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Abstract 

The	usage	of	more	 inexpensive	 silicon	 feedstock	 for	 the	 crystallization	of	multicrystalline	

silicon	 blocks	 promises	 cost	 reduction	 for	 the	 photovoltaic	 industry.	 Less	 expensive	

substrates	made	out	of	metallurgical	 silicon	 (MG-Si)	are	used	as	a	mechanical	 support	 for	

the	epitaxial	 solar	 cell.	Moreover,	 conventional	 inert	 solar	cells	can	be	produced	 from	up-

graded	metallurgical	silicon	(UMG-Si).	This	feedstock	has	higher	content	of	impurities	which	

influences	cell	performance	and	mechanical	strength	of	the	wafers.	Thus,	it	is	of	importance	

to	know	these	effects	in	order	to	know	which	impurities	should	be	preferentially	removed	

or	prevented	during	the	crystallization	process.	Solar	cell	processing	steps	can	also	exert	a	

change	 in	 the	 values	 of	 mechanical	 strength	 of	 processed	 multicrystalline	 silicon	 wafers	

until	the	fabrication	of	a	solar	cell.	

Bending	 tests,	 fracture	 toughness	 and	 dynamic	 elastic	 modulus	 measurements	 are	

performed	 in	 this	 work	 in	 order	 to	 research	 the	mechanical	 behavior	 of	multicrystalline	

silicon	crystallized	with	different	qualities	of	 silicon	 feedstock.	Bending	 tests	and	residual	

stress	 measurements	 allows	 the	 quantification	 of	 the	 mechanical	 strength	 of	 the	 wafers	

after	 every	 solar	 cell	 processing	 step.	 The	 experimental	 results	 are	 compared	 with	

theoretical	 models	 found	 in	 the	 classical	 literature	 about	 the	 mechanical	 properties	 of	

ceramics.	The	influence	of	second	phase	particles	and	thermal	processes	on	the	mechanical	

strength	of	silicon	wafers	can	be	predicted	and	analyzed	with	the	theoretical	models.	

Metals	 like	 Al	 and	 Cu	 can	 decrease	 the	mechanical	 strength	 due	 to	micro-cracking	 of	 the	

silicon	 matrix	 and	 introduction	 of	 high	 values	 of	 thermal	 residual	 stress.	 Additionally,	

amorphous	silicon	oxide	particles	 (SiOx)	 lower	 the	mechanical	strength	of	multicrystalline	

silicon	 due	 to	 thermal	 residual	 stresses	 and	 elastic	mismatch	with	 silicon.	 Silicon	 nitride	

particles	 (Si3N4)	 reduce	 fracture	 toughness	 and	 cause	 failure	 by	 radial	 cracking	 in	 its	

surroundings	 due	 to	 its	 thermal	mismatch	 with	 silicon.	 Finally,	 silicon	 carbide	 (SiC)	 and	

crystalline	 silicon	 oxide	 (SiOx)	 introduce	 thermal	 residual	 stresses	 but	 can	 have	 a	

toughening	 effect	 on	 the	 silicon	 matrix	 and	 hence,	 increase	 the	 mechanical	 strength	 of	

silicon	wafers	if	the	particles	are	smaller	than	a	certain	size.	

The	 surface	 of	 as-cut	 wafers	 after	 multi-wire	 sawing	 presents	 sharp	 micro-cracks	 that	

control	their	mechanical	behavior.	Subsequent	removal	of	these	micro-cracks	by	texture	or	

damage	 etching	 approximately	 doubles	 the	 mechanical	 strength	 of	 silicon	 wafers.	 The	

mechanical	 behavior	 of	 the	 wafers	 is	 then	 governed	 by	 defects	 like	 cracks	 and	 particles	

formed	 during	 the	 crystallization	 of	 multicrystalline	 silicon	 blocks.	 Further	 thermal	

processing	steps	have	a	minor	impact	on	the	mechanical	strength	of	the	wafers	compared	to	

as-cut	 wafers.	 Finally,	 the	 mechanical	 strength	 of	 final	 solar	 cells	 is	 comparable	 to	 the	

mechanical	 strength	 of	 as-cut	 wafers	 due	 to	 the	 high	 residual	 thermal	 stress	 introduced	

after	the	formation	of	the	metallic	contacts	which	makes	silicon	prone	to	crack.	
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1. Introduction 

This chapter describes the state of the art of the production of silicon from 

quartz for photovoltaic energy conversion. The energy consumption for 

obtaining silicon feedstock can be reduced by a metallurgical route for 

purifying silicon which is alternative to the conventional Siemens process. 

The silicon feedstock obtained by this alternative route is the so called “up-

graded metallurgical silicon” (UMG-Si). The usage of UMG-Si promises 

overall module cost reduction. However, UMG-Si has a higher content of 

impurities that can be disadvantageous for solar cell efficiency and for the 

mechanical behavior of silicon wafers. The aim of this work is the 

investigation of the influence of these impurities on the mechanical behavior 

of multicrystalline silicon through the whole solar cell value chain. 

1.1 Alternative Silicon Feedstock for the Photovoltaic Industry 

The	reasons	why	the	photovoltaic	market	is	expanding	its	capacity	for	electricity	generation,	

reaching	 the	 40	GW	worldwide	 in	 2010	 [1],	 are	 several.	 First,	 the	 sun	 is	 an	 inexhaustible	

source	of	energy	and	it	delivers	to	Earth	in	one	hour	the	amount	of	energy	used	by	humans	

in	a	year.	Also,	the	energy	consumption	and	emission	of	pollution	gases	in	the	production	of	

silicon	together	with	further	solar	cell	processes	and	the	installation	of	the	final	photovoltaic	

systems	is	calculated	to	be	“paid	back”	as	emission-free	electricity	after	approximately	four	

to	five	years	out	of	more	than	twenty	five	years	of	existence	[2].	Thus,	solar	energy	is	less	

pollutant	than	conventional	energy.	Solar	panels	have	a	long	lifetime	and	they	require	little	

maintenance	 and	 are	 portable.	 Another	 reason	 is	 that	 silicon,	 the	 basic	material	 used	 for	

photovoltaics	 (PV),	 is	 the	 best	 known	 semiconductor	material	 that	 has	 been	 used	 by	 the	

electronic	industry	since	the	late	fifties	until	today.	Thus,	photovoltaics	could	profit	from	the	

experience	and	knowledge	in	the	production	and	manufacturing	of	silicon	for	the	electronic	

industry.	 Silicon	 is	 the	 second	 most	 abundant	 element	 on	 Earth’s	 crust	 after	 oxygen	

constituting	approximately	26%	 in	weight	of	 the	Earth’s	crust	and	 is	 considered	nontoxic	

[2].	Therefore,	silicon	has	been	the	semiconductor	material	most	used	for	the	photovoltaic	

industry	for	many	years.	

Figure	1	depicts	 the	development	of	 the	percentage	of	materials	used	 in	 the	photovoltaic	

market.	Crystalline	silicon	solar	cells	made	out	of	monocrystalline,	multicrystalline	(mc-Si)	

and	string	ribbon	silicon	represents	almost	90%	of	the	photovoltaic	market	share	in	2011.	

On	 the	 other	 hand,	 thin	 film	 solar	 cells	 using	 cadmium	 telluride,	 amorphous	 silicon	 and	

copper	 indium	 gallium	 diselenide	 represent	 more	 than	 10%	 of	 the	 market	 share.	 The	

prevalence	 of	 crystalline	 silicon	 over	 thin	 film	 solar	 cells	 is	 due	 to	 higher	 efficiencies	

reached	with	 crystalline	 silicon	 solar	 cells.	Monocrystalline	 silicon	 grown	 via Czochralski	
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(Cz-Si)	 technique	 provides	 highest	 solar	 cell	 efficiencies	 (16-22%)	 but	 it	 is	 expensive	 in	

comparison	to	multicrystalline	silicon	solar	cells	with	acceptable	efficiencies	(14-18%)	[3].	

Current	research	on	multicrystalline	solar	cells	is	proving	the	potential	of	efficiency	gain	for	

this	 type	 of	 cells	 that	 can	 make	 the	 reduction	 of	 cost	 production	 even	 more	 beneficial.	

Therefore,	 multicrystalline	 silicon	 is	 expected	 to	 be	 the	 mainstream	 material	 in	 the	

photovoltaic	industry	for	the	next	years.	

	

Figure 1 Photovoltaic market share development during the last years after [4]. Crystalline silicon 

dominates the photovoltaic market with more than 50% of the market share for multicrystalline silicon 

from 2010 on. 

The	 obtaining	 of	 silicon	 starts	 with	 the	 carbothermic	 reduction	 of	 lumpy	 quartz	 in	 an	

electric	 arc	 furnace	 at	 high	 temperature	 (∿2000°C)	 according	 to	 the	 following	 simplified	

reaction:	

	 SiO��s� + 2C�s� = Si�l� + 2CO�g�	 (1.1)	
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Carbon	monoxide,	CO�g�,	is	formed	as	a	reaction	co-product	and	must	be	further	oxidized	to	

carbon	dioxide,	CO��g�,	in	open	furnaces	in	order	to	be	released	into	the	atmosphere.	Liquid	
silicon	is	drained	out	from	the	bottom	of	the	furnace	and	further	refined	with	oxidative	gas	

and	slag-forming	additives.	When	the	slag	 is	completely	solidified,	 it	 is	crushed	down	into	

small	silicon	chunks.	This	silicon	is	denominated	“metallurgical	grade	silicon”	(MG-Si)	and	

has	 approximately	98.5%	purity.	Typical	 impurities	within	metallurgical	 grade	 silicon	 are	

carbon,	transition	and	alkali-earth	metals,	boron	and	phosphorus.	The	energy	consumption	

of	metallurgical	silicon	production	is	in	the	best	case	10	to	11	MW	h	per	metric	ton	of	silicon	

and	90%	silicon	yield	[2].	The	price	of	metallurgical	grade	silicon	is	approximately	1	€/kg.	

Metallurgical	grade	silicon	must	be	further	purified	to	meet	the	purity	 level	of	solar	grade	

silicon	(SoG-Si)	which	is	99.99999%	or	the	so	called	5N	purity.	Metallurgical	silicon	can	be	

purified	either	by	a	chemical	route	or	by	a	metallurgical	route	[5].	Purification	of	silicon	by	a	

chemical	 route	 provides	 solar	 grade	 silicon.	 On	 the	 other	 hand,	 purification	 following	 a	

metallurgical	route	gives	an	alternative	silicon	feedstock	known	as	“up-graded	metallurgical	

silicon”.	

The	most	 popular	 process	 to	 purify	 silicon	 by	 the	 chemical	 route	 is	 the	 Siemens	 process.	

Metallurgical	grade	silicon	is	hydrochlorinated	in	a	fluidized	bed	reactor	at	350°C:	

	 Si�s� + 3HCl = HSiCl� + H�	 (1.2)	

Trichlorosilane	 (TCS)	 undergoes	 fractional	 distillation	 to	 be	 separated	 from	 other	

components	and	introduced	with	high-purity	hydrogen	into	a	deposition	reactor.	Large	rods	

of	pure	 silicon	grow	as	 the	 gas	within	 the	 reactor	decomposes	onto	heated	up	 to	1100°C	

silicon	seed	rods.	Simplifying,	the	deposition	reaction	is	as	follows:	

	 H� + HSiCl� = Si + 3HCl	 (1.3)	

The	deposition	reaction	has	low	yield	and	the	walls	of	the	reactor	chamber	must	be	cooled	

to	 prevent	 the	 deposition	 of	 silicon	 on	 the	 inner	 surfaces	 of	 the	 chamber.	 Therefore,	 the	

Siemens	 process	 is	 a	high	 consuming	 energy	 process,	 120	kW	h	 per	 kg	 of	 silicon	 [6].	 The	

purification	of	metallurgical	grade	silicon	increases	the	value	of	silicon	by	a	factor	of	30	to	

50	[2].	The	price	of	solar	grade	silicon	is	approximately	30	€/kg	[7].	

As	 the	 photovoltaic	market	 is	 dominated	 by	 silicon,	 the	 industry	 is	 very	 sensitive	 to	 the	

silicon	price.	The	metallurgical	route	intends	to	reduce	cost	by	purifying	silicon	via	a	series	

of	 refining	 steps	 like	 acid	 leaching	 and	directional	 solidification.	These	 refining	 processes	

are	 based	 on	 the	 segregation	 of	 impurities	 in	 the	 melt	 leaving	 a	 cleaner	 solid.	 The	

equilibrium	 segregation	 coefficient,	 ��,	 is	 the	 ratio	 between	 the	 concentration	 of	 the	
impurity	in	the	solid,	��,	and	the	concentration	of	the	impurity	in	the	silicon	melt,	��:	

	 �� = ���� 	 (1.4)	

Impurities	 with	 equilibrium	 segregation	 coefficients	much	 lower	 than	 1	 segregate	 to	 the	

melt.	This	is	the	case	of	most	metallic	impurities	(see	Table	1).	

Iron	and	transition	metals	in	metallurgical	grade	silicon	that	segregate	at	grain	boundaries	

forming	intermetallic	phases	with	silicon	can	be	dissolved	in	an	acid	solution.	This	is	called	
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silicon	 leaching	 or	 hydrometallurgical	 upgrading.	 This	 purifying	 process	 cannot	 refine	

silicon	below	the	solubility	limit	of	each	impurity	in	the	solid	silicon.	

During	 directional	 solidification	 of	multicrystalline	 silicon,	 silicon	 starts	 solidifying	 at	 the	

bottom	 of	 the	 crucible	 and	 impurities	 with	 much	 lower	 segregation	 coefficient	 than	 1	

segregate	 to	 the	 liquid	 phase.	 When	 the	 whole	 block	 solidifies	 most	 of	 the	 metallic	

impurities	are	in	the	very	top	part	of	the	block.	This	part	of	the	block	can	be	removed	and	

the	 resulting	 mc-Si has	 been	 refined	 mostly	 from	 metallic	 impurities	 [8].	 Directional	

solidification	will	be	further	discussed	in	chapter	3.	

Table 1 Equilibrium segregation coefficients, ��, for some impurities in silicon at the melting point. Most 

of the data was published by Trumbore [9]. More data can be found in the literature pointed by 

Ceccaroli and Lohne [2]. 

Impurity	 ��	 Impurity	 ��	
O	 0.25-1.25	 Cu	 4×10-4	

B	 0.8	 Ti	 3.6×10-4	

P	 0.35	 Cr	 1.1×10-5	

As	 0.3	 Mn	 1×10-5	

C	 0.07	 Zn	 1×10-5	

Ga	 0.008	 Fe	 8×10-6	

Al	 0.002	 Ni	 8×10-6	

N	 7×10-4	 Co	 8×10-6	

Impurities	like	B,	P,	O	and	C	have	segregation	coefficients	nearer	to	1	and	therefore	they	are	

more	 difficult	 to	 remove	 from	 silicon	 than	 metallic	 impurities	 by	 acid	 leaching	 and	

directional	solidification.	One	option	to	reduce	this	type	of	impurities	in	metallurgical	grade	

silicon	 is	 the	 usage	 of	 leached	 quartz	 selected	 for	 its	 purity	 and	 purified	 carbon	 black.	

Another	option	 for	 the	 removal	of	P,	B	and	other	 impurities	 is	electron	beam	refining.	An	

electron	beam	is	accelerated	towards	silicon	and	owing	to	the	high	vacuum	in	the	chamber,	

elements	with	higher	vapor	pressures	than	that	of	silicon	can	be	eliminated.	The	process	is	

performed	 in	 a	 refrigerated	 copper	 crucible	which	 does	 not	 introduce	 new	 impurities	 in	

silicon	 [5].	 Plasma	 refining	 is	 very	 efficient	 in	 the	 removal	 of	 B.	 The	 plasma,	 which	 is	

composed	by	argon,	helium,	water	and	hydrogen	[10],	provides	oxidizing	conditions	 for	B	

[5].	Boron	oxides	present	a	 relatively	high	vapor	pressure	and	 they	evaporate	at	 the	high	

temperatures	achieved	by	the	inductive	plasma	torch.	

Efforts	 are	 also	 being	made	 at	 present	 to	 shift	 from	 the	 rod	 deposition	 of	 silicon	 in	 the	

Siemens	process	to	the	decomposition	of	TCS	into	silicon	granulate	in	a	fluidized	bed	reactor	

as	an	attempt	to	improve	energy	efficiency.	

The	 combination	 of	 different	 refining	 techniques	 can	 purify	 metallurgical	 grade	 to	 solar	

grade	silicon.	Typical	values	of	impurity	concentration	in	MG-Si	are	depicted	in	Table	2.	The	

values	 of	 impurity	 concentrations	 for	 UMG-Si	 and	 SoG-Si	 are	 levels	 of	 impurity	
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concentrations	that	are	expected	to	be	reached	after	silicon	purification	via	the	chemical	or	

the	metallurgical	route	respectively.	

Table 2 Target impurity concentration in [ppmw] contained in MG-, UMG- and SoG-Si feedstock [2], [11]. 

Impurity	 MG-Si	 UMG-Si	 SoG-Si	

B	 5-70	 <30	 <1	

P		 5-100	 <15	 <5	

O		 100-5000	 <2000	 <10	

C	 5-1500	 <250	 <10	

Ca	 20-2000	 <500	 <2	

Mg	 5-200	 <5	 <1	

Fe	 300-25000	 <150	 <10	

Al	 300-5000	 <50	 <2	

Cr	 5-150	 <15	 <1	

Ni	 10-100	 <5	 <1	

Cu	 5-100	 <5	 <1	

Mn	 10-300	 <5	 <1	

Mo	 1-10	 <5	 <1	

Ti	 10-1000	 <5	 <1	

V	 1-300	 <5	 <1	

The	energy	consumption	 for	 the	refinement	of	silicon	via	 the	metallurgical	 route	 is	4	 to	5	

times	 lower	 than	 the	 chemical	 route,	 reducing	 the	 energy	 consumption	 down	 to	 25-

30	kW	h/kg	[6].	Moreover,	the	contaminant	chlorinated	gases	which	are	expelled	during	the	

Siemens	process	are	not	produced	during	the	refining	steps	of	the	metallurgical	route.	The	

price	of	 up-graded	metallurgical	 silicon	 can	be	 reduced	 to	approximately	one	 third	of	 the	

price	of	pure	polysilicon,	10	€/kg,	which	 reduces	 the	cost	of	 industry	standard	crystalline	

silicon	 modules	 by	 11%	 if	 cell	 efficiencies	 are	 maintained	 [7].	 However,	 the	 content	 of	

impurities	 in	 up-graded	metallurgical	 silicon	 feedstock	 is	 still	 higher	 than	 in	 solar	 grade	

silicon	 feedstock	 (see	 Table	 2).	 The	 excess	 of	 B	 and	 P	 in	 UMG-Si	 leads	 to	 partial	 charge	

carrier	compensation	and	the	silicon	block	obtained	after	direct	solidification	starts	p-type	

and	can	end	n-type	which	leads	to	poor	material	yield	[6].	

The	 overall	 module	 cost	 gain	 due	 to	 the	 usage	 of	 UMG-Si	 can	 be	 completely	 lost	 if	 cell	

efficiency	 is	reduced.	Therefore,	 the	use	of	UMG-Si	depends	on	 the	ability	 to	maintain	 the	

electrical	quality	of	silicon	with	higher	content	of	impurities	during	solar	cell	processing.	
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1.2 Concept and Aim of Research 

The	photovoltaic	market	sees	a	potential	for	cost	reduction	in	the	usage	of	alternative	and	

inexpensive	silicon	feedstock	as	explained	in	the	previous	section.	The	higher	concentration	

of	 impurities	encountered	within	 this	silicon	 feedstock	can	 lower	solar	cell	efficiency	 [12]	

and	the	mechanical	strength	of	the	wafers	[13].	

Impurities,	especially	 transition	metals,	degrade	 the	minority	carrier	 lifetime	and	thus	 the	

solar	cell	performance.	There	is	huge	research	been	and	being	done	at	this	topic	and	major	

advances	have	been	achieved	in	solar	cell	processing	to	maintain	the	efficiency	of	solar	cells	

made	out	of	UMG-Si.	

On	 the	 other	 hand,	 impurity	 particles	 can	 change	 the	 elastic	 constants	 of	 silicon	 crystals,	

they	 can	 act	 as	 propagating	 crack	 arrestors	 or,	 on	 the	 contrary,	 they	 can	 act	 as	 stress	

concentrators	where	a	crack	can	initiate	its	propagation.	This	is	a	complex	topic	where	some	

research	 has	 been	 performed	 in	 the	 field	 of	 mechanical	 properties	 of	 ceramics	 and	

composites.	However,	 the	 influence	 of	 impurity	 particles	 on	 the	mechanical	 properties	 of	

crystalline	silicon	for	photovoltaic	applications	is	almost	nonexistent	until	now.	

Therefore,	 the	 purpose	 of	 this	 work	 is	 the	 quantification	 of	 the	 influence	 of	 impurity	

particles	 on	 the	 overall	 mechanical	 behavior	 of	 silicon	 from	 the	 crystallization	 of	 mc-Si	

blocks	 from	 different	 feedstock	 qualities	 to	 the	 final	 processing	 of	 solar	 cells.	Mechanical	

strength,	 toughness	 and	 elastic	modulus	were	measured	 at	 different	 positions	within	 the	

mc-Si	blocks	in	order	to	quantify	the	impact	of	impurities	segregation	on	these	mechanical	

properties.	 The	 influence	 of	 solar	 cell	 processing	 steps	 on	 the	 mechanical	 behavior	 of	

different	 qualities	 of	 mc-Si	 wafers	 was	 also	 examined	 via	 mechanical	 strength	

measurements	after	every	solar	cell	processing	step.	

The	ultimate	aim	of	the	work	is	the	 identification	of	impurity	particles	or	precipitates	and	

solar	cell	processing	steps	that	can	be	critical	for	an	acceptable	mechanical	performance	of	

the	 finished	 solar	 cell.	 The	 quantification	 of	 the	 influence	 of	 these	 second	phase	 particles	

and	 solar	 cell	 processing	 steps	 on	 the	 mechanical	 properties	 of	 mc-Si	 wafers	 allows	 the	

postulation	of	failure	criteria	for	the	prediction	of	the	mechanical	behavior	of	mc-Si	wafers.	

This	knowledge	contributes	 to	 the	clarification	of	 the	causes	of	breakage	of	silicon	wafers	

and	 can	 help	 wafer	 manufacturers	 and	 solar	 cell	 producers	 to	 maintain	 a	 high	 yield	 of	

wafers	survival.	
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2. Mechanical Properties of Silicon 

This chapter presents a complete theoretical description of the mechanical 

behavior of silicon. Emphasis is done on the mechanical elastic response of 

silicon as the lifetime temperature performance of solar cells is within the 

range of temperature where silicon behaves as an elastic material. Special 

attention is drawn to the different types of defects that can limit the 

mechanical performance of silicon. The formation of cracks and residual 

stresses around particles during the crystallization of multicrystalline 

silicon is explained. Additionally, the intensification of an applied stress in 

the vicinities of these defects is analyzed. The relationship between defects 

and the mechanical properties of silicon is presented in detail together with 

the formulation of failure criteria. This allows the prediction of the 

mechanical performance of silicon and the correlation of the mechanical 

performance of silicon with its microstructure. A final picture of the 

mechanical behavior of a silicon solar cell as a laminated structure and how 

high temperature processes can influence the status of defects in silicon is 

visualized at the end of the chapter. 

2.1 Elastic Behavior of Silicon 

The	 quantitative	 study	 of	 the	 mechanical	 behavior	 of	 materials	 is	 described	 by	 the	

mathematical	 description	 of	 stress	 and	 strain	 [14].	 The	 stress	 is	 the	 load	 that	 a	material	

experiences	by	unit	area,	�,	and	the	variable	that	controls	the	strain	and	fracture	behavior	of	
a	material.	The	strain	is	the	percentage	of	deformation	that	the	material	experiences	under	a	

certain	state	of	stress.	

There	 are	 two	basic	 types	 of	 stresses;	 normal	 and	 shear.	Normal	 stress,	�,	 is	 the	 state	 of	
stress	 that	 a	 body	 experiences	when	 an	 axial	 force,	�,	 normal	 to	 the	 faces	 of	 the	 body	 is	

applied	(see	Figure	2	a)).	Shear	stress,	�,	is	produced	when	loads	in	opposite	directions,	T,	
are	applied	parallel	to	two	parallel	faces	of	the	body	(see	Figure	2	b)).	

	

	

��� = ��	 ��� = ��	
a)	 b)	

Figure 2 Types of state of stresses. Image a) depicts pure normal tensile stress and image b) depicts 

shear stress [14]. 
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The	stress	is	a	second-rank	tensor	and	thus	it	has	nine	possible	stress	components	in	three	

dimensions,	���	with	� = 1,2,3	and	�� 	with	� = 1,2,3,	! = 1,2,3	and	 � ≠ !.	Actually	there	are	
six	independent	stress	components	as	�� = � � .	

	 # = $��� ��� ������ ��� ������ ��� ���%	 (2.1)	

where:	

	 ��� = ���	 ��� = ���	 ��� = ���	 	

Normal	 stresses	 are	 the	 components	 of	 the	 stress	 tensor	 expressed	 as	���.	 A	 compressive	

stress	 is	a	negative	tensile	stress.	On	the	other	hand,	 the	components	of	 the	stress	tensor,	�� ,	are	the	shear	stresses.	
The	 strain	 is	 also	 a	 second	 rank	 tensor	 and	many	 of	 its	 properties	 are	 analogous	 to	 the	

stress	tensor.	Normal	strains	are	the	components	of	the	stress	tensor	expressed	as	&�� 	and	
the	shear	strains,	'� 	with	� = 1,2,3,	! = 1,2,3	and	� ≠ !,	are	the	angles	of	distortion	that	the	
body	experiences	when	a	shear	strain	is	applied	(see	Figure	2	b)).	

	 ( = $&�� '�� '��'�� &�� '��'�� '�� &��%	 (2.2)	

where:	

	 '�� = '��	 '�� = '��	 '�� = '��	 	

In	the	case	of	the	stress	state	of	Figure	2	a)	and	taking	the	)	axis	along	the	axis	of	the	bar,	the	
stress	tensor	at	any	point	of	the	bar	is:	

	 # = $� 0 00 0 00 0 0%	 (2.3)	

Coordinate	 axes	 can	be	 taken	arbitrarily.	 For	 any	general	 tensor	 there	 is	 a	 set	of	 axes	 for	

which	 the	stress	 tensor	only	has	normal	stress	components,	which	are	 the	components	 in	

the	diagonal	of	the	stress	tensor.	These	axes	are	called	principal	axes	and	the	stresses	and	

strains	 referred	 to	 these	 axes	 are	 called	 principal	 stresses.	 Shear	 stresses	 and	 strains	 for	

principal	directions	are	zero.	A	plane	that	contains	a	pair	of	principal	axes	is	thus	a	principal	

plane.	 In	 the	 example	 described	 by	 equation	 (2.3)	 the	 )	 axis	 is	 a	 principal	 axis	 and	 the	
uniaxial	tensile	stress	is	a	principal	stress.	

The	calculation	of	principal	stresses	is	very	important	as	brittle	failure	at	room	temperature	

is	 controlled	 by	 the	 highest	 principal	 tensile	 stress.	 The	 analysis	 of	 principal	 stresses	 is	

therefore	extremely	useful	 to	understand	the	response	of	a	material	 to	a	complex	state	of	

stress.	 The	 calculation	 of	 principal	 stresses	 in	 two	 dimensions	 is	 relatively	 easy	 with	

construction	of	 the	Mohr	circle	 [14].	 In	 the	case	of	principal	stresses	 in	 three	dimensions,	

the	 analysis	 is	 more	 complicated	 and	 stress	 invariants	 of	 the	 stress	 tensor	 must	 be	

calculated.	 If	 one	 of	 the	 principal	 planes	 is	 known,	 a	 two	 dimensional	 calculation	 of	 the	

principal	stresses	can	be	performed.	Most	mechanical	testing	techniques	apply	simple	stress	
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tensors	where	 one	 principal	 plane	 is	 identified	 and	 therefore	 the	 calculation	 of	 principal	

stresses	is	simpler.	

The	different	 types	of	mechanical	behaviors	are	determined	by	how	 the	material	deforms	

and	 breaks	when	 a	 load	 is	 applied.	Most	 ceramics	 exhibit	 elastic	 deformation	 and	 brittle	

failure	in	tension	at	room	temperature.	Elastic	deformation	is	defined	as	a	strain	that	is	fully	

recovered	if	the	applied	stress	is	removed.	Normally,	elastic	strain	and	applied	stress	follow	

a	linear	correlation	and	brittle	failure	occurs	at	the	highest	stress	reached	and	is	sudden	and	

complete.	When	a	group	of	similar	ceramic	samples	is	broken,	it	is	remarkable	that	normally	

the	maximum	measured	tensile	stresses	disperse	(see	Figure	3).	This	is	due	to	the	presence	

of	a	distribution	of	flaws	with	different	sizes	or	nature	that	exhibit	different	level	of	strength	

control.	Fracture	mechanics	studies	the	relationship	between	flaws	and	stresses	and	will	be	

discussed	in	the	next	two	sections.	

	

Figure 3 Fracture of samples under the same loading rate adapted from [14]. The arrows point at the 

maximum tensile stresses under which the samples failed. 

This	 work	 focuses	 on	 the	 investigation	 of	 mc-Si	 wafers	 at	 room	 temperature,	 therefore	

special	attention	is	drawn	to	the	elastic	constants	that	relate	stress	and	strain	and	therefore	

govern	the	mechanical	behavior	of	silicon	under	the	regime	of	linear	elasticity.	

In	order	to	understand	the	physical	meaning	of	the	different	engineering	elastic	constants	

we	 will	 consider	 an	 isotropic	 material	 under	 the	 application	 of	 simple	 loads	 [14].	 If	 the	

material	 is	 subjected	 to	 uniaxial	 tensile	 load	 (see	 Figure	 2	 a)),	 the	 constant	 of	

proportionality	between	stress	and	strain	is	the	so	called	“Young´s	modulus”,	+.	
	 + = ���&�� 	 (2.4)	

The	bar	elongates	thus	in	the	direction	of	the	tensile	loading,	&��,	and	contracts	in	directions	
perpendicular	 to	 the	 tensile	 stress.	 The	 ratio	 of	 strains	 in	 these	 two	 perpendicular	

directions,	&��	and	&��,	defines	the	“Poisson´s	ratio”	,	,.	
	 , = −&��&�� = −&��&��	 (2.5)	

In	the	case	of	applying	a	pure	shear	stress	(see	Figure	2	b)),	the	“shear	modulus”,	.,	is	the	
relationship	between	shear	stress	and	strain.	

	 . = ���'��	 (2.6)	
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The	 shear	 modulus	 of	 an	 isotropic	 material	 is	 related	 to	 the	 Young´s	 and	 the	 Poisson´s	

modulus	by	the	following	expression:	

	 . = +2�1 + ,�	 (2.7)	

Another	important	elastic	modulus	is	the	“bulk	modulus”,	which	describes	the	response	of	a	

material	to	hydrostatic	compression	and	is	related	to	the	Young´s	and	the	shear	modulus	by	

the	following	equation:	

	 / = +.3�3. − +�	 (2.8)	

Equations	(2.4)	and	(2.6)	are	simple	forms	of	the	Hooke´s	law	that	describe	the	relationship	

between	stresses	and	strains.	

Considering	more	complex	 loads	and	anisotropic	crystals,	 the	general	 form	of	the	Hooke´s	

law	 expresses	 elastic	 strains	 as	 a	 function	 of	 elastic	 stresses	 where	 the	 proportionality	

fourth-rank	tensor	is	known	as	“compliance”.	

	 ( = 0	#	
(2.9)	

In	 the	 same	 way	 stresses	 can	 be	 formulated	 as	 linear	 combinations	 of	 strains	 being	 the	

fourth-rank	proportionality	tensor	known	as	the	“stiffness”.	

	 # = 2	(	
(2.10)	

A	resumed	notation	can	be	adopted,	as	there	are	six	independent	components	of	stress	and	

strain,	in	order	to	reduce	the	complexity	of	the	expressions	that	derive	from	equations	(2.9)	

and	(2.10).	The	stress	and	strain	can	be	represented	as	6×1	matrices	instead	of	3×3	tensors	

and	the	stiffness	and	compliance	as	6×6	matrices	instead	of	9×9	tensors.	

	 # = 2	( (2.11)	
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	 (2.12)	

where:	�� = ���	&� = &��	 �� = ���	&� = &��	 �� = ���	&� = &��	 �3 = ���	&3 = '��	 �4 = ���	&4 = '��	 �5 = ���	&5 = '��	
An	 analogous	 formulation	 can	 be	 stated	 for	 strains	 as	 a	 function	 of	 the	 stresses	with	 the	

compliance.	As	 the	compliance	and	stiffness	matrices	are	 symmetric	 their	36	components	
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respectively	can	be	reduced	to	21	components,	called	elastic	constants,	where	6� = 6 �	and	7� = 7 � 	for	� ≠ !.	
Cubic	 crystals	 are	 not	 elastically	 isotropic	 and	 have	 three	 independent	 elastic	 constants.	

However,	electrical,	thermal	and	optical	properties	are	indeed	isotropic	in	the	case	of	cubic	

crystals.	After	applying	the	symmetry	of	cubic	crystals	the	Hooke´s	law	remains	as	follows:	
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	 (2.13)	

The	compliance	remains	also	with	an	analogous	structure	like	the	stiffness.	The	compliance	

and	the	stiffness	are	also	related	with	each	other	as	the	following	equations	indicate	[15]:	

	 6�� = 7�� + 7���7�� − 7����7�� + 27���	 (2.14)	

	 6�� = −7���7�� − 7����7�� + 27���	 (2.15)	

	 633 = 1733	 (2.16)	

Equation	(2.13)	can	be	expressed	in	terms	of	the	engineering	elastic	constants	[15]:	

	 &� = ��+ − ,��+ − ,��+ 	 (2.17)	

	 &� = ��. 				�� = 4,5,6�	 (2.18)	

The	elastic	engineering	constants	are	related	to	the	material	elastic	constants	as	follows:	

	 + = �7�� − 7����7�� + 27���7�� + 7�� = 16��	 (2.19)	

	 , = 7��7�� + 7�� = −6��6��	 (2.20)	

	 / = �7�� + 27���3 = 13�6�� + 26���	 (2.21)	

	 . = 733 = 1633	 (2.22)	

Silicon	 is	 an	 anisotropic	 crystal;	 therefore,	 its	 elastic	 constants	 depend	 on	 the	 crystal	

orientation.	 Silicon	 has	 a	 cubic	 symmetry,	 so	 the	 3-direction-dependent	 mechanical	

properties	 can	 be	 described	 as	 explained	 before	 with	 a	 6x6	 matrix	 with	 only	 three	
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independent	 constants,	 either	 stiffness	 7� 	 or	 compliance	 6� ,	 for	 relating	 stress,	 �,	 with	
strain,	 &,	 and	 vice	 versa,	 respectively.	 The	 elastic	 constants	 of	 silicon	 are	 summarized	 in	

Table	10	of	Appendix	A.	

Since	the	mc-Si	samples	tested	in	this	work	are	polycrystalline,	calculations	are	based	on	the	

assumptions	 that	 the	 material	 is	 continuous,	 homogeneous,	 and	 isotropic.	 Therefore,	 an	

isotropic	approximation	of	the	elastic	modulus	for	mc-Si	is	needed	as	reference	value	for	our	

silicon	wafers.	 The	 elastic	modulus,	 can	 be	 averaged	 [15]	with	 the	Voigt	 average	method	

[16],	+; ,	over	the	stiffness,	7��,	7��,	733,	and	with	the	Reuss	average	method	[17],	+< ,	over	
the	compliances,	6��,	6��,	633.	The	Voigt	approximation	assumes	plane	strain	and	averages	

the	 stress	 over	 the	 grains	 with	 random	 different	 crystal	 orientations	 and	 the	 Reuss	

approximation	 assumes	 plane	 stress	 and	 averages	 the	 strain	 over	 different	 crystal	

orientations.	

The	bulk	modulus	of	cubic	crystals	is	defined	by	the	following	relation:	

	 / = 13 �7�� + 27���	 (2.23)	

The	shear	modulus	according	to	Voigt,	.; ,	and	Reuss,	.< ,	is	given	by:	
	 .; = 7�� − 7�� + 37335 	 (2.24)	

	 .< = 546�� − 46�� + 3633	 (2.25)	

The	 upper	 and	 lower	 bounds	 of	 the	 elastic	modulus	 of	 a	 polycrystal,	+; 	 and	+< ,	 and	 the	
Poisson´s	 ratio,	 ,;	 and	 ,<,	 can	 be	 calculated	 introducing	 the	 values	 of	/	 and	 .; 	 and	 .<	
respectively	in	equations	(2.7)	and	(2.8).	The	arithmetic	mean	value	of	the	previous	ones	is	

a	 good	 estimate	 for	 converting	 anisotropic	 single-crystal	 elastic	 constants	 into	 averaged	

engineering	elastic	constants	for	quasi-isotropic	polycrystalline	silicon.	

Hashin	and	Shtrikman	[18]	also	proposed	upper	and	lower	bounds	for	the	calculation	of	the	

engineering	elastic	constants	of	polycrystals.	These	bounds	are	more	accurate	than	the	Voigt	

and	Reuss	 bounds.	 The	 bulk	modulus	 is	 given	 by	 equation	 (2.23)	 and	 the	 shear	modulus	

bounds	are	given	by:	

	 .= = .� + 3> 5.� − .� − 4?�@=�
	 (2.26)	

	 .A = .� + 2> 5.� − .� − 6?�@=�
	 (2.27)	

where:	

	 ?� = − 3�/ + 2.��5.��3/ + 4.��	 (2.28)	
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	 ?� = − 3�/ + 2.��5.��3/ + 4.��	 (2.29)	

	 .� = 733	 (2.30)	

	 .� = 7�� − 7��2 	 (2.31)	

The	 upper	 and	 lower	 bounds	 of	 the	 elastic	modulus,	+Aand	+=,	 and	 the	 Poisson´s	 ratio,	,Aand	 ,=,	 can	 be	 calculated	 introducing	 the	 values	 of	 /	 and	 .A	 and	 .=	 respectively	 in	
equations	 (2.7)	 and	 (2.8).	 As	 in	 the	 case	 of	 the	 Voigt	 and	 Reuss	 approximation,	 the	

arithmetic	value	of	the	previous	ones	is	a	good	estimate	for	engineering	elastic	constants	of	

polycrystals.	

Table	11	to	Table	13	of	Appendix	A	summarize	all	the	engineering	elastic	constants	of	mc-Si.	

The	 average	 values	 of	 both	 the	 Voigt	 and	 Reuss	 approximation	 and	 the	 Hashin	 and	

Shtrikman	approximation	point	that	the	elastic	modulus	of	mc-Si	is	∿162.6	GPa.	

2.1.1 Mechanical Strength 

Silicon	 is	 brittle	 at	 room	 temperature	 and	 therefore	 it	 exhibits	 a	 ceramic	 mechanical	

behavior.	Ceramics	are	materials	with	high	mechanical	strength;	however,	their	brittleness	

makes	 them	sensitive	 to	defects.	The	 theoretical	and	experimental	mechanical	strength	of	

defect-free	ceramics	 is	much	higher	 than	 the	performing	mechanical	 strength	of	 ceramics	

encountering	 defects	 introduced	 during	 manufacture	 and	 processing.	 Orowan	 [19]	

proposed	the	following	equation	for	calculating	the	theoretical	tensile	breaking	stress	which	

is	the	stress	necessary	to	separate	two	crystalline	planes:	

	 �BCDEFDB�GH� = >+'I�@� �⁄
	 (2.32)	

where	I�	 is	 the	plane	separation	distance	 in	equilibrium	and	'	 is	 the	necessary	energy	 to	
create	a	new	fracture	surface.	An	approximation	of	the	theoretical	strength	of	Orowan	can	

be	given	in	terms	of	the	Young´s	modulus	as:	

	 �BCDEFDB�GH� ≈ +L	 (2.33)	

Other	estimates	consider	an	approximation	for	the	theoretical	stress	as	[20]:	

	 �BCDEFDB�GH� ≈ +10	 (2.34)	

The	theoretical	strength	of	silicon	is	estimated	to	be	∿32	GPa	[21].	

Analogous	 to	 the	 Orowan	 analysis	 is	 the	 Frenkel	 [22]	 approximation	 for	 calculating	 the	

theoretical	 shear	 breaking	 stress	 [21].	 This	 approximation	 gives	 the	 following	 expression	

for	face-centered	cubic	materials	(FCC):	

	 �BCDEFDB�GH� = .2L√2 ≈ .9	 (2.35)	
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Thus,	the	theoretical	mechanical	strength	of	silicon	under	shear	stress	is	∿7.5	GPa.	

The	presence	of	flaws	in	ceramics	lowers	the	theoretical	strength	of	the	material	by	a	factor	

of	 100	 or	more,	which	means	 that	 the	 expected	mechanical	 tensile	 and	 shear	 strength	 of	

silicon	is	∿320	MPa	and	∿75	MPa	respectively.	

2.1.1.1 Cracks 

The	most	detrimental	type	of	flaw	is	cracks	where	stresses	intensify	at	the	tip	of	the	cracks.		

Cracks	 are	 mostly	 introduced	 in	 silicon	 during	 the	 multi-wire	 sawing	 process	 of	 silicon	

wafers	which	will	 be	 explained	 in	 the	 next	 chapter.	 Cracks	 can	 be	 also	 originated	 in	 the	

surroundings	of	second	phase	particles	or	after	high	temperature	solar	cell	processes	as	it	

will	be	explained	in	the	next	sections.	

Fracture	mechanics	is	the	brunch	of	science	that	analyses	failure	of	materials	due	to	crack	

propagation	when	the	material	 is	subjected	 to	 loads	or	displacements.	Therefore,	 fracture	

mechanics	 is	of	most	 importance	 in	order	 to	establish	 failure	criteria	 that	predict	 fracture	

stresses	of	silicon	wafers	containing	different	types	of	flaws.	

Griffith	[23]	derived	expressions	considering	energy	assumptions	for	calculating	the	stress	

at	the	tip	of	a	very	sharp	crack.	In	the	case	of	thin	plates	(plane	stress)	with	an	internal	crack	

of	length	2I,	the	fracture	stress	can	be	calculated	with	the	following	equation:	
	 �O = >2+'LI @� �⁄

	 (2.36)	

In	the	case	of	plane	strain	the	fracture	stress	is:	

	 �O = > 2+'L�1 − ,��I@� �⁄
	 (2.37)	

The	Griffith	criterion	is	a	necessary	condition	that	may	be	sufficient	for	fracture.	

If	attention	is	drawn	to	the	vicinity	of	a	crack,	stress	based	and	energy	based	analysis	can	be	

equivalent.	Stress	based	analysis	leads	to	the	Irwin	[24]	formulation	of	fracture	mechanics	

with	the	concept	of	stress	intensity	factor.	The	stress	field	in	the	surroundings	of	a	crack	is	

the	consequence	of	one	of	the	three	possible	modes	of	loading	or	of	a	combination	between	

them	 (see	 Figure	 4).	The	 stress	 in	 the	 vicinity	 of	 the	 crack	 can	 be	 calculated	 by	 equation	

(2.38)	in	linear	elastic	regime.	

	 �� = PQ� �R�√2LS 	 (2.38)	

where	S	and	R	are	cylindrical	polar	coordinates	of	a	point	with	respect	to	the	crack	tip;	P	is	
the	stress	intensity	factor	which	gives	a	magnitude	of	the	intensification	of	the	stress	near	

the	crack	tip;	and	Q� �R�	is	an	angular	function.	The	solving	of	equation	(2.38)	is	complex	and	

can	 be	 expanded	 in	 a	 power	 of	 series	 in	 S	 and	 the	 first	 term	 of	 the	 series	 expansion	

dominates	the	intensification	of	stress	in	a	small	region	near	the	crack	tip.	
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I	 II	 III	

Figure 4 Sketch of the three crack loading modes used in linear elastic fracture mechanics (adapted 

from [15]): I, uniaxial tensile (opening) mode; II in-plane shear mode; III out-of-plane shear (tearing) 

mode. 

Stress	 intensity	 factors	 can	 be	 calculated	 by	 easier	 forms	 of	 the	 general	 expression	

described	by	equation	(2.38)	for	certain	specimen	shapes,	crack	configurations	and	uniform	

loading:	

	 P� = T�√I	 (2.39)	

where	T	 is	 the	 geometry	 factor	which	 is	 a	 dimensionless	 parameter	 that	 depends	 on	 the	

crack	and	loading	geometries;	�	represents	the	loading	mode	(I,	II	or	III);	and	I	is	the	length	
of	 the	 crack.	 Values	 for	 T	 can	 be	 found	 in	 handbooks	 for	 different	 cracks	 and	 loading	
configurations	[25].	

Loading	mode	 I	 is	 extremely	 important	 in	 ceramics	 and	 is	 considered	 to	 control	 fracture.	

Specimen	failure	with	randomly	oriented	flaws	will	occur	at	the	largest	flaw	perpendicular	

to	 the	 largest	 tensile	 stress.	 Thus,	 the	 fracture	 condition	 assumed	 by	 the	 linear	 fracture	

mechanics	 theory	 is	 that	 there	 is	 a	 critical	 value	 of	 stress	 intensity	 factor	 under	 loading	

mode	 I,	PUV ,	 also	 known	 as	 toughness	 above	 which	 rapid	 crack	 propagation	 occurs.	 The	
fracture	criterion	is	then:	

	 PU = PUV 	 (2.40)	

The	 critical	 stress	 intensity	 factor	 or	 toughness	 is	 an	 intrinsic	 property	 of	 every	material	

that	can	be	measured	experimentally.	Irwin	also	expressed	his	fracture	criteria	in	terms	of	

energy	which	in	the	cases	of	plane	stress	and	plane	strain	is	respectively:	

	 WG = PUG�+ 	 (2.41)	

	 WG = PUG�+ �1 − ,��	 (2.42)	

where	WG	 is	 the	 critical	 strain	 energy	 release	 rate,	 which	 is	 the	 amount	 of	 stored	 elastic	

energy	which	is	released	per	unit	area	of	the	created	crack.	
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If	the	total	strain	energy	release	rate	is	equivalent	to	the	energy	necessary	to	create	the	two	

surfaces	 of	 a	 crack,	2'O ,	 and	 equation	 (2.39)	 is	 introduced	 in	 equation	 (2.41)	 the	 failure	
criteria	 for	plane	stress	can	be	expressed	depending	on	the	elastic	modulus	 instead	of	the	

fracture	toughness:	

	 �O = >2'O+T�I @� �⁄
	 (2.43)	

To	 finalize	 this	 section	 a	 short	 explanation	 of	 the	 meaning	 of	 stored	 elastic	 energy	 is	

presented	 for	 the	clearness	of	 this	work.	 Strains	occur	when	a	 force	 is	 applied	 to	 a	body.	

That	means	that	the	point	of	application	of	the	force	moves	and	thus	a	work	is	done	on	the	

body	[14].	This	energy	is	stored	in	the	deformed	bonds	between	atoms	as	an	increase	in	the	

interatomic	potential	and	is	released	when	the	force	is	removed	and	can	be	the	driving	force	

for	 crack	 propagation.	 This	 work	 per	 unit	 volume	 is	 known	 as	 the	 stored	 elastic	 strain	

energy	density,	X.	

	

a)	 b)	

Figure 5 Force-displacement behavior of a linear elastic body (adapted from [14]). 

Figure	5	depicts	a	rod	that	experiences	a	displacement,	Y,	when	a	force,	�	is	applied.	When	

the	material	is	linear	elastic	the	applied	force	is	proportional	to	the	displacement.	Equation	

(2.44)	is	then	analogous	to	equation	(2.4):	

	 � = �Y	 (2.44)	

The	constant	of	proportionality,	�,	depends	on	the	elastic	properties	of	the	material	and	the	

dimensions	of	the	system.	The	work	done	when	the	full	displacement,	Y,	is	achieved	is	then:	
	 Z = [ �Y´dY´^

^´_� = 12�Y� = 12�Y	 (2.45)	

The	 area	 under	 the	 loading	 curve	 is	 thus	 the	 elastic	 work	 done	 on	 the	 body	 which	 is	

depicted	in	Figure	5	b)	by	the	shaded	triangle.	The	stored	elastic	energy	per	unit	volume,	XD ,	
is	therefore:	

	 XD = Z̀� = 12�� Ỳ = 12���&�� = 12����+ 	 (2.46)	

where	�	is	the	area	of	the	rod	and	`	is	its	length.	
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For	more	complex	states	of	stress	equation	(2.46)	can	be	generalized	as:	

	 XD = 12aa�� &�  � = 12aa�� �+ � 	 (2.47)	

2.1.1.2 Particles 

Pores	 and	second	phase	particles	 in	multicrystalline	 silicon	can	be	also	 fracture	 initiators	

due	to	elastic	and	thermal	mismatch.	Pores	or	voids	intensify	significantly	the	stress	in	their	

surroundings	when	an	external	load	is	applied.	Pores	behave	similar	to	cracks	but	they	are	

less	 detrimental	 due	 to	 their	 lack	 of	 sharpness.	 Second	 phase	 particles	 can	 be	 fracture	

origins	 due	 to	 the	 thermal	 residual	 stresses	 introduced	 during	 processing	 and	 to	 the	

intensification	of	stress	that	occurs	when	an	external	load	is	applied	in	their	surroundings	

[26].	

	

Figure 6 Defects severity chart for ceramics (adapted from [15]). 

The	 presence	 of	 second	 phase	 particles	 has	 the	 inherent	 potential	 problems	 of	

inhomogeneous	second	phase	distribution,	weak	interfacial	bonding	and	misfit	thermal	and	

elastic	 stresses	 [27].	 The	 stress	 concentration	 that	 occurs	 at	 particles	 is	 due	 to	 thermal	

expansion	and	elastic	modulus	mismatch	between	the	particle	and	the	silicon	matrix.	Early	

literature	pointed	already	 to	particles	as	 frequent	 fracture	 initiators,	 especially	at	 the	 low	

strength	tail	of	the	strength	distribution.	Hence,	the	quantification	of	the	effect	of	particles	

on	 the	 mechanical	 strength	 of	 silicon	 is	 of	 great	 importance	 to	 enable	 accurate	 failure	

prediction.	

Therefore,	the	important	factors	that	control	strength	of	silicon	containing	particles	are	the	

thermal	 expansion	 coefficients	 and	 elastic	 modulus	 of	 the	 matrix	 and	 the	 particles,	 the	

particle	 size	 and	 the	 volume	 fraction	 of	 the	 particles	 [28],	 [29],	 [30],	 [31],	 [32].	 The	

mechanical	properties	of	multicrystalline	 silicon	containing	second	phase	particles	can	be	

described	 by	 theoretical	 models	 proposed	 for	 describing	 the	 mechanical	 properties	 of	

particle	composite	materials	whose	matrix	and	second	phase	are	also	ceramics.	

2.1.1.2.1 Thermal	Mismatch	

Thermal Residual Stress 

Residual	 thermal	 stresses	 are	 a	 type	of	 stress	 that	 remains	 in	 the	 silicon	matrix	 after	 the	

crystallization	 process.	 They	 are	 caused,	 during	 the	 cooling	 of	 the	multicrystalline	 silicon	
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blocks,	 by	 temperature	 gradients	 and	 the	 difference	 in	 thermal	 expansion	 coefficients	

between	the	silicon	matrix	and	the	second	phase	particles.	

Spherically	 symmetric	 thermal	 stresses,	σθθ	 and	σrr,	 build	 around	 spherical	 second	 phase	

particles	in	the	radial	and	tangential	directions	(see	Figure	7	and	the	coordinate	system	in	

Figure	11).	These	thermal	stresses	in	the	matrix,	which	is	considered	as	an	isotropic	linear	

elastic	continuum,	are	given	by	[33]	[34]:	

	 �FF = b >cS@�	 (2.48)	

	 �dd = −b2 >cS@�	 (2.49)	

	
b = �ef − eg����O − �Hhi��1 + ,g��2+g� + �1 − 2,f�+f

	
(2.50)	

where	 eg�,f,	 ,g�,f	 and	 +g�,f	 are	 the	 expansion	 coefficients,	 Poisson´s	 ratio	 and	 Young´s	
modulus	of	silicon	and	the	impurity	particle,	respectively.	Tf	is	the	ductile-brittle	transition	

temperature	 in	 silicon	 (~750°C)	 [35].	 Above	 �O	 silicon	 can	 accommodate	 stresses	 by	

creation	and	movement	of	dislocations	in	the	silicon	matrix.	However,	below	�O	the	silicon	
matrix	cannot	relax	 thermal	stresses	by	dislocation	movement	and	residual	stresses	build	

up	in	the	silicon	matrix.	�Hhi	is	the	ambient	temperature,	R	is	the	particle	radius	and	r	is	the	

distance	 from	 the	 center	 of	 the	 particle.	 The	 stress	 inside	 the	 particle,	 P,	 is	 hydrostatic	

compressive	 or	 tensile	 depending	 on	 the	 sign	 of	 the	 difference	 in	 thermal	 expansion	

coefficients.	

	

Figure 7 The picture on the left depicts the stress distribution in the vicinity of an impurity particle with 

a thermal expansion coefficient lower than the one of silicon. The picture on the right depicts the stress 

distribution in the vicinity of an impurity particle with a thermal expansion coefficient higher than the 

one of silicon [14]. 

When	 the	 thermal	 expansion	 coefficient	 of	 the	 impurity	 particle	 is	 lower	 than	 the	 one	 of	

silicon,	tangential	thermal	stresses,	σθθ,	are	tensile	and	radial	micro-cracking	can	occur	(see	

Figure	7,	left	picture).	Lower	expansion	coefficients	of	particles	leave	the	particles	subjected	

to	compressive	internal	stresses.	When	the	thermal	expansion	coefficient	of	 the	particle	 is	

higher	 than	 the	 one	of	 silicon,	 radial	 thermal	 stresses,	σrr,	 are	 tensile	 and	 circumferential	
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micro-cracking	 can	 occur	 (see	 Figure	 7,	 right	 picture).	 Higher	 expansion	 coefficients	 of	

particles	leave	the	particles	subjected	to	tensile	internal	stresses.	

This	model	holds	for	the	case	of	a	single	particle	in	an	isotropic	linear	elastic	matrix.	Since	

thermo-elastic	 stress	 diminishes	 strongly	 at	 short	 distance	 from	 the	 particle,	 equations	

(2.48)	and	(2.49)	are	a	good	approximation	at	low	volume	fraction	of	particles	[35].	It	also	

has	to	be	noticed	that	this	model	corresponds	only	to	spherical	particles	and	other	particle	

geometries	 can	 lead	 to	 different	 stress	 magnitude	 and	 distribution	 around	 the	 particles.	

However,	for	the	purpose	of	this	work	spherical	particles	are	assumed	and	the	calculation	

and	interpretation	of	thermal	stresses	will	be	further	discussed	in	section	4.4.	Moreover,	the	

evaluation	of	the	fracture	of	the	mc-Si	wafers	is	made	considering	the	thermal	stresses	built	

in	the	silicon	matrix	as	the	cause	of	wafer	fracture.	The	impurity	particles	can	remain	under	

compressive	 internal	 stress	 that	 can	 counteract	 tensile	 applied	 stresses	 or	 can	 stand	 the	

majority	of	an	applied	tensile	load	causing	the	fracture	of	the	particle	instead	of	the	matrix.	

Therefore,	the	consideration	of	the	fracture	of	silicon	due	to	the	thermal	stresses	built	in	in	

the	 matrix	 is	 more	 appropriate	 to	 set	 a	 conventional	 failure	 criterion	 for	 worst	 case	

scenario.	

Spontaneous Micro-cracking 

This	 section	 summarizes	 several	 models	 found	 in	 the	 literature	 for	 the	 description	 of	

spontaneous	 micro-cracking	 of	 the	 silicon	 matrix	 due	 to	 the	 thermal	 mismatch	 between	

silicon	and	the	particles.	

Equations	(2.48)	to	(2.50)	show	that	the	value	of	residual	thermal	stress	does	not	depend	on	

the	impurity	particle	size.	However,	experiments	observe	that	micro-cracking	after	cooling	

occurs	 only	 in	 the	 surroundings	of	 particles	 larger	 than	a	 critical	 particle	 size	 [36].	Thus,	

micro-cracking	does	depend	on	 the	size	of	 the	particles	and	on	 the	magnitude	of	residual	

thermal	stresses	[28].		

In	 the	 case	 of	 second	 phase	 particles	 with	 expansion	 coefficients	 higher	 than	 the	 one	 of	

silicon,	radial	thermal	stresses	are	tensile	and	circumferential	micro-cracking	of	the	silicon	

matrix	will	 occur	 for	 values	 equal	 or	 higher	 than	 a	 critical	 radius	 size.	 For	 particles	with	

lower	expansion	coefficients	than	the	one	of	silicon,	tangential	thermal	stresses	are	tensile	

and	 radial	micro-cracking	of	 the	 silicon	matrix	 occurs.	This	 later	 case	 is	more	deleterious	

than	 circumferential	 cracking	 as	 micro-cracks	 from	 different	 particles	 can	 easily	 link	

together	and	cause	the	catastrophic	failure	of	the	specimen	[28].	

Davidge	et	al.	 [36]	proposed	a	criterion	for	circumferential	micro-cracking	due	 to	 thermal	

mismatch.	The	formation	of	the	circumferential	crack	requires	the	existence	of	a	flaw	near	

the	particle	interface.	A	supply	of	energy	is	also	necessary	for	the	flaw	to	grow.	This	energy	

is	provided	by	the	elastic	stored	energy	in	the	particle	and	in	the	surrounding	silicon	matrix.	

The	 criteria	 for	 crack	 formation	 is	 that	 the	 total	 stored	 elastic	 energy,	X,	 must	 equal	 or	

exceed	the	energy	necessary	to	create	a	new	fracture	surface,	Xg .	
	 X ≥ Xg	 (2.51)	
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The	elastic	energy,	XD ,	 stored	 in	an	element	of	material	 subjected	 to	an	orthogonal	 stress	

field	is	according	to	equation	(2.47):	

	 XD = 12+ k�1 + ,����� + ��� + ���� − ,��� + �� + ����l	 (2.52)	

where	the	strains	are	expressed	as	a	function	of	the	stresses	and	the	elastic	constants	as	in	

equation	(2.17).	

Substituting	−�� = 2�� = 2�� = bc� S�⁄ 	in	equation	(2.52),	the	elastic	stored	energy	in	the	

silicon	matrix	can	be	calculated	as:	

	 Xg� = [ �1 + ,g��2+g�m
<

32b� >cS@5 4LS�dS	 (2.53)	

	 Xg� = 3b��1 + ,g��4+g� 43Lc�	 (2.54)	

By	substituting	�� = �� = �� = b	 in	equation	 (2.52),	 then	 the	elastic	 stored	energy	within	
the	particle	can	be	calculated	as:	

	 Xf = 3b��1 + ,f�2+f
43Lc�	 (2.55)	

The	 addition	 of	 equations	 (2.54)	 and	 (2.55)	 sums	 up	 the	 total	 stored	 elastic	 energy	�X = Xg� + Xf�:	
	 X = b�Lc� n�1 + ,g��+g� + 2�1 − 2,f�+f o	 (2.56)	

The	energy	necessary	to	create	a	new	surface	can	be	expressed	proportional	to	the	fracture	

surface	energy	of	silicon,	'g� ,	as	the	formed	crack	has	two	faces:	
	 Xg = �'g� 	 (2.57)	

where	�	 is	 the	area	of	surface	 formed.	Experimental	observations	pointed	 that	 the	cracks	

formed	are	semi-spherical	round	the	particle.	Given	that	the	crack	has	two	surfaces:	

	 Xg = 4Lc�'g�	 (2.58)	

Finally,	 the	critical	particle	 radius	 for	circumferential	micro-cracking	can	be	calculated	by	

substituting	equations	(2.56)	and	(2.58)	in	equation	(2.51):	

	
cG ≥ 8'g�b� q�1 + ,g��+g� + 2�1 − 2,f�+f r	 (2.59)	

Ito	 et	 al.	 [37]	 proposed	 another	model	 to	 evaluate	 circumferential	micro-cracking	 due	 to	

thermal	mismatch.	The	model	is	based	on	the	calculation	of	the	strain	energy	release	rate	as	

a	function	of	the	particle	size	and	the	size	of	a	flaw	at	the	particle´s	interface.	This	function	

presents	a	maximum	as	a	function	of	crack	length	and	particle´s	size.	Below	this	maximum	

value	micro-cracking	does	not	occur.	
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Figure 8 Scheme of the spherical particle and an interfacial crack adapted from [37]. 

Ito	 et	 al.	 [37]	 starts	 his	 analysis	 from	 the	 expression	 of	 the	 strain	 energy,	 X�,	 of	 the	
uncracked	system	formed	by	the	particle	and	the	silicon	matrix	(equation	(2.56)).	The	strain	

energy	 of	 the	 system	 decreases	 when	 a	 crack	 of	 length	 2I	 (see	 Figure	 8)	 exists	 at	 the	
particle-matrix	interface:	

	 X = X�Q�s�	 (2.60)	

where	s = I c⁄ 	and	Q�s� ≤ 1	is	an	undetermined	dimensionless	function.	

The	strain	energy	release	rate	is	therefore:	

	 W = −dXd� = −X� dQ�s�d� 	 (2.61)	

where	�	is	the	crack	area	and	d�	is	the	incremental	area	change:	

	 � = 2Lc��1 − coss�	 (2.62)	

	 d� = 2Lc� sins ds	 (2.63)	

The	strain	energy	release	rate	can	be	obtained	from	equations	(2.61)	to	(2.63)	and	equation	

(2.56)	for	substituting	X�:	
	 W = − x1 + ,g�2+g� + 1 − 2,f+f y b� csins dQ�s�ds 	 (2.64)	

Numerical	 calculations	 were	 conducted	 in	 order	 to	 calculate	 the	 dimensionless	 function	Q�s�	for	relatively	small	cracks	and	its	derivate	[37]:	

	 Q�s� = −0.56�s − sins coss − 13 cos�s + coss� + 1.38	 (2.65)	

	
dQ�s�ds = −1.12 sin�s + 0.56 sin�s	 (2.66)	

The	expression	for	the	strain	energy	release	rate	remains	then:	

	 W = 0.56 x1 + ,g�2+g� + 1 − 2,f+f y b�c sins �2 − sins�	 (2.67)	

Introducing	equation	(2.50)	for	the	pressure	inside	the	particle:	
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W = 0.56 �∆e∆���q1 + ,g�2+g� + 1 − 2,f+f r c sins �2 − sins�	

(2.68)	

Micro-cracking	 at	 the	 particle´s	 interface	 will	 occur	 when	 the	 strain	 energy	 release	 rate	

reaches	a	critical	value,	WG,	at	small	interfacial	defects.	The	critical	strain	energy	release	rate	

depends	on	the	bonding	quality	of	the	interface	silicon-particle.	However,	for	the	purpose	of	

this	work	and	for	simplification	of	the	problem,	a	plane	stress	sate	will	be	considered	and	

the	stress	energy	release	rate	will	be	expressed	in	terms	of	the	critical	stress	intensity	factor	

by	equation	(2.41):	

	
WG = PUG�+g� ≤ 0.56 �∆e∆���q1 + ,g�2+g� + 1 − 2,f+f r cG sins �2 − sins�	

(2.69)	

Rearranging	equation	(2.69),	the	critical	particle	size	depends	on	the	size	of	the	pre-existing	

flaw	as	s = I c⁄ 	and	can	be	calculated	as:	

	 cG ≥ 1.79 > PUG∆e∆�@� q1 + ,g�2+g� + 1 − 2,f+f r+g� sins �2 − sins�	 (2.70)	

Evans	et	al.	[26]	proposed	spontaneous	micro-cracking	criteria	based	on	approximations	of	

stress	 intensity	 factors	 at	 pre-existing	 flaws	 at	 or	 near	 the	 interface	 between	 a	 circular	

particle	or	inclusion	and	the	silicon	matrix.	Whether	a	crack	will	develop	or	not	depends	on	

the	magnitude	of	the	stress	intensity	factor	at	small	interfacial	flaws,	K.	If	the	stress	intensity	

factor	 exceeds	 the	 value	 of	 toughness	 for	 the	 matrix,	 KIc,	 cracks	 will	 propagate	 [26].	

Approximate	K	values	can	be	calculated	as	a	function	of	the	interfacial	flaw	size.	

	

Figure 9 Coordinates to evaluate the stress intensity factor of a flaw in a variable stress field (strip line) 

adapted from [26]. 

The	 stress	 intensity	 factor	 for	 a	 crack	 in	 a	 variable	 stress	 field,	 like	 the	 stress	 field	 in	 the	

vicinity	of	the	particles,	can	be	determined	directly	from	the	orthogonal	stress	that	existed	

along	the	fracture	plane	before	the	crack	formed	[38].	This	can	be	expressed	for	a	through	

crack	of	length	a	with	the	following	equation	[39]:	
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	 P = > 2IL@� �⁄ [ �}�)�)� �⁄�I − )�� �⁄H
� d)	 (2.71)	

A	 much	 smaller	 crack	 size	 than	 the	 specimen	 size	 is	 an	 assumption	 for	 the	 expression.	

Approximations	of	K	values	can	be	calculated	as	suggested	in	reference	[26]	by	substituting	

the	 stress	 fields	 around	 the	 particles	 into	 equation	 (2.71)	 and	 integrating	 over	 the	 crack	

length.	The	expression	neglects	any	perturbation	of	the	applied	stress	field,	�}�)�,	caused	by	
the	crack.	Thus,	 the	model	 is	an	approximation	 for	 small	 cracks	occurring	near,	or	at,	 the	

particle´s	interface	�I ≲ 0.2c�.	
We	have	 seen	 in	 the	 previous	 section	 that	when	 the	 thermal	 expansion	 coefficient	 of	 the	

particle	 is	 larger	 than	 the	 one	 of	 the	 matrix,	 radial	 residual	 stresses	 are	 tensile	 and	

circumferential	 cracks	 can	 form	either	 in	 the	 interface	or	 in	 the	matrix.	Therefore,	 cracks	

propagate	 at	 constant	 stress	 depending	 on	 the	 location	 of	 the	 defect	 as	 a	 first	

approximation.	 A	 stress	 intensity	 factor	with	 thermal	 origin,	P� ,	 is	 for	 this	 case	 given	 by	

Evans	et	al.	[26]:	

	 P� = > 2LI@� �⁄ �−b� >cS@�[ )� �⁄�I − )�� �⁄ d)H
� 	 (2.72)	

where	r	is	the	distance	from	the	center	of	the	particle	to	the	position	of	the	defect	and	�}�)�	
is	substituted	by	equation	(2.48).	 Integrating	equation	(2.72)	over	 the	 length	of	 the	 initial	

flaw	gives:	

	 P� ≈ �LI2 �� �⁄ �−b� >cS@�	 (2.73)	

When	 the	 expansion	 coefficient	 of	 the	 particle	 is	 lower	 than	 the	 one	 of	 silicon,	 tangential	

thermal	 stresses	are	 tensile	and	cracks	 tend	 to	propagate	away	 from	 the	particle	 into	 the	

silicon	 matrix.	 For	 the	 calculation	 of	 the	 stress	 intensity	 factor	 for	 this	 configuration	 of	

thermal	 stresses,	we	will	 consider	 that	 the	 cracks	 are	 exposed	 along	 their	 lengths	 to	 the	

tangential	thermal	stresses	at	any	equatorial	plane	of	the	particle.	At	the	end	of	the	crack	at	

the	 furthest	point	 from	the	particle,	pointed	by	 the	 letter	 “X”	 in	Figure	9,	and	substituting	�}�)�	by	equation	(2.49)	and	equaling	S = c + ),	equation	(2.71)	remains:	

	 P� = > 2LI@� �⁄ b2[ �) c⁄ + 1�=�)� �⁄�I − )�� �⁄ d)H
� 	 (2.74)	

Expanding	�) c + 1�⁄ =�as	a	series	and	calculating	the	integral	[26]:	
	 P� = b2 �LI2 �� �⁄ q1 − 94 �Ic� + 154 �Ic�� − 17532 �Ic�� +⋯r	 (2.75)	

As	the	solution	for	this	model	is	only	valid	for	�I ≲ 0.2c�,	 the	terms	beyond	�I c�⁄ 	can	be	

neglected:	

	 P� ≈ b2 �LI2 �� �⁄ q1 − 94 �Ic�r	 (2.76)	
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The	interface	related	cracks	propagate	when	the	stress	 intensity	 factor	reaches	 its	critical	

value	for	the	silicon	matrix,	PUG.	These	conditions	can	be	found	for	particles	with	higher	and	
lower	thermal	expansion	coefficients	than	the	one	of	silicon	respectively	by	introducing	PUG	
in	equation	(2.73)	and	(2.76).	If	the	initial	flaw	is	exactly	located	at	the	particle´s	interface	

and	has	a	length	of	0.2c,	then	the	critical	particle	radius	for	particles	with	higher	and	lower	
expansion	coefficients	is	respectively:	

	 cG ≥ 10L >PUGb @�	 (2.77)	

	 cG ≥ 10L >4011PUGb @�	 (2.78)	

Cracks	may	stop	propagating	if	they	extend	into	a	decreasing	stress	field.	Therefore,	radial	

cracks	caused	by	thermal	stresses	are	expected	to	stop	as	they	extend	into	the	silicon	matrix	

and	circumferential	cracks	may	continue	propagation	until	completion	of	the	circumference.	

In	 the	 case	 of	 radial	 spontaneous	 micro-cracking	 Green	 [40],	 [41]	 proposed	 a	 cracking	

criterion	for	spherical	particles	with	an	annular	flaw	(see	Figure	10).	

	

Figure 10 Annular preexisting flaw at spherical particle adapted from [41]. 

The	particle	and	the	crack	are	considered	a	penny-shaped	crack	(with	total	 length	I + c).	
The	stress	acts	along	the	crack	surface	for	c ≤ S ≤ �I + c�.	The	stress	 intensity	 factor	 for	
this	configuration	was	proposed	by	Barenblatt	[42]	as	follows:	

	 PU ≅ 2> 1L�I + c�@� �⁄ [ S��S�dS��I + c�� − S��� �⁄HA<
< 	 (2.79)	

The	 stress	 intensity	 factor	 for	 an	 annular	 crack	 due	 to	 thermal	 residual	 stress	 can	 be	

calculated	by	introducing	Equation	(2.49)	into	Equation	(2.79):	

	 PU� ≅ b qIL �s + 2��s + 1�4r� �⁄
	 (2.80)	

where	s = I c⁄ 	is	the	normalized	crack	length.	

Spontaneous	micro-cracking	will	occur	when	PU� = PUG,	being	cG = I s⁄ :	

	 cG ≥ LPUG� �s + 1�4sb��s + 2� 	 (2.81)	

As	explained	by	Davidge	and	Green	[36],	the	incidence	of	circumferential	micro-cracking	at	

particles	 increases	 with	 increasing	 particle	 size.	 This	 statement	 was	 based	 on	 energetic	
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criteria.	Evans	[26]	proposed	another	explanation	for	the	incidence	of	both	circumferential	

and	radial	micro-cracking	that	relates	to	the	fracture	mechanism	at	particles.	An	additional	

size	 effect	 on	 the	 stress	 intensity	 factor	 can	 occur	 if	 the	 interface	 of	 the	 particle	 has	

statistically	 distributed	 initial	 crack	 lengths.	 In	 that	 case,	 an	 increase	 in	 one	 order	 of	

magnitude	of	the	particle	size	increases	the	probability	of	crack	extension	by	10�.	
2.1.1.2.2 Elastic	Mismatch	

Stress	 intensification	can	occur	 in	 the	 surroundings	of	a	particle	when	an	external	 load	 is	

applied.	The	difference	in	elastic	constants	between	the	silicon	matrix	and	the	second	phase	

particles	is	responsible	for	the	disturbance	of	an	applied	stress	field,	σa,	in	the	vicinity	of	the	

particles.	These	stresses	are	more	complex	 than	 thermal	stresses	and	they	depend	on	 the	

angle	of	orientation,	θ,	with	the	applied	load	(see	Figure	11).	

	

Figure 11 Coordinate system used to evaluate the mechanical stresses around particles adapted from 

[26]. 

The	 matrix	 is	 considered	 infinite,	 elastic,	 isotropic	 and	 homogeneous	 solid	 subjected	 to	

uniform	 applied	 stress	 at	 infinity.	 The	 stress	 disturbance	 will	 be	 confined	 to	 the	

neighborhood	of	 the	particle.	This	means	 that	 the	 applied	 stress	 is	not	modified	by	more	

than	one	percent	approximately	at	a	distance	of	four	times	the	particle	diameter.	Thus,	this	

model	is	valid	only	for	particles	which	are	separated	a	distance	at	least	four	times	the	length	

of	the	particles	diameter.	

The	 factor	 of	 stress	 concentration	 is	 the	 ratio	 between	 the	 intensified	 stress	 due	 to	 the	

presence	of	the	particle	and	the	applied	stress.	This	factor	depends	on	the	particle	geometry	

and	nature	and	not	on	the	size	of	the	particle.	Particles	which	are	less	rigid	than	the	silicon	

matrix	experience	higher	stress	concentration	than	more	rigid	particles.	

Adding	the	distribution	of	stress	concentration	in	the	radial	and	tangential	direction	to	the	

radial	and	tangential	components	of	the	applied	stress	respectively,	the	total	distribution	of	

stresses	around	a	particle	can	be	estimated:	

	 �FF = �F + �FF	 (2.82)	

	 �dd = �d + �dd	 (2.83)	
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The	 following	equations	describe	 the	distribution	of	stress	concentration	in	 the	vicinity	of	

the	second	phase	particles	[43].	The	terms	A	and	B	depend	on	the	elastic	constants	of	 the	

silicon	matrix	and	the	impurity	particle.	

	 �FF = 2�H x−�>cS@� + / >cS@3 − 4>cS@�y cos 2R	 (2.84)	

	 �dd = 2�H x−�>cS@� − 3/ >cS@3 cos2Ry	 (2.85)	

	 � = �1 − 2,f�.g� − �1 − 2,g��.f4��1 − 2,f�.g� + .f� 	 (2.86)	

	 / = .g� − .f4�.g� + �3 − 4,g��.f�	 (2.87)	

	

Figure 12 Radial and tangential components of a uniaxial applied stress in the vicinity of a particle in 

the silicon matrix. 

Substituting	�F = �H cosR	and	�d = �H sinR	and	having	into	account	the	half	angle	formulas:	
	 �FF = �H2 �1 + cos 2R� + 2�H x−� >cS@� +/ >cS@3 − 4>cS@�y cos 2R	 (2.88)	

	 �dd = �H2 �1 − cos 2R� + 2�H x−�>cS@� − 3/ >cS@3 cos2Ry	 (2.89)	

As	 in	 the	 case	 of	 thermal	 stresses,	 the	magnitude	 of	 stress	 intensification	 around	 second	

phase	particles	is	independent	on	the	particle	radius.	

For	second	phase	particles	with	elastic	constants	lower	than	the	ones	of	silicon,	tangential	

stresses,	σθθ,	are	tensile	and	larger	than	the	applied	stress,	σa,	at	an	orientation	of	θ=90° with	

the	applied	stress.	For	second	phase	particles	with	elastic	constants	higher	than	the	ones	of	

silicon,	radial	stresses,	σrr,	are	tensile	and	higher	than	the	applied	load,	σa,	in	the	orientation	

θ=0°.	Whereas	the	tangential	stresses,	σθθ,	are	still	tensile	but	lower	than	the	applied	stress,	

σa,	in	the	orientation	θ=90°	[26].	

The	 combination	of	 both	 residual	 thermal	 stress	and	 stress	 concentration	due	 to	 thermal	

and	elastic	mismatch	between	the	particles	and	the	matrix	weakens	the	mechanical	strength	

of	multicrystalline	silicon.	
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In	 the	 case	 of	 a	 biaxial	 stress	 field	 acting	 in	 the	 surroundings	 of	 the	 particle,	 the	 stress	

distribution	 can	 be	 estimated	 by	 superposing	 two	 perpendicular	 uniaxial	 stress	 fields	 of	

equal	magnitude	[30],	�H�	and	�H�	(see	Figure	13):	
	 �FF = �F� + �FF� + �F� + �FF� 	 (2.90)	

	 �dd = �d� + �dd� + �d� + �dd� 	 (2.91)	

	

Figure 13 Radial and tangential components of a biaxial applied stress in the vicinity of a particle in the 

silicon matrix. 

Substituting,	�F� = �H� cos R,	�F� = �H� sinR,	�d� = �H� sinR,	�d� = �H� cosR;	�H� = �H� = �H	
and	 cos 2s = cos�L − 2R� = cosL cos2R + sinL sin 2R = −cos 2R	 in	 equations	 (2.90)	 and	
(2.91):	

	 �FF = �H + 4�H x−�>cS@�y	 (2.92)	

	 �dd = �H + 4�H x� >cS@�y	 (2.93)	

Is	 must	 be	 highlighted	 that	 in	 the	 case	 of	 biaxial	 loading	 the	 stress	 concentration	 is	

independent	of	the	angular	position.		

The	 intensification	 of	 stresses	 in	 the	 tangential	 direction	 plays	 a	 significant	 role	 in	 the	

failure	of	 ceramics	 containing	particles	 as	 radial	 cracks	 extend	 through	 the	 silicon	matrix	

and	 can	 link	 with	 other	 particles	 causing	 catastrophic	 failure.	 For	 calculating	 the	 stress	

intensity	 factors	of	mechanical	 tangential	stresses	we	will	consider	that	the	crack	is	 in	the	

plane	of	maximum	tension	at	the	equator	of	the	particle,	R = 90°.	Thus,	the	stress	intensity	
factor	due	to	intensification	of	the	applied	load	by	the	presence	of	a	soft	particle,	.g� > .� ,	
can	be	calculated	by	introducing	equation	(2.89)	for	R = 90°	into	equation	(2.71),	according	
to	Evans	[26]:	

	 P� = �H > 2LI@� �⁄ [ �1 + 2��) c + 1�⁄ =� + 6/�) c�⁄ =3 )� �⁄ ��I − )�� �⁄ d)H
� 	 (2.94)	

	 P� = �H �LI2 �� �⁄ �1 + 2� + 6/ − 3 �Ic� �� − 6/��	 (2.95)	
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2.1.1.2.3 Failure	Prediction	and	Fracture	Mechanism	for	Particles	

We	will	suggest	in	this	section	a	failure	prediction	for	the	different	types	of	impurity	second	

phase	 particles	 according	 to	 the	 configuration	 of	 thermal	 stresses	 and	 intensification	 of	

applied	stress.	

A	conservative	failure	criterion	for	fracture	at	particles	consists	of	equaling	the	particle	size	

to	 the	 critical	 crack	 length	 in	 the	 Irwin	 expression	 [24].	The	particle	 is	 considered	 in	 this	

case	 to	 intensify	 the	 stress	 in	 its	 vicinities	with	 the	 same	efficiency	 as	 a	 crack.	The	 stress	

acting	on	 a	particle	 sized	 crack	 is	 considered	 to	be	 the	 addition	of	 the	 applied	 intensified	

load,	�H,	and	thermal	residual	stress	�BC.	The	critical	particle	radius	causing	failure	would	be	
according	to	equation	(2.39):	

	 cG ≥ > PUGT��BC + �H�@�	 (2.96)	

The	 geometry	 factor	 of	 a	 scratch-like	 surface	 crack,	T = 1.1 2 √L⁄ ,	 fits	 best	 to	 predict	

fracture	caused	by	elongated	or	plate-like	sharp	particles	and	the	geometry	factor	of	a	half-

penny-shaped	 surface	 crack,	 T = 2.06 √L⁄ 	 [25],	 fits	 best	 to	 predict	 fracture	 caused	 by	

circular	particles.	

Besides	a	conservative	failure	criterion,	more	specific	and	accurate	 failure	predictions	can	

be	 formulated	 analyzing	 the	 thermal	 and	 mechanical	 stress	 distributions	 around	 the	

particles	which	are	dependent	of	the	thermal	expansion	coefficient	and	the	elastic	constants	

of	the	particles	as	seen	in	the	previous	sections.	

For	particles	 in	a	silicon	matrix	with	very	high	thermal	expansion	coefficients,	�ef ≫ eg��,	
circumferential	micro-cracking	may	most	probably	be	present	 in	 the	silicon	matrix	due	 to	

the	 high	 value	 of	 thermal	 stress.	 When	 the	 micro-cracks	 form	 a	 semi-sphere	 [36]	 they	

represent	 the	dominant	 type	of	defect	 limiting	 the	strength	of	 the	specimen.	These	micro-

cracks	are	proportional	 to	 the	magnitude	of	 the	particle	radius	IG = �cG,	being	1 < � < 2	
[26].	According	to	equation	(2.39)	cracks	with	the	following	length	cause	failure:	

	 IG ≥ >PUGT�H@�	 (2.97)	

Depending	on	the	geometry	of	the	originated	cracks,	the	geometry	factor	for	uniaxial	tensile	

loading	is	T = 1.12√L	and	T = 2.06 √L⁄ 	[25]	for	scratch-like	and	sharp	half-penny-shaped	

surface	cracks	respectively.	In	the	case	of	the	biaxial	loading	of	a	half-penny-shaped	surface	

crack	the	geometry	factor	is	T = 2 × 1.12 √L⁄ 	[44].	

In	 the	 case	 that	 spontaneous	 micro-cracking	 of	 the	 silicon	 matrix	 does	 not	 occur	 after	

directional	 solidification,	 cracks	 can	 develop	 in	 the	 surroundings	 of	 the	 particles	 at	 loads	

below	the	fracture	stress.	Thus,	even	though	the	critical	flaw	is	not	necessarily	found	in	the	

as-crystallized	 silicon	 wafer,	 it	 can	 develop	 under	 the	 combination	 of	 residual	 thermal	

stresses	and	applied	stresses	[41].	Therefore,	extension	of	micro-cracks	at	the	vicinities	of	

the	particle	into	the	silicon	matrix	due	to	the	overlap	of	residual	thermal	stress	and	applied	

stress	is	analyzed	in	the	present	section.	
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Green	 [41]	 suggested	 some	 expressions	 to	 predict	 critical	 particle	 size	 for	 radial	 and	

circumferential	micro-cracking	due	to	an	applied	stress	in	the	vicinity	of	a	spherical	particle	

with	a	residual	thermal	stress	field	in	its	surroundings.	It	is	assumed	that	the	matrix	and	the	

particle	 have	 the	 same	 elastic	 properties	 and	 therefore	 Green´s	 analysis	 is	 only	 valid	 for	

systems	where	residual	thermal	stresses	are	larger	than	stresses	due	to	elastic	mismatch.	It	

was	found	out	that	an	applied	stress	of	the	order	of	the	residual	stress	reduces	significantly	

the	critical	particle	size	below	the	critical	size	for	spontaneous	micro-cracking.	

As	 explained	 in	 the	 previous	 sections	 tensile	 radial	 stresses	 are	 developed	 in	 the	 case	 of	

particles	with	larger	thermal	expansion	coefficients	than	the	one	of	the	matrix.	This	stress	is	

largest	 at	 the	 particle-matrix	 interface	 and	 defects	 located	 in	 this	 zone	 could	 cause	

circumferential	micro-cracking.	The	assumed	particle-matrix	system	is	depicted	in	Figure	8.	

The	analysis	of	this	failure	criteria	starts	from	the	expression	of	Ito	et	al.	[37]	for	the	strain	

energy	 release	 rate.	 Substituting	 the	 strain	 energy	 release	 rate	 in	 equation	 (2.67)	 as	 a	

function	 of	 the	 toughness	 for	 the	 case	 of	 plane	 stress	 (equation	 (2.41))	 and	 equaling	 the	

elastic	properties	of	the	particle	to	the	elastic	properties	of	the	matrix,	the	stress	intensity	

factor	due	to	radial	thermal	stress	is:	

	 P� = b >0.84c sins �2 − sins�1 + ,g� @� �⁄
	 (2.98)	

Small	 cracks	 lengths	 can	 be	 assumed	 to	 be	 penny-shaped	with	 crack	 length	I = cs.	 The	
geometry	 factor	 for	 a	 penny-shaped	 crack	 is	T = 2 √L⁄ 	 [25].	 Thus,	 according	 to	 equation	

(2.39)	the	stress	intensity	factor	of	this	type	of	cracks	due	to	the	applied	stress	is	[45]:	

	 P� = 2√L �H�cs	 (2.99)	

The	initial	interface	flaw	will	experience	then	a	stress	intensity	factor	which	is	the	addition	

of	the	two	previous	stress	intensity	factors,	Pg = P� + P�.	For	small	values	of	s	the	sum	up	

of	both	stress	intensity	factors,	Pg,	is:	
	 Pg = b >1.68cs1 + ,g� @� �⁄ + 2√L �H�cGs	 (2.100)	

Circumferential	micro-cracking	occurs	then	when	Pg ≥ PUG 	and	the	critical	particle	radius	is	
therefore:	

	
cG ≥ PUG�

s�b � 1.681 + ,g��� �⁄ + 1.128�H��	
(2.101)	

Radial	 micro-cracking	 is	 expected	 when	 the	 particles	 have	 lower	 thermal	 expansion	

coefficients	 than	 the	matrix.	 Under	 this	 configuration,	 defects	which	 are	 perpendicular	 to	

the	 interface	are	most	deleterious.	An	annular	 initial	 flaw	of	 length	I	 is	considered	in	this	
case.	The	particle	and	the	crack	are	considered	a	penny-shaped	crack	(with	radius	I + c)	
(see	Figure	10).	
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The	stress	intensity	factor	due	to	thermal	stress	can	be	calculated	with	equation	(2.80).	To	

calculate	 the	 stress	 intensity	 factor	due	 to	 the	 applied	 load	 it	 is	 assumed	 that	 the	applied	

stress	acts	across	the	crack	faces	and	thus,	equation	(2.79)	must	be	solved	for	��S� = �H:	
	 P� ≅ 2�H qIL �s + 2��s + 1�r� �⁄

	 (2.102)	

Adding	the	thermal	and	stress	applied	intensity	factors,	gives	the	total	stress	intensity	factor	

acting	on	the	initial	flaw	at	the	particle´s	interface:	

	 Pg ≤ b qIL �s + 2��s + 1�4r� �⁄ + 2�H qIL �s + 2��s + 1�r� �⁄
	 (2.103)	

Radial	 micro-cracking	 occurs	 then	 when	 Pg ≥ PUG 	 and	 the	 critical	 particle	 radius	 is	
therefore:	

	 cG ≥ LPUG� �s + 1�4s�2�H�s + 1�� − b���s + 2�	 (2.104)	

Evans	 [26]	 proposed	 expressions	 for	 the	 stress	 intensity	 factors	 of	 initial	 flaws	 in	 the	

vicinity	of	circular	particles	due	 to	 thermal	and	elastic	mismatch.	 If	 these	expressions	are	

introduced	in	equation	(2.105)	a	failure	criterion	for	circular	particles	can	be	formulated:	

	 PUG ≤ P� + P�	 (2.105)	P�	is	the	stress	intensity	factor	that	a	small	interfacial	flaw	experiences	due	to	the	thermal	

residual	stress	(see	equation	(2.76))	and	P�	is	the	stress	intensity	factor	due	to	the	applied	
mechanical	 load	(see	equation	(2.95)).	 If	 the	 initial	 flaw	 is	exactly	 located	at	 the	particle´s	

interface	and	has	a	length	of	0.2c,	 then	the	critical	particle	radius	for	particles	with	lower	
expansion	coefficient	than	the	one	of	silicon	is:	

	 cG ≥ 10L � PUG1140b + �H �1 + 75� + 485 /��
�
	 (2.106)	

2.1.2 Fracture Toughness 

The	performance	of	second	phase	particles	as	 fracture	 initiators	and	 its	causes	have	been	

analyzed	 in	 detail	 in	 the	 previous	 sections.	 On	 the	 other	 hand,	 the	 same	 second	 phase	

particles	 may	 represent	 an	 obstacle	 for	 propagating	 cracks	 [46]	 increasing	 the	 fracture	

toughness	of	silicon	and	thus	may	increase	the	mechanical	strength	of	the	silicon	wafers	if	

the	particles	are	well	bonded	to	the	silicon	matrix.	

Fracture	 energy	 and	 toughness	of	 a	 ceramic	 can	be	 therefore	 influenced	by	 second	phase	

particles	 [47],	 [48],	 [49],	 [50],	 [51].	Several	mechanisms	exist	 for	explaining	 the	change	 in	

fracture	toughness	due	to	particles.	For	the	purpose	of	this	work	we	will	focus	on	the	change	

of	 fracture	 energy	 and	 stress	 intensity	 factor	 of	 a	 crack	 approaching	 a	 particle	 due	 to	

thermal	and	elastic	mismatch.	Stress	intensity	factors	at	the	crack	tips	can	be	influenced	by	

the	 localized	residual	stresses	and	elastic	properties	of	 the	particle.	The	crack	path	can	be	
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therefore	repelled	or	attracted	by	the	particles.	Generally,	a	crack	propagates	in	a	direction	

parallel	to	the	axis	of	the	local	compressive	stress	and	perpendicular	to	the	axis	of	the	local	

tensile	 stress	 [52].	 If	 the	 particle	 has	 larger	 thermal	 expansion	 coefficient	 and	 elastic	

modulus	than	the	matrix	and	is	in	the	plane	of	the	crack,	the	crack	is	first	deflected	out	of	the	

plane	as	it	approaches	the	particle	and	continues	its	propagation	at	the	particle´s	interface	

(see	 Figure	 14	 b)).	When	 the	 crack	 tip	 reaches	 a	 position	 above	 the	 particle´s	 equator	 it	

continues	 its	propagation	 in	 a	direction	normal	 to	 the	 radial	 tensile	 stress	 and	 it	 extends	

further	 in	 the	matrix.	When	 the	particles	have	 lower	 thermal	expansion	and	 lower	elastic	

modulus,	the	crack	is	attracted	and	propagates	through	the	particle	(see	Figure	14	a)).	

	

a)	 b)	

Figure 14 Image a) depicts a crack propagating through a particle �e� < eg�� and �+� < +g��. Image b) 

depicts the deflection of a crack by a particle �e� > eg�� and �+� > +g�� [52]. 

The	 interaction	between	 the	 crack-tip	 stress	 field	and	 the	 stress	 concentration	developed	

around	a	circular	particle	with	different	elastic	constants	and	thermal	expansion	coefficients	

is	analyzed	also	by	Khaund	et	al.	[53].	They	provided	a	simple	analytical	solution	to	quantify	

the	 change	 in	 local	 crack-driving	 force	 ΔP	 due	 to	 an	 applied	 biaxial	 stress	 field.	 The	
toughness	 that	 a	material	 experiences	when	 a	 propagating	 crack	 approaches	 the	 particle	

under	a	biaxial	stress	field	is:	

	 PUG��� = PUG + ΔP = PUG �1 − 2�c���� �	 (2.107)	

The	influence	of	thermal	stresses	around	particles	on	the	local	toughness	is:	

	 PUG� = PUG + ΔP = PUG − 0.47b c���4 �⁄ 	 (2.108)	

where	��	is	the	distance	between	the	center	of	the	particle	and	the	tip	of	the	crack.	
This	model	shows	that	the	interaction	between	a	particle	and	a	crack	tip	is	influenced	by	the	

distance	 between	 the	 particle	 and	 the	 crack	 tip,	 the	 particle	 size	 and	 thermal	 and	 elastic	

misfit	stresses.		

The	parameter	�	for	particles	with	higher	elastic	constants	than	silicon,	i.e.	stiff	particles,	is	< 0	and	therefore,	the	elastic	tangential	stress	expressed	with	equation	(2.93)	is	lower	than	
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the	magnitude	of	the	applied	biaxial	stress.	Thus,	the	stress	intensity	factor	at	the	crack	tip	

approaching	 the	 particle	 decreases.	 The	 crack	 is	 shielded	 and	 thus	 the	 local	 effective	

toughness	of	the	material	is	increased.	A	contrary	statement	applies	for	particles	with	lower	

elastic	 constants	 than	 silicon,	 i.e.	 soft	 particles.	 In	 this	 case	 � > 0	 and	 thus	 the	 elastic	
tangential	stress	is	larger	than	the	applied	biaxial	stress.	Crack	growth	is	accelerated	in	front	

of	the	particle	due	to	an	increase	of	the	stress	intensity	factor	of	the	propagating	crack	and	

the	toughness	is	thus	diminished.	

Particles	with	larger	thermal	expansion	coefficients	than	silicon	and	thus	with	compressive	

tangential	 residual	 thermal	 stress	 in	 their	 surroundings	 also	 decrease	 the	 local	 stress	

intensity	 factor	 at	 the	crack	 tip	 and	 the	 local	 toughness	 is	hence	 increased.	Particles	with	

lower	 thermal	 expansion	 coefficients	 have	 tensile	 tangential	 thermal	 stress	 in	 their	

vicinities	 and	 therefore	 the	 stress	 intensity	 factor	 that	 a	 crack	 tip	 experiences	 when	 the	

crack	is	approaching	the	particle	is	increased	and	the	toughness	is	therefore	decreased	[53].	

Li	 et	 al.	 [54]	 simulated	 the	 variation	 of	 the	 energy	 release	 rate	 at	 the	 tip	 of	 a	 crack	 that	

approaches	and	penetrates	an	elastic	and	circular	particle	due	to	a	uniaxial	stress	field.	

	

Figure 15 Variation of energy release rate of a crack that approaches and passes a circular particle [54]. 

The term E0 in the image states for the elastic modulus of the matrix. 

The	term	W�)� W�⁄ �)�	in	Figure	15	is	the	normalized	energy	release	rate	where	W�)�	is	the	
energy	release	rate	of	a	crack	in	the	presence	of	a	particle	and	W��)�	 is	the	energy	release	
rate	of	the	same	crack	that	does	not	approach	any	particles.	

In	the	case	of	a	stiff	particle,	�+f > +g��,	 the	crack	 is	shielded	as	 it	approaches	the	particle	
and	the	crack	front	is	decelerated.	In	the	case	that	the	crack	cannot	deflect	and	penetrates	

the	 stiff	 particle,	 the	 energy	 release	 rate	 of	 the	 crack	 increases	 (see	 Figure	 15).	 A	 soft	

particle,	 �+f < +g��,	 amplifies	 the	 energy	 release	 rate	 when	 the	 crack	 approaches	 the	
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particle	and	the	crack	is	thus	accelerated	in	the	direction	of	the	particle.	The	energy	release	

rate	decreases	after	the	crack	penetrates	the	particle.	

The	crack	senses	the	particle	at	a	length	approximately	equal	to	the	length	of	the	particle´s	

radius	from	the	particle´s	interface.	Amplification	and	shielding	effects	of	the	energy	release	

rate	due	to	stiff	and	soft	particles	vanish	rapidly	when	the	crack	exits	the	particle.	

Khaund	 et	 al.	 and	 Li	 and	 Chudnovsky	 analysis	 of	 stress	 intensity	 factors	 approaching	 a	

particle	 assume	 that	 the	 particle	 has	 a	 circular	 form.	 However,	 particles	 can	 show	 other	

geometries.	Elongated	particles	parallel	 to	 the	crack	exert	a	 larger	 influence	on	 the	stress	

intensity	factor	at	the	crack	tip	than	elongated	particles	located	perpendicular	to	the	crack	

plane	[27]	[55].	Circular	particles	exert	the	least	influence	on	the	stress	intensity	factor.	

The	particle-crack	interaction	is	also	a	function	of	the	distribution	of	the	dispersed	particles	

[56].	The	energy	release	rate	of	a	propagating	crack	is	reduced	when	the	crack	approaches	a	

cluster	of	stiff	particles.	The	crack	is	then	shielded	and	the	effective	toughness	is	increased.	

However,	 when	 the	 crack	 leaves	 the	 cluster	 the	 energy	 release	 rate	 is	 amplified	 and	 the	

effective	toughness	is	reduced	[57].	

Pre-existing	 interface	 flaws,	 i.e.	 poor	 bonding	 of	 the	 particles	 with	 the	 silicon	 matrix,	

increase	the	energy	release	rate	of	the	propagating	crack	and	therefore	attract	the	crack	to	

the	particle	[57].	

The	 particles	 that	 are	 more	 deleterious	 to	 toughness	 are	 elongated	 particles	 with	 lower	

elastic	constants	and	thermal	expansion	coefficient	than	the	ones	of	silicon	with	large	initial	

flaws	at	the	particle´s	interface	and	located	parallel	to	the	crack	plane.	

Circular	 particles	 most	 effectively	 increase	 fracture	 toughness,	 especially	 when	 they	 are	

smaller	than	a	critical	particle	radius	so	that	they	do	not	represent	a	critical	defect	causing	

fracture	and	when	they	have	higher	elastic	constants	and	thermal	expansion	coefficient	than	

silicon.	

There	is	also	the	possibility	that	the	particle	has	higher	thermal	coefficient	and	lower	elastic	

constants	than	silicon	or	vice	versa.	In	that	case,	the	effects	of	these	material	parameters	on	

fracture	 toughness	 counteract	 each	 other	 and	 the	material	 parameter	 that	 influences	 the	

toughness	in	a	larger	extent	will	define	if	the	toughness	of	silicon	increases	or	decreases.	

Concerning	 the	 crystalline	 orientation	 of	 silicon,	 fracture	 energy	 and	 toughness	 showed	

little	 dependence	 with	 crystal	 orientation	 as	 for	 cubic	 systems.	 Rice	 [58]	 summarized	 a	

comparison	 of	 ceramic	 microstructural	 dependence	 of	 fracture	 energy,	 toughness	 and	

strength.	

In	 the	 case	 that	 spontaneous	 micro-cracking	 in	 the	 vicinity	 of	 the	 particles	 occurs,	 the	

toughness	 of	 silicon	 can	 be	 diminished.	 Rose	 [59]	 proposed	 an	 estimation	 of	 toughness	

degradation	due	 to	 collinear	micro-cracks	 linking	up	with	 the	 advancing	main	 crack.	This	

estimation	is	based	on	analytical	formulas	for	the	stress	intensity	factor	at	the	tip	of	a	semi-

infinite	advancing	crack	in	an	infinite	body	and	at	a	collinear	micro-crack	(see	Figure	16).	
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Figure 16 Two-dimensional configuration of a collinear micro-crack ahead of the main crack [59]. 

The	material	is	considered	isotropic	and	elastic	and	the	cracks	randomly	distributed.	Rose	

derives	P�	as	the	value	of	PU	at	which	linking	up	is	initiated:	
	

P�P�G = ��	 (2.109)	

Thus,	P�	 is	 an	 estimate	 of	 the	 effective	 fracture	 toughness	 of	 the	 cracked	 body.	P�G	 is	 the	
intrinsic	 fracture	 toughness	 of	 the	 cracked	 body	 which	 is	 influenced	 by	 the	 decrease	 in	

elastic	modulus	of	the	cracked	material	(which	will	be	explained	in	the	next	section).	P�G	can	
be	estimated	for	plane	stress	as	follows:	

	 P�G =  +¡+ PG	 (2.110)	

where	+¡ 	is	the	elastic	modulus	of	the	cracked	body	and	�	is:	
	 � = +��′�P��′�	 (2.111)	

where	 P	 and	 +	 are	 the	 complete	 elliptic	 integrals	 of	 the	 first	 and	 the	 second	 kind,	

respectively,	with	�� = )� )�⁄ 	(see	Figure	16)	and	�£ = √1 − ��.	
The	complete	elliptic	integrals	of	the	first	kind	and	the	second	kind	can	be	approximated	as	

an	expansion	of	a	power	of	series	[60]:	

P��£� = 12L x1 + >12@� �£� + >1 × 32 × 4@� �£3 + >1 × 3 × 52 × 4 × 6@� �£5 +⋯
+ > �2¤�!2�¦�¤!��@� �£�¦y	 (2.112)	

+��′� = 12L x1 − >12@� �£� − >1 × 32 × 4@� �£33 − >1 × 3 × 52 × 4 × 6@� �£55 −⋯
− > �2¤�!2�¦�¤!��@� �£�¦2¤ − 1y	 (2.113)	

2.1.3 Elastic Modulus 

It	 is	 found	 in	 the	 literature	 that	 the	 elastic	 modulus	 of	 materials	 containing	 particles	 or	

inclusions	 depends	 on	 the	 elastic	 properties	 and	 volume	 fraction	 of	 the	 particles	 [61].	

Increasing	fraction	volumes	of	stiffer	particles	increases	the	elastic	modulus	of	the	material.	
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In	 the	 same	 way,	 increasing	 volume	 fractions	 of	 softer	 particles,	 or	 pores	 and	 cracks,	

decreases	the	elastic	modulus	of	the	composite.	

Voigt	 [16]	 and	 Reuss	 [17]	 were	 able	 to	 predict	 upper	 and	 lower	 bounds	 for	 the	 bulk	

modulus	[15],	/,	using	stress	and	strain	averaging	techniques.	This	is	known	as	the	“Rule	of	
Mixtures”	equations:	

	 / = /f§f + /g�§g�	 (2.114)	

	
1/ = §f/f + §g�/g� 	 (2.115)	

where	 §g�,fis	 the	 volume	 fraction	 of	 silicon	 and	 the	 particle	 respectively.	 The	 same	

expressions	are	valid	for	calculating	the	shear	modulus.	The	bounds	for	the	elastic	modulus	

can	be	obtained	with	the	usual	relation	between	elastic	constants	expressed	with	equation	

(2.8).	 The	 above	 theoretical	 approach	 can	 be	 extended	 for	materials	with	more	 than	 two	

phases	by	addition	of	terms	for	each	new	phase.	

Hashin	and	Shtrikman	[62]	determined	bounds	for	the	bulk	and	the	shear	modulus	based	on	

basic	 elasticity	 energy	 theorems.	Assuming	 that	 the	material	 is	 quasi-isotropic	 and	quasi-

homogeneous;	 the	 effective	 bulk	 modulus	 of	 the	 material	 containing	 particles	 can	 be	

predicted	in	terms	of	the	bulk	modulus	and	the	volume	fractions	of	the	constituting	phases	

(silicon	matrix	and	particles).	

	
/= = /g� + §f1/f − /g� + 3§g�3/g� + 4.g�	 (2.116)	

	
/A = /f + §g�1/g� − /f + 3§f3/f + 4.f	 (2.117)	

	 .= = .g� + §f1.f − .g� + 6�/g� + 2Wg��§g�5.g��3/g� + 4.g��	 (2.118)	

	 .A = .f + §g�1.g� − .f + 6�/f + 2.f�§f5.f�3/f + 4.f�	 (2.119)	

The	bounds	for	the	elastic	modulus	can	be	obtained	with	the	usual	relation	between	elastic	

constants	expressed	with	equation	(2.8).	

The	Hashin-Shtrikman	bounds	lie	within	the	Voigt-Reuss	bounds	and	are	found	to	be	most	

reliable	possible	limits	for	the	bulk	modulus,	given	only	the	volume	fraction	and	moduli	of	

the	constituent	phases.	

The	elastic	response	of	a	particle	clustered	and	a	non-clustered	material	 is	 the	same.	That	

means	that	the	slope	of	the	stress-deformation	curve	is	the	same	for	both	microstructures.	

Elastic	modulus	is	very	sensitive	to	the	volume	fraction	of	reinforcement	and	less	sensitive	

to	the	distribution	of	particles	[55].	
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The	presence	of	well	bonded	particles	 can	 increase	 the	elastic	modulus	of	 the	material.	A	

decrease	 in	 the	 measured	 values	 of	 elastic	 modulus	 indicates	 non-bonded	 interfaces	 or	

voids	[63].	Therefore,	special	attention	should	be	drawn	to	the	decrease	in	elastic	modulus	

when	 spontaneous	 micro-cracking	 of	 the	 silicon	 matrix	 occurs	 after	 the	 crystallization	

process.	

Budiansky	 and	 O’Connell	 [64]	 proposed	 a	model	 for	 predicting	 the	 elastic	 constants	 of	 a	

solid	with	randomly	distributed	cracks.	The	solid	is	considered	isotropic	and	homogeneous	

in	the	large.	According	to	this	model	the	ratio	of	the	bulk	modulus	of	the	cracked	body,	/¡ ,	
and	the	uncracked	bulk	modulus,	/,	depends	on	the	crack	density	parameter,	¨:	

	
/¡/ = 1 − 169 �1 − �,̅��1 − 2,̅ � ¨	 (2.120)	

The	relations	between	elastic	constants	also	yield	for	the	cracked	body:	

	 /¡ = +¡3�1 − 2,̅�	 (2.121)	

	 /¡ = +¡.̅3�3.̅ − +¡�	 (2.122)	

In	the	case	of	circular	cracks,	the	elastic	modulus,	the	shear	modulus	and	the	crack	density	

parameters	are:	

	
+¡+ = 1 − 1645 �1 − �,̅����10 − 3,̅��2 − ,̅� ¨	 (2.123)	

	
.̅. = 1 − 3245 >�1 − ,̅��5 − ,̅�2 − ,̅ @ ¨	 (2.124)		

	 ¨ = ª〈I�〉 = 4516 �, − ,̅��2 − ,̅��1 − �,̅����10, − ,̅�1 + 3,��	 (2.125)	

Where	ª	 is	 the	 number	 of	 cracks	 per	 unit	 volume	 and	 I	 is	 a	 characteristic	 linear	 crack	
dimension.	

It	 is	 important	 to	mention	 that	 the	 Poisson´s	 coefficient	 of	 the	 cracked	 body,	 ,̅,	 is	 also	 a	
decreasing	function	of	the	crack	density	parameter,	¨.	This	 implies	that	 for	all	values	of	,,	
when	 ,̅ → 0	 then	 ¨ → 9 16⁄ 	 (from	 equation	 (2.125));	 and	 consequently	 /¡ /⁄ ,	 .̅ .⁄ 	 and	+¡ + → 0⁄ .	 This	 vanishing	 of	 the	 elastic	 constants	 is	 interpreted	 to	 be	 caused	 by	 a	 loss	 of	

coherence	of	the	material.	This	would	be	produced	by	an	intersecting	crack	network	at	the	

critical	value	¨ = 9 16⁄ 	of	the	crack	density	parameter	[64].	

2.1.4 The Solar Cell as a Laminate Composite 

Sections	 2.1.1	 to	 2.1.3	 describe	 the	 mechanical	 behavior	 of	 silicon	 wafers	 containing	

different	 types	 of	 second	 phase	 particles	 formed	 in	 the	 silicon	 matrix	 during	 the	

crystallization	 process	 of	 multicrystalline	 silicon	 blocks.	 The	 presence	 of	 these	 particles	

makes	 multicrystaline	 silicon	 to	 behave	 mechanically	 as	 a	 particle	 composite.	 Solar	 cell	
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processing	of	silicon	wafers	deposits	thin	or	thick	layers	of	other	materials	on	the	surface	of	

the	silicon	wafers.	Therefore,	it	is	of	interest	to	study	the	solar	cell	as	a	functional	structure	

equivalent	to	a	laminate	composite.	

2.1.4.1 Thin Film Laminate Composite 

2.1.4.1.1 Thin	Film	Residual	Stresses	

Residual	stresses	arise	during	many	solar	cell	processes	where	the	deposition	of	a	thin	film	

on	 the	 silicon	 wafer	 occurs	 at	 high	 temperature,	 as	 in	 the	 case	 of	 emitter	 diffusion	 and	

deposition	 of	 an	 antireflection	 coating.	 The	 difference	 in	 thermal	 expansion	 coefficients	

between	the	thin	film	material	and	the	silicon	substrates	can	induce	large	thermal	stresses	

within	the	thin	film.	Thin	film	internal	stresses	also	arise	during	solar	cell	processing	as	thin	

film	 growth	 does	 not	 take	 place	 at	 thermo-dynamic	 equilibrium.	 The	 addition	 of	 thermal	

and	 internal	stresses	defines	 the	magnitude	of	 the	residual	stress	 that	remains	within	 the	

thin	film	[65].	

When	 the	 volume,	 i.e.	 the	 dimensions	 of	 the	 film,	 changes	 elastic	 strains	 and	 stresses	

develop.	 The	 volume	 of	 the	 thin	 film	 changes	 relative	 to	 the	 substrate	 due	 to	 different	

phenomena.	 The	 difference	 in	 thermal	 expansion	 coefficient	 between	 the	 film	 and	 the	

substrate	produces	 a	 change	 in	 relative	 volume	of	 the	 film	with	 a	 change	 in	 temperature.	

Annihilation	of	vacancies,	dislocations	and	grain	boundaries	also	induce	a	change	in	volume	

of	 the	 film	due	 to	 a	densification	of	 the	material.	Additionally,	 phase	 transformations	 and	

composition	changes	can	induce	dilatational	strains	in	the	film.	

In	this	section	we	consider	a	 laminate	composite	and	we	assume	that	the	film	is	very	thin	

compared	 to	 the	 substrate	 and	 that	 the	 lateral	 dimensions	 of	 the	 laminate	 composite	 are	

much	larger	than	its	total	thickness	[65].	
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a)	 b)	

Figure 17 Stress distribution and deformation in thin film laminate composites. The sketch is adapted 

from the literature [65] and [66].The z direction is perpendicular to the x-y plane; �O,�, and �O,� are the 

stress and the thickness of the film and the substrate respectively; and ®O,� is the bending moment 

produced by the stress in the film and by the stress in the substrate respectively.  

Next	 if	 we	 consider	 that	 the	 laminate	 composite	 is	 completely	 free	 of	 stress,	 the	 lateral	

dimensions	of	the	film	will	match	exactly	the	dimensions	of	the	substrate	(see	Figure	17	a1	

and	b1).	During	 the	cooling	 from	high	 temperature	processing	 the	volume	of	 the	 thin	film	

can	shrink	due	to,	for	example,	a	higher	thermal	expansion	coefficient	of	the	thin	film	than	

the	 thermal	 expansion	 coefficient	 of	 the	 substrate	 (see	 Figure	 17	 a2).	 A	 uniform	 volume	

change	is	expressed	as	a	dilatational	transformation	strain	of	the	thin	film,	¯� .	The	principal	
components	 of	 a	 pure	 dilatational	 strain	 are	 ¯°°��� = ¯}}��� = ¯±±��� = ¯� 3⁄ .	 If	 we	

reattach	the	film	to	the	substrate	a	biaxial	stress	must	be	imposed	on	the	film	to	elastically	

deform	until	it	fits	the	dimensions	of	the	substrate	(see	Figure	17	a3).	This	stress	produces	

elastic	 strains	 in	 the	 film	of	 the	 exact	magnitude	of	 the	 corresponding	 components	of	 the	

transformation	strain:	

	 &O = &°° = &}} = −¯�3 	 (2.126)	

The	biaxial	stress	within	the	film	is	then	according	to	the	Hooke´s	law:	

	 �O = �°° = �}} = TO&O	 (2.127)	
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where	 TO	 is	 the	 biaxial	 elastic	 modulus	 of	 the	 film.	 The	 biaxial	 modulus	 of	 the	 film	 for	

isotropic	bodies	is:	

	 TO = +O1 − ,O	 (2.128)	

The	biaxial	elastic	modulus	must	be	calculated	according	to	its	crystallographic	orientation	

for	anisotropic	materials.	In	the	case	of	cubic	single-crystal	films	the	biaxial	modulus	can	be	

calculated	 depending	 on	 its	 elastic	 constants	 and	 the	 crystallographic	 orientation	 of	 the	

substrate.	 The	 biaxial	modulus	 of	 a	 cubic	 single-crystal	 film	 in	which	 its	 crystallographic	

plane	(100)	 lies	parallel	 to	the	surface	of	 the	substrate	 is	isotropic	 in	the	plane	of	the	film	

and	can	be	calculated	as	follows:	

	 TO�100� = 7�� + 7�� − 27���7�� 	 (2.129)	

Once	the	film	is	attached	to	the	substrate,	we	assume	to	remove	this	biaxial	stress	necessary	

for	the	film	to	match	the	dimensions	of	 the	substrate.	The	substrate	then	bends	elastically	

(see	Figure	17	 a4),	 the	biaxial	 normal	 forces	disappear	 at	 the	 edges	of	 the	 film	but	 shear	

stresses	on	the	film-substrate	 interface	appear.	Normal	and	shear	stresses	become	zero	at	

an	edge	or	a	surface.	This	phenomenon	causes	stress	redistribution	and	induces	normal	and	

shear	stresses	at	the	interface	near	the	edge.	The	biaxial	stress	is	maintained	in	the	thin	film	

from	a	certain	distance	away	from	the	edges.	The	thin	film	remains	under	tensile	stress,	and	

the	stress	distribution	within	the	substrate	can	be	observed	in	Figure	17	a5.	The	very	top	of	

the	substrate	is	under	compressive	stress	and	this	stress	diminishes	its	magnitude	until	the	

middle	of	the	thickness	of	the	substrate	where	the	neutral	plane	is.	From	the	neutral	plane	

to	the	bottom	part	of	the	substrate	the	stress	increases	and	becomes	tensile.	When	thin	film	

tensile	stresses	are	very	large	they	can	relieve	themselves	by	micro-cracking	of	the	film	[66].	

If	 we	 consider	 that	 the	 thermal	 expansion	 coefficient	 of	 the	 thin	 film	 is	 lower	 than	 the	

thermal	expansion	coefficient	of	 the	 substrate,	 the	 substrate	volume	shrinkage	during	 the	

cooling	 from	 high	 temperature	 processing	 is	 larger	 than	 the	 film	 volume	 shrinkage	 (see	

Figure	17	b2).	It	can	also	be	seen	as	an	expansion	of	the	dimensions	of	the	film	relative	to	

the	dimensions	of	the	substrate.	If	we	reattach	the	film	to	the	substrate,	a	biaxial	stress	must	

be	imposed	on	the	film	to	elastically	deform	until	it	fits	the	dimensions	of	the	substrate	(see	

Figure	17	b3).	Once	the	film	is	attached	to	the	substrate,	we	assume	to	remove	this	biaxial	

stress	necessary	for	the	film	to	match	the	dimensions	of	 the	substrate.	The	substrate	then	

bends	elastically	(see	Figure	17	b4),	the	biaxial	normal	forces	disappear	at	the	edges	of	the	

film	 but	 shear	 stresses	 on	 the	 film-substrate	 interface	 appear.	 The	 biaxial	 stress	 is	

maintained	 in	 the	 thin	 film	 from	 a	 certain	 distance	 away	 from	 the	 edges.	 The	 thin	 film	

remains	under	compressive	stress,	and	 the	stress	distribution	within	 the	substrate	can	be	

observed	in	Figure	17	b5.	The	very	top	of	the	substrate	is	under	tensile	stress	and	this	stress	

diminishes	 its	 magnitude	 until	 the	 middle	 of	 the	 thickness	 of	 the	 substrate	 where	 the	

neutral	plane	is.	From	the	neutral	plane	to	the	bottom	part	of	the	substrate	the	magnitude	of	

the	 stress	 increases	 and	 becomes	 compressive.	 Compressive	 stresses	 in	 the	 thin	 film	 can	

relieve	themselves	by	buckling.	
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The	biaxial	modulus	of	the	substrate	and	the	thickness	of	the	film	and	the	substrate	define	

the	magnitude	of	the	bending	[65]	as	the	properties	of	the	thin	film	have	negligible	effect	on	

the	 bending	 of	 the	 structure	 due	 to	 the	 thin	 film	 approximation.	 The	 thin	 film	 laminate	

composite	takes	the	shape	of	a	spherical	shell	after	bending	if	the	elastic	biaxial	modulus	of	

the	substrate,	T�,	is	isotropic	in	its	plane.	
In	equilibrium	the	bending	moment	produced	by	the	stress	within	the	film,	®O ,	must	equal	

the	bending	moment	produced	by	 the	stress	 in	 the	substrate,	®�.	The	bending	moment	 is	

calculated	 as	 the	 force	 times	 the	 perpendicular	 distance	 and	 taking	 the	 position	 of	 the	

neutral	 plane	 as	 the	 co-ordinate	 origin.	 If	 the	 thickness	 of	 the	 thin	 film	 laminate	 is	

approximated	as	the	thickness	of	the	substrate	��� + �O ≈ ���:	
	 ®O = �O²�O ��2 	 (2.130)	

where	²	is	the	length	of	the	edge	of	the	thin	film	laminate	composite.	

The	biaxial	stress	state	of	the	substrate	depending	on	its	distance	to	the	neutral	plane	is:	

	 ���³� = T�&��³� = T� ³Ś 	 (2.131)	

where	 Ś 	 is	 the	radius	of	 the	curvature	of	 the	composite	after	bending	measured	from	the	

neutral	 plane.	 &��³�	 is	 the	 strain	 in	 a	 plane	 parallel	 to	 the	 surface	 of	 the	 composite	 at	

distance	³	 from	the	neutral	plane	which	can	be	calculated	as	³ Ś⁄ 	 following	a	geometrical	

relation	 between	 the	 dimensions	 of	 the	 system	 [67].	 Thus,	 the	moment	 produced	 by	 the	

stress	in	the	substrate	is:	

	 ®� = ²[ ³��³�d³Bµ �⁄
=Bµ �⁄ = ²[ T� ³�Ś d³Bµ �⁄

=Bµ �⁄ = T� ²���12Ś 	 (2.132)	

The	residual	stress	within	the	thin	film	can	be	obtained	by	equaling	both	moments	which	is	

known	as	the	Stoney´s	equation	[67]:	

	 �O = T� ���6Ś �O	 (2.133)	

where	T�	can	be	calculated	for	isotropic	and	cubic	crystal	materials	with	equations	(2.128)	

and	(2.129).	By	measuring	the	curvature,	�,	or	deflection	of	the	substrate,	�,	 the	curvature	
radius	can	be	then	calculated	�Ś = �=��	�Ś = ²� 8��⁄ 	and	the	residual	stress	in	the	film	can	

be	therefore	determined.	

The	 stress	 in	 the	 upper	 plane	 of	 the	 substrate	 can	 be	 approximated	 as	 a	 function	 of	 the	

stress	 within	 the	 thin	 film	 and	 the	 relation	 between	 the	 thicknesses	 of	 the	 film	 and	 the	

substrate	[65]:	

	 �hH°,� ≈ −3�O�� �O	 (2.134)	

The	smallest	the	thickness	of	the	film	the	lower	the	stress	induced	in	the	substrate	will	be.	
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As	 discussed	 at	 the	 beginning	 of	 this	 section,	 the	 residual	 stress	 within	 the	 film	 is	 the	

combination	of	the	thermal	and	internal	stresses	of	the	film:	

	 �O = �BC + ��	 (2.135)	

In	 the	 case	 of	 a	 thermal	mismatch	 between	 the	 film	 and	 the	 substrate	 there	 is	 an	 elastic	

strain	needed	to	fit	the	dimensions	of	the	film	to	the	dimensions	of	the	substrate:	

	 &BC = �eO − e����� − �Hhi� = ∆e∆�	 (2.136)	

where	eO,�	is	the	thermal	expansion	coefficient	of	the	film	and	the	substrate	respectively;	�	
is	 the	 current	 temperature,	 usually	 it	 is	 room	 temperature,	 and	��	 is	 the	 temperature	 at	

which	the	silicon	wafer	has	been	processed,	i.e.	the	temperature	at	which	the	film	and	the	

substrate	were	in	a	stress-free	state.	Thermal	stresses	are	often	dominant	in	the	case	of	thin	

film	depositions	at	high	temperatures	[68].	

Growth	or	 intrinsic	strains	are	produced	when	the	density	of	 the	 film	changes	once	 it	has	

been	 bonded	 or	 attached	 to	 the	 substrate.	Then,	 the	 elastic	 accommodation	 strain	 in	 this	

case	can	be	expressed	as	a	function	of	the	dilatational	transformation	strain	associated	with	

this	change	in	material	density,	&� .	The	elastic	accommodation	strain	due	to	the	difference	in	

lattice	parameters	between	the	film	and	the	substrate	is	for	epitaxial	films	grown	on	thick	

substrates:	

	 &� = −&�3 = ∆II ≈ I� − IOIO ≈ I� − IOI� 	 (2.137)	

where	IO,�	is	the	lattice	parameter	of	the	film	and	the	substrate	respectively.	

Other	sources	of	intrinsic	stresses	are	grain	growth,	excess	vacancy	annihilation,	shrinkage	

of	grain	boundary	voids,	presence	of	impurities,	phase	transformation	and	precipitation,	etc.	

Growth	 stresses	 are	 strongly	 dependent	 on	 the	 material	 properties,	 on	 the	 substrate	

temperature	during	processing	and	on	the	growth	flux	and	chamber	conditions.	More	detail	

about	these	phenomena	can	be	found	in	the	literature	[68].	

In	 the	 case	 that	 intrinsic	 stresses	 can	 be	 simplified	 to	 be	 due	 to	 the	 difference	 in	 lattice	

parameters	between	the	film	and	the	substrate,	equation	(2.127)	can	be	expressed	as:	

	 �O = �BC + �� = TO q�eO − e����� − �� + I� − IOI� r	 (2.138)	

2.1.4.1.2 Silicon	Substrate	Residual	Stresses	

As	 the	 substrates	 are	 thick	 in	 comparison	 to	 the	 films,	 the	 stresses	 in	 the	 substrates	 are	

usually	small	and	negligible.	However,	if	the	thin	film	on	the	silicon	substrate	remains	with	

very	large	compressive	stresses,	the	corresponding	tensile	stresses	in	the	uppermost	layer	

of	 the	 silicon	 substrate	 can	 propagate	 cracks	 or	 notches	 on	 the	 surface	 of	 the	 substrate.	

Thus,	 fracture	 through	 the	 thickness	 of	 the	 substrate	 can	 occur	 already	 by	 the	 level	 of	

thermal	 residual	 stress	 or	 by	 the	 overlap	 of	 tensile	 thermal	 residual	 stress	 and	 applied	

stress	during	further	processing,	solar	cell	assembly	into	modules	or	loadings	during	solar	

cell	performance.	
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Figure 18 Substrate cracking due to the concentration of tensile thermal stress in a crack in the 

uppermost layer of the silicon substrate. The sketch is adapted from [65]. 

Another	aspect	to	be	considered,	concerning	the	silicon	substrate,	 is	the	dependency	of	its	

thermal	expansion	coefficient	with	the	temperature	[69].	

During	solar	cell	processing	silicon	wafers	are	heated	up	to	a	temperature	between	500	to	

1200°C;	 then	 the	 wafers	 are	 processed	 during	 30	min	 approximately	 and	 consequently	

cooled	down	to	room	temperature.	The	outside	parts	of	the	wafer	tend	to	be	hotter	than	the	

inside	parts	during	heating	up.	And	the	same	occurs	during	cooling	down	where	the	outside	

parts	of	the	wafer	tend	to	be	colder	than	the	inside.	Thus,	thermal	stresses	inside	the	silicon	

substrate	can	develop	after	solar	cell	processing.	The	magnitude	of	the	thermal	stresses,	as	

explained	before,	depends	on	the	difference	in	thermal	expansion	coefficients	between	the	

hottest	and	the	coldest	parts	of	 the	wafers	and	on	the	gradient	of	 temperature	of	 the	final	

rapid	cooling	after	processing	at	high	temperature:	

	 �BC = +1 − , ∆e∆�	 (2.139)	

Table	14	of	Appendix	A	summarizes	values	of	 the	 thermal	expansion	coefficient	of	silicon	

within	a	temperature	range	from	100	to	1500°C.	

2.1.4.2 Thick Film Laminate Composite 

When	 the	 thickness	 of	 the	 film	 deposited	 on	 the	 substrate	 cannot	 be	 negligible	 in	

comparison	 to	 the	 thickness	 of	 the	 substrate,	 the	 elastic	 constants	 of	 the	 film	 also	 play	 a	

significant	 role	on	 the	 bending	 of	 the	 composite	 structure.	When	 a	 laminate	 composite	 is	

subjected	to	a	load,	mechanical	or	thermal,	the	deformation	of	the	material	in	each	layer	is	

different	 due	 to	 the	 elastic	 and	 thermal	 mismatch	 between	 the	 different	 materials	

composing	 the	 layers.	When	both	 layers	 are	perfectly	bonded	shear	 stresses	 arises	 in	 the	

interface	 between	 the	 layers	 in	 order	 to	 exert	 a	 deformation	 that	 assures	 the	 structural	

integrity	of	the	laminate	composite.	

The	bending	that	a	bilayer	composite	experiences	after	the	cooling	from	a	high	temperature	

was	deduced	by	Timoshenko	[70].	A	similar	analysis	to	the	one	exposed	to	deduce	Stoney´s	

equation	 can	 be	 conducted	 for	 thick	 film	 laminate	 composites	 by	 equaling	 the	 bending	

moments	and	the	deformations	of	the	film	and	the	substrate.	The	magnitude	of	the	bending	

radius	of	the	laminate	can	be	calculated	as	follows	[70],	[71]:	
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1Ś = 6�eO − e����� − �Hhi� >1 + �O��@���O + ��� x3 >1 + �O��@� + >1 + �O+O��+�@ �>�O��@� + ��+��O+O�y

	 (2.140)	

The	bow	deflection	and	 the	curvature	 radius	are	 related	by	� = ²� 8Ś⁄ 	when	 the	bending	

curve	is	an	arc	of	a	perfect	circle.	

2.1.4.3 Laminate Failure Criteria 

2.1.4.3.1 Fracture	Mechanics	of	Interface	Cracks	

In	this	section	failure	criteria	are	reviewed	following	the	 literature	on	the	topic	[72],	 [73],	

[74]	in	order	to	comprehend	how	fracture	of	laminated	structures	occurs	and	to	be	able	to	

predict	the	mechanical	strength	of	such	structures.	

The	first	concept	to	be	reviewed	in	this	section	is	the	failure	criterion	of	a	planar	crack	in	an	

isotropic	 body	 that	 is	 subjected	 to	 a	 mixed	 mode	 loading.	 Considering	 plane	 strain	

conditions,	 the	failure	criterion	expressed	by	equation	(2.42)	can	be	also	expressed	in	 the	

case	that	the	crack	experiences	loading	under	mode	I	and	mode	II	(see	Figure	4):	

	 W = �1 − ,��+ �PU� + PUU��	 (2.141)	

Interface	 cracks	 tend	 to	 propagate	 in	 mixed	 mode	 by	 nature.	 The	 difference	 in	 elastic	

properties	 between	 the	 layers	 of	 the	 laminate	 induces	 some	 degree	 of	 asymmetry	 even	

when	 the	 geometry	 of	 the	 system	 and	 the	 loading	 are	 symmetric.	 Therefore,	 the	 Irwin	

relation	between	energy	 release	 rate	 and	stress	 intensity	 factors	must	be	 expressed	 for	 a	

mixed	mode	of	crack	propagation.	

Stress	 fields	 at	 the	 tip	 of	 an	 interfacial	 crack	 are	 more	 complicated	 than	 those	 for	 the	

homogeneous	 body	 and	 this	 issue	 must	 be	 taken	 into	 account	 in	 the	 failure	 criterion.	

Dundurs	 [75]	 proved	 that	 these	 elastic	 stress	 fields	 depend	 on	 the	 material	 properties	

through	two	independent	parameters	known	as	the	Dundurs	mismatch	parameters,	e¶	and	?¶:	
	 e¶ = +O�1 − ,O� − +��1 − ,��+O�1 − ,O� + +��1 − ,��	 (2.142)	

	 ?¶ = 12.O�1 − 2,�� − .��1 − 2,O�.O�1 − 2,�� + .��1 − 2,O�	 (2.143)	

e¶	 represents	 a	 mismatch	 in	 extensional	 stiffness	 and	 ?¶	 in	 volumetric	 stiffness.	 Both	

parameters	are	cero	when	the	materials	have	the	same	elastic	properties.	A	complexity	of	

the	stresses	at	the	crack	tip	arises	when	?¶	is	non-zero.	However,	when	?¶ = 0	the	stresses	
in	the	solid	are	the	same	as	for	the	homogeneous	solid	and	equation	(2.141)	can	be	applied.	
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Thus,	according	to	equation	(2.38)	the	stress	at	the	interface	line	can	be	described	like	the	

stress	in	a	homogeneous	body	if	?¶ = 0:	
	 ��� = PU√2LS					,					��� = PUU√2LS	 (2.144)	

The	following	equation	shows	the	general	relationship	between	the	energy	release	rate	and	

stress	intensity	factors	for	crack	propagation	in	the	interface.	

	 W = 1−?¶�2 x1 − ,O�+O + 1 − ,��+� y �PU� + PUU��	 (2.145)	

Since,	?¶�	is	much	smaller	than	0.1,	then	?¶�	can	be	simplified	to	cero.	

There	 is	 another	 parameter	 to	 take	 into	 account	 for	 the	 description	 of	 the	 mechanical	

behavior	of	the	interface	of	a	bilayer	and	it	is	the	relative	proportion	of	mode	I	and	II:	

	 · = tan=� >PUUPU @	 (2.146)	

When	· = 0°	pure	mode	I	controls	the	stress	in	the	interface	and	when	· = 90°	pure	mode	

II	does.	For	 the	crack	problem	in	Figure	19	and	?¶ = 0	 the	stress	 intensity	 factors	can	be	
introduced	in	equations	(2.145)	and	(2.146)	as	a	function	of	the	remote	stresses:	

	 W = 12 x1 − ,O�+O + 1 − ,��+� y LI����� + ���� �					,					· = tan=� >������@	 (2.147)	

	

Figure 19 Sketch of an interface crack for a remotely stressed bimaterial adapted from [74]. 

The	interface	toughness,	which	is	the	critical	value	of	W	needed	for	the	crack	to	propagate	
through	 the	 interface,	 W = ΓG ,	 depends	 on	 the	 relative	 proportion	 between	 the	 loading	
modes,	ΓG�·�.	Experimental	procedures	for	measuring	the	interface	toughness	can	be	found	

in	the	literature	as	well	as	experimental	values	of	interface	toughness	of	different	materials.	

Interfaces	described	by	 low	values	of	·	are	dominated	by	the	 loading	mode	I	and	present	

low	interface	toughness.	This	is	the	case	of	brittle	materials	where	the	separation	of	atomic	

planes,	 i.e.	 the	 strength	 of	 the	 chemical	 bond,	 controls	 the	 resistance	 to	 fracture.	 Typical	

values	of	interface	toughness	between	a	brittle	substrate	and	a	brittle	film	approximate	to	1	 J m�⁄ .	
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When	 the	material	of	 the	 thin	 film	 is	more	ductile,	 like	 in	 the	case	of	most	metals,	plastic	

flow	and	ductile	tearing	determine	more	the	energy	associated	with	fracture	and	the	loading	

mode	 II	 becomes	 dominant	 (larger	 values	 of	 ·�.	 Typical	 values	 of	 interface	 toughness	
between	a	brittle	substrate	and	a	ductile	film	approximate	to	10	 J m�⁄ .	

2.1.4.3.2 Specific	Solutions	for	Cracks	in	Bilayers	

Further	analysis	about	the	fracture	of	bilayer	laminates	will	be	performed	under	the	concept	

of	 the	 steady-state	 cracking	 for	 simplification.	 The	 crack	 length	 is	 considered	 to	 exceed	

approximately	twice	the	thickness	of	the	film,	in	order	to	consider	the	stress	at	the	crack	tip	

independent	on	 the	size	of	 the	crack.	That	means	that	 there	 is	a	 length	beyond	which	 the	

advancing	crack	front	does	not	“sense”	the	other	end	of	the	crack	and	therefore	the	energy	

release	rate	is	independent	on	the	crack	size	in	the	steady-state	cracking.	

Delamination of Films 

Delamination	cracks	can	run	through	an	interface	or	parallel	to	the	interface	in	the	substrate	

depending	on	the	material´s	properties,	geometry	of	the	laminate	and	stresses.	

Equation	 (2.147)	can	be	 formulated	 for	 the	 residual	 stress	acting	on	an	edge	crack	 larger	

than	twice	the	thickness	of	the	film	at	the	interface	whose	front	is	parallel	to	the	edge	of	the	

laminate	(see	Figure	20):	

	 Wgg = 12 �1 − ,����O��O+O 					,					· = ½�e¶�	 (2.148)	

	

Figure 20 Sketch of an interface crack between a thin film and a substrate adapted from [74]. 

where	Wgg	is	the	steady-state	energy	release	rate	and	the	values	of	½	depending	on	the	first	
Dundurs	parameter	can	be	checked	in	Figure	20.	

Whether	a	crack	will	continue	its	propagation	through	the	interface	or	will	kink	out	of	the	

interface	 into	 the	 substrate	 depends	 on	 the	 energy	 release	 rate	 of	 interface	 propagation	

against	kinking	and	on	the	relative	toughness	of	the	interface	and	the	substrate.	Moreover,	

for	 small	 I	 (see	 Figure	 21),	 the	 energy	 release	 rate	 of	 crack	 kinking	 depends	 on	 the	
proportion	between	the	loading	modes	in	the	film,	·,	the	first	Dundurs	parameter,	e¶,	and	
on	the	crack	kink	angle,	Ω.	
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Figure 21 Energy release rate for interface crack propagation relative to the maximum energy release 

rate needed for crack kinking as a function of mode mixity, ·, for various Dundurs elastic mismatch 

parameters e¶ , and ?¶ = 0. The image is adapted from [74]. 

There	is	a	value	of	the	kink	crack	angle	that	maximizes	the	energy	release	rate	at	the	tip	of	

the	crack	that	kinks.	Results	for	different	 levels	of	elastic	mismatch	between	the	substrate	

and	 the	 film	 for	 this	 value	 of	 crack	 kink	 angle	 are	 depicted	 in	 Figure	 21.	 For	 values	 of	e¶ > −2 3⁄ 	 the	crack	kink	angle	that	maximizes	the	energy	release	rate	makes	the	kinked	

crack	 to	 propagate	 at	 a	 cero	 mode	 mixity,	 ·B�f ≅ 0.	 This	 can	 be	 interpreted	 as	 a	
maximization	 of	 the	 energy	 release	 rate	 of	 the	 kinked	 crack	 for	 crack	 propagation	 under	

loading	mode	I.	

Whether	the	crack	kinks	or	continues	its	propagation	through	the	interface	depends	on	the	

toughness	of	the	interface	ΓG�·�	relative	to	the	toughness	of	the	substrate,	ΓG�:	
	

W�WB�f�hH° < ΓG�·�ΓG� 	 (2.149)	

Equation	(2.149)	means	that	if	the	energy	release	rate	at	the	tip	of	the	kinked	crack	reaches	

the	value	of	critical	energy	release	rate	of	the	substrate,	�WB�f�hH° = ΓG�,	before	the	energy	
release	rate	for	interface	crack	propagation	reaches	the	interface	toughness,	W = ΓG�·�,	then	
the	crack	will	kink	into	the	substrate.	

Single Cracks in Films under Tensile Stress 

We	consider	 that	 there	 is	a	 residual	 tensile	stress,	��� = ��� = �O	 and	��� = 0,	 in	 the	 film	
before	cracking	and	that	the	crack	front	experiences	mode	I	loading.	

The	energy	release	rate	in	steady-state	for	this	crack	geometry	(see	Figure	22	a))	is:	

	 W�� = L2 �1 − ,O��+O �O��O¿�e¶ , ?¶�	 (2.150)	

The	subscript	SS	stays	for	steady-state	and	values	for	¿	are	depicted	in	Figure	22	b).	
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a)	 b)	

Figure 22 Single crack in a film under tensile stress (image a)). Image b) depicts the values of ¿ with 

respect to the elastic mismatch parameter e¶ . The graph is adapted from [76]. 

When	the	crack	propagates	through	the	substrate	and	reaches	the	interface,	it	can	penetrate	

into	 the	 film	 or	 it	 can	 deflect	 into	 the	 interface	 (see	 Figure	 23).	 The	 crack	 reaches	 the	

interface	 in	 a	 perpendicular	 direction	 to	 the	 interface	 and	 is	 loaded	 symmetrically	 under	

mode	I.	

	

Figure 23 The image depicts a crack that is arrested at an interface under symmetric loading. With 

increasing loading either the crack penetrates the interface or deflects into the interface. The image is 

adapted from [74]. 

Figure	24	depicts	the	ratio	of	energy	release	rates	at	the	tips	of	the	deflected	crack,	�WB�f��,	
and	the	penetrating	crack,	�WB�f�f,	at	equal	putative	crack	lengths,	I,	for	different	values	of	e¶	and	considering	the	approximation	of	?¶ = 0.	
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Figure 24 Ratio of energy release rates for crack deflection relative to crack penetration at equal 

putative crack lengths. The image is adapted from [77]. 

Whether	 the	 crack	 deflects	 or	 penetrates	 into	 the	 film	 depends	 on	 the	 toughness	 of	 the	

interface	ΓG�·�	relative	to	the	toughness	of	the	film,	ΓGO:	
	

�WB�f���WB�f�f < ΓG�·�ΓGO 	 (2.151)	

Equation	 (2.151)	means	 that	 if	 the	 energy	 release	 rate	 at	 the	 tip	of	 the	penetrating	 crack	

reaches	the	value	of	critical	energy	release	rate	of	the	film,	�WB�f�f = ΓGO,	before	the	energy	
release	rate	of	the	deflected	crack	reaches	the	interface	toughness,	�WB�f�� = ΓG�·�,	then	the	
crack	will	penetrate	into	the	film.	When	this	condition	is	not	met,	the	crack	will	deflect	in	the	

interface.	

Single Cracks in Films under Compressive Stress 

Green	[78]	analyzed	the	strengthening	of	ceramics	due	to	compressive	residual	stresses	in	

the	surface	of	the	specimen.	When	an	applied	tensile	stress	is	applied	to	the	specimen,	the	

compressive	 residual	 stress	 opposes	 to	 the	 tensile	 applied	 stress.	 Therefore,	 failure	 from	

surface	defects	is	hindered.	

The	increase	 in	 fracture	strength	 in	this	case,	∆�OF,	 is	equal	to	the	amount	of	compressive	

residual	stress,	�G,	when	the	whole	length	of	the	surface	defect	is	subjected	to	the	residual	
compressive	stress:	

	 ∆�OF = −�G	 (2.152)	

In	that	case,	the	degree	of	strengthening	�OF �OF�⁄ ,	can	be	simply	calculated	as	follows:	

	
�OF�OF� = 1 + �G�OF� 	 (2.153)	

where	�OF	is	the	actual	fracture	strength	of	the	specimen	and	�OF� 	is	the	strength	of	the	body	
in	absence	of	residual	stress.	
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It	can	also	occur	 that	 the	depth	of	 the	surface	defect	 is	 larger	 than	 the	compressive	depth	

zone	(see	Figure	25).	The	compressive	residual	stress	closes	partially	the	two	surfaces	of	the	

crack	 in	 the	 absence	 of	 an	 applied	 stress.	When	 a	 tensile	 stress	 is	 applied	 the	 crack	will	

begin	to	open	from	its	back	tip	to	the	surface	at	a	critical	level	of	applied	stress.	

	

Figure 25 Closure of a surface crack due to the residual compressive stress adapted from [78]. The term 

“t” refers to the compressive depth zone and “c” states for the crack closure length. 

Green	 [78]	 suggested	 determining	 the	 crack	 closure	 length,	 c,	 from	 a	 simple	 expression	

derived	from	Barenblatt	[42]:	

	
7I� = �1 + �I�� cos �L�H2�G� − �1 − �I��2 cos �L�H2�G� 	 (2.154)	

where	c	is	the	crack	closure	length;	I�	is	the	total	crack	length;	t	is	the	compressive	depth	

zone	and	�H	is	the	applied	stress.	
The	curve	described	by	 equation	 (2.154)	 is	 represented	 in	Figure	26	 for	 several	 ratios	of	

compressive	depth	zone	to	total	crack	length.	

	

Figure 26 Crack closure length dependence on the depth of the residual compressive stress field and the 

ratio of applied to compressive stresses taken from [78]. 

Figure	 26	 shows	 how	 the	 crack	 closure	 length	 decreases	 with	 increasing	 applied	 tensile	

stress.	The	critical	value	of	applied	stress	at	which	the	effect	of	crack	closure	disappears	can	

be	read	in	the	abscissa	axis	of	the	graph.	For	example,	if	the	compressive	stress	covers	only	
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20%	 of	 the	 surface	 crack	 �� I�⁄ = 0.2�,	 the	 application	 of	 a	 tensile	 stress,	 which	 is	
approximately	 52%	 of	 the	 residual	 compressive	 stress,	 cancels	 the	 closing	 effect	 of	 the	

compressive	stress,	i.e. the	crack	closure	length	is	zero	�7 I�⁄ = 0�.	If	the	compressive	stress	

acts	 on	 80%	 of	 the	 crack	 length	 �� I�⁄ = 0.8�,	 the	 crack	 closure	 effect	 is	 stronger	 and	
therefore	an	applied	tensile	stress,	which	is	approximately	93%	of	the	compressive	stress,	is	

needed	to	cancel	crack	closure.	

The	calculation	of	the	degree	of	strengthening	when	the	compressive	stress	does	not	cover	

entirely	a	surface	crack	is	not	as	straightforward	as	when	it	does.	Green	[78]	suggested	an	

expression	to	evaluate	the	level	of	strengthening	in	this	case.	He	derived	an	expression	for	

the	stress	intensity	factor	of	a	partially	closed	crack	when	a	tensile	stress	is	applied.	Then	he	

set	 a	 conventional	 fracture	 criterion	 and	 used	 the	 resulting	 equation	 for	 calculating	 the	

degree	 of	 strengthening.	 The	 complexity	 of	 this	mathematical	 expression	 is	 considerable.	

Therefore,	 the	 graph	 depicted	 in	 Figure	 27	 which	 is	 a	 graphical	 representation	 of	 this	

expression	will	be	used	for	the	purpose	of	this	work.	

Figure	27	shows	how	the	strengthening	effect	is	stronger	as	the	magnitude	of	the	residual	

compressive	 stress	 gets	 larger	 than	 the	 strength	 of	 the	 specimen	 without	 compressive	

stress.	 Larger	 ratios	 of	 compressive	 depth	 zone	 to	 total	 crack	 length	 also	 leads	 to	 higher	

strengthening	effect.	

	

Figure 27 Strengthening due to surface compression in a semi-infinite plate [78]. 

2.1.4.4 Laminate Spontaneous Cracking under Residual Film Stress 

Spontaneous	 failure	 of	 laminated	 structures	 is	 strongly	 dependent	 on	 the	 residual	 stress	

state	of	the	film.	Films	under	tensile	residual	stress	present	distinct	failure	patterns	which	

are	 different	 to	 the	 failure	 patterns	 of	 films	 under	 compressive	 residual	 stress.	 Failure	

criteria	 of	 laminated	 structures	 due	 to	 residual	 stress	 in	 the	 film	 combine	 certain	

parameters	in	a	non-dimensional	form	[74]:	
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	 Z = �1 − ,O���O�O�+OΓG 	 (2.155)	

If	the	“cracking	number”,	Á,	is	lower	than	a	critical	value,	ZG ,	for	a	specific	failure	mode,	then	

cracking	under	that	mode	can	be	excluded.	

In	the	case	of	a	single	crack	under	tensile	residual	stress,	�O,	channel	cracking	occurs	when	
the	energy	release	rate	defined	by	equation	(2.150)	exceeds	 the	value	of	 toughness	of	 the	

film,	Wgg ≥ ΓGO.	Equation	(2.150)	can	be	written	in	the	form	of	equation	(2.155)	in	order	to	
formulate	a	failure	criterion	due	to	residual	stress:	

	
�1 − ,O���O�O�+OΓGO ≥ 2L¿�e¶ , ?¶�	 (2.156)	

where	the	first	term	is	the	critical	value	for	cracking	due	to	the	residual	stress	in	the	film,	ÁG = 2 �L¿�e¶ , ?¶��⁄ .	 Thus,	 channel	 cracking	 (see	 Figure	 28)	 of	 the	 film	 occurs	when	 the	

condition	Á ≥ ÁG 	is	met.	This	failure	criterion	based	on	steady-state	cracking	is	conservative	

because	the	energy	release	rate	of	initial	flaws	smaller	than	approximately	twice	the	length	

of	the	thickness	is	always	lower	than	the	energy	release	rate	in	steady-state	cracking.	

	

Figure 28 Thin film channel cracking adapted from [74]. 

An	 interface	 crack	 can	 also	 lead	 to	 delamination	 failure	 due	 to	 tensile	 residual	 stress,	�O.	
Steady-state	delamination	occurs	when	the	energy	release	rate	defined	by	equation	(2.148)	

exceeds	 the	 interface	 toughness	 of	 the	 film,	 Wgg ≥ ΓG�·�,	 and	 equation	 (2.148)	 can	 be	
formulated	 in	 the	 form	of	 equation	 (2.155).	The	 failure	 criterion	 for	delamination	 of	 thin	

films	is	thus:	

	
�1 − ,O���O�O�+OΓG�·� ≥ 2	 (2.157)	

It	 is	 common	 that	 a	 delamination	 crack	 occurs	 in	 the	 substrate	 below	 and	parallel	 to	 the	

interface	when	a	metal	 film	under	residual	stress	is	bonded	to	a	ceramic	substrate.	 In	this	

case,	the	previous	delamination	failure	criterion	can	be	expressed	as	follows:	

	
�1 − ,����O�O�+OΓGg ≥ 2.93	 (2.158)	

where	ΓGg	 is	 the	 toughness	of	 the	 substrate.	The	substrate	cracks	at	a	distance	Â	 from	 the	

interface	 (see	 Figure	 29	 a))	 which	 shows	 proportionality	 with	 the	 thickness	 of	 the	 film	Â = 2.86�O.	
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a)	 b)	

Figure 29 Substrate delamination at a distance Â from the interface (image a)) and buckling driven 

interface delamination (image b)).  

A	 reliable	 performance	 is	 commonly	 considered	 to	 be	 sufficient	 when	 the	 film	 remains	

under	compressive	residual	stress	which	suppresses	cracking	through	the	layer,	i.e.	crazing.	

Sensitivity	to	damage	can	be	also	minimized	by	reducing	the	thickness	of	the	film.	However,	

failure	 can	 also	 occur	when	 the	 film	 is	 subjected	 to	 compressive	 stress.	 This	 is	 known	 as	

buckling	 driven	 interface	 delamination.	 A	 detailed	 analysis	 of	 the	 fracture	 mechanics	 of	

buckling	 driven	 delamination	 is	 out	 of	 the	 scope	of	 the	 present	work.	However,	 a	 simple	

failure	criterion	for	this	type	of	failure	is	given	according	to	the	literature	consulted	in	this	

section	[73],	 [74].	The	 failure	criterion	establishes	a	critical	value	of	compressive	residual	

stress	above	which	buckling	occurs:	

	 �G = L�12 +O�1 − ,O�� >�OÃ@
�
	 (2.159)	

If	the	residual	compressive	stress	in	the	film	exceeds	the	value	of	critical	stress	for	buckling,	Ä�OÄ ≥ �G,	 the	 film	 buckles	 away	 from	 the	 substrate	 an	 interface	 crack	 length	 of	 2Ã	 (see	
Figure	29	b)).	

2.2 Plastic Behavior 

Another	type	of	mechanical	behavior	is	the	one	governed	by	plastic	deformation.	This	type	

of	 behavior	 is	 typical	 of	 metals	 and	 can	 also	 be	 observed	 in	 ceramics	 loaded	 at	 high	

temperatures.	The	total	strain	is	composed	by	elastic	and	plastic	components.	If	the	stress	is	

removed	before	fracture	occurs,	the	elastic	component	of	the	strain	is	recovered	but	not	the	

plastic.	The	tensile	yield	strength	is	a	level	of	stress	at	which	a	permanent	plastic	strain	of	

0.002	 remains	 after	 removal	 of	 the	 applied	stress	 (see	Figure	30)	 [14].	This	parameter	 is	

considered	 the	point	of	change	between	elastic	and	plastic	mechanical	behavior.	Silicon	 is	

brittle	 at	 room	 temperature	 and	 its	 transition	 from	 brittle	 to	 ductile	 behavior	 occurs	 at	

approximately	 60%	 of	 its	 melting	 point	 (1412°C)	 [79].	 Temperature	 life	 performance	 of	

solar	 cells	 is	 within	 the	 brittle	 regime	 of	 silicon	 and	 therefore	 this	 work	 focuses	 on	 the	

elastic	 mechanical	 behavior	 of	 silicon	 at	 room	 temperature.	 However,	 many	 solar	 cell	

processes	 heat	 silicon	 wafers	 beyond	 the	 brittle-ductile	 transition	 temperature	 and	

therefore	 a	 brief	 explanation	 about	 the	 concept	 of	 plastic	 behavior	 will	 be	 given	 in	 the	

present	section.	
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Figure 30 Stress-strain curve for plastic mechanical behavior after [14]. 

Plastic	behavior	is	defined	by	the	yield	stress,	�},	which	is	the	level	of	shear	stress	needed	to	
induce	 plastic	 deformation,	 i.e.	 dislocation	 movement.	 Dislocations	 are	 two-dimensional	

defects	in	a	crystalline	lattice.	The	silicon	lattice	presents	a	diamond	cubic	structure	which	is	

a	 variant	 of	 the	 face-centered	 cubic	 structure.	 Therefore,	 silicon	 presents	 the	 same	 slip	

systems	than	this	latter	structure,	k111l〈110〉.	That	means	that	the	dislocation	moves	by	the	

glide	on	k111l	family	planes	with	Burger	vector	in	the	〈110〉	direction	[80].	
Yield	 stress	 changes	 with	 temperature	 and	 microstructure.	 Rabier	 and	 Demenet	 [81]	

compiled	values	of	yield	stress	for	silicon.	The	yield	stress	of	silicon	at	room	temperature	is	

approximately	5	GPa	and	the	shear	strength	 is	∿75	MPa	(see	section	2.1.1).	Thus,	a	silicon	

specimen	subjected	to	an	applied	stress	breaks	before	plastic	deformation	can	occur.	At	the	

brittle-ductile	 transition	 temperature	 the	 yield	 stress	 has	 approximately	 the	 same	 value	

than	 the	 shear	 strength	 and	 therefore	 plastic	 deformation	 can	 occur	 before	 fracture.	 At	

1000°C	 the	 yield	 stress	 of	 silicon	 is	 approximately	 10	MPa.	 That	 means	 that	 thermal	 or	

mechanical	stresses	which	are	larger	than	10	MPa	induces	plastic	deformation	in	silicon.	

Thermal	 stresses	 induced	 on	 silicon	 wafers	 during	 solar	 cell	 processing	 can	 be	 relaxed	

within	the	silicon	matrix	by	plastic	deformation,	i.e.	dislocation	generation	and	movement,	

above	 the	 brittle-ductile	 transition	 temperature.	 However,	 below	 this	 temperature	

dislocation	movement	is	not	possible	and	thermal	stresses	remain	in	the	silicon	crystalline	

lattice	as	residual	stresses.	

Point	 defects,	 high	 dislocation	 density,	 grain	 boundaries	 and	 particles	 can	 impede	

dislocation	movement	and	hence	increase	the	yield	strength	of	the	material	[15].	

2.2.1 Thermal Shock Resistance 

Temperature	gradients	can	cause	 the	development	of	stresses	when	adjacent	components	

constrain	the	thermal	expansion	of	the	specimen.	During	solar	cell	processing	parts	of	 the	

ovens	 were	 the	 wafers	 are	 being	 processed	 can	 constrain	 the	 thermal	 expansion	 of	 the	

silicon	wafers.	Additionally,	 if	the	wafers	are	cooled	down	too	fast	the	outside	parts	of	the	

wafers	tend	to	be	colder	than	the	inside	parts.	The	outside	colder	parts	of	the	wafers	have	a	

lower	thermal	expansion	coefficient	than	the	hotter	parts	of	the	wafers	and	they	constrain	

the	thermal	expansion	of	the	inside	hotter	parts	of	the	wafer.	Thus,	stresses	are	introduced.	

These	stresses	are	called	thermal	stresses	and	if	they	are	large	enough	they	can	cause	crack	

propagation.	Specimen	failure	due	to	thermal	stresses	is	known	as	thermal	shock.	
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The	maximum	allowable	temperature	difference	that	a	sample	can	stand	without	breaking	

depends	on	its	geometry	and	the	material	properties	of	the	sample.	A	flat	plate	subjected	to	

a	 uniform	 temperature	 change	 can	 survive	 to	 in-plane	 thermal	 expansion	 constrain	 to	 a	

maximum	temperature	difference	of	[14]:	

	 ∆�hH° = �OF�1 − ,�e+ 	 (2.160)	

where	 �OF	 is	 the	 fracture	 strength	 of	 the	 specimen.	 Equation	 (2.160)	 is	 valid	 for	 silicon	

wafers	with	sufficient	thickness	to	prevent	buckling	and	states	that	the	higher	the	fracture	

strength	and	the	lower	the	elastic	modulus	and	the	thermal	expansion	coefficient,	the	larger	

the	maximum	temperature	difference	can	be.	

Failure	provoked	by	thermal	shock	may	not	be	always	complete	and	cracks	may	propagate	

some	distance	and	stop	as	the	thermal	stress	stops	 increasing	or	disappears.	When	cracks	

induced	by	thermal	shock	stop	their	propagation,	failure	of	the	specimen	may	not	occur	but	

the	fracture	strength	of	the	specimen	is	lowered.	Hasselman	[82]	analyzed	this	phenomenon	

and	proposed	a	model	for	the	calculation	of	the	critical	temperature	difference	that	would	

cause	incomplete	crack	propagation	and	would	lower	therefore	the	mechanical	strength	of	

the	brittle	specimen.	

Hasselman	 assumed	 randomly	 distributed	 cracks	 in	 a	 solid	 body	 subjected	 to	 uniform	

cooling	 and	being	 constrained	 in	 all	 directions.	 Silicon	wafers	may	not	be	constrain	 in	 all	

directions	but	in	one	or	two	directions	and	therefore	this	model	would	be	conservative.	The	

critical	temperature	difference	allowed	for	short	cracks	is:	

	 Δ�V = � L'�1 − 2,��2+e��1 − ,���� �⁄ I=� �⁄ 	 (2.161)	

2.2.2 Change of Microstructure and Failure with High Temperature Processes 

When	 the	 silicon	 wafers	 are	 heated	 up	 during	 solar	 cell	 processing	 particles	may	 solute	

according	 to	 their	 phase	 diagram,	 especially	 if	 their	 melting	 point	 is	 lower	 than	 the	

processing	temperature.	The	impurities	building	the	particle	diffuse	into	the	silicon	matrix	

and	 the	 mechanical	 strength	 of	 the	 silicon	 wafer	 may	 increase	 as	 thermal	 and	 elastic	

mismatch	 between	 the	 particle	 and	 the	wafer	 disappears.	 Additionally,	 the	 yield	 strength	

increases	due	to	solid	solution	strengthening	of	the	silicon	matrix	[80].	Finally	after	cooling	

another	distribution	of	second	phase	particles	may	appear.	

If	the	particle	is	not	dissolved	by	the	high	temperature	process,	residual	thermal	stress	in	its	

vicinities	 can	 relax	 if	 the	 processing	 temperature	 is	 higher	 than	 the	 brittle-ductile	

temperature	of	silicon	but	thermal	stresses	will	form	again	as	the	wafer	cools	down	to	room	

temperature.	 High	 temperature	 processes	 may	 also	 heal	 cracks	 existing	 already	 in	 the	

material	[83]	as	diffusion	of	silicon	atoms	between	the	two	faces	of	the	crack	can	reduce	the	

sharpness	of	the	crack	or	heal	it	completely.	

It	is	also	important	to	discuss	that	when	the	silicon	is	stressed	under	high	temperature	and	

the	 particles	 are	 not	 dissolved	 it	 can	 behave	 like	 a	 particle	 reinforced	 metal-matrix	
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composite.	 The	 failure	 types	 of	 this	 sort	 of	 materials	 are	 particle	 fracture	 [84],	 interface	

decohesion	and	matrix	yielding	[85].	

In	 the	 case	 of	 rigid	 interfacial	 bonding,	 the	 particle	 can	 fracture	 when	 the	 local	 stress	

reaches	the	fracture	strength	of	the	particle.	Cracks	are	prone	to	appear	at	bigger	particles	

with	high	aspect	ratio.	Smaller	particles	tend	to	debond	by	interfacial	decohesion,	resulting	

in	 voids.	 Random	 distribution	 of	 particles	 undergoes	 less	 percentage	 of	 particle	 fracture	

than	particle	rich	clustering	microstructure.	

Interface	decohesion	needs	the	nucleation	of	a	crack	and	its	propagation	along	the	particle-

matrix	 interface.	Thermal	stresses	can	propagate	small	 interfacial	 flaws	and	allow	particle	

interface	decohesion.	This	can	also	occur	due	to	matrix	yielding.	Yielding	of	the	matrix	near	

the	 outer	 particles	 of	 a	 cluster	 can	 form	 a	 big	 crack	 and	 cause	 failure.	 In	 random	

microstructure	 every	 single	 particle	 will	 undergo	 interface	 decohesion	 and	 this	 type	 of	

failure	is	less	favored	[55].	

Plastic	deformation	is	affected	by	microstructure	and	therefore	by	the	presence	of	clusters	

of	particles	as	explained	above.	The	plastic	strain	that	occurs	 in	the	matrix	near	a	particle	

cluster	 is	 higher	 than	 the	 plastic	 strain	 that	 occurs	 in	 non-clustered	 composites.	 During	

loading,	 the	 plastic	 strain	 is	 accumulated	 around	 the	 cluster	 and	 there	 is	 less	 transfer	 of	

stress	inside	the	cluster	region.	Thus,	particle	clusters	can	cause	premature	failure	by	void	

nucleation	 at	 high	 plastic	 strains.	 The	 matrix	 failure	 occurs	 in	 three	 stages.	 First,	 some	

particles	fracture	or	debond	at	low	strength.	Second	micro	voids	and	cavities	nucleate	near	

the	broken	particles	and	finally	they	coalesce	and	lead	to	the	failure	of	the	matrix.	

2.2.3 Failure Criteria after Microstructure Change 

After	 solar	 cell	 processing	 voids	 caused	 by	 yielding	 of	 the	 silicon	matrix	 or	 cracked	 and	

debond	 particles	 may	 be	 the	 most	 important	 type	 of	 defects	 controlling	 the	 mechanical	

strength	of	silicon	wafers.	Therefore,	a	failure	criterion	is	given	in	this	section	for	this	case.	

Green	[40]	suggested	an	expression	to	estimate	the	stress	intensity	factor	for	annular	cracks	

at	spherical	voids.	This	expression	can	be	used	as	a	 failure	criterion	 for	 little	cavities	 that	

may	have	formed	after	solar	cell	processing	within	the	silicon	matrix.	

According	to	Goodier	[43]	the	stress	near	a	spherical	void	without	any	crack	is:	

	 ��S� = �H x 4 − 5,g�2�7 − 5,g�� >cS@� + 92�7 − 5,g�� >cS@4 + 1y	 (2.162)	

The	 stress	 intensity	 factor	 of	 a	 crack	 at	 a	 spherical	 void	 can	 be	 calculated	 by	 solving	

equation	(2.79)	with	equation	(2.162):	

PU£ = 2�H �I�s + 2�L�s + 1��� �⁄ x 4 − 5,g�2�7 − 5,g���s + 1�� + 32�7 − 5,g�� ��s + 1�� + 2�s + 1�3 � + 1y	 (2.163)	

where	s = I c⁄ .	 For	 large	s	 values	 equation	 (2.163)	 approaches	 the	 solution	 of	 a	 stress	
intensity	 factor	 of	 an	 internal	 penny	 shaped	 crack.	 However,	 for	 small	 values	 of	 s	 the	
solution	for	the	stress	intensity	factor	of	an	edge	crack	in	a	semi-infinite	medium	should	be	
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approached	 [86].	 Therefore,	 equation	 (2.163)	must	 be	 corrected	 in	 order	 to	 account	 the	

influence	of	the	free	surface	of	the	void.	For	this	purpose	the	spherical	void	is	assumed	to	be	

subjected	 to	 an	 internal	 pressure,	 b,	 which	 gives	 rise	 to	 tensile	 stresses	 described	 by	
equation	(2.49)	acting	across	 the	crack	surface.	Substituting	equation	(2.49)	 into	equation	

(2.79)	gives	the	correction	for	the	stress	intensity	factor:	

	 PU££ = b qIL s + 2�s + 1�4r� �⁄
	 (2.164)	

For	 b ≅ �H	 and	 PU = PUG,	 the	 failure	 criterion	 for	 small	 voids	 in	 the	 silicon	 matrix	�PUG = PU£ + PU££�	stays:	
	

�IL�=� �⁄ = 2�HPUG >s + 2s + 1@� �⁄ x 4 − 5,g�2�7 − 5,g���s + 1��
+ 32�7 − 5,g�� ��s + 1�� + 2�s + 1�3 � + 1y + �HPUG q s + 2�s + 1�4r� �⁄

	

(2.165)	

where	I = sc.	
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3. Experimental Procedure 

This chapter summarizes the complete experimental procedure carried out 

during this research. All processing conditions from the crystallization of 

multicrystalline silicon blocks until the manufacture of the final solar cells 

are explained. Material specification as well as the collection and 

preparation of the samples are described in detail. Next is the presentation 

of the different techniques for the microstructure characterization of the 

multicrystalline silicon samples. The final section of this chapter comprises 

all the techniques performed for the measurement of the most relevant 

mechanical properties of silicon which are mechanical strength, fracture 

toughness and elastic modulus. Special attention is drawn to the different 

bending tests for the measurement of mechanical strength, to the analysis of 

the values of strength with the Weibull statistical distribution and to post-

mortem interpretation of fracture surfaces. 

3.1 Production of Multicrystalline Silicon Blocks and Solar Cells 

3.1.1 Silicon Feedstock 

Five	 types	 of	 silicon	 feedstock	 with	 different	 purity	 levels	 were	 selected	 for	 crystallizing	

multicrystalline	 silicon	 blocks.	 The	 concentration	of	 impurities	 encountered	 in	 the	 silicon	

feedstock	was	measured	with	the	inductively	coupled	plasma	optical	emission	spectrometry	

(ICP-OES)	[87]	and	is	summarized	in	Table	3.		

Table 3 Concentration of impurities [ppmw] within the silicon feedstock 

Material	 Al	 B	 P	 Ca	 Mg	 Fe	 Mn	 Cu	

4N+Al 3634	 36	 -	 13	 1	 18	 1	 2	

3N 217	 177	 -	 669	 -	 370	 46	 4	

B-doped 0.19	 154.3	 0.49	 0.24	 0.44	 0.21	 0.003	 <0.001	

UMG-Si 0.93	 3.3	 9.6	 0.53	 0.52	 0.33	 0.015	 0.123	

SoG-Si 0.085	 1	 1.47	 0.54	 0.337	 0.184	 <0.001	 <0.001	

The	4N+Al	material	contained	lower	concentrations	of	dopant	and	metallic	impurities	than	

the	3N	material,	except	for	the	case	of	Al	content	that	was	extremely	high	in	4N+Al	silicon	

feedstock.	B-doped	silicon	feedstock	came	from	the	top	and	tail	parts	of	Cz-Si	blocks	where	

dopants	 segregate	during	 the	crystallization	of	monocrystalline	silicon.	These	parts	of	 the	

Cz-Si	blocks	are	disregarded	for	solar	cell	production;	thus	they	were	used	in	this	work	as	

inexpensive	 silicon	 feedstock.	 These	 three	 types	 of	 silicon	 feedstock	 are	 considered	 like	

“alternative	 dirty	 silicon”	 which	 will	 be	 used	 as	 material´s	 substrate	 of	 “epitaxial	 wafer	

equivalents”	for	the	manufacture	of	epitaxial	solar	cells.	This	will	be	explained	better	in	the	

next	sections.	Additional	industry standard	mc-Si	and	Cz-Si	material	was	tested	in	this	work	

for	comparison	of	results.	
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The	 UMG-Si and	 SoG-Si feedstock	 contained	 low	 concentration	 of	 impurities,	 being	 the	

content	 of	 Al,	 Fe,	 Cu	 and	 dopants	 higher	 in	UMG-Si. These	 two	 types	 of	 silicon	 feedstock	

were	 processed	 from	 the	 crystallization	 of	 the	 mc-Si	 blocks	 to	 final	 solar	 cells	 for	

comparison.	

One	 crystallization	 process	 was	 performed	 with	 every	 type	 of	 silicon	 feedstock.	

Approximately	 80	kg	 of	 feedstock	was	 used	 per	 experiment,	 with	 exception	 of	 the	 4N+Al 

silicon.	 This	 feedstock	 presented	 a	 “flake	 like”	 form	 (see	 Figure	 31	 a))	 and	 therefore	 the	

volume	of	the	crucible	was	already	filled	in	with	only	40	kg of	silicon.	

The	chunks	of	silicon	feedstock	were	loaded	in	square	quartz	crucibles	with	a	base	area	of	422 × 422	mm�	 (see	Figure	31	b)).	The	crucibles	are	coated	before	 they	are	 filled	 in	with	
the	 silicon	 chunks	 in	order	 to	prevent	 the	 sticking	of	 the	 silicon	block	 to	 the	walls	 of	 the	

crucible	(see	Figure	33	b))	during	the	crystallization	process	and	to	reduce	the	diffusion	of	

oxygen	 from	 the	 crucible.	 The	 composition	 of	 the	 coating	 was	 oxygen	 enriched	 silicon	

nitride	with	a	 thin	 layer	of	 silicon	dioxide	on	 it	 [88].	Once	 the	crucible	 is	 loaded	with	 the	

silicon	feedstock	the	crystallization	process	can	take	place.	

	 	

a)	 b)	

Figure 31 Image a) shows the 4N+Al “flake like” feedstock. Image b) depicts a quartz crucible coated 

with silicon nitride and filled in with silicon feedstock chunks. 

3.1.2 Crystallization 

The	 silicon	 samples	 tested	 in	 this	 work	 were	 provided,	 like	 aforementioned,	 from	 five	

multicrystalline	silicon	blocks	crystallized	under	the	same	temperature	profile	and	furnace	

conditions	with	the	Vertical	Gradient	Freeze	(VGF)	method;	which	is	a	technique	that	is	very	

often	used	for	the	directional	solidification	of	mc-Si	in	the	photovoltaic	industry.	

A	 crystallization	 furnace	 VGF	 632	 Si	 by	 PVA-Tepla	AG	 was	 used	 in	 the	 facilities	 of	 the	

SIMTEC	laboratory	at	Fraunhofer	ISE	[89]	(see	Figure	32)	with	the	capacity	to	grow	up	to	

280	kg	silicon	blocks.	This	furnace	is	provided	with	three	heaters,	at	the	bottom,	body	and	

cover	 of	 the	 furnace,	 in	 order	 to	 control	 the	 temperature	 field	 inside	 the	 furnace	 and	

therefore	the	growth	conditions.	A	water	cooling	system	is	installed	in	the	base	plate	of	the	

furnace	 and	 a	 carbon	 tube	 introduces	 argon	 in	 the	 crystallization	 chamber	 at	 the	 desired	

moment	during	growth.	
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Figure 32 Crystallization furnace in SIMTEC laboratory at Fraunhofer ISE. 

The	 loaded	 crucible	 is	 mounted	 in	 the	 crystallization	 furnace	 and	 a	 graphite	 crucible	

supports	 the	 quartz	 crucible	 (see	 Figure	 33	 a))	 as	 quartz	 will	 be	 soft	 at	 the	 upcoming	

processing	temperatures.	The	crystallization	process	starts	with	heating	up	of	silicon	above	

its	melting	point.	Once	the	whole	amount	of	silicon	is	molten,	 the	directional	solidification	

takes	place.	Heat	is	extracted	from	the	bottom	of	the	crucible	by	controlling	and	cooling	the	

bottom	heater	with	a	cooling	water	system.	The	created	 temperature	gradient	 in	 the	melt	

allows	 the	nucleation	of	silicon	crystals	at	 the	bottom	of	 the	crucible.	These	crystals	grow	

vertically,	perpendicular	to	the	crystallization	front.	The	temperature	of	the	body	heaters	is	

also	controlled	and	kept	 lower	 than	 the	 temperature	of	 the	cover	heater	 in	order	 to	keep	

vertical	crystal	growth.	After	the	whole	silicon	has	solidified	the	temperature	of	the	heaters	

is	 gradually	 lowered	 to	 cool	 down	 the	 crystallized	 silicon	 block.	 During	 cooling	 a	

temperature	of	approximately	1200°C	is	maintained	during	two	or	three	hours	in	order	to	

anneal	 residual	 stresses	 in	 the	 block.	The	whole	 crystallization	 process	 can	 take	 between	

two	 and	 three	 days	 for	 an	 80	kg	mc-Si	 block	 at	 a	 crystallization	 speed	 of	 approximately	

7	mm/h.	

	 	

a)	 b)	

Figure 33 Image a) shows a schematic cross section of the VGF oven. Image b) shows a detail of the 

coating and crucible system. 
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Figure	34	depicts	a	photo	of	every	of	the	crystallized	silicon	blocks.	The	sides	of	the	4N+Al	

and	the	3N	silicon	blocks	show	a	strong	reaction	with	the	sides	of	 the	crucible	which	may	

have	been	enhanced	by	the	higher	content	of	impurities	than	within	the	other	three	blocks.		

	 	

a)	4N+Al	 b)	3N	

	

c) B-doped	

	 	

d)	UMG-Si	 e)	SoG-Si	

Figure 34 Multicrystalline silicon blocks crystallized with the different feedstock specified in the previous 

section. 

The	main	sources	of	 impurities	 for	mc-Si	blocks	are	 the	silicon	 feedstock	 itself,	 the	quartz	

crucible,	 the	 silicon	 nitride	 coating	 and	 the	 inside	 of	 the	 crystallization	 furnace;	 and	 the	

most	 important	 defects	 which	 remain	 in	 the	 mc-Si	 blocks,	 and	 that	 could	 influence	 the	

mechanical	 properties	 of	 silicon,	 are	 dislocations,	 grain	 boundaries	 including	 twin	

boundaries	and	precipitates	[90],	[91].	
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Dislocations	 are	 line	 defects	 that	 originate	 during	 crystal	 growth	 as	 a	 result	 of	 plastic	

deformation	 of	 the	 crystal	 to	 release	 stresses.	 Areas	 with	 high	 density	 of	 dislocations	

present	 an	 inhomogeneous	 pattern	 within	 mc-Si	 blocks	 [92].	 These	 dislocation	 clusters	

originate	 at	 the	bottom	of	 the	block	 and	extend	 in	 the	 growth	direction	and	 they	become	

larger	as	they	extend	to	the	top	of	the	block.	The	origin	of	dislocation	clusters	in	the	bottom	

of	the	block	is	not	yet	well	understood.	Possible	causes	are	for	example	stress	concentration	

at	 precipitates	 and	 mechanical	 constraint	 of	 the	 neighboring	 grains.	 Dislocations	 in	

multicrystalline	silicon	are	very	often	decorated	by	oxygen	and	metal	atoms.	This	influences	

very	negatively	the	electrical	properties	of	solar	cells.	

Area	defects	are	grain	boundaries	including	twins.	The	nucleated	crystals	at	the	bottom	of	

the	crucible	grow	in	different	directions	during	crystallization.	When	these	regions,	coincide	

with	one	another,	they	form	grain	boundaries.	Smaller	grains	are	located	at	the	bottom	part	

of	 the	 blocks	 where	 the	 nucleation	 of	 the	 crystals	 took	 place.	 Grain	 boundaries	 exhibit	

gettering	 effect,	 i.e.	 impurities	 diffuse	 to	 grain	 boundaries	 and	 gather	 there.	 Twin	

boundaries	are	grain	boundaries	that	separate	two	grains	which	are	a	mirror	image	of	one	

another.	

Volume	 defects	 (e.g.	 precipitates	 and	 micro-cracks)	 are	 introduced	 during	 the	 crystal	

growth,	 during	 cooling	 after	 growth	 or	 during	 solar	 cell	 processes	 at	 high	 temperature.	

When	the	concentration	of	the	dissolved	impurity,	either	in	the	melt	or	in	the	solid,	exceeds	

its	 solubility	 concentration,	 second	 phase	 particles	 or	 precipitates	 can	 nucleate.	 They	

precipitate	 normally	 as	 compounds	 of	 silicon.	 C	 and	 N	 segregate	 to	 the	 melt	 during	

crystallization	due	to	their	low	segregation	coefficients	(see	Table	1).	If	their	solubility	limit	

in	 the	 melt	 is	 exceeded	 large	 silicon	 carbide	 (SiC)	 and	 (Si3N4)	 particles	 can	 form.	 The	

precipitation	of	SiC and	Si3N4	is	observed	inhomogeneous	in	areas	within	the	middle	and	the	

top	 of	 the	 block.	 O	 segregates	 to	 the	 solid	 phase	 due	 to	 its	 segregation	 coefficient	 and	

therefore	 it	 has	 been	 observed	 in	 areas	 from	 the	 bottom	 to	 the	middle	 of	 the	 block.	 The	

presence	of	other	extended	defects	like	dislocations	and	grain	boundaries	can	act	as	proper	

nuclei	for	the	formation	of	silicon	oxide	particles	(SiOx).	On	the	other	hand,	thermal	stresses	

due	 to	 the	 thermal	mismatch	between	 the	particles	 and	 the	 silicon	matrix	 can	 induce	 the	

formation	 of	 dislocations	 in	 their	 surroundings.	 This	 is	 a	 complicated	 topic	which	 is	 still	

being	researched.	

3.1.3 Multi-wire Sawing 

The	bottom,	side	walls	and	the	top	of	the	crystallized	blocks	must	be	cut	off	as	these	parts	

show	 high	 concentration	 of	 impurities	 and	 therefore	 have	 deficient	 electrical	 properties.	

Approximately	one	to	three	cm	from	these	parts	is	cut	with	a	band	saw	and	is	disregarded.	

The	band	saw	consists	of	a	steel	blade	with	incrusted	diamond	particles.	During	the	cutting	

process,	the	blade	is	cooled	down	with	water.	The	block	then	undergoes	bricking	with	the	

same	band	saw,	i.e.	the	block	is	cut	into	four	ingots	where	the	smaller	area	of	the	ingot	is	the	

size	of	the	surface	area	of	the	final	wafers	(see	Figure	35).	
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Figure 35 Sketch of a mc-Si block where a slice from the bottom, the side walls and the top has been cut 

off and disregarded and then the block is cut into four ingots. 

After	band	sawing	 the	bricks	are	grinded	 to	 reduce	surface	damage	and	soften	edges	and	

corners.	 Every	 silicon	 ingot	 is	 then	 cut	 into	wafers	with	 a	multi-wire	 saw	 (Meyer-Burger	

D265).	A	steel	wire	is	winded	in	the	grooves	of	the	guidance	rolls	of	the	multi-wire	saw	so	

that	a	wire	web	with	constant	pitch	is	formed	(see	Figure	36	a)).	The	silicon	is	loaded	in	the	

multi-wire	saw	and	the	wire	web	brought	to	motion.	Two	nozzles	start	spreading	slurry	on	

the	 wire	 web	which	 consists	 of	 a	 suspension	 of	 SiC	 particles	 in	 Polyethylene	 glycol.	 The	

silicon	 block	 is	 pushed	 very	 slowly	 against	 the	 wire	 web	 and	 the	 slurry	 is	 brought	 into	

contact	with	the	silicon	thanks	to	the	motion	of	the	wire.	When	the	entire	cross	section	of	

the	 ingot	 has	 been	 pushed	 through	 the	 wire	 web	 after	 6-8	 hours	 the	 ingot	 is	 cut	 into	

hundreds	of	wafers.	

	

	

a)	 b)	

Figure 36 Image a) shows an already cut silicon block moving out from the wire web in order to be 

unloaded from the multi-wire saw. Image b) depicts a sketch of the different types of cracks that can be 

observed under the indentation of a silicon carbide particle on the surface of a silicon wafer after the 

multi-wire sawing process. The picture is adapted from the literature [93], [44]. 

The	cutting	of	silicon	blocks	into	wafers	 is	achieved	by	the	indentation	of	the	abrasive	SiC	

particles	on	the	silicon	surface	[93].	The	particles	indent	the	silicon	surface	and	a	remnant	

plastic	 impression	 is	 generated	 on	 the	 surface	 known	 as	 the	 elastic-plastic	 zone.	Median	

cracks	are	generated	beneath	the	plastic	zone,	where	the	stress	is	highest	and	radial	cracks	

are	 generated	 at	 the	 edges	 of	 the	 plastic	 zone	 (see	 Figure	 36	 b)).	When	 the	 abrasive	 SiC	

particles	leave	the	silicon	surface,	the	residual	stress	from	the	elastic-plastic	zone	can	lead	

to	lateral	cracks	parallel	to	the	surface.	When	these	lateral	cracks	reach	the	silicon	surface	

the	material	is	chipped	away	and	the	lateral	crack	disappears	but	median	and	radial	cracks	
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remain	in	the	silicon	surface.	If	median	and	radial	cracks	form	in	the	same	plane	they	may	

coalesce	in	a	half-penny	shaped	crack	which	is	visible	from	the	surface	[93],	[44].	

The	4N+Al, 3N	and	B-doped	mc-Si	ingots	were	cut	under	the	same	cutting	parameters	down	

to	approximately	280	µm	wafers.	 Industry standard	mc-Si	and	Cz-Si wafers	were	∿260	µm	

and	UMG-Si and	SoG-Si wafers	were	∿225	µm. 

Additionally,	2	mm	thick	samples	from	all	crystallized	blocks	were	cut	with	the	multi-wire	

slurry	saw	in	order	to	accomplish	geometry	requirements	for	mechanical	characterization. 

After	wire-sawing	the	wafers	are	dirty	with	the	cutting	slurry	sticking	to	the	silicon	surface.	

Therefore,	they	are	cleaned	immediately	after	sawing	in	a	cascade	of	chemical	baths	with	an	

aqueous	 solution	 containing	 organic	 surfactants	 and	 low	 concentration	 of	 an	 alkaline	

etchant	[94].	

3.1.4 Epitaxial Wafer Equivalent Manufacture 

The	epitaxial	wafer	equivalent	(Epi	WE)	is	fabricated	by	depositing	an	approximately	20	µm	

crystalline	silicon	thin	film	by	a	rapid	thermal	chemical	vapor	deposition	process	(RTCVD)	

on	 a	 low	 cost	 silicon	 substrate	 [95]	 (see	 Figure	 37	 a)).	 The	 substrate	 provides	 a	 good	

mechanical	 strength	while	 the	 highly	 pure	 epitaxial	 layer	 is	 responsible	 for	 the	 electrical	

performance	 of	 the	 final	 solar	 cell.	 Using	 silicon	 as	 a	 substrate	 reduces	 problems	 arising	

from	differences	in	thermal	expansion	coefficients	and	misfit	of	lattice	parameters	between	

the	 substrate	 and	 the	 thin	 epitaxial	 layer.	Moreover,	 as	 the	 Epi	WE	 is	made	 out	 of	 silicon	

entirely	 the	 current	 highly	 developed	 wafer	 cell	 technology	 can	 be	 performed.	 This	

alternative	concept	of	solar	cell	allows	the	saving	of	the	expense	of	considerable	amount	of	

highly	pure	silicon.	

	

	

a)	 b)	

Figure 37 Image a) depicts the scheme of an epitaxial silicon thin-film solar cell on low grade mc-Si 

wafer substrate. Image b) shows the basic principle of function of the RTCVD reactor [95]. 

Before	epitaxial	deposition,	the	4N+Al, 3N	and	B-doped	mc-Si	as-cut	wafers	were	etched	with	

a	 chemical	 polishing	 solution	 consisting	 of	 HF,	 HNO3,	 and	 CH3COOH.	 A	 silicon	 layer	 of	

approximately	 10-15	µm	 was	 etched	 per	 side	 of	 the	 wafer	 in	 order	 to	 remove	 any	 sub-

surface	damage	from	the	wire	sawing.	
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Subsequently,	the	wafers	were	sized	down	to	100x100	mm²	with	a	laser	to	process	them	in	

the	RTCVD	reactor	 [96]	 for	 the	deposition	of	an	epitaxial	crystalline	silicon	 thin	 film.	Two	

lines	of	vertical	wafers	are	placed	in	a	quartz	carrier	which	is	introduced	in	a	quartz	reactor	

tube	 (see	 Figure	 37	 b)).	 Then	 the	 wafers	 were	 heated	 up	 optically	 up	 to	 1150°C	 within	

30	minutes.	The	process	gas	(H2	and	SiHCl3)	 is	 injected	into	the	chamber	and	decomposes	

being	silicon	deposited	on	 the	 inner	 surface	of	 the	wafers	between	 the	 two	vertical	 rows.	

The	 deposition	 takes	 a	 few	 minutes	 as	 the	 deposition	 rate	 is	 5	µm/min	 approximately.	

Finally	 the	wafers	are	 cooled	down	 to	 room	temperature	so	 that	 the	whole	process	 takes	

one	 hour	 approximately.	 The	 heating	 up	 and	 cooling	 down	 temperature	 gradients	 were	

100°C/min.	

A	 group	 of	 wafers	 was	 also	 processed	 under	 the	 same	 conditions	 in	 the	 RTCVD	 reactor	

without	thin	film	deposition	in	order	to	differentiate	between	the	influence	of	the	annealing	

of	 the	 silicon	 low	 grade	 substrate	 and	 the	 deposition	 of	 the	 epitaxial	 thin	 film	 on	 the	

mechanical	strength	of	the	final	Epi	WE.	

3.1.5 Solar Cell Processes 

UMG-Si and	SoG-Si as-cut	mc-Si	wafers	are	processed	to	conventional	solar	cells.	The	term	

“inert	 cell”	 designates	 a	 solar	 cell	 processed	 from	moderately	purified	 silicon	wafers	 (see	

Figure	38).	

	

Figure 38 Sketch of an inert cell. 

Texture 

Solar	cell	processing	[97]	starts	with	the	texturing	of	the	silicon	wafers.	This	process	serves	

for	 removing	 saw	 damage,	 which	 reduces	 the	 mechanical	 strength	 of	 the	 wafers	 and	

increases	 electrical	 recombination	 in	 its	 surface,	 and	 for	 enhancing	 light	 trapping	 in	 the	

silicon	 bulk.	 Multicrystalline	 silicon	 is	 textured	 with	 an	 aqueous	 solution	 containing	 HF,	

HNO3. The	 surface	 structure	 of	 the	 textured	 silicon	 wafers	 is	 formed	 by	 round	 concave	

grooves	(see	Figure	39).	
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Figure 39 Schematic illustration of the texture of a mc-Si wafers. 

Damage etch 

Usually,	 the	 wafers	 are	 not	 damage	 etched	 prior	 to	 texture	 in	 the	 standard	 process	

sequence.	 However,	 damage	 etch	 is	 carried	 out	 in	 this	 study	 to	 compare	 saw	 damage	

removal	 of	 damage	 etch	 and	 texture	 respectively	 and	 therefore	 their	 influence	 on	 the	

mechanical	strength	of	mc-Si	wafers.		

As-cut	wafers	 from	all	 the	different	 types	of	mc-Si	 tested	 in	 this	work	were	etched	with	a	

chemical	 polishing	 solution	 consisting	 of	 HF,	 HNO3,	 and	 CH3COOH.	 A	 silicon	 layer	 of	

approximately	 10-15	µm	 was	 etched	 per	 side	 of	 the	 wafer	 in	 order	 to	 remove	 any	 sub-

surface	 damage	 from	 the	 wire	 sawing.	 After	 damage	 etch	 defects	 formed	 during	 the	

crystallization	process	control	the	mechanical	strength	of	the	wafers.	

Emitter Diffusion 

The	phosphorus	emitter	diffusion	process	is	meant	for	the	formation	of	the	p-n	junction	of	

the	 solar	 cell.	 The	wafers	 are	 placed	 in	 a	 quartz	 tube	where	 n-type	 dopant	 atoms,	 P,	 are	

diffused	 at	 900°C	 onto	 the	 surface	 of	 the	 p-type	 mc-Si	 wafers.	 Gaseous	 phosphorus	

oxychloride,	 POCl3,	 and	 oxygen,	 O2,	 are	 conducted	 into	 the	 heated	 quartz	 tube	 and	

phosphorus	 oxide,	 P2O5,	 deposits	 on	 the	 silicon	 surface.	 On	 the	 wafer	 surface	 a	

phosphosilicate	glass	(PSG)	layer	of	approximately	100	nm is	then	formed	and	P	atoms	from	

this	layer	diffuse	into	the	silicon	bulk.	

	

Figure 40 Schematic illustration of a mc-Si wafer after emitter diffusion. 

Phosphosilicate Glass Etch 

A	 chemical	 solution	 containing	 HF	 is	 used	 to	 remove	 the	 PSG	 layer.	 Precaution	must	 be	

taken	so	that	the	emitter	layer	beneath	the	PSG	layer	is	not	etched	away.	The	depth	of	the	

remaining	emitter	layer	is	approximately	500	nm.	

Antireflection Coating 

Cell	 efficiency	 is	 improved	 by	 the	 deposition	 of	 an	 antireflection	 coating	 on	 the	 silicon	

surface.	This	coating	enhances	 light	 trapping	and	neutralizes	open	silicon	bindings	on	 the	

wafer	surface.	Hydrogenated	silicon	nitride	(SiNx:H)	was	deposited	on	the	mc-Si	wafers	as	

an	antireflection	coating	because	of	 its	optimal	 refractive	 index	and	 its	excellent	bulk	and	
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surface	 passivation.	 The	 minority	 carrier	 lifetime	 of	 silicon	 is	 improved	 since	 hydrogen	

passivates	the	defects	and	impurities	in	the	bulk	silicon.	Silicon	nitride	is	deposited	on	the	

wafer	 surface	 by	 plasma	 enhanced	 chemical	 vapor	 deposition,	 PECVD.	 The	 plasma	 of	 the	

processing	gasses	 is	 created	by	means	of	an	electromagnetic	 field.	The	process	 is	done	at	

low	 temperature	� < 500°C.	 The	 deposited	 silicon	 nitride	 layer	 has	 a	 thickness	 of	75 nm	

approximately	and	it	infers	a	dark	blue	color	to	the	wafer	surface.	

	

Figure 41 Schematic illustration of a mc-Si wafer after antireflection coating. 

Metallization and Firing 

Metallization	is	 the	 formation	of	 the	metal	contact	onto	 the	wafer’s	surface.	The	wafers	 in	

this	work	underwent	metallization	with	the	conventional	screen	printing	technique.	

The	front	contact	consists	of	bus	bars	and	fingers	printed	onto	the	SiNx:H passivated	surface.	

At	the	beginning	of	the	metallization	of	the	front	contact,	an	elastic	screen	and	the	wafer	are	

in	snap	off	position,	which	means	they	are	aligned	but	they	are	not	in	contact.	A	Ag	paste	is	

prepared	 in	 front	 of	 a	 squeegee	 on	 the	 screen.	 The	 screen	 starts	 to	 touch	 the	 wafer	 as	

pressure	 is	 applied	 to	 the	 squeegee.	 Then	 the	 paste	 is	 dragged	 and	 the	 openings	 of	 the	

screen	are	filled	with	the	paste	which	sticks	to	the	wafer	surface.	Then	the	rear	side	of	the	

wafer	is	printed	with	an	Al	paste	which	covers	the	whole	wafer	surface.	Finally,	the	rear	bus	

bars	are	printed	with	an	Ag/Al	paste.	

After	 screen	 printing,	 the	 front	 and	 the	 rear	 contacts	 are	 fired	 simultaneously.	 The	 firing	

furnace	is	provided	with	IR	heaters	that	heat	the	wafers	up	to	900°C.	At	this	temperature	Al	

from	the	rear	side	has	already	melted,	the	back	surface	field	(BSF)	has	formed	and	the	front	

contacts	are	sintered	through	the	passivation	coating	to	make	contact	with	the	emitter	layer.	

After	metallization,	edge	isolation	is	achieved	via	laser	grooving	in	order	to	avoid	the	short	

circuit	as	emitter	diffusion	also	takes	place	at	the	edges	of	the	solar	cell.	

	

Figure 42 Schematic illustration of a mc-Si wafer after metallization. 

3.1.6 Sample collection and preparation 

For	 the	 mechanical	 characterization	 with	 the	 ring-on-ring	 bending	 test,	 ten	 wafers	 from	

three	different	positions	within	 the	blocks	 (top,	middle	 and	bottom	parts)	were	 collected	

after	multi-wire	sawing	(see	Figure	43).	Except	in	the	case	of	3N mc-Si	where	wafers	were	

taken	 at	 four	 block	 positions.	 10	 wafers	 correspond	 to	 a	 volume	 of	 156 × 156 × 3	mm�	
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approximately,	 i.e.	 within	 3	mm	 of	 block	 height	 mc-Si	 microstructure	 and	 mechanical	

properties	 are	 relatively	 constant	 so	 that	 the	 mechanical	 properties	 of	 wafer	 number	 1	

should	be	equal	to	the	mechanical	properties	of	wafer	number	10.	

These	wafers	were	used	for	mechanical	characterization	with	the	ring-on-ring	bending	test,	

for	measurement	of	residual	stress	and	for	microstructure	inspection.	

	

Figure 43 Scheme of the collection of mc-Si wafers for the ring-on-ring bending test. 

Each	of	the	wafers	was	subjected	to	solar	cell	processes.	In	the	case	of	the	4N+Al, 3N	and	B-

doped	mc-Si, the	wafers	underwent	multi-wire	 sawing,	 damage	 etch,	 annealing	 under	 the	

same	conditions	of	epitaxial	deposition	and	thin	film	epitaxial	deposition.	

One	 156 × 156	mm�	 wafer	 after	 wire	 saw	 and	 damage	 etch	 was	 lasered	 into	 49	 round	

silicon	 chips	 (see	 Figure	 44	 a))	 in	 order	 to	 provide	 enough	 silicon	 chips	 for	 a	 statistical	

calculation	of	the	mechanical	strength	with	the	results	of	the	ring-on-ring	bending	test.	This	

way	one	single	wafer	provides	enough	silicon	samples	to	measure	the	mechanical	strength	

of	 the	material.	Moreover,	 the	 analysis	 of	 the	 experimental	 data	 of	 this	work	 showed	 the	

inhomogeneity	of	microstructure	and	thus	of	 fractures	stresses	within	different	areas	of	a	

same	single	wafer.	Therefore,	the	lasering	and	bending	tests	of	the	round	silicon	chips	gives	

a	spatial	resolution	of	fracture	stresses	within	one	wafer.	

	

	

a)	 b)	

Figure 44 Sketch of the lasering into round silicon chips for 156x156 mm2 wafers (image a)) and for 

100x100 mm2 wafers (image b)). 

The	wafers	that	were	processed	in	the	RTCVD	reactor	were	lasered	down	to	100 × 100	mm�	
and	 therefore	only	16	silicon	chips	 could	be	obtained	per	wafer	 (see	Figure	44	b)).	Thus,	

two	100 × 100	mm�	 silicon	wafers	 per	 block	 and	 position	 underwent	 annealing	 and	 thin	
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film	deposition	respectively,	 i.e.	32	round	silicon	chips	were	available	 for	 the	ring-on-ring	

bending	test	after	annealing	and	after	thin	film	deposition.	

A	Nd:YAG	laser	emitting	1064	nm	wavelength	from	the	firm	ACR	GmbH	was	used	for	dicing	

the	wafers.	 The	 intensity	 of	 the	 laser	 beam	was	 35	A	 and	 its	 frequency	was	 20000	Hz. It	

moved	at	a	velocity	of	170	mm s⁄ 	and	it	followed	the	laser	patterns	of	Figure	44	five	times	

for	cutting	a	∿220	µm	silicon	wafer.	The	cutting	of	thicker	wafers	is	achieved	by	increasing	

the	times	that	the	laser	follows	the	lasering	patterns.	

UMG and	SoG mc-Si were	processed	to	conventional	solar	cells	starting	from	an	as-cut	wafer,	

following	 texture,	 phosphorus	 emitter	 diffusion,	 PSG	 etch,	 antireflection	 coating	 and	

metallization.	Another	 two	groups	of	wafers	were	added	to	compare	 texture	with	damage	

etch	and	to	check	the	influence	of	the	passivation	step	without	the	influence	of	the	previous	

diffusion	and	PSG	etch.	

All	 these	 wafers	 were	 lasered	 as	 sketched	 in	 Figure	 44	 a)	 with	 exception	 of	 the	 wafers	

processed	 until	metallization	where	 the	metallization	 pattern	 on	 the	 front	 and	 rear	 sides	

forced	us	to	choose	another	lasering	scheme	(see	Figure	45	a)).	Three	vertical	lines	of	seven	

circles	 each	were	 lasered	 containing	 the	bus	bar	 in	 the	middle	of	 the	 round	 silicon	 chips.	

Two	vertical	lines	of	seven	circles	each	were	lasered	from	the	areas	between	the	bus	bars,	

i.e.	round	chips	contained	thin	metallic	fingers	but	no	bus	bar	(see	Figure	45	b)).	Two	wafers	

per	block	and	position	were	processed	until	metallization	so	that	the	mechanical	strength	of	

the	front	side	of	the	solar	cell	can	be	tested	with	one	wafer	and	the	mechanical	strength	of	

the	rear	side	can	be	tested	with	the	second	wafer.	

	

	

	

a)	 b)	

Figure 45 Sketch of the lasering into round silicon chips for 156x156 mm2 wafers after metallization 

(image a)). Silicon chips showing the front and rear sides are depicted in image b) with and without bus 

bars. 

Other	mechanical	 characterization	 techniques	 required	 thicker	 silicon	 samples,	 e.g.	 three-

point	bending	test,	fracture	toughness	and	dynamic	elastic	modulus	measurements.	
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Silicon	samples	with	2	mm	thickness	were	cut	with	the	multi-wire	slurry	saw	from	silicon	

columns	coming	from	the	central	part	of	the	blocks.	Except	in	the	case	of	UMG-Si	where	the	

silicon	column	was	 taken	 from	a	 side	wall	of	 the	block.	The	columns	had	an	approximate	

volume	of	70 × 60 × 200	mm�.	After	wire	sawing	one	sample	was	taken	from	six	positions	

within	 the	 block	 (see	 Figure	 46	 a)).	 The	 samples	 had	 a	 volume	 of	 approximately	70 × 60 × 2	mm�	and	they	were	cut	into	4-6	pieces	with	a	diamond	saw.	These	final	samples	

had	an	approximate	geometry	of	70 × 10 × 2	mm�	 (see	Figure	46	b)).	Finally,	 the	samples	

were	 strongly	 etched	 with	 a	 chemical	 polishing	 solution	 consisting	 of	 HF,	 HNO3,	 and	

CH3COOH	in	order	to	remove	any	sawing	damage	that	lowers	the	mechanical	strength	of	the	

samples	[98]	and	to	smooth	their	edges	and	corners.	

	
	

Figure 46 Scheme of the collection of mc-Si samples for the three-point bending test (image a)). 2 mm 

thick silicon wafer cut into 70x10 mm2 samples and subsequently damage etched (image b)). 

Further	 specific	 preparation	 of	 the	 samples	 will	 be	 explained	 in	 the	 next	 sections	 in	

correlation	with	every	characterization	technique.	

3.2 Microstructure Analysis 

3.2.1 ICP-OES 

The	content	of	impurities	contained	in	the	silicon	feedstock	(see	Table	3)	was	measured	by	

Inductively	 Coupled	 Plasma/Optical	 Emission	 Spectrometry	 (ICP-OES)	 [99],	 [87].	 This	

technique	measures	 the	 spontaneous	 emission	 of	 photons	 from	 atoms	 and	 ions	 that	 are	

injected	and	excited	into	a	radiofrequency	(RF)-induced	Ar	plasma.	

The	silicon	feedstock	samples	weighing	1.5	g	approximately	are	first	dissolved	in	20	mL	of	

an	HF/HNO3 solution,	i.e.	the	impurity	elements	to	be	analyzed	are	contained	in	the	solution.	

This	solution	is	converted	into	an	aerosol	and	is	then	injected	into	a	channel	that	ends	up	in	

a	torch	that	contains	an	Ar	plasma.	This	plasma	is	induced	by	the	alternating	currents	inside	

a	 Cu	 coil	 that	 is	 connected	 to	 a	 RF-generator	 and	 surrounds	 the	 plasma	 torch.	 The	

inductively	 coupled	 plasma	 (ICP)	 sustains	 a	 temperature	 of	 approximately	 10000	K	 at	 its	

core	 and	 thus	 the	 aerosol	 is	 vaporized	 immediately	 when	 it	 reaches	 the	 plasma.	 The	

elements	contained	 in	 the	aerosol	 sample	are	 liberated	as	 free	atoms	and	 ions	 in	gaseous	

state.	The	collision	of	 the	atoms	with	 the	plasma	provides	additional	energy	 to	 the	atoms	

and	 ions	 to	 reach	 excited	 states.	 When	 these	 species	 relax	 to	 ground	 state	 they	 emit	 a	
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photon.	The	wavelength	of	the	photons	can	be	used	to	 identify	the	element	by	which	they	

were	 emitted.	 Additionally	 the	 amount	 of	 emitted	 photons	 is	 directly	 proportional	 to	 the	

quantity	of	impurity	elements	within	the	sample,	i.e.	to	their	concentrations.	

The	 photons	 emitted	 by	 the	 ICP	 are	 transferred	 by	 lenses	 and	 focused	 on	 a	 diffraction	

grating.	 The	 photons	 are	 at	 this	 point	 separated	 according	 to	 their	 wavelengths	 in	 the	

optical	 spectrometer.	 The	 intensity	 of	 the	 separated	 beams	 is	 measured	 in	 the	 optical	

chamber	by	a	photomultiplier	tube	and	converted	to	an	electrical	signal	by	a	photodetector.	

The	 measured	 intensities	 are	 compared	 to	 previously	 measured	 intensities	 of	 known	

concentrations	and	the	amount	of	the	impurity	elements	can	be	thus	determined.	

The	advantage	of	the	ICP-OES technique	relies	on	its	capability	to	measure	accurately	more	

than	70	elements	simultaneously	at	a	detection	limit	of	0.001	ppmw.	

3.2.2 Scanning Electron Microscope 

The	 scanning	 electron	 microscope	 (SEM)	 [100]	 is	 one	 of	 the	 most	 versatile	 instruments	

available	 for	 the	 examination	 and	 analysis	 of	 the	 microstructure	 characteristics	 of	 solid	

objects	from	the	nanometer	to	the	millimeter	scale.	The	popularity	of	the	SEM	is	due	to	its	

capability	 of	 obtaining	 three-dimensional	 images	 of	 the	 surfaces	 of	 materials	 in	 the	

magnification	 range	 from	 20	 to	 30000	 times.	 The	 SEM	 offers	 therefore	 the	 possibility	 to	

analyze	 wafer	 surface	 topography,	 e.g.	 the	 presence	 of	 second	 phase	 particles	 and	 their	

composition,	sawing	damage	morphology,	crystal	orientation,	etc.	

In	the	SEM,	the	area	to	be	analyzed	is	irradiated	with	a	finely	focused	electron	beam	which	is	

swept	across	the	surface	of	the	specimen	to	form	the	image.	The	types	of	signals	produced	

from	 the	 interaction	 of	 the	 electron	 beam	 with	 the	 sample	 include	 secondary	 electrons	

coming	 from	 the	 sample,	 backscattered	 electrons,	 diffracted	 backscattered	 electrons	 and	

photons	 (characteristic	 X-rays).	 The	 secondary	 electron	 and	 backscattered	 electrons	

emission	permits	images	to	be	obtained.	The	three-dimensional	appearance	of	the	images	is	

due	to	the	large	depth	of	field	of	the	scanning	electron	microscope,	as	well	as	to	the	shadow	

relief	 effect	 of	 the	 secondary	 and	 backscattered	 electrons	 contrast.	 The	 diffracted	

backscattered	 electrons	 provide	 information	 on	 the	 crystalline	 orientation	 of	 the	 sample	

and	the	characteristic	X-rays	on	its	chemical	composition.	

The	two	major	components	of	a	SEM	are	the	electron	column	and	the	control	console.	The	

electron	column	consists	of	an	electron	gun	fitted	with	a	tungsten	filament	cathode	and	two	

or	more	condenser	magnetic	lenses.	The	electron	gun	generates	and	accelerates	electrons	in	

the	 energy	 range	0.1-30 keV,	 and	 two	or	more	 condenser	 lenses	 focus	 the	 electron	beam.	

The	beam	travels	down	a	tube	and	interacts	with	the	specimen	to	a	depth	that	ranges	from	

the	nano-	 to	 the	micrometer	 scale	depending	on	 the	energy	of	 the	electron	beam	and	 the	

nature	 of	 the	 sample.	 The	 whole	 electron	 column	works	 in	 high	 vacuum.	 Secondary	 and	

backscattered	electrons	are	collected	by	a	detector	and	amplified	by	a	photomultiplier	 for	

display	on	a	computer	monitor	or	on	a	cathode	ray	tube	for	old	models	of	SEM.	The	control	

console	consists	of	the	computer	or	the	cathode	ray	tube	viewing	screen	and	the	knobs	and	

the	computer	keyboard	that	control	the	electron	beam	and	the	movement	of	the	sample.	
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Silicon	 samples	 are	 enough	 electrically	 conductive	 to	 be	 analyzed	 with	 the	 SEM	 without	

depositing	a	conductive	layer.	All	type	of	silicon	samples	were	checked	with	the	SEM	after	

every	 solar	 cell	 processing	 step.	 A	 top	 view	of	 the	 samples	 and	 a	 cross	 section	helped	 to	

visualize	the	topography	of	the	silicon	surface.	

3.2.3 Energy Dispersive X-ray Spectrometry  

Energy	Dispersive	X-Ray	Spectroscopy	 (EDX)	 [100]	 is	 a	 chemical	microanalysis	 technique	

used	in	conjunction	with	SEM.	As	aforementioned	in	the	previous	section,	the	interaction	of	

the	electron	beam	of	 the	SEM	with	 the	 sample	 results	 in	 the	emission	of	 characteristic	X-

rays.	This	is	due	to	the	emission	of	electrons	from	the	sample	surface	as	the	electron	beam	

hits	 the	 sample.	 The	 emitted	 electrons	 leave	 holes	which	 are	 then	 occupied	 by	 electrons	

from	a	higher	 state.	Thus,	 an	X-ray	 is	 emitted	with	 energy	 equal	 to	 the	 energy	difference	

between	 the	 two	 electrons'	 states.	 The	 X-ray	 energy	 is	 characteristic	 of	 the	 element	 that	

originated	the	emission.	An	energy-dispersive	detector	is	used	to	separate	the	characteristic	

X-rays	 of	 different	 elements	 into	 an	 energy	 spectrum	 which	 is	 analyzed	 with	 computer	

software	in	order	to	determine	which	elements	are	present	in	the	sample.	

3.2.4 Transmitted Light Microscopy 

Silicon,	 like	 almost	 all	 semiconductor	 materials,	 is	 transparent	 to	 infrared	 light	 (IR).	

Therefore,	 it	 can	 be	 inspected	 with	 transmitted	 light	microscopy.	 Second	 phase	 particles	

contained	 in	 mc-Si	 have	 different	 optical	 properties	 than	 silicon	 and	 thus	 may	 not	 be	

transparent	 to	 IR	 light.	 If	 they	 absorb	 IR	 light	 they	 will	 be	 visible	 like	 dark	 spots.	 The	

absorption	contrast	between	silicon	and	the	particles	allows	the	 localization	of	the	second	

phase	particles.	

This	type	of	microscopy	is	based	on	the	transmission	of	 IR	 light	emitted	from	a	source	on	

the	back	side	of	the	specimen	through	the	same	specimen.	An	IR	lamp	generates	an	IR	light	

beam	that	illuminates	a	mirror	in	the	base	of	the	microscope.	This	way	the	IR	light	beam	is	

conducted	 perpendicular	 to	 the	 surface	 of	 the	 sample.	 After	 the	 light	 passes	 through	 the	

sample,	 the	 image	 of	 the	 specimen	 can	 be	 viewed	 with	 a	 charge-coupled	 device	 (CCD)	

camera.	The	table	where	the	sample	rests	is	motorized	in	the	x	and	y	axis	and	large	areas	of	

the	silicon	wafers	could	be	scanned.	The	images	taken	from	one	sample	were	manipulated	

with	 the	 free	 imaging	 software	 “Image	 J”	 in	 order	 to	 visualize	 full	 50 × 50	mm�	 silicon	
samples.	

The	samples	must	be	mirror	polished	on	both	sides	in	order	to	avoid	the	scattering	of	the	

light	due	to	the	surface	roughness	and	thus	provide	sufficient	image	quality.	In	the	case	of	

4N+Al, 3N	 and	B-doped	mc-Si after	damage	etch	and	annealing, silicon	chips	were	 lasered	

down	 to	50 × 50	mm�	 and	 polished	 to	 a	mirror	 surface	 quality	 for	 inspection	with	 a	5 ×	
objective	lens.	The	polishing	of	the	samples	was	achieved	in	subsequent	polishing	steps	with	

a	SiC	paste.	The	processes	started	using	a	6	µm	SiC	paste	to	grind	initial	rough	surfaces	and	

ended	with	 a	1	µm	SiC	paste	 for	 achieving	mirror	 surface	quality.	 Finally	 the	 samples	 are	

slightly	etched	with	silicic	acid	and	rinsed	off	with	deionized	water	in	order	to	remove	any	
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SiC	particles	from	the	samples´	surface.	The	inspection	of	the	samples	and	the	analysis	of	the	

images	were	performed	in	the	TU	Bergakademie	together	with	Dr.	Claudia	Funke.	

3.2.5 Residual Stress Measurement 

Residual	 stress	 of	 damage	 etched	and	 annealed	 samples	 from	 the	4N+Al, 3N	 and	B-doped	

mc-Si	at	different	block	heights	was	measured	by	means	of	transmission	ellipsometry	[101]	

in	 the	TU	Bergakademie	 together	with	Dr.	 Claudia	 Funke.	 The	 size	 of	 the	 damage	 etched	

samples	was	lasered	down	to	50 × 50	mm�	while	the	100 × 100	mm�	annealed	samples	did	

not	need	 to	be	 lasered	down	to	a	smaller	size.	The	equipment	used	 for	 this	measurement	

was	 a	 SDS-150	 polarimeter	 with	 a	 stress	 resolution	 less	 than	 1	kPa and	 200 × 200	μm�	
space	resolution.	

The	measurement	 is	 based	on	 stress-induced	birefringence.	 Cubic	 crystals	 like	 silicon	 are	

optically	isotropic.	However,	optical	anisotropy,	i.e.	birefringence,	can	be	induced	by	elastic	

stresses	(piezo-optical	effect).	

The	 beam	 of	 an	 IR	 laser,	 with	 1.15	µm	 wavelength,	 is	 conducted	 within	 the	 equipment	

through	an	optical	element	that	polarizes	circularly	the	 laser	beam.	The	circular	polarized	

light	has	two	perpendicular	components,	the	ordinary	and	extraordinary	waves.	When	the	

IR	 laser	 beam	 passes	 through	 the	 silicon	 sample	 the	 direction	 of	 the	 ordinary	 and	

extraordinary	waves	rotate	in	the	directions	of	the	two	principal	components	of	the	residual	

stress	field.	The	intensity	of	the	light	transmitted	through	the	silicon	sample	is	transformed	

by	 a	 rotating	 analyzer	 into	 a	 periodical	 sign	 that	 is	 detected	 by	 a	 photodetector.	 By	

processing	 this	 sign,	 the	 phase	 difference,	 ∆,	 between	 the	 polarizations	 along	 the	 two	
principal	axes	can	be	obtained.	Given	the	value	of	phase	difference,	the	maximum	difference	

in	refractive	indexes,	Δ¤,	can	be	calculated	as	follows:	
	 ∆¤ = ∆Æ2L�	 (3.1)	

where	Æ	is	the	wavelength	of	the	light	and	t	is	the	thickness	of	the	wafer.	The	magnitude	of	

residual	 stress,	 Δ� = ��� − ���,	 is	 proportional	 to	 the	 maximum	 difference	 in	 refractive	

indexes:	

	 Δ¤ = �Δ�	 (3.2)	

where	C	is	the	photo-elastic	constant	of	the	material.	The	value	of	the	photo-elastic	constant	

depends	on	the	direction	of	the	stress	and	the	direction	of	light	propagation	in	the	crystal.	C	

must	be	then	expressed	in	terms	of	the	components	of	the	piezo-optical	tensor,	L��, L��, L33,	
for	 different	 crystal	 orientations.	 Nevertheless,	 the	 calculated	 photo-elastic	 constant	 does	

not	 change	 significantly	 with	 crystal	 orientation	 [101].	 Thus,	 the	 calculation	 of	 residual	

stress	with	equation	(3.2)	can	by	simplified	by	considering	a	constant	value	of	 the	photo-

elastic	 constant,	 �̅ = 1.8 × 10=��m� N⁄ ,	 which	 introduces	 a	 relative	 error	 in	 the	

measurement	not	larger	than	11%.	
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3.3 Mechanical Characterization 

3.3.1 Bending Tests 

Bend	 or	 flexure	 test	 is	 a	 common	 technique	 for	 determining	 the	 strength	 of	 a	 ceramic	

component	[15].	This	approach	is	convenient	as	simple	specimen	shapes	can	be	used.	This	is	

particularly	useful	as	 the	silicon	samples	 to	be	 tested	can	be	easily	machined	 from	silicon	

wafers.	 However,	 attention	 must	 be	 given	 to	 the	 loading	 geometry,	 sample	 dimensions,	

friction	effects	at	loading	points	and	alignment.	

3.3.1.1 Test Configuration 

Uniaxial Bending Test 

Silicon	 samples	 with	 2	mm	 thickness	 (see	 section	 3.1.6)	 were	 broken	 with	 a	 three-point	

bending	 (TPB)	 test	 configuration	 (see	 Figure	 47)	 in	 an	 Instron	 5866	 electromechanical	

testing	machine	 following	 the	 international	 standard	 ISO	 14704	 [102]	 in	 the	 Polytechnic	

University	of	Madrid	together	with	Elena	María	Tejado	Garrido.	The	sample	is	placed	onto	

two	supporting	 rods	which	are	 resting	on	 top	of	 two	balancing	semi-cylinders.	Following,	

the	 loading	rod	is	aligned	with	the	middle	point	of	 the	span	between	the	supporting	rods.	

The	alignment	of	 the	system	is	stabilized	by	applying	a	 low	pre-load.	The	balancing	of	the	

semi-cylinders	allows	a	correct	alignment	between	the	loading	axis	and	the	sample	so	that	

the	sample	is	always	perfectly	perpendicular	to	the	loading	axis.	Once	the	system	is	aligned,	

the	 traverse	of	 the	breaking	machine	 in	 the	 loading	axis	moves	down	at	a	 loading	 rate	of	

50	µm/min.	The	loading	rod	exerts	stress	on	the	sample	that	bends	until	fracture.	The	span	

between	the	supporting	rods	was	20	mm.	

	 	

a)	 b)	

Figure 47 TPB test configuration for the measurement of mechanical strength (image a)) and 

distribution of bending stress through the thickness of the sample during bending. 

The	 thickness	 of	 the	 samples	 was	 much	 higher	 than	 the	 maximum	 deflection	 during	

bending;	 thus,	 fracture	 stresses	were	 calculated	with	 the	 equations	 of	 the	 linear	 fracture	

theory.	The	maximum	tensile	stress	occurs	on	the	bottom	surface	and	at	the	center	of	 the	

span	where	the	load	is	applied	[103]:	
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	 ���È = 3�`2Ã��	 (3.3)	

where	�	is	the	applied	load;	`	is	the	distance	between	supports	(span);	Ã	is	the	width	of	the	
sample	and	�	is	the	thickness	of	the	sample.	
The	 distribution	 of	 the	 bending	 stress	 through	 the	 thickness	 of	 the	 sample	 is	 depicted	 in	

Figure	47	b).	The	surface	of	 the	specimen	which	 is	 in	 contact	with	 the	supporting	 rods	 is	

under	 maximum	 tensile	 stress	 (equation	 (3.3)).	 The	 tensile	 stress	 diminishes	 until	 it	

disappears	 at	 the	 neutral	 line	 of	 the	 sample.	 From	 the	 neutral	 line	 to	 the	 surface	 of	 the	

specimen	which	 is	 in	 contact	with	 the	 loading	 rod	 the	 bending	 stress	 is	 compressive	 and	

maximum	 at	 the	 surface	 of	 the	 specimen.	 The	 fracture	 of	 the	 specimens	 broken	 with	 a	

bending	test	 is	originated	at	the	surface	under	maximum	tensile	stress	and	finishes	at	the	

surface	under	maximum	compressive	stress.	

As	 specified	 in	 section	 3.1.6,	 five	 silicon	 samples	with	 dimensions	70 × 10 × 2	mm�	were	
available	 per	 material	 and	 position	 within	 the	 mc-Si	 blocks.	 However,	 for	 mechanical	

strength	measurement	 it	 is	recommended	to	test	twenty	samples	at	 least.	As	the	 length	of	

the	 samples	was	 considerably	 larger	 than	 the	 span	 this	 issue	was	 possible	 to	 solute.	 The	

solution	 consisted	 of	 breaking	 the	 silicon	 samples	 first	 in	 the	 middle	 into	 two	 pieces	 of	

approximately	35	mm	each.	The	remaining	pieces	are	still	 larger	than	the	span	and	can	be	

broken	again	(see	Figure	48)	so	that	five	bending	tests	could	be	performed	with	one	silicon	

sample,	 i.e.	 Twenty	 to	 twenty-five	 bending	 tests	 could	 be	 performed	 with	 five	 silicon	

samples.	

	

Figure 48 Scheme of the positions within the 2 mm thick silicon samples where the TPB tests were 

performed. The approximate dimensions of the broken samples are indicated in the image by the arrows. 

The red numbers indicate the order of the performed TPB tests. 

Equibiaxial Bending Test 

The	silicon	round	chips	(see	section	3.1.6)	were	 tested	with	a	ring-on-ring	(RoR)	bending	

test	 configuration	 (see	 Figure	 49	 a))	 in	 a	 breaking	 machine	 DO-FB0.5TS	 from	 the	

Zwick/Roell	company	following	the	specifications	of	the	standard	ASTM	C	1499	[104].	The	

silicon	chip	is	positioned	on	a	supporting	ring	and	loaded	in	the	center	by	a	coaxial	loading	
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ring.	The	alignment	of	the	coaxial	rings	and	the	sample	is	achieved	with	two	fixed	rods	on	

the	 basis	 of	 the	 supporting	 ring.	 In	 order	 to	 induce	 articulated	 loading	 (i.e.	 passive	

alignment),	like	in	the	case	of	the	TPB	test,	a	sphere	is	placed	central	on	top	of	the	loading	

ring,	so	that	the	silicon	chip	is	always	perpendicular	to	the	loading	axis.	The	diameters	of	the	

supporting	and	loading	rings	were	18	mm	and	6	mm	respectively	(see	Figure	49	b))	and	the	

loading	rate	was	3	mm/min.	

	

	

a)	 b)	

Figure 49 RoR test configuration (image a)) and scheme of the alignment of the round silicon chip with 

the supporting (in blue) and loading (in red) rings (image b)). 

This	 test	 configuration	 exerts	 a	 constant	 equibiaxial	 stress	 in	 the	 area	within	 the	 loading	

ring.	The	surface	that	is	to	be	tested	is	oriented	to	the	side	of	the	wafer	under	tensile	stress	

during	 bending.	 The	 following	 equation	 of	 the	 linear	 fracture	 theory	 can	 be	 used	 for	

calculating	fracture	stresses	with	the	ROR	bending	test:	

	 �<E< = 3�2L�� x�1 − ,�Ég� − ÉÊ�2É� + �1 + ,� lnÉgÉÊy	 (3.4)	

where	�	 is	the	applied	load,	�	 is	the	thickness	of	the	silicon	chip,	Ég	 is	the	supporting	ring	
diameter,	ÉÊ	is	the	loading	ring	diameter,	É	is	the	diameter	of	the	silicon	chip	and	,	is	the	
Poisson´s	ratio	of	the	sample.	

The	 thickness	 of	 the	 silicon	 chips	 was	 in	 the	 same	 range	 of	 the	 values	 of	 maximum	

deflections	during	 the	bending	 test.	Thus,	 the	equation	of	 the	 linear	 fracture	 theory	could	

not	 be	 applied	 in	 this	 work	 for	 calculating	 fracture	 stresses	 with	 the	 RoR	 bending	 test.	

Instead,	the	maximum	principle	stresses	at	which	the	wafers	broke	were	calculated	from	the	

measured	force-displacement	curves.	For	this	purpose,	the	TU	Bergakademie	Freiberg	used	

the	Finite	Element	program	Ansys.	

The	calculation	of	the	static	elastic	modulus	of	the	samples	tested	with	the	RoR	bending	test	

was	allowed	by	the	performed	Finite	Element	analysis.	

The	 silicon	 chips	were	 attached	 to	 a	 sticking	plastic	 film	on	 the	 side	of	 the	 samples	 to	be	

subjected	to	compressive	stress	in	order	to	keep	all	broken	pieces	together	after	testing	for	

further	fractography	analysis	of	the	surface	of	the	samples	subjected	to	tensile	stress.	
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The	advantage	of	the	RoR	over	the	TPB	test	is	the	avoidance	of	the	loading	of	the	edges	of	

the	 sample.	 The	 influence	 of	 the	 defects	 at	 the	 edges	 of	 the	 samples	 on	 the	 measured	

mechanical	 strength	 is	 then	 excluded	 and	 only	 the	 material	 surface	 is	 tested.	 Thus,	 this	

method	is	more	sensible	to	the	material	quality.	On	the	other	hand,	the	loading	geometry	of	

the	TPB	test	allows	an	easier	calculation	of	fracture	stresses	and	an	easier	localization	of	the	

defects	causing	fracture	when	performing	fractography	analysis	of	the	broken	samples.	

The	RoR	bending	test	on	the	49	silicon	chips	 lasered	from	a	156 × 156	mm�	silicon	wafer	
gives	a	spatial	resolution	of	the	mechanical	strength	of	the	wafers	that	will	be	analysed	in	

the	next	sections.	

3.3.1.2 Weibull Statistics 

The	measured	fracture	stresses	of	a	group	of	identical	ceramic	specimens,	i.e.	coming	from	

the	same	material	and	equally	processed,	 typically	scatter	considerably.	This	 is	due	 to	 the	

scatter	 in	 size,	 position	 and	 orientation	 of	 the	 defects	 causing	 failure.	 Moreover,	 the	

distribution	 of	 fracture	 stresses	 is	 asymmetrical	 about	 the	 mean	 and	 therefore	 fracture	

stresses	do	not	fit	the	conventional	Gaussian	distribution	[14].	

This	issue	is	handled	by	statistical	treatment	of	the	values	of	fracture	stresses	with	the	two-

parameter	Weibull	distribution	[105]	based	on	the	weakest-link	theory.	The	basic	premises	

of	 this	 model	 are	 that	 all	 materials	 contain	 randomly	 distributed	 defects,	 that	 fracture	

initiates	 at	 the	 largest	 defect,	 i.e.	 the	 weakest-link	 of	 material,	 and	 that	 rupture	 of	 the	

weakest-link	of	material	implies	the	failure	of	the	whole	specimen.	The	probability	of	failure	

of	a	silicon	sample	according	to	this	model	is	given	by	the	cumulative	Weibull	distribution	

function:	

	 bO = 1 − ¯)Ë >− ��d@h	 (3.5)	

where	bO	is	the	fracture	probability	of	the	wafer	under	an	applied	load	�.	The	parameter	m	

is	the	so	called	“Weibull	modulus”	that	describes	the	internal	distribution	of	defect	lengths	

in	the	material.	A	high	value	of	m	means	that	the	defect	lengths,	and	thus	the	failure	stresses	

of	the	tested	specimens	(silicon	wafers),	are	within	a	narrow	scattering	band;	while	small	m	

values	indicate	a	broad	distribution.	�d	 is	the	“characteristic	stress”	of	the	wafers	which	is	
given	 as	 the	 load	 level	 at	 which	 63%	 of	 a	 group	 of	 comparable	 wafers	 failed.	 The	

characteristic	stress	is	considered	to	be	a	representative	value	for	the	mechanical	strength	

of	the	group	of	tested	specimens.	

Fracture	 stresses	 were	 fitted	 to	 the	 Weibull	 distribution	 by	 means	 of	 the	 maximum-

likelihood	method	[106],	 [14].	 If	n	 strength	measurements	with	results	��	�� = 1,… , ¤�	are	
performed,	the	probability	of	obtaining	a	certain	��	is	Ë� .	Thus,	the	probability	of	obtaining	
the	complete	set	of	measurements,	P,	is:	

	 b = ÍË�¦
�_� 	 (3.6)	
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The	 maximum-likelihood	 estimates,	 ÎÏ 	 and	 �dÐ,	 are	 the	 ones	 that	 maximize	 P. For	 this	

purpose	we	take	the	logarithm	of	P	which	is	a	monotonically	increasing	function	of	P	and	it	

is	more	convenient	to	maximize.	

	 ln b = alnË�¦
�_� 	 (3.7)	

At	the	same	time	Ë� 	can	be	calculated	by	differentiating	the	cumulative	Weibull	distribution	

function	with	respect	to	the	stress:	

	 Ë� = �ÂbOÂ� �Ñ_ÑÒ
= Î��h=��dh ¯)Ë q−>���d@hr	 (3.8)	

The	 logarithm	of	P	 as	 a	 function	 of	Ë� 	 is	maximized	 by	 taking	 its	 partial	 derivatives	with	

respect	to	ÎÏ 	and	�dÐ	and	by	equaling	them	to	zero:	

	
∑ ��hÏ ln ��¦�_�∑ ��hÏ¦�_� − 1¤aln�� − 1ÎÏ = 0¦

�_� 	
(3.9)	

	

	 �Ôd = Õ$a��hÏ¦
�_� %1¤Ö

� hÏ⁄
	

(3.10)	

	

Equation	(3.9)	can	be	solved	 iteratively	 to	obtain	the	maximum-likelihood	estimate	of	 the	

Weibull	modulus,	ÎÏ .	The	maximum-likelihood	estimate	of	the	characteristic	stress,	�dÐ,	can	

be	obtained	by	introducing	the	calculated	value	of	ÎÏ 	into	equation	(3.10).	
The	Weibull	modulus	 estimate	 exhibits	 statistical	 bias.	 This	means	 that	 if	 the	mechanical	

testing	 is	repeated	many	times	to	create	a	distribution	of	values	of	ÎÏ ,	 this	distributions	 is	
not	 centered	 on	 the	 true	 population	 parameter,	 m,	 but	 is	 highly	 biased.	 The	 amount	 of	

statistical	 bias	 decreases	 with	 increasing	 amount	 of	 tested	 specimens.	 The	 unbiased	

estimate	of	 the	Weibull	modulus,	ÎÏ×,	 is	obtained	by	multiplying	ÎÏ 	by	an	unbiasing	factor	
(UF)	[107]:	

	 ÎÏ× = ÎÏ × X�	 (3.11)	

	

Table	 16	 in	 Appendix	B	 provides	 the	 list	 of	 UF	 with	 respect	 to	 the	 amount	 of	 tested	

specimens.	

The	calculated	characteristic	stress	estimate	is	considered	already	an	unbiased	estimate	of	

the	true	population	parameter,	�d,	as	its	associated	statistical	bias	is	minimal.	In	the	case	of	

repeating	many	times	the	testing	of	20	specimens,	ÎÏ 	shows	a	statistical	bias	of	≅ 7%	while	�dÐ	presents	a	bias	< 0.3%.	

The	values	necessary	to	construct	confidence	bounds	of	the	maximum	likelihood	estimates	

are	based	on	percentile	distributions	obtained	for	each	maximum-likelihood	estimate	[107].	

The	90%	confidence	bounds	on	the	Weibull	modulus	and	the	characteristic	stress	are	then	

obtained	from	the	5	and	95	percentile	distributions	of	q	and	t	respectively.	The	values	of	q	
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and	t	are	 listed	 in	Table	17	and	Table	18	of	Appendix	B	according	to	the	amount	of	 tested	

samples.	

The	upper	and	lower	confidence	bounds	for	ÎÏ×	and	�dÐ	are	calculated	as	follows:	

	 ÎÏ^ffDF = ÎÏÙ�.�4	 (3.12)	

	

	 ÎÏ �EÚDF = ÎÏÙ�.Û4	 (3.13)	

	

	 �ÔdÜÝÝÞß = �dÐ¯)Ë >− ��.�4ÎÏ @	 (3.14)	

	

	 �ÔdàáâÞß = �dÐ¯)Ë>−��.Û4ÎÏ @	 (3.15)	

	

The	 results	 of	 the	 Weibull	 analysis	 of	 the	 fracture	 stresses	 measured	 in	 this	 work	 are	

summarized	in	detail	in	Appendix	E	and	F.	Weibull	parameters	with	their	confidence	bounds	

are	presented	in	table	format	while	the	cumulative	Weibull	distribution	function	(equation	

(3.5))	 and	 the	experimental	 values	of	 fracture	 stresses	are	presented	graphically	 (see	 the	

example	depicted	in	Figure	50).	The	y	axis	of	 the	cumulative	Weibull	distribution	function	

corresponds	 to	 fracture	 or	 failure	 probability	 and	 the	 x	 axis	 to	 fracture	 stresses.	 The	

experimental	fracture	probability	associated	to	the	experimental	values	of	fracture	stresses	

is	assigned	to	each	sample,	after	ordering	the	values	of	fracture	stresses	in	increasing	order,	

as	follows:	

	 bO���� = � − 0.5¤ 	
(3.16)	

	

Where	n	is	the	total	number	of	tested	specimens	and	�	is	the	number	of	the	sample.	

	

Figure 50 Cumulative Weibull distribution function of standard mc-Si and Cz-Si after damage etching. 

The points represent the experimental values of fracture probability and stresses while the lines 

represent the two-parameter Weibull distributions fitted to the experimental values. The arrows 

indicate the values of their corresponding characteristic stresses. 
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The	 nearer	 the	 experimental	 points	 are	 to	 the	 calculated	 cumulative	Weibull	 distribution	

function	the	better	the	experimental	data	fits	to	the	Weibull	distribution.	

Larger	 specimens	 have	 more	 probability	 of	 containing	 large	 defects.	 Therefore,	 the	

calculated	 characteristic	 stress	 is	 dependent	 on	 the	 volume	 of	material	 tested,	 i.e.	 on	 the	

dimensions	 of	 the	 specimen.	 The	 standard	 ASTM	 C	 1683-08	 [108]	 proposes	 several	

expressions	 for	 calculating	 size	 scaled	 Weibull	 parameters.	 This	 practice	 allows	 the	

comparison	of	Weibull	parameters	between	groups	of	specimens	with	different	geometries	

or	dimensions.	These	 calculations	were	not	 considered	 in	 this	work	 as	 all	 samples	 tested	

either	with	the	TPB	or	the	RoR	bending	test	had	the	same	dimensions.	

The	 calculation	 of	 the	 Weibull	 parameters	 and	 the	 graphical	 representation	 of	 the	

cumulative	Weibull	 distribution	 functions	 in	 this	 work	 were	 performed	 by	 two	 routines	

written	with	R	[109]	(Appendix	C	and	D	respectively)	in	order	to	optimize	the	handling	of	

the	big	amount	of	data.	

3.3.1.3 Fractography 

Fractopgraphy	 is	 the	 examination	 of	 fracture	 surfaces	 to	 determine	 the	 cause	 and	

mechanism	of	failure	[14],	[110].	Cracks	tend	to	propagate	perpendicular	to	the	maximum	

tensile	 principal	 stress.	 The	 crack	 path	 near	 the	 fracture	 origin	 provides	 therefore	

information	on	the	stress	configuration	at	the	moment	of	failure.	

Even	though	failure	starts	from	a	single	crack	brittle	failure	usually	results	in	many	broken	

fragments.	This	is	due	to	the	crack	branching	phenomenon.	When	the	crack	starts	to	grow,	

the	 energy	 release	 rate	 of	 the	 crack	 also	 increases	 which	 accelerates	 crack	 propagation.	

When	the	energy	release	rate	reaches	twice	the	amount	of	the	critical	energy	release	rate	of	

silicon,	W = 2WG,	 the	 crack	 splits	 into	 two	branches.	Additionally,	 at	 high	velocity	of	 crack	
propagation	 the	 stress	distribution	 at	 the	crack	 tip	 is	 disturbed	without	 sufficient	 time	 to	

establish	 a	 quasi-static	 stress	 field	 at	 the	 crack	 tip	which	 also	 enhances	 crack	 branching.	

Strong	specimens	release	more	elastic	energy	when	they	fracture.	Therefore,	samples	that	

break	into	many	fragments	show	high	mechanical	strength.	

Crack	 branches	 usually	 point	 back	 to	 the	 fracture	 origin	 but	 there	 are	 other	 features	 of	

fracture	 that	 can	 be	 observed	 on	 the	 fracture	 cross	 section	 of	 the	 specimen	 and	 that	 can	

provide	information	on	crack	growth	direction	(see	Figure	51).	
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Figure 51 Qualitative features of fracture surfaces in silicon adapted from [111]. 

“Rib”	 or	 conchoidal	 lines	 are	 perpendicular	 to	 the	 direction	 of	 crack	 growth	 and	 show	

instantaneous	 locations	of	 the	crack	front.	They	are	always	bowed	away	from	the	fracture	

origin	and	are	caused	by	slight	deviations	of	the	crack	front	away	from	the	plane	of	fracture	

[111].	

“Hackle”	 or	 tear	marks	 are	 parallel	 to	 the	 crack	 growth	 direction	 and	 are	 formed	 as	 the	

propagating	crack	branches.	

Crystals	 tend	 to	 fracture	 through	 crystalline	 planes	 with	 low	 fracture	 energy;	 they	 are	

cleavage	planes.	 If	 the	cleavage	plane	 is	oriented	perpendicular	 to	 the	maximum	principal	

tensile	 stress	 the	 resulting	 fracture	 surface	 is	 flat.	 However,	 if	 the	 cleavage	 plane	 shows	

another	orientation,	fracture	still	starts	along	the	cleavage	plane	but	the	crack	may	abruptly	

change	direction	when	it	senses	the	presence	of	another	more	favorable	cleavage	plane	for	

its	 propagation.	 When	 this	 occurs	 cleavage	 steps	 are	 formed	 in	 the	 direction	 of	 crack	

growth.	 When	 this	 steps	 form	 one	 after	 another	 a	 “river	 pattern”	 can	 be	 visible	 in	

fractography.	

When	the	crack	front	is	extending	it	may	find	other	defects.	A	stress	wave	is	transferred	to	

the	material	 when	 the	 crack	 approaches	 the	 defect.	 The	 intersection	 of	 the	 stress	waves	

with	the	crack	front	leads	to	a	slight	disturbance	of	the	principal	stresses	and	therefore,	to	a	

slight	deviation	of	the	crack	path	visible	as	“Wallner	lines”.	

Flat	 “mirror	 surfaces”	 usually	 surround	 the	 fracture	 origin.	 Within	 this	 area	 the	 crack	

propagates	some	extent	until	it	branches	and	hackle	lines	are	formed	pointing	at	the	initial	

crack.	

The	measurement	 of	 the	 size	 of	 the	 flaw	 causing	 failure	 can	 predict	 the	 value	 of	 fracture	

stress.	A	macroscopic	failure	criterion	for	samples	broken	with	the	TPB	test	can	be	applied	

to	 fractographical	 images	following	Lawn	[44].	The	premises	to	consider	in	order	to	apply	

this	failure	criterion	are	that	fracture	is	caused	by	a	surface	defect,	that	the	defect	causing	

fracture	 is	 located	at	 the	 surface	under	maximum	tensile	stress,	 that	 the	defect	exhibits	a	

semicircular	shape	with	radius	7,	and	that	processing	residual	stresses	do	not	exist:	
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	 PUG = 1.29�O√7	 (3.17)	

	

Bansal	 [112]	 suggested	 another	 failure	 criterion	 for	 samples	 that	 fractured	 due	 to	 a	

semielliptical	flaw.		

	

Figure 52 The two types of semielliptical flaws. 

The	failure	criterion	of	Bansal	is	derived	from	the	expression	of	the	stress	intensity	factor	of	

an	elliptical	 flaw	proposed	by	 Irwin	[113].	This	expression	assumes	 that	 the	 flaw	 is	much	

smaller	than	the	dimensions	of	the	specimen	and	that	it	exhibits	brittle	behavior.	The	stress	

intensity	 factor	 is	maximum	at	R = L 2⁄ 	 for	I < 7	 and	 at	R = 0	 for	I > 7.	 Thus,	when	 the	
stress	 intensity	 factor	 reaches	 its	 critical	 value	 fracture	 occurs	 at	 the	 areas	 marked	 as	

“weakest	points”	in	Figure	52.	

The	Bansal	failure	criterion	is	expressed	by	the	following	equation:	

	 �O ≈ 1.68T PUG�� 3⁄ 	
(3.18)	

	

where	 T ≅ 2.0	 and	 � = LI7 2⁄ 	 is	 the	 area	 of	 the	 semielliptical	 flaw.	 Equation	 (3.18)	

introduces	 a	maximum	 error	 of	 5%	 in	 calculating	 the	 fracture	 stress	 associated	with	 the	

semielliptical	flaw.	

Ritter	et	al.	[114]	suggested	some	modifications	of	the	failure	criterion	of	Bansal	in	order	to	

take	residual	stresses	and	flaw	linking	into	account.	In	the	presence	of	a	localized	residual	

stress	 a	 crack	may	 extend	 on	 application	 of	 an	 external	 load	 and	 stable	 crack	 extension	

occurs	prior	to	failure	[115]	[116].The	failure	stress	under	these	conditions	is:	

	 �OF = 1.68ãT PUG�� 3⁄ = ã�O	 (3.19)	

	

where	�OF	is	the	measured	fracture	stress,	�O	is	the	fracture	stress	in	the	absence	of	residual	
stress	and	ã	 is	a	constant.	X	 is	equal	to	0.47	for	the	residual	stress	 introduced	by	an	 ideal	
indentation	 crack.	 ã	 can	 be	 larger	 if	 partial	 relief	 of	 the	 residual	 stress	 occurs	 by	 the	
formation	of	lateral	cracks	or	chipping.	In	the	absence	of	residual	stress	ã	is	unity.	
In	many	cases	 flaw	 linking	occurs	prior	 to	catastrophic	 failure	so	 the	correlation	between	

strength	and	flaw	size	in	terms	of	the	extension	of	an	isolated	flaw	is	often	inadequate	[117].	

When	the	distance	between	two	flaws	is	in	the	same	order	than	the	flaw	size,	they	may	link	

at	a	 lower	stress	 level	 than	 the	one	necessary	 to	propagate	a	single	 flaw.	 In	 that	case,	 the	

fracture	stress	 is	determined	either	by	 the	stress	necessary	 for	 the	 flaws	 to	 link	or	by	 the	

stress	necessary	to	propagate	the	larger	created	flaw.	
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Two	 important	 cases	 for	 flaw	 linking	 in	 ceramics	must	be	considered.	The	 first	one	 is	 the	

coalescence	of	flaws	in	a	coplanar	array	and	the	second	is	the	linking	of	a	subsurface	pore	or	

particle	 less	 rigid	 than	 the	matrix	 with	 a	 surface	 flaw.	 In	 both	 cases	 the	 stress	 intensity	

factor	of	a	given	flaw	is	increased:	

	 �OF = 1.68T� PUG�� 3⁄ 	
(3.20)	

	

where	�	is	the	interacting	parameter	which	can	be	roughly	estimated.	For	coplanar	through	
cracks	[38]	and	crack	spacing	less	than	50%,	�	begins	to	increase	considerably.	When	crack	

spacing	is	10%	�	can	get	a	value	of	2.	In	the	case	of	sub-surface	pores,	the	factor	�	can	be	as	
high	as	4	for	pores	that	are	within	10%	of	their	size	from	the	surface	[114].	

In	 either	 case,	 the	 flaw-linking	 stress,	�Ê,	 is	 governed	 by	 the	 flaw-linking	 stress	 intensity	
factor,	PUG∗ :	

	 �Ê = 1.68T� PUG∗�� 3⁄ 	
(3.21)	

	

3.3.2 Fracture Toughness Measurement 

Bending	 tests	 of	 pre-cracked	 specimens,	 also	 known	 as	 “three-point	 bending	 test	 single-

edge	notch	beam”,	is	a	common	procedure	to	measure	toughness	of	ceramics.	This	type	of	

measurement	 is	 relevant	 because	 there	 are	 no	 measured	 values	 of	 toughness	 of	

multicrystalline	 silicon,	 containing	 different	 types	 of	 impurities,	 in	 the	 literature.	 Samples	

with	2	mm	thickness	were	broken	and	prepared	in	order	to	measure	the	toughness	of	 the	

same	 multicrystalline	 silicon	 samples	 that	 that	 were	 broken	 with	 the	 TPB	 test.	 Thus,	

toughness	was	measured	in	the	Polytechnic	University	of	Madrid	at	six	positions	within	the	

silicon	blocks.	A	notch	was	introduced	on	one	side	of	the	samples	with	a	steel-diamond	wire	

(Ø	130	µm).	The	length	of	the	notches	was	measured	at	five	different	positions	with	a	profile	

projector	with	a	magnification	of	50 ×	and	the	medium	value	was	considered	as	the	notch	

length.	This	length	of	the	notches	varied	between	200	and	500	µm,	which	is	not	relevant	for	

our	 purpose.	 The	 samples	 were	 broken	 with	 a	 TPB	 where	 the	 notch	 in	 the	 sample	 was	

carefully	aligned	with	the	central	loading	rod	of	the	rigid	ceramic	testing	device	(see	Figure	

53).	The	 span	between	 the	 supporting	 rods	was	10	mm so	 that	 the	 largest	broken	pieces	

from	 the	 TPB	 of	 approximately	 ~13	mm	 length	 (see	 Figure	 48)	 were	 used	 for	 this	

measurement.	

	

Figure 53 Three point bending test single edge notch beam test configuration for toughness 

measurement. 
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Guinea	et	al.	[118]	proposed	a	simple	and	general	expression	for	calculating	stress	intensity	

factors	from	the	values	of	maximum	load	and	length	of	the	notches.	These	expression	can	be	

used	for	any	crack	length	and	for	any	span-to-depth	ratio	�` �⁄ �	larger	than	2.5.	
	 PU = T�√�	 (3.22)	

	

where	�	is	the	thickness	of	the	sample.	For	the	three-point	bending	single-edge	notch	beam	

test	�	can	be	calculated	with	equation	(3.3).	The	geometry	factor,	T,	for	any	crack	length	and	
for	any	span-to-depth	ratio	larger	than	2.5	can	be	calculated	with	the	following	equation:	

	
T = √Λ�1 − Λ�� �⁄ �1 + 3Λ� ç�1.99 + 0.83Λ − 0.31Λ� + 0.14Λ��

+ 4Ω ��3.89 + 1.24Λ + 0.20Λ� − 0.03Λ����è	
(3.23)	

	

Where	Λ = I �⁄ 	 is	 the	crack-to-depth	ratio	and	Ω = ` �⁄ 	 is	 the	span-to-depth	ratio;	being	I	
the	length	of	the	introduced	notch	in	the	specimen.	

Disagreement	between	toughness	and	strength	values	can	be	caused	by	different	size	scales	

of	 the	 cracks	 that	 cause	 fracture	 in	 both	 types	 of	measurements	 [58].	Whether	 increased	

toughness	increases	reliability	must	be	thoroughly	checked.	

3.3.3 Dynamic Elastic modulus Measurement 

Elastic	 constants	 can	 be	 determined	 by	 static	 and	 by	 dynamic	 methods.	 A	 static	

measurement	of	the	elastic	modulus	can	be	performed	with	the	TPB	or	the	RoR bending	test	

by	calculating	the	slope	of	the	stress-strain	or	force-displacement	curve.	Dynamic	methods	

can	achieve	a	greater	accuracy	than	static	methods	with	relative	ease	[14].	They	comprise	

resonance	and	ultrasonic	wave	propagation	and	they	are	a	non-destructive	technique.	

The	macroscopic	dynamic	elastic	modulus	of	the	samples	was	measured	in	the	Polytechnic	

University	o	Madrid	prior	to	the	bending	tests	with	the	resonance	method.	Elastic	materials	

like	silicon	show	specific	mechanical	resonant	frequencies	that	are	determined	by	the	elastic	

modulus,	 mass	 and	 geometry	 of	 the	 test	 specimens.	 Therefore,	 the	 dynamic	 elastic	

properties	 of	 an	 elastic	material	 can	 be	 calculated	 if	 the	 geometry,	mass	 and	mechanical	

resonant	 frequencies	 of	 the	 samples	 can	 be	measured	 [119].	 Resonance	methods	 can	 be	

used	with	any	shape	of	samples	but	are	most	often	used	with	flexure	and	torsion	modes	of	

vibration	of	bars	and	cylinders.	

First	the	mass	and	exact	dimensions	of	the	samples	were	measured.	The	samples	then	were	

placed	 onto	 two	 anti-vibration	 supports	 and	 the	 vibration	 of	 the	 sample	 is	 excited	 by	

exerting	a	mechanical	impulse	with	a	small	steel	ball	on	the	middle	of	the	length	of	the	beam	

(see	Figure	54).	The	resonant	frequency	of	the	sample	beam	is	measured	by	a	piezoelectric	

sensor	which	 is	 in	contact	with	 the	 sample	and	recorded	 in	 the	display	of	an	oscilloscope	

connected	to	the	sensor.	Given	the	mass,	geometry	and	resonant	frequency	of	the	samples	

the	dynamic	elastic	modulus	can	be	calculated,	 in	 the	 flexural	mode	of	vibration	and	with	
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the	 GENEMOD	 software	 following	 the	 calculations	 suggested	 in	 the	 ASTM	 E1876-09	

standard	[119].	

	

	

Figure 54 Scheme of the measurement of the mechanical resonant frequency of a multicrystalline silicon 

sample beam for obtaining the dynamic elastic modulus of silicon. 

In	the	case	of	flexure	resonant	frequency	of	a	rectangular	bar,	the	dynamic	elastic	modulus	

can	be	calculated	as	follows	[120]:	

	 + = 0.9465ÎiQO�Ã `i��� �é 	 (3.24)	

	

where	Îi	is	the	mass	of	the	bar;	Ã	is	the	width	of	the	bar;	`i	is	the	length	of	the	bar;	�	is	the	
thickness	of	the	bar;	QO	is	the	fundamental	resonant	frequency	of	the	bar	in	flexure	�ê³�;	and	�é	is	the	correction	factor	for	the	flexure	vibration	mode.	

	

�é = 1 + 6.585�1 + 0.0752, + 0.8109,�� > �̀
i@� − 0.868> �̀

i@3
− ë 8.340�1 + 0.2023, + 2.173,�� � �̀i�31.000 + 6.338�1 + 0.1408, + 1.536,�� � �̀i��ì	

(3.25)	

	

The	material	must	 be	 considered	 homogeneous	 and	 isotropic	 for	 this	measurement.	 The	

material	can	be	considered	homogeneous	when	the	geometrical	dimensions	of	 the	sample	

are	large	with	respect	to	the	size	of	individual	grains,	particles	pores	and	micro-cracks.	The	

material	can	be	considered	 isotropic	on	a	macroscopic	scale	when	 it	 is	homogeneous	and	

grains,	particles,	pores	and	micro-cracks	are	distributed	randomly.	
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4. Experimental Results I 

This chapter focuses on the influence of second phase particles on the 

mechanical properties of mc-Si. Experimental values of mechanical 

properties measured at different relative heights within the mc-Si blocks 

crystallized from alternative silicon feedstock are presented and discussed. 

Metals segregate at the top of the block, induce spontaneous micro-cracking 

and introduce high thermal stresses. Amorphous silicon oxide particles at 

the bottom part of the blocks significantly reduce the mechanical strength 

and fracture toughness of mc-Si due to both thermal and elastic mismatch 

with the silicon matrix. On the other hand, silicon oxide crystallites induce a 

remarkable toughening effect in silicon due to large compressive residual 

thermal stress in their surroundings and their small size. Silicon nitride 

particles reduce fracture toughness and cause failure by radial cracking in 

its surroundings due to its thermal mismatch with silicon. Finally, silicon 

carbide particles increase fracture toughness and the elastic modulus of mc-

Si. Additionally, the mechanical strength of mc-Si can increase when the 

radius of the silicon carbide particles is smaller than approximately 10 µm. 

4.1 Calculation of Fracture Stresses and Stress Distribution 

Bending	 tests	 provide	 the	 values	 of	 force	 at	 which	 the	 silicon	 samples	 broke	 and	 the	

displacements	 of	 the	 central	 point	 of	 the	 samples.	 The	 relation	 between	 force	 and	

displacement	is	not	linear	in	the	case	of	the	RoR	tests	(see	Figure	55	a))	as	the	thickness	of	

the	wafers	 is	 in	the	same	order	of	magnitude	than	the	displacement	values,	 i.e.	 the	wafers	

bend	beyond	linear	elastic	mechanical	behavior	due	to	their	low	thicknesses.	

The	red	force-displacement	curve	in	Figure	55	a)	shows	a	final	fracture	force	of	4.6	N	and	

62	µm displacement.	 In	 this	 case,	 the	 displacement	 is	 approximately	 one	 fourth	 of	 the	

thickness	 of	 the	 sample	 and	 the	 shape	 of	 the	 force-displacement	 curve	 indicates	 linear	

fracture	behavior.	The	comparison	of	the	Weibull	distributions	(see	Figure	55	b))	obtained	

by	 statistical	 treatment	 of	 fracture	 stresses	 calculated	with	 linear	 fracture	 equations	 and	

finite	 element	 analysis	 corroborates	 the	 linear	elastic	 behavior	of	 the	 sample,	 i.e.	 fracture	

stresses	and	both	Weibull	distributions	are	almost	equal.	

The	solid	black	line	in	Figure	55	a)	corresponds	to	a	silicon	sample	that	broke	at	51	N	and	

365	µm.	The	bending	of	the	force-displacement	curve	(see	Figure	55	a))	indicates	deviation	

from	 linear	 elastic	mechanical	 behavior.	 The	 shift	 between	 the	Weibull	 distributions	 and	

fracture	 stresses	 in	 Figure	 55	 b)	 depicted	 by	 the	 solid	 lines	 and	 the	 circle	 symbols	

respectively	 proves	 that	 calculation	 of	 fracture	 stresses	 with	 the	 equations	 of	 the	 linear	

fracture	 theory	 overestimates	 the	 values	 of	 fracture	 stresses	 due	 to	 non-linear	 elastic	

behavior.	Therefore,	the	calculation	of	fracture	stresses	with	finite	element	analysis	at	these	

values	of	 fracture	 forces,	 displacements	 and	sample	 thicknesses	 is	 of	 extreme	 importance	

for	accurate	mechanical	characterization	of	the	silicon	samples.	
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The	 dashed	 line	 in	 Figure	 55	 a)	 is	 the	 force-displacement	 curve	 of	 a	 silicon	 sample	 that	

broke	at	76	N	and	481	µm.	The	deviation	from	linear	elastic	behavior	of	this	curve	is	even	

stronger	 than	 in	 the	 latter	 case.	 This	 is	 proven	 by	 a	 larger	 shift	 between	 the	 Weibull	

distributions	 and	 fracture	 stresses	 that	 can	 be	 observed	 in	 Figure	 55	 b)	 depicted	 by	 the	

dashed	 lines	 and	 the	 square	 symbols	 respectively.	 It	 is	 thus,	 corroborated	 that	 larger	

deflections	 translates	 into	 stronger	 non-linear	 elastic	 behavior	 of	 the	 silicon	 samples	 and	

therefore	to	more	inaccuracy	in	the	calculation	of	fracture	stresses	with	the	equations	of	the	

linear	fracture	theory.	

	

	

a)	 b)	

Figure 55 Image a) shows typical force-displacement curves of round samples obtained from damage 

etched industry standard mc- and Cz-Si and top (T) of the 4N+Al silicon block broken with the RoR test. 

Image b) compares cumulative Weibull distribution functions obtained after linear fracture (LF) and 

finite element (FE) calculation of equibiaxial stresses of damage etched industry standard Cz- and mc-Si 

wafers and 4N+Al silicon at the top of the block (T) broken with the RoR test. 

Figure	 56	 a)	 compares	 typical	 force-displacement	 curves	obtained	with	 the	TPB	and	RoR	

tests.	In	the	case	of	TPB	testing,	the	samples	were	2	mm	thick	and	linear	elastic	mechanical	

behavior	was	preserved.	

Fracture	forces	were	larger	for	TPB	than	for	RoR	tests.	However,	the	proper	calculation	of	

fracture	stresses	that	takes	into	account	the	thickness	of	the	samples	and	the	treatment	of	

fracture	stresses	by	means	of	 the	Weibull	distribution	(see	Figure	56	b))	 indicate	 that	 the	

same	type	of	material	exhibits	a	higher	mechanical	behavior	when	it	is	tested	with	the	RoR	

rather	than	with	the	TPB	test.	

Different	test	configurations	can	lead	to	different	measured	values	of	mechanical	strength	as	

different	test	configurations	exert	different	stress	fields,	load	different	material	surface	sizes	

and	activate	different	defect	populations.	The	RoR	bending	test	applies	an	equibiaxial	stress	

field	on	 the	 silicon	samples	 that	 activates	only	 surface	defects	 and	 the	TPB	 test	 loads	 the	

sample	 uniaxially	 and	 activates	 surface	 and	 edge	 defects.	 Therefore,	 the	 comparison	 of	
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mechanical	 strengths	 between	 the	 RoR	 and	 the	 TPB	 is	 not	 of	 great	 meaning	 but	 the	

comparison	of	different	types	of	materials	broken	with	the	same	technique.	

The	advantages	of	the	RoR	test	are	that	the	mechanical	strength	of	mc-Si	can	be	measured	

with	 just	 one	 single	 156 × 156	mm�	 wafer	 and	 that	 the	 material	 quality	 can	 be	 tested	

independently	to	edge	defects.	However,	fracture	patters	of	silicon	samples	broken	with	the	

RoR	are	extremely	complicated	to	analyze	as	the	samples	break	into	too	many	pieces	being	

the	fracture	origin	almost	impossible	to	find.	

The	main	advantage	of	the	TPB	test	is	the	easiness	of	fractography	analysis	as	the	samples	

mostly	break	into	two	pieces	leaving	two	fracture	surfaces.	Additionally,	fracture	criterions	

are	analyzed	and	developed	in	much	greater	detail	for	uniaxial	loading	than	for	equibiaxial	

loading.	

	

	

a)	 b)	

Figure 56 The graph in image a) depicts typical applied force during TPB and RoR tests against the 

deflection at the central point of SoG mc-Si samples after damage etching. Image b) shows the 

comparison between the cumulative Weibull distribution functions of the SoG mc-Si sample. 

As	indicated	by	the	Weibull	distributions	and	by	the	fracture	stress	map	in	Figure	57	a),	the	

distribution	of	fracture	stresses	within	one	wafer	is	broad.	The	wide	distribution	of	fracture	

stresses	 is	 due	 to	 a	 wide	 distribution	 of	 defect	 magnitudes.	 The	 stress	 maps	 of	 damage	

etched	 mc-Si	 wafers	 did	 not	 reveal	 a	 distinct	 pattern	 in	 order	 to	 make	 conclusion	

statements.	 However,	 a	 slight	 tendency	 was	 observed	 and	 it	 was	 that	 silicon	 samples	

containing	 big	 grains	 showed	higher	mechanical	 strength	 than	 silicon	 samples	 containing	

smaller	grains	and	twins	[121].	This	could	be	due	to	the	fact	that	a	higher	amount	of	grain	

boundaries	 within	 one	 silicon	 sample	 increases	 the	 chances	 of	 the	 presence	 of	 residual	

stresses	 and	 particles	 that	 could	 be	 formed	 at	 grain	 boundaries.	 Nevertheless,	 this	

statement	is	not	robust	as	the	opposite	situation,	where	samples	containing	big	grains	that	

showed	lower	mechanical	strength	than	samples	containing	smaller	grains	and	twins,	was	

not	the	exception.	
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Figure	 57	 b)	 and	 c)	 show	 fracture	 patters	 of	 silicon	 surfaces	 that	 needed	 high	 and	 low	

energy	to	break	with	the	RoR	bending	test	and	thus	their	measured	fracture	stresses	were	

high	 and	 low	 respectively.	 When	 the	 samples	 can	 store	 a	 high	 amount	 of	 energy	 until	

fracture	it	breaks	into	many	pieces.	On	the	other	hand,	samples	that	fracture	at	low	stresses	

break	into	a	few	big	pieces.	

	

	 	

High	fracture	energy	

(h)	�O = 481.5	MPa	
Low	fracture	energy	

(l)	�O = 127.5	MPa	
a)	 b)	 c)	

Figure 57 Image a) shows the map of fracture stresses of an industry standard mc-Si wafer after 

damage etch. Images b) and c) are photos of the surfaces under tensile stress of two round silicon chips 

that broke at high and low stress levels respectively. The black lines are a guide to the eye for the 

recognition of the fracture pattern. 

Mechanical	 characterization	 with	 the	 RoR	 test	 was	 performed	 on	 approximately	 12	

neighboring	wafers	per	block	position.	Every	wafer	underwent	different	solar	cell	processes	

in	order	to	compare	the	mechanical	strength	of	the	wafers	after	every	process.	Therefore,	it	

is	 of	 interest	 to	 check	 if	 the	 defect	 distribution	 and	 thus	 the	mechanical	 strength	 of	 the	

wafers	change	within	approximately	1	cm	of	the	block	height.	

	

Figure 58 Characteristic stress at five different positions within the UMG mc-Si block. 

Figure	58	shows	the	values	of	characteristic	stress	of	 five	mc-Si	wafers	after	damage	etch.	

The	first	wafer	 is	separated	from	the	 last	wafer	by	14	consecutive	wafers,	 i.e.	 the	distance	
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between	 the	 first	wafer	 to	 the	 last	wafer	 is	 6.4	mm	which	 corresponds	 to	 a	 separation	of	

3.2%	of	relative	block	height.	The	characteristic	stress	deviates	approximately	a	maximum	

range	of	30	MPa	within	6.4	mm of	block	height,	thus	only	difference	between	characteristic	

stresses	after	different	solar	cell	processes	larger	than	30	MPa	are	relevant.	

4.2 Relation between Mechanical Properties and Relative Block Height 

As	explained	 in	section	3.1.6	 five	mc-Si	blocks	were	crystallized	with	different	qualities	of	

silicon	 feedstock.	The	segregation	of	 impurities	during	 the	crystallization	process	 induces	

the	precipitation	of	different	types	of	second	phase	particles	at	certain	block	heights.	Thus,	

the	 quality	 of	mc-Si	 depends	 on	 the	 relative	 position	within	 the	 block	 and	 its	mechanical	

strength	must	be	tested	at	different	relative	block	heights.	The	silicon	samples	selected	for	

analyzing	the	influence	of	the	crystallization	process	on	the	mechanical	properties	of	mc-Si	

are	damage	etched	samples	where	micro-cracks	from	the	sawing	process	were	removed	and	

therefore,	 the	 mechanical	 properties	 of	 the	 silicon	 samples	 are	 governed	 by	 the	

microstructure	of	the	material.	

4.2.1 Aluminum Rich Multicrystalline Silicon (4N+Al mc-Si) 

Results	depicted	in	Figure	59	show	the	tendencies	of	mechanical	strength,	Weibull	modulus,	

toughness	and	elastic	modulus	against	relative	block	height	in	the	case	of	4N+Al	mc-Si.	

Both	 mechanical	 strengths,	 measured	 with	 the	 RoR	 and	 the	 TPB	 tests,	 decrease	 in	 the	

direction	bottom	to	top	of	the	mc-Si	block,	while	the	Weibull	modulus	does	not	exhibit	any	

dependency	with	the	relative	block	height.	The	values	of	the	Weibull	modulus	are	relatively	

low	which	means	that	the	distribution	of	defect	sizes	is	wide.	

Until	approximately	60%	of	the	relative	block	height	the	fracture	toughness	of	4N+Al	mc-Si 

increases	 slightly	 and	 the	 elastic	 modulus	 remains	 constant.	 On	 the	 other	 hand,	 both	

mechanical	properties	decrease	significantly	at	the	upper	part	of	the	block.	

	 	

a)	 b)	
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c)	 d)	

Figure 59 Characteristic stress and confidence bounds a), Weibull modulus b), fracture toughness c) and 

macroscopic elastic modulus d) against relative block height for 4N+Al mc-Si. 

The	 values	 of	 fracture	 toughness	 measured	 with	 the	 laser	 introduced	 notch	 are	

approximately	 12%	 lower	 than	 the	 values	 of	 fracture	 toughness	measured	with	 the	wire	

introduced	 notch.	 The	 tips	 of	 the	 laser	 introduced	 notches	 were	 much	 sharper	

(approximately	two	orders	of	magnitude)	than	the	tips	of	the	wire	introduced	notches	(see	

Figure	60)	and	therefore	they	were	more	sensible	to	stress	intensification	at	the	notch	tip.	

The	 roundness	 of	 the	 wire	 introduced	 notches	 is	 proven	 to	 overestimate	 the	 measured	

values	of	fracture	toughness,	but	the	tendency	of	fracture	toughness	related	to	the	relative	

block	height	can	still	be	contrasted	and	analyzed.	

	 	

a)	 b)	

Figure 60 Image a) is a sketch of the geometry of a wire introduced notch and image b) depicts a cross 

section of a laser introduced notch. 

The	calculated	static	elastic	moduli	are	also	approximately	12%	lower	 than	 the	measured	

dynamic	 elastic	 moduli,	 an	 effect	 dependent	 on	 the	 measurement	 technique	 and	 also	

reported	in	the	literature.	
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4.2.2 Metallurgical Grade Multicrystalline Silicon (3N mc-Si) 

The	 mechanical	 strength	 at	 the	 bottom	 of	 the	 3N mc-Si	 block	 measured	 with	 the	 RoR	

bending	test	was	considerably	lower	than	the	mechanical	strength	of	the	upper	parts	of	the	

block	 (see	Figure	61	a)).	A	 relatively	 low	mechanical	 strength	was	also	measured	at	25%	

and	79%	of	 the	relative	block	height	with	 the	TPB	test.	As	 in	 the	 latter	case,	 the	values	of	

calculated	Weibull	 modulus	 are	 low	 and	 do	 not	 show	 any	 dependency	 with	 the	 relative	

block	height.	

Low	 values	 of	 fracture	 toughness	 are	 measured	 at	 25%	 and	 40%	 of	 the	 relative	 block	

heights	 (see	 Figure	 61	 c)),	 but	 these	 values	must	 be	 taken	 carefully	 as	 only	 two	 samples	

were	 available	 at	 these	 block	 heights	 for	 fracture	 toughness	measurements.	 The	 highest	

tested	 position	 of	 the	3N mc-Si	 block	 (79%)	 experienced	 a	moderate	 decrease	 in	 relative	

fracture	toughness	and	elastic	modulus.	

	 	

a)	 b)	

	 	

c)	 d)	

Figure 61 Characteristic stress and confidence bounds a), Weibull modulus b), fracture toughness c) and 

macroscopic elastic modulus d) against relative block height for 3N mc-Si. 



92	|	 E x p e r i m e n t a l 	 R e s u l t s 	 I 	

4.2.3 Boron doped Multicrystalline Silicon (B-doped mc-Si) 

The	values	of	mechanical	properties	of	B-doped mc-Si	remain	high	through	the	whole	block	

height.	 To	 be	 noticed	 is	 that	 the	 fracture	 toughness	 and	 elastic	 modulus	 show	 opposite	

tendencies	at	the	top	of	the	block.	Additionally,	a	correlation	between	mechanical	strength	

and	fracture	toughness	is	not	observed	as	it	would	be	expected.	Samples	with	lower	fracture	

toughness	 show	 comparable	 mechanical	 strength	 than	 samples	 with	 higher	 fracture	

toughness.	

	 	

a)	 b)	

	 	

c)	 d)	

Figure 62 Characteristic stress and confidence bounds a), Weibull modulus b), fracture toughness c) and 

macroscopic elastic modulus d) against relative block height for B-doped mc-Si. 

4.2.4 Up-graded Metallurgical Multicrystalline Silicon (UMG mc-Si) 

The	mechanical	strength	of	UMG mc-Si	is	slightly	lower	at	7%	of	the	relative	block	height	for	

the	RoR	bending	test	and	at	41%	and	93%	for	the	TPB	test	(see	Figure	63	a)).	The	values	of	

the	Weibull	modulus	remain	basically	constant	through	the	block	height.	

The	measured	fracture	toughness	of	UMG mc-Si	is	low	compared	to	the	toughness	measured	

with	other	mc-Si	blocks,	while	the	values	of	elastic	modulus	are	in	general	high	for	silicon.	
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The	decrease	in	fracture	toughness	from	41%	of	the	relative	block	height	to	the	top	of	the	

block	is	very	significant	(see	Figure	63	c)).	

	 	

a)	 b)	

	 	

c)	 d)	

Figure 63 Characteristic stress and confidence bounds a), Weibull modulus b), fracture toughness c) and 

macroscopic elastic modulus d) against relative block height for UMG mc-Si. 

4.2.5 Solar Grade Multicrystalline Silicon (SoG mc-Si) 

The	 mechanical	 properties	 of	 SoG mc-Si	 are	 very	 acceptable	 in	 comparison	 with	 the	

mechanical	behavior	of	lower	quality mc-Si blocks.	

The	 fracture	 toughness	 and	 the	 elastic	modulus	 exhibit	 a	 slight	 increasing	 tendency	 from	

bottom	to	the	top	of	the	block	(see	Figure	64	c)	and	d)).	Fracture	toughness	decreases	at	the	

very	top	of	the	block	(86%	of	the	relative	block	height)	and	the	mechanical	strength	slightly	

increases	from	the	bottom	of	the	block	until	38%	of	the	relative	block	height	where	it	starts	

decreasing	until	the	very	top	of	the	block	(see	Figure	64	a)).	
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a)	 b)	

	 	

c)	 d)	

Figure 64 Characteristic stress and confidence bounds a), Weibull modulus b), fracture toughness c) and 

macroscopic elastic modulus d) against relative block height for SoG mc-Si. 

4.3 Relation between Microstructure and Relative Block Height 

4.3.1 Aluminum Rich Multicrystalline Silicon (4N+Al mc-Si) 

Big	 sized	 particles	were	 found	within	 the	4N+Al mc-Si	 block	 throughout	 the	whole	 block	

height.	During	crystallization,	aluminum,	carbon	and	nitrogen	segregate	to	the	liquid	phase	

and	thus	to	the	upper	parts	of	the	block.	Therefore,	SiC	and	Si3N4	precipitation	increased	in	

the	 direction	 bottom	 to	 top	 of	 the	 block	 as	 the	 silicon	 melt	 experienced	 a	 higher	

concentration	of	these	impurities	in	these	areas.	The	nature	of	 the	particles	 is	determined	

by	EDX	analysis.	

The	precipitation	of	SiC	and	Si3N4	could	have	been	enhanced	by	the	decreased	solubility	of	

carbon	and	nitrogen	in	the	silicon	melt	caused	by	the	high	content	of	aluminum	within	the	

melt.	Circumferential	or	radial	micro-cracking	was	not	observed	with	the	SEM	microscope	
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in	 the	 surroundings	 of	 SiC	 and	 Si3N4	 particles,	 which	 appear	 well	 bonded	 to	 the	 silicon	

matrix	(see	Figure	65).	

The	mechanical	strength	decreases	until	approximately	60%	of	the	relative	block	height	as	

the	density	and	size	of	the	SiC	and	Si3N4	particles	increases	(see	section	4.2.1).	

The	toughness	of	 the	silicon	samples	experience	a	reverse	tendency	and	increases	slightly	

with	the	increasing	precipitation	of	SiC	and	Si3N4	particles	(see	Figure	59	c)).	The	measured	

elastic	 modulus	 is	 slightly	 higher	 than	 the	 theoretical	 Hill	 elastic	 modulus	 of	 silicon	

(162.58	MPa)	in	these	parts	of	the	block	where	SiC	and	Si3N4	particles	are	encountered	(see	

Figure	59	d)).	

	 	

a)	 b)	

Figure 65 SiC particles in the silicon matrix at 63% of the relative block height of the 4N+Al mc-Si. 

	 	

a)	 b)	

Figure 66 Si3N4 particles in the silicon matrix at 63% of the relative block height of the 4N+Al mc-Si. 

Al	 segregated	 to	 the	upper	part	of	 the	block	and	Al	 rich	particles	started	 to	precipitate	at	

approximately	60%	of	the	relative	block	height.	Micro-cracks	in	the	range	of	several	tens	of	

microns	were	observed	in	the	surroundings	and	within	the	Al	rich	particles	(see	Figure	67).	

The	concentration	of	Al	in	the	silicon	melt	reached	the	eutectic	concentration	for	the	silicon-

aluminum	 system	 at	 approximately	 70%	 of	 the	 relative	 block	 height.	 Therefore,	 an	 Al	

eutectic	phase	precipitated	(see	Figure	68)	with	long	micro-cracks	in	its	surroundings	that	

reached	 lengths	 up	 to	 1	mm.	 The	 phase	 diagram	 of	 the	 Al-Si	 system	 can	 be	 found	 in	 the	

literature	[122].	
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As	Al	particles	form	in	the	silicon	matrix	within	the	upper	parts	of	the	blocks	all	mechanical	

properties	decrease	strongly.	This	is	most	probably	due	to	the	formation	of	very	long	cracks	

in	the	surroundings	of	the	Al	phases.	The	amount	of	Al	phase	is	maximum	between	70%	and	

80%	of	the	relative	block	height	where	the	mechanical	properties	of	the	4-N+Al	mc-Si	reach	

their	minimum	values	(see	Figure	59).	

	 	

a)	 b)	

Figure 67 Micro-cracks formed in the surroundings of Al rich particles at 63% of the relative block 

height of the 4N+Al mc-Si. 

	 	

a)	 b)	

Figure 68 Image a) depicts the micro-cracks formed in the surroundings of a eutectic Al phase at 77% of 

the relative block height of the 4N+Al mc-Si. An EDX map of the Al particle depicted in image a) is shown 

in image b) where the blue color corresponds to aluminum, yellow to silicon and green to oxygen. 

Figure	69	depicts	residual	stress	maps	of	middle	and	top	4N+Al mc-Si	samples.	At	63%	of	

the	relative	block	height	there	are	areas	of	material	with	low	level	of	residual	stress	which	is	

below	5	MPa and	areas	of	material	where	a	higher	stress	field	of	10	MPa	is	dominant.	Within	

this	latter	area	small	volumes	of	material	reach	residual	stress	values	between	15	MPa	and	

20	MPa.	The	 state	of	 residual	 stress	 is	 increased	as	 silicon	 samples	 from	higher	positions	

within	de	mc-Si	blocks	are	examined.	Figure	69	shows	that	areas	with	low	residual	stress	in	

4N+Al mc-Si	samples	at	77%	of	the	relative	block	height	are	smaller	and	that	local	residual	

stresses	can	reach	values	up	to	25	MPa.	

Even	though	an	increase	in	the	residual	stress	state	of	the	silicon	samples	is	measured	with	

increasing	 block	 height,	 the	 residual	 stress	 state	 of	 the	 samples	 and	 its	 increase	 is	
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underestimated.	Maximum	stresses	surrounding	the	SiC,	Si3N4	an	Al	particles	are	expected	

to	 be	 much	 larger	 than	 the	 measured	 values	 but	 they	 are	 located	 at	 the	 matrix-particle	

interface	 and	 decrease	 rapidly	 with	 increasing	 distance	 from	 this	 interface	 (see	 the	

discussions	in	section	4.4).	Every	pixel	of	the	stress	map	corresponds	to	a	measurement	of	

residual	stress	in	a	surface	area	of	size	0.6 × 0.6	mm�	so	that	the	measured	stress	value	of	

every	pixel	is	an	averaged	value	within	this	area.	Therefore,	pixels	that	depict	residual	stress	

values	 as	 high	 as	 25	MPa	 may	 underestimate	 the	 residual	 stress	 at	 the	 particle-matrix	

interface.	

	 	

a)	 b)	

Figure 69 Residual stress map at 63% of the relative block height (image a)) and at 77% of the relative 

block height (image b)) of the 4N+Al mc-Si. 

Figure	70	shows	the	transmitted	light	image	of	a	50 × 50	mm�	4N+Al mc-Si	sample	at	77%	

of	the	relative	block	height.	The	sample	broke	during	polishing	as	 it	can	be	appreciated	in	

image	 a).	 Second	 phase	 particles	 are	 revealed	 as	 dark	 spots	 and	 are	 depicted	with	more	

magnification	in	images	b)	and	c).	

	 	

a)	 b)	 c)	

Figure 70 Transmitted light images taken at 77% of the relative block height of the 4N+Al mc-Si. 
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4.3.2 Metallurgical Grade Multicrystalline Silicon (3N mc-Si) 

The	SEM	images	taken	at	the	very	bottom	of	the	3N mc-Si	revealed	a	relatively	high	density	

of	SiOx	particles.	The	presence	of	SiOx	particles	could	be	observed	with	the	SEM	on	polished	

mc-Si	 samples.	 Damage	 etched	 samples	 were	 not	 suitable	 for	 this	 purpose	 as	 the	 acidic	

etching	solutions	also	 removed	 the	SiOx	 particles.	Two	 types	of	particles	were	possible	 to	

distinguish	 with	 the	 scanning	 electron	 microscope.	 On	 the	 one	 hand,	 spherical	 and	

amorphous	1-2	µm	SiOx	particles	[123]	precipitated	at	grain	boundaries	(see	Figure	71).	On	

the	other	hand,	bigger	particles	sometimes	appearing	in	a	dendritic	form	[124]	were	found	

in	the	silicon	bulk	(see	Figure	72	b)).	EDX	analysis	revealed	the	presence	of	Cu	with	the	SiOx	

particles	which	points	to	the	possibility	that	Cu	enhanced	the	precipitation	of	SiOx	particles	

[125].	

The	mechanical	 strength	measured	with	 the	RoR	bending	 test	 at	5%	of	 the	 relative	block	

height	 of	 the	3N mc-Si	 is	 considerably	 smaller	 than	 the	mechanical	 strength	of	 the	upper	

parts	of	the	block	(see	Figure	61	a)).	It	was	not	possible	to	measure	the	mechanical	strength	

at	 this	block	position	with	 the	TPB	 test.	However,	 relatively	 low	mechanical	 strength	was	

also	measured	at	25%	of	 the	relative	 ingot	height.	The	 toughness	values	measured	at	 this	

block	height	is	low	(see	Figure	61	c))	in	comparison	with	the	toughness	values	of	other	parts	

of	the	block	which	could	be	the	cause	of	the	low	mechanical	strength.	

	 	

a)	 b)	

Figure 71 Silicon oxide particles at grain boundaries in 3N mc-Si at 5% of the relative ingot height. 

	 	

a)	 b)	

Figure 72 Silicon oxide particles in 3N mc-Si at 5% of the relative ingot height. 
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SiC	particles	were	also	found	throughout	the	whole	block	height	with	increasing	density	in	

the	upper	parts	of	 the	block	(see	Figure	73	a)).	The	measured	values	of	dynamic	modulus	

stayed	 beyond	 the	Hill	 value	 of	 the	 elastic	modulus	 of	 silicon	 and	 are	 relatively	 constant	

throughout	 the	 whole	 block	 height	 but	 the	 very	 top	 part	 of	 the	 block.	 A	 low	 density	 of	

particles	 with	 moderate	 micro-cracking	 in	 their	 surroundings	 (see	 Figure	 73	 b))	 was	

observable	at	the	top	of	the	3N mc-Si.	EDX	analysis	revealed	the	presence	of	oxygen,	carbon	

and	 metals	 at	 these	 particles.	 Thus,	 micro-cracking	 is	 interpreted	 to	 occur	 as	 metals	

segregate	to	silicon	carbide	or	silicon	oxide	particles	where	they	can	getter.	Micro-cracking	

at	 the	 vicinities	 of	 particles	 is	 most	 probably	 the	 cause	 of	 the	 low	mechanical	 strength,	

toughness	and	elastic	modulus	measured	at	the	top	of	the	block.	

	 	

a)	 b)	

Figure 73 Image a) depicts a SiOx and a SiC particle in a broken mc-Si sample and image b) shows micro-

cracking in the surroundings of particles at the top part of the 3N mc-Si block. 

The	level	of	residual	stress	measured	with	the	3N mc-Si	samples	is	low	(see	Figure	74).	At	

the	bottom	of	 the	block	(%5	relative	block	height)	grains	are	small	and	residual	stress	do	

not	 reveal	 the	 grain	 pattern	 clearly.	 In	 upper	 positions	 of	 the	 silicon	 block	 as	 grains	 are	

enlarged,	there	are	grains	in	more	stress	free	state	than	others	(see	Figure	74	b)).	

	 	

a)	 b)	

Figure 74 Residual stress map at 5% of the relative block height (image a)) and at 47% of the relative 

block height (image b)) of the 3N mc-Si. 
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The	 inspection	 of	 mc-Si	 with	 transmitted	 light	microscopy	 proved	 the	 presence	 of	 areas	

with	high	density	of	dark	spots,	which	are	most	probably	second	phase	particles.	Polished	

mc-Si	samples	that	broke	during	polishing	usually	present	areas	with	a	high	density	of	dark	

spots	near	the	fracture	patterns	(see	Figure	75).	

	

Figure 75 IR-light transmission microscopy picture of a fractured piece of a 3N mc-Si sample. The silicon 

chip broke during surface polishing in an area where a high concentration of particles was found. 

4.3.3 Boron doped Multicrystalline Silicon (B-doped mc-Si) 

Silicon	oxide	precipitation	was	observed	within	the	B-doped mc-Si.	However,	these	particles	

did	not	appear	as	the	SiOx	spheres	that	gathered	at	grain	boundaries	 like	in	the	bottom	of	

the	3N mc-Si	 block.	 Instead,	 the	 SiOx	 particles	 encountered	 in	B-doped mc-Si	 appeared	as	

small	 crystallites	 with	 approximately	 1	µm	 diameter	 (see	 Figure	 76	 a)).	 Also	 larger	 SiOx	

dendritic	particles	were	sporadically	observed	(see	Figure	76	b)).	

a)	 b)	

Figure 76 Image a) depicts small SiOx particles in B-doped mc-Si and image b) shows larger dendritic 

SiOx particles. 

Metallic	clusters	or	particles	were	observed	with	the	SEM	at	42%	and	89%	of	the	relative	

block	 height	 (see	 Figure	 77	 and	 Figure	 78).	 The	 presence	 of	 metallic	 particles	 could	 be	

linked	 to	 local	micro-cracking	 and	 to	 the	 lower	values	of	 fracture	 toughness	measured	at	

these	block	heights.	
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a)	 b)	

Figure 77 Image a) shows a fracture surface of B-doped mc-Si at 42% of the block height where the 

elliptic fracture origin is marked by the dashed blue line and image b) shows Al particles in the fracture 

origin. 

	 	

a)	 b)	

Figure 78 Micro-cracking together with metallic particles (Cu and Zn) at 89% of the relative block 

height of the B-doped mc-Si block. 

4.3.4 Up-graded Metallurgical Multicrystalline Silicon (UMG mc-Si) 

The	UMG	mc-Si	samples	tested	with	 the	TPB	test	were	 taken	 from	a	cut	 ingot	 from	a	side	

wall	of	the	mc-Si	block.	EDX	analysis	on	impurity	clusters	like	the	one	depicted	in	Figure	79	

a)	revealed	the	presence	of	O,	N,	C	and	Al	and	these	impurity	clusters	do	not	show	a	clear	

crystalline	structure.	It	could	be	that	the	mc-Si	samples	used	for	TPB	testing	and	for	fracture	

toughness	 and	 elastic	 modulus	 measurements	 contained	 a	 higher	 amount	 of	 impurities	

coming	 from	 the	crucible	which	could	be	 linked	 to	 the	significantly	 low	values	of	 fracture	

toughness	measured	with	 these	 samples.	 Particles	were	 not	 frequently	 found	 in	 the	UMG 

mc-Si	samples	used	for	RoR	tests	which	leads	to	conclude	that	the	impurity	clusters	found	in	

the	samples	for	TPB	tests	were	due	to	the	proximity	of	these	samples	to	the	crucible	wall.	

Figure	79	b)	shows	a	small	particle	that	could	be	SiC	or	Si3N4	due	to	its	appearance.	
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a)	 b)	

Figure 79 Impurity cluster at 38% of the relative block height of the UMG mc-Si block (image a)) and 

particle at the 8% of the block height (image b)). 

4.3.5 Solar Grade Multicrystalline Silicon (SoG mc-Si) 

The	peculiarity	of	the	SoG mc-Si	block	was	the	presence	of	SiC	particles	and	sporadic	micro-

cracking	at	the	top	parts	of	the	block	(see	Figure	80).	

	 	

a)	 b)	

Figure 80 Half-penny shaped micro-crack on the surface of a silicon sample at 93% of the relative block 

height of the SoG mc-Si block (image a)). Image b) shows a SiC particle at 86% of the relative block 

height of the SoG mc-Si block. 

4.4 Discussion 

The	experimental	results	presented	in	the	previous	sections	of	this	chapter	are	contrasted	in	

this	section	with	the	theoretical	models	for	the	mechanical	behavior	of	ceramics	in	order	to	

evaluate	 the	 causes	 of	 breakage	 and	 to	 predict	 the	 fracture	 stresses	 of	 silicon	 containing	

different	second	phase	particles.	Table	4	summarizes	the	material	parameters	used	for	the	

calculation	of	thermal	residual	stresses,	 the	critical	particle	radius,	elastic	stresses,	change	

in	local	toughness,	elastic	modulus	and	fracture	criteria.	

The	values	of	the	thermal	expansion	coefficients	of	silicon,	silicon	carbide	and	silicon	nitride	

are	 temperature	 dependent	 [69],	 [126],	 [127],	 [128],	 [129].	 Thus,	 the	 values	 for	 these	

materials	in	Table	4	were	determined	at	775°C,	which	is	the	brittle-ductile	temperature	of	



E x p e r i m e n t a l 	 R e s u l t s 	 I 	|	103	

silicon	 considered	 in	 this	 work	 [79].	 The	 elastic	 modulus	 and	 Poisson´s	 ration	 of	 silicon	

carbide	and	silicon	nitride	at	775°C	were	published	by	Sakaguchi	et	al.	[130].	The	rest	of	the	

properties	 were	 acquired	 from	 [131].	 Sinclair	 and	 Lawn	 [132]	 estimated	 the	 surface	

energies	 of	 different	 crack	 planes	 for	 diamond	 structure	 crystals.	 For	 silicon,	 the	 surface	

energies	 of	 the	 k111l	 and	 k110l	 planes	 are	 1.41	 J m�⁄ 	 and	 1.74	 J m�⁄ ,	 respectively.	

Therefore,	the	mean	value	of	1.6	 J m�⁄ 	was	used	for	the	calculations	in	this	work.	

Table 4 Material properties of silicon and the second phase particles found within mc-Si blocks at 775°C. 

Material	 e × 10=5�K=��	 ,�−�	 +�GPa�	 PUG�MPa�	
Si	 4.3	 0.218	 162.6	 0.83-0.94	

Al	 23	 0.334	 69	 22-30	

Cu	 16.9	 0.34	 117	 -	

SiOx	(am.)	 0.5	 0.165	 73	 0.6-0.8	

SiOx	(cryst.)	 12.3	 0.17	 70	 -	

Si3N4	 2.35	 0.27	 310	 4-6	

SiC	 4.8	 0.15	 380	 2.5-5	

4.4.1 Metals 

The	results	in	the	previous	section	showed	a	decrease	in	the	mechanical	properties	at	the	

upper	parts	of	 the	mc-Si	blocks	where	metal	 impurities	can	segregate.	Very	remarkable	 is	

the	decrease	of	all	the	mechanical	properties	at	the	top	parts	of	the	4N+Al mc-Si	block.	The	

3N mc-Si block	also	experienced	a	noticeable	decrease	of	mechanical	properties	at	the	top	of	

the	 block.	 The	 thermal	 mismatch	 between	 metals	 and	 silicon	 is	 critical	 due	 to	 the	 large	

difference	in	thermal	expansion	coefficients	(see	Figure	81).	Al	can	build	thermal	stresses	in	

the	radial	direction	up	to	1600	MPa	and	Cu	up	to	1500	MPa	at	the	particle´s	interface.	

	 	

a)	 b)	

Figure 81 Radial and tangential residual thermal stress profiles in the surroundings of an Al particle 

(image a)) and a Cu particle (image b)). 
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These	large	residual	thermal	stresses	reveal	that	the	critical	particle	size	for	circumferential	

micro-cracking	 in	 the	 case	 of	 metals	 is	 small.	 The	 model	 of	 Davidge	 [36]	 presents	 a	

conservative	estimate	for	the	critical	particle	radius.	In	the	case	of	metals	within	the	silicon	

matrix,	 this	 value	 is	 smaller	 than	 1	µm	 (see	 Table	 5).	 According	 to	 Ito	 et	 al.	 [37]	 the	

minimum	critical	particle	radius	is	smaller	than	1	µm	for	metallic	particles	with	initial	flaws	

at	 the	 particle´s	 interface	 that	 extend	 60-120°	 (see	 Figure	 82).	 If	 the	 impurity	 particle	 is	

considered	to	exhibit	a	circular	form,	the	critical	particle	radius	is	according	to	Evans	near	

1	µm.	This	agreement	on	 the	critical	particle	radius	by	 the	application	of	different	models	

assures	the	micro-cracking	in	the	surroundings	of	metallic	particles.	Semi-spherical	cracks	

around	the	particles	are	observed	with	the	SEM	(see	Figure	67,	Figure	68	and	Figure	73	b)).	

This	 observation	 is	 in	 agreement	with	 the	 literature	 [36]	 and	 the	 thermal	 residual	 stress	

reduces	to	the	half	of	its	initial	value	after	micro-cracking.	

Table 5 Minimum critical particle radius for Al and Cu particles within a silicon matrix. 

Particle	 R	(Davidge)	[µm]	 R	(Ito)	[µm]	 R	(Evans)	[µm]	

Al	 0.28	 0.39	 0.96	

Cu	 0.46	 0.65	 1.21	

  

	  

a)	 b)	

Figure 82 Critical particle radius for spontaneous micro-cracking during the cooling step of the 

crystallization process against the angle that the initial flaw extends at the particle interface for Al and 

Cu according to Ito et al. [37]. The angle is defined as the division of the length of the arc of extension of 

the defect by the particle´s radius as indicated in Figure 8. 

Figure	 83	 a)	 depicts	 the	decrease	 in	 elastic	modulus	with	 increasing	 crack	 density	 in	 the	

silicon	 matrix.	 The	 value	 of	 elastic	 modulus	 without	 micro-cracking	 is	 considered	 to	 be	

∿170	GPa	which	is	the	mean	value	of	elastic	modulus	measured	for	4N+Al	and	for	3N mc-Si	

before	micro-cracking	occurred	(see	Figure	59	d)	and	Figure	61	d)).	
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a)	 b)	

Figure 83 Image a) depicts the decrease of elastic modulus with increasing density of cracks within the 

silicon matrix after Budiansky and O´Connell [64]. Image b) shows the decrease in stress intensity factor 

at the tip of a crack approaching a collinear crack [59]. The magnitudes x1 and x2 are described in 

Figure 16. 

Given	that	the	decrease	in	elastic	modulus	measured	at	78%	of	the	relative	block	height	of	

the	4N+Al mc-Si	was	due	to	micro-cracking,	 the	crack	density	 in	silicon	can	be	read	in	the	

graph	of	Figure	83	a).	Thus,	a	measured	elastic	modulus	of	126	GPa	at	78%	of	the	relative	

block	height	corresponds	to	a	crack	density	value	of	0.15.	According	to	equation	(2.110),	the	

fracture	 toughness	 should	 decrease	 14%.	 Before	 micro-cracking	 occurred,	 the	 fracture	

toughness	measured	at	58%	of	the	relative	block	height	is	1.61	MPa	√m	and	a	decrease	of	

14%	means	a	value	of	fracture	toughness	of	1.39	MPa	√m.	This	value	is	near	the	measured	

value	 of	 1.27	MPa	√m	 which	 is	 a	 good	 approximation	 but	 not	 totally	 accurate.	 The	

inaccuracy	could	be	due	to	the	fact	that	the	real	values	of	elastic	modulus	and	toughness	of	

the	material	without	micro-cracking	at	that	position	are	not	known	and	therefore	the	values	

of	 elastic	 modulus	 and	 toughness	 of	 a	 lower	 position	 in	 the	 block	 are	 considered.	 The	

inaccuracy	could	be	also	due	to	the	large	error	bars	of	the	elastic	modulus	and	the	fracture	

toughness	measurements,	which	indicates	that	the	material	has	a	relatively	inhomogeneous	

microstructure.	 Another	 reason	 for	 the	 inaccuracy	 could	 be	 an	 underestimation	 of	 the	

decrease	 in	 the	elastic	modulus	as	Al	particles	cause	a	reduction	of	 the	elastic	modulus	of	

silicon,	 in	addition	 to	micro-cracking,	according	 to	Hashin	and	Shtrikman	[62]	(see	Figure	

84).	

It	 has	 to	 be	 noticed	 that	 the	 error	 bars	 of	 the	 toughness	 measurements	 are	 large	 and	

therefore	 the	 observed	 trend	 of	 fracture	 toughness	 of	 the	4N+Al mc-Si	 through	 the	 block	

height	must	be	analyzed	carefully.	Large	error	bars	mean	that	 the	material	 is	significantly	

inhomogeneous	within	 the	 same	block	height.	The	 fracture	 toughness	values	measured	at	

78%	of	the	relative	block	height	range	from	0.95	MPa	√m	to	1.58	MPa	√m.	This	means	that	

the	 tested	 sample	 that	 showed	 the	 highest	 value	 of	 fracture	 toughness,	 1.58	MPa	√m,	

experienced	 non	 to	 very	 little	 crack	 linking	 while	 the	 samples	 with	 very	 low	 fracture	

toughness	 most	 probably	 experienced	 strong	 crack	 linking.	 The	 lengths	 of	 the	 notches	

introduced	 in	 the	 samples	 for	 the	 toughness	 measurements	 range	 from	 0.2	 to	 0.9	mm.	
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According	to	Figure	83	b),	the	stress	intensity	factor	needed	for	crack	linking	is	lower	than	

the	toughness	of	the	material	when	a	propagating	crack	finds	a	collinear	crack	located	at	a	

distance	smaller	than	the	length	of	the	propagating	crack.	Therefore,	a	0.5	mm	notch	senses	

and	 links	 cracks	 that	 he	may	 find	within	 0.5	mm	ahead	 of	 its	 tip.	 If	we	 consider	 that	 the	

toughness	without	micro-cracking	at	78%	of	 the	block	height	 is	1.61	MPa	√m,	 the	 sample	

whose	measured	toughness	was	0.95	MPa	√m	represents	a	decrease	of	toughness	down	to	

59%	 of	 the	 toughness	without	micro-cracking.	 If	we	 read	 the	 abscissas	 value	 for	 0.59	 in	

Figure	83	b)	we	can	 interpret	 that	 the	notch	of	 this	sample	 linked	with	a	crack	 located	at	

distance	7.5%	of	its	length.	

	

Figure 84 Decrease in elastic modulus against volume fraction of Al particles in the silicon matrix. 

Given	that	the	decrease	in	elastic	modulus	measured	at	79%	of	the	relative	block	height	of	

the	 3N mc-Si	 was	 due	 to	 micro-cracking,	 a	 measured	 elastic	 modulus	 of	 167	GPa	

corresponds	to	a	low	crack	density	value	of	∿0.04.	This	decrease	in	the	elastic	modulus	of	

silicon	should	manifest	in	a	decrease	of	the	fracture	toughness	from	1.57	MPa	√m	at	65%	of	

the	 block	 height	 to	1.54	MPa	√m	 at	 79%	according	 to	Rose	 [59].	However,	 the	measured	

decrease	 in	 toughness	 showed	 a	 value	 of	 1.33	MPa	√m.	 In	 this	 case,	 there	 is	 a	 large	

inaccuracy	 in	 the	 prediction	 of	 the	 value	 of	 material	 fracture	 toughness.	 The	 inaccuracy	

could	be	again	due	to	the	fact	that	the	real	value	of	elasticity	and	toughness	of	the	material	

without	micro-cracking	at	 that	position	are	not	known	and	 therefore	 the	values	of	elastic	

modulus	 and	 toughness	 of	 a	 lower	 position	 in	 the	 block	 are	 considered.	 Another	 reason	

could	be	the	lengths	of	the	notches	introduced	for	measuring	fracture	toughness.	Figure	73	

b)	shows	micro-cracking	of	approximately	50	µm	length.	The	notches	are	much	larger	than	

the	micro-cracking	already	existing	in	the	surroundings	of	the	particles,	so	that	crack	linking	

is	more	 probable	 to	 occur	 during	 fracture	 toughness	measurement	 than	 during	 ordinary	

fracture	caused	by	much	 smaller	 surface	defects	 that	would	 link	 cracks	within	 the	 silicon	

bulk	with	a	much	lower	probability.	It	can	be	concluded	from	these	observations,	that	in	the	

case	that	micro-cracking	occurs,	it	is	convenient	to	introduce	notches	with	a	length	similar	

to	the	extent	of	the	micro-cracking	in	the	samples	for	fracture	measurement.	

Figure	85	shows	the	cross	section	of	a	4N+Al mc-Si	silicon	chip	broken	with	the	RoR	bending	

test.	The	 fracture	origin	was	 found	 in	an	area	of	material	where	extensive	micro-cracking	
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appears	through	the	wafer	thickness.	The	measured	fracture	stress	of	such	damaged	sample	

was	70	MPa,	which	is	a	very	low	value	and	could	be	due	to	crack	linking	from	the	surface	of	

the	wafer	under	tensile	stress	to	the	other	side	of	the	wafer	under	compressive	stress.	

	

Figure 85 Cross section of fracture in the surroundings of Al particles in a cracked silicon matrix. 

The	 fracture	 criterion	when	micro-cracking	 around	particles	occur	 is	 defined	by	 equation	

(2.97).	At	78%	of	the	relative	block	height	of	the	4N+Al mc-Si	block	the	failure	criterion	for	

the	TPB	test	stays:	

	 �c ≥ > 1.26T × 43.1@�	 (4.1)	

	

where	1.26	is	the	measured	toughness	of	the	material	in	MPa	√m	at	78%	of	the	block	height,	

43.1	 is	 the	uniaxial	calculated	characteristic	stress	 in	MPa	and	�c	 is	 the	crack	 length.	The	
crack	length	is	thus	∿633	µm	if	the	cracks	causing	failure	are	considered	half-penny-shaped	

surface	 cracks	 (see	 the	 values	 of	 geometry	 factors	 in	 section	 2.1.1.2.3).	 By	 measuring	

particle	radius	and	micro-crack	lengths	from	Figure	67	a),	the	factor	that	relates	the	micro-

crack	 length	 with	 the	 particle	 radius,	 �,	 is	 approximately	 3.6.	 A	 crack	 length	 of	 633	µm	

would	be	caused	then	by	a	∿176	µm	Al	particle.	

In	the	case	of	the	biaxial	loading	with	the	RoR	bending	test	of	a	half-penny-shaped	surface	

crack	at	77%	of	the	relative	block	height	of	the	4N+Al mc-Si block,	the	failure	criterion	stays:	

	 �c ≥ > 1.26T × 72.7@�	 (4.2)	

	

where	72.7	is	the	biaxial	calculated	characteristic	stress.	The	crack	length	is	thus	∿188	µm	

for	half-penny-shaped	surface	cracks	which	corresponds	to	particles	with	52	µm radius.	The	

thicknesses	of	the	samples	broken	with	the	RoR	are	∼260	µm.	Therefore,	the	critical	crack	

length	sensed	by	these	bending	tests	is	smaller	than	the	critical	crack	length	measured	with	

the	TPB	test,	i.e.	the	RoR	bending	test	cannot	sense	crack	lengths	larger	than	the	thickness	of	

the	samples.	

At	79%	of	the	relative	block	height	of	the	3N mc-Si	block	the	failure	criteria	for	the	TPB	test	

stays:	
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	 �c ≥ > 1.33T × 182@�	 (4.3)	

	

where	 1.33	 is	 the	measured	 fracture	 toughness	of	 the	material	 in	MPa	√m	 at	 79%	of	 the	

block	 height	 and	 182	 is	 the	 calculated	 characteristic	 stress	 in	MPa.	 The	 length	 of	 a	 half-
penny-shaped	 surface	 crack	 is	 thus	 ∿33	µm,	 which	 is	 in	 good	 agreement	 with	 the	 crack	

lengths	observed	with	the	SEM	images	(see	Figure	73	b)).	

4.4.2 Amorphous Silicon Oxide 

The	presence	of	SiOx	at	the	bottom	of	the	3N mc-Si	block	was	revealed	by	the	inspection	of	

the	samples	with	the	SEM	(see	Figure	71	and	Figure	72).	The	mechanical	strength	measured	

with	 the	 RoR	 bending	 test	 at	 5%	 of	 the	 block	 height	 was	 significantly	 lower	 than	 the	

mechanical	 strength	 measured	 in	 the	 upper	 parts	 of	 the	 block.	 Fractography	 analysis	

showed	fracture	patterns	that	 followed	the	 location	of	the	SiOx	particles	at	grain	and	twin	

boundaries	 (see	 Figure	 92	 a)).	 The	 low	 values	 of	 mechanical	 strength	 and	 toughness	

measured	with	the	TPB	test	at	25%	of	the	block	height	could	be	also	due	to	the	precipitation	

of	 SiOx.	 However,	 it	 was	 not	 possible	 to	 reveal	 the	 presence	 of	 SiOx	 by	 the	 fractography	

analysis	of	the	samples	broken	with	the	TPB	test.	The	samples	broken	with	the	RoR	bending	

test	 where	 glued	 to	 a	 plastic	 tape	 on	 the	 side	 of	 the	 samples	 under	 compression	 so	 the	

broken	pieces	could	be	analyzed	 together	 in	 the	microscope	after	 fracture.	This	eased	 the	

observation	of	SiOx	within	the	fracture	paths.	

Figure	86	depicts	the	profiles	of	residual	thermal	stress	in	the	vicinities	of	amorphous	SiOx	

particles.	Tangential	 thermal	 stresses	are	 tensile	and	reach	values	beyond	100	MPa	at	 the	

particle´s	interface.	

	

Figure 86 Radial and tangential residual thermal stress profiles in the surroundings of an amorphous 

silicon oxide particle. 

If	the	particle	is	considered	spherical	with	an	annular	initial	flaw	in	its	equator	(see	Figure	

10),	 the	minimum	critical	particle	radius	is	282	µm	for	an	 initial	 flaw	length	of	∿0.3R	 (see	

Table	6	and	Figure	87).	If	the	SiOx	particle	is	considered	circular	with	an	initial	flaw	size	of	

0.2R	and	perpendicular	to	the	particle´s	interface,	the	critical	particle	radius	is	701	µm.	The	

observed	particle	radii	were	smaller	(see	Figure	71)	than	these	two	hypothetical	cases	and	



E x p e r i m e n t a l 	 R e s u l t s 	 I 	|	109	

therefore	 spontaneous	 radial	 micro-cracking	 of	 the	 silicon	 matrix	 does	 not	 occur	 in	 the	

surroundings	of	amorphous	SiOx.	

The	curve	depicting	 the	minimum	particle	radius	 in	Figure	87	decreases	until	 it	 reaches	a	

minimum	value	at	an	initial	flaw	size	of	0.3R. That	means	that,	as	the	size	of	the	initial	flaw	

increases,	 the	 intensification	of	tangential	 thermal	stress	of	a	SiOx	particle	at	 the	tip	of	 the	

initial	 flaw	 also	 increases	 and	 thus	 smaller	 SiOx	 particles	will	 already	 cause	 spontaneous	

micro-cracking.	 If	 the	 initial	 flaw	 extends	 further	 than	 a	 length	 0.3R,	 the	 effect	 of	 the	

decrease	in	the	magnitude	of	the	thermal	tangential	stress	(see	Figure	86)	counteracts	the	

increase	 of	 stress	 intensification	 by	 a	 larger	 initial	 flaw	 and	 thus	 the	 minimum	 critical	

particle	radius	increases.	

Table 6 Minimum critical particle radius for amorphous SiOx particles within a silicon matrix. 

Particle	 R	(Green)	[µm]	 R	(Evans)	[µm]	

SiOx	 282	 701	

 

 

Figure 87 Critical particle radius for spontaneous micro-cracking during the cooling step of the 

crystallization process against the initial flaw size at the amorphous silicon oxide particle interface 

according to Green [41]. 

When	a	load	is	applied	in	the	surroundings	of	a	SiOx	particle,	the	stress	field	is	disturbed	by	

the	presence	of	the	particle,	as	it	has	lower	elastic	constants	than	silicon.	Figure	88	depicts	

the	 stress	 profiles	 at	 the	particle´s	 interface	 against	 the	orientation	with	 the	 applied	 load	

(see	also	Figure	11).	When	a	uniaxial	 load	of	150	MPa	is	applied	radial	elastic	stresses	are	

less	intense	than	the	applied	load	while	tangential	stresses	oriented	between	55°	and	125°	

from	the	applied	load	are	intensified	(see	Figure	88).	The	intensification	of	tangential	elastic	

stress	is	maximum	at	90°	from	the	applied	load	where	the	elastic	stress	reaches	a	value	of	

∿240	MPa.	

It	has	to	be	mentioned	that	the	requirements	for	applying	the	models	for	the	calculation	of	

residual	thermal	stresses	and	intensification	of	elastic	stresses	are	not	fully	met.	The	silicon	

matrix	 is	not	 isotropic	and	cannot	be	considered	completely	homogeneous	either	and	 the	

particles	are	not	spherical	and	are	not	larger	than	the	grains	size	to	counteract	taking	these	
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assumptions	 which	 are	 necessary	 for	 the	 application	 of	 the	models.	 Thus,	 the	 calculated	

thermal	and	elastic	stresses	are	approximate	sufficient	values	for	discussing	the	results	and	

observations	presented	in	the	previous	sections	of	this	chapter.	

 

Figure 88 Radial and tangential elastic stress profiles in the surroundings of an amorphous SiOx particle. 

Both	 tangential	 thermal	 and	 elastic	 stresses	 are	 tensile	 in	 the	 case	 of	 SiOx	 particles.	 The	

maximum	overlap	of	tensile	tangential	thermal	and	elastic	stresses	occurs	at	an	orientation	

of	 90°	 from	 the	 applied	 load	 and	 is	 depicted	 in	 Figure	 89.	 In	 the	 case	 that	 150	MPa	 are	

applied	 in	 the	 vicinities	 of	 a	 SiOx	 particle,	 the	 particle	 would	 be	 experiencing	 almost	

350	MPa	at	its	interface	due	to	the	overlap	of	tangential	stresses.	

 

Figure 89 Overlap of tangential thermal and elastic stresses in the surroundings of an amorphous SiOx 

particle. 

Ranges	 for	 the	 failure	 criteria	 near	 amorphous	 SiOx	 particles	 depending	 on	 the	 particle	

geometry	are	depicted	in	Figure	90.	A	conservative	failure	criterion	can	be	used	for	fracture	

prediction	if	the	overlap	of	tangential	thermal	and	elastic	stresses	is	considered	to	act	on	a	

particle	 sized	 crack	 when	 an	 external	 load	 is	 applied.	 This	 failure	 criterion	 described	 by	

equation	(2.96)	is	depicted	by	the	solid	line	in	Figure	90.	

The	 dotted	 line	 presents	 the	 failure	 criterion	 according	 to	 Green	 [41]	 and	 described	 by	

equation	 (2.104).	 This	 failure	 criterion	 considers	 that	 fracture	 is	 caused	 by	 radial	 crack	
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extension	when	a	load	is	applied	in	the	surroundings	of	a	spherical	particle	with	an	initial	

flaw	 size	 of	 length	 0.2R.	 Thermal	 stresses	 are	 considered	 for	 this	 fracture	 criteria	 but	

intensification	of	the	applied	load	is	not	taken	into	account.	

The	 dashed	 line	 depicts	 the	 fracture	 criterion	when	 the	 SiOx	 particle	 is	 considered	 to	 be	

circular	with	an	 initial	 flaw	size	of	 length	0.2R.	The	appropriate	expressions	 for	 the	stress	

intensity	 factors	 proposed	 by	 Evans	 [26]	 are	 introduced	 in	 equation	 (2.105)	which	 gives	

equation	(2.106)	and	the	critical	radius	of	circular	cracks	is	calculated	with	this	expression.	

Thermal	end	elastic	mismatch	are	considered	in	this	failure	criterion	and	the	application	of	

a	uniaxial	applied	load.	

The	calculated	characteristic	stress	at	25%	of	the	block	height	of	the	3N mc-Si	block,	broken	

with	 the	 TPB	 test,	 is	 considered	 here	 for	 further	 analysis.	 The	 calculated	 characteristic	

stress	is	144.2	MPa.	If	the	abscissas	value	for	the	characteristic	stress	is	read	in	Figure	90,	

the	critical	particle	radius	for	silicon	oxide	can	be	obtained.	The	Green	and	Evans	criteria	are	

very	 similar	 and	 predict	 a	 critical	 amorphous	 SiOx	 particle	 radius	 of	 36	 and	 44	µm	

respectively.	 The	 conservative	 failure	 criterion	 predicts	 critical	 particle	 radius	 of	

approximately	 2	µm	 if	 the	 amorphous	 SiOx	 concentrates	 stress	 as	 a	 surface	 scratch-like	

crack.	Even	 though	SiOx	 particles	do	not	appear	with	 the	 form	of	a	 crack	but	as	 spherical	

defects,	the	consideration	of	the	particle	as	a	particle	sized	surface	scratch-like	crack	gives	a	

better	 fracture	 criterion.	 This	 is	 caused	 by	 the	 oriented	 precipitation	 of	 amorphous	 SiOx	

particles,	 i.e.	 amorphous	 SiOx	 particles	 show	 a	 coplanar	 array	 following	 the	 paths	 of	 the	

grain	 boundaries	 and	 are	 much	 closed	 to	 each	 other	 (see	 Figure	 71).	 This	 configuration	

allows	 the	 entanglement	 of	 the	 tensile	 tangential	 thermal	 stresses	 between	 the	 particles	

being	 most	 probably	 the	 flaw-linking	 stress	 intensity	 factor,	 PUG∗ 	 (in	 equation	 (3.21)),	
between	 two	amorphous	 SiOx	 particles	 very	 low.	Therefore,	 the	 formation	of	 a	 crack	 that	

links	two	or	more	amorphous	SiOx	particles	 is	possible	at	a	very	 low	applied	 load,	�Ê,	and	
this	crack	is	the	critical	defect	that	is	controlling	the	mechanical	strength	of	the	3N mc-Si	at	

the	bottom	of	the	block.	

 

Figure 90 Critical particle radius of amorphous SiOx when an external load is applied. 
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The	relative	low	values	of	fracture	toughness	measured	at	the	bottom	of	the	3N mc-Si	could	

be	 also	 due	 to	 the	 presence	 of	 SiOx	 particles.	 Figure	 91	 a)	 shows	 the	 change	 of	 stress	

intensity	factor	at	the	tip	of	a	crack	as	it	approaches	an	amorphous	SiOx	particle.	The	tip	of	

the	crack	experiences	an	increase	in	stress	intensity	factor	as	it	approaches	the	particle.	The	

dotted	 line	 depicts	 the	 stress	 intensity	 factor	 at	 the	 tip	 of	 the	 crack	 due	 to	 the	 residual	

tangential	thermal	stress	in	the	surroundings	of	a	particle	with	2	µm	radius.	The	dashed	line	

represents	 the	 stress	 intensity	 factor	 in	 the	 presence	 of	 the	 amorphous	 SiOx	 particle	 that	

results	when	 the	 crack	 approaches	 the	 particle	 and	 a	 biaxial	 load	which	 induces	 a	 stress	

intensity	factor	of	0.65	MPa	√m	in	the	absence	of	the	particle	is	applied.	The	overlap	of	both	

thermal	and	elastic	stress	 intensity	 factors	 indicates	that	a	crack	at	the	particle´s	interface	

experiences	 a	 stress	 intensity	 factor	 of	0.91	MPa	√m	 when	 only	 a	 biaxial	 load	 exerting	 a	

stress	intensity	factor	of	0.65	MPa	√m	 is	applied.	Thus,	the	crack	is	accelerated	to	the	SiOx	

particle	and	the	effective	toughness	of	the	material	diminishes.	For	SiOx	particles	with	larger	

radius,	the	stress	intensity	factor	due	to	thermal	stresses	would	be	also	larger.	Thus,	larger	

amorphous	 SiOx	 particles	 would	 decrease	 the	 effective	 fracture	 toughness	 of	 mc-Si	 in	 a	

larger	extent.	

The	 change	 in	 critical	 stress	 intensity	 factor	 that	 experiences	 a	 crack	 approaching	 an	

amorphous	SiOx	particle	when	a	uniaxial	load	is	applied	can	be	read	from	the	dotted	line	of	

Figure	15.	SiOx	 is	softer	 than	silicon,	 and	a	propagating	crack	must	 release	 the	half	of	 the	

energy	for	its	propagation	when	it	reaches	the	particle´s	interface.	With	the	aid	of	equation	

(2.41),	 it	 can	 be	 calculated	 that	 the	 critical	 stress	 intensity	 factor	 of	 silicon	 reduces	 from	0.9	MPa	√m	 to	0.64	MPa	√m	 at	 the	 particle´s	 interface.	 Tangential	 thermal	 stresses	 at	 the	

interface	 of	 a	 particle	with	 2	µm radius	 provide	 already	0.14	MPa	√m	 (see	 Figure	 91	 a)).	

Thus,	 the	 application	 of	 a	 small	 uniaxial	 load	 that	 adds	0.5	MPa	√m	 would	 already	 cause	

radial	cracking	at	the	interface	of	the	amorphous	SiOx	particle.	

	 	

a)	 b)	

Figure 91 Image a) depicts the overlap of stress intensity factors due to thermal and elastic mismatch at 

the tip of a crack approaching an amorphous SiOx particle after Khaund et al. [53]. Image b) shows the 

decrease in elastic modulus against volume fraction of SiOx particles in the silicon matrix according to 

Hashin and Shtrikman [62]. 
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These	analyses	are	not	able	 to	predict	 the	 total	change	 in	measured	fracture	 toughness	of	

silicon	 containing	 amorphous	 SiOx	 particles	 because	 this	 is	 dependent	 on	 how	 many	

particles	encounters	the	propagating	crack	in	its	path	until	total	fracture.	But	it	provides	a	

good	 explanation	 and	 a	 quantitative	 approximation	 for	 the	 diminishment	 of	 the	 fracture	

toughness	of	silicon	when	it	contains	amorphous	SiOx	particles.	

According	 to	 Figure	 91	 b)	 the	 presence	 of	 amorphous	 SiOx	 particles	 in	 the	 silicon	matrix	

would	decrease	the	elastic	modulus	of	silicon.	The	results	presented	in	Figure	61	d)	does	not	

show	 a	 significant	 decrease	 in	 the	 values	 of	 elastic	modulus	 at	 25%	 of	 the	 relative	 block	

height	in	comparison	with	the	values	of	elastic	modulus	at	other	positions	within	the	block	

where	the	precipitation	of	amorphous	SiOx	particles	was	not	observed.	The	reason	for	this	

could	be	that	the	volume	fraction	of	the	SiOx	particles	may	be	too	small	to	be	sensed	by	the	

measurement	of	the	dynamic	elastic	modulus.	

	

Figure 92 Front section of fracture in the surroundings of SiOx particles. 

Figure	93	shows	the	fracture	surface	of	a	3N mc-Si	sample	that	broke	under	159	MPa	with	

the	TPB	test.	The	fracture	pattern	of	silicon	shows	a	great	complexity	and	its	interpretation	

is	not	a	trivial	issue.	The	area	that	seems	to	have	cleaved	and	that	therefore	was	the	fracture	

origin	is	indicated	by	the	dotted	blue	circle.	A	mirror	area	was	not	observed	but	hackle	lines	

pointing	 clearly	 at	 the	 fracture	 origin	were	 noticeable.	 River	 lines	 form	nearer	 to	 the	 top	

surface	of	the	silicon	sample	where	the	crack	finally	propagates	through	the	whole	thickness	

of	 the	 sample.	 Rib	 lines	 are	 perpendicular	 to	 the	 hackle	 lines	 which	 corroborates	 the	

location	 of	 the	 fracture	 origin.	 Wallner	 lines	 could	 be	 observed	 on	 the	 left	 edge	 of	 the	

sample,	as	the	propagating	crack	most	probably	sensed	edge	defects.	

	

Figure 93 Fracture surface of a 3N mc-Si sample broken with the TPB test. 

A	closer	 look	of	 the	area	 in	Figure	93	where	 the	 fracture	origin	 should	be	 found	shows	a	

semi-elliptical	defect	which	is	the	fracture	initiator	(see	Figure	94).	The	Bansal	macroscopic	
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failure	criterion	presented	in	section	3.3.1.3	with	equation	(3.18)	predicts	a	fracture	stress	

of	 143.5	MPa	 for	 the	 measured	 defect	 dimensions	 in	 Figure	 94	 and	 for	 the	 fracture	

toughness	at	 the	 top	of	 the	3N mc-Si	block,	1.33	MPa	√m.	The	measured	 fracture	stress	 is	

159	MPa,	 thus	 the	 Bansal	 criterion	 is	 a	 good	 approximation	 for	 correlating	 mechanical	

strength	with	defect	size	of	mc-Si.	

	

Figure 94 Area of the fracture surface depicted in Figure 93 where the fracture origin of the mc-Si 

sample is located. 

Sometimes	fracture	initiation	features	cannot	be	found	easily.	It	can	be	that	the	particle	or	

group	of	particles	loosened	after	fracture	or	it	can	be	that	a	crack	is	first	formed	in	a	region	

with	 tensile	 residual	 stress.	 Once	 the	 crack	 is	 formed	 cleavage	 occurs.	 This	 could	 be	 the	

micro-mechanism	of	fracture	at	grain	boundaries	or	twins.	Thus,	the	risk	of	not	locating	the	

fracture	 origin	 and	not	measuring	 correctly	 its	 size	 can	 impede	 the	 proper	 application	 of	

macroscopic	fracture	criteria.	

4.4.3 Silicon Oxide Crystallites 

The	presence	of	SiOx	particles	with	the	form	of	crystallites	was	observed	with	the	SEM	(see	

Figure	76	a))	 in	the	whole	body	of	the	B-doped mc-Si	block.	The	impact	of	crystalline	SiOx	

particles	on	the	mechanical	properties	of	silicon	must	be	also	analyzed	as	amorphous	and	

crystalline	 SiOx	 particles	 have	 almost	 identical	 elastic	 constants	 but	 different	 thermal	

expansion	coefficients	(see	Table	4).	

The	measured	mechanical	 strength	and	 the	 fracture	 toughness	which	showed	high	values	

could	be	due	to	the	presence	of	these	particles	in	B-doped mc-Si.	Fracture	hackle	lines	of	the	

B-doped broken	mc-Si	samples	with	 this	 type	of	particles	showed	a	peculiar	zig-zag	shape	

(see	Figure	76	a))	which	is	a	manifestation	of	the	resistance	that	this	material	exerts	against	

fracture.	Also	the	change	of	the	plane	of	propagation	of	the	crack	can	be	observed	in	Figure	

95	where	the	crack	even	braches	into	two	planes	of	propagation	as	it	reaches	the	position	

where	small	particles	are	located.	The	deflection	of	the	planes	of	propagation	of	the	crack	in	

neighboring	twin	grains	can	also	be	observed	in	this	image.	
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Figure 95 Deflection of the planes of crack propagation in neighboring twin boundaries and branching 

of the crack plane where small particles are located. 

The	lower	measured	fracture	toughness	in	the	middle	and	top	positions	the	B-doped mc-Si	

block	could	be	most	probably	a	consequence	of	the	presence	of	metallic	clusters	(see	Figure	

77	and	Figure	78)	as	explained	in	section	4.4.1.	

Figure	96	depicts	the	profiles	of	residual	thermal	stress	 in	the	vicinities	of	crystalline	SiOx	

particles.	 Tangential	 thermal	 stresses	 are	 compressive	 while	 radial	 thermal	 stresses	 are	

tensile	and	reach	values	beyond	450	MPa	at	the	particle´s	interface.	

	

Figure 96 Radial and tangential residual thermal stress profiles in the surroundings of a crystalline SiOx 

particle. 

The	 large	 thermal	 radial	 stresses	 reveal	 that	 the	 critical	 particle	 size	 for	 circumferential	

micro-cracking	 in	the	case	of	crystalline	SiOx	particles	 is	small.	The	model	of	Davidge	[36]	

predicts	 a	 value	 of	 critical	 crystalline	 SiOx	 particle	 radius	which	 is	 2.34	µm	 (see	Table	 7).	

According	 to	 Ito	 et	 al.	 [37]	 the	minimum	 critical	 particle	 radius	 is	 3.26	µm	 for	 crystalline	

SiOx	particles	with	initial	flaws	at	the	particle´s	interface	that	extend	60-120°.	If	the	impurity	

particle	 is	 considered	 to	exhibit	 a	circular	 form,	 the	critical	particle	 radius	 is	according	 to	

Evans	12.43	µm.	

The	most	 conservative	 critical	 particle	 radius	 calculated	with	 the	Davidge	model	 assures	

that	spontaneous	micro-cracking	 in	 the	surroundings	of	crystalline	SiOx	particles	does	not	

occur	 for	particles	with	 radius	 smaller	 than	∼2	µm.	Cracks	around	 the	particles	 that	have	

smaller	radius	than	1	µm	are	not	observed	with	the	SEM	(see	Figure	76	a)).	
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Table 7 Minimum critical particle radius for crystalline SiOx particles within a silicon matrix 

Particle	 R	(Davidge)	[µm]	 R	(Ito)	[µm]	 R	(Evans)	[µm]	

SiOx	 2.34	 3.26	 12.43	

 

 

Figure 97 Critical radius for spontaneous micro-cracking during the cooling step of the crystallization of 

mc-Si against the initial flaw size at the crystalline SiOx particle interface. 

When	a	 load	is	applied	 in	the	surroundings	of	a	crystalline	SiOx	particle,	 the	stress	 field	 is	

disturbed	 by	 the	 presence	 of	 the	 particle,	 as	 it	 has	 lower	 elastic	 constants	 than	 silicon.	

Figure	98	depicts	the	stress	profiles	at	 the	particle´s	interface	against	the	orientation	with	

the	 applied	 load	 (see	 also	 Figure	 11).	When	 a	 uniaxial	 load	 of	 150	MPa	 is	 applied	 radial	

elastic	 stresses	 are	 less	 intense	 than	 the	 applied	 load	 while	 tangential	 stresses	 oriented	

between	 55°	 and	 125°	 from	 the	 applied	 load	 are	 intensified	 (see	 Figure	 98).	 The	

intensification	of	 tangential	elastic	stress	 is	maximum	at	90°	 from	 the	applied	 load	where	

the	elastic	stress	reaches	a	value	of	∿240	MPa.	

 

Figure 98 Radial and tangential elastic stress profiles in the surroundings of a crystalline SiOx particle. 

Radial	thermal	and	elastic	stresses	are	both	tensile	but	the	elastic	stress	is	less	intense	than	

the	applied	stress	while	tangential	thermal	and	elastic	stresses	are	compressive	and	tensile	
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respectively.	The	maximum	overlap	of	both	tangential	and	radial	stresses	must	be	analyzed	

to	check	which	stress	overlap	is	the	most	inconvenient	for	crystalline	SiOx	particles.	

The	maximum	overlap	of	radial	 thermal	and	elastic	stresses	occurs	at	an	orientation	of	0°	

from	the	applied	load	and	is	depicted	in	Figure	99	a).	In	the	case	that	150	MPa	are	applied	in	

the	 vicinities	 of	 a	 crystalline	 SiOx	 particle,	 the	 particle	would	 be	 experiencing	more	 than	

∿550	MPa	at	its	interface	due	to	the	overlap	of	stresses.	

The	maximum	overlap	of	tangential	thermal	and	elastic	stresses	occurs	at	an	orientation	of	

90°	 from	 the	 applied	 load	 and	 is	 depicted	 in	 Figure	 99	 b).	 In	 the	 case	 that	 150	MPa	 are	

applied	 in	 the	 vicinities	 of	 a	 crystalline	 SiOx	 particle,	 the	 particle	 would	 be	 experiencing	

∿10	MPa	at	its	interface	due	to	the	overlap	of	stresses.	

Therefore,	the	overlap	of	radial	stresses	is	the	configuration	of	stresses	that	causes	fracture	

in	the	surroundings	of	crystalline	SiOx	particles.	

  

a)	 b)	

Figure 99 Overlap of tangential thermal and elastic stress in the surroundings of a crystalline SiOx 

particle. 

Ranges	 for	 the	 failure	 criteria	 near	 crystalline	 SiOx	 particles	 depending	 on	 the	 particle	

geometry	 are	 depicted	 in	 Figure	 100.	 A	 conservative	 failure	 criterion	 can	 be	 used	 for	

fracture	prediction	if	the	overlap	of	radial	thermal	and	elastic	stresses	is	considered	to	act	

on	a	particle	sized	crack	when	an	external	load	is	applied.	This	failure	criterion	described	by	

Equation	 (2.96)	 is	 depicted	 by	 the	 solid	 line	 in	 Figure	 100.	 The	 dotted	 and	 dashed	 lines	

present	the	failure	criterion	according	to	Green	[41]	and	described	by	equation	(2.101)	for	

two	different	sizes	of	initial	flaws	at	the	particle´s	interface.	This	failure	criterion	considers	

that	 fracture	 is	 caused	 by	 circumferential	 crack	 extension	 when	 a	 load	 is	 applied	 in	 the	

surroundings	 of	 a	 spherical	 particle.	 Thermal	 stresses	 are	 considered	 for	 this	 fracture	

criteria	but	intensification	of	the	applied	load	is	not	taken	into	account.	

The	calculated	characteristic	stress	at	58%	of	the	block	height	of	 the	B-doped mc-Si	block,	

broken	 with	 the	 TPB	 test,	 is	 considered	 here	 for	 further	 analysis.	 The	 calculated	

characteristic	stress	is	178.2	MPa.	If	the	abscissas	value	for	the	characteristic	stress	is	read	

in	Figure	100,	 the	critical	particle	radius	 for	crystalline	silicon	oxide	can	be	obtained.	The	

Green	criterion	predicts	critical	crystalline	SiOx	particle	radii	of	1.7	and	3.25	µm	for	 initial	
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flaws	 that	 extend	 70°	 and	 18°	 at	 the	 particle´s	 interface	 respectively.	 The	 conservative	

failure	 criterion	 predicts	 a	 critical	 particle	 radius	 of	 0.75	µm	 if	 the	 crystalline	 SiOx	

concentrates	the	stress	as	a	surface	scratch-like	crack.	

The	consideration	of	the	particle	as	a	spherical	particle	with	an	interfacial	initial	flaw	gives	a	

better	 fracture	criterion	 than	 the	conservative	 failure	criterion.	SiOx	 particles	do	not	have	

spherical	forms;	instead,	they	have	angular	forms	(see	Figure	76	a)).	The	consideration	of	a	

spherical	 particle	 can	underestimate	 stress	 concentration	 at	 the	 corners	of	 the	particle.	A	

conservative	 solution	 for	 this	 issue	 is	 the	 consideration	 of	 stress	 intensification	 at	 initial	

flaws	 at	 the	 particle´s	 interface.	 Thus,	 critical	 radii	 in	 the	 range	 of	 1.7	 to	 3.25	µm	 are	

expected	to	cause	the	fracture	of	B-doped mc-Si	at	178.2	MPa	depending	on	the	sharpness	of	

the	particle.	

 

Figure 100 Critical particle radius of a crystalline SiOx particle when an external load is applied. 

The	relative	high	values	of	 fracture	 toughness	measured	with	 the	B-doped mc-Si	 could	be	

also	due	to	the	presence	of	crystalline	SiOx	particles.	Figure	101	shows	the	change	of	stress	

intensity	factor	at	the	tip	of	a	crack	as	it	approaches	a	crystalline	SiOx	particle.	The	tip	of	the	

crack	 experiences	 a	 decrease	 in	 stress	 intensity	 factor	 as	 it	 approaches	 the	 particle.	 The	

dotted	 line	 depicts	 the	 stress	 intensity	 factor	 at	 the	 tip	 of	 the	 crack	 due	 to	 the	 residual	

tangential	thermal	stress	in	the	surroundings	of	a	particle	with	1	µm	radius.	The	dashed	line	

represents	 the	 stress	 intensity	 factor	 in	 the	 presence	 of	 the	 crystalline	 SiOx	 particle	 that	

results	when	 the	 crack	 approaches	 the	 particle	 and	 a	 biaxial	 load	which	 induces	 a	 stress	

intensity	factor	of	0.6	MPa√m	in	the	absence	of	the	particle	is	applied.	The	overlap	of	both	

thermal	and	elastic	stress	 intensity	 factors	 indicates	that	a	crack	at	the	particle´s	interface	

experiences	 a	 stress	 intensity	 factor	of	0.49	MPa√m	when	a	biaxial	 load	 exerting	 a	 stress	

intensity	factor	of	0.6	MPa√m	is	applied.	Thus,	the	crack	is	decelerated	as	it	approaches	the	

crystalline	 SiOx	 particle	 and	 the	 effective	 toughness	of	 the	material	 raises.	For	 larger	 SiOx	

particles	with	 larger	 radius,	 the	 stress	 intensity	 factor	 due	 to	 tangential	 thermal	 stresses	

would	be	lower.	Thus,	larger	crystalline	SiOx	particles	would	increase	the	effective	fracture	

toughness	of	mc-Si	in	a	larger	extent.	Nevertheless,	this	increase	in	fracture	toughness	may	

not	be	translated	into	an	increase	in	mechanical	strength	as	the	same	larger	crystalline	SiOx	
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particles	 acting	 as	 fracture	 origins	 would	 lead	 to	 the	 measurement	 of	 lower	 mechanical	

strength	of	mc-Si.	B	is	reported	in	the	literature	to	suppress	the	growth	of	SiOx	precipitates	

[133],	which	in	the	case	of	crystalline	SiOx	particles	allows	the	transfer	of	the	benefit	of	the	

increase	in	fracture	toughness	into	an	increase	in	mechanical	strength.	

The	 change	 in	 critical	 stress	 intensity	 factor	 that	 experiences	 a	 crack	 approaching	 a	

crystalline	SiOx	particle	when	a	uniaxial	load	is	applied	can	be	read	from	the	dotted	line	of	

Figure	15.	SiOx	 is	softer	 than	silicon,	 and	a	propagating	crack	must	 release	 the	half	of	 the	

energy	for	its	propagation	when	it	reaches	de	particle´s	interface.	With	the	aid	of	equation	

(2.41),	 it	 can	 be	 calculated	 that	 the	 critical	 stress	 intensity	 factor	 of	 silicon	 reduces	 from	0.9	MPa	√m	 to	0.64	MPa	√m	 at	 the	 particle´s	 interface.	 Tangential	 thermal	 stresses	 at	 the	

interface	 of	 a	 particle	 with	 1	µm radius lower	 the	 intensity	 factor	 in	 0.22	MPa	√m	 (see	

Figure	101).	Thus,	 a	uniaxial	 load	 that	 exerts	 an	 intensity	 factor	of	0.86	MPa	√m	must	be	

applied	 to	 cause	 fracture	 by	 circumferential	 cracking	which	 is	 a	 value	 of	 stress	 intensity	

factor	very	near	the	value	0.9	MPa	√m	that	would	cause	fracture	cracking	in	the	absence	of	

SiOx	particles.	Thus,	SiOx	particles	almost	do	not	 influence	 the	fracture	 toughness	of	mc-Si	

under	uniaxial	 loading	according	 to	 these	 theoretical	calculations.	However,	 the	small	size	

and	high	density	of	these	particles	in	B-doped mc-Si	most	probably	allows	the	toughening	by	

other	mechanisms	like	crack	branching	shown	in	Figure	95	or	crack	bowing	at	SiOx	particles.	

	

Figure 101 Overlap of stress intensity factors due to thermal and elastic mismatch at the tip of a crack 

approaching a crystalline SiOx particle. 

The	Bansal	[112]	criterion	(see	equation	(3.18))	is	also	applied	for	fractography	analysis	of	

the	 images	 in	Figure	102.	Taking	 the	 value	of	 fracture	 toughness	 at	89%	and	58%	of	 the	

block	height,	1.38	MPa	√m	and	1.79	MPa	√m	respectively,	and	the	dimensions	of	the	semi-

elliptical	 flaw	measured	 in	 the	 images,	 the	 calculated	 fracture	 stresses	 can	 be	 compared	

with	 the	measured	 fracture	 stress.	 The	 calculated	 stresses	 were	 128	MPa	 (image	 a)	 and	

194	MPa	(image	b)	and	the	measured	stresses	were	140	MPa	and	201	MPa respectively.	The	

comparison	 of	 both	 values	 of	 stresses	 shows	 that	 the	 Bansal	 failure	 criterion	 can	 predict	

fracture	stresses	with	an	acceptable	accuracy	when	the	fracture	toughness	of	 the	material	

and	the	dimensions	of	the	defect	causing	failure	can	be	measured.	
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a)	 b)	

Figure 102 Fracture origins of B-doped mc-Si samples that broke with 140 MPa (image a) and 201 MPa 

(image b) at 89% and 59% of the relative block height respectively. 

4.4.4 Silicon Nitride 

The	precipitation	of	Si3N4	and	SiC	particles	was	observed	by	the	inspection	of	the	samples	

from	the	4N+Al mc-Si	block	with	the	SEM	(see	Figure	65	and	Figure	66).	The	density	of	these	

precipitates	 increased	 from	 the	 bottom	 to	 the	 top	 of	 the	 block	 due	 to	 the	 segregation	 of	

nitrogen	and	carbon	to	the	upper	part	of	 the	block.	A	decrease	 in	the	mechanical	strength	

measured	with	the	three-point	bending	test	was	observed	in	the	first	half	of	the	4N+Al mc-Si	

silicon	block	(see	Figure	59)	and	fractography	analysis	showed	radial	cracking	originated	at	

Si3N4	silicon	nitride	particles	(see	Figure	109	a)).	

Tangential	 thermal	 stresses	 are	 tensile	 and	 reach	 a	 value	 of	 140	MPa	 at	 the	 particle´s	
interface,	whereas	radial	stresses	are	compressive	(see	Figure	103).	Calculations	of	thermal	

stresses	for	SiC	and	Si3N4	particles	within	a	silicon	matrix	have	been	also	performed	in	the	

literature	[134],	[135].	

	

Figure 103 Radial and tangential residual thermal stress profiles in the surroundings of a Si3N4 particle. 

If	the	Si3N4	particle	is	considered	to	be	spherical	with	an	annular	initial	flaw	in	its	equator,	

the	minimum	critical	particle	 radius	 is	175	µm	(see	Table	8	and	Figure	104)	 for	an	 initial	

flaw	length	of	~0.3c.	If	the	Si3N4	particle	is	considered	to	be	circular	with	an	initial	flaw	size	

length	 of	0.2c	 and	 perpendicular	 to	 the	 particle´s	 interface,	 the	 critical	 particle	 radius	 is	
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436	µm.	 The	 observed	particle	 sizes	were	 smaller	 than	 these	 two	hypothetical	 cases	 (see	

Figure	 65);	 therefore,	 radial	 micro-cracking	 of	 the	 silicon	 matrix	 does	 not	 occur	 in	 the	

surroundings	of	the	Si3N4	particles	after	the	crystallization	process. 

Table 8 Minimum critical particle size for Si3N4 particles within a silicon matrix. 

Particle	 R	(Green)	[µm]	 R	(Evans)	[µm]	

Si3N4	 175.03	 435.95	

	

 

Figure 104 Critical radius for spontaneous micro-cracking during the cooling step of the crystallization 

of mc-Si against the initial flaw size at a Si3N4 particle interface. 

When	a	load	is	applied	in	the	surroundings	of	a	Si3N4	particle,	the	stress	field	is	disturbed	by	

the	presence	of	the	particle	because	Si3N4	has	greater	elastic	constants	than	silicon.	Figure	

105	depicts	the	stress	profiles	at	the	particle´s	interface	against	the	angle	of	orientation	with	

the	applied	load.	

 

Figure 105 Radial and tangential elastic stress profiles in the surroundings of a Si3N4 particle. 

Tangential	 elastic	 stresses	 are	 less	 intense	 than	 the	 applied	 load	 while	 radial	 stresses	

oriented	 0-25°	 and	 155-180°	 from	 the	 applied	 load	 are	 intensified.	 The	 intensification	 of	
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radial	elastic	stress	when	a	load	of	150	MPa	is	applied	is	maximum	at	0°	and	180°	from	the	

applied	load.	The	radial	elastic	stress	reaches	a	value	of	∿180	MPa	in	these	orientations.	
The	overlap	of	tangential	and	radial	thermal	and	elastic	stresses	is	depicted	in	Figure	106.	

The	intensification	of	radial	elastic	stresses	is	maximum	at	an	orientation	0°	and	180°	from	

the	applied	load,	but	as	the	magnitude	of	the	radial	compressive	thermal	stresses	is	larger,	a	

Si3N4	 particle	 remains	 under	 compression	 in	 its	 vicinities	 for	 the	 given	 orientations	 (see	

Figure	106	a))	when	actually	a	tensile	stress	of	150	MPa	is	applied.	
Tangential	elastic	stresses	are	lower	than	the	applied	stress	but	maximum	at	an	orientation	

90°	from	the	applied	load.	The	overlap	of	tangential	elastic	stresses	with	tensile	tangential	

thermal	 stress	 reaches	 a	 value	 of	 ∿230	MPa	 at	 the	 particle´s	 interface	 for	 the	 given	

orientation	 (see	 Figure	 106	 b))	 when	 only	 150	MPa	 are	 applied.	 The	 latter	 is	 the	 most	

critical	configuration	of	overlap	of	thermal	and	elastic	stresses	that	can	cause	failure	in	the	

surroundings	of	a	Si3N4	particle.	

	 	

a)	 b)	

Figure 106 Profiles of thermal stress and intensification of stress for an applied load of 150 MPa, in the 

case of a Si3N4 particle. 

The	 calculated	 characteristic	 stress	 at	 58%	 of	 the	 block	 height	 of	 the	4N+Al mc-Si	 block,	

broken	with	the	TPB	test,	 is	considered	here	for	microscopic	failure	prediction	as	relevant	

amount	 of	 Si3N4	 particles	 were	 found	 at	 this	 block	 height.	 The	 calculated	 characteristic	

stress	is	136.8	MPa.	If	the	abscissas	value	for	the	characteristic	stress	is	read	in	Figure	107,	

the	critical	particle	radius	for	Si3N4	can	be	obtained.	The	Green	and	Evans	criteria	for	radial	

cracking	 predict	 a	 critical	 particle	 size	 of	 32	 and	 74	µm	 respectively.	 The	 conservative	

failure	criterion	predicts	a	smaller	critical	particle	size	of	5	µm.	Si3N4	particles	do	not	appear	

with	 spherical	 forms,	 but	 they	 do	 appear	 with	 angular	 forms	 (see	 Figure	 109	 a)).	 The	

consideration	 of	 a	 spherical	 particle	 by	 Green´s	 model	 can	 underestimate	 stress	

concentration	 at	 the	 corners	 of	 the	 particle.	 A	 conservative	 solution	 for	 this	 issue	 is	 to	

consider	stress	intensification	at	initial	flaws	at	the	particle´s	interface.	Initial	flaw	sizes	of	0.2c	 are	 considered	 for	 both	 the	Green	 and	 the	 Evans	 criteria.	 These	 two	 failure	 criteria	
provide	 a	 better	 approximation	 than	 the	 conservative	 failure	 criterion	 for	 the	 critical	

particle	 size	 that	 causes	 radial	cracking.	The	difficulty	 in	deciding	which	 failure	criteria	 is	
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most	suitable	for	Si3N4	particles	lies	in	the	determination	of	the	particle	size	by	microscope	

observation	and	comparison	with	the	particle	sizes	calculated	by	different	models.	For	the	

purpose	of	this	work,	we	choose	the	Green	failure	criterion,	which	is	more	conservative	than	

the	Evans	criterion.	

 

Figure 107 Critical particle radius of Si3N4 particles when an external load is applied. 

Figure	 108	 a)	 shows	 the	 change	 of	 stress	 intensity	 factor	 at	 the	 tip	 of	 a	 crack	 as	 it	

approaches	a	Si3N4	particle.	The	tip	of	the	crack	experiences	an	increase	in	stress	intensity	

factor	as	it	approaches	the	particle.	The	dotted	line	depicts	the	stress	intensity	factor	at	the	

tip	of	the	crack	due	to	the	residual	tangential	thermal	stress	in	the	surroundings	of	a	Si3N4	

particle	 with	 30	µm	 radius.	 The	 dashed	 line	 represents	 the	 stress	 intensity	 factor	 that	

results	when	 the	 crack	 approaches	 the	 particle	 and	 a	 biaxial	 load	which	 induces	 a	 stress	

intensity	 factor	 of	0.6	MPa	√m	 is	 applied.	 The	 overlap	 of	 both	 thermal	 and	 elastic	 stress	

intensity	 factors	 indicates	 that	 a	 crack	 at	 the	 particle´s	 interface	 experiences	 a	 stress	

intensity	 factor	of	almost	1.24	MPa	√m	when	only	a	biaxial	 load	of	0.6	MPa	√m	 is	applied.	

Thus,	 the	 crack	 is	 accelerated	 to	 the	 Si3N4	 particle	 and	 the	 effective	 toughness	 of	 the	

material	diminishes.	

The	 change	 in	 critical	 stress	 intensity	 factor	 that	 a	 crack	 approaching	 a	 Si3N4	 particle	

experiences	when	a	uniaxial	load	is	applied	can	be	read	from	the	dashed	line	of	Figure	15.	

The	propagating	crack	needs	to	release	approximately	twice	the	energy	for	its	propagation	

when	it	reaches	the	interface	of	a	Si3N4	particle	because	Si3N4	is	stiffer	than	silicon.	With	the	

aid	of	equation	(2.41),	 it	can	be	calculated	that	the	critical	stress	intensity	factor	of	silicon	

increases	from	0. 9	MPa	√m	to	1.27	MPa	√m.	Thermal	stresses	at	the	interface	of	a	particle	

with	30	µm	provides	already	0.72	MPa	√m	 (see	Figure	108	a))	according	 to	Khaund	et	al.	

[53].	 Thus,	 the	 application	 of	 a	 uniaxial	 load	 that	 adds	 0.55	MPa	√m	 would	 cause	 the	

cracking	through	the	Si3N4	particle.	This	value	is	still	lower	than	the	0.9	MPa	√m	needed	for	

crack	 propagation	 in	 silicon	 without	 second	 phase	 particles;	 therefore,	 the	 toughness	 of	

silicon	diminishes.	

This	analysis	concludes	that	Si3N4	particles	may	not	be	responsible	for	the	light	increase	in	

toughness	within	the	first	half	of	 the	4N+Al mc-Si	block	which	will	be	further	discussed	in	
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the	next	section.	The	low	values	of	fracture	toughness	of	the	UMG mc-Si	block	(see	Figure	63	

c))	could	be	due	to	the	presence	of	big	sized	clusters	in	mc-Si	which	contained	O,	N,	C	and	Al.	

This	clusters	that	apparently	do	not	show	any	crystallographic	structure	(see	Figure	79	a))	

most	 probably	 introduce	 large	 tangential	 tensile	 thermal	 stresses	 similarly	 to	 the	 Si3N4	

particles	and	thus	the	fracture	toughness	of	the	material	diminishes.	

According	 to	Figure	108	b)	 the	presence	of	Si3N4	 in	 the	 silicon	matrix	would	 increase	 the	

elastic	 modulus	 of	 silicon.	 Results	 depicted	 in	 Figure	 59	 show	 higher	 values	 of	 elastic	

modulus	within	 the	 first	 half	 of	 the	 4N+Al mc-Si	 block	where	 Si3N4	 and	 SiC	 particles	 are	

observed.	 The	 dynamic	 elastic	modulus	measured	with	 the	UMG mc-Si	 samples	 indicates	

that	Si3N4	particles	may	be	also	encountered	in	the	material.	In	the	case	that	the	high	values	

of	measured	elasticity	modulus,	~175	MPa,	are	due	to	the	presence	of	Si3N4,	the	content	of	

Si3N4	particles	can	be	read	in	the	graph	of	Figure	108	b)	and	is	in	the	range	between	11%	

and	12%	of	volume	fraction.	

	 	

a)	 b)	

Figure 108 Image a) depicts the overlap of stress intensity factors due to thermal and elastic mismatch 

at the tip of a crack approaching a Si3N4 particle. Image b) shows the increase in elastic modulus against 

volume fraction of Si3N4 particles in the silicon matrix. 

The	Bansal	[112]	criterion	(see	equation	(3.18))	for	fractography	analysis	can	be	applied	in	

the	fracture	origin	of	a	4N+Al mc-Si	sample	that	broke	under	158.8	MPa.	Taking	the	value	of	

fracture	 toughness	at	58%	of	 the	block	height,	PUG = 1.61	MPa	√m,	 and	 the	dimensions	of	

the	 semi-elliptical	 flaw	 measured	 from	 Figure	 109	 b),	 I = 46	μm	 and	 7 = 146	μm,	 the	

calculated	fracture	stress	is	134.2	MPa.	The	Bansal	criterion	is	still	inaccurate	compared	to	

the	measured	 fracture	 stress	 value.	 The	 inaccuracy	 is	 15%	and	 the	 Bansal	model	 gives	 a	

maximum	error	of	 5%.	 In	 some	cases,	 the	 fracture	of	mc-Si	 is	 almost	 too	complicated	 for	

macroscopic	 fractography	analysis.	The	 inaccuracy	could	 lie	on	 the	difficulty	of	measuring	

the	dimensions	of	the	fracture	origin,	as	a	clear	mirror	area	with	a	semi-elliptical	flaw	is	not	

easy	to	observe.	Another	reason	could	be	also	the	inhomogeneity	of	mc-Si	as	the	error	bars	

of	 fracture	 toughness	are	 large	and	therefore	 taking	 the	mean	value	of	 fracture	 toughness	

can	be	inaccurate	for	single	samples.	
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a)	 b)	

Figure 109 Front and cross section of fracture of two different samples containing Si3N4 particles. 

4.4.5 Silicon Carbide 

SiC	precipitation	was	observed	within	the	4N+Al mc-Si	block,	within	the	upper	half	of	the	3N 

mc-Si	and	at	the	top	part	of	the	B-doped	and	SoG mc-Si	blocks.	The	density	of	SiC	particles	

usually	increases	in	the	direction	bottom	to	top	of	the	mc-Si	blocks	due	to	the	segregation	of	

carbon	to	the	upper	parts	of	the	blocks.	We	proceed	in	this	section	with	the	analysis	of	the	

influence	of	SiC	particles	in	all	mechanical	properties	in	order	to	evaluate	its	effect	on	the	

mechanical	behavior	of	mc-Si	wafers.	

Figure	110	depicts	 the	profiles	of	 residual	 thermal	 stress	 in	 the	 vicinities	of	 SiC	particles.	

Radial	 thermal	 stresses	 are	 tensile	 and	 reach	 a	 value	 of	 almost	 70	MPa	 at	 the	 particle´s	

interface	 while	 tangential	 stresses	 are	 compressive.	 Calculations	 of	 thermal	 stresses	 for	

silicon	carbide	and	silicon	nitride	particles	within	a	silicon	matrix	have	been	also	performed	

in	the	literature	[134],	[135].	

	

Figure 110 Radial and tangential residual thermal stress profiles in the surroundings of a SiC particle. 
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If	 the	 particle	 is	 considered	 to	 be	 spherical,	 the	 minimum	 critical	 particle	 radius	 for	

spontaneous	micro-cracking	is	252	µm	for	initial	flaws	that	extend	between	70°	and	110°	at	

the	particle´s	interface	(see	Figure	111	and	Table	9)	according	to	Ito	et	al [37].	The	Davidge	

model	[36]	also	considers	a	spherical	particle	and	appears	more	conservative	than	the	Ito	et	

al.	model.	If	the	SiC	particle	is	considered	circular	with	an	initial	flaw	size	of	0.2c,	the	critical	
particle	radius	is	563	µm.	The	observed	particle	sizes	were	smaller	(see	Figure	65	a))	than	

the	calculated	critical	radius	and	therefore	radial	micro-cracking	of	the	silicon	matrix	does	

not	occur	in	the	surroundings	of	SiC	particles.	

Table 9 Minimum critical particle size for SiC particles within a silicon matrix. 

Particle	 R	(Davidge)	[µm]	 R	(Ito)	[µm]	 R	(Evans)	[µm]	

SiC	 252.16	 351.38	 562.87	

	

 

Figure 111 Critical radius for spontaneous micro-cracking during the cooling step of the crystallization 

of mc-Si against the initial flaw size at the SiC particle interface. 

When	a	load	is	applied	in	the	surroundings	of	a	SiC	particle,	the	stress	field	is	disturbed	by	

the	 presence	 of	 the	 particle,	 as	 SiC	 has	 higher	 elastic	 constants	 than	 silicon.	 Figure	 112	

depicts	the	stress	profiles	at	the	particle´s	interface	against	the	orientation	with	the	applied	

load	when	a	uniaxial	load	of	150	MPa	is	applied.	Tangential	elastic	stresses	are	less	intense	

than	 the	applied	 load	while	 radial	 stresses	oriented	0-25°	and	155-180°	 from	 the	applied	

load	are	intensified	(see	Figure	112).	The	intensification	of	radial	elastic	stress	is	maximum	

at	0°	and	180°	from	the	applied	load	where	the	elastic	stress	reaches	a	value	of	∿180	MPa.	
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Figure 112 Radial and tangential elastic stress profiles in the surroundings of a SiC particle. 

Both	radial	thermal	and	elastic	stresses	are	tensile	in	the	case	of	SiC	particles.	The	maximum	

overlap	of	tensile	radial	thermal	and	elastic	stresses	occurs	at	an	orientation	of	0°	and	180°	

from	the	applied	load	and	is	depicted	in	Figure	113.	In	the	case	that	150	MPa	is	applied	in	

the	 vicinities	 of	 SiC,	 the	 particle	 would	 experience	 250	MPa	 at	 its	 interface	 due	 to	 the	

overlap	of	radial	stresses.	

 

Figure 113 Overlap of radial thermal and elastic stress in the surroundings of a SiC particle. 

The	 calculated	 characteristic	 stress	 at	 86%	 of	 the	 block	 height	 of	 the	 SoG mc-Si	 block,	

broken	 with	 the	 TPB,	 is	 considered	 here	 for	 microscopic	 failure	 prediction	 as	 relevant	

amount	of	SiC	particles	were	found	at	this	block	height.	The	calculated	characteristic	stress	

is	 200.4	MPa.	 If	 the	abscissas	 value	 for	 the	 characteristic	 stress	 is	 read	 in	Figure	114,	 the	

critical	 particle	 radius	 for	 SiC	 can	 be	 obtained.	 The	 Green	 criterion	 for	 circumferential	

cracking	 predicts	 critical	 particle	 radius	 of	 24	 and	 46	µm	 for	 initial	 interfacial	 flaws	 that	

extend	70°	and	18°	respectively.	The	conservative	failure	criterion	predicts	a	critical	particle	

radius	of	∼2	µm.	SiC	particles	do	not	appear	with	spherical	but	angular	or	cylindrical	forms	

(see	Figure	65,	Figure	73	and	Figure	80	b)).	The	consideration	of	a	 spherical	particle	 can	

underestimate	stress	concentration	at	the	corners	of	the	particle.	A	conservative	solution	for	

this	 issue	 is	the	consideration	made	in	this	work	of	stress	intensification	at	 initial	flaws	at	

the	particle´s	interface.	The	Green	failure	criterion	provides	a	better	approximation	than	the	
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conservative	failure	criterion	for	the	critical	particle	size	that	causes	cracking.	The	difficulty	

in	deciding	which	initial	flaw	describes	best	the	particle	irregular	shape	resides,	like	in	the	

case	 of	 Si3N4	 particles,	 in	 the	 determination	 of	 the	 size	 of	 the	 particles.	 The	 proper	

measurement	 of	 the	mean	 radius	 size	 of	 angular	 and	 cylindrical	 silicon	 carbide	 particles	

could	help	in	the	deliberation	of	which	initial	flaw	size	fits	the	best.	For	the	purpose	of	this	

work	we	choose	the	initial	flaw	size	that	extends	70°	at	the	particle´s	interface.	In	this	case,	

the	particle	critical	radius	 is	24	µm	which	is	a	magnitude	in	the	range	of	the	particles	size	

observed	in	the	images	indicated	above.	

 

Figure 114 Critical particle radius of SiC when an external load is applied. 

Figure	 116	 a)	 shows	 the	 change	 of	 stress	 intensity	 factor	 at	 the	 tip	 of	 a	 crack	 as	 it	

approaches	 a	 SiC	 particle.	 The	 tip	 of	 the	 crack	 experiences	 a	 decrease	 in	 stress	 intensity	

factor	as	it	approaches	the	particle.	The	dotted	line	depicts	the	stress	intensity	factor	at	the	

tip	of	the	crack	due	to	compressive	tangential	residual	thermal	stress	in	the	surroundings	of	

a	SiC	particle	with	30	µm	radius.	The	dashed	line	represents	the	stress	intensity	factor	that	

results	when	 the	 crack	 approaches	 the	 particle	 and	 a	 biaxial	 load	which	 induces	 a	 stress	

intensity	 factor	 of	0.6	MPa	√m	 is	 applied.	 The	 overlap	 of	 both	 thermal	 and	 elastic	 stress	

intensity	 factors	 indicates	 that	 a	 crack	 at	 the	 particle´s	 interface	 experiences	 a	 stress	

intensity	 factor	 of	 0.36	MPa	√m	 when	 a	 biaxial	 load	 of	 0.6	MPa	√m	 is	 applied.	 Thus,	 the	

propagating	crack	 is	 restrained	 in	 the	direction	 to	 the	SiC	particle	and	 tries	 to	deflect	 the	

particle.	The	effective	toughness	of	the	material	increases	then.	

The	 change	 in	 critical	 stress	 intensity	 factor	 that	 a	 crack	 approaching	 a	 SiC	 particle	

experiences	when	a	uniaxial	 load	is	applied	can	be	read	from	the	dotted	line	of	Figure	15.	

The	propagating	crack	needs	to	release	approximately	twice	the	energy	for	its	propagation	

when	 it	 reaches	 the	 interface	 of	 a	 SiC	 particle.	With	 the	 aid	 of	 equation	 (2.41),	 it	 can	 be	

calculated	 that	 the	 critical	 stress	 intensity	 factor	 of	 silicon	 increases	 from	0.9	MPa	√m	 to	1.27	MPa	√m.	Thermal	stresses	at	the	interface	of	a	particle	with	30	µm	radius	increases	the	

toughness	 in	 0.17	MPa	√m	 (see	 Figure	 116	 a)).	 Thus,	 the	 crack	 propagation	 needs	 the	

application	 of	 a	 uniaxial	 load	 that	 induces	 1.44	MPa	√m.	 This	 value	 is	 higher	 than	 the	0.9	MPa	√	m	 needed	 for	 crack	 propagation	 in	 silicon	without	 SiC	 particles;	 therefore,	 the	
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toughness	of	silicon	increases.	This	analysis	concludes	that	SiC	particles	may	be	responsible	

for	the	increase	in	toughness	at	the	upper	parts	of	mc-Si	blocks	and	at	the	lower	parts	of	the	

4N+Al mc-Si	block.	The	measured	mechanical	strength	of	mc-Si,	containing	SiC	particles	with	

radius	sizes	smaller	than	10	µm,	would	be	significantly	high	(see	Figure	114).	In	that	case,	

the	SiC	particles	would	not	represent	a	critical	defect	causing	 fracture	and	the	 increase	 in	

fracture	toughness	due	to	the	presence	of	SiC	particles	would	be	very	noticeable.	This	is	the	

case	of	 a	 silicon	sample	 from	 the	3N mc-Si	 block	 at	54%	of	 the	 relative	block	height	 that	

broke	 under	 514	MPa	 (see	 Figure	 115).	 Abrupt	 fracture	 lines	 indicate	 that	 this	 silicon	

sample	needed	a	high	energy	to	fracture	and	crack	paths	had	to	jump	or	be	deflected	when	

finding	SiC	particles.	

	 	

a)	 b)	

Figure 115 Cross sections of fracture of mc-Si samples containing SiC particles. The white arrows in 

image b) point at possible locations of SiC particles that force the crack to change the propagation 

plane. 

According	 to	 Figure	 116	 b)	 the	 presence	 of	 SiC	 in	 the	 silicon	matrix	 would	 increase	 the	

elastic	modulus	of	silicon.	

	 	

a)	 b)	

Figure 116 Image a) depicts the overlap of stress intensity factors due to thermal and elastic mismatch 

at the tip of a crack approaching a SiC particle. Image b) shows the increase in elastic modulus against 

volume fraction of SiC particles in the silicon matrix. 
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The	results	of	elastic	modulus	for	both	B-doped	and	SoG mc-Si	blocks	are	above	the	value	of	

the	Hill	elastic	modulus	of	silicon	and	may	most	probably	be	caused	by	the	presence	of	SiC	

particles	 within	 the	 silicon	 matrix.	 The	 volume	 fraction	 of	 SiC	 particles	 contained	 in	 the	

silicon	matrix	can	be	read	in	Figure	116	b).	Mc-Si	samples	with	elastic	modulus	as	high	as	

180	GPa	have	SiC	contents	between	11%	and	13%.	

At	 the	 top	part	 of	 the	4N+Al mc-Si	 block,	 SiC	particles	 appear	 to	play	 a	 secondary	 role	 in	

breakage	when	the	precipitation	of	the	particles	is	not	homogeneous	(see	Figure	117).	The	

sample	 broke	 during	 polishing	 most	 probably	 due	 to	 cracks	 at	 the	 surroundings	 of	 Al	

particles	(located	by	the	letter	“a”	in	Figure	117).	However,	initial	fracture	could	have	also	

occurred	in	the	area	located	by	the	letter	“b”.	SiC	precipitation	concentrated	within	a	volume	

of	the	material,	probably	within	one	grain.	This	part	of	 the	material	is	very	tough	and	will	

show	 high	 fracture	 toughness	 and	 elastic	 modulus.	 Thus,	 stresses	 find	 a	 resistance	 to	

propagate	within	this	area	and	concentrate	in	the	surroundings	of	this	area	which	is	free	of	

silicon	carbide	particles.	The	area	located	by	“b”	would	concentrate	the	stress	almost	like	a	

notch	in	the	material	and	therefore	this	area	could	have	also	been	the	fracture	origin.	

	

Figure 117 Infrared light microscopy of a polished silicon sample at the top part of the 4N+Al mc-Si 

block. 
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5. Experimental Results II 

This chapter focuses on the influence of solar cell processes on the 

mechanical behavior of mc-Si wafers. The mechanical strength after every 

solar cell processing step from different qualities of mc-Si wafers is 

measured with the RoR bending test. Experimental values of characteristic 

stress and elastic modulus measured at different relative heights within the 

mc-Si blocks after every solar cell processing step are presented and 

discussed. 4N+Al, 3N and B-doped	mc-Si is processed until the manufacture 

of an epitaxial wafer equivalent while UMG and SoG mc-Si is processed as 

conventional inert solar cells. High temperature processes can lower 

moderately the mechanical strength of mc-Si wafers but the most 

detrimental solar cell processes for the mechanical survival of the wafers 

are the multi-wire sawing and the metallization processes. The multi-wire 

sawing process introduces micro-cracks with lengths in the range of several 

microns which limit the mechanical strength of silicon wafers to a value of 

approximately 150 MPa. Damage removals by chemical etching or by 

texture can double the mechanical strength of the wafers while other solar 

cell processes have a minor impact on the mechanical performance of the 

wafers. Final solar cells after metallization show comparable mechanical 

strength to as-cut wafers due to large thermal stresses which eases the 

formation of cracks in the vicinities of the metallization contacts.  

5.1 Influence of Solar Cell Processes on the Strength of Silicon Wafers 

5.1.1 Wafer Manufacture 

Multi-wire Sawing 

The	mean	value	of	mechanical	strength	of	as-cut	3N,	B-doped	and	 industry standard	mc-Si	

and	Cz-Si	wafers	is	 in	the	range	of	150	and	160	MPa	approximately	(see	Figure	118).	This	

indicates	that	the	damage	introduced	during	the	sawing	of	the	wafers	with	the	same	cutting	

parameters	 is	 the	 crucial	 type	 of	 defect	 limiting	 the	 mechanical	 strength	 of	 the	 wafers.	

However,	in	the	case	of	the	4N+Al mc-Si	block	the	mechanical	strength	of	the	silicon	wafers	

decreases	 in	 the	 direction	 bottom	 to	 top	 of	 the	 block	 which	 points	 that	 a	 defect	 already	

contained	in	the	upper	parts	of	the	block	has	a	major	impact	on	the	mechanical	behavior	of	

the	wafers.	 A	 reverse	 tendency	 is	 observed	 in	 the	 case	 of	UMG	 and	 SoG mc-Si	where	 the	

mechanical	strength	increases	in	the	direction	bottom	to	top	of	the	block.	The	silicon	blocks	

are	 cut	at	once	 into	 thin	wafers	under	 the	same	cutting	parameter;	 thus,	higher	values	of	

mechanical	 strength	 at	 the	 top	 of	 the	 blocks	may	 indicate	 that	 the	material	 properties	 of	

silicon,	 as	 impurity	 atoms	 segregate	 to	 the	 top	 of	 the	 block,	 exert	 a	 resistance	 to	 the	

introduction	of	sawing	damage.	
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Figure 118 Characteristic stress of mc-Si wafers after multi-wire sawing. 

The	 values	 of	 static	 elastic	 modulus	 obtained	 from	 the	 curves	 of	 force-displacement	 of	 the	 ROR	

bending	test	are	depicted	in	Figure 119.	UMG and	SoG mc-Si	show	slightly	higher	elastic	modulus	than	

the	rest	of	the	mc-Si	blocks.	

	

Figure 119 Static elastic modulus of mc-Si wafers after multi-wire sawing. 

Damage etch 

The	comparison	of	the	characteristic	stresses	depicted	in	Figure	118	and	Figure	120	shows	

that	 the	removal	of	 the	sawing	damage	approximately	doubles	 the	mechanical	strength	of	

the	 silicon	wafers.	 After	 damage	 etch	 the	 difference	 in	mechanical	 performance	 between	

silicon	samples	collected	at	different	parts	of	a	block	 is	noticeable	and	 is	governed	by	 the	

defects	formed	during	the	crystallization	process	as	explain	in	Experimental	Results	I.	

4N+Al mc-Si	shows	a	clear	deterioration	of	the	mechanical	strength	and	elastic	modulus	(see	

also	 Figure	 121)	 in	 the	 direction	 bottom	 to	 top	 of	 the	 block.	 As	 already	 discussed	 in	 the	

previous	chapter,	3N mc-Si exhibits	a	considerably	low	mechanical	behavior	at	the	bottom	

of	the	block	and	UMG	and	SoG mc-Si	at	the	very	top	of	the	block.	

It	must	 be	 noticed	 that	 industry standard	 Cz-Si	 shows	 a	 higher	mechanical	 strength	 than	

industry standard	mc-Si	while	having	 lower	 elastic	modulus.	The	 different	 orientations	 of	

the	 grains	 contained	 in	 mc-Si	 wafers	 can	 impede	 partially	 the	 bending	 of	 the	 wafers;	

therefore,	 the	 elastic	modulus	 of	mc-Si	wafers	 is	 higher	 than	 the	 elastic	modulus	 of	 Cz-Si	

wafers.	 Moreover,	 mc-Si	 has	 grain	 boundaries	 and	 SiC	 and	 Si3N4	 particles	 where	 large	
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residual	stresses	can	be	formed	during	the	crystallization	process	[136].	SiOx	particles	are	

the	type	of	particles	that	mc-Si	and	Cz-Si	share	but	still	mc-Si	contains	a	broader	variety	and	

density	of	defects	and	thus	the	mechanical	strength	of	mc-Si	is	a	little	lower.	

	

Figure 120 Characteristic stress of mc-Si wafers after damage etch. 

The	comparison	of	static	elastic	modulus	between	mc-Si	blocks	of	different	qualities	is	more	

homogeneous	than	after	multi-wire	sawing	and	is	approximate	to	the	value	of	145	GPa	with	

exception	of	the	4N+Al mc-Si	block.		

	

Figure 121 Static elastic modulus of mc-Si wafers after damage etch. 

5.1.2 Epitaxial Wafer Equivalent Processes 

Substrate Annealing 

The	comparison	of	 the	characteristic	 stresses	of	damage	etched	and	annealed	wafers	 (see	

Figure	 120	 and	 Figure	 122)	 shows	 that	 the	 difference	 in	 mechanical	 strength	 of	 silicon	

wafers	at	different	positions	within	the	block	becomes	smaller	with	the	exception	of	4N+Al 

mc-Si.	The	mechanical	strength	of	the	wafers	tends	to	approximate	to	the	value	of	300 MPa;	

wafers	with	high	mechanical	strength	after	damage	etch	experienced	a	diminishment	of	the	

characteristic	 stress	 after	 annealing	 and	 vice	 versa.	 This	 indicates	 that	 the	 heating	 of	 the	

samples	influences	the	microstructure	of	the	material	and	therefore	its	mechanical	strength.	
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Figure 122 Characteristic stress of silicon wafers after annealing. 

Generally,	the	static	elastic	modulus	of	silicon	wafers	decreased	approximately	10	GPa	in	all	

cases	 (see	 Figure	 123)	 with	 exception	 of	 Cz-Si	 where	 the	 decrease	 in	 elastic	 modulus	 is	

30	GPa.	

	

Figure 123 Static elastic modulus of silicon wafers after annealing. 

Epitaxial Film Growth 

The	 difference	 in	 characteristic	 stresses	 of	 the	 wafers	 after	 epitaxial	 growth	 is	 even	

narrower	than	after	annealing	(see	Figure	122	and	Figure	124).	Only	samples	at	33%	of	the	

relative	 block	 height	 were	 tested	 for	 the	 4N+Al mc-Si	 block.	 Samples	 at	 higher	 positions	

within	this	block	presented	small	halls	and	therefore	it	was	considered	that	these	samples	

are	not	to	be	further	used	as	they	do	not	have	a	complete	structural	 integrity.	The	wafers	

were	broken	with	 the	epitaxial	 silicon	 thin	 film	under	 tensile	 stress	and	 the	deposition	of	

this	film	approximates	even	more	the	mechanical	strength	of	all	the	wafers	to	the	value	of	

300	MPa.	
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Figure 124 Characteristic stress of silicon wafers after epitaxial film growth. 

After	 epitaxial	 film	 growth	 the	 static	 elastic	 modulus	 of	 all	 mc-Si	 wafers	 converges	 even	

more	to	the	value	of	130	GPa	while	Cz-Si	reduces	its	elastic	modulus	down	to	100	GPa.	

	

Figure 125 Static elastic modulus of silicon wafers after epitaxial film growth. 

5.1.3 Inert Cell Processes 

Texture 

The	mechanical	strength	of	UMG	and	SoG mc-Si	wafers	increases	a	factor	of	∼1.5	(see	Figure	

126)	 after	 texture	 in	 comparison	 with	 sawn	 wafers	 (see	 Figure	 118).	 This	 increase	 in	

mechanical	strength	is	lower	than	in	the	case	of	damage	etched	wafers	which	experienced	

an	 increase	 in	 mechanical	 strength	 by	 a	 factor	 of	 ∼2	 (see	 section	 5.1.1).	 20	µm	 were	

removed	from	the	surface	of	the	silicon	wafers	after	damage	etch	while	only	approximately	

4	µm	were	removed	after	texture.	Thus,	a	partial	removal	of	the	saw	damage	can	lead	to	a	

lower	increase	in	mechanical	strength.	

The	values	of	static	elastic	modulus	of	silicon	wafers	after	texture	(see	Figure	127)	are	very	

similar	to	the	values	of	elastic	modulus	after	damage	etching.	
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Figure 126 Characteristic stress of silicon wafers after texture. 

	

Figure 127 Static elastic modulus of silicon wafers after texture. 

Phosphorous Emitter Diffusion 

Figure	128	depicts	the	characteristic	stress	of	UMG	and	SoG mc-Si	wafers	after	phosphorus	

emitter	 diffusion,	 which	 increases	 a	 factor	 of	 ∼1.2	 in	 comparison	 with	 the	 mechanical	

strength	of	the	previous	textured	wafers.	However,	the	increase	in	mechanical	strength	is	in	

the	 range	of	 the	maximum	difference	 in	 characteristic	 stress	between	neighboring	wafers	

which	 is	 approximately	 30	MPa	 (see	 section	 4.1).	 Thus,	 the	 slight	 increase	 in	mechanical	

strength	after	phosphorus	emitter	diffusion	must	be	interpreted	carefully.	

The	 statistic	 elastic	 modulus	 of	 all	 the	 silicon	 wafers	 after	 phosphorus	 emitter	 diffusion	

remains	in	approximately	150	GPa	(see	Figure	129)	like	for	textured	wafers.	
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Figure 128 Characteristic stress of silicon wafers after phosphorus emitter diffusion. 

	

Figure 129 Static elastic modulus of silicon wafers after phosphorus emitter diffusion. 

Phosphosilicate Glass Etch 

When	 the	 phosphosilicate	 glass	 layer	 deposited	 on	 the	 wafers	 after	 phosphorus	 emitter	

diffusion	is	removed,	the	mechanical	strength	of	UMG	and	SoG mc-Si	wafers	is	comparable	to	

the	mechanical	strength	after	texture	and	is	approximately	∼275	MPa	(see	Figure	130).	This	

indicates	that	the	increase	in	characteristic	stress	after	phosphorus	emitter	diffusion	is	due	

to	the	properties	and	thus	to	the	residual	stress	of	the	phosphosilicate	glass	layer.	

Figure	131	depicts	that	the	statistic	elastic	modulus	of	silicon	wafers	after	phosphosilicate	

glass	etch	is	approximately	15	GPa	lower	than	the	elastic	modulus	of	the	wafers	processed	

until	texture	and	phosphorus	emitter	diffusion.	
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Figure 130 Characteristic stress of silicon wafers after phosphosilicate glass etch. 

	

Figure 131 Static elastic modulus of silicon wafers after phosphosilicate glass etch. 

Antireflection Coating 

The	 characteristic	 stress	 of	 silicon	 wafers	 after	 the	 deposition	 of	 the	 thin	 silicon	 nitride	

antireflection	 coating	 decreases	 in	 ∼25	MPa	 (see	 Figure	 132)	 in	 comparison	 with	 the	

previous	processing	step.	

	

Figure 132 Characteristic stress of silicon wafers after silicon nitride antireflection coating. 
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Figure 133 Static elastic modulus of silicon wafers after silicon nitride antireflection coating. 

However,	the	statistic	elastic	modulus	of	these	passivated	wafers	is	approximate	to	150	GPa,	

either	the	wafers	undergo	previously	phosphorus	emitter	diffusion	or	not	(see	Figure	133	

and	Figure	135).	

Skipping	 the	 steps	 of	 phosphorus	 emitter	 diffusion	 and	 phosphosilicate	 glass	 etch,	 i.e.	

textured	wafers	are	further	processed	to	the	deposition	of	the	silicon	nitride	antireflection	

coating,	does	not	 influence	considerably	 the	mechanical	strength	of	 the	silicon	wafers	and	

their	 characteristic	 stress	 is	 ∼225	MPa (see	 Figure	 134).	 However,	 the	 decrease	 in	

mechanical	 strength,	 which	 is	 approximately	 25	MPa,	 is	 in	 the	 range	 of	 the	 difference	 in	

characteristic	 stress	 between	 neighboring	 wafers.	 Therefore,	 this	 decrease	 in	mechanical	

strength	must	be	interpreted	carefully.	

	

Figure 134 Characteristic stress of silicon wafers after silicon nitride antireflection coating (skipping 

phosphorus emitter diffusion). 
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Figure 135 Static elastic modulus of silicon wafers after silicon nitride antireflection coating (skipping 

phosphorus emitter diffusion). 

Metallization 

Figure	136	and	Figure	137	depict	the	fitting	of	fracture	stresses	to	the	Weibull	distribution	

of	UMG	and	SoG mc-Si	wafers	at	the	top	part	of	the	blocks	after	metallization.	The	fracture	

stresses	of	 the	samples	broken	with	 the	 front	contact	under	 tensile	stress	(Figure	136	a))	

show	a	good	 fit	 to	 the	Weibull	distribution	while	the	 fitting	of	 the	 fracture	stresses	of	 the	

samples	broken	with	the	back	contact	under	tensile	stress	(Figure	136	b))	is	poor.	

	 	

a)	 b)	

Figure 136 Weibull plots of UMG and SoG mc-Si after metallization, front contact under tensile stress 

(image a)) and back contact under tensile stress (image b)). 

When	 the	Weibull	 graph	 of	 Figure	 136	 b)	 is	 split	 into	 two	 separate	 graphs;	 one	 for	 back	

contact	 samples	without	 bus	 bar	 (Figure	 137	 a))	 and	 the	 other	 for	 back	 contact	 samples	

with	 bus	 bar	 (Figure	 137	 b)),	 the	 experimental	 values	 of	 fracture	 stresses	 fit	 well	 the	

Weibull	distribution.	
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a)	 b)	

Figure 137 Weibull plots of UMG and SoG mc-Si after metallization, areas from the back contact under 

tensile stress without bus bar (image a)) and areas from the back contact under tensile stress with bus 

bar (image b)). 

The	 characteristic	 stress	 of	 UMG	 and	 SoG mc-Si	 wafers	 after	 metallization	 at	 different	

relative	block	heights	 is	shown	in	Figure	138.	The	mechanical	strength	of	samples	broken	

with	the	front	contact	under	tensile	stress	is	comparable	to	the	mechanical	strength	of	as-

cut	wafers	and	is	in	the	range	of	150-180	MPa.	

	

Figure 138 Characteristic stress of silicon wafers after metallization (front contact under tensile stress). 

The	statistic	elastic	moduli	of	UMG	and	SoG mc-Si	wafers	after	metallization	with	the	front	

contact	 under	 tensile	 stress	 (see	 Figure	 139)	 are	 in	 the	 range	 90-105	GPa	 and	 are	much	

lower	than	the	elastic	moduli	measured	at	previous	processing	steps.	Thus,	the	decrease	in	

mechanical	strength	may	most	probably	be	linked	to	the	decrease	in	elastic	modulus.	
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Figure 139 Static elastic modulus of silicon wafers after metallization (front contact under tensile 

stress). 

The	mechanical	strength	of	the	samples	broken	with	the	back	contact	without	bus	bar	under	

tensile	stress	is	almost	double	(see	Figure	140)	than	the	mechanical	strength	of	the	samples	

broken	 with	 the	 front	 contact	 under	 tensile	 stress	 and	 comparable	 to	 the	 mechanical	

strength	of	the	wafers	measured	at	previous	processing	steps.	

However,	the	elastic	modulus	of	the	samples	broken	with	the	back	contact	without	bus	bar	

under	tensile	stress	(see	Figure	141)	is	approximately	100	GPa	as	the	elastic	modulus	of	the	

samples	with	the	front	contact	under	tensile	stress.	In	this	case	the	mechanical	strength	of	

the	samples	broken	with	the	back	contact	without	bus	bar	under	tensile	stress	seems	not	be	

linked	with	the	decrease	in	elastic	modulus.	These	issues	will	be	further	discussed	in	section	

5.2.3.	

	

Figure 140 Characteristic stress of silicon wafers after metallization (areas from the back contact under 

tensile stress without bus bars). 



E x p e r i m e n t a l 	 R e s u l t s 	 I I 	|	143	

	

Figure 141 Static elastic modulus of silicon wafers after metallization (areas from the back contact 

under tensile stress without bus bars). 

The	mechanical	strength	of	 the	samples	broken	with	 the	back	contact	with	bus	bar	under	

tensile	stress	is	slightly	lower,	∼145	MPa,	(see	Figure	142)	than	the	mechanical	strength	of	

the	samples	with	the	front	contact	under	tensile	stress	and	as-cut	wafers.	

The	elastic	modulus	of	the	samples	broken	with	the	back	contact	with	bus	bars	under	tensile	

stress	 (see	 Figure	 143)	 is	 below	 90	GPa	 and	 comparable	 to	 the	 elastic	 modulus	 of	 the	

samples	with	 the	 front	 contact	 under	 tensile	 stress.	 The	 decrease	 in	mechanical	 strength	

may	most	probably	be	linked	again	to	the	decrease	in	elastic	modulus.	

		

Figure 142 Characteristic stress of silicon wafers after (bus bars from the back contact under tensile 

stress). 
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Figure 143 Static elastic modulus of silicon wafers after metallization (bus bars from the back contact 

under tensile stress). 

5.2 Influence of Solar Cell Processes on the Microstructure of Silicon Wafers 

5.2.1 Wafer Manufacture 

Multi-wire Sawing 

Defects	on	 the	surface	of	 the	wafers	are	 introduced	during	 the	multi-wire	 sawing	process	

and	 determine	 the	 mechanical	 strength	 of	 the	 silicon	 wafers.	 During	 the	 slicing	 of	 the	

wafers,	 the	 loading	 produced	 by	 the	 abrasive	 SiC	 particles	 when	 they	 indent	 the	 silicon	

surface	 form	 a	 sub-surface	 damage	 layer	 [137].	The	 subsurface	 damage	 layer	 (see	 Figure	

144)	 is	 constituted	 of	 an	 upper	 few	 hundred	 nanometers	 to	 few	 micrometers	 thick	

polycrystalline	silicon	layer,	a	fracture	zone	where	micro-cracks	show	a	dominant	presence	

in	 the	material,	 a	 transition	 zone	with	 high	 concentration	 of	 dislocations	 and	 reached	 by	

some	 micro-cracks	 from	 the	 layer	 above	 and	 an	 elastically	 strained	 zone	 due	 to	 the	

difference	of	density	between	the	damaged	material	at	the	top	surface	and	the	bulk	silicon.	

	

Figure 144 Sub-surface damage structure layer of a crystalline silicon wafer resulting from the multi-

wire saw cutting process after [137]. 
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Figure	145	shows	cross	sections	with	different	morphologies	of	micro-cracks	introduced	in	

the	silicon	surface	during	multi-wire	sawing.	The	lengths	of	the	observed	cracks	vary	from	

less	 than	1	µm	 to	7-8	µm.	The	cracks	 that	are	perpendicular	 to	 the	 silicon	surface	are	 the	

most	detrimental	for	the	mechanical	strength	of	the	wafers.	

	 	

a)	 b)	

	 	

c)	 d)	

Figure 145 Micro-cracks in the surface of as-cut silicon wafers. 

Top	 views	 of	 the	 silicon	 surfaces	 can	 be	 seen	 in	 Figure	 146	 and	 Figure	 147.	 The	 silicon	

surface	depicted	 in	Figure	146	a)	 shows	a	 typical	 rough	silicon	 surface	dominated	by	 the	

polycrystalline	silicon	layer.	Al	phase	between	grains	and	large	cracks	can	be	distinguished	

on	 the	 surface	 of	 the	4N + Al mc-Si	 at	 77%	of	 the	 relative	 block	 height.	 These	 cracks	 are	

much	larger	than	the	cracks	introduced	during	multi-wire	sawing	and	therefore	they	control	

the	mechanical	strength	of	these	wafers.	This	is	the	reason	why	the	mechanical	strength	of	

these	wafers	 is	 the	 lowest	measured	mechanical	strength	 from	all	wafers	 tested	 in	Figure	

118.	
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a)	 b)	

Figure 146 The image on the left depicts a typical top view of the surface of an as-cut silicon wafer. The 

image on the right depicts the as-cut surface of 4N + Al mc-Si at 77% of the relative block height. 

Figure	 118	 also	 shows	 that	 the	 mechanical	 strength	 of	 silicon	 samples	 from	 the	 bottom	

parts	of	the	UMG	and	SoG mc-Si	blocks	were	lower	than	the	mechanical	strength	at	the	top	

parts	of	the	blocks.	SEM	images	in	Figure	147	a)	and	b)	illustrate	that	the	silicon	surface	at	

the	bottom	of	the	blocks	is	rough,	dominated	by	the	polycrystalline	silicon	layer	and	micro-

cracks	were	not	visible.	SEM	images	in	Figure	147	c)	and	d)	illustrate	that	the	silicon	surface	

at	the	top	of	the	blocks	 is	also	rough	but	 it	 is	not	dominated	by	the	polycrystalline	silicon	

layer	and	micro-cracks	were	very	well	visible	from	the	top	views	of	the	silicon	surfaces.	

The	observation	of	the	cross	sections	depicted	in	Figure	148	shows	that	the	micro-cracks	at	

the	bottom	of	 the	blocks	emanate	 from	below	 the	polycrystalline	silicon	 layer	and	have	a	

tendency	to	dispose	perpendicular	and	parallel	to	the	silicon	surface	while	the	cracks	at	the	

top	of	the	blocks	are	more	superficial	and	have	a	tendency	to	dispose	mostly	parallel	to	the	

silicon	 surface.	 The	 configuration	 of	 micro-cracks	 parallel	 to	 the	 silicon	 surface	 is	 less	

detrimental	 for	 the	mechanical	 strength	of	 silicon	wafers	 than	 perpendicular	 cracks.	 This	

could	explain	the	higher	mechanical	strengths	measured	at	the	top	of	the	blocks.	

The	reason	for	the	resultant	different	configurations	of	micro-cracks	of	as-cut	wafers	from	a	

same	block	which	are	cut	at	the	same	time	with	the	same	cutting	parameters	could	be	due	to	

second	phase	particles	 like	B,	 P,	 C,	N	 and	metals	 segregate	 to	 the	 top	of	 the	block.	 Solute	

impurity	 atoms	 can	 increase	 the	 elastic	 modulus	 and	 the	 hardness	 of	 silicon	 [138]	 and	

therefore	mc-Si	at	the	top	of	the	block	may	exert	more	resistance	to	the	indentation	of	the	

SiC	particles	during	multi-wire	sawing.	
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a)	 b)	

	 	

c)	 d)	

Figure 147 The images on the left and on the right show top views of the surfaces from the middle area 

of as-cut SoG and UMG mc-Si wafers respectively. 

	 	

a)	 b)	

Figure 148 The images depict the cross section from the middle area of SoG mc-Si wafers where the 

morphology of the micro-cracks introduced during wire-sawing can be observed. 

The	fracture	stress	map	of	an	as-cut	mc-Si	wafer	in	Figure	149	shows	a	slight	tendency	of	

fracture	stresses,	where	they	are	lower	at	the	wire	entrance	than	at	the	wire	exit.	Larger	SiC	

particles	cut	mostly	at	the	wire	inlet	while	smaller	particles	cut	at	the	wire	outlet.	Larger	SiC	

particles	 cause	 rougher	 silicon	 surfaces	 and	deeper	micro-cracks	 [139]	 and	 therefore	 the	

mechanical	strength	of	the	silicon	samples	at	the	areas	nearer	to	the	wire	inlet	is	lower	than	

at	the	wire	outlet.	
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Figure 149 Map of fracture stresses of as-cut wafers measured with the RoR bending test that indicates 

lower fracture stresses at the wire inlet than at the wire outlet. 

Damage etch 

After	etching	the	silicon	wafers	for	the	removal	of	the	sub-surface	damage,	the	mechanical	

strength	of	the	wafers	double	(see	section	5.1.1).	This	is	due	to	the	removal	of	a	10-15	µm	

silicon	 layer	 per	 side	 of	 the	 wafers	 and	 no	 sub-surface	 damage	 remains	 in	 the	 silicon	

surfaces	 after	 damage	 etch.	 Surface	 finish	 and	 defects	 formed	 during	 the	 crystallization	

process	control	then	the	mechanical	strength	of	the	wafers.	

Figure	150	a)	shows	the	top	view	of	a	damage	etched	silicon	sample	where	two	grains	have	

different	 surface	 patterns	 because	 the	 etching	 occurs	 differently	 at	 different	 crystalline	

orientations.	The	cross	section	in	Figure	150	b)	presents	a	smooth	top	silicon	surface	free	of	

micro-cracks.	

4N+Al mc-Si	 at	 77%	 of	 the	 relative	 block	 height	 was	 the	 only	 quality	 of	 material	 that	

decreased	 its	mechanical	strength	and	static	elastic	modulus	after	damage	etching.	This	 is	

due	to	the	fact	that	the	cracks	 in	the	surroundings	of	 the	Al	phase	were	so	 large	that	they	

were	not	 removed	by	 the	etching	process	but	became	even	sharper	as	 the	polycrystalline	

silicon	layer	at	the	surface	of	the	wafers	was	removed.	

	 	

a)	 b)	

Figure 150 Top view and cross section of a damage etched mc-Si wafer. 
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5.2.2 Epitaxial Wafer Equivalent Processes 

Substrate Annealing 

After	annealing,	the	SiOx	particles	found	at	the	bottom	of	the	3N mc-Si	block	are	no	longer	

visible	 (see	Figure	151).	These	particles	precipitate	at	 temperatures	between	700-1100°C	

[91],	and	as	the	annealing	of	the	sample	occurs	rapid	and	at	1150°C,	most	probably	all	SiOx	

particles	dissolved	in	the	silicon	matrix.	The	literature	[140]	also	reported	the	dissolution	of	

SiOx	 precipitates	 after	 annealing	 at	 1050°C	 and	 the	 introduction	 of	 tensile	 strain	 in	 the	

silicon	matrix	which	can	be	released	by	mechanisms	like	vacancy	injection	and	dislocation	

loops.	 SiOx	 particles	 can	precipitate	again	after	 cooling	but	 they	were	not	observed	 in	 the	

SEM	inspections	of	the	wafers.	

The	presence	of	small	crystalline	SiOx	particles	is	responsible	for	the	high	measured	fracture	

toughness	 and	 mechanical	 strength	 of	 B-doped	 mc-Si.	 Therefore,	 the	 dissolution	 of	

crystalline	SiOx	particles	could	be	the	cause	of	the	lower	mechanical	characteristic	stresses	

of	annealed	B-doped	mc-Si	wafers	in	comparison	with	etched	wafers.	

	 	

a)	 b)	

Figure 151 The images show the polished surface of a 3N mc-Si wafer at 5% of the relative block height 

after annealing. The silicon surface and the grain boundaries are free from SiOx particles. 

Figure	152	a)	depicts	particle	free	grain	boundaries	but	particles	or	impurity	clusters	were	

observed	 in	 the	 silicon	 matrix.	 Areas	 with	 this	 type	 of	 impurity	 clusters,	 which	 do	 not	

present	 a	 crystalline	 or	 organized	 structure,	 were	 rarely	 found,	 i.e.	 the	 silicon	 matrix	

appeared	mostly	free	of	particles	like	in	Figure	151.	A	closer	look	on	an	impurity	cluster	in	

Figure	152	b)	showed	that	the	cluster	was	cracked	in	its	inside.	EDX	analysis	revealed	that	

the	composition	of	the	impurity	cluster	consisted	of	Si,	O	and	C.	This	type	of	defects	could	be	

the	 defects	 that	 define	 the	 lowest	 values	 of	 fracture	 stresses	 measured	 with	 annealed	

wafers.	
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a)	 b)	

Figure 152 The images show the polished surface of a 3N mc-Si wafer at 5% of the relative block height 

after annealing. The grain boundaries are free from SiOx particles but impurity clusters or particles are 

observed in the silicon matrix. 

SiC	 and	 Si3N4	 are	 formed	 in	 the	 liquid	 phase	 at	 high	 temperature	 [91].	 The	 annealing	

temperature,	 1150°C,	 is	 still	 a	 lower	 temperature	 than	 the	 SiC	 and	 Si3N4	 precipitation	

temperature	in	the	melt	and	therefore	SiC	and	Si3N4	are	still	visible	after	the	annealing	step	

(see	Figure	153	a)).	The	phase	diagrams	of	SiC	and	Si3N4	can	be	found	in	the	literature	[141]	

and	 [142]	 respectively.	The	 residual	 thermal	 stress	 in	 the	 surroundings	of	 these	particles	

can	be	relieved	as	the	annealing	temperature	is	above	the	silicon	brittle-ductile	temperature	

but	 it	 can	 build	 again	 as	 the	 wafers	 are	 rapidly	 cooled	 down.	 Moreover,	 other	 types	 of	

defects	 can	 be	 introduced	 in	 the	 silicon	 matrix	 which	 can	 explain	 the	 slight	 decrease	 in	

mechanical	strength	of	annealed	wafers.	This	will	be	discussed	in	the	next	section.	

Al	 showed	 a	 much	 different	 behavior	 as	 its	 melting	 temperature	 is	 660°C.	 After	 the	

annealing	of	4N+Al mc-Si	wafers	from	the	top	of	the	block,	holes	were	observed	in	the	places	

where	 the	Al/Si	 eutectic	phase	were	spotted	 (see	Figure	153	b))	 as	Al	melted	 away.	This	

explains	the	decrease	in	mechanical	strength	and	static	elastic	modulus	of	annealed	wafers	

in	comparison	with	damage	etched	wafers.	

	 	

a)	 b)	

Figure 153 Image a) shows the presence of SiC and Si3N4 particles in 4N+Al mc-Si after annealing at 

63% of the relative block height. Image b) reveals the hole that an Al/Si eutectic phase left after melting 

away during the annealing process at the same relative block height than image a) and cracks in its 

surroundings. 
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Figure	 154	 shows	 residual	 stress	maps	 of	 annealed	 industry standard	 Cz-	 and	mc-Si.	 The	

residual	 stress	 level	measured	with	 damage	 etched	 silicon	 wafers,	 with	 exception	 of	 the	

4N+Al mc-Si,	ranged	between	3	and	6	MPa	while	annealed	wafers	reached	residual	stresses	

up	 to	 12	MPa.	 The	 wafers	 are	 placed	 vertically	 in	 the	 oven	 for	 annealing	 and	 the	 wafer	

carriages	 are	 made	 out	 of	 silica	 which	 has	 a	 much	 lower	 thermal	 expansion	 coefficient,	0.5 × 10=5�P=��,	 than	 silicon.	When	 the	wafers	 are	 heated	 up,	 the	 silica	 carriages	 do	 not	

expand	as	much	as	silicon	and	they	represent	a	constraint	for	the	volume	expansion	of	the	

silicon	wafer	resulting	in	the	introduction	of	residual	thermal	stresses	that	are	depicted	in	

Figure	 154.	 Image	 b)	 schemes	 the	 cracking	 that	 industry standard	 mc-Si	 suffered	 during	

annealing	 due	 to	 residual	 thermal	 stress	 caused	 by	 constraint	 for	 its	 expansion	 that	 the	

silica	carriages	exerted.	

	 	

a)	 b)	

Figure 154 Residual stress map of industry standard Cz-Si (image a)) and mc-Si (image b)). 

Epitaxial Film Growth 

The	mechanical	strength	of	silicon	wafers	converged	strongly	to	the	value	of	300	MPa	after	

the	 deposition	 of	 the	 epitaxial	 silicon	 film,	 which	 points	 to	 the	 fact	 that	 the	 mechanical	

strength	of	the	wafers	is	strongly	influenced	by	the	deposited	layer.	The	stress	level	of	the	

film	could	be	a	limiting	factor	for	the	mechanical	strength	as	well	as	the	surface	structures	of	

the	 wafer	 equivalents.	 Figure	 155	 a)	 shows	 the	 surface	 structure	 of	 a	 wafer	 equivalent	

broken	sample.	Triangular	inverted	pyramidal	structures	which	seem	to	be	grain	and	twin	

boundaries.	 Figure	155	b)	 give	 a	 closer	 look	of	 the	 cross	 section	of	 these	 structures.	This	

surface	morphology	could	also	intensify	slightly	applied	stresses	at	the	tips	of	the	pyramids,	

thus	 lowering	 the	 mechanical	 strength	 of	 wafer	 equivalents	 in	 comparison	 with	 damage	

etched	and	annealed	wafers.	
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a)	 b)	

Figure 155 Image a) depicts a broken piece of a silicon wafer equivalent. The top view of the broken 

sample corresponds to the surface where the silicon thin film was deposited and that was subjected to 

tensile stress during bending. Image b) gives a closer look to the cross section of a mc-Si wafer 

equivalent. 

5.2.3 Inert Cell Processes 

Texture 

During	standard	solar	cell	processing,	as-cut	wafers	skip	damage	etching	and	proceed	with	

the	texturing	step	for	the	treatment	of	the	surface	of	the	silicon	wafers	(see	Figure	156	a))	to	

reduce	 light	 reflection.	This	 treatment	 removes	 cracks	partially	 and	blunts	 the	 tips	of	 the	

cracks	 [143],	 [144]	(see	Figure	156	b)).	Hence,	 the	mechanical	strength	of	the	wafers	was	

increased	 but	 this	 increase	 in	 mechanical	 strength	 is	 lower	 than	 in	 the	 case	 of	 damage	

etched	wafers	as	indicated	in	section	5.1.1	and	5.1.3.	20	µm	were	removed	from	the	surface	

of	 the	 silicon	wafers	 after	 damage	 etching	while	 only	 approximately	 4	µm	were	 removed	

after	 texture.	 Thus,	 a	 partial	 removal	 of	 the	 saw	 damage	 can	 lead	 to	 a	 lower	 increase	 in	

mechanical	strength.	

	 	

a)	 b)	

Figure 156 Image a) shows the surface morphology of a textured mc-Si wafer. The cross section of image 

b) points to a partially etched micro-crack as the texturing process did not remove entirely the cracks 

introduced in the silicon surface during multi wire-sawing. 
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Phosphorous Emitter Diffusion 

Silicon	 wafers	 experienced	 an	 increase	 in	 mechanical	 strength	 of	 20%	 after	 phosphorus	

emitter	diffusion	(see	section	5.1.3).	The	surface	and	the	cross	section	of	these	wafers	(see	

Figure	157)	are	comparable	to	the	surface	and	cross	section	of	textured	wafers.	Therefore,	

the	cause	for	the	increase	in	mechanical	strength	of	silicon	wafers	after	phosphorus	emitter	

diffusion	 lies	 in	 the	 properties	 and	 thus	 on	 the	 residual	 stress	 of	 the	 deposited	

phosphosilicate	glass	layer	and	will	be	discussed	in	the	next	section.	

	 	

a)	 b)	

Figure 157 The mc-Si surface depicted in image a) shows that the surface morphology of mc-Si wafers is 

maintained after emitter diffusion. Image b) shows surface grooves in a cross section view. 

Phosphosilicate Glass Etch 

When	the	phosphosilicate	glass	layer	deposited	after	the	phosphorus	emitter	diffusion	layer	

is	removed	after	subsequent	etching	the	mechanical	strength	of	the	wafers	decreases	to	the	

level	of	stress	of	 textured	wafers.	The	etching	for	the	removal	of	 the	phosphosilicate	glass	

layer	 etches	more	 deeply	 defects	 as	 grain	 boundaries	 (see	 Figure	 158	 a)).	 However,	 the	

etching	 which	 reveals	 defects	 is	 very	 slight	 as	 the	 cross	 section	 of	 the	 wafers	 shows	 a	

surface	 morphology	 comparable	 to	 the	 surface	 morphology	 resulting	 from	 previous	

processing	steps.	

	 	

a)	 b)	

Figure 158 Image a) shows that after the etching process for the removal of the phosphosilicate glass 

layer, grain boundaries are revealed in the microscope as they are slightly deeper etched than defects 

free areas. The cross section view in image b) shows the morphology of the grooved surface. 
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Antireflection Coating 

Prior	to	the	deposition	of	the	antireflection	coating,	the	surface	of	the	silicon	wafers	must	be	

cleaned	 with	 an	 aqueous	 solution	 containing	 HF	 in	 order	 to	 achieve	 a	 high	 quality	

antireflection	coating.	This	solution	etches	selectively	defects	in	silicon;	areas	free	of	defects	

preserve	 the	 surface	morphology	of	 textured	wafers	 (see	Figure	159	a))	while	areas	with	

high	density	of	dislocations	and	grain	boundaries	show	high	density	of	etch	pits	(see	Figure	

159	b)).	

	 	

a)	 b)	

Figure 159 Image a) shows that the morphology of the silicon surface is also maintained after the 

deposition of the antireflection coating. The dark points in image b) reveals the presence of dislocations 

as they are deeply etched during the cleaning step before the deposition of the antireflection coating. 

The	cross	section	view	in	Figure	160	shows	the	morphology	of	etch	pits.	Etch	pits	end	in	the	

shape	 of	 sharp	 notches	 [145].	 Therefore	 they	 are	 more	 effective	 in	 diminishing	 the	

mechanical	strength	of	silicon	wafers	than	the	surface	grooves	resulting	from	the	texturing	

processes	but	 they	are	much	 less	effective	 than	sharp	micro-cracks	 introduced	during	 the	

multi-wire	 sawing	 process.	 Round	 silicon	 samples	 tested	 with	 the	 RoR	 bending	 test	

presenting	high	density	of	etch	pits	broke	at	lower	stress	levels	than	samples	that	were	free	

of	etch	pits.	

Residual	 stress	 on	 the	 wafer	 surface	 resulting	 from	 the	 properties	 of	 the	 silicon	 nitride	

antireflection	coating	will	be	discussed	in	the	next	section.	

	

Figure 160 Cross section view that shows sharp ending grooves in the surface of a silicon wafer as 

dislocations are selectively etched during the cleaning step before the deposition of the antireflection 

coating. 
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Metallization 

Figure	161	a)	shows	the	configuration	of	fracture	stresses	of	the	front	contact	of	a	SoG mc-Si 

solar	cell	at	49%	of	the	relative	block	height	(see	Figure	45)	for	checking	the	scheme	of	the	

positions	where	 the	 bending	 tests	were	 performed.	 Fracture	 stresses	of	 the	 front	 contact	

range	 between	 150	 and	 200	MPa	 approximately	 (see	 also	 Figure	 138).	 The	 mechanical	

strength	 of	 the	 front	 contact	 of	 the	 solar	 cell	 is	 almost	 half	 the	 value	 of	 the	 mechanical	

strength	 of	 the	 wafers	 after	 texture	 and	 is	 comparable	 to	 mechanical	 strength	 of	 as-cut	

wafers.	The	 silicon	 samples	broken	with	 the	 front	 contact	under	 tensile	 stress	 containing	

fingers	and	fingers	and	bus	bar	(see	Figure	45)	induce	the	same	level	of	damage	in	the	solar	

cell.	 Thus,	 all	 measured	 fracture	 stresses	 from	 the	 front	 contact	 fit	 properly	 the	Weibull	

distribution	(see	Figure	136	a)	and	Figure	161	a)).	

The	map	 of	 fracture	 stresses	measured	with	 the	 back	 contact	 subjected	 to	 tensile	 stress	

shows	a	 less	homogeneous	pattern.	The	back	contact	samples	containing	only	 the	Al	back	

layer	and	the	samples	with	Al	layer	and	bus	bar	showed	two	different	fracture	stress	levels	

(see	Figure	161	b)).	The	mechanical	strength	of	the	samples	with	Al	layer	and	bus	bar	are	

comparable	to	the	mechanical	strength	of	as-cut	wafers	while	the	mechanical	strength	of	the	

samples	containing	only	the	Al	layer	is	higher	and	comparable	to	the	mechanical	strength	of	

textured	 or	 phosphorus	 emitter	 diffused	 wafers.	 Obviously,	 the	 severity	 of	 the	 damage	

induced	by	 the	Al	back	 layer	and	the	back	bus	bars	 is	completely	different.	Therefore,	 the	

fracture	stresses	measured	with	the	two	different	types	of	back	contact	samples	do	not	 fit	

well	the	Weibull	distribution	(see	Figure	136	b)).	The	solution	adopted	in	this	work	for	this	

issue	 is	 fitting	 the	 fracture	 stresses	 from	 the	 two	 different	 types	 of	 samples	 to	 separate	

Weibull	distributions	(see	Figure	137	a)	and	b)).	The	mechanical	strength	for	both	types	of	

samples	will	be	defined	then	by	the	characteristic	stress	calculated	from	each	of	the	Weibull	

distributions	(see	Figure	140	and	Figure	142).	

	 	

a)	 b)	

Figure 161 Map of fracture stresses of a silicon solar cell measured with the RoR bending test. Image a) 

depicts the stress map obtained from the fracture stresses measured with the front contact subjected to 

tensile stress and image b) the fracture stress map with the back contact under tensile stress. 
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a)	 b)	

Figure 162 The top view of a front contact finger is shown in image a). Image b) depicts a cross section 

at a front contact finger. 

Figure	162	shows	the	front	view	and	the	cross	section	of	a	front	contact	finger	and	micro-

cracks	were	not	observed	in	the	vicinities	of	finger	contacts.	

The	cross	section	in	Figure	163	a)	shows	a	front	contact	bus	bar	with	a	clean	interface	with	

silicon	free	of	cracks.	Almost	all	cross	sections	observed	were	free	of	cracks	but	some	areas	

were	found	where	sharp	cracks	emanate	in	the	silicon	below	the	bus	bars	(see	Figure	163	

b)).	

	 	

a)	 b)	

Figure 163 The cross section of a front contact bus bar shown in image a) is free of cracks at its interface 

with the silicon wafer. Image b) depicts a cross section at a front contact bus bar where sharp cracks 

emanate from the interface between the finger and the silicon surface. 

The	interface	between	the	Al	layer	and	back	bus	bars	appears	also	free	of	cracks	(see	Figure	

164	a).	However,	some	damage	can	be	observed	below	back	contact	bus	bars	in	the	shape	of	

rib	marks	as	indicated	in	Figure	164	b).	

Figure	165	a)	illustrates	the	morphology	of	the	Al	back	layer	consisting	of	Al	spheres	and	a	

eutectic	Al/Si	layer	in	direct	contact	with	the	silicon	surface.	The	eutectic	layer	shows	most	

commonly	a	good	attachment	to	the	silicon	surface	but	some	areas	showed	the	presence	of	

interfacial	defects	which	can	be	due	to	spontaneous	delamination	or	just	to	the	absence	of	

the	eutectic	layer	like	in	Figure	165	b).	
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a)	 b)	

Figure 164 Image a) shows a top view of the back contact of a solar cell where the interface between a 

bus bar and the back Al layer can be observed. Image b) is the cross section view of the interface 

between a back contact bus bar and the back Al layer. 

	 	

a)	 b)	

Figure 165 Image a) shows a cross section of the back Al contact layer. Delamination of several tens of 

microns or just not formation of the eutectic layer can occur between the back contact Al layer and the 

silicon surface as indicated in image b). 

5.3 Discussion 

5.3.1 Epitaxial Wafer Equivalent 

The	development	of	the	mechanical	strength	of	the	silicon	wafers	explained	in	the	previous	

sections	 from	 multi-wire	 sawing	 until	 the	 deposition	 of	 the	 epitaxial	 film	 for	 producing	

wafer	equivalents	is	analyzed	and	presented	in	this	section	(see	the	graphs	in	Figure	166).	

The	 evolutions	of	 the	 characteristic	 stress	of	 different	qualities	 of	mc-Si	 from	comparable	

block	heights	are	depicted	together.	Results	obtained	with	industry standard	mc-	and	Cz-Si	

are	also	illustrated	in	Figure	166	e)	in	order	to	have	a	reference	for	comparing	the	results	of	

other	qualities	of	mc-Si.	
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a)	 b)	

	 	

c)	 d)	

	

e)	

Figure 166 Evolution of the mechanical strength of mc-Si substrates through the processing steps for the 

manufacture of epitaxial wafer equivalents. 



E x p e r i m e n t a l 	 R e s u l t s 	 I I 	|	159	

Multi-wire Sawing 

As	already	explained	in	 the	previous	sections,	 the	multi-wire	sawing	process	 is	one	of	 the	

solar	cell	processes	that	more	strongly	lowers	the	mechanical	strength	of	silicon	wafers.	The	

failure	 criterion	 described	 by	 equation	 (2.97)	 for	 scratch-like	 cracks	 �T = 1.12√L�	 and	
considering	 the	 theoretical	 value	 of	 fracture	 toughness	 of	 silicon	 �PUG = 0.9	MPa	√m�	
predicts	a	crack	length	of	∼9	µm.	This	value	agrees	quite	well	with	the	lengths	of	the	cracks	

observed	with	the	SEM.	

The	 static	 elastic	 modulus	 of	 as-cut	 wafers	 is	 relatively	 high	 and	 ranged	 approximately	

between	140	and	160	GPa.	The	cracks	 introduced	during	wire-sawing	are	very	superficial	

and	therefore	they	do	not	change	the	properties	of	the	silicon	bulk	of	the	wafers,	being	the	

value	of	the	elastic	modulus	preserved.	

Damage etching 

When	the	micro-cracks	introduced	during	multi-wire	sawing	are	removed,	 the	mechanical	

strength	of	as-cut	wafers	 is	doubled	and	 the	defects	 formed	 in	 the	silicon	bulk	during	 the	

crystallization	process	dominate	the	mechanical	properties	of	mc-Si	wafers.	This	 issue	has	

been	thoroughly	analyzed	and	described	in	this	chapter	and	in	the	literature	[98].	

The	 mechanical	 strength	 of	 mc-Si	 wafers	 crystallized	 with	 alternative	 silicon	 feedstock	

present	comparable	mechanical	strength	to	the	mechanical	strength	of	industry standard	Cz-	

and	mc-Si,	being	Cz-Si	the	material	with	the	highest	mechanical	strength.	Only	wafers	from	

the	middle	and	the	top	part	of	the	4N+Al	mc-Si	block	and	from	the	bottom	part	of	the	3N mc-

Si	block	have	significant	lower	mechanical	strength	than	industry standard	mc-Si.	

The	static	elastic	modulus	of	damage	etched	wafers	 is	relatively	high	and	ranged	between	

140	and	150	GPa	with	exception	of	the	wafers	from	the	middle	and	the	top	part	of	the	4N+Al	

mc-Si	 block	whose	 static	 elastic	moduli	 are	130	and	120	GPa	 respectively.	These	 last	 two	

materials	showed	a	proven	strong	influence	of	their	mechanical	properties	with	the	content	

of	silicon	bulk	defects.	Therefore	in	the	following,	values	of	static	elastic	modulus	which	are	

lower	 than	 140	GPa	will	 be	 interpreted	 to	 be	 due	 to	 the	 deterioration	 of	 the	mechanical	

properties	of	the	silicon	bulk	of	the	wafers.	

Substrate Annealing 

The	 first	 to	 consider	 for	 the	analysis	of	 the	mechanical	strength	of	annealed	wafers	 is	 the	

formation	of	residual	stresses	during	cooling	as	the	outer	and	inside	parts	of	the	wafers	will	

not	have	the	same	temperature	and	the	thermal	expansion	coefficient	of	silicon	depends	on	

the	 temperature.	Equation	 (2.139)	allows	 the	calculation	of	 thermal	stresses	during	 rapid	

processing.	During	annealing	the	wafers	are	heated	up	to	1150°C,	but	above	800°C	silicon	

can	relax	stresses	by	plastic	 flow.	Thus	the	temperature	range	will	be	considered	to	range	

from	 800°C	 to	 25°C.	 The	 values	 of	 the	 thermal	 expansion	 coefficient	 of	 silicon	 at	 these	

temperatures	are	taken	from	Table	14	of	Appendix	A	and	its	engineering	elastic	constants,	+	
and	 ,,	 from	 the	 average	 values	 in	 Table	 12	 and	 Table	 13	 of	 Appendix	 A.	 According	 to	
equation	 (2.139)	 silicon	 wafers	 would	 remain	 under	 a	 tensile	 residual	 thermal	 stress	 of	

∼743	MPa	 after	 rapid	 cooling.	 Obviously	 this	 is	 a	 very	 large	 value	 of	 residual	 stress	 that	
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would	 cause	 severe	 damage	 or	 breakage	 of	 silicon	wafers.	 Equation	 (2.160)	 predicts	 that	

silicon	wafers	can	stand	a	maximum	temperature	difference	of	368°C	until	fracture	due	to	

thermal	 shock.	 Therefore,	 a	 temperature	 range	 of	 775°C	 causing	 ∼743	MPa	would	 cause	

catastrophic	failure	of	the	wafers	and	is	therefore	very	unlikely	as	the	wafers	survived	the	

annealing	process.	Moreover,	measured	residual	 stresses	of	 silicon	wafers	after	annealing	

reached	up	a	value	of	12	MPa,	which	 is	a	quite	 lower	value.	This	measured	value	could	be	

underestimated	due	to	the	small	resolution	of	the	measurement;	but	considering	that	actual	

local	stresses	are	10	times	larger	than	the	measured	value,	the	actual	hypothetical	residual	

stress	is	still	very	far	from	the	calculated	∼743	MPa.	Residual	stresses	may	not	be	so	large	

because	the	cooling	of	the	wafers	may	not	be	so	rapid	as	most	of	the	times	the	wafers	are	

cooled	 inside	 the	 oven	 which	 takes	 longer	 to	 cool	 down	 than	 outside	 the	 oven.	 The	

temperature	 gradient	 inside	 the	 RTCVD	 reactor	 was	 100°C min⁄ 	 and	 if	 we	 consider	 this	

temperature	 gradient	 as	 the	 temperature	 range	 for	 thermal	 shock,	 then	 the	 calculated	

residuals	 stress	 is	∼96	MPa	which	 is	 a	more	 reasonable	 value.	 Anyways,	 the	 presence	 of	

tensile	residual	thermal	stresses	of	small	magnitude	in	silicon	wafers	after	annealing	agrees	

with	the	moderate	decrease	in	mechanical	strength	of	annealed	silicon	wafers.	

A	 less	detrimental	 thermal	 shock	 can	 lower	 the	mechanical	 strength	of	 the	wafers	by	 the	

activation	via	thermal	shock	of	cracks	which	are	already	in	the	material	but	that	stop	their	

propagation	when	 the	 thermal	 stress	stops	 increasing	or	disappears.	This	was	 the	case	of	

the	industry standard	mc-Si	wafer	depicted	in	Figure	154	b).	According	to	equation	(2.161),	

the	crack	that	propagated	from	one	edge	to	the	center	of	the	wafer	may	most	probably	have	

been	29	µm	long	before	activation	by	thermal	shock,	which	is	the	length	that	corresponds	to	

a	temperature	gradient	of	100°C min⁄ .	

The	presence	of	SiC	and	Si3N4	particles,	 like	for	example	in	the	middle	parts	of	the	3N	and	

4N+Al mc-Si	blocks,	does	not	influence	significantly	the	mechanical	strength	of	the	annealed	

wafers	(see	Figure	166	b)).	The	increment	of	temperature	during	heating	up	heals	residual	

thermal	stresses	in	the	vicinities	of	SiC	and	Si3N4	particles	but	they	will	form	again	when	the	

wafers	 are	 cooled	down.	SiC	 and	Si3N4	 particles	 appear	unbroken	and	well	 bonded	 to	 the	

silicon	matrix	 after	 annealing;	 hence	 the	 failure	 type	 at	 temperatures	beyond	 the	ductile-

brittle	temperature	 in	the	surroundings	of	 these	particles	is	most	probably	the	yielding	of	

the	 silicon	 matrix.	 Void	 nucleation	 by	 plastic	 flow	 most	 probably	 occurs	 near	 particle	

clusters.	 If	 the	dimension	of	the	voids	could	be	measured,	 the	intensification	of	an	applied	

stress	could	be	calculated	with	equation	(2.162).	Also	a	failure	criterion	for	the	voids	with	

an	annular	crack	could	be	applied	for	failure	prediction	with	equation	(2.165).	

SiOx	 particles	 dilute	 and	 the	 residual	 thermal	 stresses	 in	 their	 surroundings	 relax	 during	

heating	up.	Thus,	the	mechanical	strength	of	annealed	wafers	at	the	bottom	of	the	3N mc-Si	

increases	as	amorphous	SiOx	particles	are	dissolved	(see	Figure	166	d))	and	the	dissolution	

of	crystalline	SiOx	particles	reduces	slightly	the	mechanical	strength	of	B-doped mc-Si	(see	

Figure	166	d)).	

After	 annealing	 of	 the	 silicon	wafers	 from	 the	 top	 of	 the	4N+Al mc-Si	 block,	 the	Al	 phase	

melted	away	 leaving	holes	and	 the	cracks	 in	 its	 surroundings	did	not	heal.	Therefore,	 the	

mechanical	strength	of	these	wafers	slightly	lowers	after	annealing	(see	Figure	166	a)).	
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The	level	of	residual	stress	or	the	magnitude	of	other	defects	caused	by	thermal	shock	or	by	

the	yielding	of	the	silicon	matrix	would	be	approximately	the	same	for	all	processed	wafers	

independently	 on	 their	 previous	 mechanical	 strength,	 and	 therefore	 the	 mechanical	

strength	of	almost	all	annealed	wafers	tend	to	converge	to	the	value	of	300	MPa.	

The	 decrease	 of	 static	 elastic	 modulus	 of	 annealed	 wafers	 in	 approximately	 10	GPa	

corroborates	the	negative	effect	of	tensile	residual	thermal	stresses	and	defects	introduced	

during	 annealing	 on	 the	 mechanical	 behavior	 of	 the	 silicon	 wafers.	 Cz-Si	 experiences	 a	

lowering	 in	 elastic	 modulus	 of	 30	GPa.	 Monocrystalline	 silicon	 cannot	 benefit	 from	 the	

barrier	effect	of	grain	boundaries	to	the	movement	of	dislocations.	Therefore,	the	yielding	of	

the	Cz-Si	matrix	could	cause	 larger	defects	 in	Cz-Si	wafers	and	hence	a	 larger	decrease	 in	

elastic	modulus	and	mechanical	strength	than	in	the	case	of	mc-Si	wafers.	

Epitaxial Film Growth 

When	 the	 wafer	 equivalents	 are	 tested	 with	 the	 RoR	 bending	 test	 with	 the	 epitaxial	

deposited	silicon	film	under	tensile	stress,	 the	characteristic	stress	of	 the	wafers	converge	

even	stronger	than	only	annealed	wafers	to	the	value	of	300	MPa.	This	is	due	most	probably	

to	 the	 residual	 stress	 state	 and	defects	 in	 the	 silicon	 thin	 film	 as	 they	 are	 supporting	 the	

largest	tensile	stress	during	bending.	

Residual	stresses	within	 films	are,	 as	already	explained	 in	section	2.1.4.1.1,	mostly	due	 to	

the	difference	in	thermal	expansion	coefficient	between	the	film	and	the	substrate	(thermal	

stress),	to	the	difference	in	lattice	parameter	between	the	film	and	the	substrate	(intrinsic	

stress)	and	to	the	temperature	gradient.	As	the	film	and	the	substrate	are	both	silicon	the	

difference	 in	 thermal	 expansion	 coefficient	 and	 lattice	 parameter	 in	 equation	 (2.138)	 is	

zero;	and	thus,	residual	stresses	are	not	expected	within	silicon	epitaxial	films	deposited	on	

silicon	 substrates.	However,	 recent	 literature	 [146]	 states	 that	 the	 silicon	 epitaxial	 film	 is	

subjected	to	tensile	residual	stresses	of	small	magnitude.	This	is	due	most	probably	to	the	

building	of	intrinsic	stresses	by	some	processes	that	raise	the	density	of	the	material	of	the	

film	 like	 annihilation	 of	 vacancies,	 dislocations	 and	 grain	 boundaries.	 This	 issue	 is	 far	

beyond	the	scope	of	this	work.	However,	it	can	be	concluded	that	the	stress	state	of	the	film	

and	 thermal	 stresses	 that	 arise	 due	 to	 the	 difference	 in	 thermal	 expansion	 coefficient	

between	 areas	 of	 the	wafers	which	 are	 at	 different	 temperature	 during	 cooling,	 as	 it	 has	

been	 explained	 for	 annealed	 wafers,	 are	 controlling	 the	 mechanical	 strength	 of	 wafer	

equivalents.	Thus,	the	failure	analysis	that	can	be	applied	on	wafer	equivalents	is	the	same	

than	the	failure	analysis	for	annealed	wafers.	

5.3.2 Inert Solar Cell 

The	development	of	the	mechanical	strength	of	the	silicon	wafers	explained	in	the	previous	

section	 from	multi-wire	sawing	until	 the	metallization	process	 for	producing	conventional	

inert	solar	cells	is	analyzed	and	presented	in	this	section	(see	the	graphs	in	Figure	167).	The	

evolution	of	the	characteristic	stress	of	the	two	different	qualities	of	mc-Si	from	comparable	

block	heights	are	depicted	together	to	ease	their	comparison.	The	top	of	the	SoG	mc-Si	block	

where	 SiC	 were	 observed	 and	 the	 bottom	 of	 the	UMG	 mc-Si	 block	 show	 less	mechanical	
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strength	than	the	other	parts	of	 the	blocks.	However,	 the	defects	introduced	during	multi-

wire	sawing	and	metallization	seem	to	be	more	detrimental	to	the	mechanical	behavior	of	

the	wafers	than	the	presence	of	the	particles.	

	 	

a)	 b)	

	

c)	

Figure 167 Evolution of the mechanical strength of mc-Si wafers through the processing steps for the 

manufacture of conventional inert solar cells. 

Multi-wire sawing 

As-cut	 wafers	 from	 the	 top	 parts	 of	 the	 UMG	 and	 SoG	 mc-Si	 blocks	 showed	 higher	

mechanical	strength	than	as-cut	wafers	from	the	lower	parts	of	the	blocks.	It	was	observed	

that	 the	density	of	micro-cracks	which	are	perpendicular	 to	 the	silicon	surface	 is	 lower	at	

the	top	of	the	blocks.	Hence,	 the	probability	of	 loading	micro-cracks	under	 loading-mode I	

may	 be	 lower	 at	 the	 top	 of	 the	 blocks	 and	 thus	 the	mechanical	 strength	 of	 these	wafers	

increases.	
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Texture 

The	 increase	 in	 mechanical	 strength	 of	 textured	 wafers	 is	 lower	 than	 the	 increase	 in	

mechanical	strength	after	damage	etching	as	the	texture	process	did	not	remove	the	micro-

cracks	in	the	silicon	surface	completely.	Similar	increases	in	mechanical	strength	of	silicon	

wafers	 are	 reported	 in	 the	 literature	 [98]	 where	 a	 mathematical	 model	 is	 proposed	 for	

modeling	 the	 increase	 in	 mechanical	 strength	 as	 a	 function	 of	 numeric	 parameters	

associated	to	the	blunting	of	the	crack	tips	and	the	removal	of	the	cracks.	

The	comparison	of	textured	UMG	and	SoG	mc-Si	wafers	shows	that	wafers	from	the	middle	

part	of	 the	block	have	exactly	the	same	mechanical	behavior	while	the	top	part	of	 the	SoG	

mc-Si	block	has	lower	mechanical	strength	than	the	top	part	of	the	UMG	mc-Si	block	and	the	

bottom	part	of	the	UMG	mc-Si	block	has	lower	mechanical	strength	than	the	top	part	of	the	

UMG	mc-Si	block.	This	is	due	most	probably	to	the	presence	of	observed	SiC	particles	at	the	

top	 of	 the	 SoG	 mc-Si	 block	 and	 to	 the	 possible	 presence	 of	 amorphous	 SiOx	 and	 Si3N4	

particles	at	 the	bottom	of	 the	UMG	mc-Si	block.	However,	 these	differences	 in	mechanical	

strength	 are	 smaller	 than	 30	MPa	 and	may	 not	 be	 significant	 but	 they	 are	 sustained	 and	

even	become	larger	by	further	solar	cell	processing.	

Emitter Diffusion 

Thermal	stress	is	reported	in	the	literature	[147]	to	be	the	major	contributor	to	the	residual	

stress	level	in	amorphous	films.	Thermal	expansion	coefficient	of	phosphosilicate	glass	is	a	

value	 difficult	 to	 find	 in	 the	 literature.	 Sunami et	 al.	 [148]	 reported	 that	 the	 thermal	

expansion	coefficient	of	SiO2	layers	is	equal	to	that	of	fused	silica,	eg�òó = 0.55 × 10=5	°K=�,	
and	a	thermal	expansion	coefficient	for	a	PSG	layer	deposited	on	a	silicon	substrate	with	a	

composition	 P�O4 SiO� =⁄ 0.04,	 is	 eg�òó = 0.87 × 10=5	°K=�.	 The	 PSG	 layer	 which	 is	
approximately	100	nm	 is	deposited	at	900°C	and	 the	cooling	of	PSG	 layers	 from	900°C	 to	

room	temperature	is	reported	to	introduce	a	compressive	stress	of	200	MPa	[147],	[148].	

Assuming	that	the	elastic	properties	of	the	PSG	layer	are	the	same	like	those	for	amorphous	

silica	 (see	Table	15	of	Appendix	A)	 and	 considering	 intrinsic	 stresses	 in	 equation	 (2.138)	

negligible,	 i.e.	 residual	 stress	 is	 approached	 to	 be	 constituted	 only	 by	 thermal	 stress,	 the	

calculated	compressive	residual	stress	within	the	PSG	layer	is	252	MPa	which	is	in	relative	

good	agreement	with	the	measured	values	found	in	the	literature.	

The	 layer	 could	 fail	 spontaneously	 by	 buckling	 driven	 delamination	 if	 the	 compressive	

residual	 stress	 exceeds	 the	 value	 of	 critical	 stress	 for	 buckling	 described	 by	 equation	

(2.159).	A	residual	compressive	stress	of	200	MPa	as	indicated	in	the	literature	could	cause	

the	 buckling	 of	 blisters	 with	 relation	 between	 film	 thickness	 and	 blister	 diameter	�O Ã = 0.057⁄ .	Therefore,	if	the	PSG	layer	is	100	nm	thick	the	residual	stress	can	only	cause	

blisters	with	a	maximum	radius	of	1.75	µm.	

If	 the	 whole	 length	 of	 the	 surface	 defects	 found	 in	 silicon	 wafers	 were	 subjected	 to	 the	

compressive	 residual	 stress,	 then	 the	 increase	 in	 mechanical	 strength	 would	 be	 the	

magnitude	of	the	compressive	residual	stress,	200	MPa.	Unfortunately,	the	thickness	of	the	

PSG	layer	is	much	smaller	than	the	size	of	surface	defects	and	therefore	the	strengthening	
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effect	 is	 softer.	 If	 a	 relatively	 short	 crack	 on	 the	 silicon	 surface	 which	 is	 0.5	µm	 long	 is	

considered,	i.e.	the	compressive	stress	covers	20%	of	the	surface	crack	�� I�⁄ = 0.2�.	Figure	
26	shows	that	the	application	of	a	tensile	stress,	which	is	approximately	52%	of	the	residual	

compressive	stress	(104	MPa),	cancels	the	closing	effect	of	the	compressive	stress	of	the	PSG	

layer,	i.e. the	crack	closure	length	is	zero	�7 I�⁄ = 0�.	Results	for	smaller	ratios	� I�⁄ 	are	not	

depicted	 in	 Figure	 26	 but	 can	 be	 calculated	with	 equation	 (2.154).	 If	we	 consider	 a	 2	µm	

surface	 crack	 �� I�⁄ = 0.05�	 then	 an	 applied	 tensile	 stress,	 which	 is	 16%	 of	 the	 residual	

compressive	stress	(32	MPa),	cancels	the	closing	effect	of	the	compressive	stress	of	the	PSG	

layer,	 i.e. the	 crack	 closure	 length	 is	 zero	 �7 I�⁄ = 0�.	 Thus,	 larger	 defects	 require	 lower	
applied	tensile	stress	to	cancel	the	strengthening	effect	of	the	PSG	layer.	

The	 level	 of	 strengthening	 obtained	 by	 a	 compressive	 residual	 stress	 that	does	 not	 cover	

entirely	 a	 surface	 crack	 can	 be	 obtained	 with	 the	 aid	 of	 Figure	 27.	 If	 we	 consider	 the	

mechanical	 strength	 of	 textured	 wafers,	 275	MPa,	 as	 the	 fracture	 strength	 of	 the	 wafers	

without	 the	 strengthening	 effect	 ��OF� �	 in	 comparison	 with	 the	 mechanical	 strength	 of	

emitter	diffused	wafers,	325	MPa,	which	shows	the	strengthening	effect	��OF�	and	a	surface	
crack	length	of	0.5	µm	�� I�⁄ = 0.2�,	then	the	corresponding	ordinate	value	in	Figure	27	for	−�OF� �G = 275 200 = 1.375⁄⁄ 	 is	 ∼1.2.	 That	 means	 that	 the	 strengthening	 prediction	 of	

Figure	 27	 with	 the	 just	 described	 conditions	 is	 �OF �OF� ≈ 1.2⁄ ,	 which	 fits	 with	 the	

experimental	 observation	 �OF �OF� = 325 275 ≈ 1.2⁄⁄ .	 Thus,	 the	 consideration	 of	 the	

compressive	 residual	 stress	 acting	 on	 0.5	µm	 long	 cracks	 seems	 to	 approximate	

appropriately	the	mechanical	behavior	of	emitter	diffused	wafers.	

Phosphorous Glass Etch 

The	strengthening	effect	of	 the	PSG	 layer	disappears	after	 its	removal	and	the	mechanical	

strength	 of	 the	 wafers	 is	 governed	 by	 the	 same	 factors	 explained	 in	 the	 case	 of	 damage	

etched	and	textured	wafers.	

Antireflection coating 

The	calculation	of	the	residual	stress	of	SiNx	passivation	layers	is	not	straightforward	as	the	

thermal	expansion	coefficient	and	elastic	constants	of	 the	 layer	and	 therefore,	 its	 residual	

stress	 depend	 on	 the	 deposition	 conditions	 [149],	 [150].	 The	 residual	 stress	 of	 SiNx	

antireflection	layers	deposited	at	low	temperatures	is	reported	to	range	between	±250	MPa	

[149].	 Without	 exact	 knowledge	 of	 the	 residual	 stress	 and	 film	 properties	 is	 extremely	

speculative	to	predict	spontaneous	micro-cracking	of	the	SiNx	passivation	layers.	

The	decrease	 in	mechanical	strength	of	passivated	wafers	could	be	due	 to	 tensile	residual	

stresses	acting	on	the	75	nm	of	the	layer	thickness.	Similar	to	the	case	of	the	strengthening	

effect	 of	 emitter	 diffused	wafers,	 the	 decrease	 in	mechanical	 strength	may	 not	 reach	 the	

amount	of	the	entire	tensile	residual	stress	as	surface	defects	are	larger	than	the	thickness	

of	the	layer.	

If	 the	residual	stress	 is	compressive	a	strengthening	effect	of	passivated	wafers	should	be	

measured.	However,	 the	mechanical	 strength	of	passivated	wafers	 is	 10%	 lower	 than	 the	

mechanical	 strength	 of	 wafers	 after	 PSG	 etch.	 In	 the	 case	 that	 the	 residual	 stress	 is	
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compressive	but	the	mechanical	strength	of	the	wafers	decrease,	another	issues	influencing	

the	mechanical	 strength	of	 the	wafers	 should	 be	 taken	 into	 account.	Dislocation	 etch	 pits	

were	 observed	 after	 the	 deposition	 of	 the	 antireflection	 coating.	 The	 sharp	 shapes	 of	 the	

dislocation	etch	pits	could	be	intensifying	the	applied	stress	in	their	tips	and	hence	lowering	

the	 mechanical	 strength	 of	 passivated	 wafers.	 Another	 issue	 to	 take	 into	 account	 is	 the	

diffusion	of	hydrogen	 into	 the	 silicon	bulk	of	 the	wafers	which	passivates	 the	defects	and	

impurities	in	the	bulk	silicon.	Clusters	of	hydrogen	atoms	can	be	seen	as	voids	or	hydrogen	

bubbles	 that	 can	 intensify	 the	 applied	 stress	 in	 their	 surroundings.	 This	 is	 known	 as	

hydrogen	embrittlement	[151].	The	stress	intensification	could	be	calculated	with	the	aid	of	

equation	(2.165).	

Processes	 that	 influence	 the	mechanical	 strength	of	 the	wafers	by	 influencing	 the	 state	of	

surface	 defects,	 like	multi-wire	 sawing	 and	 emitter	 diffusion,	 do	 not	 decrease	 the	 elastic	

modulus	 of	 the	 wafers	 which	 is	 kept	 near	 150	GPa.	 On	 the	 other	 hand,	 processes	 that	

influence	the	mechanical	strength	of	the	wafers	by	influencing	the	state	of	bulk	defects,	like	

for	 example	 spontaneous	 micro-cracking	 during	 crystallization	 in	 the	 surroundings	 of	

metallic	particles	or	defects	formed	in	the	silicon	bulk	during	annealing,	indeed	lowers	the	

elastic	modulus	of	silicon.	The	elastic	modulus	of	passivated	wafers	does	not	decrease	and	is	

approximately	150	GPa.	Therefore,	the	decrease	in	mechanical	strength	of	passivated	wafers	

is	more	likely	to	be	due	to	tensile	residual	stress	within	the	SiNx	passivation	layers	and/or	

stress	intensification	at	dislocation	etch	pits	rather	than	to	hydrogen	embrittlement.	

Metallization 

The	analysis	of	the	mechanical	strength	of	the	metallic	contacts	has	to	distinguish	between	

the	 front	 and	 the	 back	 contacts	 and	 between	 samples	 with	 and	 without	 bus	 bars.	 The	

mechanical	 strength	 of	 the	 samples	 broken	with	 the	 front	 contact	 under	 tensile	 stress	 is	

comparable	to	the	mechanical	strength	of	as-cut	wafers	150-160	MPa (see	Figure	167).	

The	fracture	stresses	of	the	samples	that	contain	only	thin	contact	fingers	and	samples	with	

small	contact	 fingers	and	bus	bar	 follow	a	 single	Weibull	distribution.	The	composition	of	

the	metallic	paste	of	both	the	fingers	and	the	bus	bars	is	the	same,	Ag.	Therefore,	they	exert	

the	 same	 influence	 on	 the	 mechanical	 strength	 of	 the	 solar	 cell.	 The	 thermal	 expansion	

coefficient	 of	 silver	 is	 18 × 10=5	°K=�;	 thus,	 like	 in	 the	 case	 of	 the	 cooling	 of	 metallic	
particles	 after	 the	 crystallization	of	 the	 silicon	 block,	 the	 cooling	 after	 contact	 firing	 from	

900°C	 to	 room	 temperature	must	 introduce	 large	 residual	 thermal	 stresses	 in	 the	 silicon	

bulk.	 As	 the	 fingers	 and	 bus	 bars	 have	 elongated	 shapes,	 the	 estimation	 of	 the	 thermal	

residual	stress	is	out	of	the	scope	of	this	work	where	approximations	for	the	calculation	of	

thermal	 stresses	 are	 provided	 for	 spherical	 particles	 and	 thin	 films	 or	 plates.	 However,	

common	 sense	 and	 experience	 leads	 to	 conclude	 that	 Ag	 fingers	 and	 bus	 bars	 introduce	

large	amount	of	most	probably	radial	thermal	residual	stresses.	

Another	 issue	 to	 consider	 in	 the	 case	 of	 fingers	 and	 front	 or	 rear	 bus	 bars	 is	 the	 local	

formation	of	a	glass	 frit	phase	at	 the	 interface	between	Ag	and	Si	 (see	Figure	168)	which	

adheres	 the	metallic	 contact	 to	 the	silicon	surface.	 Similarly	 to	silicon	oxide	particles,	 this	

glass	frit	phase	with	lower	thermal	expansion	coefficient	than	silicon	could	be	introducing	
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locally	 tangential	 thermal	 residual	 stresses.	 Both	 residual	 stresses	 either	 introduced	 in	

silicon	by	the	Ag	contacts	or	by	the	glass	frit	phase	would	ease	the	formation	of	cracks	near	

the	silicon	surface	(see	Figure	163	b))	already	at	low	applied	stresses.	The	fracture	criterion	

is	then	the	same	than	the	one	explained	for	as-cut	wafers,	where	stress	intensification	at	the	

tips	of	these	cracks	controls	the	mechanical	strength.	

The	 decrease	 in	 static	 elastic	modulus	 is	 very	 significant,	 being	 90-100	GPa	 for	 solar	 cell	

samples	 broken	with	 the	 front	 contact	 subjected	 to	 tensile	 stress.	The	 decrease	 in	 elastic	

modulus	 could	 be	 due	 to	 the	 large	 residual	 stresses	 introduced	 by	 the	metallic	 contacts	

which	ease	the	cracking	of	the	silicon	bulk.	The	elastic	modulus	of	the	back	Al	contact	layer	

is	43	GPa	[152]	and	therefore	also	lowers	the	elastic	modulus	of	the	whole	layered	structure	

(solar	cell).	

 

Figure 168 Glass frit phase at the interface between Ag and Si observed in the cross section of a solar cell 

at a front bus bar. 

The	fracture	stresses	of	the	solar	cell	samples	containing	bus	bars	where	the	back	contact	is	

subjected	to	tensile	stress	are	much	lower	than	the	solar	cell	samples	containing	only	back	

Al	layer.	The	mechanical	strength	of	these	samples	is	comparable	and	a	bit	lower,	145	MPa,	

than	 the	 mechanical	 strength	 of	 the	 front	 fingers	 and	 bus	 bars.	 The	 same	 states	 for	 the	

elastic	 modulus	 of	 these	 samples	 which	 is	 approximately	 85	GPa.	 The	 literature	 reports	

[153]	that	metallic	contacts	where	there	is	an	AgAl/Al	overlap	like	in	the	case	of	the	rear	bus	

bars	 show	 the	 lowest	mechanical	 strength.	 The	 ternary	 Ag-Al-Si	 phase	 diagram	 indicates	

that,	depending	on	the	composition	of	the	system	in	the	locations	of	the	AgAl/Al	overlap,	the	

most	probable	phases	that	are	present	are	Si	accompanied	by	two	of	the	following	phases;	

Al,	Ag2Al	and	Ag3Al	[154].	

The	mechanical	 strength	of	 the	 solar	 cell	 samples	without	bus	bars	broken	with	 the	back	

contact	subjected	to	tensile	stress	is	much	higher,	250-325	MPa,	sometimes	higher	than	the	

mechanical	 strength	 of	 textured	 wafers.	 This	 value	 is	 not	 depicted	 in	 Figure	 167.	 The	

mechanical	strength	of	the	samples	with	bus	bars	is	shown	in	Figure	167	as	they	can	control	

the	mechanical	strength	of	the	solar	cell	if	the	solar	cell	is	broken	entirely.	

The	 3-4	µm	 eutectic	 layer	 adhered	 to	 the	 silicon	 surface	 is	 where	 significant	 thermal	

stresses	are	built.	Thermal	residual	stresses	can	be	calculated	with	equation	(2.140)	if	 the	

bow	 of	 the	 wafers	 is	measured.	 The	 Al-Si	 eutectic	 temperature,	 577°C,	 is	 the	 considered	

processing	 temperature	 and	 stress	 is	 formed	 when	 the	 wafer	 is	 cooled	 from	 this	
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temperature	to	room	temperature.	Under	this	condition,	equation	(2.140)	predicts	800	MPa	

tensile	thermal	stresses	within	the	eutectic	layer.	However,	the	literature	[155]	reports	that	

the	calculated	values	of	bows	are	overestimated	when	compared	with	measured	bows	and	

that	 the	 residual	 thermal	 tensile	 stress	 is	 actually	 200	MPa.	 The	 reason	 for	 this	 is	 stress	

relaxation	by	plastic	flow	of	the	Al-Si	eutectic	layer.	

Considering	 that	 the	 residual	 stress	 of	 the	 3-4	µm	 thick	 Al-Si	 eutectic	 layer	 is	 200	MPa,	

spontaneous	 cracking	 criteria	 can	 be	 analyzed.	 Spontaneous	 film	 cracking	 under	 tensile	

residual	 stress	 can	 occur	 either	 by	 channel	 cracking	 or	 by	 delamination	 cracking.	 The	

Dundurs	 parameter	 of	 Al	 according	 to	 equation	 (2.142)	 is	 -0.34	 and	 the	 parameter	¿�e¶ , ?¶� = 1	can	be	read	in	the	graph	of	Figure	22	b).	
The	 toughness	 of	 Al	 in	 Table	 15	 converted	 to	 fracture	 energy	 release	 rate	with	 equation	

(2.41)	 for	 plane	 stress	 is	 introduced	 in	 the	 failure	 criterion	 for	 channel	 cracking	 (see	

equation	 (2.156)).	 The	 left	 term	 of	 equation	 (2.156)	 is	 smaller	 than	 the	 right	 term,	1.58 × 10=3 < 0.64.	Thus,	channel	cracking	of	Al-Si	eutectic	layer	is	far	from	occurring	due	

to	its	ductile	behavior.	

The	 left	 term	of	equation	(2.157)	 is	also	smaller	than	the	right	term,	0.155 < 2,	hence	the	
delamination	of	the	interface	between	the	Al-Si	eutectic	layer	and	the	silicon	bulk	does	not	

occur.	For	this	failure	criterion	an	interface	fracture	energy	release	rate	of	10 J m�⁄ 	between	

Al	and	Si is	considered.	

The	conditions	for	substrate	delamination	according	to	equation	(2.158)	are	not	met	either,	1.03 < 2.93.	 These	 predictions	 agree	 with	 the	 experimental	 observations	 as	 no	 micro-
cracking	 or	 delamination	 was	 observed	 in	 the	 back	 Al	 layer.	 The	 only	 observed	 features	

were	zones	similar	to	delamination	where	the	eutectic	layer	did	not	form.	

The	 reasons	 for	 the	high	mechanical	 strength	of	 the	 solar	 cell	 samples	where	 the	back	Al	

layer	was	subjected	 to	 tensile	stress	are	 the	good	 integrity	of	 the	Al	 layer	which	does	not	

crack	spontaneously,	which	even	though	being	under	tensile	residual	stress	can	profit	from	

its	ductility	for	crack	initiation.	Moreover,	the	silicon	just	below	the	Al	layer	is	under	a	small	

compressive	stress.	The	approximate	amount	of	 compressive	stress	 is	8	MPa	according	 to	

equation	(2.134).	

 

Figure 169 The image shows crack propagation through the thickness of a solar cells where the back 

contact is subjected to tensile stress. The crack propagates into the silicon bulk rather than through the 

Al-Si interface. 
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When	 the	 solar	 cell	 samples	 break	 with	 the	 back	 Al	 layer	 under	 tensile	 stress	 cracks	

propagating	from	interface	defects	extend	into	the	silicon	bulk	rather	than	through	the	Al-Si	

interface	like	shown	in	Figure	169.	The	criterion	expressed	with	equation	(2.149)	to	know	

whether	a	crack	kinks	or	continues	its	propagation	through	an	interface	predicts	the	same	

behavior.	 Reading	· = ½�e¶� = 50°	 from	 Figure	 20	 and	W �WB�f�hH° = 0.75⁄ 	 from	 Figure	

21,	and	being	10 J m�⁄ 	the	interface	toughness	and	1.6 J m�⁄ 	the	toughness	or	energy	release	

rate	of	silicon,	the	criterion	remains	as	0.75 = 1.2 1.6⁄ < 10 1.6⁄ .	That	means	that	the	energy	

release	rate	at	the	tip	of	the	kinked	crack	reaches	the	value	of	critical	energy	release	rate	of	

the	 substrate	 before	 the	 energy	 release	 rate	 for	 interface	 crack	 propagation	 reaches	 the	

interface	 toughness.	 Thus,	 the	 crack	 prefers	 to	 propagate	 through	 the	 silicon	 bulk	 rather	

than	through	the	interface.	

When	the	solar	cell	samples	break	with	 the	 front	contact	under	 tensile	stress	propagating	

cracks	will	deflect	 to	 the	Al-Si	 interface	or	will	penetrate	 into	 the	back	Al	 layer.	Figure	24	

predicts	 the	 ratio	 of	 energy	 release	 rates	 at	 the	 tips	 of	 the	 deflected	 crack	 and	 the	

penetrating	crack;	and	for	e¶ = −0.34,	�WB�f�� �WB�f�f⁄ = 0.25	can	be	read	in	Figure	24.	The	
deflection-penetration	criterion	 remains	 then	as	0.25 = 10 40 < 10 9797⁄⁄ .	The	 toughness	

of	Al,	26	MPa	√m,	converted	to	fracture	energy	release	rate	with	equation	(2.41)	for	plane	

stress	 is	 9797 J m�⁄ .	 As	 the	 estimated	 toughness	 of	 the	 film	 is	 much	 larger	 than	 the	

estimated	 toughness	 of	 the	 interface	9797 ≫ 10,	 the	 energy	 release	 rate	 of	 the	 tip	 of	 the	
deflected	crack	reaches	the	value	of	the	interface	toughness	before	the	energy	release	rate	

of	 the	 penetrating	 crack	 reaches	 the	 toughness	 of	 the	Al	 layer.	Thus,	 the	 crack	 prefers	 to	

propagate	 through	 the	 interface	 rather	 than	 through	 the	 Al	 layer.	 This	 prediction	 agrees	

with	the	observation	of	the	fracture	surfaces	depicted	in	Figure	170.	

  

Figure 170 The images show crack propagation through the thickness of solar cells where the front 

contact is subjected to tensile stress. The crack deviates 90° and propagates parallel to the Al/Si 

interface when it reaches the back Al contact layer. 
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6. Conclusions 

This chapter presents the relevant conclusions extracted from the 

evaluation and analysis of the experimental results carried out in this work. 

The influence of second phase particles on the mechanical behavior of 

different qualities of mc-Si samples is summarized and the type of particles 

that result most deleterious for the survival of silicon wafers is identified. 

Moreover, the influence of every solar cell processing step on the mechanical 

strength of silicon wafers is reviewed. The most critical processing steps for 

the mechanical performance of mc-Si wafers are detected and the causes for 

low mechanical performance are discussed. 

The	 analysis	 of	 the	 experimental	 results	 presented	 in	 this	 work	 from	 the	 mechanical	

characterization	 of	 mc-Si	 blocks	 crystallized	 with	 different	 qualities	 of	 silicon	 feedstock	

allows	 concluding	 that	 second	 phase	 particles	 with	 much	 larger	 thermal	 expansion	

coefficient	 than	silicon,	metals	 like	Al	and	Cu,	are	 the	most	detrimental	 type	of	defects	 for	

multicrystalline	silicon	for	photovoltaic	applications.	Circumferential	micro-cracking	occurs	

in	 the	 surroundings	 of	metallic	 impurities	where	 small	metal	 clusters	 precipitate.	 Cracks	

represent	 the	 most	 severe	 type	 of	 defect	 controlling	 the	 mechanical	 strength	 of	

multicrystalline	silicon	and	should	be	avoided.	Therefore,	silicon	 feedstock	with	very	high	

amount	 of	 metals,	 especially	 Al,	 is	 not	 recommended	 for	 manufacturing	 mc-Si	 with	

acceptable	mechanical	strength.	The	wafers	manufactured	from	the	4N+Al	silicon	feedstock	

showed	the	worst	mechanical	behavior.	

The	 second	 most	 detrimental	 type	 of	 impurity	 is	 amorphous	 silicon	 oxide.	 Amorphous	

silicon	 oxide	 has	 lower	 thermal	 expansion	 coefficient	 and	 elastic	 modulus	 than	 silicon.	

These	 two	material	properties	 induce	 the	overlap	of	 tensile	 tangential	 thermal	and	elastic	

stresses	which	enhances	fracture	by	radial	cracking.	Additionally,	the	oriented	precipitation	

of	 amorphous	 silicon	 oxide	 at	 grain	 and	 twin	 boundaries	 eases	 the	 link	 of	 radial	 cracks	

between	 particles	 and	 decreases	 the	 mechanical	 strength	 of	 multicrystalline	 silicon.	 The	

content	 of	 metal	 impurities	 within	 the	 3N	 silicon	 feedstock	 was	 not	 critical	 as	 to	 cause	

extensive	micro-cracking	 like	 in	 the	 case	 of	 the	 4N+Al	 silicon	 feedstock	 but	 it	 may	 have	

enhanced	the	precipitation	of	amorphous	silicon	oxide	at	the	bottom	of	the	multicrystalline	

silicon	block.	

Silicon	nitride	particles	have	lower	thermal	expansion	coefficient	but	higher	elastic	modulus	

than	silicon.	The	effect	of	the	lower	thermal	expansion	coefficient	is	more	dominant	than	the	

higher	 elastic	 modulus.	 Thus,	 silicon	 nitride	 particles	 with	 tensile	 tangential	 thermal	

stresses	 in	their	surroundings,	decreases	the	 local	 fracture	toughness	and	cause	failure	by	

radial	cracking.	Silicon	nitride	increases	the	elastic	modulus	of	multicrystalline	silicon;	but	

as	 it	 decreases	 local	 toughness,	 silicon	 nitride	 particles	 do	 not	 contribute	 to	 raising	 the	

mechanical	strength	of	silicon.	Silicon	nitride	and	other	rich	N	clusters	may	be	responsible	

of	the	low	fracture	toughness	measured	with	the	UMG mc-Si	block.	

Silicon	carbide	is	a	type	of	particle	with	a	moderate	influence	on	the	mechanical	strength	of	

multicrystalline	silicon.	It	has	higher	thermal	expansion	coefficient	and	elastic	modulus	than	
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silicon.	These	 two	properties	 increase	both	 the	 fracture	 toughness	and	elastic	modulus	of	

multicrystalline	 silicon.	 If	 the	 radius	 of	 the	 silicon	 carbide	 particles	 stays	 lower	 than	

∿10	µm,	 the	 increase	 in	 fracture	 toughness	 and	 elastic	 modulus	 would	 allow	 a	 higher	

mechanical	 strength	 of	 the	 silicon	wafers.	 However,	 if	 the	 precipitation	 of	 silicon	 carbide	

particles	is	not	homogeneous	within	the	material	failure	can	occur	at	the	interface	between	

areas	with	high	and	low	density	of	silicon	carbide	particles.	The	presence	of	silicon	carbide	

particles	slightly	reduced	the	mechanical	strength	of	the	samples	at	the	top	of	the	SoG mc-Si	

block.	

Crystalline	silicon	oxide	is	the	least	deleterious	type	of	impurity	particle.	Crystalline	silicon	

oxide	 particles	 have	 higher	 thermal	 expansion	 coefficient	 but	 lower	 elastic	modulus	 than	

silicon.	 The	 effect	 of	 the	 higher	 thermal	 expansion	 coefficient	 is	more	 dominant	 than	 the	

lower	 elastic	modulus.	 Thus,	 the	 toughening	 effect	 of	 the	 compressive	 tangential	 thermal	

stresses	 is	 dominant	 in	 the	 surroundings	 of	 the	 crystalline	 silicon	 oxide	 particles.	 B	

suppresses	the	growth	of	silicon	oxide	precipitates	which	allows	the	increase	in	toughness	

to	be	translated	into	an	increase	in	the	mechanical	strength	of	B-doped mc-Si.	

The	 mechanical	 strength	 of	 as-cut	 silicon	 substrates	 for	 the	 manufacture	 of	 wafer	

equivalents	 is	 comparable	 to	 the	mechanical	 strength	of	 industry	 standard	 silicon	wafers.	

Micro-cracks	 introduced	 in	 the	 silicon	surface	during	multi-wire	 sawing	are	 the	dominant	

type	of	defect	controlling	the	mechanical	strength	of	the	wafers.	Only	wafers	from	the	top	of	

the	4N+Al	silicon	block	with	extensive	micro-cracking	that	formed	during	the	cooling	phase	

of	 the	 crystallization	 process	 in	 the	 surrounding	 of	 Al	 particles	 and	 that	 are	 larger	 than	

micro-cracks	 formed	 during	 the	 multi-wire	 sawing	 process,	 show	 very	 low	 mechanical	

strength.	

After	 the	removal	of	a	10-15	µm	silicon	 layer	per	side	of	 the	wafers	after	damage	etching,	

the	mechanical	strength	of	the	wafers	can	double	the	mechanical	strength	of	as-cut	wafers.	

The	difference	 in	mechanical	strength	between	different	qualities	of	damage	etched	mc-Si	

wafers	 is	 due	 to	 the	 presence	 of	 cracks	 and	 second	 phase	 particles	 formed	 during	 the	

crystallization	process.	The	 influence	of	every	single	type	of	second	phase	particles	on	the	

mechanical	behavior	of	the	silicon	wafers	has	been	just	summarized	in	this	chapter.	

The	deposition	of	the	epitaxial	silicon	layer	decreases	the	mechanical	strength	of	the	silicon	

substrate.	The	cooling	of	 the	wafers	 can	 introduce	 thermal	 residual	 stress;	 thermal	 shock	

caused	defects	or	 flaws	 formed	by	 the	yielding	of	 the	 silicon	matrix.	As	 these	are	process	

induced	defects,	 the	difference	in	mechanical	strength	between	different	qualities	of	mc-Si	

wafers	becomes	smaller	and	the	wafers	converge	to	a	certain	level	of	mechanical	strength.	

The	 presence	 of	 the	 epitaxial	 silicon	 layer	 intensifies	 the	 convergence	 in	 mechanical	

strength	of	wafer	equivalents.	The	level	of	stress	of	the	epitaxial	silicon	layer	and	its	surface	

morphology	as	well	as	thermal	stresses	in	the	substrate	control	the	mechanical	strength	of	

wafer	equivalents.	

Lastly,	 it	 can	 be	 concluded	 that	 epitaxial	 wafer	 equivalents	 manufactured	 from	 low	 cost	

silicon	substrates	show	sufficient	mechanical	strength	for	further	solar	cell	processing.	
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The	mechanical	 characterization	 of	 mc-Si	 wafers	 through	 the	 solar	 cell	 processing	 chain	

revealed	 that	 texture	and	phosphorus	emitter	diffusion	are	 the	solar	cell	processing	steps	

that	increase	the	mechanical	strength	of	silicon	wafers.	

The	texture	process	removes	micro-cracks	partially	and	blunts	the	tips	of	remaining	cracks.	

The	 amount	 of	 silicon	 removed	 during	 texture	 was	 insufficient	 to	 remove	 micro-cracks	

completely.	Thus,	the	increase	in	mechanical	strength	of	the	wafers	after	texture	was	lower	

than	 the	 increase	 in	 mechanical	 strength	 after	 damage	 etching	 which	 removed	 deeper	

silicon	layers.	Therefore,	longer	texture	processes	that	remove	a	deeper	silicon	layer	would	

be	recommended	in	order	to	improve	the	mechanical	strength	of	textured	wafers.	

The	 mechanical	 strength	 of	 silicon	 wafers	 reached	 a	 maximum	 value	 after	 phosphorus	

emitter	 diffusion.	 The	 deposition	 of	 a	 phosphosilicate	 glass	 layer	 on	 the	 surface	 caused	

compressive	 thermal	 stresses	which	 exerts	 a	 strengthening	 effect	 that	 increased	20%	 the	

mechanical	strength	of	the	silicon	wafers.	

The	 solar	 cell	 processes	 that	 decrease	 the	 mechanical	 behavior	 of	 silicon	 wafers,	 in	 an	

increasing	 order	 of	 impact	were	 block	 crystallization,	 the	 removal	 of	 the	 phosphosilicate	

glass	layer,	silicon	nitride	antireflection	coating,	multi-wire	sawing	and	metallization.	

As	it	has	been	already	mentioned,	the	influence	of	particles	formed	during	crystallization	on	

the	 mechanical	 behavior	 of	 the	 silicon	 wafers	 has	 been	 summarized	 in	 this	 chapter.	

Therefore,	 the	 control	 of	 the	 crystallization	 process	 is	 of	 most	 importance	 in	 order	 to	

provide	silicon	wafers	with	acceptable	mechanical	behavior	for	further	solar	cell	processing.	

The	removal	of	 the	phosphosilicate	glass	 layer	also	removes	the	compressive	stress	in	the	

silicon	 surface.	 Therefore,	 the	 mechanical	 strength	 of	 the	 wafers	 is	 comparable	 to	 the	

mechanical	strength	of	textured	wafers	before	phosphorus	emitter	diffusion.		

The	 10%	 reduction	 in	 mechanical	 strength	 of	 silicon	 wafers	 after	 silicon	 nitride	

antireflection	 coating	 in	 comparison	 with	 textured	 wafers	 is	 presumably	 due	 to	 stress	

intensification	at	sharp	etch	pits	observed	on	the	surface	of	passivated	wafers.	

As	 it	 has	 been	 already	 discussed,	 micro-cracks	 introduced	 in	 the	 wafer’s	 surface	 during	

multi-wire	sawing	were	responsible	for	the	very	low	strength	of	as-cut	wafers.	

Finally,	Al/Ag	and	Ag	bus	bars	from	the	back	and	the	front	contacts	of	the	solar	cell	reduced	

the	mechanical	 strength	of	 the	 final	 solar	 cells	 to	 the	 level	of	 as-cut	wafers.	High	 thermal	

stresses	 introduced	 in	 silicon	 by	 the	 firing	 of	 the	 bus	 bars	makes	 silicon	 prone	 to	 crack	

easily	at	these	areas,	being	these	cracks	the	flaw	type	controlling	the	mechanical	strength	of	

final	solar	cells.	The	Al	layer	from	the	back	contact	even	increases	the	mechanical	strength	

of	 the	 solar	 cell	 as	 a	 layered	 structure	 but	 the	 negative	 effect	 of	 the	 bus	 bars	makes	 this	

effect	not	noticeable	for	the	solar	cell	as	a	whole	structure.	

As	a	final	summary,	the	main	contributions	of	this	work	are	the	analysis	of	the	mechanical	

behavior	of	silicon	wafers	as	particle	composites	where	impurity	particles	play	a	major	role	

in	 the	 fracture	 of	 silicon	 and	 as	 laminate	 composites	 as	 layers	 of	 different	materials	 are	

deposited	 on	 the	 silicon	 wafers	 through	 solar	 cell	 processing.	 Failure	 criteria	 for	 silicon	

wafers	 containing	 different	 types	 of	 second	 phase	 particles	 and	 with	 layers	 of	 different	

materials	 on	 them	 are	 researched	 in	 the	 literature	 and	 applied	 in	 order	 to	 evaluate	 the	
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experimental	results	and	predict	the	mechanical	behavior	of	the	silicon	wafers.	Finally,	the	

influence	of	impurity	particles	on	the	fracture	toughness	and	the	elastic	modulus	of	silicon	

have	 been	 also	 theoretically	 and	 experimentally	 analyzed	 in	 this	 work.	 All	 these	

contributions	applied	to	silicon	wafers	were	not	found	in	the	literature	and	therefore	they	

represent	 new	 knowledge.	 Some	measurement	 techniques	 performed	 on	 silicon,	 like	 the	

ROR	 bending	 test	 on	 small	 round	 pieces	 from	 the	 same	 wafer	 which	 offers	 a	 spatial	

distribution	 of	 the	 fracture	 stresses	 of	 the	wafer,	 fracture	 toughness	measurements	with	

wire	 and	 laser	 introduced	 notches	 and	 dynamic	 elastic	 modulus	 measurements,	 are	 not	

found	 in	 actual	 literature	 and	 therefore	 they	 also	 represent	 a	 new	 contribution	 to	 the	

mechanical	characterization	of	silicon.	

During	 the	 life	 performance	 of	 solar	 cells,	 which	 are	 assembled	 into	 solar	 panels	 and	

exposed	 to	 the	 environment,	 they	 will	 be	 subjected	 to	 cyclic	 loadings	 like	 temperature	

changes,	 rainfalls,	 wind,	 etc.	 Therefore,	 the	 study	 of	 the	 fatigue	 behavior	 of	 silicon	

containing	different	 types	of	 impurity	particles	or	 layered	 structures	 is	 a	 very	 interesting	

field	of	research	for	future	works.	
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Appendices 

Appendix A: Material Properties 

	

Table 10 Elastic constants of silicon. Stiffness values are given in GPa and compliance values are given in 

GPa-1 [156], [157], [158]. ôõõ ôõö ô÷÷ øõõ øõö ø÷÷ 

165.64	 63.94	 79.51	 7.68×10-3	 -2.14×10-3	 12.6×10-3	

	

Table 11 Engineering elastic constants of silicon. VR states for Voigt and Reuss and HS states for Hashin 

and Shtrikman. / and ., an are given in [GPa]. 

	 B ùúûüýþ ù��. ù���ýþ 

VR	 97,84	 64,87	 66.46	 68,04	

HS	 97,84	 66.36	 66.50	 66.64	

	

Table 12 Engineering elastic modulus of silicon in [GPa]. VR states for Voigt and Reuss and HS states for 

Hashin and Shtrikman. 

	 �úûüýþ ���. ����ýþ 

VR	 159.44	 162.57	 165.66	

HS	 162.37	 162.67	 162.94	

	

Table 13 Engineering Poisson´s ratio of silicon [-]. VR states for Voigt and Reuss and HS states for Hashin 

and Shtrikman. 

	 �úûüýþ ���. ����ýþ 

VR	 0.217	 0.223	 0.229	

HS	 0.223	 0.223	 0.223	
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Table 14 Values of the thermal expansion coefficient of silicon at different temperatures [69]. 

���� 	��� × õ
=���=õ� ���� 	��� × õ
=���=õ� 
100	 -0.51	 380	 3.11	

120	 -0.02	 400	 3.21	

140	 0.41	 500	 3.59	

160	 0.80	 600	 3.83	

180	 1.14	 700	 3.99	

200	 1.45	 800	 4.10	

220	 1.73	 900	 4.19	

240	 1.97	 1000	 4.26	

260	 2.19	 1100	 4.32	

280	 2.39	 1200	 4.38	

300	 2.57	 1300	 4.44	

320	 2.73	 1400	 4.50	

340	 2.87	 1500	 4.56	

360	 2.99	 	 	

	

Table 15 Material properties of silicon and the second phase particles found within the crystallized mc-

Si blocks at 775°C. 

Material 	 × õ
=���=õ� ��−� ���
�� ��ô��
�� 
Si	 4.3	 0.223	 162.6	 0.83-0.94	

Al	 23	 0.334	 69	 22-30	

Cu	 16.9	 0.34	 117	 -	

SiOx	(am.)	 0.5	 0.165	 73	 0.6-0.8	

SiOx	(cryst.)	 12.3	 0.17	 70	 -	

Si3N4	 2.35	 0.27	 310	 4-6	

SiC	 4.8	 0.15	 380	 2.5-5	
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Appendix B: Tables for the Calculation of the Maximum-Likelihood Estimates 

	

Table 16 Unbiaxing factors for the maximum likelihood estimate of the Weibull modulus. 

Number of 

Specimens, n 

Unbiasing Factor, 

UF 

Number of 

Specimens, n 

Unbiasing Factor, 

UF 

5	 0.700	 42	 0.968	

6	 0.752	 44	 0.970	

7	 0.792	 46	 0.971	

8	 0.820	 48	 0.972	

9	 0.842	 50	 0.973	

10	 0.859	 52	 0.974	

11	 0.872	 54	 0.975	

12	 0.883	 56	 0.976	

13	 0.893	 58	 0.977	

14	 0.901	 60	 0.978	

15	 0.908	 62	 0.979	

16	 0.914	 64	 0.980	

18	 0.923	 66	 0.980	

20	 0.931	 68	 0.981	

22	 0.938	 70	 0.981	

24	 0.943	 72	 0.982	

26	 0.947	 74	 0.982	

28	 0.951	 76	 0.983	

30	 0.955	 78	 0.983	

32	 0.958	 80	 0.984	

34	 0.960	 85	 0.985	

36	 0.962	 90	 0.986	

38	 0.964	 100	 0.987	

40	 0.966	 120	 0.990	
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Table 17 Normalized upper and lower bounds on the maximum likelihood estimate of the Weibull 

modulus - 90% confidence ranges. 

Number of 

Specimens, n 
�
.
�  �
.�� 

Number of 

Specimens, n 
�
.
� �
.�� 

5	 0.683	 2.779	 42	 0.842	 1.265	

6	 0.697	 2.436	 44	 0.845	 1.256	

7	 0.709	 2.183	 46	 0.847	 1.249	

8	 0.720	 2.015	 48	 0.850	 1.242	

9	 0.729	 1.896	 50	 0.852	 1.235	

10	 0.738	 1.807	 52	 0.854	 1.229	

11	 0.745	 1.738	 54	 0.857	 1.224	

12	 0.752	 1.682	 56	 0.859	 1.218	

13	 0.759	 1.636	 58	 0.861	 1.213	

14	 0.764	 1.597	 60	 0.863	 1.208	

15	 0.770	 1.564	 62	 0.864	 1.204	

16	 0.775	 1.535	 64	 0.866	 1.200	

17	 0.779	 1.510	 66	 0.868	 1.196	

18	 0.784	 1.487	 68	 0.869	 1.192	

19	 0.788	 1.467	 70	 0.871	 1.188	

20	 0.791	 1.449	 72	 0.872	 1.185	

22	 0.798	 1.418	 74	 0.874	 1.182	

24	 0.805	 1.392	 76	 0.875	 1.179	

26	 0.810	 1.370	 78	 0.876	 1.176	

28	 0.815	 1.351	 80	 0.878	 1.173	

30	 0.820	 1.334	 85	 0.881	 1.166	

32	 0.824	 1.319	 90	 0.883	 1.160	

34	 0.828	 1.306	 95	 0.886	 1.155	

36	 0.832	 1.294	 100	 0.888	 1.150	

38	 0.835	 1.283	 110	 0.893	 1.141	

40	 0.839	 1.273	 120	 0.897	 1.133	
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Table 18 Normalized upper and lower bounds on the function t - 90% confidence ranges. 

Number of 

Specimens, n 
�
.
�  �
.�� 

Number of 

Specimens, n 
�
.
� �
.�� 

5	 -1.247	 1.107	 42	 -0.280	 0.278	

6	 -1.007	 0.939	 44	 -0.273	 0.271	

7	 -0.874	 0.829	 46	 -0.266	 0.264	

8	 -0.784	 0.751	 48	 -0.260	 0.258	

9	 -0.717	 0.691	 50	 -0.254	 0.253	

10	 -0.665	 0.644	 52	 -0.249	 0.247	

11	 -0.622	 0.605	 54	 -0.244	 0.243	

12	 -0.587	 0.572	 56	 -0.239	 0.238	

13	 -0.557	 0.544	 58	 -0.234	 0.233	

14	 -0.532	 0.520	 60	 -0.230	 0.229	

15	 -0.509	 0.499	 62	 -0.266	 0.225	

16	 -0.489	 0.480	 64	 -0.222	 0.221	

17	 -0.471	 0.463	 66	 -0.218	 0.218	

18	 -0.455	 0.447	 68	 -0.215	 0.214	

19	 -0.441	 0.433	 70	 -0.211	 0.211	

20	 -0.428	 0.421	 72	 -0.208	 0.208	

22	 -0.404	 0.398	 74	 -0.205	 0.205	

24	 -0.384	 0.379	 76	 -0.202	 0.202	

26	 -0.367	 0.362	 78	 -0.199	 0.199	

28	 -0.352	 0.347	 80	 -0.197	 0.197	

30	 -0.338	 0.334	 85	 -0.190	 0.190	

32	 -0.326	 0.323	 90	 -0.184	 0.185	

34	 -0.315	 0.312	 95	 -0.179	 0.179	

36	 -0.305	 0.302	 100	 -0.174	 0.175	

38	 -0.296	 0.293	 110	 -0.165	 0.166	

40	 -0/288	 0.235	 120	 -0.158	 0.169	
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Appendix C: R Routine for the Calculation of the Maximum-Likelihood Estimates 

	

###Programming	the	“ln”	function###	

ln<-function(x, ...) 

{ 

log(x, base=exp(1)) 

} 

###Importing	fracture	stresses	and	sorting	them	in	increasing	order###	

S_biaxial<-read.table("samplename.txt") 

S_biaxial_a<-c(S_biaxial[,1]) 

S_biaxial_ordered<-sort(S_biaxial_a) 

###Calculation	of	ÎÏ 	and	�dÐ	by	the	maximum-likelihood	method###	

m_init<-1.00 

m_end<-50.00 

step<-0.01 

N<-length(S_biaxial_ordered) 

r<-N 

a<-c() 

b<-c() 

c<-c() 

fun<-c() 

diff<-c() 

res<-c() 

m<-seq(m_init,m_end,by=step) 

for(i in 1:length(m)) 

{ 

a<-sum((S_biaxial_ordered)^(m[i])*ln(S_biaxial_ordered)) 

b<-sum((S_biaxial_ordered)^m[i]) 

c<-sum(ln(S_biaxial_ordered)) 

fun[i]<-1/((a/b)-((1/r)*c)) 

diff[i]<-fun[i]-m[i] 
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fun[i] 

if( -0.009 < diff[i] & diff[i] < 0.009 ) { 

res_m<-data.frame(fun[i],m[i],diff[i]) 

} 

} 

S_m<-S_biaxial_ordered^res_m[,2] 

S_biaxial_characteristic<-(sum(S_m)/r)^(1/res_m[,2]) 

###Unbiasing	ÎÏ 	and	calculation	of	the	confidence	ranges	for	Î###	

UF_m<-read.table("UF_m.txt",col.names=c("UF_m")) 

u_m<-res_m[,2]*UF_m[length(S_biaxial_ordered),] 

q_m<-read.table("q_m.txt",col.names=c("q_0.05","q_0.95")) 

u_m_u_b<-res_m[,2]/q_m[length(S_biaxial_ordered),1] 

u_m_l_b<-res_m[,2]/q_m[length(S_biaxial_ordered),2] 

Weibull_module<-data.frame(u_m,u_m_u_b,u_m_l_b) 

###Exporting	Î	with	confidence	bounds###	

write.table(Weibull_module,"m_samplename.txt",row.names=FALSE,col.names=

FALSE) 

###Calculation	of	the	confidence	ranges	for	�Ôd###	
t_S_characteristic<-

read.table("t_S_characteristic.txt",col.names=c("t_0.05","t_0.95")) 

t_S_u_b<-S_biaxial_characteristic*exp(-

t_S_characteristic[length(S_biaxial),1]/res_m[,2]) 

t_S_l_b<-S_biaxial_characteristic*exp(-

t_S_characteristic[length(S_biaxial),2]/res_m[,2]) 

S_characteristic<-data.frame(S_biaxial_characteristic,t_S_u_b,t_S_l_b)	

###Exporting	�d	with	confidence	bounds###	
write.table(S_characteristic,"Charact_stress_samplename.txt",row.names=F

ALSE,col.names=FALSE)		

###Calculation	 and	 exporting	 of	 data	 files	 necessary	 in	 the	 routine	 of	 Appendix	 D	 for	

depicting	the	graph	of	the	cumulative	Weibull	density	function###	

###Calculation	and	exporting	of	 the	experimental	values	 (fracture	probability	and	

stresses)###	
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p<-seq(1,length(S_biaxial_ordered),1) 

P_f<-(p-0.5)/length(S_biaxial_ordered) 

P_f_S_biaxial<-data.frame(P_f,S_biaxial_ordered) 

write.table(P_f_S_biaxial,"P_f_S_biaxial_samplename.txt",row.names=FALSE

,col.names=FALSE)	 

###Calculation	and	exporting	of	the	cumulative	Weibull	density	function###	

s<-seq(0,1725,1) 

Prob_failure<-1-exp(-(s/S_biaxial_characteristic)^u_m) 

write.table(Prob_failure,"Prob_failure_samplename.txt",row.names=FALSE,c

ol.names=FALSE) 

###Exporting	data	for	depicting	arrows	pointing	at	the	�d	in	the	cumulative	Weibull	

density	function	graph###	

l_o_a<-0.632 

c_o_a<-0 

l_f_a<-0.632 

c_f_a<-S_biaxial_characteristic 

l_o_b<-0.632 

c_o_b<-S_biaxial_characteristic 

l_f_b<-0 

c_f_b<-S_biaxial_characteristic 

arrows_wcdf<-data.frame(l_o_a, c_o_a, l_f_a, c_f_a, l_o_b, c_o_b, l_f_b, 

c_f_b) 

write.table(arrows_wcdf,"arrows_wcdf_samplename.txt",row.names=FALSE,col

.names=FALSE)		
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Appendix D: R Routine for the Representation of the Cumulative Weibull Density Function 

	

###	Importing	the	data	which	was	calculated	and	exported	with	the	routine	of	Appendix	C	

for	depicting	the	cumulative	Weibull	density	function###	

P_f_S_biaxial_samplename<-

read.table("P_f_S_biaxial_samplename.txt",col.names=c("P_f", 

"S_biaxial")) 

P_f_samplename<-c(P_f_S_biaxial_samplename[,"P_f"])  

S_biaxial_samplename<-c(P_f_S_biaxial_samplename[,"S_biaxial"]) 

Prob_failure_samplename<-

read.table("Prob_failure_samplename.txt",col.names=c("Prob_failure")) 

Prob_failure_samplename<-c(Prob_failure_samplename[,"Prob_failure"]) 

arrows_wcdf_samplename<-

read.table("arrows_wcdf_samplename.txt",col.names=c("l_o_a","c_o_a","l_f

_a","c_f_a","l_o_b","c_o_b","l_f_b","c_f_b")) 

l_o_a_samplename<-c(arrows_wcdf_samplename[,"l_o_a"]) 

c_o_a_samplename<-c(arrows_wcdf_samplename[,"c_o_a"]) 

l_f_a_samplename<-c(arrows_wcdf_samplename[,"l_f_a"]) 

c_f_a_samplename<-c(arrows_wcdf_samplename[,"c_f_a"]) 

l_o_b_samplename<-c(arrows_wcdf_samplename[,"l_o_b"]) 

c_o_b_samplename<-c(arrows_wcdf_samplename[,"c_o_b"]) 

l_f_b_samplename<-c(arrows_wcdf_samplename[,"l_f_b"]) 

c_f_b_samplename<-c(arrows_wcdf_samplename[,"c_f_b"]) 

###Representation	of	the	cumulative	Weibull	density	function###	

gridy<-seq(50,650,50) 

gridx<-seq(0.1,0.9,0.1) 

s<-seq(0,1725,1) 

yrange<-c(0,1)  

xrange<-c(0,675) 

jpeg("samplename.jpg", width=1440, height=1300, pointsize=32) 

par(mai=c(0,0,0,0),mar=c(5, 5, 2, 1)) 

plot(S_biaxial_samplename, P_f_samplename, type="p", pch=8, 

col="black", cex=1.3, lwd=2.0, bg="white", ylab="", xlab="", 

cex.axis=1.35,  font.lab=2, cex.lab=1.8, lab=c(10,10,20), ylim=yrange, 

xlim=xrange, main=(""), cex.main=1.6, xaxs="i", yaxs="i", las=1) 
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mtext(side=2, text="Fracture Probability", line=3.5, cex= 1.75) 

mtext(side=1, text="Stress [MPa]", line=3, cex= 1.75) 

abline(h=gridx, v=0, col="grey", lty=1, lwd=2.5) 

abline(h=0, v=gridy, col="grey", lty=1, lwd=2.5) 

points(S_biaxial_samplename,P_f_samplename, pch=8, col="black", 

bg="white", cex=1.3, lwd=2.5) 

lines(s, Prob_failure_samplename,col="black", lty=1, lwd=3.0) 

arrows(c_o_a_samplename, l_o_a_samplename, c_f_a_samplename, 

l_f_a_samplename, length=0, code=2, col="black", lty=1, lwd=2) 

arrows(c_o_b_samplename, l_o_b_samplename, c_f_b_samplename, 

l_f_b_samplename, length=0.50, code=2, col="black", lty=1, lwd=2) 

x<-410 

y<-0.22 

legend(x, y, c("samplename"), text.col = "black", pch=c(8), col = 

c("black"), pt.bg=c("white"), pt.lwd=2.0, lty = c(1), lwd=c(2.5), 

bty="o", bg="white", cex=1.35) 

dev.off() 
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Appendix E: Weibull Graphs and Weibull Parameters for the Three-point Bending Test 

	

	 	

a)	 b)	

Figure 171 Weibull graphs plotting fracture probability against applied uniaxial stress for 4N+Al mc-Si 

after damage etching. 

	

Table 19 Characteristic stress, σθ [MPa], and Weibull modulus, m [-],	for damage etched 4N+Al mc-Si. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

TPB 	 	 	 	 	 	

98%	 44.9	 58.1	 77.6	 3.0	 4.0	 5.4	

78%	 34.7	 43.1	 55.1	 3.7	 4.8	 6.3	

58%	 102.2	 136.8	 190.1	 2.7	 3.6	 4.7	

38%	 113.7	 162.4	 242.9	 2.2	 2.9	 3.9	

18%	 146.3	 184.5	 239.6	 3.3	 4.5	 6.0	
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a)	 b)	

Figure 172 Weibull graphs plotting fracture probability against applied uniaxial stress for 3N mc-Si 

after damage etching. 

	

Table 20 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for damage etched 3N mc-Si. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

79%	 127.4	 182.0	 272.2	 2.1	 2.9	 4.0	

65%	 168.5	 235.5	 343.2	 2.1	 3.0	 4.3	

54%	 140.6	 231.6	 406.1	 1.5	 2.1	 2.8	

40%	 138.2	 196.7	 292.5	 2.0	 2.9	 4.1	

25%	 107.2	 144.2	 201.2	 2.4	 3.4	 4.8	

11%	 143.9	 194.9	 274.2	 2.4	 3.3	 4.7	
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a)	 b)	

Figure 173 Weibull graphs plotting fracture probability against applied uniaxial stress for B-doped mc-

Si after damage etching. 

	

Table 21 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-],	for damage etched B-doped mc-Si. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

89%	 144.4	 202.1	 295.3	 2.3	 3.1	 4.1	

73%	 122.2	 178.1	 272.2	 2.1	 2.8	 3.7	

58%	 135.9	 178.2	 241.7	 2.9	 3.8	 5.1	

42%	 142.4	 193.5	 273.3	 2.6	 3.4	 4.5	

26%	 122.6	 164.4	 228.9	 2.6	 3.5	 4.8	

11%	 130.8	 204.5	 338.1	 1.7	 2.3	 3.1	
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a)	 b)	

Figure 174 Weibull graphs plotting fracture probability against applied uniaxial stress for UMG mc-Si 

after damage etching. 

	

Table 22 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for damage etched UMG mc-Si. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

86%	 133.9	 189.5	 280.1	 2.3	 3.0	 4.0	

70%	 168.4	 219.7	 296.5	 2.7	 3.8	 5.4	

54%	 152.7	 210.9	 303.4	 2.3	 3.2	 4.4	

38%	 139.4	 177.4	 232.6	 3.2	 4.3	 5.8	

23%	 133.9	 191.1	 285.4	 2.1	 2.9	 4.0	

6%	 175.9	 227.5	 304.0	 3.0	 4.0	 5.4	

	 	



A p p e n d i c e s 	|	187	

	 	

a)	 b)	

Figure 175 Weibull graphs plotting fracture probability against applied uniaxial stress for SoG mc-Si 

after damage etching. 

	

Table 23 Characteristic stress, σθ [MPa], and Weibull modulus, m [-], for damage etched SoG mc-Si. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

93%	 136.3	 200.4	 309.5	 2.0	 2.7	 3.6	

75%	 149.7	 208.4	 302.3	 2.2	 3.1	 4.3	

58%	 164.6	 207.3	 268.8	 3.2	 4.4	 6.2	

41%	 165.0	 249.0	 395.8	 1.8	 2.5	 3.4	

25%	 154.0	 223.3	 339.3	 2.0	 2.8	 3.8	

7%	 126.1	 183.3	 279.3	 2.0	 2.7	 3.8	
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Appendix F: Weibull Graphs and Weibull Parameters for the Ring-on-ring Bending Test 

	

	 	

a)	 b)	

	 	

c)	 d)	

	 	

e)	 f)	

Figure 176 Weibull graphs plotting fracture probability against applied equibiaxial stress after multi-

wire sawing. 
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Table 24 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for sawn wafers. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

4N+Al  

mc-Si	
	 	 	 	 	 	

77%	 60.8	 79.6	 107.9	 3.2	 4.0	 4.9	

63%	 89.1	 116.2	 156.7	 3.3	 4.0	 4.9	

33%	 135.0	 156.4	 184.7	 5.9	 7.3	 8.9	

3N mc-Si	 	 	 	 	 	 	

77%	 149.0	 163.3	 181.1	 9.5	 11.7	 14.3	

47%	 137.6	 152.6	 171.6	 8.4	 10.3	 12.6	

26%	 136.7	 149.3	 164.8	 10.0	 12.2	 14.9	

5%	 135.4	 149.5	 167.1	 8.8	 10.8	 13.3	

B-doped 

mc-Si	
	 	 	 	 	 	

86%	 144.8	 156.5	 171.0	 11.1	 13.7	 16.8	

36%	 140.6	 154.1	 170.9	 9.6	 11.7	 14.3	

11%	 137.7	 152.2	 170.4	 8.8	 10.7	 13.1	

UMG mc-Si 	 	 	 	 	 	

88%	 170.7	 199.7	 238.3	 5.8	 7.0	 8.4	

49%	 155.0	 184.4	 224.3	 5.0	 6.2	 7.6	

8%	 134.4	 151.0	 172.2	 7.3	 9.1	 11.4	

SoG mc-Si 	 	 	 	 	 	

86%	 182.5	 208.3	 241.8	 6.8	 8.1	 9.8	

49%	 152.0	 181.2	 220.8	 5.0	 6.1	 7.5	

5%	 157.4	 177.6	 203.5	 7.4	 8.9	 10.8	

Standard 

mc-Si 

	 	 	 	 	 	

?	 134.3	 155.9	 184.5	 5.9	 7.2	 8.8	

Standard 

Cz-Si	

	 	 	 	 	 	

?	 151.3	 167.8	 188.5	 8.5	 10.4	 12.7	
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a)	 b)	

	 	

c)	 d)	

	 	

e)	 f)	

Figure 177 Weibull graphs plotting fracture probability against applied equibiaxial stress after damage 

etching. 
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Table 25 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for damage etched wafers. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

4N+Al  

mc-Si	
	 	 	 	 	 	

77%	 60.1	 72.7	 90.0	 4.4	 5.6	 7.1	

63%	 106.2	 153.2	 231.5	 2.4	 2.9	 3.6	

33%	 221.6	 287.5	 385.6	 3.4	 4.1	 5.0	

3N mc-Si	 	 	 	 	 	 	

77%	 263.7	 354.9	 495.7	 3.0	 3.6	 4.4	

47%	 235.9	 324.8	 465.8	 2.8	 3.4	 4.1	

26%	 203.0	 318.3	 528.5	 2.0	 2.4	 2.9	

5%	 161.9	 216.5	 300.4	 3.0	 3.7	 4.5	

B-doped 

mc-Si	

	 	 	 	 	 	

84%	 262.3	 315.6	 388.6	 4.8	 5.8	 7.1	

36%	 287.9	 385.2	 534.8	 3.1	 3.7	 4.5	

11%	 262.5	 354.1	 496.0	 3.0	 3.6	 4.4	

UMG mc-Si 	 	 	 	 	 	

88%	 314.8	 415.1	 567.0	 3.1	 3.9	 4.8	

49%	 333.7	 441.6	 605.6	 3.1	 3.8	 4.7	

8%	 288.6	 390.2	 548.1	 3.0	 3.6	 4.3	

SoG mc-Si 	 	 	 	 	 	

86%	 245.5	 346.2	 510.0	 2.6	 3.1	 3.8	

49%	 307.0	 417.8	 591.4	 2.9	 3.5	 4.2	

5%	 322.0	 416.3	 555.9	 3.4	 4.2	 5.1	

Standard 

mc-Si 

	 	 	 	 	 	

?	 255.9	 337.7	 461.7	 3.2	 3.9	 4.7	

Standard 

Cz-Si	

	 	 	 	 	 	

?	 394.2	 469.6	 572.0	 5.1	 6.1	 7.5	
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a)	 b)	

	 	

d)	 d)	

Figure 178 Weibull graphs plotting fracture probability against applied equibiaxial stress after 

annealing. 
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Table 26 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for annealed wafers. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

4N+Al  

mc-Si	
	 	 	 	 	 	

77%	 57.6	 65.5	 75.8	 6.4	 8.2	 10.4	

63%	 130.8	 179.2	 255.4	 2.7	 3.4	 4.3	

33%	 256.4	 347.8	 490.3	 2.8	 3.5	 4.4	

3N mc-Si	 	 	 	 	 	 	

77%	 239.5	 306.6	 405.0	 3.4	 4.3	 5.5	

47%	 275.3	 327.7	 398.6	 4.7	 6.1	 7.8	

26%	 208.7	 284.6	 403.6	 2.7	 3.4	 4.3	

5%	 213.2	 277.5	 373.4	 3.2	 4.0	 5.1	

B-doped 

mc-Si	
	 	 	 	 	 	

86%	 275.6	 353.6	 468.3	 3.3	 4.2	 5.4	

36%	 258.7	 317.8	 400.7	 4.1	 5.1	 6.5	

11%	 256.6	 314.8	 396.4	 4.1	 5.2	 6.6	

Standard 

mc-Si	
	 	 	 	 	 	

?	 264.5	 329.8	 423.0	 3.7	 4.8	 6.1	

Standard 

Cz-Si	
	 	 	 	 	 	

?	 257.1	 372.8	 566.5	 2.2	 2.8	 3.6	

	 	



194	|	 A p p e n d i c e s 	

	 	

a)	 b)	

	 	

c)	 d)	

Figure 179 Weibull graphs plotting fracture probability against applied equibiaxial stress after thin film 

deposition. 
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Table 27 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for wafer equivalents. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

4N+Al  

mc-Si	
	 	 	 	 	 	

77%	 -	 -	 -	 -	 -	 -	

63%	 -	 -	 -	 -	 -	 -	

33%	 255.2	 318.8	 409.5	 3.8	 4.8	 6.0	

3N mc-Si	 	 	 	 	 	 	

77%	 241.9	 303.2	 391.1	 3.7	 4.7	 5.9	

47%	 265.2	 322.3	 401.5	 4.3	 5.4	 6.9	

26%	 210.8	 302.7	 455.0	 2.3	 2.9	 3.7	

5%	 234.1	 297.2	 388.8	 3.5	 4.4	 5.6	

B-doped 

mc-Si	
	 	 	 	 	 	

84%	 224.5	 295.5	 402.7	 3.1	 3.9	 4.9	

36%	 242.8	 313.2	 417.1	 3.3	 4.2	 5.3	

11%	 252.5	 316.2	 407.4	 3.7	 4.7	 6.0	

Standard 

mc-Si	
	 	 	 	 	 	

?	 206.7	 275.6	 381.0	 2.9	 3.7	 4.7	

Standard 

Cz-Si	
	 	 	 	 	 	

?	 258.3	 326.4	 424.8	 3.5	 4.5	 5.8	
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a)	 b)	

	

c)	

Figure 180 Weibull graphs plotting fracture probability against applied equibiaxial stress after texture. 

Table 28 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for textured wafers. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 253.4	 291.6	 341.6	 6.3	 7.7	 9.3	

49%	 240.0	 279.1	 330.8	 5.9	 7.1	 8.6	

8%	 223.6	 265.4	 322.0	 5.2	 6.3	 7.6	

SoG mc-Si 	 	 	 	 	 	

86%	 230.0	 273.1	 331.4	 5.2	 6.3	 7.6	

49%	 251.7	 283.6	 324.4	 7.5	 9.0	 10.9	

5%	 230.1	 273.2	 331.4	 5.7	 7.0	 8.5	
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a)	 b)	

	

c)	

Figure 181 Weibull graphs plotting fracture probability against applied equibiaxial stress after emitter 

diffusion. 

Table 29 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for wafers after emitter diffusion. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 277.3	 325.5	 389.9	 5.5	 6.7	 8.2	

49%	 271.0	 314.0	 370.4	 6.0	 7.3	 8.9	

8%	 340.8	 359.2	 378.7	 5.1	 6.2	 7.5	

SoG mc-Si 	 	 	 	 	 	

86%	 249.3	 288.5	 340.1	 6.1	 7.4	 8.9	

49%	 283.0	 324.7	 379.1	 6.5	 7.8	 9.5	

5%	 284.0	 315.5	 355.2	 8.4	 10.2	 12.4	
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a)	 b)	

	

c)	

Figure 182 Weibull graphs plotting fracture probability against applied equibiaxial stress after 

phosphosilicate glass etching. 

Table 30 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], after phosphosilicate glass etching. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 240.0	 288.1	 354.0	 4.9	 5.9	 7.2	

49%	 241.5	 278.7	 327.6	 6.2	 7.5	 9.1	

8%	 222.7	 265.3	 323.2	 5.1	 6.1	 7.4	

SoG mc-Si 	 	 	 	 	 	

86%	 223.2	 263.6	 318.0	 5.4	 6.5	 7.8	

49%	 255.4	 286.2	 325.2	 7.8	 9.5	 11.5	

5%	 231.2	 271.9	 326.5	 5.5	 6.6	 8.0	
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a)	 b)	

	

c)	

Figure 183 Weibull graphs plotting fracture probability against applied equibiaxial stress after 

antireflection coating. 

Table 31 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], after antireflection coating. 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 243.9	 275.9	 317.2	 7.1	 8.7	 10.6	

49%	 223.0	 248.7	 281.2	 7.9	 9.8	 12.1	

8%	 218.6	 241.3	 269.6	 9.0	 10.9	 13.2	

SoG mc-Si 	 	 	 	 	 	

86%	 212.5	 236.4	 266.6	 8.3	 10.1	 12.2	

49%	 226.6	 249.6	 278.4	 9.1	 11.1	 13.5	

5%	 218.9	 251.0	 292.7	 6.5	 7.9	 9.6	
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a)	 b)	

	

c)	

Figure 184 Weibull graphs after antireflection coating (skipping emitter diffusion). 

Table 32 Characteristic stress,	 σθ [MPa], and Weibull modulus, m [-], after antireflection coating 

(skipping emitter diffusion). 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 209.9	 239.9	 278.8	 6.7	 8.1	 9.7	

49%	 190.9	 213.9	 243.3	 7.7	 9.4	 11.5	

8%	 200.4	 218.7	 241.4	 10.0	 12.3	 15.0	

SoG mc-Si 	 	 	 	 	 	

86%	 192.6	 214.2	 241.6	 8.3	 10.1	 12.3	

49%	 201.1	 231.6	 271.4	 6.3	 7.6	 9.3	

5%	 216.7	 242.6	 275.6	 7.9	 9.5	 11.5	
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a)	 b)	

	 	

c)	 d)	

	 	

e)	 f)	

Figure 185 Weibull graphs plotting fracture probability against applied equibiaxial stress after 

metallization. 
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Table 33 Characteristic stress,	 σθ [MPa], and Weibull modulus, m [-], for wafers after metallization 

(front contact under tensile stress). 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 160.5	 185.5	 218.2	 5.8	 7.4	 9.3	

49%	 147.0	 168.6	 196.7	 6.2	 7.8	 9.7	

8%	 137.8	 160.4	 190.3	 5.6	 7.0	 8.8	

SoG mc-Si 	 	 	 	 	 	

86%	 132.9	 153.3	 180.0	 5.9	 7.5	 9.4	

49%	 138.0	 158.1	 184.3	 6.2	 7.8	 9.8	

5%	 148.5	 166.8	 190.1	 7.3	 9.1	 11.5	
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a)	 b)	

	 	

c)	 d)	

	 	

e)	 f)	

Figure 186 Weibull graphs plotting fracture probability against applied equibiaxial stress after 

metallization (back contact under tensile stress). 
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Table 34 Characteristic stress,	 σθ [MPa], and Weibull modulus, m [-], for wafers after metallization 

(areas from the back contact under tensile stress without bus bars). 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 242.0	 288.7	 352.1	 3.9	 5.7	 8.2	

49%	 238.0	 273.5	 320.0	 5.0	 7.2	 10.4	

8%	 220.2	 259.1	 311.1	 4.3	 6.1	 8.9	

SoG mc-Si 	 	 	 	 	 	

86%	 260.8	 297.3	 344.5	 5.3	 7.6	 11.1	

49%	 288.7	 338.4	 404.7	 4.4	 6.3	 9.1	

5%	 244.3	 295.1	 365.1	 3.7	 5.3	 7.7	

	

Table 35 Characteristic stress,	σθ [MPa], and Weibull modulus, m [-], for wafers after metallization (bus 

bars from the back contact under tensile stress). 

B. H. #�úûüýþ #� #����ýþ �úûüýþ � ����ýþ 

UMG mc-Si 	 	 	 	 	 	

88%	 129.2	 141.3	 156.4	 8.6	 11.5	 15.5	

49%	 128.4	 140.4	 155.2	 8.7	 11.6	 15.7	

8%	 126.4	 142.5	 163.1	 6.4	 8.6	 11.6	

SoG mc-Si 	 	 	 	 	 	

86%	 121.0	 133.7	 149.7	 7.6	 10.3	 14.0	

49%	 124.2	 138.5	 156.7	 7.1	 9.5	 12.7	

5%	 126.1	 135.7	 147.3	 10.6	 14.2	 19.1	
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Appendix G: Fracture Toughness Measurements for Wire Introduced Single Notch 

	

Table 36 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for 4N+Al mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 

98%	

	

1.83	 0.686	 9.82	 49.22	 1.30	

1.34±0.19	

1.89	 0.444	 9.79	 45.38	 1.49	

1.87	 0.789	 9.86	 45.31	 1.17	

1,87	 0.917	 9.77	 74.34	 1.71	

1.80	 0.666	 9.82	 51.89	 1.53	

1.84	 0.754	 9.86	 45.05	 1.18	

1.90	 0.722	 9.82	 42.29	 1.21	

1.89	 0.805	 9.82	 50.76	 1.32	

1.83	 0.686	 9.86	 45.24	 1.19	

78%	

	

1.79	 0.681	 9.76	 31.79	 0.82	

1.27±0.32	

1.74	 0.765	 9.73	 32.41	 1.04	

1.87	 0.701	 9.60	 40.98	 0.99	

1.81	 0.620	 9.80	 61.09	 1.40	

1.77	 0.659	 9.84	 34.63	 0.88	

1.82	 0.809	 9.89	 50.79	 1.51	

1.79	 0.770	 9.91	 41.73	 1.22	

1.83	 0.810	 9.74	 58.69	 1.75	

1.77	 0.579	 9.71	 58.49	 1.35	

1.77	 0.711	 9.74	 62.02	 1.73	

58%	

1.83	 0.686	 9.70	 70.41	 1.75	

1.61±0.20	

1.89	 0.444	 9.88	 97.64	 1.58	

1.87	 0.789	 9.86	 50.19	 1.34	

1.87	 0.917	 9.76	 44.57	 1.48	

1.80	 0.666	 9.97	 82.64	 2.02	

1.84	 0.754	 9.98	 53.33	 1.39	

1.90	 0.722	 9.84	 72.95	 1.70	

1.89	 0.805	 9.93	 61.61	 1.62	
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38% 

1.93	 0.756	 9.87	 65.15	 1.52	

1.43±0.15	

1.91	 0.594	 9.82	 80.03	 1.56	

1.86	 0.703	 9.77	 64.07	 1.55	

1.86	 0.739	 9.81	 55.46	 1.40	

1.92	 0.812	 9.90	 41.21	 1.06	

1.90	 0.736	 9.89	 63.21	 1.51	

1.78	 0.824	 9.95	 46.63	 1.51	

1.75	 0.881	 9.84	 38.88	 1.46	

1.79	 0.749	 9.91	 47.07	 1.33	

18%	

189	 0.426	 985	 85.28	 1.34	

1.38±0.21	

1.86	 0.280	 9.77	 135.98	 1.78	

1.90	 0.218	 1.00	 105.44	 1.14	

1.92	 0.505	 9.91	 80.96	 1.36	

1.56	 0.443	 9.52	 50.69	 1.29	
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Table 37 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for 3N mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 

79%	

1.80	 0.789	 8.66	 96.93	 1.58	

1.33±0.18	

1.92	 0.910	 4.33	 30.3	 0.99	

1.81	 0.100	 5.77	 36.07	 1.26	

1.87	 0.697	 9.42	 123.36	 1.45	

1.79	 0.525	 8.10	 113.71	 1.36	

1.72	 0.980	 7.30	 68.23	 2.17	

1.78-	 0.580	 9.49	 121.2	 1.35	

1.9	 0.520	 6.20	 115.18	 1.55	

65%	

1.81	 0.465	 9.53	 84.48	 1.60	

1.57±0.17	

1.83	 0.502	 9.44	 91.94	 1.81	

1.83	 0.501	 9.41	 70.94	 1.39	

1.90	 0.487	 9.56	 95.95	 1.67	

1.84	 0.939	 6.51	 25.06	 1.36	

54%	
1.75	 0.385	 9.39	 77.15	 1.41	

1.55±0.14	
1.88	 0.306	 9.56	 123.28	 1.68	

40%	
1.90	 0.577	 9.63	 68.12	 1.33	

1.29±0.05	
1.88	 0.370	 9.62	 82.22	 1.24	

25%	
1.91	 0.523	 6.17	 46.23	 1.30	

1.25±0.05	
1.95	 0.213	 9.56	 113.11	 1.20	

11%	
1.84	 0.265	 9.52	 112.84	 1.52	

1.46±0.07	
1.78	 0.957	 9.50	 155.69	 1.39	
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Table 38 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for B-doped mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 

89%	

1.93	 0.620	 9.64	 77.22	 1.54	

1.38±0.26	

1.92	 0.386	 9.50	 59.77	 0.89	

1.93	 0.370	 9.60	 55.93	 0.80	

1.91	 0.416	 9.51	 83.83	 1.32	

1.83	 0.491	 9.47	 78.66	 1.51	

1.83	 0.850	 1.31	 42.5	 1.00	

1.85	 0.790	 1.31	 56.14	 1.17	

1.79	 0.756	 1.29	 75.6	 1.65	

1.84	 0.745	 9.64	 62.37	 1.66	

1.78	 0.730	 9.60	 49.44	 1.42	

73%	

1.82	 0.779	 9.40	 65.6	 1.95	

1.77±0.22	

1.86	 0.100	 1.30	 52.53	 1.53	

1.80	 0.883	 1.33	 68.51	 1.76	

1.84	 0.630	 9.55	 66.78	 1.53	

1.63	 0.530	 6.30	 80.6	 3.22	

1.79	 0.757	 9.35	 68.04	 2.06	

58%	

1.88	 0.789	 9.49	 62.43	 1.71	

1.79±0.27	

1.81	 0.634	 9.45	 73.92	 1.79	

1.86	 0.614	 1.33	 125.14	 1.97	

1.91	 0.564	 9.53	 78.89	 1.51	

1.87	 0.840	 6.44	 50.55	 2.25	

1.91	 0.608	 9.56	 68.13	 1.38	

1.86	 0.639	 9.50	 86.61	 1.95	

42%	

1.91	 0.457	 9.56	 85.88	 1.42	

1.63±0.21	

1.90	 0.101	 9.51	 34.93	 1.32	

1.93	 0.510	 9.59	 51.56	 0.89	

1.93	 0.772	 9.64	 49.67	 1.22	

1.90	 0.406	 9.59	 93.99	 1.46	

1.86	 0.687	 9.57	 56.63	 1.37	
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1.88	 0.510	 9.54	 86.61	 1.60	

1.82	 0.600	 9.56	 88.35	 1.99	

1.86	 0.657	 9.54	 65.15	 1.51	

1.84	 0.672	 9.48	 74.31	 1.82	

1.84	 0.520	 1.32	 104.39	 1.48	

26%	

1.88	 0.630	 9.57	 80.25	 1.74	

1.82±0.15	

1.89	 0.620	 9.54	 87.41	 1.85	

1.88	 0.820	 9.51	 67.84	 1.94	

1.85	 0.777	 9.55	 58.24	 1.63	

1.90	 0.680	 6.51	 50.07	 1.67	

1.85	 0.740	 9.57	 78.05	 2.06	

11%	

1.87	 0.670	 9.51	 79.72	 1.86	

1.71±0.11	

1.95	 0.700	 9.50	 74.92	 1.65	

1.89	 0.101	 9.60	 49.6	 1.88	

1.97	 0.590	 9.60	 88.59	 1.63	

1.83	 0.100	 9.70	 39.52	 1.64	

1.91	 0.630	 9.68	 78.19	 1.61	
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Table 39 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for UMG mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 

86%	

1.99	 0.446	 9.96	 58.63	 0.84	

0.86±0.12	

1.95	 0.466	 9.52	 59.46	 0.95	

1.98	 0.512	 9.95	 39.79	 0.63	

1.87	 0.485	 9.50	 47.33	 0.86	

1.95	 0.447	 9.60	 56.5	 0.88	

1.96	 0.311	 9.48	 66.17	 0.84	

1.97	 0.393	 9.42	 72.61	 1.05	

70%	

1.90	 0.486	 9.71	 51.95	 0.89	

0.87±0.11	1.84	 0.328	 9.49	 65.72	 0.99	

1.97	 0.356	 9.64	 54.23	 0.73	

54%	

1.89	 0.496	 9.91	 51.49	 0.89	

0.85±0.06	
1.84	 0.477	 9.74	 43.59	 0.80	

1.90	 0.379	 9.89	 53.62	 0.77	

1.94	 0.656	 9.93	 46.18	 0.93	

38%	

1.82	 0.830	 9.87	 16.88	 0.52	

0.78±0.17	

1.83	 0.646	 9.76	 37.03	 0.86	

1.89	 0.399	 9.90	 43.41	 0.65	

1.88	 0.665	 9.91	 44.69	 0.98	

1.91	 0.503	 1.26	 66.56	 0.89	

23%	

1.82	 0.391	 9.87	 69.94	 1.13	

1.37±0.33	

1.96	 0.413	 9.95	 88.11	 1.25	

1.84	 0.559	 9.81	 85.39	 1.73	

1.84	 0.344	 9.88	 100.64	 1.49	

1.82	 0.554	 9.84	 87.6	 1.80	

1.81	 0.598	 1.28	 50.77	 0.87	

6%	

1.67	 0.350	 9.87	 49.36	 0.90	

1.05±0.17	1.71	 0.344	 9.91	 56.02	 0.96	

1.76	 0.181	 9.91	 109.34	 1.28	
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Table 40 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for SoG mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 
93%	

1.97	 0.631	 9.60	 60.79	 1.18	

1.49±0.36	
1.92	 0.611	 9.58	 64.53	 1.29	

1.88	 0.728	 9.55	 83.89	 2.09	

1.90	 0.753	 9.61	 55.98	 1.39	

75%	

1.84	 0.884	 9.59	 73.49	 2.47	

1.83±0.44	

1.87	 0.439	 9.58	 98.95	 1.68	

1.88	 0.413	 9.62	 128.34	 2.06	

1.89	 0.414	 9.61	 72.33	 1.14	

1.95	 0.866	 9.52	 64.24	 1.79	

58%	

1.83	 0.397	 9.57	 107.64	 1.79	

1.65±0.38	

1.80	 0.373	 9.44	 132.13	 2.22	

1.87	 0.480	 9.55	 108.34	 1.94	

1.81	 0.719	 9.50	 53.39	 1.45	

1.84	 0.716	 9.53	 79.79	 2.06	

1.82	 0.709	 9.52	 47.42	 1.25	

1.88	 0.670	 9.60	 50.89	 1.17	

1.81	 0.910	 9.50	 34.85	 1.31	

41%	

1.81	 0.290	 9.46	 86.52	 1.26	

1.58±0.39	

1.82	 0.762	 9.40	 62.18	 1.80	

1.86	 0.547	 9.70	 75.07	 1.48	

1.91	 0.560	 9.54	 107.79	 2.05	

1.80	 0.447	 9.54	 50.49	 0.95	

1.84	 0.680	 9.43	 77.43	 1.93	

25%	

1.81	 0.750	 9.51	 60.42	 1.72	

1.44±0.14	

1.83	 0.740	 9.56	 52.77	 1.44	

1.81	 0.378	 9.52	 89.41	 1.49	

1.80	 0.907	 9.57	 38.6	 1.45	

1.81	 0.347	 9.53	 88.88	 1.42	

1.83	 0.380	 9.45	 74.32	 1.22	
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1.83	 0.400	 9.54	 77.77	 1.31	

7%	

1.81	 0.523	 9.57	 48.48	 0.99	

1.41±0.26	

1.80	 0.577	 9.58	 81.83	 1.82	

1.82	 0.599	 9.55	 65.9	 1.49	

1.87	 0.609	 9.51	 57.09	 1.22	

1.84	 0.340	 9.53	 96.9	 1.47	

1.90	 0.694	 9.51	 63.28	 1.46	
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Appendix H: Fracture Toughness Measurements for Laser Introduced Single Notch 

	

Table 41 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for 4N+Al mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 
98%	

1.74	 0.262	 2.47	 21.8	 1.25	

1.10±0.13	
1.75	 0.204	 2.63	 25.93	 1.23	

1.75	 0.202	 2.66	 19.99	 0.93	

1.76	 0.205	 2.70	 21.87	 1	

58%	

1.78	 0.258	 2.65	 25,12	 1.27	

1.33±0.07	1.77	 0.209	 3.33	 34,71	 1.28	

1.76	 0.276	 2.68	 27,13	 1.44	

	

Table 42 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for 3N mc-Si. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 
54%	

1.81	 0.264	 2.62	 27.14	 1.36	

1.41±0.13	1.78	 0.226	 2.74	 27.24	 1.25	

1.78	 0.326	 3.01	 31.95	 1.61	

11%	

1.81	 0.210	 2.63	 28.39	 1.27	

1.45±0.14	1.82	 0.267	 2.69	 30.15	 1.46	

1.80	 0.344	 2.65	 27.93	 1.61	
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Table 43 Sample dimensions, notch lengths, measured fracture forces and calculated fracture toughness 

values for B-doped silicon. 

B. H. 
Thickness 

[mm] 

Notch length 

[mm] 

Width 

[mm] 

Force  

[N] 

��ô ��
�	√�� 
Average 	

��ô and MSE ��
�	√�� 

89%	

1.79	 0.201	 2.22	 25.06	 1.33	

1.33±0.18	

1.81	 0.324	 2.44	 24.91	 1.49	

1.79	 0.173	 2.89	 26.12	 1.00	

1.81	 0.290	 2.63	 25.23	 1.32	

1.80	 0.319	 2.41	 25.09	 1.52	

42%	

1.82	 0.281	 2.36	 28.66	 1.62	

1.53±0.06	1.82	 0.305	 2.68	 28.24	 1.47	

1.83	 0.233	 2.61	 32.58	 1.51	
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Appendix I: Dynamic Elastic Modulus Measurements 

	

Table 44 Sample density, mechanical resonance frequency and calculated dynamic elastic modulus for 

4N+Al mc-Si. 

B. H. 
Density �� ����⁄  

Frequency 

[kHz] 

Elastic 

Modulus [GPa] 

Average 

Elastic 

Modulus and 

MSE [GPa] 

98%	

	

2.1956	 2.8	 149.92	

149.28±9.34	

2.2326	 2.63	 144.92	

2.284	 2.71	 155.66	

2.305	 2.69	 161.59	

2.2307	 2.56	 134.3	

78%	

	

2.2542	 2.47	 133.24	

126.28±5.84	

2.3095	 2.47	 125.42	

2.3271	 2.53	 132.45	

2.2781	 2.35	 122.07	

2.231	 2.39	 118.2	

58%	

2.3427	 2.83	 168.33	

169.56±2.60	

2.3095	 2.86	 168.15	

2.3271	 2.86	 169.25	

2.327	 2.89	 174.64	

2.2626	 2.9	 167.45	

38% 

2.3248	 2.89	 175.4	

170.83±3.79	

2.3329	 2.89	 172.89	

2.3073	 2.886	 166.5	

2.3106	 2.88	 166.13	

2.2464	 2.88	 173.22	

18%	

2.2778	 2.47	 157.16	

168.33±10.53	

2.2504	 2.89	 158	

2.3084	 2.86	 167.37	

2.3148	 2.94	 173.62	

2.3195	 2.97	 185.49	
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Table 45 Sample density, mechanical resonance frequency and calculated dynamic elastic modulus for 

3N mc-Si. 

B. H. 
Density �� ����⁄  

Frequency 

[kHz] 

Elastic 

Modulus [GPa] 

Average 

Elastic 

Modulus and 

MSE [GPa] 

79%	

2.2389	 6.4	 175.76	

165.85±7.21	
2.2389	 6.02	 155.51	

2.3251	 5.93	 164.96	

2.279	 5.8	 167.18	

65%	

2.3183	 6.01	 169.08	

171.71±4.50	
2.2872	 5.9	 167.04	

2.2907	 6	 178.93	

2.286	 6.03	 171.78	

54%	

2.3074	 6.15	 177.26	

172.66±3.10	
2.2976	 5.84	 171.66	

2.3325	 6	 168.66	

2.273	 6.04	 173.07	

40%	

2.3077	 6.2	 184.18	

174.64±7.32	
2.2908	 5.95	 177.25	

2.3336	 5.89	 163.94	

2.2863	 6.05	 173.2	

25%	

2.2988	 6.06	 174.06	

172.16±4.60	
2.3215	 6.2	 178.82	

2.3296	 6	 167.81	

2.2887	 5.83	 167.93	

11%	

2.2095	 5.92	 161.25	

173.49±8.81	
2.3504	 5.8	 169.01	

2.3292	 6.07	 182.3	

2.2523	 6.55	 181.41	
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Table 46 Sample density, mechanical resonance frequency and calculated dynamic elastic modulus for 

B-doped mc-Si. 

B. H. 
Density �� ����⁄  

Frequency 

[kHz] 

Elastic 

Modulus [GPa] 

Average 

Elastic 

Modulus and 

MSE [GPa] 

89%	

2.3089	 2.97	 187.02	

180.91±4.25	

2.3431	 2.78	 183.63	

2.3431	 2.72	 175.79	

2.3337	 2.81	 181.57	

2.3237	 2.74	 176.54	

73%	

2.3278	 2.81	 176.74	

173.06±3.85	

2.3322	 2.74	 169.58	

2.3214	 2.76	 170.21	

2.325	 2.77	 170.09	

2.3132	 2.75	 178.69	

58%	

2.3177	 2.7	 160.68	

166.30±5.26	

2.3083	 2.78	 171.67	

2.3205	 2.81	 173.59	

2.3205	 2.72	 162.64	

2.2731	 2.78	 162.91	

42%	

2.2936	 2.79	 169.75	

172.27±5.20	

2.3098	 2.77	 169.15	

2.2983	 2.78	 166.01	

2.3288	 2.8	 176.1	

2.3348	 2.83	 180.36	

26%	

2.3124	 2.89	 181.93	

168.91±15.39	

2.2976	 2.8	 168.18	

2.3099	 2.88	 182.11	

2.2078	 2.71	 140.12	

2.3086	 2.82	 172.21	
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11%	

2.2191	 2.91	 163.06	

171.12±6.09	

2.359	 2.9	 177.47	

2.3303	 2.9	 178.94	

2.2998	 2.79	 167.57	

2.3081	 2.82	 168.55	
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Table 47 Sample density, mechanical resonance frequency and calculated dynamic elastic modulus for 

UMG mc-Si. 

B. H. 
Density �� ����⁄  

Frequency 

[kHz] 

Elastic 

Modulus [GPa] 

Average 

Elastic 

Modulus and 

MSE [GPa] 

86%	

2,3295	 3,764	 171,49	

174.71±4.01	

2,3078	 3,84	 180,45	

2,2954	 3,84	 177,77	

2,3024	 3,62	 169,45	

2,3182	 3,78	 174,37	

70%	

2,3325	 3,75	 178,04	

175.71±2.09	
2,2933	 3,78	 173,02	

2,326	 3,68	 177,42	

2,3135	 3,67	 174,36	

54%	

2,305	 3,82	 179,41	

179.15±3.79	

2,2763	 3,86	 186,09	

2,3222	 3,66	 174,71	

2,3065	 3,79	 178,06	

2,3026	 3,8	 177,46	

38%	

2,3138	 3,74	 182	

186.23±5.77	

2,3848	 3,82	 195,7	

2,313	 3,87	 183,42	

2,337	 3,79	 189,93	

2,3216	 3,82	 180,1	

23%	

2,3013	 3,66	 169,03	

171.45±4.60	

2,2988	 3,67	 169,37	

2,3066	 3,62	 168,76	

2,3159	 3,76	 180,63	

2,3082	 3,67	 169,45	

6%	

2,3341	 3,56	 178,15	

177.64±4.07	

2,3177	 3,56	 177,33	

2,3228	 3,59	 179,01	

2,3154	 3,57	 183,15	

2,3008	 3,67	 170,54	
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Table 48 Sample density, mechanical resonance frequency and calculated dynamic elastic modulus for 

SoG mc-Si. 

B. H. 
Density �� ����⁄  

Frequency 

[kHz] 

Elastic 

Modulus [GPa] 

Average 

Elastic 

Modulus and 

MSE [GPa] 

93%	

2,3042	 3,823	 168,01	

174.15±4.10	
2,3105	 3,86	 173,52	

2,3264	 3,91	 179,28	

2,3296	 3,826	 175,8	

75%	

2,2485	 3,89	 163,68	

165.65±1.50	
2,2835	 3,84	 165,69	

2,2355	 3,9	 165,34	

2,308	 3,83	 167,9	

58%	

2,2874	 3,86	 173,41	

171.84±7.56	
2,3061	 3,81	 180,86	

2,2875	 3,75	 173,19	

2,1764	 3,74	 159,88	

41%	

2,2474	 3,67	 155,98	

163.27±8.00	
2,2198	 3,78	 158,51	

2,3165	 3,73	 176,63	

2,2866	 3,656	 161,96	

25%	

2,2824	 3,66	 166,32	

163.46±5.56	
2,2598	 3,74	 163,5	

2,2377	 3,67	 154,55	

2,2884	 3,73	 169,46	

7%	

2,2643	 3,55	 159,68	

164.75±9.48	
2,2342	 3,62	 151,83	

2,364	 3,625	 172,2	

2,4415	 3,48	 175,3	
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Appendix J: Static Elastic Modulus 

	

Table 49 Static elastic modulus measured with the RoR bending test and thickness of sawn wafers. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

4N+Al mc-Si	 	 	 3N mc-Si	 	 	

77%	 135.2±12.6	 278±7	 77%	 135.5±11.8	 283±5	

63%	 137.2±16.8	 272±14	 47%	 139.0±6.7	 281±5	

33%	 143.9±7.2	 281±4	 26%	 137.9±9.7	 282±5	

	 	 	 5%	 140.0±7.0	 281±5	

B-doped  

mc-Si	
	 	 UMG mc-Si 	 	

86%	 146.3±8.1	 280±6	 88%	 160.0±6.2	 222±6	

36%	 147.6±6.4	 283±5	 49%	 154.3±10.7	 221±7	

11%	 149.0±7.0	 279±5	 8%	 154.3±4.7	 223±5	

SoG mc-Si 	 	
Standard 

mc-Si	
	 	

86%	 156.2±5.2	 230±4	 ?	 153.4±17.4	 263±6	

49%	 156.3±6.6	 227±3	
Standard 

Cz-Si	
	 	

5%	 158.6±5.4	 228±3	 ?	 140.9±3.1	 265±5	
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Table 50 Static elastic modulus measured with the RoR bending test and thickness of damage etched 

wafers. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

4N+Al mc-Si	 	 	 3N mc-Si	 	 	

77%	 120.5±11.8	 252±6	 77%	 140.6±5.0	 258±7	

63%	 129.8±13.1	 261±14	 47%	 138.1±6.6	 259±7	

33%	 142.8±10.9	 267±6	 26%	 139.7±14.0	 256±9	

	 	 	 5%	 140.1±4.6	 256±8	

B-doped  

mc-Si	
	 	 UMG mc-Si 	 	

86%	 144.3±7.7	 265±7	 88%	 145.1±8.3	 200±9	

36%	 144.8±5.1	 258±5	 49%	 146.8±11.6	 201±7	

11%	 143.1±5.1	 261±8	 8%	 144.5±6.2	 201±7	

SoG mc-Si 	 	
Standard 

mc-Si	
	 	

86%	 149.7±7.4	 206±5	 ?	 150.6±4.7	 243±7	

49%	 152.6±8.7	 203±4	
Standard 

Cz-Si	
	 	

5%	 146.2±6.9	 209±4	 ?	 140.4±7.1	 234±9	
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Table 51 Static elastic modulus measured with the RoR bending test and thickness of annealed wafers. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

4N+Al mc-Si	 	 	 3N mc-Si	 	 	

77%	 110.3±7.7	 277±9	 77%	 129.6±9.6	 279±10	

63%	 123.4±8.1	 276±7	 47%	 129.5±10.1	 279±11	

33%	 138.8±6.6	 280±7	 26%	 134.8±10.6	 280±11	

	 	 	 5%	 137.0±8.2	 271±8	

B-doped  

mc-Si	
	 	

Standard 

mc-Si	
	 	

86%	 137.2±10.0	 276±9	 ?	 139.1±8.3	 261±10	

36%	 133.1±9.1	 277±8	
Standard 

Cz-Si	
	 	

11%	 133.5±7.5	 277±6	 ?	 110.7±11.1	 245±10	

	

Table 52 Static elastic modulus measured with the RoR bending test and thickness of wafer equivalents. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

4N+Al mc-Si	 	 	 3N mc-Si	 	 	

77%	 -	 -	 77%	 129.8±6.6	 300±11	

63%	 -	 -	 47%	 130.7±11.4	 295±12	

33%	 131.9±6.1	 298±9	 26%	 125.3±14.6	 304±10	

	 	 	 5%	 129.4±7.4	 297±11	

B-doped  

mc-Si	
	 	

Standard 

mc-Si	
	 	

86%	 128.3±4.5	 307±9	 ?	 126.4±8.3	 290±13	

36%	 128.2±7.5	 301±11	
Standard 

Cz-Si	
	 	

11%	 126.8±9.0	 300±13	 ?	 100.4±0.7	 293±12	
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Table 53 Static elastic modulus measured with the RoR bending test and thickness of textured wafers. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 163.7±5.5	 215±7	 86%	 153.3±6.2	 223±3	

49%	 161.6±6.9	 215±7	 49%	 152.4±8.4	 225±5	

8%	 160.3±5.4	 217±6	 5%	 149.7±6.1	 224±4	

	

Table 54 Static elastic modulus measured with the RoR bending test and thickness after emitter 

diffusion. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 153.4±10.2	 216±7	 86%	 152.6±8.7	 223±5	

49%	 151.4±5.0	 217±7	 49%	 156.1±5.8	 221±3	

8%	 151.5±6.7	 217±6	 5%	 154.4±5.2	 224±4	

	

Table 55 Static elastic modulus measured with the RoR bending test and thickness after phosphosilicate 

glass etch. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 133.9±7.4	 228±9	 86%	 133.0±8.2	 237±6	

49%	 137.4±5.8	 223±7	 49%	 135.4±6.6	 231±5	

8%	 134.6±8.7	 226±9	 5%	 124.9±10.9	 239±11	

	

Table 56 Static elastic modulus measured with the RoR bending test and thickness after antireflection 

coating. 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 152.1±6.4	 217±6	 86%	 149.3±7.4	 218±3	

49%	 152.6±12.2	 213±7	 49%	 144.7±4.8	 220±3	

8%	 150.6±5.1	 215±7	 5%	 137.5±15.6	 222±3	
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Table 57 Static elastic modulus measured with the RoR bending test and thickness after antireflection 

coating (skipping emitter diffusion). 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 144.6±5.3	 218±6	 86%	 149.4±7.9	 225±3	

49%	 147.9±6.6	 216±7	 49%	 154.0±5.1	 221±2	

8%	 149.5±4.8	 218±5	 5%	 153.1±3.9	 222±3	

	

Table 58 Static elastic modulus measured with the RoR bending test and thickness after metallization 

(front contact under tensile stress). 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 104.2±5.7	 257±7	 86%	 93.3±7.3	 273±6	

49%	 100.1±5.7	 260±8	 49%	 93.7±5.0	 271±5	

8%	 96.9±4.5	 263±6	 5%	 92.1±4.2	 275±4	

	

Table 59 Static elastic modulus measured with the RoR bending test and thickness after metallization 

(areas from the back contact without bus bars under tensile stress). 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 100.1±3.6	 254±8	 86%	 95.4±5.6	 268±8	

49%	 100.0±4.0	 253±5	 49%	 96.1±3.0	 264±3	

8%	 98.4±4.1	 256±5	 5%	 93.6±4.7	 265±4	

	

Table 60 Static elastic modulus measured with the RoR bending test and thickness after metallization 

(bus bars from the back contact under tensile stress). 

B. H. 
E and MSE 

[GPa] 

Thickness and 

MSE [µm] 
B. H. 

E and MSE 

[GPa] 

Thickness and 

MSE [µm] 

UMG mc-Si 	 	 SoG mc-Si 	 	

88%	 86.0±5.9	 257±6	 86%	 82.8±4.4	 271±8	

49%	 86.8±5.0	 257±6	 49%	 83.6±4.4	 268±3	

8%	 87.0±4.4	 258±5	 5%	 83.1±3.4	 268±4	
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Abbreviations 

Si	 Silicon	

UMG-Si	 Up-graded	metallurgical	silicon	

PV	 Photovoltaics	

mc-Si	 Multicrystalline	silicon	

Cz-Si	 Czochralski	silicon	

CO	 Carbon	monoxide	

CO2	 Carbon	dioxide	

MG-Si	 Metallurgical	grade	silicon	

SoG-Si	 Solar	grade	silicon	

5N	 99.99999%	purity	

TCS	 Trichlorosilane		

SiHCl3	 Trichlorosilane	

H2	 Hydrogen	gas	

€	 Euro	

[ppmw]	 Concentration	in	parts	per	million	by	weight	

B	 Boron	

P	 Phosphorous	

O	 Oxygen	

C	 Carbon	

Al	 Aluminum	

Ag	 Silver	

Ga	 Gallium	

N	 Nitrogen	

As	 Arsenic	

Ti	 Titanium	

Cr	 Chromium	

Mn	 Manganese	

Fe	 Iron	

Co	 Cobalt	

Ni	 Nickel	

Cu	 Copper	

Zn	 Zinc	
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Ca	 Calcium	

Mg	 Magnesium	

Mo	 Molybdenum	

Ti	 Titanium	

V	 Vanadium	

et	al.	 Et	aliae	(“and	allies”)	

i.e.	 Id	est	(“that	is”)	

VGF	 Vertical	Gradient	Freeze	

e.g.	 Exempli	gratia	(“for	example”)	

Epi	WE	 Epitaxial	wafer	equivalent	

RTCVD	 Rapid	thermal	chemical	vapor	deposition	process	

HFCH3COOH	 Hydrofluoric	acid	

HNO3	 Nitric	acid	

CH3COOH	 Acetic	acid	

POCl3	 Phosphorus	oxychloride	

O2	 Oxygen	gas	

P2O5	 Phosphorus	oxide	

PSG	 Phosphosilicate	glass	

SiNx:H	 Hydrogenated	silicon	nitride	

PECVD	 Plasma	enhanced	chemical	vapor	deposition	

IR	 Infrared	

Nd	 Neodymium	

YAG	 Yttrium	aluminum	garnet	

ICP-OES	 Inductively	Coupled	Plasma/Optical	Emission	Spectrometry	

(RF)	 Radiofrequency	

Ar	 Argon	

SEM	 Scanning	electron	microscope	

EDX		 Energy	Dispersive	X-Ray	Spectroscopy	

IR	 Infrared	

TPB	 Three-point	bending	

ROR	 Ring-on-ring	

SENB	 Single	edge	notch	beam	

MSE	 Mean	squared	error	
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Symbols 

Quantity Formula Symbol Units 

Electric	power	(watt)	per	hour	 	 W	h	

Mass	 	 kg	

Temperature	 T °C	

Temperature	 T K	

Concentration	of	impurity	in	the	silicon	solid	 ��	 [ppmw]	

Concentration	of	impurity	in	the	silicon	melt	 ��	 [ppmw]	

Equilibrium	segregation	coefficient	 ��	 -	

Area	 �	 m�	
Normal	or	tensile	stress	 �	 MPa	

Normal	force	 �	 N	

Shear	stress	 �	 MPa	

Shear	force	 T N	

Normal	or	extensional	strain	 &�� 	 -	

Shear	strain	 '� 	 -	

Elastic	or	Young´s	modulus	 +	 GPa	

Poisson´s	ratio	 ,	 -	

Shear	modulus	 .	 GPa	

Bulk	modulus	 B GPa	

Crack	length	 a m	

Stress	intensity	factor	 K MPa	√m	

Geometry	factor	 Y -	

Critical	stress	intensity	factor	or	toughness	 PUV 	 MPa	√m	

Strain	energy	release	rate	 G J m�⁄ 	

Critical	strain	energy	release	rate	 WG J m�⁄ 	

Stored	elastic	strain	energy	 U J	
Stored	elastic	strain	energy	density	 XD  J m�⁄ 	

Energy	necessary	to	create	a	new	fracture	surface	 Xg	 J m�⁄ 	

Displacement	 u m	

Radial	stress	 �FF MPa	

Tangential	stress	 �dd	 MPa	

Thermal	expansion	coefficient	 e	 K=�	
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Silicon	ductile-brittle	transition	temperature	 �O °C	

Ambient	temperature	 �Hhi	 °C	

Particle	radius	 c	 m	

Critical	particle	radius	 cG	 m	

Distance	from	the	center	of	the	particle	 S m	

Stress	inside	the	particle	 b	 MPa	

Fracture	surface	energy	 '	 J m�⁄ 	

Distance	between	the	center	of	a	particle	and	the	

tip	of	a	crack	approaching	the	particle	
�� m	

Stress	intensity	factor	at	the	tip	of	propagating	

crack	that	links	with	a	collinear	crack	
P� MPa	√m	

Intrinsic	fracture	toughness	of	a	cracked	body	 P�G	 MPa	√m	

Elastic	modulus	of	a	cracked	body	 +¡ 	 GPa	

Volume	fraction	 V -	

Bulk	modulus	of	a	cracked	body	 /¡ 	 GPa	

Crack	density	parameter	 ¨	 -	

Poisson´s	ratio	of	a	cracked	body	 ,̅ -	
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