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1 Introduction

The focus of this thesis is on the hierarchical optimization problem

“min
x

”{F(x,y)| x ∈ X , y ∈ S(x)} (1.1)

commonly known as bilevel programming problem, where the upper-level player (leader) intends to
minimize his/her cost function F with respect to the variable x while taking into account the reaction y of
the lower-level player (follower). Here S : X ⊂ Rn ⇒ Rm is a set-valued mapping defined by

S(x) := argmin
y
{ f (x,y)| y ∈ K(x)}, (1.2)

which describes sets of optimal solutions of the lower-level parametric optimization problem

min
y
{ f (x,y)| y ∈ K(x)} (1.3)

for any given choice x ∈ X of the leader. The sets X and K(x) are usually called upper-level and lower-
level feasible sets, respectively. For simplicity in expressing the main ideas, we confine ourselves to the
case where the upper and lower-level constraint sets are given explicitly as

X := {x ∈ Rn| G(x)≤ 0} and K(x) := {y ∈ Rm| g(x,y)≤ 0}, (1.4)

respectively, with G : Rn → Rk and g : Rn ×Rm → Rp. Furthermore, all the functions involved are
assumed to be continuously differentiable. Nonetheless, discussions are provided on how to extend most
of the results to the case of equality and other types of constraints as well as to the case of nonsmooth
functions via appropriate subdifferential constructions. Also recall that F : Rn×Rm→ R and f : Rn×
Rm→ R are (single-valued) upper-level and lower-level objective/cost functions, respectively.

One way to understand the general bilevel program (1.1) is to treat it as the following set-valued
optimization problem:

min
x∈X

F(x,S(x)) :=
⋃

y∈S(x)

{F(x,y)}, (1.5)

where the minimization is considered with respect to some ordering cone. Such an approach is discussed
in [29] while related developments are given in [4, 7, 121] to derive necessary optimality conditions
for multiobjective bilevel programs. In order to investigate problem (1.1) from the viewpoint of scalar-
objective optimization, observe that (1.5) becomes a usual optimization problem

min {F(x,S(x))| x ∈ X} (1.6)

provided that S(x) is single-valued for all x ∈ X ; see [21] and the references therein for details on al-
gorithms and necessary optimality conditions via this approach. It is worth mentioning that the main
difficulty in both approaches (1.5) and (1.6) is the implicit nature of the objective.

If we can not ensure the uniqueness of optimal solutions for the lower-level problem (1.3), it has been
noted earlier (see, e.g., [21]) that the formulation of problem (1.1) is ambiguous from the view point of
scalar-objective optimization. This is the reason for the quotation marks in (1.1). To overcome this, two
main approaches have been suggested in the literature. On one hand, we have the optimistic formulation

(Po) min
x∈X

ϕo(x) := min
y
{F(x,y)| y ∈ S(x)}. (1.7)
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From the economics viewpoint this corresponds to a situation where the follower participates in the
profit of the leader, i.e., some cooperation is possible between both players on the upper and lower levels.
However, it would not always be possible for the leader to convince the follower to make choices that
are favorable for him or her. Hence it is necessary for the upper-level player to bound damages resulting
from undesirable selections on the lower-level. This gives the pessimistic formulation of the bilevel
optimization problem as follows:

(Pp) min
x∈X

ϕp(x) := max
y
{F(x,y)| y ∈ S(x)}. (1.8)

The latter problem is a special class of minimax problems. Static minimax problems, corresponding
in our case to a situation where the feasible set of the inner problem S(x) is independent of x, have
been intensively investigated in the literature; see, e.g., [39, 112, 113]. At the same time, it has been
well recognized that when S(x) stands for varying sets of solutions to another optimization problem,
the pessimistic formulation above faces many challenges. Some of them are highlighted in [21] and the
references therein.

The optimistic formulation (Po) is much simpler to handle and has therefore been the most investigated,
however in the simplified version

(P) min
x,y
{F(x,y)| x ∈ X , y ∈ S(x)}, (1.9)

where the difficulty in (Po) is shifted from the objective to the constraints. Problem (P) that we label here
as classical/auxiliary bilevel program has concentrated the most attention in the literature where very of-
ten it is simply called “bilevel optimization problem” or “optimistic bilevel optimization problem”. Three
monographs have been devoted to it by Shimizu et al. [113], Bard [5] and Dempe [21]. About 50 pages
of the Encyclopedia [52, Pages 135-185] provide a thorough overview on the theory and applications of
problem (P). A more recent overview on the problem is provided by Colson et al. [18]. An annotated
bibliography on bilevel optimization, mostly devoted to (P) and the related mathematical programs with
equilibrium constraints (MPECs) is given by Dempe [22]. An earlier bibliography review was given
by Vicente and Calamai [115] which includes discussions on the more general multilevel programming
problem. The books by Luo et al. [77] and Outrata et al. [101] on MEPCs are also important sources of
information as far as problem (P) is concerned.

Obviously, problem (P) and the original optimistic bilevel program (Po) are equivalent when global
solutions are in question. We show in Chapter 5 (see Section 5.3) that a local optimal solution of problem
(Po) corresponds to a local optimal solution of (P) without any assumption. However, it is very easy to
find examples where a local optimal solution of (P) does not generate a local optimal solution of (Po), cf.
Section 5.3. Thus we also show in the latter section that a local optimal solution of (P) corresponds to
that of (Po) under a rather strong condition, namely, the inner semicontinuity of the solution map related
to the value function in (1.7). This clearly means that there is a big gap between the original optimistic
bilevel optimization problem (Po) and the auxiliary model (P), most importantly because they are both
nonconvex optimization problems, thus finding local optimal solutions is the most likely achievable goal
in practical solution methods.

As far as (Po) and (Pp) are concerned, it is also easy to construct examples of bilevel programs where
(Po) has an optimal solution while (Pp) does not have any. Even when both problems have optimal
solutions, they may differ from each other; see, e.g., [21, 73] for more discussions. In contrary to (P),
problems (Po) and (Pp) have been given very little attention in the literature. For some algorithmic issues
in particular classes of problem (Pp) we refer the reader to [10, 73, 74] and the bibliographies therein.
For the first time, a detailed investigation on necessary optimality conditions for the original optimistic
formulation (Po) is conducted in [31] and in [30] for the pessimistic problem (Pp). Before, we were
not familiar with any work on optimality conditions, apart from [19], where several reformulations of
(Pp) were suggested and necessary conditions are derived in terms of the coderivative of certain set-
valued mappings in some special cases. In [21, Chapter 3] some optimality conditions are suggested
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for the linear pessimistic bilevel programming problem while assuming among other things that the
functions ϕo and ϕp coincide at the reference point. It has been well recognized that the optimistic and
pessimistic reformulations of the bilevel program (1.1) are optimization problems with objectives of the
marginal/value function type. In fact, in both cases (Po) and (Pp) the objectives are described by two-level
value function, i.e., as the optimal value function of a parametric optimization problem partly constrained
by another one. Most of the material in Chapters 4–6 of this thesis is drawn from the articles [30, 31].

Clearly, one of the main concerns of the thesis is to further the understanding of the bilevel program-
ming problem (1.1) while providing a unified framework for the three major reformulations (P), (Po) and
(Pp) spread throughout the literature. Most attention here is given to necessary optimality conditions. Let
us recall that the first attempt to derive optimality conditions in bilevel programming (precisely for (P))
was made in 1984 by Bard [5]. Later, part of his results were shown to contain an error [15]. Considering
the case where the lower-level problem is strongly stable, first results were obtained by Dempe [20] (in
a primal form) and by Outrata [99] (in a dual form) via the implicit function approach (1.6). Results on
optimality conditions accommodating nonunique lower-level solution mappings can be dated back to the
papers by Ye and Zhu [128] and Chen and Florian [13]. In both papers, the so-called lower-level value
function (LLVF) reformulation, introduced by Outrata [98] for the purpose of a numerical method, is
considered. In the paper [13] the authors later switch to the classical KKT reformulation. Hence, the first
result of KKT-type necessary optimality conditions for (P) via the LLVF reformulation are due to Ye and
Zhu [128]. Since then this reformulation has attracted a lot of interest, see e.g. [2, 26, 27, 91, 129, 130]
and their references for a number of important contributions. Chen and Florian [13] are also credited to
be among the first to have pointed out the failure of some well-known CQs for a class of problem (P).

The next chapter presents basic notions and results of variational analysis and generalized differen-
tiation widely used in the subsequent chapters. A general background on optimization problems with
geometric and operator constraints is also provided in this chapter. In Chapter 3, the theory on necessary
optimality conditions for (P) is revisited strictly from the view point of nonsmooth and variational anal-
ysis, especially via the generalized differentiation calculus rules by Boris Mordukhovich. We consider
the three major one-level representations of the problem, i.e. the LLVF, KKT and OPEC (optimization
problem with generalized equation constraints) reformulations. The material in this chapter, mostly taken
from the articles [35, 33, 34], is at the heart of the developments in the thesis, in the sense that the refor-
mulations and stationarity concepts discussed here pave the way for a full understanding of Chapters 5
and 6 devoted to the original optimistic and pessimistic problems, respectively.

Chapter 4 is mainly concerned with sensitivity analysis of OPCC (optimization problems with com-
plementarity constraints) and OPEC value functions. Here we derive upper estimates of the limiting sub-
differential for such functions from various perspectives, depending on the type of optimality/stationary
conditions of interest for the the original bilevel model (Po). It should be mentioned that the results in
Section 4.1 can stand on their own. Indeed, they also provide efficient rules to obtain estimates of the
coderivative and the fulfillment of the Lipschitz-like property for mappings of special structures (inequal-
ity and equality systems with complementarity constraints) important for other classes of optimization-
related problems, not just for bilevel programming. Sensitivity analysis of OPEC value functions, which
is of its own interest as well, is conducted in Section 4.2. This chapter is a real intersection between
Chapter 3 and 5 as it provides background for a second approach to generate the necessary optimality
conditions obtained in the Chapter 3 via the coderivative estimates of the lower-level solution set-valued
mapping. On the other hand it provides sensitivity results for value functions readily applicable to stabil-
ity analysis of the two-level value function, which then lead to the corresponding stationarity conditions
for (Po) in Chapter 5.

Part of Chapter 5 (see Subsection 5.1.1) mainly deals with applications of the results from the pre-
vious chapter to sensitivity analysis of the two-level value function ϕo (1.7) via the OPCC and OPEC
approaches. Secondly, in Subsection 5.1.2, we develop lower-level value function approach to analyze
ϕo. Here a detailed discussion is given on rules to derive subdifferential estimates and establish the local
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Lipschitz continuity of ϕo from a perspective completely different from the previous ones. In the con-
cluding section of this chapter we employ the results obtained above to deriving necessary optimality
conditions for the original optimistic formulation (Po) in the various forms of stationarity concepts.

In Chapter 6, we consider the pessimistic bilevel programming problem (Pp). One major difficulty
to handle this problem relates to the fact that the objective function ϕp in (1.8) is usually only upper
semicontinuous, which makes it hard to detect optimal solutions by using the conventional “lower sub-
differential" objects that work well for lower semicontinuous functions. Secondly, observe that (Pp) is a
special minimax problem. Although many publications have been devoted to optimality conditions for
the latter class of problem, most of them can not be applied to our pessimistic program because the cor-
responding inner problem max

y
{F(x,y)|y ∈ S(x)} violates the imposed constraint qualifications (CQs).

In this chapter we develop two approaches to establish necessary optimality conditions for pessimistic
bilevel programs. Our first approach to derive lower (i.e., conventional) subdifferential optimality con-
ditions for (Pp) is to get the lower semicontinuity of the two-level value function ϕp by constructing
frameworks where it is actually locally Lipschitz continuous. This would be possible by applying the
results obtained in Chapter 5 for the two-level value function approach of the optimistic problem (Po).
Thus we obtain various types of first-order necessary optimality conditions via the LLVF and KKT refor-
mulations of ϕp. The second approach considered in Section 6.3 seems to be more suitable for particular
structures of the pessimistic program. Namely, we derive the so-called upper subdifferential optimality
conditions for (Pp) in the sense of [84], which do not just require the function ϕp to be lower semi-
continuous, but eventually leads to much stronger necessary optimality conditions in certain important
settings.

Chapter 7 deals with applications of bilevel programming in transportation. After providing a general
introduction to the field, we focus on deriving stationarity conditions for two representative problems,
i.e. the bilevel road pricing problem and the Origin-Destination (O-D) matrix adjustment problem. Using
material from Chapter 3, we develop implementable necessary optimality conditions for the road pricing
problem containing all the necessary information. The issue of estimating the (fixed) demand required
for the road pricing problem is a quite difficult problem which has been also addressed in recent years
using bilevel programming. Thus we show how the ideas used in the previous case can be applied to
obtain optimality conditions for the O-D matrix estimation problem. The material here is drawn from the
articles [35, 36].
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2 Preliminaries

2.1 Background material

In this section we introduce the basic tools from variational analysis that will be used throughout the
thesis. The generalized differentiation objects that will be mostly utilized are the subdifferentials, normal
cones and coderivatives by Mordukhovich. However, their interrelations with the corresponding Fréchet
and Clarke nonsmooth tools will often be needed. More details on the material briefly discussed here
can be found in the books [16, 89, 109, 111] and the references therein. Let us start by recalling that
the notion of Painlevé-Kuratowski outer/upper limit plays a central role in variational analysis when
evaluating nearby values of a given set-valued mapping around a reference point. It is defined for a
set-valued mapping Ψ : Rn ⇒ Rm as x→ x̄ by

Limsup
x→x̄

Ψ(x) := {v ∈ Rm|∃xk→ x̄, vk→ v with vk ∈Ψ(xk) as k→ ∞}. (2.1)

2.1.1 Subdi�erentials

Given an extended real-valued function ψ : Rn→ R := (−∞,∞], the Fréchet/regular (lower) subdiffer-
ential of ψ at x̄ ∈ domψ := {x ∈ Rn|ψ(x)< ∞} is given by

∂̂ψ(x̄) :=
{

v ∈ Rn|liminf
x→x̄

ψ(x)−ψ(x̄)−〈v,x− x̄〉
‖x− x̄‖

≥ 0
}

whereas the the Fréchet upper subdifferential of ψ at x̄ ∈ domψ is defined by

∂̂
+

ψ(x̄) :=−∂̂ (−ψ)(x̄). (2.2)

The basic/Mordukhovich (lower) subdifferential of ψ at x̄∈ domψ is defined via the Kuratowski-Painlevée
upper limit (2.1) by

∂ψ(x̄) := Limsup
x→x̄

∂̂ψ(x), (2.3)

while its upper counterpart ∂+ψ can be defined analogously to (2.2) via the above lower basic subdiffer-
ential (2.3)

∂
+

ψ(x̄) :=−∂ (−ψ)(x̄). (2.4)

Provided the function ψ is Lipschitz continuous around x̄ ∈ domψ the convexified/Clarke subdifferential
can be defined by

∂̄ψ(x̄) := co∂ψ(x̄), (2.5)

where “co" stands for the convex hull of the set in question. Thanks to this link between the basic and
convexified subdifferentials, we have the following convex hull property which plays a determinant role
in this thesis:

co∂ (−ψ)(x̄) =−co∂ψ(x̄). (2.6)

For this equality to hold, ψ should be Lipschitz continuous near x̄.
If the function ψ is strictly differentiable at x̄, that is

lim
v→x̄, x→x̄

ψ(v)−ψ(x)−〈∇ψ(x̄),v− x〉
‖v− x‖

= 0 (2.7)
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(with ∇ψ(x̄) denoting the classical gradient of ψ at x̄), then we have

∂̄ψ(x̄) = ∂̂ψ(x̄) = ∂ψ(x̄) = {∇ψ(x̄)}. (2.8)

It is worth mentioning that these three subdifferentials also coincide with the the subdifferential in the
sense of convex analysis provided ψ is convex, precisely, if the latter holds, then we have

∂̄ψ(x̄) = ∂̂ψ(x̄) = ∂ψ(x̄) := {v ∈ Rn|ψ(x)−ψ(x̄)≥ 〈v,x− x̄〉,∀x ∈ Rn}. (2.9)

Also of importance, note that every function which is locally Lipschitzian around x̄ is strictly differen-
tiable at x̄ provided that its basic subdifferential (2.3) is a singleton.

The function ψ is said to be lower (resp. upper) regular at x̄ if one has

∂̂ψ(x̄) = ∂ψ(x̄) (resp. ∂̂
+

ψ(x̄) = ∂
+

ψ(x̄)). (2.10)

Obviously, ψ is upper regular if and only if −ψ is lower regular at the point in question. Also note that
if ψ is strictly differentiable at x̄ then it is upper and lower level regular, cf. (2.8). On the other hand the
function ψ is lower (resp. upper) level regular provided it is convex (resp. concave), cf. (2.9). For the
remainder of this thesis, recall that by convention, if x̄ /∈ domψ , then we have

∂̄ψ(x̄) = ∂̂ψ(x̄) = ∂ψ(x̄) = /0.

However, in case ψ is Lipschitz continuous around x̄, then ∂ψ(x̄) is nonempty and compact. In general
though for a given function ψ : Rn→ R := (−∞,∞], we always have

∂̂ψ(x̄)⊆ ∂ψ(x̄)⊆ ∂̄ψ(x̄). (2.11)

The most important subdifferential calculus rules, that will also be useful in this thesis, are the sum
and chain rules. Consider two functions ψ1 and ψ2 which are locally Lipschitz continuous around x̄, and
let λ1 and λ2 be two nonnegative real numbers. Then we have the sum rule

∂ (λ1ψ1 +λ2ψ2)(x̄)⊆ λ1∂ψ1(x̄)+λ2∂ψ2(x̄), (2.12)

where equality holds if ψ1 or ψ2 is continuously differentiable at x̄ [87, Corollary 4.6]. As for the chain
rule, let ψ1 : Rn→ Rm be Lipschitz continuous around x̄, and ψ2 : Rm→ R̄ Lipschitz continuous around
ȳ = ψ1(x̄) ∈ domψ2. Then we have

∂ (ψ2 ◦ψ1)(x̄)⊆
⋃{

∂ 〈u,ψ1〉(x̄)
∣∣ u ∈ ∂ψ2(ȳ)

}
, (2.13)

cf. [83, Proposition 2.10]. More details on these results and related properties can be found in the papers
[83, 87] and also the books [89, 109].

2.1.2 Normal cones

Given a nonempty set Ω⊆ Rn, the basic/Mordukhovich normal cone to it at x̄ ∈ Ω corresponding to the
subdifferential construction (2.3) is defined by

NΩ(x̄) := Limsup
x→x̄(x∈Ω)

N̂Ω(x) (2.14)

via the outer limit (2.1) of the regular counterpart

N̂Ω(x) :=
{

v ∈ Rn| limsup
u→x(u∈Ω)

〈v,u− x〉
‖u− x‖

≤ 0
}

(2.15)
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at points x ∈ Ω near x̄. Note that for sets Ω ⊆ Rn locally closed around x̄ the given definition (2.14)
reduces to the original one

NΩ(x̄) = Limsup
x→x̄

[cone(x−ΠΩ(x))].

introduced in [85], where the symbol “cone" stands for the conic hull of the corresponding set, and where
Π denotes the Euclidean projection on the set in question. The convexified/Clarke normal cone is defined
via the convex closure of the basic normal cone by

NΩ(x̄) := clcoNΩ(x̄). (2.16)

Consider the Boulingand/contingent and Clarke’s tangent cone, respectively, to Ω at some point x̄ ∈ Ω

defined by

TΩ(x̄) := {u ∈ Rn| ∃tk ↓ 0, uk→ u : x̄+ tkuk ∈Ω},
T Ω(x̄) := {u ∈ Rn| ∀tk ↓ 0, xk→ x̄ (xk ∈Ω); ∃uk→ u : xk + tkuk ∈Ω}. (2.17)

Then according to [109, Theorem 6.28] and [16], respectively, the regular and convexified normal cones
can also be obtained as the polar of the Boulingand and the Clarke tangent cones, respectively:

N̂Ω(x̄) = {v ∈ Rn|〈v,u〉 ≤ 0, ∀u ∈ TΩ(x̄)},
NΩ(x̄) = {v ∈ Rn|〈v,u〉 ≤ 0, ∀u ∈ T Ω(x̄)}.

(2.18)

Furthermore, the regular and the convexified normal cones are always convex sets, while the basic normal
cone is in general nonconvex. For this reason the latter cone cannot be polar to any tangential approxi-
mation of Ω [89]. Note however that the basic normal cone possesses full calculus (cf. e.g. [89, 109]),
which is not the case for the other cones. Moreover we always have the following chain of inclusion at
any point x̄ ∈Ω

N̂Ω(x̄)⊆ NΩ(x̄)⊆ NΩ(x̄). (2.19)

Hence, proceeding with the basic normal cone one obtains sharper optimality conditions as with the
convexified one. In case the set Ω is convex, all the above normal cones coincide with the normal cone
in the sense of convex analysis; this corresponds to the normal cone counterpart of (2.9):

N̂Ω(x̄) = NΩ(x̄) = NΩ(x̄) = {v ∈ Rn| 〈v,u− x̄〉 ≤ 0, ∀u ∈Ω}. (2.20)

Using the normal cone (2.14), we can equivalently describe the basic subdifferential (2.3) by

∂ψ(x̄) = {v ∈ Rn|(v,−1) ∈ Nepiψ(x̄,ψ(x̄))} (2.21)

for lower semicontinuous (l.s.c.) functions via the normal cone to the epigraph of ψ (denoted by epiψ).
Similarly, the singular subdifferential of ψ at x̄ ∈ domψ can be defined

∂
∞

ψ(x̄) := {v ∈ Rn|(v,0) ∈ Nepiψ(x̄,ψ(x̄))}. (2.22)

It is worth mentioning that for a function ψ l.s.c. around x̄, we have ∂ ∞ψ(x̄) = {0} if and only if ψ is
locally Lipschitzian around this point. Analogously to (2.21) the regular and convexified normal cones
can equivalently be defined via the regular (2.15) and convexified (2.16) normal cones, respectively.

We now conclude this subsection by recalling some useful properties related to normal cones. A set Ω

will be said to be regular at a point x̄ ∈Ω if we have

NΩ(x̄) = N̂Ω(x̄), (2.23)

which is obviously the case if Ω is a convex set (2.20). For completeness note that analogously to (2.11),
it is a convention that all the above normal cones be empty provided x̄ /∈ Ω, while for x̄ ∈ intΩ, they all
coincide with the origin of the space {0}.
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2.1.3 Coderivatives

In this subsection we consider a set-valued mapping Ψ : Rn ⇒ Rm and its graph

gphΨ := {(x,y) ∈ Rn×Rm|y ∈Ψ(x)}.

The Mordukhovich coderivative of Ψ at (x̄, ȳ) ∈ gphΨ introduced in [88] is a positively homogeneous
mapping D∗Ψ(x̄, ȳ) : Rm ⇒ Rn defined by

D∗Ψ(x̄, ȳ)(v) := {u ∈ Rn|(u,−v) ∈ NgphΨ(x̄, ȳ)} for v ∈ Rm, (2.24)

via the normal cone (2.14) to the graph of Ψ. If Ψ is single-valued and locally Lipschitzian around x̄, its
coderivative can be represented analytically as

D∗Ψ(x̄)(v) = ∂ 〈v,Ψ〉(x̄) for v ∈ Rm,

via the basic subdifferential (2.3) of the Lagrange scalarization 〈v,Ψ〉(x) := 〈v,Ψ(x)〉, where the com-
ponent ȳ (= Ψ(x̄)) is omitted in the coderivative notation for single-valued mappings. This implies the
coderivative representation

D∗Ψ(x̄)(v) = {∇Ψ(x̄)>v} for v ∈ Rm,

when Ψ is strictly differentiable at x̄ as in (2.8) with ∇Ψ(x̄) standing for its Jacobian matrix at x̄ and
with the symbol “>" standing for transposition. Similarly, the Fréchet/regular and Clarke/convexified
coderivatives can respectively be defined as

D̂∗Ψ(x̄, ȳ)(v) := {u ∈ Rn|(u,−v) ∈ N̂gphΨ(x̄, ȳ)} for v ∈ Rm,

D∗Ψ(x̄, ȳ)(v) := {u ∈ Rn|(u,−v) ∈ NgphΨ(x̄, ȳ)} for v ∈ Rm,
(2.25)

via the regular (2.15) and convexified (2.16) normal cones, respectively. Details on these three coderiva-
tive concepts and relationships between them can be found in [87, 89].

2.1.4 Continuity concepts of set-valued mappings

Throughout this subsection we consider a set-valued mapping Ψ : Rn ⇒ Rm. If Ψ is a positively homo-
geneous mapping, its outer norm (resp. inner norm) is defined by

‖Ψ‖+ := sup
x∈B

sup
u∈Ψ(x)

‖u‖
(
resp. ‖Ψ‖− := sup

x∈B
inf

u∈Ψ(x)
‖u‖
)
. (2.26)

Moreover, considering a cone C, the restricted inner norm of Ψ on C defined by

‖Ψ|C‖− := sup
x∈B∩C

inf
u∈Ψ(x)

‖u‖ (2.27)

will also play an important role in what follows. In (2.26) and (2.27), B stands for the unit ball in Rn.
Inner semicompactness. Ψ is inner semicompact at x̄ with Ψ(x̄) 6= /0 if for every sequence xk → x̄ with
Ψ(xk) 6= /0 there is a sequence of yk ∈Ψ(xk) that contains a convergent subsequence as k→∞. It follows
that the inner semicompactness holds in finite dimensions whenever Ψ is uniformly bounded around x̄,
i.e., there exists a neighborhood U of x̄ and a bounded set Ω⊆ Rm such that

Ψ(x)⊆Ω for all x ∈U. (2.28)

The inner semicompactness of Ψ at x̄ is also automatical, provided the following inner semicontinuity is
satisfied at (x̄, ȳ) ∈ gphΨ.
Inner semicontinuity. The mapping Ψ is inner semicontinuous at (x̄, ȳ) ∈ gphΨ if for every sequence
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xk→ x̄ there is a sequence of yk ∈Ψ(xk) that converges to ȳ as k→∞. If Ψ is inner semicompact at x̄ and
Ψ(x̄) = {ȳ}, then Ψ is inner semicontinous at (x̄, ȳ). The latter property reduces to the usual continuity for
single-valued mappings while in the general set-valued case it is implied by the Lipschitz-like property
of Ψ around (x̄, ȳ) ∈ gphΨ.

Lipschitz-like/Aubin property. Ψ is Lipschitz-like around (x̄, ȳ) ∈ gphΨ if there are neighborhoods U of
x̄, V of ȳ, and a constant ` > 0 such that

Ψ(x)∩V ⊆Ψ(u)+ `‖x−u‖B for all x,u ∈U, (2.29)

with B denoting the unit ball in Rm. When V = Rm in (2.29), this property reads as to the classical
local Lipschitz continuity of Ψ around x̄. A complete characterization of the Lipschitz-like property
(2.29), and hence a sufficient condition for the inner semicontinuity of Ψ at (x̄, ȳ), is given for closed-
graph mappings by the following coderivative/Mordukhovich criterion (see [89, Theorem 4.10] and [109,
Theorem 9.40]):

D∗Ψ(x̄, ȳ)(0) = {0}. (2.30)

Furthermore, the infimum of all ` > 0 for which (2.29) holds, also known as the Lipschitz modulus of Ψ

at (x̄, ȳ), is given via the outer norm of the coderivative of Ψ (2.26):

lipΨ(x̄, ȳ) := inf{` ∈ (0,∞)| (2.29) holds for some U and V}= ‖D∗Ψ(x̄, ȳ)‖+. (2.31)

Calmness property. Ψ will be said to be calm at some point (x̄, ȳ) ∈ gphΨ, if there exist neighborhoods
U of x̄, V of ȳ, and a constant ` > 0 such that

Ψ(x)∩V ⊆Ψ(x̄)+ `‖x− x̄‖B for all x ∈U. (2.32)

Clearly, if we fix x = x̄ in (2.29), we get (2.32). Thus Ψ is automatically calm at (x̄, ȳ), if it Lipschitz-like
around the same point. Moreover if V = Rm in (2.32), the resulting property corresponds to the upper
Lipschitz property of Robinson [106]. An equivalent formulation of relationship (2.32) that will often be
used in this thesis is:

d(y,Ψ(x̄))≤ `‖x− x̄‖ for all x ∈U and y ∈Ψ(x)∩V, (2.33)

cf. e.g. [61]. A similar reformulation corresponding to the Lipschitz-like property (2.29) is self-evident.
Similarly to (2.31), the calmness modulus of Ψ at the point (x̄, ȳ) can be expressed in terms of the
restricted inner norm of the coderivative of Ψ (2.27):

calΨ(x̄, ȳ) := inf{` ∈ (0,∞)| (2.32) holds for some U and V}
= limsup

u∈Ψ(x̄), u→ȳ
‖D∗Ψ(x̄,u)|−N̂Ψ(x̄)(u)

‖−, (2.34)

provided Ψ is weakly L-subsmooth, which holds in particular if the graph of Ψ is convex, cf. [134,
Corollary 4.10]. For more details on the latter estimate of the calmness modulus and the definition of
L-subsmooth and weakly L-subsmooth mappings, see the paper [134].
Local upper Lipschitzian selection. First recall that a function f : D ⊆ Rn → Rm is local upper Lips-
chitzian at x̄ (in the sense of Robinson [107]) if there is a neighborhood U of x̄ and a constant `≥ 0 such
that

‖ f (x)− f (x̄)‖ ≤ `‖x− x̄‖ for all x ∈U ∩D. (2.35)

A set-valued mapping Ψ : D ⊆ Rn ⇒ Rm is said to admit a local upper Lipschitzian selection at (x̄, ȳ)
if there is a single-valued mapping f : D ⊆ Rn → Rm, which is local upper Lipschitzian at x̄ satisfying
f (x̄) = ȳ and f (x) ∈Ψ(x) for all x ∈ D in a neighborhood of x̄.
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2.2 A general optimization problem

We first consider the optimization problem with the very general geometric constraint

min { f (x)| x ∈Ω}, (2.36)

where the function f : Rn→ R and the set Ω⊆ Rn. Next we provide the upper subdifferential necessary
optimality condition (2.37) and the lower subdifferential necessary optimality condition (2.39), in the
sense of Mordukhovich, see [84, Theorem 3.1] or [89, Chapter 5].

Theorem 2.2.1 (upper and lower subdifferential necessary optimality conditions under a geometric con-
straint). Let x̄ be a local optimal solution to problem (2.36) with | f (x̄)|<∞. Then the following assertions
are satisfied:

(i) The following upper subdifferential necessary optimality condition is automatical:

−∂̂
+ f (x̄)⊆ N̂Ω(x̄). (2.37)

(ii) If in addition, f is lower semicontinuous, Ω is closed around x̄ and the qualification condition

∂
∞ f (x̄)∩ (−NΩ(x̄)) = {0} (2.38)

holds at x̄, which is the case, in particular, when f is Lipschitz continuous around x̄. Then, we have the
following lower subdifferential necessary optimality condition:

0 ∈ ∂ f (x̄)+NΩ(x̄). (2.39)

Clearly, the lower subdifferential necessary optimality condition (2.39) is the necessary optimality
condition of problem (2.36) in the usual sense. Hence, from time to time, the prefix “lower subdifferen-
tial” will be omitted when such conditions are investigated. However, the upper subdifferential necessary
optimality condition (2.37) appears to be usually stronger, as it will be clear in Chapter 6, in the context
of the pessimistic bilevel optimization problem. More details on these optimality conditions and related
commentaries are provided in [84] (also see [89, Chapter 5]). In the the next subsection, we focus our
attention on lower subdifferential necessary optimality conditions of a problem with operator constraint
in the sense of Mordukhovich [84]. Results on upper subdifferential necessary optimality conditions of
such a problem can also be found in [84, 89].

2.2.1 Problem with operator constraint

In this subsection, we consider the optimization problem with operator constraint

min { f (x)| x ∈Ω∩ψ
−1(Λ)}, (2.40)

where f : Rn→R and ψ : Rn→Rm are locally Lipschitz continuous functions, and the sets Ω⊆Rn, Λ⊆
Rm are closed. Obviously, since f is locally Lipschitz continuous, condition (2.38) holds at any reference
point. Nonetheless, with the structure of the feasible set in (2.40), a constraint qualification (CQ) is
needed in order to derive detailed KKT type dual optimality conditions in terms of problem data. The
basic CQ defined at a feasible point x̄ of problem (2.40) by

0 ∈ ∂ 〈u,ψ〉(x̄)+NΩ(x̄)
u ∈ NΛ(ψ(x̄))

}
=⇒ u = 0 (2.41)

is one of the most powerful CQs in optimization. It is in fact generic and stable in the sense that if it
holds at a point x̄, it also holds at all the points of some neighborhood of the same point. Moreover the
satisfaction of CQ (2.41) implies that the corresponding set of Lagrange multipliers is nonempty and
bounded. The basic CQ was introduced in [86] and studied for example in [82, 109, 108]. Interesting
results on this CQ and related extensions can also be found in the papers [58, 70].
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Remark 2.2.2 (basic CQ and MFCQ). If we set Ω := Rn, Λ := Rl
− × {0m−l} while the function ψ

is a continuously differentiable function at x̄, then the basic CQ coincides with the dual form of the
well-known Mangasarian-Fromovitz constraint qualification (MFCQ) [56]. Hence, the basic CQ is a
generalization of the MFCQ to the optimization problem with operator constraint.

The following perturbation map Ψ : Rm ⇒ Rn of the operator constraint will play a central role in
generating the necessary optimality conditions for the bilevel optimization problem in this thesis:

Ψ(u) := {x ∈Ω| ψ(x)+u ∈ Λ}. (2.42)

The next lemma, which is a consequence of [87, Theorem 6.10] and [82, Corollary 4.2], shows that this
set-valued mapping is Lipschitz-like at (0, x̄) ∈ gphΨ provided the basic CQ is satisfied at x̄.

Lemma 2.2.3 (variational properties of Ψ (2.42)). Consider x̄ ∈Ψ(0), then we have

D∗Ψ(0, x̄)(v)⊆ {u ∈ NΛ(ψ(x̄))|− v ∈ ∂ 〈u,ψ〉(x̄)+NΩ(x̄)} (2.43)

and the following chain of implications is also satisfied:

basic CQ at x̄ =⇒ Ψ is Lipschitz-like at (0, x̄) =⇒ Ψ is calm at (0, x̄). (2.44)

Since we are only interested in deriving necessary optimality conditions for local optimal solutions, it
is important to show that the Lipschitz-like and calmness properties defined in the previous section are
locally preserved for the set-valued mapping Ψ (2.42).

Lemma 2.2.4 (local preservation of Lipschitz and calmness properties). Let x̄ ∈ Ψ(ū) and let V be a
neighborhood of x̄. If Ψ (2.42) is calm (resp. Lipschitz-like) at (ū, x̄), then the set-valued mapping

ΨV (u) := {x ∈Ω∩V | ψ(x)+u ∈ Λ} (2.45)

is also calm (resp. Lipschitz-like) at (ū, x̄).

Proof. Let us set ψu(x) := ψ(x)+u. Then we have Ψ(u) = Ω∩ψ−1
u (Λ) and ΨV (u) =V ∩Ω∩ψ−1

u (Λ).
Hence the result follows from the definition of calmness (2.32) (resp. Lipschitz-like property (2.29)),
while noting that for A,B and C ⊆ Rn, A⊆ B =⇒ A∩C ⊆ B∩C.

We are now ready to state a KKT type optimality condition for problem (2.40) under the basic CQ.
The technique utilized in the proof is inspired by [127, Lemma 3.1], in the framework of an optimization
problem with a generalized equation constraint (OPEC). For the latter class of optimization problems,
this approach has also been used in [89, 133]. The statement of this result and many proofs exist in the
literature, cf. [43, 59, 89, 109, 108]; but we were unable to find any reference where the multiplier vector
u is bounded, except as already mentioned, for an OPEC. Hence, the reason why we include the proof
here.

Proposition 2.2.5 (necessary optimality conditions in an optimization problem with operator constraint).
Let x̄ be a local optimal solution of problem (2.40) and assume that EITHER the basic CQ (2.41) holds at
x̄ OR the set-valued mapping Ψ (2.42) is calm at (0, x̄). Then, there exists µ > 0 such that for any r ≥ µ ,
one can find u ∈ rB∩NΛ(ψ(x̄)) such that we have

0 ∈ ∂ f (x̄)+∂ 〈u,ψ〉(x̄)+NΩ(x̄). (2.46)

Proof. Since the basic CQ implies the calmness property (2.44), it suffices to provide the proof under
the latter condition. Without loss of generality, let x̄ be an optimal solution of problem (2.40) in a
closed neighborhood V of x̄. By Lemma 2.2.4, the mapping ΨV (2.45) is calm at (0, x̄). Denote by
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`V := calΨV (0, x̄) its calmness modulus (2.34) and let ` f be the Lipschitz modulus of the objective
function f . We claim that for any r ≥ µ := `V ` f , the point (0, x̄) is a local optimal solution of the
problem

min
u,x

{
fr(u,x) := f (x)+ r‖u‖

∣∣ (u,x) ∈ gphΨV
}
. (2.47)

In fact, note that by the definition of the calmness of ΨV (2.45), there exist neighborhoods U1 of 0 and V1
of x̄ such that ∀u ∈U1, ∀x ∈Ψ(u)∩V1, we can find v ∈ΨV (0) with

‖x− v‖ ≤ `V‖u‖. (2.48)

In addition we have f (x̄) ≤ f (v), since v ∈ ΨV (0) = Ω∩V ∩ψ−1(Λ). Now, let r ≥ µ and consider a
point (u,x) ∈ gphΨV ∩ (U1×V1), then it follows that

fr(0, x̄) = f (x̄) ≤ [ f (v)− f (x)]+ f (x)
≤ ` f ‖x− v‖+ f (x) (cf. Lipschitz continuity of f )
≤ `V ` f ‖u‖+ f (x)≤ fr(u,x) (cf. inequality (2.48)).

Applying Theorem 2.2.1 (ii) to problem (2.47), we have the following condition while taking into account
the Lipschitz continuity of f :

(0,0) ∈ rB×∂ f (x̄)+NgphΨV (0, x̄).

Hence, there exist u ∈ rB and x ∈ ∂ f (x̄) such that we have (−u,−x) ∈ NgphΨV (0, x̄). It follows from the
definition of the coderivative (2.24) and the inclusion (2.43), that we have the inclusions −u ∈ NΛ(ψ(x̄))
and −x ∈ ∂ 〈−u,ψ〉(x̄)+NΩ(x̄), which concludes the proof.

Remark 2.2.6 (link with the approach by Ye and Ye [127]). The optimality condition (2.46) also follows
from [127, Theorem 3.1], where one has to set Φ(x) := −ψ(x)+Λ. However, the approach in [127]
does not allow us to detect the fact that u also belongs to NΛ(ψ(x̄)), which is an important component
of Proposition 2.2.5, regarding the structure of problem (2.40). Furthermore, as it will be clear in the
subsequent parts of the thesis, the inclusion u ∈ NΛ(ψ(x̄)) plays an important role in the applications.

A major consequence of Proposition 2.2.5 on a standard optimization problem with inequality and
equality constraints is as follows: Let the point x̄ be a local optimal solution of the problem

min { f (x)| g(x)≤ 0, h(x) = 0},

with f : Rn → R, g : Rn → Rp and h : Rn → Rq locally Lipschitz continuous functions around x̄, and
assume that the set-valued mapping Ψ(u,v) := {x| g(x) ≤ u, h(x) = v} is calm at (0,0, x̄) (resp. there
is no nonzero vector (u,v) such that 0 ∈ ∑

p
i=1 ui∂gi(x̄)+ ∂ 〈v,h〉(x̄) and ui ≥ 0, uigi(x̄) = 0, i = 1, . . . p).

Then, there exists (u,v) such that we have:

0 ∈ ∂ f (x̄)+
p

∑
i=1

ui∂gi(x̄)+∂ 〈v,h〉(x̄),

∀i = 1, . . . , p, ui ≥ 0, uigi(x̄) = 0,

where ‖(u,v)‖ ≤ ‖` f ‖calΨ(0, x̄) (resp. ‖(u,v)‖ ≤ ‖` f ‖lipΨ(0, x̄)).

Here ` f denotes the Lipschitz modulus of the objective function f , while calΨ(0, x̄) and lipΨ(0, x̄) are
given by (2.31) and (2.34), respectively. For the expression of calΨ(0, x̄) in (2.34), we need an additional
assumption, say the convexity of g and the linearity of h. Formulas for ` f can be found in [109, Chapter
9]. Various results have been suggested in the literature on the nonvacuity and boundedness of the set of
Lagrange multipliers, see e.g. [42, 54, 70, 95, 104]. However many of them do not provide an explicit
bound for these multipliers.
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Now let us recall that a second approach to obtain the result in Proposition 2.2.5 is to directly apply
Theorem 2.2.1 (ii), which imply that for a local optimal solution x̄ of problem (2.40), we have

0 ∈ ∂ f (x̄)+NΩ∩ψ−1(Λ)(x̄). (2.49)

However the CQs in Proposition 2.2.5 are also needed to compute the normal cone in (2.49) as to be
sated in the following well-known result, which can be found e.g. in [89, 109] under the basic CQ (2.41),
while under the calmness it follows from [59, Theorem 4.1].

Theorem 2.2.7 (normal cone to an operator constraint feasible set). Let x̄∈Ω∩ψ−1(Λ) and assume that
EITHER the basic CQ (2.41) holds at x̄ OR the set-valued mapping Ψ (2.42) is calm at (0, x̄). Then the
following inclusion is satisfied:

NΩ∩ψ−1(Λ)(x̄)⊆
⋃{

∂ 〈u,ψ〉+NΩ(x̄)
∣∣ u ∈ NΛ(ψ(x̄))

}
. (2.50)

Equality holds in (2.50), provided the set Λ is regular at ψ(x̄), in the sense of (2.23).

It is not clear to the author how to directly detect the bound on the multipliers derived via this approach.
Nevertheless, it still appears that these multipliers will be bounded under the basic CQ, see e.g. [54, 70,
95, 104].
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3 Classical optimistic bilevel programming

problem

3.1 Reformulations and stationarity concepts

3.1.1 One-level reformulations

Consider problem (P) (see (1.9)), which has been mostly investigated under the name of "bilevel opti-
mization/programming problem" and that we call here classical bilevel optimization/programming prob-
lem or simply classical bilevel program. If the optimal solutions of the lower-level problem (1.3) are not
uniquely determined for some parameters x ∈ X , then many reformulations of (P) into a one-level (i.e. a
standard) optimization problem have been considered in the literature, which are essentially based on the
possible representations of the set of optimal solutions of problem (1.3). Let us start with the lower-level
value function (LLVF) representation of S (1.2)

S(x) = {y ∈ K(x)| f (x,y)≤ ϕ(x)}, (3.1)

where ϕ denotes the optimal value function of the lower-level problem (1.3)

ϕ(x) := min
y
{ f (x,y)|y ∈ K(x)}, (3.2)

then (P) can take the following so-called (lower-level) optimal value function reformulation, that we
denote as LLVF reformulation, for short:

min
x,y
{F(x,y)|x ∈ X , y ∈ K(x), f (x,y)≤ ϕ(x)}. (3.3)

In order for the value function ϕ (3.2) to be well-defined, it is assumed from here on that S(x) 6= /0 for all
x ∈ X . Problem (3.3) and (P) are completely equivalent as shown in the following trivial result:

Theorem 3.1.1 (link between (P) and its LLVF reformulation (3.3)). The point (x̄, ȳ) is a local (resp.
global) optimal solution of (P) if and only if (x̄, ȳ) is a local (resp. global) optimal solution of (3.3).

The LLVF reformulation of (P) was introduced by Outrata [98] while constructing a numerical ap-
proach to solve the problem. Work on necessary optimality conditions for (P) via (3.3) was pioneered by
Ye and Zhu [128] by means of the now well-known concept of partial calmness that will be discussed in
the next section.

Next we assume the parametric problem (1.3) to be convex in the sense that the functions f (x, .) and
g(x, .) are convex for all x ∈ X , then S (1.2) takes the generalized equation form

S(x) = {y ∈ Rm|0 ∈ ∇y f (x,y)+NK(x)(y)}, (3.4)

where NK(x)(y) denotes the normal cone in the sense of convex analysis (2.20), to K(x) at y, provided
y ∈ K(x), whereas NK(x)(y) := /0, if y /∈ K(x). Hence, (P) can be interpreted as an optimization problem
with generalized equation constraint (OPEC):

min
x,y
{F(x,y)| x ∈ X , 0 ∈ ∇y f (x,y)+NK(x)(y)}. (3.5)

The link between (P) and its OPEC/primal KKT reformulation (3.5) is also obvious:
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Theorem 3.1.2 (link between (P) and its OPEC reformulation (3.5)). The lower-level problem (1.3) is
assumed to be convex. Then a point (x̄, ȳ) is a local (resp. global) optimal solution of (P) if and only if
(x̄, ȳ) is a local (resp. global) optimal solution of (3.5).

Problem (3.5) has been studied for example in [89, 93, 127], usually under the name of "optimization
problem with variational inequality constraint (OPVIC)". The reason for the latter appellation is that
under the convexity of K(x) for x ∈ X , one has the following well-known expression for the normal cone
in the sense of convex analysis (see (2.20))

NK(x)(y) := {v ∈ Rm|〈v,u− y〉 ≤ 0, ∀u ∈ K(x)}.

If we insert this formula in (3.5), the aforementioned vocabulary is clearly justified.
The last reformulation of (P) that will be considered here is the so-called KKT reformulation. In

addition to the convexity assumption, we need a CQ to proceed. The Slater CQ will be said to hold at a
parameter x̄ ∈ X if we have

K<(x̄) := {y| gi(x̄,y)< 0, i = 1, . . . , p} 6= /0. (3.6)

Under this CQ, the normal cone NK(x)(y) can be represented by

NK(x)(y) =
{ p

∑
i=1

ui∇ygi(x,y)
∣∣∣ u≥ 0, u>g(x,y) = 0

}
. (3.7)

Inserting the latter formula in the OPEC reformulation (3.5), we get the following problem

min
x,y,u
{F(x,y)|x ∈ X ,L (x,y,u) = 0, g(x,y)≤ 0, u≥ 0, u>g(x,y) = 0}, (3.8)

often labeled as Karush-Kuhn-Tucker (KKT) reformulation, given that the above formula for the normal
cone (3.7) induces the Karush-Kuhn-Tucker type necessary optimality conditions for the lower-level
optimization problem (1.3). In (3.8), L stands for the gradient of the Lagrange function of the lower-
level problem:

L (x,y,u) := ∇y f (x,y)+
p

∑
i=1

ui∇ygi(x,y). (3.9)

Clearly, problem (3.8) is also a mathematical programming problem with complementarity constraints
(MPCC), considering the embedded complementarity problem:

g(x,y)≤ 0, u≥ 0, u>g(x,y) = 0. (3.10)

We have the following theorem, resulting from a recent study by Dempe and Dutta [24], on the relation-
ship between (P) and its KKT reformulation. To simplify the presentation of the result, denote the set of
Lagrange multipliers of the lower-level problem by

Λ(x,y) := {u|u≥ 0, u>g(x,y) = 0, L (x,y,u) = 0}. (3.11)

Theorem 3.1.3 (link between (P) and its KKT reformulation (3.8)). Let the lower-level problem (1.3) be
convex. Then the following assertions hold:

(i) Let (x̄, ȳ) be a global (resp. local) optimal solution of problem (P) and assume that the Slater CQ
(3.6) is satisfied at x̄. Then, for each ū ∈ Λ(x̄, ȳ), the point (x̄, ȳ, ū) is a global (resp. local) optimal
solution of problem (3.8).

(ii) Let the Slater CQ be satisfied at all x ∈ X (resp. at x̄). Assume that (x̄, ȳ, ū) is a global optimal
solution

(
resp. local optimal solution for all ū ∈ Λ(x̄, ȳ)

)
of problem (3.8). Then, (x̄, ȳ) is a global (resp.

local) optimal solution of problem (P).
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It is clear from this result that for global solutions, problem (3.8) is equivalent to the initial problem (P)
in the sense that, (x̄, ȳ) is a global optimal solution of (P) if and only if there exists a vector ū∈Λ(x̄, ȳ) such
that (x̄, ȳ, ū) is a global optimal solution of problem (3.8). However, for local solutions, the requirement
that (x̄, ȳ, ū) be a local optimal solution of (3.8) for all ū ∈ Λ(x̄, ȳ), before one can be sure that (x̄, ȳ) is a
local optimal solution for (P), is too strong. Not only it is not realistic at a computational level, but one
can easily construct examples of problems where a local optimal solution of problem (3.8) is not a local
optimal solution of (P), cf. [24]. Hence, it may be fair to say that computing the normal cone in (3.1.2)
via (3.7) destroys the nice link, stated in Theorem 3.1.2, between the bilevel program (P) and its primal
KKT reformulation (3.5).

It is important to mention that the CQ (Slater) can not be dropped in any segment of the above theorem
[24]. This is the case for the convexity of the lower-level problem as well; otherwise a solution of the
bilevel program need not even be a stationary point of problem (3.8), see Mirrlees [81]. To circumvent
this convexity assumption and some possibly unwanted behavior that may occur using the optimal value
reformulation, Ye and Zhu [129] recently suggested a combination of the KKT and the optimal value re-
formulations in order to obtain optimality conditions for the bilevel programming problem. Concretely,
it is assumed in [129], that the KKT conditions of the lower level problem be satisfied without neces-
sarily requiring the convexity of the lower level problem and hence the following one level optimization
problem is considered:

min
x,y,u
{F(x,y)| x ∈ X , f (x,y)≤ ϕ(x),

L (x,y,u) = 0, g(x,y)≤ 0, u≥ 0, u>g(x,y) = 0}.

An equivalence between this problem and the initial one (P) was established in [129] around a predefined
neighborhood of the considered point. For optimality conditions, techniques known for MPCCs were
applied under calmness and partial calmness concepts tailored for the problem. We will not insist on this
approach, since we are interested but in considering the LLVF, OPEC and KKT reformulations separately,
and looking at possible links between them. The interested reader is referred to the aforementioned paper
for further details. Also see [103] for other approaches to derive optimality conditions for the problem.

3.1.2 Stationarity concepts

Taking into account the reformulations of (P) in the previous subsection, we now introduce the main
stationarity concepts that will be derived in the next section. The concepts that we introduce here will also
provide a general pattern of the stationarity conditions that will be discussed in Chapter 5 for problems
(Po) and (Pp). Basically, for the LLVF reformulation (3.3), we will have the “KM” and “KN” type
stationarity conditions, reflecting the difference between the KKT-type optimality conditions obtained
via the inner semicoMpactness and inner semicoNtinuity, respectively, of the optimal solution map S (1.2)
for the lower-level problem. Moreover, for more precision, the prefix "P" will be added to differentiate
between the stationarity concepts of problem (P) and those of the other problems, namely (Po) and (Pp).

Definition 3.1.4 (KM-stationarity for (P)). (x̄, ȳ) is P-KM-STATIONARY if there exist (α,β ) ∈ Rk+p,
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λ ∈ R+, (µs,υs) ∈ Rk+1 and ys ∈ S(x̄) with s = 1, . . . ,n+1 such that the following conditions hold:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+λ

(
∇x f (x̄, ȳ)−

n+1

∑
s=1

υs∇x f (x̄,ys)
)
+

p

∑
i=1

βi∇xgi(x̄, ȳ)

−λ

n+1

∑
s=1

υs

p

∑
i=1

µis∇xg(x̄,ys) = 0, (3.12)

∇yF(x̄, ȳ)+λ∇y f (x̄, ȳ)+
p

∑
i=1

βi∇ygi(x̄, ȳ) = 0, (3.13)

∀s = 1, . . . ,n+1, ∇y f (x̄,ys)+
p

∑
i=1

µis∇yg(x̄,ys) = 0, (3.14)

∀s = 1, . . . ,n+1, i = 1, . . . , p, µis ≥ 0, µisgi(x̄,ys) = 0, (3.15)

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0, (3.16)

∀i = 1, . . . , p, βi ≥ 0, βigi(x̄, ȳ) = 0, (3.17)

∀s = 1, . . . ,n+1, υs ≥ 0,
n+1

∑
s=1

υs = 1. (3.18)

Relationships (3.12)–(3.18) are called the KM-STATIONARITY CONDITIONS.

Definition 3.1.5 (KN-stationarity for (P)). (x̄, ȳ) is P-KN-STATIONARY if there exist (α,β ,µ) ∈ Rk+2p

and λ ∈ R+ such that relationships (3.13) and (3.16)–(3.17) together with the following ones hold:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

(βi−λ µi)∇xgi(x̄, ȳ) = 0, (3.19)

∇y f (x̄, ȳ)+
p

∑
i=1

µi∇ygi(x̄, ȳ) = 0, (3.20)

∀i = 1, . . . , p, µi ≥ 0, µigi(x̄, ȳ) = 0. (3.21)

All the relationships (3.13), (3.16)–(3.17), and (3.19)–(3.21) considered together are called the KN-
STATIONARITY CONDITIONS.

In order to introduce the stationarity concepts related to the OPEC and KKT reformulations, we first
consider the following well-known partition of the indices of the functions involved in the complemen-
tarity system (3.10)

η := η(x̄, ȳ, ū) := {i| ūi = 0, gi(x̄, ȳ)< 0},
θ := θ(x̄, ȳ, ū) := {i| ūi = 0, gi(x̄, ȳ) = 0},
ν := ν(x̄, ȳ, ū) := {i| ūi > 0, gi(x̄, ȳ) = 0},

(3.22)

where the middle set θ in (3.22) is known as the biactive or degenerate index set. The difference be-
tween the following stationarity concepts depends on the structure of the components of the multipliers
corresponding to the biactive set θ . Namely, we will consider M(ordukhovich), C(larke) and S(trong)
stationarity conditions, tailored to problem (P). As far as the OPEC and KKT reformulations are con-
cerned, many other surrogates of well-known types could also be defined for (P). In this thesis we will
focus our attention only on these three (M, C and S) since they are the most important ones.

Definition 3.1.6 (M-stationarity concepts for (P)). (x̄, ȳ) is SP-M-STATIONARY (resp. P-M-STATIONARY)
if for every ū ∈ Λ(x̄, ȳ) (resp. for some ū ∈ Λ(x̄, ȳ)) we can find a triple (α,β ,γ) ∈ Rk+p+m such that re-
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lationship (3.16) together with the following conditions are satisfied:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0, (3.23)

∇yF(x̄, ȳ)+
p

∑
i=1

βi∇ygi(x̄, ȳ)+
m

∑
l=1

γl∇yLl(x̄, ȳ, ū) = 0, (3.24)

∇ygν(x̄, ȳ)γ = 0, βη = 0, (3.25)

∀i ∈ θ ,
(
βi > 0∧

m

∑
l=1

γl∇yl gi(x̄, ȳ)> 0
)
∨βi

m

∑
l=1

γl∇yl gi(x̄, ȳ) = 0. (3.26)

All the relationships (3.16) and (3.23)–(3.26) considered together are called the M-STATIONARITY CON-
DITIONS.

Here the term “SP-M-STATIONARY” stands for STRONG P-M-STATIONARY. In what follows, “SP-
C-STATIONARY” and “SP-S-STATIONARY” will define similar concepts. Also recall that since

∇yg(x̄, ȳ)γ =
[ m

∑
l=1

γl∇yl g1(x̄, ȳ), . . . ,
m

∑
l=1

γl∇yl gp(x̄, ȳ)
]>

, (3.27)

the vector ∇ygν(x̄, ȳ)γ denotes the components of the vector in the right-hand-side for which i ∈ ν .
Furthermore, note that with the expression of the lower-level Lagrangian in (3.9), we have

Ll(x,y,u) := ∇yl f (x,y)+
p

∑
i=1

ui∇yl gi(x,y) for l = 1, . . . ,m. (3.28)

Definition 3.1.7 (C-stationarity concepts for (P)). (x̄, ȳ) is SP-C-STATIONARY (resp. P-C-STATIONARY)
if for every ū ∈ Λ(x̄, ȳ) (resp. for some ū ∈ Λ(x̄, ȳ)) we can find a triple (α,β ,γ) ∈ Rk+p+m such that we
have relationships (3.16) and (3.23)–(3.25) to be satisfied together with the following condition:

∀i ∈ θ , βi

m

∑
l=1

γl∇yl gi(x̄, ȳ)≥ 0. (3.29)

All the relationships (3.16), (3.23)–(3.25) and (3.29) considered together are called the C-STATIONARITY

CONDITIONS.

Definition 3.1.8 (S-stationarity concepts for (P)). (x̄, ȳ) is SP-S-STATIONARY (resp. P-S-STATIONARY)
if for every ū ∈ Λ(x̄, ȳ) (resp. for some ū ∈ Λ(x̄, ȳ)) we can find a triple (α,β ,γ) ∈ Rk+p+m such that we
have relationships (3.16) and (3.23)–(3.25) to be satisfied together with the following condition:

∀i ∈ θ , βi ≥ 0∧
m

∑
l=1

γl∇yl gi(x̄, ȳ)≥ 0. (3.30)

All the relationships (3.16), (3.23)–(3.25) and (3.30) considered together are called the S-STATIONARITY

CONDITIONS.

The above M, C and S-stationarity concepts are specifically tailored to (P). Usually, in the MPCC
theory, the term ∇ygi(x̄, ȳ)γ in (3.26), (3.29) and (3.30), is in fact a multiplier. These representations of the
necessary optimality conditions of (P) obtained via the OPEC and KKT reformulations was introduced
in [34]. Additionally, the quantifier “for all” attached to ū is related to the nature of the link between
(P) and its KKT reformulation (3.8) as stated in Theorem 3.1.3. Note the adjustment made here on the
position of the quantifier “for all” as compare to the initial Definitions 1.3 and 1.4 in [34].
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Theorem 3.1.9 (relationships between the stationarity concepts). For a given feasible point (x̄, ȳ) of
problem (P), we have the following chain of implications:

P-KM-stationary SP-S-stationary =⇒ SP-M-stationary =⇒ SP-C-stationary
(1) m ⇓ ⇓ ⇓

P-KN-stationary(λ free)
(2)⇐= P-S-stationary =⇒ P-M-stationary =⇒ P-C-stationary

(3.31)

where the assumptions (1) and (2) are given by:{
(1) : S(x̄) = {ȳ}, Λ(x̄, ȳ) = {µ},
(2) : ∑

m
l=1 γl∇x,yLl(x̄, ȳ, ū) = 0.

Proof. That SP-S-stationary=⇒ P-S-stationary is trivial. It is the same for the M- and C-stationarity. The
implications “P-S-stationary =⇒ P-M-stationary =⇒ P-C-stationary” are also obvious and well-known;
and the stronger ones “SP-S-stationary =⇒ SP-M-stationary =⇒ SP-C-stationary” follow analogously.

For the equivalence between the KM- and KN-stationarity in (3.31), note that saying that a vector
(x̄,ysα,β ,λ ,µs,υs) with s = 1, . . . ,n+1 satisfies the KM-stationarity conditions (3.12)–(3.18) is equiv-
alent to say that γs ∈ Λ(x̄,ys), ys ∈ S(x̄) with s = 1, . . . ,n+ 1 such that (3.12)–(3.13) and (3.16)–(3.18).
Hence, with S(x̄) = {ȳ} and Λ(x̄, ȳ) = {µ}, we have s ∈ {1} and υs = 1. Thus the resulting conditions
are identical to the KN-stationarity conditions in the sense of Definition 3.1.5.

It therefore remains to show that we have

P-KN-stationary (with λ free)
(2)⇐= P-S-stationary.

For this first note that if we insert the value of ∇y f (x̄, ȳ) = −∑
p
i=1 µi∇yg(x̄, ȳ) from equation (3.20) in

(3.13), we get the relationship

∇yF(x̄, ȳ)+
p

∑
i=1

(βi−λ µi)∇yg(x̄, ȳ) = 0. (3.32)

Hence, it now suffices to show that (x̄, ȳ) is P-S-stationary if and only if there exists (ū,α,β ,γ,λ ) such
that the vector (x̄, ȳ, ū,α,β ,γ,λ ) satisfies the conditions (3.16)–(3.17) together with the following ones:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

(βi−λ ūi)∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0, (3.33)

∇yF(x̄, ȳ)+
p

∑
i=1

(βi−λ ūi)∇ygi(x̄, ȳ)+
m

∑
l=1

γl∇yLl(x̄, ȳ, ū) = 0, (3.34)

∇y f (x̄, ȳ)+
p

∑
i

ūi∇ygi(x̄, ȳ) = 0, (3.35)

∀i = 1, . . . , p, ūi ≥ 0, ūigi(x̄, ȳ) = 0, (3.36)

∀i = 1, . . . , p,
m

∑
l=1

γl∇yl gi(x̄, ȳ)−λgi(x̄, ȳ)≥ 0, ūi

m

∑
l=1

γl∇yl gi(x̄, ȳ) = 0. (3.37)

Let (ū,α,β ,γ,λ ) be such that (x̄, ȳ, ū,α,β ,γ,λ ) satisfies (3.16)–(3.17) and (3.33)–(3.37). We then set
α∗ := α , β ∗ := β −λ ū and γ∗ := γ . By exploiting the definition of η (3.22) and the complementarity
system (3.17), we have β ∗η = 0. Analogously, we have ∇ygν(x̄, ȳ)γ = 0 using the definition of ν (3.22)
and the equality ūi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0 from (3.37). Finally, by combining the complementarity system

(3.17), the definition of θ (3.22), and inequality ∇yg(x̄, ȳ)γ − λg(x̄, ȳ) ≥ 0 from (3.37), it follows that
β ∗i ≥ 0 and ∇ygi(x̄, ȳ)γ ≥ 0 for i ∈ θ . Hence, the point (x̄, ȳ, ū,α∗,β ∗,γ∗) satisfies the S-stationarity
conditions (3.16), (3.23)–(3.25) and (3.30). Thus (x̄, ȳ) is P-S-stationary while taking into account that
the conditions (3.35)–(3.36) represent inclusion ū ∈ Λ(x̄, ȳ).
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Conversely, let (x̄, ȳ) be P-S-stationary. Then there exists (ū,α,β ,γ) such that conditions (3.16),
(3.23)–(3.25) together with (3.30) and (3.35)–(3.36) are satisfied. Now observe that the set of condi-
tions (3.23)–(3.25) and (3.30) can equivalently be represented by the the following system where the new
multiplier vector ζ ∈ Rp:

 ∇xF(x̄, ȳ)
∇yF(x̄, ȳ)

0

+ k

∑
j=1

α j

 ∇G j(x̄)
0
0

+ m

∑
l=1

γl

 ∇xLl(x̄, ȳ, ū)
∇yLl(x̄, ȳ, ū)

∇yl g(x̄, ȳ)

− p

∑
i=1

ζi

 0
0
ei


+

p

∑
i=1

βi

 ∇xgi(x̄, ȳ)
∇ygi(x̄, ȳ)

0

=

 0
0
0

 ,
ζν = 0, βη = 0,

∀i ∈ θ , βi ≥ 0∧ζi ≥ 0.

Here, the vector ei denotes the i-th vector of the canonical basis of Rp. It follows from [49, Proof of
Proposition 4.2] that by setting α∗ := α , γ∗ := γ , ζ ∗

θ∪ν
:= ζθ∪ν , β ∗

ζ∪θ
:= βζ∪θ , ζ ∗η := ζη −λ ∗gη(x̄, ȳ)

and β ∗ν := βν +λ ∗ūν , with λ ∗ := max{max
i∈η
{ ζi

gi(x̄,ȳ)
},max

i∈ν
{−βi

ūi
}}, then (x̄, ȳ, ū,α∗,β ∗,γ∗,ζ ∗,λ ∗) satisfies

(3.16)–(3.17), (3.35)–(3.36) together with the following conditions:

 ∇xF(x̄, ȳ)
∇yF(x̄, ȳ)

0

+ k

∑
j=1

α
∗
j

 ∇G j(x̄)
0
0

+ m

∑
l=1

γ
∗
l

 ∇xLl(x̄, ȳ, ū)
∇yLl(x̄, ȳ, ū)

∇yl g(x̄, ȳ)

− p

∑
i=1

ζ
∗
i

 0
0
ei


+

p

∑
i=1

β
∗
i

 ∇xgi(x̄, ȳ)
∇ygi(x̄, ȳ)

0

−λ
∗

 ∑
p
i=1 ūi∇xgi(x̄, ȳ)

∑
p
i=1 ūi∇ygi(x̄, ȳ)

g(x̄, ȳ)

=

 0
0
0

 ,
∀i = 1, . . . , p, ζ

∗
i ≥ 0, ζ

∗
i ūi = 0.

By observing from the latter system that we have ζ ∗ = ∇yg(x̄, ȳ)γ∗−λ ∗g(x̄, ȳ), it clearly follows that the
vector (x̄, ȳ, ū,α∗,β ∗,γ∗,λ ∗) satisfies the conditions (3.33)–(3.37). Now set ∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0 in

(3.33) and ∑
m
l=1 γl∇yLl(x̄, ȳ, ū) = 0 in (3.34), then the resulting conditions together with (3.35)–(3.36)

and (3.16)–(3.17) reduce to the KN-stationarity conditions (with µ := ū) while replacing equation (3.13)
by the equivalent condition (3.32). This completes the proof of the theorem.

Note that the term “λ free” in (3.31) means that in the framework of Theorem 3.1.9 the multiplier
λ must not be nonnegative as it is the case in Definition 3.1.5. Assumption (1) in Theorem 3.1.9 is
made of two components: S(x̄) = {ȳ} is satisfied if a certain second order sufficient condition is sat-
isfied for the lower-level problem (1.3), cf. Remark 3.2.15 for a related discussion. Λ(x̄, ȳ) = {µ} is
obtained, provided the linear independence constraint qualification (LICQ) holds for the same problem
(1.3). As for assumption (2), it is automatical if the functions f and g defining the lower-level prob-
lem (1.3) take the form f (x,y) := a(x)+b>y and g(x,y) := C(x)+D>y, respectively. Here a : Rn→ R
and C : Rn → Rp, while b ∈ Rm and D ∈ Rp×m. Note that in general the stationarity conditions for
problem (P) obtained via the LLVF reformulation differ significantly from those derived via the OPEC
and KKT reformulations, especially due to the second order term appearing in the latter case. Implica-

tion “P-KN-stationary (with λ free)
(2)⇐= P-S-stationary” in the above theorem establishes a clear link

between both classes of conditions provided the aforementioned second order term is the zero vector.
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3.2 Optimal value reformulation

3.2.1 Failure of the basic CQ and a possible adjustment

Considering the LLVF reformulation (3.3) of (P), we respectively define Ω and ψ by

Ω := {(x,y)|x ∈ X ,y ∈ K(x)} and ψ(x,y) := f (x,y)−ϕ(x). (3.38)

Hence, problem (3.3) takes the following operator constraint representation

min
x,y
{F(x,y)|(x,y) ∈Ω∩ψ

−1(R−)} (3.39)

and we can now define the corresponding basic CQ, which is shown, in the next theorem, to fail at any
feasible point, under a mild assumption

∂ψ(x̄, ȳ)∩ (−NΩ(x̄, ȳ)) = /0. (3.40)

Theorem 3.2.1 (failure of the basic CQ for the LLVL reformulation of (P)). Let (x̄, ȳ) be an arbitrary
feasible point of problem (3.3), where the sum rule

∂ (ψ +δΩ)(x̄, ȳ)⊆ ∂ψ(x̄, ȳ)+∂δΩ(x̄, ȳ) (3.41)

holds, which is automatical if the lower-level value function ϕ (3.2) is Lipschitz continuous around x̄.
Then the basic CQ (3.40) fails at (x̄, ȳ).

Proof. (x̄, ȳ) being a feasible point of (3.3), we have (x̄, ȳ) ∈ gphS, and it follows that ψ(x̄, ȳ) = 0. On
the other hand, we have for all x ∈ X that f (x,y) ≥ ϕ(x),∀y ∈ K(x). Hence, ψ(x,y) ≥ 0,∀(x,y) ∈ Ω.
That is ψ(x̄, ȳ) = 0 ≤ ψ(x,y),∀(x,y) ∈ Ω. Hence from (3.41) it follows that 0 ∈ ∂ψ(x̄, ȳ)+NΩ(x̄, ȳ) or
equivalently ∂ψ(x̄, ȳ)∩ (−NΩ(x̄, ȳ)) 6= /0.

A similar result was already shown by Ye and Zhu [128] where basically, they chose Ω := Rn×Rm

and ψ(x,y) := [G(x),g(x,y), f (x,y)−ϕ(x)] and used the Clarke subdifferential (2.5) to define their basic
CQ, which leads to a stronger CQ. Furthermore, not only this choice of Ω and ψ has as consequence that
they needed stronger assumptions to obtained the failure of the basic CQ, but it does not allow for the
improvements of the latter CQ that we discuss below. In fact, following the work by Henrion and Outrata
[61], we introduce the following weak form of CQ (3.40) by passing to the boundary of the normal cone:

∂ψ(x̄, ȳ)∩ (−bdNΩ(x̄, ȳ)) = /0. (3.42)

As it will be clear in the next section, condition (3.42) is a CQ for LLVF reformulation (3.2), provided
Ω is semismooth at the reference point (x̄, ȳ) ∈ Ω, i.e. for any sequence xk → x̄ with xk ∈ Ω and (xk−
x̄)‖xk− x̄‖−1→ d, it holds that 〈x̄∗k ,d〉 → 0 for all selections x̄∗k ∈ ∂̄dΩ(xk). Note that by choosing Ω and
ψ as in [128], the resulting counterpart of CQ (3.42) will coincide with its counterpart of (3.40); and
hence still fail.

To illustrate the validity of the weak basic CQ (3.42) for problem (3.3), we now introduce the class of
simple convex bilevel programming problems studied for example in [23]:

min {F(x)| x ∈ S := argmin{ f (x)|x ∈Ω}}, (3.43)

where Ω is a closed and convex set, and the upper and lower level objective functions F and f are all
convex real-valued function. Denoting by π := min{ f (x)|x ∈Ω}, problem (3.43) can be reformulated as

min {F(x)| x ∈Ω, f (x)≤ π} (3.44)
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via the LLVF reformulation (3.3). This is a convex optimization problem, but the MFCQ also fails at any
feasible point [23]. In this case, the weak basic CQ (3.42) reduces to:

∂ f (x̄)∩ (−bdNΩ(x̄)) = /0. (3.45)

The following example from the class of simple convex bilevel programming problems shows that the
weak basic CQ (3.42) could be a quite useful tool to derive KKT-type necessary optimality conditions
via the LLVF reformulation.

Example 1 (validity of the weak basic CQ). We consider the simple convex bilevel program:

min {x2 + y2| (x,y) ∈ S := argmin{x+ y| x,y≥ 0}}.

We have f (x,y) := x+ y and Ω := R2
+. The point (0,0) is the unique optimal solution of the problem. Ω

is semismooth as a convex set, and the normal cone to it is NΩ(0,0) = R2
−. Hence, we have

∂ f (0,0) = (1,1) /∈ {(x,0)| x≥ 0}∪{(0,y)| y≥ 0}=−bdNΩ(0,0).

Clearly, condition (3.45) is fulfilled at (0,0) while the basic CQ does not hold at the same point.

In the next section, it will be shown that the weak basic CQ (3.42) strictly implies the partial calmness,
which we introduce next.

3.2.2 The concept of partial calmness

Let (x̄, ȳ) be a feasible point of the LLVF reformulation (3.3). This problem is said to be partially calm
at (x̄, ȳ) if there is a number λ > 0 and a neighborhood U of (x̄, ȳ,0) such that we have:

F(x,y)−F(x̄, ȳ)+λ |u| ≥ 0,
∀(x,y,u) ∈U : x ∈ X , y ∈ K(x), f (x,y)−ϕ(x)+u = 0.

(3.46)

The following result from [128, Proposition 3.3] emphasizes the importance of the partial calmness
concept in the process of deriving necessary optimality for (P) via the LLVF reformulation.

Theorem 3.2.2 (partial exact penalization via partial calmness). Let (x̄, ȳ) be a local optimal solution of
problem (3.3). This problem is partially calm at (x̄, ȳ) if and only if there exists a number λ > 0 such that
(x̄, ȳ) is a local optimal solution of the partially penalized problem

min
x,y
{F(x,y)+λ ( f (x,y)−ϕ(x))| x ∈ X ,y ∈ K(x)}. (3.47)

Clearly, the partial calmness has drawn a lot of attention (see e.g. [26, 36, 35, 65, 91, 122, 128, 130])
because of its capacity to move the optimal value constraint function f −ϕ (responsible for the failure of
the basic CQ, cf. Theorem 3.2.1) from the feasible set to the upper-level objective function (3.47), thus
paving the way to more tractable constraints in the perspective of KKT-type optimality conditions.

In their seminal paper [128] where Ye and Zhu introduced the partial calmness, it was proven that a
bilevel programming problem with a lower-level problem linear in (x,y), is partially calm. We show in
the next theorem that this proof can be adapted to the case where the follower’s problem is linear only in
the lower-level variable y. Precisely we consider the classical optimistic bilevel programming problem

min
x,y

{
F(x,y)| x ∈ X , y ∈ S(x) := argmin

y
{a(x)>y+b(x)|C(x)y≤ d(x)}

}
(3.48)

with a : Rn→ Rm, b : Rn→ R, C : Rn→ Rp×m and d : Rn→ Rp. Its LLVF reformulation is obtained as

min {F(x,y)|x ∈ X , C(x)y≤ d(x), a(x)>y+b(x)≤ ϕ(x)}, (3.49)

where the lower-level value function ϕ is given by ϕ(x) := min
y
{a(x)>y+b(x)|C(x)y≤ d(x)}.
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Theorem 3.2.3 (partial calmness in presence of linearity in the follower’s problem with respect to the
lower-level variable). Problem (3.49) is partially calm at any of its optimal solutions.

Proof. Let (x̄, ȳ) be an optimal solution of problem (3.49) and consider a neighborhood U of (x̄, ȳ,0).
Furthermore let (x,y,u) ∈U such that x ∈ X and

C(x)y≤ d(x), a(x)>y+b(x)−ϕ(x)+u = 0. (3.50)

Since S(x) 6= /0 (by the general assumption made in Subsection 3.1.1), let y(x) ∈ S(x) be a projection of y
on S(x). Denoting by e = (1, . . . ,1)> a m-dimensional vector, we have

‖y− y(x)‖ = min
z
{‖y− z‖ : z ∈ S(x)}

= min
ε,z
{ε : ‖y− z‖ ≤ ε, z ∈ S(x)}

= min
ε,z
{ε : −εe≤ y− z≤ εe, z ∈ S(x)}.

The last equality describes the linear program

min
ε,z
{ε| −εe+ z≤ y, −εe− z≤−y,

C(x)z≤ d(x), a(x)>y≤ ϕ(x)−b(x)},

having as dual the problem

max
ξ1,ξ2,ξ3,ξ4

{y>ξ1− y>ξ2 +(ϕ(x)−b(x))ξ3 +d(x)>ξ4| − e>ξ1− e>ξ2 = 1,

ξ1−ξ2 +ξ3a(x)+C(x)>ξ4 = 0, (ξ1,ξ2,ξ3,ξ4) ∈ Rm
−×Rm

−×R−×Rp
−}.

By inserting the constraint ξ1−ξ2+ξ3a(x)+C(x)>ξ4 = 0 in the objective function of the latter problem,
we have the following equivalent problem

max
ξ1,ξ2,ξ3,ξ4

{
ξ3
(
ϕ(x)−a(x)>y−b(x)

)
+
(
d(x)−C(x)y

)>
ξ4
∣∣

−e>ξ1− e>ξ2 = 1, ξ1,ξ2,ξ3,ξ4 ≤ 0
}
.

Thus there is at least one vertex (ξ o
1 ,ξ

o
2 ,ξ

o
3 ,ξ

o
4 ) of the system

−e>ξ1− e>ξ2 = 1, ξ1,ξ2,ξ3,ξ4 ≤ 0 (3.51)

such that
‖y− y(x)‖= ξ

o
3
(
ϕ(x)−a(x)>y−b(x)

)
+
(
d(x)−C(x)y

)>
ξ

o
4 ,

which implies
‖y− y(x)‖ ≤ ξ

o
3 u

given that (x,y) satisfies (3.50). Also notice that u≤ 0 considering the definition of ϕ . Since the number
of vertices satisfying (3.51) is finite, let ξ B

3 ∈ R be the smallest (2m+ 1)th component of such vertices,
then

‖y− y(x)‖ ≤ |ξ B
3 ||u|. (3.52)

On the other hand we recall that F is Lipschitz continuous. Denote by `F its Lipschitz modulus, then
given that (x̄, ȳ) is an optimal solution to problem (3.49) and (x,y(x)) being a feasible point, we have

F(x,y)−F(x̄, ȳ) ≥ F(x,y)−F(x,y(x))
≥ −`F‖y− y(x)‖
≥ −λ |u|,

with λ := `F |ξ B
3 | while taking into account inequality (3.52).
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It was later shown in [122] that problem (3.49) has a uniform weak sharp minimum (the definition is
given below) provided there exists λ > 0 such that

c(x) := sup
w,y, I

wp+1

∣∣∣∣∣∣
‖∑i∈I wi∇ygi(x,y)‖1 = 1, y ∈ S(x), wi > 0, gi(x,y) = 0, ∀i ∈ I,
vectors {∇ygi(x,y)| i ∈ I} are linearly independent,
{p+1} ⊆ I ⊆ {1, . . . , p+1}

≤ λ , (3.53)

for all x ∈ X such that there exists I as in the previous line. Here, g(x,y) := (g(x,y), f (x,y)−ϕ(x))
with g(x,y) :=C(x)y−d(x) and f (x,y) := a(x)>y+b(x). Not only this assumption is difficult to check
(see [78]), but it is clear from Theorem 3.2.3 that in the perspective of deriving necessary optimality
conditions, it is in fact not necessary, cf. Corollary 3.2.13.

In the general case, to obtain sufficient conditions for partial calmness, the concept of weak sharp
minimum by Ferris [45] (also see e.g. [9]) was used in [128]. We now introduce a notion of weak sharp
minimum taken from Henrion et al. [59], which generalizes the one used by Ye and Zhu [128]. For this
purpose, we consider the general optimization problem (2.36), where Ω is closed and f is continuous.

Definition 3.2.4 (weak sharp minima). In (2.36), the function f is said to have S as set of weak sharp
minima with respect to Ω∩N , if there exists λ > 0 such that we have

f (x)− f∗ ≥ λ d(x,S) for all x ∈Ω∩N ,

where f∗ := inf{ f (x)| x ∈Ω} and N is a neighborhood of S.

By replacing the set N by the whole space Rn, we obtain the definition used by Ye and Zhu [128]. As
we will see in what follows, Definition 3.2.4 can lead to a new sufficient condition for partial calmness.
Before heading to that, it seems appropriate to first recall the link between the partial calmness and the
notion of weak sharp minimum. For this, we bring the previous definition to the context of the parametric
optimization problem (1.3). The family of parametric problems {(1.3)| x ∈ X} will be said to have a
uniformly weak sharp minimum, if there exist λ > 0 and a neighborhood N (x) of S(x) for x ∈ X such
that we have

f (x,y)−ϕ(x)≥ λ d(y,S(x)), ∀y ∈ K(x)∩N (x), ∀x ∈ X . (3.54)

The term uniformly weak sharp minimum was first used by Ye and Zhu [128]. We now present the
following result, without the proof, since it can easily follow as in [128, Proposition 5.1].

Theorem 3.2.5 (uniform weak sharp minimum implies partial calmness). Let (x̄, ȳ) be an optimal so-
lution of problem (3.3). Assume that F is Lipschitz continuous in y uniformly in x ∈ X, and the family
{(1.3)| x∈ X} has a uniformly weak sharp minimum (3.54). Then problem (3.3) is partially calm at (x̄, ȳ).

Now, we define the family of functions ψx(y) := f (x,y)−ϕ(x) and set-valued mappings

Ψx(z) := {y ∈ K(x)|ψx(y)+ z≤ 0} (3.55)

for all x ∈ X . The family of mappings {Ψx|x ∈ X} will be said to be uniformly calm if for each x ∈ X , Ψx

is calm on {0}×S(x) and there is a family {`x(y)|y ∈ S(x),x ∈ X} of calmness constants satisfying

`x(y)≤ λ , ∀y ∈ S(x), x ∈ X ; (3.56)

where λ is a positive number. It should be clear in this definition that when we fix x ∈ X , and a vector y∈
S(x), we consider only a certain calmness constant `x(y) satisfying the corresponding calmness condition
(2.33) and such that `x(y)≤ λ . It is also clear from (3.55) that Ψx(0)= S(x). Next we give a new sufficient
condition for problem (3.3) to be partially calm. The proof is inspired from [59].
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Theorem 3.2.6 (uniform calmness implies uniform weak sharp minimum). Let the family {Ψx| x ∈ X}
be uniformly calm and the set-valued mapping S (1.2) be compact-valued. Furthermore, assume that the
follower’s cost function f is continuous in y. Then the family {(1.3)| x ∈ X} has a uniformly weak sharp
minimum (3.54).

Proof. Fix xo ∈ X , since S(xo) 6= /0, let y ∈ S(xo). Ψxo (3.55) is calm at (0,y) and it follows from the
definition of calmness (2.33), that there exist εxo ,δxo > 0 such that

d(u,Ψxo(0))≤ `xo(y)|z|, ∀z : |z|< δxo , ∀u ∈Ψxo(z)∩B(y,εxo). (3.57)

Since f is continuous in u, then we can choose εxo small enough such that

| f (xo,u)− f (xo,y)|< δxo , ∀u ∈ B(y,εxo),

with f (xo,y) = ϕ(xo). Thus we have |ψxo(u)|< δxo , ∀u ∈ B(y,εxo). Hence, by taking z = ψxo(u) in (3.57)
and observing that Ψxo(0) = S(xo), we have

d(u,S(x0))≤ `xo(y)|ψxo(u)|, ∀u ∈ K(xo)∩B(y,εxo).

Since the solution set-valued mapping S is compact-valued; then, there is a finite number of vectors
yi ∈ S(xo) and real numbers δ i

xo
> 0 and `xo(y

i)> 0 such that S(xo)⊆ ∪
i
B(yi,δ i

xo
), and we have

d(u,S(x0))≤ `xo(y
i)( f (xo,u)−ϕ(xo)), ∀u ∈ K(xo)∩B(yi,δ i

xo
), ∀i.

By taking N (xo) = ∪
i
B(yi,δ i

xo
), it follows that

d(u,S(x0))≤ c(xo)( f (xo,u)−ϕ(xo)), ∀u ∈ K(xo)∩N (xo),

where c(xo) = max
i
`xo(y

i). Since the family of multifunctions {Ψx|x ∈ X} is uniformly calm, we assume

without lost of generality that the family of calmness constants {`x(y)| y ∈ S(x), x ∈ X} is chosen in such
a way that inequality (3.56) is satisfied. Hence, there exists λ > 0 with c(x)< λ ,∀x ∈ X such that

f (x,y)−ϕ(x)≥ λ
−1 d(y,S(x)), ∀y ∈ K(x)∩N (x), ∀x ∈ X .

This completes the proof of the result.

A second approach to obtain a result similar to Theorem 3.2.6 for the family {(1.3)|x ∈ X} to have a
uniformly weak sharp minimum is to consider but the family of multifunctions

Ψx(z) := {y ∈ K(x)| f (x,y)≤ z}, for x ∈ X

instead of that in (3.55). Hence, in the definition of the uniform calmness of the family of multifunctions
{Ψx|x ∈ X}, consider but the calmness of each Ψx on {ϕ(x)}× S(x) instead of {0}×Ψ(x). A result
similar to Theorem 3.2.6 can then be directly obtained from [59, Lemma 4.7].

In the next result we provide a sufficient condition for the uniform calmness while providing a formula
for the calmness modulus of the set-valued-mapping Ψx (3.55), which can equivalently be defined at a
point (0,y) ∈ gphΨx by

calΨx(0,y) := inf{`x ∈ (0,∞)| d(u, Ψx(0))≤ `x‖v‖, ∀v ∈ B(0,δx), ∀u ∈Ψx(0)∩B(y,δx)},

where B(a,δx) denotes the ball of center a and radius δx.
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Proposition 3.2.7 (sufficient condition for uniform calmness). For all x ∈ X, assume that the functions
f (x, .) and g(x, .) are convex while the set-valued mapping Ψx (3.55) is calm on {0}× S(x). Then the
family {Ψx| x ∈ X} is uniformly calm provided there exists a number λ > 0 such that we have

calΨx(0,y) = limsup
v∈S(x),v→y

‖D∗Ψx(0,v)|−NS(x)(v)‖
−

= min{`x ∈ (0,∞)| d(u, Ψx(0))≤ `x‖v‖, ∀v ∈ B(0,δx), ∀u ∈Ψx(0)∩B(y,δx)}
≤ λ , ∀y ∈ S(x), x ∈ X .

(3.58)

Proof. Fix x ∈ X , if f (x, .) and g(x, .) are convex, then gphΨx is a convex set. Hence, the first equality
in (3.58) follows from (2.34), given that Ψx(0) = S(x) and S(x) is convex. Finally, if calΨx(0,y) is
achieved as a minimum for all y ∈ S(x), x ∈ X (cf. second equality in (3.58)), then we choose `x(y) =
calΨx(0,y), y ∈ Ψ(x), x ∈ X and it follows from the inequality in (3.58) that the family {Ψx| x ∈ X} is
uniformly calm.

Theorem 3.2.8 (weak basic CQ implies partial calmness). Let (x̄, ȳ) be a local optimal solution of prob-
lem (3.3), where Ω (3.38) is semismooth while ϕ is Lipschitz continuous around x̄. Then, the following
implication holds true at (x̄, ȳ)

weak basic CQ (3.42) =⇒ partial calmness. (3.59)

Proof. Recall that under the convexity of Ω and the Lipschitz continuity of ϕ around x̄, condition (3.42)
is well-defined to be a CQ at a given point (x̄, ȳ). Moreover, it follows from [61] that the set-valued
mapping

Ψ(u) = {(x,y) ∈Ω| f (x,y)−ϕ(x)≤ u} (3.60)

is calm at (0, x̄, ȳ). Also observe that Ψ(0) coincides with the feasible set of problem (3.3). Hence, it fol-
lows from [16] that, if (x̄, ȳ) is a local optimal solution of (3.3), then there exist λ > 0 and a neighborhood
W of (x̄, ȳ), such that

F(x̄, ȳ)≤ F(x,y)+λ d((x,y),Ψ(0)), ∀(x,y) ∈W. (3.61)

On the other hand, the calmness of Ψ at (0, x̄, ȳ) implies that there exist neighborhoods U of 0, V of (x̄, ȳ)
and a constant ` > 0 such that

d((x,y),Ψ(0))≤ `|u|, ∀u ∈U, ∀(x,y) ∈Ψ(u)∩V. (3.62)

By combining (3.61) and (3.62), it follows that

F(x,y)−F(x̄, ȳ)+λ`|u| ≥ 0, ∀u ∈U, ∀(x,y) ∈W ∩V ∩Ψ(u),

which coincides with the definition of partial calmness given in (3.46).

In the next example, we show that the converse of implication (3.59) is not always possible.

Example 2 (implication (3.59) is strict). Consider the bilevel program

min
{

x2 + y2| x ∈ R, y ∈ argmin{x2y+ y| y≥ 0}
}
. (3.63)

Set f (x,y) := x2y+ y and Ω := R×R+. We have ϕ(x) = 0, ∀x ∈ X := R, and ψ(x,y) = x2y+ y. We can
easily check that (0,0) is an optimal solution of problem (3.63). Hence ∂ψ(0,0) = (0,1) and NΩ(0,0) =
{0}×R−. It follows that (0,1) ∈ {0}×R+ = −bdNΩ(0,0). This means that CQ (3.42) fails at (0,0).
On the other hand, it follows from Theorem 3.2.3 that problem (3.63) is partially calm at (0,0).

To conclude this subsection, we summarize the relationships between the the constraint qualifications
discussed above in the following diagram, where “u.w.” is an abbreviation of “uniform weak”:

uniform calmness weak basic CQ (3.42)
⇓ (1) ⇓

u.w. sharp minimum =⇒ calmness of Ψ (3.60) =⇒ partial calmness
(3.64)

with (1) standing for all the assumptions in Theorem 3.2.6.
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3.2.3 Necessary optimality conditions

In this section we derive the KM- and KN-stationarity conditions introduced in Subsection 3.1.2 while
paying attention to the special case where the lower-level problem is linear in the follower’s variable or
strongly stable in the sense of Kojima [71]. Moreover, necessary optimality conditions for the simple
convex bilevel programming problem will also be discussed. Recall that the particularity of the LLVF
reformulation of (P) relies on the value function (3.2), which is a typical nonsmooth function. Hence, to
proceed we first provide the sensitivity analysis of −ϕ that will be useful here. For this purpose, let us
introduce the lower-level regularity that will also be needed in the other parts of the thesis:[ p

∑
i=1

βi∇ygi(x̄, ȳ) = 0, βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p
]
=⇒ βi = 0, i = 1, . . . , p. (3.65)

Theorem 3.2.9 (sensitivity analysis of the negative value function in the lower-level problem). The fol-
lowing assertions hold for the negation of the value function ϕ in (3.2):

(i) If the solution map S (1.2) is inner semicompact at x̄, and (x̄,y) is lower-level regular (3.65) for all
y ∈ S(x̄), then ϕ is Lipschitz continuous around x̄ and we have the inclusion

∂ (−ϕ)(x̄)⊆
{
−∑

n+1
s=1 υs

(
∇x f (x̄,ys)+∑

p
i=1 µis∇xgi(x̄,ys)

)∣∣∣ ∑
n+1
s=1 υs = 1,

∀s = 1, . . . ,n+1, υs ≥ 0, ys ∈ S(x̄), µs ∈ Λ(x̄,ys)
}
.

(3.66)

(ii) Assume that (x̄, ȳ) is lower-level regular (3.65), and that EITHER S (1.2) is inner semicontinuous
at this point OR f and gi, i = 1, . . . , p are fully convex. Then ϕ is Lipschitz continuous around x̄ and the
basic subdifferential of −ϕ is estimated as:

∂ (−ϕ)(x̄)⊆
⋃

µ∈Λ(x̄,ȳ)

{
−∇x f (x̄, ȳ)−

p

∑
i=1

µi∇xgi(x̄, ȳ)
}
. (3.67)

Proof. The local Lipschitz continuity of ϕ is justified in [90] under the fulfillment of the lower-level
regularity (3.65) in both inner semicontinuous and inner semicompactness cases. If the functions f and
gi, i = 1, . . . , p are fully convex, then the value function ϕ is convex as well; in this case the Lipschitz
continuity follows from [16]. To prove the subdifferential inclusion in (i), recall that

∂ϕ(x̄)⊆
⋃

y∈S(x̄)

⋃
µ∈Λ(x̄,y)

{
∇x f (x̄,y)+

p

∑
i=1

µi∇xgi(x̄, ȳ)
}
,

by [92] under the assumptions made in (i). The claimed estimate of ∂ (−ϕ) follows from here by the
classical Carathéodory’s theorem while noting that we have

∂ (−ϕ)(x̄)⊆ co∂ (−ϕ)(x̄) =−co∂ϕ(x̄), (3.68)

where the second equality follows from the convex hull property (2.6).
When S is inner semicontinuous at (x̄, ȳ), we have by [91] that

∂̄ϕ(x̄)⊆
⋃

µ∈Λ(x̄,ȳ)

{
∇x f (x̄, ȳ)+

p

∑
i=1

µi∇xgi(x̄, ȳ)
}
, (3.69)

which implies the subdifferential inclusion in (ii) by the combination of (2.5) and (3.68). For the estimate
of ∂ (−ϕ)(x̄) in the convex case, note that with expression of the subdifferential in the sense of convex
analysis (2.9) and the fact that (x̄, ȳ) ∈ gphS, a vector u ∈ ∂ϕ(x̄) implies

f (x,y)−〈u,x〉 ≥ f (x̄, ȳ)−〈u, x̄〉, ∀(x,y) : g(x,y)≤ 0,
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which means that (x̄, ȳ) is an optimal solution of the problem

min
x,y
{ f (x,y)−〈u,x〉|g(x,y)≤ 0}.

Hence, applying the Lagrange multiplier rule to the latter problem, it follows, under the lower-level
regularity (3.65), that there exists µ ∈ Λ(x̄, ȳ) such that we have u = ∇x f (x̄, ȳ)+∑

p
i=1 µi∇xgi(x̄, ȳ). Thus

an upper bound of the basic subdifferential of ϕ can be obtained as

∂ϕ(x̄)⊆
⋃

µ∈Λ(x̄,ȳ)

{
∇x f (x̄, ȳ)+

p

∑
i=1

µi∇xgi(x̄, ȳ)
}

(3.70)

and inclusion (3.67) follows from the combination of (3.70) and (3.68), while noting that we have
∂̄ϕ(x̄) := co∂ϕ(x̄) = ∂ϕ(x̄) in this case.

Note that in the fully convex (even nonsmooth) case, the lower-level regularity assumption in Theo-
rem 3.2.9 can be replaced by a much weaker qualification condition [40] requiring that the set

epi f ∗+ cone
( p⋃

i=1

epig∗i
)

is closed on Rn×Rm×R, (3.71)

where epiϑ ∗ denotes the conjugate function for an extended-real-valued convex function ϑ . It is also
important to mention that inclusion (3.66) can similarly be deduced from the well-known (see e.g. [46,
55]) upper estimate of the Clarke subdifferential of the value function ϕ .

To state the first result on the stationarity conditions for (P) via the LLVF reformulation (3.3), we also
need the following upper-level regularity at x̄:[ k

∑
j=1

α j∇G j(x̄) = 0, α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k
]
=⇒ α j = 0, j = 1, . . . ,k. (3.72)

Theorem 3.2.10 (KM- and KN-stationarity conditions for (P) via the LLVF reformulation and under the
weak basic CQ). Let (x̄, ȳ) be a local optimal solution of problem (3.3), and assume that Ω (3.38) is
semismooth at the point (x̄, ȳ), where CQ (3.42) also holds. Furthermore, let x̄ be upper-level regular
(3.72). Then the following assertions are satisfied:

(i) If the solution map S in (1.2) is inner semicompact at x̄, while the lower-level regularity (3.65) holds
at (x̄,y), y ∈ S(x̄). Then (x̄, ȳ) is KM-stationary with λ ∈ [0,r], for some r > 0.

(ii) Assume that (x̄, ȳ) is lower-level regular (3.65), and that EITHER S is inner semicontinuous at this
point OR f and g are fully convex. Then (x̄, ȳ) is KN-stationary with λ ∈ [0,r], for some r > 0.

Proof. We provide here only the proof for (i), since the (ii) case follows similarly. Consider the operator
constraint representation (3.39) of problem (3.3). We have from Theorem 3.2.9 (i) that the value function
(3.2) is Lipschitz continuous around x̄. In addition to the continuity of G and g (1.4), Ω∩ψ−1(R−) is
closed around (x̄, ȳ). Furthermore, recall that the set-valued mapping Ψ (3.60) is calm at (x̄, ȳ), given that
Ω (3.38) is semismooth at (x̄, ȳ), where CQ (3.42) also holds, cf. [61, Theorem 3.1]. Thus we have from
Proposition 2.2.5 that there exists λ ∈ [0,r] (for some r > 0) such that

0 ∈ ∇F(x̄, ȳ)+λ∂ψ(x̄, ȳ)+NΩ(x̄, ȳ) (3.73)

with Ω and ψ given in (3.38). The basic subdifferential of ψ and the normal cone to Ω are respectively
given by:

∂ψ(x̄, ȳ) = ∇ f (x̄, ȳ)+∂ (−ϕ)(x̄)×{0}, (3.74)

NΩ(x̄, ȳ) =
{[

∑
k
j=1 αi∇Gi(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)

∑
p
i=1 βi∇ygi(x̄, ȳ)

]∣∣∣∣ α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k
βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p

}
, (3.75)
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where equality (3.74) follows from the sum rule (2.12). As for equality (3.75), it is obtained from
Theorem 2.2.7 provided the following basic-type CQ (2.41) holds at (x̄, ȳ):

∑
k
j=1 αi∇Gi(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ) = 0

∑
p
i=1 βi∇ygi(x̄, ȳ) = 0

α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k
βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p

=⇒
{

α j = 0, j = 1, . . . ,k,
βi = 0, i = 1, . . . , p.

(3.76)

Now, note that under the the lower-level regularity (3.65) at (x̄, ȳ), the next implication is also satisfied:

∑
p
i=1 βi∇ygi(x̄, ȳ) = 0

βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p

}
=⇒

p

∑
i=1

βi∇xgi(x̄, ȳ) = 0. (3.77)

Thus the fulfillment of the lower- and upper-level regularity conditions (3.65) and (3.72), simultaneously
at x̄ and (x̄, ȳ), imply the satisfaction of condition (3.76). The optimality conditions in (i) are derived
from (3.66) and (3.73)–(3.75).

In the vein of this theorem, we provide necessary optimality conditions for the simple convex bilevel
programming problem (3.43).

Theorem 3.2.11 (stationarity conditions for the simple convex bilevel program (3.43)). Let x̄ be a local
optimal solution of problem (3.43), where Ω := {x|gi(x) ≤ 0, i = 1, . . . , p} with gi, i = 1, . . . , p convex.
Assume that CQ (3.45) holds at x̄, while there exists xo such that gi(xo)< 0, i = 1, . . . , p. Then there exist
λ ∈ [0,r] (for some r > 0) and β ∈ Rp such that we have:

∇F(x̄)+λ∇ f (x̄)+
p

∑
i=1

βi∇gi(x̄) = 0,

∀i = 1, . . . , p, βi ≥ 0, βigi(x̄) = 0.

Proof. Problem (3.43) can be reformulated as

min
x
{F(x)|x ∈Ω∩ψ

−1(R−)} with ψ(x) := f (x)−π.

Since Ω is semismooth thanks to the convexity of Ω, proceeding as in the proof of Theorem 3.2.10, we
have the result under CQ (3.45).

Optimality conditions for the simple convex bilevel program were derived in [23] under a CQ in the
stream of (3.71). Coming back to the general problem (P), we now derive the KM- and KN-stationarity
conditions under the partial calmness condition (3.46).

Theorem 3.2.12 (KM- and KN-stationarity conditions for (P) under the partial calmness condition).
Let (x̄, ȳ) be a local optimal solution of problem (3.3), which is is partially calm at the same point.
Furthermore, assume that x̄ is upper-level regular (3.72). Then, the following assertions hold:

(i) Let the set-valued mapping S (1.2) be inner semicompact at x̄ while the point (x̄,y) is lower-level
regular (3.65) for all y∈ S(x̄). Then (x̄, ȳ) is KM-stationary with λ > 0 and ‖(α,β )‖ ≤ r, for some r > 0.

(ii) Assume that (x̄, ȳ) is lower-level regular (3.65), and that EITHER S is inner semicontinuous at this
point OR f and gi, i= 1, . . . , p are fully convex. Then (x̄, ȳ) is KN-stationary with λ > 0 and ‖(α,β )‖≤ r,
for some r > 0.

Proof. Under the partial calmness condition, it follows from Theorem 3.2.2 that (x̄, ȳ) is a local optimal
solution of the partially penalized problem

min
x,y
{F(x,y)+λ ( f (x,y)−ϕ(x))| ψ(x,y) ∈ Λ}, (3.78)
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where ψ(x,y) := [G(x), g(x,y)] and Λ := Rk
− ×Rp

−. Since ϕ is Lipschitz continuous around x̄ (cf.
Theorem 3.2.9), applying Proposition 2.2.5 to problem (3.78), there exists (α,β ) ∈ NΛ(ψ(x̄, ȳ)) with
‖(α,β )‖ ≤ r (for some r > 0) such that we have

0 ∈ ∇F(x̄, ȳ)+λ∇ f (x̄, ȳ)+λ∂ (−ϕ)(x̄)×{0}+∂ 〈(α,β ),ψ〉(x̄, ȳ), (3.79)

provided condition (3.76) holds at (x̄, ȳ). Recall that the latter holds given that the lower- and upper-level
regularity conditions are satisfied. Further observe that we respectively have

NΛ(ψ(x̄, ȳ)) =
{
(α,β )

∣∣∣∣ α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k
βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p

}
, (3.80)

∂ 〈(α,β ),ψ〉(x̄, ȳ) =
[

∑
k
j=1 αi∇Gi(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)

∑
p
i=1 βi∇ygi(x̄, ȳ)

]
. (3.81)

Hence, the results in Theorem 3.2.12 (i) and (ii) follow from the combination of (3.79)–(3.81) and The-
orem 3.2.9 (i) and (ii), respectively.

As a first application of this result, we consider the bilevel programming problem (3.48), where the
lower-level problem is linear in the follower’s variable y. To proceed, we specify the components of
the matrix C(x) in (3.48) by C(x) := (cil(x))1≤i≤p,1≤l≤m, and the expression of the lower-level solution
set-valued mapping by

S(x) := argmin
y
{a(x)>y+b(x)|C(x)y≤ d(x)}. (3.82)

Corollary 3.2.13 (stationarity conditions for a bilevel program where the lower-level is linear in the
follower’s variable). Let (x̄, ȳ) be an optimal solution of problem (3.48) and assume that x̄ is upper-level
regular, while there exists yx̄ such that ∑

m
l=1 yx̄

l cil(x̄)< di(x̄), i = 1, . . . , p. Then, the following assertions
are satisfied:

(i) Let the solution set-valued mapping S (3.82) be inner semicompact at x̄. Then, there exist (α,β ) ∈
Rk+p with ‖(α,β )‖ < r (for some r > 0), λ ∈ R∗+, (µs,υs) ∈ Rk+1 and ys ∈ S(x̄) with s = 1, . . . ,n+ 1
such that relationships (3.16) and (3.18) together with the following conditions are satisfied:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+λ

( m

∑
l=1

ȳl∇al(x̄)−
n+1

∑
s=1

υs

m

∑
l=1

yls∇al(x̄)
)

+
p

∑
i=1

βi

( m

∑
l=1

ȳl∇cil(x̄)−∇di(x̄)
)
−λ

n+1

∑
s=1

υs

p

∑
i=1

µis

( m

∑
l=1

ȳls∇cil(x̄)−∇di(x̄)
)
= 0, (3.83)

∇yF(x̄, ȳ)+λa(x̄)+
p

∑
i=1

βi[ci1(x̄), . . . ,cim(x̄))]> = 0, (3.84)

∀s = 1, . . . ,n+1, ∇a(x̄)+
p

∑
i=1

µis[ci1(x̄), . . . ,cim(x̄))]> = 0, (3.85)

∀s = 1, . . . ,n+1, i = 1, . . . , p, µis ≥ 0, µis

( m

∑
l=1

ylscil(x̄)−di(x̄)
)
= 0, (3.86)

∀i = 1, . . . , p, βi ≥ 0, βi

( m

∑
l=1

ylcil(x̄)−di(x̄)
)
= 0. (3.87)

(ii) Let the solution set-valued mapping S (3.82) be inner semicontinuous at (x̄, ȳ), which is the case,
in particular, if a(x) := c, b(x) := b, C(x) :=C and d(x) := x, for all x ∈ X. Then there exists (α,β ,µ) ∈
Rk+2p with ‖(α,β )‖< r (for some r > 0), and λ ∈ R∗+ such that relationships (3.16), (3.83) and (3.87)
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together with the following ones hold:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

(βi−λ µi)
( m

∑
l=1

ȳl∇cil(x̄)−∇di(x̄)
)
= 0,

∇a(x̄)+
p

∑
i=1

µi[ci1(x̄), . . . ,cim(x̄))]> = 0,

∀i = 1, . . . , p, µi ≥ 0, µi

( m

∑
l=1

ylcil(x̄)−di(x̄)
)
= 0.

Proof. We have from Theorem 3.2.3 that problem (3.48) is partially calm. Hence, by applying Theorem
3.2.12, we have the result.

As second application of Theorem 3.2.12, we consider the situation where the lower-level problem is
strongly stable in the sense of Kojima. For a fixed parameter x := x̄ the vector ȳ ∈ S(x̄) is a strongly
stable local optimal solution of the parametric optimization problem (1.3), in the sense of Kojima [71], if
there exist open neighborhoods U of x̄, and V of ȳ, and a uniquely determined continuous vector-valued
function y(.) : U → V such that y(x) is the unique local optimal solution of problem (1.3) in V for
all x ∈ U . This is automatical if the point (x̄, ȳ) is lower-level regular (3.65) and the following strong
sufficient condition of second order (SSOC) is satisfied at the same point:

d>∇yL (x̄, ȳ,u)d > 0, ∀u ∈ Λ(x̄, ȳ), ∀d 6= 0 : ∇ygν(x̄, ȳ)d = 0. (3.88)

In order to ensure the Lipschitz continuity of the function y(.) we additionally need the constant rank
constraint qualification (CRCQ) (cf. [105]), which holds at a point (x̄, ȳ) if there exists a neighborhood
W of (x̄, ȳ) such that:

∇ygI(x,y) has the same rank ∀I ⊆ θ ∪ν , ∀(x,y) ∈W. (3.89)

Recall that the expressions of function L and the set Λ(x̄, ȳ) used in (3.88) and (3.89) are given in (3.9)
and (3.11), respectively. As for the index sets ν and θ , they are defined in (3.22).

Corollary 3.2.14 (stationarity conditions for (P) under the strong stability of the follower’s problem). Let
(x̄, ȳ) be a local optimal solution of problem (3.3). Assume that the SSOC, CRCQ, and the lower-level
regularity (3.65) are satisfied at (x̄, ȳ), while the upper-level regularity (3.72) holds at x̄. Furthermore,
assume that there exists λ > 0 such that we have

f (x,y)− f (x,y(x))≥ λ ‖y− y(x)‖, ∀y ∈ K(x)∩V (x), ∀x ∈ X , (3.90)

where V (x) is a neighborhood of y(x) with x ∈ X. Then, there exist λ > 0 and (α,β ) ∈ Rk+p with
‖(α,β )‖≤ r (for some r > 0), such that relationships (3.13) and (3.16)–(3.17) together with the following
condition are satisfied:

0 ∈ ∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

βi∇xgi(x̄, ȳ)− ∂̄y(x̄)>∇y f (x̄, ȳ),

where ∂̄y(x̄) denotes the Clarke generalized Jacobian of the function y(.) at the point x̄.

Proof. Under the lower-level regularity and the SSOSC, we have the LLVF reformulation (3.3) with the
lower-level value function (3.2) takes the form

ϕ(x) := f (x,y(x)) (3.91)
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where y(.) is a continuous function near x̄. Replacing S(x) in (3.54) by y(x), this condition reduces
to (3.90), which ensures that the corresponding reformulation of problem (3.3) is partially calm at (x̄, ȳ).
Thus we have (3.79) with ϕ in (3.91). It then remains to compute the basic subdifferential of this function.
Recall that in addition to the lower-level regularity and the SSOSC, the CRCQ implies the Lipschitz
continuity of y(.) around x̄, cf. [105, Theorem 4.10]. Hence, we have from the chain rule in [89, Theorem
1.110] that

∂ϕ(x̄) = ∇x f (x̄, ȳ)+D∗y(x̄)(∇y f (x̄, ȳ)). (3.92)

Applying the convex hull operator "co" to this equality, the convexified subdifferential of ϕ (3.91) is
obtained as

∂̄ϕ(x̄) = ∇x f (x̄, ȳ)+ coD∗y(x̄)(∇y f (x̄, ȳ)). (3.93)

We have from [87] that the convex hull part of this formula can be represented as

co D∗y(x̄)(∇y f (x̄, ȳ)) = ∂̄y(x̄)>∇y f (x̄, ȳ). (3.94)

Combing (3.79)–(3.81) and (3.93)–(3.94), while taking into account that ∂ϕ(x̄) ⊆ ∂̄ϕ(x̄), we have the
result.

For the computation of the generalized Jacobian of the function y(.), the interested reader is referred
to [32]. Optimality conditions for problem (P), under strong stability, can also be derived by using the
implicit function approach in (1.6). This approach is considered in the papers [20, 99]. However the
optimality conditions there are completely different from those in Corollary 3.2.14.

Remark 3.2.15 (inner semicompactness, inner semicontinuity and convexity). As noted in the above
results, the inner semicompactness and inner semicontinuity of the lower-level solution set-valued map-
ping S (1.2) have played a major role. For the inner semicompactness, as mentioned in Subsection 2.1.4,
it is automatically satisfied if S is uniformly bounded (2.28), which is a weak requirement. A practical
framework where the latter is satisfied is the bilevel road pricing problem considered in Chapter 7. As
for the inner semicontinuity, it is obtained if S is Lipschitz-like around the point in question. Conditions
ensuring that the solution set-valued mapping of an optimization problem is Lipschitz-like are developed
in Chapter 4 (also see Chapter 5) under various settings. This condition also automatically holds at
(x,y) provided S(x) = {y} or if S is the solution set-valued mapping of a parametric linear program with
additive right-hand-side perturbations. For the single-valuedness, it is satisfied if the SSOC (3.88) is
modified to take the form: d>∇yL (x̄, ȳ,u)d > 0, ∀u ∈ Λ(x̄, ȳ), ∀d 6= 0 : ∇ygi(x̄, ȳ)d ≤ 0 (gi(x̄, ȳ) = 0),
∇ygi(x̄, ȳ)d = 0 (ui > 0). Now observe that the estimate of the basic subdifferential of the lower-level
value function ϕ (3.2) coincide when either S is inner semicontinuous or ϕ is convex, cf. Theorem 3.2.9
(ii). It should however be clear that both conditions are in general not related, cf. [26, Remark 3.2]. Fur-
ther discussions and references on the inner semicontinuity of solution set-valued mappings are given in
the latter reference.

3.3 KKT reformulation

Consider the KKT reformulation (3.8) as a usual nonlinear optimization problem with equality and
inequality constraints; in the context of the operator constraint formulation (2.40), it consists to set
Ω := Rn×Rm×Rp, ψ(x,y,u) := [G(x), L (x,y,u), g(x,y), u, u>g(x,y)] and Λ := Rk

−×{0m}×Rp
−×

Rp
+×{0}, then one can show, cf. [13, 48, 110, 130], that the basic CQ/MFCQ fails at any feasible

point. In order to avoid this, one needs to consider a new constructive representation of the feasible set
of problem (3.8). To motivate our discussion, we suggest an example of problem where the validity of
the basic CQ is reinstated by reformulating the feasible set into an operator constraint form (2.40) with
ψ(x,y,u) := [G(x),L (x,y,u)], Λ := Rk

−×{0m} and Ω := {(x,y,u)|u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0}.
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Example 3 (validity of the basic CQ via a reformulation of the feasible set). We consider the bilevel
programming problem

min
x,y

{
x2 + y2| x≥ 0, y ∈ S(x) := argmin{xy+ y|y≥ 0}

}
.

One can easily check that (0,0) is the optimal solution of the above problem. The classical KKT refor-
mulation of this problem is:

min
x,y,u
{x2 + y2| x≥ 0, x−u+1 = 0, u≥ 0, y≥ 0, uy = 0}

It is obvious that the lower level multiplier corresponding to the optimal solution is ū = 1; and hence
that the MFCQ fails to hold at (0,0,1). We are now going to show that the basic CQ is satisfied if we
set ψ(x,y,u) = (−x, x−u+1), Λ = R−×{0} and Ω = {(x,y,u) ∈ R3|y ≥ 0, u ≥ 0, yu = 0}. For some
point (α,β ) ∈ NΛ(ψ(0,0,1)), i.e. (α,β ) ∈ R+×R, (0,0,0) ∈ 〈∇ψ(0,0,1),(α,β )〉+NΩ(0,0,1) if and
only if α−β = 0 and (0,−β ) ∈ NΠ(0,1) (with Π := {(y,u) ∈ R2|y≥ 0, u≥ 0, yu = 0}). It follows from
Lemma 3.3.1 below that β = 0 and hence that α = 0. This shows that the basic CQ holds at (0,0,1).

Proceeding as in this example will lead us to M-type necessary optimality conditions for problem (3.8),
that we discuss in the next subsection. By a different representation of the feasible set in terms of the
operator constraint (2.40), we will derive C-type conditions in Subsection 3.3.2. The S-type conditions
will be discussed in the last subsection.

3.3.1 M-stationarity conditions

By setting v := −g(x,y) and hence introducing a new (dummy) variable, the idea in the above example
can be extended to the more general KKT reformulation (3.8). The technicality behind this is that the
new constraint g(x,y)+v= 0 is moved to the function ψ (in the operator constraint representation (2.40))
and thus allowing just the computation of the normal cone to the polyhedral set

Π := {(u,v) ∈ R2p|u≥ 0, v≥ 0, u>v = 0}, (3.95)

which is possible without any qualification condition, see e.g. [50, Proposition 2.1]:

Lemma 3.3.1 (formula of the normal cone to Π). Let (ū,v) ∈Π, then we have

NΠ(ū,v) =


ui = 0 ∀i : ūi > 0 = vi

(u,v) ∈ R2p : vi = 0 ∀i : ūi = 0 < vi

(ui < 0∧ vi < 0) ∨ uivi = 0 ∀i : ūi = 0 = vi

 . (3.96)

Next we first exploit this formula to derive M-type necessary optimality conditions for the KKT re-
formulation (3.8), considered as an independent optimization problem. However, these conditions would
latter be interpreted as P-M-stationarity conditions in an appropriate framework. As for the SP-M-
stationarity conditions they will be deduced at the end of this subsection.

Theorem 3.3.2 (M-stationarity conditions for the KKT reformulation (3.8), I). Let (x̄, ȳ, ū) be a local
optimal solution of problem (3.8) and assume that the following CQ holds at (x̄, ȳ, ū):

∑
k
j=1 α j∇G j(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0
βν = 0, ∇ygη(x̄, ȳ)γ = 0

∀i ∈ θ ,
(
βi > 0∧∑

m
l=1 γl∇yl gi(x̄, ȳ)> 0

)
∨βi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0

=⇒


α = 0,
β = 0,
γ = 0.

(3.97)

Then, the M-stationarity conditions (3.16) and (3.23)–(3.26) hold with ‖(α,β ,γ)‖ ≤ r, for some r > 0.
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Proof. Let us set ψ(x,y,u,v) := [G(x), g(x,y)+ v, L (x,y,u)], Λ := Rk
−×{0p+m} and Ω := Rn+m×Π.

One can easily verify that there is a vector v such that (x̄, ȳ, ū,v) is a local optimal solution of the problem

min
x,y,u,v

{F(x,y)| (x,y,u,v) ∈Ω∩ψ
−1(Λ)}. (3.98)

The normal cone to Ω, that to Λ, and the gradient of ψ can respectively be obtained as

NΩ(x̄, ȳ, ū,v) = {0n+m}×NΠ(ū,v), (3.99)

NΛ(ψ(x̄, ȳ, ū,v)) = {(α,β ,γ)|α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k}, (3.100)

∇ψ(x̄, ȳ, ū,v)>(α,β ,γ) =

[
4(α,β ,γ)

β

]
, (3.101)

with the matrix4(α,β ,γ) in (3.101) defined by

4(α,β ,γ) :=

 ∑
k
j=1 α j∇G j(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū)

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū)

∇yg(x̄, ȳ)γ

 (3.102)

with the expression of ∇yg(x̄, ȳ)γ given in (3.27). It follows from equalities (3.99)–(3.102) that the basic
CQ applied to problem (3.98) at (x̄, ȳ, ū,v) can equivalently be formulated as: there is no nonzero vector
(α,β ,γ) ∈ Rk+p+m such that we have

k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0, (3.103)

p

∑
i=1

βi∇ygi(x̄, ȳ)+
m

∑
l=1

γl∇yLl(x̄, ȳ, ū) = 0, (3.104)

(−∇yg(x̄, ȳ)γ,−β ) ∈ NΠ(ū,v). (3.105)

By noting that vi =−gi(x̄, ȳ), for i := 1, . . . , p, it follows from Lemma 3.3.1 that the basic CQ applied to
problem (3.98) is equivalent to CQ (3.97). Hence, from Proposition 2.2.5 there exists (α,β ,γ)∈Rk+p+m,
with ‖(α,β ,γ)‖≤ r (for some r > 0) such that (3.16) and (3.23)–(3.24) together with (3.105) are satisfied,
taking into account that the objective function of problem (3.98) is independent of the couple (u,v). The
result then follows by interpreting inclusion (3.105) via equation (3.96).

The technique used in the proof of Theorem 3.3.2, i.e. to transform the nonlinear complementarity
system in (3.10) into a linear one, has been used in various occasions, for the MPCC; see e.g. [126, 50].
One can easily check that the M-stationarity conditions obtained here are identical to those in [127] or
[124] under various CQs, among which CQ (b) of [127, Theorem 4.1] or (b) of [124, Theorem 5.1]
coincides with the CQ in Theorem 3.3.2. But, it should be mentioned that in the latter case, this CQ is
recovered from a perspective different from that of [127, 124], where an enhanced generalized equation
formulation of the KKT conditions of the lower-level problem was used to design the CQ.

We now introduce a different way to choose ψ,Ω and Λ; that would lead to a new and weaker CQ
allowing us to obtain the same optimality conditions as in Theorem 3.3.2. To proceed, let us recall that
the complementarity system (3.10) is equivalent to

ui ≥ 0, gi(x,y)≤ 0, uigi(x,y) = 0, i = 1, . . . , p,

meaning that it can be converted into an inclusion of the form

(ui,−gi(x,y)) ∈ Λi := {(a,b) ∈ R2|a≥ 0, b≥ 0, ab = 0}, i = 1, . . . , p. (3.106)
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Theorem 3.3.3 (M-stationarity conditions for the KKT reformulation (3.8), II). Let (x̄, ȳ, ū) be a local
optimal solution of problem (3.8) and assume that the following assertions are satisfied:

The map M1(v1,v2) := {(x,y,u)|G(x)+ v1 ≤ 0, L (x,y,u)+ v2 = 0} is calm at (0,0, x̄, ȳ, ū), (3.107)

∑
k
j=1 α j∇G j(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0
βν = 0, ∇ygη(x̄, ȳ)γ = 0

∀i ∈ θ ,
(
βi > 0∧∑

m
l=1 γl∇yl gi(x̄, ȳ)> 0

)
∨βi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0

=⇒
{

β = 0,
∇yg(x̄, ȳ)γ = 0.

(3.108)

Then, the M-stationarity conditions (3.16) and (3.23)–(3.26) hold with ‖β‖ ≤ r, for some r > 0.

Proof. We consider Ω := {(x,y,u)|G(x) ≤ 0, L (x,y,u) = 0} and ψ(x,y,u) = (ui,−gi(x,y))i=1,...,p. If
(x̄, ȳ, ū) is a local optimal solution of problem (3.8), it means, in other words that (x̄, ȳ, ū) is a local
optimal solution of the problem

min
x,y,u
{F(x,y)| (x,y,u) ∈Ω∩ψ

−1(Λ)}, (3.109)

where Λ = Λ1 × . . .×Λp, with Λi = {(a,b) ∈ R2|a ≥ 0, b ≥ 0, ab = 0} for i = 1, . . . , p. Applying
Proposition 2.2.5 to (3.109), there exists a vector (δ ,β ) ∈ R2p with ‖(δ ,β )‖ ≤ r (for some r > 0) such
that we have

∀i = 1, . . . , p, (δi,βi) ∈ NΛi(ψi(x̄, ȳ, ū)), (3.110)

(0,0) ∈
[

∇F(x̄, ȳ)
0

]
+

[
−∑

p
i=1 βi∇gi(x̄, ȳ)

δ

]
+NΩ(x̄, ȳ, ū), (3.111)

provided there is no nonzero vector (δ ,β ) ∈ R2p satisfying condition (3.110) together with inclusion

(0,0) ∈
[
−∑

p
i=1 βi∇gi(x̄, ȳ)

δ

]
+NΩ(x̄, ȳ, ū). (3.112)

It follows, under assumption (3.107) (see Theorem 2.2.7), that we have

NΩ(x̄, ȳ, ū) =
{
4(α,β ,γ)−

[ p

∑
i=1

βi∇gi(x̄, ȳ), 0
]>∣∣ α j ≥ 0, α jG j(x̄) = 0, j = 1, . . . ,k

}
,

where 4(α,β ,γ) denotes the matrix given in (3.102). Hence, either from (3.111) or from (3.112), it
follows that there exists γ ∈ Rm such that δ = −∇yg(x̄, ȳ)γ; a fortiori, (3.110) implies that there exists
γ ∈Rm such that (−∇ygi(x̄, ȳ)γ,βi)∈NΛi(ψi(x̄, ȳ, ū)), i := 1, . . . , p. The result then follows by taking into
account the value of NΛi(ψi(x̄, ȳ, ū)) in Lemma 3.3.1.

The approach in the above result is similar to the one used in [66], for a mathematical program with
vanishing constraints.

Remark 3.3.4 (links between Theorem 3.3.2 and Theorem 3.3.3). The following assertions hold:
(i) The qualification conditions (3.107) and (3.108) in Theorem 3.3.3 are satisfied, provided CQ (3.97)

holds at (x̄, ȳ, ū). In fact, it is obvious that CQ (3.97) implies CQ (3.108). On the other hand, CQ (3.97)
can equivalently be written as

{(0,0,0)}= {(α,β ,γ)| ∑
k
j=1 α j∇G j(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0,

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0,

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0,
βν = 0, ∇ygη(x̄, ȳ)γ = 0,
∀i ∈ θ ,

(
βi > 0∧∑

m
l=1 γl∇yl gi(x̄, ȳ)> 0

)
∨βi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0}
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Furthermore, the set in the right-hand-side of the previous equality contains the following set

A(x̄, ȳ, ū) := {(α,0,γ)| ∑
k
j=1 α j∇G j(x̄)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0,

∑
m
l=1 γl∇yLl(x̄, ȳ, ū) = 0, ∇yg(x̄, ȳ)γ = 0,
∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0},

which means that CQ (3.97) is also a sufficient condition for A(x̄, ȳ, ū) = {(0,0,0)}. Following Lemma
2.2.3 (cf. (2.44)), the latter equality implies the fulfilment of CQ (3.107).

(ii) A second possibility to recover CQ (3.97) in the above theorem is to move the constraints defining
Ω to the function ψ , i.e. to set Ω := Rn×Rm and ψ(x,y,u) := [G(x),L (x,y,u),(ui,−gi(x,y))i=1,...,p].
This would also help recover the bound on all the multipliers.

To conclude this subsection, we now deduce the M-type optimality conditions for the bilevel optimiza-
tion (3.48) from the above developments on the classical KKT reformulation (3.8).

Corollary 3.3.5 (SP-M-stationarity via the KKT reformulation). Let (x̄, ȳ) be a local optimal solution
of problem (P), where the lower-level problem (1.3) is convex. Assume that the Slater CQ (3.6) holds
at x̄ while for all ū ∈ Λ(x̄, ȳ), CQ (3.97) (resp. CQs (3.107)–(3.108)) holds at (x̄, ȳ, ū). Then (x̄, ȳ) is
SP-M-stationary.

Proof. Follows from the combination of Theorem 3.1.3 (i) and Theorem 3.3.2 (resp. Theorem 3.3.3).

Observe that if CQ (3.97) or the combination of CQ (3.107) and (3.108) is satisfied at the point (x̄, ȳ, ū),
only for a single ū ∈ Λ(x̄, ȳ), we obtain the P-M-stationarity for (x̄, ȳ). The latter will also be derived in
Section 3.4 via the OPEC reformulation (3.5), with the difference that the lower-level multiplier ū is not
known a priori, as it is the case here via the KKT reformulation (3.8).

3.3.2 C-stationarity conditions

We proceed here as in the previous subsection, i.e. we first provide C-stationarity conditions for (3.8),
and then deduce the SP-C-stationarity for problem (P).

Theorem 3.3.6 (C-stationarity conditions for the KKT reformulation (3.8)). Let (x̄, ȳ, ū) be a local opti-
mal solution of problem (3.8) and assume that the following CQ holds at (x̄, ȳ, ū):

∑
k
j=1 α j∇G j(x̄)+∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0
βν = 0, ∇ygη(x̄, ȳ)γ = 0

∀i ∈ θ , βi ∑
m
l=1 γl∇yl gi(x̄, ȳ)≥ 0

=⇒


α = 0,
β = 0,
γ = 0.

(3.113)

Then, the C-stationarity conditions (3.16) and (3.23)–(3.26) hold with ‖(α,β ,γ)‖ ≤ r for some r > 0.

Proof. Following the work by Scheel and Scholtes [110], the KKT reformulation (3.8) can take the
operator constraint form (2.40) with Ω := Rn×Rm×Rp, ψ(x,y,u) := [G(x), V (x,y,u), L (x,y,u)] and
Λ := Rk

−×{0m+p}. Here,

Vi(x,y,u) := min{ui, −gi(x,y)} for i = 1, . . . , p. (3.114)

Applying Proposition 2.2.5 to the corresponding operator constraint reformulation of (3.8), there exists
(α,β ,γ) with ‖(α,β ,γ)‖ ≤ r for some r > 0 such that we have:

(α,β ,γ) ∈ NΛ(ψ(x̄, ȳ, ū)), (3.115)

0 ∈
[

∇F(x̄, ȳ)
0

]
+∂ 〈(α,β ,γ),ψ〉(x̄, ȳ, ū), (3.116)
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provided the following implication is satisfied at the point (x̄, ȳ, ū):[
0 ∈ ∂ 〈(α,β ,γ),ψ〉(x̄, ȳ, ū), (α,β ,γ) ∈ NΛ(ψ(x̄, ȳ, ū))

]
=⇒ α = 0,β = 0,γ = 0. (3.117)

Now observe that ∂ 〈(α,β ,γ),ψ〉(x̄, ȳ, ū) can be written in terms of4(α,β ,γ) (3.102) as follows

∂ 〈(α,β ,γ),ψ〉(x̄, ȳ, ū) =4(α,β ,γ)−
[

∑
p
i=1 βi∇gi(x̄, ȳ)

0

]
+∂ 〈β ,V 〉(x̄, ȳ, ū), (3.118)

while an upper estimate of ∂ 〈β ,V 〉(x̄, ȳ, ū) can be obtained as

∂ 〈β ,V 〉(x̄, ȳ, ū) ⊆ ∑
p
i=1 βi∂̄Vi(x̄, ȳ, ū)⊆

{[
−∑

p
i=1 ξi∇gi(x̄, ȳ)

ζ

]∣∣∣∣
ξη = 0, ξν = βν , ζη = βη , ζν = 0,
∀i ∈ θ , ∃ti ∈ [0,1] : ξi = βi(1− ti), ζi = βiti

}
⊆
{[
−∑

p
i=1 βi∇gi(x̄, ȳ)

ζ

]∣∣∣∣ βη = 0, ζν = 0,
∀i ∈ θ , βiζi ≥ 0

} (3.119)

More details on this estimation can be found in the proof of Theorem 4.1.1 in Chapter 4. Combining
(3.118) and (3.119), one can easily check that CQ (3.113) implies the fulfilment of condition (3.117).
The C-stationarity conditions (3.16) and (3.23)–(3.26) are obtained by successively inserting (3.118) and
(3.119) in inclusion (3.116). It should be noted that the formula of NΛ(ψ(x̄, ȳ, ū)) here is identical to that
in (3.100). Given that ∀i ∈ θ , ξi = βi(1− ti) (for some ti ∈ [0,1]) in (3.119), we effectively maintain the
same bound on the multipliers: ‖(α,β ,γ)‖ ≤ r.

Although the C-stationarity conditions are weaker than the M-ones, cf. diagram in (3.31), it easy to
check that CQ (3.113) used to obtain the former conditions is stronger than CQ (3.97) under which the
latter stationarity conditions are obtained in Theorem 3.3.2. Next we deduce the SP-C-stationarity from
Theorem 3.3.6.

Corollary 3.3.7 (SP-C-stationarity via the KKT reformulation). Let (x̄, ȳ) be a local optimal solution of
the bilevel program (P), where the lower-level problem (1.3) is convex. Assume that the Slater CQ (3.6)
holds at x̄ while for all lower-level multipliers ū ∈ Λ(x̄, ȳ), CQ (3.113) holds at (x̄, ȳ, ū). Then (x̄, ȳ) is
SP-C-stationary.

Proof. Follows from the combination of Theorem 3.1.3 (i) and Theorem 3.3.6.

Similarly to the previous subsection, if CQ (3.113) is satisfied at the point (x̄, ȳ, ū), only for a single
ū ∈ Λ(x̄, ȳ), we obtain the P-C-stationarity for (x̄, ȳ).

3.3.3 S-stationarity conditions

In the framework of MPCCs, the Guignard CQ has been shown to be one of the few CQs to be directly
applicable to (3.8) considered as a usual nonlinear optimization problem with equality and inequality
constraints, cf. [48]. In the next result, we derive the S-type stationarity conditions tailored to problem
(3.8) via the Guignard CQ. For an optimization problem

min { f (x)| g(x)≤ 0, h(x) = 0}, (3.120)

where the functions f : Rn → R, g : Rn → Rp and h : Rn → Rq are continuously differentiable, if we
denote by C the feasible set of problem (3.120), the Guignard CQ is satisfied at x̄ ∈C, provided that

LC(x̄)∗ =−N̂C(x̄). (3.121)
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The set in the left-hand-side of the equality denotes the dual cone of the linearized tangent cone to C at
x̄ ∈C which is defined by

LC(x̄) := {d ∈ Rn| ∇gi(x̄)>d ≤ 0 ∀i : gi(x̄) = 0, ∇hi(x̄)>d = 0 ∀i : i = 1, . . . ,q}.

Theorem 3.3.8 (S-stationarity conditions for the KKT reformulation (3.8) via the Guignard CQ). Let
(x̄, ȳ, ū) be a local optimal solution of problem (3.8) and assume that the corresponding Guignard CQ
(3.121) holds at (x̄, ȳ, ū). Then the S-stationarity conditions (3.16), (3.23)–(3.25) and (3.30) hold with
‖(α,γ)‖ ≤ r for some number r > 0.

Proof. First start by observing that in the complementarity system (3.10) the equality u>g(x,y) = 0 is
equivalent to −u>g(x,y)≤ 0, given that u≥ 0 and g(x,y)≤ 0; hence the feasible set C of problem (3.8)
can take the form

C := {(x,y,u)| G(x)≤ 0, g(x,y)≤ 0, L (x,y,u) = 0, −u≤ 0, −u>g(x,y)≤ 0}. (3.122)

Furthermore, (x̄, ȳ, ū) being a local optimal solution of problem (3.8), we have

∇xF(x̄, ȳ)>d +∇yF(x̄, ȳ)>v≥ 0, ∀(d,v,w) ∈ TC(x̄, ȳ, ū), (3.123)

where TC denotes the Bouligand tangent cone (2.17). Thus considering (2.18), it follows from (3.123)
that we have

−∇x,y,uF(x̄, ȳ) ∈ (TC(x̄, ȳ, ū))o = N̂C(x̄, ȳ, ū).

Under the Guignard CQ (3.121), applied to our problem (3.8) with C in (3.122), it follows that

∇xF(x̄, ȳ)>d +∇yF(x̄, ȳ)>v≥ 0, ∀(d,v,w) ∈ LC(x̄, ȳ, ū).

Clearly, this implies that the triple (0,0,0) is an optimal solution of the optimization problem

min
d,v,w
{∇xF(x̄, ȳ)>d +∇yF(x̄, ȳ)>v

∣∣ ψ(d,v,w) ∈ Λ}, (3.124)

where the function ψ and the set Λ are respectively defined by

ψ(d,v,w) :=


∇G j(x̄)>d, j ∈ J
∇gi(x̄, ȳ)>(d,v), i ∈ θ ∪ν

∇Ll(x̄, ȳ, ū)>(d,v,w), l = 1, . . . ,m
−∇χ(x̄, ȳ, ū)>(d,v,w)
−wi ≤ 0, i ∈ η ∪θ

 and Λ := R|J|− ×R|θ∪ν |
− ×{0m}×R−×R|η∪θ |

−

with χ(x,y,u) := ∑
p
i=1 uigi(x,y) and J := { j|G j(x̄) = 0}, while η , θ and ν are given in (3.22). Now

observe that the set-valued mapping

Ψ(ϑ) := {(d,v,w)| ψ(d,v,w)+ϑ ∈ Λ}

is calm at (0,0,0,0) given that it is polyhedral, cf. [106, Proposition 1]. Hence, applying Proposition
2.2.5 to problem (3.124), it follows that there exists (α,β ,γ,λ ,ξ )∈NΛ(ψ(0,0,0)) with ‖(α,β ,γ,λ ,ξ )‖≤
r for some r > 0 such that we have[

∇F(x̄, ȳ)
0

]
+∇ψ(0,0,0)>(α,β ,γ,λ ,ξ ) = 0. (3.125)

For all (α,β ,γ,λ ,ξ ) in the normal cone NΛ(ψ(0,0,0)), which can be written as

NΛ(ψ(0,0,0)) = {(α,β ,γ,λ ,ξ )| αJ ≥ 0, βθ∪ν ≥ 0, λ ≥ 0, ξη∪θ ≥ 0}, (3.126)
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we have the following expression for the term ∇ψ(0,0,0)>(α,β ,γ,λ ,ξ ) :

∇ψ(0,0,0)>(α,β ,γ,λ ,ξ ) =
∑
j∈J

α j∇G j(x̄)+ ∑
i∈θ∪ν

βi∇xgi(x̄, ȳ)−λ ∑
p
i=1 ūi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xL (x̄, ȳ, ū)

∑
i∈θ∪ν

βi∇ygi(x̄, ȳ)−λ ∑
p
i=1 ūi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yL (x̄, ȳ, ū)

∇yg(x̄, ȳ)γ−λg(x̄, ȳ)− ς

 (3.127)

where ςη∪θ = ξη∪θ and ςi = 0 for all i∈ ν . If we also set α j = 0 for all j ∈ Jc := {1, . . . ,k}\J and βi = 0
for all i∈ η , then combining (3.125)–(3.127) we obtain the relationships (3.16)–(3.17) and (3.33)–(3.37),
while noting that conditions (3.35) and (3.36) are due to the feasibility of the point (x̄, ȳ, ū). Hence by the
proof of Theorem 3.1.9, we have the S-stationarity conditions (3.16), (3.23)–(3.25) and (3.30). For the
bound on the multipliers, observe from the proof of the equivalence of the latter stationarity conditions
with those in (3.16)–(3.17) and (3.33)–(3.37) (see Theorem 3.1.9) that the values of the multipliers α and
γ remain unchanged in both directions. Thus we have ‖(α,γ)‖ ≤ r.

We now provide an example of bilevel programming problem where the Guignard CQ is satisfied for
the corresponding KKT reformulation.

Example 4 (validity of the Guignard CQ in bilevel programming). We consider the bilevel program

min
x,y

{
x+ y| x≥ 0, y ∈ S(x) := argmin{xy|y≥ 0}

}
.

One can easily check that the KKT reformulation (3.8) of this problem reduces to the mathematical
program with complementarity constraints min

x,y
{x+y| x,y≥ 0, xy= 0} and following [48], the Guignard

CQ holds at the unique optimal solution point (0,0).

For some more details on the application of the Guignard CQ to more general frameworks of MPCCs,
we refer the interested reader to [48, 49] and references therein. Further note that there are two other
usual techniques to derive the S-type stationarity conditions in the MPCC theory that can be translated
to our KKT reformulation (3.8). The first one is the use of the so-called MPEC-LICQ, which reduces in
our case to the following CQ:

∑
k
j=1 α j∇G j(x̄)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū)+∑

p
i=1 βi∇xgi(x̄, ȳ) = 0

∑
m
l=1 γl∇yLl(x̄, ȳ, ū)+∑

p
i=1 βi∇ygi(x̄, ȳ) = 0

αJc = 0, ∇ygν(x̄, ȳ)γ = 0, βη = 0

=⇒


α = 0,
β = 0,
γ = 0,

(3.128)

where Jc := { j| G j(x̄) < 0}. This approach was introduced by Scheel and Scholtes [110] where they
proceed by defining an auxiliary problem to the corresponding MPCC problem. Ye [123] later introduced
a weaker form of CQ (3.128) that she labeled as Partial MPEC-LICQ which can take the form

∑
k
j=1 α j∇G j(x̄)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū)+∑

p
i=1 βi∇xgi(x̄, ȳ) = 0

∑
m
l=1 γl∇yLl(x̄, ȳ, ū)+∑

p
i=1 βi∇ygi(x̄, ȳ) = 0

αJc = 0, ∇ygν(x̄, ȳ)γ = 0, βη = 0

=⇒
{

βθ = 0,
∇ygθ (x̄, ȳ)γ = 0,

(3.129)

for our problem (3.8). However, to apply the latter CQ, one should already have other weaker optimality
conditions, like the M or C-ones derived above. We can summarize these two approaches in the following
theorem:

Theorem 3.3.9 (S-stationarity conditions for the KKT reformulation (3.8) via the MPEC-LICQ and
Partial MPEC-LICQ). Let (x̄, ȳ, ū) be a local optimal solution of problem (3.8) and assume that EITHER

CQ (3.128) OR [CQ (3.97) ∧ CQ (3.129)] holds at (x̄, ȳ, ū). Then the S-stationarity conditions (3.16),
(3.23)–(3.25) and (3.30) are satisfied.
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We now introduce a new approach to obtain the S-stationarity conditions for the KKT reformulation
(3.8). This approach is based on a notion of partial calmness for the latter problem in the pattern of that
of the LLVF reformulation (3.3) in the vein of its characterization in Theorem 3.2.2.

Definition 3.3.10 (partial calmness concept for the KKT reformulation (3.8)). Let (x̄, ȳ, ū) be a local
optimal solution of problem (3.8). This problem is partially calm at (x̄, ȳ, ū) if there exists a number
λ > 0 such that (x̄, ȳ, ū) is a local optimal solution of the partially penalized problem

min
x,y,u
{F(x,y)−λ

p

∑
i=1

uigi(x,y)| x ∈ X , L (x,y,u) = 0, g(x,y)≤ 0, u≥ 0}. (3.130)

Theorem 3.3.11 (sufficient conditions for the partial calmness condition for the KKT reformulation).
Let (x̄, ȳ, ū) be a local optimal solution of problem (3.8). Furthermore, assume that EITHER the family
{(1.3)| x ∈ X} has a uniform weak sharp minimum OR the set Ω := {(x,y,u)|G(x) ≤ 0, L (x,y,u) =
0, g(x,y) ≤ 0, u ≥ 0} is semismooth while inclusion −(ū>∇g(x̄, ȳ), g(x̄, ȳ)) /∈ bdNΩ(x̄, ȳ, ū) holds. Then
problem (3.8) is partially calm at (x̄, ȳ, ū) in the sense of Definition 3.3.10.

Proof. Under the uniform weak sharp minimum, the result follows from [130]. In the second case, we
obtain the partial calmness in the sense of Definition 3.3.10 by proceeding as in Theorem 3.2.8, where the
counterpart of the mapping in (3.60) is chosen here as M (v) := {(x,y,u) ∈Ω| −∑

p
i uigi(x,y)≤ v}.

The semismoothness is automatically satisfied for our set Ω here provided G j, j = 1, . . . ,k is convex,
and (x,y) 7→ ∇y f (x,y) and g are affine linear. Next we derive S-stationarity conditions for the KKT
reformulation via the partial calmness concept in Definition 3.3.10.

Theorem 3.3.12 (S-stationarity conditions for the KKT reformulation via the partial calmness, I). Let
(x̄, ȳ, ū) be a local optimal solution of problem (3.8), where the partial calmness in the sense of Definition
3.3.10 holds. Furthermore, assume that the following implication is satisfied at (x̄, ȳ, ū):

∑
k
j=1 α j∇G j(x̄)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū)+∑

p
i=1 βi∇xgi(x̄, ȳ) = 0

∑
m
l=1 γl∇yLl(x̄, ȳ, ū)+∑

p
i=1 βi∇ygi(x̄, ȳ) = 0

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0
∀i = 1, . . . , p, βi ≥ 0, βig(x̄, ȳ) = 0

∀i = 1, . . . , p, ∑
m
l=1 γl∇yl gi(x̄, ȳ)≥ 0, ūi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0

=⇒


α = 0,
β = 0,
γ = 0.

(3.131)

Then the S-stationarity conditions (3.16), (3.23)–(3.25) and (3.30) hold with ‖(α,γ)‖ ≤ r for some r > 0.

Proof. Considering the definition of partial calmness in Definition 3.3.10, there exists λ > 0 such that
(x̄, ȳ, ū) is also a local optimal solution of the problem

min
x,y,u
{F(x,y)−λ

p

∑
i=1

uigi(x,y)| (x,y,u) ∈Ω∩ψ
−1(Λ)}, (3.132)

where Ω := Rn+m ×Rp
+, Λ := Rk

− ×Rp
− × {0m} and ψ(x,y,u) := [G(x),g(x,y),L (x,y,u)]. We have

NΛ(ψ(x̄, ȳ, ū)) = NRk
−×R

p
−
(G(x̄),g(x̄, ȳ))×Rm with the formula of NRk

−×R
p
−
(G(x̄),g(x̄, ȳ)) given in the

right-hand-side of equation (3.80). Furthermore, the normal cone to Ω and the gradient of ψ are given by

NΩ(x̄, ȳ, ū) = {0n+m}×{ζ ∈ Rp|ζ ≤ 0, ζ
>ū = 0}, (3.133)

∇ψ(x,y,u)>(α,β ,γ) =4(α,β ,γ), (3.134)

where 4(α,β ,γ) is the matrix in (3.102). It follows from equalities (3.80) and (3.133)–(3.134) that the
basic CQ applied to problem (3.132) at (x̄, ȳ, ū) can equivalently be formulated as: there is no nonzero
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vector (α,β ,γ) ∈ Rk+p+m and a vector ζ ∈ Rp (dummy multiplier) such that the first four lines of the
left-hand-side of implication (3.131) and the system

∇yg(x̄, ȳ)γ +ζ = 0, ζ ≤ 0, ζ
>ū = 0 (3.135)

are satisfied, respectively. It clearly follows that CQ (3.131) corresponds to the basic CQ (2.41) applied to
problem (3.132), where the last line of the system in the left-hand-side of implication (3.131) is recovered
from (3.135) by setting ζ = −∇yg(x̄, ȳ)γ . Hence, applying Proposition 2.2.5 to problem (3.132), it also
follows from (3.80) and (3.133)–(3.134) that there exists (α,β ,γ) ∈ Rk+p+m, with ‖(α,β ,γ)‖ ≤ r (for
some r > 0), ζ ∈ Rp and λ > 0 such that relationships (3.16)–(3.17) and (3.33)–(3.34) together with the
following conditions are satisfied:

−λg(x̄, ȳ)+∇yg(x̄, ȳ)γ +ζ = 0, ζ ≤ 0, ζ
>ū = 0. (3.136)

Thus condition (3.37) is regained from system (3.136) while noting that the feasibility of (x̄, ȳ, ū) implies
that we have ∑

p
i=1 ūigi(x̄, ȳ) = 0.

We have shown that there exists (α,β ,γ,λ ) with λ > 0, such that we have (3.16)-(3.17) and (3.33)–
(3.37) (where (3.35) and (3.36) are due to the feasibility of (x̄, ȳ, ū)). The S-stationarity conditions (3.16),
(3.23)–(3.25) and (3.30) including the bound on (α,γ) are then derived from the latter conditions by
proceeding as in the conclusion of Theorem 3.3.8.

In the next result, we show that the qualification condition (3.131) can be weakened provided the
perturbation map of the joint upper and lower-level feasible sets is calm.

Theorem 3.3.13 (S-stationarity conditions for the KKT reformulation via the partial calmness, II). Let
(x̄, ȳ, ū) be a local optimal solution of problem (3.8), where the partial calmness in the sense of Definition
3.3.10 holds. Furthermore, assume that the following CQs are satisfied at (x̄, ȳ, ū):

The map M2(t1, t2) := {(x,y)|G(x)+ t1 ≤ 0, g(x,y)+ t2 ≤ 0} is calm at (0,0, x̄, ȳ), (3.137)

∑
k
j=1 α j∇G j(x̄)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū)+∑

p
i=1 βi∇xgi(x̄, ȳ) = 0

∑
m
l=1 γl∇yLl(x̄, ȳ, ū)+∑

p
i=1 βi∇ygi(x̄, ȳ) = 0

∀ j = 1, . . . ,k, α j ≥ 0, α jG j(x̄) = 0
∀i = 1, . . . , p, βi ≥ 0, βig(x̄, ȳ) = 0

∀i = 1, . . . , p, ∑
m
l=1 γl∇yl gi(x̄, ȳ)≥ 0, ūi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0

=⇒ γ = 0. (3.138)

Then the S-stationarity conditions (3.16), (3.23)–(3.25), (3.30) hold with ‖γ‖ ≤ r for some r > 0.

Proof. Set Ω := {(x,y,u)|u≥ 0, G(x)≤ 0, g(x,y)≤ 0}, then under the partial calmness assumption, we
have from Definition 3.3.10, that there exists λ > 0 such that (x̄, ȳ, ū) is also a local optimal solution of

min
x,y,u
{F(x,y)−λ

p

∑
i=1

uigi(x,y)| (x,y,u) ∈Ω∩L −1(0)}.

Hence, it follows from Proposition 2.2.5 that if the following basic-type CQ holds at (x̄, ȳ, ū)[
0 ∈

m

∑
l=1

γl∇Ll(x̄, ȳ, ū)+NΩ(x̄, ȳ, ū), γ ∈ Rm
]
=⇒ γ = 0, (3.139)

then there exists γ ∈ Rm with ‖γ‖ ≤ r (for some r > 0) such that we have the optimality condition

0 ∈
[

∇F(x̄, ȳ)
−λg(x̄, ȳ)

]
+

m

∑
l=1

γl∇Ll(x̄, ȳ, ū)+NΩ(x̄, ȳ, ū). (3.140)
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Now, observe that Ω = Ω′×Rp
+ with Ω′ := {(x,y)|G(x)≤ 0, g(x,y)≤ 0}. From Theorem 2.2.7 we have

the expression of the normal cone to Ω′ in the right-hand-side of equality (3.75) under CQ (3.137). Hence,
we regain CQ (3.138) and the desired optimality conditions by inserting the aforementioned expression
of NΩ′(x̄, ȳ) in (3.139) and (3.140)), while noting that ζ ∈ NRp

+
(ū) if and only if ζ ≤ 0 and ū>ζ = 0. Note

that as in the proofs of Theorems 3.3.8 and 3.3.12, the first step gives the necessary optimality conditions
of the type in (3.16)-(3.17) and (3.33)–(3.37), thus leading similarly to the result.

Proceeding as in Remark 3.3.4, one can easily check that CQ (3.131) implies the fulfilment of both
CQs (3.137) and (3.138). Also note that we have: CQ(3.128) =⇒ CQ(3.113) =⇒ CQ(3.97). However,
the chain of implications that relates the resulting S, C and M-stationarity conditions, respectively, is
completely different, cf. diagram in (3.31). Finally, the strong S-stationarity conditions for the bilevel
program (P) can be obtained via its classical KKT reformulation as follows.

Corollary 3.3.14 (SP-S-stationarity via the KKT reformulation). Let (x̄, ȳ) be a local optimal solution of
problem (P), where the lower-level problem (1.3) is convex. Assume that the Slater CQ (3.6) holds at x̄.
Then (x̄, ȳ) is SP-S-stationary provided one of the following assertions holds at (x̄, ȳ, ū) for all ū∈Λ(x̄, ȳ):

(i) Guignard CQ (3.121),
(ii) MPEC-LICQ (3.128),
(iii) Partial MPEC-LICQ (3.97) and CQ (3.129),
(iv) Partial calmness in the sense of Definition 3.3.10 and CQ (3.131),
(v) Partial calmness in the sense of Definition 3.3.10 and CQs (3.137) and (3.138).

Proof. In view of Theorem 3.1.3 (i), we have the results from Theorem 3.3.8, Theorem 3.3.9, Theorem
3.3.12 and Theorem 3.3.13, respectively.

As usual, if (i), (ii), (iii), (iv) or (v) is satisfied at the point (x̄, ȳ, ū), only for a single ū ∈ Λ(x̄, ȳ), we
obtain the P-S-stationarity for (x̄, ȳ).

3.4 OPEC reformulation

In this section we are interested in deriving necessary optimality conditions for the classical optimistic
bilevel optimization problem (P) via its OPEC reformulation (3.5). In order to apply the basic CQ (2.41)
to the latter problem, we need to make sure that the normal cone mapping Q : Rn×Rm ⇒Rm defined for
y ∈ K(x) by

Q(x,y) := NK(x)(y) (3.141)

while Q(x,y) := /0, otherwise, is closed. Furthermore, to obtain detailed conditions, one should also be
able to estimate the coderivative of this mapping. These issues will be studied in the next subsection.
In Subsection 3.4.2, P-M-stationarity conditions are investigated via problem (3.5) and from various
view points, while attempting to provide a clear comparison between the process to derive stationarity
conditions for (P) via the KKT and OPEC/primal KKT reformulations.

3.4.1 The normal cone mapping

Recall the following result from [108, Proposition 3.3] stating that the mapping Q (3.141) is automatically
closed, provided K is independent of x. To proceed first observe that in the latter case, the mapping
Q : Rm ⇒ Rm is such that gphQ = {(y,z)| z ∈ NK(y)}.

Proposition 3.4.1 (closedness of the normal cone mapping when the lower-level feasible set is nonpara-
metric). Assume that K(x) := K for all x ∈ X, then gphQ = {(y,z)| z ∈ NK(y)} is closed as a subset of
K×Rm in the sense that: If xk→ x (xk ∈ K) and zk→ z with zk ∈ NK(xk), then z ∈ NK(x).
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Next we extend this result to the case where K is a moving set, i.e. a set-valued map from Rn to Rm.

Proposition 3.4.2 (closedness of the normal cone mapping when the lower-level feasible set is para-
metric). Consider the normal cone mapping Q (3.141) and assume that K : Rn ⇒ Rm is convex-valued
and inner semicontinuous on its graph. Then gphQ := {(x,y,z)| z ∈ NK(x)(y)} is closed as a subset of
gphK×Rm in the sense that: If (xk,yk)→ (x,y) ((xk,yk) ∈ gphK) and zk → z with zk ∈ Q(xk,yk), then
we have z ∈ Q(x,y).

Proof. Let (xk,yk)→ (x,y) ((xk,yk) ∈ gphK) and zk→ z with zk ∈ Q(xk,yk). Since K(xk) is assumed to
be convex for all k, we have from the expression of the normal cone in (2.20) that

〈zk,uk− yk〉 ≤ 0, ∀uk ∈ K(xk), k ∈ N. (3.142)

K being inner semicontinuous on its graph, it follows that for an arbitrary v∈K(x), there exists vk ∈K(xk)
such that vk→ v. Thus from (3.142), we have 〈zk,vk− yk〉 ≤ 0 for all k ∈ N. By passing to the limits, the
latter implies that we have 〈z,v− y〉 ≤ 0 for all v ∈ K(x); which completes the proof.

Considering the case where the set-valued mapping K is defined as in (1.4), recall (cf. Subsection
2.1.4) that the concept of inner semicontinuity can be brought to usual terms through the following well-
known result, see e.g. [89].

Lemma 3.4.3 (inner semicontinuity of K via the lower-level regularity). Let (x̄, ȳ) ∈ gphK and assume
that (x̄, ȳ) is lower-level regular (3.65). Then K is inner semicontinuous around (x̄, ȳ).

In order to provide a detailed upper estimate of the coderivative of Q (3.141), we will use the following
representation of the normal cone to the graph of NRp

−
in terms of the normal cone to Π (3.95).

Lemma 3.4.4 (normal cone to the graph of Rp
− in terms of the normal cone to Π). Consider the point

(ū, v̄) ∈ gphNRp
−

, then we have

NgphNRp
−
(ū, v̄) = {(−u,v) ∈ R2p|(u,v) ∈ NΠ(−ū, v̄)}. (3.143)

Proof. We start by noting that

gphNRp
−

= {(u,v) ∈ R2p|u≤ 0, v≥ 0, u>v = 0}
= {(u,v) ∈ R2p|(−u,v) ∈Π}.

This means that gphNRp
−
= ϑ−1(Π), where ϑ(u,v) := (−u,v) and for (ū, v̄) ∈ R2p, one obviously has

∇ ϑ(ū, v̄) =
[
−Ip O
O Ip

]
with Ip and O denoting the p× p identity and zero matrix, respectively. Hence, the Jacobian matrix
∇ϑ(ū, v̄) is quadratic and nonsingular and it follows from [83, Corollary 2.12] that

NgphNRp
−
(ū, v̄) = ∇ϑ(ū, v̄)>NΠ(ϑ(ū, v̄)),

given that gphNRp
−

and Π are closed sets. The result then follows.

Based on Theorem 3.1 in [93] and the previous lemma, we now give an upper estimate of the coderiva-
tive of Q (3.141) that best suits our desire to write M-stationarity conditions for problem (3.5) in the
sense of Definition 3.3.1. This will allow us to establish a clear relationship between the OPEC and KKT
approaches to derive stationarity conditions for (P).
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Theorem 3.4.5 (M-type representation of the upper estimate of the coderivative of the normal cone
mapping). Let the lower-level problem (1.3) be convex and consider (x̄, ȳ) ∈ gphS such that the Slater
CQ (3.6) is satisfied at x̄, while the following set-valued mapping is calm at (0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ):

M(v) :=
{
(x,y,u)

∣∣ [g(x,y), u]+ v ∈ gphNRp
−

}
. (3.144)

Then, for any γ ∈ Rm, the coderivative of Q at ((x̄, ȳ)|−∇y f (x̄, ȳ)) can be estimated as

D∗Q((x̄, ȳ)|−∇y f (x̄, ȳ))(γ)⊆
⋃

ū∈Λ(x̄,ȳ)

{[
∑

p
i=1 ūi∇

2
xygi(x̄, ȳ)>γ +∑

p
i=1 βi∇xgi(x̄, ȳ)

∑
p
i=1 ūi∇

2
yygi(x̄, ȳ)>γ +∑

p
i=1 βi∇ygi(x̄, ȳ)

]∣∣∣∣
∇ygν(x̄, ȳ)γ = 0, βη = 0

∀i ∈ θ ,
(
βi > 0∧∑

m
l=1 γl∇yl gi(x̄, ȳ)> 0

)
∨βi ∑

m
l=1 γl∇yl gi(x̄, ȳ) = 0

}
.

(3.145)

Proof. Since the lower-level problem is convex, then the inclusion (x̄, ȳ)∈ gphS implies that−∇y f (x̄, ȳ)∈
Q(x̄, ȳ). Hence, the combination of the Slater CQ at x̄ and the calmness of the set-valued mapping M
(3.144) at (0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ) give the following upper estimate of the coderivative of Q at
((x̄, ȳ)|−∇y f (x̄, ȳ))

D∗Q((x̄, ȳ)|−∇y f (x̄, ȳ))(γ) ⊆
⋃

ū∈Λ(x̄,ȳ)

{
∑

p
i=1 ūi[∇(∇ygi)(x̄, ȳ)]>γ +

∇g(x̄, ȳ)>D∗NRp
−
(g(x̄, ȳ), ū)(∇yg(x̄, ȳ)γ)

}
,

(3.146)

cf. [93, Theorem 3.1]. Now let (a,b) be an element of the set in the right-hand-side set of (3.146), then
there exist ū ∈ Λ(x̄, ȳ) and β ∈ D∗NRp

−
(g(x̄, ȳ), ū)(∇yg(x̄, ȳ)γ) such that we have[

a
b

]
=

[
∑

p
i=1 ūi∇

2
xygi(x̄, ȳ)>γ +∑

p
i=1 βi∇xgi(x̄, ȳ)

∑
p
i=1 ūi∇

2
yygi(x̄, ȳ)>γ +∑

p
i=1 βi∇ygi(x̄, ȳ)

]
. (3.147)

On the other hand, note that

β ∈ D∗NRp
−
(g(x̄, ȳ), ū)(∇yg(x̄, ȳ)γ)⇐⇒ (β ,−∇yg(x̄, ȳ)γ) ∈ NgphNRp

−
(g(x̄, ȳ), ū)

(3.143)⇐⇒ (−β ,−∇yg(x̄, ȳ)γ) ∈ NΠ(−g(x̄, ȳ), ū)
(3.96)⇐⇒

{
∇ygν(x̄, ȳ)γ = 0, βη = 0
∀i ∈ θ ,

(
βi > 0∧∇ygi(x̄, ȳ)γ > 0

)
∨βi(∇ygi(x̄, ȳ)γ) = 0.

Combining the latter equivalence with equality (3.147), we have the desired result.

3.4.2 Necessary optimality conditions

Considering the case where K is given in (1.4), we first present a slightly modified version of Theorem
6.1 in [93], while providing a sketch of the proof for completeness.

Theorem 3.4.6 (P-M-stationarity via the OPEC reformulation). Let (x̄, ȳ) be a local optimal solution of
the OPEC reformulation (3.5), i.e. of problem (P), where the lower-level problem is convex. Assume that
x̄ satisfies the Slater CQ (3.6), while for all ū ∈ Λ(x̄, ȳ), the mappings M (3.144) and P defined by

P(v1,v2) :=
{
(x,y,u) ∈M(v1)| [G(x), L (x,y,u)]+ v2 ∈ Rk

−×{0m}
}
, (3.148)

are calm at (0, x̄, ȳ, ū) and (0,0, x̄, ȳ, ū), respectively. Then (x̄, ȳ) is P-M-stationary with ‖(α,γ)‖ ≤ r, for
some number r > 0.
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Proof. Consider the following values for ψ and Λ, respectively:

ψ(x,y) := [G(x), x, y,−∇y f (x,y)], Λ := Rk
−×gphQ and Ω := Rn×Rm. (3.149)

Applying Proposition 2.2.5 to the corresponding operator constraint reformulation (2.40) of problem
(3.5), one can easily check that there exists (α,γ) ∈ Rk+m with ‖(α,γ)‖ ≤ r (for some r > 0) such that
we have

0 ∈ ∇F(x̄, ȳ)+
[

∇G(x̄)>α +∇2
xy f (x̄, ȳ)>γ

∇2
yy f (x̄, ȳ)>γ

]
+D∗Q((x̄, ȳ)|−∇y f (x̄, ȳ))(γ) (3.150)

provided Λ is closed and the set-valued mapping Ψ in (2.42) (with ψ , Λ and Ω given in (3.149)) is calm
at (0, x̄, ȳ). Obviously, the closedness of Λ is ensured by the Slater CQ, by a combination of Proposition
3.4.2 and Lemma 3.4.3. As for the calmness of Ψ, it is obtained by the calmness of the set-valued
mapping P (3.148) at (0,0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ). In fact the proof of the latter claim can be adapted
from the proof of Theorem 4.3 in [93]. The result follows from the combination of inclusions (3.145)
and (3.150).

In our case, the constraint G(x) ≤ 0 is included in ψ whereas it is part of Ω in [93]. The reason
for this is to get a close link between CQ (3.97) and the qualification conditions in Theorem 3.4.6, cf.
Remark 3.4.8. Also, here Λ(x̄, ȳ) is not a singleton as in [93]. To obtain this, at the place of the Slater
CQ, it is required in [93] that ∇yg(x̄, ȳ) has full rank. Finally, in contrary to Theorem 6.1 of [93], the
multipliers α and γ are bounded in Theorem 3.4.6 by a known number, something which can be useful
when constructing an algorithm for the bilevel program.

Remark 3.4.7 (relationship with previous work on M-stationarity conditions for OPECs). There are two
equivalent ways to interpret the coderivative term in the right-hand-side of inclusion (3.146). The first
one used in [114] consist in writing it directly in terms of g(x̄, ȳ), ū and ∇yg(x̄, ȳ)γ . It should however
be mentioned that in [114], g does not depend on the parameter x. The second one that we have used
here consist in first computing the normal cone to the graph of NRp

−
at (g(x̄, ȳ), ū). Then, translating

inclusion (β ,−∇yg(x̄, ȳ)γ) ∈ NgphNRp
−
(g(x̄, ȳ), ū) by means of equality (3.143) directly leads to the M-

stationarity conditions in the sense of Definition 3.1.6, cf. Theorems 3.4.5 and 3.4.6. At first view, it is not
apparent that the optimality conditions in [114] are in fact equivalent to the corresponding M-stationarity
conditions in (3.16) and (3.23)–(3.26). Moreover, a condition was later suggested in [64], in order to
obtain S-type optimality conditions for an OPEC from the M-ones. By the way, let us mention that in the
case of our problem, the S-stationarity conditions defined in [64] correspond to those of Definition 3.1.8.
Hence, in view of Theorem 3.3.9 the corresponding version of the Partial MPEC-LICQ (3.129) can also
lead from M to S-type optimality conditions in the framework of an OPEC, something which was not
mentioned in reference [64].

Remark 3.4.8 (on the KKT and OPEC/primal KKT approaches to derive stationarity conditions for
the classical bilevel program). At first recall that the OPEC and KKT reformulations of problem (P) are
closely related, in the sense that if we insert the formula (3.7) of the normal cone to K(x) in the former re-
formulation, we obtain the latter one. However it appears that the process to derive necessary optimality
conditions for both problems are far from each other. In fact we have seen in Section 3.3 that most of the
techniques for the more general MPCC/MPEC theory can be translated to the KKT reformulation, while
for the OPEC one, one needs a more advanced machinery, namely the computation of the coderivative of
the normal cone mapping, cf. Theorem 3.4.5. Thus it seems important to look closely at the two processes
of deriving necessary optimality conditions for (P). To do so, we first start by noting the following link
between the CQs used for the two approaches: Proceeding as in Remark 3.3.4 it is a simple exercise to
check that if CQ (3.97) holds at (x̄, ȳ, ū), then the set-valued mappings M (3.144) and P (3.148) are calm
at (0, x̄, ȳ, ū) and (0,0, x̄, ȳ, ū), respectively. Thus if we neglect the bounds on the multipliers, it appears
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that under the same CQs, the KKT reformulation leads to stationarity conditions (SP-M-stationarity)
which are stronger than those obtained via the OPEC reformulation (P-M-stationarity), see the diagram
in (3.31). It can not be otherwise considering the union in inclusion (3.145). Moreover, the classical
KKT reformulation provides a much bigger flexibility in designing surrogates for the other optimality
conditions known for MPCCs, see for example the S-type stationarity conditions obtained in Subsection
3.3.3. However, it is very difficult to directly derive the S-type optimality conditions for an OPEC given
that the Fréchet normal cone (which induces the S-stationarity) does not have as good calculus rules as
that of Mordukhovich. Nevertheless, we should not lost sight on the fact that the OPEC reformulation is
completely equivalent to the initial problem (cf. Theorem 3.1.2) while there is an unbalanced relationship
between (P) and its KKT reformulation, cf. Theorem 3.1.3, due to the new variable u which is a priori
part of problem (3.8) while u appears a posteriori in the process of estimating the coderivative of the
normal cone set-valued mapping, see (3.145).

We now introduce a partial calmness-like concept for the OPEC reformulation (3.5), which is a weaker
CQ that will allow us to still get the optimality conditions in Theorem 3.4.6. To bring the concept of
partial calmness in the LLVF reformulation to the OPEC reformulation, one possibility is to observe that

ψ(x,y) ∈ Λ⇐⇒ ρ(x,y) := dΛoψ(x,y) = 0, (3.151)

where Λ := gphQ, ψ(x,y) := (x,y,−∇y f (x,y)). (3.152)

Here Q is given by (3.141) and dΛ denotes the distance function. It follows that the OPEC reformulation
(3.5) can equivalently be written as

min
x,y
{F(x,y)| x ∈ X , ρ(x,y) = 0}. (3.153)

Such a transformation for an OPEC has already been suggested in [61], but with no further details on the
process to necessary optimality conditions. Next, we first show that the basic CQ (2.41), which reduces
for problem (3.153) to

∂ρ(x̄, ȳ)∩ (−NX×Rm(x̄, ȳ)) = /0 (3.154)

may often not be satisfied. To proceed, first observe that applying the chain rule (2.13) to ρ , it follows
that we have

∂ρ(x̄, ȳ)⊆
⋃{

∂ 〈u,ψ〉(x̄, ȳ), u ∈ B∩NΛ(ψ(x̄, ȳ))
}
, (3.155)

provided Λ is (locally) closed and hence, ∂dΛ(a) = B∩NΛ(a) for any a ∈ Λ, cf. [109, Example 8.53].

Proposition 3.4.9 (failure of the basic CQ for problem (3.153)). Let (x̄, ȳ) be a feasible point of the
OPEC reformulation (3.5), i.e. of problem (P), where the lower-level problem is convex. Assume that x̄
satisfies the Slater CQ (3.6), while equality holds in (3.155), then CQ (3.154) fails at (x̄, ȳ).

Proof. Note that under the convexity assumption, problem (3.5) is well-defined as an equivalent refor-
mulation of (P). Secondly, the Slater CQ (3.6) at x̄ ensures the local closedness of Λ in (3.152), cf.
combination of Proposition 3.4.2 and Lemma 3.4.3. This implies that inclusion (3.155) is satisfied. Now
observe that if equality holds in (3.155), then 0 ∈ ∂ρ(x̄, ȳ) since as a normal cone, NΛ(ψ(x̄, ȳ)) always
contains the origin point. For the latter reason, we also have 0 ∈ NX×Rm(x̄, ȳ). Hence, the result.

This behavior of CQ (3.154) is close to that of the similar CQ (3.40) in the framework of the LLVF
reformulation (3.3), where instead of ρ(x,y) one has f (x,y)− ϕ(x). In contrary to the LLVF case,
where the weak basic CQ (3.42) was shown to work, in particular for the simple convex bilevel program
(cf. Example 1), we show in what follows that its OPEC counterpart fails. In fact, let the upper-level
feasible set X be convex, then, passing to the boundary of NX×Rm generates a CQ, analogous to (3.42)
and expected to have more chances to be satisfied:

∂ρ(x̄, ȳ)∩ (−bdNX×Rm(x̄, ȳ)) = /0. (3.156)
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Unfortunately, it is shown in the next proposition that this qualification condition fails under the assump-
tions of Proposition 3.4.9. In the proof, we consider that the space Rn×Rm is endowed with the product
topology.

Proposition 3.4.10 (failure of the weak basic CQ for problem (3.153)). Let (x̄, ȳ) be a feasible point of
the OPEC reformulation (3.5), where the upper-level feasible set X is convex. Furthermore, suppose that
all the assumptions of Proposition 3.4.9 are satisfied. Then the weak basic CQ (3.156) fails at (x̄, ȳ).

Proof. Recall that the convexity of X ensures that X ×Rm is a semismooth set, which implies that con-
dition (3.156) is well-defined as a CQ in the sense of [61]. As already noticed in the proof of Proposition
3.4.9, we automatically have 0 ∈ ∂ρ(x̄, ȳ) under the assumptions made in the current result. Hence, it
suffices now to show that we also have 0 ∈ bdNX×Rm(x̄, ȳ). Suppose that the latter does not hold, and
observe that bdNX×Rm(x̄, ȳ) = NX×Rm(x̄, ȳ)\ intNX×Rm(x̄, ȳ), given that NX×Rm(x̄, ȳ) is a closed set, while
taking into account the closeness of X ×Rm. Thus we have 0 ∈ intNX×Rm(x̄, ȳ) = int [NX(x̄)×{0}] = /0
(cf. product topology on Rn×Rm), which is absurd. This completes the proof.

Even though one can easily construct examples where equality holds in (3.155), the generalization of
this fact would generally require the set Λ to be normally regular at ψ(x̄, ȳ), which may not be easy to
have given that Λ is the graph of a normal cone mapping. In the vein of Theorem 3.2.2 and similarly to
Definition 3.3.10, we now introduce a partial calmness concept for the OPEC reformulation.

Definition 3.4.11 (partial calmness concept for the OPEC reformulation (3.5)). Let (x̄, ȳ) be a local
optimal solution of problem (3.5). This problem is partially calm at (x̄, ȳ) if there exists a number λ > 0
such that (x̄, ȳ) is a local optimal solution of the partially penalized problem

min
x,y
{F(x,y)+λρ(x,y)| x ∈ X}. (3.157)

In the next theorem we provide a sufficient condition ensuring the satisfaction of the above partial
calmness condition.

Theorem 3.4.12 (sufficient condition for the partial calmness of the OPEC reformulation). Assume that
the following set-valued mapping is calm at (0,0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ):

P(v1,v2) := {(x,y,u) ∈ X×Rm×Rp|L (x,y,u)+ v1 = 0}∩M(v2) (3.158)

with M defined in (3.144). Then problem (3.153) is partially calm in the sense of Definition 3.4.11.

Proof. Start by noting that the calmness of the mapping P (3.158) at (0,0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ)
implies the calmness of the following set-valued mapping at (0, x̄, ȳ)

Ψ(v) := {(x,y) ∈ X×Rm|ψ(x,y)+ v ∈ Λ}, (3.159)

where ψ and Λ are given in (3.152), cf. [93, Proof of Theorem 4.3]. On the other hand, Ψ (3.159) is calm
at (0, x̄, ȳ) if and only if the following set-valued mapping is calm at (0, x̄, ȳ)

Ψ̃(t) := {(x,y) ∈ X×Rm|ρ(x,y)≤ t}. (3.160)

This result established in [62], for the case where X ×Rm corresponds to a normed space, remains valid
in our setting where X is defined in (1.4). Additionally, one can easily check that the calmness of Ψ̃

(3.160) is equivalent to the calmness of a set-valued mapping obtained by replacing ρ(x,y)≤ t in (3.160)
by ρ(x,y)+ t ≤ 0. To conclude the proof, one can easily check, cf. Theorem 3.2.8, that the calmness of
the mapping Ψ̃ (3.160) at (0, x̄, ȳ) implies the partial calmness of problem (3.153) at (x̄, ȳ), in the sense
of Definition 3.4.11.
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In the following result we show that the stationarity conditions obtained via the partial exact penaliza-
tion in Definition 3.4.11 are identical to those derived in Theorem 3.4.6. Observe however from Theorem
3.4.12 that the slight adjustment of the mapping P in (3.148) to P (3.158) clearly show that the partial
calmness concept in the sense of Definition 3.4.11 is a weaker qualification condition.

Theorem 3.4.13 (P-M-stationarity via the OPEC reformulation under the partial calmness). Let (x̄, ȳ)
be a local optimal solution of the OPEC reformulation (3.5), i.e. of problem (P), where the lower-level
problem is convex. Assume that x̄ satisfies the Slater CQ (3.6), while for all ū ∈ Λ(x̄, ȳ), the mapping M
(3.144) is calm at (0, x̄, ȳ, ū). Furthermore, assume that problem (3.5) is partially calm in the sense of
Definition 3.4.11. Then the point (x̄, ȳ) is P-M-stationary with ‖(α,γ)‖ ≤ r, for some r > 0.

Proof. Under the partial calmness assumption, it follows from Definition 3.4.11, that there exists r1 > 0
such that (x̄, ȳ) is a local optimal solution of problem

min
x,y
{F(x,y)+ r1ρ(x,y)| G(x)≤ 0}.

Applying Proposition 2.2.5 to the latter problem, it follows that there exists α with ‖α‖ ≤ r2 for some
r2 > 0, such that relationship (3.16) together with the following inclusion hold

0 ∈ ∇F(x̄, ȳ)+
[

∑
p
j=1 α j∇G j(x̄)

0

]
+ r1∂ρ(x̄, ȳ). (3.161)

Recall that with the Slater CQ satisfied at x̄, inclusion (3.155) is satisfied. Hence, the combination of
(3.155) and (3.161) and implies that there exists γ ∈ Rm, with ‖γ‖ ≤ r1, such that inclusion (3.150)
holds. The rest of the proof then follows as that of Theorem 3.4.6. In this case, r can be chosen as
r = min{r1,r2}.

Remark 3.4.14 (the distance function as exact penalty term). The need of the partial calmness (in the
sense of Definition 3.4.11) in order to have ρ (3.151) as an exact penalization term can be avoided by
considering a classical result of Clarke [16, Proposition 2.4.3] which amounts to saying that the distance
function is automatically an exact penalty term provided the objective function (F in our case) is Lipschitz
continuous. To proceed one should observe that ψ(x,y)∈Λ is also equivalent to dψ−1(Λ)(x,y) = 0. Hence
(x̄, ȳ) being a local optimal optimal solution of problem (3.5) implies that there exists λ > 0 such that
(x̄, ȳ) is also a local optimal solution of the problem

min
x,y
{F(x,y)+λ dψ−1(Λ)(x,y)| x ∈ X},

without any qualification condition. In exchange though, computing the basic subdifferential of the dis-
tance function dψ−1(Λ) would then require an assumption closely related to the partial calmness in the
sense of Definition 3.4.11, i.e. the calmness of a certain set-valued mapping.

To conclude this section we consider the following version of the OPEC reformulation (3.5) of problem
(P), where the feasible set is nonparametric:

min
x,y
{F(x,y)|0 ∈ ∇y f (x,y)+NK(y)}. (3.162)

Next we will give a new class of dual necessary optimality conditions based on the following primal
optimality conditions of problem (3.162) derived in [25, Theorem 2.6]. For this result, it was assumed that
the corresponding lower-level problem be amply parameterized in the sense of Dontchev and Rockafellar
[41], that is

rank (∇2
xy f (x̄, ȳ)) = m, (3.163)

where rankA stands for the rank of the matrix A.
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Theorem 3.4.15 (primal necessary optimality conditions of problem (3.162)). Let (x̄, ȳ) be a local op-
timal solution of problem (3.162) and assume that CQ (3.163) is satisfied at this point. Further assume
that K is a polyhedral set, then we have

∇F(x̄, ȳ)>(u,v)≥ 0, ∀(u,v) : 0 ∈ ∇
2
xy f (x̄, ȳ)u+∇

2
yy f (x̄, ȳ)v+NK(x̄,ȳ)(v), (3.164)

where K(x̄, ȳ) := TK(ȳ)∩ (∇y f (x̄, ȳ))⊥ is the critical cone to K at (ȳ,∇y f (x̄, ȳ)).

If we give an explicit value to K, a complete description of the primal optimality conditions of the
above result is possible. However our main concern though is to derive the dual form of these optimality
conditions and compare them with those of the previous sections. In the next result, we show that the
first step is possible without any additional assumption.

Theorem 3.4.16 (dual form of the optimality conditions in Theorem 3.4.15). Let (x̄, ȳ) be a local optimal
solution of problem (3.162) and assume that CQ (3.163) is satisfied at this point. Further assume that K
is a polyhedral set, then there exists γ ∈ Rm with ‖γ‖ ≤ r (for some r > 0) such that we have

∇xF(x̄, ȳ)+∇
2
xy f (x̄, ȳ)>γ = 0, (3.165)

0 ∈ ∇yF(x̄, ȳ)+∇
2
yy f (x̄, ȳ)>γ +D∗NK(x̄,ȳ)(0,0)(γ). (3.166)

Proof. Under the assumptions of this theorem, it follows from Theorem 3.4.15 that (x̄, ȳ) satisfies the
primal optimality conditions (3.164). They imply that (0,0) is an optimal solution of the problem

min
u,v
{∇xF(x̄, ȳ)>u+∇yF(x̄, ȳ)>v| ψ(u,v) ∈ Λ} (3.167)

where the function ψ and the set Λ are respectively defined by

ψ(u,v) :=
[
v, −∇

2
xy f (x̄, ȳ)u−∇

2
yy f (x̄, ȳ)v

]
and Λ := gphNK(x̄,ȳ). (3.168)

It is clear, in view of Proposition 3.4.1, that Λ is a closed set. Furthermore, since the critical normal
critical cone K(x̄, ȳ) is a polyhedral set, then Λ is also a polyhedral set. In addition to the linearity of the
function ψ (3.168), the set-valued mapping

Ψ(ϑ) := {(u,v)| ψ(u,v)+ϑ ∈ Λ}

is calm at (0,0,0). Hence, by Proposition 2.2.5, applied to problem (3.167), there exists (ξ ,γ) ∈
NΛ(ψ(0,0)) with ‖(ξ ,γ)‖ ≤ r for some r > 0, such that we have

∇F(x̄, ȳ)+∇ψ(0,0)>(ξ ,γ) = 0, (3.169)

One can easily observe that we respectively have

(ξ ,γ) ∈ NΛ(ψ(0,0))
(2.24)⇐⇒ ξ ∈ D∗NK(x̄,ȳ)(0,0)(−γ), (3.170)

and ∇ψ(0,0)>(ξ ,γ) =
[
−∇2

xy f (x̄, ȳ)>γ

ξ −∇2
yy f (x̄, ȳ)>γ

]
. (3.171)

Combining relationships (3.169)–(3.171), we have the result.

The stationarity conditions in Theorem 3.4.16 were labeled in [114] as CM (Critical-Mordukhovich)-
stationarity conditions because of the presence of the normal cone to the critical cone K(x̄, ȳ). The result
in [114] is tailored to the general setting with the lower-level feasible set K defined by functional inequali-
ties (possibly nonlinear). Therefore, the assumptions there are stronger than the ones used here, precisely,
they are the counterparts of those used in Corollary 3.2.14, i.e. the SSOC (3.88) and CRCQ (3.89). Us-
ing the same approach as in Theorem 3.4.5 to estimate the coderivative of the normal cone mapping,
one can derive the P-M-stationarity conditions provided K is explicitly defined and possibly under addi-
tional assumptions. More details and discussions on estimating the generalized derivatives/coderivatives
of normal cone mappings can be found in [3, 60, 63, 93, 114] and references therein.
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3.5 Concluding comments to Chapter 3

Apart from Corollary 3.2.14, all the necessary optimality conditions derived in this chapter for problem
(P) are tailored to the case where the lower-level problem may have more than one optimal solution. The
KM-stationarity conditions were first derived in [128]. These conditions were then obtained in [26] from
a different perspective and under various settings of the functions involved. The CQ used in both papers
is the partial calmness condition introduced in the former one.

To the best of our knowledge, the KN-stationarity conditions were first derived in [125] under the
convexity of the lower-level value function ϕ (3.2) while applying nonsmooth extensions of some well-
known CQs which are not discussed in this thesis. Later in [120], these conditions are obtained while
replacing the convexity of ϕ by the concavity of the function f (x,y)−ϕ(x). Dempe et al. [26] also
derive these conditions under the convexity of ϕ via the partial calmness condition. However, in the latter
paper, it is additionally required that the solution map S (1.2) be inner semicompact, which is in fact not
necessary as observed in [35] (see Theorem 3.2.12 (ii)). Considering a bilevel infinite program (i.e. where
the lower-level has infinitely many inequality constraints), Dinh et al. [40] suggest necessary optimality
conditions which are closely related to the KN-stationarity conditions. Here, the partial calmness is
also used as CQ while convexity is assumed for the corresponding lower-level value function. It should
however be mentioned that upper-level constraints are not considered in the latter paper. In the absence
of convexity of ϕ , the KN-stationarity conditions were derived for the first time in [91] under the inner
semicontinuity of S while using the partial calmness as CQ.

Note that in Subsection 3.2.3 (also see [33]), we also use the weak basic CQ (3.42) to derive both
the KM and KN-stationarity conditions. Not only our proofs are different from those in aforementioned
works, but we provide exact bounds (which can be computed via Proposition 2.2.5, cf. the proof) on
some multipliers, which makes a really difference, especially in the framework of the partial calmness
condition, cf. Theorem 3.2.12. Further discussions about necessary optimality conditions for (P) via the
LLVF reformulation can be found in the above mentioned papers and their references.

As far as the P-M-stationarity is concerned, it was first obtained in [127] from a perspective different
from that in Subsection 3.3.1. However, a clear connection between M-stationarity from both the KKT
and OPEC reformulations was established in [34]. The other stationarity concepts discussed in Subsec-
tion 3.3 and tailored to (P), were introduced in the latter paper. Further details about the more general
MPCC/MPEC can be found e.g. in [51, 100, 110, 126]. Considering the necessary optimality conditions
of (P) obtained via the LLVF reformulation (KM and KN-stationarity) and those derived from the primal
KKT/OPEC and KKT reformulations (M, C and S-stationarity) it was noted in Subsection 3.1.2 that they
differ considerably from each other. On the one hand, the stationarity conditions obtained via the latter
reformulations contain second order terms from the lower-level problem which may be expensive for
algorithms. On the other hand however, the framework to derive stationarity conditions for (P) via the
LLVF reformulation may be rather restrictive in some particular settings as recently shown by Henrion
and Surowiec in the paper [65] where a set of conditions is given ensuring that the set-valued mapping
Ψ(v) := {(x,y)∈Ω|ψ(x,y)+v∈Λ} (with Ω, ψ and Λ in (3.149)) is automatically calm, while its LLVF
reformulation counterpart in (3.60) fails to be calm.

Let us now say some word about the lower-level regularity (3.65) widely used in Subsection 3.2.3.
Note that in most cases, it can be replaced by the combination of CQ (3.77) and the following one:[ p

∑
i=1

βi∇gi(x̄, ȳ) = 0, βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p
]
=⇒ βi = 0, i = 1, . . . , p. (3.172)

Observe here that in contrary to the lower-level regularity condition (3.65), the derivative of the functions
gi, i = 1, . . . , p in condition (3.172) are w.r.t. (x,y). The lower-level regularity (3.65) is strong enough to
ensure that conditions (3.77) and (3.172) are both satisfied. But in general, the latter conditions are not
related; moreover, it may happen that (3.77) holds while (3.172) fails. Thus the former can be replaced
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by a weaker CQ, in particular the calmness condition of a certain set-valued mapping. In the resulting
framework, one still secure the Lipschitz continuity of the lower-level value function (3.2) needed in
the corresponding results. This strategic choice to consider (3.77) and (3.172) simultaneously instead of
(3.65) will be better understood in Chapter 5 when we consider the LLVF reformulation of the two-level
value function, where the CQ of type (3.172) does note hold.

Finally, it is worth mentioning that if we neglect the bounds on the multipliers, all the stationarity
conditions in this chapter can be generated via the coderivative of the lower-level solution set-valued
mapping S (1.2). To see this, observe that if (x̄, ȳ) is a local optimal solution of problem (P), then

−∇xF(x̄, ȳ)−
k

∑
j=1

α j∇G j(x̄) ∈ D∗S(x̄, ȳ)(∇yF(x̄, ȳ)), (3.173)

provided some conditions are satisfied. It is a simple exercise to check this while using the estimates of
the coderivative of S that we provide in Chapters 4 and 5. It would however be clear in Chapters 5 and
6 that to obtain the necessary optimality for the original optimistic bilevel program (Po) and those of the
pessimistic bilevel program (Pp), we may additionally need S to be Lipschitz-like.
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4 Sensitivity analysis of OPCC and OPEC

value functions

Considering the structure of the pessimistic and original optimistic bilevel programs, we provide general
results on sensitivity analysis of value functions of optimization problems with complementarity con-
straints (OPCC) and those with generalized equation constraints (OPEC). They will then be applied in
the subsequent chapters to obtained stationarity conditions for the aforementioned problems. To proceed,
we first consider a general “abstract" framework of the value/marginal functions

µ(x) := min
y
{ψ(x,y)| y ∈Ψ(x)} (4.1)

with ψ : Rn×Rm→ R and Ψ : Rn ⇒ Rm. Denoting the argminimum mapping in (4.1) by

Ψo(x) := argmin
y
{ψ(x,y)| y ∈Ψ(x)}= {y ∈Ψ(x)| ψ(x,y)≤ µ(x)},

we summarize in the next theorem some known results on general marginal functions needed in this
chapter; see [89, Corollary 1.109] and [90, Theorem 5.2].

Theorem 4.0.1 (properties of general marginal functions). Let the marginal function µ be given in (4.1),
where the graph of Ψ is locally closed around (x̄, ȳ)∈ gphΨ, and where ψ is strictly differentiable at this
point. The following assertions hold:

(i) Let Ψo be inner semicontinuous at (x̄, ȳ). Then µ is lower semicontinuous at x̄ and we have the
following upper bound for its basic subdifferential

∂ µ(x̄)⊆ ∇xψ(x̄, ȳ)+D∗Ψ(x̄, ȳ)(∇yψ(x̄, ȳ)).

If in addition Ψ is Lipschitz-like around (x̄, ȳ), then we also have the Lipschitz continuity of µ around x̄.
(ii) Let Ψo be inner semicompact at x̄. Then µ is lower semicontinuous at x̄ and

∂ µ(x̄)⊆
⋃

ȳ∈Ψo(x̄)

{∇xψ(x̄, ȳ)+D∗Ψ(x̄, ȳ)(∇yψ(x̄, ȳ))}.

If in addition Ψ is Lipschitz-like around (x̄, ȳ) for all vectors ȳ ∈ Ψo(x̄), then µ is Lipschitz continuous
around x̄.

Depending on specific structures of the set-valued mapping Ψ, our aim in Sections 4.1 and 4.2 (also see
Subsection 5.1.2) is to give detailed upper bounds for D∗Ψ(x̄, ȳ) in terms of problem data. Verifiable rules
for Ψ to be Lipschitz-like will also be provided. Thus, implying explicit upper bounds for ∂ µ(x̄) and the
local Lipschitz continuity of µ . More discussions on the inner semicompactness and inner semicontinuity
of argminimum mappings can be found in Remark 3.2.15 and the references therein.

It is worth mentioning that this chapter also provides the background to generate all the necessary
optimality conditions of the previous chapter via the estimates of the coderivative of lower-level solution
map (1.2) (see (3.173)). Together with its consequences in the next chapter, it bridges the gab between
the classical optimistic bilevel program (P) and the two-level value function approach for (Po) and (Pp)
considered in Chapter 5 and Chapter 6, respectively.

An also important point to make here is that the notations used in the next section to designate func-
tions, multipliers and index sets are independent from those of the previous chapter. Notations referring
to those in Chapter 3 will however resume in Section 3.4 and follow similarly in Chapters 5 and 6.
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4.1 Sensitivity analysis of OPCC value functions

In this section we consider the parametric optimization problem belonging to the class of optimization
problems with complementarity constraints (OPCC) also commonly denoted as MPCC or MPEC:

min
y
{F(x,y)| g(x,y)≤ 0, h(x,y) = 0,

G(x,y)≥ 0, H(x,y)≥ 0, G(x,y)>H(x,y) = 0},
(4.2)

where F : Rn ×Rm → R, g : Rn ×Rm → Ra, h : Rn ×Rm → Rb and G, H : Rn ×Rm → Rd are all
continuously differentiable functions. Denoting by

Sc(x) := {y ∈ Rm| g(x,y)≤ 0, h(x,y) = 0,
G(x,y)≥ 0, H(x,y)≥ 0, G(x,y)>H(x,y) = 0} (4.3)

the sets of feasible solutions to (4.2), associate with (4.2) the optimal value function

µ
c(x) := min

y
{F(x,y)|y ∈ Sc(x)}. (4.4)

The main goal of this section is to conduct a local sensitivity analysis for the OPCC problem (4.2) around
the given optimal solution. By this we understand deriving efficient subdifferential estimates for the
optimal value function (4.4), verifiable conditions for its local Lipschitz continuity and for the Lipschitz-
like property of the feasible solution map (4.3) entirely in terms of the initial data of (4.2). According
to the variational analysis results discussed above (see Theorem 4.0.1), this relates to evaluating the
coderivative (2.24) of the solution map (4.3). Adopting the terminology already used in the previous
chapter, the sensitivity analysis results established below and the associated constraint qualifications are
expressed via the sets of M, C and S-type multipliers used in the corresponding M(ordukhovich), C(larke)
and S(trong) stationarity conditions for our pessimistic and original optimistic problems; cf. Chapters 5
and 6.

Furthermore, fix a pair (x̄, ȳ)∈ gphSc and associate with it the following partition of the indices for the
functions involved in the complementarity system of (4.3):

η := η(x̄, ȳ) := {i = 1, . . . ,d| Gi(x̄, ȳ) = 0, Hi(x̄, ȳ)> 0},
θ := θ(x̄, ȳ) := {i = 1, . . . ,d| Gi(x̄, ȳ) = 0, Hi(x̄, ȳ) = 0},
ν := ν(x̄, ȳ) := {i = 1, . . . ,d| Gi(x̄, ȳ)> 0, Hi(x̄, ȳ) = 0}.

(4.5)

Recall that the difference between the various types of multiplier sets depends on the structure of the
components corresponding to the biactive set θ . Now consider a vector v ∈ Rn+m and define the set of
M-type multipliers associated with problem (4.2) by

Λcm(x̄, ȳ,v) := {(α,β ,γ,ζ )| α ≥ 0, α>g(x̄, ȳ) = 0,
γν = 0,ζη = 0,
∀i ∈ θ , (γi < 0∧ζi < 0)∨ γiζi = 0,
v+∇g(x̄, ȳ)>α +∇h(x̄, ȳ)>β +∇G(x̄, ȳ)>γ +∇H(x̄, ȳ)>ζ = 0}.

(4.6)

Similarly we define the set Λcm
y (x̄, ȳ,v), with v ∈ Rm, obtained by replacing the gradients of g,h,G, and

H in equation v+∇g(x̄, ȳ)>α +∇h(x̄, ȳ)>β +∇G(x̄, ȳ)>γ +∇H(x̄, ȳ)>ζ = 0 by their partial derivatives
with respect to y. In the case where v := ∇yF(x̄, ȳ) we denote Λcm

y (x̄, ȳ) := Λcm
y (x̄, ȳ,∇yF(x̄, ȳ)).

The corresponding sets of C-type multipliers denoted by Λcc(x̄, ȳ,v), Λcc
y (x̄, ȳ,v) and Λcc

y (x̄, ȳ) are de-
fined similarly to Λcm(x̄, ȳ,v), Λcm

y (x̄, ȳ,v) and Λcm
y (x̄, ȳ), respectively, with the replacement of condition

(γi < 0∧ζi < 0)∨ γiζi = 0 on θ by γiζi ≥ 0 on the same set. For the case of S-type multipliers we need
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to define only Λcs
y (x̄, ȳ), which is a analog of Λcm

y (x̄, ȳ) with the replacement of the aforementioned con-
dition therein by γi ≤ 0∧ζi ≤ 0 for all i ∈ θ . The following links between the sets Λcs

y (x̄, ȳ), Λcm
y (x̄, ȳ),

and Λcc
y (x̄, ȳ) is obvious:

Λ
cs
y (x̄, ȳ)⊆ Λ

cm
y (x̄, ȳ)⊆ Λ

cc
y (x̄, ȳ). (4.7)

To further simplify the presentation of this section, we introduce the following Lagrange-type and singu-
lar Lagrange-type functions, respectively, associated with problem (4.2):

L(x,y,α,β ,γ,ζ ) := F(x,y)+∑
a
i=1 αigi(x,y)+∑

b
j=1 β jh j(x,y)+∑

d
k=1 γkGk(x,y)+∑

d
l=1 ζlHl(x,y),

Lo(x,y,α,β ,γ,ζ ) := ∑
a
i=1 αigi(x,y)+∑

b
j=1 β jh j(x,y)+∑

d
k=1 γkGk(x,y)+∑

d
l=1 ζlHl(x,y).

In the sequel the derivative of Lo with respect to (x,y) is often needed and is denoted by

∇Lo(x,y,α,β ,γ,ζ ) :=
a

∑
i=1

αi∇gi(x,y)+
b

∑
j=1

β j∇h j(x,y)+
d

∑
k=1

γk∇Gk(x,y)+
d

∑
l=1

ζl∇Hl(x,y).

The following optimal solution/argminimum map for the OPCC problem (4.2) given by

Sc
o(x) := {y ∈ Sc(x)|F(x,y)≤ µ

c(x)} (4.8)

(with Sc given by (4.3)) plays a significant role in our subsequent sensitivity analysis in this section.

4.1.1 Sensitivity analysis via M-type multipliers

To proceed in this subsection, we define the M-qualification conditions at (x̄, ȳ):

(A1
1) (α,β ,γ,ζ ) ∈ Λcm(x̄, ȳ,0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,

(A1
2) (α,β ,γ,ζ ) ∈ Λcm

y (x̄, ȳ,0) =⇒ ∇xLo(x̄, ȳ,α,β ,γ,ζ ) = 0,
(A1

3) (α,β ,γ,ζ ) ∈ Λcm
y (x̄, ȳ,0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,

(4.9)

and observe the obvious links between them:

(A1
2)⇐= (A1

3) =⇒ (A1
1). (4.10)

The next theorem provides a constructive upper estimate of the coderivative (2.24) of the OPCC feasible
solution map (4.3) and gives a verifiable condition for its robust Lipschitzian stability, i.e., the validity of
the Lipschitz-like property.

Theorem 4.1.1 (coderivative estimate and Lipschitz-like property of OPCC feasible solutions via M–
multipliers). Let (x̄, ȳ) ∈ gphSc, and let (A1

1) hold at (x̄, ȳ). Then we have for all v ∈ Rm

D∗Sc(x̄, ȳ)(v)⊆ {∇xLo(x̄, ȳ,α,β ,γ,ζ )|(α,β ,γ,ζ ) ∈ Λ
cm
y (x̄, ȳ,v)}. (4.11)

If in addition (A1
2) is satisfied at (x̄, ȳ), then Sc is Lipschitz-like around this point.

Proof. We start by recalling (cf. (3.106)) that the complementarity system in the feasible set of (4.2)
is equivalent to the following inclusion (Gi(x,y),Hi(x,y)) ∈ {(u,v) ∈ R2|u ≥ 0, v ≥ 0, u>v = 0} := Λi

for i = 1, . . . ,d, and the graph of Sc can be rewritten in the form gphSc = {(x,y)|ψ(x,y) ∈ Λ} via the
vector-valued function ψ and the polyhedral set Λ defined by

ψ(x,y) :=
[
g(x,y),h(x,y),(Gi(x,y),Hi(x,y))d

i=1
]

and Λ := Ra
−×{0b}×

d

∏
i=1

Λi.
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Applying Theorem 2.2.7, we have the following inclusion

NgphSc(x̄, ȳ)⊆ ∇ψ(x̄, ȳ)>NΛ(ψ(x̄, ȳ)) (4.12)

provided the validity of the qualification condition[
∇ψ(x̄, ȳ)>(α,β ,(γi,ζi)

d
i=1) = 0, (α,β ,(γi,ζi)

d
i=1) ∈ NΛ(ψ(x̄, ȳ))

]
=⇒

{
α = 0, β = 0,
γ = 0, ζ = 0.

(4.13)

It is easy to check that we have equality ∇ψ(x̄, ȳ)>(α,β ,(γi,ζi)
d
i=1)=∇Lo(x̄, ȳ,α,β ,γ,ζ ) for any quadru-

ple (α,β ,γ,ζ ) and that, by the product formula for limiting normals, we have

NΛ(ψ(x̄, ȳ)) = NRa
−(g(x̄, ȳ))×N{0b}(h(x̄, ȳ))×

d

∏
i=1

NΛi(Gi(x̄, ȳ),Hi(x̄, ȳ)).

Using the expression of the normal cone to the sets Λi, i = 1, . . . ,d, from Lemma 3.3.1 (cf. 3.96), we get

NΛi(Gi(x̄, ȳ),Hi(x̄, ȳ)) = {(γi,ζi)| γi = 0 if i ∈ ν , ζi = 0 if i ∈ η

(γi < 0, ζi < 0) ∨ (γiζi = 0), if i ∈ θ},

which implies that the qualification condition (4.13) reduces to (A1
1) in this case and that inclusion (4.11)

in the theorem results from (4.12) and the coderivative definition (2.24). Finally, the Lipschitz-like prop-
erty of Sc around (x̄, ȳ) under the additional M-qualification condition (A1

2) follows from (4.11) due to the
coderivative criterion (2.30).

Now we can readily get efficient estimates of the limiting subdifferential of the value function (4.4)
and verifiable conditions for its local Lipschitz continuity.

Theorem 4.1.2 (M-type sensitivity analysis for OPCC value functions). The following assertions hold
for the value function µc in (4.4):

(i) Let the argminimum mapping Sc
o from (4.8) be inner semicontinuous at (x̄, ȳ), and let (A1

1) hold at
(x̄, ȳ). Then we have the subdifferential upper estimate

∂ µc(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )|(α,β ,γ,ζ ) ∈ Λcm
y (x̄, ȳ)}.

If in addition (A1
2) is satisfied at (x̄, ȳ), then µc is Lipschitz continuous around x̄.

(ii) Assume that Sc
o is inner semicompact at x̄ and that (A1

1) holds at (x̄, ȳ) for all ȳ ∈ Sc
o(x). Then we

have the subdifferential upper estimate

∂ µc(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )| ȳ ∈ Sc
o(x̄), (α,β ,γ,ζ ) ∈ Λcm

y (x̄, ȳ)}.

If in addition (A1
2) is satisfied at (x̄, ȳ) for all ȳ ∈ Sc

o(x̄), then the value function µc is Lipschitz continuous
around x̄.

Proof. It follows from the results of Theorem 4.1.1 and Theorem 4.0.1.

Note that a subdifferential upper estimate similar to assertion (ii) Theorem 4.1.2 was obtained in [76]
in the case of G(x,y) := y under a certain growth hypothesis implying the inner semicompactness of the
optimal solution map Sc

o from (4.8).
We do not pay any special attention to the lower semicontinuity of the value function (4.4) in Theo-

rem 4.1.2 and subsequent results on value functions. By Theorem 4.0.1 this easily follows from the proof
under the inner semicontinuity or the weaker inner semicompactness of the solution map Sc

o.
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Remark 4.1.3 (On the qualification conditions). There are various sufficient conditions for the validity
of the qualification condition (A1

1); see, e.g., Section 3.3 for related developments. Furthermore, (A1
1) can

be replaced by the weaker calmness assumption on the mapping

Ψ(v) := {(x,y)| ψ(x,y)+ v ∈ Λ}, (4.14)

where ψ and Λ are defined in the proof of Theorem 4.1.1, cf. Theorem 2.2.7. Note that the latter calmness
assumption automatically holds when the mappings g,h,G and H are linear. Observe finally that due to
the relationships (4.10) both assumptions (A1

1) and (A1
2) can be replaced by the fulfillment of the single

condition (A1
3).

Remark 4.1.4 (on the difference between the upper estimates of the subdifferential of OPCC value
functions). Following the pattern of Theorem 4.0.1, the basic difference between the upper estimate of
∂ µc in assertions (i) and (ii) of Theorem 4.1.2 resides in the fact that in the first case we have to compute
the gradient of the Lagrange-type function L associated with the OPCC (4.2) only at the point (x̄, ȳ) where
Sc

o is inner semicontinuous. In the second case though this should be done at all (x̄,y) with y ∈ Sc
o(x̄).

Thus the upper bound of ∂ µc obtained under the inner semicontinuity is obviously much tighter since it
is always a subset of the one in (ii). As already mentioned in the previous chapter (see Remark 3.2.15),
the inner semicontinuity of Sc

o is automatically satisfied if this mapping is Lipschitz-like around the point
in question. Moreover, if Sc

o(x̄) = {ȳ}, then Sc
o is inner semicontinuous at (x̄, ȳ).

Remark 4.1.5 (more on relationships to previous work on the topic). Recall here that the technique
employed in Theorem 4.1.1 that transforms the complementarity system in (4.2) into an inclusion in the
pattern of (3.106) is rather common in the field of OPCCs to study some issues different from those
considered here, cf. Section 3.3 (also see [97, 123, 127]) for related developments. Note however that
some differences occur in constructing the set Λ corresponding, in the proof of Theorem 4.1.1, to {(u,v)∈
Rd |u ≥ 0, v ≥ 0, u>v = 0} while in the aforementioned papers Λ = gphNRd

+
if often chosen. Note also

in [66] a transformation in the vein of (3.106) is employed to derive an exact penalty result and then
optimality conditions for the so-called mathematical programs with vanishing constraints. Having in
mind this transformation, the methods developed here (cf., in particular, the proofs of Theorem 4.1.1
and Theorem 4.1.2) can readily be applied to conduct a local sensitivity analysis for the latter class of
programs.

4.1.2 Sensitivity analysis via C-type multipliers

Similarly to Subsection 3.1 we introduce the following C-qualification conditions at (x̄, ȳ):

(A2
1) (α,β ,γ,ζ ) ∈ Λcc(x̄, ȳ,0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,

(A2
2) (α,β ,γ,ζ ) ∈ Λcc

y (x̄, ȳ,0) =⇒ ∇xLo(x̄, ȳ,α,β ,γ,ζ ) = 0,
(A2

3) (α,β ,γ,ζ ) ∈ Λcc
y (x̄, ȳ,0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,

(4.15)

with the similar relationships between them: (A2
2)⇐= (A2

3) =⇒ (A2
1). To proceed, we use the nonsmooth

transformation of the feasible set to the OPCC introduced in [110] and that we also considered in the
proof of Theorem 3.3.6:

Sc(x) := {y ∈ Rm| g(x,y)≤ 0, h(x,y) = 0, min{Gi(x,y),Hi(x,y)}= 0, i = 1, . . . ,d}. (4.16)

Employing this transformation, a C-counterpart of Theorem 4.1.2 can be derived with a different proof
and a larger estimate for the coderivative of Sc under the C-qualification conditions. In this proof, more
detail is provided for a better understanding of the special case in the proof of Theorem 3.3.6.
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Theorem 4.1.6 (coderivative estimate and Lipschitz-like property of OPCC feasible solutions via C-mul-
tipliers). Let (x̄, ȳ) ∈ gphSc, and let (A2

1) hold at (x̄, ȳ). Then we have for all v ∈ Rm

D∗Sc(x̄, ȳ)(v)⊆ {∇xLo(x̄, ȳ,α,β ,γ,ζ )|(α,β ,γ,ζ ) ∈ Λ
cc
y (x̄, ȳ,v)}.

If in addition (A2
2) is satisfied at (x̄, ȳ), then Sc is Lipschitz-like around this point.

Proof. From the expression of Sc in (4.16) we get gphSc = {(x,y)|ψ(x,y) ∈ Λ}, where ψ and Λ are
defined by

ψ(x,y) := [g(x,y), h(x,y),V (x,y)] and Λ := Ra
−×{0b}×{0d} (4.17)

with Vi(x,y) := min{Gi(x,y),Hi(x,y)}= 0 for i = 1, . . . ,d. Since ψ is locally Lipschitzian around (x̄, ȳ),
it follows from Theorem 2.2.7 that

NgphSc(x̄, ȳ)⊆ {∂ 〈u,ψ〉(x̄, ȳ)|u ∈ NΛ(ψ(x̄, ȳ))} (4.18)

provided that the qualification condition[
0 ∈ ∂ 〈u,ψ〉(x̄, ȳ), u ∈ NΛ(ψ(x̄, ȳ))

]
=⇒ u = 0 (4.19)

is satisfied. Furthermore, we have the normal cone representation

NΛ(ψ(x̄, ȳ)) = NRa
−(g(x̄, ȳ))×N{0b}(h(x̄, ȳ))×N{0d}(V (x̄, ȳ)) (4.20)

and calculate the subdifferential of the scalarization in (4.18) by

∂ 〈(α,β ,χ),ψ〉(x̄, ȳ) = ∇g(x̄, ȳ)>α +∇h(x̄, ȳ)>β +∂ 〈χ,V 〉(x̄, ȳ) (4.21)

for (α,β ,χ) ∈ NΛ(ψ(x̄, ȳ)). Since the function V is nondifferentiable and χ may contain negative com-
ponents by (4.20), we apply the convex hull "co" to our basic subdifferential (2.3) in (4.21) in order to
instate the plus/minus symmetry

∂ 〈χ,V 〉(x̄, ȳ)⊆ co∂ 〈χ,V 〉(x̄, ȳ)⊆
d

∑
i=1

χi∂̄Vi(x̄, ȳ)

via Clarke’s generalized gradient ∂̄Vi. Considering the partition of the index set {1, . . . ,d} in (4.5), we
arrive by [16] at the following calculations:

∂̄Vi(x̄, ȳ) =


∇Gi(x̄, ȳ) if i ∈ η ,
∇Hi(x̄, ȳ) if i ∈ ν ,
co{∇Gi(x̄, ȳ),∇Hi(x̄, ȳ)} if i ∈ θ .

Invoking the classical Carathéodory theorem gives us

co{∇Gi(x̄, ȳ),∇Hi(x̄, ȳ)}= {ti∇Gi(x̄, ȳ)+(1− ti)∇Hi(x̄, ȳ)| ti ∈ [0,1]},

and hence we obtain from (4.21) the inclusions

∂ 〈(α,β ,χ),ψ〉(x̄, ȳ)⊆
{

∇Lo(x̄, ȳ,α,β ,γ,ζ )|γη = 0,ζν = 0
∀i ∈ θ , ∃ti ∈ [0,1],ri ∈ R s.t. γi = riti, ζi = ri(1− ti)

}
⊆

{
∇Lo(x̄, ȳ,α,β ,γ,ζ )|γη = 0,ζν = 0
∀i ∈ θ , γiζi ≥ 0

}
.

(4.22)

Since the qualification condition (4.19) is equivalent to

{(α,β ,χ)|0 ∈ ∂ 〈(α,β ,χ),ψ〉(x̄, ȳ), (α,β ,χ) ∈ NΛ(ψ(x̄, ȳ))}= {(0,0,0)},

the second inclusion in (4.22) shows that (A2
1) is sufficient for this to hold. Furthermore, by (4.18) the

second inclusion of (4.22) leads to an upper estimate of NgphSc , which allows us via the coderivative
definition (2.24) to recover the upper bound of D∗Sc in the theorem. The latter implies the Lipschitz-like
property of Sc under (A2

2) as in Theorem 4.1.1.
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As in the previous subsection, we arrive at the following sensitivity results for the OPCC value function
(4.4) via C-multipliers.

Theorem 4.1.7 (C-type sensitivity analysis for OPCC value functions). The following assertions hold
for the value function µc in (4.4):

(i) Let the optimal solution map Sc
o is inner semicontinuous at (x̄, ȳ), and let (A2

1) holds at (x̄, ȳ). Then
we have the subdifferential upper estimate

∂ µc(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )|(α,β ,γ,ζ ) ∈ Λcc
y (x̄, ȳ)}.

If in addition (A2
2) holds at (x̄, ȳ), then µc is Lipschitz continuous around x̄.

(ii) Assume that Sc
o is inner semicompact at x̄ and that (A2

1) holds at (x̄, ȳ) for all ȳ ∈ Sc
o(x). Then we

have the subdifferential upper estimate

∂ µc(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )| ȳ ∈ Sc
o(x̄), (α,β ,γ,ζ ) ∈ Λcc

y (x̄, ȳ)}.

If in addition (A2
2) also holds at (x̄, ȳ) for all ȳ ∈ Sc

o(x̄), then µc is Lipschitz continuous around x̄.

Proof. It follows from the results of Theorem 4.1.7 and Theorem 4.0.1.

Note that assertion (ii) of Theorem 4.1.7 can be found in [76] for G(x,y) = y under the following
assumption corresponding to the replacement of the set Λcc(x̄, ȳ,0) in (A2

1) by

{(α,β ,γ,ζ )| α ≥ 0, α>g(x̄, ȳ) = 0,
γη = 0,ζν = 0,
∀i ∈ θ , ∃ti ∈ [0,1],ri ∈ R s.t. γi = riti, ζi = ri(1− ti),
∇g(x̄, ȳ)>α +∇h(x̄, ȳ)>β +∇G(x̄, ȳ)>γ +∇H(x̄, ȳ)>ζ = 0}.

The latter assumption is weaker than (A2
1), but in our assumption we simply need to check that the

components of γ and ζ are of the same sign on θ rather than constructing them as in the above set. It is
also important to mention that all the points made in Remark 4.1.3 can be restated here accordingly. In
particular, (A2

1) can be substituted by the weaker calmness of the set-valued mapping Ψ from (4.14) with
ψ and Λ given in (4.17). This is obviously satisfied if the functions g,h,G, and H are linear, because
Vi(x,y) = min{Gi(x,y),Hi(x,y)} is piecewise linear provided the linearity of Gi and Hi.

4.1.3 Sensitivity analysis via S-type multipliers

The need for S-type stationarity conditions in the context of OPCCs is the best one would want to have
since these conditions are equivalent to the KKT type optimality conditions whenever the OPCC is treated
as an ordinary nonlinear optimization problem.

Having this in mind, we attempt here to suggest a tighter upper bound for the basic subdifferential
of the OPCC value function µc (4.4). In order to obtain an upper bound for ∂ µc containing Λcs

y (x̄, ȳ)
rather than Λcm

y (x̄, ȳ) or Λcc
y (x̄, ȳ), we impose the following S-qualification condition (with the index set I

defined by I := I(x̄, ȳ) := {i = 1, . . . ,a|gi(x̄, ȳ)< 0})

(A3
1)

∇Lo(x̄, ȳ,α,β ,γ,ζ ) = 0
αI = 0, γν = 0, ζη = 0

}
=⇒ γθ = 0, ζθ = 0 (4.23)

introduced by Ye [123] and later named in [126] as Partial MPEC-LICQ (linear independence constraint
qualification). This condition and another close while weaker one have also been used by Flegel et al.
[51] to recover the S-stationarity conditions of a OPCC from the M-ones. In the next theorem we obtain
a new S-type upper bound for ∂ µc by a similar methodology, i.e., going from the M-type bound provided
above. Note that assumption (A1

1) is the one introduced in Subsection 4.1.1.
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Theorem 4.1.8 (S-type sensitivity analysis for OPCC value functions). The following assertions hold for
the value function µc from (4.4):

(i) Let the optimal solution map Sc
o be inner semicontinuous at (x̄, ȳ), and let assumptions (A1

1) and
(A3

1) be satisfied at (x̄, ȳ). Then we have

∂ µ
c(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )|(α,β ,γ,ζ ) ∈ Λ

cs
y (x̄, ȳ)}.

(ii) Let Sc
o be inner semicompact at x̄ with (A1

1) and (A3
1) being satisfied at (x̄, ȳ) for all ȳ ∈ Sc

o(x̄). Then
we have

∂ µ
c(x̄)⊆ {∇xL(x̄, ȳ,α,β ,γ,ζ )| ȳ ∈ Sc

o(x̄), (α,β ,γ,ζ ) ∈ Λ
cs
y (x̄, ȳ)}.

Proof. We provide the proof only for assertion(i); the other case can be proved similarly.
Assuming (A1

1) and the inner semicontinuity of Sc
o, we have the upper estimate of ∂ µc from Theo-

rem 4.1.2 (i). Further, denote by A(x̄, ȳ) (resp. B(x̄, ȳ)) the right-hand side of the inclusion in Theo-
rem 4.1.2 (i) (resp. Theorem 4.1.8 (i)). It remains to show that A(x̄, ȳ) = B(x̄, ȳ), under the S-qualification
condition (A3

1).
We obviously have A(x̄, ȳ)⊇ B(x̄, ȳ). To justify the opposite inclusion, pick any a(α,β ,γ,ζ ) ∈ A(x̄, ȳ)

and search for b(αo,β o,γo,ζ o) ∈ B(x̄, ȳ) such that a(α,β ,γ,ζ ) = b(αo,β o,γo,ζ o). If the latter equality
were to hold, we would get{

∇Lo(x̄, ȳ,α−αo,β −β o,γ− γo,ζ −ζ o) = 0,
αo

I −αo
I = 0, γν − γo

ν = 0, ζη −ζ o
η = 0.

Thus it follows from (A3
1) that γo

θ
= γθ and ζ o

θ
= ζθ . To conclude the proof, choose αo := α , β o := β ,

γo
θ c := γθ c and ζ o

θ c := ζθ c with θ c := {i = 1, . . . ,d}\θ .

We can see from the proof that it can be repeated while using the C-type upper bound in Subsec-
tion 4.1.2 instead of the M-one. This shows that under the assumption (A3

1) all the S-type, M-type, and
C-type upper bounds for ∂ µc are the same. It places us in the situation similar to that already recognized
in the context of the various types of stationarity concepts known for OPCCs: they agree with each other
under an appropriate assumption.

We also mention two possibilities for the local Lipschitz continuity of µc in the framework of Theo-
rem 4.1.8. The first one is either to replace (A1

1) by (A1
3) or to add (A1

2) to the assumptions; cf. (4.10)
and Theorem 4.1.2. The second possibility is to replace (A3

1) by the following stronger qualification
condition:

(A3
2)

∇yLo(x̄, ȳ,α,β ,γ,ζ ) = 0
αI = 0, γν = 0, ζη = 0

}
=⇒α = 0, β = 0, γ = 0, ζ = 0. (4.24)

The latter condition corresponding to the well-known MPEC-LICQ for the parametric OPCC (4.2) has
the advantage, in the framework of Theorem 4.1.8 (i), to ensure even more than the Lipschitz continuity
of µc; namely, its strict differentiability as stated in the next corollary.

Corollary 4.1.9 (S-type sensitivity analysis for OPCC value functions under the MPEC-LICQ). Assume
that Sc

o is inner semicontinuous at the point (x̄, ȳ), where the qualification condition (A3
2) is also satisfied.

Then the value function µc is strictly differentiable at x̄ with

∇µ
c(x̄) = ∇xL(x̄, ȳ,α,β ,γ,ζ ),

where (α,β ,γ,ζ ) is the unique multiplier of the set Λcs
y (x̄, ȳ).

Proof. We can see that the set on the right-hand-side of the inclusion in Theorem 4.1.8 (i) is a singleton;
hence ∂ µc(x̄) is a singleton as well. Since the value function µc is surely locally Lipschitzian around x̄
under the MPEC-LICQ (4.24), the latter uniqueness ensures its strict differentiability at this point; see
Subsection 2.1.1.
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In case of (ii) we additionally need Sc
o(x̄) to be a singleton to ensure the strict differentiability of µc

at x̄. The latter corresponds to the framework provided by Hu and Ralph [67], and hence it shows (see
Remark 4.1.4) that the assumptions imposed in [67] imply the inner semicontinuity of the set-valued
mapping Sc

o at the solution point. Note also that assertion (ii) of Theorem 4.1.8 closely relates to the
corresponding result of [76] obtained in a particular case from a different perspective. Finally, we mention
that the S-qualification condition (A3

1) does not imply the equalities between the multiplier sets in (4.7);
for this we need the stronger assumption consisting in replacing the gradients of g,h,G, and H in (A3

1) by
their partial gradients with respect to the y-variable.

4.2 Sensitivity analysis of OPEC value functions

This section is devoted to the study of the following parametric optimization problem with generalized
equation constraints (OPEC):

min
y
{F(x,y)|0 ∈ h(x,y)+NK(x)(y)}, (4.25)

where F : Rn×Rm→ R, h : Rn×Rm→ Rp are continuously differentiable functions, and K denotes the
set-valued mapping (moving set) defined as in (1.4), with g also continuously differentiable and g(x, .)
convex for all x ∈ Rn. Note that model (4.25) is written in the form of quasi-variational inequalities
described by the normal cone to moving sets; see, e.g., [93] and the references therein. On the other
hand, problem (4.25) is closely related to the MPCC considered in the previous section. Indeed, it has
been well recognized that the complementarity system defining the feasible set of problem (4.2) can
equivalently be written as

0 ∈ −G(x,y)+NRd
−
(−H(x,y)),

which is in the form of OPEC constraints in (4.25) with the normal cone to the constant nonpositive
orthant. In the other direction, by replacing the normal cone in (4.25) by its expression in (3.7), under a
certain CQ, we get a particular case of problem (4.2). Despite this close link, sensitivity analysis of the
OPEC optimal value function

µ
e(x) := min

y
{F(x,y)|0 ∈ h(x,y)+NK(x)(y)} (4.26)

associated with problem (4.25) in its given form is of independent interest. Indeed, in this way we obtain
different estimates for the limiting subdifferential of the two-level value function ϕo from (1.7), which is
of our main attention in the next chapter, where this issue will be comprehensively discussed.

To present our main result in this section on the generalized differentiation and Lipschitz continuity of
the value function µe, we proceed similarly to Section 4.1 and consider first the feasible solution map of
the parametric generalized equation in (4.25) defined by

Se(x) := {y ∈ Rm|0 ∈ h(x,y)+NK(x)(y)}. (4.27)

A detailed study of the robust Lipschitzian stability of (4.27) based on the coderivative analysis has been
carried out by Mordukhovich and Outrata [93]. Note that the work in [93] heavily relies on an estimate
of the coderivative of normal cone mappings (x,y) ⇒ NK(x)(y) given therein. Before introducing the
rules to be used here (which emerged from [93]), some notation is necessary to simplify the presentation.
Provided there is no confusion with (3.9) in this section we define L (x,y,u) := h(x,y)+∇yg(x,y)>u
and consider the corresponding set of lower-level Lagrange multipliers similarly to (3.11) with the same
notation Λ(x̄, ȳ). Consider also the following special M-type multiplier set that plays an important role in
the sequel:

Λem(x̄, ȳ, ū,v) := {(β ,γ)| v+∑
p
i=1 βi∇gi(x̄, ȳ)+∑

m
l=1 γl∇x,yLl(x̄, ȳ, ū) = 0,

∇ygν(x̄, ȳ)γ = 0, βη = 0,
∀i ∈ θ , (βi > 0∧∇ygi(x̄, ȳ)γ > 0)∨βi(∇ygi(x̄, ȳ)γ) = 0},

(4.28)
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where the index sets η , θ and ν are defined in (3.22). Similarly to Section 4.1, we further define
Λem

y (x̄, ȳ, ū,v), with v ∈ Rm, by replacing the first equation in the right-hand-side of (4.28) with v +
∑

p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0 and then set Λem

y (x̄, ȳ, ū) := Λem
y (x̄, ȳ, ū,∇yF(x̄, ȳ)). The fol-

lowing EM-qualification conditions deduced from [93] can be formulated as:

(A4
1) ∀ū ∈ Λ(x̄, ȳ) : [∑p

i=1 βi∇gi(x̄, ȳ) = 0, βη = 0] =⇒ β = 0,
(A4

2) ∀ū ∈ Λ(x̄, ȳ) : (β ,γ) ∈ Λem(x̄, ȳ, ū,0) =⇒ β = 0, γ = 0,
(A4

3) [ū ∈ Λ(x̄, ȳ), (β ,γ) ∈ Λem
y (x̄, ȳ, ū,0)] =⇒ ∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0,

(A4
4) [ū ∈ Λ(x̄, ȳ), (β ,γ) ∈ Λem

y (x̄, ȳ, ū,0)] =⇒ β = 0, γ = 0.

(4.29)

Note that in (A4
1), the index set η depends on ū by means of its definition in (3.22). It is easy to observe

the relationships between these qualification conditions:

(A4
3)⇐= (A4

4) =⇒ (A4
2), (A

4
1).

We are now ready to establish the main result of this section, where Se
o denotes the optimal solution map

to the parametric optimization problem (4.25) given by

Se
o(x) := {y ∈ Se(x)|F(x,y)−µ

e(x)≤ 0}. (4.30)

Theorem 4.2.1 (M-type sensitivity analysis for OPEC value functions). The following assertions hold
for the value function µe from (4.27):

(i) Let the optimal solution map Se
o (4.30) be inner semicontinuous at the point (x̄, ȳ), where the lower-

level regularity (3.65) and the conditions (A4
1)–(A4

2) hold. Then we have the subdifferential estimate

∂ µ
e(x̄)⊆

⋃
ū∈Λ(x̄,ȳ)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xg(x̄, ȳ)+
p

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
.

If in addition (A4
3) is satisfied at (x̄, ȳ), then µe is Lipschitz continuous around x̄.

(ii) Let Se
o (4.30) be inner semicompact at x̄, and let (A4

1)–(A4
2) and lower-level regularity (3.65) be

satisfied at (x̄, ȳ) for all ȳ ∈ Se
o(x̄). Then we have the subdifferential estimate

∂ µe(x̄)⊆
⋃

ȳ∈So(x̄)

⋃
ū∈Λ(x̄,ȳ)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+∑

p
i=1 βi∇xg(x̄, ȳ)+∑

p
l=1 γl∇xLl(x̄, ȳ, ū)

}
.

If (A4
3) is also satisfied at (x̄, ȳ) for all ȳ ∈ Se

o(x̄), then µe is Lipschitz continuous around x̄.

Proof. We justify only assertion (i); the one in (ii) can be proved similarly. Since F is continuously
differentiable and Se

o is inner semicontinuous, it follows from Theorem 4.0.1 (i) that

∂ µ
e(x̄)⊆ ∇xF(x̄, ȳ)+D∗Se(x̄, ȳ)(∇yF(x̄, ȳ)). (4.31)

Applying further [93, Theorem 4.3] to the solution map Se (4.27) and taking into account that the EM-
qualification conditions (A4

1)–(A4
2) together with the lower-level regularity (3.65) are satisfied, we get the

coderivative estimate

D∗Se(x̄, ȳ)(∇yF(x̄, ȳ))⊆
⋃

ū∈Λ(x̄,ȳ)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{ p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (4.32)

Then the upper estimate of the basic subdifferential of µe in the theorem follows by combining (4.31) and
(4.32). The local Lipschitz continuity of µe around x̄ also follows from Theorem 4.0.1 (i) by recalling
[93] that Se is Lipschitz-like around (x̄, ȳ) provided we add (A4

3) to the previous assumptions.
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To the best of our knowledge, the first result in the direction of Theorem 4.2.1(ii) goes back to Lucet
and Ye [76], where a similar subdifferential estimate was obtained under a growth hypothesis (implying
the inner semicompactness of Se

o) for a particular case of the problem under consideration. Note however
that their result deals only with the case where K is independent of x. Assertion (i) of Theorem 4.2.1
clearly provides a tighter subdifferential upper bound under the inner semicontinuity assumption. We
also mention the work by Mordukhovich et al. [92] in the framework where the regular and limiting
subdifferentials of µe are estimated in the case of

Se(x) := {y|0 ∈ h(x,y)+Q(x,y)}

in (4.26) with a general set-valued mapping Q(x,y) not specified to our setting Q(x,y) := NK(x)(y) in
terms of the initial data of (3.7).

Finally, note that according to [93], the qualification condition (A4
1) in Theorem 4.2.1 can be replaced

by the weaker calmness property of the set-valued mapping M (3.144) at (0, x̄, ȳ, ū), for all ū ∈ Λ(x̄, ȳ).
Similarly, condition (A4

3) can be replaced by the calmness property of the mapping P(v1,v2) :=
{
(x,y,u)∈

M(v1)|L (x,y,u)+v2 = 0} at (0,0, x̄, ȳ, ū), for all ū∈Λ(x̄, ȳ). Both calmness assumptions are automatical
when the mappings g and (x,y) 7→ ∇y f (x,y) are linear.
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5 Original optimistic bilevel programming

problem

5.1 Sensitivity analysis of two-level value functions

Our main concern in this section is to conduct a local sensitivity analysis of the two-level optimal value
function

ϕo(x) := min
y
{F(x,y)|y ∈ S(x)}, (5.1)

where the lower-level solution set-valued mapping S is defined in (1.2). In the next subsection, we
explore all the three approaches (M, C and S) to this issue discussed in the previous chapter. The lower-
level value function representation of the mapping S is considered in Subsection 6.2.4. Throughout the
section, the following solution set-valued mapping of the parametric problem associated to (5.1) will play
an important role:

So(x) = {y ∈ S(x)| F(x,y)≤ ϕo(x)}. (5.2)

In order for the two-level value function in (5.1) to be well-defined, it is assumed throughout this chapter
that So(x) 6= /0 for all x ∈ X .

5.1.1 KKT reformulation of the two-level value function

Here, a KKT/OPCC reformulation of the two-level value function (5.1) is essential for the analysis. Note
that from now on we come back to the expression of the lower-level Lagrange function L in (3.9) which
corresponds to the one in Section 4.2 while setting h(x,y) := ∇y f (x,y). Hence, for this reason the set of
Lagrange multipliers Λ(x̄, ȳ) of the lower-level problem will further on be the one in (3.11).

Lemma 5.1.1 (KKT reformulation of the two-level value function). Let x ∈ X and assume that f (x, .)
and g(x, .) are convex. Furthermore, we suppose that the Slater CQ (3.6) is satisfied at x. Then we have

ϕo(x) = min
y,u
{F(x,y)|L (x,y,u) = 0, u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0}. (5.3)

Proof. Fix x̄ ∈ X where the lower-level problem (1.3) is convex and the Slater CQ (3.6) holds. Further
let ȳ be a global optimal solution to the problem min

y
{F(x̄,y)|y ∈ S(x̄)}. Then we have the relationships

ϕo(x̄) = F(x̄, ȳ),
≤ F(x̄,y) : ∀y ∈ S(x̄),
≤ F(x̄,y) : ∀y with 0 ∈ ∇y f (x̄,y)+NK(x̄)(y)(by convexity of f (x̄, .) and g(x̄, .)),
≤ F(x̄,y) : ∀(y,u) with L (x̄,y,u), u≥ 0,g(x̄,y)≤ 0, u>g(x̄,y) = 0,

where the last inequality is due to the normal cone representation (3.7) while taking into account that the
the Slater CQ (3.6) holds at x̄.

Having this transformation of the two-level value function ϕo, at least two observations can be made.
First we note that for each x ∈ X the value of ϕo(x) is obtained from a global solution to the parametric
problem

min
y,u
{F(x,y)|L (x,y,u) = 0, u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0}. (5.4)



66 5 Original optimistic bilevel programming problem

Thus the major difficulty arising when establishing the link between local solutions of the auxiliary
problem (P) and its KKT reformulation (see [24] for details) does not appear here. Secondly, the presence
of the complementarity constraints u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0 in (5.4) leads to the violation of the
MFCQ as already observed in Chapter 3 (Section 3.3). However the results of Chapter 4 can be applied.
To proceed, consider the feasible solution map associated with (5.4) defined by

Sh(x) := {(y,u)|L (x,y,u) = 0, u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0} (5.5)

and the optimal solution map of problem (5.4) given by

Sh
o(x) := {(y,u) ∈ Sh(x)|F(x,y)≤ ϕo(x)}. (5.6)

Furthermore, consider the multiplier sets Λem(x̄, ȳ, ū,0), Λem
y (x̄, ȳ, ū,0) and Λem

y (x̄, ȳ, ū) defined in Sec-
tion 4.2 of Chapter 4, cf. (4.28). In the vein of the rules in (4.9), the following related M-qualification
conditions are used in the next theorem:

(Am
1 ) (β ,γ) ∈ Λem(x̄, ȳ, ū,0) =⇒ β = 0, γ = 0,

(Am
2 ) (β ,γ) ∈ Λem

y (x̄, ȳ, ū,0) =⇒ ∑
p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0,

(Am
3 ) (β ,γ) ∈ Λem

y (x̄, ȳ, ū,0) =⇒ β = 0, γ = 0.
(5.7)

Theorem 5.1.2 (M-type sensitivity analysis for the two-level value function). Let the lower-level problem
(1.3) be convex, and assume that the Slater CQ (3.6) holds at x̄. Then the following assertions are
satisfied:

(i) Assume that the optimal solution map Sh
o (5.6) is inner semicontinuous at (x̄, ȳ, ū), where condition

(Am
1 ) also holds. Then the limiting subdifferential of ϕo is estimated by

∂ϕo(x̄)⊆
⋃

(β ,γ)∈Λem
y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.8)

Furthermore, ϕo is Lipschitz continuous around x̄ provided that (Am
2 ) is also satisfied at (x̄, ȳ, ū).

(ii) Let the set-valued mapping Sh
o (5.6) be inner semicompact at x̄, while condition (Am

1 ) holds at
(x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄), then

∂ϕo(x̄)⊆
⋃

(ȳ,ū)∈Sh
o(x̄)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.9)

If in addition, condition (Am
2 ) is satisfied at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄), then ϕo is Lipschitz continuous
around x̄.

Proof. We provide the proof for (i) since (ii) can be obtained similarly. By setting y := (y,u) in the
framework of Theorem 4.1.2, we simply need to specify the various multiplier sets therein to our setting.
It follows from Lemma 5.1.1 that

ϕo(x) = min
y,u
{F(x,y)| h(x,y,u) = 0,

G(x,y,u)≥ 0, H(x,y,u)≥ 0, G(x,y,u)>H(x,y,u) = 0},
(5.10)

where h(x,y,u) := L (x,y,u), G(x,y,u) := u, and H(x,y,u) :=−g(x,y). Thus we have from Section 4.1
that

Λcm(x̄, ȳ, ū,v1,v2,v3) = {(β ,γ,ζ )| ζν = 0,βη = 0,
(ζi < 0, βi < 0)∨ (βiζi = 0), ∀i ∈ θ ,
v1 +∑

m
l=1 γl∇xL (x̄, ȳ, ū)−∑

p
i=1 βi∇xgi(x̄, ȳ) = 0,

v2 +∑
m
l=1 γl∇yL (x̄, ȳ, ū)−∑

p
i=1 βi∇ygi(x̄, ȳ) = 0,

v3 +∇yg(x̄, ȳ)γ +ζ = 0}.

(5.11)
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Normally, considering the notational conventions in Section 4.1, we should have the multipliers β , γ and
ζ attached to the functions h, G and H, respectively, in (5.10). But in order to have a clear picture on
the relationships between the developments here and those in Sections 3.3, 3.4 and 4.2, we adopt the
notations above.

Now note that from (5.11) we have ζ = −∇yg(x̄, ȳ)γ by setting v3 := 0 in the relationship v3 +
∇yg(x̄, ȳ)γ +ζ = 0. Thus

Λcm(x̄, ȳ, ū,0) = {(β ,γ,−∇yg(x̄, ȳ)γ)| ∇ygν(x̄, ȳ)γ = 0, βη = 0,
(∇ygi(x̄, ȳ)γ > 0, βi < 0) ∨ βi(∇ygi(x̄, ȳ)γ) = 0, ∀i ∈ θ ,

∑
m
l=1 γl∇x,yL (x̄, ȳ, ū)−∑

p
i=1 βi∇gi(x̄, ȳ) = 0}

= {(β ,γ,−∇yg(x̄, ȳ)γ)| (−β ,γ) ∈ Λem(x̄, ȳ, ū,0)}.

From the latter equality, one can easily check that (Am
1 ) is a sufficient condition for the following impli-

cation to hold:
(β ,γ,ζ ) ∈ Λ

cm(x̄, ȳ, ū,0) =⇒ β = 0, γ = 0, ζ = 0. (5.12)

Under the qualification condition (5.12), we have from Theorem 4.1.2 (i) that the basic subdifferential of
the two-level value function ϕo (5.1) can be estimated by

∂ϕo(x̄)⊆
⋃

(β ,γ,ζ )∈Λcm
y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)−

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
, (5.13)

where, by proceeding as above, the multiplier set Λcm
y (x̄, ȳ, ū) can be written as follows

Λ
cm
y (x̄, ȳ, ū) := Λ

cm
y (x̄, ȳ, ū,∇yF(x̄, ȳ),0) = {(β ,γ,−∇yg(x̄, ȳ)γ)| (−β ,γ) ∈ Λ

em
y (x̄, ȳ, ū)}.

Thus we have (β ,γ,ζ )∈Λcm
y (x̄, ȳ, ū) if and only if ζ =−∇yg(x̄, ȳ)γ and (−β ,γ)∈Λem

y (x̄, ȳ, ū). Inclusion
(5.8) then follows while noting that the term ∇xF(x̄, ȳ)−∑

p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) does not

depend on the multiplier ζ .
Also proceeding as above for condition (Am

1 ), it is a simple exercise to check that (Am
2 ) implies that we

have

(β ,γ,ζ ) ∈ Λ
cm(x̄, ȳ, ū,0) =⇒−

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0,

which on its turn implies that the two-level value function ϕo is Lipschitz continuous around x̄, while
applying by Theorem 4.1.2 (i) via the reformulation of ϕo in (5.10). In a similar way, the qualification
condition (Am

3 ) implies the fulfilment of the counterpart of (A1
3) in (4.9).

We can similarly consider the C-type multiplier sets Λec(x̄, ȳ, ū,0), Λec
y (x̄, ȳ, ū,0) and Λec

y (x̄, ȳ, ū), which
are obtained by replacing condition (3.26) in Λem(x̄, ȳ, ū,0), Λem(x̄, ȳ, ū,0) and Λem

y (x̄, ȳ, ū) by (3.29).
Then the upper bounds of the limiting subdifferential via C-type multipliers and the local Lipschitz
continuity of the two-level value function ϕo under the C-type conditions can be derived as in Theo-
rem 5.1.2 with Λem(x̄, ȳ, ū,0), Λem

y (x̄, ȳ, ū,0) and Λem
y (x̄, ȳ, ū) replaced by Λec(x̄, ȳ, ū,0), Λec

y (x̄, ȳ, ū,0) and
Λec

y (x̄, ȳ, ū), respectively. Similarly to (5.7), we also used the C-qualification conditions:

(Ac
1) (β ,γ) ∈ Λec(x̄, ȳ, ū,0) =⇒ β = 0, γ = 0,

(Ac
2) (β ,γ) ∈ Λec

y (x̄, ȳ, ū,0) =⇒ ∑
p
i=1 βi∇xgi(x̄, ȳ)+∑

m
l=1 γl∇xLl(x̄, ȳ, ū) = 0,

(Ac
3) (β ,γ) ∈ Λec

y (x̄, ȳ, ū,0) =⇒ β = 0, γ = 0.
(5.14)

Theorem 5.1.3 (C-type sensitivity analysis of the two-level value function). Let the lower-level problem
(1.3) be convex, while the Slater CQ (3.6) holds at x̄. Then the following assertions are satisfied:
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(i) Assume that the optimal solution map Sh
o (5.6) is inner semicontinuous at (x̄, ȳ, ū), where condition

(Ac
1) also holds. Then the limiting subdifferential of ϕo is estimated by

∂ϕo(x̄)⊆
⋃

(β ,γ)∈Λec
y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.15)

Furthermore, ϕo is Lipschitz continuous around x̄ provided that (Ac
2) is also satisfied at (x̄, ȳ, ū).

(ii) Let the set-valued mapping Sh
o (5.6) be inner semicompact at x̄, while condition (Ac

1) holds at
(x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄), then

∂ϕo(x̄)⊆
⋃

(ȳ,ū)∈Sh
o(x̄)

⋃
(β ,γ)∈Λec

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.16)

If in addition, condition (Ac
2) is satisfied at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄), then ϕo is Lipschitz continuous
around x̄.

Proof. Similarly to the proof of Theorem 5.1.2, it follows from Theorem 4.1.7 while considering the
representation of the two-level value function in Lemma 5.1.1.

To consider S-type upper bounds for the subdifferential of the two-level value function ϕo, define the set
Λes

y (x̄, ȳ, ū) similarly to Λem
y (x̄, ȳ, ū) with replacing condition (3.26) by (3.30) and arrive at the following

sensitivity result. The following S-qualification conditions are needed:

(As
1)

∑
p
i=1 βi∇gi(x̄, ȳ)+∑

m
l=1 γl∇x,yLl(x̄, ȳ, ū) = 0
∇ygν(x̄, ȳ)γ = 0, βη = 0

}
=⇒ βθ = 0, ∇ygθ (x̄, ȳ)γ = 0,

(As
2)

∑
p
i=1 βi∇ygi(x̄, ȳ)+∑

m
l=1 γl∇yLl(x̄, ȳ, ū) = 0

∇ygν(x̄, ȳ)γ = 0, βη = 0

}
=⇒ β = 0, γ = 0.

(5.17)

Theorem 5.1.4 (S-type sensitivity analysis for the two-level value function ϕo). Let the lower-level prob-
lem (1.3) be convex, while the Slater CQ (3.6) holds at x̄. Then the following assertions hold:

(i) Assume that the optimal solution map Sh
o (5.6) is inner semicontinuous at (x̄, ȳ, ū), where conditions

(Am
1 ) and (As

1) are also satisfied. Then the limiting subdifferential of ϕo is estimated by

∂ϕo(x̄)⊆
⋃

(β ,γ)∈Λes
y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.18)

Furthermore, if conditions (Am
1 ) and (As

1) are replaced by (As
2), then the two-level value function ϕo is

strictly differentiable at x̄, and its derivative is given by

∇ϕo(x̄) = ∇xF(x̄, ȳ)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū), (5.19)

where (β ,γ) is the unique multiplier vector of the set Λes
y (x̄, ȳ, ū).

(ii) Let the set-valued mapping Sh
o (5.6) be inner semicompact at x̄, while conditions (Am

1 ) and (As
1)

hold at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh
o(x̄), then we have

∂ϕo(x̄)⊆
⋃

(ȳ,ū)∈Sh
o(x̄)

⋃
(β ,γ)∈Λes

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
. (5.20)
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Proof. Considering the representation of the two-level value function ϕo in (5.3) (also see (5.10)), it
is obvious that (As

1) corresponds to the qualification condition (A3
1) in (4.23). Thus inclusion (5.18)

follows from Theorem 4.1.8 (i) while taking into account the estimate of ∂ϕo in (5.8). As for the strict
differentiability of ϕo, and the derivative in (5.19), they are obtained from Corollary 4.1.9 while noting
that assumption (As

2) is the counterpart of (A3
2) (see (4.24)) for the KKT reformulation of ϕo in (5.3).

The estimate of the basic subdifferential in (5.9) is obtained similarly to the one in (5.18) while using
Theorem 4.1.8 (ii).

Although the M-type sensitivity analysis of the two-level value function is self-evident while consid-
ering Theorem 4.2.1, we nevertheless state it here in order to have a clear picture of the differences with
the sensitivity analysis result in Theorem 5.1.2. To proceed, recall that we now have h(x,y) := ∇y f (x,y),
then further set (Ae

1) := (A4
1), (A

e
2) := (A4

2), (A
e
3) := (A4

3) and (Ae
4) := (A4

4). Then we have:

Corollary 5.1.5 (M-type sensitivity analysis of the two-level value function via the OPEC reformulation).
Let the lower-level problem (1.3) be convex, then the following assertions hold:

(i) Let the optimal solution map So (5.2) be inner semicontinuous at the point (x̄, ȳ), where the lower-
level regularity (3.65) and the conditions (Ae

1)–(Ae
2) hold. Then we have the subdifferential estimate

∂ϕo(x̄)⊆
⋃

ū∈Λ(x̄,ȳ)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+

p

∑
i=1

βi∇xg(x̄, ȳ)+
p

∑
l=1

γl∇xLl(x̄, ȳ, ū)
}
.

If in addition (Ae
3) is satisfied at (x̄, ȳ), then ϕo is Lipschitz continuous around x̄.

(ii) Let So (5.2) be inner semicompact at x̄, and let (Ae
1)–(Ae

2) and the lower-level regularity (3.65) be
satisfied at (x̄, ȳ) for all ȳ ∈ So(x̄). Then we have the subdifferential estimate

∂ϕo(x̄)⊆
⋃

ȳ∈So(x̄)

⋃
ū∈Λ(x̄,ȳ)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF(x̄, ȳ)+∑

p
i=1 βi∇xg(x̄, ȳ)+∑

p
l=1 γl∇xLl(x̄, ȳ, ū)

}
.

If (Ae
3) is also satisfied at (x̄, ȳ) for all ȳ ∈ So(x̄), then ϕo is Lipschitz continuous around x̄.

Proof. Under the convexity of the lower-level problem (1.3), we have the following OPEC representation
of the two-level value function ϕo (5.1):

ϕo(x) = min
y
{F(x,y)| 0 ∈ ∇y f (x,y)+NK(x)(y)} (5.21)

while considering the OPEC reformulation of the lower-level solution set-valued mapping in (3.4). The
result follows trivially by applying Theorem 4.2.1.

Remark 5.1.6 (On the differences between the M-type sensitivity analysis of the two-level value function
via the KKT and primal KKT/OPEC reformulations). The difference between the upper estimate of ∂ϕo

in Theorem 5.1.2 (i) and the one in Corollary 5.1.5 (i) is clear. The latter contains the union over Λ(x̄, ȳ),
which makes it larger than the one obtained in the former result. For the estimates in Theorem 5.1.2 (ii)
and Corollary 5.1.5 (ii), they seem to be more closer in the sense that ȳ ∈ So(x̄) if and only if there exists
ū such that (ȳ, ū) ∈ Sh

o(x̄) := {(y,u)| u ∈ Λ(x̄,y), F(x̄,y)≤ ϕo(x̄)}. On the qualification conditions, note
that there are many similarities, but they are not identical. However, if we consider only the strongest
ones (Am

3 ) and (Ae
4), we do have the same CQs, but as already noted, the results are not the same in terms

of the basic subdifferentials of the two-level value function ϕo. This observation is similar to the one
made in Section 3.4 (cf. Remark 3.4.8) on the relationship between the stationarity conditions obtained
via the KKT and primal KKT/OPEC approaches. Thus the fundamental reason for this remains the fact
that the appearance of the lower-level multipliers ū in Corollary 5.1.5 is a posteriori while it is a priori
in Theorem 5.1.2.
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To conclude this subsection, some comments on the qualifications conditions used here are in order.
Following Remark 4.1.3, we conclude that condition (Am

1 ) can be replaced by the weaker calmness prop-
erty of the set-valued mapping

Ψ(z,ϑ) := {(x,y,u)|L (x,y,u)+ z = 0, (−gi(x,y),ui)+ϑi ∈ Λi, i := 1, . . . , p}, (5.22)

where Λi := {(a,b)∈R2|a≥ 0, b≥ 0, ab = 0}. The latter assumption is automatically satisfied when the
mappings g : Rn×Rm→ Rm and (x,y) 7→ ∇y f (x,y) are linear. Condition (Am

3 ) can replace the two other
assumptions (Am

1 ) and (Am
2 ). Note however that in the case of the LLVF reformulation considered in the

next subsection, the latter sequence of implication between the CQs will not be available. Also observe
that comments similar to the above ones can be stated for the C-qualification conditions in (5.14).

5.1.2 LLVF reformulation of the two-level value function

In this subsection we develop the lower-level value function (LLVF) approach to sensitivity analysis of
the two-level value function ϕo from (5.1). Considering the value function representation of the lower-
level solution set-valued mapping S in (3.1), we have the following LLVF reformulation of the two-level
value function ϕo:

ϕo(x) := min
y
{F(x,y)|g(x,y)≤ 0, f (x,y)−ϕ(x)≤ 0}, (5.23)

where ϕ is defined in (3.2). It is worth recalling that calculating the coderivative of the optimal solution
map S (1.2) is highly significant in our approach. In the current situation, this means computing the
limiting normal cone to the graph of S:

gphS = {(x,y) ∈Ω| f (x,y)−ϕ(x)≤ 0} with Ω := {(x,y) | g(x,y)≤ 0} (5.24)

in terms of the initial data. To proceed in this way by using the conventional results of the generalized
differential calculus [89] requires the fulfillment of the basic qualification condition, which reads in this
case as (3.40) where the value of Ω in (3.38) is replaced the one in (5.24). However, it follows from
Theorem 3.2.1 that the corresponding condition does not hold. The following weaker assumption helps
circumventing this difficulty:

(Av
1) The mapping Ξ(v) := {(x,y) ∈Ω| f (x,y)−ϕ(x)≤ v} is calm at (0, x̄, ȳ). (5.25)

By applying the concept of stability regions known in linear programming (see, e.g., [21]), to the optimal
value function ϕ it is possible to show, by means of Robinson’s theorem [106] on the upper-Lipschitz
continuity of a polyhedral set-valued mapping, that (Av

1) is automatically satisfied if f and g are linear.
The corresponding weak basic CQ (3.42) is a sufficient condition for the fulfilment of (Av

1). Sufficient
conditions for the uniform weak sharp minimum discussed in Chapter 3 also imply the satisfaction of
(Av

1) in the corresponding setting.
For the Lipschitz-like property of the solution map S in (3.1), our additional qualification condition is

formulated as follows:

(Av
2)

[
(λ ,β ) ∈ Λ

o
y(x̄, ȳ,0), u ∈ ∂ (−ϕ)(x̄)

]
=⇒ λu =−λ∇x f (x̄, ȳ)−

p

∑
i=1

βi∇xgi(x̄, ȳ), (5.26)

where Λo
y(x̄, ȳ,v) for v ∈ Rm denotes a particular set of multipliers that plays an important role in the rest

of the section:

Λo
y(x̄, ȳ,v) := {(λ ,β )| v+λ∇y f (x̄, ȳ)+∑

p
i=1 βi∇ygi(x̄, ȳ) = 0,

λ ≥ 0, βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p}. (5.27)

The next proposition describes a setting where assumption (Av
2) is automatically satisfied.
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Proposition 5.1.7 (validity of assumption (Av
2)). Let f : Rn×Rm→ R and g : Rm→ Rp be two convex

and continuously differentiable functions. Consider the value function

ϕ(x) := min
y
{ f (x,y)|g(y)≤ 0}

and the corresponding solution map S(x) = min
y
{ f (x,y)|g(y) ≤ 0}. Take (x̄, ȳ) ∈ gphS with ϕ(x̄) < ∞,

and assume that there exists ŷ with gi(ŷ)< 0 for i = 1, . . . , p. Then (Av
2) holds at (x̄, ȳ).

Proof. Under the setting of this proposition, it follows from the convex case of Theorem 3.2.9 (ii) that
the function −ϕ is strictly differentiable at x̄ and ∂ (−ϕ)(x̄) = {−∇x f (x̄, ȳ)}, which therefore justifies
our conclusion.

The LLVF reformulation of the solution set-valued mapping of the parametric problem corresponding
to the two-level value function ϕo (5.23), useful in the next result, reads as

So(x) = {y ∈ K(x)| f (x,y)≤ ϕ(x), F(x,y)≤ ϕo(x)}. (5.28)

Theorem 5.1.8 (coderivative estimate and Lipschitz-like property of lower-level solution maps). Let the
solution map (5.28) be inner semicontinuous at (x̄, ȳ) ∈ gphSo, and let the condition (Av

1) and the lower-
level regularity (3.65) be satisfied at this point. Then we have for all v ∈ Rm

D∗S(x̄, ȳ)(v)⊆
⋃

(λ ,β )∈Λo
y(x̄,ȳ,v)

{
λ (∇x f (x̄, ȳ)+∂ (−ϕ)(x̄))+

p

∑
i=1

βi∇xgi(x̄, ȳ)
}
. (5.29)

If in addition (Av
2) holds at (x̄, ȳ), then S is Lipschitz-like around this point.

Proof. It follows from Theorem 3.2.9 (ii) that the lower-level value function ϕ is Lipschitz continu-
ous around x̄ under the lower-level regularity and the inner semicontinuity assumptions. If we add the
calmness property (Av

1), then

NgphS(x̄, ȳ)⊆
⋃

λ≥0

{λ (∇ f (x̄, ȳ)+∂ (−ϕ)(x̄)×{0})+NΩ(x̄, ȳ)}

by Theorem 2.2.7 while taking into account that the constraint f (x,y)− ϕ(x) ≤ 0 is active at (x̄, ȳ).
The coderivative estimate (5.29) of the theorem follows now from definition (2.24) and the well-known
expression of the normal cone

NΩ(x̄, ȳ) =
{ p

∑
i=1

βi∇gi(x̄, ȳ)| βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p
}
,

which holds under the validity of the lower-level regularity (3.65) at (x̄, ȳ). Further, by (5.29) and the
coderivative criterion (2.30) for the Lipschitz-like property we get that the latter holds provided that

u ∈ λ (∇x f (x̄, ȳ)+∂ (−ϕ)(x̄))+∑
p
i=1 βi∇xgi(x̄, ȳ)

(λ ,β ) ∈ Λo
y(x̄, ȳ,0)

}
=⇒ u = 0,

which is in fact equivalent to the assumed qualification condition (Av
2).

Remark 5.1.9 (sensitivity result of the solution map S under full convexity and inner semicompactness).
It follows from the alternative statement in Theorem 3.2.9 (ii) that the inner semicontinuity of S can be
dropped in the assumptions of Theorem 5.1.8 if the functions f and g are fully convex. As usual, the inner
semicontinuity can be replaced by inner semicompactness with a larger inclusion in (5.29).



72 5 Original optimistic bilevel programming problem

To conduct a local sensitivity analysis of the two-level value function ϕo defined in (5.23), we associate
with it the optimal solution map So (5.28). Having in mind the definition of the multiplier set Λo

y(x̄, ȳ,v)
in (5.27), we put Λo

y(x̄, ȳ) := Λo
y(x̄, ȳ,∇yF(x̄, ȳ)). Then sensitivity results for ϕo are given next.

Theorem 5.1.10 (LLVF-type sensitivity analysis for the two-level value function). Consider the LLVF
reformulation (5.23) of the two-level value function, then the following assertions are satisfied:

(i) Assume that So (5.28) is inner semicontinuous at (x̄, ȳ) and that condition (Av
1) and the lower-level

regularity (3.65) hold at this point. Then we have

∂ϕo(x̄)⊆
⋃

(λ ,β )∈Λo
y(x̄,ȳ)

⋃
µ∈Λ(x̄,ȳ)

{
∇xF(x̄, ȳ)+

p

∑
i=1

(βi−λ µi)∇xgi(x̄, ȳ)
}
. (5.30)

If in addition (Av
2) is satisfied at (x̄, ȳ), then ϕo is Lipschitz continuous around x̄.

(ii) Assume that So (5.28) is inner semicompact at x̄, that the lower-level regularity (3.65) holds at
(x̄,y) for all y ∈ S(x̄), while (Av

1) holds at (x̄,y) for all y ∈ So(x̄). Then we have

∂ϕo(x̄)⊆
⋃

y∈So(x̄)

⋃
(λ ,β )∈Λo

y(x̄,y)

{
∇xF(x̄,y)+λ∇x f (x̄,y)+λ∂ (−ϕ)(x̄)+∑

p
i=1 βi∇xgi(x̄,y)

}
, (5.31)

where the subdifferential ∂ (−ϕ)(x̄) is estimated in Theorem 3.2.9 (i). If in addition (Av
2) is satisfied at

(x̄,y) for all y ∈ So(x̄), then ϕo is Lipschitz continuous around x̄.

Proof. To justify (i), observe by Theorem 4.0.1(i) that

∂ϕo(x̄)⊆ ∇xF(x̄, ȳ)+D∗S(x̄, ȳ)(∇yF(x̄, ȳ)).

under the inner semicontinuity assumption on So. Since we obviously have So(x)⊆ S(x) for all x∈ X , the
lower-level optimal solution map S in (1.2) is also inner semicontinuous at (x̄, ȳ)∈ gphSo. Thus the upper
estimate of ∂ϕo(x̄) in this theorem follows from those for the coderivative of S in Theorem 5.1.8 and for
the subdifferential of the lower-level value function ϕ in Theorem 3.2.9 (ii). To justify the local Lipschitz
continuity of ϕo in (i) under (Av

2), recall that the latter condition implies the Lipschitz-like property of S
around (x̄, ȳ) by Theorem 5.1.8. Thus we have the claimed result from Theorem 4.0.1 (i).

Assertion (ii) is proved similarly following the discussion in Remark 5.1.9.

Observe that for the subdifferential estimate of ϕo in Theorem 5.1.10 (i), the upper bound of the basic
subdifferential does not contain the partial derivative of the lower-level cost function f with respect to the
upper-level variable x. This will induce in the context of necessary optimality conditions for the original
optimistic formulation (Po) in the next section a remarkable phenomenon first discovered in [26] in the
framework concerning the auxiliary problem (P). Note that such a phenomenon is no longer true if the
inner semicontinuity assumption on So is replaced by the inner semicompactness one in assertion (ii) of
Theorem 5.1.10. Finally, we mention that the inner semicompactness of So in Theorem 5.1.10 (ii) can be
replaced by the easier while more restrictive uniform boundedness assumption imposed on So or even on
the lower-level solution map S.

5.2 Necessary optimality conditions

This section is devoted to applications of the above sensitivity results to deriving necessary optimality
conditions for the original optimistic formulation (Po) in bilevel programming. In fact we establish certain
stationarity conditions of various types among which are of those types known for more conventional
auxiliary optimistic formulation (P) together with stationarity conditions of the novel types for (Po).
Next we define the stationarity concepts tailored to (Po).
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Definition 5.2.1 (KM, KN and M-stationarity concepts for the original optimistic bilevel program (Po)).
Consider a feasible point x̄ of the original optimistic bilevel program (Po), then it is said to be:

(i) Po-KM-STATIONARY if there exist ȳ∈ So(x̄), (α,β )∈Rk+p, λ ∈R+, (µs,υs)∈Rk+1 and ys ∈ S(x̄)
with s = 1, . . . ,n+1 such that the KM-stationarity conditions (3.12)–(3.18) are satisfied.

(ii) SPo-KN-STATIONARY (resp. Po-KN-STATIONARY) if for every ȳ ∈ So(x̄) (resp. for some ȳ ∈
So(x̄)) we can find a triple (α,β ,µ) ∈ Rk+2p and a number λ ∈ R+ such that the KN-stationarity condi-
tions (3.13), (3.16)–(3.17), and (3.19)–(3.21) are satisfied.

(iii) SPo-M-STATIONARY (resp. Po-M-STATIONARY) if for every (ȳ, ū) ∈ Sh
o(x̄) (resp. for some

(ȳ, ū) ∈ Sh
o(x̄)) we can find a triple (α,β ,γ) ∈ Rk+p+m such that the M-stationarity conditions (3.16)

and (3.23)–(3.26) are satisfied.

Similarly to the M-stationarity, we define the C-stationarity (resp. S-stationarity) by replacing condi-
tion (3.26) with (3.29) and (3.30), respectively. Observe that a diagram similar to the one in (3.31) can
be constructed for the above stationarity concepts of the original optimistic bilevel program (Po). In the
following results, we provide frameworks to obtain these conditions.

Theorem 5.2.2 (derivation of the KM-stationarity conditions for (Po)). Let x̄ be an upper-level regular
(3.72) local optimal solution of (Po), and let So (5.28) be inner semicompact at x̄ while the lower-level
regularity (3.65) is satisfied at all (x̄, ȳ) with ȳ∈ S(x̄). Suppose furthermore that (Av

1) and (Av
2) are satisfied

at all (x̄, ȳ) with ȳ ∈ So(x̄). Then the point x̄ is Po-KM-stationary.

Proof. Under the assumptions made, it follows from Theorem 5.1.10 (ii) that the two-level value function
ϕo (5.23) is Lipschitz continuous around x̄. Thus ∂ϕo(x̄) 6= /0 while ∂ ∞ϕo(x̄) = {0}, and the qualification
condition (2.38) in Theorem 2.2.1 holds at x̄. Employing now the optimality condition (2.39) of the latter
theorem with the well-known formula

NX(x̄) =
{ k

∑
j=1

α j∇G j(x̄)| α j ≥ 0, α jG j(x̄) = 0, j = 1, . . .k
}

(5.32)

valid under the assumed upper-level regularity of x̄ and then taking into account that the set on the right-
hand-side of inclusion (5.31) is nonempty, we arrive at the Po-KM-stationarity.

Theorem 5.2.3 (derivation of the KN-stationarity conditions for (Po)). Let x̄ be an upper-level regular
(3.72) local optimal solution to the bilevel program (Po), then the following assertions are satisfied:

(i) Assume that for all ȳ∈ So(x̄), the inner semicontinuity of So (5.28), the lower-level regularity (3.65),
and conditions (Av

1) and (Av
2) are all satisfied at (x̄, ȳ). Then x̄ is SPo-KN-stationary.

(ii) If all the assumptions of (i) are satisfied at a certain point (x̄, ȳ) with ȳ ∈ So(x̄), then x̄ is Po-KN-
stationary.

Proof. For (i), note that inclusion (5.30) depends on the couple (x̄, ȳ)∈ gphSo, where So is inner semicon-
tinuous. Thus, it is clear that if the latter is satisfied at every (x̄, ȳ) ∈ gphSo and all the other qualification
conditions of Theorem 5.1.10 (i) hold at these points, then the result follows in the the lines of that
of Theorem 5.2.2. On the other hand, (ii) is obtained from the combination of Theorem 2.2.1 (ii) and
Theorem 5.1.10 (ii).

Theorem 5.2.4 (derivation of the M-stationarity conditions for (Po)). Let x̄ be an upper-level regular
(3.72) local optimal solution to (Po), where the lower-level problem (1.3) is convex. Assume that the
Slater CQ holds at x̄ while relationships (Am

1 ) and (Am
2 ) are satisfied at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄).
Then the following assertions are satisfied:

(i) If the solution set-valued mapping Sh
o (5.6) is inner semicontinuous at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sh

o(x̄),
then x̄ is SPo-M-stationary.

(ii) If Sh
o (5.6) is inner semicompact at x̄, then x̄ is Po-M-stationary.
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Proof. It follows similarly to that of the previous theorem while using Theorem 2.2.1 (ii) and Theorem
5.1.2 (i) and (ii), respectively.

Another possibility to derive the Po-M-stationarity is by using the upper estimate of ∂ϕo(x̄) obtained
via the OPEC reformulation of the two-level value function (5.21), cf. Corollary 5.1.5 (ii). Note also
that if the inner semicontinuity and qualification conditions (Am

1 ) and (Am
2 ) are satisfied only at one point

(x̄, ȳ, ū) in Theorem 5.2.4, we still can derive the Po-M-stationarity at the difference that the reference
couple (ȳ, ū) ∈ Sh

o(x̄) is known a priori. A comment similar to the latter one can be made for the Po-KN-
stationarity.

Proceeding similarly to the proof of Theorem 5.2.4, the C-stationarity (resp. S-stationarity) for a local
optimal solution to problem (Po) can be derived by a combination of Theorem 2.2.1 (ii) and Theorem
5.1.3 (resp. Theorem 5.1.4). Next we provide an illustrative example for the assumptions made in
Theorem 5.2.4.

Example 5 (validity of the qualification conditions to derive stationarity conditions for (Po)). Consider
the original optimistic version of the bilevel program in Example 3:

min
x∈R+

{min
y∈R
{x2 + y2|y ∈ S(x) := argmin{xy+ y|y≥ 0}}}.

The KKT reformulation of the corresponding two-level value function is

ϕo(x) := min
y,u
{x2 + y2|x−u+1 = 0, u≥ 0, y≥ 0, uy = 0}=

{
x2 if x≥−1,
∞ otherwise.

It is obvious that x̄ = 0 is the (unique) optimistic optimal solution of this program and that ϕo is contin-
uously differentiable near x̄. On the other hand, we have Sh

o(x) = {(0,x+ 1)} if x ≥ −1 and Sh
o(x) = /0

otherwise, and hence Sh
o reduces to a single-valued and continuous mapping on its graph. Furthermore,

Λem
y (x̄, ȳ, ū,0) = {0}×R if (x̄, ȳ, ū) = (−1,0,0) and Λem

y (x̄, ȳ, ū,0) = {(0,0)} for all the other points of
gphSh

o. From the observations made in Sections 4.1-6.1, this implies that the corresponding CQs (Am
1 )

and (Am
2 ) are satisfied at all points of the graph of Sh

o except (−1,0,0), which is not optimal.

It is worth mentioning that the upper-level regularity (3.72) imposed in the results above can be re-
placed by the weaker calmness property of the mapping v ⇒ {x ∈ Rn|G(x)+ v≤ 0}, which is automati-
cally satisfied in if G is a linear function. Furthermore, as mentioned previously in Subsection 5.1.1, the
qualification condition (Am

1 ) can also be replaced by the weaker calmness property of the mapping Ψ in
(5.22), which holds if both functions g and (x,y) 7→ ∇y f (x,y) are linear.

Remark 5.2.5 (on the need of the Lipschitz continuity of the two-level value function ϕo). We can see
from the proof of Theorem 5.2.4 that the local Lipschitz continuity of ϕo was used twice: to ensure
the nonemptiness of ∂ϕo(x̄) and the application of the optimality condition (2.39) of Theorem 2.2.1.
Observe to this end that the Lipschitz property of ϕo is not needed for bilevel programs without upper-
level constraints (i.e., if X :=Rn); in this case the qualification condition (2.38) holds automatically. The
latter also allows us to drop assumption (Am

2 ) in Theorem 5.2.4. However, we still have to make sure that
∂ϕo(x̄) 6= /0, which happens in many non-Lipschitzian situations; see e.g., [89, 92, 109].

5.3 Original versus classical optimistic bilevel programming

To begin this section, we first recall that the classical optimistic bilevel optimization problem (P) and its
original optimistic formulation (Po) are equivalent for global solutions. However, for local solutions, the
relationship is clarified in the next proposition.
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Proposition 5.3.1 (relationship between the local optimal solutions of the classical and original optimistic
programs). Consider problems (P) and (Po), then the following assertions are satisfied:

(i) Let x̄ be a local optimal solution of problem (Po), then (x̄, ȳ) with ȳ ∈ So(x̄) is a local optimal
solution of problem (P).

(ii) Let (x̄, ȳ) be a local optimal solution of (P), with ȳ ∈ So(x̄). Assume that So (5.2) is inner semicon-
tinuous at (x̄, ȳ), then x̄ is a local optimal solution of problem (Po).

Proof. (i) By contradiction, assume that (x̄, ȳ) with ȳ ∈ So(x̄) is not a local optimal solution of problem
(P). Then, we can find a sequence (xk,yk) with xk→ x̄, yk→ ȳ and xk ∈ X , yk ∈ S(xk) such that we have
F(xk,yk)< F(x̄, ȳ) = ϕo(x̄) for all k. By the definition of ϕo, it follows that ϕo(xk)≤ F(xk,yk) for all k.
Thus we have ϕo(xk)< ϕo(x̄), xk ∈ X for all k. This completes the proof of (i) given that x̄ ∈ X .

(ii) Assume that x̄ is not a local optimal solution of (Po) while all the other hypotheses of (ii) in the
proposition are satisfied. We can find a sequence xk→ x̄ (xk ∈ X) such that ϕo(xk)< ϕo(x̄) for all k. So

being inner semicontinuous at (x̄, ȳ), there is a sequence yk ∈ So(xk) such that yk → ȳ. Considering the
definition of So (5.2), we have yk ∈ S(xk).

On the other hand, with yk ∈ So(xk), we have F(xk,yk) = ϕo(xk) for all k. Hence, it follows that
F(xk,yk)< F(x̄, ȳ), xk ∈ X , yk ∈ S(xk) for all k, given that ϕo(xk)< ϕo(x̄) for all k. This contradicts the
fact that (x̄, ȳ) is a local optimal solution of problem (P), given that xk→ x̄, yk→ ȳ.

Let us now remind that it was initially shown in [44] that (i) holds under the upper semicontinuity of
the lower-level solution set-valued mapping S (1.2). This assumption was then weakened to the uniform
boundedness in [26]. It appears from the above that no assumption is in fact needed. However, for
the converse implication, the inner semicontinuity of the mapping So (5.2) seems to be indispensable as
shown in the next example.

Example 6 (importance of the inner semicontinuity of So in Proposition 5.3.1 (ii)). Consider the follow-
ing bilevel program taken from [21]:

“min
x

”
{

x| x ∈ [−1,1], y ∈ S(x) := argmin
y
{xy| y ∈ [0,1]}

}
.

The lower-level solution set-valued mapping can be described as:

S(x) =


[0,1] if x = 0,
{0} if x > 0,
{1} if x < 0.

(0,0) is a local optimal solution for the classical optimistic model (P), while 0 is not a local optimal
solution for the corresponding original optimistic formulation (Po). Note that in this case, we have
So(x) = S(x) for all x ∈ X := [−1,1]. Moreover, −1/2k→ 0, but So(−1/2k) = S(−1/2k) = {1} for all k,
while 1 6= 0. Thus So is not inner semicontinuous at (0,0).

In the next result, we establish the link between the stationarity conditions for the original optimistic
formulation (Po) in the previous section and those of the conventional/auxiliary optimistic problem (P)
obtained in Chapter 3.

Theorem 5.3.2 (relationship between the stationarity conditions for the classical and original optimistic
bilevel programs). The following assertions hold:

(i) A point x̄ is Po-KM-stationary (resp. Po-KN-stationary) if and only if there exists ȳ ∈ So(x̄) such
that (x̄, ȳ) is P-KM-stationary (resp. P-KN-stationary).

(ii) A point x̄ is Po-M-stationary (resp. Po-C, Po-S-stationary) if and only if there exists (ȳ, ū) ∈ Sh
o(x̄)

such that (x̄, ȳ) is P-M-stationary (resp. P-C, P-S-stationary).
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Proof. It follows from the direct comparison of the necessary optimality/stationarity conditions obtained
in Section 5.2 for the original bilevel formulation (Po) and the ones of (P) in classical optimistic bilevel
programming, cf. Chapter 3.

A natural question to ask now is how are the CQs to derive the stationarity conditions of (P) and (Po)
related. We address this solely for the P-M and Po-M-stationarity conditions. Similar comments can be
made for the other ones. In fact, note that CQ (3.97) and our qualification condition (Am

1 ) in (5.7) are
very similar. However, the upper-level constraint function G (1.4) does not appear in the latter. Thus, let
us consider a bilevel program with no upper-level constraints. Then (Am

1 ) and CQ (3.97) coincide. But
for the original optimistic problem (Po), we additionally need the qualification condition (Am

2 ) to ensure
the Lipschitz continuity of ϕo (5.1). Provided the latter is not needed (cf. discussion in Remark 5.2.5),
the extra assumption which really makes the difference in the aforementioned framework while deriving
the P-M-stationarity and the Po-M-stationarity is that the inner semicompactness or semicontinuity of the
mapping Sh

o (5.6) is required in the latter case.
To conclude this section, we illustrate how the local sensitivity analysis of two-level value functions

obtained in this chapter can readily be applied for the sensitivity analysis of the auxiliary problem (P). If
we consider a perturbation of the argminimum/solution set-valued mapping S (1.2) as:

S(x,z) := argmin
y
{ f (x,y,z)| g(x,y,z)≤ 0},

then, we can define the following perturbation for the classical model of the bilevel program (P):

min
x,y
{F(x,y,z)| G(x,z)≤ 0, y ∈ S(x,z)}. (5.33)

One way to derive the sensitivity analysis of the optimal value function associated to the above family of
problems can follow from the results in Subsection 5.1.1, by means of the KKT reformulation (see (3.8)
for details):

min
x,y,u
{F(x,y,z)| u≥ 0, g(x,y,z)≤ 0, u>g(x,y,z) = 0,

G(x,z)≤ 0, ∇y f (x,y,z)+∇yg(x,y,z)>u = 0}.

This has already been noted in [76]. However, another possibility to do the aforementioned sensitivity
analysis by considering the generalized equation reformulation of problem (5.33)

min
x,y
{F(x,y,z)|G(x,z)≤ 0, ∇y f (x,y,z)+NK(x,z)(y) 3 0}

is given in Section 4.2 (also see Subsection 5.1.1), while for the lower-level value function reformulation

min
x,y
{F(x,y,z)| f (x,y,z)−ϕ(x,z)≤ 0, G(x,z)≤ 0, g(x,y,z)≤ 0},

the interested reader in referred to Subsection 5.1.2. Note that the upper-level constraint G(x,z)≤ 0 can
easily be accommodated in the corresponding settings.

Finally, it is worth mentioning that the results on the sensitivity analysis of two-level value functions
obtained in this chapter can readily be applied to derive lower subdifferential necessary optimality con-
ditions for the pessimistic bilevel program (Pp). This is part of what we do in the next chapter.
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6 Pessimistic bilevel programming problem

The pessimistic bilevel program (Pp) is a special class of parametric/nonstatic minmax programming
problems. Many publications (see e.g. [39, 112, 113]) have been devoted to the derivation of necessary
optimality conditions for static minmax problems. Ishizuka [68] was the first to investigate necessary
optimality conditions for parametric minmax programs, however while using a generalization of Farkas’
alternative theorem. In the paper [131], lower and upper subdifferential necessary optimality conditions
for the latter problem are derived using the generalized differentiation calculus from variational analy-
sis. It however appears that the results in this paper cannot be applied to (Pp) because the constraint
qualifications needed there do not hold. Secondly, the graph of the lower-level solution map S being non-
convex, part of the results in the aforementioned paper are also not applicable to the pessimistic bilevel
programming problem.

In this chapter, we provide a study on stationarity conditions tailored to (Pp) via generalized differ-
entiation calculus. Relationships between the lower subdifferential necessary optimality conditions of
the optimistic and pessimistic problems are provided in Subsection 6.2.4. Chapter 5 is a prerequisite to
Sections 6.1–6.2. Section 6.3 provides upper subdifferential optimality conditions for (Pp), which appear
to have a structure similar to the necessary optimality conditions develop by Ishizuka [68] in the context
of the parametric minmax programming problem.

6.1 LLVF reformulation of the pessimistic bilevel program

We consider the following LLVF reformulation for the maximization two-level value function ϕp (1.8):

ϕp(x) = max
y
{F(x,y)|g(x,y)≤ 0, f (x,y)−ϕ(x)≤ 0}. (6.1)

In order to apply the results obtained in the previous chapter for the optimistic problem (Po), we introduce
the minimization two-level value function

ϕop(x) = min
y
{−F(x,y)|g(x,y)≤ 0, f (x,y)−ϕ(x)≤ 0}. (6.2)

Obviously, the classical interplay between the minimization and maximization of a given objective func-
tion induces the equality ϕp(x) = −ϕop(x). The solution set-valued mapping associated to ϕop (6.2)
follows as

Sop(x) := {x ∈ S(x)|F(x,y)+ϕop(x)≥ 0}. (6.3)

As usual, we suppose that Sop(x) 6= /0 for all x ∈ X , in such a way that the two-level value functions in
(6.1) and (6.2) will be well-defined.

In the spirit of the previous chapter (also see Chapter 3), we use the prefixes “KM” and “KN” in this
section to designate the optimality conditions of the pessimistic bilevel programming problem (Pp) ob-
tained via the LLVF reformulation (6.1) while assuming the inner semicoNtinuity and inner semicoMpactness
of Sop (6.3), respectively. KM and/or KN will be preceded by “KKT-type” if no number is attached to
the gradients of the upper-level objective function F . A similar terminology (i.e. analogously to Chapter
5) will be used in the next section in order to facilitate comparisons between the optimality conditions of
(Po) and (Pp). It is worth to remind at this point that the qualification conditions (Av

1) and (Av
2) used in

this section are defined in (5.25) and (5.26), respectively.
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Theorem 6.1.1 (KM-stationarity conditions for the pessimistic bilevel program). Let x̄ be an upper-level
regular (3.72) local optimal solution for problem (Pp), where the lower-level regularity (3.65) is satisfied
at (x̄,y), y ∈ S(x̄). Assume that Sop (6.3) is inner semicompact at x̄ while conditions (Av

1) and (Av
2) hold

at (x̄,y), for all y ∈ Sop(x̄). Then, there exist α ∈Rk, (βt ,µs,λt ,vs,wt) ∈R2p+3, yt ∈ Sop(x̄) and ys ∈ S(x̄)
with s = 1, . . . ,n+1 and t = 1, . . . ,n+1 such that relationships (3.14)–(3.16) and (3.18), together with
the following conditions are satisfied:

n+1

∑
t=1

wt
(
∇xF(x̄,yt)+λt∇x f (x̄,yt)+

p

∑
i=1

βit∇xgi(x̄,yt)
)

−
( n+1

∑
t=1

wtλt
) n+1

∑
s=1

vs
(
∇x f (x̄,ys)+

p

∑
i=1

µis∇xgi(x̄,ys)
)
+

k

∑
j=1

α j∇G j(x̄) = 0, (6.4)

∀t = 1, . . . ,n+1, ∇yF(x̄,yt)+λt∇y f (x̄,yt)+
p

∑
i=1

βit∇ygi(x̄,yt) = 0, (6.5)

∀t = 1, . . . ,n+1, i = 1, . . . , p, λt ≤ 0, βit ≤ 0, βitgi(x̄,yt) = 0, (6.6)
n+1

∑
t=1

wt = 1, ∀t = 1, . . . ,n+1, wt ≥ 0. (6.7)

Proof. Apart from the upper-level regularity of x̄, all the other assumptions of the theorem imply that
the value function ϕop (6.2) is Lipschitz continuous around x̄, cf. Theorem 5.1.10 (ii). Hence, ϕp is also
Lipschitz continuous around x̄. It then follows from Theorem 2.2.1 (ii) that

0 ∈ ∂ϕp(x̄)+NX(x̄). (6.8)

Considering the upper-level regularity of x̄, the expression of the normal cone to X is given in (5.32).
Thus one can find α ∈ Rk satisfying the complementarity conditions (3.16) such that

k

∑
j=1

α j∇G j(x̄) ∈ co∂ϕop(x̄), (6.9)

while taking into account the convex hull property (2.6). Applying the well-known Carathéodory Theo-
rem to (6.9), there exist wt , t = 1, . . . ,n+ 1 satisfying (6.7) and x∗t ∈ ∂ϕop(x̄), t = 1, . . . ,n+ 1 such that
we have

k

∑
j=1

α j∇G j(x̄) =
n+1

∑
t=1

wtx∗t . (6.10)

On the other hand, we also have from Theorem 5.1.10 (ii) that

∂ϕop(x̄)⊆
⋃

y∈Sop(x̄)

⋃
(λ ,β )∈Λo

y(x̄,y)

{
−∇xF(x̄,y)+λ (∇x f (x̄,y)+∂ (−ϕ)(x̄))+

p

∑
i=1

βi∇xgi(x̄,y)
}
,

where Λo
y(x̄,y) := Λo

y(x̄,y,−∇yF(x̄,y)), with Λo
y(x̄,y,−∇yF(x̄,y)) given by (5.27). Clearly, x∗t ∈ ∂ϕop(x̄)

implies that there exist yt ∈ Sop(x̄) and (λt ,βt) ∈ R1+p, with t = 1, . . . ,n+ 1 such that the following
relationships hold true:

∀t = 1, . . . ,n+1,−∇yF(x̄,yt)+λt∇y f (x̄,yt)+
p

∑
i=1

βit∇ygi(x̄,yt) = 0, (6.11)

∀t = 1, . . . ,n+1, i = 1, . . . , p, λt ≥ 0, βit ≥ 0, βitgi(x̄,yt) = 0, (6.12)

∀t = 1, . . . ,n+1, x∗t +∇xF(x̄,yt)−λt∇x f (x̄,yt)−
p

∑
i=1

βit∇xgi(x̄,yt) ∈ λt∂ (−ϕ)(x̄). (6.13)
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At this point, it should be reminded that the inner semicompactness of S (3.1) (ensured by that of Sop

(6.3)) and the fulfilment of the lower-level regularity at (x̄,y), y∈ S(x̄) imply the local Lipschitz continuity
of−ϕ , cf. Theorem 3.2.9 (i). Furthermore, we have the upper estimate of ∂ (−ϕ)(x̄) in Theorem 3.2.9 (i)
ensuring that inclusion (6.13) implies the existence of ys ∈ S(x̄), µs ∈Rp and vs ∈R, with s = 1, . . . ,n+1
such that relationships (3.14)–(3.15) and (3.18) together with the following hold:

x∗t =−∇xF(x̄,yt)−λt∇x f (x̄,yt)−∑
p
i=1 βit∇xgi(x̄,yt)+λt ∑

n+1
s=1 vs(∇x f (x̄,ys)+∑

p
i=1 µis∇xgi(x̄,ys)).

Substituting the values of x∗t in (6.10) while multiplying the resulting equation together with (6.11) and
(6.12) by −1, we get (6.4), (6.5) and (6.6), respectively, which concludes the proof.

If in the above theorem we include the full convexity of the functions involved in the lower-level
problem (1.3) and we get the following result.

Corollary 6.1.2 (KM-stationarity conditions for the pessimistic bilevel program in presence of full con-
vexity in the lower-level problem). Let x̄ be an upper-level regular (3.72) local optimal solution for
(Pp), where the functions f and gi, i = 1, . . . , p are all convex in (x,y). Furthermore, let all the assump-
tions of Theorem 6.1.1 be satisfied. Then, there exist α ∈Rk, (βt ,µt ,λt ,wt) ∈R2p+2 and yt ∈ Sop(x̄) with
t = 1, . . . ,n+1 such that relationships (3.16) and (6.5)–(6.7) together with the following conditions hold:

n+1

∑
t=1

wt

(
∇xF(x̄,yt)+

p

∑
i=1

(βit −λt µit)∇xgi(x̄,ys)
)
+

k

∑
j=1

α j∇G j(x̄) = 0, (6.14)

∀t = 1, . . . ,n+1, ∇y f (x̄,yt)+
p

∑
i=1

µit∇ygi(x̄,yt) = 0, (6.15)

∀t = 1, . . . ,n+1, i = 1, . . . , p, µit ≥ 0, µitgi(x̄,yt) = 0. (6.16)

Proof. It follows as in that of Theorem 6.1.1. However, note that for all y ∈ S(x̄) we have the upper
estimate of the subdifferential of−ϕ in (3.67), while taking into account the lower-level regularity (3.65)
and the full convexity of f and gi, i = 1, . . . , p. Hence, for all t = 1, . . .n + 1, we choose the value
y := yt ∈ Sop(x̄)⊆ S(x̄).

It is important, in order to eliminate some difficulties in numerical algorithms to solve the problem,
that the gradient of the upper-level objective function F not be involved in the convex combinations
summations in (6.4) and (6.14). To get results of the latter type, we replace the inner semicompactness of
the mapping Sop in the above Theorem 6.1.1 by the inner semicontinuity, which leads us to the following
result.

Theorem 6.1.3 (KKT-type KN-stationarity conditions for the pessimistic bilevel program). Let x̄ be
an upper-level regular (3.72) local optimal solution for (Pp), where the lower-level regularity (3.65)
is satisfied at (x̄, ȳ). Assume that the solution map Sop (6.3) is inner semicontinuous at (x̄, ȳ) while the
qualification conditions (Av

1) and (Av
2) hold at (x̄, ȳ). Furthermore we assume coNgphS(x̄, ȳ) to be a closed

set. Then, there exist α ∈Rk and (βt ,µt ,λt ,wt)∈R2p+2, t = 1, . . . ,n+m+1 such that relationship (3.16)
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together with the following conditions are satisfied:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
n+m+1

∑
s=1

wt

p

∑
i=1

(βit −λt µit)∇xgi(x̄, ȳ) = 0, (6.17)

∇yF(x̄, ȳ)+
n+m+1

∑
t=1

wt
(
λt∇y f (x̄, ȳ)+

p

∑
i=1

βit∇ygi(x̄, ȳ)
)
= 0, (6.18)

∀t = 1, . . . ,n+m+1, ∇y f (x̄, ȳ)+
p

∑
i=1

µit∇ygi(x̄, ȳ) = 0, (6.19)

∀s = 1, . . . ,n+m+1, i = 1, . . . , p, λt ≤ 0, βit ≤ 0, βitgi(x̄, ȳ) = 0, (6.20)

∀s = 1, . . . ,n+m+1, i = 1, . . . , p, µit ≥ 0, µitgi(x̄, ȳ) = 0, (6.21)
n+m+1

∑
t=1

wt = 1, ∀t = 1, . . . ,n+m+1, wt ≥ 0. (6.22)

Proof. Analogously to the previous theorem, we have from Theorem 5.1.10 (i) that ϕop is Lipschitz
continuous around x̄. Also, the same interplay between ϕop and ϕp implies that there exists α ∈ Rk such
that (3.13) and the following inclusion holds with the convexified subdifferential of ϕop:

k

∑
j=1

α j∇G j(x̄) ∈ co∂ϕop(x̄) = ∂̄ϕop(x̄). (6.23)

Since the upper-level objective function F is continuously differentiable and the solution set-valued map-
ping Sop is inner semicontinuous at (x̄, ȳ), one has from [91, Theorem 5.1] that

∂̄ϕop(x̄)⊆−∇xF(x̄, ȳ)+D∗S(x̄, ȳ)(−∇yF(x̄, ȳ)). (6.24)

Combining (6.23)-(6.24) and the definition of the coderivative, one has[
∑

k
j=1 α j∇G j(x̄)+∇xF(x̄, ȳ)

∇yF(x̄, ȳ)

]
∈ NgphS(x̄, ȳ) = coNgphS(x̄, ȳ), (6.25)

where the last equality results from the closedness of the set coNgph(x̄, ȳ).
On the other hand, one has from Theorem 5.1.8 that under assumption (Av

1), the lower-level regularity
and the inner semicontinuity of Sop, the normal cone to the graph of S can be estimated as

NgphS(x̄, ȳ)⊆


[

∇xg(x̄, ȳ)>(β −λ µ)
λ∇y f (x̄, ȳ)+∇yg(x̄, ȳ)>β

]∣∣∣∣∣∣
∇y f (x̄, ȳ)+∇yg(x̄, ȳ)>µ = 0
λ ≥ 0, β ≥ 0, β>g(x̄, ȳ) = 0

µ ≥ 0, µ>g(x̄, ȳ) = 0

 .

By substituting this inclusion in (6.25) and applying the Carathéodory Theorem, we have the result.

The above KKT-type KN-stationarity conditions coincide with the optimality conditions in Theorem
6.1.1, provided Sop(x̄) = {ȳ} = S(x̄) and Λ(x̄, ȳ) = {µ} in the latter result, while Λo

y(x̄, ȳ) = {(λ ,β )} in
both theorems.

6.2 KKT reformulation of the pessimistic bilevel program

Our basic aim in this section is to derive necessary optimality conditions for the pessimistic bilevel
optimization (Pp) by using either the primal or the classical KKT reformulation of the two-level value
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function ϕop(x) := min
y
{−F(x,y)|y ∈ S(x)}. For the reader’s convenience, recall that if the lower-level

problem (1.3) is convex at x ∈ X , then the primal KKT/OPEC reformulation is obtained as

ϕop(x) = min
y
{−F(x,y)|0 ∈ ∇y f (x,y)+NK(x)(y)}, (6.26)

whereas the following KKT reformulation is derived from Lemma 5.1.1

ϕop(x) = min
y,u
{−F(x,y)|L (x,y,u) = 0, u≥ 0, g(x,y)≤ 0, u>g(x,y) = 0}, (6.27)

provided that the Slater CQ (3.6) is additionally satisfied at x.

6.2.1 M-type optimality conditions

As before, the following solution set-valued mapping related to the two-level value function (6.27) will
play an important role:

Sh
op(x) := {(y,u) ∈ Sh(x)|F(x,y)+ϕop(x)≥ 0}. (6.28)

The set-valued mapping Sh here is defined in (5.5). Next we provide the first M-type stationarity condi-
tions for problem (Pp). Note that the qualification conditions (Am

1 ) and (Am
2 ) widely used in this subsection

are defined in (5.7).

Theorem 6.2.1 (M-type stationarity conditions for the pessimistic bilevel program). Let x̄ be an upper-
level regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3) is convex and the
lower-level regularity (3.65) is satisfied at (x̄,y), y ∈ S(x̄). Assume that Sh

op (6.28) is inner semicompact
at x̄ while conditions (Am

1 ) and (Am
2 ) hold at (x̄,y,u), for all (y,u) ∈ Sh

op(x̄). Then, there exist α ∈ Rk,
(β s,γs,vs) ∈ Rp+m+1 and (ys,us) ∈ Sh

op(x̄) with s = 1, . . . ,n+ 1 such that relationship (3.16) and the
following conditions hold all together:

n+1

∑
i=1

vs

(
∇xF(x̄,ys)+

p

∑
i=1

βis∇xgi(x̄,ys)+
m

∑
l=1

γls∇xLl(x̄,ys,us)
)
+

k

∑
j=1

α j∇G j(x̄) = 0, (6.29)

∀s = 1, . . . ,n+1, ∇yF(x̄,ys)+
p

∑
i=1

βis∇ygi(x̄,ys)+
m

∑
l=1

γls∇yLl(x̄,ys,us) = 0, (6.30)

∀s = 1, . . . ,n+1, ∇ygνs(x̄,ys)γ
s = 0, β

s
ηs = 0, (6.31)

∀s = 1, . . . ,n+1, i ∈ θ
s, (β s

i < 0∧∇ygi(x̄,ys)γ
s < 0)∨β

s
i (∇ygi(x̄,ys)γ

s) = 0, (6.32)
n+1

∑
i=1

vs = 1, ∀s = 1, . . . ,n+1, vs ≥ 0, (6.33)

∀s = 1, . . . ,n+1, η
s := η(x̄,ys,us),θ

s := θ(x̄,ys,us),ν
s := ν(x̄,ys,us). (6.34)

Proof. By Theorem 5.1.2 (ii), it follows under the assumptions of the theorem that ϕop (6.27) is Lipschitz
continuous around x̄ and we have

∂ϕop(x̄)⊆
⋃

(ȳ,ū)∈Sh
op(x̄)

⋃
(β ,γ)∈Λem

y (x̄,ȳ,ū)

{
−∇xF(x̄, ȳ)+∇xg(x̄, ȳ)>β +∇xL (x̄, ȳ, ū)>γ

}
.

Hence, the maximization two-level value function ϕp (1.8) is also Lipschitz continuous around x̄ and by
Carathédory’s Theorem, we have

∂ϕp(x̄)⊆
{

∑
n+1
s=1 vs

(
−∇xF(x̄,ys)+∑

p
i=1 βis∇xgi(x̄,ys)+∑

m
l=1 γls∇xLl(x̄,ys,us)

)∣∣
(ys,us) ∈ Sh

op(x̄), (β
s,γs) ∈ Λem

y (x̄,ys,us), s = 1, . . . ,n+1,

∑
n+1
i=1 vs = 1, vs ≥ 0, s = 1, . . . ,n+1

}
.

(6.35)

Here the multipliers set Λem
y (x̄, ȳ, ū) is defined as Λem

y (x̄, ȳ, ū,−∇yF(x̄, ȳ)), see (5.7). The result is then
obtained from a combination of (5.32), (6.8) and (6.35).



82 6 Pessimistic bilevel programming problem

As explained in Section 6.1, it may be important for numerical reasons to obtain optimality conditions
where no "multiplier" is attached to the gradient of the upper-level objective function. To attain such an
objective in the M-type conditions, our first approach is still based on the KKT reformulation (6.26) of
the two-level value function. However assumption (Am

1 ) in the previous result is replaced by the following
one

(Am
1 )
′

∇g(x̄, ȳ)>∑
2p+1
s=1 µsvs +∇x,yL (x̄, ȳ, ū)>γ = 0

∑
2p+1
s=1 µsus +∇yg(x̄, ȳ)γ = 0

∀s = 1, . . . ,2p+1, us
ν = 0, vs

η = 0
∀s = 1, . . . ,2p+1, i ∈ θ , (us

i > 0∧ vs
i > 0)∨us

i v
s
i = 0

∑
2p+1
s=1 µs = 1, ∀s = 1, . . . ,2p+1, µs ≥ 0


=⇒

{
γ = 0
∑

2p+1
s=1 µsvs = 0

while imposing instead the inner semicontinuity on the solution set-valued mapping Sh
op (6.28).

Theorem 6.2.2 (KKT-type M-stationarity conditions for the pessimistic bilevel program via the KKT re-
formulation). Let x̄ be an upper-level regular (3.72) local optimal solution for (Pp), where the lower-level
problem (1.3) is convex and the lower-level regularity (3.65) holds at (x̄,y), y ∈ S(x̄). Assume that Sh

op
(6.28) is inner semicontinuous at (x̄, ȳ, ū), where conditions (Am

1 )
′ and (Am

2 ) are satisfied. Furthermore,
suppose that coNΠ(ū,−g(x̄, ȳ)) (Π defined in (3.95)) is a closed set. Then, there exist (α,γ) ∈ Rk+m and
(us,vs,µs) ∈R2p+1 with s = 1, . . . ,2p+1 such that condition (3.16) together with the following ones are
satisfied:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

2p+1

∑
s=1

µsvs
i ∇xgi(x̄, ȳ)+

m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0, (6.36)

∇yF(x̄, ȳ)+
p

∑
i=1

2p+1

∑
s=1

µsvs
i ∇ygi(x̄, ȳ)+

m

∑
l=1

γl∇yLl(x̄, ȳ, ū) = 0, (6.37)

2p+1

∑
s=1

µsus +∇yg(x̄, ȳ)γ = 0, (6.38)

∀s = 1, . . . ,2p+1, us
ν = 0, vs

η = 0, (6.39)

∀s = 1, . . . ,2p+1, i ∈ θ , (us
i > 0∧ vs

i > 0)∨us
i v

s
i = 0, (6.40)

2p+1

∑
s=1

µs = 1, ∀s = 1, . . . ,2p+1, µs ≥ 0. (6.41)

Proof. The proof follows on the path of that of Theorem 6.1.3. Obviously the difference lies in the upper
estimate of the normal cone to the graph of the set-valued mapping Sh. To proceed, first note that since
the new variable u does not appear in the upper-level objective function F , after the transformation of
ϕop obtained in (6.27), inclusion (6.25) should be replaced by ∇G(x̄)>α +∇xF(x̄, ȳ)

∇yF(x̄, ȳ)
0

 ∈ NgphSh(x̄, ȳ, ū)⊆ ∇ψ(x̄, ȳ, ū)>N{0m}×Π(ψ(x̄, ȳ, ū)), (6.42)

where the last inclusion follows from [91, Theorem 5.2 (ii)], provided the following equality holds true

ker∇ψ(x̄, ȳ, ū)>∩N{0m}×Π(ψ(x̄, ȳ, ū)) = {0}. (6.43)

Here the set Π is given in (3.95) while the function ψ is defined by ψ(x,y,u) := [L (x,y,u), (u,−g(x,y))].
From the expression of the basic normal cone to Π in (3.96), we have

NΠ(ū,−g(x̄, ȳ)) =
{
(u,v)

∣∣∣∣ uη = 0,vν = 0,
∀i ∈ θ ,(ui < 0∧ vi < 0)∧uivi = 0

}
(6.44)
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and by Carathéodory’s Theorem, we have the following convexified normal cone

coNΠ(ū,−g(x̄, ȳ)) =

{[
∑

2p+1
s=1 µsus

∑
2p+1
s=1 µsvs

]∣∣∣∣∣∑2p+1
s=1 µs = 1, ∀s = 1, . . . ,2p+1, µs ≥ 0,

us
η = 0,vs

ν = 0, s = 1, . . . ,2p+1
(us

i < 0∧ vs
i < 0)∧us

i v
s
i = 0, ∀i ∈ θ , s = 1, . . . ,2p+1

}
.

(6.45)

Since coNΠ(ū,−g(x̄, ȳ)) is a closed set, we have the following equality

NΠ(ū,−g(x̄, ȳ)) = coNΠ(ū,−g(x̄, ȳ)). (6.46)

Hence, inserting the right-hand-side of equality (6.45) in (6.43), we obtain condition (Am
1 )
′. Repeating

the same process with inclusion (6.42), the optimality conditions in the theorem are derived.
It should however be mentioned that to obtain the Lipschitz continuity of ϕop, one needs to observe

that condition (6.43) implies that

ker∇ψ(x̄, ȳ, ū)>∩N{0m}×Π(ψ(x̄, ȳ, ū)) = {0}. (6.47)

It is a simple exercise to check that this condition is equivalent to (Am
1 ). It then follows from Theorem

5.1.2 (i) that ϕop is Lipschitz continuous around x̄ given that condition (Am
2 ) and the inner semicontinuity

of Sh
op are all satisfied at (x̄, ȳ, ū).

In the next result we provide KKT-type M-stationarity conditions from the view point of the primal
KKT reformulation (6.26). Instead of the inner semicontinuity of Sh

op (6.28), we impose the inner semi-
continuity of the the following set-valued mapping

Se
op(x) := {y ∈ Se(x)|F(x,y)+ϕop(x)≥ 0} (6.48)

where the set-valued mapping Se corresponds to the generalized equation solution map in (3.4). For the
qualification conditions (Ae

1), (A
e
2) and (Ae

3) imposed in the following theorem, we refer the reader to the
comments preceding Corollary 5.1.5.

Theorem 6.2.3 (KKT-type M-stationarity conditions for the pessimistic bilevel program via the OPEC
reformulation). Let x̄ be an upper-level regular (3.72) local optimal solution for (Pp), where the lower-
level problem (1.3) is convex. Assume that the lower-level regularity (3.65) is satisfied at (x̄, ȳ), where
Se

op (6.48) is inner semicontinuous. Furthermore, let conditions (Ae
1), (A

e
2), (A

e
3) hold at (x̄, ȳ) while

coNgphSe(x̄, ȳ) is closed. Then, there exist α ∈ Rk, (β s,us,γ
s,vs) ∈ R2p+m+1, with s = 1, . . . ,m+ n+ 1

such that relationship (3.13) together with the following conditions hold:

∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
m+n+1

∑
s=1

vs

( p

∑
i=1

βis∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ,us)
)
= 0,

∇yF(x̄, ȳ)+
m+n+1

∑
s=1

vs

( p

∑
i=1

βis∇ygi(x̄, ȳ)+
m

∑
l=1

γl∇yLl(x̄, ȳ,us)
)
= 0,

∀s = 1, . . . ,m+n+1, ∇ygνs(x̄, ȳ)γs = 0, β
s
ηs = 0,

∀s = 1, . . . ,m+n+1, i ∈ θ
s, (β s

i < 0∧∇ygi(x̄, ȳ)γs < 0)∨β
s
i (∇ygi(x̄, ȳ)γs) = 0,

m+n+1

∑
i=1

vs = 1, ∀s = 1, . . . ,m+n+1, vs ≥ 0,

∀s = 1, . . . ,m+n+1,ηs := η(x̄, ȳ,us),θ
s := θ(x̄, ȳ,us),ν

s := ν(x̄, ȳ,us).
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Proof. Since we are working here with the primal KKT reformulation (6.26) of the two-level value
function ϕop, one simply has to note that an upper bound of the normal cone to the graph of Se (3.4) is
obtained as

NgphSe(x̄, ȳ)⊆
{

∑
p
i=1 βi∇gi(x̄, ȳ)+∑

m
l=1 γl∇x,yLl(x̄, ȳ, ū)

∣∣
ū≥ 0, ū>g(x̄, ȳ) = 0, L (x̄, ȳ, ū) = 0,
∇ygν(x̄, ȳ)γ = 0,βη = 0,

(∇ygi(x̄, ȳ)γ > 0 ∧ βi > 0) ∨ βi(∇ygi(x̄, ȳ)γ) = 0, ∀i ∈ θ

}
while considering the convexity of the lower-level problem (1.3) and the assumptions (Ae

1) and (Ae
2) [93].

The rest of the proof follows as in the proof of Theorem 6.1.3, taking into account the sensitivity analysis
of ϕop (6.26) from Corollary 5.1.5 (i).

To close this subsection, note that by means of Corollary 5.1.5 (ii), the necessary optimality conditions
(3.16), (6.29)–(6.34) obtained in Theorem 6.2.1 could also be derived using the primal KKT/OPEC
reformulation (6.26) of the two-level value function. In this case assumptions (Ae

1), (A
e
2) and (Ae

3) would
replace (Am

1 ) and (Am
2 ) while instead the inner semicompactness Se

op (6.48) would be needed.

6.2.2 C-type optimality conditions

We proceed in this subsection with the derivation of C and KKT-type C-stationarity conditions for the pes-
simistic bilevel programming problem (Pp). We concentrate here and in the next subsection on the KKT
reformulation (6.27) of the minimization two-level value function ϕop. As mentioned in the previous sub-
section, similar results can be derived via the OPEC reformulation (6.26). As usual the C-qualification
conditions imposed here are those in Chapter 5 (cf. (5.14)).

Theorem 6.2.4 (C-stationarity conditions for the pessimistic bilevel program). Let x̄ be an upper-level
regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3) is convex and the
lower-level regularity (3.65) is satisfied at (x̄,y), y ∈ S(x̄). Assume that Sh

op (6.28) is inner semicompact
at x̄ while conditions (Ac

1) and (Ac
2) hold at (x̄,y,u), for all (y,u) ∈ Sh

op(x̄). Then, there exist α ∈ Rk,
(β s,γs,vs) ∈ Rp+m+1 and (ys,us) ∈ Sh

op(x̄) with s = 1, . . . ,n+1 such that relationships (6.29)-(6.31) and
(6.33)-(6.34) together with the following condition are satisfied:

∀s = 1, . . . ,n+1, ∀i ∈ θ
s, β

s
i (∇ygi(x̄,ys)γ

s)≥ 0.

Proof. Analogous to the proof of Theorem 6.2.1 (ii). For the Lipschitz continuity and the upper estimate
of the basic subdifferential of ϕop, see Theorem 5.1.3 (ii).

Theorem 6.2.5 (KKT-type C-stationarity conditions for the pessimistic problem). Let x̄ be an upper-
level regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3) is convex and the
lower-level regularity holds at (x̄,y), y∈ S(x̄). Assume that Sh

op (6.28) is inner semicontinuous at (x̄, ȳ, ū),
where conditions (Ac

1) and (Ac
2) are satisfied. Then, there exist (ȳ, ū) ∈ Sh

op(x̄) and (α,β ,γ) ∈ Rk+p+m

such that the C-stationarity conditions (3.16), (3.23)–(3.25) and (3.29) are satisfied.

Proof. It follows in the pattern of that of Theorem 6.2.2. However, one should note that the graph of Sh

(5.5) can take the following form

gphSh = {(x,y,u)|L (x,y,u) = 0, min{ui,−gi(x,y)}= 0, i = 1, . . . , p}.

Applying [91, Proposition 5.8], it follows that

NgphSh(x̄, ȳ, ū)⊆

{[
L (x̄, ȳ, ū)>γ

∇ygν(x̄, ȳ)γ

]
+

p

∑
i=1

λi∂̄Vi(x̄, ȳ, ū)

}
(6.49)
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provided that the following quafication condition holds true:

0 ∈
[

L (x̄, ȳ, ū)>γ

∇ygν(x̄, ȳ)γ

]
+

p

∑
i=1

λi∂̄Vi(x̄, ȳ, ū) =⇒ γ = 0, λi = 0, i = 1, . . . , p, (6.50)

where Vi(x,y,u) := min{ui,−gi(x,y)} for i = 1, . . . , p. We have from inclusion (3.119) (also see the proof
of Theorem 4.1.6) that

p

∑
i=1

λi∂̄Vi(x̄, ȳ, ū)⊆
{[
−∇yg(x̄, ȳ)>β

ξ

]∣∣∣∣ βη = 0, ξν = 0,
βiξi ≥ 0, ∀i ∈ θ

}
. (6.51)

Combining (6.50) and (6.51), it is easy to observe that (Ac
1) is a sufficient condition for implication (6.50)

to be satisfied. Moreover, the optimality conditions in the theorem are obtained by successively inserting
(6.49) and (6.51) in the inclusion ∇G(x̄)>α +∇xF(x̄, ȳ)

∇yF(x̄, ȳ)
0

 ∈ NgphSh(x̄, ȳ, ū),

obtained as in the proof of Theorem 6.2.2.

Clearly, the C-stationarity conditions obtained in the latter result coincide with those of the optimistic
problem. However, for a more clear picture on the relationship between Po-C-stationarity and a similar
stationarity concepts for the pessimistic problem, we refer the reader to Subsection 6.2.4.

6.2.3 S-type optimality conditions

We start this subsection by deriving the S-counterpart of Theorem 6.2.1 and Theorem 6.2.4. Recall that
the S-qualification conditions (As

1) and (As
2) are given in (5.17).

Theorem 6.2.6 (S-stationarity conditions for the pessimistic bilevel program). Let x̄ be an upper-level
regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3) is convex and the
lower-level regularity (3.65) is satisfied at (x̄,y), y ∈ S(x̄). Assume that Sh

op (6.28) is inner semicompact
at x̄ while EITHER [(Am

1 )∧ (Am
2 )] OR [(Ac

1)∧ (Ac
2)] hold at (x̄,y,u), for all (y,u) ∈ Sh

op(x̄). Furthermore,
we suppose that (As

1) also holds at (x̄,y,u), for all (y,u) ∈ Sh
op(x̄). Then, there exist α ∈ Rk, (β s,γs,vs) ∈

Rp+m+1 and (ys,us) ∈ Sh
op(x̄) with s = 1, . . . ,n+1 such that relationships (6.29)-(6.31) and (6.33)-(6.34)

together with the following condition are satisfied:

∀s = 1, . . . ,n+1, ∀i ∈ θ
s, β

s
i ≤ 0∧∇ygi(x̄,ys)γ

s ≤ 0.

Proof. Follows in the line of that of Theorem 6.2.1 while applying Theorem 5.1.4 (ii).

In Theorem 6.2.6, the combination of assumptions (Am
1 ) and (Am

2 ) on one hand and of (Ac
1) and (Ac

2)
on the other can be replaced by the single assumption (Am

3 ) and (Ac
3), respectively. Next we provide a

more general setting of S-stationarity conditions for the pessimistic problem that coincide with those of
Theorem 6.2.6 provided the vector (β ,γ, ȳ, ū) is unique in the latter result. The following occur however
without requiring the aforementioned uniqueness.

Theorem 6.2.7 (KKT-type S-stationarity conditions for the pessimistic bilevel program). Let x̄ be an
upper-level regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3) is convex
and the lower-level regularity (3.65) holds at (x̄,y), y ∈ S(x̄). Assume that Sh

op (6.28) is inner semicon-
tinuous at (x̄, ȳ, ū), where EITHER [(Ac

1)∧ (Ac
2)∧ (As

1)], [(A
c
3)∧ (As

1)] OR (As
2) hold. Then, there exists

(α,β ,γ) ∈ Rk+p+m such that conditions (3.16) and (3.23)–(3.25) together with the following one hold:

∇ygi(x̄, ȳ)γ ≤ 0 ∧ βi ≤ 0, ∀i ∈ θ . (6.52)
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Proof. First note that in addition to the convexity of problem (1.3) and the lower-level regularity (3.65)
at (x̄,y), y ∈ S(x̄), if EITHER [(Ac

1)∧ (Ac
2)] OR [(Ac

3)] is satisfied, we have the C-stationarity conditions in
Theorem 6.2.5. Moreover if (A1

s ) holds, then we have our KKT-type S-stationarity conditions for (Pp).
Secondly, if instead (As

2) holds, we have from Theorem 5.1.4 (i) (cf. (5.19)) that the two-level value
function ϕop (6.27) is strictly differentiable at x̄ and

∇ϕop(x̄) =−∇xF(x̄, ȳ)+
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū),

where (β ,γ) is the unique multiplier vector satisfying (3.25) and (3.30) together with condition:

−∇xF(x̄, ȳ)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0.

Thus the result then follows while changing the signs of β and γ as done in the previous cases.

Based on this simple form of the optimality conditions of the pessimistic problem and the observations
already made above for the other types of stationarity concepts, we will try, in the next subsection, to
highlight some links between the optimality conditions of the latter formulation of the bilevel program
and those of the optimistic one.

6.2.4 Pessimistic versus optimistic bilevel programming

As mentioned in the Introduction, the optimistic and pessimistic bilevel optimization problems (Po) and
(Pp) are usually distinct from each other when we can not guaranty uniqueness in the lower-level problem
(1.3). In this subsection we provide a particular setting where the necessary optimality conditions of both
problems coincide. For simplicity in our comparison we consider only the C- and S-type stationarity
conditions. Furthermore, we focus here only on the KKT-type C- and S-stationarity conditions of the
pessimistic problem obtained in Theorem 6.2.5 and Theorem 6.2.7, that we denote here by Pp-C and Pp-
S-stationarity conditions, respectively, in order to avoid confusion with those of (Po) denoted similarly
while replacing Pp by Po, cf. Definition 5.2.1. Precisely, x̄ will be said to be Pp-C-STATIONARY (resp.
Pp-S-STATIONARY) if there exist (ȳ, ū) ∈ Sh

op(x̄) and (α,β ,γ) ∈ Rk+p+m such that relationships (3.16)
and (3.23)-(3.25) together with the condition (3.29) (resp. (6.52)) are satisfied. For the latter definition,
recall that the solution set-valued mapping Sh

op is defined in (6.28), while the mapping Sh
o needed in the

following corollary is given by (5.6).
The aim of the next consequences of previous results is to show that necessary optimality conditions

of a pessimistic bilevel program can be obtained from those of its optimistic counterpart and vice-versa.

Corollary 6.2.8 (derivation of Pp-C and Pp-S-stationarity from Po-C and Po-S-stationarity, respectively).
Let x̄ be an upper-level regular (3.72) local optimal solution of the optimistic bilevel program (Po), where
the lower-level problem (1.3) is convex. Assume that the Slater CQ (3.6) holds at x̄ while relationships
(Ac

1) and (Ac
2) are satisfied at (x̄, ȳ, ū). Furthermore, we suppose that we have Sh

o(x̄) = {(ȳ, ū)}= Sh
op(x̄).

Then the following assertions are satisfied:
(i) x̄ is Pp-C-stationary.
(ii) If in addition, (As

2) is satisfied at (x̄, ȳ, ū) and EITHER θ = {i|βi = 0∧∇ygi(x̄, ȳ)γ = 0} OR θ = /0
(strict complementarity) holds. Then x̄ is Pp-C-stationary.

Proof. For (i), note that from the C-counterpart of Theorem 5.2.4 (ii) (also see the related comments
following the result) where condition Sh

op(x̄) = {(ȳ, ū)} here ensures the inner semicontinuity of Sh
op

(6.28), it follows that x̄ is Po-C-stationary. Furthermore, also observe that Sh
o(x̄) = {(ȳ, ū)} = Sh

op(x̄)
guaranties the fulfillment of inclusion (ȳ, ū) ∈ Sh

o(x̄) contained in the Pp-C-stationarity conditions. This
completes the proof of (i). Similarly, (ii) is obtained from the S-counterpart of Theorem 5.2.4 (ii).
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Using Theorem 6.2.5 and Theorem 6.2.7, we can state a result similar to Corollary 6.2.8 (i) and (ii),
respectively, while considering but a local optimal solution of (Pp), which provides Po-C and Po-S-
stationarity from the Pp-C and Pp-S-stationarity, respectively. Note that all the assumptions of the above
corollary are satisfied for the problem in Example 3.

To close this section, we consider the bilevel optimization problem (1.1) where the upper-level fea-
sible set is defined by nonegativity inequality constraints G j(x) ≥ 0 for j = 1, . . . ,k. Next consider the
corresponding pessimistic reformulation

min
x
{ϕp(x)|G(x)≥ 0} with ϕp(x) := max

y
{F(x,y)|y ∈ S(x)}. (6.53)

Furthermore we introduce an optimistic problem related to the aforementioned bilevel program, where
the upper-level objective function is the negative of that of the initial problem:

min
x
{ϕop(x)|G(x)≥ 0} with ϕop(x) := min

y
{−F(x,y)|y ∈ S(x)}. (6.54)

In the next result we show that the optimality conditions of the pessimistic problem (6.53) can be obtained
from those of (6.54) and vice-versa.

Proposition 6.2.9 (optimality conditions for pessimistic problem via an optimistic problem). Let x̄ be an
upper-level regular (3.72) local optimal solution problem (6.54), where the lower-level problem (1.3) is
convex and the Slater CQ holds at x̄. Furthermore, suppose that Sh

op (6.28) is inner semicompact at x̄.
Then, the following assertions hold:

(i) If (Ac
1) and (Ac

2) hold at (x̄,y,u), for all (y,u) ∈ Sh
op(x̄). Then, x̄ is Pp-C-stationary.

(ii) If (Ac
1), (Ac

2) and (As
1) hold at (x̄,y,u), for all (y,u) ∈ Sh

op(x̄). Then, x̄ is Pp-S-stationary.

Proof. For (i), note that under the assumptions of the theorem, it follows from Theorem 5.1.3 (ii) that
there exist (ȳ, ū)∈ Sh

op(x̄) and (α,β ,γ)∈Rk+p+m such that relationships (3.16), (3.25) and (3.29) together
with the following conditions are satisfied:

−∇xF(x̄, ȳ)−
k

∑
j=1

α j∇G j(x̄)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0,

−∇yF(x̄, ȳ)+
p

∑
i=1

βi∇xgi(x̄, ȳ)+
m

∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0.

Multiplying the two lines of the latter system by −1 and hence changing the signs of the multiplies β

and γ , we have the Pp-C-stationarity conditions. Note that (ii) follows analogously.

The power of this result is that it allows us to get the C- and S-stationarity conditions of the pessimistic
problem of Theorems 6.2.5 and 6.2.7, under much weaker assumptions. To understand this first observe
that only the inner semicompactness of Sh

op is needed here. Secondly assumption (Ac
2) can be dropped, cf.

Remark 5.2.5 for related discussion. More clarifications on the latter point are given in the next section.

6.3 Upper subdi�erential conditions for pessimistic programs

The Lipschitz continuity of the two-level value function ϕp (1.8) has been crucial in deriving the nec-
essary optimality conditions in the previous sections of the current chapter. Most often it was obtained
via the combination of (An

1 ) and (An
2 ) (with n = v, m, c). If we drop (An

2 ), we may lost the Lipschitz
continuity, cf. Remark 5.2.5. We might then end up just with the upper semicontinuity of ϕp, which
is achieved only under the inner semicompactness of Sop (6.3) or Sh

op (5.5), cf. Theorem 4.0.1 for the
related general framework. Hence, we would be out of the scope of Theorem 2.2.1 (ii) (used in Sections
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6.1 and 6.2), where we absolutely need ϕp to be lower semicontinuous. To deal with such a case, we will
consider the notion of upper subdifferential necessary optimality introduced by Mordukhovich [84] (see
Theorem 2.2.1 (i) for the definition), where we only need |ϕp(x̄)| < ∞. Before stating the main result
of this section, it is worth mentioning that we do not face the above difficulty while investigating neces-
sary optimality conditions for the optimistic bilevel optimization problem (Po), as ϕo is automatically lsc
under the inner semicompactness of the solution set-valued mapping So (5.2) or Sh

o (5.6). Hence assump-
tion (An

1 ) may be enough to derive the counterparts of the results of Sections 6.1–6.2 for the optimistic
bilevel programming problem (Po), cf. Section 5.2 and comments therein. In the next result, we provide
a detailed version of the upper subdifferential necessary optimality conditions for the pessimistic bilevel
programming problem (Pp) from (1.8). For the convenience of the reader, recall that the notion of local
upper Lipschtzian selection imposed here is defined in Subsection 2.1.4, see (2.35).

Theorem 6.3.1 (S-type upper subdifferential optimality conditions for the pessimistic bilevel program).
Let x̄ be an upper-level regular (3.72) local optimal solution for (Pp), where the lower-level problem (1.3)
is convex and the Slater CQ (3.6) holds at x̄. Assume that Sh

op : domSh ⇒ Rm+p admits a local upper
Lipschtzian selection at (x̄, ȳ, ū). Then we have:

∀(β ,γ) ∈ Rm+p satisfying (3.24)− (3.25) and (6.52),
∃α ∈ Rk verifying (3.16) such that (3.23) holds true.

(6.55)

Proof. Since |ϕp(x̄)| < ∞ (given that Sh
op(x̄) 6= /0 by assumption), it follows from Theorem 2.2.1 (i) that

the following upper subdifferential optimality condition is satisfied:

−∂̂
+

ϕp(x̄)⊆ N̂X(x̄). (6.56)

By the definition of the upper subdifferential, we have

∂̂
+

ϕp(x̄) =−∂̂ (−ϕp)(x̄) =−∂̂ϕop(x̄). (6.57)

Inserting (6.57) in (6.56) we have the following inclusion

∂̂ϕop(x̄)⊆ NX(x̄). (6.58)

Since −F is Fréchet differentiable and Sh
op admits a local upper Lipschitz selection at (x̄, ȳ, ū), it follows

from [92, Theorem 2] that

∂̂ϕop(x̄) =−∇xF(x̄, ȳ)+ D̂∗Sh(x̄, ȳ, ū)(−∇yF(x̄, ȳ),0). (6.59)

Now recall that Sh can be reformulated as Sh(x) := {(y,u)|ψ(x,y,u) ∈ {0}×Π} with Π in (3.95), while
ψ(x,y,u) := [L (x,y,u), (u,−g(x,y))]. Hence, by [89, Corollary 1.15], we have the following lower
estimate of the Fréchet normal cone to the graph of Sh

∇ψ(x̄, ȳ, ū)>N̂{0}×Π(ψ(x̄, ȳ, ū))⊆ N̂gphSh(x̄, ȳ, ū), (6.60)

while taking into account that ψ is Fréchet differentiable at (x̄, ȳ, ū). Clearly, we have from the definition
of D̂∗Sh (see (2.25)) that

D̂∗Sh(x̄, ȳ, ū)(−∇yF(x̄, ȳ),0)⊇
{

∑
m
l=1 γl∇xLl(x̄, ȳ, ū)−∑

p
i=1 βi∇xgi(x̄, ȳ)

∣∣
γ ∈ Rm, (−∇yg(x̄, ȳ)γ,β ) ∈ N̂Π(ū,−g(x̄, ȳ)),

∑
m
l=1 γl∇yLl(x̄, ȳ, ū)−∑

p
i=1 βi∇ygi(x̄, ȳ)−∇yF(x̄, ȳ) = 0

}
.

(6.61)

Further note that from the expression of the Fréchet normal cone to Π, see e.g. [123], we have

N̂Π(ū,−g(x̄, ȳ)) =
{
(u,v)

∣∣∣∣ uη = 0,vν = 0,
∀i ∈ θ ,ui ≤ 0∧ vi ≤ 0

}
. (6.62)

Obviously, combining (6.58)–(6.59) and (6.61)–(6.62), we have the result.
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One can easily observe that the S-type upper subdifferential optimality conditions in (6.55) imply the
S-type lower-ones in Theorem 6.2.7. To conclude this section we consider a special case of the so-
called simple bilevel programming problem [23] and derive upper subdifferential necessary optimality
conditions for its pessimistic version

min
x∈X

ϕp(x) := max
y∈S

F(x,y) with S := argmin{ f (y)|g(y)≤ 0}. (6.63)

To simplify the presentation of the result we set Sn+1 := S× . . .×S︸ ︷︷ ︸
n+1−times

.

Theorem 6.3.2 (upper subdifferential optimality conditions in pessimistic simple bilevel programming).
Let x̄ be an upper-level regular (3.72) local optimal solution of problem (6.63), where the function −F is
convex in (x,y) and the solution set S in (6.63) is convex and compact. Then we have:

∀y := (ys)
n+1
s=1 ∈ Sn+1, ∀µ := (µs)

n+1
s=1 ∈ Rn+1

+ with ∑
n+1
s=1 µs = 1,

∃α ∈ Rk satisfying (3.16) such that the following holds:

∑
n+1
s=1 µs∇xF(x̄,ys)+∑

k
j=1 α j∇G j(x̄) = 0.

Proof. S being compact and −F continuously differentiable, it follows from Danskin’s Theorem (see
e.g. [129, Proposition 2.1]) that the value function

ϕop(x) := min{−F(x,y)|y ∈ S}

is locally Lipschitz continuous and its Clarke/convexified subdifferential is obtained as

∂̄ϕop(x̄) = co{−∇xF(x̄,y)|y ∈ S}
:=

{
−∑

n+1
s=1 µs∇xF(x̄,ys)|∑n+1

s=1 µs = 1,µs ≥ 0, ys ∈ S,s = 1, . . . ,n+1
}
.

(6.64)

On the other hand, the convexity of the set S and the function −F in (x,y) imply that ϕop is a lower
regular function, and hence we have

∂̂ϕop(x̄) = ∂ϕop(x̄) = ∂̄ϕop(x̄). (6.65)

Combining (6.58), (6.64) and (6.65), completes the proof of the theorem.
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7 Applications of bilevel programming in

transportation

Bilevel programming has been used to model various issues in transportation. Among the most popular
ones are the bilevel road pricing problem (also known as the toll optimization problem [72]), the O-D-
matrix adjustment problem and the network design problem. Important contributions to toll optimization
have been made by Labbé, Marcotte and Savard, see e.g. [8, 38, 53, 72] for some of their publications with
co-authors. The models they usually consider are tailored to situations where there is no congestion in the
network. Thus the objective function of the traffic assignment problem, which represents the follower’s
problem here, is linear in terms of link flows. In the above mentioned papers, the KKT reformulation of
the bilevel road pricing problem is considered, and the resulting problem is converted into a mixed-integer
programming problem for which various algorithms have been proposed.

However, there are also great contributions to toll optimization by Yang et al. [57, 117, 118, 119] and
many others, where congestion is taken into account, i.e. with the traffic assignment problem’s objective
function having a certain nonlinear structure. The technique has usually been based on sensitivity analysis
of the solution mapping of the lower-level problem while applying the implicit function approach (see
(1.6)) for a one-level reformulation. The aforementioned approaches for the toll problem have also been
applied to the network design [14, 69, 79] and O-D matrix adjustment [11, 17, 96] problems. It should
be mentioned that the major difference between these three problems resides in the structure of the the
traffic assignment problem’s objective function and the role played by the road authority’s strategy vector
corresponding to the toll in the road pricing problem. In the O-D adjustment problem, the latter vector
(upper-level variable) is the demand vector while it denotes the capacity enhancement for the network
design problem. Furthermore, in the case of the O-D adjustment problem, the demand represents a
perturbation parameter for the set of feasible route flows, whereas mathematically, the network design and
road pricing problems have the same structure in the sense that the lower-level problem is parameterized
only in the route users total cost function.

A major draw back of the KKT reformulation usually considered by Labbé et al. [53, 8, 72, 38] is that
the link between the resulting KKT reformulation (see (3.8) for a general problem) and the initial problem
is unbalanced, in the sense that a local solution of the latter problem may not correspond to a local solution
of the former one, cf. Section 3.1.1. Considering that we are dealing with nonconvex problems, this is
an important issue in a solution process. As far as the approach by Yang et al. [57, 117, 119, 118] is
concerned, note that the assumptions often made to ensure the differentiability of the traffic assignment
solution function are too strong and can not be satisfied, for example, when dealing with a network where
there is no congestion. Moreover, the sensitivity analysis cannot be applied to practical problems like the
road accident reduction problem (to be discussed in the next section), which can be modeled as a special
case of the road pricing problem. The latter is justified in the study by Netter [94], where it is showed
that it is not possible to have a unique Wardrop equilibrium in a network with more than one category of
road users.

To circumvent these difficulties, we suggest in this chapter to apply the LLVF reformulation (3.3)
as it is completely equivalent (locally and globally) to the initial problem without any condition. In
fact note that in the literature, the classical/auxiliary problem (P) has usually been the working model
for the above mentioned transportation problems. Thus, we perpetuate this tradition here. However, in
view of Chapters 5 and 6, it would be a simple exercise for the interested reader to deduce the results
corresponding to the original optimistic problem (Po) and the pessimistic problem (Pp), respectively.
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Let us now remind that one of the things that called our attention is that very little has been done in
the direction of optimality conditions for the transportation problems mentioned above. The only work
that we found on this question is in the PhD thesis of Chen [11], where Fritz-John’s type necessary
optimality conditions were suggested for the demand adjustment problem. Part of the work in [11] was
later published in [12]. In this chapter we suggest an improvement of the results by Chen and Florian
by providing KKT-type conditions under even weaker assumptions on the traffic assignment problem.
Before, we first suggest KKT conditions for the toll optimization problem in the next section. The
results that we summarize in this chapter were first obtained in the papers [35, 36], were more details are
provided.

To conclude the current section, we present the traffic assignment problem. More details on the latter
problem can be found in the seminal works by Wardrop [116] and Beckman et al. [6]. See also the book
by Patrisson [102] and references therein for further developments on the topic.

We consider a transportation network G = (N ,A ), where N and A denote the set of nodes and
directed links (arcs), respectively. Let W ⊆N 2 denote the set of origin-destination (O-D) pairs. Each
O-D pair w∈W is connected by a set of routes (paths) Pw, each member of which is a set of sequentially
connected links. We denote by P =

⋃
w∈W Pw the set of all routes of the network and by n = |A |,

l = |W | and m = |P|, the cardinalities of A , W and P , respectively. Let the matrix (Λ = [Λwp])∈Rl×m

denote the O-D-route incidence matrix in which Λwp = 1 if route p ∈Pw and Λwp = 0 otherwise, and
the matrix (∆ = [∆ap]) ∈ Rn×m denotes the arc-route incidence matrix with ∆ap = 1 if arc a is in route p
and ∆ap = 0 otherwise. The network is assumed to be strongly connected, that is, at least one route joins
each O-D pair.

We also consider the column vectors (d = [dw]) ∈ Rl , (q = [qp]) ∈ Rm
+ and (v = [va]) ∈ Rn to denote

the travel demand, the route flow and arc flow, respectively. The column vectors (c = [cp]) ∈ Rm
+ and

(τ = [τa]) ∈ Rn denote the route capacity and arc toll, respectively. A route flow q is feasible if it does
not exceed the capacity and satisfies the O-D demand constraint Λq = d. Let us denote by Q the set of
such flows, then

Q = {q ∈ Rm
+| q≤ c, Λq = d}. (7.1)

A link flow v is feasible if there exists a feasible route flow q such that the flow conservation constraint
∆q = v, is satisfied. Hence,

V = {v ∈ Rn| ∃q ∈ Q, ∆q = v} (7.2)

denotes the set of feasible link flows. We let the function t from Rn×Rn to Rn denote the route cost, that
is for each a ∈ A , the component ta(τ,v) of the vector t(τ,v) gives the traffic cost on the arc a, under
the flow-toll couple (τ,v). We assume that the route cost is additive, thus the components of c(τ,v) =
∆>t(τ,v) give the cost on each route p ∈P . Finally, we introduce the vector ϑ(τ,v) = [ϑw(τ,v)] ∈ Rl

of minimum cost between each O-D pair w ∈W , that is ϑw(τ,v) = minp∈Pw cp(τ,v).
Wardrop’s user equilibrium principle [116] states that for every O-D pair w ∈W , the travel cost of the

routes utilized are equal and minimal for each individual user, that is for each w ∈ W and p ∈Pw, we
have {

cp(τ,v) = ϑw(τ,v) if qp > 0
cp(τ,v)≥ ϑw(τ,v) if qp = 0

(7.3)

for any fixed toll pattern τ ∈ Γ. It follows from Beckmann et al. [6] that for every fixed toll pattern τ ∈ Γ,
the Wardrop’s user equilibrium problem (7.3) is equivalent to the parametric optimization problem

min
v∈V

f (τ,v) := ∑
a∈A

∫ va

0
ta(τ,s)ds (7.4)

provided that for each link a ∈ A , the link cost takes the form ta(τ,va); that is, it does not depend on
the flow on the other links. In other words, the link costs are separable with respect to the link flows. In
addition, they should also be continuous and positive. These assumptions will be maintained for the rest
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of the chapter such that for each toll pattern τ , Wardrop’s user equilibrium arc flow will be defined as the
solution of the optimization problem (7.4) also called the traffic assignment problem.

To close this section, it is important to mention that in this chapter, the expression of the total road cost
f in (7.4) is simply illustrative. In fact when a network is congested, many expression for the total cost
exist in the literature; we refer the interested reader to the book by Patriksson [102] for further details.
In what follows, we rather assume very general expressions of f defining a continuously differentiable
functions. However, the results are applicable to any Lipschitz continuous function.

7.1 Bilevel road pricing problem

We consider a road authority who intends to improve the circulation on the network G described above.
He/she chooses road pricing as a method to modify the behavior of the road users, by setting tolls on
some links of the network to discourage the use of the tolled links in favor of some perhaps abandoned
of less used ones. The bilevel formulation of this problem enables the road authority to decide while
considering the reactions of the road users. If we assume that for each toll pattern τ , the road users
choose their origin-destination pairs in a way that favors the road authority, then the problem to be solved
by the authority is the so-called optimistic bilevel problem to

min
τ,v
{F(τ,v)| τ ∈ Γ, v ∈ S(τ)}, (7.5)

where F(τ,v) is the disutility function of the road authority who is also called the leader, Γ is a closed
set representing the set of feasible tolls, and for any given toll τ ∈ Γ, S(τ) denotes the set of optimal
link flows for the collection of all the road users also called the follower. In other words, S(τ) is the
solution set of the traffic assignment problem (7.4) under the toll pattern τ . For simplification in the
presentation of the model, we first assume that all the links are tolled (we can have τa = 0 for some link
a ∈A ). Below, we will discuss a possible way to introduce some fairness in the model. Obviously the
model in (7.5) corresponds to the classical optimistic problem (P) discussed in the previous chapters,
cf. in particular to Chapter 3. But as mentioned in the introduction of this chapter we will use here the
standard terminology and left the translation of the above theory to the appropriate original optimistic
and pessimistic models to the interested reader.

As discussed in [37], the model in (7.5) can be altered to tackle other hierarchical problems like the
reduction of road accidents in some developing countries. The modification consist of separating the
road users in two categories: the heavy goods vehicles and the rest of the users. Hence, only the heavy
goods vehicles may be charged a toll equivalent to the level of risk to which they expose the other road
users, by using the corresponding link. In the same way, the problem of reducing the level of pollution
caused by heavy goods vehicles on some links of a network can be addressed. Many other economical or
traffic improvements goals can be achieved by road pricing, see the aforementioned literature for further
discussions.

A major deciding factor is the leader or road authority’s objective function. Various expressions of
F(τ,v) have been considered in the literature, including that of minimizing the total travel time experi-
enced by all vehicles

F(τ,v) = ∑
a∈A

vata(τa,va). (7.6)

The total revenue arising from toll charges can also be maximized, hence the authority’s cost function
takes the form

F(τ,v) = ∑
a∈A

τava. (7.7)

A combination of objectives (7.6) and (7.7) is also possible through a weighted sum or the maximization
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of the ratio of the total revenue to the total cost, that is the function:

F(τ,v) = ∑
a∈A

τava

/
∑

a∈A
vata(τa,va). (7.8)

In view of the structures of the upper-level objective functions in (7.6)–(7.8), we will rather focus our
attention here on the structure of the lower-level problem, given that it is not a problem computing the
derivatives of the above functions. However it is simply assumed that this function is continuously
differentiable. As for the set of feasible tolls, it usually has the following form

Γ := {τ ∈ Rn|ς ≤ τ ≤ κ}, (7.9)

where ς ,κ ∈ Rn represent the minimum and the maximum tolls, respectively. To proceed with our
analysis, let us denote by

A ς := {a ∈A |τ̄a = ςa}

the set of all the links of the network having the minimum toll. We remind that since the aim of the toll
setting may be to encourage road users to utilize some abandoned or less utilized routes, then we may
have ςa = 0, for some a ∈A . Hence to correct the unfairness in our model, we may assume that

/0 6= A o := {a ∈A | τ̄a = ςa = 0} ⊆A ς ;

thus, allowing some links to be toll-free. We further define the set

A κ := {a ∈A | τ̄a = κa}

of links with maximum tolls. It is worth mentioning that the restriction that the tolls should not exceed
some certain amount is of great importance for social considerations since the road users and the com-
munity in general should not have the feeling that the road authority just intends to make as much money
as possible. Finally, let A γ := {a ∈ A |ςa < τ̄a < κa}; then, A ς ,A κ and A γ form a partition of A .
Thus we have A = A ς ∪A κ ∪A γ .

To make the further explanations more clear, we make the following technical assumption: We assume
that A is an ordered set; hence, each link a ∈ A is associated with an index |a| ∈ N and we define the
n-dimensional vector

ea := (0, . . . ,0,1,0, . . . ,0)>, (7.10)

where 1 is at position |a|, in order to symbolize the utilization of the corresponding link by a road user.
Similarly to A , we also assume that P is an ordered set such that for a route r ∈P , we associate an

index |r| ∈ N and we define the m-dimensional vector er as in (7.10). Similarly, we also consider the set
of unused routes of the network (resp. routes used at their full capacity)

Po := {r ∈P|qr = 0} (resp. Pc := {r ∈P|qr = cr}). (7.11)

Then P can be partitioned into P0,Pc and Pu, where Pu is the set of routes used but which are not
at full capacity. Thus, P = Po∪Pc∪Pu. Also of importance in the sequel is the collection [Λw]w∈W
of rows of the O-D-route incidence matrix Λ.

Now recall that we only focus here on the following LLVF reformulation of problem (7.5)

min
τ,v
{F(τ,v)| τ ∈ Γ, v ∈V, f (τ,v)≤ ϕ(τ)}, (7.12)

where the optimal value function ϕ of the traffic assignment problem (7.4) is defined by

ϕ(τ) := min{ f (τ,v)| v ∈V}. (7.13)

As usual, it is assumed that the solution set-valued mapping of the traffic assignment problem is nonempty,
i.e. S(τ) := argmin { f (τ,v)| v ∈V} 6= /0 for all τ ∈ Γ, such that (7.13) is well-defined.
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Theorem 7.1.1 (normal cone to the set of feasible link flows). Let v̄ ∈V , then for all q̄ ∈ Rm with q̄ ∈ Q
and ∆q̄ = v̄, we have

NV (v̄) =
{

u ∈ Rn
∣∣∣ (λ o

r )r∈Po ≥ 0, (λ c
r )r∈Pc ≥ 0,

∆>u = ∑
r∈Pc

λ c
r er− ∑

r∈Po
λ o

r er + ∑
w∈W

λwΛ>w

}
.

(7.14)

Proof. Recall that V = ∆Q. Thus by Theorem 2.2.7, we have

NQ(q̄) =
{

∑
r∈Pc

λ
c
r er− ∑

r∈Po

λ
o
r er + ∑

w∈W
λwΛ

>
w

∣∣ (λ o
r )r∈Po ≥ 0, (λ c

r )r∈Pc ≥ 0
}
. (7.15)

Applying [109, Theorem 6.43], while considering the fact that the mapping q→ ∆q is linear and the set
Q is convex, it follows that

NV (v̄) = {u ∈ Rn| ∆>u ∈ NQ(q̄)}, ∀q̄ ∈ Rm : q̄ ∈ Q, ∆q̄ = v̄. (7.16)

Inserting (7.15) in (7.16), the result follows.

Theorem 7.1.2 (sensitivity analysis of the traffic assignment value function with no perturbation on the
feasible link flows). The optimal value function ϕ (7.13) is Lipschitz continuous around any τ̄ ∈ Γ, and
its basic subdifferential is estimated as

∂ϕ(τ̄)⊆ {∇τ f (τ̄, v̄)| v̄ ∈ S(τ̄)}. (7.17)

Proof. We have Q ⊆ |c|B, where B is the unit ball of Rm and |c| := max{ci|i = 1, . . . ,m} (c is the route
capacity vector). Hence V := ∆Q⊆ ∆(|c|B) is a closed and bounded set given that q→ ∆q is a continuous
function and Q is also a closed set. In addition to the continuous differentiability of f , inclusion (7.17)
follows from Theorem 4.0.1 (ii), while noting that D∗V (d̄, v̄)(v) = 0 for all v̄ ∈ V (d̄) := V and v̄ ∈ Rn.
Thanks to the latter expression of the coderivative of the constant mapping V , we have from (2.30) that
ϕ is Lipschitz continuous around τ̄ .

Theorem 7.1.3 (necessary optimality conditions for the bilevel road pricing problem in a congested
network). Let (τ̄, v̄) be a local optimal solution to problem (7.12), which is assumed to be partially calm
at (τ̄, v̄). Then there exist λ > 0, (λ ς ,λ κ ,λ o,λ c,λ l), q̄ ∈Rm, vs ∈ S(τ̄) and us with s = 1, . . . ,n+1 such
that we have:

∇τF(τ̄, v̄)+λ∇τ f (τ̄, v̄)−λ

n+1

∑
s=1

us∇τ f (τ̄,vs) = ∑
a∈A ς

λ
ς
a ea− ∑

a∈A κ

λ
κ
a ea, (7.18)

∆
>(

∇vF(τ̄, v̄)+λ∇v f (τ̄, v̄)
)
= ∑

r∈Po

λ
o
r er− ∑

r∈Pc

λ
c
r er− ∑

w∈W
λwΛ

>
w , (7.19)

0≤ q̄≤ c, Λq̄ = d, ∆q̄ = v̄, (7.20)

∀s = 1, . . . ,n+1, us ≥ 0,
n+1

∑
s=1

us = 1, (7.21)

λ
ς = (λ ς

a )≥ 0, λ
κ = (λ κ

a )≥ 0, λ
o = (λ o

r )≥ 0, λ
c = (λ c

r )≥ 0, λ
l = (λw). (7.22)

If in addition S(τ̄) = {v̄}, then there exist λ > 0, (λ ς ,λ κ ,λ o,λ c,λ l), and q̄ ∈Rm such that relationships
(7.19)-(7.22), together with the following condition are satisfied:

∇τF(τ̄, v̄) = ∑
a∈A ς

λ
ς
a ea− ∑

a∈A κ

λ
κ
a ea. (7.23)
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Proof. Under the partial calmness condition, it follows from Theorem 3.2.2 and Proposition 2.2.5, that
there exists λ > 0 such that

0 ∈ ∇F(τ̄, v̄)+λ (∇ f (τ̄, v̄)+∂ (−ϕ)(τ̄)×0)+NΓ×V (τ̄, v̄). (7.24)

The result follows from (7.17) (while using Carathéodory’s Theorem to deduce ∂ (−ϕ)(τ̄)) and equality
(7.14), while noting that NV×Γ(τ̄, v̄) = NV (v̄)×NΓ(τ̄) with

NΓ(τ̄) =
{
− ∑

a∈A ς

λ
ς
a ea + ∑

a∈A κ

λ
κ
a ea
∣∣(λ ς

a )a∈A ς ≥ 0,(λ κ
a )a∈A κ ≥ 0

}
, (7.25)

which is obtained by applying Theorem 2.2.7. Obviously, if S(τ̄) = {v̄}, we have from Theorem 7.1.2
that co∂ϕ(τ̄) = {∇τ f (τ̄, v̄)}, which generates condition (7.23).

It should be clear that the condition S(τ̄) = {v̄} imposed in this Corollary is far away from the usual
strong assumptions made in the sensitivity analysis approaches mentioned in the Introduction. In fact, in
the latter cases, it is usually required that the traffic assignment problem admits a unique optimal solution
in a certain neighborhood. In particular, the strict monotonicity of the link costs ta(a ∈A ), often needed
is not satisfied in the framework of Theorem 7.1.4 below.

For the next result, we assume that the cost function of the traffic assignment problem is bilinear, i.e.
f (τ,v) = v>τ , which corresponds to the ideal case, where there is no congestion in the network. This
framework has been considered by many authors; in particular by Labbé et al. [53, 8, 72, 38].

Theorem 7.1.4 (necessary optimality conditions for the bilevel road pricing problem in the case of no
congestion). Let (τ̄, v̄) be an optimal solution to problem (7.12), where f (τ,v) = v>τ . Then there exist
ṽ ∈ S(τ̄), λ > 0, (λ ς ,λ κ ,λ o,λ c,λ l) and q̄ ∈ Rm such that (7.20) and (7.22), together with the following
conditions are satisfied:

∇τF(τ̄, v̄)+λ (v̄− ṽ) = ∑
a∈A ς

λ
ς
a ea− ∑

a∈A κ

λ
κ
a ea,

∆
>(

∇vF(τ̄, v̄)+λ τ̄
)
= ∑

r∈Po

λ
o
r er− ∑

r∈Pc

λ
c
r er− ∑

w∈W
λwΛ

>
w .

Proof. We recall from Theorem 3.2.6 that with f (τ,v) = v>τ , problem (7.12) is partially calm at (τ̄, v̄).
Hence, proceeding as in the proof of Theorem 7.1.3, it remains to observe that inlcusion (7.17) implies
∂ϕ(τ̄)⊆ S(τ̄) = coS(τ̄), given that S(τ̄) is convex in this case.

7.2 Estimation of the O-D matrix

The (fixed) demand vector d needed in the road pricing problem and particularly in the traffic assignment
problem (7.4) is a crucial datum given that a good decision process highly depends on how accurate it is
estimated. The origin-destination (O-D) matrix estimation or O-D demand adjustment problem (DAP)
is important not only for the road pricing problem, but also for many other decision-making frameworks
of transportation planing. The modeling of this problem has evolved over the years, see [1, 11, 12] for
extensive reviews. The bilevel formulation was pioneered by Fisk [47]. Since then, many researchers
have adopted this model which usually takes the classical optimistic form:

min
d,v
{F(d,v)| d ∈ D, v ∈ S(d)}, (7.26)

where D⊆ Rl is a closed set and S(d) is the solution set of the traffic assignment problem

min
v
{ f (d,v)| v ∈V (d)} (7.27)
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parameterized by d, also called O-D demand and representing the O-D matrix organized as a vector. In
the light of (7.1)–(7.2), the set-valued mappings

V (d) := {v ∈ Rn| ∃q ∈ Q(d), ∆q = v} and Q(d) := {q ∈ Rm
+| q≤ c, Λq = d} (7.28)

denote the set of feasible link flows and feasible route flows, respectively, for a given demand vector d.
In the DAP, the lower-level objective function is often chosen as

f (d,v) := ∑
a∈A

∫ va

0
ta(s)ds. (7.29)

Clearly, this function is convex in (d,v). Thus having in mind the discussion in the introduction of this
chapter, we still insist on working with general expressions of the total route cost functions. However,
with this observation on f in (7.29), it is clear that requiring the full convexity of this function in a general
model of DAP in an affordable assumption. Hence, we assume throughout this section that f in (7.27) is a
general function of f which is convex. As before, we refer the reader e.g. to [102] for further discussions
on this issue. As for the upper-level objective function F in (7.26), it is usually has the form

F(d,v) := γ1F1(d, d̂)+ γ2F2(v, v̂),

where d̂ represents the target O-D matrix that may be obtained from sample surveys, and v̂ denotes
the vector of flows observed on some links of the network. The function F1(d, d̂) represents the error
measurement between the target O-D matrix d̂ and the estimated matrix d, while F2(v, v̂) denotes the
error measurement between the observed link flow v̂ and the estimated flow v. The parameters γ1 and γ2
represent the uncertainty in the information contained in d̂ and v̂, respectively. In the line of Migdalas
[80], the set D can be considered analogously to Γ (7.9). To remain closer to the framework of Chen
and Florian [12], we consider D := {d ∈ Rm| d ≥ 0}. However the results obtained here can easily be
extended to a more general expression in view of the previous chapters.

As mentioned in the introduction of the chapter, the sensitivity analysis of the solution of the traffic as-
signment problem has also been used to tackle the O-D matrix estimation problem. Recall the references
[1, 11, 12, 17, 96] for various methodological approaches in solving the problem. Problem (7.26) can be
reformulated using the following LLVF reformulation

min
d,v
{F(d,v)| d ∈ D, v ∈V (d), f (d,v)−ϕ(d)≤ 0} (7.30)

while assuming that S(d) := argmin
v
{ f (d,v)| v∈V (d)} 6= /0 for all d ∈D; thus the optimal value function

of the traffic assignment problem (7.27) ϕ is well-defined by

ϕ(d) := min
v
{ f (d,v)| v ∈V (d)}. (7.31)

Chen and Florian [12] also considered this reformulation, however in the following simplified form

min
d,v
{F(d,v)| d,q≥ 0, Λq = d, f (d,v)−ϕ(d)≤ 0} (7.32)

while considering the constraint v = ∆q as exogenous. Fritz-John’s type optimality conditions were then
derived for (7.32). Our aim here is to suggest KKT-type optimality conditions for the more general
problem with the flow conservation constraint v = ∆q being fully part of the feasible set of the traffic
assignment problem (7.27). To proceed, the following set of route flows

H (d̄, v̄) := {q ∈ Rm| ∆q = v̄, −d̄ +Λq = 0, 0≤ q≤ c} (7.33)

obtained for a given couple (d̄, v̄) of demand-link flow, will play an important role. Next, we provide a
sensitivity analysis of the mapping V (7.28). Here, the vectors er and Λw are defined as in the previous
section, whereas [ew]w∈W denotes the collection of rows of the identity matrix of Rl×l .
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Theorem 7.2.1 (sensitivity analysis of the feasible link flows mapping). Consider (d̄, v̄) ∈ gphV and
v ∈ Rn, then the coderivative of the mapping V (7.28) can be estimated as:

D∗V (d̄, v̄)(v)⊆
⋃

q̄∈H (d̄,v̄)

{
− ∑

w∈W
λwew

∣∣ (λw)w∈W ∈ Rl, (λ o
r )r∈P0(q̄), (λ

c
r )r∈Pc(q̄) ≥ 0,

∆>v− ∑
r∈Pc(q̄)

λ c
r er + ∑

r∈Po(q̄)
λ o

r er− ∑
w∈W

λwΛ>w = 0
}
.

(7.34)

Moreover, V is Lipschitz-like around (d̄, v̄), provided the following CQ holds at (d̄, v̄):

∑
r∈Pc(q̄)

λ c
r er− ∑

r∈Po(q̄)
λ o

r er + ∑
w∈W

λwΛ>w = 0

(λ o
r )r∈P0(q̄),(λ

c
r )r∈Pc(q̄) ≥ 0
q̄ ∈H (d̄, v̄)

=⇒ [λw = 0, w ∈W ]. (7.35)

Proof. Since Q(d)⊆ |c|B, for all d ∈Rl , where B is the unit ball of Rm and |c| := max{ci|i = 1, . . . ,m} (c
is the route capacity vector), then the set-valued mapping (d,v)⇒ Q(d)∩J−1(v) =H (d,v) is uniformly
bounded around (d̄, v̄). Hence, including the continuous differentiability of the function J, it follows from
chain rule in [109, Exercise 10.39] that:

D∗V (d̄, v̄)(v)⊆
⋃

q̄∈H (d̄,v̄)
D∗Q(d̄, q̄)(−∆>v)

⊆
⋃

q̄∈H (d̄,v̄)
{d ∈ Rl| (d,−∆>v) ∈ NgphQ(d̄, q̄)}.

(7.36)

On the other hand, note that gphQ = {(d,q) ∈ Rl ×Rm| − d +Λq = 0, 0 ≤ q ≤ c}. Thus by Theorem
2.2.7, we have

NgphQ(d,q) =


 − ∑

w∈W
λwew

∑
r∈Pc(q)

λ c
r er− ∑

r∈Po(q)
λ o

r er + ∑
w∈W

λwΛ>w

∣∣∣∣∣∣ (λ o
r )r∈Po(q) ≥ 0,

(λ c
r )r∈Pc(q) ≥ 0

 (7.37)

Obviously, inclusion (7.34) is obtained by inserting the expression of the normal cone to gphQ from
(7.37) in (7.36).
For the Lipschitz-like property of V , observe that from inclusion (7.34), we have

D∗V (d̄, v̄)(0)⊆
⋃

q̄∈H (d̄,v̄)

{
− ∑

w∈W
λwew| ∑

r∈Pc(q̄)
λ c

r er− ∑
r∈Po(q̄)

λ o
r er + ∑

w∈W
λwΛ>w = 0

(λw)w∈W ∈ Rl, (λ o
r )r∈P0(q̄),(λ

c
r )r∈Pc(q̄) ≥ 0

}
.

Hence, since the coderivative is a homogeneous mapping, it follows from the coderivative criterion (2.30)
that condition (7.35) is sufficient for V to be Lipschitz-like around (d̄, v̄).

Example 7 (validity of CQ (7.35)). We consider the problem of Example 1 in the paper of Lu [75],
with a network of four links (n = 4), two O-D pairs (l = 2) and four routes (m = 4). Furthermore,
let the O-D-route incidence matrix (Λ) and the link-route incidence matrix (∆) be defined as in Lu’s
Example, then it follows from [75] that for d̄ = [20,20]> and v̄ = [10,10,10,10]>, one has v̄ ∈V (d̄) and
H (d̄, v̄) = {q̄ = [10,10,10,10]>}. Clearly, all the routes are used. If we set the route capacity vector
to be [10,30,30,10]>, meaning that routes 1 and 4 are used at full capacity, while routes 2 and 3 are
underused, the left hand side of implication (7.35) reduces to

[λ c
1 +λ1, λ1, λ2, λ

c
4 +λ2] = [0,0,0,0], with λ

c
1 ,λ

c
4 ≥ 0.

This obviously implies that λ1 = λ2 = 0. Thus, CQ (7.35) is satisfied at (d̄, v̄).
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Remark 7.2.2 (simplified form of CQ (7.35) when the routes are used but not at full capacity). For a
given demand-link flow couple (d̄, v̄), if we assume that all routes are used but not at full capacity, that is

Pc(q̄) = /0 and Po(q̄) = /0, ∀q̄ ∈H (d̄, v̄),

then CQ (7.35) reduces to the fulfillment of the implication:

∑
w∈W

λwΛ
>
w = 0 =⇒ [λw = 0, w ∈W ].

This amounts to saying that the O-D-route incidence matrix has full rank. This assumption is satisfied
for Λ in the network of the above example.

In the next result on the sensitivity analysis of the value function in (7.31), the following set of La-
grange multipliers tailored to the corresponding traffic assignment problem is needed:

Λ(d̄, q̄) :=
{
(λ l,λ c,λ o)

∣∣∣ λ l = (λw), λ c = (λ c
r )≥ 0, λ o = (λ o

r )≥ 0,

− ∑
r∈Pc(q̄)

λ c
r er + ∑

r∈Po(q̄)
λ o

r er− ∑
w∈W

λwΛ>w = ∆>∇v f (d̄, v̄)
}
.

(7.38)

Theorem 7.2.3 (sensitivity analysis of the traffic assignment value function parameterized by the de-
mand). Let d̄ ∈ D, then the following assertions are satisfied:

(i) An upper bound of the basic subdifferential of ϕ (7.31) at d̄ is obtained as

∂ϕ(d̄)⊆
⋃

v̄∈S(d̄)

⋃
q̄∈H (d̄,v̄)

⋃
(λ l ,λ c,λ o)∈Λ(d̄,q̄)

{
− ∑

w∈W
λwew +∇d f (d̄, v̄)

}
. (7.39)

If for all v̄ ∈ S(d̄), CQ (7.35) holds at (d̄, v̄). Then, ϕ is Lipschitz continuous around d̄.
(ii) Assume that EITHER the total road cost function f is convex in (d,v) OR S is inner semicontinuous

at (d̄, v̄) ∈ gphS, while CQ (7.35) also holds at this point. Then ϕ is Lipschitz continuous around d̄ and

∂ϕ(d̄)⊆
⋃

q̄∈H (d̄,v̄)

⋃
(λ l ,λ c,λ o)∈Λ(d̄,q̄)

{
− ∑

w∈W
λwe>w +∇d f (d̄, v̄)

}
. (7.40)

Proof. We first start by noting that since J is a continuous function, we have Ψ(d)⊆V (d) := J(Q(d))⊆
J(|c|B),∀d ∈Rl , with J(|c|B) bounded. This means that the set-valued mapping Ψ is uniformly bounded,
hence inner semicompact, cf. Section 2. Thus (i) follows from the combination of Theorem 4.0.1 (ii)
and Theorem 7.2.1. Similarly, (ii) is obtained from Theorem 4.0.1 (i) and Theorem 7.2.1. Under the full
convexity of f , note also that gphV is a convex set. Thus, in this case, the basic subdifferential of ϕ in
(7.40) can be derived by proceeding as in the proof of Theorem 3.2.9 (ii).

As already mentioned above, the full convexity assumption on the total road cost function f is auto-
matically satisfied for the expression in (7.29). Thus, we now provide the KKT-type necessary optimality
for the O-D matrix adjustment problem only in the case where the latter condition is fulfilled. In other
frameworks one can easily proceed similarly while using Theorems 7.2.1 and 7.2.3. Also see the papers
[35, 36] for further details.

Theorem 7.2.4 (necessary optimality conditions for the O-D matrix adjustment problem). Let (d̄, v̄) be
a local optimal solution to problem (7.30), where f is convex in (d,v) and D := {d ∈Rl|d ≥ 0}. Assume
that the problem is partially calm at (d̄, v̄). Then there exist λ > 0, q̄, q̃∈Rm, (λ l,λ c,λ o) and (λ̃ l, λ̃ c, λ̃ o)
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such that the following conditions are satisfied:

∇dF(d̄, v̄)− ∑
w∈W

(λw−λλ̃w)e>w ≥ 0,

d̄>
(
∇dF(d̄, v̄)− ∑

w∈W
(λw−λλ̃w)e>w

)
= 0,

∆
>
(

∇vF(d̄, v̄)+λ∇v f (d̄, v̄)
)
= ∑

r∈Po(q̄)
λ

o
r er− ∑

r∈Pc(q̄)
λ

c
r er− ∑

w∈W
λwΛ

>
w ,

∆
>

∇v f (d̄, v̄) =− ∑
r∈Pc(q̃)

λ̃
c
r er + ∑

r∈Po(q̃)
λ̃

o
r er− ∑

w∈W
λ̃wΛ

>
w ,

0≤ q̄≤ c, Λq̄ = d̄, ∆q̄ = v̄,

0≤ q̃≤ c, Λq̃ = d̄, ∆q̃ = ṽ,

λ
l = (λw), λ

c = (λ c
r )≥ 0, λ

o = (λ o
r )≥ 0,

λ̃
l = (λ̃w), λ̃

c = (λ̃ c
r )≥ 0, λ̃

o = (λ̃ o
r )≥ 0.

Proof. Proceeding as in the proof of Theorem 7.1.3, there exists a number λ > 0 such that we have the
condition

0 ∈ ∇F(d̄, v̄)+λ∇ f (d̄, v̄)+λ∂ (−ϕ)(d̄)×{0}+NΨ(0)(d̄, v̄), (7.41)

where the set-valued mapping Ψ describing a perturbation of the joint upper and lower-level feasible sets
is defined by

Ψ(d′,v′) := {(d,v) ∈ D×Rn|(d +d′,v+ v′) ∈ gphV}.

Considering the expression of the lower-level feasible set-valued map V (d) := ∆Q(d), the graph of Ψ is
obtained as:

gphΨ = {(d,v,d′,v′)|∃q : 0≤ q≤ c, d ≥ 0, ∆q = v+ v′, Λq = d +d′}
= Π1,2,3,4{(d,v,d′,v′,q)|0≤ q≤ c, d ≥ 0, ∆q = v+ v′, Λq = d +d′},

where Π1,2,3,4 denotes the canonical projection from Rl ×Rn×Rl ×Rn×Rm to Rl ×Rn×Rl ×Rn.
Clearly, Ψ is a polyhedral set-valued mapping in the sense of Robinson [106]. Thus, Ψ is calm at
(0, d̄, v̄). Thus, by Theorem 2.2.7, we have

NΨ(0)(d̄, v̄)⊆ NgphV (d̄, v̄)+ND×Rn(d̄, v̄).

Inserting this inclusion in (7.41), then the proof is completed by considering the estimate of the subdif-
ferential of ϕ in Theorem 7.2.3 (ii) and the normal cone to gphV resulting from the coderivative of V in
(7.34). Also note that ND(d̄) = {u| u≤ 0, d̄>u = 0}.

In [11, 12], Fritz-John’s type necessary optimality conditions were derived while imposing among
other things that the value function ϕ (7.31) is differentiable. Note that this condition which is obviously
very strong, would not change the outcome of our result above, where we obtain KKT-type conditions
while imposing only the partial calmness, which is a CQ; thus useful for such a purpose. Also recall
that in [11, 12], the value of f is the one in (7.29), thus the convexity assumption in Theorem 7.2.4 is
automatically satisfied. Finally, observe that similarly to Theorem 7.1.4, the partial calmness assumption
is automatical for the O-D matrix adjustment problem in a network with no congestion.
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8 Final comments

In this thesis, we have developed two approaches to derive necessary optimality conditions for the clas-
sical optimistic bilevel program (P). The first one studied in Chapter 3 is based on techniques from
variational analysis which essentially consists of providing constructive representations of the feasible
set in terms of operator constraints. Doing so, we have derived various types of stationarity conditions
depending on the possible reformulations of the lower-level solution set-valued mapping S (1.2) via the
LLVF, KKT and OPEC reformulations. Explicit bounds have also been given for some of the multipliers.

The second approach to derive stationarity conditions for (P) which is mentioned in Section 3.5, see
(3.173), has not been extensively discussed. Note that by inserting the corresponding estimate of the
coderivative of S (1.2) from Theorem 4.1.1 (see Theorem 5.1.2), Theorem 4.1.6 (see Theorem 5.1.3),
Theorem 4.1.8 (see Theorem 5.1.4) and Theorem 5.1.8, one gets the M, C, S, KM and KN-stationarity
conditions, respectively. A complete development of this approach is left as exercise to the interested
reader.

The coderivatives estimates and robust Lipschitz stability results for the mapping S given in Chapters 4
and 5 have been the backbones of the sensitivity analysis of the two-level value function (5.1), which has
led to the necessary optimality conditions of the original optimistic bilevel program in Chapter 5 and to
those of the pessimistic bilevel program in Chapter 6. Therefore, one of the most important conclusions
of this thesis is that the theory on necessary optimality conditions for the bilevel optimization problem
can essentially reduce to the sensitivity analysis of the solution set-valued mapping of the lower-level
problem. For the optimistic models (P) and (Po) an upper estimation of the coderivative of S may be
sufficient, cf. Remark 5.2.5. However, for the pessimistic case we may need the Lipschitz-like property
for S in the case where we wish to obtain lower sudifferential optimality conditions. In any case, the gap
between the KN and KM-stationarity conditions and the M, C and S-stationarity is solely explained by
the structure chosen for the mapping S.

In these concluding comments, it is important to mention the result in Theorem 5.3.2 stating the equiv-
alence between the stationarity conditions of original (Po) and classical (P) optimistic bilevel programs
under a particular setting. Also note the interesting discussions in Subsection 6.2.4 on how to derive
necessary optimality conditions of the pessimistic problem from those of an appropriate problem of the
optimistic-type.

In order to have a clear picture on the links between the stationarity conditions of the bilevel program
(1.1) via its optimistic reformulations ((P) and (Po)) and the pessimistic reformulation (Pp), we have
considered only the setting where all the functions involved are continuously differentiable. In closely
related frameworks, stationarity conditions of these problems are investigated in [26, 28, 132] in the case
of locally Lipschitz continuous functions while also considering the very general operator constraints.
In the latter papers, the LLVF reformulations are discussed. The nonsmooth KKT reformulation will be
considered in a future research.

To complete the work started in this thesis, the following points will also be considered in future
research: (1) Provide sufficient conditions ensuring the inner semicontinuity of the two-level solution
set-valued mappings So (5.2) which are different from the single-valuedness. As for the lower-level
mapping S (1.2), recall that the dual conditions from Chapters 4 and 5 ensuring robust Lipschitz stability
are also sufficient conditions for the inner semicontinuity of this mapping which do not necessary induce
that it is single-valued. (2) Provide characterizations of the partial calmness in bilevel transportation
problems of Chapter 7 in terms of problem data.
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