p(|α|+2l) exp
(
− Cp|ξ|2Ba(s, t)

)
dξ
) 1
p
.

After using a change of variables r = Cp|ξ|2Ba(s, t) we conclude∫
|ξ|≤Θ

|ξ|p(|α|+2l) exp
(
− Cp|ξ|2Ba(s, t)

)
dξ . (Ba(s, t))

(−p(|α|+2l)+n)/2

∫ ∞
0

rp(|α|+2l)+n−1e−rdr.

The integral on the right-hand side is bounded and we have a decay which is given by

a2l(t)

b(s)b(t)l
(Ba(s, t))

− |α|
2
−l− n

2p =
a2l(t)

b(s)b(t)l
(Ba(s, t))

−l(Ba(s, t))
− |α|

2
−n

2

(
1
m
− 1

2

)
.

This completes the proof.
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Now we show that the decay function given in (5.2.29) is worse than the one from (5.2.28). For this
reason we compare (λ(s)

λ(t)

)1−2δ
=
(λ(s)

λ(t)

)2C1

= exp
(
− C1

∫ t

s
b(τ)dτ

)
with (

Ba(s, t)
)− |α|

2
−n

2

(
1
m
− 1

2

)
=
(
Ba(s, t)

)C|α| .
We distinguish two cases:

• If µ(t)
A(t) is increasing, then there exists a constant t0 such that c0 = µ(t0)

A(t0) ≤
µ(t)
A(t) uniformly for

all t ≥ t0. Thus, we have

a2(t)
( µ(t)

A(t)

)2
≥ c2

0a
2(t)⇒ b(t) ≥ c2

0

a2(t)

b(t)

for all t ≥ t0. Then (5.2.29) is of potential order decay in b(t) while (5.2.28) is of exponential
order decay in b(t). This brings the desired dominance.

• If µ(t)
A(t) is decreasing, then we show the monotonicity of the function

(
Ba(s, t)

)C|α|(λ(t)

λ(s)

)2C1

.

We form the derivative of this function

∂t

[( ∫ t

s

a2(τ)

b(τ)
dτ
)C|α|(λ(t)

λ(s)

)2C1
]

= C|α|

(∫ t

s

a2(τ)

b(τ)
dτ
)C|α|−1a2(t)

b(t)

(λ(t)

λ(s)

)2C1

+ 2C1b(t)
(∫ t

s

a2(τ)

b(τ)
dτ
)C|α|(λ(t)

λ(s)

)C1

=
a2(t)

b(t)

(∫ t

s

a2(τ)

b(τ)
dτ
)C|α|−1(λ(t)

λ(s)

)C1
(
C|α| + 2C1

b2(t)

a2(t)

∫ t

s

a2(τ)

b(τ)
dτ
)
. (5.2.30)

Now we can see that the second term in the bracket tends to ∞ as t tends to ∞. Indeed, we
have

b2(t)

a2(t)

∫ t

s

a2(τ)

b(τ)
dτ =

µ2(t)

A2(t)

∫ t

s

a(τ)A(τ)

µ(τ)
dτ

=
µ2(t)

A2(t)

(A2(t)

2µ(t)
− A2(s)

2µ(s)
+

∫ t

s

µ′(τ)A2(τ)

2µ2(τ)

)
dτ

≥ µ(t)

2
− µ2(t)

2A2(t)

A2(s)

µ(s)
− µ2(t)

2A2(t)

∫ t

s

a(τ)A(τ)

µ(τ)
dτ,

here we used the Assumption (B'2), that is, |µ′(t)| ≤ cµ(t)a(t)/A(t). From the last estimate
we obtain

µ2(t)

A2(t)

∫ t

s

a(τ)A(τ)

µ(τ)
dτ ≥ 1

2 + c

(
µ(t)− µ(t)

A(t)
A(s)

)
& µ(t).

Here we used that the function µ(t)
A(t) is decreasing and the function A(t) is increasing.

Therefore for α is �xed, we can �nd a su�ciently large time t0 = t0(α) such that the expression
(5.2.30) is positive for all t ≥ t0. This yields our expected comparison.

Gluing together (5.2.28) and (5.2.29) we conclude the desired estimates. This completes the proof
of Theorem 5.2.1.
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5.2.2. Properties of the decay function Ba(s, t)

Now let us turn back to the Cauchy problem for the semi-linear wave equation (5.2.1). In contem-
plation the proof of the next theorem we shall use the following properties of the function Ba(s, t):

Proposition 5.2.5. Let us assume that b(t) satis�es the assumptions (B'1) to (B'5) and the addi-

tional assumption

(R1) There exists a constant γ ∈ [0, 2) such that

µ′(t) ≤ γµ(t)
a(t)

A(t)
for t ≥ 0. (5.2.31)

Then the following statements hold:

1. For any s ∈ [0, t] we have

Ba(s, t) =

∫ t

s

a2(τ)

b(τ)
dτ ≈ A2(t)

µ(t)
− A2(s)

µ(s)
. (5.2.32)

2. For any s ∈ [0, λt] with λ is �xed and λ ∈ (0, 1) we have

Ba(s, t) ≈ Ba(0, t). (5.2.33)

3. For any s ∈ [λt, t] there exists a constant M ≥ 0 such that(
A(λt)

A(t)

)2+M

Ba(0, t) ≤ Ba(0, s) ≤ Ba(0, t). (5.2.34)

Remark 5.2.2. The Assumption (R1) is stronger than the upper bound of Assumption (B'2) for
k = 1 and this assumption also implies the Assumption (B'4).

Example 5.2.1. Let us choose a(t) = (1 + t)l with l > 0. Therefore, we obtain

A(t) ≈ (1 + t)l+1 and b(t) =
µ(t)

1 + t
.

If we consider functions µ(t) satisfying

(log(c+ t))κ ≤ µ(t) ≤ (1 + t)2(l+1) for κ > 1,

then assumptions (B'4) and (B'5) hold, whereas the assumption (R1) holds if we choose

µ(t) = (log(c+ t))κ or µ(t) = (1 + t)γ(l+1) for κ > 1, 0 < γ < 2.

Example 5.2.2. Let us choose a(t) = et. Thus, we obtain

A(t) = et and b(t) = µ(t).

Let us choose functions µ(t) satisfying

(1 + t)k(log(c+ t))κ ≤ µ(t) ≤ e2t for k ≥ 1, k + κ > 2.

Then the assumptions (B'4) and (B'5) hold, whereas the assumption (R1) holds if we choose

µ(t) = (1 + t)k(log(c+ t))κ or µ(t) = eβt, for k ≥ 1, k + κ > 2, 0 < β < 2.



118 5. Global existence of small data solutions to semi-linear dissipative wave models

Proof. 1. It follows from the Assumption (R1) that∫ t

s

a2(τ)

b(τ)
dτ =

∫ t

s

a(τ)A(τ)

µ(τ)
dτ =

A2(t)

2µ(t)
− A2(s)

2µ(s)
+

∫ t

s

µ′(τ)A2(τ)

2µ2(τ)
dτ

≤ A2(t)

2µ(t)
− A2(s)

2µ(s)
+

∫ t

s

γa(τ)A(τ)

2µ(τ)
dτ.

Hence,

(2− γ)

∫ t

s

a2(τ)

b(τ)
dτ ≤ A2(t)

µ(t)
− A2(s)

µ(s)
.

Furthermore, there exists a constantM ≥ 0 such that |µ′(t)| ≤Mµ(t)a(t)/A(t) (Assumption (B'2)).
Consequently, ∫ t

s

µ′(τ)A2(τ)

2µ2(τ)
dτ ≥ −

∫ t

s

Ma(τ)A(τ)

2µ(τ)
dτ,

thus

(2 +M)

∫ t

s

a2(τ)

b(τ)
dτ ≥ A2(t)

µ(t)
− A2(s)

µ(s)
.

2. By integrating (5.2.31) over [s, t] we derive

µ(t)

µ(s)
≤
(A(t)

A(s)

)γ
(5.2.35)

for any s ≥ 0 and t ≥ s. Taking into consideration (5.2.32) we get

Ba(0, t) ≥ Ba(s, t) ≈
A2(t)

µ(t)
− A2(s)

µ(s)
≥ A2(t)

µ(t)
− A2(t)

µ(t)

(A(s)

A(t)

)2−γ

=

(
1−

(A(s)

A(t)

)2−γ
)
A2(t)

µ(t)
≥ cλ,γ

A2(t)

µ(t)
= cλ,γBa(0, t),

where after application of l'Hospital we may put cλ,γ = lim inft→∞

(
1 −

(
A(λt)
A(t)

)2−γ)
> 0 since

s ∈ [0, λt] with a �xed λ ∈ (0, 1) and γ ∈ [0, 2).
3. Using the Assumption (B'2) for k = 1 we conclude

µ′(t)

µ(t)
≥ −M a(t)

A(t)
. (5.2.36)

It is clear that when µ(t) is increasing we can take M = 0. By integrating (5.2.36) over [s, t] we
derive

µ(t)

µ(s)
≥
(
A(t)

A(s)

)−M
for any s ≥ 0 and t ≥ s. For any �xed λ ∈ (0, 1) it holds

Ba(0, t) ≥ Ba(0, s) ≈
A2(s)

µ(s)
≥ A2(t)

µ(t)

(
A(s)

A(t)

)2+M

≈
(
A(s)

A(t)

)2+M

Ba(0, t).

This completes the proof of this statement.

Now we introduce an additional assumption which will explain a restriction of damping terms
depending on the term of increasing speed of propagation.
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(R2) The function θ(t) :=
A2(t)

µ(t)
satis�es the following conditions:

• θ(t) is increasing,

• θ′(t) ≤ βθ(t) 1

logA(t)

a(t)

A(t)
, β > 0.

Example 5.2.3. Let us choose a(t) = etee
t
. Thus, we obtain

A(t) = ee
t
and b(t) = µ(t)et.

We consider functions µ(t) satisfying

et(1 + t)κ ≤ µ(t) ≤ e2et for κ > 1.

Then the assumptions (B'4) and (B'5) hold, whereas the assumption (R2) holds if we choose, for
example,

µ(t) = e2et/eβt or µ(t) = e2et/ log(c+ t) for β, c > 0.

We have the following proposition:

Proposition 5.2.6. Let us assume that b(t) satis�es the assumptions (B'1) to (B'5) and the addi-

tional assumption (R2). Then the following statements hold:

1. For any s ∈ [0, t] we have

Ba(s, t) =

∫ t

s

a2(τ)

b(τ)
dτ ≈ log

(
A(t)

)
θ(t)− log

(
A(s)

)
θ(s). (5.2.37)

2. For any s ∈ [0, λt] with λ is �xed and λ ∈ (0, 1) we have

Ba(s, t) ≈ Ba(0, t). (5.2.38)

Proof. 1. It follows from the Assumption (R2) that∫ t

s

a2(τ)

b(τ)
dτ =

∫ t

s

a(τ)A(τ)

µ(τ)
dτ =

∫ t

s

a(τ)

A(τ)
θ(τ)dτ = θ(τ) logA(τ)|ts −

∫ t

s
θ′(τ) logA(τ)dτ

≥ θ(t) logA(t)− θ(s) logA(s)− β
∫ t

s

a(τ)

A(τ)
θ(τ)dτ.

Hence,

(2 + β)

∫ t

s

a2(τ)

b(τ)
dτ ≥ θ(t) logA(t)− θ(s) logA(s).

Otherwise, we have θ(t) is increasing. Thus∫ t

s

a2(τ)

b(τ)
dτ =

∫ t

s

a(τ)A(τ)

µ(τ)
dτ =

∫ t

s

a(τ)

A(τ)
θ(τ)dτ = θ(τ) logA(τ)|ts −

∫ t

s
θ′(τ)︸ ︷︷ ︸
≥0

logA(τ)dτ

≤ logA(t)θ(t)− logA(s)θ(s).
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2. Taking into consideration (5.2.37) we get for any s ≥ 0 and t ≥ s

Ba(0, t) ≥ Ba(s, t) ≈ θ(t) logA(t)− θ(s) logA(s) ≥ θ(t) logA(t)− θ(t) logA(s)

=

(
1− logA(s)

logA(t)

)
θ(t) logA(t) ≥ c̄λ,γθ(t) logA(t) ≈ c̄λ,γBa(0, t),

where after application of l'Hospital we may put c̄λ,γ = lim inft→∞

(
1− logA(λt)

logA(t)

)
> 0 since s ∈

[0, λt] with a �xed λ ∈ (0, 1). This completes the proof.

In order to classify the sub-exponential case and super-exponential case we introduce

ν(λ, t) :=
a(t)

A(t)

A(λt)

a(λt)
and ν(λ) := lim sup

t→∞

a(t)

A(t)

A(λt)

a(λt)
. (5.2.39)

Then we classify:

1. Sub-exponential case : ν(λ) . 1,

2. Super-exponential case : ν(λ) =∞.

5.2.3. Global existence of small data solutions for wave models with
sub-exponential propagation speed

We de�ne the following parameters:

pFuj := 1 +
2

n
for n ≥ 1,

p̄1 := 1 +
(

1− 2a0

2 +M

) 2

n
for n ≥ 1,

p̄2 := 1 +
(

1− λ

ν(λ)

2a0

2 +M

) 2

n
for n ≥ 1,

p̄3 :=
1

2
+

1

2
(

1− 2+M
2−γ + λ

ν(λ)
2+M
2−γ

) +

(
1

1− 2+M
2−γ + λ

ν(λ)
2+M
2−γ

−
λ

ν(λ)
2a0

2+M

1− 2+M
2−γ + λ

ν(λ)
2+M
2−γ

)
2

n

for n ≥ 1,

pGN := 1 +
2

n− 2
for n ≥ 3.

In the following we use the notations

A1,1 := (L1 ∩H1)× (L1 ∩ L2),

‖(u, v)‖A1,1 := ‖u‖L1 + ‖u‖H1 + ‖v‖L1 + ‖v‖L2 .

Theorem 5.2.7. (Sub-exponential order case) We assume the Hypotheses (A1) to (A3), (B'1)

to (B'5) and (R1). Let us assume n ≤ 4 and
p > p̄ and p ≥ 2 if n=1,2,

2 ≤ p ≤ 3 = pGN (3) if n= 3,

p = 2 = pGN (4) if n= 4.

(5.2.40)

Here p̄ is de�ned as

p̄ := max{p̄1; p̄2; p̄3}, (5.2.41)
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where p̄1, p̄2 and p̄3 are de�ned as above. Moreover, we need the assumption

λ

ν(λ)
>

(2 +M)n

8a0
, (5.2.42)

where a0, M and ν(λ) are de�ned in (A1), (5.2.36) and (5.2.39), respectively.

Then there exists a constant ε0 > 0 such that data with

‖(u1, u2)‖A1,1 ≤ ε0,

imply the existence of a unique solution to (5.2.1) in C([0,∞), H1) ∩ C1([0,∞), L2). Furthermore,

there exists a constant C > 0 such that this solution satis�es the estimates

‖u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4 , (5.2.43)

‖∇u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
− 1

2 , (5.2.44)

‖ut(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
−1a2(t)(b(t))−1. (5.2.45)

Proof. We introduce the space

X(t) = C([0, t], H1) ∩ C1([0, t], L2) (5.2.46)

with the norm

‖u‖X(t) := sup
0≤τ≤t

(
(1 +Ba(0, τ))n/4‖u(τ, ·)‖L2 + (1 +Ba(0, τ))n/4+1/2‖∇u(τ, ·)‖L2

+ (1 +Ba(0, τ))n/4+1b(τ)/a2(τ)‖ut(τ, ·)‖L2

)
.

We de�ne the operator N in the form

Nu(t, x) = E1(t, 0, x) ∗x u1(x) + E2(t, 0, x) ∗x u2(x) +

∫ t

0
E2(t, s, x) ∗x f

(
u(s, x)

)
ds.

Our goal is to prove that

‖Nu‖X(t) ≤ C‖(u1, u2)‖A1,1 + C‖u‖pX(t), (5.2.47)

‖Nu−Nv‖X(t) ≤ C‖u− v‖X(t)

(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
(5.2.48)

uniformly with respect to t ∈ [0,∞).
We shall even establish the stronger inequalities than (5.2.47) and (5.2.48), namely,

‖Nu‖X(t) ≤ C‖(u1, u2)‖A1,1 + C‖u‖pX0(t), (5.2.49)

‖Nu−Nv‖X(t) ≤ C‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)
, (5.2.50)

where

‖u‖X0(t) := sup
0≤τ≤t

(
(1 +Ba(0, τ))n/4‖u(τ, ·)‖L2 + (1 +Ba(0, τ))n/4+1/2‖∇u(τ, ·)‖L2

)
.

The completion of the proof of Theorem 5.2.7 follows from the next proposition:
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Proposition 5.2.8. Let us assume that the power p and the dimension n satisfy (5.2.40). Let

(u1, u2) ∈ A1,1 and u ∈ X(t). Then we have for j + l = 0, 1 the following estimates:

(
b(t)

a2(t)

)l (
1 +Ba(0, t)

)(n/4+j/2+l)‖∇j∂ltNu(t, ·)‖L2 ≤ C‖(u1, u2)‖A1,1 + C‖u‖pX0(t), (5.2.51)(
b(t)

a2(t)

)l (
1 +Ba(0, t)

)(n/4+j/2+l)∥∥∇j∂lt(Nu(t, ·)−Nv(t, ·)
)∥∥
L2

≤ C‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)
. (5.2.52)

Proof. From the Matsumura type estimates for the linear models we get

‖∇j∂ltNu(t, ·)‖L2 ≤ C

(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)‖(u1, u2)‖A1,1

+C

∫ λt

0
(b(s))−1

(
a2(t)

b(t)

)l (
1 +Ba(s, t)

)−(n/4+j/2+l)‖f(u(s, ·))‖L1∩L2ds

+C

∫ t

λt
(b(s))−1

(
a2(t)

b(t)

)l (
1 +Ba(s, t)

)−(j/2+l)‖f(u(s, ·))‖L2ds (5.2.53)

for j + l = 0, 1. Taking account of f(u) = |u|p brings

‖f(u(s, ·))‖L1∩L2 . ‖u(s, ·)‖pLp + ‖u(s, ·)‖p
L2p ,

and

‖f(u(s, ·))‖L2 . ‖u(s, ·)‖p
L2p .

Applying Gagliardo-Nirenberg inequality we have

‖u(s, ·)‖pLp . ‖u(s, ·)‖p(1−θ(p))
L2 ‖∇u(s, ·)‖p θ(p)

L2 , (5.2.54)

‖u(s, ·)‖p
L2p . ‖u(s, ·)‖p(1−θ(2p))

L2 ‖∇u(s, ·)‖p θ(2p)
L2 , (5.2.55)

where

θ(p) =
n

2

p− 2

p
, θ(2p) =

n

2

p− 1

p
.

The restriction θ(p) ≥ 0 implies that p ≥ 2, while the restriction θ(2p) ≤ 1 implies that p ≤ pGN (n)
if n ≥ 3. By using (5.2.54), (5.2.55) and the de�nition of the function space X(t) we have the
following estimate for ‖f(u(s, ·))‖L1∩L2 :

‖f(u(s, ·))‖L1∩L2 . ‖u‖pX0(s)

(
1+Ba(0, s)

)−p(n/4+θ(p)/2)
= ‖u‖pX0(s)

(
1+Ba(0, s)

)−(p−1)n/2
, (5.2.56)

here we have used θ(p) < θ(2p), whereas the following estimate is obtained for ‖f(u(s, ·))‖L2 :

‖f(u(s, ·))‖L2 . ‖u‖pX0(s)

(
1 +Ba(0, s)

)−p(n/4+θ(2p)/2)
= ‖u‖pX0(s)

(
1 +Ba(0, s)

)−(2p−1)n/4
. (5.2.57)
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Plugging (5.2.56) and (5.2.57) into (5.2.53) we get

‖∇j∂ltNu(t, ·)‖L2 ≤ C
(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
ε

+ C‖u‖pX0(t)

∫ λt

0
(b(s))−1

(
a2(t)

b(t)

)l (
1 +Ba(s, t)

)−(n/4+j/2+l)(
1 +Ba(0, s)

)−(p−1)n/2
ds︸ ︷︷ ︸

A

+ C‖u‖pX0(t)

∫ t

λt
(b(s))−1

(
a2(t)

b(t)

)l (
1 +Ba(s, t)

)−(j/2+l)(
1 +Ba(0, s)

)−(2p−1)n/4
ds︸ ︷︷ ︸

B

.

Let us derive for j + l = 0, 1 estimates for the case s ∈ [0, λt]. We have

A ≈
(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
∫ λt

0
(b(s))−1

(
1 +Ba(0, s)

)−(p−1)n/2
ds︸ ︷︷ ︸

A1

.

Here, we have used (5.2.33) and we denote α1(p) := (p− 1)n/2. Now we try to �nd a condition for
the power p which guarantees that the integral term A1 remains bounded.

Case 1: α1(p) > 1 (i.e. p > pFuj)

We have for j + l = 0, 1

A1 =

∫ λt

0
(b(s))−1

(
1 +Ba(0, s)

)−(p−1)n/2
ds ≤ 1

a2(0)

∫ Ba(0,λt)

0
(1 + r)−(p−1)n/2dr ≤ C.

Here we have used the change of variables r = Ba(0, s) and the condition p > pFuj(n) guarantees
that the integral term is bounded.

Case 2: α1(p) < 1

We perform the following straight-forward calculations:

A1 =

∫ λt

0

(
1 +Ba(0, s)

)−α1(p)
d
(
1 +Ba(0, s)

) 1

a2(s)

=
(1 +Ba(0, s))

−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2

1− α1(p)

∫ λt

0

(
1 +Ba(0, s)

)−α1(p)+1 a′(s)

a3(s)
ds

≥ (1 +Ba(0, s))
−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2a0

1− α1(p)

∫ λt

0

(1 +Ba(0, s))
−α1(p)

b(s)

b(s)
(
1 +Ba(0, s)

)
a(s)A(s)

ds

≥ (1 +Ba(0, s))
−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2a0

(1− α1(p))(2 +M)

∫ λt

0

(1 +Ba(0, s))
−α1(p)

b(s)

µ(s)a(s)A2(s)

µ(s)a(s)A2(s)
ds

≥ (1 +Ba(0, s))
−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2a0

(1− α1(p))(2 +M)

∫ λt

0
b(s)−1(1 +Ba(0, s))

−α1(p)ds︸ ︷︷ ︸
A1

.

From the last estimate we obtain(
2a0

(1− α1(p))(2 +M)
− 1

)
A1 ≤

1

1− α1(p)

( 1

a2(0)
− (1 +Ba(0, λt))

−α1(p)+1

a2(λt)

)
. (5.2.58)
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Since p > p̄1 we may conclude 2a0
(1−α1(p))(2+M) − 1 > 0. Otherwise G1(λt) := (1+Ba(0,λt))−α1(p)+1

a2(λt)
is

strictly decreasing. Indeed, taking the derivative of function G1(t) we get

G′1(t) =

(
(1− α1(p))a(t)A(t)

µ(t) a2(t)− 2a′(t)a(t)
(
1 +Ba(0, t)

))(
1 +Ba(0, t)

)−α1(p)

a4(t)

≤

(
(1− α1(p))a(t)A(t)

µ(t) − 2a
′(t)
a(t) Ba(0, t)

)(
1 +Ba(0, t)

)−α1(p)

a2(t)

≤

(
(1− α1(p))a(t)A(t)

µ(t) − 2a0
2+M

a(t)
A(t)

A2(t)
µ(t)

)(
1 +Ba(0, t)

)−α1(p)

a2(t)
.

The condition p > p̄1 implies G′1(t) < 0. This gives the boundedness of the right-hand side of
(5.2.58). Therefore, we can obtain our desired estimate for A1.

Case 3: α1(p) = 1

We have

A1 =

∫ λt

0

1

b(s)
(
1 +Ba(0, s)

)ds ≈ ∫ λt

0

µ(s)

A2(s)

A(s)

a(s)µ(s)
ds ≈

∫ λt

0

ds

a(s)A(s)
≤
∫ λt

0

dA(s)

A(s)1+2a0
≤ C.

Summarizing, for all p > p̄1 we have

A .

(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
. (5.2.59)

Now let us carry out necessary estimates for the case s ∈ [λt, t]. We have

B =

(
a2(t)

b(t)

)l ∫ t

λt
(b(s))−1

(
1 +Ba(s, t)

)−(j/2+l)
(

1 +Ba(0, s)
)−(2p−1)n/4

ds

= −
(
a2(t)

b(t)

)l ∫ t

λt

(
1 +Ba(s, t)

)−(j/2+l)

(
1 +Ba(0, s)

)−α2(p)

a2(s)
d
(
1 +Ba(s, t)

)
.

Here α2(p) := (2p− 1)n/4. We consider the integral term in the last equality. For j = 0, l = 0 and
α2(p) 6= 1 we get

B =

∫ t

λt
(b(s))−1

(
1 +Ba(0, s)

)−α2(p)
ds =

∫ t

λt

(
1 +Ba(0, s)

)−α2(p) 1

a2(s)
d
(
1 +Ba(0, s)

)
=

(
1 +Ba(0, s)

)−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2

1− α2(p)

∫ t

λt
(1 +Ba(0, s))

−α2(p)+1 a
′(s)

a3(s)
ds

=
(1 +Ba(0, s))

−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2

1− α2(p)

∫ t

λt

(
1 +Ba(0, s)

)−α2(p)

b(s)

b(s)
(
1 +Ba(0, s)

)
a′(s)

a3(s)
ds.

(5.2.60)

Case 1: α2(p) > 1
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Then from the equality (5.2.60) we have

B +
2

α2(p)− 1

∫ t

λt

(1 +Ba(0, s))
−α2(p)

b(s)

b(s)
(
1 +Ba(0, s)

)
a′(s)

a3(s)
ds =

(1 +Ba(0, s))
−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

,

B +
2a0

(α2(p)− 1)(2 +M)

∫ t

λt

(1 +Ba(0, s))
−α2(p)

b(s)︸ ︷︷ ︸
B

µ(s)a(s)A2(s)

A(s)µ(s)a(s)A(s)
ds ≤ (1 +Ba(0, s))

−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

,

(
1 +

2a0

(α2(p)− 1)(2 +M)

)
B .

(1 +Ba(0, λt))
−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α2(p)+1

a2(t)
.

It implies that

B .
(1 +Ba(0, λt))

−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α2(p)+1

a2(t)
.

Case 2: α2(p) < 1

Then from the equality (5.2.60) we get

B ≥ (1 +Ba(0, s))
−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2a0

(1− α2(p))(2 +M)

∫ t

λt

(1 +Ba(0, s))
−α2(p)

b(s)

µ(s)a(s)A2(s)

A(s)µ(s)a(s)A(s)
ds

≥ (1 +Ba(0, s))
−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2a0

(1− α2(p))(2 +M)

∫ t

λt

(1 +Ba(0, s))
−α2(p)

b(s)
ds.

From the last inequality we get(
2a0

(1− α2(p))(2 +M)
− 1

)
B .

(1 +Ba(0, λt))
−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α2(p)+1

a2(t)
.

Since α2(p) = α1(p) + n/4 we have

2a0

(1− α2(p))(2 +M)
− 1 >

2a0

(1− α1(p))(2 +M)
− 1.

Moreover, by using p > p̄1 we obtain 2a0
(1−α1(p))(2+M) − 1 > 0. Thus, we have

2a0

(1− α2(p))(2 +M)
− 1 > 0.

It also implies that

B .
(1 +Ba(0, λt))

−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α2(p)+1

a2(t)
.

In order to get our desired estimate for B in both cases it su�ces to show the following estimate:

(1 +Ba(0, t))
n/4B .

(1 +Ba(0, t))
n/4(1 +Ba(0, λt))

−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α2(p)+1+n/4

a2(t)

.
(1 +Ba(0, t))

n/4(1 +Ba(0, λt))
−α2(p)+1

a2(λt)
− (1 +Ba(0, t))

−α1(p)+1

a2(t)

.
(1 +Ba(0, t))

n/4+1−α2(p)(1 +Ba(0, λt))
−α2(p)+1

(1 +Ba(0, t))−α2(p)+1a2(λt)
− (1 +Ba(0, t))

−α1(p)+1

a2(t)
. 1.
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By the aid of the decreasing behavior of G1(t) for all p > p̄1 the second term in the last inequality is
bounded. Therefore, we only consider the boundedness of the �rst term for both cases 1−α2(p) > 0
and 1− α2(p) < 0. In the case 1− α2(p) > 0 we have

(1 +Ba(0, t))
n/4+1−α2(p)(1 +Ba(0, λt))

−α2(p)+1

(1 +Ba(0, t))−α2(p)+1a2(λt)
.

(1 +Ba(0, t))
−α1(p)+1

a2(λt)
:= G2(t).

We form the derivative of this function

G′2(t) =
((

1− α1(p)
)a(t)A(t)

µ(t)
− 2λ

a′(λt)

a(λt)

(
1 +Ba(0, t)

))(
1 +Ba(0, t)

)−α1(p)
a(λt)−2

≤
((

1− α1(p)
)a(t)A(t)

µ(t)
− 2λa0

a(λt)

A(λt)

1

2 +M

A2(t)

µ(t)

)(
1 +Ba(0, t)

)−α1(p)
a(λt)−2

≤
((

1− α1(p)
)a(t)A(λt)

A(t)a(λt)
− 2λa0

2 +M

)(
1 +Ba(0, t)

)−α1(p)
a(λt)−2

≤
((

1− α1(p)
)
ν(λ, t)− 2λa0

2 +M

)a(λt)A2(t)

A(λt)µ(t)

(
1 +Ba(0, t)

)−α1(p)
a(λt)−2.

Since p > p̄2 we have for large times t(
1− α1(p)

)
ν(λ)− 2λa0

2 +M
< 0.

This implies G′2(t) < 0.
In the other case 1 − α2(p) < 0, our desired estimate can be obtained directly from the case
1− α2(p) > 0. Therefore, for all p > p̄2 we have

B .
(
1 +Ba(0, t)

)−n/4
. (5.2.61)

Case 3: α2(p) = 1

We have

B =

∫ t

λt

(
1 +Ba(0, s)

)−1
b(s)−1ds ≈

∫ t

λt

µ(s)

A2(s)

A(s)

a(s)µ(s)
ds =

∫ t

λt

ds

a(s)A(s)

≤
∫ t

λt

dA(s)

A(s)1+2a0
=

1

2a0A(λt)2a0
− 1

2a0A(t)2a0
.

It implies (
1 +Ba(0, t)

)n/4
B .

(1 +Ba(0, t))
n/4

A(λt)2a0
− (1 +Ba(0, t))

n/4

A(t)2a0
.

Due to (5.2.42) the functions (1+Ba(0,t))n/4

A(λt)2a0
and (1+Ba(0,t))n/4

A(t)2a0
are strictly decreasing. Therefore, we

have our desired estimate for B.
For j = 1 and l = 0 we obtain

B =

∫ t

λt
(b(s))−1

(
1 +Ba(s, t)

)−1/2(
1 +Ba(0, s)

)−α2(p)
ds

= −
∫ t

λt

(
1 +Ba(s, t)

)−1/2 (1 +Ba(0, s))
−α2(p)

a2(s)
d(1 +Ba(s, t))

= − 2(1 +Ba(s, t))
1/2(1 +Ba(0, s))

−α2(p)

a2(s)

∣∣∣∣∣
t

λt

+ 2

∫ t

λt
(1 +Ba(s, t))

1/2d
((1 +Ba(0, s))

−α2(p)

a2(s)

)

≈ − 2(1 +Ba(s, t))
1/2(1 +Ba(0, s))

−α2(p)

a2(s)

∣∣∣∣∣
t

λt

+ 2

∫ t

λt

(1 +Ba(s, t))
1/2

(1 +Ba(0, s))α2(p)a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.
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Here we have used

d
((1 +Ba(0, s))

−α2(p)

a2(s)

)
≈ 1

(1 +Ba(0, s))α2(p)a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a′(s)

a(s)
ds

)

≈ 1

(1 +Ba(0, s))α2(p)a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a(s)

A(s)
ds

)

≈ 1

(1 +Ba(0, s))α2(p)a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a(s)A(s)

µ(s)

µ(s)

A2(s)
ds

)

≈ 1

(1 +Ba(0, s))α2(p)a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

)

≈ 1

2(1 +Ba(0, s))α2(p)a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.

It implies

(
1 +Ba(0, t)

)n/4+1/2
B ≈ (1 +Ba(0, t))

−α2(p)(1 +Ba(0, t))
n/4+1/2

a2(t)

+
(1 +Ba(0, λt))

−α2(p)(1 +Ba(0, t))
n/4+1/2(1 +Ba(λt, t))

1/2

a2(λt)

+ (1 +Ba(0, t))
n/4+1/2

∫ t

λt

(1 +Ba(s, t))
1/2

(1 +Ba(0, s))α2(p)a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.

Thus

(1 +Ba(0, t))
n/4+1/2B .

(1 +Ba(0, t))
−α2(p)(1 +Ba(0, t))

n/4+1/2

a2(t)︸ ︷︷ ︸
B1

+
(1 +Ba(0, λt))

−α2(p)(1 +Ba(0, t))
n/4+1

a2(λt)︸ ︷︷ ︸
B2

+

∫ t

λt

(1 +Ba(0, t))
n/4+1

(1 +Ba(0, s))α2(p)a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)︸ ︷︷ ︸

B3

.

Using the de�nition of α2(p) = α1(p) + n/4 and p > p̄1 it follows

B1 .
(
1 +Ba(0, t)

)−1/2
< 1.

In order to prove that B2 and B3 are bounded to above by a constant it su�ces to show that

B2 .
(
1 +Ba(0, λt)

)−ε
with a small positive constant ε. Thus, we need to show that the following function is bounded

(1 +Ba(0, λt))
−α2(p)+ε(1 +Ba(0, t))

n
4

+1

a2(λt)
.
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Taking account of (5.2.34) we obtain(
1 +Ba(0, λt)

)−α2(p)+ε
(1 +Ba(0, t))

n
4

+1

a2(λt)
≤

(
1 +Ba(0, t)

)n
4

+1−α2(p)+ε

a2(λt)
(
A(lambdat)

A(t)

)(2+M)(α2(p)−ε) := G3(t).

Let us consider the monotonicity of G3(t) by taking the derivative of this function. It holds

G′3(t) =

((n
4

+ 1− α2(p) + ε
)a(t)A(t)

µ(t)

A(t)

A(λt)
+ (2 +M)(α2(p)− ε)

( a(t)

A(λt)
− λa(λt)A(t)

A2(λt)

)
×
(
1 +Ba(0, t)

)
− 2λ

a′(λt)

a(λt)

(
1 +Ba(0, t)

) A(t)

A(λt)

)(
1 +Ba(0, t)

)n/4+ε−α2(p)

×
( A(t)

A(λt)

)(2+M)(α2(p)−ε)−1
a(λt)−2

≤
((n

4
+ 1− α2(p) + ε

) a(t)A2(t)

µ(t)A(λt)
+ (2 +M)(α2(p)− ε)

( a(t)

A(λt)
− λa(λt)A(t)

A2(λt)

)
× 1

2− γ
A2(t)

µ(t)
− 2λa0

a(λt)

A(λt)

1

2 +M

A2(t)

µ(t)

A(t)

A(λt)

)(
1 +Ba(0, t)

)n/4+ε−α2(p)

×
( A(t)

A(λt)

)(2+M)(α2(p)−ε)−1
a(λt)−2

≤
((n

4
+ 1− α2(p) + ε

)a(t)A(λt)

A(t)a(λt)
+

2 +M

2− γ
(α2(p)− ε)

(a(t)A(λt)

A(t)a(λt)
− λ

)
− 2λa0

1

2 +M

)
× a(λt)A3(t)

A2(λt)µ(t)

(
1 +Ba(0, t)

)n/4+ε−α2(p)
( A(t)

A(λt)

)(2+M)(α2(p)−ε)−1
a(λt)−2

≤
((n

4
+ 1− α2(p) + ε

)
ν(λ, t) +

2 +M

2− γ
(α2(p)− ε)

(
ν(λ, t)− λ

)
− 2λa0

2 +M

)
× a(λt)A3(t)

A2(λt)µ(t)

(
1 +Ba(0, t)

)n/4+ε−α2(p)
( A(t)

A(λt)

)(2+M)(α2(p)−ε)−1
a(λt)−2.

The condition p > p̄3 implies for large times t(n
4

+ 1− α2(p) + ε
)
ν(λ) +

2 +M

2− γ
(α2(p)− ε)

(
ν(λ)− λ

)
− 2λa0

2 +M
< 0.

Thus G′3(t) < 0. Therefore, for all p > p̄3 we have

B .
(
1 +Ba(0, t)

)−n/4−1/2
. (5.2.62)

Analogously, for j = 0 and l = 1 we can prove

b(t)

a2(t)

(
1 +Ba(0, t)

)n/4+1
B .

log
(
1 +Ba(0, t)

)
(1 +Ba(0, λt))

−α2(p)(1 +Ba(0, t))
n/4+1

a2(λt)︸ ︷︷ ︸
B̄2

+

∫ t

λt

log
(
1 +Ba(0, t)

)
(1 +Ba(0, t))

n/4+1

(1 +Ba(0, s))α2(p)a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)︸ ︷︷ ︸

B̄3

.
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By using l'Hospital we have

lim sup
t→∞

log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)ε ≈ lim sup
t→∞

ν(λ)

ελ
(
1 +Ba(0, λt)

)ε < C. (5.2.63)

Moreover, since p > p̄3 we obtain

B̄2 =
log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)ε G3(t) .
log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)ε < C

for large t. Finally, after using the change of variables r = 1 +Ba(0, s) we get

B̄3 . log
(
1 +Ba(0, t)

) ∫ 1+Ba(0,t)

1+Ba(0,λt)

dr

r1+ε
=

log
(
1 +Ba(0, t)

)
ε
(
1 +Ba(0, λt)

)ε − log
(
1 +Ba(0, t)

)
ε
(
1 +Ba(0, t)

)ε < C.

Here we use that B̄3 is related to B̄2 and (5.2.63). This implies that

B .
a2(t)

b(t)

(
1 +Ba(0, t)

)−(n/4+1)
. (5.2.64)

From (5.2.61), (5.2.62) and (5.2.64) we obtain

B .

(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
. (5.2.65)

Thanks to (5.2.59) and (5.2.65) we can conclude the statement (5.2.51).

Now let us prove (5.2.52). We remark that

‖Nu−Nv‖X(t) =
∥∥∥∫ t

0
E1(t, s, x) ∗x

(
f(u(s, x))− f(v(s, x))

)
ds
∥∥∥
X(t)

.

Thanks to (5.2.4), (5.2.5) and (5.2.6) we have the following estimates

‖∇j∂ltE1(t, s, x) ∗x
(
f(u(s, x))− f(v(s, x))

)
‖L2

.

 b(s)−1
(
a2(t)
b(t)

)l (
1 +Ba(s, t)

)−n
4
− j

2
−l‖f(u(s, ·))− f(v(s, ·))‖L1∩L2 , s ∈ [0, λt],

b(s)−1
(
a2(t)
b(t)

)l (
1 +Ba(s, t)

)− j
2
−l‖f(u(s, ·))− f(v(s, ·))‖L2 , s ∈ [λt, t],

for j + l = 0, 1. By using Hölder's inequality we obtain

‖f(u(s, ·))− f(v(s, ·))‖L1 . ‖u(s, ·)− v(s, ·)‖Lp
(
‖u(s, ·)‖p−1

Lp + ‖v(s, ·)‖p−1
Lp

)
,

‖f(u(s, ·))− f(v(s, ·))‖L2 . ‖u(s, ·)− v(s, ·)‖L2p

(
‖u(s, ·)‖p−1

L2p + ‖v(s, ·)‖p−1
L2p

)
.

We apply Gagliardo-Nirenberg inequality to the following terms:

‖u(s, ·)− v(s, ·)‖Lq , ‖u(s, ·)‖Lq , ‖v(s, ·)‖Lq ,

with q = p and q = 2p and, analogously, to the proof of the statement (5.2.51) we can conclude the
proof of the statement (5.2.52) by the aid of assumption p > p̄. In this way our Theorem 5.2.7 is
proved.
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Example 5.2.4. Let us choose formally a(t) ≡ 1. Then we have A(t) = 1+t. Let µ(t) be an arbitrary
function satisfying the assumptions (B'1) - (B'5) and (R1). Then we have a0 = 0 and ν(λ) = λ.
Thus, applying Theorem 5.2.7 formally we have

p̄1 = p̄2 = p̄3 = 1 +
2

n
= pFuj .

These results coincide with results from the paper of D'Abbicco, Lucente and Reissig (see [D-R13]).

Example 5.2.5. If we choose a(t) = (l + 1)(1 + t)l, l > 0, then we have A(t) = (1 + t)l+1 and
ν(λ) = λ. Let us choose µ(t) as in the Example 5.2.1, that is,

µ(t) = (log(c+ t))κ or µ(t) = (1 + t)γ(l+1) for κ > 1, 0 ≤ γ < 2.

In the case µ(t) = (log(c + t))κ, κ > 1, we obtain M = 0 and γ = ε with an arbitrary small ε.
Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) for the case α2(p) = (2p−1)n

4 = 1
is satis�ed if only if

n = 1⇒ l >
1

3
and p =

5

2
; n = 2⇒ l > 1 and p =

3

2
; n = 3⇒ l > 3 and p =

7

6
.

Whereas, the critical exponent is

p̄ = 1 +
2

(l + 1)n
.

So, we have global existence of small data solutions for
p̄ < p if n = 1 and l ∈ (1/3, 1],
2 ≤ p if n = 1 and l ∈ (1,∞) or if n = 2,
2 ≤ p ≤ 3 = pGN (3) if n = 3,
p = 2 = pGN (4) if n = 4.

(5.2.66)

In the other case µ(t) = (1 + t)γ(l+1), 0 ≤ γ < 2, we obtain M = 0, γ ∈ [0, 2). Thus, applying
Theorem 5.2.7 we also get

p̄1 = p̄2 = p̄3 = 1 +
2

(l + 1)n
= p̄.

So, we have global existence of small data solutions under the same conditions for critical exponent
as in (5.2.66). We remark that the statement of Theorem 5.2.7 holds uniformly for all damped wave
models, where the propagation speed and dissipation satisfy the assumptions. If we focus to the
special case a(t) = (l + 1)(1 + t)l and µ(t) = (1 + t)γ(l+1), 0 ≤ γ < 2, with �xed l and γ, then the
abstract condition (5.2.42) can be replaced by

l

l + 1
>

(2− γ)n

8
.

If we take γ → 0, then it implies the condition (5.2.42). This condition is also valid for µ(t) =
(log(c+ t))κ, κ > 1.

Example 5.2.6. If we choose a(t) = et, then we have A(t) = et. So, a0 = 1 and ν(λ) = 1. Let us
choose µ(t) as in the Example 5.2.2, that is,

µ(t) = (1 + t)k(log(e+ t))κ or µ(t) = eγt, for k ≥ 1, k + κ > 2, 0 ≤ γ < 2.
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In the case µ(t) = (1 + t)k(log(e + t))κ k ≥ 1, k + κ > 2, we obtain M = 0 and γ = ε with an
arbitrary small ε. Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) is satis�ed if
only if

λ >
1

4
.

So we have to choose such a λ. Moreover, we get

p̄1 = 1 < p̄2 →
1

2
+

1

2λ
< p̄3 →

1

2
+

1

2λ
+
( 1

λ
− 1
) 2

n
< p̄.

Choosing λ close to 1 gives p̄ > 1. So, we have global existence of small data solutions for
2 ≤ p if n = 1, 2,
2 ≤ p ≤ 3 = pGN (3) if n = 3,
p = 2 = pGN (4) if n = 4.

(5.2.67)

In the other case µ(t) = eγt, 0 ≤ γ < 2, we obtain M = 0, γ ∈ [0, 2). Thus, applying Theorem
5.2.7 we get

p̄1 = 1, p̄2 =
1

2
+

1

2
(

1− 2
2−γ
(
1− λ

)) +

(
1− λ

1− 2
2−γ
(
1− λ

)) 2

n
,

p̄3 =
1

2
+

1

2
(

1− 2
2−γ
(
1− λ

)) +
1− λ

1− 2
2−γ
(
1− λ

) 2

n
.

Choosing λ close to 1 gives p̄ > 1. So, we have global existence of small data solutions under the
same conditions for critical exponent as in (5.2.67).

Example 5.2.7. If we choose a(t) = mtm−1et
m
, m > 0, then we have A(t) = et

m
. So, a0 = 1 and

ν(λ) = 1/λm−1. Let us choose functions µ(t) satisfying the assumption (R2), for example,

µ(t) = (1 + t)k(log(e+ t))κ or µ(t) = eγt
m
, for k ≥ m, k + κ > m+ 1, 0 ≤ γ < 2.

In the case µ(t) = (1 + t)k(log(e + t))κ, k ≥ m, k + κ > m + 1, we obtain M = 0 and γ = ε with
an arbitrary small ε. Thus, applying Theorem 5.2.7 we see that the condition (5.2.42) is satis�ed if
only if

λ >
(1

4

)1/m
.

So we have to choose such a λ. Moreover, we get

p̄1 = 1 < p̄2 →
1

2
+

1

2λm
< p̄3 →

1

2
+

1

2λm
+
( 1

λm
− 1
) 2

n
= p̄.

Choosing λ close to 1 gives p̄ > 1. So, we have global existence of small data solutions for
2 ≤ p if n = 1, 2,
2 ≤ p ≤ 3 = pGN (3) if n = 3,
p = 2 = pGN (4) if n = 4.

(5.2.68)

In the other case µ(t) = eγt
m
, 0 ≤ γ < 2, we obtain M = 0, γ ∈ [0, 2). Thus, applying Theorem

5.2.7 we get

p̄1 = 1, p̄2 =
1

2
+

1

2
(

1− 2
2−γ
(
1− λm

)) +

(
1− λm

1− 2
2−γ
(
1− λm

)) 2

n
,

p̄3 =
1

2
+

1

2
(

1− 2
2−γ
(
1− λm

)) +
1− λm

1− 2
2−γ
(
1− λm

) 2

n
.
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Choosing λ close to 1 gives p̄ > 1. So, we have global existence of small data solutions under the
same conditions for the critical exponent as in (5.2.68).

5.2.4. Global existence of small data solutions for wave models with
super-exponential propagation speed

Now let us devote to the super-exponential order case ν(λ) =∞.

Theorem 5.2.9. (Super-exponential order case) We assume the Hypotheses (A1) to (A3),

(B'1) to (B'5) and (R2). Moreover, we assume a growth condition for the function ν(λ, t):

ν(λ, t) = O(logA(t)) . (5.2.69)

Let us assume n ≤ 4 and 
2 ≤ p if n=1,2,

2 ≤ p ≤ 3 = pGN (3) if n= 3,

p = 2 = pGN (4) if n= 4.

(5.2.70)

Then there exists a constant ε0 > 0 such that data with

‖(u1, u2)‖A1,1 ≤ ε0

imply the existence of a unique solution to (5.2.1) in C
(
[0,∞), H1

)
∩ C1

(
[0,∞), L2

)
. Furthermore,

there exists a constant C > 0 such that this solution satis�es the estimates

‖u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4 , (5.2.71)

‖∇u(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
− 1

2 , (5.2.72)

‖ut(t, ·)‖L2 ≤ C ‖(u1, u2)‖A1,1(1 +Ba(0, t))
−n

4
−1a2(t)(b(t))−1. (5.2.73)

Proof. The scheme to prove this theorem is almost the same which we presented in the proof of
Theorem 5.2.7. The only change is to show that Proposition 5.2.8 remains true, in particular, we
will show the estimates (5.2.51), under the new assumption (R2).
In our proof we need the following result: Let us consider for j + l = 0, 1 estimates in the case
s ∈ [0, λt]. We have again

A ≈
(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
∫ λt

0
(b(s))−1

(
1 +Ba(0, s)

)−(p−1)n/2
ds︸ ︷︷ ︸

Ā1

.

Here, we have used (5.2.38). We now try to �nd a condition for the power p which guarantees that
the integral term Ā1 remains uniformly bounded for t→∞. We de�ne α1(p) := (p− 1)n/2.
In the case α1(p) 6= 1 to handle the integral Ā1 we will use integration by parts and the assumption
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(A2). Thus

Ā1 =

∫ λt

0

(
1 +Ba(0, s)

)−α1(p) 1

a2(s)
d
(
1 +Ba(0, s)

)
=

(
1 +Ba(0, s)

)−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2

1− α1(p)

∫ λt

0

(
1 +Ba(0, s)

)−α1(p)+1 a′(s)

a3(s)
ds

≈ (1 +Ba(0, s))
−α1(p)+1

(1− α1(p))a2(s)

∣∣∣∣∣
λt

0

+
2

1− α1(p)

∫ λt

0

(1 +Ba(0, s))
−α1(p)+1

a2(s)

a(s)

A(s)
ds

≈ 1

1− α1(p)

(
1

a2(0)
− (1 +Ba(0, λt))

−α1(p)+1

a2(λt)
+ 2

∫ λt

0

(1 +Ba(0, s))
−α1(p)+1

a2(s)

a(s)

A(s)
ds

)
.

In order to prove that for a �xed λ ∈ (0, 1) the integral Ā1 is uniformly upper bounded by a constant
for t→∞ it su�ces to show that with an arbitrary small positive ε we have(

1 +Ba(0, t)
)−α1(p)+1

a2(t)
. A(t)−ε.

Let us consider

Ḡ1(t) :=

(
1 +Ba(0, t)

)−α1(p)+1
A(t)ε

a2(t)
.

Performing the �rst derivative of Ḡ1(t) we get

Ḡ′1(t) =

(
(1− α1(p))a(t)A(t)

µ(t) + ε a(t)
A(t)

(
1 +Ba(0, t)

)
− 2a

′(t)
a(t)

(
1 +Ba(0, t)

))
A(t)ε

a2(t)
(
1 +Ba(0, t)

)α1(p)

.

(
(1− α1(p))a(t)A(t)

µ(t) + ε a(t)
A(t)

A2(t)
µ(t) logA(t)− 2a0

a(t)
A(t)

A2(t)
µ(t) logA(t)

)
A(t)ε

a2(t)
(
1 +Ba(0, t)

)α1(p)

.

(
(1− α1(p))a(t)A(t)

µ(t) + εa(t)A(t)
µ(t) logA(t)− 2a0

a(t)A(t)
µ(t) logA(t)

)
A(t)ε

a2(t)
(
1 +Ba(0, t)

)−α1(p)

≤

(
(1− α1(p)) +

(
ε− 2a0

)
logA(t)

)
a(t)A(t)
µ(t) A(t)ε

a2(t)
(
1 +Ba(0, t)

)α1(p)
.

The last inequality show us that Ḡ′1(t) < 0 after choosing ε small enough and for large t. Hence,
Ḡ1(t) is bounded. Therefore, we can obtain our desired estimate for Ā1.
The case α1(p) = 1 can be treated directly. We have

Ā1 =

∫ λt

0

ds

b(s)
(
1 +Ba(0, s)

) ≈ ∫ λt

0

µ(s)

A2(s) logA(s)

A(s)

a(s)µ(s)
ds =

∫ λt

0

ds

logA(s)a(s)A(s)

≤
∫ λt

0

dA(s)

a2(s)A(s)
≤
∫ λt

0

dA(s)

A(s)1+2a0
≤ C.

Summarizing, we can conclude

A .

(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
. (5.2.74)
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Now let us estimate B. We start with the case j = 0 and l = 0.

Case 1: α2(p) 6= 1

B =

∫ t

λt
(b(s))−1

(
1 +Ba(0, s)

)−α2(p)
ds =

∫ t

λt

(
1 +Ba(0, s)

)−α2(p) 1

a2(s)
d
(
1 +Ba(0, s)

)
=

(1 +Ba(0, s))
−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2

1− α2(p)

∫ t

λt
(1 +Ba(0, s))

−α2(p)+1 a
′(s)

a3(s)
ds

≈ (1 +Ba(0, s))
−α2(p)+1

(1− α2(p))a2(s)

∣∣∣∣∣
t

λt

+
2

1− α2(p)

∫ t

λt

(1 +Ba(0, s))
−α2(p)+1

a2(s)

a(s)

A(s)
ds. (5.2.75)

Thus, we have

(1 +Ba(0, t))
n/4B .

(
1 +Ba(0, t)

)−α2(p)+1(
1 +Ba(0, t)

)n/4
a2(t)︸ ︷︷ ︸
B1

+

(
1 +Ba(0, λt)

)−α2(p)+1(
1 +Ba(0, t)

)n/4
a2(λt)︸ ︷︷ ︸
B2

+

∫ t

λt

(
1 +Ba(0, s)

)−α2(p)+1(
1 +Ba(0, t)

)n/4
a2(s)

a(s)

A(s)
ds︸ ︷︷ ︸

B3

.

Since α2(p) = α1(p) + n/4 we may conclude for large t

B1 = Ḡ1(t)A(t)−ε . A(t)−ε . 1.

In order to prove that B2 and B3 are both uniformly upper bounded by a constant it su�ces to
show that for a small positive ε we have

B2 .
(
1 +Ba(0, λt)

)−ε
.

Thus, we use the monotonicity behavior of the following function:

Ḡ2(t) :=

(
1 +Ba(0, λt)

)−α2(p)+1(
1 +Ba(0, t)

)n/4
A(t)ε

a2(λt)

by the aid of the strictly decreasing behavior of a(t)
A(t)

A(λt)
a(λt)

1
logA(t) . After performing the derivative

Ḡ′2(t) we can see that Ḡ′2(t) < 0 for large t. It implies that

B3 .
∫ t

λt

1

A(s)ε
a(s)

A(s)
ds . 1

for large t. Summarizing for j = l = 0 all the estimates we may conclude

B .
(
1 +Ba(0, t)

)−n/4
. (5.2.76)

Case 2: α2(p) = 1



5.2. Semi-linear models with e�ective dissipation 135

Here we proceed in the usual way by the aid of the supposed decreasing behavior of the function
ν(λ,t)

logA(t) . We have

B =

∫ t

λt

(
1 +Ba(0, s)

)−1
b(s)−1ds

∫ t

λt
d
(

log
(
1 +Ba(0, s)

)) 1

a2(s)

=
log
(
1 +Ba(0, s)

)
a2(s)

∣∣∣∣∣
t

λt

+

∫ t

λt
log
(
1 +Ba(0, s)

) a′(s)
a3(s)

ds

.
log
(
1 +Ba(0, t)

)
a2(t)

−
log
(
1 +Ba(0, λt)

)
a2(λt)

+ a1

∫ t

λt

log
(
1 +Ba(0, s)

)
a2(s)

a(s)

A(s)
ds.

It implies

(
1 +Ba(0, t)

)n/4
B .

log
(
1 +Ba(0, t)

)
(1 +Ba(0, t))

n/4

a2(t)
−

log
(
1 +Ba(0, λt)

)
(1 +Ba(0, t))

n/4

a2(λt)

+ a1

∫ t

λt

log
(
1 +Ba(0, s)

)
(1 +Ba(0, t))

n/4

a2(s)

a(s)

A(s)
ds.

Analogously, in order to prove (1 + Ba(0, t))
n/4B is bounded, it is enough to prove that for small

positive ε we have

log
(
1 +Ba(0, λt)

)
(1 +Ba(0, t))

n/4

a2(λt)
.

1

A(λt)ε
.

Thus, for arbitrary small δ > 0 we have

log
(
1 +Ba(0, λt)

)
(1 +Ba(0, t))

n/4A(λt)ε

a2(λt)

.
log
(
1 +Ba(0, λt)

)
(1 +Ba(0, λt))δ

(1 +Ba(0, λt))
δ(1 +Ba(0, t))

n/4A(λt)ε

a2(λt)

.
(1 +Ba(0, λt))

δ(1 +Ba(0, t))
n/4A(λt)ε

a2(λt)
.

Taking account of the monotonic behavior of Ḡ2 we obtain our desired estimate for B.
For j = 1 and l = 0 we obtain

B =

∫ t

λt
(b(s))−1

(
1 +Ba(s, t)

)−1/2(
1 +Ba(0, s)

)−α2(p)
ds

= −
∫ t

λt

(
1 +Ba(s, t)

)−1/2 (1 +Ba(0, s))
−α2(p)

a2(s)
d
(
1 +Ba(s, t)

)
= −

2
(
1 +Ba(s, t)

)1/2(
1 +Ba(0, s)

)−α2(p)

a2(s)

∣∣∣∣∣
t

λt

+ 2

∫ t

λt

(
1 +Ba(s, t)

)1/2
d
((1 +Ba(0, s))

−α2(p)

a2(s)

)

≈
(
1 +Ba(s, t)

)1/2(
1 +Ba(0, s)

)−α2(p)

2a2(s)

∣∣∣∣∣
t

λt

+

∫ t

λt

(
1 +Ba(s, t)

)1/2(
1 +Ba(0, s)

)α2(p)
a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.
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Here we have used

d
((1 +Ba(0, s)

)−α2(p)

a2(s)

)
≈ 1(

1 +Ba(0, s)
)α2(p)

a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a′(s)

a(s)
ds

)

≈ 1(
1 +Ba(0, s)

)α2(p)
a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a(s)

A(s)
ds

)

≈ 1(
1 +Ba(0, s)

)α2(p)
a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
a(s)A(s)

µ(s)

µ(s)

A2(s)
ds

)

≈ 1(
1 +Ba(0, s)

)α2(p)
a2(s)

(
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

+
d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

)

≈ 1(
1 +Ba(0, s)

)α2(p)
a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.

It implies

(
1 +Ba(0, t)

)n/4+1/2
B ≈

(
1 +Ba(0, t)

)−α2(p)(
1 +Ba(0, t)

)n/4+1/2

a2(t)

+
(1 +Ba(0, λt))

−α2(p)
(
1 +Ba(0, t)

)n/4+1/2(
1 +Ba(λt, t)

)1/2
a2(λt)

+
(
1 +Ba(0, t)

)n/4+1/2
∫ t

λt

(
1 +Ba(s, t)

)1/2(
1 +Ba(0, s)

)α2(p)
a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)

.

Thus

(
1 +Ba(0, t)

)n/4+1/2
B .

(
1 +Ba(0, t)

)−α2(p)(
1 +Ba(0, t)

)n/4+1/2

a2(t)︸ ︷︷ ︸
B̄1

+

(
1 +Ba(0, λt)

)−α2(p)(
1 +Ba(0, t)

)n/4+1

a2(λt)︸ ︷︷ ︸
B̄2

+

∫ t

λt

(
1 +Ba(0, t)

)n/4+1(
1 +Ba(0, s)

)α2(p)
a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)︸ ︷︷ ︸

B̄3

.

Since α2(p) = α1(p) + n/4 we may conclude that

B̄1 = Ḡ1(t)
(
1 +Ba(0, t)

)−1/2
A(t)−ε .

(
1 +Ba(0, t)

)−1/2
A(t)−ε . 1.

In order to prove that B̄2 and B̄3 are uniformly (with respect to t → ∞) upper bounded by a
constant it su�ces to show that for r > 1 we have

B̄2 .
(
1 +Ba(0, λt)

)−r
.
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For this reason we consider the monotonicity of the following function:

Ḡ2(t) :=

(
1 +Ba(0, λt)

)−α2(p)+r(
1 +Ba(0, t)

)n/4+1

a2(λt)
.

We form the �rst derivative of this function and take account of µ(t) = A2(t)/θ(t) to obtain

Ḡ′2(t) =

((n
4

+ 1
)a(t)A(t)

µ(t)

(
1 +Ba(0, λt)

)
− (α2(p)− r)λ

(
1 +Ba(0, t)

)a(λt)A(λt)

µ(λt)

−2λ
a′(λt)

a(λt)

(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)) (1 +Ba(0, t)
)n/4(

1 +Ba(0, λt)
)−α2(p)+r−1

a(λt)2

≤
((n

4
+ 1
)a(t)θ(t)

A(t)
θ(λt) logA(λt)− (α2(p)− r)λ

2 + β

a(λt)θ(λt)

A(λt)
θ(t) logA(t)− 2λa0

(2 + β)2

× a(λt)

A(λt)

(
θ(t) logA(t)

)(
θ(λt) logA(λt)

)) (1 +Ba(0, t)
)n/4(

1 +Ba(0, λt)
)−α2(p)+r−1

a(λt)2

≤
((n

4
+ 1
) a(t)

A(t)

A(λt)

a(λt)

1

logA(t)
− (α2(p)− r)λ

2 + β

1

logA(λt)
− 2λa0

(2 + β)2

)
a(λt)

A(λt)
θ(t)θ(λt)

× logA(t) logA(λt)
(
1 +Ba(0, t)

)n/4(
1 +Ba(0, λt)

)−α2(p)+r−1
a(λt)−2.

Now, the supposed strictly decreasing behavior of the function a(t)
A(t)

A(λt)
a(λt)

1
logA(t) implies Ḡ′2(t) < 0

for large t. Summarizing we have shown for j = 1, l = 0 the desired inequality

B .
(
1 +Ba(0, t)

)−n/4−1/2
. (5.2.77)

Analogously, for j = 0 and l = 1 we can prove

b(t)

a2(t)

(
1 +Ba(0, t)

)n/4+1
B .

log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)−α2(p)(
1 +Ba(0, t)

)n/4+1

a2(λt)︸ ︷︷ ︸
D2

+

∫ t

λt

log
(
1 +Ba(0, t)

)(
1 +Ba(0, t)

)n/4+1(
1 +Ba(0, s)

)α2(p)
a2(s)

d
(
1 +Ba(0, s)

)
1 +Ba(0, s)︸ ︷︷ ︸

D3

.

After applying the rule of l'Hospital it follows

lim sup
t→∞

log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)r = lim sup
t→∞

a(t)
A(t)θ(t)

rλ
(
1 +Ba(0, t)

) a(λt)
A(λt)θ(λt)

(
1 +Ba(0, λt)

)r−1

≈ lim sup
t→∞

a(t)
A(t)θ(t)

rλ
(
θ(t) logA(t)

) a(λt)
A(λt)θ(λt)

(
1 +Ba(0, λt)

)r−1

≈ lim sup
t→∞

a(t)

A(t)

A(λt)

a(λt)

1

θ(λt) logA(t)

1(
1 +Ba(0, λt)

)r−1 . 1. (5.2.78)

Thus, we get

D2 =
log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)r Ḡ2(t) .
log
(
1 +Ba(0, t)

)(
1 +Ba(0, λt)

)r . 1
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for large t. Finally, after using the change of variables y = 1 +Ba(0, s) it follows

D3 . log
(
1 +Ba(0, t)

) ∫ 1+Ba(0,t)

1+Ba(0,λt)

dy

y1+r
=

log
(
1 +Ba(0, t)

)
r
(
1 +Ba(0, λt)

)r − log
(
1 +Ba(0, t)

)
r
(
1 +Ba(0, t)

)r . 1.

Here we use that B̄3 contains B̄2 and (5.2.78). This implies

B .
a2(t)

b(t)

(
1 +Ba(0, t)

)−(n/4+1)
. (5.2.79)

From (5.2.76), (5.2.77) and (5.2.79) we obtain

B .

(
a2(t)

b(t)

)l (
1 +Ba(0, t)

)−(n/4+j/2+l)
. (5.2.80)

Thanks to (5.2.74) and (5.2.80) we can conclude the statement (5.2.51). In this way our Theorem
5.2.9 is proved.

Example 5.2.8. If we choose a(t) = etee
t
, then we have A(t) = ee

t
. So, a0 = 1 and ν(λ) = ∞. Let

us choose µ(t) as in the Example 5.2.3, that is,

µ(t) = e2et/eβt or e2et/ log(e+ t), for β > 0.

Thus, applying Theorem 5.2.9 we see that the condition (5.2.69) is satis�ed. Indeed,

ν(λ, t)

logA(t)
=
etee

t

eet
ee
λt

eλteeλt
1

et
=

1

eλt
.

So, we have global existence of small data solutions for
2 ≤ p if n = 1, 2,
2 ≤ p ≤ 3 = pGN (3) if n = 3,
p = 2 = pGN (4) if n = 4.

(5.2.81)

Example 5.2.9. If we choose a(t) = etee
t
ee
et

, then we have A(t) = ee
et

. So, a0 = 1 and ν(λ) = ∞.
Let us choose functions µ(t) satisfying the assumption (R2), for example,

µ(t) = e2ee
t

/eβe
t
or e2ee

t

/ log(e+ t), for β > 0.

Thus, applying Theorem 5.2.9 we see that the condition (5.2.69) is satis�ed. Indeed,

ν(λ, t)

logA(t)
=
etee

t
ee
et

eee
t

ee
eλt

eλteeλteee
λt

1

eet
=

et

eλteeλt
.

So, we have global existence of small data solutions for
2 ≤ p if n = 1, 2,
2 ≤ p ≤ 3 = pGN (3) if n = 3,
p = 2 = pGN (4) if n = 4.

(5.2.82)
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6. Concluding remarks and open questions

6.1. Linear theory

6.1.1. Modi�ed Scattering

We try to establish if there exists a relation between the solution u = u(t, x) of

utt − a(t)2∆u+ b(t)ut = 0, u(0, ·) = u1, ut(0, ·) = u2 (6.1.1)

and the solution v = v(t, x) of

vtt − a(t)2∆v = 0, v(0, ·) = v1, vt(0, ·) = v2 (6.1.2)

not only in the case of scattering dissipation b(t)ut with b(t) ∈ L1(R+) but also in the case of
non-e�ective dissipation. Our basic idea is that we will construct a Møller wave operator which
relates (u1, u2) to (v1, v2). The key idea is to multiply the representation E(t, ξ) which respect to
(6.1.1) and the representation Ea(t, ξ) with respect to (6.1.2) by the decay rate λ(t)√

a(t)
.

Theorem 6.1.1 (Conjecture). Assume (A1), (A2), (A3)l with l ≥ 1 to a(t) and (B1), (B2), (B3)
or (B3)′ to b(t) and (C). Then the operator

W+(D) = lim
t→∞

λ(t)√
a(t)

(
Ea(t,D)

)−1
E(t,D)

exists in L2(Rn)→ L2(Rn) and its symbol satis�es

W+(ξ) =
1√
a(tξ)

(
Ea(tξ, ξ)

)−1
MQk(∞, tξ, ξ)N−1

k (tξ, ξ)M
−1λ(tξ)E(tξ, ξ)

for all 1 ≤ k ≤ l, such that the asymptotic of solutions of the problem (6.1.1) and (6.1.2) satisfy

1√
a(t)
‖Ea(t, ξ)

(
〈ξ〉v1, v2

)T − E(t, ξ)
(
〈ξ〉u1, u2

)T ‖L2 → 0

as t→∞.

6.1.2. Energy estimates of higher order

In the thesis we did not study estimates for energies of higher order. Here we propose Lp − Lq-
estimates for derivatives of the solutions for the non-e�ective dissipation case.

Theorem 6.1.2 (Conjecture). Assume (A1) to (A3)l, (B1), B(2)l, (B3) or (B3)′ together with
(C). Then the Lp − Lq estimate

‖Dl
tD

α
xu(t, ·)‖Lq .

√
a(t)

λ(t)
A(t)

−n−1
2

(
1
p
− 1
q

)(
‖u1‖Lp,l+r+|α| + ‖u2‖Lp,l+r+|α|−1

)
holds for dual indices pq = p+ q, p ∈ (1, 2] and regularity r = n

(
1
p −

1
q

)
.
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For the e�ective dissipation case, there are two conjectured theorems with respect two cases of
monotonic function µ(t)/A(t):

Theorem 6.1.3 (Conjecture). Assume (A1) to (A3)l, (B′1), (B′2)l, (B′3) together with µ(t)
A(t) is

decreasing function. Then the L2 − L2 estimate

‖Dl
tD

α
xu(t, ·)‖ .

(a2(t)

b(t)

)l(
1 +

∫ t

0

a2(τ)

b(τ)

)− |α|
2
−l(
‖u1‖Hl+|α| + ‖u2‖Hl+|α|−1

)
holds for all k ≥ l.

Theorem 6.1.4 (Conjecture). Assume (A1) to (A3)l, (B′1), (B′2)l, (B′3) together with µ(t)
A(t) is

increasing function. Then the L2 − L2 estimate

‖Dl
tD

α
xu(t, ·)‖ . a2(t)

b(t)

( a(t)

A(t)

)l−1(
1 +

∫ t

0

a2(τ)

b(τ)

)− |α|+l
2
(
‖u1‖Hl+|α| + ‖u2‖Hl+|α|−1

)
holds for all k ≥ l ≥ 1.

6.2. Non-linear theory

6.2.1. Blow-up behavior of semi-linear models with e�ective dissipation

Still open is the question for the blow-up behavior of solutions to the Cauchy problem for damped
waves with time dependent speed of propagation and dissipation in the general case

utt + a2(t)∆u+ b(t)ut = f(u), u(0, ·) = u0, ut(0, ·) = u1. (6.2.1)

An e�ort has been done for proving not only the global existence for (6.2.1) but also the blow-up
behavior for this model. Todorova and Yordanov [T-Y01] and Zhang [Zha01], have handled the
case a(t) = b(t) ≡ 1, f(u) ≈ |u|p. These authors proved that the Fujta exponent pc = 1 + 2/n
is the critical exponent. The modi�ed test function method is an e�ective tool to prove blow-up
in the parabolic like case a(t) ≡ 1, f(u) ≈ |u|p and b(t) = b0(1 + t)β , with |β| < 1, the exponent
pc = 1 + 2/n is still critical exponent, see J. Lin-K. Nishihara-J. Zhai [LNZ12]. For more general
cases a(t), b(t) we refer to the paper D'Abbicco and Lucente [D-L12] for blow-up results.

6.3. Abstract problems

The main idea is to understand qualitative properties of solutions to the abstract Cauchy problem

utt + a(t)Au+ b(t)Aσut = 0, u(0) = u0, ut(0) = u1,

where A is a self-adjoint operator on a Hilbert space X, strictly positive, with dense domain D(A).
The term Aσut describes a class of damping terms, if σ = 0, it describes the external damping, if
σ ∈ (0, 1], it describes the structural damping, the case σ = 1 is called visco-elastic damping. The
coe�cient a = a(t) describes in some cases a propagation speed of waves and b(t)Aσut describes
a damping e�ect. In connection with the long time behavior of a(t) up to ∞, here decreasing or
increasing or oscillating behaviors are of interest. The case a = b ≡ 1 was studied in a paper of Chen
and Russel [C-R82]. In particular, the case σ = 0 was motivated by Matsumura [Mat76], while in
the case σ = 1 we can cite, for example, the papers of Ponce [Pon85], Shibata [Shi00], Ikehata-
Todorova-Yordanov [ITY13b], Ikehata-Natsume [I-N12]. For the case a ≡ 1 abstract scattering
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results and the di�usion phenomenon are well understood in a series of papers K. Yagdjian [Ya05],
[Ya06] and J. Wirth [W07b]. In a recent paper, X. Lu-M. Reissig [L-R09], energy estimates are
derived for solutions to the Cauchy problem

utt −∆u+ b(t)(−∆)σut = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

6.4. Damped wave models with decreasing speed of propagation

In the future we are interested in the following Cauchy problem:

utt + a2(t)∆u+ b(t)ut = f(u), u(0, ·) = u0, ut(0, ·) = u1,

where a(t) is a decreasing function. Our studies are motivated by the papers Galstian [Gal03] for
the special linear model with a(t) = (1 + t)−l, a(t) = e−t and the paper X. Gang, Y. Huicheng
[G-H13].

6.5. Wave models with time-dependent and spatial-dependent

coe�cients

It seems to be reasonable to attack the Cauchy problem with the dissipation term depending on
time and spatial variables

utt + a2(t)∆u+ b(t, x)ut = f(u), u(0, ·) = u0, ut(0, ·) = u1. (6.5.1)

A main goal of this issue could be to �nd suitable conditions for coe�cients a and b, suitable function
spaces for the right-hand side and spaces for initial data (u1, u2) such that we can obtain the critical
exponent power pcrit. Let us introduce here papers which contain some notable approaches to reach
our goal. Firstly, we start with the Cauchy problem (6.5.1) without right-hand side and a ≡ 1. An
approach to handle coe�cients depending on t and x bases on so-called weighted energy inequalities
and was used in the papers of Matsumura, [Mat77], Hirosawa and Nakazawa, [H-N03]. These results
provide L2 − L2-estimates under the assumption

b(t, x) ≥ b0 > 0

for large values of |x|. In the papers of Mochizuki-Nakazawa, [M-N96], Uesaka, [Ues80], they
discussed energy decay estimates with the weaker e�ective assumption for large x

b(t, x) ≥ b0(1 + t+ |x|)−1 > 0.

Recently, Todorova-Yordanov [T-Y09] treated the case b(t, x) = b0(1 + |x|)−α with α ∈ [0, 1). After
that, Ikehata-Todorova-Yordanov [ITY13a] have the optimal decay estimate for the critical case
b(t, x) = b0(1 + |x|)−1 (α = 1).
Now, let us turn back to the case of right-hand side f(u(t, x)) = |u(t, x)|p. When the coe�cient
b(t, x) is constant, in two papers of Todorova-Yordanov [T-Y00, T-Y01], the authors have shown
that the critical exponent is pcrit = pc(N) = 1 + 2/N , where N is the dimension. For the case
b(t, x) > 0 and b(t, x) ∼ b0(1 + |x|)−α for large values of |x| and α ∈ [0, 1) in the paper of Ikehata-
Todorova-Yordanov [ITY09] they have proved that the critical exponent is

pcrit = pc(N,α) = 1 +
2

N − α
.

For the case α ≥ 1 this problem is still open.
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A. Notation

A.1. General notation in thesis

We will introduce here some notions that appear throughout our thesis. We use C to denote an
arbitrary constant. The exact value denoted by C may change from line to line in a given com-
putation. The big advantage is that our calculations will be simpler looking, since we continually
absorb �extraneous� factors into the term C. In formulas, the brackets [, (, { are used without
special meaning, {·} is also used to denote sets. Bracket symbols with special meaning are

〈·〉 this Japanese bracket stands for 〈x〉 =
√

1 + |x|2,
d·e denotes the smallest integer larger then a given number, dxe = min{m ∈

Z, s.t. x ≤ m},
| · | denotes the absolute value of a scalar expression,
‖ · ‖ stands for a vector or a matrix norm, in our thesis we prefer to use the

row sum norm,(
| · |
)

denotes for a matrix the matrix of the absolute values of its entries,
‖ · ‖p stands for ‖ · ‖Lp ,
‖ · ‖p,r stands for ‖ · ‖Lp,r ,
trA denotes the trace of matrix A, i.e, the sum of the diagonal entries of the

diagonal matrix A.

For the derivatives we use the following notations:

Dxi stands for −ı∂xi , with i = 1, . . . , n, for x ∈ Rn,
Dt stands for −ı∂t, t ∈ R+,

D stands for −ı∇x = −ı
(
∂x1 , ∂x2 , . . . , ∂xn

)T
for x ∈ Rn,

∂αx stands for ∂α1
x1
∂α2
x2
. . . ∂αnxn with a multi-index α =

(
α1, α2, . . . , αn

)T
,

where each component αi is a non-negative integer and |α| = α1 + α2 +
· · ·+ αn,

∆ denotes the Laplace operator with respect to x ∈ Rn: ∆x = ∂2
x1

+ · · ·+
∂2
xn .

Furthermore, we use the following asymptotic relations

f . g if there exists a positive constant C1 such that f ≤ C1g for all arguments,
f & g if there exists a positive constant C2 such that f ≥ C2g for all arguments,
f ∼ g if f . g and f & g,

f = O(g) denotes that lim supx→∞

∣∣∣f(x)
g(x)

∣∣∣ = 0,

f = O(g) denotes that lim supx→∞

∣∣∣f(x)
g(x)

∣∣∣ <∞.
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A.2. Function spaces

We introduce here function spaces which are frequently used within thesis with a short de�nition:

Ck(Rn) space of k-times continuously di�erentiable functions,
C∞(Rn) space of in�nitely continuously di�erentiable functions,
C∞0 (Rn) space of functions belonging to C∞(Rn) with compact support,
D′(Rn) space of distributions, continuous dual space to C∞0 (Rn),
Lp(Rn) Lebesgue spaces with 1 ≤ p ≤ ∞,
Lploc(R

n) Lploc(R
n) := {u : Rn → R : u ∈ Lp(U) for each U ⊂⊂ Rn},

Lp,r(Rn) Bessel potential space, Lp,r(Rn) := 〈D〉−rLp(Rn), 1 ≤ p <∞, r ∈ R,
L̇p,r(Rn) Riesz potential space, L̇p,r(Rn) := |D|−rLp(Rn), 1 ≤ p <∞, r ∈ R,
Hs(Rn) Sobolev space based on L2(Rn), Hs(Rn) = L2,s(Rn),
Hs(Rn) special Riesz potential space, Ḣs(Rn) = L̇2,s(Rn),
S(Rn) Schwartz space of rapidly decreasing functions, S(Rn) = {f ∈ C∞(Rn) :

supx∈Rn |xα∂
β
xf(x)| <∞, ∀α, β},

S0(Rn) space of Schwartz functions satisfying S0(Rn) = {f ∈ S(Rn) : Dα
ξ f̂(0) =

0,∀α},
W p,r(Rn) Sobolev space based on Lp(Rn) with parameters r ≥ 0,
Mp
q (Rn) space of multipliers with parameters 1 ≤ p, q ≤ ∞ correspond to Lp →

Lq.

A.3. Symbols used throughout the thesis

In order to make a convenience for the readers we pick and choose some of symbols are often used
in our thesis. The following list we will introduced some most important de�nitions and symbols
in a short way. If the symbols are related to a particular chapter, we give also the corresponding
reference.
Assumptions are used in this thesis:

(A1) a(t) > 0, a′(t) > 0, for t ∈ [0,∞)

(A2) a0
a(t)

A(t)
≤ a′(t)

a(t) ≤ a1
a(t)

A(t)
, a0, a1 > 0

(A3) |a′′(t)| ≤ a2a(t)
(
a(t)
A(t)

)2
, a2 ≥ 0

(A4) t+C/
√
a(t) is strictly increasing with a positive constant C

and for large t,

(A)k |a(j)(t)| ≤ aja(t)
(
a(t)
A(t)

)j
, aj ≥ 0, j = 1, 2, . . . , k

(A)∞ (A)∞ := (A)k as k →∞
(B1) b(t) > 0, b /∈ L1(R+)

(B2) |µ′(t)| ≤ Cµµ(t) a(t)
A(t)

(B2)∞ |µ′(t)| ≤ Ckµ(t)
(
a(t)
A(t)

)k
, k = 1, 2, . . .

(B3) lim supt→∞ µ(t) < 1

(B3)' lim inft→∞ µ(t) > 1

(C) lim supt→∞
(
µ(t) + α(t)

)
< 2

(B'1) b(t) > 0
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(B'2)
∣∣dkt µ(t)

∣∣ ≤ Ckµ(t)
(
a(t)
A(t)

)k
for k = 1, 2

(B'3) µ(t)/A(t) is monotonic and µ(t)→∞ as t→∞
(B'4) a2(t)/b(t) = a(t)A(t)/µ(t) /∈ L1(R+).

(B'5) a2(t)
A2(t)b(t)

∈ L1(R+)

(OD)
∫∞

0
a2(τ)
b(τ) dτ <∞

(S1) a2(t)
b(t)A2(t)

∈ L1(R+)

Tab. A.1.: Summarizing assumptions in thesis

Symbols are used throughout our thesis:

α(t) a′(t)
a(t) =: α(t) a(t)

A(t) ,

A(t) A(t) = 1 +
∫ t

0 a(τ)dτ ,

λ(t) λ(t) = exp
(1

2

∫ t
0 b(τ)dτ

)
,

δ(t) δ(t) = a(t)/A(t),
η(t) η(t) = µ(t)/A(t), η∞ = limt→∞ η(t),

ν(λ, t) ν(λ, t) = a(t)
A(t)

A(λt)
a(λt) , ν(λ) = limt→∞ ν(λ, t),

〈ξ〉b(t) 〈ξ〉b(t) =
√∣∣|ξ|2 − b2(t)/4

∣∣ (Section 3.3),

Ec(u)(t) the free wave energy, Ec(u)(t) = 1
2

∫ (
c2|∇u(t, x)|2 + |ut(t, x)|2

)
dx,

E(u)(t) the energy, E(u)(t) = 1
2

∫ (
a(t)2|∇u(t, x)|2 + |ut(t, x)|2

)
dx,

U(t, ξ) micro-energy, U =
(
Nδ(t)û, Dtû

)T
. We use this de�nition for both

zones:Zpd in Chapter 2 and Zdiss in Chapter 3. U =
(
a(t)|ξ|û, Dtû

)T
for

all Zhyp in these Chapters. Moreover, DtU = A(t, ξ)U ,
E(t, s, ξ) fundamental solution to DtU = A(t, ξ)U , i.e. the matrix-valued solution

to DtE = A(t, ξ)E, E(s, s, ξ) = I,
E0(t, s, ξ) fundamental solution to, DtE0 = (D(t, ξ) + F0(t))E0, E0(s, s, ξ) = I,
Ea(t, s, ξ) fundamental solution to, DtEa = (D(t, ξ) +Ra(t))Ea, Ea(s, s, ξ) = I,
Ek(t, s, ξ) fundamental solution of the system after k steps of diagonalization, k ≥

1, is used to obtain Lp − Lq-estimates in Section 4.1,
v(t, x) v(t, x) = λ(t)u(t, x), is used in Section 3.3

V (t, ξ) micro-energy, V (t, ξ) =
(
〈ξ〉b(t)v̂, Dtv̂

)T
,

EV (t, s, ξ) fundamental solution to the system DtV = A(t, ξ)V Section 3.3,
EV,1(t, s, ξ) fundamental solution of the system after the �rst step of diagonalization

in the elliptic zone, Subsection 3.3.3.
Tab. A.2.: Summarizing symbols are used in thesis
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B. Basic tools

B.1. Bessel functions

In part 2 of Chapter 2 we have transformed our partial di�erential equation to Bessel's equation
in order to represent solutions explicitly. For this reason we introduce here some formulae used
throughout the calculations in this thesis. Bessel functions are the canonical solutions y(x) of
Bessel's di�erential equation

x2y′′ + xy′ + (x2 − α2)y = 0 (B.1.1)

for an arbitrary complex number α (the order of the Bessel function). There are several ways to
de�ne the Bessel functions. We introduce �rstly Bessel functions of the �rst kind Jα:

Jα =
∞∑
k=0

(−1)k

k!Γ(k + α+ 1)

(x
2

)2k+α
. (B.1.2)

On the one hand, for non-integer α, the functions Jα(x) and J−α(x) are linearly independent, and
are therefore two linear independent solutions of the di�erential equation. On the other hand, for
integer order α, the following relationship is valid:

J−n(x) = (−1)nJn(x).

The Bessel functions of the second kind, denoted by Yα(x), occasionally denoted instead by Nα(x),
are solutions of the Bessel di�erential equation that have a singularity at the origin (x = 0). These
are sometimes called Weber functions due to Heinrich Martin Weber. One de�nes for non-integer
α, Yα(x) is related to Jα by:

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
. (B.1.3)

The Bessel functions of third kind or Hankel functions which are de�ned due to N. Nielsen as

H±α (x) = Jα(x)± ıYα(x). (B.1.4)

We collect here some important properties:

H±α−1(x) +H±α+1(x) =
2α

x
H±α (x), (B.1.5)

H±α−1(x)−H±α+1(x) = 2
(
H±α+1

)′
(x), (B.1.6)

αH±α (x) + x
(
H±α
)′

(x) = xH±α−1(x), (B.1.7)

αH±α (x)− x
(
H±α
)′

(x) = xH±α+1(x). (B.1.8)

All this de�nitions and properties one can see in [Wat22] or in many other books about Bessel
functions.
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B.2. Bessel potential spaces and multiplier spaces

The Bessel potential space Lp,r(Rn), 1 ≤ p <∞, r ∈ R, can be de�ned as the space of functions (or

distributions) u such that
(
I −∆

)r/2
u belongs to the Lebesgue space Lp(Rn) and is endowed with

the corresponding Lebesgue norm. The operator
(
I −∆

)r/2
, which for r > 0 is a kind of fractional

di�erentiation, is most easily de�ned by means of the Fourier transform. In fact, it corresponds to
multiplication of the Fourier transform of f by (1 + |ξ|2)r/2. For the sake of clarity, we now de�ne
the Bessel potential space [AH96] as follows:

Lp,r(Rn) :=
{
f : f = (I −∆

)−r/2 ∗ g, g ∈ Lp(Rn)}. (B.2.1)

In various of lecture books it is shown that C∞0 (D) and S are dense in Lp,r. It is a theorem of
A.P. Calderón [Cal61] that for positive integers r and 1 < p < ∞ the space Lp,r coincides (with
equivalence of norms) with the Sobolev space W p,r, that is

Lemma B.2.1 (A. P. Calderón). For r ∈ N, 1 < p < ∞ we have W p,r(Rn) = Lp,r(Rn) with

equivalence of norms, i.e., there is a constant C such that for all f

C−1‖f‖Lp,r ≤ ‖f‖W p,rC‖f‖Lp,r .

In order to obtain Lp − Lq-estimates in this thesis we have used a dyadic decomposition and
stationary phase method. The basic idea here is the following version of Littman's lemma taken
from the paper of P. Brenner and Pecher, [Bre75, Pec76]. We can conclude the following estimate.

Lemma B.2.2. Let us assume that K = K(t) is a real-valued function and Let P be a real and

smooth function in the neighborhood of suppφ(t, ξ), φ(t, ξ) ∈ C∞0 (Rnξ ). Assume further, that the

rank of the Hessian HP (ξ) = (∂P/∂ξi∂ξi) is at least ρ on suppφ. Then, there exists an integer M ,

depending on the space dimension, and a constant C > 0, depending on bounds of derivatives of P
on suppφ, such that

‖F−1
(
eıK(t)P (ξ)φ(t, ξ)

)
‖∞ ≤ C

(
1 +K(t)

)−n−1
2

∑
|α|≤M

‖Dα
ξ φ(t, ξ)‖∞

holds with a constant C independent of t and ξ.

On the other hand, to handle the Lp − Lq-estimates we often use the Riesz-Thorin interpolation
theorem, see e.g. in the book of E.M. Stein on singular integrals, [Ste70] or in the lectures of Racke,
[Rac92].

Lemma B.2.3. Let the linear operator T satisfy

T : Wn,1 −→ L∞, bounded with norm X0,

T : L2 −→ L2, bounded with norm X1.

There exists a constant C = C(p, n) such that

T : WN,p −→ Lq, bounded with norm X ≤ CX1−θ
0 Xθ

1

with 1 < p < 2, pq = p+ q, θ = 2/q, N > n(1− θ) and N ∈ N.

Next, we introduce lemmas which help us to estimate the dyadic components. We refer to Lemma
3 in the work by Brenner, [Bre75]. Therefore, we can list up here some important properties which
are related to interpolation theorems.
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Lemma B.2.4. Let us assume φ ∈ L1.

1. If ‖F−1(φ)‖∞ ≤ C0, then ‖F−1
(
φF (u)

)
‖∞ ≤ C0‖u‖1.

2. If ‖φ‖∞ ≤ C1, then ‖F−1
(
φF (u)

)
‖2 ≤ C0‖u‖2.

3. If ‖F−1(φ)‖∞ ≤ C0 and ‖φ‖∞ ≤ C1, then ‖F−1
(
φF (u)

)
‖q ≤ CC1−θ

0 Cθ1‖u‖p with 1 ≤ p ≤ 2,
pq = p+ q and θ = 2/q.

Now, we can summarize Lemma 1 and Lemma 2 in Brenner's paper, [Bre75]. Therefore, let us
assume χ ∈ C∞0 to be non-negative with support contained in [1/2, 2] and

∞∑
j=−∞

χ
(
2jr
)

= 1, r 6= 0.

This functions form a so-called dyadic decomposition. The basic idea of the proof are embedding
relations between Lebesgue and Besov spaces.

Lemma B.2.5. Let φ ∈ L∞(Rn) and assume that

‖F−1
(
φ(ξ)χj(ξ)v̂

)
‖q ≤ C‖v‖p

holds uniform for all j and p ∈ (1, 2], pq = p+q. Then for a constant M independent of φ it follows

‖F−1
(
φ(ξ)v̂

)
‖q ≤MC‖v‖p.

For completeness of this section we just introduce very brie�y the multiplier spaces M q
p which were

treated in the paper of L. Hörmander, [Hör60]. The multiplier space M q
p is de�ned as the set of all

Fourier transforms F (f) of distributions f ∈ Lqp, and the elements F (f) ∈M q
p are called multipliers.

Here Lqp is the set of all distributions f ∈ S ′ with

‖f ∗ u‖q ≤ C‖u‖p

for all u ∈ S.

B.3. Further lemmas and useful calculations

Gronwall's inequality. There are two forms of the lemma, a di�erential form and an integral
form. The di�erential form was proven by Grönwall in 1919, [Gro19]. The integral form was proved
by Richard Bellman in 1943, [Bel43]. In our thesis, Gronwall's inequality is a useful tool for energy
estimates.

Lemma B.3.1 (Integral form). Let I denote an interval of the real line of the form [a,∞) or [a, b]
or [a, b) with a < b. Let α, β and u be real-valued functions de�ned on I. Assume that β and u are

continuous and that the negative part of α is integrable on every closed and bounded sub-interval of

I.

(a) If β is non-negative and if u satis�es the integral inequality

u(t) ≤ α(t) +

∫ t

a
β(s)u(s) ds, ∀t ∈ I,

then

u(t) ≤ α(t) +

∫ t

a
α(s)β(s) exp

(∫ t

s
β(r) dr

)
ds, t ∈ I.
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(b) If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a
β(s) ds

)
, t ∈ I.

Furthermore, in our thesis we often have to handle homogeneous linear systems of ordinary di�er-
ential equations

DtU = A(t)U (B.3.1)

with t ∈ R+. It is well-known, that the Peano-Baker formula can be used for the representation of
the fundamental solution. This approach goes back to Peano, [Pea88], and was further developed
by Baker, [Bak05]. The explicit integral expansions (Peano-Baker series) one can see in Sec. 16.5
of the book of E.L. Ince, [Inc56].

Lemma B.3.2. Let A ∈ L1
loc(R,Cn×n). Then the fundamental solution E(t, s) to ∂t−A(t) is given

by the Peano-Baker formula

E(t, s) = I +
∞∑
k=1

∫ t

s
A(t1)

∫ t1

s
A(t2)· · ·

∫ tk−1

s
A(tk)dtk · · · dt2dt1.

The proof follows by di�erentiating the series term by term.

Corollary B.3.3. Let A ∈ L1
loc(R,Cn×n). Then the fundamental matrix E(t, s) satis�es

‖E(t, s)‖ ≤ exp
{∫ t

s
‖A(τ)‖dτ

}
.

In order to guarantee the invertibility of the fundamental solution which arises from estimates in
scattering results or statements about asymptotic behavior of fundamental solution it is convenient
to use the Liouville's formula in the following form.

Lemma B.3.4. Let us assume that E(t, s) is a matrix-valued solution of the system (B.3.1). Then

detE(t, s) = detE(s, s) exp
(
i

∫ t

s
trA(τ)dτ

)
for 0 ≤ s ≤ t.

A proof for this lemma one may found in standard text-books on di�erential equation, for instance,
V. I. Arnold, [Arn01], or Chicone, [Chi06].
Faà di Bruno's formula. Perhaps the most well-known form of Faà di Bruno's formula, F. d.
Bruno [Bru55, Bru57], says the following:

Lemma B.3.5. Let f(g(x)) = (f ◦ g)(x) with x ∈ R. Then we have

dn

dxn
f(g(x)) =

∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
· f (m1+···mn)(g(x)) ·

n∏
j=1

(
g(j)(x)

)mj , (B.3.2)

where the sum is taken over all n-tuples of non-negative integers (m1, . . . ,mn) satisfying the con-

straint

1 ·m1 + 2 ·m2 + · · ·n · · ·mn = n.
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Amultivariate version of Faà di Bruno's formula, Constantine-Savits [C-S96], Leipnik-Pearce [L-P06],
is given in the next statement.

Lemma B.3.6. Let y = g(x1, . . . , xn). Then the following identity holds regardless of whether the

n variables are all distinct, or all identical, or partitioned into several distinguishable classes of

indistinguishable variables

∂n

∂x1 · · · ∂xn
f(y) =

∑
π∈Π

f (|π|)(y) ·
∏
B∈π

∂|B|y∏
j∈B ∂xj

, (B.3.3)

where

• π runs through the set Π of all partitions of the set {1, . . . , n},

• B ∈ π means the variable B runs through the list of all of the �blocks� of the partition π, and

• |A| denotes the cardinality of the set A (so that |π| is the number of blocks in the partition π
and |B| is the size of the block B).

Let us give some generalizations of the formula of Faà di Bruno for a composite function with a
vector argument, see Mishkhov [Mis00].

Lemma B.3.7. If f and t are scalars, x(t) = [x1(t), x2(t), . . . , xr(t)]
T is an r-vector and f(x(t)) is

a composite function for which all the necessary derivatives are de�ned. Then

Dnf(x(t)) =
∑

0

∑
1

· · ·
∑
n

C(n, ki, qij)
∂kf

∂x1
p1∂x2

p2 · · · ∂xrpr
n∏
i=1

(
xi1
)qi1(xi2)qi2 · · · (xir)qir , (B.3.4)

where the respective sums are taken over all non-negative integer solutions of the Diophantine equa-

tions as follows: ∑
0

→ k1 + 2k2 + . . . nkn = n,∑
1

→ q11 + q12 + · · ·+ q1r = k1,

...∑
n

→ qn1 + qn2 + · · ·+ qnr = kn,

and the di�erential operator D = d/dt, pj-the order of the partial derivative with respect to xj, k-the
order of the partial derivative are

pj = q1j + q2j + · · ·+ qnj , j = 1, 2, . . . , r,

k = p1 + p2 + · · ·+ pr = k1 + k2 + . . .+ kn.

Gagliardo-Nirenberg inequality. The Gagliardo�Nirenberg inequality is a result in the theory
of Sobolev spaces that estimates the weak derivatives of a function. The meaning of this inequality
is the estimates are in terms of Lq norms of the function can be estimated by its derivatives, and
these one interpolates among various values of q and orders of di�erentiation. See Part 1 in A.
Friedman [Fri76]
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Lemma B.3.8. The inequality concerns functions u : Rn −→ R. Fix 1 ≤ p, r ≤ ∞ and a natural

number m. Suppose also that a real number a and a natural number j are such that

1

q
=
j

n
+

(
1

r
− m

n

)
a+

1− a
p

and
j

m
≤ α ≤ 1.

Then

1. every function u : Rn −→ R that lies in Lp(Rn) with mth derivative in Lr(Rn) also has jth

derivative in Lq(Rn),

2. and, furthermore, there exists a constant C depending only on m, n, j, q, r and a such that

‖Dju‖Lq ≤ C‖Dmu‖aLr‖u‖1−aLp .

The result has two exceptional cases:

1. If j = 0,mr < n and p = ∞, then it is necessary to make the additional assumption that

either u tends to zero at in�nity or that u lies in Ls for some �nite s > 0.

2. If 1 < r < ∞ and m− j − n/r is a non-negative integer, then it is necessary to assume also

that a 6= 1.

If we choose j = 0,m = 1 and r = p = 2, then we obtain

‖u‖Lq ≤ C‖∇u‖θ(q)L2 ‖u‖
1−θ(q)
L2 .
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