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1 Introduction

Since the early 1950s, the magnetotelluric method has been used to investigate the deep interior of
the earth. The registration of natural electromagnetic fields provides information about the subsurface
distribution of the electrical conductivity. In general, to interpret magnetotelluric data, two- and three-
dimensional numerical simulation and inversion is necessary. Numerical methods including the finite
difference approach (e.g. Mackie et al., 1993), the integral equation technique (e.g. P. Wannamaker et
al., 1984) and the finite element method (e.g. Mogi, 1996) have been developed since the 1970s. More
recent advances in software development have focused on the efficiency, flexibility, and accuracy
of the simulation algorithms (Siripunvaraporn et al., 2002; Key & Weiss, 2006; Nam et al., 2007;
Farquharson & Miensopust, 2011).
This thesis aims at determining a most efficient three-dimensional boundary value problem among
five formulations in terms of the electric field, the magnetic field, the magnetic vector potential and
the electric scalar potential, the magnetic vector potential only, and the anomalous magnetic vector
potential by means of convergence studies. Moreover, the convergence studies are examined regarding
their capability to yield global and local error estimates for the numerical solution.
To solve the boundary value problems, a finite element approach on unstructured grids is applied
which is considered to be very flexible in terms of smart mesh design and the accurate approximation
of complicated-structured model geometries including surface topography and bathymetry (Franke
et al., 2007). Since the solution of the three-dimensional boundary value problems requires much
computational effort, the moderate-sized two-dimensional problems in terms of the electric and the
magnetic field are also considered to gain valuable experience in performing convergence studies. To
evaluate their efficiency, global and local convergence studies are executed for the two-dimensional
models of a homogeneous and a layered halfspace as well as the three-dimensional COMMEMI 3-D-2
model.
Finally, convergence studies are applied to the finite element solution of the magnetotelluric boundary
value problem in terms of the anomalous magnetic vector potential for a close-to-reality model of
Stromboli area incorporating surface topography and sea floor bathymetry. They yield local error
estimates for the off-diagonal elements of the impedance tensor even without knowing the exact
solution.
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2 Fundamental Physics of the
Magnetotelluric Method Using
Complete Maxwell’s Equations

The magnetotelluric method or simply magnetotellurics (MT) that was developed by Tikhonov (1950)
and Cagniard (1953) is one of the most capable geophysical tools to investigate the deep earth’s
interior nowadays. In MT, variations of the natural electromagnetic fields are measured for a typical
frequency range of 10−4 to 104 Hz. These data enable the reconstruction of the distribution of the
electrical conductivity in the earth from some 100 m up to 100 km depth. Beside research on the
earth’s structure, applications of MT include hydrocarbon, mineral, geothermal, and groundwater
exploration.
Interpretation of MT data involves transformation of time-series into frequency domain. In gen-
eral, only numerical simulation and inversion of the frequency-domain data allow for two- or three-
dimensional mapping of the subsurface conductivity structure. Therefore, the development and im-
provement of efficient and accurate numerical algorithms to solve the governing Maxwell’s equations
are in the focus of ongoing research.

2.1 Governing Equations

The behaviour of electric and magnetic fields is governed by Maxwell’s equations. They can be written
in differential form as

∇×H = j = jc +
∂D

∂t
, (2.1a)

∇×E = −∂B
∂t
, (2.1b)

∇·D = ρ, (2.1c)
∇·B = 0, (2.1d)

with
E ... electric field intensity (Vm−1),
H ... magnetic field intensity (Am−1),
D ... dielectric displacement (Cm−2),
B ... magnetic flux density (T),
j ... electric current density (Am−2) incorporating conduction currents jc and

diplacement currents ∂D
∂t

,
ρ ... free charge density (Cm−3).
∂
∂t

denotes the partial derivative with respect to time. Assuming a harmonic time dependency eiωt for
the electric and the magnetic fields, it can be replaced by the factor iω in the frequency domain.

9
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In linear, homogeneous, and isotropic media, the following constitutive equations apply

B = µH = µ0µrH (2.2)

and

D = εE = ε0εrE (2.3)

where
µ = µ0µr ... magnetic permeability,
µ0 = 4 π · 10−7VsA−1m−1 ... magnetic field constant,
µr ... relative magnetic permeability,
ε = ε0εr ... dielectric permittivity,
ε0 = 8.85·10−12 AsV−1m−1 ... electric field constant,
εr ... relative dielectric permittivity,

as well as a generalisation of Ohm’s law incorporating conduction and displacement currents for
alternating electric fields

j = jc +
∂D

∂t
= (σ + iωε) · E (2.4)

with electrical conductivity σ (Sm−1) and dielectric permittivity ε
(AsV−1m−1). Since

∇·∇×H = ∇· j = ∇· (jc +
∂D

∂t
) = 0, (2.5)

polarisation effects due to displacement currents ∂D
∂t

are balanced by conduction currents in conduc-
tive media:

∇· jc = −∇· ∂D
∂t

= −∂ρ
∂t
. (2.6)

At interfaces between subdomains 1 and 2 representing jumps in the electromagnetic parameters, the
following conditions of continuity hold

• The tangential components of the electric and magnetic fields are continuous:
n1 × E1 − n2 × E2 = 0 and n1 ×H1 − n2 ×H2 = 0.

• The normal component of the dielectric displacement jumps if an electric surface charge δ
occurs:
n1 ·D1 − n2 ·D2 = ε1(n1 · E1)− ε2(n2 · E2) = δ.

• The normal component of the electric current density is continuous:
n1 · j1 − n2 · j2 = σ1(n1 · E1)− σ2(n1 · E2) = 0.

• Since there are no magnetic monopoles, the normal component of the magnetic flux density is
continuous:
n1 ·B1 − n2 ·B2 = µ1(n1 ·H1)− µ2(n2 ·H2) = 0.

n1 and n2 denote outward unit normal vectors on the interface between subdomains 1 and 2.
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Applying∇× on eq. (2.1a), inserting the constitutive relations and Ohm’s law (eqs (2.2) - (2.4)) yield

∇× (σ + iωε)−1∇×H = ∇× E. (2.7)

Substituting∇× E by eq. (2.1b), we obtain the equation of induction for the magnetic field

∇× (σ + iωε)−1∇×H + iωµH = 0. (2.8)

The equation of induction for the electric field

∇× µ−1∇× E + (iωσ − ω2ε)E = 0 (2.9)

can be derived in the same way starting from eq. (2.1b) and replacing∇×H by eq. (2.1a).

From the horizontal electric and magnetic field components, the MT impedance tensor Z(
Ex
Ey

)
= Z

(
Hx

Hy

)
with Z =

(
Zxx Zxy
Zyx Zyy

)
(2.10)

the apparent resistivity

ρij =
1

ωµ
|Zij|2, i, j = x, y, (2.11)

the phase

φij = arg(Zij), i, j = x, y, (2.12)

and the magnetic transfer functions called tipper

Hz = T

(
Hx

Hy

)
with T =

(
Tx Ty

)
(2.13)

can be derived. Generally, the equation of induction for the electric or the magnetic field is solved
numerically and the remaining field components are computed by numerical differentiation or inte-
gration in a subsequent procedure referred to as post-processing.

In the following subsections, the special cases of electromagnetic induction in one-dimensional (1-D)
and two-dimensional (2-D) anomalous structures are discussed.

2.1.1 Electromagnetic Induction in 1-D Conductivity Structures

Considering a 1-D structure, i.e. a homogeneous or layered halfspace with σ = σ(z), the electric and
magnetic field values only depend on the z-direction of the coordinate system

− ∂

∂z

(
(σ + iωε)−1∂H

∂z

)
+ iωµH = 0 and (2.14)

− ∂

∂z

(
µ−1∂E

∂z

)
+ (iωσ − ω2ε)E = 0. (2.15)
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Eqs (2.14) and (2.15) can be solved analytically. For constant parameters σ, µ, and ε, the analytical
solution is

F = F0e
−ikzz with F = H,E, F0 = H0,E0, and k2

z = ω2µε− iωµσ, (2.16)

where H0 and E0 are the field values at the earth’s surface (z = 0) and kz is the wave propagation

constant or complex wave number for z-direction. To determine kz = ±
√

(kz)
2, we need to ensure

that the electric and magnetic field amplitudes |F| = |F0| |e−ikzz| vanish at infinity, i.e. for z → ∞.
Taking into account the complex wave number kz = kRz + ikIz , the field amplitude is determined by
the imaginary part kIz of kz: |F| = |F0| |e−ikzz| = |F0|ek

I
zz. Using

k2
z = ω2µε(1− i σ

ωε
) = (kRz + ikIz)

2 = (kRz )2 + 2ikIzk
R
z − (kIz)

2 (2.17)

and comparing real and imaginary parts yield a system of equations for kRz and kIz :

kIz = −1

2

ωµσ

kRz
(2.18)

(kRz )2 − (kIz)
2 = ω2µε. (2.19)

Substituting eq. (2.18) into (2.19) and multiplying by (kRz )2, we obtain a quadratic equation for (kRz )2

(kRz )4 − ω2µε(kRz )2 − 1

4
ω2µ2σ2 = 0 (2.20)

whose solution is

(kRz )2 =
ω2µε

2
±

√(
ω2µε

2

)2

+
(ωµσ

2

)2

. (2.21)

Since kRz is required not to be 0 for ω →∞, we choose

(kRz )2 =
ω2µε

2

(
1 +

√
1 +

( σ
ωε

)2
)

(2.22)

and

kRz = ±

√√√√ω2µε

2

(√
1 +

( σ
ωε

)2

+ 1

)
. (2.23)

Applying eq. (2.19), we get

kIz = ±

√√√√ω2µε

2

(√
1 +

( σ
ωε

)2

− 1

)
. (2.24)
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Taking into account that |F| → 0 for z → ∞ and kz = kRz = ω
c

= ω√
µε

for ω → ∞ (c ... speed of
electromagnetic waves), we finally arrive at

kz = ω

√
µε

2

√√1 +
( σ
ωε

)2

+ 1− i

√√
1 +

( σ
ωε

)2

− 1

 . (2.25)

The electromagnetic skin depth δ which is a measure for the depth of penetration of the electromag-
netic fields is defined as the depth where the amplitude of the surface field |F0| has been attenuated
to e−1|F0| (e ... Euler’s number). It can be determined as

δ =

[
ω2µε

2

(√
1 +

( σ
ωε

)2

− 1

)]−1/2

. (2.26)

The quasistatic approximation

1� σ

ωε
(2.27)

for low frequencies (f <105 Hz) yields

kz =
√
−iωµσ and δ =

√
2

ωµσ
(2.28)

that can be estimated by

δ[m] ≈ 503

√
T [s]

σ[Sm−1]
(2.29)

for the period T = 1/f given in s and the conductivity given in Sm−1.

A more general analytic solution of eqs (2.14) and (2.15) for a layered halfspace as depicted in Fig.
2.1 was introduced by Wait (1953). The layered halfspace is composed of n = 1...N layers. The
parameters σn, µn, εn and the thickness dn are assigned to layer n above its lower interface at depth
zn.

Two orthogonal horizontal components of the electric and the magnetic field, e.g. the x-component
of the electric field En

x and the y-component of the magnetic field Hn
y , in layer n can be described by

En
x (z) = ane

−ikn(z−zn) + bne
ikn(z−zn) (2.30)

and

Hn
y (z) = − 1

iωµ

∂En
x

∂z
=
kn
ωµ

(ane
−ikn(z−zn) − bneikn(z−zn)) (2.31)

for zn ≤ z ≤ zn−1. They are composed of a downward (e−ikn(z−zn)) and an upward travelling, i.e.
reflected (eikn(z−zn)) wave. The N th layer is expanded to infinity and, hence, no reflection occurs at
zN . The apparent impedance Ẑn

xy = Ẑn on top of layer n is calculated using the orthogonal horizontal
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z = h

z = z0 = 0

z1

z2

zn−1

zn

zn+1

zN−1

zN

b0a0

b1a1

b2a2

bnan

bn+1an+1

aN

k0

k1

k2

kn

kn+1

kN

Fig. 2.1: Parameter distribution of the layered halfspace.

Ẑ−n+1 = Ẑn+1|z=zn−0,

Ẑ+
n = Ẑn|z=zn+0,

Ẑ−n = Ẑn|z=zn−1−0.

zn−1

zn

zn+1

dn

dn+1

Ẑ−n

Ẑ−n+1

Ẑ+
n

Fig. 2.2: Limits of the impedance at the interfaces

field components En
x and Hn

y

Ẑn =
En
x (z)

Hn
y (z)

=
ωµ

kn

ane
−ikn(z−zn) + bne

ikn(z−zn)

ane−ikn(z−zn) − bneikn(z−zn)
. (2.32)

Fig. 2.2 displays the notation for the limits of the apparent impedance at the interfaces used in the
following. At the interfaces, the horizontal components of the electric and magnetic fields and,
therefore, the apparent impedances are continuous: Ẑ+

n = Ẑ−n+1 = Ẑn+1. The intrinsic impedance of
the nth layer is obtained by Zn = ωµ

kn
. In the following, a relation is derived to determine Ẑn from

Ẑn+1, Zn and the parameters σn, µn, and εn. Starting point is eq. (2.32) at z = zn:

Ẑ+
n =

an + bn
kn
ωµ

(an − bn)
. (2.33)
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Using Zn = ωµ
kn

, this can be rearranged into

an + bn
an − bn

=
Ẑ+
n

Zn
. (2.34)

Applying eq. (2.32) at the upper interface yields

Ẑ−n =
ane

−ikn(zn−1−zn) + bne
ikn(zn−1−zn)

kn
ωµ

(ane−ikn(zn−1−zn) − bneikn(zn−1−zn))
. (2.35)

Introducing the thickness dn of layer n, we obtain

Ẑ−n =
ane

−ikn(−dn) + bne
ikn(−dn)

kn
ωµ

(ane−ikn(−dn) − bneikn(−dn))
. (2.36)

The exponential expressions can be rewritten with the help of the hyperbolic functions cosh(x) =
ex+e−x

2
and sinh(x) = ex−e−x

2
:

Ẑ−n =
an(cosh(ikndn) + sinh(ikndn)) + bn(cosh(ikndn)− sinh(ikndn))

1/Zn(an(cosh(ikndn) + sinh(ikndn))− bn(cosh(ikndn)− sinh(ikndn)))

=
(an + bn) cosh(ikndn) + (an − bn) sinh(ikndn)

1/Zn((an − bn) cosh(ikndn) + (an + bn) sinh(ikndn))
.

(2.37)

Considering eq. (2.34), we get

Ẑ−n =
cosh(ikndn) + Zn/Ẑ

+
n sinh(ikndn)

1/Ẑ+
n cosh(ikndn) + 1/Zn sinh(ikndn)

=
1 + Zn/Ẑ

+
n tanh(ikndn)

1/Ẑ+
n + 1/Zn tanh(ikndn)

. (2.38)

Using Ẑ+
n = Ẑn+1, Ẑn = Ẑ−n reads as

Ẑn = Zn
Ẑn+1 + Zn tanh(ikndn)

Zn + Ẑn+1 tanh(ikndn)
. (2.39)

Note that, the impedance Ẑn at any layer interface only depends on the earth’s properties below that
interface and not on any above. For the underlying halfspace, ẐN = ZN = ωµ

kN
applies at z = zN−1.

Based on this, the apparent impedances can be calculated recursively from the bottom up.

The reflection coefficients are to be determined from the impedances Ẑn+1 (n = 1...N ) applied at
z = zn

En
x

Hn
y

=
an + bn

kn
ωµ

(an − bn)
= Ẑn+1. (2.40)

Expansion with
√
anbn yields

Ẑn+1 =
1/
√
Rn +

√
Rn

1/Zn(1/
√
Rn −

√
Rn)

=
1 +Rn

1/Zn(1−Rn)
, Rn =

bn
an
. (2.41)
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Rn can be expressed as

Rn =
Ẑn+1 − Zn
Ẑn+1 + Zn

. (2.42)

In the next step, the condition of continuity for the electric field En
x (z = zn) = En+1

x (z = zn) needs
to be applied to calculate the coefficient an+1 from an and the reflection coefficients Rn and Rn+1:

an+1 =
an(1 +Rn)

eikn+1dn+1 +Rn+1e−ikn+1dn+1
. (2.43)

In the case of an incident electric field of E0 = 1V ·m−1, we have a0 = 1 and for the first layer

a1 =
(1 +R0)e−ik1d1

1 +R1e−2ik1d1
(2.44)

The formulae shown above describe the propagation of the electromagentic fields in a layered half-
space with wave numbers kn, conductivities σn, permeabilities µn, lower interfaces zn, and thick-
nesses dn of the layers as well as an incident electric field E0

x = 1V ·m−1, whereas N is the number
of layers and n = 1...N . In the air space, k0 =

√
−iωµσ0 with σ0 = 10−14S ·m−1 and

Z0 =
ωµ

k0

(2.45)

applies.
Without loss of generality, the incident magnetic field is fixed to H0

y = 1Am−1. For the incident
electric surface field follows

E0
x = Ẑ1 (2.46)

Now, we can use bn = Rnan to compute the electric and magnetic field components in all layers:

En
x = E0

xan(e−ikn(z−zn) +Rne
ikn(z−zn)) and

Hn
y =

kn
ωµ

E0
xan(e−ikn(z−zn) −Rne

ikn(z−zn)). (2.47)

If the incident magnetic field component H0
x = 1 Am−1 is oriented in x-direction, the orthogonal

electric field component becomes E0
y = −Ẑ1. Since

Hn
x (z) =

1

iωµ

∂En
y

∂z
= − kn

ωµ
(ane

−ikn(z−zn) − bneikn(z−zn)), (2.48)

the electric and magnetic field components are calculated by

En
y = E0

yan(e−ikn(z−zn) +Rne
ikn(z−zn)) and

Hn
x = − kn

ωµ
E0
yan(e−ikn(z−zn) −Rne

ikn(z−zn)). (2.49)

This analytical solution for the electric and magnetic fields propagating in a layered halfspace will be
used later on to formulate boundary conditions for numerical simulations on bounded two-dimensional
(2-D) and three-dimensional (3-D) domains.
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2.1.2 Electromagnetic Induction in 2-D Conductivity Structures

In the case of 2-D isotropic structures, Maxwell’s equations decouple into two independent modes.
If y is the strike direction of a 2-D conductivity structure and assuming a harmonic time dependency
eiωt, eqs (2.1a) and (2.1b) reduce to

∂Hx

∂z
− ∂Hz

∂x
= (σ + iωε)Ey, (2.50a)

−∂Ey
∂z

= −iωµHx, (2.50b)

∂Ey
∂x

= −iωµHz, (2.50c)

and

−∂Hy

∂z
= (σ + iωε)Ex, (2.51a)

∂Hy

∂x
= (σ + iωε)Ez, (2.51b)

∂Ex
∂z
− ∂Ez

∂x
= −iωµHy (2.51c)

for a homogeneous region of the electromagnetic parameters σ, µ, and ε. Eqs (2.50) yield a complete
description of the occuring electromagnetic fields in the case of E-polarisation, whereas eqs (2.51)
hold for the case of H-polarisation (cf. Fig. 2.3). Combining eqs (2.50), the equation of induction for
the electric field Ey reads as

− ∂

∂x
µ−1∂Ey

∂x
− ∂

∂z
µ−1∂Ey

∂z
+ (iωσ − ω2ε)Ey = 0. (2.52)

Eqs (2.51) yield the equation of induction for the magnetic field Hy

− ∂

∂x
(σ + iωε)−1∂Hy

∂x
− ∂

∂z
(σ + iωε)−1∂Hy

∂z
+ iωµHy = 0.

(2.53)

Once the strike-parallel components Ey and Hy have been computed, the remaining components
Hx, Hz, Ex, and Ez can be derived from eqs (2.50b), (2.50c), and eqs (2.51b), (2.51c) by numerical
differentiation. From the horizontal electric and magnetic fields, the MT impedances

Zxy =
Ex
Hy

and Zyx =
Ey
Hx

(2.54)

yield the apparent resistivities

ρxy =
1

ωµ
|Zxy|2 and ρyx =

1

ωµ
|Zyx|2 (2.55)

as well as the phases

φxy = arg(Zxy) and φyx = arg(Zyx). (2.56)
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x

z

y
k1 k2 k1

Hz

Hx

Ey
Ez

Ex

Hy

Fig. 2.3: Orientation of field components occuring for E- (left) and H- (right) polarisation for a 2-D
model as exemplarily described on top.

Furthermore, the ratio of vertical to horizontal magnetic field components provides the magnetic
transfer function called tipper:

Tzx =
Hz

Hx

. (2.57)

As can be seen from the inspection of eqs (2.50) and (2.51), Zxx, Zyy, and Tzy are zero in the 2-D
case.



3 Formulations of the Magnetotelluric
Boundary Value Problem

From Maxwell’s equations, different formulations of the magnetotelluric (MT) boundary value prob-
lem (BVP) arise that similarly describe the propagation of the electromagnetic fields. In this chapter,
the equation of induction is derived in terms of the electric field, the magnetic field, the magnetic
vector potential and the electric scalar potential, the magnetic vector potential only, or the anomalous
magnetic vector potential. Incorporating adequate boundary conditions of Dirichlet and Neumann
type, the appropriate two-dimensional (2-D) BVPs are formulated in terms of the electric and the
magnetic field, respectively, whereas in the three-dimensional (3-D) case five different BVPs are in-
troduced. The latter represent a variety of BVPs that are suited to simulate MT fields (Haber et al.,
2000; Schwarzbach, 2009; Mackie et al., 1994; Mogi, 1996) without intending to be exhaustive. How-
ever, it enables the analysis of the different formulations regarding the numerical simulation of electric
versus magnetic field values, the approximation of electromagnetic potentials versus electromagnetic
fields, the consideration of a stabilised approach versus unstabilised formulations, and the simulation
of an anomalous electromagnetic potential versus total field approaches. These points are among the
issues that are most intensively discussed in the community of geo-electromagnetic code developers
nowadays.

3.1 The Two-Dimensional Boundary Value Problem

To calculate the electric and magnetic field components from eqs (2.52) and (2.53), respectively, in a
bounded domain Ω ⊂ R2 the following 2-D BVPs can be formulated for E-polarisation

− ∂

∂x
µ−1∂Ey

∂x
− ∂

∂z
µ−1∂Ey

∂z
+ (iωσ − ω2ε)Ey = 0 in Ω (3.1a)

Ey = En(x, z) on ΓD (3.1b)
n1 ×H1 + n2 ×H2 = n1 · (µ−1

1 ∇Ey,1) + n2 · (µ−1
2 ∇Ey,2) = 0 on Γint (3.1c)

and H-polarisation

− ∂

∂x
(σ + iωε)−1∂Hy

∂x
− ∂

∂z
(σ + iωε)−1∂Hy

∂z
+ iωµHy = 0 in Ω (3.2a)

Hy = Hn(x, z) on ΓD (3.2b)
n1 × E1 + n2 × E2 =

n1 ·
(
(σ1 + iωε)−1∇Hy,1

)
+ n2 ·

(
(σ2 + iωε)−1∇Hy,2

)
= 0 on Γint, (3.2c)

respectively. For the outer boundaries ΓD, to which inhomogeneous boundary conditions of the
Dirichlet type apply, the normal field values En and Hn are computed according to the algorithm
presented in the previous section. n1 and n2 denote outward unit normal vectors on the interface Γint

seperating subdomains 1 and 2, i.e. regions of different electrical conductivity.
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3.2 The Three-Dimensional Boundary Value Problem

To solve eqs (2.8) or (2.9) for the magnetic or the electric fields, respectively, in a bounded domain
Ω ⊂ R3 respecting the boundary conditions described in subsection 2.1.1 for two orthogonal hori-
zontal electric and magnetic field components, several BVPs can be formulated. The BVP in terms of
the magnetic field reads

BVP (i) Find H such that

∇× (σ + iωε)−1∇×H + iωµH = 0 in Ω (3.3a)
n× E = 0 on Γ⊥ (3.3b)
n×H = 0 on Γ|| (3.3c)

H = Hn(x, y, z) on Γtop ∪ Γbottom (3.3d)
n1 × E1 − n2 × E2 = 0 on Γint (3.3e)

where Γ⊥ denotes all boundaries oriented perpendicular to the current flow, Γ|| includes all bound-
aries parallel to the current flow, Γtop and Γbottom are the horizontal top and bottom boundaries, re-
spectively. On all the interior boundaries, Γint representing possible jumps in the electromagnetic
model parameters the conditions of continuity of the tangential field components apply. Furthermore,
E = (σ + iωε)−1∇×H is valid.

The BVP for the electric field reads as

BVP (ii) Find E such that

∇× µ−1∇× E + (iωσ − ω2ε)E = 0 in Ω (3.4a)
n× E = 0 on Γ⊥ (3.4b)
n×H = 0 on Γ|| (3.4c)

H = Hn(x, y, z) on Γtop ∪ Γbottom (3.4d)
n1 ×H1 − n2 ×H2 = 0 on Γint (3.4e)

using the same notation as above. Here, H = (−iωµ)−1∇× E applies.

The divergence-free field B can be expressed as curl of the vector potential A

B = ∇×A. (3.5)

Since∇× (E + iωA) = 0 (cf. eq. 2.1b), we can introduce the scalar potential φ so that

E = −∇φ− iωA. (3.6)

Substituting the electric field in eq. (2.9) yields the equation of induction for the magnetic vector
potential A

∇×µ−1∇×A + (iωσ − ω2ε)A + (σ + iωε)∇φ = 0. (3.7)

To solve for both unkowns A and φ, the equation of continuity
∇· (∇×H) = ∇· ((σ + iωε)E) = 0 needs to be applied additionally

−∇·
(
(iωσ − ω2ε)A + (σ + iωε)∇φ

)
= 0. (3.8)
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Choosing Ã = A +∇Ψ and φ̃ = φ− Ψ̇ with the gauge condition Ψ = −iφ/ω, we obtain

Ã = A− i

ω
∇φ and φ̃ = 0 (3.9)

that determine the same electromagnetic fields as A and φ (cf. eqs 3.5 and 3.6). With the help of eq.
(3.9), eq. (3.7) can be rearranged into an elliptic second-order partial differential equation for Ã

∇× µ−1∇× Ã + (iωσ − ω2ε)Ã = 0. (3.10)

Therewith, two more BVPs can be formulated

BVP (iii) Find A and φ such that

∇×µ−1∇×A + (iωσ − ω2ε)A + (σ + iωε)∇φ = 0 in Ω (3.11a)
−∇·

(
(iωσ − ω2ε)A + (σ + iωε)∇φ

)
= 0 in Ω (3.11b)

n×H = 0 and n · j = 0 on Γ|| (3.11c)
n×A = 0 and φ = φ0 on Γ⊥ (3.11d)

H = Hn(x, y, z) and n · j = −∇· (n×H) = 0 on Γtop ∪ Γbottom (3.11e)
n1 ×H1 − n2 ×H2 = 0 and n1 · j1 − n2 · j2 = 0 on Γint (3.11f)

where H = µ−1∇×A and j = − ((iωσ − ω2ε)A + (σ + iωε)∇φ).

BVP (iv) Find Ã such that

∇× µ−1∇× Ã + (iωσ − ω2ε)Ã = 0 in Ω (3.12a)
n×H = 0 on Γ|| (3.12b)

n× Ã = 0 on Γ⊥ (3.12c)
H = Hn(x, y, z) on Γtop ∪ Γbottom (3.12d)

n1 ×H1 − n2 ×H2 = 0 on Γint (3.12e)

with H = µ−1∇×A. In the following, Ã is substituted by A in eqs (3.12a) and (3.12c). How much
A computed from BVP (iii) and BVP (iv) differ, i.e. which influence the scalar potential φ has on the
solution (cf. eq. 3.9), will be examined in chapter 5.

Assuming a harmonic time dependency eiωt in eqs (2.1a) and (2.1b), the separation of the electric and
magnetic fields E and H, respectively, into normal (En, Hn) and anomalous (Ea, Ha) contributions

E = Ea + En and H = Ha + Hn (3.13)

where

∇×En = −iωµnHn and ∇×Hn = (σn + iωεn)En (3.14)

with

ε = εn + εa, σ = σn + σa, µ = µn + µa
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results in

∇×Ea = ∇× (E− En) = −iωµH + iωµnHn

= −iωµHa − iωµaHn and (3.15)
∇×Ha = ∇× (H−Hn) = (σ + iωε)E− (σn + iωεn)En

= (σ + iωε)Ea + (σa + iωεa)En. (3.16)

Multiplying eq. (3.15) by µ−1, taking ∇× and combining it with eq. (3.16) yield the equation of
induction for the anomalous electric field Ea

∇×µ−1∇×Ea + (iωσ − ω2ε)Ea + iω∇×µaµ−1Hn = −(iωσa − ω2εa)En. (3.17)

Assuming φa = 0 (cf. eq. 3.9) and substituting Ea = −iωAa, we obtain the equation of induction for
the anomalous potential Aa

∇× µ−1(∇×Aa − µaHn) + (iωσ − ω2ε)Aa = (σa + iωεa)En. (3.18)

The non-zero horizontal components of the normal electromagnetic fields En und Hn are computed
for a 1-D layered halfspace with parameter distributions σn, µn, and εn analytically as shown in
subsection 2.1.1. Considering eq. (3.18) in the domain Ω with the outer boundary ΓD and all internal
boundaries Γint, for which the conditions of continuity for the magnetic field are valid, yields the BVP
BVP (v) Find Aa such that

∇× µ−1(∇×Aa − µaHn) + (iωσ − ω2ε)Aa = (σa + iωεa)En in Ω (3.19a)
n×Aa = 0 on ΓD (3.19b)

n1 ×Ha,1 − n2 ×Ha,2 = 0 on Γint (3.19c)

where Ha = µ−1∇×Aa.
Analogous to eqs (3.5) and (3.6), we can find an electric vector potential T and a magnetic scalar
potential Ω to describe the electric current density and the magnetic field:

j = ∇×T and H = T−∇Ω. (3.20)

A solution to the BVP using this approach is presented by Mitsuhata and Uchida (2004) and will not
be explicitly discussed in this thesis.
Additional BVPs can be formulated using anomalous field approaches (Newman & Alumbaugh,
1996) that are quite similar to the anomalous potential technique. Furthermore, the numerical solu-
tion of the stabilised equation of induction for the electric field has been introduced by Schwarzbach
(2009).



4 The Finite Element Method

For the accurate computation of electromagnetic fields and potentials on the earth’s surface and the
sea floor, it is desireable to incorporate the topographic and bathymetric relief into the model. Unstruc-
tured triangular and tetrahedral grids are superior to tensor-product grids when approximating close-
to-reality topographic and bathymetric undulations. Moreover, in connection with an a-posteriori
error estimator provided by convergence theory applied to the finite element (FE) method, unstruc-
tured grids allow for elaborate mesh design by adaptive refinement concentrating elements and their
associated degrees of freedom (DOF) in the regions of importance. To benefit from these advantages,
for solving the introduced boundary value problems (BVPs), the FE method is applied.

Based on the weak formulation of the two-dimensional (2-D) and three-dimensional (3-D) BVPs in-
troduced in the previous chapter, the FE method is used to approximate the solution of the partial
differential equations. In the following, the derivation of the weak form of the 2-D and 3-D BVPs is
demonstrated. The FE analysis leads to a discrete matrix-vector formulation of the BVPs that is solved
numerically. In the 2-D case, Lagrange elements are applied to approximate scalar field components.
For the 3-D BVPs, however, curl-conforming vector finite elements are better suited for the approx-
imation of vector fields. From convergence theory it is expected that, a finer discretisation yields a
more accurate solution. Hence, at the end of this chapter, applicable mesh refinement strategies are
presented.

Detailed descriptions of the application of the FE method to solve Maxwell’s equations can be found
in Monk (2003) and Jin (1993).

4.1 Weak Form of the Boundary Value Problems

4.1.1 Weak Form of the Two-Dimensional Boundary Value Problems

We seek for solutions Ey and Hy of the BVPs described by eqs (3.1) and (3.2), respectively. An
equivalent formulation of the BVP for E-polarisation on the domain Ω requires the validity of eq.
(3.1a) only in the sense of the L2-inner product (u, v) =

∫
Ω
uv̄ dx with an arbitrary complex test

function v of a function space V and its complex conjugate v̄, which leads to∫
Ω

(
−∇ ·

(
µ−1∇Ey

)
v̄ + (iωσ − ω2ε)Eyv̄

)
dx = 0 ∀v ∈ V. (4.1)

From the vector identity∇ · (c∇uv) = ∇ · (c∇u) v + c∇u · ∇v and Green’s theorem, we obtain∫
Ω

(
µ−1∇Ey · ∇v̄ + (iωσ − ω2ε)Eyv̄

)
dx−

∫
∂Ω

n ·
(
µ−1∇Ey

)
v̄ dl = 0 ∀v ∈ V. (4.2)

23
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The integral over all boundaries ∂Ω = ΓD ∪ Γint of the region Ω∫
∂Ω

n ·
(
µ−1∇Ey

)
v̄ dl =

∫
ΓD

n ·
(
µ−1∇Ey

)
v̄ dl

+

∫
Γint

(
n1 ·

(
µ−1

1 ∇Ey,1
)

+ n2 ·
(
µ−1

2 ∇Ey,2
))
v̄ dl (4.3)

vanishes if v ≡ 0 on the Dirichlet boundary ΓD. On that condition, the original problem of solving
eqs (3.1a)-(3.1c) can be replaced by the so-called weak formulation which consists of finding Ey ∈ U
such that:

b(Ey, v) =

∫
Ω

(
µ−1∇Ey · ∇v̄ + (iωσ − ω2ε)Eyv̄

)
dx = 0 ∀v ∈ V, (4.4)

where

U := {Ey ∈ H1(Ω) : Ey = En(x, z) on ΓD} and (4.5)
V := {v ∈ H1(Ω) : v ≡ 0 on ΓD} (4.6)

are the trial and the test space, respectively. H1 denotes the finite-dimensional Hilbert space

H1(Ω) := {v ∈ L2(Ω),∇v ∈ (L2(Ω))2} (4.7)

that is linear with respect to the scalar product (u, v) =
∫

Ω
(u v+∇u·∇v) dx. For the solutionEy of the

weak form (4.4) and its first partial derivatives ∇Ey, it is sufficient to be square integrable instead of
twice continously differentiable (Ey ∈ C2(Ω) , cf. eq. 3.1a). The material parameters σ, µ, ε ∈ L2(Ω)
are required to be square integrable. Satisfying eqs (3.1), the electromagnetic fields are solutions to
eq. (4.4) as well.
In the H-Polarisation case, the weak form of the BVP described by eqs (3.2) is: Find Hy ∈ U such
that

b(Hy, v) =

∫
Ω

(
(σ + iωε)−1∇Hy · ∇v̄ + iωµHyv̄

)
dx = 0 ∀v ∈ V, (4.8)

where

U := {Hy ∈ H1(Ω) : Hy = Hn(x, z) on ΓD} and (4.9)
V := {v ∈ H1(Ω) : v ≡ 0 on ΓD} (4.10)

with the same finite-dimensional Hilbert space H1 as above

H1(Ω) := {v ∈ L2(Ω),∇v ∈ (L2(Ω))2}. (4.11)

4.1.2 Weak Form of the Three-Dimensional Boundary Value Problems

Seeking for a solution H of BVP (i) (eqs 3.3) in the domain Ω requires the validity of (3.3a) only in
the sense of the L2-inner product (u,v) =

∫
Ω
u · v̄ dx with an arbitrary complex- and vector-valued

test function v of a function space V , which leads to∫
Ω

[(
∇× (σ + iωε)−1∇×H

)
· v̄ + iωµH · v̄

]
dx = 0 ∀v ∈ V (4.12)
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where v̄ is the complex conjugate of v. From the vector identity∇×w ·v = ∇· (w×v) +w ·∇×v
and Green’s theorem we obtain∫

Ω

[(σ + iωε)−1∇×H · ∇× v̄ + iωµH · v̄] dx

+

∫
∂Ω

n×
(
(σ + iωε)−1∇×H

)
· v̄ dx = 0 ∀v ∈ V.

(4.13)

n denotes the outward unit normal vector. Portions of the integral over all boundaries ∂Ω = Γ⊥ ∪
Γ|| ∪ Γtop ∪ Γbottom ∪ Γint of the domain Ω∫

∂Ω

n×
(
(σ + iωε)−1∇×H

)
· v̄ dx = −

∫
∂Ω\Γint

(n× v̄) ·
(
(σ + iωε)−1∇×H

)
dx

+

∫
Γint

(n1 × E1 − n2 × E2) · v̄ dx (4.14)

vanish on Γ⊥ and Γint (cf. eqs 3.3b and 3.3e). To generally eliminate this term from eq. (4.13), we
choose n × v = 0 on Γ||, Γtop and Γbottom since no information about n × ((σ + iωε)−1∇×H) is
given on these boundaries. On that condition, the original problem (eqs (3.3)) can be replaced by the
so-called weak formulation

BVP (i) Find H ∈ U such that∫
Ω

[(σ + iωε)−1∇×H · ∇×v + iωµH · v] dx = 0 ∀v ∈ V (4.15)

where

U := {H ∈ H(curl,Ω) : H = H(x, y, z) on Γtop ∪ Γbottom,

n×H = 0 on Γ||}, (4.16a)
V := {v ∈ H(curl,Ω) : n× v = 0 on Γtop ∪ Γbottom ∪ Γ||} and (4.16b)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3}. (4.16c)

The weak form of BVP (ii) (eqs 3.4) can be derived in the same manner. Starting from the L2-inner
product with an arbitrary complex- and vector-valued test function v∫

Ω

[(
∇×µ−1∇×E

)
· v̄ + (iωσ − ω2ε)E · v̄

]
dx = 0 ∀v ∈ V, (4.17)

we get after applying vector calculus∫
Ω

[µ−1∇×E · ∇× v̄ + (iωσ − ω2ε)E · v̄] dx

+

∫
∂Ω

n×
(
µ−1∇×E

)
· v̄ dx = 0 ∀v ∈ V (4.18)
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whereas∫
∂Ω

n×
(
µ−1∇×E

)
· v̄ dx = −

∫
∂Ω\Γint

(n× v̄) ·
(
µ−1∇×E

)
dx

+

∫
Γint

(n1 ×H1 − n2 ×H2) · v̄ dx. (4.19)

Portions of the boundary integral vanish on Γ|| and Γint (cf. eqs 3.4c and 3.4e) as well as on Γ⊥ if we
choose n × v = 0 there. On Γtop and Γbottom, eq. (3.4d) gives µ−1∇×E = Hn(x, y, z). Taking the
boundary-integral term to the right-hand side, the original problem (eqs (3.4)) can be replaced by its
weak form

BVP (ii) Find E ∈ U such that∫
Ω

(
µ−1∇×E · ∇×v

)
+ (iωσ − ω2ε)E · v dx =

∫
Γtop

(n× v̄) ·Hn dx

+

∫
Γbottom

(n× v̄) ·Hn dx ∀v ∈ V (4.20)

where

U := {E ∈ H(curl,Ω) : n× E = 0 on Γ⊥}, (4.21a)
V := {v ∈ H(curl,Ω) : n× v = 0 on Γ⊥} and (4.21b)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3}. (4.21c)

Due to the homogeneous boundary condition (3.4b) for n × E on Γ⊥, the trial and the test functions
can be chosen from the same function space V .

To find the weak form of BVP (iii) (eqs (3.11)), we need to formulate eqs (3.11a) and (3.11b) in
the sense of the L2-inner products (u,v) =

∫
Ω
u · v̄ dx and (f, w) =

∫
Ω
fw̄ dx using an arbitrary

complex-valued vector test function v ∈ V , its complex conjugate v̄, an arbitrary complex-valued
scalar test function w ∈ W and its complex conjugate w̄, respectively,∫

Ω

[(
∇×µ−1∇×A

)
· v̄ + (iωσ − ω2ε)A · v̄ + (σ + iωε)∇φ · v̄

]
dx = 0 ∀v ∈ V, (4.22a)∫

Ω

[
−∇·

(
(iωσ − ω2ε)A + (σ + iωε)∇φ

)
· w
]
dx = 0. (4.22b)

Applying the vector identities∇×w ·v = ∇· (w×v) +w · ∇×v and∇· (wv) = w∇·v+v · ∇w,
respectively, and Green’s theorem yield∫

Ω

[µ−1∇×A · ∇× v̄ + (iωσ − ω2ε)A · v̄ + (σ + iωε)∇V · v̄] dx

+

∫
∂Ω

n×
(
µ−1∇×A

)
· v̄ dx = 0 ∀v ∈ V (4.23a)∫

Ω

[(iωσ − ω2ε)A · ∇ w̄ + (σ + iωε)∇φ · ∇ w̄] dx

+

∫
∂Ω

n · [(iωσ − ω2ε)A + (σ + iωε)∇φ] · w̄ dx = 0 ∀w ∈ W. (4.23b)

n represents the outward unit normal vector again. Portions of the integrals over all boundaries ∂Ω =
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Γ⊥ ∪ Γ|| ∪ Γtop ∪ Γbottom ∪ Γint of the domain Ω∫
∂Ω

n×
(
µ−1∇×A

)
· v̄ dx = −

∫
∂Ω\Γint

(n× v̄) ·
(
µ−1∇×A

)
dx

+

∫
Γint

(n1 ×H1 − n2 ×H2) · v̄ dx, (4.24a)∫
∂Ω

n · [(iωσ − ω2ε)A + (σ + iωε)∇φ] · w dx =

∫
Γint

(n1 · j1 − n2 · j2)w dx

+

∫
∂Ω\Γint

n ·
[
(iωσ − ω2ε)A + (σ + iωε)∇φ

]
· w dx

(4.24b)

vanish on Γ|| and Γint (cf. eqs (3.11c) and (3.11f)). To eliminate the portion of the boundary integral on
Γ⊥ as well, n× v̄ = 0 is chosen there. On Γtop and Γbottom, we have data for µ−1∇×A = Hn(x, y, z),
however, n ·((iωσ − ω2ε)A + (σ + iωε)∇φ) = n · j = 0 applies to the lower integral (cf. eq. 3.11e).
Therewith, the weak formulation of BVP (iii) described by eqs (3.11) reads as follows

BVP (iii) Find A ∈ U and φ ∈ F such that∫
Ω

(µ−1∇×A · ∇×v + (iωσ − ω2ε)A · v + (σ + iωε)∇φ · v) dx

=

∫
Γtop

(n× v̄) ·Hn dx +

∫
Γbottom

(n× v̄) ·Hn dx and (4.25a)∫
Ω

((iωσ − ω2ε)A · ∇w + (σ + iωε)∇φ · ∇w) dx = 0 ∀v ∈ V and w ∈ W (4.25b)

where

U := {A ∈ H(curl,Ω) : n×A = 0 on Γ⊥}, (4.26a)
F := {φ ∈ H1(Ω) : φ = 0 on Γ⊥}, (4.26b)
V := {v ∈ H(curl,Ω) : n× v = 0 on Γ⊥}, (4.26c)
W := {w ∈ H1(Ω) : w ≡ 0 on Γ⊥}, (4.26d)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3} and (4.26e)
H1(Ω) := {w ∈ L2(Ω),∇w ∈ (L2(Ω))3}. (4.26f)

Due to the homogeneous boundary conditions for n×A and φ on Γ⊥, the trial and test functions can
be chosen from the same function spaces V and W , respectively.

Following the derivation of BVP (ii), the weak formulation of BVP (iv) (eqs (3.12)) is obtained as

BVP (iv) Find A ∈ U such that∫
Ω

(µ−1∇×A · ∇×v + (iωσ − ω2ε)A · v) dx =

∫
Γtop

(n× v̄) ·Hn dx

+

∫
Γbottom

(n× v̄) ·Hn dx ∀v ∈ V (4.27)
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where

U := {A ∈ H(curl,Ω) : n×A = 0 on Γ⊥}, (4.28a)
V := {v ∈ H(curl,Ω) : n× v = 0 on Γ⊥} and (4.28b)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3}. (4.28c)

The homogeneous boundary conditions for n ×A on Γ⊥ allow to choose the trial and test functions
from the same function space V .

Finally, for BVP (v) represented by eqs (3.19), we obtain a weak formulation basing on the L2-inner
product (u,v) =

∫
Ω
u · v̄ dx with an arbitrary complex-valued vector test function v and its complex

conjugate v̄∫
Ω

[(
∇×µ−1(∇×Aa − µaHn)

)
· v̄ + (iωσ − ω2ε)Aa · v̄

]
dx =

∫
Ω

(σa+ iωεa)En · v̄ ∀v ∈ V.

(4.29)

Vector calculus yields∫
Ω

[µ−1(∇×Aa − µaHn) · ∇× v̄ + (iωσ − ω2ε)Aa · v̄] dx

+

∫
∂Ω

n×
(
µ−1(∇×Aa − µaHn)

)
· v̄ dx

=

∫
Ω

(σa + iωεa)En · v̄ ∀v ∈ V (4.30)

where∫
∂Ω

n×
(
µ−1(∇×Aa − µaHn)

)
· v̄ dx = −

∫
∂Ω\Γint

n×
(
µ−1(∇×Aa − µaHn)

)
· v̄ dx

+

∫
Γint

(n1 ×H1 − n2 ×H2) · v̄ dx. (4.31)

The boundary integral vanishes on Γint (cf. eq. 3.19c). On all other boundaries ∂Ω \ Γint the integral
is eliminated from eq. (4.30) by choosing v ≡ 0. Arranging all terms with known field values on the
right-hand side, the weak form of BVP (v) reads as

BVP (v) Find Aa ∈ U such that∫
Ω

(µ−1∇×Aa · ∇× v̄ + (iωσ − ω2ε)Aa · v̄) dx

=

∫
Ω

((σa + iωεa)En · v̄ + µaHn · ∇× v̄) dx ∀v ∈ V (4.32)

where

U := {Aa ∈ H(curl,Ω) : Aa = 0 on Γtop, Γbottom, Γ⊥, Γ||}, (4.33a)
V := {v ∈ H(curl,Ω) : v ≡ 0 on Γtop, Γbottom, Γ⊥, Γ||} and (4.33b)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3}. (4.33c)

Since the boundary conditions for Aa are homogeneous on the outer boundaries ∂Ω \ Γint, the trial
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and test functions can be chosen from the same function space V .

4.2 Finite Element Analysis

4.2.1 Two-dimensional Finite Element Approximation Using Lagrange
Elements

We seek discrete formulations of eqs (4.4) and (4.8) which read in general form as follows

b(u, v) =

∫
Ω

(c∇u · ∇v̄ + a uv̄) dx = 0 ∀v ∈ V, (4.34)

with function spaces

U := {u ∈ H1(Ω) : u = r on ΓD}, (4.35a)
V := {v ∈ H1(Ω) : v ≡ 0 on ΓD} and (4.35b)

H1(Ω) := {v ∈ L2(Ω),∇v ∈ (L2(Ω))2} (4.35c)

and where the functions u and v and the coefficients a and c are associated with the electromagnetic
field components and the electrical conductivity as well as the magnetic permeability as follows

E-Polarisation:

u := Ey, c := µ−1, a := iωσ − ω2ε, (4.36)

H-Polarisation:

u := Hy, c := (σ + iωε)−1, a := iωµ. (4.37)

Preliminarily, the solution u and the test function v are both required to belong to the same infinite-
dimensional function space V , i.e. r ≡ 0 in eq. (4.35a). The inhomogeneous Dirichlet boundary
conditions u = r 6≡ 0 will be taken into account later. Projection of the weak form onto an Np-
dimensional function subspace VNp means requiring u, v ∈ VNp . Taking Np test functions ψi ∈ VNp

that form a basis of VNp and uh as a linear combination of these basis functions and the scalar complex
expansion coefficients Uj

uh(x) =

Np∑
j=1

Ujψj(x), (4.38)

we obtain the system of equations

Np∑
j=1

(∫
Ω

(
(c∇ψj) · ∇ψ̄i + aψjψ̄i

)
dx

)
Uj = 0, i = 1, ..., Np. (4.39)

It can be rewritten in matrix form

(K + M)U = 0, (4.40)
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Fig. 4.1: Graphical representation of DOF: li(u) = u(xi) for linear (left), quadratic (middle), and
cubic (right) Lagrange elements.

with the stiffness matrix

Ki,j =

∫
Ω

(c∇ψj) · ∇ψ̄idx i, j = 1, ..., Np (4.41)

and the mass matrix

Mi,j =

∫
Ω

aψjψ̄idx i, j = 1, ..., Np. (4.42)

In the 2-D MT case, i.e. for simulating scalar field components in source-free regions, Lagrange
elements whose degrees of freedom ln(ψj) are defined as values ψj(x) at location x are well suited.
In the 3-D case that is discussed in the following section, however, the application of curl-conforming
vector elements seems to be more natural due to the conditions of continuity of the electromagnetic
vector fields. Furthermore, we choose VNp to be a space of piecewise linear (p = 1), quadratic (p = 2),
or cubic (p = 3) functions. The basis functions are designed such that

ln(ψj) = δn,j =

{
1 if n = j
0 if n 6= j

and
∑
n

ln(ψj) = 1 j = 1, ..., Np. (4.43)

Using li(ψi) = ψi(xi) = 1 in eq. (4.38) with xi denoting the location of the degrees of freedom leads
to

uh(xi) =

Np∑
j=1

Ujψj(xi) = Ui. (4.44)

Hence, solving eq. (4.40) yields values of the approximate solution uh(x) for all DOF. In the case of
linear (p = 1) basis functions, DOF are placed in the vertices of the triangles. Additional DOF appear
at the edges for quadratic (p = 2) and cubic (p = 3) basis functions (cf. Fig. 4.1). Tab. 4.1 lists the
coordinates of the DOF positions in the reference triangle (0,0) – (1,0) – (0,1). The integrals in eqs
(4.41) and (4.42) are computed on each triangle ϑ by numerical quadrature. The system matrices K
and M are assembled from the local matrices Kϑ and Mϑ, respectively.
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p 1 (linear) 2 (quadratic)
no. of DOF 1 2 3 1 2 3 4 5 6

x 0 1 0 0 0.5 1 0 0.5 0
y 0 0 1 0 0 0 0.5 0.5 1
p 3 (cubic)

no. of DOF 1 2 3 4 5 6 7 8 9 10
x 0 0.33 0.67 1 0 0.33 0.67 0 0.33 0
y 0 0 0 0 0.33 0.33 0.33 0.67 0.67 1

Tab. 4.1: List of DOF positions for 2-D Lagrange elements in the reference triangle at (0,0) – (1,0) –
(0,1).

The inhomogeneous Dirichlet boundary conditions with r 6≡ 0 still need consideration. So far, the
vector U contains Np elements for the interior points in region Ω \ ΓD and NΓD elements for the
points on ΓD whose values vanish (cf. eq. (4.35b)). Eq. (3.1b) provides the NΓD non-zero values on
ΓD in UΓD which comprises Np zero-elements for all the interior points. Applying

U = UΩ\ΓD + UΓD (4.45)

to eq. (4.40), we derive a system of linear equations for UΩ\ΓD:

(K + M)UΩ\ΓD = −(K + M)UΓD . (4.46)

4.2.2 Three-dimensional Finite Element Approximation Using Vector
Elements

In the following, the general form of BVP (i), BVP (ii), BVP (iv), and BVP (v)

b(u,v) =

∫
Ω

((c∇×u) · ∇× v̄ + au · v̄) dx =

∫
Ω

q1 · v̄ dx +

∫
Ω

q2 · ∇× v̄ dx

+

∫
Γtop

(n× v̄) · g1 dx +

∫
Γbottom

(n× v̄) · g2 dx ∀v ∈ V (4.47)

where

U(i) := {u ∈ H(curl,Ω) : u = u(x, y, z) on Γtop ∪ Γbottom,

n× u = 0 on Γ||}, (4.48a)
V(i) := {v ∈ H(curl,Ω) : n× v = 0 on Γtop ∪ Γbottom ∪ Γ||}, (4.48b)

U(ii),(iv) := {u ∈ H(curl,Ω) : n× u = 0 on Γ⊥}, (4.48c)
V(ii),(iv) := {v ∈ H(curl,Ω) : n× v = 0 on Γ⊥}, (4.48d)
U(v) := {u ∈ H(curl,Ω) : u = 0 on Γ⊥}, (4.48e)
V(v) := {v ∈ H(curl,Ω) : v = 0 on Γ⊥}, and (4.48f)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3}. (4.48g)

and
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(i): u := H, a := iωµ, c := (σ + iωε)−1, q1 := 0, q2 := 0, g1 := 0, g2 := 0,

(ii): u := E, a := iωσ − ω2ε, c := µ−1, q1 := 0, q2 := 0, g1 := Hn, g2 := Hn,

(iv): u := A, a := iωσ − ω2ε, c := µ−1, q1 := 0, q2 := 0, g1 := Hn, g2 := Hn,

(v): u := Aa, a := iωσ − ω2ε, c := µ−1, q1 := (σa + iωεa)En, q2 := cµaHn,
g1 := 0, g2 := 0.

is considered. For BVP (i), we choose u ∈ U(i) and v ∈ V(i). Since the boundary conditions for n× u
and u are homogeneous in the cases of BVP (ii), (iv), and (v), the trial and the test function spaces
are u, v ∈ V(ii),(iv) and u, v ∈ V(v), respectively. The special case of BVP (iii) will be discussed in the
appropriate place.
As in the 2-D case, we seek an approximation uh ∈ VNp to u ∈ V with VNp being an Np-dimensional
function subspace of V . The inhomogeneous Dirichlet boundary conditions on Γtop and Γbottom for
BVP (i) (cf. eq (4.16a)) will be regarded later. TakingNp complex-valued test functionsψψψi ∈ VNp that
form a basis of VNp and uh as a linear combination of these basis functions and the complex-valued
expansion coefficients Uj

uh =

Np∑
j=1

Ujψψψj, (4.49)

the system of equations reads as

Np∑
j=1

(∫
Ω

(
(c∇×ψψψj) · ∇× ψ̄ψψi + aψψψj · ψ̄ψψi

)
dx

)
Uj = Li, i = 1, ..., Np. (4.50)

with ψ̄ψψi being the complex conjugate of ψψψi. In matrix form we have

KU = L (4.51)

with

Ki,j =

∫
Ω

(c∇×ψψψj · ∇ × ψ̄ψψi + aψψψj · ψ̄ψψi)dx, (4.52)

Li =


0 for bvp (i)∫

Γtop
(n× ψ̄ψψi) ·Hn dx +

∫
Γbottom

(n× ψ̄ψψi) ·Hn dx for bvp (ii), (iv)∫
Ω

(µ−1 µaHn · ∇× ψ̄ψψi + (σa + iωεa)En · ψ̄ψψi) dx for bvp (v)
. (4.53)

Since the tangential components of uh are expected to be continuous, we choose curl-conforming
vector elements to approximate the solution of eq. (4.50). Their DOF are defined as integrals of uh

over edges, faces and the volume of each tetrahedron ϑ in case of VNp being a space of piecewise linear
(p = 1), quadratic (p = 2) or cubic (p = 3) functions (cf. Fig. 4.2). The assumed DOF positions in
the reference tetrahedron (0,0,0) – (1,0,0) – (0,1,0) – (0,0,1) are listed in Tab. 4.2.
As in the 2-D case, the basis functions are characterised by

ln(ψψψj) = δn,j =

{
1 if n = j
0 if n 6= j

and
∑
n

ln(ψψψj) = 1 j = 1, ..., Np. (4.54)
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p 1 (linear) 2 (quadratic)
no. of DOF 1 2 3 4 5 6 1 2 3 4 5 6 7

x 0.5 0 0.5 0 0.5 0 0.33 0.67 0 0.67 0 0.33 0
y 0 0.5 0.5 0 0 0.5 0 0 0.33 0.33 0.67 0.67 0
z 0 0 0 0.5 0.5 0.5 0 0 0 0 0 0 0.33

p 2 (quadratic)
no. of DOF 8 9 10 11 12 13 14 15 16 17 18 19 20

x 0.67 0 0 0.33 0 0.33 0.33 0 0.33 0.33 0.33 0 0.33
y 0 0.67 0 0 0.33 0.33 0 0.33 0.33 0.33 0 0.33 0.33
z 0.33 0.33 0.67 0.67 0.67 0 0.33 0.33 0.33 0 0.33 0.33 0.33

p 3 (cubic)
no. of DOF 1 2 3 4 5 6 7 8 9 10 11 12 13

x 0.25 0.5 0.75 0 0.75 0 0.5 0 0.25 0 0.75 0 0
y 0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 0 0 0.75 0
z 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0.5

p 3 (cubic)
no. of DOF 14 15 16 17 18 19 20 21 22 23 24 25 26

x 0.5 0 0 0.25 0 0.25 0.5 0.25 0.25 0.5 0 0.5 0
y 0 0.5 0 0 0.25 0.25 0.25 0.5 0 0 0.25 0.25 0.5
z 0.5 0.5 0.75 0.75 0.75 0 0 0 0.25 0.25 0.25 0.25 0.25

p 3 (cubic)
no. of DOF 27 28 29 30 31 32 33 34 35 36 37 38 39

x 0.25 0.25 0 0.25 0.25 0.5 0.25 0.25 0.5 0 0.5 0 0.25
y 0.5 0 0.25 0.25 0.25 0.25 0.5 0 0 0.25 0.25 0.5 0.5
z 0.25 0.5 0.5 0.5 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25

p 3 (cubic)
no. of DOF 40 41 42 43 44 45

x 0.25 0 0.25 0.25 0.25 0.25
y 0 0.25 0.25 0.25 0.25 0.25
z 0.5 0.5 0.5 0.25 0.25 0.25

Tab. 4.2: List of DOF positions for 3-D curl-conforming vector elements in the reference tetrahedron
at (0,0,0) – (1,0,0) – (0,1,0) – (0,0,1) for polynomial degrees p = 1, p = 2, p = 3.
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Solving eq. (4.50) yields the discrete approximate solution Ui at locations xi of the DOF

uh(xi) =

Np∑
j=1

Ujψψψj(xi) = Ui. (4.55)

To compute the elements of the local stiffness matrix Kϑ and the local load vector Lϑ, eqs (4.52),
(4.53) and the integrals occuring in the definition of the DOF are evaluated by numerical quadrature
on each tetrahedron ϑ. K and L are assembled from Kϑ and Lϑ, respectively, taking into account the
relation between local and global numbering of the DOF.

In the case of BVP (i), the incorporation of the inhomogeneous Dirichlet boundary conditions UΓD

with U = UΩ\ΓD + UΓD where UΩ\ΓD is the solution in the interior region Ω \ ΓD yields a linear
system of equations for UΩ\ΓD

KUΩ\ΓD = −KUΓD . (4.56)

BVP (iii) needs special treatment because two types of finite elements are applied to approximate A
and φ. Using the notation of eqs (4.25) and (4.26), the general form of BVP (iii) reads as∫

Ω

(c∇×u · ∇× v̄ + au · v̄ + b∇ f · v̄) dx

=

∫
Γtop

(n× v̄) · g1 dx +

∫
Γbottom

(n× v̄) · g2 dx and (4.57a)∫
Ω

(au · ∇w + b∇ f · ∇w) dx = 0 ∀v ∈ V, ∀w ∈ W (4.57b)

where

U := {A ∈ H(curl,Ω) : n×A = 0 on Γ⊥}, (4.58a)
F := {φ ∈ H1(Ω) : φ = 0 on Γ⊥}, (4.58b)
V := {v ∈ H(curl,Ω) : n× v = 0 on Γ⊥}, (4.58c)
W := {w ∈ H1(Ω) : w ≡ 0 on Γ⊥}, (4.58d)

H(curl,Ω) := {v ∈ (L2(Ω))3,∇× v ∈ (L2(Ω))3} and (4.58e)
H1(Ω) := {w ∈ L2(Ω),∇w ∈ (L2(Ω))3} (4.58f)

with

u := A, f := φ, a := iωσ − ω2ε, b := σ + iωε, c := µ−1, g1 := Hn, g2 := Hn. (4.59)

To find approximations uh ∈ VNp to u ∈ V and fh ∈ WMp to f ∈ W , we take Np test functions
ψψψi ∈ VNp that form a basis of VNp , Mp test functions υi ∈ WMp that form a basis of WMp and uh and
fh as linear combinations of these basis functions with expansion coefficients Ui and Fi, respectively

uh =

Np∑
i=1

Uiψψψi, fh =

Mp∑
i=1

Fiυi. (4.60)
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Fig. 4.3: Graphical representation of DOF: Integrals over uh along edges and over faces as well as
locations of fh for first-order (left) and second-order (right) curl-conforming vector elements.
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p 1 (linear) 2 (quadratic)
type scalar vector scalar

no. of DOF 1 2 3 4 5 6 7 8 9 10 1 2 3

x 0 1 0 0 0.5 0 0.5 0 0.5 0 0 0.5 1
y 0 0 1 0 0 0.5 0.5 0 0 0.5 0 0 0
z 0 0 0 1 0 0 0 0.5 0.5 0.5 0 0 0

p 2 (quadratic)
type scalar vector

no. of DOF 4 5 6 7 8 9 10 11 12 13 14 15 16

x 0 0.5 0 0 0.5 0 0 0.33 0.67 0 0.67 0 0.33
y 0.5 0.5 1 0 0 0.5 0 0 0 0.33 0.33 0.67 0.67
z 0 0 0 0.5 0.5 0.5 1 0 0 0 0 0 0

p 2 (quadratic)
type vector

no. of DOF 17 18 19 20 21 22 23 24 25 26 27 28 29

x 0 0.67 0 0 0.33 0 0.33 0.33 0 0.33 0.33 0.33 0
y 0 0 0.67 0 0 0.33 0.33 0 0.33 0.33 0.33 0 0.33
z 0.33 0.33 0.33 0.67 0.67 0.67 0 0.33 0.33 0.33 0 0.33 0.33

p 2 3 (cubic)
type vector scalar

no. of DOF 30 1 2 3 4 5 6 7 8 9 10 11 12

x 0.33 0 0.33 0.67 1 0 0.33 0.67 0 0.33 0 0 0.33
y 0.33 0 0 0 0 0.33 0.33 0.33 0.67 0.67 1 0 0
z 0.33 0 0 0 0 0 0 0 0 0 0 0.33 0.33

p 3 (cubic)
type scalar vector

no. of DOF 13 14 15 16 17 18 19 20 21 22 23 24 25

x 0.67 0 0.33 0 0 0.33 0 0 0.25 0.5 0.75 0 0.75
y 0 0.33 0.33 0.67 0 0 0.33 0 0 0 0 0.25 0.25
z 0.33 0.33 0.33 0.33 0.67 0.67 0.67 1 0 0 0 0 0

Tab. 4.3: List of DOF positions for 3-D vector and Lagrange elements in the reference tetrahedron at
(0,0,0) – (1,0,0) – (0,1,0) – (0,0,1) for polynomial degrees p = 1, p = 2, p = 3, part I.
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p 3 (cubic)
type vector

no. of DOF 26 27 28 29 30 31 32 33 34 35 36 37 38

x 0 0.5 0 0.25 0 0.75 0 0 0.5 0 0 0.25 0
y 0.5 0.5 0.75 0.75 0 0 0.75 0 0 0.5 0 0 0.25
z 0 0 0 0 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75

p 3 (cubic)
type vector

no. of DOF 39 40 41 42 43 44 45 46 47 48 49 50 51

x 0.25 0.5 0.25 0.25 0.5 0 0.5 0 0.25 0.25 0 0.25 0.25
y 0.25 0.25 0.5 0 0 0.25 0.25 0.5 0.5 0 0.25 0.25 0.25
z 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0

p 3 (cubic)
type vector

no. of DOF 52 53 54 55 56 57 58 59 60 61 62 63 64

x 0.5 0.25 0.25 0.5 0 0.5 0 0.25 0.25 0 0.25 0.25 0.25
y 0.25 0.5 0 0 0.25 0.25 0.5 0.5 0 0.25 0.25 0.25 0.25
z 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25

p 3
type vector

no. of DOF 65

x 0.25
y 0.25
z 0.25

Tab. 4.4: List of DOF positions for 3-D vector and Lagrange elements in the reference tetrahedron at
(0,0,0) – (1,0,0) – (0,1,0) – (0,0,1), part II.
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Ui and Fi are complex-valued. The resulting system of equations reads as(
K1 K2

M1 M2

)(
U
F

)
=

(
L
N

)
(4.61)

with

K1
i,j =

∫
Ω

((c∇×ψψψj) · ∇ × ψ̄ψψi + aψψψj · ψ̄ψψi)dx, (4.62)

K2
i,j =

∫
Ω

(b∇υi · ψ̄ψψj)dx, (4.63)

M1
i,j =

∫
Ω

(aψψψi · ∇υj)dx, (4.64)

M2
i,j =

∫
Ω

(b∇υi · ∇υj)dx, (4.65)

Li =

∫
Γtop

(n× ψ̄ψψi) ·Hn dx +

∫
Γbottom

(n× ψ̄ψψi) ·Hn dx, (4.66)

Ni = 0. (4.67)

4.3 Equation Solver

To solve eqs (4.46), (4.56), and (4.61) numerically, direct, iterative, or geometrical multigrid meth-
ods can be applied. Based on Gauss elimination, direct solvers yield exact results whereas iterative
techniques start from an initial guess and aim at reducing the residual to a certain tolerance. A variety
of equation solvers of both types is available as software packages, e.g. UMFPACK (Davis, 2004a),
SPOOLES (Ashcraft et al., 1999), GMRES (Saad & Schultz, 1986). They include elaborate tech-
niques of matrix factorisation, pre-ordering, pivoting and even employ parallelisation as PARDISO
(Schenk & Gärtner, 2004). Geometrical multigrid methods work on a hierarchy of nested grids. Their
implementation is strongly dependent on the nature of the partial differential equation to be solved.
In the case of Maxwell’s equations, the null-space of the curl-curl operator requires hand-tailored
treatment (Hiptmair, 1998) and no general software packages are available.

Direct solvers yield accurate results in a reasonable time but demand lots of memory. Since computer
memory capacity is still growing, direct factorisation methods are of great interest also to compute
pre-conditioning matrices to increase the convergence rate of iterative solvers. The examples shown
in this thesis are restricted to the application of the direct equation solvers UMFPACK (Davis, 2004a)
incorporated in the COMSOL Multiphysics R© package for the 2-D simulations and PARDISO (Schenk
& Gärtner, 2004) in the case of solving the 3-D BVPs. In the following, a LU -decomposition as the
basic Gauss algorithm and a LDLT -decomposition for symmetric matrices are presented.
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4.3.1 LU -Decomposition

We consider the system of equations

Ax = b, (4.68)

where A is the system matrix, x is the vector of unknown fields and b is an arbitrary vector describing
sources or inhomogeneous Dirichlet boundary conditions. The solution of the eq. (4.68) is based
on a so-called LU -decomposition of matrix A in an upper and a lower triangular matrix U and L,
respectively:

A = LU. (4.69)

The system of equations

Ax = LUx = b (4.70)

is solved substituting

Ux = y into LUx = Ly = b. (4.71)

In detail is

y1 =
b1

l11

, y2 =
1

l22

(b2 − l21y1) (4.72)

and in general

yi =
1

lii

(
bi −

i−1∑
k=1

likyk

)
(i > 1) (4.73)

applies. The back substitution yields x

xn =
yn
unn

(4.74)

and

xi =
1

uii

(
yi −

n∑
k=i+1

uikxk

)
(i < n). (4.75)

L and U remain to be determined:
l11

l21 l22 0
...

... . . .
ln1 ln2 ln3 . . . lnn




u11 u12 u13 . . . u1n

u22 u23 . . . u2n

0
. . . ...

unn

 =


a11 . . . a1n

...
...

an1 . . . ann

 (4.76)
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This system consists of n2 equations for 2n(n−1)
2

+ 2n = n2 + n unknowns lij and uij . n unknowns
are chosen to be uii = 1 (i = 1, 2, ..., n). Thus, we obtain

l11 = a11, l21 = a21 and l22 = a22 − l21u12 as well as
u12 = a12

l11
, u13 = a13

l11
and u23 = 1

l22
(a23 − l21u13) .

(4.77)

Hence, L and U are calculated as

lij = aij −
∑j−1

k=1 likukj (i ≥ j) and

uij = 1
lii

(
aij −

∑i−1
k=1 likukj

)
(i < j).

(4.78)

4.3.2 LDLT -Decomposition

The factorisation of symmetric matrices does without the computation of U. Since aij = aji,

l21 = a21 and l11u21 = a12 = a21 = l21 (4.79)

applies (cf. eq. 4.77) and eq. (4.78) reads as

uij =
1

lii

(
aij −

i−1∑
k=1

likukj

)
=
lji
lii

(i < j). (4.80)

Furthermore, L can be decomposed into L̂ and an diagonal matrix D

L = L̂D =


1

l̂21 1 0

l̂31 l̂32 1
...

... . . .
l̂n1 l̂n2 . . . 1




l11

l22

0 l33 0
. . .

lnn

 (4.81)

where l̂ij =
lij
ljj

(i > j).

The upper triangular matrix U is derived by transposing L̂: U = L̂T and, hence, UL = L̂DL̂T .
Solving

L̂y = b and DL̂Tx = y (4.82)

is carried out in the same manner as presented in the previous section.
A is typically sparse since each grid node of the FE mesh has a small number of neighbours compared
to the total number of nodes. Storing all non-zero elements and their position is sufficient and more
efficient than keeping the whole matrix in the computer memory. Furthermore, for the 2-D BVPs as
well as BVPs (i) and (ii) in 3-D, A is symmetric.
The numerical stability of an algorithm implementing a LU or LDLT decomposition is increased
by pivoting, i.e. allocating the largest absolute values to the matrix diagonal by exchanging columns
(Schenk & Gärtner, 2006). Additionally, clever matrix factorisation techniques as multifrontal meth-
ods (Davis & Duff, 1997) and pre-ordering techniques (Ashcraft & Liu, 1998; Davis, 2004b) further
improve the efficiency of direct equation solvers.
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4.4 Convergence of the FE Solution

4.4.1 Error Estimation for the 2-D FE Solution

Assuming the exact solution u ∈ Hk(Ω) with regularity k and uh ∈ VNp being the 2-D FE solution,
for a family of quasi-uniform meshes, the L2-norm of the error eh := u−uh of the numerical solution
is bounded

||eh||L2 = ||u− uh||L2 ≤ C1N
α (4.83)

where C1 is a constant that is dependent on the regularity of the exact solution, the polynomial de-
gree p of the basis functions, the modelling domain Ω, and the triangulation but does not depend on
the exact solution u itself and the number N of DOF (Babuška & Aziz, 1972). In the case of quasi-
uniform meshes, the ratio of size hmax of the largest element to the size hmin of the smallest element
is bounded, i.e. the refinement applies to all parts of the mesh. The number N of degrees of freedom
is proportional to h−2 in the 2-D case where h denotes the mesh size, e.g. the circumdiameter of a
triangle. Considering N contrary to h for the error bound in eq. (4.83) allows to examine the conver-
gence of the numerical solution not only in dependence on the mesh size (h-refinement) but also on
the polynomial order of the finite elements (p-refinement).
The exponent

α = −1

d
min{k, p+ 1} (4.84)

with dimensionality d = 2 for the 2-D case is called the asymptotic rate of convergence or simply
convergence rate. Sufficient regularity of the exact solution provided, i.e. k > p+ 1, the convergence
rate α is governed by the order of the finite elements. Optimum convergence rates are listed in Tab.
4.5. Note that, ∇u yielding the derived field components is calculated by differentiation of the basis
functions and, hence, exhibits convergence behaviour that is one order lower than that of the FE
solution itself. H1-norm error estimates

||eh||H1 = ||u− uh||L2 + ||∇u−∇uh||L2 ≤ C2N
β with β = −1

2
min{k, p} (4.85)

result in the same optimum convergence rates as the L2-norm estimates of the error of ∇u. C2 is a
constant with similar characteristics as C1.

p u ∇u
1 -1.00 -0.50
2 -1.50 -1.00
3 -2.00 -1.50

Tab. 4.5: Optimum convergence rate α for the simulated field component u and the derived field
components that are proportional to ∇u in dependence of the polynomial degree p of the finite
elements.

For further details on the FE method and a-priori error estimates, the reader is referred to Babuška
and Aziz (1972), Ciarlet (1978), and Strang and Fix (1973).



Chapter 4. The Finite Element Method 43

4.4.2 Error Estimation for the 3-D FE Solution

The error of the 3-D vector FE solution is bounded as well (cf. Monk, 2003). Assuming the exact
solution u ∈ Hk(Ω) with regularity k and uh ∈ VNp being the FE solution, for a family of quasi-
uniform meshes, similar convergence rates for the error eh := u − uh of the numerical solution are
implied by the L2- und the H(curl)-norm

||eh||L2 = ||u− uh||L2 ≤ C1N
α (4.86)

||eh||H(curl) = ||u− uh||L2 + ||∇×u−∇×uh||L2 ≤ C2N
α (4.87)

with

α = −1

d
min{k, p} and d = 3 (4.88)

using the same notation as above where the mesh size h is represented e.g. by the diameter of the
surrounding sphere where a tetrahedron is embedded. The optimum convergence rates are as follows

α =


−0.33, p = 1
−0.67, p = 2
−1.00, p = 3.

(4.89)

4.4.3 Mesh Refinement Strategies

The quality of the FE solution might be improved by increasing the number of degrees of freedom
N if the exact solution provides sufficient regularity. This is achieved by (i) increasing the number of
mesh elements, i.e. reducing the size h of the mesh elements (h-refinement) or (ii) choosing higher-
order basis functions (p-refinement). In the scope of this thesis, the order of the basis functions is
restricted to p = 1 (linear basis functions), p = 2 (quadratic basis functions), and p = 3 (cubic basis
functions). The h-refinement can be applied globally so that each element of the FE mesh is refined
(uniform mesh refinement). On the basis of an error indicator function, elements with large errors
can be chosen for refinement such that the mesh is refined adaptively in regions only where strong
variations of the solution occur. Meshes are created by the COMSOL Multiphysics R© mesh generator.
The initial mesh is based on a Delaunay triangulation algorithm.

Uniform Mesh Refinement

Two refinement methods are used to subdivide all mesh elements:

1. The regular refinement divides each edge of the element into two new ones. Hence, in the 2-D
case, we obtain four new triangles from a previous coarse triangle (cf. Fig. 4.5, left-hand side).
In the 3-D case, one tetrahedron is subdivided into eight new elements (cf. Fig. 4.6, left-hand
side).

2. The longest-edge bisection devides only the longest edge of the elements. Therefore, we get
two new triangles in the 2-D case (cf. Fig. 4.5, right-hand side) and two new tetrahedra in the
3-D case as well (cf. Fig. 4.6, right-hand side).
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Fig. 4.5: Visualization of the regular grid refinement technique (left) and the longest-edge bisection
(right) for 2-D triangular elements.

Fig. 4.6: Visualization of the regular grid refinement technique (left) and the longest-edge bisection
(right) for 3-D tetrahedral elements.

Adaptive Mesh Refinement

According to an error indicator function based on a-posteriori error estimation (e.g. Monk, 2003),
mesh elements with the largest errors are chosen for refinement so that the number of elements is in-
creased by a given factor (e.g. 1.7). The selected elements are further subdivided by either the regular
mesh refinement or the longest-edge bisection as described above for the uniform mesh refinement.
The error eh = u− uh of the FE approximation satisfies the variational formulation

b(eh,v) = b(u,v)− b(uh,v) = −b(uh,v) = Rh(v) ∀v ∈ V, (4.90)

where Rh is called the weak residual.
In the 2-D case, according to eq. (4.34), eq. (4.90) can be rewritten as

b(eh, v) = −
∫

Ω

(
c∇uh · ∇v + auhv

)
dx ∀v ∈ V. (4.91)

Splitting the domain integral into contributions of each element ϑ that is part of the triangulation Th

yields

b(eh, v) =
∑
ϑ∈Th

(
−
∫
ϑ

(
c∇uh · ∇v + auhv

)
dx

)
∀v ∈ V. (4.92)

The vector identity∇ · (c∇uv) = ∇ · (c∇u) v + (c∇u) · ∇v and Green’s theorem lead to

b(eh, v) =
∑
ϑ∈Th

∫
ϑ

(
∇ ·
(
c∇uh

)
− auh

)
v dx−

∑
τ∈Γint

∫
τ

nτc∇uhv dl ∀v ∈ V, (4.93)

where τ ⊂ Γint includes all interior edges in the domain Ω. For the exterior boundaries, v ≡ 0
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holds (cf. eq. (4.35b)). According to interpolation theory (Johnson, 1987), the error that arises from
projecting v ∈ V onto vh ∈ VNp can be estimated as ν1hϑ‖v‖ on all triangles ϑ and ν2

√
hτ‖v‖ on all

edges τ with ν1, ν2 ∈ R being constant for a triangulation. hϑ and hτ denote the local mesh size and
the length of edge τ , respectively. A typical measure for the local mesh size hϑ is the circumradius of
the triangle ϑ. Using these estimates and the Cauchy-Schwarz inequality, we derive

b(eh, v) ≤ ‖v‖

(
ν1

∑
ϑ∈Th

‖∇ · (c∇uh)− auh‖2h2
ϑ + ν2

∑
τ∈Γint

‖ − nτc∇uh‖2hτ

)1/2

∀v ∈ V.

(4.94)

Employing the inequality κ‖v‖2 ≤ b(v, v) (κ ∈ R, κ = const.) and substituting eh in place of v, an
element-wise local error indicator E(ϑ) can be obtained

‖eh‖2 ≤ E2(ϑ) = α‖∇ · (c∇uh)− auh‖2h2
ϑ + β

1

2

∑
τ∈Γint

‖ − nτ · c∇uh‖2hτ , (4.95)

where α = ν21/κ2 and β = ν22/κ2. The error indicator function depends on the local mesh size hϑ =
hϑ(x), the length hτ of edge τ , the residual ∇ · (c∇uh) − auh on the triangle ϑ, and the jump in the
tangential electromagnetic fields nτ · c∇uh across the element edge τ that is distributed equally to
both triangles sharing the edge by the factor 1

2
. By ‖ · ‖ the L2-norm is denoted. The real coefficients

α, β, ν1, ν2, and κ are independent of the triangulation. In case of linear basis functions, ∇ · (c∇uh)
vanishes.

According to eq. (4.47), the weak residual Rh in the 3-D case for bvp (i), (ii), (iv), and (v) reads as

Rh = b(eh,v) = −
∫

Ω

(
(
c∇×uh

)
· ∇×v + auh · v) dx ∀v ∈ V. (4.96)

Recently, Botha and Davidson (2005) have presented an elemental error indicator function ηi for
vector elements

η2
i = h2

i ‖RV ‖2 +
1

2

∑
f⊂∂Ki

hf‖Rf‖2 (4.97)

that is composed of volume and face residuals RV and Rf , respectively, where

RV = −∇× c∇×uh − auh and (4.98)
Rf = −n×

(
c−1

1 ∇×uh1 − c−1
2 ∇×uh2

)
. (4.99)

hi and hf denote the diameters of tetrahedron Ki and face f , respectively.

A similar error indicator function that is applicable to BVP (iii) is proposed by Beck et al. (2000)

η2
i = h2

i ‖RV ‖2 +
1

2

∑
f⊂∂Ki

hf
(
‖R1

f‖2 + ‖R2
f‖2
)
. (4.100)

where

RV = −∇× c∇×uh − auh − b∇ fh, (4.101)
R1
f = −n ·

(
(a1u

h
1 + b1∇ fh1 )− (a2u

h
2 − b∇ fh2 )

)
and (4.102)

R2
f = −n×

(
c−1

1 ∇×uh1 − c−1
2 ∇×uh2

)
. (4.103)
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In Monk (2003), error indicator functions for Maxwell’s equations are presented as well.
In the COMSOL Multiphysics R© package (COMSOL, 2006) version 3.5a, however, a hierarchical
basis error estimator (cf. Verfürth, 1996) is included to be applied to vector elements, i.e. to BVP
(i)–(v). The volume and face residuals mentioned above are evaluated for a mapping of the solution
to an auxiliary FE space consisting of higher-order finite elements. The polynomial order of the basis
functions is increased by one. To compute the error indicator function, the discrete residuals are
averaged per element.

4.5 Post-Processing Procedure
After having computed the 2-D FE solutions of eqs (3.1) and (3.2), the remaining field components
still need to be determined in order to be able to calculate MT data such as the impedance tensor, the
apparent resistivity, and the phase. From Maxwell’s equations (eqs (2.1a),(2.1b)), we see that this can
be done by numerical differentiation. In the 2-D case, the gradients of the basis functions are averaged
per element. To yield the derivatives of the simulated field in a mesh point, the gradients of adjacent
triangles are weighted by the area of the triangles.
In the 3-D case, however, the test function v and its curl∇×v are both included in the FE formulation
(cf. eqs (4.51), (4.52), (4.61), and (4.62)). Hence, no subsequent procedure performing a numerical
differentiation or integration is necessary to obtain additional field components.



5 Comparison of the Numerical Solution
for Different Formulations of the
Magnetotelluric Boundary Value
Problem by Convergence Studies

The quality of a numerical simulation approach is mainly prescribed by the accuracy of the solu-
tion and the computational cost, i.e. memory requirements and run time. In this chapter, the two-
dimensional (2-D) and three-dimensional (3-D) boundary value problems (BVPs) introduced in sec-
tion 3 are examined under these aspects in terms of convergence studies. First, a 2-D homogeneous-
halfspace model with σ = 0.01 Sm−1 is considered. Using several steps of uniform or adaptive geo-
metrical mesh refinement (h-refinement) and increasing the polynomial degree of the basis functions
(p-refinement) up to p = 3, the convergence of the FE solution towards the analytical solution is
demonstrated for the frequencies f = 1, 0.1, 0.01 Hz. Second, since in general the true solution is
unknown, the convergence of the numerical result to the finest-grid solution is analysed. Third, a con-
vergence study for a 2-D layered-halfspace model illustrates that even simple conductivity structures
affect the convergence behaviour. Finally, the numerical solutions of BVP (i) - (v) for the COMMEMI
3-D-2 model are examined regarding their convergence to the finest-grid solution in order to investi-
gate the convergence behaviour in the presence of 3-D conductivity structures on the one hand and to
compare the different formulations of the magnetotelluric (MT) BVP on the other hand.
All computaions are performed on a 2.4 GHz shared memory 32-cores computer using 2 of 8 proces-
sors each accommodating 4 cores.

5.1 Introduction to the Convergence Studies

In the following sections, convergence curves show the error of the numerical solution with respect
to the analytical solution as a function of the number of degrees of freedom (DOF). The relative
root-mean-square (rms) error is calculated by

relative rms2 =

∑N
i=1 |ui − Fi|2∑N

i=1 |Fi|2
, (5.1)

where ui denotes the numerical solution for all DOF i (i = 1, ..., N ) including boundary DOF rep-
resented by Dirichlet boundary conditions and Fi = Ei, Hi is the analytical solution for the electric
and magnetic field, respectively. The relative rms error for each mesh is determined on the finest grid
of the hierarchy, i.e. each FE solution is mapped onto the finest grid and the error is computed for all
DOF locations there. Hence, for one hierarchy of grids, Fi (i = 1, ..., N ) and the associated norms
|Fi| (i = 1, ..., N ) are constant for all meshes. Therefore, the optimum convergence rates presented
in section 4.4 are expected to apply for the discrete relative rms error measure (eq. (5.1)) in the same
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manner as for the L2-norm || · ||L2 that performs an area integration over the whole modelling domain
to ensure a fixed reference value.
Note that, in order to estimate the errors of the simulated fields first, for the H-polarisation case in
2-D and the 3-D BVP (i), the magnetic field Hi is considered, whereas we examine the electric field
Ei in the 2-D E-polarisation case and for 3-D BVP (ii) – (iv). In the case of BVP (iii) and (iv), Ei is
calculated by using eq. (3.6) and eq. (3.9). In a second step, the errors for the derived field components
(H-polarisation, BVP (i): Ei, E-polarisation, BVP (ii) – (iv): Hi) are computed.
From eq. (4.83) the asymptotic convergence rate αas is determined as the slope of a linear function

log(relative rms) = αas log(N) + β, (5.2)

fitting the data for sufficiently large numbers N of DOF in a least-squares sense. log(·) denotes the
common logarithm. Additionally, a limiting convergence rate αlim is computed by

αlim =
log(relative rms(n))− log(relative rms(n− 1))

log(N(n))− log(N(n− 1))
, (5.3)

for the finest (n) and the second-finest (n − 1) grid of the appropriate hierarchy of meshes. If αlim is
significantly smaller than αas, a stagnation of the relative rms error is indicated and, hence, the limit
of the discretisation error of the boundary value problem is reached.
Considering the convergence to the finest-grid solution, a relative rms deviation is calculated by

relative dev2 =

∑N
i=1 |ui − uni |2∑N

i=1 |uni |2
, (5.4)

where uni is the numerical solution on the finest grid of the hierarchy. Assuming that the finest grid
yields the most accurate solution, the coarser-grid solutions are required to converge to the finest-grid
solution. Eq. (5.4) is also applied to BVP (v) solved for the COMMEMI 3-D-2 model, where the
simulated field is Ei and the derived field is Hi.
The asymptotic convergence rate αas is then obtained as the slope of

log(relative dev) = αas log(N) + β, (5.5)

and the limiting convergence rate αlim can be computed as

αlim =
log(relative dev(n− 1))− log(relative dev(n− 2))

log(N(n− 1))− log(N(n− 2))
. (5.6)

for the second-finest (n− 1) and the third-finest (n− 2) grid.

5.2 The 2-D Homogeneous-Halfspace Model: Comparison
with the Analytical Solution

The following convergence studies are carried out for a homogeneous halfspace with electrical con-
ductivity σ = 0.01 Sm−1. The 2-D model extends from x1 = −100 km to x2 = 100 km. The homo-
geneous halfspace is chosen to be 100 km deep. In the case of E-polarisation, an air space of 50 km
height is added.
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5.2.1 h-Refinement versus p-Refinement

Fig. 5.1 displays convergence curves for the simulated field components in the case of E-polarisation
(left-hand side) and H-polarisation (right-hand side). The polynomial order p of the basis functions
varies among p = 1 (+), p = 2 (×××), and p = 3 (���).
Obviously, the relative rms error decreases with increasing number N of DOF for E- and H-polarisa-
tion. For a given mesh, the number of DOF is enlarged by rising the polynomial order of the finite
elements. Hence, smaller numerical errors are to be expected. The absolute value of the convergence
rate, i.e. the slope of the linear trend line, however, is also increased with the polynomial degree of
the basis functions. Thus, even with a similar number of DOF, the relative rms error is smaller using
higher-order basis functions. Note that, the computational effort is not only increased with the number
N of DOF but also depends on the sparsity pattern of the system matrix which becomes more complex
for higher-order finite elements. The number of non-zero elements grows with the polynomial degree
of the basis functions (cf. Fig. 5.2). With the matrix bandwith also the computational cost caused by
direct solvers increases and opposes to the gain of accuracy with higher-order elements.
The convergence rates αas and αlim listed in Tab. 5.1 reflect the depicted behaviour. The asymptotic
convergence rate αas is calculated as the slope of a linear function that fits the data for appropriate
numbers N of DOF in a least-squares sense. Data that do not exhibit a linear trend are neglected.
In the present case, this applies to very coarse grids (N < 300). The asymptotic convergence rate is
approximately the same for E- and H-polarisation and its absolute value increases with the order of the
finite elements as expected from convergence theory (cf. section 4.4). The linear trends are displayed
as black lines (–) in Fig. 5.1. The limiting convergence rate αlim is computed as the slope between the
largest and the second-largest number N of DOF. It does not differ by orders of magnitude from the
asymptotic convergence rate αas for all considered cases (p = 1, 2, 3, E- and H-polarisation). Hence,
the limit of the discretisation error which will be indicated by a stagnation of the convergence curves,
i.e. a small absolute value of the limiting convergence rate, is below 2.4 · 10−9 and 1.0 · 10−8 for E-
and H-polarisation, respectively.
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Fig. 5.1: Convergence curves of the global relative rms error of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.2: Sparsity patterns for the system matrices K + M for linear (p = 1, N = 1411, left) and
cubic (p = 3, N = 1219, right) basis functions. Numbers nz of non-zero elements are 9687 and
19513 for p = 1 and p = 3, respectively.

asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
E-polarisation −0.98 −1.51 −1.95 −1.06 −2.22 −2.32
H-polarisation −1.01 −1.52 −1.96 −1.59 −2.23 −2.54

Tab. 5.1: Asymptotic (αas) and limiting (αlim) convergence rate for the simulated field components in
the case of E- and H-polarisation depending on the polynomial degree p of the basis functions.

5.2.2 Frequency Dependence
The size of the computational domain used for the presented simulations is well suited for the fre-
quency of 0.1 Hz. The model boundaries are chosen to be 5 to 10 times the skin depth away from
the center of the model (cf. P. E. Wannamaker, 1989). Since exact boundary conditions are applied
in the case of the homogeneous halfspace, we ensure that no error is introduced by boundary effects.
Therefore, the dependence of the discretisation error on the frequency is examined exclusively in the
following. The frequency is chosen to be f = 1, 0.1, or 0.01 Hz.
Fig. 5.3 shows that, for one mesh, the relative rms errors decrease if the frequency is reduced. This
is due to an enlarged skin depth δ (δ ∝

√
T ∝

√
f−1, cf. eq. (2.29)) in which a larger number

of DOF is distributed for a given mesh. The asymptotic convergence rate αas, however, is almost
independent of the frequency. Using higher-order finite elements, the difference in the accuracy of the
numerical solutions for varying frequencies is even more significant as Fig. 5.4 illustrates for cubic
basis functions.
Tab. 5.2 quantifies the slopes of the convergence curves, i.e. the convergence rates. The asymptotic
convergence rate αas proves to be independent of the frequency and its absolute value increases with
the order p of the finite elements. The limiting convergence rate αlim does not indicate that the limit
of the discretisation error is reached. Hence, it is expected to smaller than 7.9 · 10−11 and 8.6 · 10−11

for E- and H-polarisation, respectively (cf. Fig. 5.4).
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Fig. 5.3: Convergence curves of the global relative rms error of the simulated field component for
E-polarisation (left) and H-polarisation (right) using linear (p = 1) basis functions. Frequencies
are f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N .

asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] 1 0.1 0.01 1 0.1 0.01
p = 1 E-polarisation −0.97 −0.98 −1.01 −0.87 −1.06 −1.37

(Fig. 5.3) H-polarisation −0.99 −1.01 −1.03 −1.50 −1.59 −1.70
p = 2 E-polarisation −1.55 −1.51 −1.52 −2.12 −2.22 −2.24

(no figure) H-polarisation −1.51 −1.52 −1.53 −2.15 −2.23 −2.29
p = 3 E-polarisation −1.94 −1.97 −2.01 −2.40 −2.32 −2.22

(Fig. 5.4) H-polarisation −1.98 −2.00 −2.01 −2.62 −2.54 −2.45

Tab. 5.2: Asymptotic (αas) and limiting (αlim) convergence rate for the simulated field component in
the case of E- and H-polarisation depending on the polynomial degree p of the basis functions and
the frequency f .
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Fig. 5.4: Convergence curves of the global relative rms error of the simulated field components for
E-polarisation (left) and H-polarisation (right) using cubic (p = 3) basis functions. Frequencies
are f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N until it stagnates.



Chapter 5. Comparison of Different Formulations of the BVP by Convergence Studies 53

5.2.3 Grid Refinement Methods
All convergence studies presented so far have been carried out applying a uniform longest-edge bisec-
tion as mesh refinement method. To compare this with other refinement strategies, Fig. 5.5 displays
convergence curves for linear basis functions using the uniform refinement with the longest-edge bi-
section (+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination
with the longest-edge bisection (���), and the adaptive regular mesh refinement (444), respectively, for
generating the family of grids. In general, the regular mesh refinement (××× and 444) yields smaller er-
rors than the longest-edge bisection (+ and ���) considering both techniques for uniform (+ and ×××) or
adaptive mesh refinement (��� and 444).
Advantages of the adaptive mesh refinement are obvious for cubic basis functions and a frequency
of f = 1 Hz (Fig. 5.6): It yields higher absolute values of the convergence rates (cf. Tab. 5.3) and
provides significantly smaller errors than the uniform refinement in the H-polarisation case (Fig. 5.6,
right-hand diagram).
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Fig. 5.5: Convergence curves of the global relative rms error of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1) basis functions. For generating
the family of grids, the uniform refinement with the longest-edge bisection (+), the uniform regular
refinement method (×××), the adaptive mesh refinement in combination with the longest-edge bisec-
tion (���), and the adaptive regular mesh refinement (444) are applied, respectively. The frequency is
f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N .
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Fig. 5.6: Convergence curves of the global relative rms error of the simulated field components for
E-polarisation (left) and H-polarisation (right) using cubic (p = 3) basis functions. For generating
the family of grids, the uniform refinement with the longest-edge bisection (+), the uniform regular
refinement method (×××), the adaptive mesh refinement in combination with the longest-edge bisec-
tion (���), and the adaptive regular mesh refinement (444) are applied, respectively. The frequency is
f = 1 Hz. Black lines (–) indicate the linear trend of each convergence curve for sufficiently large
N .
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5.2.4 Derived Field Components
After having discussed the convergence behaviour for the simulated field components, we turn to the
non-zero derived field components now, i.e. the horizontal electric field for H-polarisation and the
horizontal magnetic field for E-polarisation, respectively. Here, the vertical field components are of
less importance and will not be considered due to them being zero in the homogeneous case.

h-Refinement versus p-Refinement

In general, the derived field components show the same behaviour as the simulated field components.
However, the relative rms errors are larger (cf. e.g. Figs 5.7 and 5.1) and the absolute values of
the convergence rates are lower for the derived field components (cf. e.g. Tabs 5.4 and 5.1). The
asymptotic convergence rates αas are in good agreement with the predicted values listed in Tab. 4.5
in section 4.4. Slightly reduced absolute values of the limiting convergence rates αlim might indicate
that the relative rms errors are approaching their limits. Due to limited computer memory capacity, it
is not possible to perform further refinement steps to assess the limit of the relative rms error.
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Fig. 5.7: Convergence curves of the global relative rms error of the derived field components for E-
polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and cubic
(p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve for
sufficiently large N . The frequency is f = 0.1 Hz.

asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
E-polarisation −0.46 −0.92 −1.39 −0.23 −0.69 −1.21
H-polarisation −0.46 −0.93 −1.40 −0.25 −0.73 −1.20

Tab. 5.4: Asymptotic (αas) and limiting (αlim) convergence rate of the derived field components for E-
and H-polarisation depending on the polynomial degree p of the basis functions.

Frequency Dependence

Figs 5.8 and 5.9 present convergence curves for linear (p = 1) and cubic (p = 3) basis functions,
respectively. The dependence on the frequency appears in the same manner as in Figs 5.3 and 5.4.
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For one mesh, the relative rms errors increase with decreasing frequency. Again, the slope of the
convergence curves, i.e. the convergence rate, is independent of the frequency (cf. Tab. 5.5). The
absolute values of the limiting convergence rates αlim are slightly reduced. The relative rms may start
to stagnate for large numbers N of DOF (N > 100, 000). They are neglected for estimating the
asymptotic convergence rates.
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Fig. 5.8: Convergence curves of the global relative rms error of the derived field components for E-
polarisation (left) and H-polarisation (right) using linear (p = 1) basis functions. Frequencies are
f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N until it starts to stagnate.

p asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] 1 0.1 0.01 1 0.1 0.01
1 E-polarisation −0.44 −0.46 −0.48 −0.25 −0.23 −0.21

(Fig. 5.8) H-polarisation −0.45 −0.47 −0.49 −0.25 −0.25 −0.24
2 E-polarisation −0.88 −0.92 −0.97 −0.68 −0.69 −0.68

(no figure) H-polarisation −0.90 −0.93 −0.97 −0.72 −0.73 −0.73
3 E-polarisation −1.32 −1.39 −1.47 −1.17 −1.21 −1.20

(Fig. 5.9) H-polarisation −1.38 −1.40 −1.47 −1.15 −1.20 −1.19

Tab. 5.5: Asymptotic (αas) and limiting (αlim) convergence rate of the derived field components for E-
and H-polarisation depending on the polynomial degree p of the basis functions and the frequency
f .
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Fig. 5.9: Convergence curves of the global relative rms error for E-polarisation (left) and H-
polarisation (right) using cubic (p = 3) basis functions. Frequencies are f = 1 Hz (+), f = 0.1 Hz
(×××), f = 0.01 Hz (���). Black lines (–) indicate the linear trend of each convergence curve for suffi-
ciently large N until it starts to stagnate.
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Grid Refinement Methods

Considering different types of grid refinement for first-order (p = 1) and third-order (p = 3) finite
elements at frequencies f = 0.1 Hz and f = 1 Hz, respectively, similar conclusions can be drawn for
the derived field components (Figs 5.10 and 5.11) as for the simulated field components (Figs 5.5 and
5.6). Adaptive mesh refinement strategies are advantageous especially for higher-order finite elements
and high frequencies.
Fig. 5.10 shows most clearly that we need to expect a limit for the discretisation error. Tab. 5.6 also
displays reduced limiting convergence rates αlim for this case (p = 1, f = 0.1 Hz). The asymptotic
convergence rates are estimated neglecting large numbers of DOF (N > 100, 000). The limit of the
discretisation error may be dependent on the frequency since Fig. 5.11 does not exhibit a stagnation
of the rms errors for f = 1 Hz. Computations using more DOF are necessary to verify this and to
estimate the limit of the error.
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Fig. 5.10: Convergence curves of the global relative rms error of the derived field components for
E-polarisation (left-hand side) and H-polarisation (right-hand side) using linear (p = 1) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N until it starts to stagnate.
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Fig. 5.11: Convergence curves of the global relative rms error of the derived field components for
E-polarisation (left-hand side) and H-polarisation (right-hand side) using cubic (p = 3) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N .
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5.2.5 Local Convergence

In contrast to the global convergence that has been verified according to the expectations from conver-
gence theory in the previous section, we focus on the local convergence in this section. Convergence
curves are considered for all DOF located on the earth’s surface and for one point (0, 0) on the earth’s
surface that is chosen independently of the positions of the DOF. From the geophysical point of view,
local convergence, i.e. convergence of the solution in some arbitrarily chosen data points, is even more
important than global convergence that includes DOF in regions of the model, e.g. at large depths,
where no measured data exist.

h-Refinement versus p-Refinement

Considering the left-hand and right-hand diagram of Fig. 5.12, quite similar convergence behaviour is
obtained for all DOF located on the earth’s surface (left-hand side) and for the point (0, 0) (right-hand
side) in the case of E-polarisation for the frequency of f = 0.1 Hz. The appropriate convergence rates
are listed in Tab. 5.7. They are similar to the global convergence rates in Tab. 5.1. Convergence theory
is not applicable in a local sense, however, in most cases local convergence rates are similar to global
ones. Here, the absolute values of the asymptotic convergence rates αas for the DOF on the earth’s
surface are lower than those for all DOF (cf. Tab. 5.1). For the point (0, 0), the absolute values of
the asymptotic convergence rates αas are as high as the global ones, however, the relative rms error
exhibits a more and more non-exponential behaviour with increasing order of the finite elements (cf.
Fig. 5.12, right-hand side).
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Fig. 5.12: Convergence curves of the local relative rms error of the electric field for E-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1, +), quadratic
(p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.

Derived Field Components

Anomalous convergence behaviour can be observed in Fig. 5.13 for the derived field components.
Here, the application of cubic (p = 3) basis functions does not yield the smallest errors for all num-
bers N of DOF. Especially, regarding the convergence in the point (0, 0) (right-hand diagram), more
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asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
earth’s surface −0.97 −1.36 −1.78 −0.99 −1.11 −2.07

point (0, 0) −1.04 −1.49 −1.98 −1.13 −1.09 −2.88

Tab. 5.7: Asymptotic (αas) and limiting (αlim) convergence rate of the electric field for E-polarisation
at all DOF on the earth’s surface and at the point (0, 0) depending on the polynomial degree p of
the basis functions.

accurate results are obtained from the numerical solution computed with quadratic (p = 2) basis func-
tions than from that computed with cubic (p = 3) basis functions for all N . Moreover, the relative
rms error for quadratic (p = 2) basis functions does not decrease strictly monotonically. All DOF
on the earth’s surface seem to be a sufficiently large number of points to almost reflect the global
convergence behaviour, whereas the convergence for only one point is more arbitrary.
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Fig. 5.13: Convergence curves of the local relative rms error of the magnetic field for E-polarisation
for all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend
of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.

For completeness, Fig. 5.14 shows the local convergence of the derived field components for H-
polarisation. Here, the local convergence behaviour is as expected from the global convergence stud-
ies. For the simulated magnetic fields, the error on the earth’s surface is zero because the boundary
conditions for the numerical solution are represented by the analytical solution on the air-earth inter-
face.
Tab. 5.8 summarises the local convergence rates for the derived field components for E- and H-
polarisation. They agree well with the rates for global convergence listed in Tab. 5.4.
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Fig. 5.14: Convergence curves of the local relative rms error of the electric field for H-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1, +), quadratic
(p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.
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Grid Refinement Methods

When comparing different mesh refinement techniques for linear (p = 1) basis functions (Fig. 5.15),
the adaptive mesh refinement turns out to be advantageous for the local accuracy of the numerical
solution in the E- and H-polarisation case. Since the mesh adaption affects regions close to the earth’s
surface where large gradients of the electromagnetic fields occur, the relative rms error of the numer-
ical solution is decreased mainly there (cf. Fig. 5.5 for global convergence). Considering one data
point that is not necessarily located in the same position as a DOF (Fig. 5.15, right-hand panel), the
relative rms error does not decrease monotonically in the case of adaptive mesh refinement even for
the simulated field components. Looking at the derived field components as well (Fig. 5.16), the non-
monotonical behaviour becomes even worse for the adaptive mesh refinement in combination with
the longest-edge bisection (Fig. 5.16, right-hand diagram). Hence, the accuracy of the numerical so-
lution is influenced by the spatial mesh geometry especially for linear (p = 1) basis functions. The
derived field components computed by the derivative of the numerical solution itself reflect a strong
dependency on the grid as well.
For H-polarisation, the behaviour of the convergence curves for the derived field components is
smoother (cf. Fig. 5.17).
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Fig. 5.15: Convergence curves of the local relative rms error of the electric field for E-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N .

Tab. 5.9 displays the asymptotic (αas) and limiting ( αlim) convergence rates depending on the mesh
refinement strategy for the local accuracy of the numerical solution for all DOF located on the earth’s
surface (z = 0) and for the point (0, 0) that does not coincide with a DOF. For first-order (p = 1)
finite elements, the local convergence rates agree well with the global ones (cf. Tabs 5.3 and 5.6
for global convergence). In the case of cubic (p = 3) basis functions, the absolute value of local
asymptotic convergence rate αas for the simulated field using uniform mesh refinement is lower than
the absolute value of the global asymptotic convergence rate. For adaptive mesh refinement, however,
the numerical solution exhibits significantly better local convergence. Apart from the non-monotonic
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Fig. 5.16: Convergence curves of the local relative rms error of the magnetic field for E-polarisation
for all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1) ba-
sis functions. For generating the family of grids, the uniform refinement with the longest-edge
bisection (+), the uniform regular refinement method (×××), the adaptive mesh refinement in com-
bination with the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are
applied, respectively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N .

convergence behaviour, the adaptive mesh refinement in combination with the longest-edge bisection
seems to be advantageous also considering the derived field components.
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Fig. 5.17: Convergence curves of the local relative rms error of the electric field for H-polarisation
for all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1) basis
functions. For generating the family of grids, the uniform refinement with the longest-edge bisec-
tion (+), the regular refinement method (×××), the adaptive mesh refinement in combination with the
longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respectively.
The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N .
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5.3 The 2-D Homogeneous-Halfspace Model: Comparison
with the Numerical Finest-Grid Solution

In most cases, especially when considering models that are close to reality, no analytical solution is
available to compare with and to estimate the discretisation error of the numerical solution. Therefore,
in this section, the convergence of the numerical solution towards the finest-grid solution of the 2-
D homogeneous-halfspace model introduced in section 5.2 is examined. The numerical finest-grid
solution is assumed to be close to the true solution. Hence, similar convergence behaviour is expected
for the relative deviation as for the relative rms error.

5.3.1 h-Refinement versus p-Refinement

Fig. 5.18 and Tab. 5.10 show the same behaviour for the convergence towards the finest-grid solution
as Fig. 5.1 and Tab. 5.1, respectively, for the convergence to the analytical solution. Note that, the
convergence curves for the comparison with the numerical finest-grid solution are supported by one
point less than the ones for the comparison with the analytical solution since the finest-grid solution
is needed to compute the relative deviation (eq. (5.4)).

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

number N of DOF

re
la

tiv
e 

de
v

E−polarisation

10
1

10
2

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

10
−2

10
0

number N of DOF

re
la

tiv
e 

de
v

H−polarisation

Fig. 5.18: Convergence curves of the global relative deviation of the simulated field components from
the finest-grid solutions for E-polarisation (left) and H-polarisation (right) using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend
of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.

asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
E-polarisation −1.01 −1.47 −1.95 −1.21 −1.67 −1.80
H-polarisation −1.01 −1.49 −1.98 −1.02 −1.72 −1.67

Tab. 5.10: Asymptotic (αas) and limiting (αlim) convergence rate for the simulated field components
in the case of E- and H-polarisation depending on the polynomial degree p of the basis functions.
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5.3.2 Frequency Dependence
Figs 5.19 and 5.20 illustrate that, the convergence behaviour is independent of the frequency for linear
(p = 1) and cubic (p = 3) basis functions, respectively. The convergence rates listed in Tab. 5.11 only
vary with the polynomial degree p of the basis functions but not with the frequency. Moreover, larger
relative deviations are observed for higher frequencies.
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Fig. 5.19: Convergence curves of the global relative deviation of the simulated field components from
the finest-grid solutions for E-polarisation (left) and H-polarisation (right) using linear (p = 1)
basis functions. Frequencies are f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–)
indicate the linear trend of each convergence curve for sufficiently large N .

asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] 1 0.1 0.01 1 0.1 0.01
p = 1 E-polarisation −1.05 −1.01 −1.01 −1.50 −1.21 −1.06

(Fig. 5.19) H-polarisation −0.99 −1.01 −1.02 −1.08 −1.02 −1.02
p = 2 E-polarisation −1.50 −1.47 −1.51 −1.74 −1.67 −1.65

(no figure) H-polarisation −1.46 −1.49 −1.50 −1.78 −1.72 −1.66
p = 3 E-polarisation −1.89 −1.95 −2.03 −1.73 −1.80 −1.91

(Fig. 5.20) H-polarisation −1.92 −1.98 −2.01 −1.63 −1.67 −1.70

Tab. 5.11: Asymptotic (αas) and limiting (αlim) convergence rate for the simulated field components
in the case of E- and H-polarisation depending on the polynomial degree p of the basis functions
and the frequency f .
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Fig. 5.20: Convergence curves of the global relative deviation of the simulated field components from
the finest-grid solutions for E-polarisation (left) and H-polarisation (right) using cubic (p = 3)
basis functions. Frequencies are f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–)
indicate the linear trend of each convergence curve for sufficiently large N .
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5.3.3 Grid Refinement Methods
Examining different mesh refinement methods (Figs. 5.21 – 5.23 and Tab. 5.12), we come to similar
conclusions as for the convergence towards the analytical solution in the previous section:

• The adaptive mesh refinement (� and4) is advantageous for high frequencies (f = 1, 0.1 Hz)
and higher-order (p = 3) finite elements. For f = 1 Hz and p = 3, the asymptotic convergence
rate is significantly increased for adaptively refined meshes (cf. Tab. 5.12).

• Smaller relative deviations are obtained by regular mesh refinement methods (× and4).

• For the lowest frequency of f = 0.01 Hz and cubic (p = 3) basis functions, the uniform regular
mesh refinement (×) yields smallest relative deviations.
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Fig. 5.21: Convergence curves of the global relative deviation of the simulated field components
from the finest-grid solutions for E-polarisation (left) and H-polarisation (right) using linear (p =
1) basis functions. For generating the family of grids, the uniform refinement with the longest-
edge bisection (+), the uniform regular refinement method (×××), the adaptive mesh refinement in
combination with the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are
applied, respectively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N .
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Fig. 5.22: Convergence curves of the global relative deviation of the simulated field components from
the finest-grid solutions for E-polarisation (left) and H-polarisation (right) using cubic (p = 3) ba-
sis functions. For generating the family of grids, uniform refinement with the longest-edge bisec-
tion (+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination
with the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, re-
spectively. The frequency is f = 1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N .
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Fig. 5.23: Convergence curves of the global relative deviation of the simulated field components from
the finest-grid solution for E-polarisation (left-hand side) and H-polarisation (right-hand side) us-
ing cubic (p = 3) basis functions. For generating the family of grids, the uniform refinement
longest-edge bisection (+), the uniform regular refinement method (×××), the adaptive mesh refine-
ment in combination with the longest-edge bisection (���), and the adaptive regular mesh refinement
(444) are applied, respectively. The frequency is f = 0.01 Hz. Black lines (–) indicate the linear
trend of each convergence curve for sufficiently large N until it stagnates.
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5.3.4 Derived Field Components
h-Refinement versus p-Refinement

Considering the convergence of the derived field components, i.e. the horizontal magnetic field for E-
polarisation and the horizontal electric field for H-polarisation, respectively, to the vertical derivative
of the numerical solution on the finest grid of the family, the same general convergence behaviour
can be observed as for the comparison with the analytical solution (cf. e.g. Figs 5.24 and 5.7). The
asymptotic convergence rates αas in Tab. 5.13 and Tab. 5.4 are in good agreement as well. The absolute
values of the limiting convergence rates αlim in Tab. 5.13, however, are as large as the absolute values
of the asymptotic ones, hence, no stagnation of the relative deviation is indicated.
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Fig. 5.24: Convergence curves of the global relative deviation of the derived field components from
the finest-grid solution for E-polarisation (left) and H-polarisation (right) using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend
of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.

asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
E-polarisation −0.54 −0.96 −1.43 −0.84 −1.10 −1.44
H-polarisation −0.53 −0.97 −1.46 −0.76 −1.11 −1.51

Tab. 5.13: Asymptotic (αas) and limiting (αlim) convergence rate of the derived field components for
E- and H-polarisation depending on the polynomial degree p of the basis functions.

Frequency Dependence

Fig. 5.25 illustrates that the asymptotic convergence rate αas is independent of the frequency (cf. Tab.
5.14) as is the case in the comparison with the analytical solution.

Grid Refinement Methods

Comparing different mesh refinement strategies, Figs 5.26 and 5.10 as well as Tabs 5.15 and 5.6
display similar asymptotic convergence rates αas. Hence, also regarding mesh refinement techniques,
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Fig. 5.25: Convergence curves of the global relative deviation of the derived field components from
the finest-grid solution for E-polarisation (left) and H-polarisation (right) using cubic (p = 3) basis
functions. Frequencies are f = 1 Hz (+), f = 0.1 Hz (×××), f = 0.01 Hz (���). Black lines (–) indicate
the linear trend of each convergence curve for sufficiently large N .

p asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] 1 0.1 0.01 1 0.1 0.01
1 E-polarisation −0.55 −0.54 −0.54 −0.81 −0.84 −0.87

(no figure) H-polarisation −0.53 −0.53 −0.53 −0.81 −0.76 −0.76
2 E-polarisation -0.92 −0.96 −0.99 −1.12 −1.10 −1.12

(no figure) H-polarisation −0.95 −0.97 −0.99 −1.16 −1.11 −1.08
3 E-polarisation −1.37 −1.43 −1.49 −1.45 −1.44 −1.44

(Fig. 5.25) H-polarisation −1.42 −1.46 −1.48 −1.51 −1.51 −1.52

Tab. 5.14: Asymptotic (αas) and limiting (αlim) convergence rate of the derived field components for E-
and H-polarisation depending on the polynomial degree p of the basis functions and the frequency
f .

convergence towards the finest-grid solution exhibits similar behaviour as convergence with respect
to the analytical solution.
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Fig. 5.26: Convergence curves of the global relative deviation of the derived field components from
the finest-grid solution for E-polarisation (left) and H-polarisation (right) using linear (p = 1)
basis functions. For generating the family of grids, the uniform refinement with the longest-edge
bisection (+), the uniform regular refinement method (×), the adaptive mesh refinement in com-
bination with the longest edge bisection (�), and the adaptive regular mesh refinement (4) are
applied, respectively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N .
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5.3.5 Local Convergence
Fig. 5.27 and Tab. 5.16 illustrate the same local convergence behaviour with respect to the finest-grid
solution as Fig. 5.12 and Tab. 5.7 considering the numerical solution in comparison to the analytical
solution. The asymptotic convergence rates αas are similar.
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Fig. 5.27: Convergence curves of the local relative deviation of the electric field from the finest-grid
solution for E-polarisation for all DOF on the earth’s surface (left) and for the point (0, 0) (right)
using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines
(–) indicate the linear trend of each convergence curve for sufficiently large N . The frequency is
f = 0.1 Hz.

asymptotic conv. rate αas limiting conv. rate αlim

p 1 (linear) 2 (quadratic) 3 (cubic) 1 (linear) 2 (quadratic) 3 (cubic)
earth’s surface −1.03 −1.36 −1.75 −1.12 −1.53 −1.55

point (0, 0) −1.09 −1.53 −1.88 −1.37 −2.50 −1.06

Tab. 5.16: Asymptotic (αas) and limiting (αlim) convergence rate of the electric field for E-polarisation
at all DOF on the earth’s surface and at the point (0, 0) depending on the polynomial degree p of
the basis functions.

Derived Field Components

For the derived field components, same anomalous convergence behaviour can be observed for E-
polarisation in Fig. 5.28 as in Fig. 5.13 representing the comparison with the analytical solution: The
application of quadratic (p = 2) basis functions yields smaller relative deviations than using third-
order (p = 3) finite elements up to N = 40, 000 for z = 0 and N = 200, 000 for the point (0, 0).
However, higher absolute values of the convergence rates (cf. Tab. 5.17) let expect smallest relative
deviations for cubic (p = 3) basis functions for larger numbers N of DOF. For H-polarisation, the
convergence behaviour is smoother (Fig. 5.29) and similar to that displayed in Fig. 5.14 illustrating
the comparison of the numerical solution to the analytical solution.
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Fig. 5.28: Convergence curves of the local relative deviation of the magnetic field for E-polarisation
for all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend
of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.29: Convergence curves of the local relative deviation of the electric field for H-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1, +), quadratic
(p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.
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Grid Refinement Methods

Concerning the grid refinement technique, convergence of the numerical solution to the finest-grid
solution implies similar conclusions as the convergence to the analytical solution that was examined
in subsection 5.2.5:

• Adaptive mesh refinement is advantageous for the local accuracy of the numerical results for
E- and H-polarisation (cf. Figs 5.30 for the electric field in the E-polarisation case and 5.31 for
the electric field in the H-polarisation case).

• The local convergence curves may exhibit non-monotonical behaviour (Fig. 5.30, right-hand
side for the point (0, 0)).

• For f = 1 Hz and p = 3, the adaptive mesh refinement yields significantly increased absolute
values of convergence rates (cf. Fig. 5.32 and Tab. 5.18).
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Fig. 5.30: Convergence curves of the local relative deviation of the electric field for E-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N .
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Fig. 5.31: Convergence curves of the local relative deviation of the electric field for H-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using linear (p = 1) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 0.1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N .
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Fig. 5.32: Convergence curves of the local relative deviation of the electric field for E-polarisation for
all DOF on the earth’s surface (left) and for the point (0, 0) (right) using cubic (p = 3) basis func-
tions. For generating the family of grids, the uniform refinement with the longest-edge bisection
(+), the uniform regular refinement method (×××), the adaptive mesh refinement in combination with
the longest-edge bisection (���), and the adaptive regular mesh refinement (444) are applied, respec-
tively. The frequency is f = 1 Hz. Black lines (–) indicate the linear trend of each convergence
curve for sufficiently large N until it stagnates.
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5.4 The 2-D Layered-Halfspace Model
In this section, the model of a layered halfspace consisting of three layers of conductivities σ1 =
0.1 Sm−1, σ2 = 0.01 Sm−1, and σ3 = 100 Sm−1 and thicknesses d1 = 10 km, d2 = 20 km (cf. Fig.
5.33) is examined regarding the convergence behaviour of the numerical solution. These convergence
studies are restricted to the comparison with the finest-grid solution since, for the homogeneous-
halfspace model in the previous section, these results have proved to reflect the convergence behaviour
with respect to the true solution that is usually unknown for close-to-reality models. At the vertical
conductivity contrasts, the horizontal components of the electric and magnetic fields are continuous,
however, the tangential component of the magnetic field is not continuously differentiable (cf. eq.
(2.1a)) which affects the regularity of the numerical solution. Hence, the convergence behaviour is
expected to be different than that for the homogeneous halfspace.

z

0 y
0.1 Sm−1

10 Sm−1

0.01 Sm−1

10 km

30 km

Fig. 5.33: 2D layered-halfspace model.

5.4.1 h-Refinement versus p-Refinement
Fig. 5.34 displays convergence curves for linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3,
���) basis functions in the case of E-polarisation (left-hand diagram) and H-polarisation (right-hand
diagram) at a frequency of f = 0.1 Hz. The convergence rate, i.e. the slope of the convergence curves,
does not vary with p in the same way as for the homogeneous-halfspace model (cf. Fig. 5.18). Tab.
5.19 illustrates that the convergence rate αas is almost constant for p ≥ 2 in the E-polarisation case
and even for all polynomial degrees p in the case of H-polarisation. This observation is in accordance
with the expectations from convergence theory (cf. section 4.4). If the true solution is not sufficiently
regular, an increase of the polynomial order of the finite elements does not necessarily result in a
higher absolute value of the convergence rate. For f = 1 Hz (Fig. 5.35) and f = 0.01 Hz (Fig. 5.36),
the convergence behaviour is almost similar to that for the homogeneous-halfspace model due to the
small skin depth for f = 1 Hz and the large skin depth f = 0.01 Hz for which the layered-halfspace
model appears to be an asymptotically homogeneous halfspace with electrical conductivity σ1 or σ3,
respectively.
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Fig. 5.34: Convergence curves of the global relative deviation of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.35: Convergence curves of the global relative deviation of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 1 Hz.
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Fig. 5.36: Convergence curves of the global relative deviation of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.01 Hz.
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5.4.2 Grid Refinement Methods
When applying adaptive mesh refinement strategies, the absolute values of the convergence rates
increase with the order p of the finite elements independently of the frequency (cf. Fig. 5.37 and Tab.
5.20) to even higher values than predicted by eq. (4.84) and Tab. 4.5 in section 4.4.
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Fig. 5.37: Convergence curves of the global relative deviation of the simulated field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.1 Hz. Adaptive mesh refinement.
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5.4.3 Derived Field Components
Considering the convergence of the derived field components for the frequency f = 0.1 Hz in Fig.
5.38, the same convergence behaviour can be observed as for the simulated field components. The
absolute value of the convergence rate αas hardly increases with the order p of the finite elements (cf.
Tab. 5.21). For f = 1 Hz (Fig. 5.39) and f = 0.01 Hz (Fig. 5.40) the convergence curves and rates
resemble those for the homogeneous-halfspace model more. Again, the adaptive mesh refinement
provides better convergence as illustrated in Fig. 5.41 and Tab. 5.22.
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Fig. 5.38: Convergence curves of the global relative deviation of the derived field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.39: Convergence curves of the global relative deviation of the derived field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 1 Hz.
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Fig. 5.40: Convergence curves of the global relative deviation of the derived field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.01 Hz.



94 5.4. The 2-D Layered-Halfspace Model

asym
ptotic

conv.rate
α

as
lim

iting
conv.rate

α
lim

f
[H

z]
p

1
(linear)

2
(quadratic)

3
(cubic)

1
(linear)

2
(quadratic)

3
(cubic)

0.01
E

-polarisation
−

0.62
−

0.93
−

1.12
−

0.68
−

1.24
−

1.39
(Fig.5.40)

H
-polarisation

−
0.62

−
1.04

−
1.23

−
0.79

−
1.14

−
1.30

0.1
E

-polarisation
−

0.69
−

0.78
−

0.80
−

1.00
−

0.98
−

0.87
(Fig.5.38)

H
-polarisation

−
0.58

−
0.94

−
1.15

−
0.67

−
1.01

−
1.14

1
E

-polarisation
−

0.71
−

0.90
−

1.25
−

0.96
−

0.95
−

1.26
(Fig.5.39)

H
-polarisation

−
0.57

−
0.86

−
1.27

−
0.70

−
1.05

−
1.30

Tab.5.21:A
sym

ptotic
(α

as )
and

lim
iting

(α
lim )

convergence
rate

of
the

derived
field

com
ponents

for
E

-
and

H
-polarisation

depending
on

the
polynom

ialdegree
p

ofthe
basis

functions.



Chapter 5. Comparison of Different Formulations of the BVP by Convergence Studies 95

10
2

10
3

10
4

10
5

10
6

10
−6

10
−4

10
−2

10
0

number N of DOF

re
la

tiv
e 

de
v

E−polarisation

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−4

10
−2

10
0

number N of DOF

re
la

tiv
e 

de
v

H−polarisation

Fig. 5.41: Convergence curves of the global relative deviation of the derived field components for
E-polarisation (left) and H-polarisation (right) using linear (p = 1, +), quadratic (p = 2, ×××) and
cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each convergence curve
for sufficiently large N . The frequency is f = 0.1 Hz. Adaptive mesh refinement.
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5.4.4 Local Convergence
Fig. 5.42 displays convergence curves for linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���)
basis functions at a frequency of f = 0.1 Hz for all DOF on the earth’s surface (left-hand diagram) and
the point (0, 0) (right-hand diagram). The local convergence curves are less smooth than the global
ones (cf. Fig. 5.34). However, the trend shows that the absolute value of the convergence rate αas for
third-order (p = 3) finite elements listed in Tab. 5.23 is significantly below the expected value of 2
(cf. section 4.4). For the higher and the lower frequency of f = 1 Hz and f = 0.01 Hz, respectively,
the convergence rates are closer to the predicted value again (cf. Figs 5.43 and 5.44) since, for the
corresponding small and large skin depths, the layered-halfspace model appears to be a homogeneous
halfspace. Adaptive mesh refinement leads to improved convergence rates as Fig. 5.45 and Tab. 5.24
illustrate. The absolute values of the local convergence rates are also increased compared to the global
ones (cf. Tab. 5.20).
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Fig. 5.42: Convergence curves of the local relative deviation of the electric field from the finest-grid
solution for E-polarisation for all DOF on the earth’s surface (left) and for the point (0, 0) (right)
using linear (p = 1,+), quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines
(–) indicate the linear trend of each convergence curve for sufficiently large N . The frequency is
f = 0.1 Hz.
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Fig. 5.43: Convergence curves of the local relative deviation of the electric field from the finest-grid
solution for E-polarisation for all DOF on the earth’s surface (left) and for the point (0, 0) (right)
using linear (p = 1,+), quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines
(–) indicate the linear trend of each convergence curve for sufficiently large N . The frequency is
f = 1 Hz.
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Fig. 5.44: Convergence curves of the local relative deviation of the electric field from the finest-grid
solution for E-polarisation for all DOF on the earth’s surface (left) and for the point (0, 0) (right)
using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines
(–) indicate the linear trend of each convergence curve for sufficiently large N . The frequency is
f = 0.01 Hz.
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Fig. 5.45: Convergence curves of the local relative deviation of the electric field from the finest-grid
solution for E-polarisation for all DOF on the earth’s surface (left) and for the point (0, 0) (right)
using linear (p = 1,+), quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines
(–) indicate the linear trend of each convergence curve for sufficiently large N . The frequency is
f = 0.1 Hz. Adaptive mesh refinement.
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Derived Field Components

The derived field components exhibit local convergence behaviour (cf. Figs 5.46 and 5.47 for E- and
H-polarisation, respectively, and f = 0.1 Hz) that is hardly represented by a linear trend especially
considering only the point (0, 0) in the right-hand diagram. Here, the convergence curve is not even
monotonic. However, if convergence rates are estimated nevertheless, convergence behaviour almost
as predicted in section 4.4 can be observed (cf. Tab. 5.25). The absolute values of the local conver-
gence rates are higher than the global ones for the layered-halfspace model (cf. Tab. 5.41). In most
cases, adaptive mesh refinement leads to a further improvement of the convergence rate (cf. Figs 5.48,
5.49, and Tab. 5.26).
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Fig. 5.46: Convergence curves of the local relative deviation of the derived field components for the
earth’s surface (left) and the point (0, 0) (right) for E-polarisation using linear (p = 1, +), quadratic
(p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.47: Convergence curves of the local relative deviation of the derived field components for the
earth’s surface (left) and the point (0, 0) (right) for H-polarisation using linear (p = 1, +), quadratic
(p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N . The frequency is f = 0.1 Hz.
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Fig. 5.48: Convergence curves of the local relative deviation of the derived field components on the
earth’s surface (left) and at the point (0, 0) (right) for E-polarisation using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear
trend of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz. Adaptive
mesh refinement.
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Fig. 5.49: Convergence curves of the local relative deviation of the derived field components on the
earth’s surface (left) and at the point (0, 0) (right) for H-polarisation using linear (p = 1, +),
quadratic (p = 2, ×××) and cubic (p = 3, ���) basis functions. Black lines (–) indicate the linear trend
of each convergence curve for sufficiently large N . The frequency is f = 0.1 Hz. Adaptive mesh
refinement.
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5.5 The COMMEMI 3-D-2 Model
We now turn to 3-D simulation. The following convergence studies are carried out for the COMMEMI
3-D-2 model composed of a conductive and a resistive block embedded in a layered-halfspace back-
ground model (cf. Fig. 5.50). The convergence of the numerical solutions of BVPs (i) (eqs (3.3)), (ii)
(eqs (3.4)), (iii) (eqs (3.11)), (iv) (eqs (3.12)), and (v) (eqs (3.19)) to the appropriate numerical finest-
grid solution is examined. Note that, first, the field components parallel to the normal electromagnetic
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Fig. 5.50: COMMEMI model 3-D-2

fields for polarisation 1, i.e. Ex and Hy, are considered. Hence,

(u)i =

{
u · ey = Hy for BVP (i)
u · ex = Ex for BVP (ii) – BVP (v) (5.7)

and

(∇×u)i =

{
(∇×u) · ex = Ex for BVP (i)
(∇×u) · ey = Hy for BVP (ii) – BVP (v) (5.8)

where ex = (1, 0, 0)T and ey = (0, 1, 0)T are unit vectors in x- and y-direction. The field components
orthogonal to the normal fields, i.e. Ey, Ez, Hx, and Hz for polarisation 1, and the second direction
of polarisation (polarisation 2) with the normal field components En = E0 · ey and Hn = H0 · ex are
considered in the appropriate subsections.

5.5.1 h-Refinement versus p-Refinement
Figs 5.51 – 5.55 display the convergence curves for BVP (i) – (v) for the COMMEMI 3D-2 model.
Tab. 5.27 summarises the appropriate convergence rates. The absolute values of the asymptotic con-



Chapter 5. Comparison of Different Formulations of the BVP by Convergence Studies 109

vergence rates do not exceed 0.7 even in the case of cubic (p = 3) basis functions for which eq.
(4.88) predicts α = −1. In contrast, for a 3-D model of a homogeneous halfspace with conductivity
σ = 0.01 Sm−1, the predicted convergence rate is almost reached for the simulated (u)i field compo-
nents (cf. Figs 5.56 – 5.59 and Tab. 5.28). However, for quadratic (p = 2) and cubic (p = 3) basis
functions, the convergence rates are difficult to estimate since the relative deviations diverge for large
numbers N of DOF. Note that, BVP (v) is not applicable to the homogeneous-halfspace model since
in the absence of lateral conductivity contrasts no anomalous vector potential occurs.
The presence of horizontal conductivity contrasts in the COMMEMI 3-D-2 model limits the con-
vergence rate since electric charges accumulate there and the normal component of the electric field
jumps. Hence, the regularity of the exact solution is reduced. For the homogeneous-halfspace model
containing the air-earth interface as vertical conductivity contrast, only the absolute values of the con-
vergence rates for the magnetic field component Hy ((u)i for BVP (i) and (∇×u)i for BVPs (ii) –
(iv)) are slightly reduced.
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Fig. 5.51: Convergence curves forHy (left) andEx (right) computed from BVP (i) for the COMMEMI
3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite elements.
Black lines (–) indicate the linear trend of each convergence curve for sufficiently large N . The
frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.52: Convergence curves for Ex (left) and Hy (right) computed from BVP (ii) for the COM-
MEMI 3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite
elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently large
N . The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.53: Convergence curves for Ex (left) and Hy (right) computed from BVP (iii) for the COM-
MEMI 3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite
elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently large
N . The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.54: Convergence curves for Ex (left) and Hy (right) computed from BVP (iv) for the COM-
MEMI 3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite
elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently large
N . The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.55: Convergence curves for Ex (left) and Hy (right) computed from BVP (v) for the COM-
MEMI 3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite
elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently large
N . The frequency is f = 0.1 Hz. Polarisation 1.
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asymptotic conv. rate αas limiting conv. rate αlim

p (u)i (∇×u)i (u)i (∇×u)i
BVP (i) 1 −0.44 −0.46 −0.58 −0.56

2 −0.53 −0.66 −0.55 −0.69
3 −0.53 −0.62 −0.58 −0.58

BVP (ii) 1 −0.49 −0.56 −0.60 −0.73
2 −0.66 −0.69 −0.66 −0.64
3 −0.57 −0.65 −0.57 −0.74

BVP (iii) 1 −0.52 −0.56 −0.55 −0.66
2 −0.64 −0.67 −0.63 −0.62
3 −0.34 −0.64 −0.17 −0.72

BVP (iv) 1 −0.49 −0.56 −0.60 −0.73
2 −0.66 −0.69 −0.66 −0.64
3 −0.57 −0.65 −0.57 −0.74

BVP (v) 1 −0.48 −0.37 −0.59 −0.52
2 −0.58 −0.54 −0.63 −0.57
3 −0.60 −0.59 −0.61 −0.68

Tab. 5.27: Asymptotic (αas) and limiting (αlim) convergence rate of a field component of the numerical
solution (u)i and its curl (∇×u)i computed from BVPs (i) – (v) for the COMMEMI 3-D-2 model
depending on the polynomial degree p of the basis functions. Polarisation 1. The frequency is
f = 0.1 Hz.
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Fig. 5.56: Convergence curves for Hy (left) and Ex (right) computed from BVP (i) for the 3-D
homogeneous-halfspace model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3,
���) finite elements. Black lines (–) indicate the linear trend of each convergence curve for suffi-
ciently large N until it starts to diverge. The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.57: Convergence curves for Ex (left) and Hy (right) computed from BVP (ii) for the 3-D
homogeneous-halfspace model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���)
finite elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N until it starts to diverge. The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.58: Convergence curves for Ex (left) and Hy (right) computed from BVP (iii) for the 3-D
homogeneous-halfspace model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���)
finite elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N until it starts to diverge. The frequency is f = 0.1 Hz. Polarisation 1.
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Fig. 5.59: Convergence curves for Ex (left) and Hy (right) computed from BVP (iv) for the 3-D
homogeneous-halfspace model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���)
finite elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N until it starts to diverge. The frequency is f = 0.1 Hz. Polarisation 1.

asymptotic conv. rate αas limiting conv. rate αlim

p (u)i (∇×u)i (u)i (∇×u)i
BVP (i) 1 −0.30 −0.44 −0.24 −0.29

2 −0.67 −0.79 −0.27 −0.41
3 −0.95 −0.91 1.04 0.50

BVP (ii) 1 −0.40 −0.35 −0.32 −0.27
2 −0.91 −0.66 0.28 −0.41
3 −0.98 −0.87 0.97 −0.75

BVP (iii) 1 −0.41 −0.35 −0.31 −0.23
2 −0.92 −0.66 3.37 −0.38
3 −0.99 −0.85 2.42 −0.73

BVP (iv) 1 −0.40 −0.35 −0.32 −0.27
2 −0.91 −0.66 0.28 −0.41
3 −0.98 −0.87 0.97 −0.75

Tab. 5.28: Asymptotic (αas) and limiting (αlim) convergence rate of a field component of the numerical
solution (u)i and its curl (∇×u)i computed from BVPs (i) – (iv) for the 3-D homogeneous-
halfspace model depending on the polynomial degree p of the basis functions. Polarisation 1. The
frequency is f = 0.1 Hz.



Chapter 5. Comparison of Different Formulations of the BVP by Convergence Studies 115

5.5.2 Frequency Dependence
Figs 5.60 and 5.61 display convergence curves using third-order (p = 3) finte elements for f =
0.01 Hz and f = 1 Hz, respectively. From Tabs 5.29 and 5.30 listing the convergence rates, it becomes
apparent that the convergence rates depend on the frequency. Maximum absolute convergence rates of
up to 0.95 for cubic basis functions are obtained for the highest frequency of f = 1 Hz that features the
smallest skin depth. For lower frequencies, the skin depth is larger and the convergence behaviour is
more seriously affected by the conductivity contrasts. Approximate maximum absolute convergence
rates for f = 0.01 Hz and f = 0.1 Hz are 0.50 and 0.65, respectively. For linear basis functions,
however, superconvergence can be observed for all frequencies and BVPs, i.e. the absolute value of
the estimated convergence rate is higher than predicted.

5.5.3 Most Efficient Formulation - BVP (v)
From Tabs 5.29 and 5.30, it is obvious that, in the case of conductivity contrasts affecting the con-
vergence behaviour, BVP (v) yields best convergence rates. The anomalous potential approach is
well-suited to approximate the electromagnetic fields in the vicinity of jumps in the electrical con-
ductivity. In the absence of the normal field components, the anomaly effect can be computed very
accurately. Among BVP (i) – (iv) representing total field or potential approaches, BVP (i) approx-
imating the magnetic field is advantageous in terms of convergence rates (cf. Tabs 5.29 and 5.30).
BVP (iii), however, exhibits serious stability problems. For f = 0.01 Hz and p ≥ 2, the electric field
component does not converge at all. The electric field is calculated from the magnetic vector potential
A and the electric scalar potential V which is computed as part of a stabilisation term to introduce
the null-space of the ∇×∇× -operator to the system of equations especially for low frequencies. V
is observed to be in the order of 108 V for the second-finest grid which is far to large to be due to
physical phenomena. A stabilised electric field approach by which the electric field components are
computed directly as described by Schwarzbach (2009) seems to be more promising.
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Fig. 5.60: Convergence curves forEx (left) andHy (right) computed for the COMMEMI 3-D-2 model
from BVP (i) (+), BVP (ii) (×××), BVP (iii) (���), BVP (iv) (444) and BVP (v) (∗) using cubic (p = 3)
finite elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N . The frequency is f = 0.01 Hz.
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Fig. 5.61: Convergence curves forEx (left) andHy (right) computed for the COMMEMI 3-D-2 model
from BVP (i) (+), BVP (ii) (×××), BVP (iii) (���), BVP (iv) (444) and BVP (v) (∗) using cubic (p = 3)
finite elements. Black lines (–) indicate the linear trend of each convergence curve for sufficiently
large N . The frequency is f = 1 Hz.

asymptotic conv. rate αas limiting conv. rate αlim

p BVP (u)i (∇×u)i (u)i (∇×u)i
1 i −0.39 −0.43 −0.49 −0.52

ii −0.43 −0.46 −0.55 −0.49
iii −0.44 −0.53 −0.50 −0.53
iv −0.43 −0.46 −0.55 −0.49
v −0.45 −0.47 −0.53 −0.54

2 i −0.38 −0.53 −0.42 −0.53
ii −0.46 −0.28 −0.53 −0.34
iii −1.5 · 10−2 −0.27 −7.9 · 10−3 −0.34
iv −0.46 −0.28 −0.53 −0.34
v −0.48 −0.54 −0.54 −0.60

3 i −0.48 −0.57 −0.52 −0.59
ii −0.35 −0.39 −0.35 −0.39
iii −2.6 · 10−4 −0.34 −5.8 · 10−5 −0.38
iv −0.36 −0.39 −0.36 −0.39
v −0.57 −0.69 −0.56 −0.69

Tab. 5.29: Asymptotic (αas) and limiting (αlim) convergence rate of the numerical solution (u)i and
its curl (∇×u)i computed from BVPs (i) – (v) for the COMMEMI 3-D-2 model depending on the
polynomial degree p of the basis functions. Polarisation 1. The frequency is f = 0.01 Hz.
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asymptotic conv. rate αas limiting conv. rate αlim

p BVP (u)i (∇×u)i (u)i (∇×u)i
1 i −0.44 −0.45 −0.58 −0.59

ii −0.43 −0.36 −0.58 −0.45
iii −0.46 −0.36 −0.51 −0.36
iv −0.43 −0.36 −0.58 −0.45
v −0.41 −0.34 −0.54 −0.41

2 i −0.56 −0.77 −0.55 −0.71
ii −0.75 −0.50 −0.79 −0.55
iii −0.75 −0.49 −0.78 −0.53
iv −0.75 −0.50 −0.79 −0.55
v −0.65 −0.47 −0.65 −0.47

3 i −0.79 −0.94 −0.79 −0.94
ii −0.95 −0.75 −0.95 −0.75
iii −0.94 −0.75 −0.94 −0.75
iv −0.95 −0.75 −0.95 −0.75
v −0.78 −0.63 −0.78 −0.63

Tab. 5.30: Asymptotic (αas) and limiting (αlim) convergence rate of the numerical solution (u)i and
its curl (∇×u)i computed from BVPs (i) – (v) for the COMMEMI 3-D-2 model depending on the
polynomial degree p of the basis functions. Polarisation 1. The frequency is f = 1 Hz.
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The following considerations regarding

• the second direction of polarisation (polarisation 2), i.e. the normal electromagnetic fields are
En = E0 · ey and Hn = H0 · ex instead of En = E0 · ex and Hn = H0 · ey (cf. Fig. 5.62, Tab.
5.31),

• the convergence of field components that are not parallel to the normal electromagnetic fields
(cf. Fig. 5.63, Tab. 5.32),

• the effect of adaptive mesh refinement on the convergence behaviour (Fig. 5.64, Tab. 5.33), and

• local convergence (Figs 5.65, 5.66, 5.67, Tab. 5.34)

are restricted to BVP (v) due to its advantages mentioned above.

Polarisation 2

Considering polarisation 2, the electromagnetic field components parallel to the normal fields are Ey
and Hx. Hence, for BVP (v) we have

(u)i = u · ey = Ey and (∇×u)i = (∇×u) · ex = Hx. (5.9)

Fig. 5.62 (f = 0.1 Hz) and Tab. 5.31 illustrate that similar convergence behaviour can be observed
for both directions of polarisation although the frequency dependence of the convergence rates is
less significant for polarisation 2 (cf. Fig. 5.55 and Tabs 5.27, 5.29, 5.30). This might be due to the
different orientation of the normal field components relative to the lateral conductivity contrasts. In the
following, convergence studies are restricted to polarisation 1, however, qualitatively they similarly
refer to the appropriate field components occuring in the case of polarisation 2.
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Fig. 5.62: Convergence curves for Ey (left) and Hx (right) computed from BVP (v) for the COM-
MEMI 3-D-2 model using linear (p = 1, +), quadratic (p = 2, ×××) and cubic (p = 3, ���) finite
elements. Polarisation 2. Black lines (–) indicate the linear trend of each convergence curve for
sufficiently large N . The frequency is f = 0.1 Hz.
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asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] p (u)i (∇×u)i (u)i (∇×u)i
0.01 1 −0.43 −0.50 −0.51 −0.56

2 −0.50 −0.64 −0.50 −0.66
3 −0.53 −0.78 −0.57 −0.77

0.1 1 −0.41 −0.34 −0.52 −0.48
2 −0.54 −0.50 −0.56 −0.57
3 −0.61 −0.69 −0.62 −0.77

1 1 −0.38 −0.29 −0.48 −0.38
2 −0.52 −0.39 −0.58 −0.47
3 −0.69 −0.46 −0.73 −0.54

Tab. 5.31: Asymptotic (αas) and limiting (αlim) convergence rate of a field component of the numerical
solution (u)i and its curl (∇×u)i computed from BVPs (i) – (v) for the COMMEMI 3-D-2 model
depending on the polynomial degree p of the basis functions. Polarisation 2. The frequency is
f = 0.1 Hz.

Non-Parallel-to-the-Normal-Field Components

The field components which are not parallel to the normal electromagnetic fields, i.e. Ey, Hx, Ez,
and Hz for polarisation 1, exhibit a slightly different convergence behaviour than the components
parallel to the normal electromagnetic fields. The convergence curves are less steep. Here, the asymp-
totic convergence rates hardly reach −0.6 in comparison to −0.7 for the parallel-to-the-normal-field
components. Additionally, the convergence rates are less dependent on the frequency (cf. Fig. 5.63
and Tab. 5.32). The frequency dependence is caused by conductivity contrasts affecting the conver-
gence behaviour for different skin depths to varying degrees. Moreover, the orientation of the field
components relative to the conductivity contrasts seems to influence the convergence behaviour as
well. In Fig. 5.63, Ey and Ez are considered. Convergence rates for Ex are more seriously affected
by the frequency. Same effect may be obvious comparing Ex for polaristion 1 and Ey in the case of
polarisation 2, although it is less significant.

asymptotic conv. rate αas limiting conv. rate αlim

(u)i (∇×u)i (u)i (∇×u)i
f [Hz] p Ey Ez Hx Hz Ey Ez Hx Hz

0.01 1 −0.39 −0.31 −0.41 −0.44 −0.52 −0.39 −0.47 −0.56
2 −0.37 −0.37 −0.52 −0.53 −0.44 −0.58 −0.58 −0.61
3 −0.47 −0.41 −0.62 −0.67 −0.60 −0.41 −0.63 −0.73

0.1 1 −0.39 −0.33 −0.33 −0.37 −0.49 −0.46 −0.42 −0.51
2 −0.43 −0.42 −0.37 −0.42 −0.53 −0.56 −0.43 −0.47
3 −0.47 −0.45 −0.56 −0.59 −0.59 −0.48 −0.63 −0.74

1 1 −0.41 −0.35 −0.34 −0.29 −0.45 −0.49 −0.41 −0.39
2 −0.55 −0.51 −0.34 −0.31 −0.69 −0.55 −0.47 −0.42
3 −0.50 −0.55 −0.45 −0.40 −0.57 −0.64 −0.63 −0.49

Tab. 5.32: Asymptotic (αas) and limiting (αlim) convergence rate of a field component of the numerical
solution (u)i and its curl (∇×u)i computed from BVP (v) for the COMMEMI 3-D-2 model
depending on the frequency f and polynomial degree p of the basis functions.
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Fig. 5.63: Convergence curves forEy (left) andEz (right) computed from BVP (v) for the COMMEMI
3-D-2 model using linear (p = 1) finite elements for f = 1 Hz (+), f = 0.1 Hz (×××) and f = 0.01 Hz
(���). Black lines (–) indicate the linear trend of each convergence curve for sufficiently large N .
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Adaptive Mesh Refinement

Fig. 5.64 and Tab. 5.33 illustrate similar convergence behaviour for adaptive mesh refinement as for
uniformly refined meshes (cf. Fig. 5.55 for f = 0.1 Hz and Tab. 5.27). However, here, convergence
rates are less dependent on the frequency. In the adaptive mesh refinement process, the skin depth of
the electromagnetic fields is accounted for in the way that the mesh is refined where strong variations
in the solution occur. Hence, the accuracy and, therefore, the convergence of the FE solution is less
seriously affected by the frequency in this case. Note that, third-order (p = 3) finite elements are
not available under COMSOL Multiphysics R© for adaptive mesh refinement. Therefore, they are not
discussed here.
For the simulated electric field, largest relative deviations occur for the lowest frequency of f =
0.01 Hz (���). This feature also becomes clear by comparing Figs 5.55, 5.60, and 5.61 for cubic (p = 3)
basis functions in the case of uniform mesh refinement. It might be due to the 3-D conductivity
distribution, since for the homogeneous halfspace the lowest frequency yields the smallest errors. In
this case, for a given mesh most DOF are located within the length of one skin depth.

Local Convergence

Fig. 5.65 displays convergence curves for the electric field component Ex in all DOF on the earth’s
surface and the point (0, 0, 0) using quadratic (p = 2) basis functions. Contrary to the electric field,
the magnetic field component Hy exhibits at least a slight frequency-dependence (cf. Figs 5.66 and
5.67). The estimation of convergence rates for the point (0, 0, 0) is impossible for Hy due to the
non-monotonical behaviour of the relative deviation. It is even hard to speak of convergence at all.
Asymptotic convergence rates for Ex in the point (0, 0, 0) are αas(f = 1 Hz) = −0.47, αas(f =
0.1 Hz) = −0.74, αas(f = 0.01 Hz) = −0.52. They are in the range of the global convergence rates
for adaptive mesh refinement (cf. Fig. 5.33) although difficult to estimate because of the small number
of data points. The convergence rates for the electromagnetic field components on the earth’s surface
are listed in Tab. 5.34.
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Fig. 5.64: Convergence curves for Ex (left) and Hy (right) computed from BVP (v) for the COM-
MEMI 3-D-2 model using first-order (p = 1) finite elements for f = 1 Hz (+), f = 0.1 Hz (×××)
and f = 0.01 Hz (���). Adaptive mesh refinement. Black lines (–) indicate the linear trend of each
convergence curve for sufficiently large N .
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asymptotic conv. rate αas limiting conv. rate αlim

f [Hz] p Ex Hy Ex Hy

0.01 1 −0.42 −0.48 −0.53 −0.50
2 −0.64 −0.74 −0.64 −0.74

0.1 1 −0.48 −0.49 −0.49 −0.49
2 −0.50 −0.72 −0.50 −0.72

1 1 −0.54 −0.49 −0.61 −0.49
2 −0.55 −0.38 −0.55 −0.38

Tab. 5.33: Asymptotic (αas) and limiting (αlim) convergence rate for Ex and Hy computed from BVP
(v) for the COMMEMI 3-D-2 model depending on the frequency f and polynomial degree p of
the basis functions. Adaptive mesh refinement.
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Fig. 5.65: Convergence curves for Ex computed from BVP (v) for the COMMEMI 3-D-2 model for
all DOF on the earth’s surface (left) and the point (0, 0, 0) (right) using second-order (p = 2) finite
elements for f = 1 Hz (+), f = 0.1 Hz (×××) and f = 0.01 Hz (���). Adaptive mesh refinement. Black
lines (–) indicate the linear trend of each convergence curve for sufficiently large N .
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Fig. 5.66: Convergence curves for Hy computed from BVP (v) for the COMMEMI 3-D-2 model for
all DOF on the earth’s surface (left) and the point (0, 0, 0) (right) using second-order (p = 2) finite
elements for f = 1 Hz (+), f = 0.1 Hz (×××) and f = 0.01 Hz (���). Adaptive mesh refinement. Black
lines (–) indicate the linear trend of each convergence curve for sufficiently large N .
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Fig. 5.67: Convergence curves for Hy computed from BVP (v) for the COMMEMI 3-D-2 model for
all DOF on the earth’s surface (left) and the point (0, 0, 0) (right) using second-order (p = 2) finite
elements for f = 1 Hz (+), f = 0.1 Hz (×××) and f = 0.01 Hz (���). Uniform mesh refinement. Black
lines (–) indicate the linear trend of each convergence curve for sufficiently large N .
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asymptotic conv. rate αas limiting conv. rate αlim

mesh refinement f [Hz] p Ex Hy Ex Hy

adaptive 0.01 1 −0.41 −0.54 −0.47 −0.52
2 −0.52 −0.77 −0.52 −0.77

0.1 1 −0.45 −0.59 −0.49 −0.66
2 −0.51 −0.55 −0.51 −0.55

1 1 −0.69 −0.48 −0.69 −0.48
2 −0.52 −0.34 −0.52 −0.34

uniform 0.01 1 −0.41 −0.43 −0.59 −0.57
2 −0.52 −0.67 −0.78 −0.67
3 −0.46 −0.72 −0.47 −0.81

0.1 1 −0.45 −0.35 −0.61 −0.61
2 −0.58 −0.57 −0.78 −0.57
3 −0.49 −0.64 −0.49 −0.77

1 1 −0.50 −0.17 −0.62 −0.25
2 −0.52 −0.49 −0.71 −0.49
3 −0.56 −0.45 −0.74 −0.55

Tab. 5.34: Asymptotic (αas) and limiting (αlim) convergence rate for Ex and Hy on the eath’s sur-
face computed from the solution of BVP (v) for the COMMEMI 3-D-2 model depending on the
frequency f and polynomial degree p of the basis functions.
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5.6 Conclusions
In general, from the 2-D and 3-D convergence studies, we can conclude that the relative rms error and
the relative rms deviation introduced by eqs (5.1) and (5.4) are well suited to perform convergence
studies. An area integration as necessary for the computation of the L2-norm is not required following
the strategy described in the beginning of this chapter.
For the 2-D convergence studies, reduced absolute values of the limiting convergence rates indicate a
limit of the discretisation error. However, due to the limitation of the available computer memory, it
could not be quantified.
The convergence towards the finest-grid solution perfectly reflects the convergence behaviour with
respect to the analytical solution. Hence, convergence studies enable us to estimate the accuracy of
any numerical solution and to verify its significance even in the case the exact solution is unknown.
For a sufficiently large number of data points, local convergence is similar to global convergence be-
haviour. Therefore, convergence studies may also provide estimates of the local accuracy of numerical
simulation results. Moreover, they can be used to verify the local significance of any numerical so-
lution. This is of special interest in the case of complicated-structured models incorporating surface
topography which may induce unexpected geo-electromagnetic effects or generate numerical arte-
facts. Geo-electromagnetic phenomena are expected to be present throughout all mesh refinement
steps, whereas numerical artefacts may occur more spontaneously for certain grids.
From the 3-D convergence studies, it becomes clear that even simple 3-D conductivity structures as
occuring in the COMMEMI 3-D-2 model seriously affect the convergence behaviour. Due to electrical
charge accumulation at lateral conductivity contrasts influencing the regularity of the true solution,
the maximum absolute convergence rate is reduced. In this case, higher-order finite elements do not
necessarily result in faster convergence and higher accuracy. However, geometrical adaptive mesh
refinement has proved to be advantageous especially when 3-D conductivity structures are present. It
partially compensates the frequency effect on the convergence rate that arises from the decrease of
the accuracy of the numerical solution due to an enlarged skin depth.
Finally, among BVP (i) – (v), BVP (v) proved to be advantageous in terms of convergence rates,
stability, and accuracy.





6 Simulation of Magnetotelluric Fields at
Stromboli

Stromboli volcano arises with very steep slopes from the Mediterranean Sea off the west coast of
Italy. In her diploma thesis, Kütter (2009) showed that, for magnetotelluric (MT) data strong three-
dimensional (3-D) effects may be expected from topographic and bathymetric undulations as well as
the adjacent islands of the Aeolian archipelago. Data from digital elevation models were successfully
incorporated into the finite element (FE) simulation of MT fields using COMSOL Multiphysics R©,
however, it has not been possible to assess the accuracy and significance of the numerical results
so far. To verify the results, the FE solution for the simplified model of a frustum surrounded by
sea water was analysed regarding its symmetry and compared to the solution of another FE code
(Schwarzbach, 2009) and the finite-difference solution computed by Mackie (cf. Mackie et al., 1994).
Now, convergence studies enable us to prove the significance of the simulation results and to even
estimate the accuracy of the numerical solution.
Based on the experience from the 3-D convergence studies in chapter 5, most efficient boundary value
problem (BVP) BVP (v) is chosen to simulate the anomalous magnetic vector potential at Stromboli.
Due to the complicated-structured model of Stromboli area incorporating surface topography and
bathymetry, reliable convergence studies are carried out only for uniform mesh refinement using linear
basis functions.

6.1 Stromboli Model
The model of the area of interest is chosen to be similar to the so-called bathymetry-topography
model in Kütter (2009). It extends from 38.4◦ to 39.2◦ N and 14.7◦ to 15.7◦ E, i.e. 86.51 km in west-
east (x) and 88.76 km in north-south (y) direction. Two sets of digital elevation data were adapted
to yield the model depicted in Fig. 6.1. The ETOPO1 data set is a 1 arc-minute model and provides
elevation values for both land and sea. It is available online at the National Geophysical Data Cen-
ter (http://www.ngdc.noaa.gov) and gives a good approximation for the regional bathymetry. Since,
however, its spatial data density is not sufficient to describe Stromboli’s topography, a second data
set was used. These data are available from the Shuttle Radar Topography Mission (SRTM), a project
to obtain high-resolution topographic data (http://srtm.csi.cgiar.org/). To keep the model used for the
simulation at moderate size on the one hand and to still reflect the main topographic features on the
other hand, a subset of the digital elevation data with a resolution of 1.44 km in x- and 1.85 km in
y-direction was extracted (cf. Fig. 6.2, right-hand side). The final 3-D model of Stromboli area de-
picted in the left-hand panel of Fig. 6.2 was completed by surrounding points at an average elevation
of 1.54 km.
The conductivity distribution in the model is as follows

• air layer: σ0 = 10−9 Sm−1,

• sea layer: σ1 = 5 Sm−1,
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Fig. 6.1: Density of digital elevation data (left) and resulting digital elevation model (right). Pictures
from Kütter (2009).
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Fig. 6.2: Stromboli 3-D model (left) including digital elevation data (right). Pictures from Kütter
(2009).

• halfspace, Stromboli volcano, islands: σ2 = 0.01 Sm−1.

6.2 Simulated Data and Convergence Studies

Exemplarily, data on profiles ’yE’ and ’yW’ are examined (cf. Fig. 6.3, left-hand side). They run
on the seafloor south and north of Stromboli volcano which is located in the center of the area and
follow the island’s topography. The profiles consisting of 1177 data points are assumed to include
a sufficiently large number of locations which are considered for the convergence studies. The air-
sea interface is aligned with z = 0 . The results from Kütter (2009) exhibit strong anomalies in the
apparent resistivity ρxy and the phase φxy (cf. Fig. 6.3, right-hand side). Convergence studies enable
the verification or falsification of their significance.
The results for ρxy and φxy using a more recent version of COMSOL Multiphysics R© (3.5a instead of
3.3a) are displayed in Fig. 6.4 in terms of the apparent resistivity ρxy and the phase φxy on the left-hand
side and ρyx and φyx on the right-hand side, respectively. The simulations are performed using 1.3·106

DOF on a 2.4 GHz shared memory computer utilizing 8 of 32 nodes. The results mainly differ in that,
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Fig. 6.3: Locations of data points and profiles in the Stromboli model (left). ρxy and φxy computed
using COMSOL Multiphysics R© 3.3a on profiles ’yE’ and ’yW’ and related topography on top
(right). Pictures from Kütter (2009).

the anomalies in the southern part of the profiles (−20 km ≤ y ≤ 40 km) are more pronounced,
whereas the anomalies in the northern part (50 km ≤ y ≤ 100 km) including the local and the global
maximum of the apparent resistivity and the phase jump have completely disappeared. The recent
results in Fig. 6.4 seem more plausible since the strong variations south of the volcanic island can
be attributed to bathymetric undulations and lateral effects from the near-by islands of the Aeolian
archipelago, whereas in the northern part of the profiles the seafloor resides almost constantly at a
larger depth. There, the data nicely reproduce the resistivity ρ2 = σ2

−1 = 100 Ωm of the underlying
halfspace.
Analysing the electromagnetic field components parallel to the normal fields, i.e. Ex and Hy for po-
larisation 1, exemplarily for profile ’yE’ in Fig. 6.5 the effects of bathymetry and topography become
clear. The behaviour of the magnetic field (right-hand diagram) obviously reflects bathymetric un-
dulations since the field value is attenuated according to the depth of the sea floor. For −20 km ≤
y ≤ 40 km, the thickness of the sea layer significantly varies, whereas for 50 km ≤ y ≤ 100 km
it is more or less constant at a larger depth. The real part of the electric field component (left-hand
diagram) shows similar behaviour, its imaginary part, however, exhibits significant variations only in
the vicinity of the volcano. The field components orthogonal to the normal fields, i.e. Ey and Hx for
polarisation 1, are orders of magnitude smaller than Ex and Hy. Hence, they do not affect apparent
resistivity and phase significantly. For polarisation 2, the appropriate field components behave simi-
larly since, along the profile, the conductivity contrasts are distributed symmetrically with respect to
the direction of the normal field components.

After having discussed the plausibility of the numerical results computed for the 3-D model of Strom-
boli area, in the following, the results will be further verified by local convergence studies. Due to the
undulating topographic and bathymetric relief generating a large complicated-structured initial mesh
with an already considerable number of DOF, only uniform mesh refinement and linear (p = 1)
basis functions are applied. The use of higher-order finite elements implies only one step of mesh
refinement that is not sufficient to perform reliable convergence studies.
Fig. 6.6 displays convergence curves for Ex (+) and Hy (×××) on the profiles ’yE’ (left-hand diagram)
and ’yW’ (right-hand diagram). Ex and Hy converge on both profiles, however, Hy exhibits very slow
convergence on profile ’yW’.

point 2 point 1 point 3
point 3

point 1

point 2



130 6.2. Simulated Data and Convergence Studies

−20 0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

y [km]

ρ xy
ρ

xy
, φ

xy

 

 

−20 0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

y [km]

ρ yx

ρ
yx

, φ
yx

 

 

−20 0 20 40 60 80 100
180

225

270

y [km]

φ xy
 [

°]

−20 0 20 40 60 80 100
0

45

90

y [km]

φ yx
 [

°]

Fig. 6.4: Apparent resistivities ρxy (left) and ρyx (right) at the top and phases φxy (left) and φyx (right)
at the bottom computed using COMSOL Multiphysics R© 3.5a on profiles ’yE’ (–) and ’yW’ (–).

To evaluate the numerical results for the apparent resistivity and the phase, it seems more reasonable
to consider convergence studies for the impedance. Fig. 6.7 shows the appropriate convergence curves
for the off-diagonal elements Zxy (+) and Zyx (×××) of the impedance tensor on profiles ’yE’ (left-hand
side) and ’yW’ (right-hand side). Zxy and Zyx converge, although convergence of Zyx on profile ’yE’
is slow. Tab. 6.1 summarizes the convergence rates on both profiles. The simulation results there seem
to be reasonable and accurate to approximately 10−2 times the finest-grid solution on average.

The simulation results for the points 1, 2, and 3 on profile ’yE’ indicated in Figs 6.3 and 6.4 seem to
be even more reliable since all convergence rates for Zxy and Zyx are negative (cf. Figs 6.8 – 6.10 and
Tab. 6.2). The locations of points 1 and 2 are chosen to represent the local maxima of the apparent
resistivity and phase on the sea floor south of Stromboli and the global minimum of the apparent
resistivity on the volcano itself, respectively. Point 3 is situated on the sea floor north of Stromboli.
The convergence curves for points 2 and 3 both located on the sea floor suggest local accuracy of
10−5 times the finest-grid solution there (cf. Figs 6.9, 6.10). For point 1 on top of Stromboli volcano
(cf. Fig. 6.8), the magnetic field component Hy does not converge, however, Zxy and Zyx exhibit
convergence to the local accuracy of 10−2 times the finest-grid solution there.

’yE’ ’yW’
Zxy −0.36 −0.47
Zyx −0.09 −0.41
Ex −0.36 −0.03
Hy −1.75 −0.81

Tab. 6.1: Convergence rates for profiles ’yE’ and ’yW’.
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Fig. 6.5: Real (Re, –) and imaginary (Im, –) part of the electric Ex (left) and magnetic Hy (right) field
component for polarisation 1 on profile ’yE’.
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Fig. 6.6: Convergence of the field components Ex (+) and Hy (×××) on profiles ’yE’ (left) and ’yW’
(right).

Fig. 6.11 shows a cross section of the triangulation of the model of Stromboli volcano. Tetrahedrons
on bottom of the figure are relatively large whereas small and acute-angled elements occur in the
upper part. Meshes triangulating models with steep topography are not expected to be of high quality.
Especially in this case convergence studies are important to verify the simulation results. However, a
tensor product grid as used for finite difference simulations is not able to incorporate such huge and
small cells at the same time.
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Fig. 6.7: Convergence of the impedances Zxy (+) and Zyx (×××) on profiles ’yE’ (left) and ’yW’ (right).
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Fig. 6.8: Convergence of the impedances Zxy (+) and Zyx (×××) (left) and the electric and the magnetic
field componentsEx (+) andHy (×××) (right) in point 1 at x = 44.7 km, y = 42.5 km, z = −0.55 km.

point 1 point 2 point 3
Zxy −0.80 −0.66 −0.48
Zyx −0.63 −0.24 −0.85
Ex −0.80 −2.37 −0.84
Hy 0.23 −0.49 −0.45

Tab. 6.2: Convergence rates for points 1 – 3.
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Fig. 6.9: Convergence of the impedances Zxy (+) and Zyx (×××) (left) and the electric and the magnetic
field components Ex (+) and Hy (×××) (right) in point 2 at x = 44.7 km, y = 13.0 km, z = 1.44 km.
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Fig. 6.10: Convergence of the impedances Zxy (+) and Zyx (×××) (left) and the electric and the magnetic
field components Ex (+) and Hy (×××) (right) in point 3 at x = 44.7 km, y = 80.4 km, z = 2.38 km.
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Fig. 6.11: Cross section of the finite element triangulation of Stromboli model: Stromboli island in
red, sea-water layer in dark blue, underlying halfspace in light blue.



7 Summary

In the presented work, the finite element method was applied to numerically solve various bound-
ary value problems that describe the propagation of magnetotelluric fields. The two- and three-
dimensional boundary value problems in terms of the electric or the magnetic field, the magnetic
vector potential and the electric scalar potential, the magnetic vector potential only, or the anoma-
lous magnetic vector potential were derived from Maxwell’s equations. Based on the application
of convergence theory to the finite element solution, convergence studies were performed for the
two-dimensional models of a homogeneous and a layered halfspace as well as the three-dimensional
COMMEMI 3-D-2 model. Moreover, for a close-to-reality model of Stromboli area including digital
terrain data, convergence studies were utilized to obtain local error estimates for the numerical results.
The convergence studies for the two-dimensional models helped to understand the convergence be-
haviour for the three-dimensional models that is seriously affected by the three-dimensional conduc-
tivity distribution.
The boundary value problem formulated for the anomalous magnetic vector potential proved to be
advantageous in terms of convergence rates, stability, and accuracy.
The convergence studies showed that the estimation of the accuracy of any numerical solution is pos-
sible even without knowing the exact solution. This is especially important for complex-structured
models incorporating surface topography and sea floor bathymetry since on the one hand the discreti-
sation error cannot be computed from the comparison with an analytical or semi-analytical solution
and on the other hand the significance of the simulation results needs to be evaluated. The approxi-
mation of surface and sea floor undulations may induce unexpected geo-electromagnetic effects that
consolidate throughout the mesh refinement steps or generate numerical artefacts that are expected to
occur more spontaneously for certain grids.
For the example of Stromboli volcano, convergence studies revealed local pointwise relative accuracy
of 10−5 and 10−2 for data points located on the sea floor and on top of the volcano, respectively.
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