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1 Introduction

Clustering problems occur in many different fields, such as data mining processes, web

services classifications, and decompositions of large distributed systems. Let us consider

the following problem:

There are n customers C1, C2, . . . , Cn in a bank and for each customer a set of data is

given. In the customer relationship management it is useful to divide the customers into

groups, such that customers within the same group have almost similar data, but have

sufficiently enough dissimilarities to customers in any other group. In order to do this, we

have to determine the similarity of any two customers on the basis of their data. These

values are stored in a symmetric similarity matrix S in which the element si,j in row i and

column j is a natural number that shall express the similarity of the customers Ci and Cj ,

where a large number means a large similarity. Since no two customers have exactly the

same data, we have to define a threshold τ such that customers Ci and Cj are considered

as similar if and only if si,j ≥ τ . Now we intend to divide the customers into a small as

possible number of groups such that any two customers Ci and Cj within the same group

satisfy si,j ≥ τ .
This clustering problem can be modeled and solved as a graph coloring problem. In order to

do this, we construct a threshold graph G, where each customer is represented by a vertex,

and any two vertices are joined by an edge if and only if the corresponding customers have

a similarity less than τ . A clustering of the customers now corresponds to a partition of

the vertex set of G into disjoint independent subsets, i.e. subsets where the vertices are

pairwise non-adjacent.

If we assign a color to each of these independent subsets, we obtain a proper coloring of the

vertices of G where the independent subsets are the color classes of this coloring. Hence,

we can determine an optimal clustering of the customers by determining a proper coloring

of the threshold graph G with as few as possible colors. Often the problem is too complex
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1 Introduction

to find an optimal solution. So we have to be content with a solution obtained by heuristic

methods. One of these heuristics is the clustering algorithm stated below that is based on

b-colorings of graphs (see e.g. [Dek08, Dek08-1, Dek08-2, Eff06, Elg07, Yos08] for further

information on clustering approaches based on b-colorings).

A b-coloring of a graph G is a proper vertex coloring of G such that each color class contains

a color-dominating vertex, that is, a vertex which is adjacent to at least one vertex in every

other color class. A coloring of G that is no b-coloring can be easily improved by choosing

a color class without a color-dominating vertex and redistributing all vertices of this color

class to suitable other color classes.

Clustering algorithm:

1. Threshold Graph

Construct the corresponding threshold graph G.

2. Greedy Coloring

Define an ordering of the vertices of G and color it in this order step-by-step

by the smallest possible color each in such a way that no two adjacent vertices

receive the same color (the colors are considered as natural numbers).

3. b-Coloring

Choose a color class that does not contain a color-dominating vertex and redis-

tribute its vertices to suitable other color classes. Repeat this until the obtained

coloring is a b-coloring of G.

4. Clustering

Output the color classes of the b-coloring as clusters.

Example:

Let C1, C2, . . . , C11 be 11 customers of a bank and the threshold is set to τ = 9. Moreover,

let the following matrix be the corresponding similarity matrix S.

Now we apply to this graph G the clustering algorithm mentioned above.

PhD-Thesis Mais Alkhateeb 2



1 Introduction

S =




0

2 0

1 8 0

3 7 17 0

14 3 24 6 0

21 15 15 8 6 0

11 11 12 12 5 6 0

14 11 5 9 9 8 7 0

9 3 3 12 9 11 9 8 0

10 14 11 12 9 6 7 8 8 0

11 1 11 14 5 12 4 18 8 1 0




Step 1: We construct the corresponding threshold graph G = (V,E) with vertex set

V = {C1, C2, . . . , C11} and edge set E = {CiCj | i, j ∈ {1, 2, . . . , 11}, sij < 9}. The result

is shown in Figure 1.1.

C2

C5

C7C10

C9

C1

C4

C6C8

C3

C11

Figure 1.1: Threshold graph G

Step 2: We color the vertices C1, C2, . . . , C11 in this order in such a way that the vertex

Ci (i = 1, 2, . . . , 11) receives the smallest possible color that is not assigned to any of Ci’s

neighbors among C1, ..., Ci−1. This yields the coloring by 6 colors given in Figure 1.2.

color 1

color 2

color 3

color 4

color 5

color 6

C2

C5

C7C10

C9

C1

C4

C6C8

C3

C11

Figure 1.2: Greedy coloring of G

Step 3: We check which of the color classes contains a color-dominating vertex. In Figure

PhD-Thesis Mais Alkhateeb 3



1 Introduction

1.3 all color-dominating vertices are marked. So we see that the color classes 4,5, and 6 have

a color-dominating vertex each while the color classes 1,2, and 3 have no such vertices.

color 1

color 2

color 3

color 4

color 5

color 6

C10

C9

C1

C4

C6C8

C3

C7

C11

C5

C2

Figure 1.3: All color-dominating vertices

We redistribute the vertices of color class 1 to the other color classes by recoloring C1 and

C5 by color 4 and C8 by color 6. This yields the coloring by 5 colors shown in Figure 1.4.

color 2

color 3

color 4

color 5

color 6

C10

C9

C1

C4

C6C8

C3

C7

C11

C5

C2

Figure 1.4: b-coloring of G by 5 colors

After this recoloring, all remaining color classes now contain a color-dominating vertex (see

the marked vertices in Figure 1.4). So this coloring is a b-coloring of G by 5 colors.

Step 4: We take the 5 color classes as clusters and obtain the following clustering:

Cluster 1 = {C2, C6} (color class 2),

Cluster 2 = {C3, C4, C7} (color class 3),

Cluster 3 = {C1, C5, C9} (color class 4),

Cluster 4 = {C10} (color class 5),

Cluster 5 = {C8, C11} (color class 6).

Note that the obtained coloring is not optimal because we can find a coloring of G by 4

colors (see Figure 1.5). This coloring is even an optimal coloring of G since the vertices

PhD-Thesis Mais Alkhateeb 4
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C6, C7, C8, and C10 are pairwise adjacent and, therefore, we already need 4 colors. #

C10

C9

C1

C4

C6C8

C3

C7

C11

C5

C2

Figure 1.5: b-coloring of G by 4 colors

This was an example how b-colorings can be applied to solve clustering problems. In order

to make these colorings applicable for solving other practical problems as well, it makes

sense to investigate the b-colorings from the theoretical point of view at first. The present

doctoral thesis shall contribute to this investigation.

The outline of the thesis is as follows: We start in Chapter 2 with some basic terminology

and a short overview on classical vertex colorings. After this, we introduce a-colorings

which are a special type of vertex coloring and in some sense the predecessor of b-colorings.

In Chapter 3, we consider b-colorings of graphs. At first, we present in Section 3.1 general

bounds and properties of the b-chromatic number. Then we determine in Section 3.2. the

exact value of the b-chromatic number for special graphs. In Section 3.3. we investigate the

b-coloring problem on bipartite graphs. In doing so, we define the so-called bicomplement

and we use it to determine the b-chromatic number of special bipartite graphs, in particular

those whose bicomplement has a simple structure. Furthermore, we investigate in Section

3.4. some graphs whose b-chromatic number is close to its t-degree. Chapter 4 deals with

graph properties concerning b-colorings, mainly with the b-continuity. At first, we consider

in Section 4.1. the b-continuity of graphs whose b-chromatic number was established in

Chapter 3. Then, we list in Section 4.2. all b-continuous graph classes that are known

so far and we prove the b-continuity of Halin graphs. We finish the chapter with Section

4.3 where we briefly introduce the b-perfectness and b-monotonicity of graphs. The thesis

ends with a conclusion in Chapter 5, where we summarize the obtained results and present

some open problems for future research.

PhD-Thesis Mais Alkhateeb 5



2 Preliminaries

2.1 Basic terminology

In this section some standard definitions on graph theory are given. Good references for

any undefined terms or notations are [Bra99, Gro99, Wes99].

A graph G = (V (G), E(G)) is defined by the vertex set V (G) = {v1, ..., vn} and the edge

set E(G) ⊆ {e : e = uv and u, v ∈ V (G)}. The number of vertices of a graph is its order,

written as n(G), and the number of edges of a graph is its size, written as m(G).

In this thesis, only simple and undirected graphs are considered, unless otherwise stated.

We call u and v ∈ V adjacent, if there exists an edge e = uv ∈ E. A neighbor of a

vertex v is a vertex which is adjacent to v. Let NG(v) or N(v) be the neighborhood of

a vertex v ∈ V , i.e. the set of all neighbors of v, NG[v] := NG(v) ∪ {v} or simply N [v],

and dG(v) := |N(v)| or simply d(v) is the degree of vertex v in G. A vertex of degree 0

is an isolated vertex. The maximum degree is denoted by ∆(G) and the minimum degree

is denoted by δ(G). If ∆(G) = δ(G) = r, which means that all vertices of G have degree

r, then G is called an r-regular graph. The non-neighborhood of a vertex v is given by

NG(v) := V (G) \NG[v] or simply N(v). Two edges are said to be adjacent if they have a

common vertex.

For S ⊆ V (G), M ⊆ E(G), we denote by G− S and G−M the subgraphs of G obtained

by deleting a set of vertices S and a set of edges M , i.e. G − S := G[V (G) \ S] and

G −M := (V (G), E(G) \M). We simply write G − v or G − e instead of G − {e} or

G− {v}.
Furthermore, we use some non-standard notation and terminology in this thesis, which we

will define in the corresponding chapter or we include it in the Appendix for easy reference.

6



2 Preliminaries

2.2 Colorings of graphs

Many concepts in graph theory are induced by investigating the famous Four Color Prob-

lem: Can one color the countries of every map by at most four colors, so that neighbor

countries receive different colors?

The problem seems first to have been mentioned in 1852 in a written form in a letter from

De Morgan to Hamilton, but it was barely known until 1878. Then the Four Color Prob-

lem became widely famous through the talk of Cayley who introduced the problem in the

London Mathematical Society. In the same year Kempe presented a supposed proof, that

turned out to be wrong, which was detected by Heawood in 1890. The proof was settled

in 1976 by Appel, Haken, and Koch who were the first that applied computers in solving

a graph theory problem. Some flaws in the proof let people question the correctness of the

proof. Therefore, Robertson, Sanders, Seymour, and Thomas gave in 1996 a better and

shorter proof of the Four-Color-Theorem that uses similar methods as the proof by Appel,

Haken, and Koch.

In the meantime the field of graph colorings has grown rapidly. Besides the classical vertex

colorings many variants of colorings were introduced. A good overview about coloring

problems and other variants of colorings is given in [Jen95]. Two examples of such colorings

are a-colorings, which are shortly summarized in Subsection 2.2.2, and b-colorings which

are the main topic of this thesis.

2.2.1 Vertex colorings

Definition 2.1. [k-vertex coloring] A k-vertex coloring of a graph G is a mapping

c : V (G) −→ {1, ..., k}, where every two adjacent vertices u, v receive different colors

c(u) 6= c(v).

The chromatic number of a graph G, denoted by χ(G), is the minimum number k of all

proper k-colorings of G. A graph G is k-colorable if it has a proper k-coloring by k colors.

The determination of the chromatic number of a graph is NP−hard which means that if

P 6= NP, then there is no efficient algorithm that can solve this problem.

So we are interested in bounds on the chromatic number and results for special graph

classes.

PhD-Thesis Mais Alkhateeb 7



2 Preliminaries

General bounds on the chromatic number

Clearly, the vertices of a clique in G have to be colored pairwise differently. The trivial

case is to color the vertices of a graph G with n(G) colors. Moreover, a coloring of G by

k colors is a partition of V (G) into k independent sets each of them of order at most the

independence number α(G). Altogether we obtain:

max
{
ω(G),

n(G)
α(G)

}
≤ χ(G) ≤ n(G).

Let V (G) = {v1, ..., vn} and consider a Greedy algorithm that colors the vertices v1, ..., vn

in that order such that vi receives the smallest available color, i.e. the smallest color which

is not already assigned to a vertex in N(vi)∩{v1, ..., vi−1}. We can prove that this Greedy

algorithm uses at most ∆(G) + 1 colors. Therefore:

χ(G) ≤ ∆(G) + 1.

This bound is sharp for complete graphs and odd cycles. For the other graphs we know:

Theorem 2.1. (Brooks, [Bro41])

If a connected graph G is neither a complete graph nor an odd cycle, then χ(G) ≤ ∆(G).

Szekeres and Wilf (see e.g. [Wes99]) proved that for every graph G, χ(G) ≤ 1 +

maxH⊆G δ(H).

Reed [Ree98] conjectured that the Theorem of Brooks can be improved by taking the

arithmetic mean of the trivial upper bound ∆(G) + 1 and the trivial lower bound ω(G):

Conjecture 2.1. (Reed, [Ree98])

For any graph G,

χ(G) ≤
⌈

∆(G) + 1 + ω(G)
2

⌉

The main result in [Ree98] states that if ∆(G) is sufficiently large and ω(G) is sufficiently

close to ∆(G), then Conjecture 2.1 holds.

Also, there are many graph classes for which the Conjecture 2.1 is already proved. For ex-

ample, such graph classes are line graphs of multigraphs [Kin05], quasi-line graphs [Kin08],

graphs G with α(G) ≤ 2 [Kin09, Koh09, Rab08], almost-split graphs [Koh09], K1,3-free

graphs [Kin09], odd hole free graphs [Ara11], 2K2, C4-free graphs [Ger08], graphs with

PhD-Thesis Mais Alkhateeb 8



2 Preliminaries

disconnected complements [Rab08], graphs G with ∆(G) ≥ n(G) − 7 [Koh09], graphs G

with ∆(G) ≥ n(G)− α(G)− 4 [Koh09], graphs G with χ(G) > dn(G)
2 e [Rab08], graphs G

with χ(G) > n(G)−α(G)+3
2 [Rab08], and graphs G with χ(G) ≤ ω(G) + 2 [Ger08].

2.2.2 a-colorings

The a-colorings were introduced by Harary, Hedetniemi, and Prins [Har67] and by Harary

and Hedetniemi [Har09].

Definition 2.2. [a-coloring] An a-coloring of a graph G is a proper vertex coloring of

G such that, for any pair of colors, there is at least one edge of G whose end vertices are

colored with this pair of colors.

Definition 2.3. [achromatic number] The achromatic number of G, denoted by χa(G),

is the largest integer k such that there is an a-coloring of G.

It is known [Gra86] that the decision problem whether χa(G) > K for a given graph G and

an integer K is NP−hard in general. In [Far86], Farber et al. showed that the problem

is NP−hard on bipartite graphs. It is even NP−hard for trees [Cai97]. In [Bod80],

Bodlaender proved that the problem is NP−hard on cographs and interval graphs.

In [Kor01], they gave the first hardness result for approximating the achromatic number.

They showed that for every ε there is no 2 − ε approximation algorithm, unless P =

NP. More information on approximation algorithms for the problem of determining the

achromatic number can be found in [Chau97, Kor01, Kor03, Kor05, Kor07, Kry98, Kry99,

Kry06].

General bounds on the achromatic number

We note that a proper coloring that uses χ(G) colors is an a-coloring of G. Assume that

such a coloring is not an a-coloring, then there exist two colors k, l such that there is no

edge of G whose end vertices are colored with this pair of colors. It follows that we can

recolor all vertices with colors k and l with either the color k or l. But then we obtain a

proper coloring of G by χ(G)− 1 colors, a contradiction. Hence:

χ(G) ≤ χa(G).

PhD-Thesis Mais Alkhateeb 9



2 Preliminaries

Figure 2.1 shows a graph G with chromatic number χ(G) = 3 and achromatic number

χa(G) = 5.

a-coloring by χa (G) = 5 colors coloring by χ(G) = 3 colors

Figure 2.1: Two a-colorings of a graph

Moreover, besides this bound there are the following bounds with respect to the order n(G)

and the size m(G), or the matching number µ(G) of the graph G.

Proposition 2.1. (Harary and Hedetniemi, [Har67])

Every graph G satisfies χa(G) ≤ n(G)− α(G) + 1.

Since n(G)− α(G) ≤ 2µ(G) it follows:

Corollary 2.1. (Harary and Hedetniemi, [Har67])

For every graph G, χa(G) ≤ 2µ(G) + 1.

It is known that χ(G) + χ(G) ≤ n(G) + 1 for every graph G. Gupta showed the following

"Nordhaus-Gaddum"-type result:

Proposition 2.2. (Gupta, [Gup69])

For every graph G, χa(G) + χa(G) ≤ d4
3n(G)e.

Moreover, Harary and Hedetniemi proved the following upper bound:

Proposition 2.3. (Harary and Hedetniemi, [Har67])

For every graph G, χa(G) + χ(G) ≤ n(G) + 1.

PhD-Thesis Mais Alkhateeb 10



2 Preliminaries

Further "Nordhaus-Gaddum"-bounds on the achromatic number are presented in [Gup69,

Aki83, Bha89].

Moreover, in [Aki83] they determined the 41 graphs for which both G and G have achro-

matic number 3. Two examples of such graphs are shown in Figure 2.2. The graph P4

is also a sharpness example for Proposition 2.2 because it satisfies χa(P4) + χa(P4) =

d4
3n(P4)e. The graph C5 is also a sharpness example for Proposition 2.3 since it satisfies

χa(C5) + χ(C5) = n(C5) + 1.

P4 P4

C 5C5

Figure 2.2: a-colorings of P4 and C5

Proposition 2.4. (Edwards, [Eda97])

For every graph G, χa(G) ≤ b1
2(1 +

√
8m(G) + 1)c.

It is known [Eda97] that almost all trees T satisfy χa(T ) = b1
2(1 +

√
8m(T ) + 1)c.

Proposition 2.5. (Cairnie and Edwards, [Cai97])

Let G be a graph with maximum degree ∆(G) and size m(G). Then for a fixed posi-

tive integer ε > 0 there exists an integer N0 = N0(∆(G), ε) such that (1 − ε)(b1
2(1 +

√
8m(G) + 1)c) ≤ χa(G) ≤ b1

2(1 +
√

8m(G) + 1)c.

They also gave a polynomial-time algorithm for determining the achromatic number of a

tree with maximum degree at most d, where d is a fixed positive integer. They showed

that there is a natural number N(d) such that if T is any tree with m(T ) > N(d) edges

and maximum degree at most d, then χa(T ) is k or k − 1, where k is the largest integer

such that
(
k
2

)
< m.

PhD-Thesis Mais Alkhateeb 11
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There are also results on determining the achromatic number of other graph classes such

as bounded degree trees [Cai98], maximal outerplanar graphs [Har02], graphs with small

achromatic number [Hel76], the cartesian product of two graphs [Hel92], unions of cycles

or paths [Lee04, Mac01], random graphs [McD82], permutation graphs [Mil86], extremal

regular graphs [Mil82], trees, grids, cubes, and boolean cube graphs [Roi91], hypercubes

[Roi00], central graphs and split graphs [Thi09], star graph families [Ver09-1], and double

star graph families [Ver09-2].

Further information on a-colorings and the achromatic number can be found in the surveys

written by Hughes and MacGillivray [Hug94, Hug97] and Edwards [Eda97], and the theses

written by Hara [Har99] and Shanthi [Sha90].

General properties of the achromatic number

Harary et al. [Har67] published the following result about a-colorings of graphs:

Proposition 2.6. (Harary, Hedetniemi, and Prins, [Har67])

If a graph G has a-colorings by j and l colors, then for every integer k, j ≤ k ≤ l, G has

an a-coloring by k colors.

This proposition implies that a graph G has an a-coloring by k colors for every integer k

satisfying χ(G) ≤ k ≤ χa(G). This is an interesting fact in comparison to the behavior of

b-colorings.

Geller and Kronk investigated how the deletion of a single vertex or edge effects the achro-

matic number of a graph. They proved:

Proposition 2.7. (Geller and Kronk, [Gel74])

Let G = (V,E) be a graph with v ∈ V and e ∈ E. Then
1. χa(G)− 1 ≤ χa(G− v) ≤ χa(G).

2. χa(G)− 1 ≤ χa(G− e) ≤ χa(G) + 1.

This proposition implies the following two corollaries:

Corollary 2.2. (Geller and Kronk, [Gel74])

For every induced subgraph H of a graph G, χa(H) ≤ χa(G).

PhD-Thesis Mais Alkhateeb 12



2 Preliminaries

Corollary 2.3. (Geller and Kronk, [Gel74])

Let G be a graph and e = uv ∈ E(G). Then:

1. χa(G− v) = χa(G)− 1 if χa(G− e) = χa(G).

2. χa(G− v) = χa(G)− 1 if χa(G− e) = χa(G)− 1.

For the case that G or G is disconnected we know the following:

Let G be a graph with disconnected complement G and let G1, ..., Gr be the components

of G. Then it is obvious that G is the join of the graphs Gi = Gi (i ∈ {1, ..., r}), i.e.
G = G1 ⊕ ...⊕Gr.
It is obvious that χ(G) =

∑r
i=1 χ(Gi). Harary and Hedetniemi proved a similar result for

χa(G).

Proposition 2.8. (Harary and Hedetniemi, [Har67])

Let G1,...,Gr be graphs. Then χa(G1 ⊕ ...⊕Gr) = χa(G1) + ...+ χa(Gr).

Hell and Miller presented the best possible upper and lower bounds for the achromatic

number of the disjoint union G1 ∪G2 of two graphs G1 and G2.

Proposition 2.9. (Hell and Miller, [Hel92])

Let G1 and G2 be two graphs. Then

max{χa(G1), χa(G2)} ≤ χa(G1 ∪G2) ≤ χa(G1) · χa(G2).
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3 b-colorings

In 1999, Irving and Manlove [Irv99] introduced the concept of b-colorings and the b-

chromatic number.

Definition 3.1. A b-coloring of a graph G by k colors is a proper vertex coloring such that

there is a vertex in each color class, which is adjacent to at least one vertex in every other

color class. Such a vertex is called a color-dominating vertex.

Definition 3.2. The b-chromatic number of a graph G, denoted by χb(G), is the largest

integer k such that there is a b-coloring of G.

Let c be a proper vertex coloring of G by k colors and let {V1, . . . , Vk} be the corresponding
partition of V (G) into the k color classes. If the union of any two color classes is not

independent, then c is an a-coloring, see Definition 2.3. If for every integer i ∈ {1, ..., k}
it is impossible to redistribute the vertices of Vi among the other independent sets from

{V1, ..., Vk} \ {Vi} in order to get another proper coloring c′ with a fewer number of colors,

then each Vi contains a color-dominating vertex and therefore c is a b-coloring of G.

It is known [Irv99] that the decision problem whether χb(G) > K for a given graph G

and an integer K is NP−complete in general. It is even NP−hard for bipartite graphs

[Kra02] but polynomial for trees [Irv99].

There are also other complexity results with respect to the t-degree of a graph that was

introduced by Irving and Manlove [Irv99]:

Definition 3.3. Let V = {v1, v2, ..., vn} be the vertex set of G such that the vertices

are ordered so that d(v1) ≥ d(v2)... ≥ d(vn). Then the t-degree t(G) of G is defined by

t(G) := max{1 ≤ i ≤ n : d(vi) ≥ i− 1}.

14



3 b-colorings

For instance, Kratochvíl et al. proved in [Kra02] that the decision problem whether χb(G)

is equal to the t-degree t(G) is NP−complete for connected bipartite graphs G with

t(G) = ∆(G) + 1 in general, but polynomial for connected bipartite graphs G satisfying

t(G) ≤ 3 and connected bipartite planar graphs G satisfying t(G) = 3.

Furthermore, Corteel et al. [Cor05] investigated the problem of approximating the b-

chromatic number of a graph. They proved that the b-chromatic number is hard to ap-

proximate in polynomial time within a factor of 120/113−ε, for any ε > 0, unless P = NP.
This was the first hardness result for approximating the b-chromatic number.

Katrenic and Galclík improved the last result. They proved in [Kat10] that for all ε > 0,

it is NP−hard to approximate the B-COLORING problem for a graph with n vertices

within a factor n
1
4
−ε, where the B-COLORING problem is to find a b-coloring of G with

a maximum number of colors. The existence of a n1−ε-approximation algorithm for the

b-chromatic number of general graphs is still an open problem.

Because of the NP−hardness of determining the b-chromatic number in general, we are

interested in bounds on the b-chromatic number for general graphs and exact values of the

b-chromatic number for special graph classes.

In Section 2.1 we give an overview on known bounds on the b-chromatic number for general

graphs. Section 2.2 provides the exact value of the b-chromatic number for graphs with

a special structure. For instance, we determine the b-chromatic number of graphs whose

maximum degree is at most 2 and graphs whose independence number, clique number,

or minimum degree is close to its order. Then we consider the b-chromatic number of

powers of paths and cycles. Furthermore, in Section 2.3 we restrict our research to bipar-

tite graphs. Mainly, we study the b-chromatic number of bipartite graphs by using the

bicomplement which will be defined in Definition 3.3.2. Moreover, some results on graphs

G whose b-chromatic number χb(G) is at least t(G) − 1 are presented in Section 2.4. In

particular, we consider d-regular graphs and investigate the problem of characterizing those

graphs satisfying χb(G) = d+ 1.

3.1 General bounds on the b-chromatic number

It is obvious that every coloring of a graph G by χ(G) colors is a b-coloring of G. Moreover,

every b-coloring of G is also an a-coloring. Therefore, every graph G satisfies the following
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bounds:

χ(G) ≤ χb(G) ≤ χa(G) (3.1)

Figure 3.1 shows an example of an a-coloring and a b-coloring of the cycle C8. This graph

satisfies χ(C8) = 2 < χb(C8) = 3 < χa(C8) = 4.

b-coloring of Ga-coloring of G

Figure 3.1: a-coloring and b-coloring of the cycle C8

Kratochvíl et al. [Kra02] showed that the difference χb(G)−χ(G) may be arbitrarily large.

For instance, every graph G that is obtained from a complete bipartite graph Kr,r, r ≥ 2,

by removing a perfect matching satisfies χb(G)− χ(G) = r − 2.

In a b-coloring of a graph G by χb(G) colors each color-dominating vertex has degree at

least χb(G) − 1 and all vertices of a clique are colored pairwise distinct. So we conclude

that:

ω(G) ≤ χb(G) ≤ ∆(G) + 1 (3.2)

The upper bound can be improved by taking the t-degree:

Proposition 3.1. (Irving and Manlove, [Irv99])

For every graph G, χb(G) ≤ t(G).

This bound is e.g. attained for complete graphs and cycles of length at least 5. On the other

hand, Irving and Manlove [Irv99] showed that the difference t(G)−χb(G) can be arbitrarily

large by taking complete bipartite graphs Kr,r, r ≥ 2, which satisfy t(Kr,r) − χb(Kr,r) =

(r + 1)− 2 = r − 1.

Moreover, besides these bounds there are the following bounds with respect to the order

n(G) and the size m(G) of the graph G.
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Proposition 3.2. (Kouider and Maheó, [Kou07])

Every graph G satisfies χb(G) ≤ n(G)− α(G) + 1.

Proposition 3.3. (Kohl, [Alk10])

For every graph G with clique number ω(G) < n(G), χb(G) ≤ dn(G)+ω(G)
2 e − 1.

G1 G2

Figure 3.2: b-colorings of two graphs

Figure 3.2 shows b-colorings of two graphs G1 and G2, respectively. G1 is a sharpness

example for Proposition 3.2 and G2 is a sharpness example for Proposition 3.3.

Proposition 3.4. (Kohl, [Alk10])

If G is a graph whose complement G has matching number ν(G), then χb(G) ≤ n(G) −
d2ν(G)

3 e.

Hence, if the complement G of G has a perfect matching, then χb(G) ≤ b2n(G)
3 c.

Proposition 3.5. (Kouider and Maheó, [Kou02])

For every graph G, χb(G) ≤ 1
2 +

√
2m(G) + 1

4 .

Kouider et al. proved also a "Nordhaus-Gaddum"-type result for the b-chromatic num-

ber:

Proposition 3.6. (Kouider and Maheó, [Kou02])

For every graph G, χb(G) + χb(G) ≤ n(G) + 1.

The clique cover number θ(G) is the minimum number of cliques in G needed to cover

V (G), i.e. θ(G) = χ(G). Note that the pigeonhole principle yields n(G) ≤ θ(G)ω(G)

for every graph G (since n(G) vertices are distributed among θ(G) cliques in a minimum

clique cover).
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3 b-colorings

Proposition 3.7. (Kouider and Zaker, [Kou06])

Let G be a graph with clique cover number θ(G) = t. Then χb(G) ≤ t2ω(G)
2t−1 .

This can slightly be improved to:

Proposition 3.8. For every graph G with clique cover number θ(G) = t, χb(G) ≤
b tω(G)+(t−1)n(G)

2t−1 c.

Proof. Let n := n(G), ω := ω(G), t := θ(G), and {Q1, . . . , Qt} shall be a minimum clique

cover of G. We consider a proper b-coloring of G = (V,E) by k colors. Let V1, . . . , Vk be the

corresponding color classes such that |V1| ≤ |V2| ≤ . . . ≤ |Vk|. Choose a color-dominating

vertex vi ∈ Vi for all i = 1, . . . , k. By a we denote the number of color classes of cardinality

1. Obviously, n ≥ a+ 2(k − a), i.e. a ≥ 2k − n.
Case 1. a = 0.

We immediately obtain k ≤ n
2 .

Case 2. a > 0.

Since v1, . . . , va are color-dominating vertices and the only vertices with colors 1, . . . , a

they must be pairwise adjacent. Moreover, because every vertex in V belongs to a clique

in the clique cover {Q1, . . . , Qt}, the pigeonhole principle implies that there is an integer

i ∈ {1, . . . , t} such that Qi contains at least s := dk−at e vertices from the set {va+1, . . . , vk}.
W.l.o.g. assume va+1, . . . , va+s ∈ Qi. Since Qi is a clique it follows that va+1, . . . , va+s are

pairwise adjacent. Moreover, since these vertices are color-dominating they must be also

pairwise adjacent to all vertices in {v1, . . . , va}. Hence, {v1, . . . , va+s} induces a clique of

order a + s in G. This yields ω ≥ a + s = a + dk−at e = dk+a(t−1)
t e and by a ≥ 2k − n we

deduce ω ≥ dk+(2k−n)(t−1)
t e. This implies k ≤ b tω+(t−1)n

2t−1 c.
By the inequality n ≤ tω mentioned above we can show that the upper bound n

2 from Case

1 is not larger than the upper bound from Case 2 because bn2 c = bn(2t−1)
2(2t−1) c = bn+2(t−1)n

2(2t−1) c ≤
b tω+2(t−1)n

2(2t−1) c ≤ b
2tω+2(t−1)n

2(2t−1) c = b tω+(t−1)n
2t−1 c.

Altogether, k ≤ b tω+(t−1)n
2t−1 c for every b-coloring by k colors and, therefore, χb(G) ≤

b tω+(t−1)n
2t−1 c. �

Since n ≤ tω, we notice that tω+(t−1)n
2t−1 ≤ t2ω

2t−1 . So the upper bound from Proposition 3.8

is never larger than the bound of Kouider and Zaker, and even improves the bound in case

of n < tω.

According to Proposition 3.8 the complement of a bipartite graph satisfies χb(G) ≤
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b2ω(G)+n(G)
3 c.

Since all previous bounds contain α(G), ω(G), or θ(G) which are themselves hard to de-

termine it makes sense to mention a bound which can be determined in polynomial time

and in spite of this provides good results especially for regular graphs.

Proposition 3.9. (Kohl, [Alk10])

For every graph G, χb(G) ≤ b 2n(G)−∆(G)−δ(G)−3
3n(G)−2∆(G)−δ(G)−4n(G)c.

The proposition yields that if G is a (n(G)−1−r)-regular graph, then χb(G) ≤ b2r−1
3r−1n(G)c.

If G is a (n(G)− 2)-regular graph, then we obtain χb(G) ≤ bn(G)
2 c, which will turn out in

Corollary 3.1 to be the exact value on χb(G). Moreover, if G is a (n(G)− 3)-regular graph

we deduce that χb(G) ≤ b3n(G)
5 c. This bound is close to the exact value given in Corollary

3.3.

For (n(G) − 4)-regular graphs G, there exist sharpness examples for the bound χb(G) ≤
b5n(G)

8 c. Figure 3.3 shows the complement G of a 10-regular graph G of order 14 which

has a b-coloring by 8 = b5n(G)
8 c colors.

Figure 3.3: Complement of a (n(G)− 4)−regular graph G with χb(G) = b5n(G)
8 c

For (n(G) − 5)-regular graphs G, there exist sharpness examples for the bound χb(G) ≤
b7n(G)

11 c as well. Figure 3.4 shows the complement G of a 13−regular graph G of order 18

which has a b-coloring by 11 = b7n(G)
11 c colors. Furthermore, since ω(G) = 7 and θ(G) = 3,

it follows that this graph is also a sharpness example for the upper bound in Proposition

3.8.

For the case that G or G is disconnected we know the following:

Let G be a graph with disconnected complement G and let G1, ..., Gr be the components
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Figure 3.4: Complement of a (n(G)− 5)−regular graph G with χb(G) = b7n(G)
11 c

of G. Then it is known that χ(G) =
∑r

i=1 χ(Gi) and χa(G) =
∑r

i=1 χa(Gi) (see page 13).

The following proposition gives a similar result for χb(G).

Proposition 3.10. (Barth et al., [Bar07])

Let G1,...,Gr be graphs. Then χb(G1 ⊕ ...⊕Gr) = χb(G1) + ...+ χb(Gr).

For a disconnected graph the b-chromatic number is not always equal to the maximum

value of the b-chromatic numbers of its components. For example, Figure 3.5 shows three

graphs G1, G2, G3 satisfying χb(G1) = χb(G2) = χb(G3) = 2, but χb(G1 ∪G2 ∪G3) = 3 6=
max1≤i≤3 χb(Gi). Moreover, χb(G1 ∪G2 ∪G3) = 3 6= ∑3

i=1 χb(Gi).

G1 G2 G3

Figure 3.5: b-coloring of a union of graphs

Proposition 3.11. (Kouider and Maheó, [Kou02])

For every disconnected graph G with components G1,...,Gr, χb(G) ≥ max1≤i≤r χb(Gi).

Proposition 3.12. Let G be a disconnected graph with components G1,...,Gr. Then

χb(G) ≤∑r
i=1(n(Gi)− χb(Gi)) + 1.

Proof.

Since χb(G) =
∑r

i=1 χb(Gi) by Proposition 3.10 and χb(G) ≤ n+1−χb(G) by Proposition

3.6, we deduce that χb(G) ≤ n+ 1−∑r
i=1 χb(Gi) =

∑r
i=1(n(Gi)− χb(Gi)) + 1. �
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Proposition 3.13. (Kohl, [Alk10]) Let G be a disconnected graph with components

G1,...,Gr. Then χb(G) ≤∑r
i=1 χb(Gi).

G2G1

Figure 3.6: b-coloring of a disconnected graph

Figure 3.6 shows a b-coloring of a union of two graphs G1 and G2 satisfying χb(G1) =

χb(G2) = 2 and χb(G1 ∪G2) = χb(G1) + χb(G2) = 4. So G1 ∪G2 is a sharpness example

for the upper bound in Proposition 3.13.

For a coloring c of the graph G let nc(G) be the number of color classes that contain a

color-dominating vertex. We define dk(G) := maxc nc(G) where the maximum is taken

over all colorings c of G by exactly k colors.

Theorem 3.1. (Kohl, [Alk10]) Let G be a disconnected graph with components

G1, . . . , Gr. Then G has a b-coloring by k colors if and only if k ≤∑r
i=1 dk(Gi).

3.2 Exact values of the b-chromatic number for special graphs

G χb(G)

Path Pn





1
2
3

, if n = 1
, if 1 < n < 5
, if n ≥ 5

Cycle Cn
{

2
3

, if n = 4
, if n 6= 4

Complete r-partite graph r
Star K1,n 2
Complete graph Kn n

Wheel K1 ⊕ Cn
{

3
4

, if n = 4
, if n 6= 4

Table 3.1: Exact values for simple graphs (cf. [Kou02])
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3.2.1 Graphs with maximum degree at most 2

If G is a connected graph with maximum degree ∆(G) ≤ 2 or an empty graph, then χb(G)

is already presented in Table 3.1. If G is a disconnected graph with maximum degree

∆(G) = 1, then G is the union of components of order 2 or 1 and therefore χb(G) = 2.

So it remains to consider the case that G is disconnected and has maximum degree ∆(G) =

2.

Theorem 3.2. Let G be a disconnected graph with maximum degree ∆(G) = 2 and let G′

be the subgraph of G induced by the components of order at least 3. Then χb(G) = 2 if G′

is isomorphic to P3, P4, C4, P3 ∪ P3, C4 ∪ C4, or C4 ∪ P3, respectively. Else, χb(G) = 3.

Proof.

Obviously, G is the union of paths and/or cycles. Since G contains at least two edges, we

deduce that χb(G) ≥ ω(G) ≥ 2. Moreover, χb(G) ≤ ∆(G) + 1 = 3.

Case 1 : G′ is isomorphic to P3, P4, C4, P3 ∪ P3, C4 ∪ C4, or C4 ∪ P3, respectively.

Assume that G has a b-coloring by 3 colors. At first we notice that components of order at

most 2 do not play a role for b-colorings by at least 3 colors because they cannot contain

a color-dominating vertex. Hence, G′ has a b-coloring by 3 colors. If G′ ' P3, P4, or C4,

then χb(G′) = 2 according to Table 3.1, a contradiction.

(a)

(b)

2P3 2C4 P3 ∪ C4

P4 ∪ P4 P4 ∪ P3 P4 ∪ C4

Figure 3.7: b-coloring of graphs with ∆ = 2

If G′ ' P3 ∪ P3, C4 ∪ C4, or C4 ∪ P3, it follows that at least one of the components of G′

contains at least two color-dominating vertices. But neither P3 nor C4 can contain more
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than one color-dominating vertex in a b-coloring by 3 colors, a contradiction. Thus, we

deduce that χb(G) = 2. Figure 3.7(a) shows b-colorings by 2 colors for the cases where G′

is disconnected.

Case 2 : G′ is not isomorphic to P3, P4, C4, P3 ∪ P3, C4 ∪ C4, or C4 ∪ P3, respectively.

If G′ has at least three components, then we can easily find a b-coloring by 3 colors. Hence,

χb(G) = 3. If G′ has at most two components and one of them is isomorphic to a path of

order at least 5 or a cycle different from C4, then χb(G) = 3 according to Table 3.1 and

Proposition 3.11. Else, G′ is isomorphic to one of the graphs in Figure 3.7(b). Because each

of these graphs has a b-coloring by 3 colors (see Figure 3.7(b)), we deduce that χb(G) ≥ 3.

Altogether it follows that χb(G) = 3. �

3.2.2 Graphs with independence number close to its order

We note that according to Proposition 3.2 if G is a graph with an independence number

α(G) = n(G) − k, then χb(G) ≤ k + 1. Moreover, if α(G) = n(G) − 1, then G '
K1,i ∪K1 ∪ ... ∪K1︸ ︷︷ ︸

n−i−1

for i ≥ 1 and thus χb(G) = 2.

Theorem 3.3. Let G be a graph of order n and independence number α(G) = n−2. Then

χb(G) = 3 if ω(G) = 3 or G contains an induced path of order 5. Otherwise, χb(G) = 2.

Proof. Let I be a maximum independent set of order n− 2. According to Proposition 3.2

and Inequality (3.2) we obtain 2 ≤ χb(G) ≤ 3. So it suffices to prove that there exists a

b-coloring by 3 colors if and only if ω(G) = 3 or G contains an induced path of order 5.

[” =⇒ ”] Suppose that there is a b-coloring of G by 3 colors.

Let V1, V2, V3 be the corresponding color classes. Moreover, let v1, v2, v3 be color-

dominating vertices of colors 1, 2, 3, respectively.

Case 1 : {v1, v2, v3} induces a clique of order 3. Then ω(G) = 3.

Case 2 : {v1, v2, v3} does not induce a clique of order 3. W.l.o.g. suppose that v1v2 ∈
E(G).

– Assume that {v1, v2} ⊆ I. Since v1, v2 are color-dominating vertices of colors 1 and 2,

respectively, it follows that V \ I has to contain at least 3 vertices of colors 1,2 and 3, a

contradiction to |V (G) \ I| = 2.
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– Assume that I contains either v1 or v2, w.l.o.g. suppose that v1 ∈ I. Then since

v1v2 ∈ E(G) and v1 is a color-dominating vertex of color 1 it follows that V (G) \ I has to

contain two vertices different from v2 of color 2 and 3, again a contradiction.

Hence we conclude that V (G) \ I = {v1, v2}.
Since v3 is a color-dominating vertex and v3 ∈ I we deduce that v1v3 ∈ E(G) and v2v3 ∈
E(G). Because v1 and v2 are color-dominating vertices and v1v2 6∈ E(G), there exist

u1 ∈ N(v1) ∩ V2 and u2 ∈ N(v2) ∩ V1 and hence (u1, v1, v3, v2, u2) is a path of order 5

in G which is an induced path because u1, u2, v3 ∈ I, u1, v2 ∈ V2 and v1, u2 ∈ V1 and

v1v2 6∈ E(G).

[”⇐= ”] Suppose that ω(G) = 3 or G contains an induced path of order 5.

If ω(G) = 3, then 3 = ω(G) ≤ χb(G) ≤ 3 and thus χb(G) = 3.

Else, ω(G) ≤ 2 and G contains an induced path (u1, v1, w, v2, u2). If at most two inde-

pendent vertices from {u1, v1, w, v2, u2} belong to I, then V (G) \ I has to contain at least

3 vertices, a contradiction to |I| = n − 2. Therefore, we deduce that I has to contain

at least 3 independent vertices from the set {u1, v1, w, v2, u2} and hence {u1, u2, w} ⊆ I,

{v1, v2} = V (G) \ I.

Since (u1, v1, w, v2, u2) is an induced path of order 5 it follows that u1 ∈ N(v1) \ N(v2),

u2 ∈ N(v2) \ N(v1), w ∈ N(v1) ∩ N(v2). Now we define a coloring c of G by 3 colors as

follows: Set c(x) = 1 for x ∈ {v1}∪(N(v2)\N(v1)), c(x) = 2 for w ∈ {v2}∪(N(v1)\N(v2))

and the remaining uncolored vertices w ∈ V (G) receive the color c(x) = 3.

Since {v1} ∪ (N(v2) \N(v1)), {v2} ∪ (N(v1) \N(v2)), and N(v1)∩N(v2) are independent

sets, it follows that the coloring c is proper.

Because of c(u1) = 2, c(w) = 3 and {u1, w} ⊆ N(v1) we deduce that v1 is a color-

dominating vertex of color 1. Analogously, we can prove that v2 is a color-dominating

vertex of color 2. Moreover, since c(w) = 3 and w is adjacent to v1 and to v2 which

received the colors 1 and 2, respectively, it follows that w is a color-dominating vertex of

color 3.

Altogether, c is a b-coloring of G. �

Remark 3.1. Let G be a graph with independence number α(G) = n(G) − 3. According

to Proposition 3.2 we deduce that 2 ≤ χb(G) ≤ 4.

By Theorem 3.11, we can characterize the graphs G with χb(G) = χ(G) = 2. Moreover, it
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is obvious that 2 ≤ ω(G) ≤ 4.

If ω(G) ∈ {3, 4}, then we can determine χb(G) by using the results from Subsection 3.2.4.

It remains to investigate all graphs G with ω(G) = 2 and 3 ≤ χb(G) ≤ 4.

3.2.3 Graphs with minimum degree close to its order

In this subsection we are interested in graphs with large minimum degree. In particular,

we establish the exact value of χb(G) for graphs with minimum degree δ(G) ≥ n(G)−3.

Obviously, if G is a graph with minimum degree δ(G) = n(G)− 1, then χb(G) = χ(G) =

n(G).

Theorem 3.4. Let G be a graph of order n and minimum degree δ(G) = n−2. Moreover,

let ζ be the number of vertices of degree n− 2. Then χb(G) = χ(G) = n− ζ
2 .

Proof. Let s := ζ
2 . Obviously, the ζ vertices of degree n − 2 induce a matching M of

cardinality s in G. Let M = {e1, ..., es} such that ei = uivi ∈ E(G) for i ∈ {1, . . . , s}.
We notice that V (G) \ {v1, ..., vs} induces a clique Q of order n− s in G. Hence, χb(G) ≥
χ(G) ≥ ω(G) ≥ n− s.
Suppose that there is a b-coloring c of G by n − s + a colors for a ≥ 1. W.l.o.g. let

c(V (Q)) = {1, ..., n − s} such that c(uh) = h for h ∈ {1, . . . , s}. Since the clique Q can

contain at most n− s color-dominating vertices, there exists an integer i ∈ {1, ..., s} such
that vi is a color-dominating vertex with color c(vi) > n− s. Moreover, since uivi /∈ E(G),

there exists an integer j ∈ {1, ..., s} \ {i} such that vj ∈ N(vi) and c(vj) = i. Because of

uivj ∈ E(G) and c(ui) = c(vj), c is not a proper coloring of G, a contradiction. Thus,

χb(G) ≤ n− s and altogether, χb(G) = χ(G) = n− s = n− ζ
2 . �

Corollary 3.1. If G is a (n(G)− 2)-regular graph, then χb(G) = χ(G) = n(G)
2 .

Let G be a connected graph with maximum degree ∆(G) = 2. A segmentation S(G) of G

shall denote a set of disjoint paths that cover all vertices of G.

If V (P 1) ∪ V (P 2) induces a path of order |V (P 1)| + |V (P 2)| in G, then we say that P 1

and P 2 are consecutive.

If P 1 and P 2 are non-consecutive, then there exists a so-called separating set {Q1, ..., Ql} ⊆
S(G) of l ≥ 1 paths such that by setting Q0 := P 1 and Ql+1 := P 2 the subset V (Qi) ∪
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V (Qi+1) induces a path of order |V (Qi)| + |V (Qi+1)| in G for i ∈ {0, ..., l}. In case that

every separating set for P 1 and P 2 contains at least two paths of order 2 we say that P 1

and P 2 are separated by at least two paths of order 2. Note that if G is a path, then the

separating set is unique and if G is a cycle, then there exist exactly two distinct separating

sets.

Lemma 3.1. (Alkhateeb and Kohl) Let G be a graph of order n ≥ 4, minimum degree

δ(G) = n − 3, and with connected complement G. Moreover, let c be a vertex coloring of

G by k colors where V1, ..., Vk are the corresponding color classes.

Then c is a b-coloring of G if and only if {G[V1], . . . , G[Vk]} is a segmentation of G into

paths of order 1 and 2 such that any two paths of order 1 are separated by at least two paths

of order 2.

Proof. Since G is connected and ∆(G) = n− 1− δ(G) = 2, G is isomorphic to a cycle Cn

or a path Pn of order n ≥ 4. Moreover, because of α(G) = ω(G) = 2, it is obvious that c is

a proper vertex coloring of G if and only if |Vi| ∈ {1, 2} and G[Vi] ' P|Vi| for i ∈ {1, ..., k}.
This implies that c is a proper vertex coloring of G if and only if {G[V1], . . . , G[Vk]} is a

segmentation of G into paths of order 1 and 2.

In the following let Vh = {uh, vh}, Vi = {ui} and Vj = {uj} denote three distinct color

classes of cardinality 2 and 1, respectively (h, i, j ∈ {1, . . . , k}).

[ ” ⇒ ” ] Assume that c is a b-coloring of G.

– Suppose that G[Vi] and G[Vj ] are consecutive. Then uiuj ∈ E(G) and ui has no neighbor

in color class Vj . Hence, Vi has no color-dominating vertex, a contradiction.

– Suppose that G[Vh] is a separating set for G[Vi] and G[Vj ] and w.l.o.g. let

G[Vh ∪Vi ∪Vj ] = (ui, uh, vh, uj). Since uiuh ∈ E(G) and vhuj ∈ E(G), uh has no neighbor

in color class Vi and vh has no neighbor in color class Vj . So there is no color-dominating

vertex in Vh, a contradiction.

It follows from this that any two paths of order 1 from {G[V1], . . . , G[Vk]} are separated

by at least two paths of order 2.

[ ” ⇐ ” ] Assume that S(G) is a segmentation of G into paths of order 1 and 2 such that

any two paths of order 1 are separated by at least two paths of order 2.

– Consider the color class Vi of cardinality 1.
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Since G[Vi] and G[Vj ] are not consecutive, it follows that uiuj ∈ E(G). Moreover, because

of α(G) = 2, ui has at least one neighbor in each color class of cardinality 2. So, ui is a

color-dominating vertex of the color class Vi.

– Consider the color class Vh of cardinality 2.

Because of ∆(G) = 2 and uhvh ∈ E(G), it follows that |N(uh) \ {vh}| ≤ 1 and |N(vh) \
{uh}| ≤ 1. If |N(uh) \ {vh}| = 0 or (|N(uh) \ {vh}| = 1 and wu ∈ N(uh) \ {vh} belongs to
a color class of cardinality 2), then uh has a neighbor in each other color class, i.e. uh is a

color-dominating vertex. The same can be shown for vh. So it remains to consider the case

where |N(uh)\{vh}| = |N(vh)\{uh}| = 1 and wu ∈ N(uh)\{vh}, wv ∈ N(vh)\{uh} belong
to color classes of cardinality 1. Because of ω(G) = 2, we know wu 6= wv. So, w.l.o.g. let

wu = ui and wv = uj . Then G[Vi] and G[Vj ] are separated by G[Vh], a contradiction to the

properties of the segmentation. Hence, we can deduce that Vh contains a color-dominating

vertex.

We conclude that every color class of cardinality 1 and every color class of cardinality 2

has a color-dominating vertex. Thus, c is a b-coloring of G. �

Theorem 3.5. (Alkhateeb and Kohl) Let G be a graph of order n ≥ 3 and minimum

degree δ(G) = n− 3 such that G is connected. Then

χb(G) =




b3n

5 c , if G ' Cn ∨
(
G ' Pn ∧ 2 | (n mod 5)

)

d3n
5 e , if G ' Pn ∧ 2 - (n mod 5)

.

Proof. Since G is connected and ∆(G) = 2, G ' Cn or G ' Pn.

Let n = 3. If G ' C3, then G is an empty graph and, therefore, χb(G) = 1 = b3n
5 c. If

G ' P3, then G = K1 ∪K2 yielding χb(G) = 2 = d3n
5 e.

Now consider n ≥ 4 and let c be a b-coloring of G by k colors where V1,...,Vk are the corre-

sponding color classes. By Lemma 3.1 we know that {G[V1], . . . , G[Vk]} is a segmentation

of G into paths of order 1 and 2 such that any two paths of order 1 are separated by at

least two paths of order 2.

Let p and q denote the number of color classes of cardinality 2 and 1, respectively. Then

we obtain q = n− 2p and k = p+ q = p+ (n− 2p) = n− p.
Moreover, since any two paths of order 1 are separated by at least two paths of order

PhD-Thesis Mais Alkhateeb 27



3 b-colorings

2, we deduce that p ≥ 2q if G ' Cn and p ≥ 2(q − 1) if G ' Pn. In case of G ' Pn

and 2 | (n mod 5), we can verify that p ≥ 2q as follows: 2 | (n mod 5) implies ∃Q ∈ Z :

n = 5Q+ 5. Hence, n = 5Q+ 5 = 2p+ q and therefore 5 | (2p−2 + q). This is not possible

for p = 2(q − 1) and p = 2q − 1.

Obviously, the b-chromatic number χb(G) is the largest possible value for k. Since k = n−p,
we obtain this maximum integer k by minimizing p. So it remains to determine pmin which

shall denote the smallest integer p that satisfies the inequality mentioned above.

(b) Segmentation of G with b 2n
5
c paths of order 2

(a) Segmentation of G with d 2n
5
e paths of order 2

s n mod 5 = 1, p = 2q − 2 = b 2n
5
c

s n mod 5 = 3, p = 2q − 1 = b 2n
5
c

s n mod 5 = 0, p = 2q = d 2n
5
e

s n mod 5 = 1, p = 2q + 3 = d 2n
5
e

s n mod 5 = 2, p = 2q + 1 = d 2n
5
e

s n mod 5 = 3, p = 2q + 4 = d 2n
5
e

s n mod 5 = 4, p = 2q + 2 = d 2n
5
e

s

Figure 3.8: Segmentation of G

– If G ' Cn or
(
G ' Pn and 2 | (n mod 5)

)
, then p ≥ 2q = 2(n − 2p) and, therefore,

p ≥ 2n
5 . Thus, pmin ≥ d2n

5 e. There is a segmentation of G with exactly d2n
5 e paths of

order 2 (see Figure 3.8(a)). So we can deduce that pmin = d2n
5 e and, therefore, χb(G) =

n− pmin = b3n
5 c.

– If G ' Pn and 2 - (n mod 5), then p ≥ 2(q−1) = 2(n−2p−1) and, therefore, p ≥ 2(n−1)
5 .

Hence, pmin = d2(n−1)
5 e. Moreover, since d2(n−1)

5 e = b2n
5 c for (n mod 5) ∈ {1, 3} we deduce

that pmin ≥ b2n
5 c. We can find a segmentation of G with exactly b2n

5 c paths of order 2 (see

Figure 3.8(b)). This yields pmin = b2n
5 c and therefore χb(G) = n− pmin = d3n

5 e. �

The following Figure 3.9 shows a b-coloring by χb(G) colors for two graphs G with minimum

degree δ(G) = n(G)− 3. Note that these colorings correspond to segmentations of G into
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paths of order 2 and 1 (compare Lemma 3.1).

G ' P6, k = d3n
5 e = 4

k = b3n
5 c = 8

G ' C14

Figure 3.9: Examples of b-colorings of graphs G with δ(G) = n(G)− 3.

Theorem 3.5 immediately implies:

Corollary 3.2. Let G be a graph of order n ≥ 3 and minimum degree δ(G) = n− 3 such

that G is connected. Then

χb(G) =




b3n

5 c , if G ' Cn
b3n+2

5 c , if G ' Pn
.

If the complement G is disconnected and G1, . . . , Gs are the components of G, then we

already know from page 19 that χ(G) =
∑s

i=1 χ(Gi) and χb(G) =
∑s

i=1 χb(Gi). This

allows us to determine χb(G) for all graphs with minimum degree δ(G) = n(G)− 3.

Remark 3.2. Let G be a graph of order n ≥ 3 and minimum degree δ(G) = n − 3 such

that G is disconnected. Moreover let G1, . . . , Gs be the components of G and Gi = Gi (i =

1 . . . , s). As already mentioned in Section 3.1, χb(G) =
∑s

i=1 χb(Gi) holds. So we only

have to determine χb(Gi) for i ∈ {1, . . . , s}.

Obviously, δ(Gi) ≥ n(Gi) − 3 and Gi is connected. If δ(Gi) = n(Gi) − 1 or δ(Gi) =

n(Gi) − 2, then Gi ' K1 or Gi ' K1 ∪ K1, respectively. Hence we can deduce that

χb(Gi) = 1 in both cases. If δ(Gi) = n(Gi) − 3, then we can apply Theorem 3.5 yielding

b3n(Gi)
5 c or d3n(Gi)

5 e depending on Gi.

If G is a (n(G)− 3)-regular graph, then every component of G is a cycle. So we deduce:

Corollary 3.3. If G is a (n(G) − 3)-regular graph, then χb(G) =
∑s

i=1b
3n(Gi)

5 c where

G1,...,Gs are the components of G.
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Since the complements of graphs G with minimum degree δ(G) = n(G) − 4 are graphs

with maximum degree 3 which cannot be easily characterized like graphs with maximum

degree 2, we believe that a result on the b-chromatic number like Theorem 3.5 cannot be

obtained for δ(G) = n(G)− 4.

It may be even possible, that the determination of χb(G) for these graphs is NP−hard.

However, it makes sense to provide some bounds on the b-chromatic number of such graphs.

For δ(G) = n(G)−4, it follows that ∆(G) = 3 and, therefore, θ(G) = χ(G) ≤ 4. Moreover,

Brooks’ Theorem implies that θ(G) ≤ 3 if no component of G is a K4. According to

n(G) ≤ θ(G) · ω(G), χb(G) ≥ χ(G), and Proposition 3.8 we obtain:

Corollary 3.4. Let G be a graph with δ(G) = n(G)− 4 and θ(G) = t. Then:

(a) dn(G)
4 e ≤ d

n(G)
t e ≤ χb(G) ≤ tω(G)+(t−1)n(G)

2t−1 ≤ 4ω(G)+3n(G)
7 ,

(b) dn(G)
2 e ≤ χb(G) ≤ b2ω(G)+n(G)

3 c if G is bipartite.

Moreover, Kohl established other bounds by using Proposition 3.9 for graphs satisfying

∆(G) = 3, in particular for graphs whose minimum and maximum degree are close to each

other.

Corollary 3.5. (Kohl, [Alk10])

Let G be a graph with δ(G) = n(G)− 4. Then:

(a) χb(G) ≤ b2n(G)
3 c and b3n(G)

4 c if ∆(G) = δ(G) + 1 and δ(G) + 2, respectively,

(b) χb(G) ≤ b5n(G)
8 c if G is regular,

(c) dn(G)
2 e ≤ χb(G) ≤ b5n(G)

8 c if G is regular and α(G) = 2.

Note that the complements of the graphs in (c) are triangle-free 3-regular graphs. The gap

between lower and upper bound is here at most n(G)
8 . Both bounds are sharp since the

cycle C6 satisfies χb(C6) = 3 = n(C6)
2 . Furthermore, Figure 3.3 shows a sharpness example

for the upper bound b5n(G)
8 c.

3.2.4 Graphs G with α(G) + ω(G) ≥ n(G)

Since every graph G satisfies χb(G) ≥ ω(G) and χb(G) ≥ α(G) we deduce that χb(G) +

χb(G) ≥ ω(G) + α(G). So by Proposition 3.6 we immediately obtain:

Proposition 3.14. For every graph G, ω(G) + α(G) ≤ χb(G) + χb(G) ≤ n(G) + 1.
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For example, the lower bound is sharp for every (n(G) − 2)-regular graph since χb(G) =

ω(G) = n(G)
2 and χb(G) = α(G) = 2. It is also sharp for split graphs because every split

graph G satisfies χb(G) = ω(G) ([Kra02]) and the complement G is a split graph as well.

The upper bound is sharp e.g. for all complete graphs and for the graphs C5 and P6

because χb(C5) = χb(P6) = 3, χb(C5) = b3·5
5 c = 3, χb(P6) = d3·6

5 e = 4 (compare Theorem

3.5). If α(G) + ω(G) = n(G) + 1 for a graph G, then Proposition 3.14 yields χb(G) +

χb(G) = n(G) + 1. Moreover, from above we further deduce that χb(G) = ω(G) and

χb(G) = α(G).

Also by Proposition 3.14 we deduce that every graph G of order n(G) = α(G) + ω(G)

satisfies n(G) ≤ χb(G) + χb(G) ≤ n(G) + 1.

So by Proposition 3.2 we conclude the following:

Corollary 3.6. For every graph G of order n(G) = α(G) + ω(G) we obtain:

(a) χb(G) = α(G) if χb(G) = ω(G) + 1, and

(b) χb(G) = ω(G) if χb(G) = α(G) + 1.

According to Proposition 3.2 and Inequality (3.2) it follows that ω(G) ≤ χb(G) ≤ ω(G)+1

for every graph G of order n(G) = α(G) + ω(G).

Now we want to characterize the graphs having b-chromatic number χb(G) = ω(G) + 1.

Theorem 3.6. Let G be a graph of order n = α(G) + ω(G). Then χb(G) = ω(G) + 1, if

there exist maximum independent sets I and I in G and G, respectively, such that there

exist two vertices w ∈ I ∩ I, x ∈ V (G) \ (I ∪ I), and the following properties are satisfied:

(a) G contains a matching M of size q := |N(x) ∩ (I \ {w})| such that for every edge

e ∈ M one end vertex belongs to N(x) ∩ (I \ {w}) and the other end vertex belongs

to N(x) ∩ (I \ {w}) .

(b) If xw ∈ E(G), then q ≥ 0 and there exists a vertex u ∈ I \ {w} with dG(u) = ω(G).

If xw ∈ E(G), then q ≥ 1 and G contains a set D ⊆ N(x) ∩ I which dominates the

vertices from N(x) ∩ I in G.

Otherwise, χb(G) = ω(G).
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Proof.

Since ω(G) ≤ χb(G) ≤ ω(G) + 1 it suffices to prove that there exists a b-coloring by

w(G) + 1 colors if and only if the conditions mentioned in the Theorem are satisfied.

[” ⇐= ”] Suppose that there exist maximum independent sets I and I in G and G, re-

spectively, such that there exist two vertices w ∈ I ∩ I and x ∈ V (G) \ (I ∪ I), and the

properties (a) and (b) are satisfied.

We denote by v1, ..., vω(G)−1 the vertices in I \ {w}. If q > 0, then w.l.o.g. let v1, ..., vq be

the vertices in N(x)∩(I \{w}). Moreover, let u1, ..., uq ∈ N(x)∩(I \{w}) be the matching

partners of v1, ..., vq. i.e. M = ∪qi=1{uivi}. Now we consider the following two cases:

Case 1 : xw ∈ E(G), G contains the matching M of size q ≥ 0 and there exists the vertex

u ∈ I \ {w} with dG(u) = ω(G).

We define a coloring c of G by ω(G) + 1 colors as follows:

c(ui) = c(vi) = i for i ∈ {1, ..., q}, c(vi) = i for i ∈ {q+1, ..., ω(G)−1}, c(x) = c(w) = ω(G)

and c(v) = ω(G) + 1 for every v ∈ I \ {u1, ...uq, w}. Note that u ∈ I \ {u1, ..., uq, w} and
thus c(u) = ω(G) + 1.

Since uivi ∈ M for i ∈ {1, ..., q}, xw ∈ E(G) and I is an independent set in G we can

easily conclude that the color classes are independent sets in G. Therefore, this coloring is

proper.

Because dG(u) = ω(G), it follows that N(u) = V (G) \ I which implies c(N(u)) =

{1, ..., ω(G)} and therefore, u is a color-dominating vertex of color ω(G) + 1. Analogously,

for i ∈ {1, ..., ω(G) − 1}, vertex vi is adjacent to u and to all other vertices in I \ {vi}
and thus c(N(vi)) = {1, ..., ω(G) + 1} \ {i}. Therefore, v1, ..., vω(G)−1 are color-dominating

vertices of colors 1, ..., ω(G)− 1, respectively. Furthermore, since xu ∈ E(G), xui ∈ E(G)

for i ∈ {1, ..., q} and xvj ∈ E(G) for j ∈ {q + 1, ..., ω(G) − 1} we deduce that x has a

neighbor in every other color class. It follows that x is a color-dominating vertex of color

ω(G).

Thus, c is a b-coloring of G by ω(G) + 1 colors.

Case 2 : xw ∈ E(G), G contains the matching M of size q ≥ 1 and there exists the set

D ⊆ N(x) ∩ I which dominates the vertices from N(x) ∩ I in C.

We define a coloring c of G by ω(G) + 1 colors as follows:

c(ui) = c(vi) = i for i ∈ {1, ..., q}, c(vi) = i for i ∈ {q + 1, ..., ω(G) − 1}, c(v) = ω(G) for

every v ∈ (N(x) ∩ I) \ V (M) and c(v) = ω(G) + 1 for every v ∈ {x} ∪ (N(x) ∩ I).
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By little efforts we can prove that the color classes are independent sets in G. Therefore,

this coloring is proper.

Moreover, for i ∈ {1, ..., ω(G)−1}, vertex vi is adjacent to all other vertices in I \{vi}, to x
and if xvi 6∈ E(G), then there exists v ∈ D such that viv ∈ E(G) and c(v) = ω(G)+1. This

yields c(N(vi)) = {1, ..., ω(G) + 1} \ {i} and v1, ..., vω(G)−1 are color-dominating vertices

of colors 1, ..., ω(G) − 1, respectively. Since w ∈ I and xw ∈ E(G) it follows that w has

a neighbor in every other color class. Therefore, w is a color-dominating vertex of color

ω(G). Similarly to the last case we can prove that x is a color-dominating vertex of color

ω(G) + 1.

Altogether, c is a b-coloring of G by ω(G) + 1 colors.

[” =⇒ ”] Suppose that there is a b-coloring c of G by ω(G)+1 colors and let V1, ..., Vω(G)+1

be the corresponding color classes.

Let I and I be maximum independent sets in G and G, respectively. Obviously, |I ∩ I| ≤
1 and I induces a clique in G. Assume that |I ∩ I| = 0, i.e. V (G) \ I = I. Then

since I can contain at most ω(G) color-dominating vertices there has to exist a color-

dominating vertex v ∈ I. This implies N(v) = I and thus, I ∪ {v} induces a clique of

order ω(G) + 1, a contradiction. Hence, |I ∩ I| = 1 and we denote the vertex from I ∩ I
by w. Furthermore, this implies that there is exactly one vertex x ∈ V (G) \ (I ∪ I).

Now we denote by v1, ..., vω(G)−1 the vertices from I \ {w}. Since |N(x) ∩ I| ≥ 1 we

deduce q := |N(x) ∩ I \ {w}| ≥ 0. Moreover, for q > 0 let v1, ..., vq be the vertices from

N(x)∩I \{w}. Because v1, ..., vω(G)−1, w ∈ I they have to belong to different color classes,

we can suppose w.l.o.g. that w ∈ Vω(G) and vi ∈ Vi for i ∈ {1, ..., ω(G) − 1}. Now we

distinguish between the following three cases:

Case 1 : ∃ i ∈ {1, ..., ω(G)− 1} such that x ∈ Vi.
Then, because no vertex from I ∪ {x} has color ω(G) + 1, we deduce that there exists

a color-dominating vertex u ∈ I ∩ Vω(G)+1. However, since N(u) ⊆ (I \ {w}) ∪ {x} and

ω(G) 6∈ c((I\{w})∪{x}) we deduce that u has no neighbor of color ω(G), a contradiction.

Case 2 : x ∈ Vω(G).

This implies xw ∈ E(G) and Vω(G)+1 ⊆ I. Hence, there exists a color-dominating vertex

u ∈ I ∩Vω(G)+1 which is only possible if N(u) = (I \{w})∪{x}. Therefore, dG(u) = ω(G).

Moreover, since Vω(G)+1 ⊆ I, all color-dominating vertices from the color classes
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V1, ..., Vω(G) belong to V (G) \ I. This implies that v1, ..., vω(G)−1, x are the only color-

dominating vertices of colors 1, ..., ω(G). Because x is color-dominating and v1, ..., vq ∈
N(x) ∩ (I \ {w}), it follows that there have to exist q vertices u1, ..., uq ∈ N(x) such that

ui ∈ Vi ∩ I for i ∈ {1, ..., q} and uivi ∈ E(G). Thus, M = ∪qi=1{uivi} is a matching in G

of size q > 0.

Case 3 : x ∈ Vω(G)+1.

Then Vω(G) ⊆ I and it follows that all other color-dominating vertices from the color

classes V1, ..., Vω−1, Vω+1 belong to V (G) \ I. Therefore, v1, ..., vω(G)−1, x are the only

color-dominating vertices of colors 1, ..., ω(G)− 1, ω(G) + 1.

• If wx ∈ E(G), then w is a color-dominating vertex of color class Vω(G). Moreover,

since v1, ...vq are the only color-dominating vertices of colors 1, ..., q and v1, ...vq ∈
N(x), we conclude that there has to exist a non-empty set D ⊆ N(x) ∩ I such that

D ⊆ Vω(G)+1 and every vertex in {v1, ...vq} is adjacent to at least one vertex in D

i.e. D dominates the vertices v1, ..., vq in G.

• If wx ∈ E(G), then w cannot be a color-dominating vertex of color ω(G) and,

therefore, there exists a color-dominating vertex u ∈ I ∩Vω(G) and this vertex has to

be adjacent to x and to all vertices in I \ {w}. Therefore, dG(u) = ω(G).

Finally, because x is a color-dominating vertex and v1, ..., vq ∈ N(x), it follows that there

have to exist q vertices u1, ..., uq ∈ N(x) such that ui ∈ I ∩ Vi for i ∈ {1, ..., q} and

uivi ∈ E(G). Thus, M = ∪qi=1{uivi} is a matching M in G of size q. Moreover, if q = 0,

then xw ∈ E(G) and we set M = ∅. Else q > 0 and |M | = q ≥ 1. �

Remark 3.3. If G is a graph with α(G) + ω(G) = n(G) − 1, then n(G) − 1 ≤ χb(G) +

χb(G) ≤ n(G) + 1 by Proposition 3.14. Moreover, ω(G) ≤ χb(G) ≤ ω(G) + 2 according to

Proposition 3.2 and Inequality (3.2).

3.2.5 Further known results for special graphs

Graphs with clique number close to its order

Other interesting simple graphs are graphs with large clique number. Kohl has determined

in [Alk10] the b-chromatic number of graphsG which have a clique number at least n(G)−3.

Obviously, a graph G with clique number ω(G) = n(G) satisfies χb(G) = χ(G) = n(G).
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If ω(G) < n(G), then G satisfies ω(G) ≤ χ(G) ≤ χb(G) < n(G) and Proposition 3.3

implies:

Corollary 3.7. If G is a graph with clique number ω(G) ≥ n(G)− 2, then χb(G) = ω(G).

Moreover, χb(G) = n(G)− 1 if and only if ω(G) = n(G)− 1.

Additionally, by Proposition 3.3 and Inequality (3.2) we obtain n(G)−3 ≤ χb(G) ≤ n(G)−2

for every graph G with clique number ω(G) = n(G)− 3.

Theorem 3.7. (Kohl, [Alk10]) Let G be a graph of order n and clique number ω(G) =

n− 3. If G contains a (not necessarily induced) subgraph H which is

(a) a path (w1, v1, u1, u2, v2, w2) of length 5 such that dG(u1) = dG(u2) = n−3, dG(w1) =

dG(w2) = n− 2, and dG(v1), dG(v2) ≤ n− 3, or

(b) a cycle (w1, v1, u1, u2, v2, w1) of length 5 such that dG(u1) = dG(u2) = dG(w1) = n−3

and dG(v1), dG(v2) ≤ n− 3,

and V (G) \ V (H) induces a clique in G, then χb(G) = n− 2. Otherwise, χb(G) = n− 3.

According to Proposition 3.3 for a graph G with clique number ω(G) = n(G) − 4 we can

deduce that n(G)− 4 ≤ χb(G) ≤ n(G)− 3.

Powers of paths and cycles

The rth-power Gr of a graph G = (V,E) is a graph with vertex set V (Gr) = V and edge

set E(Gr) = {uv : u, v ∈ V and dG(u, v) ≤ r}.
Let P rn and Crn denote the rth power of a path Pn and a cycle Cn, respectively. Effantin

et al. established the exact value for the b-chromatic number of powers of paths and the

exact value or bounds on the b-chromatic number of powers of cycles.

Theorem 3.8. (Effantin and Kheddouci, [Eff03])

The b-chromatic number of P rn for r ≥ 1 is

χb(P rn) =





n , if n ≤ r + 1

r + 1 + bn−r−1
3 c , if r + 2 ≤ n ≤ 4r + 1

2r + 1 , if n ≥ 4r + 1

.
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Theorem 3.9. (Effantin and Kheddouci, [Eff03])

The b-chromatic number of Crn for r ≥ 1 is

χb(Crn) =





n , if n ≤ 2r + 1

r + 1 , if n = 2r + 2

r + 1 + bn−r−1
3 c , if 3r + 1 ≤ n ≤ 4r

2r + 1 , if n ≥ 4r + 1

,

and if 2r + 3 ≤ n ≤ 3r then χb(Crn) ≥ min{n− r − 1, r + 1 + bn−r−1
3 c}.

Proposition 3.15. For r ≥ 1 and n = 2r + 3, χb(Crn) = r + 2 + b r−1
5 c.

Proof.

Since G is a (n−1−2r)-regular graph and n = 2r+3 it follows that G is a 2-regular graph

and n is odd. This implies that G ' Cn. Hence, χb(G) = b3n
5 c = b6r+9

5 c = r + 2 + b r−1
5 c

by Theorem 3.5. �

By Theorem 3.9 and Proposition 3.15 it follows:

Corollary 3.8. The b-chromatic number of C3
n is

χb(C3
n) =





n , if n ≤ 7

4 , if n = 8

5 , if n = 9

6 , if 10 ≤ n ≤ 12

7 , if n ≥ 13

.

Proposition 3.16. Let r ≥ 4 and 2r + 4 ≤ n ≤ 2r + 7. Then

1. r + 3 ≤ χb(Crn) ≤ r + 3 + b2(r−2)
8 c , if n = 2r + 4 and r ≥ 4.

2. r + 4 ≤ χb(Crn) ≤ r + 4 + b3(r−3)
11 c , if n = 2r + 5 and r ≥ 5.

3. min{r + 5, r + 1 + b r+5
3 c} ≤ χb(Crn) ≤ r + 5 + b4(r−4)

14 c , if n = 2r + 6 and r ≥ 6.

4. min{r + 6, r + 1 + b r+6
3 c} ≤ χb(Crn) ≤ r + 6 + b5(r−5)

17 c , if n = 2r + 7 and r ≥ 7.

Proof.

Since G is a (n− 1− 2r)-regular graph it follows that χb(G) ≤ b4r−1
6r−1n(G)c by Proposition
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3.9. Furthermore m := min{n − r + 1, r + 1 + bn−r+1
3 c} ≤ χb(G) by Theorem 3.9. By a

little effort we can deduce the bounds of χb(Crn) for every 2r + 4 ≤ n ≤ 2r + 7. �

By Theorem 3.9 and Propositions 3.15 and 3.16 we obtain the following two Corollaries:

Corollary 3.9. The b-chromatic number of C4
n is

χb(C4
n) =





n , if n ≤ 9

5 , if n = 10

6 , if n = 11

7 , if 12 ≤ n ≤ 13

8 , if 14 ≤ n ≤ 16

9 , if n ≥ 17

.

Corollary 3.10. The b-chromatic number of C5
n is

χb(C5
n) =





n , if n ≤ 11

6 , if n = 12

7 , if n = 13

8 , if n = 14

9 , if 15 ≤ n ≤ 17

10 , if 18 ≤ n ≤ 20

11 , if n ≥ 21

.

Recently, Kohl [Koh11] has determined the exact value of the b-chromatic number of power

of cycle Crn for 2r + 3 ≤ n ≤ 3r.

Graphs with Independence Number 2

Since every graph G with independence number 2 satisfies χb(G) ≥ χ(G) = n(G)−ν(G) ≥
dn(G)

2 e, we deduce that by Proposition 3.4:

Proposition 3.17. For a graph G with independence number α(G) = 2, n(G) − ν(G) ≤
χb(G) ≤ n(G)− d2ν(G)

3 e.

Moreover, since χ(G) ≤ ∆(G)+ω(G)+2
2 is satisfied for every graph G with independence

number 2 ([Koh09]), Kohl deduced another upper bound on χb(G) with respect to the
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maximum degree ∆(G), namely χb(G) ≤ n(G)+∆(G)+ω(G)+2
3 .

By use of Ramsey numbers the Proposition 3.3 can be improved for graphs with indepen-

dence number 2.

Theorem 3.10. (Kohl, [Alk10]) If G is a graph with independence number α(G) = 2

and clique number ω(G) ≤ n(G)− 4, then χb(G) ≤ bn(G)+ω(G)+1−
√
n(G)−ω(G)+3

2 c.

K1,s-free Graphs

In [Kou06] some upper bounds for the b-chromatic number of K1,s-free graphs with s ≥ 3

are presented.

Proposition 3.18. (Kouider and Zaker, [Kou06])

Let G be a K1,s-free graph with s ≥ 3. Then χb(G) ≤ (s− 1)(χ(G)− 1) + 1.

We note that if s = 3, then we get an upper bound for claw-free graphs and, therefore,

also for line graphs G namely, χb(G) ≤ 2χ(G)− 1.

Other special graphs

The b-chromatic number of Cartesian products and Hamming graphs were studied in

[Cha07, Jak11, Kou02, Kou07, Jav08].

Definition 3.4. Let G1 and G2 be two disjoint graphs. The cartesian product G1 ×G2 is

the graph defined by V (G1 × G2) = V (G1) × V (G2) and two vertices (a, u) and (b, v) are

adjacent if [a = b and u ∈ N(v)] or [u = v and a ∈ N(b)].

Proposition 3.19. (Kouider and Maheó, [Kou07])

Let G1 and G2 be two disjoint graphs. Then χb(G1 ×G2) ≥ χb(G1) + χb(G2)− 1.

Furthermore, there are articles about the b-chromatic number of the cographs, P4-sparse

graphs, Mycielskian of some families of graphs, Kneser graphs, random graphs, central

graphs, and star graph families [Bon09, Bal07, Haj09, Jav09, Kra02, Thi10, Ven10].

Incidently, the exact values of the b-chromatic number of powers of complete binary trees,

complete caterpillars and the k-ary trees are determined [Eff05, Eff03, Eff051].
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3.3 Bipartite graphs

Kratochvíl et al. [Kra02] proved that determining χb(G) is NP−hard even for bipartite

graphs.

Theorem 3.11. (Kratochvíl et al., [Kra02])

The decision problem whether χb(G) > K for a given graph and an integer K is

NP−complete even for connected bipartite graphs.

However, one can check in polynomial time whether a bipartite graph has b-chromatic

number 2:

Theorem 3.12. (Kratochvíl et al., [Kra02])

Let G be a bipartite graph and G1, ..., Gr its components of order at least 3. Then χb(G) > 2

if and only if:

(a) r = 1 and A ⊆ ⋃v∈B N(v) or B ⊆ ⋃v∈AN(v), where A and B are the bipartition

classes of G1, or

(b) r = 2 and at least one of G1, G2 is not complete bipartite, or

(c) r ≥ 3.

In this subsection we are interested in bounds on the b-chromatic number of bipartite

graphs in general and in exact values on χb(G) of some bipartite graph classes.

3.3.1 General bounds on the b-chromatic number for bipartite graphs

Let G be a factor of the complete bipartite graph K|A|,|B|. Since α(G) ≥ max{|A|, |B|} we
conclude the following proposition according to Proposition 3.2:

Proposition 3.20. If G is a bipartite graph with the bipartition classes A and B, then

χb(G) ≤ min{|A|, |B|}+ 1 ≤
⌊
n(G)

2

⌋
+ 1.

PhD-Thesis Mais Alkhateeb 39



3 b-colorings

For a bipartite graph G we call a complete bipartite subgraph Kn1,n2 with n1, n2 ≥ 1 a

biclique of G. Kouider showed an upper bound on the b-chromatic number of bipartite

graphs with respect to the biclique cover number.

The biclique cover number σ(G) is the minimum number of disjoint complete bipartite

subgraphs which cover the vertices of G.

Proposition 3.21. (Kouider and Zaker, [Kou06])

Let G be a bipartite graph with order n and biclique cover number σ(G). Then χb(G) ≤
bn−σ(G)+4

2 c.

Moreover, there is the following necessary condition for b-colorings of bipartite graphs:

Lemma 3.2. (Kratochvíl et al., [Kra02])

Let G be a bipartite graph. If c is a b-coloring of G by k ≥ 3 colors, then one bipartition

class contains vertices of all k colors and the other class contains vertices of at least k− 1

colors.

Obviously, if G is a complete bipartite graph, then χb(G) = 2. Moreover, if G is a union

of bicliques, then we can determine χb(G) as follows:

Observation 3.1. Let G be a disconnected bipartite graph with components

G1, . . . , Gr, r ≥ 2, such that every component of G is a biclique, i.e. Gi ' Kai,bi ,

with ai, bi ≥ 1 for i ∈ {1, . . . , r}. Moreover, assume that ai ≥ bi for i ∈ {1, . . . , r}
and a1 ≥ a2 ≥ . . . ≥ ar. Then, χb(G) = max{i : 1 ≤ i ≤ r and ai ≥ i− 1}.

Proof. Let k := max{i : 1 ≤ i ≤ r and ai ≥ i− 1}.
(≤) Assume that G has a b-coloring by k + a colors for a ≥ 1.

Case 1 : There exists an integer i ∈ {1, ..., r} such that Gi contains at least two color-

dominating vertices with different colors.

W.l.o.g. suppose that u, v are these two color-dominating vertices and c(u) = 1 and

c(v) = 2.

If u, v belong to the same bipartition class, then there have to exist two vertices u′, v′ in

the other bipartition class which have the color 1 and 2, respectively. Thus, the coloring

is not proper, a contradiction.

Else, u, v belong to different bipartition classes. Since k+a ≥ k+ 1 ≥ 3, there has to exist
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the color 3 that occurs in both bipartition classes and thus this coloring is not proper, a

contradiction.

Case 2 : Every Gi contains at most one color-dominating vertex.

Then there exist at least k + a components each of these components having a color-

dominating vertex, i.e. a vertex of degree at least k + a − 1. By pigeonhole principle, at

least one of these components, say Gi, has index i ∈ {k + a, ..., r}. However, this implies

that ak+a ≥ ai ≥ k + a− 1, a contradiction to the definition of k.

(≥) We define a partial b-coloring c of G by k colors as follows: For i ∈ {1, ..., k}, we
color each vertex in V (Gi)∩B with color i and color the vertices in V (Gi)∩A with colors

from {1, ..., k} \ {i} such that each color in this set occurs at least one time in V (Gi) ∩A.
This coloring is proper because each color class is an independent set. Moreover, each

component Gi contains a color-dominating vertex of color i for i ∈ {1, ..., k}. Thus, c is a
partial b-coloring of G. Afterwards, since we have k ≥ 2 colors, it follows that the coloring

c can be extended to the whole graph by coloring the non-colored-vertices in V (Gj) ∩ B
with color 1 and the non-colored-vertices in V (Gj) ∩A with color 2 for j ∈ {k + 1, ..., r}.
Therefore, χb(G) = k = max{i : 1 ≤ i ≤ r and ai ≥ i− 1}. �

Corollary 3.11. Let G be a d-regular bipartite graph with the components G1, ..., Gr, r ≥ 2,

such that each of these components is a biclique. Then χb(G) = min{d+ 1, r}.

3.3.2 The bicomplement

Definition 3.5. Let G = (A∪B,E) be a bipartite graph with the bipartition classes A and

B. The bipartite graph G̃ = (A∪B, Ẽ) with edge set E(G̃) := {uv : u ∈ A, v ∈ B, uv 6∈ E}
is called the bicomplement of G. Moreover, Ĩ denotes the set of isolated vertices in G̃.

Note that the bicomplement G̃ is not unique if G is disconnected and the bipartition classes

A and B are not specified. For instance, the graph H := K1,2 ∪K1 can be considered as

a factor of K2,2 or K1,3. In the former case we obtain H̃ ' H and in the latter case,

H̃ ' K1,1 ∪K1 ∪K1.

In the following, the considered bipartite graphs may have isolated vertices in one biparti-

tion class. So we need to adapt the definition of the biclique cover number to such graphs.

We call a subgraph of the form Kn1,0 for n1 ≥ 1 (which corresponds to an independent
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GG̃
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v2u2
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v3u3 v3

Figure 3.10: Bicomplement of a bipartite graph

set belonging to one of the bipartition classes of G), a pseudo-biclique of G. A biclique

cover of G is now a set of disjoint bicliques which cover all vertices of G, where at most

one pseudo-biclique is allowed. The biclique cover number σ(G) of G is the minimum

cardinality of a biclique cover of G.

We have the following relationship between the biclique cover number of G and the con-

nectivity of G̃ or vice versa:

Observation 3.2. (Kohl, [Alk11]) Let G = (A∪B,E) be a non-complete bipartite graph.

Then:

(a) σ(G) = 2 if and only if G̃ is disconnected,

(b) σ(G̃) = 2 if and only if G is disconnected.

We note that the upper bound on χb(G) given in Proposition 3.21 is only better than the

trivial upper bound bn(G)
2 c + 1 for σ(G) > 2. So, for σ(G) = 2, i.e. for the case that G̃

is disconnected, non-trivial upper bounds are still missing. On page 44 such graphs are

considered.

In the following we consider only graphs with components of order at least 3, because the

components of order 2 do not play an important role in a b-coloring by at least 3 colors

since it cannot contain color-dominating vertices.

The definition of G̃ and Ĩ allows us to give another formulation of Theorem 3.12 in terms

of G̃ and Ĩ:

Proposition 3.22. Let G = (A∪B,E) be a bipartite graph and r the number of components

(all of order at least 3) of G. Then χb(G) > 2 if and only if:

(a) r = 1 and Ĩ ⊆ A or Ĩ ⊆ B
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(b) r ≥ 2 and G̃ is connected.

Proof. Let Gi = (Ai ∪Bi, Ei), i = 1, . . . , r, be the components of G of order at least 3.

Assume that r = 1.

According to Theorem 3.12(a), χb(G) > 2 if and only if A ⊆ ⋃
v∈B NG(v) or B ⊆

⋃
v∈ANG(v). The condition A ⊆ ⋃

v∈B NG(v) is equivalent to A =
⋃
v∈B NG̃

(v) and

therefore also to Ĩ ∩A = ∅. Analogously, B ⊆ ⋃v∈ANG(v) is equivalent to Ĩ ∩B = ∅. So,
we can deduce that χb(G) > 2 if and only if Ĩ ∩A = ∅ or Ĩ ∩B = ∅, i.e. Ĩ ⊆ B or Ĩ ⊆ A.
Assume that r ≥ 2.

By Theorem 3.12(b),(c) we know that χb(G) > 2 if and only if r ≥ 3 or (r = 2 and G1 or

G2 is not a biclique). This is equivalent to σ(G) ≥ 3, and according to Observation 3.2(a)

this is also equivalent to the property that G̃ is connected. �

The last proposition implies:

Corollary 3.12. If Ĩ * A and Ĩ * B for a bipartite graph G = (A ∪ B,E), then G is

connected and χb(G) = 2.

So it suffices to consider in the following only bipartite graphs G = (A ∪ B,E) satisfying

Ĩ ⊆ A or Ĩ ⊆ B.

Proposition 3.23. Let G = (A ∪ B,E) be a bipartite graph such that Ĩ ⊆ A or Ĩ ⊆ B.

Then χb(G) ≥ σ(G̃).

Proof. Let c be a b-coloring of G by k := χb(G) colors and let V1, . . . , Vk be the cor-

responding color classes. Since Vi is an independent set for i ∈ {1, . . . , k}, it induces a

biclique in G̃ in case of (Vi ∩A 6= ∅ and Vi ∩B 6= ∅) and it induces a pseudo-biclique in G̃

in case of (Vi ⊆ A or Vi ⊆ B).

If k ≥ 3, then Lemma 3.2 states that one bipartition class contains vertices of all k colors

and the other class contains vertices of at least k − 1 colors. This implies that there is at

most one color class that induces a pseudo-biclique. Hence, {G̃[V1], . . . , G̃[Vk]} is a biclique

cover of G̃ and therefore k ≥ σ(G̃).

If k = 2, then by Proposition 3.22 and the premise Ĩ ⊆ A or Ĩ ⊆ B we deduce that G has at

least two components, say G1 and G2, of order at least 3. For i = 1, 2 let Ai := V (Gi)∩A
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and Bi := V (Gi) ∩ B. Since n(Gi) ≥ 3 and Gi is connected, it follows that |Ai|, |Bi| ≥ 1.

Thus, A1 ∪ (B \B1) and B1 ∪ (A \A1) induce two bicliques in G̃ that cover all vertices in

V (G̃). This yields σ(G̃) ≤ 2 and therefore k ≥ σ(G̃). �

Bijoins

For i ∈ {1, . . . , s} let Gi = (Ai ∪ Bi, Ei) be a bipartite graph with bipartition classes Ai

and Bi.

The bijoin G = (A∪B,E) of the graphs Gi (i = 1, . . . , s), written as G = G1 � . . . �Gs, is
defined as the bipartite graph with bipartition classes A =

⋃s
i=1Ai and B =

⋃s
i=1Bi and

edge set E =
⋃s
i=1Ei ∪ {{ui, vj} | ui ∈ Ai, vj ∈ Bj , i, j ∈ {1, . . . , s}, i 6= j}.

Kohl gave an upper bound on the b-chromatic number of bijoins of bipartite graphs:

Theorem 3.13. (Kohl, [Alk11])

If G = (A ∪ B,E) is the bijoin of the graphs Gi = (Ai ∪ Bi, Ei) (i = 1, . . . , s), then

χb(G) ≤ 1 +
∑s

i=1 χb(Gi).

Corollary 3.13. If G is a bipartite graph whose bicomplement G̃ is disconnected and

G̃1, . . . , G̃s are the components of G̃, then G = G1 � . . . � Gs where Gi := ˜̃
Gi for i ∈

{1, . . . , s}.

Remark 3.4. (Kohl, [Alk11])

Let G = (A ∪ B,E) be a bijoin of the bipartite graphs Gi = (Ai ∪ Bi, Ei) (i = 1, . . . , s).

Then:

(a) If χb(G) = 1 +
∑s

i=1 χb(Gi), then every b-coloring c of G by χb(G) colors has a color

that occurs only in one of the bipartition classes A and B.

(b) If for every integer i ∈ {1, . . . , s} there exists a b-coloring of Gi by χb(Gi) colors such

that both bipartition classes Ai and Bi contain all colors, then χb(G) ≥∑s
i=1 χb(Gi).

(c) If there exists an integer j ∈ {1, . . . , s} such that Gj is a biclique, then χb(G) = 2.

3.3.3 Bicomplements with simple structure

We intend to determine χb(G) for bipartite graphs G whose bicomplements G̃ have a simple

structure. In particular, we consider the case that every component of G̃ is complete
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bipartite or an isolated vertex. Furthermore, we study the case where ∆(G̃) ≤ 2. Finally,

some results on χb(G) of bipartite graphs G with large minimum degree are presented.

Every component of G̃− Ĩ is complete bipartite:

Theorem 3.14. Let G = (A ∪ B,E) be a bipartite graph such that (Ĩ ⊆ A or Ĩ ⊆ B)

and every component of G̃− Ĩ is a biclique. Moreover, s denotes the number of non-trivial

components of G̃. Then

χb(G) = σ(G̃) =





s , if Ĩ = ∅
s+ 1 , if Ĩ 6= ∅

.

Proof. Since every component of G̃ − Ĩ is complete bipartite we can easily deduce that

σ(G̃) = s if Ĩ = ∅ and σ(G̃) = s+1 if Ĩ 6= ∅. By Proposition 3.23 we obtain χb(G) ≥ σ(G̃).

We now prove that also χb(G) ≤ σ(G̃) is satisfied.

Case 1. Ĩ = ∅.

Let G̃1, ..., G̃s be the components of G̃.

Suppose that there is a b-coloring c of G by k > s colors. By pigeonhole principle, there

exists an integer f ∈ {1, ..., s} such that G̃f contains two color-dominating vertices u and

v with c(u) 6= c(v). Since {u, v} /∈ E(G), there have to exist integers g, h ∈ {1, ..., s} \ {f}
such that u′ ∈ V (G̃g) ∩ N(v), c(u) = c(u′), and v′ ∈ V (G̃h) ∩ N(u), c(v) = c(v′). Note

that if s = 1 then g and h do not exist which contradicts our assumption. So it follows

s ≥ 2.

– If u and v belong to the same bipartition class, then {u, u′} ∈ E(G) and c(u) = c(u′)

(compare Figure 3.11(a)). Hence, c is not a proper coloring of G, a contradiction.

– If u and v do not belong to the same bipartition class, then because of k + a ≥ 3, there

exists a color-dominating vertex w having color c(w) 6∈ {c(u), c(v)}. Moreover, there is an

integer i ∈ {1, ..., k} such that w ∈ V (G̃i).

W.l.o.g. assume that w, u ∈ A. This implies also u′ ∈ A. It follows that there have to

exist an integer j ∈ {1, ..., k} \ {i} and a vertex u′′ ∈ B such that u′′ ∈ V (G̃j)∩N(w) and

c(u) = c(u′) = c(u′′). If j 6= f , then {u, u′′} ∈ E(G) and if j 6= g then {u′, u′′} ∈ E(G)

(compare Figure 3.11(b)). This contradicts the hypothesis that c is a proper coloring of
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u
v

u v

u′

v ′

w

u′

v ′

u′′

G̃f

G̃g

G̃h

G̃i

G̃j

(a) (b)

Figure 3.11: Example of the case Ĩ = ∅.

G.

Thus, χb(G) ≤ s and altogether χb(G) = s.

Case 2. Ĩ 6= ∅.

Let G̃1, ..., G̃s be the components of G̃− Ĩ and G̃s+1 := Ĩ.

Suppose that there is a b-coloring c of G by k > s+1 colors. Then we can show by applying

similar methods as in Case 1 that the coloring c does not exist. This yields χb(G) ≤ s+ 1

and altogether χb(G) = s+ 1. �

G̃ has maximum degree at most 2

If G = (A ∪B,E) is a bipartite graph satisfying ∆(G̃) ≤ 1, then every component of G̃ is

isomorphic to K1 or K2. So we can apply Theorem 3.14 to determine χb(G).

Note that the number s of components in G̃− Ĩ is equal to the number of vertices v ∈ B
satisfying d

G̃
(v) = 1. Moreover, |Ĩ∩A| = |A|−s and |Ĩ∩B| = |B|−s. So we can deduce:

Theorem 3.15. Let G = (A ∪B,E) be a bipartite graph such that (Ĩ ⊆ A or Ĩ ⊆ B) and

∆(G̃) ≤ 1. Moreover, set s := |{v ∈ B | d
G̃

(v) = 1}|. Then

χb(G) =





s , if |A| = |B| = s

s+ 1 , if |A| > |B| = s
.

We now consider bipartite graphs G = (A ∪ B,E) satisfying ∆(G̃) = 2. If Ĩ ∩ A 6= ∅ and
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Ĩ ∩B 6= ∅, then χb(G) = 2. So it remains to consider the case where Ĩ ⊆ A or Ĩ ⊆ B.

Clearly, in a biclique cover B(G̃) of G̃, every biclique is either a pseudo-biclique or it is

isomorphic to P2, P3, or C4.

Let P 1 and P 2 be two distinct paths in B(G̃) which belong to the same component C of

G̃.

If V (P 1) ∪ V (P 2) induces a path of order |V (P 1)| + |V (P 2)| in G̃, then we say that P 1

and P 2 are consecutive.

If P 1 and P 2 are non-consecutive, then there exists a so-called separating set S =

{Q1, . . . , Ql} ⊆ B(G̃) of l ≥ 1 paths such that by setting Q0 := P 1 and Ql+1 := P 2 the

subset V (Qi)∪V (Qi+1) induces a path of order |V (Qi)|+ |V (Qi+1)| in G̃ for i ∈ {0, . . . , l}.
We call S a separating set for the paths P 1 and P 2.

Note that if the component C is a path, then the separating set for P 1 and P 2 is unique

and if the component C is a cycle, then there exist exactly two distinct separating sets for

P 1 and P 2. Moreover, if C is a cycle, then it makes sense to define the term ’separating

set’ for the case P 1 = P 2 as well. But here we only mean the non-empty separating set

that covers all vertices from V (G) \ (V (P 1)∪ V (P 2)). S is then called a separating set for

the paths P 1 and P 1.

Lemma 3.3. (Alkhateeb and Kohl) Let G = (A ∪B,E) be a bipartite graph such that

∆(G̃) = 2. Assume that G has a coloring c by k colors where V1, ..., Vk are the corresponding

color classes and

Vi ∩A 6= ∅ and Vi ∩B 6= ∅ for i ∈ {1, . . . , k}. (∗)

Then c is a b-coloring of G if and only if B(G̃) := {G̃[V1], . . . , G̃[Vk]} is a biclique cover of

G̃ with bicliques of the form P2, P3, C4 such that:

(a) there exist no three consecutive P2’s and

(b) every component of G̃ that is isomorphic to C4 is a biclique in B(G̃).

Proof. Since ∆(G̃) = 2, every component of G̃ is isomorphic to a path or a cycle. More-

over, by (∗) we can easily deduce that |Vi| ≥ 1 for i ∈ {1, . . . , k} and no component of G̃

is isomorphic to P1. Therefore, δ(G̃) ≥ 1.
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Let i ∈ {1, ..., k}. If |Vi| ≥ 5, then |Vi ∩ A| ≥ 3 or |Vi ∩ B| ≥ 3 which implies

d
G̃

(v) ≥ 3 > ∆(G̃) for v ∈ Vi ∩ B or v ∈ Vi ∩ A, a contradiction. If |Vi| = 4, then

we can show as above that |Vi ∩ A| = |Vi ∩ B| = 2. Thus, G̃[Vi] ' K2,2 ' C4. If

|Vi| ∈ {2, 3}, then it is obvious that G̃[Vi] ' P|Vi|. Hence, {G̃[V1], . . . , G̃[Vk]} is a biclique

cover of G̃ with bicliques of the form P2, P3, C4.

In the following let Vf = {uf , vf , u′f , v′f} denote a color class of cardinality 4, Vg =

{ug, vg, u′g} denote a color class of cardinality 3, and Vh = {uh, vh}, Vi = {ui, vi},
and Vj = {uj , vj} denote three distinct color classes of cardinality 2, respectively

(f, g, h, i, j ∈ {1, . . . , k}). Moreover, w.l.o.g. we assume that uf , u′f , ug, u
′
g, uh, ui, uj ∈ A

and vf , v′f , vg, vh, vi, vj ∈ B.

[ ” ⇒ ” ] Assume that c is a b-coloring of G.

(a) Suppose that G̃[Vh], G̃[Vi], G̃[Vj ] are consecutive paths in that order. W.l.o.g. let

G̃[Vh ∪ Vi ∪ Vj ] = (uh, vh, ui, vi, uj , vj). Then, ui has no neighbor in Vh and vi has no

neighbor in Vj . Hence, Vi has no color-dominating vertex, a contradiction.

(b) Suppose that there is a component C of G̃ that is isomorphic to C4, but is no biclique

in B(G̃). This implies that the vertices of C are colored by at least two different colors

and because of (∗) we can deduce that V (C) is the union of exactly two color classes of

cardinality 2. W.l.o.g. let C ' G̃[Vi ∪ Vj ] = (ui, vi, uj , vj , ui). Then, neither ui nor vi has

a neighbor in Vj and so Vi has no color-dominating vertex, a contradiction.

Altogether, the conditions (a) and (b) are satisfied.

[ ” ⇐ ” ] Assume that the conditions (a) and (b) are satisfied.

– Consider the color classes Vf and Vg of cardinality 4 and 3, respectively.

W.l.o.g. let G̃[Vf ] = (uf , vf , u′f , v
′
f , uf ) and G̃[Vg] = (ug, vg, u′g). Then N(vf ) ∩ A =

A \ {uf , u′f} and N(vg) ∩ A = A \ {ug, u′g}, and since Vl ∩ A 6= ∅ for l ∈ {1, . . . , k} it

follows that vf and vg have a neighbor in every other color class, i.e. vf and vg are color-

dominating vertices of the color classes Vf and Vg.

– Consider the color class Vh of cardinality 2.

Assume that d
G̃

(uh) = 1 or d
G̃

(vh) = 1.

W.l.o.g. let d
G̃

(vh) = 1. Then N(vh)∩A = A\{uh} and since Vl∩A 6= ∅ for l ∈ {1, . . . , k}
we can deduce as above that vh is a color-dominating vertex of the color class Vh.

Assume that d
G̃

(uh) = d
G̃

(vh) = 2.
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By the properties of the biclique cover (especially by condition (b)) and by (∗), there exist
two distinct integers d, e ∈ {1, . . . , k} \ {h} such that G̃[Vd] and G̃[Ve] are separated by

G̃[Vh] and at least one of the color classes Vd and Ve has cardinality 3. W.l.o.g. let d = g

and G̃[Vg∪Vh] = (ug, vg, u′g, vh, uh). Thus, N(vh)∩A = A\{u′g, uh} and again by Vl∩A 6= ∅
for l ∈ {1, . . . , k} we can deduce that vh is a color-dominating vertex of the color class Vh.

We conclude that every color class has a color-dominating vertex. Thus, c is a b-coloring

of G. �

Lemma 3.4. (Alkhateeb and Kohl) Let G = (A ∪ B,E) be a bipartite graph such

that ∆(G̃) = 2. Assume that G has a b-coloring c by k colors where V1, ..., Vk are the

corresponding color classes and

Vi ∩A 6= ∅ and Vi ∩B 6= ∅ for i ∈ {1, . . . , k − 1},

Vk ⊆ A.
(∗∗)

Then B(G̃) := {G̃[V1], . . . , G̃[Vk]} is a biclique cover of G̃ with the pseudo-biclique G̃[Vk],

that is regarded as the union of |Vk| P1’s, and with bicliques of the form P2, P3, C4 such

that:

(a) there exist no two consecutive P2’s,

(b) there exist no three consecutive paths P 1, P 2, P 3 in that order, where |V (P 1)| =

|V (P 3)| = 2, |V (P 2)| = 3, and |V (P 2) ∩A| = 1,

(c) there exist no three consecutive paths P 1, P 2, P 3 in that order, where |V (P 1)| =

|Vk| = 1, |V (P 2)| = 3, and |V (P 3)| = 2,

(d) there exist no two consecutive paths P 1, P 2, where |V (P 2)| = 2,

|V (P 1)| = 1, and x ∈ V (P 1) ⊆ Vk is a color-dominating vertex of the color

class Vk, and

(e) a separating set for any two P1’s that does not contain a P1 contains an odd number

of P3’s.

Proof. Since every component of G̃ is isomorphic to a cycle or a path, we can easily

deduce that there can only exist bicliques isomorphic to P2, P3, or C4 in B(G̃) (compare

the proof of Lemma 3.3). Moreover, since Vk ⊆ A (by (∗∗)) it follows that G̃[Vk] is a

PhD-Thesis Mais Alkhateeb 49



3 b-colorings

pseudo-biclique of order |Vk| and we can consider it as a union of |Vk| isolated vertices, i.e.

P1’s.

In the following let Vg = {ug, vg, u′g} denote a color class of cardinality 3 with |Vg ∩A| = 2,

Vh = {vh, uh, v′h} denote a color class of cardinality 3 with |Vh ∩ A| = 1, and Vi = {ui, vi}
as well as Vj = {uj , vj} denote two distinct color classes of cardinality 2, respectively

(g, h, i, j ∈ {1, . . . , k−1}). Moreover, w.l.o.g. let ug, u′g, uh, ui, uj ∈ A and vg, vh, v′h, vi, vj ∈
B.

(a) Suppose that G̃[Vi] and G̃[Vj ] are consecutive paths and w.l.o.g. let G̃[Vi ∪ Vj ] =

(ui, vi, uj , vj). Then vi has no neighbor in Vj and, therefore, ui must be the color-

dominating vertex of the color class Vi. However, since ui ∈ A, this vertex has no neighbor

in color class Vk, a contradiction.

(b) Suppose that G̃[Vi], G̃[Vh], G̃[Vj ] are consecutive paths in that order and w.l.o.g. let

G̃[Vh ∪ Vi ∪ Vj ] = (vi, ui, vh, uh, v′h, uj , vj). Since uh ∈ A, this vertex has no neighbor in

color class Vk. Moreover, vh has no neighbor in color class Vi and v′h has no neighbor in

color class Vj . Hence, there is no color-dominating vertex in Vh, a contradiction.

(c) Let Vk = {x} and suppose that G̃[{x}], G̃[Vh], G̃[Vi] are consecutive paths in that

order. W.l.o.g. let G̃[{x}∪Vh ∪Vi] = (x, vh, uh, v′h, ui, vi). Then we can prove analogously

to (b) that Vh has no color-dominating vertex, a contradiction.

(d) Let x be a color-dominating vertex of color class Vk and suppose that G̃[{x}] and G̃[Vi]

are consecutive paths. Then x has no neighbor in color class Vi, a contradiction.

(e) Let x, y ∈ Vk and let S = {P 1, . . . , P l}, l ≥ 1, be a separating set for the paths G̃[{x}]
and G̃[{y}] such that P i 6' P1 (i.e. P i ' P2 or P i ' P3) for i ∈ {1, . . . , l}. Then x, y ∈ A
and, therefore,

∑l
i=1 |V (P i)| must be odd. This implies that the number of P3’s in S is

odd. �

Theorem 3.16. (Alkhateeb and Kohl) Let G be a bipartite graph of order n ≥ 3 such

that G̃ is connected and satisfies ∆(G̃) = 2. Then

χb(G) =




b3n

7 c , if G̃ ' Cn
b3n+2

7 c , if G̃ ' Pn
.
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Proof. Since G̃ is connected and ∆(G̃) = 2, it follows that G̃ ' Cn or G̃ ' Pn.
Let n = 3. Then G̃ ' P3, i.e. G is an empty graph and, therefore, χb(G) = 1 = b3n+2

7 c.
Let n = 4. If G̃ ' C4, then G is an empty graph and, therefore, χb(G) = 1 = b3n

7 c. If

G̃ ' P4, then G = K1 ∪K1 ∪K2 and we obtain χb(G) = 2 = b3n+2
7 c.

Now consider n ≥ 5 and let c be a b-coloring of G by k colors where V1, . . . , Vk are the

corresponding color classes. Moreover, p and q denote the number of color classes which

induce paths of order 3 and 2, respectively.

Case 1. ∀i ∈ {1, . . . , k} : Vi ∩A 6= ∅ ∧ Vi ∩B 6= ∅.
We intend to determine k1

max which shall denote the largest integer k that can be attained

in Case 1.

By Lemma 3.3, |Vi| ∈ {2, 3} and G̃[Vi] ' P|Vi| for i ∈ {1, . . . , k}. Hence, k = p + q.

Moreover, since G has n vertices and every color occurs at least twice and at most three

times, the pigeonhole principle yields that there exist p = n−2k color classes of cardinality

3 and q = 3k−n color classes of cardinality 2. By Lemma 3.3(a) we know that there exist

no three consecutive paths of order 2. This implies that p ≥ q
2 if G̃ ' Cn and p ≥ q

2 − 1

if G̃ ' Pn. So by using the above equalities for p and q we obtain k ≤ 3n
7 if G̃ ' Cn and

k ≤ 3n+2
7 if G̃ ' Pn.

Subcase 1.1.: Let G̃ ' Cn. Then

q ≤ 2p

⇔ 3k − n ≤ 2(n− 2k)

⇔ 7k ≤ 3n

and, therefore, k1
max ≤ b3n

7 c =: kC . Consider p = n − 2kC and q = 3kC − n. Then

3p+2q = n, p+q = kC , and q ≤ 2p. So we can find a biclique cover of G̃ with p = n−2kC

bicliques isomorphic to P3 and q = 3kC − n bicliques isomorphic to P2, such that there

exist no three consecutive P2’s (see Figure 3.12(a)). Due to Lemma 3.3 this biclique cover

corresponds to a b-coloring of G by kC colors. Hence, k1
max ≥ kC = b3n

7 c, and altogether

k1
max = b3n

7 c.
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Subcase 1.2.: Let G̃ ' Pn. Then:

q ≤ 2p+ 2

⇔ 3k − n ≤ 2(n− 2k) + 2

⇔ 7k ≤ 3n+ 2

and, therefore, k1
max ≤ b3n+2

7 c =: kP . Consider p = n − 2kP and q = 3kP − n. Then

3p + 2q = n, p + q = kP , and q ≤ 2p + 2. So we can construct a biclique cover of G̃

with p = n − 2kP bicliques isomorphic to P3 and q = 3kP − n bicliques isomorphic to P2

that corresponds to a b-coloring of G by kP colors (see Figure 3.12(b)). Note that for

R = 6

(a) Biclique cover of G̃ with kC bicliques of the form P2, P3

d6 = 4

R = 0

R := n mod 7, dR := (3R) mod 7, kC =
3n−dR

7 = b 3n
7 c

d0 = 0

R = 1 d1 = 3

R = 2 d2 = 6

R = 3 d3 = 2

R = 4 d4 = 5

R = 5 d5 = 1

R = 4

(b) Biclique cover of G̃ with kP bicliques of the form P2, P3

d2 = 6

d4 = 5

R = 2

R := n mod 7, dR := (3R + 2) mod 7, kP =
3n+2−dR

7 = b 3n+2
7 c

Figure 3.12: Biclique cover of G̃ into paths of order 2 and 3

(n mod 7) /∈ {2, 4} it follows that kP = kC and we obtain the same biclique cover as in the

case G̃ ' Cn. So we deduce that k1
max ≥ kP = b3n+2

7 c, and altogether k1
max = b3n+2

7 c.
Case 2. ∃j ∈ {1, . . . , k} : Vj ∩A = ∅ ∨ Vj ∩B = ∅.
We intend to estimate k2

max which shall denote the largest integer k that can be attained

in Case 2. If k2
max = 2, then k2

max ≤ b3n
7 c ≤ k1

max since n ≥ 5. Now let k2
max ≥ 3 and we

consider only b-colorings c with k ≥ 3 colors.
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According to Lemma 3.2, there exists exactly one integer j ∈ {1, . . . , k} such that Vj∩A = ∅
or Vj ∩ B = ∅, and Vi ∩ A 6= ∅ and Vi ∩ B 6= ∅ for i ∈ {1, . . . , k} \ {j}. W.l.o.g. let j = k

and Vk ⊆ A. Moreover, we set nk := |Vk|.
Similarly to Case 1, we now consider p and q, i.e. the number of color classes which induce

paths of order 3 and 2, respectively.

At first we notice that k = p + q + 1. Moreover, G[V \ Vk] has n − nk vertices of k − 1

colors and every color class has cardinality 2 or 3. By pigeonhole principle, there exist

p = (n−nk)−2(k−1) color classes of cardinality 3 and q = k−1−p = 3(k−1)− (n−nk)
color classes of cardinality 2.

Let Vk = {v1, ..., vnk
} are ordered in that way such that Si is a separating set between the

two paths G̃[{vi}] and G̃[{vi+1}] so that Si contains only paths of the form P2 and P3 for

i ∈ {1, ..., nk − 1}. Moreover, S0 and Snk
shall be the sets which are only incident to v0

and vnk
, respectively. For G̃ ' Cn it follows that S0 = Snk

(see Figure 3.13(a)).

Subcase 2.1.: If G̃ ' Cn, then for i ∈ {1, ..., nk} we deduce that the separating set Si

contains an odd number pi ≥ 1 P3’s by Lemma 3.4(e) and at most qi ≤ pi+1
2 P2’s by

Lemma 3.4(a) and (b) (see Figure 3.13(b)).

Since Cn contains nk separating sets Si, it follows that p =
∑nk

i=1 pi ≥ nk and q =
∑nk

i=1 qi ≤
p+nk

2 .

This implies that

q ≤ nk + p

2
(3.3)

⇔ q ≤ 2p+
nk − 3p

2

⇔ 3(k − 1)− (n− nk) ≤ 2[(n− nk)− 2(k − 1)] +
nk − 3p

2

⇔ 7k ≤ 3n+
14− (5nk + 3p)

2
(3.4)

Recall that p ≥ nk. Hence, it follows that 7k ≤ 3n if nk ≥ 2 or (nk = 1 and p ≥ 3).

It remains to investigate the case nk = 1 and p ≤ 2. Let x ∈ Vk. Clearly, x is a color-

dominating vertex. Moreover, since n ≥ 5 and G̃ is a cycle, there exist two distinct color

classes Vg, Vh such that G̃[Vg], G̃[{x}], G̃[Vh] are consecutive paths in that order. From

Lemma 3.4(d) we deduce that |Vg| = |Vh| = 3 and, therefore, p ≥ 2. Hence, p = 2, but

this is a contradiction to Lemma 3.4(e) stating that p must be odd.

Altogether, k2
max ≤ b3n

7 c = k1
max.
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Subcase 2.2.: If G̃ ' Pn, then we deduce that a separating set Si contains an odd number

pi ≥ 1 P3’s by Lemma 3.4(d) and at most qi ≤ pi+1
2 P2’s (see Figure 3.13(b)) for i ∈

{1, ..., nk − 1}. Moreover, since G̃ is a path, it can contain two sets S0, Snk
which contain

only paths P2 and P3 and do not belong to any of the separating sets Si for i ∈ {1, ..., nk−1}.
Thus, if Si for i ∈ {0, nk} contains an odd number pi P3’s, then there are at most qi ≤ pi+1

2

P2’s (see Figure 3.13(d)).Else, pi is even and there are at most qi ≤ pi+2
2 of P2’s (see Figure

3.13(c)).

Since Pn contains at least nk−1 separating sets Si, it follows that p = p0+pnk
+
∑nk−1

i=1 pi ≥
nk − 1 and q = q0 +

∑nk−1
i=1 qi + qnk

≤ p0+2
2 +

∑nk−1
i=1

pi+2
2 + pnk

+2

2 ≤ p+nk+3
2 .

Hence:

q ≤ nk + p+ 3
2

(3.5)

⇔ q ≤ 2p+
nk − 3p+ 3

2

⇔ 3(k − 1)− (n− nk) ≤ 2[(n− nk)− 2(k − 1)] +
nk − 3p+ 3

2

⇔ 7k ≤ 3n+ 2 +
13− (5nk + 3p)

2
(3.6)

and therefore k2
max ≤ b3n+2

7 + 13−(5nk+3p)
14 c.

Recall that p ≥ nk − 1. So we can deduce that k2
max ≤ b3n+2

7 c if nk ≥ 2 or (nk = 1 and

p ≥ 3). It remains to investigate the case nk = 1 and p ≤ 2:

Let again x be the color-dominating vertex in Vk.

Assume that d
G̃

(x) = 2.

Then we can show as above the existence of two distinct color classes Vg and Vh of cardi-

nality 3 such that G̃[Vg], G̃[{x}], G̃[Vh] are consecutive paths in that order. Thus, p = 2

and by Lemma 3.4(c) we further obtain q = 0. This implies n = 7 and from above we

deduce that k2
max ≤ b24

7 c = b3n+2
7 c.

Assume that d
G̃

(x) = 1.

Since n ≥ 5 and by Lemma 3.4(d),(c), there exist two distinct color classes Vg and Vh of

cardinality 3 such that G̃[{x}], G̃[Vg], G̃[Vh] are consecutive paths in that order. Hence,

p = 2. Moreover, according to Lemma 3.4(a) there can exist at most one color class Vi of

cardinality 2 (in this case G̃[Vh] and G̃[Vi] are consecutive) and therefore q ≤ 1. If q = 0,

then n = 7 and as before k2
max ≤ b3n+2

7 c. If q = 1, then n = 9 and from above we obtain
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p = 1, q ≤ 1

(b) Number of paths P3 and P2 in the separating set Si for ß ∈ {1, ..., nk − 1}

(d) S0 or Snk
contains an odd number of paths P3

p = 2, q ≤ 2

p = 1, q ≤ 1

p = 4, q ≤ 3

p = 5, q ≤ 3

p = 3, q ≤ 2

p = 5, q ≤ 3

p = 0, q ≤ 1

(c) S0 or Snk
contains an even number of paths P3

p = 3, q ≤ 2

v1 v2 vnk−1

(a) The separating sets S0, S1, S2, ..., Snk−1, Snk

vnkv3S1 S2 Snk−1 SnkS0

Figure 3.13: Separating sets of G̃ into paths of order 2 and 3

k2
max ≤ b30

7 c = b3n+2
7 c.

Altogether, k2
max ≤ b3n+2

7 c = k1
max.

Finally, since χb(G) = max{k1
max, k

2
max} = k1

max, we conclude that χb(G) = b3n
7 c if G̃ ' Cn

and χb(G) = b3n+2
7 c if G̃ ' Pn. �

The following Figure 3.14 shows a b-coloring by χb(G) = 4 colors for a bipartite graph G

whose bicomplement is isomorphic to C10. Note that this coloring corresponds to a biclique

cover of G̃ into paths of order 2 and 3 (compare Lemma 3.3).

Theorem 3.17. Let G be a bipartite graph such that G̃ is disconnected, satisfies ∆(G̃) = 2

and Ĩ = ∅. Moreover, let G̃1, . . . , G̃s be the components of G̃ and Gi := ˜̃
Gi for i ∈

{1, . . . , s}. Then
s∑

i=1

χb(Gi) ≤ χb(G) ≤
s∑

i=1

χb(Gi) + 1.

Proof. Set k :=
∑s

i=1 χb(Gi). The upper bound χb(G) ≤ 1 + k follows immediately from

Theorem 3.13 since G is a bijoin of the graphs G1, . . . , Gs. Moreover, since ∆(G̃) = 2 and

Ĩ = ∅, we can easily deduce that for i ∈ {1, . . . , s} the component G̃i is isomorphic to a
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1 1

12

23

34

44

G̃1

G̃2

G̃3

G̃4

(a)

u1 v1

v2u2

v3u3

v4u4

v5u5

G̃1

G̃2

G̃3

G̃4

(b)

Figure 3.14: b-coloring of a bipartite graph G with G̃ ' C10

path or a cycle and n(Gi) ≥ 2. In the proof of Theorem 3.16 (Case 1) it was shown that

for n(Gi) ≥ 3 the subgraph Gi admits a b-coloring by χb(Gi) colors in such a way that

both V (Gi) ∩ A and V (Gi) ∩ B contain vertices of all χb(Gi) colors. This is even true in

case of n(Gi) = 2 since then χb(Gi) = 1. So we can apply Remark 3.4(b) which yields

χb(G) ≥ k. �

Now we want to characterize graphs for which the lower bound in Theorem 3.17 is at-

tained:

Theorem 3.18. (Alkhateeb and Kohl) Let G be a bipartite graph such that G̃ is dis-

connected, satisfies ∆(G̃) = 2, and Ĩ = ∅. Moreover, let G̃1, . . . , G̃s be the components

of G̃ and Gi := ˜̃
Gi for i ∈ {1, . . . , s}. Then χb(G) =

∑s
i=1 χb(Gi) if there is no integer

i ∈ {1, ..., s} such that G̃i ' P6.

Proof. Let G be a bipartite graph such that G̃ is disconnected, has maximum degree

∆(G̃) = 2, Ĩ = ∅ and all components of G̃ are not isomorphic to P6. Moreover, let

K :=
∑s

i=1 χb(Gi)+1. Assume that G has a b-coloring c by K colors where V1, . . . , VK are

the corresponding color classes. Then by Remark 3.4(a) there exists a color such that this

color occurs in only one bipartition class, w.l.o.g. we suppose that the color K satisfies

VK ⊆ A.
For i ∈ {1, ..., s} let ci be the coloring c restricted to the subgraph Gi, ki = |c(V (Gi)\VK)|,
Ai = A ∩ V (Gi), and Bi = B ∩ V (Gi).

To complete the proof we have to consider the following two facts:

Fact 3.1. If f ∈ c(Ai) ∧ f ∈ c(Bi) for an integer i ∈ {1, ..., s}, then f 6∈ c(Aj ∪ Bj) for
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j ∈ {1, ..., s} \ {i}.

Proof.

Let f ∈ c(Ai) ∧ f ∈ c(Bi) for an integer i ∈ {1, ..., s}. Assume that f ∈ c(Aj ∪ Bj)
for j ∈ {1, ..., s} \ {i}. Then there exist u ∈ Ai, , v ∈ Bi and v′ ∈ V (Gj) such that

c(u) = c(v) = c(v′) = f . W.l.o.g. let v ∈ Aj . Then vv′ ∈ E(G) by the Definition of a

bijoin on page 44. Thus, c is not a proper coloring, a contradiction. #

Fact 3.2. ki = χb(Gi) for an integer i ∈ {1, ..., s}.

Proof.

(≤) Assume that there exists an integer i ∈ {1, ..., s} such that ki > χb(Gi).

If there is a color different from K which belongs only to one bipartition class Ai or Bi,

then this coloring c cannot be a b-coloring according to Remark 3.4(a), a contradiction.

Hence, all color classes from c(V (Gi) \ VK) occur in both bipartition classes Ai and Bi,

and therefore, all color classes from c(V (Gi) \ VK) have to be contained in V (Gi) by Fact

3.1. We distinguish between the following cases:

Case 1 : Let K 6∈ Ai.
Since K 6∈ Ai it follows that V (Gi) \ VK = V (Gi). This implies from above that all color

classes from c(V (Gi) \ VK) = cV (Gi)) occur in both bipartition classes Ai and Bi and

thus c(V (Gi)) has to be contained in V (Gi) by Fact 3.1. Therefore, all color-dominating

vertices in V (Gi) are color-dominating vertices in Gi according to coloring ci. Thus, ci is

a b-coloring of Gi by ki colors, a contradiction.

Case 2 : Let K ∈ c(Ai) and there is no color-dominating vertex in VK ∩Ai.
We deduce that for every u ∈ VK ∩ Ai there is a color l ∈ c(V (Gi) \ VK) such that

l 6∈ c(N(u)). So we recolor every vertex u ∈ VK ∩ Ai by c′i(u) = l. This yields a new

coloring c′i of Gi by ki colors. Since all color classes from c(V (Gi) \ VK) have to be

contained in V (Gi), it follows that c′i is a b-coloring of Gi by ki colors, a contradiction.

Case 3 : Let K ∈ c(Ai) and VK ∩Ai contains a color-dominating vertex vk.

Since K =
∑s

i=1 χb(Gi) + 1 and VK ∩Ai contains a color-dominating vertex it follows that

|c(V (Gi) \ VK)| ≥ 1 + χb(Gi). So, ci cannot be a b-coloring of Gi. Thus, we deduce that

there is a color l ∈ c(V (Gi) \ VK) such that every u ∈ Vl ∩Bi satisfies either K 6∈ c(N(u))

or there is m ∈ c(V (Gi) \VK) such that m 6∈ c(N(u)). So we delete the color l and recolor

every vertex u ∈ Vl by c′i(u) = K if K 6∈ c(N(u)) or c′i(u) = m if K ∈ c(N(u)).
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Since {u}∪VK is an independent set in Gi if K 6∈ c(N(u)) and {u}∪Vm is an independent

set in Gi if K ∈ c(N(u)) this yields a new proper coloring c′i of Gi by ki colors.

Since K ∈ c(Ai) and vK ∈ VK ∩ Aj is a color-dominating vertex according to c, it follows

that m ∈ ci(N(vK)) \ {l} ⊆ c′i(N(vK)) for every m ∈ ci(V (Gj)) \ {l} and thus vK ∈ VK is

a color-dominating vertex according to the coloring c′i in Gi.

Now let m ∈ ci(V (Gi)) \ {l} and choose a color-dominating vertex vm ∈ Vm according to

the b-coloring c. It follows that there is N(vm)∩VK 6= ∅ which implies that vm ∈ Bi. Since
vm is a color-dominating vertex, there has to exist vl ∈ N(vm)∩Vl∩A. After recoloring we

obtain c′i(vl) = k and, therefore, k ∈ c′i(N(vm)). Moreover, since m′ ∈ ci(N(vm)) \ {l} ⊆
c′i(N(vm)) for every m′ ∈ ci(V (Gj)) \ {l} it follows that vm is a color-dominating vertex

according to the coloring c′i. Thus, c
′
i is a b-coloring of Gi by ki colors, a contradiction and

therefore χb(Gi) ≥ ki.

(≥) Assume that there exists i ∈ {1, ..., s} such that ki < χb(Gi). Since
∑s

i=1 ki ≥ K−1 =
∑s

i=1 χb(Gi) according to the previous considerations, it follows that there is an integer

j ∈ {1, ..., s} such that kj > χb(Gj), which is a contradiction to the last Cases.

Altogether we conclude that χb(Gi) = ki. #

Since c is a b-coloring G it follows that there is an integer h ∈ {1, ..., s} such that the

component Gh contains a color-dominating vertex from VK ∩Ah.
Let p, q denote the number of color classes which induce paths of order 3 and 2 in G̃h. Set

k := kh = p+ q and nh := n(Gh) = 3p+ 2q + nK , where nk = |VK ∩Ah|.
Note that |c(V (Gh))| ≥ 1 + χb(Gh). If all color classes which have a color from c(V (Gh))

are contained in V (Gh), then this implies that ch is a b-coloring of Gh by 1+χb(Gh) colors,

a contradiction. Therefore, there is a color from c(V (Gh)) that occurs in at least one other

component of G̃. According to Fact 3.2 this color has to be the color K.

We can deduce that q ≤ p+nk
2 and p ≥ nk if G̃h ' Cnh

as well as q ≤ p+nk+3
2 and p ≥ nk−1

if G̃h ' Pnh
by Lemma 3.4(a),(b),(e) (compare the case 2 in the proof of Theorem 3.16).

(1) Let G̃h ' Cnh
.

Then χb(Gh) = χb(C̃nh
) = b3nh

7 c by Theorem 3.16. Moreover, this implies that the

Inequality (3.4) is satisfied by setting n := nh.

Recall that p ≥ nk according to Lemma 3.4(e). So we can deduce that k < χb(Gh) = b3nh
7 c

if nk ≥ 2 or (nk = 1 and p ≥ 3), which is a contradiction.
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It remains to investigate the case (nk = 1 and p ≤ 2):

There is no cycle Cnh
with (nk = 1 and p = 2) by Lemma 3.4(e).

Hence, nk = p = 1 which implies that q ≤ 1 by Inequality (3.3). Thus, if q = 0, then

Cnh
' C4 and if q = 1, then Cnh

' C6. Moreover, v ∈ VK cannot be a color-dominating

vertex because it is not adjacent to a vertex in Vi such that (|Vi| = 3, if Cnh
' C4) and

(|Vi| = 2 if Cnh
' C6) (compare Lemma 3.4(c) and (d)).

Hence, this is a contradiction to the assumption that G̃h 6' Cnh
has a color-dominating

vertex of color k.

(2) Let G̃h ' Pnh
.

Then χb(Gh) = χb(P̃nh
) = b3nh+2

7 c by Theorem 3.16. Moreover, this implies that the

Inequality (3.6) is satisfied by setting n := nh.

Recall that p ≥ nk − 1. So we can deduce that k < χb(Gh) = b3nh+2
7 c if nk ≥ 3, (nk = 2

and p ≥ 2), or (nk = 1 and p ≥ 4), which is a contradiction.

It remains to investigate the cases (nk = 2 and p ≤ 1) and (nk = 1 and p ≤ 3).

- If nk = 2 and p ≤ 1, then there is at least one P3 by Lemma 3.4(e). Therefore, p = 1. So

we deduce that q ≤ 3 by Inequality (3.5).

Since 0 ≤ q ≤ 3 it follows that k = p+q = 1+q, but χb(Gh) = b3nh+2
7 c = b3(nk+3p+2q)+2

7 c =

b3(5+2q)+2
7 c = b17+6q

7 c = 1 + q + b10−q
7 c ≥ 2 + q > k. Thus, k < χb(Gh), a contradiction.

- If nk = 1 and p ≤ 3. then q ≤ p
2 + 2 by Inequality (3.5).

For p = 0, q ≤ 2 it follows that there is no suitable Pnh
by Lemma 3.4(c) and because of

nh ≥ 2.

For p = 1, q ≤ 2 it follows that if q = 0, then G̃h ' P4 which implies that 1 = k < χb(P̃4) =

2, a contradiction.

Moreover, if q = 1, then G̃h ' P6, a contradiction to the premise Gh 6' P6,

and if q = 2, then there is no suitable Pnh
by Lemma 3.4(a) and (d).

For p ∈ {2, 3}, q ≤ 3 it follows that k = p+ q, but χb(Gh) = b3nh+2
7 c = b3(nk+3p+2q)+2

7 c =

p+ q + b9−q
7 c > k for p, q ≤ 2. Thus, k < χb(Gh), a contradiction.

For p ∈ {2, 3}, q = 3 we conclude that there is no component G̃h by Lemma 3.4(a),(d) and

(c).

This implies that G̃h 6' Pnh
.

Thus, there is no component Gh such that K ∈ c(Ah) and VK ∩ Ah contains a color-

dominating vertex. This implies that there is no b-coloring c of G by K colors and,
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therefore, χb(G) =
∑s

i=1 χb(Gi). �

A Nordhaus-Gaddum-type result for G̃

It is known that every graph G satisfies χb(G) + χb(G) ≤ n(G) + 1 by Proposition 3.6.

Kohl proved a similar result for every bipartite graph G and their bicomplement G̃. For

small values of n(G) we easily obtain:

Observation 3.3. Let G be a bipartite graph.

• If n(G) = 2, then {G, G̃} = {K2,K1 ∪ K1} and, therefore, χb(G) + χb(G̃) = 3 =

n(G) + 1.

• If n(G) = 3, then {G, G̃} = {K1,2,K1∪K1∪K1} or {K2∪K1,K2∪K1}. In the first

case, χb(G)+χb(G̃) = 3 = n(G) and in the latter case, χb(G)+χb(G̃) = 4 = n(G)+1.

Theorem 3.19. (Kohl, [Alk11]) For every bipartite G of order n ≥ 4, χb(G) +χb(G̃) ≤
6n+8

7 .

The last theorem implies that χb(G) + χb(G̃) ≤ n(G) + 1 for every bipartite graph G.

Moreover, we deduce that χb(G) + χb(G̃) = n(G) + 1 is only possible if n(G) ≤ 3 and

χb(G) + χb(G̃) = n(G) is only possible if n(G) ≤ 8. Moreover, all pairs of graphs {G, G̃}
for which χb(G) + χb(G̃) = n(G) are characterized in [Alk11].
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3.4 Graphs with b-chromatic number close to its t-degree

In this section we consider graphs G with χb(G) = ∆(G) + 1, in particular we derive some

results on d-regular graphs with χb(G) = d + 1 or graphs whose b-chromatic number is

close to the t-degree.

Clearly, χb(G) ≤ ∆(G)+1. We now want to consider graphs where this bound is attained.

Kratochvíl et al. showed the following sufficient condition:

Proposition 3.24. (Kratochvíl et al., [Kra02])

Let G be a graph containing vertices v1, ..., v∆(G)+1 such that d(vi) = ∆(G) for all i and

d(vi, vj) ≥ 4 for all i 6= j. Then χb(G) = ∆(G) + 1.

Moreover, planar graphs G with t vertices of degree at least t− 1 satisfy χb(G) = t under

certain sufficient conditions. [Kra02].

Proposition 3.25. (Kratochvíl et al., [Kra02])

Let G be a planar graph of girth at least 5, and t ≥ 4 an integer. If G contains t vertices

v1, ..., vt such that d(vi) ≥ t− 1 for all i and d(vi, vj) ≥ 4 for all i 6= j. Then χb(G) ≥ t.

3.4.1 Regular graphs

If only regular graphs are considered, then we know the following:

Proposition 3.26. (Kratochvíl et al., [Kra02])

For every d-regular graph G with at least d4 vertices, χb(G) = d+ 1.

Recently, this result was improved as follows:

Proposition 3.27. (Cabello and Jakovac, [Cab10])

For every d-regular graph G with at least 2d3 vertices, χb(G) = d+ 1.

Moreover, Kohl achieved the following two results:

Proposition 3.28. (Kohl, [Alk11])

If G is a non-complete d-regular graph with d ≥ 2n(G)
3 − 1, then χb(G) < d+ 1.
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Proposition 3.29. (Kohl, [Alk11])

If G is a d-regular graph with disconnected complement and d ≤ n−2, then χb(G) < d+ 1.

Moreover, there are the following results with respect to the diameter diam(G), vertex

connectivity κ(G), and the girth g(G) of the graph G (see Definition on page 102).

Proposition 3.30. (Cabello and Jakovac, [Cab10])

Let G be a d-regular graph with no cycle of length 4 and diam(G) ≤ d, then χb(G) = d+1.

Proposition 3.31. (Shaebani, [Sha11])

Let G be a d-regular graph that contains no cycle of length 4. Then χb(G) ≥ bd+3
2 c.

Besides, if G has a triangle, then χb(G) ≥ bd+4
2 c.

These lower bounds are sharp for the Petersen graph.

Proposition 3.32. (Shaebani, [Sha11])

Let G be a d-regular graph that contains no cycle of length 4. If diam(G) ≥ 6, then

χb(G) = d+ 1.

Proposition 3.33. (Shaebani, [Sha11])

Let G be a d-regular graph that contains no cycle of length 4. If κ(G) ≤ d+1
2 , χb(G) = d+1.

This upper bound is sharp for the Petersen graph as well.

Kouider showed in [Kou05] that for every graph G with girth at least 6, χb(G) ≥ ∆(G).

Moreover, for d-regular graphs the following theorem was proved independently by El Sahili

et al. [ElS06], Kouider et al. [Kou05], and Blidia et al. [Bli09].

Theorem 3.20. Every d-regular graph G with girth g ≥ 6 satisfies χb(G) = d+ 1.

El Sahili and Kouider [ElS06] showed that this result is not extendable to all regular

graphs. They also gave partial results of d-regular graphs G with girth g = 5 satisfying

χb(G) = d+ 1 e.g.:

Proposition 3.34. (El Sahili and Kouider, [ElS06])

Let G be a d-regular graph with girth g = 5 and containing no cycles of length 6. Then

χb(G) = d+ 1.
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Furthermore, Blidia and Maffray conjectured in [Bli09] that:

Conjecture 3.1. Every d-regular graph G with girth g ≥ 5 at least different from the

Petersen graph satisfies χb(G) = d+ 1.

This conjecture is proved for d-regular graphs with d ≤ 6.

Proposition 3.35. (Cabello and Jakovac, [Cab10])

Let G be a d-regular graph with girth g = 5. Then χb(G) ≥ bd+1
2 c.

In [Jak09-1] the b-chromatic number of connected cubic graphs is studied. It is shown that

all but four connected cubic graphs have the b-chromatic number equal to 4.

K3,3

K3�K2 F

P
Figure 3.15: The four exception graphs.

Proposition 3.36. (Jakovac and Klavzar, [Jak09-1])

Let G be a connected 3-regular graph. Then χb(G) = 4 unless G is the Petersen graph P ,

a Prism over K3 graph K3�K2, K3,3, or F (see Figure 3.15). In these cases χb(P ) =

χb(K3�K2) = χb(F ) = 3 and χb(K3,3) = 2.

We now consider d-regular bipartite graphs. Obviously, all d-regular bipartite graphs have

an even girth. So by Theorem 3.20 we conclude:

Proposition 3.37. For every d-regular bipartite graph G with girth g 6= 4, χb(G) = d+ 1.
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If d = 1, then the edges of G induce a matching and clearly χb(G) = d+ 1 = 2.

It remains to investigate the b-chromatic number of d-regular bipartite graphs with girth

g = 4 and 2 ≤ d ≤ r − 2.

In the following let G be a d-regular bipartite graph with girth 4. Since the bipartition

classes of G must have the same cardinality, we may suppose that G is a d-regular factor

of Kr,r for some r ≥ d.

Observation 3.4. Let G be a d-regular bipartite graph with girth g = 4. If there exists a

vertex u ∈ V (G) which does not belong to a cycle of length 4, then χb(G) = d+ 1.

Proof.

Since χb(G) ≤ d+ 1, it suffices to prove that G has a b-coloring by d+ 1 colors. The main

idea of the proof is to find a partial b-coloring of G with d + 1 colors. Afterwards, since

we have d+ 1 colors it follows that the coloring can be extended to the whole graph by a

Greedy coloring algorithm. Let u be a vertex from V (G) which does not belong to a cycle

of length 4 and let v1, . . . , vd denote the neighbors of u. Moreover, for i = 1, . . . , d we set

Ni := N(vi) \ {u}. We define a partial coloring c of G by d+ 1 as follows: Set c(u) = d+ 1

and c(vi) = i for i ∈ {1, ..., d} and color the vertices from Ni with pairwise distinct colors

from {1, . . . , d} \ {i}.
Note that {u} ∪⋃d

i=1Ni is an independent set, because the whole set belongs to the same

bipartition class of G. Since there exists no C4 that does contain the vertex u, we deduce

that Ni ∩ Nj = ∅ for i, j ∈ {1, . . . , d}, i 6= j. So the partial coloring c always exists and

is proper. Moreover, since c(N(vi)) = {1, ..., d+ 1} \ {i} and c(u) = d+ 1, it follows that

v1, ..., vd are color-dominating vertices of colors 1, ..., d, respectively. Moreover, because of

c(N(u)) = {1, ..., d} we conclude that u is a color-dominating vertex of color d+ 1. Thus,

c is a partial b-coloring of G. �

Lemma 3.5. Let G be a d-regular factor of Kr,r. Then

(a) If r > 2d, then G̃ is connected.

(b) If r = 2d, then G̃ is disconnected ⇐⇒ G is disconnected ⇐⇒ G̃ ' G ' Kd,d ∪Kd,d.

(c) If r < 2d, then G is connected.

Proof.

Let G̃1, ..., G̃ζ be the components of G̃. Since G is d-regular it follows that G̃ is an
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(r − d)-regular graph and thus each component G̃i is (r − d)-regular. This implies that

the bipartition classes of G̃i must have the same cardinality. So we may suppose that for

i ∈ {1, ..., ζ}, Gi is a factor of Kri,ri with ri ≥ r − d.
(a) Assume that G̃ is disconnected. Then ζ ≥ 2. If r ≥ 2d + 1, then we deduce that

r − d ≥ r+1
2 and thus ri ≥ r − d ≥ r+1

2 .

Then, r =
∑ζ

i=1 ri ≥
∑ζ

i=1
r+1

2 = ζ r+1
2 ≥ r + 1, a contradiction.

(b) If r = 2d and G̃ is disconnected, then ζ ≥ 2 and ri ≥ r − d ≥ r − r
2 = r

2 and this

implies that r =
∑ζ

i=1 ri ≥
∑ζ

i=1
r
2 ≥ ζ r2 . Thus, ζ = 2 and G̃i ' K r

2
, r
2
for i ∈ {1, 2}. So

we conclude that G̃ ' G ' Kd,d ∪Kd,d.

If r = 2d, G = ˜̃
G is disconnected, and ζ̃ is the number of components in G, then ζ̃ ≥ 2

and by applying the similar methods we deduce that ˜̃G ' G̃ ' Kd,d ∪Kd,d.

(c) Let d̃ = r − d. Then since G̃ is a d̃-regular factor of Kr,r and r < 2d, i.e. r > 2d̃, we

can apply (a) which yields that ˜̃G = G is connected. �

Proposition 3.38. Let G be a 2-regular factor of Kr,r. Then

χb(G) =





2 , if r 6= 3 and G̃ is disconnected

3 , if r = 3 or G̃ is connected
.

Proof.

Since G is 2-regular it follows that r ≥ 2.

If r = 2, then G̃ is an empty graph of order 4 implying that G̃ is disconnected. Moreover,

G ' C4 and, therefore, χb(G) = 2 by Table 3.1.

If r = 3, then G̃ is a union of three edges implying that G̃ is disconnected. Moreover,

G ' C6 and χb(G) = 3 by Table 3.1.

If r = 4 and G̃ is connected, then G is also connected by Lemma 3.5(b). Thus, G ' G̃ ' C8

and χb(G) = 3 by Table 3.1. Else, r = 4 and G̃ is disconnected and then G ' G̃ = C4∪C4

by Lemma 3.5(b). Therefore, χb(G) = 2 by Theorem 3.2.

If r > 4, then G̃ is connected according to Lemma 3.5(a) and clearly G 6' C4 ∪ C4.

Therefore, χb(G) = 3 by Theorem 3.2. �

Proposition 3.39. Let G be a 3-regular factor of Kr,r. Then

χb(G)





< 4 , if (r 6= 4 and G̃ is disconnected) or G ' K3,3 ∪K3,3 ∪K3,3

= 4 , if (r = 4 or G̃ is connected) and G 6' K3,3 ∪K3,3 ∪K3,3

.
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Proof.

Since G is 3-regular it follows that r ≥ 3.

If r = 3, then G̃ is an empty graph of order 6 implying that G̃ is disconnected. Moreover,

G ' K3,3 and, therefore, χb(G) = 2 by Table 3.1.

If r = 4, then G̃ is a union of four edges implying that G̃ is disconnected. Moreover, G is

an (r − 1)-regular factor of Kr,r and, therefore, χb(G) = 4 by Theorem 3.15.

If r = 5 and G̃ is disconnected, then G̃ is a 2-regular graph and has at least two components.

This is only possible if G̃ is the union of two cycles of length 4 and 6 , respectively. So we

deduce G̃ ' C4∪C6 (see Figure 3.16(a)). Therefore, χb(G) = χb(C̃4) +χb(C̃6) = 1 + 2 = 3

by Theorems 3.16 and 3.18.

If r = 5 and G̃ is connected, then G is an (r − 2)-regular factor of Kr,r. Thus, χb(G) = 4

by Theorem 3.16.

If r = 6 and G̃ is disconnected, then G ' G̃ = K3,3∪K3,3 by Lemma 3.5(b) and, therefore,

χb(G) = 2 by Observation 3.1 (see Figure 3.16(b)).

G̃ G̃

(a) (b)

Figure 3.16: 3-regular bipartite graph with disconnected bicomplement

Else, r = 6 and G̃ is connected. Then G is connected by Lemma 3.5(b). As G and G̃ are

connected and have order 12 it follows that G cannot be isomorphic to K3,3 or to F in

Figure 3.15. Hence, χb(G) = 4 by Proposition 3.36.

If r > 6, then G̃ is connected by Lemma 3.5(a). Moreover, if G is connected, then we can

easily deduce that χb(G) = 4 by Proposition 3.36. Else, G is disconnected and has ζ ≥ 2

components G1, ...Gζ , and we consider the following subcases: If there is a component Gi

with χb(Gi) = 4, then 4 ≤ max1≤i≤ζ χ(Gi) ≤ χb(G) ≤ ∆(G) + 1 ≤ 4 by Proposition 3.11

and thus χb(G) = 4.
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If all components Gi have χb(Gi) ≤ 3, then we deduce that each component Gi is isomor-

phic to F or to K3,3.

– If G contains at least one component which is isomorphic to F , w.l.o.g. G1 ' F , then G
has a coloring c by 4 colors such that G1 contains three color-dominating vertices of colors

1,2,3 and Gi contains one color-dominating vertex of color 4 for i ∈ {2, ..., ζ}. Therefore,

c is a b-coloring of G by 4 colors and thus χb(G) = 4.

– If Gi 6' F for every i ∈ {1, ..., ζ}, then since r > 6 and d = 3 we deduce that G contains

at least three components isomorphic to K3,3.

If G has exactly three components, i.e. G ' K3,3 ∪ K3,3 ∪ K3,3, then χb(Gi) = 3 by

Observation 3.1.

If G contains at least 4 components, then χb(G) = 4 by Observation 3.1. �

Proposition 3.40. Let G be a 4-regular factor of Kr,r. Then χb(G) < 5 if r 6=
5 and G̃ is disconnected. Incidently , χb(G) = 5 for r = 5.

Proof.

Let G be a 4-regular factor of Kr,r with disconnected bicomplement. Then 4 ≤ r ≤ 8.

If r = 4, then G ' K4,4 and therefore χb(G) = 2 by Table 3.1.

If r = 5, then G̃ is an (r − 1)-regular factor of Kr,r and χb(G) = 5 by Theorem 3.15.

If r = 6, then G̃ is a 2-regular graph and disconnected. This yields G̃ ' C4 ∪ C4 ∪ C4,

G̃ ' C6 ∪ C6, or G̃ ' C8 ∪ C4 (see (a),(b) and (c) in Figure 3.17).

G̃

(a)

G̃

(b)

G̃

(c) (d)

G̃

Figure 3.17: 4-regular bipartite graphs with disconnected bicomplement

This implies that χb(G) = χb(C̃4) + χb(C̃8) = 1 + 3 = 4, χb(G) = χb(C̃6) + χb(C̃6) =
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2 + 2 = 4, or χb(G) = χb(C̃4) + χb(C̃4) + χb(C̃4) = 3 by Theorems 3.16 and 3.18.

If r = 7, then G̃ is a 3-regular graph and disconnected. This implies that the components

are factors of K3,3 and K4,4, respectively.

Hence, G̃ ' K3,3 ∪ Q3, (see (d) in Figure 3.17). Moreover, χb(G) = χb(K̃3,3 � Q̃3) ≤
1 + χb(K̃3,3) + χb(Q̃3) ≤ 1 + 1 + 2 = 4 by Theorem 3.13.

If r = 8, then G ' G̃ ' K4,4∪K4,4 by Lemma 3.5(b). Therefore, χb(G) = 2 by Observation

3.1. �

Recently, the last propositions about d-regular bipartite graphs with disconnected bicom-

plement were generalized:

Theorem 3.21. (Kohl, [Alk11])

Let G be a d-regular factor of Kr,r with disconnected bicomplement G̃ and 2 ≤ d ≤ r − 2.

Then χb(G) < d+ 1.

So it remains to answer:

Question 3.1. Which d-regular bipartite graphs G with connected bicomplement satisfy

χb(G) = d+ 1?

From Propositions 3.38 and 3.39 we deduce that χb(G) = d + 1 for connected d-regular

bipartite graphs G with connected bicomplement and d ≤ 3. So we ask:

Question 3.2. Let d ∈ {4, 5} and d ≤ r − 2. Does every connected d-regular factor G of

Kr,r with connected bicomplement G̃ satisfy χb(G) = d+ 1?

This question cannot be answered in the affirmative for all integers d, since for d = r − 2

there exists an (r− 2)-regular factor G of Kr,r with χb(G) < d+ 1. For instance, if r = 8,

then every 6-regular factor G of K8,8 has the b-chromatic number χb(G) = b6·8
7 c = 6 <

7 = d+ 1 by Theorem 3.16.

3.4.2 Trees and Cacti

As we already know, every graph G satisfies χb(G) ≤ t(G). For example, this bound

is attained for the complete graph Kn. But for the complete bipartite graph Kr,r, the

difference t(Kr,r)− χb(Kr,r) = r + 1− 2 = r − 1 can be large.
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Irving and Manlove determined the b-chromatic number of trees with respect to the t-

degree. They proved:

Proposition 3.41. (Irving and Manlove, [Irv99])

For a tree T with t-degree t(T ), t(T )− 1 ≤ χb(T ) ≤ t(T ).

We call a vertex v ∈ V (G) a dense vertex if v has degree d(v) ≥ t(G) − 1. Irving and

Manlove also introduced the notion of a pivoted tree:

Definition 3.6. Let T be a tree with t-degree t(T ). We say that T is pivoted if it has

exactly t(T ) dense vertices and at least one non-dense vertex v ∈ V (T ) such that:

(a) Each dense vertex is adjacent either to v or to a dense vertex adjacent to v.

(b) Any dense vertex adjacent to v and to another dense vertex has degree t(T )− 1.

Also we call v the pivot of the graph T .

Note that Irving and Manlove proved in [Irv99] that the pivot of a pivoted tree T is unique.

Moreover, they characterized the trees with χb(T ) = t(T )− 1 and with χb(T ) = t(T ):

Proposition 3.42. (Irving and Manlove, [Irv99])

Let T be a tree with t-degree t(T ). Then:

(1) χb(T ) = t(T )− 1 if and only if T is a pivoted tree.

(2) χb(T ) = t(T ) if and only if T is a non-pivoted tree.

Figure 3.18 shows a non-pivoted tree T with χb(T ) = t(T ) = 5.

Figure 3.18: b-coloring of a tree
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Campos et al. [Cam09] adapted Irving and Manlove’s notion of ’pivoted’ to cacti and

they could prove a statement like Proposition 3.42 for cacti with t-degree at least 7. This

implies:

Proposition 3.43. (Campos et al., [Cam09])

If G is a cactus and t(G) ≥ 7, then t(G)− 1 ≤ χb(G) ≤ t(G).

3.4.3 Halin graphs

Definition 3.7. A Halin graph H = T ∪C is a plane graph, where T is a plane tree with

no vertex of degree 2 and C is a cycle connecting the leaves of T such that C crosses no

edge of T .

Figure 3.19 shows a Halin graph H with χb(H) = t(H) = 5.

Figure 3.19: b-coloring of a Halin graph

Let H = T ∪ C be a Halin graph. Then, since there is no vertex in T of degree 2 by the

Definition 3.7 it follows that all vertices in H have degree at least 3 which implies that

δ(H) = 3.

Halin studied these graphs H which are minimal 3-connected graphs with δ(H) = 3. If

T ∼= K1,l, l ≥ 3, then the Halin graph H is a wheel (see Table 3.1 for the b-chromatic

number of wheels).

In the following, we consider only Halin graphs H = T ∪ C which are not wheels.

Let v ∈ V (C) be a leaf vertex of H and a vertex v ∈ V (H \ C) be a non-leaf vertex of

H.
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SinceH is not a wheel, we can easily deduce that ω(H) ≤ 3 by the Definition 3.7. Moreover,

the tree H \ C has order at least 2, so there are at least two vertices u, v ∈ V (H \ C)

with dH\C(u) = dH\C(v) = 1 and d(u), d(v) ≥ δ(H) = 3. So there exist two vertices

x, y ∈ NC(u) such that H[{u, x, y}] is a triangle in H. Thus, ω(H) = 3. From this it

follows that χb(H) ≥ χ(H) ≥ ω(H) = 3.

Moreover, N [u]∪N [v] is a set of at least 4 vertices each of them of degree at least 3, which

implies that t(H) ≥ 4.

Observation 3.5. Let H = T ∪ C be a Halin graph with |V (H \ C)| = 2. Then

1. χb(H) = t(H)− 1 = 3 if ∆(H) = 3.

2. χb(H) = t(H) = 4 if ∆(H) > 3.

Proof. We know that t(H) ≥ 4 as we already mentioned. Since there exist at most two

vertices of degree larger than 3 it immediately follows that t(H) = 4.

Let V (H \ C) = {u, v} and w.l.o.g. let d(u) ≥ d(v).

If ∆(H) = 3, then H ' K3�K2 (see Figure 3.15) and, therefore, χb(H) = t(H) − 1 = 3

by Proposition 3.36.

If ∆(H) > 3, then dC(u) ≥ 3. Since dH\C(u) = dH\C(v) = 1 andH is plane, we can deduce

that NC(u) and NC(v) induce two paths (u1, u2, . . . , uk) and (v1, v2, . . . , vl), respectively,

such that ukv1, u1vl ∈ E(H). From above we know that k ≥ 3, l ≥ 2, and k ≥ l.

So we can define a partial coloring c of H by 4 colors as follows:

- If k is odd, then we set c(u) = 1, c(v) = c(u2) = c(uk−1) = 2, c(u1) = c(v1) = 3, and

c(uk) = c(vl) = 4.

- If k is even, then we set c(u) = 1, c(v) = c(u1) = c(u4) = c(uk) = 2, c(u2) = c(vl) = 3,

and c(u3) = c(v1) = 4.

One can easily check that this partial coloring is proper (see Figure 3.20). Moreover, if k is

odd, then u, v, u1, uk are color-dominating vertices of colors 1, 2, 3, 4, respectively and if k

is even, then u, v, u2, u3 are color-dominating vertices of colors 1, 2, 3, 4, respectively. Thus,

c is a partial b-coloring of H. The remaining uncolored vertices all belong to C and, thus,

all have degree 3. So we can extend the partial b-coloring c to a b-coloring of H by 4 colors

by coloring the remaining vertices using a Greedy algorithm. This yields a b-coloring of H

by t(H) = 4 colors and, therefore, χb(H) = t(H) = 4. �
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k is evenk is odd

u1

v
u3

vl

u vu

uk

u2

uk−1

v1

vl

v1

u2

u4

u1

uk

Figure 3.20: b-coloring of a Halin graph by 4 colors

Definition 3.8. A Halin graph H = T ∪ C is called pivoted if T is pivoted. Moreover,

the pivot of the tree T shall be the pivot of the Halin graph H.

Since the pivot of T is unique, it follows that the pivot of the Halin graph H is unique as

well.

Theorem 3.22. Let H = T ∪ C be a pivoted Halin graph. Then χb(H) = t(H)− 1.

Proof.

Let H = T ∪ C be a pivoted Halin graph with t := t(H) and v be the pivot of H. We

note that v is a non-leaf vertex because v is pivot of the tree T which does not belong

to the leaves of T . Moreover, let v1, ..., vt be the t dense vertices in H. Suppose w.l.o.g.

that v1, ..., vs are the dense vertices which are adjacent to v, where v1, ..., vr are the dense

vertices which are adjacent to v and to at least one other dense vertex from {vs+1, ..., vt}.
Each vertex of v1, ..., vr has exactly t − 1 neighbors and one of them is v by Definition

3.6(b). If we assume that s = 1, then v1 has to be adjacent to v and to all other t − 1

dense vertices, a contradiction. So it follows that s ≥ 2. Moreover, since v is non-dense it

follows that s < t and r > 0 (compare Definition 3.6(a) and (b)). Hence, 2 ≤ s ≤ t − 2

and r ≥ 1.

From 3 = δ(H) ≤ d(v) ≤ t− 2 we obtain t ≥ 5. Therefore, since d(u) = 3 for each vertex

u ∈ V (C), we deduce that u cannot be a dense vertex. So it follows by Definition 3.8 that

H contains exactly t > 4 non-leaf dense vertices.

By Proposition 3.1 we know that χb(H) ≤ t. Similar to the proof of Irving and Manlove

[Irv99], we now prove that χb(G) < t by showing that there exists no b-coloring of H by t

colors.

PhD-Thesis Mais Alkhateeb 72



3 b-colorings

Assume that H has a b-coloring ct by t colors. Then the dense vertices v1, ..., vt have to

be the color-dominating vertices for the coloring ct. Suppose w.l.o.g. that ct(vi) = i for

i ∈ {1, ..., t}. Since each of v1, ..., vs is adjacent to v it follows that v has to receive a color

j such that j ∈ {s+ 1, ..., t}. This color j exists because of t ≥ s+ 2. Moreover, there has

to exist an integer i ∈ {1, ..., r} such that vi is adjacent to vj and v by Definition 3.6(a).

Since ct(vj) = ct(v) = j and by Definition 3.6(b) it follows that |ct(N(vi))| ≤ t − 2 and

thus vi is not a color-dominating vertex, a contradiction.

Now we want to prove that H has a b-coloring c by t − 1 colors where we use the colors

2, . . . , t.

We color v and the dense vertices v1, . . . , vt as follows: set c(vi) = i for i ∈ {2, ..., t},
c(v) = t, and c(v1) = 2.

This yields a proper partial coloring because v1v2 /∈ E(H) (otherwise {v, v1, v2} would

induce a triangle in the tree H \ C) and vvt /∈ E(H) (since s ≤ t− 2).

For i ∈ {2, ..., t} let
– Ui := {u : u ∈ N(vi) ∧ u is uncolored} (the uncolored neighbors of vi),

– Ei := {c(u) : u ∈ N(vi) ∧ u is colored} (the colors that are assigned to neighbors of vi),

– Ri := {2, . . . , t}\ ({i}∪Ei) (the required colors in order to make vi color-dominating).

For i ∈ {2, ..., t}, we now intend to make vi color-dominating.

Let I = {i : i ∈ {2, . . . , t} ∧ Ui ∩ V (C) = ∅} and I := {2, . . . , t} \ I.
Analogously to the proof of Irving and Manlove [Irv99] for trees, we can show that the

vertices of
⋃
i∈I Ui can be colored in such a way that Ri ⊆ c(Ui) for i ∈ I. This implies

that vi for i ∈ I is color-dominating. Moreover, no vertex from
⋃
i∈I Ui is adjacent to a

vertex from
⋃
i∈I Ui (because of

⋃
i∈I Ui ∩ V (C) = ∅). So the coloring of the vertices from

⋃
i∈I Ui causes no further forbidden colors for the vertices in

⋃
i∈I Ui.

Now let i ∈ I. Since Ui ∩ V (C) 6= ∅ for i ∈ I, every vertex vi has at least one neighbor on

the cycle C. So, the subgraph of H induced by all vertices vi, i ∈ I and their neighbors

has a structure similar to the one shown in Figure 3.21.

Moreover, because of dH(vi) ≥ t−1 and dH(vr) = t−1 it can be verified that |Ui| > |Ri| for
i ∈ I \ {r} and |Ui| = |Ri| for i ∈ I ∩ {r}. Therefore, we delete for each integer i ∈ I \ {r}
|Ui| − |Ri| vertices from the set Ui and obtain a new set U ′i satisfying |U ′i | = |Ri| ( for

i ∈ I ∩ {r} we set U ′i := Ui).

PhD-Thesis Mais Alkhateeb 73



3 b-colorings

v

vi

v1

vj

u1

vk

Figure 3.21: A pivoted Halin graph

Hereby, the deletion process is executed in such a way, that we start by deleting vertices

from Ui∩V (C) which are the first that occur when we walk along the cycle C in clockwise

order (starting with u1). This will be done until we reach the number |Ui| − |Ri| or until
there is no vertex from U ′i on the cycle anymore (compare the red vertices in Figure 3.21).

The the remaining vertices to delete can be chosen arbitrarily.

Let H ′ = (V ′, E′) be the graph with V ′ :=
⋃
i∈I U

′
i and E

′ := E(H[V ′])∪{u1
iu

2
i : u1

i , u
2
i ∈

U ′i , i ∈ I} and let L := {L(x) : x ∈ V ′} be a list assignment for H ′ where L(x) := Ri for

every vertex x ∈ U ′i .

Fact 3.3. H ′ has a list-coloring c′ for the given list assignment L.

Now we want to give a sketch of proof that the list coloring c′ of H ′ for the given list

assignment L always exists.

Sketch of proof.

Let ni := |Ei \ {c(v)}| for i ∈ {2, ..., r − 1}, nr = |Er|, and suppose w.l.o.g. that

n1 ≥ n2 ≥ ... ≥ nr.
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- For r = 2, we know that t = s+ n1 + n2 which implies that n2 = t− s− n1 ≤ t− s− n2,

and thus, n2 ≤ b1
2(t − s)c. This yields |L(x)| = |R2| = t − 2 − n2 ≥ t − 2 − b1

2(t − s)c =

d1
2(t+ s)− 2e ≥ 2 because of t ≥ 5 and s ≥ 2.

- For r ≥ 3, we know that t = s+ n1 + ...+ nr and we obtain:

|Ri| =





t− 3 if i ∈ {r + 1, . . . , t},
t− ni − 3 if i ∈ {2, . . . , r − 1}.
t− nr − 2 if i = r

. (3.7)

Since t ≥ 5, r ≥ 3, and t − ni = s + n1 + ... + nr − ni ≥ r + (n1 − ni) + n2 + ... + nr ≥
3 + 0 + r− 1 ≥ r+ 2 ≥ 5 this yields that for every i ∈ {2 . . . , t} and a vertex x ∈ U ′i there
are |L(x)| = |Ri| ≥ 2 allowed colors.

Let H ′′ be the graph obtained from H ′ by deleting the sets U ′i for i ∈ I ∩ {s + 1, ..., t}
(compare the blue vertices in Figure 3.21). After this deletion, the graph H ′′ can be

properly list-colored by walking along the cycle C in anti-clockwise order and coloring

each vertex by a suitable color from its list (if r ∈ I, then we start with U ′r).

Then we insert the sets U ′i for i ∈ I ∩ {s+ 1, ..., t} again, and color these sets step by step

in anti-clockwise order on the cycle C.

It can be shown because of |Ri| ≥ 2 for i ∈ I, that this coloring algorithm is always

possible. #

Since there exists a proper list coloring c′ of H ′ for the list assignment L we can set

c(x) := c′(x) for every vertex x ∈ V ′ ⊆ V (H). This yields Ri = c(U ′i) (since U ′i induces a

clique of order |Ri| in H ′) and, thus, every vertex vi for i ∈ I is now color-dominating.

Thus, the vertices in {v2, ..., vt} are color-dominating vertices of colors 2, 3, .., t, respectively.

Furthermore, the uncolored vertices in V (H) are non-dense vertices, i.e. each of them has

at most t− 2 neighbors in H. Therefore, we can color these vertices by colors 2, ..., t using

a Greedy algorithm.

Thus, H has a b-coloring by t−1 colors, and since χb(H) < t we deduce that χb(H) = t−1.

�
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It is known that every graph G has an a-coloring by k colors for every integer k satisfying

χ(G) ≤ k ≤ χa(G) (see page 12). However, this property does not always hold for a

b-coloring. Irving and Manlove [Irv99] already noticed that there are graphs which have

b-colorings by k colors and by k + 2 colors, but not by k + 1 colors. For example, Figure

4.1 shows two bipartite graphs which both have a b-chromatic number 4 but do not admit

b-colorings by 3 colors.

C̃10 Q3

Figure 4.1: Two bipartite graphs with b-chromatic number 4

In 2004, Faik et al. [Fai03] introduced the concept of b-continuity:

Definition 4.1. A graph G is b-continuous if and only if G has a b-coloring by k colors

for every integer k satisfying χ(G) ≤ k ≤ χb(G) .

Figure 4.2 shows a bipartite graph G having 7 vertices. G has b-chromatic number 4 but

does not allow a b-coloring by 3 colors. By case analysis we can verify that the graph G is

the smallest non-b-continuous graph and the only one with 7 vertices.

The B-CONTINUITY problem is the problem of deciding whether a given graph G

is b-continuous or not. Barth et al. [Bar07] showed that the b-continuity problem is

NP−complete even if b-colorings by χ(G) and χb(G) colors are part of the input. It is

still NP−complete for bipartite graphs [Fai05].
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Figure 4.2: Smallest non-b-continuous graph [Alk10]

Definition 4.2. The b-spectrum Sb(G) of a graph G is the set of integers k such that G

has a b-coloring by k colors.

For instance, a (r − 1)-factor of the complete bipartite graph Kr,r has b-spectrum {2, r}
[Kra02], see Figure 4.3.

Figure 4.3: b-coloring of a 4-factor of K5,5

For a given graph G and an integer k the problem of deciding whether k ∈ Sb(G) is

NP−complete [Irv99]. Moreover, Barth, Cohn, and Faik [Bar07] proved that for every

finite set of integers I, there exists a graph G with Sb(G) = I.

In this chapter we intend to investigate the b-continuity. The outline of this chapter is as fol-

lows: In Section 4.1 we are interested in the b-spectrum of graphs whose b-chromatic num-

bers were already determined in Chapter 3. In Section 4.2 we summarize the b-continuous

graph classes that are known so far and we prove that Halin graphs are b-continuous. We

finish this chapter with Section 4.3 where we give a short overview about other interesting

properties concerning b-colorings, namely the b-monotonicity and b-perfectness.
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4.1 b-spectrum of special graphs

Graphs with independence number or clique number close to its order

Theorems 3.3, 3.7, and 3.6 imply that every graph G with clique number at least n(G)−4,

independence number at least n(G) − 2, or order at most α(G) + ω(G) satisfies χb(G) ≤
χ(G) + 1. So we immediately obtain:

Proposition 4.1. If G is a graph of clique number ω(G) ≥ n(G)−4, independence number

α(G) ≥ n(G)− 2, or order n(G) ≤ α(G) + ω(G), then G is b-continuous.

This proposition is best possible in the following sense:

Proposition 4.2. (Kohl, [Alk10])

For every integer n ≥ 7 there exists a non-b-continuous graph G of order n and clique num-

ber ω(G) = n−5, and there exists a non-b-continuous graph G of order n and independence

number α(G) = n− 3.

Moreover, there exist graphsG of order n(G) = α(G)+ω(G)+1 which are non-b-continuous.

For instance, Figure 4.2 shows a graph G of order n(G) = 7 which has α(G) = 4 and

ω(G) = 2.

Graphs with minimum degree close to its order

Lemma 4.1. (Kohl, [Alk10])

Let G be a graph with minimum degree δ(G) = n(G) − 3. Moreover, let G1, ..., Gt be the

components of G which are not isomorphic to C3 and d denotes the number of components

of G which are isomorphic to C3. Then χb(G) =
∑t

i=1 χb(Gi)+d and χ(G) =
∑t

i=1 χ(Gi)+

d =
∑t

i=1d
n(Gi)

2 e+ d.

Proposition 4.3. (Alkhateeb and Kohl, [Alk10])

If G is a graph with minimum degree δ(G) = n(G)− 3, then G is b-continuous.

Proof. Let G1, ..., Gt be the components of G which are not isomorphic to C3 and d

denotes the number of components of G which are isomorphic to C3. Additionally, let G′ :=

G1⊕ ...⊕Gt. By Lemma 4.1 we can deduce that χb(G) = χb(G′)+d and χ(G) = χ(G′)+d.
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Moreover, since ∆(G′) ≤ 2 and G′ has no component which is isomorphic to C3 it follows

that α(G′) ≤ 2. If α(G′) = 1, then G′ is complete and therefore b-continuous. If α(G′) = 2,

then G′ is b-continuous as well [Alk10]. It follows from this that G′ has a b-coloring c′ by k′

colors for χ(G′) ≤ k′ ≤ χb(G′). Let c′(V (G′)) = {1, ..., k′}. We can extend c′ to a coloring

c of G by k′ + d colors by coloring the independent sets of cardinality 3 by d pairwise

different colors from {k′ + 1, ..., k′ + d}. Due to the properties of a join it is easy to check,

that c is a b-coloring by k := k′+d colors for χ(G) = χ(G′) +d ≤ k ≤ χb(G′) +d = χb(G).

Hence G is b-continuous. �

There exist graphs G with minimum degree δ(G) = n(G)− 5 which are non-b-continuous.

For instance, the cube graph Q3 (see Figure 4.1) is a bipartite graph with 8 vertices and

minimum degree 3. So we ask:

Question 4.1. Is every graph G with minimum degree δ(G) = n(G)− 4 b-continuous?

Bipartite graphs with special bicomplement

Recall that G̃ is the bicomplement of the bipartite graph G, a biclique cover of G̃ is a set

of disjoint bicliques of G̃ which cover all vertices of the graph where at most one pseudo-

biclique is allowed, σ(G̃) is the biclique cover number of G̃, and Ĩ is the set of isolated

vertices in G̃ (see Subsection 3.3.2 on page 41).

Proposition 4.4. Let G be a bipartite graph such that Ĩ ⊆ A or Ĩ ⊆ B. Then Sb(G) ⊆
{2, σ(G̃), ..., χb(G)}.

Proof.

Assume that G has a b-coloring by k colors for an integer k satisfying 3 ≤ k ≤ σ(G̃) − 1.

Moreover, let V1, V2, ..., Vk be the corresponding color classes. Since each of V1, V2, ..., Vk

is an independent set in G, we deduce that each of G̃[V1], G̃[V2], ..., G̃[Vk] is a biclique or a

pseudo-biclique in G̃. Because of k ≥ 3, Lemma 3.2 implies that {G̃[V1], G̃[V2], ..., G̃[Vk]}
contains at most one pseudo-biclique. Hence, {G̃[V1], G̃[V2], ..., G̃[Vk]} is a biclique cover

of G̃ with k ≤ σ(G̃)− 1 (pseudo-)bicliques, a contradiction to the definition of σ(G̃). �

Corollary 4.1. Let G be a bipartite graph such that Ĩ ⊆ A or Ĩ ⊆ B. Then G is non-b-

continuous for σ(G̃) ≥ 4.
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In Theorem 3.14, we already determined the b-chromatic number χb(G) of bipartite graphs

G where each component of G̃− Ĩ is a biclique. We proved that

χb(G) = σ(G̃) =





s , if Ĩ = ∅

s+ 1 , if Ĩ 6= ∅
,

where s is the number of non-trivial components of G̃. By Proposition 4.4 we deduce:

Corollary 4.2. Let G be a bipartite graph such that Ĩ ⊆ A or Ĩ ⊆ B and every component

of G̃− Ĩ is a biclique. Then Sb(G) = {2, σ(G̃)}. Hence, G is non-b-continuous if and only

if σ(G̃) ≥ 4.

This corollary generalizes the result about (r − 1)-factors G of Kr,r whose bicomplement

G̃ consists of bicliques of order 2 (compare page 77).

We now consider bipartite graphs G whose bicomplement G̃ is connected and has maximum

degree 2. According to Theorem 3.16, the b-chromatic number of these graphs is

χb(G) =




b3n

7 c , if G̃ ' Cn
b3n+2

7 c , if G̃ ' Pn
.

For the biclique cover number of G̃ of these graphs we obtain:

Proposition 4.5. Let G be a bipartite graph of order n ≥ 5 such that G̃ is connected and

satisfies ∆(G̃) = 2. Then σ(G̃) = 2 if n = 6, and otherwise:

σ(G̃) =




dn+4

4 e , if G̃ ' Cn, n 6= 6

dn+3
4 e , if G̃ ' Pn, n 6= 6

.

Proof.

Let {G̃1, ...., G̃k} be a biclique cover of G̃ with at most one pseudo-biclique and let p and

q be the number of bicliques of order 3 and 2, respectively, and nk be the order of the

pseudo-biclique.

If nk = 0, then n = 3p+ 2q and k = p+ q = n−2q
3 + q = n+q

3 ≥ n
3 . Hence, k ≥ kB := dn3 e.

If nk > 0, then we obtain n = 3p+ 2q + nk and k = p+ q + 1. Moreover, since n− nk =

3p+ 2q ≤ 3(p+ q) it follows that k = p+ q + 1 ≥ dn−nk
3 e+ 1.
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Analogously to the proof of Theorem 3.16 and Lemma 3.4(e) (a separating set for any two

P1’s that does not contain a P1 contains an odd number of P3’s) we deduce that nk ≤ p if

G̃ ' Cn and nk ≤ p+ 1 if G̃ ' Pn.

R = 2

R = 3 p = nk − 1, q = 1

R = 0

R := n mod 4

R = 1

p = nk, q = 1

p = nk − 1, q = 0

p = nk, q = 0

Figure 4.4: Biclique covers of G̃

Case 1 : G̃ ' Cn.
Then n = 3p+2q+nk ≥ nk+3p ≥ 4nk, which implies that nk ≤ n

4 . Thus, k ≥ d
n−nk

3 e+1 ≥
dn−

n
4

3 e+ 1 = dn+4
4 e =: kC .

Considering both cases nk = 0 and nk > 0, we obtain k ≥ min{kC , kB} and therefore also

σ(G̃) ≥ min{kC , kB}.
For n = 6 this yields σ(G̃) ≥ kB = 2. Since we can easily find two bicliques which cover G̃

it follows that σ(G̃) = kB = 2.

For the case n 6= 6 we obtain k ≥ kC . Moreover, Figure 4.4 shows a biclique cover of G̃

with kC (pseudo-)bicliques (note that only R = 0 or R = 2 is possible). Hence, σ(G̃) ≤ kC ,
and altogether, σ(G̃) = kC .

Case 2 : G̃ ' Pn.
Then n = 3p + 2q + nk ≥ nk + 3p ≥ 4nk − 3, which implies that nk ≤ n+3

4 . Therefore,

k ≥ dn−nk
3 e+ 1 ≥ dn−

n+3
4

3 e+ 1 = dn+3
4 e =: kP .

Considering both cases nk = 0 and nk > 0, we deduce that k ≥ min{kP , kB} implying

that σ(G̃) ≥ min{kP , kB}.
For n = 6 this yields σ(G̃) ≥ kB = 2. Again we can find a biclique cover of G̃ with two

bicliques and thus, σ(G̃) = kB = 2.

For the case n 6= 6 we obtain k ≥ kP . Figure 4.4 shows a biclique cover of G̃ with kP

(pseudo-)bicliques. Hence, σ(G̃) ≤ kP , and altogether, σ(G̃) = kP . �
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By Propositions 4.4, 4.5 and Theorem 3.16 we deduce that:

Corollary 4.3. Let G be a bipartite graph of order n ≥ 5 such that G̃ is connected and

satisfies ∆(G̃) = 2. Then Sb(G) = {2} if n = 6, and otherwise:

Sb(G) ⊆ {2, σ(G̃), ..., χb(G)} =




{2, dn+4

4 e, ..., b3n
7 c} , if G̃ ' Cn, n 6= 6

{2, dn+3
4 e, ..., b3n+2

7 c} , if G̃ ' Pn, n 6= 6
.

Observation 4.1. Let G be a bipartite graph of order n ≥ 5 such that G̃ is connected and

satisfies ∆(G̃) = 2. Then Sb(G) ⊇ {2, dn3 e, ..., χb(G)}.

Proof.

Since χ(G) = 2 it is clear that 2 ∈ Sb(G). Set k := χb(G) = b3n
7 c if G̃ ' Cn and

k := χb(G) = b3n+2
7 c if G̃ ' Pn. Moreover, set p := n− 2k and q := 3k − n.

Let l ∈ N, l ≤ k − dn3 e. Moreover, set p′ := p+ 2l and q′ := q − 3l.

Then, p′, q′ ∈ N, p′ + q′ = p+ q − l = k − l, and 3p′ + 2q′ = 3p+ 2q = n.

In Case 1 of the proof of Theorem 3.16 we showed that there exists a biclique cover of G̃

with p bicliques isomorphic to P3 and q bicliques isomorphic to P2, such that there exist

no three consecutive P2’s (see Figure 3.12). Therefore, since p′ ≥ p and q′ ≤ q, we can

also construct a biclique cover of G̃ with p′ bicliques isomorphic to P3 and q′ bicliques

isomorphic to P2, such that there exist no three consecutive P2’s. According to Lemma

3.3, this biclique cover corresponds to a b-coloring of G by k − l colors.

This implies, that G admits a b-coloring by k − l colors for each l ∈ {0, . . . , k − dn3 e}.
Hence, {dn3 e}, . . . , χb(G)} ⊆ Sb(G). �

From Corollary 4.3 and Observation 4.1 we conclude:

Corollary 4.4. Let G be a bipartite graph of order n ≥ 5 such that G̃ is connected and

satisfies ∆(G̃) = 2. Then G is b-continuous if and only if n ≤ 9.
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4.2 b-continuous graph classes

4.2.1 Known b-continuous graph classes

The b-continuity is already proved for the following graph classes:

• Chordal graphs (independently proved by Faik [Fai04], and Kará, Kratochvíl, and

Voigt [Kar04]),

• Hypercubes Qn with n 6= 3 (Faik and Scale, [Fai03]),

• 3-regular graphs except for two outliers which are mentioned in Figure 4.1 (Faik and

Scale, [Fai03]),

• Graphs with independence number 2 (Kohl, [Alk10]),

• K4-minor-free graphs (Kohl, [Koh07]),

• Cographs (Bonomo et al., [Bon09]),

• P4-sparse graphs (Bonomo et al., [Bon09]),

• P4-tidy graphs (Velasquez, Bonomo, and Koch, [Vel10]).

Moreover, there exist other b-continuous subclasses of graphs such as some Kneser graphs

(Javadi and Omoomi, [Jav09]) and some planar graphs under certain conditions (Kará,

Kratochvíl, and Voigt, [Kar04]):

Proposition 4.6. (Kara et al., [Kar04]) Let G be a connected planar graph of girth

at least 5 and t = t(G). If G contains t vertices v1, v2, ..., vt such that d(vi) ≥ t − 1 for

all i ∈ {1, ..., t} and distance dG(vi, vj) ≥ 5 for all i 6= j then χb(G) = t(G) and G is

b-continuous.

Since all non-b-continuous graphs that are known so far contain a claw as an induced

subgraph we ask:

Question 4.2. Does there exist a claw-free graph that is non-b-continuous?

We conjecture that there is no such graph. This is reason to pose the following conjecture:

Conjecture 4.1. Line graphs are b-continuous.
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Kohl [K11] recently proved that line graphs of 2-degenerate graphs are b-continuous.

Observation 4.2. If G is a claw-free graph of maximum degree at most 3, then G is

b-continuous.

Proof. The case ∆(G) = 0 is trivial. If 1 ≤ ∆(G) ≤ 2, then G is a union of paths and/or

cycles. Therefore, 2 ≤ χ(G) ≤ χb(G) ≤ ∆(G) + 1 = 3. Moreover, if ∆(G) = 3, then G

cannot be a bipartite graph because G has no claw. This implies that 3 ≤ χ(G) ≤ χb(G) ≤
∆(G) + 1 = 4. So in both cases, χb(G) ≤ χ(G) + 1 and thus, G is b-continuous. �

4.2.2 Halin graphs

Recall that a Halin graph H = T ∪ C (see page 70) is a plane graph where T is a tree

which has no vertex of degree 2 and C is a cycle connecting the leaves of T such that C

crosses no edge of T . Figure 4.5 shows a Halin graph where the blue edges are the edges

of the tree T and the red edges are the edges of C.

Figure 4.5: A Halin graph

Theorem 4.1. Every Halin graph H = T ∪ C is b-continuous.

Proof.

Suppose that H is a wheel. Then χb(H) ≤ χ(H) + 1 (compare Table 3.1) and, therefore,

H is b-continuous.

Suppose that H is not a wheel. Then ω(H) = 3 (see page 70).

If χ(H) ≤ χb(H) ≤ χ(H) + 1, then H is obviously b-continuous.

Now consider χb(H) > χ(H) + 1. If we can reduce each b-coloring of H by k colors to a
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b-coloring of H by k−1 colors, for each k satisfying χ(H) + 2 ≤ k ≤ χb(H), then it follows

that there exists a b-coloring of H by k colors, for each k satisfying χ(H) ≤ k ≤ χb(H).

Thus, H is b-continuous.

Let c be a b-coloring of H by k ≥ χ(H) + 2 colors and set T 1 := T . Now we define

a vertex ordering v1, ..., vn−1 and a family of induced subtrees T 2, ..., Tn of T such that

T i+1 := T i − vi for i ∈ {1, ..., n − 1} and dT i(vi) = 1. This vertex ordering always exists

because T i is a tree of order at least two and, therefore, it has at least two leaves for

i ∈ {1, ..., n− 1}.

Moreover, let ci be the coloring c restricted to the subtree T i and j be the smallest integer

such that the coloring cj+1 is not a proper b-coloring of T j+1 by k colors. Hence, the last

removed vertex vj is either the only color-dominating vertex of color c(vj) in T j or it is the

only neighbor of color c(vj) of the only color-dominating vertex w of color c(w) in T j . The

former is not possible since dT j (vj) = 1 < k − 1 and therefore, the latter holds. Suppose

w.l.o.g. that c(vj) = 1 and c(w) = k.

Now we construct a proper b-coloring c′j+1 of Hj+1 := H[V (T j+1)] by k − 1 colors as

follows: We color the vertex w with color 1. Since w was the unique color-dominating

vertex of color k we deduce that the neighbors of each other vertex v of color k are colored

by at most k−2 different colors. So, we can color v with a suitable color from {1, .., k−1}.
All other vertices in V (T j+1) which have colors from {1, .., k − 1} keep their colors. This

proper coloring is a b-coloring of Hj+1 because there exist k− 1 color-dominating vertices

of pairwise different colors from {1, ..., k − 1} in Hj+1.

We extend this b-coloring c′j+1 to a proper b-coloring of H by coloring the removed vertices

vj , ..., v1 in that order by suitable colors. This is always possible since k−1 ≥ χb(H) + 1 ≥
ω(H) + 1 ≥ 4 and for i ∈ {1, ..., j}, vi has degree at most 3 in H[V (T i)], i.e. when vi is

next to be colored it has at most three colored neighbors and so there is at least one color

for vi available. This yields a b-coloring of H by k− 1 colors and this completes the proof.

�
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4.3 Further graph properties concerning b-colorings

4.3.1 b-monotonicity

(a)

u1 u2 u3 u4 uk

v1 v2 v3 v4 vk

(b)

uku3u2u1

vkv3v2v1v

Figure 4.6: Two bipartite graphs, [Bal07].

It is known that χ(H) ≤ χ(G) for any induced subgraph H of a graph G. Moreover, Geller

and Kronk [Gel74] proved this property also for the achromatic number, see Definition 2.3.

However, for the b-chromatic number this property does not always hold. Balakrishnan et

al. presented in [Bal07] two examples which show that the deletion of a single vertex of

the graph can cause an increase or a decrease of the b-chromatic number. The graph G in

Figure 4.6(a) satisfies χb(G) = 2 and χb(G − v1) = k while the graph G in Figure 4.6(b)

satisfies χb(G) = k + 1 and χb(G− v1) = 2. So the gap between χb(G− v) and χb(G) for

a vertex v ∈ V (G) can be arbitrarily large. Therefore, it is also interesting to characterize

the graphs G with χb(G) = χb(G− v) or χb(G) = χb(G− v) + 1.

Question 4.3. (Balakrishnan et al., [Bal07]) Which connected graphs G satisfy

χb(G)− 1 ≤ χb(G− v) ≤ χb(G) for any vertex v ∈ V (G)?

Moreover, Balakrishnan et al. gave a lower and an upper bound for χb(G− v) in terms of

χb(G) and proved that both bounds are attained.

Proposition 4.7. (Balakrishnan et al., [Bal07])

For every connected graph G with n(G) ≥ 5 and v ∈ V (G),

χb(G)−
(⌈n

2

⌉
− 2
)
≤ χb(G− v) ≤ χb(G) +

⌊n
2

⌋
− 2.

Bonomo et al. introduced in [Bon09] the concept of b-monotonic graphs.
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Definition 4.3. (Bonomo et al., [Bon09]) The graph G is b-monotonic if χb(H1) ≥
χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1.

In [Bon09, Kle] it is proved that cographs and P4-sparse graphs (see definition in Appendix

A) are b-monotonic. They also describe a polynomial time algorithm to compute the b-

chromatic number for such classes of graphs.

Velasquez et al. generalized in [Vel10] the last results to P4-tidy graphs (see definition in

Appendix A) and proved that these graphs are b-monotonic as well. They also designed a

dynamic programming algorithm to compute the b-chromatic number in polynomial time

within this graph class. Moreover, Bonomo et al. [Bon09] posed the problem, whether

it is possible to characterize b-monotonic graphs by forbidden induced subgraphs and to

find some other b-monotonic graph classes, as for example, the class of distance-hereditary

graphs.

4.3.2 b-perfectness

In the study of graph colorings and the determination of the chromatic number, there is

an important class of graphs, called perfect graphs. The perfect graphs are those for which

χ(H) = ω(H) is satisfied for every induced subgraph H of G.

For the b-colorings it is known that χb(G) ≥ χ(G) ≥ ω(G). In 2005, Hoáng and Kouider

introduced the concept of b-perfect graphs.

Definition 4.4. (Hoáng and Kouider, [Hoa05]) A graph G is b-perfect if each induced

subgraph H of G satisfies χb(H) = χ(H).

Figure 4.7 shows four graphs which are b-perfect.

All b-perfect bipartite graphs and all b-perfect P4-sparse graphs are characterized by min-

imal forbidden induced subgraphs in [Hoa05]. Also, all 2K2-free and P5-free graphs are b-

perfect [Hoa05]. Figure 4.8 presents a set of 22 forbidden induced graphs F = {F1, .., F22}.
Hoáng and Kouider [Hoa05] could characterize the b-perfect bipartite graphs and cographs

in terms of these forbidden induced subgraphs. They proved that:

Theorem 4.2. (Hoáng and Kouider, [Hoa05]) A bipartite graph is b-perfect if it

contains no F1, F2, and F3 as induced subgraphs.
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K3,3

K3�K2 K4 ∪ K4

P

Figure 4.7: b-perfect graphs.

Theorem 4.3. (Hoáng and Kouider, [Hoa05]) A cograph is b-perfect if it contains no

F3 and F6 as induced subgraphs.

In 2007, Hoáng, Sales, and Maffray [Hoa09] conjectured that a graph is b-perfect if and

only if it is F-free and proved this conjecture for diamond-free graphs and for graphs with

a chromatic number at most 3.

Maffray and Mechebbek [Maf08] could verify this conjecture for chordal graphs and then

also for C4-free graphs.

Recently, a major progress was made by Hoáng, Maffray, and Mechebbek [Hoa10], who

proved:

Theorem 4.4. (Hoáng, Maffray, and Mechebbek, [Hoa10]) A graph is b-perfect if

and only if it is F-free.

Also Hoáng et al. [Hoa09] introduced the class of minimally b-imperfect graphs:

Definition 4.5. (Hoáng et al., [Hoa09, Hoa05])

A graph is minimally b-imperfect if it is not b-perfect and each of its proper induced sub-

graphs is b-perfect.

Conjecture 4.2. (Hoáng et al., [Hoa09])

A minimally b-imperfect graph G that is not triangle-free has χb(G) = 4 and ω(G) = 3.
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Figure 4.8: Class F = {F1, ..., F22}, [Maf08, Hoa09].

At last, we want to mention that also another variant of b-perfectness is studied by Klein

and Kouider in [Kle04]:

Definition 4.6. (Klein and Kouider, [Kle04])

A graph G is bω-perfect if each induced subgraph H of G satisfies χb(H) = ω(H).

They proved in [Kle04] that a cograph is bω-perfect if and only if it is F3-free and F6-free.
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When b-colorings were introduced, they were only interesting from a theoretical point of

view as a reasonable successor of ordinary vertex colorings and a-colorings (see Chapter 2).

In the meantime, also applications for b-colorings were considered. One possible application

for solving clustering problems was shown in a simplified version in Chapter 1.

The focus, however, is still on the theoretical investigation of this type of coloring. There

are already more than 50 published papers on b-colorings, mainly on bounds for the b-

chromatic number of general graphs or special graph classes. The present thesis gives an

overview of the current state of knowledge on b-colorings and supplements the research in

this field with a range of new results.

The main results were given in Chapter 3. At first, we summarized in Section 3.1 general

properties and known bounds on the b-chromatic number and established a new upper

bound on χb with respect to the clique cover number (see Proposition 3.8). In Section 3.2

we restricted our research to special graphs. Mainly, we obtained results for the following

graphs:

Graphs G with: Exact Value or Bounds for χb(G) in:

∆(G) ≤ 2 Subsection 3.2.1 (Theorem 3.2)

α(G) ≥ n(G)− 2 Subsection 3.2.2 (Theorem 3.3)

δ(G) ≥ n(G)− 3 Subsection 3.2.3 (Theorem 3.4, 3.5, Remark 3.2)

α(G) + ω(G) ≥ n(G) Subsection 3.2.4 (Theorem 3.6)

Since we determined χb(G) for all graphs G with independence number α(G) ≥ n(G)− 2

or minimum degree δ(G) ≥ n(G)− 3, it is natural to try to go one step further, i.e.:

Problem 5.1. Determine the b-chromatic number for all graphs G with independence

number α(G) = n(G)− 3 or minimum degree δ(G) = n(G)− 4.
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For graphs G with independence number α(G) = n(G) − 3 only the case ω(G) = 2,

χb(G) ∈ {3, 4} is open (compare Remark 3.1). With some effort, it may be possible to

characterize these graphs with b-chromatic number 3 or 4, respectively.

For graphs G with minimum degree δ(G) = n(G)− 4 we already gave bounds on χb(G) in

Corollaries 3.4 and 3.5. Since the complements of these graphs are graphs with maximum

degree 3 which cannot be easily characterized like graphs with maximum degree 2, we

believe that a simple closed formula for χb(G) like in Theorem 3.5 cannot be achieved.

The determination of χb(G) for these graphs might even be NP−hard.

In Section 3.3 we considered bipartite graphs. At first, we presented known results on the

b-chromatic number of bipartite graphs. Then we introduced the bicomplement G̃ of a

bipartite graph G and used it to prove a lower bound on χb(G) (see Proposition 3.23).

This bound is attained when each component of G̃ is complete bipartite or an isolated

vertex (compare Theorem 3.14). Therefore, the following question arises:

Question 5.1. For which bipartite graphs G is the lower bound in Proposition 3.23 tight,

i.e. χb(G) = σ(G̃)?

We already know that the determination of the b-chromatic number of bipartite graphs

is NP−hard. Therefore, one should consider bipartite graphs with a simple structure at

first. We did this by investigating χb(G) for bipartite graphs whose bicomplements have

maximum degree 2 (Theorems 3.15–3.18). This determination already took about 15 pages,

although we did not even consider all possible cases because the effort for determining χb(G)

for these remaining cases is too large compared to the use. Therefore, considering bipartite

graphs whose bicomplements have maximum degree 3 does not make much sense.

It is known that χb(G) ≤ t(G) for every graph G (Proposition 3.1). In Section 3.4 we dealt

with the question which graphs have a b-chromatic number close to its t-degree. Since

t(G) ≤ ∆(G) + 1, one should start to characterize graphs G whose b-chromatic number is

equal to ∆(G) + 1. When we restrict ourselves to regular graphs, we can formulate the

following problem:

Problem 5.2. Characterize the d-regular graphs G that satisfy χb(G) < d + 1 and those

that satisfy χb(G) = d+ 1.
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For d-regular bipartite graphs G with small values of d, namely, d ∈ {2, 3, 4}, we could

solve Problem 5.2 (compare Observation 3.4 and Propositions 3.38 – 3.40). For d-regular

bipartite graphs G with d ≥ 5, this problem is still open, but only in case that G̃ is

connected (compare Theorem 3.21 as well as Questions 3.1 and 3.2).

If G is a tree or a cactus with t-degree at least 7, then G satisfies t(G)− 1 ≤ χb(G) ≤ t(G)

(see Propositions 3.41 and 3.43). Since Halin graphs have a tree-like structure, it is very

likely that every Halin graph H satisfies t(H) − 1 ≤ χb(H) ≤ t(H). We already could

prove that χb(H) = t(H)− 1 if H is a pivoted Halin graph (Theorem 3.22). It remains to

investigate non-pivoted Halin graphs:

Question 5.2. Does every non-pivoted Halin graph H satisfies t(H)−1 ≤ χb(H) ≤ t(H)?

Chapter 4 mainly deals with the b-continuity and the b-spectrum of graphs. Since the

determination of the b-spectrum and even the decision whether a graph is b-continuous are

both NP−hard, one should investigate the b-continuity of graphs with simple structure at

first. We did this in Section 4.1 by verifying the b-continuity of graphs whose b-chromatic

number was determined in Section 3.2 and 3.3. After this, in Section 4.2 we listed all

b-continuous graph classes that are known so far and we proved the b-continuity of Halin

graphs (Theorem 4.1). Moreover, we posed a question and a conjecture on the b-continuity

of claw-free graphs and line graphs, respectively, that we want to raise here again:

Question 5.3. Does there exist a claw-free graph that is non-b-continuous?

Conjecture 5.1. Line graphs are b-continuous.

Since the last conjecture deals with line graphs, it makes sense to investigate b-edge color-

ings as well.

Definition 5.1. A b-edge coloring of a graph G by k colors is a proper edge coloring of G

such that there is an edge in each color class, which is adjacent to at least one edge in every

other color class. The b-chromatic index of a graph G, denoted by χ′b(G), is the largest

integer k such that there is a b-edge coloring of G by k colors.

Surprisingly, nobody ever considered b-edge colorings before, although there are many

papers concerning a-edge colorings of graphs. So, the edge version of b-colorings is surely

an interesting new field and a fruitful topic for future research.
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Definitions

1. A cactus is a connected graph in which any two cycles have at most one vertex in

common.

2. A clique is a set of pairwise adjacent vertices in G. The clique number of G, denoted

by ω(G), is the maximum order of a clique in G.

3. A graph G is cograph if G does not contain P4 as an induced subgraph.

4. The graph G = (V,E) is the complement of G = (V,E) if and only if every uv ∈ E
satisfies uv /∈ E(G).

5. The connectivity of G, denoted by κ(G), is the minimum size of the vertex set S,

so that G− S is disconnected or has only one vertex.

6. Let G = (V,E) and u, v ∈ V . Then the distance of u and v, denoted by d(u, v)

is the number of edges in a shortest path that connects u and v. The diameter,

denoted by diam(G), is maximum value of d(u, v) such that u, v ∈ V (G).

7. A graphH is a factor of G ifH is a subgraph of G with V (H) = V (G). A graphH is

an r-regular factor of G if H is a factor of G and r-regular (i.e δ(H) = ∆(H) = r).

8. The girth g := g(G) is the length of a shortest cycle in G.

9. An independent set is a set of pairwise non-adjacent vertices in G. The indepen-

dence number of G, denoted by α(G), is the maximum order of an independent set

in G.

10. Let G = (V,E) be a graph and W ⊆ V . Then we call the graph (W,F ) where

F = {uv : u, v ∈W ∧ uv ∈ E} the subgraph induced byW and denote it by G[W ].

We call H an induced subgraph of G if H ⊆ G and H = G[V (H)]. Let G and

H be two graphs. We say that G is H-free if G does not contain H as an induced

subgraph.

11. Let G1,...,Gr be graphs. The join G1 ⊕ ...⊕Gr is the graph defined by

– V (G1 ⊕ ...⊕Gr) = V (G1) ∪ ... ∪ V (Gr).
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– E(G1 ⊕ ...⊕Gr) = E(G1) ∪ ... ∪ E(Gr) ∪ {uv : u ∈ V (Gi) ∧ v ∈ V (Gj), for i, j ∈
{1, ..., r} and i 6= j}.

12. A matching is a set of pairwise non-adjacent edges in G. The matching number of

G, denoted by ν(G), is the maximum size of a matching in G.

13. A graph is d-regular if every vertex of G has degree equal to d.

14. A graph is P4-sparse if every set of five vertices contains at most one induced P4.

15. A graph G is called a split graph if there exists a partition V (G) = I ∪K such that

the subgraphs of G induced by I and K are empty and complete graphs, respectively.

16. A graph G′ = (V ′, E′) is called a subgraph of G if V ′ ⊆ V (G) and E′ ⊆ E(G). In

this case we write G′ ⊆ G.

17. A partner A of a P4 in G is a vertex v in V (G−A) such that A+ v induces at least

two P4’s. A graph G is P4-tidy if any P4 has at most one partner.
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