
Introduction to the
MINIMUM RAINBOW SUBGRAPH problem

By the Faculty of Mathematics and Computer Sciences
of the Technische Universität Bergakademie Freiberg

approved

Thesis

to attain the academic degree of

doctor rerum naturalium
(Dr. rer. nat.)

submitted by Dipl.-Math. Stephan Matos Camacho

born on the 18th November 1980 in Bad Muskau

Assessor: Prof. Dr. rer. nat. Ingo Schiermeyer
Prof. Dr. rer. nat. Hubert Randerath

Date of the award: Freiberg, 13th March 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Bergakademie Freiberg: Qucosa

https://core.ac.uk/display/235261358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

Mathematics and biology - having nothing in common? 6

I. Going for a start 8

1. Introducing haplotyping 9

2. Becoming mathematical 12

II. The MRS problem 15

3. The graph theoretical point of view 16

3.1. The MRS problem . 18

3.2. The MRS problem on special graph classes . 23

4. Trying to be not that bad 26

4.1. Greedy approaches . 26

4.2. The local colour density . 38

4.3. MaxNewColour . 42

5. What is real data telling us? 49

And the work goes on and on 55

Bibliography 59

3

List of Figures

3.1. Example 2.1 . 17

4.1. The graphs G2 and G3 . 30

4.2. a first Greedy star step on a P9 . 31

4.3. Greedy star on a C4 . 31

4.4. LCD1 can work optimal . 41

4

List of Tables

4.1. frequency of using step 2 in "smooth" graphs . 43

4.2. frequency of using step 2 in "non-smooth" graphs 43

4.3. run time complexity for MaxNewColour and its variants 45

4.4. average order of the solutions with MaxNewColour in "smooth" graphs coloured

by KF1 . 46

4.5. average order of the solutions with MaxNewColour in "smooth" graphs coloured

by KF2 . 46

4.6. average order of the solution with MaxNewColour in "non-smooth" graphs coloured

by KF1 . 47

4.7. average order of the solution with MaxNewColour in "non-smooth" graphs coloured

by KF2 . 47

4.8. approximation ratios of MaxNewColour . 48

5.1. minimum number of distinct colours in complete real data graphs 53

5.2. comparison of the discussed algorithms . 56

5

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Dr. Ingo Schiermeyer for his

permanent support and guidance. Without his numerous hints and his feedback this thesis

would not have been achieved.

Furthermore special thanks go to Dr. Anja Kohl for an almost final view on this thesis and my

colleagues for their faith where mine flagged.

Finally I want to thank God for his guidance and all the gifts he gave to me, the ways he opened

and the shelter I found in him.

6

Mathematics and biology - having nothing in

common?

When I started my studies of mathematics I very soon realized, that one of the biggest advantages

of a mathematician is being able to map the real world into a formal language, a set of formulas

or an abstract description. Almost as soon as the first observation I found out, that tackling

problems in this structured and well ordered world is much more interesting and quite often a

lot of more fun. Unfortunately, sometimes the accomplished solution turned out not being very

feasible or of practical relevance. For example, a mathematician working on graph theory would

be able to construct an algorithm to solve the frequency assignment problem exactly, but using

it in the real would take much too long time in contrast to the goal of assuring connections

between two mobile phones in almost no time. Thus, the companies trust on fast heuristics

instead of resource preserving exact solutions.

Nevertheless, graph theory is often motivated by applied problems as the already mentioned

frequency assignment problem, the "Seven Bridges of Königsberg" or the Travelling Salesman

problem. Regrettable, a lot of these problems, some may argue only the interesting ones, turn

out to be only hard solvable, or in terms of computer science, are NP-hard. For example, if we

try to handle the metric version of the Travelling Salesman problem, the best know algorithm,

talking about the approximation ratio, is the one from Nico Christofides ([4]). Unless there are a

lot of new heuristics found in the mean time, no one was able to guarantee a tour shorter than
3
2

of the optimal length. Nonetheless, algorithms were implemented that solve the problem on

a given set of cities up to a constant close to 1, but failing on an arbitrary collection.

The problem this thesis is introducing, the so-called Minimum Rainbow Subgraph problem, is one

of these hard ones, too. Originally it was a biological question ([22]), which was discussed by

List of Tables 7

computer scientists first ([1], [7], [10] or [14]). We translated it into the language of graph theory

and ended with a model, which also covers general graphs: the Minimum Rainbow Subgraph

problem.

This thesis shall be seen as an introduction to the topic and will provide, beside basic definitions

and preliminary observations, first algorithmic attempts to tackle minimum rainbow subgraphs.

Due to its hardness we will mainly discuss heuristics and their performance compared to exact

solutions. In the last chapter some more details on graphs, arisen from biological instances, are

given in order to provide starting points for future work. Maybe these or other special proper-

ties of such graphs can be used to develop algorithms working more efficient and calculating

solutions closer to the minimum on real world instances.

Let’s start with some more information on the biological background in order to disprove the

well-known Theorem of Schaar: "There is no application of (my) graph theory!"

8

Part I.

Going for a start

9

1. Introducing haplotyping

With the completion of the Human Genome Project in 2003 the structure of the human genome

is fully decrypted and known to us. But, unfortunately, almost no two individuals share the same

sequence of nucleotides. 99% of the positions are identical, the rest may differ ([22]). About

90% of these genetic variations, so-called polymorphisms, are Single Nucleotide Polymorphisms

(SNPs), which are a variation in only one site of the human genome. Consequentially, their

importance can hardly be overestimated, and there is a wide field of therapeutic, diagnostic and

forensic applications. Furthermore, since these SNPs can be inherited, there is a good chance

that they play a big role in the pathogenesis of diseases as cancer, cardiovascular disease,

diabetes, psychiatric illnesses, autoimmunity and others. Maybe identifying the positions of SNPs

could lead to improved prevention, diagnosis and treatment of diseases ([16]).

Humans are diploid organisms, i.e., their DNA is organized in pairs of chromosomes. Every

one of these pairs consists of one chromosome copy inherited from the mother, the maternal

one, and another copy inherited from the father, the fraternal one. For a given SNP, we call

an individual homozygous if the two copies do not differ in this position, or heterozygous if they

differ. A haplotype is defined by the values of a set of SNPs on a given chromosome copy, i.e.,

the fraternal or the maternal one. When we refer to a genotype, we will talk about both of the

realisations in the two chromosomes. So, haplotyping is the determination of a set of haplotypes

explaining a given set of genotypes. By explaining a genotype g we mean that there is a pair h1

and h2 of haplotypes giving the required genome, in reference to the given chromosomes. In

short, we will denote it by

g = h1 ⊕ h2.

In the following we consider genomes as a collection of strings, or sequences consisting of entries

1. Introducing haplotyping 10

from the set
{
A,G,C, T

}
. Thereby every letter encodes one of the four possible nucleotides in

the human genome, i.e., adenine, guanine, cytosine and thymine.

Example 1.1. Consider the following pair of chromosomes c1 and c2 with

c1 : taggtccCtatttCccaggcgcCgtatacttcgacgggTctata

c2 : taggtccGtatttAccaggcgcGgtatacttcgacgggTctata.

The corresponding haplotypes are h1 = CCCT and h2 = GAGT . In fact, there is only a variation

in the first, second and third SNP, the forth site is identical in both of the chromosomes.

Remark. Do not get confused by the DNA being itself organised pairwise in the well-known

double helix structure. There adenine is always paired with thymine, and guanine with cytosine.

Think of a pair of strings, where a position in one string always depends on the corresponding

site in the other one. We will only refer to one side of these pairs, i.e., one string of the double

helix. Thus, a SNP is not a discrepancy inside a single pair of a given DNA string, e.g., cytosine

as counterpart of adenine instead of thymine. It is a variance of the whole pair at one position in

the examined DNA string with respect to the referred half, e.g., there is the pair adenine-thymine

instead of thymine-adenine.

If we talk about the general Population Haplotyping problem (PHP), we have a given set G of

genotypes we are trying to explain with a set H of haplotypes, such that for every genotype

g ∈ G there exist two haplotypes h ′ and h ′′ explaining g, i.e., g = h ′ ⊕ h ′′. There are several

approaches to solve the PHP. We will present three very common ones, taken from [22]:

Perfect Phylogeny In this approach we are looking for a so-called perfect phylogeny solution,

in other words, our obtained haplotype set H must fit in a tree T , such that

(i) the haplotypes are the leaves of T

(ii) every SNP s is represented by an edge es in T

(iii) deleting an edge es leads to a partition of H, where haplotypes of the same partition set

have the same nucleotides at position s.

Solving PHP under this condition can be done in polynomial time (see [1], [7]).

1. Introducing haplotyping 11

Clark’s rule This greedy rule starts from a minimal initial set of haplotypes, e.g., genotypes with

no 2-entries, and tries to resolve as many as possible genotypes. It introduces new haplotypes

only when needed ([5]). Gusfield showed that this approach is APX-hard and formulated an

Integer Programming problem for its solution ([9], [10]).

Pure Parsimony Here the foundation is, that we try to solve our problem with as few as possible

elements, meaning we are trying to determine a set H of haplotypes of minimum cardinality to

explain the given set G of genotypes. Gusfield studied this problem ([11]), too, and adapted an

Integer Programming formulation as a practical solution. Nevertheless, this problem is NP-hard,

as shown by Hubbel ([15]).

There are a lot of other models and variations, too. Due to the intention of this paper we will

therefore refer to the nice overview provided by Bonizzoni et al. ([3]).

The main approach in this thesis is pure parsimony.

12

2. Becoming mathematical

Fortunately, for most of the known SNPs we only have two possible nucleotides, called alleles,

occurring there. Therefore it is feasible to denote haplotypes by vectors in
{
0, 1
}
, and a genotype

g by a vector in {0, 1, 2
}
, with a 2-entry if and only if the referred SNP varies in the two corre-

sponding haplotypes. Each position where a 2 appears is called ambiguous position. Continuing

Example 1.1 we could write

h1 = 0000, h2 = 1110, g = h1 ⊕ h2 = 2220.

Then our haplotype addition g = h ′ ⊕ h ′′ for given haplotypes h ′,h ′′ and a genotype g can be

defined as follows

g[i] :=

0 if h ′[i] = h ′′[i] = 0

1 if h ′[i] = h ′′[i] = 1

2 if h ′[i] 6= h ′′[i],

if h[i] describes the ith position of the vector h.

For the Pure Parsimony Haplotyping problem (PPH problem) we may discuss several classes, e.g.,

we may classify given problem instances by the number of ambiguous sites in the genotypes.

Assume, we have an instance consisting of p different genotypes g1, . . . ,gp out of a population.

Then we denote the corresponding PPH problem by PPH(k) if each genotype has at most k

ambiguous sites.

There are some trivial bounds on |H| ([22]):

Fact 2.1. Given a set G of p genotypes, there always exists an H with |H| 6 2p = 2|G|.

2. Becoming mathematical 13

Proof. For a genotype g ∈ G let h ′ be the haplotype having a 0 whenever g has one, and a 1 at

all other positions. Respectively, let h ′′ be the haplotype having a 1 whenever g has one, and a

0 at all other positions. Then g = h ′ ⊕ h ′′. In this way we can find a pair of haplotypes of every

given genotype g. q.e.d.

Fact 2.2. Let H be a set explaining a given set G of p genotypes. Then |H| >
√

2p.

Proof. Assuming H explains G, then every g ∈ G can be associated with a different pair of

haplotypes out of H. Hence, p = |G| 6

(
|H|

2

)
=

|H|(|H|− 1)
2

<
|H|2

2
. q.e.d.

In fact, the lower bound can be given more precisely by

|H| >
1 +

√
1 + 8p
2

.

For further illustration, we will extend the first example:

Example 2.1. The set G consists of four genotypes:

G =
{
g1 = 2022,g2 = 2021,g3 = 2220,g4 = 2222

}
.

Then you may explain G with

g1 = 0000⊕ 1011, g2 = 0011⊕ 1001,

g3 = 1000⊕ 0110, g4 = 1010⊕ 0101,

using eight different haplotypes.

But a possible set of minimum order might be

H =
{
h1 = 0001,h2 = 0100,h3 = 1010,h4 = 1011

}
,

with g1 = h1 ⊕ h3, g2 = h1 ⊕ h4, g3 = h2 ⊕ h3 and g4 = h2 ⊕ h4.

Hubbel ([15]) discussed the complexity of the Pure Parsimony Haplotyping problem and showed

its NP-hardness. Later Lancia et al. extended this result in [22]:

2. Becoming mathematical 14

Theorem 2.1 ([22]). The PPH(k) problem is NP-hard for k > 3. In this case it is even APX-hard,

that is, there is a constant c > 1 such that the existence of a c-approximation for this problem

would imply P=NP.

The remaining cases are more convenient to handle.

Theorem 2.2 ([23]). The PPH(k) problem is solvable in polynomial time for k = 0, 1, 2.

Lancia and Rizzi used a reduction to the Vertex Cover problem, to show the APX-hardness, and

a Linear Integer Programming formulation for the NP-hardness. Moreover, they stated an exact

algorithm using again Vertex Cover for the polynomial case. Since they were able to reduce this

problem to searching for a minimum vertex cover in a bipartite graph, which can be done in

polynomial time, their conclusion followed naturally. In addition, they have given some approxi-

mation results:

Theorem 2.3 ([22]). (i) The PPH problem can be approximated by a
√
p-approximation algo-

rithm in polynomial time for a given set G of p genotypes.

(ii) There exists a 2k−1-approximation algorithm for the PPH(k) problem.

Remark. Due to the König-Egerváry Theorem ([20]) it is well known that Vertex Cover and Maxi-

mum Matching are equivalent in bipartite graphs. On the other hand, Maximum Matching can

be done in polynomial time (see [6]). There are some fast and efficient algorithms for bipartite

graphs, e.g., in [13], that can be used for solving Vertex Cover as well.

In the literature you can find a different name for the PPH problem. For example, in [14] it

is denoted by Optimal Haplotype Inference (OHI) problem. There, Huang et al. suggested an

iterative semidefinite programming-based approximation algorithm, called SDPHapInfer. They

were able to show that, with a high probability, the algorithm SDPHapInfer finds a solution of

O(logp) approximation within O(logp) steps of iteration.

Of course, several other approaches were discussed, e.g., genetic algorithms ([27]) or statistical

methods like Maximum-Likelihood estimations ([8]) were studied.

In the next chapter we will transform the PPH problem in a graph theoretical one. Starting with

some basic concepts, we will present known models leading to the Minimum Rainbow Subgraph

problem.

15

Part II.

The MRS problem

16

3. The graph theoretical point of view

In this chapter we will use graph theory to model the PPH problem. Since graphs are a very

powerful and vivid tool, maybe we have a better chance to receive good heuristics or to find

some special cases, which can be solved in polynomial time. First, we have to translate the

PPH problem into the language of vertices and edges (for a more sufficient overview on basic

definitions and concepts, have a look at [28]):

A graph G = (V,E) consists of two sets, where V is the set of vertices and E is the set of edges of

G. Thereby, an edge is defined by its two end vertices. So an edge e is e =
{
x,y
}

with x,y ∈ V.

I.e., the vertex set E is E ⊆ V[2], where V[2] is the set of all two-element subsets of V. In short we

often refer e by its vertices, say, e = xy. The number of vertices, the order of G, will be denoted

by n = n(G), the number of edges, the size of G, by m = m(G). For our considerations, n and

m will be finite.

The vertices x,y ∈ V are called adjacent, if there is an edge e = xy ∈ E. Similarly we define

adjacency for edges e, f ∈ E, if there exists a vertex x ∈ V being end vertex of both edges. In

this case x and e, respectively x and f, are incident. The set of vertices adjacent to a vertex x is

called its neighbourhood N(x), respectively, the neighbourhood N(e) of an edge e is the set of

all adjacent edges. Furthermore, we refer to the closed neighbourhood N[v], if v is included.

For the vertex x ∈ V we define by the degree or valency the number of edges incident to x. In

short we will write d(x). Using this we can define the maximum (minimum) degree ∆(G) (δ(G))

of the graph G by

∆(G) = max
{
d(x) : x ∈ V

}
, δ(G) = min

{
d(x) : x ∈ V

}
.

3. The graph theoretical point of view 17

Often not the whole graph G itself is of interest, but we only want to consider certain vertices

and edges of it. Then we talk about a subgraph H of G, if H is a graph with V(H) ⊆ V(G) and

E(H) ⊆ E(G). We call the subgraph H induced if E(H) consists of all edges of G between the

vertices of H, in symbol G[H].

Furthermore we want to colour the edges of the graph. Therefore we define an edge colouring c

as a mapping c : E→ C, where C will be a given set of colours. Often for convenience we take

C =
{
1, 2, . . . , k

}
as colour set. We call an edge colouring c proper, if no two adjacent edges

are coloured identically.

Now it is time to develop a first model for the PPH problem. Sharan et al. in [26] used so-called

Clark-consistency graphs. For a given PPH instance on p genotypes in G every vertex x ∈ V(G)

of the consistency graph G corresponds to a genotype. Two vertices x,y ∈ V(G) are adjacent if

there exists a haplotype compatible with both referred genotypes. At this juncture a haplotype

h being compatible to the genotype g means that there exists another haplotype h̃, such that

g = h ⊕ h̃. Continuing Example 2.1, Figure 3.1 shows the corresponding Clark-consistency

graph.

Fig. 3.1.: Example 2.1

v1 v2

v3v4

Obviously, this kind of graph is inspired by Clark’s Rule. In the paper ([26]), also (k, l)-bounded

instances are defined. Here k symbolises a limitation on the number of 2-entries in the geno-

types, l a limitation on the number of genotypes, that have a 2 at the same position. Apart from

that, we can use an asterisk instead of k or l to refer to no limitation. Using this formulation the

PPH(k) problem can be seen as a (k, ∗)-bounded problem.

Sharan et al. proved several results on special bounded instances to show the hardness of even

restrictive problems:

3.1. The MRS problem 18

Theorem 3.1 ([26]). Parsimony haplotyping for (4, 3)-bounded instances is NP-hard, and even

APX-hard.

Even more, an apparently weaker formulation was proven not being much easier:

Theorem 3.2 ([26]). Let MHC be the problem of finding a minimum set of haplotypes H to a

given set of genotypes, such that each genotype is consistent with some haplotype in H. Then

MHC is NP-complete.

But they also found some positive results:

Theorem 3.3 ([26]). In respect to the number of the occurring haplotypes in the solution set

parsimony haplotyping is fixed-parameter tractable.

Later on, they studied complete Clark-consistency graphs, meaning that in the corresponding

set of genotypes every two genotypes share at least one compatible haplotype. In general,

this restriction leads to no improvement, the PPH problem on so-called clique instances is still

NP-hard. But they were able to state a polynomial time algorithm to solve this problem on

(∗, 2)-bounded clique instances. Furthermore, the existence of a polynomial time algorithm for

(O(logn), ∗)-bounded instances if the consistency graph has bounded treewidth was shown, as

well as the NP- and APX-hardness for problems leading to a bipartite consistency graph.

Our approach will change the roles of genotypes and haplotypes in the corresponding graph

and adds the aspect of colouring graphs to the model.

3.1. The MRS problem

Let G =
{
g1, . . . ,gp

}
be a given set of genotypes. Then for every genotype g ∈ G with k

ambiguous sites there are 2k−1 pairs of haplotypes explaining it. We construct our graph G as

follows:

(i) For every genotype gi ∈ G (i ∈
{
1, . . . ,p

}
) find the explaining haplotypes hij (j ∈ N).

(ii) Identify the haplotypes with the vertices of G.

3.1. The MRS problem 19

(iii) Two vertices are adjacent if and only if the two corresponding haplotypes explain a geno-

type gi ∈ G. Colour the edge with the colour i ∈
{
1, . . . ,p

}
.

Remark. For genotypes having no 2-entry, there is only one edge in this colour. Furthermore, this

edge is a loop, meaning starting and ending in the same vertex.

Remark. If G contains no loops, then this edge colouring is proper, i.e., there are no two adjacent

edges of the same colour.

Obviously, for solving the PPH problem, we are looking for a subgraph of G with p pairwise

distinct coloured edges on the minimum number of vertices.

Remark. If G is an edge coloured graph, than a subgraph H of G is called rainbow, if all edges

of H are coloured distinct.

Definition 3.1. Let G = (V,E) be a graph and c : E→
{
1, . . . ,p

}
an edge colouring of G. Then

the Minimum Rainbow Subgraph problem (MRS problem) consists of finding a subgraph F ⊆ G

of minimum order with p edges, such that every colour appears exactly once. The order of an

optimal solution F will be denoted by rs(G) = |V(F)|.

Remark. Every subset H explaining G corresponds to a rainbow subgraph H of G

For some analysis it might be useful to consider simple graphs, i.e., graphs without loops or

multiple edges. (Of course, multiple edges will not occur in graphs arisen from a given set G

of genotypes). On the other side, loops will only occur if the corresponding genotype has no

2-entry. Hence, there is only one possibility to explain this genotype, namely by adding it to H.

It is obvious, that there will be exactly one edge of the appropriate colour in the graph G and

the vertex of this edge must be in any rainbow subgraph F. Starting with the graph G, we will

construct a graph G∗ as follows:

(i) Let V(G∗) = V(G1) ∪ V(G2), where G1 and G2 are two copies of G.

(ii) Let V(G1) =
{
v1, . . . , vn

}
and V(G2) =

{
w1, . . . ,wn

}
be the vertices of the copies

and
{
v1, . . . , vt

}
and

{
w1, . . . ,wt

}
(t 6 n) are the 2t vertices having a loop. Delete

these loops and add edges v1w1, v2w2, . . . , vtwt to G∗. Colour each edge viwi, for

i ∈
{
1, . . . , t

}
, with the same colour the deleted loop of the two vertices was coloured

before.

3.1. The MRS problem 20

(iii) Let e1 ∈ E(G1) and e2 ∈ E(G2) be two edges coloured with the same colour i, where

i ∈
{
1, . . . ,p

}
. Then recolour e2 with the colour p+ i.

Remark. The new loop-free graph G∗ is coloured with 2p− t colours and ∆(G∗) 6 ∆(G) holds.

This transformation does not change anything concerning the MRS approximation:

Lemma 3.1. If an algorithm A guarantees a performance of 1+ε for the MRS problem for graphs

without loops, so it does for graphs with loops.

Proof. Let G be a graph with loops and G∗ is constructed as given before. Furthermore, let H∗ be

a rainbow subgraph of G∗ obtained by algorithm A, F∗ the optimal solution for G∗, respectively

F for G.

We define V(Hi) := V(H∗) ∩ V(Gi), i = 1, 2. Without loss of generality let

min
{
|V(H1)|, |V(H2)|

}
= |V(H1)|.

Obviously, |V(F∗)| = 2|V(F)| and

|V(H∗)|

|V(F∗)|
=

|V(H1)|+ |V(H2)|

2|V(F)|
>

min
{
|V(H1)|, |V(H2)|

}
|V(F)|

=
|V(H1)|

|V(F)|
.

q.e.d.

In the following, we will discuss the MRS problem only for graphs without loops.

As seen before, any instance of the PPH(k) problem can be reduced into a MRS problem instance

in polynomial time. Hereby, every haplotype is represented by a vertex in the corresponding

graph G. Furthermore, |H| = |V(F)| for every set H of haplotypes of minimum cardinality and

for every minimum rainbow subgraph F of G. Talking structurally, there exists a bijection from

the sets H explaining the set of genotypes G onto the minimum rainbow subgraphs F of G. This

implies that any approximation algorithm with arbitrarily good performance guarantee for the

MRS problem would lead to an approximation algorithm with arbitrarily good performance for

the PPH(k) problem, a contradiction. Together with the MRS problem obviously lying in NP, we

can formulate the following theorem:

3.1. The MRS problem 21

Theorem 3.4 ([24]). The Minimum Rainbow Subgraph problem is NP-hard, and even APX-hard.

In [17] Katrenič and Schiermeyer took a closer look on this and were able to prove the following

theorem:

Theorem 3.5 ([17]). For graphs with maximum degree ∆ = 2 the MRS problem remains NP-hard.

The authors proved it by reducing 3-OCC-MAX 2SAT to MRS problem instances with maximum

degree ∆ = 2. Here 3-OCC-MAX 2SAT is the restriction of the general maximum satisfiability

problem to instances containing only clauses with at most two variables, where each variable

occurs in at most three clauses. This was shown by Berman and Karpinksi ([2]) being NP-hard,

too.

Starting with an instance F of a 3-OCC-MAX 2SAT problem consisting of c clauses C1, . . . ,Cc,

they constructed a graph of the 4n + c vertices a1, . . . ,ac, x1
1, . . . , xn1 , x2

1, . . . , x2
n, x1

1, . . . , x1
n,

x2
1, . . . , x2

n. Furthermore, they used n + c colours, A1, . . . ,Ac and B1 . . . ,Bn for the following

edges: x1
ix

2
i and x1

ix
2
i are coloured by Bi, where 1 6 i 6 n, and for each literal l the edge

locc(l,j)aj is coloured by Aj. Hereby, occ(l, j) represents the number of occurrences of the literal

l in the clauses C1, . . . ,Cj. It is easy to see that the resulting graph has maximum degree at

most 2. It remains to show that at least s clauses can be satisfied in F if and only if the MRS for

the graph has at most 2n+ 2c− s vertices.

First assume that R is a solution for F satisfying s clauses. Then a solution H for the corresponding

graph is given by the following 2n+2c−s vertices: take all vertices a1 . . . ,ac, and for each literal

l ∈ R we use the vertices
{
l1, l2

}
. Apparently, at most c− s colours of the colours A1, . . . ,Ac are

not covered by H, but then add a vertex l1, l ∈ C, for each clause C unsatisfied in R.

On the other site, if we have a MRS H with 2n + 2c − s vertices, we get a solution R for F as

follows: For covering colour Bi, where i ∈ {1, . . . ,n}, one of the pairs
{
x1
i , x

2
i

}
and

{
x1
i , x

2
i

}
has to be in H. Therefore, set x true, if

{
x1, x2

}
is in H, otherwise put x into R. In addition, H

must contain all vertices a1, . . . ,ac to cover the colours A1, . . . ,Ac. Now consider the subgraph

H ′ ⊆ H, where V(H ′) = {a1, . . . ,ac} ∪ {lq : l ∈ R,q = 1, 2}. Then |H ′| = c + 2n and does

not cover at most c − s colours of A1, . . . ,Ac. But for every colour Aj, with i ∈
{
1, . . . , c

}
,

3.1. The MRS problem 22

corresponding to the satisfaction of clause Cj, R still satisfies at least s clauses. This concludes

the proof.

Apart from that, Katrenič and Schiermeyer presented a deterministic algorithm, which solves the

MRS problem exactly in O(2(p+2p log2∆)nO(1)) time and O(2pnO(1)) space.

In [24] some simple bounds to classify the range of an optimal solution are given.

Lemma 3.2 ([24]). Let G = (V,E) be a graph with maximum degree ∆(G) = ∆, whose edges are

properly coloured with p colours. Then

2p
∆

6 rs(G) 6 2p.

Proof. The upper bound of 2p can be easily realised by taking p distinct edges, every edge in a

different colour. The lower bound arises from the Handshaking Lemma and taking only vertices

of maximum degree ∆ in the solution. q.e.d.

A tight lower bound may be of major importance for the design of approximation algorithms

in order to provide better approximation ratios. Therefore, we are looking for improvements of

Lemma 3.2. Introducing the colour degree cd(v), that denotes the number of distinct colours

among all edges incident to a vertex v ∈ V, and let cd(i) = max
{

cd(v) | v ∈ V has an incident

edge in colour i
}

be the maximum colour degree for every colour i, where i ∈
{
1, . . . ,p

}
, we

formulate the following corollary:

Corollary 3.3. Let G = (V,E) be a p-edge-coloured graph. Then

rs(G) >
p∑
i=1

2
cd(i)

.

Proof. Let F ⊆ G be a minimum rainbow subgraph of G. Then

rs(G) =
|V(F)|∑
i=1

1 =
∑

e∈E(F),
e=uv

1
d(u) + d(v)

>
p∑
i=1

2
cd(i)

.

q.e.d.

3.2. The MRS problem on special graph classes 23

Obviously,
p∑
i=1

2
cd(i)

>
2p
∆

if the maximum degree of the graph G is denoted by ∆. Let us have

a look at the following example:

Example 3.1. [19] Consider for p > 4 and ∆ > 2 the graph G = K1,∆ + Cp−1, where G is the

disjoint union of a star of order ∆ + 1 and a cycle of length p − 1. Furthermore let all edges of

the cycle Cp−1 be coloured distinct, e.g., with the colours 1, . . . ,p− 1, and all edges of the K1,∆

are coloured with colour p. Then

rs(G) = p+ 1 = p− 1 + 2 =

p∑
i=1

2
cd(i)

>
2p
∆

.

There is a further improvement on this bound if we count the number of distinct colours of the

edges adjacent to an edge e ∈ E. We define

q(i) = min
{

1
d(u)

+
1
d(v)

: uv = e ∈ E and c(e) = i
}

.

Corollary 3.4. Let G = (V,E) be a p-edge-coloured graph with maximum degree ∆(G) = ∆.

Then

rs(G) >
p∑
i=1

q(i) >
p∑
i=1

2
cd(i)

>
2p
∆

.

Example 3.2. [19] Let G ∼= K1,p for some integer p > 1, where all edges are coloured distinct.

Then q(i) = 1 +
1
p

and

rs(G) = p+ 1 = p ·
(

1 +
1
p

)
=

p∑
i=1

q(i) > 2 = p · 2
p
=

p∑
i=1

2
cd(i)

=
2p
∆(G)

.

3.2. The MRS problem on special graph classes

Since we are only discussing graphs without loops, the maximum degree of our graphs is

bounded from above by p, the number of colours. On the other hand, using vertices of maxi-

mum degree in the optimal solution F seems to be a good heuristic to minimize the order of F. In

her diploma thesis ([18]), Maria Koch showed some interesting results on special graph classes

and presented a greedy heuristic to get an approximating solution for the MRS problem.

3.2. The MRS problem on special graph classes 24

We will start with a simple upper bound depending on the maximum degree ∆(G):

Theorem 3.6 ([18]). Let G = (V,E) be a loop-free p-edge-coloured graph with maximum degree

∆(G). Then for the optimal solution of the MRS problem F ⊆ G the following inequality holds:

|V(F)| 6 2p+ 1 − ∆(G).

This bound is not difficult to discover, since we have seen that the worst case in explaining p

genotypes is using two distinct haplotypes for each. If there is a vertex of maximum degree

∆(G) in G, exactly ∆(G) edges in pairwise distinct colours are incident to it. If we use it and its

neighbours for explaining the genotypes, only p − ∆(G) colours are left, needed to be added.

The worst case is again using two distinct vertices for each colour, therefore we have

|V(F)| 6 ∆(G) + 1 + 2(p− ∆(G)) = 2p+ 1 − ∆(G).

Furthermore, this result leads to a nice characterisation of graphs realising this bound:

Theorem 3.7 ([19]). Let G = (V,E) be a properly p-edge-coloured graph with maximum degree

∆(G) = ∆. Then rs(G) = 2p+ 1 − ∆ leads to the following properties:

(i) G contains a star K1,∆, where v0 is the center vertex and v1, v2, . . . , v∆ are its leaves.

Moreover, G[N(v0)] is independent. Let c(v0, vi) = i for 1 6 i 6 ∆ and H0
∼= G[N[v0]].

(ii) For p > ∆(G) there are pairwise vertex-disjoint subgraphs H∆+1,H∆+2, . . .Hp, where Hi

is spanned by the edges with colour i and V(H0) ∩ V(Hi) = ∅ for ∆+ 1 6 i 6 p.

(iii) E(Hi,Hj) = ∅ for ∆+ 1 6 i < j 6 p.

(iv) E(vi,Hj) = ∅ for 1 6 i 6 ∆ and ∆+ 1 6 j 6 p.

In an almost similar way we can derive the following upper bound for r-regular graphs, where

δ(G) = ∆(G) = r:

Theorem 3.8 ([18]). Let G = (V,E) be a loop-free p-edge-coloured r-regular graph on n vertices.

Then for the optimal solution of the MRS problem F ⊂ G the following inequality holds:

|V(F)| 6 2p− r− s+ 2,

3.2. The MRS problem on special graph classes 25

where s =
⌈
p− r

n− 1

⌉
.

Here, any arbitrary vertex v0 and its r neighbours add r colours to the solution. By construction

and according to the Pigeon-Hole Principle, there is a vertex v1 ∈ V −
{
v0
}
, remember |V −{

v0
}
| = n − 1, with at least s incident edges of pairwise distinct colours, which can be added to

the solution, too. For the rest we use the "brute force" approach by taking two vertices for each

colour.

If we take a closer look on paths, then unfortunately even the simple structure of n−2 vertices of

degree 2 and two vertices of degree 1 does not lead to tighter bounds. The closest we can get

is if there are many edges of the same colour. Then we can use the Pigeon-Hole Principle again

and guarantee, that we could leave a vertex out. We are in the situation that at least two edges

of colours occurring twice or more often share a vertex. This is the one that will be left out.

Theorem 3.9 ([18]). LetG = (V,E) be a connected, p-edge-coloured path of lengthm, s = m+p,

s > 2 and k the number of colours occurring at least twice in G. Then

rs(G) 6 p+ s+ t,

with

t =

0 , if s+ k > p− k,

1 , else.

26

4. Trying to be not that bad

We have already discovered that the MRS problem is NP-hard and even APX-hard. Nevertheless,

our main task remains providing some algorithms, which solve the MRS problem for a given

instance in quite a reasonable time. Therefore we are forced to explore approximating algorithms

for the question "NP=P?" unlikely being answered for the next years.

A first approximation result arises from Lemma 3.2:

Corollary 4.1 ([24]). There is a polynomial-time approximation algorithm for the MRS problem

on a graph G with an approximation ratio of ∆(G).

But this is rather unsatisfying. Can we get a little bit better?

4.1. Greedy approaches

The first algorithm, we want to present, is a so-called GREEDY algorithm. This name is motivated

by the fact, that such algorithms will always perform as the next step the one promising the most

valuable result. The algorithm is based on the results of Theorem 3.6 and 3.7. We call it Greedy

star for the algorithm adding stars to the solution:

Algorithm Greedy star:

input: a p-edge-coloured graph G = (V,E)

output: a rainbow subgraph H ⊆ G

S1 choose a vertex v of maximum degree and add all vertices of N[v] to V(H)

S2 add the edges between v and its neighbours to E(H) and delete all edges of the same

colours in G, continue with step 1 until there are no edges left in G

4.1. Greedy approaches 27

Theorem 4.1. The Greedy star algorithm for the MRS problem is
(
∆

2
+

ln∆+ 1
2

)
-approximative

on graphs with maximum degree ∆. Even more, the approximation ratio is given by
d

2
+

ln dde+ 1
2

,

if the average degree d of a minimum rainbow subgraph is known.

Proof. Let F be an optimal solution with q vertices and average degree d. Suppose Greedy star

has constructed its solution H in t rounds with mi edges in round i, where i ∈
{
1, . . . , t

}
. I.e.,

in every round i Greedy star added a star Kmi,1. Then

|V(H)|

|V(F)|
6

t∑
i=1

(mi + 1)

q
=
p+ t

q
=
t

q
+
d

2
.

We now have to find an upper bound for t.

If we formulate this as a linear programming problem, we have

∆∑
i=1

ti → max

with
k∑
i=1

i · ti 6 k ·
q

2
for 1 6 k 6 ∆,

where ti denotes for every i ∈
{
1, . . . ,∆

}
the number of added stars with i edges. Since the

maximization being obvious, the side condition arises from the following: If we look at the

subgraph of F induced by the edges of the same colours as used as in the stars of size 1 to k

added to H, then the maximum degree must not exceed k, for forcing Greedy star to take a

larger star instead of at least two smaller ones. But since for every edge in F we need two of the

q vertices, we can bound the number of edges by k · q2 .

We will now show, that the optimal solution is given by ti = q
2i for 1 6 i 6 dde and tdde =

p−(dde−1)q2
dde :

Assume that there are some integers i, j with 1 6 i < j 6 dde such that ti <
q
2i and tj > 0. We

take the closer look at the minimum j among all values for j > i. But this leads to tk = 0 for

all i + 1 6 k 6 j − 1. Furthermore, we define ε := min
{ q

2i
− ti,

i

j
tj
}
. Set t ′j := tj −

i

j
ε and

4.1. Greedy approaches 28

t ′i := ti + ε. This feasible solution implies

∆∑
k=1

tk + (t ′i − ti) + (t ′j − tj) =

∆∑
k=1

tk +
j− i

j
ε >

∆∑
k=1

tk.

Using the harmonic series

Hk =

k∑
i=1

1
i

leads to

t 6
q

2
·Hdde 6

q

2
· (ln dde+ 1) ,

and, moreover,
|V(H)|

|V(F)|
6
d

2
+
Hdde

2
6
∆

2
+
H∆
2

6
∆

2
+

ln∆+ 1
2

.

q.e.d.

We will present an example for proving the above result being best possible:

Example 4.1. We construct a family of graphs
{
Gk
}

for k > 2 as follows: Let G2 be the disjoint

union of the graphs F2 and I2, where F2 is a cycle of order 4 with V(F2) =
{
v1, v2, v3, v4

}
,

E(F2) =
{
v1v2, v2v3, v3v4, v4v1

}
and V(I2) =

{
v5, v6, v7, v8, v9, v10, v11

}
, E(I2) =

{
v5v6, v6v7,

v8v9, v10v11
}
. For the edge colouring c we choose c(v1v2) = c(v5v6) = 1, c(v2v3) = c(v8v9) =

2, c(v3v4) = c(v6v7) = 3 and c(v4v1) = c(v10v11) = 4. G2 contains F2 as minimum rainbow

subgraph, but Greedy star may choose at first the P3 on the vertices v5, v6, v7 and at last the two

single edges v8v9 and v10v11. That are seven instead of four vertices in the optimal solution.

Given Gk−1 we construct Gk in the following way: Let Gk be the disjoint union of k copies

G1
k−1,G2

k−1, . . . ,Gkk−1 of Gk−1 and
|V(Fk−1)|

2
stars K1,k. Furthermore we add a matching of

k · |V(Fk−1)|

2
edges to the k copies of Gk−1 in a circular matter: For every Fik−1 divide its vertex

set into two halves U(Fik−1) and W(Fik−1) of
|V(Fk−1)|

2
vertices each. Now we add the perfect

matching between the second half Wi
k−1 of vertices of Gik−1 and the first half Ui+1

k−1 of Gi+1
k−1 for

i ∈
{
i, . . . ,k

}
(considering indices modulo k). Then Gk has maximum degree k.

The subgraph of Gk induced by the k copies of Fk−1 will be denoted by Fk, the rest of the k

copies of Gk−1 will be Ik.

4.1. Greedy approaches 29

The edges of each Gik−1 will be coloured with a private set of colours Cik−1. Next choose a

set C∗k of exactly k · |V(Fk−1)|

2
new colours to colour the edges of the added perfect matching

between the k copies of Gk−1 pairwise distinct. Take the same colour set C∗k to colour the edges

of the
|V(Fk−1)|

2
stars K1,k all distinct. In Figure 4.1 the graphs G2 and G3 are presented.

Obviously, V(G[Cik−1]) ∩ V(G[C
j
k−1]) = ∅ for 1 6 i < j 6 k. Hence

rs(Gk) 6
k∑
i=1

rs(Gik−1) = 2 · k · (k− 1)! = 2 · k!,

for |V(F2)| = 4 = 2 · 2!.

But then Fk is a minimum rainbow subgraph of order 2 · k!, leading to

rs(Gk) = 2 · k!.

The algorithm Greedy star may first choose the |V(Fk−1)|
2 = k! stars K1,k and then inductively the

stars K1,k−1 in G1
k−1,G2

k−1, . . . ,Gkk−1 and so on. Therefore, the algorithm’s worst choice is Ik.

Starting with |V(I2)| = 7 = 2! · (2 +H2), we get by induction

|V(Ik+1)| =
|V(Fk−1)|

2
· (k+ 2) + (k+ 1) · |V(Ik)|

=
2k!
2
· (k+ 2) + (k+ 1) · k! · (k+Hk)

=
k! · (k+ 1) · (k+ 2)

k+ 1
+

(k+ 1)!
k+ 1

(
(k+ 1) · (k+Hk)

)
=

(k+ 1)!
k+ 1

·
(
(k+ 2) + k2 + k+ (k+ 1) ·Hk

)
=

(k+ 1)!
k+ 1

·
(
k2 + 2k+ 1 + (k+ 1) ·Hk + 1

)
=

(k+ 1)!
k+ 1

·
(
(k+ 1)2 + (k+ 1) ·Hk + 1

)
= (k+ 1)! ·

(
(k+ 1) +Hk +

1
k+ 1

)
= (k+ 1)! ·

(
(k+ 1) +Hk+1

)

4.1. Greedy approaches 30

and hence
|V(Ik)|

|V(Fk)|
=
k

2
+
Hk
2

.

Fig. 4.1.: The graphs G2 and G3

G2

G3

Since in the worst case we have to browse through all vertices in G in order to find one of

maximum degree, and in the case of a graph consisting only of a matching we have to do this p

times, the following corollary concerning the complexity of Greedy star arises easily.

Corollary 4.2. The Greedy star algorithm has a complexity of pn for p-edge-coloured graphs of

order n.

We will now take a closer look on smaller graphs with respect to their maximum degree:

Theorem 4.2. The Greedy star algorithm is
7k+ 2
4k+ 2

-approximative on paths of length 4k +

i, where i ∈
{
0, 1, 2, 3

}
. On forests with maximum degree ∆, Greedy star is

2p+ 1 − ∆

p+ 1
-

approximative. On cycles, the approximation ratio of
7
4

is sharp.

Proof. Let p be the number of distinct colours in the graph G.

paths: Assume that the optimal solution is a path of length p. Since in graphs only consisting of

paths the maximum degree ∆ is 2, Greedy star will always choose a vertex of this degree

4.1. Greedy approaches 31

as long as there is one. But then the worst case is ending up with the largest possible

number of P2s for the missing last edges. Apparently this happens, if every second edge

of the optimal solution is chosen. This leads to a case analysis depending on the number

of distinct colours modulo 4. Figure 4.2 illustrates a first Greedy star step on a P9.

Fig. 4.2.: a first Greedy star step on a P9

X X

→

If p = 4k, with k being some non-negative integer, then we get k paths of length 2 and 2k

P2s. For p = 4k + 1 we get again k P3s, but 2k + 1 P2s; in the case of p = 4k + 2 exactly

k+ 1 P3s and 2k P2s. Finally, p = 4k+ 3 leads to k+ 1 paths of length 2 and 2k+ 1 ones

of length 1. Thus, comparing these four cases, we have an approximation ratio of at most
7k+ 2
4k+ 2

, which turns out being slightly better than
7
4

, given by Theorem 4.1.

cycles: If δ(G) = ∆(G) = 2, then G only consists of cycles. The approximation ratio for these

graphs is given by
7
4

. Unfortunately, this is sharp for e.g. a C4, as shown in Figure 4.3

Fig. 4.3.: Greedy star on a C4

X

→

X

trees: For trees, the only thing we can guarantee is the choice of a vertex of maximum degree

∆. But then, if the optimal solution is a tree, it could decompose into ∆ + 1 new trees.

Therefore, we can guarantee a solution of order 2p− ∆+ 1, leading to an approximation

ratio of
2p+ 1 − ∆

p+ 1
, which is an approvement with respect to the trivial bound of

2p
p+ 1

and the bound given in Theorem 4.1.

q.e.d.

The first algorithm dealing with the MRS problem was presented in [24]. It deals with another

well-known graph theoretical substructure: matchings.

4.1. Greedy approaches 32

Algorithm MRS matching:

input: a p-edge-coloured graph G = (V,E)

output: a rainbow subgraph H ⊆ G

S1 construct a graph G ′ with the vertex set V(G ′) =
{
v1, v2, . . . , vp

}
(vi corresponds to the

colour i) and the edges vivj ∈ E(G ′) if there exist two adjacent edges e, f ∈ E with c(e) = i

and c(f) = j

S2 compute a maximum matching M of order β(G ′) in G ′

S3 construct a graph H with V(H) ⊆ V such that each matching edge of M is represented by

two adjacent edges in G of the corresponding colours; for each vertex of V(G ′) not in M

take an edge of this colour

Since every edge in G ′ corresponds to a pair of adjacent edges of distinct colours in G and every

colour left out by the matching part of the algorithm is added as a single edge afterwards, the

algorithm is proved to be correct. Furthermore, for every matching edge, we take three vertices

into our solution. The colours left out are satisfied by at most two new vertices for the single

edge, so we have

|V(H)| 6 3β(G ′) + 2(p− 2β(G ′)) = 2p− β(G ′).

Corollary 4.3. For the output graph H in the algorithm MRS matching, we have

|V(H)| 6 2p− β(G ′).

To study the approximation ratio of MRS matching, we need the following result. The even case

was proved by Kotzig [21]. But we present the proof from [24]:

Theorem 4.3. Let G = (V,E) be a connected graph of size m. Then the edge set E contains

exactly
⌊m

2

⌋
pairwise edge disjoint paths of order 3.

Proof. We will prove the result by induction on the size m. If 1 6 m 6 2, then the statement

obviously holds. Now we assume that G has size m + 1 for some m > 2. Let u1u2 = e ∈ E be

any edge. Anymore, assume that e is a cut edge; we denote the two subgraphs of G − e by G1

4.1. Greedy approaches 33

and G2, such that u1 ∈ V(G1) and u2 ∈ V(G2). If G1 or G2 is of even size, we can partition

its edge set into pairwise disjoint paths of order 3. Otherwise both subgraphs are of odd size.

Then, the graph G1 + e has even size and its edge set can be partitioned into pairwise disjoint

paths of order 3. Both cases are solved by applying the induction hypothesis on the remaining

edges.

Finally assume that G−e stays connected. If e is adjacent to an edge f ∈ E such that G−
{
e, f
}

is

connected, then the two edges form a path of order 3 and for the remaining graph the statement

holds. Hence we may assume that every edge f adjacent to e is a cut edge of G−e. Let f = v1v2

and v1 be the vertex incident with e. We denote the two subgraphs of G−
{
e, f
}

by G ′1 and G ′2,

such that v1 ∈ V(G ′1) and v2 ∈ V(G ′2). If one of the subgraphs has even size, the statement

holds by induction. If both components G ′1 and G ′2 have odd size, then G ′1 + e and G ′2 + f have

both even size and again the statement holds by induction. q.e.d.

For a connected graph G we will denote by β3(G) the number of pairwise edge disjoint paths P3

contained in E(G). Then the equality β3(G) =
⌊m

2

⌋
holds by Theorem 4.3.

Corollary 4.4. Let G = (V,E) be a graph and F ⊆ G an optimal MRS solution. Then there is

some constant c ∈ R such that for every solution H derived by the MRS matching algorithm the

inequality
|V(H)|

|V(F)|
6 1 + (1 − c)(∆− 1)

holds, where ∆ = ∆(G) is the maximum degree of G.

Proof. Assume that F is the disjoint union of subgraphs Fi ⊆ G with i ∈
{
1, . . . ,k

}
for some

k ∈ N and |V(F)| = 2p −m ′, di = 2|E(Fi)| − |V(Fi)|. Then set β3(Fi) = ci · di for some ci ∈ R

with 1 6 i 6 k. It follows that m ′ =
k∑
i=1

di and

4.1. Greedy approaches 34

|V(H)| 6 2p− β(G ′)

6 2p−
k∑
i=1

β3(Fi)

= 2p−
k∑
i=1

ci · di

6 2p−
k∑
i=1

c · di with c = min
{
c1, c2, . . . , ck

}
= 2p− c ·m ′.

Furthermore 2p−m ′ = |(V(F)| 6
2p
∆

implies 2p−m ′ 6
m ′

∆− 1
, for

|V(F)| >
2p
∆

=
|V(F)|+m ′

∆

→ |V(F)| · ∆ > |V(F)|+m ′

→ |V(F)|(∆− 1) > m ′.

But this leads to

|V(H)|

|V(F)|
6

2p− c ·m ′

2p−m ′
= 1 +

(1 − c)m ′

2p−m ′
6 1 +

(1 − c)m ′

m ′

∆−1

= 1 + (1 − c)(∆− 1).

q.e.d.

For the case ∆ = 2 all possible components in F can only be paths or cycles. So we obtain c =
1
3

by minimizing over the following:

• if Fi is an even cycle C2q (q > 2), then ci =
1
2

,

• if Fi is an odd cycle C2q+1 (q > 1), then ci =
q

2q+ 1
>

1
3

,

• if Fi is a path of even order 2q (q > 2), then ci =
1
2

, and

• if Fi is a path of odd order 2q+ 1 (q > 1), then ci =
q

2q− 1
>

1
2

,

4.1. Greedy approaches 35

It follows that
|V(H)|

|V(F)|
6

5
6
∆, being sharp for ∆ = 2. But in general the approximation ratio is

better:

Theorem 4.4. The MRS matching algorithm has an approximation ratio of
3
4
∆ +

1
2(∆+ 1)

for

graphs G = (V,E) with maximum degree ∆(G) = ∆.

Proof. Let F be a minimum rainbow subgraph. If F is not connected, the following estimation can

be applied to all its components for using f(1) < f(2) < · · · < f(∆) with f(∆) :=
3
4
∆+

1
2(∆+ 1)

.

Assume that F is connected. Then the order of an approximating solution H is maximum, if the

size of F is maximum and if all the chosen paths of order 3 and the eventual P2 are pairwise

vertex disjoint. By Theorem 4.3 F can be decomposed into
q∆− i

4
P3s and

⌊
i

2

⌋
single edges for

q∆ ≡ i mod 4 with 0 6 i 6 3. We have the following four cases:

(i) q∆ ≡ 0 mod 4: Then |V(H)| 6
3
4
q∆ implying

|V(H)|

|V(F)|
6

3
4
∆.

(ii) q∆ ≡ 1 mod 4: Then |V(H)| 6 3 · q∆− 1
4

implying
|V(H)|

|V(F)|
6

3
4
∆−

3
4q

.

(iii) q∆ ≡ 2 mod 4: Then |V(H)| 6 3 · q∆− 2
4

+ 2 implying
|V(H)|

|V(F)|
6

3
4
∆+

1
2q

.

(iv) q∆ ≡ 3 mod 4: Then |V(H)| 6 3 · q∆− 3
4

+ 2 implying
|V(H)|

|V(F)|
6

3
4
∆−

1
4q

.

By taking the maximum we obtain |V(H)| 6
3
3
∆+

1
2(∆+ 1)

. q.e.d.

It remains to discuss the complexity of the algorithm:

Corollary 4.5. The algorithm MRS matching has a complexity of O(np2 + p
5
2) for a p-edge-

coloured graph G on n vertices.

Proof. For the matching part in the algorithm we refer to [25], where it is shown that we can get

a maximum matching in O(
√
|V | · |E|). Since our graph G ′ has at most

(
p

2

)
edges, we get the

p
5
2 part.

The rest remains for constructing G ′: for every vertex in G we look at its incident edges. There

are at most p of them. Furthermore G is coloured properly, so we have at most
(
p

2

)
pairs of

edges resulting in an edge in G ′. This gives the np2 part. q.e.d.

4.1. Greedy approaches 36

Let us look at graphs, where the MRS consists of a tree. Then MRS matching guarantees a

rainbow subgraph H of order

|V(H)| 6 2p− β(G ′) 6 2p−
⌊p

2

⌋
6

3
2
p+

1
2

.

If we soften this assumption and allow a rainbow forest in t components being the optimal

solution, then our approximation can be bounded by

|V(H)| 6
3
2
p+

1
2
t. (∗)

Such an approximation will be called ForestApproximation(G) and used in the following greedy

algorithm:

Algorithm MRSk ([17]):

input: a p-edge-coloured graph G = (V,E) and an integer k

output: a rainbow subgraph H ⊆ G

S1 find a rainbow subgraph L of order k with at least k − 1 edges, add L to H and delete all

edges of the colours occurring in L – repeat this step, until there is no such subgraph L in

G

S2 look for a rainbow cycle L, add L to H and delete all edges of the colours occurring in L –

repeat this step until there is no rainbow cycle left

S3 find a ForestApproximation(G) and add it to H

Lemma 4.6 ([17]). The algorithm MRSk finds an approximative solution for the MRS problem in

a p-edge-coloured graph G on n vertices in O(pk2nk).

Proof. In step 1 we are interested in rainbow subgraphs of order k with at least k − 1 edges.

Therefore we need to check all k-vertex subsets of V, which are
(
n

k

)
. We find at most

(
k

2

)
colours in each of them, so checking for the rainbow means running time of O(k2), concluding

in O(k2nk) for the first step.

4.1. Greedy approaches 37

Obviously, the cycles in step 2 have a length of at most k− 1. We can look for them, if we check

all variations of at most k− 1 vertices, being at most

O =

((
n

k− 1

)
(k− 1)!

)
= O(k2n2).

We repeat the first and this step at most p times, since in every iteration at least one colour is

removed.

For the last step we look at Corollary 4.5. This leads to an overall complexity of O(pk2n2).

q.e.d.

For the discussion of the approximation ratio, we will use (∗). At first let p1 denote the number

of colours added in step 1 and step 2. Then p3 := p − p1. Furthermore, let t3 denote the

number of components in F∩G during step 3, where F is an optimal solution for G. Assume that

k > 2. Then the number of vertices during step 1 and step 2 is at most
(

1 +
1

k− 1

)
p1, and the

number of vertices added during step 3 is bounded from above by
3
2
p3 +

1
2
t3. This gives for the

approximation H:

|V(H)| 6

(
1 +

1
k− 1

)
p1 +

3
2
p3 +

1
2
t3. (∗∗)

Since F∩G is a forest in step 3, we can bound p3 by p3 6 |V(F)|−1. Anymore,
(

1 +
1

k− 1

)
6

3
2

,

for k > 3, leads to the right side of (∗∗) being maximal for p3 = |V(F)|−t3 and p1 = p−|V(F)|+t3.

We obtain

|V(H)| 6

(
k

k− 1

)
(p− |V(F)|+ t3) +

3
2
(|V(F)|− t3) +

1
2
t3

= |V(F)|

((
k

k− 1

)
p

|V(F)|
− 1 −

1
k− 1

+
3
2

)
+

(
1

k− 1

)
t3

6 |V(F)|

((
k

k− 1

)
p

|V(F)|
+

1
2

)
.

With this calculation, we can prove the following theorem:

Theorem 4.5 ([17]). If G is a p-edge-coloured graph and F is an optimal solution to the MRS

problem onG, then MRSk computes a solutionH having at most
1
2
|V(F)|+

(
1 +

1
k− 1

)
p vertices.

4.2. The local colour density 38

The integer k leaves us the possibility to tune the approximation ratio of the rainbow solution for

a given graph.

Corollary 4.7 ([17]). For every positive integer ε > 0 there is a polynomial time approximation

algorithm for the MRS problem, such that the approximation ratio can be bounded from above by

1
2
+

(
1
2
+ ε

)
∆,

for graphs with maximum degree ∆.

Proof. Assume F being an optimal solution on p edges. For every vertex in F the degree is at

most ∆. Therefore,
p

|V(F)|
6
∆

2
, according to the Handshaking Lemma. Using Theorem 4.5 we

get an approximation ratio of

1
2
+

(
1 +

1
k− 1

)
∆

2
6

1
2

(
1
2
+

1
k

)
∆.

Now it only remains to choose k sufficiently large in order to get
1
k
6 ε. q.e.d.

4.2. The local colour density

Until now we used rather pragmatic approaches. If the algorithm had to choose between several

vertices, we selected the candidate by taking the first one given out of some maybe god-given

order. We are interested in making this choice somehow more comprehensive in order to reduce

the complexity and improve the run-time.

Let us take a closer look at the neighbourhood of the chooseable vertices:

Definition 4.1. Let G = (V,E) be a graph and c : E →
{
1, 2, . . . ,p

}
a p-edge-colouring of

G. Then the local colour density lcd(S, T) of two subsets S, T ⊆ V, S ∩ T = ∅ is defined in the

following way

lcd(S, T) =
|c(G[S ∪N[T]])|− |c(G[S])|

|N[T] − S|
.

Obviously, the local colour density is a measure on the proportion of how many colours will be

added if we take a given set of vertices. If T =
{
v
}

is a single vertex, S = ∅ and c a proper edge

4.2. The local colour density 39

colouring, then we have the simple bounds

δ

δ+ 1
6 lcd(v) 6

n− 1
2

,

where lcd(v) := lcd(∅,
{
v
}
). In the same way we can define the local colour density of a single

edge e = uv with T =
{
u, v
}

and S = ∅, denoting it by lcd(e) := lcd(∅, e). Following this gives

max
{
d(u),d(v)

}
n

6 lcd(e) 6
n− 1

2
.

A very simple approach for using the local colour density as argument of choice is the following

one:

Algorithm SortLCD ([12]):

input: a p-edge-coloured graph G = (V,E)

output: a rainbow subgraph H ⊆ G

S1 for every edge e ∈ E calculate lcd(e) and sort the edges by decreasing local colour density

and separately by colour

S2 choose an edge of maximum lcd for H

S3 for every colour choose an edge in the neighbourhood of H, such that the local colour

density is maximum; if there is no such edge, take an edge of maximum lcd

Concerning the running time, the most expensive part of the algorithm is step 1. The graph has

at most
(
n

2

)
edges, where every end vertex has at most p neighbours, so we get an ordering of

the lcd values in O(p2n2). Step 3 is mainly checking the neighbourhood of the ordered edges,

which can be done for every one of the p colours in O(p).

Corollary 4.8. In a p-edge-coloured graph of order n the algorithm SortLCD has a complexity of

O(p2n2).

It turns out, that calculating the local colour density once is not very efficient, since the tenor of

introducing it was to assure, that the next added edge will provide the largest number of new

colours by adding as few as possible new vertices. We only used empty sets for S instead of

4.2. The local colour density 40

introducing the already added vertices. Therefore we will not discuss any approximation results,

but instead of we introduce the following algorithm paying more attention to the definition of the

local colour density:

Algorithm LCDk:

input: a p-edge-coloured graph G = (V,E) and an integer k

output: a rainbow subgraph H ⊆ G

S1 find a subset T ⊆ V with 1 6 |T | 6 k, such that the value lcd(H, T) is maximum

S2 add the graph induced by N[T] to H, continue until H contains exactly one edge of each

colour

Obtaining the approximation ratio for LCDk is a much more complicated task than for MRS

matching or Greedy star. We will only give an upper bound:

Theorem 4.6. The algorithm LCDk finds a
(
∆

2
+

ln∆+ 1
2

)
-approximative solution for graphs

with maximum degree ∆. If the average degree d of an optimal solution is known, then the

approximation ratio is
d

2
+

ln dde+ 1
2

.

Proof. Basically we can apply the proof of Theorem 4.1 for the algorithm Greedy star. The worst

case occurs if the edges added in one step by LCDk induce a tree. So they may induce a star

and we follow the proof of Theorem 4.1. q.e.d.

Note that if the graph is triangle-free, then LCD1 behaves in almost the same way as Greedy star

would do. Therefore, we can give the same graphs as proof for sharpness as given in Example

4.1. On the other hand, LCD1 can indeed lead to a minimum rainbow subgraph, where for

example Greedy star fails. Look at the following graph G = (V,E):

Example 4.2. The order of G is n = 12 with the vertices V =
{
v1, v2, . . . , v12

}
and the edge

set E = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4, v5v6, v5v7, v8v8, v9v10, v9v11, v9v12
}
. For the edge

colouring we choose c(v1v2) = c(v5v6) = 1, c(v1v3) = c(v5v7) = 2, c(v1v4) = c(v5v8) = 3,

c(v2v3) = c(v9v10) = 4, c(v2v4) = c(v9v11) = 5 and c(v3v4) = c(v9v12) = 6. The graph is

illustrated in Figure 4.4.

4.2. The local colour density 41

Fig. 4.4.: LCD1 can work optimal

This example can be generalized to a class of graphs G, where LCD1 always finds a minimum

rainbow subgraph: every graph G ∈ G contains a minimum rainbow subgraph of order k =

∆ + 1, which is complete or missing less than q edges. To determine q we are looking at the

upper bound of the lcd value of a single vertex v ∈ V, which is given by

lcd(v) 6
|N[v]|− 1

2
.

In order to force the algorithm to choose one of the vertices in the minimum rainbow subgraph,

the following must hold:

k(k− 1)
2

− q

k
>
k− 2

2
→ k2 − k− 2q

2k
>
k− 2

2
→ q <

k

2
.

At last it remains to take a closer look on the complexity of the algorithm. Checking all subsets

on k vertices can be done in O(nk) running time. For every of these subgraphs we have to

calculate the local colour density. This can be done in O(p2k2) for being O(kp) vertices in the

closed neighbourhood of this subgraph. Since in every step at least one edge is added, we have

at most p steps. This gives a proof to the following corollary:

Corollary 4.9. The algorithm LCDk has a complexity of O(p3k2nk) for a p-edge-coloured graph

G on n vertices.

In [12] some other algorithms using the local colour density are presented. They were developed

out of SortLCD, but are still greedy approaches. So-called zones are introduced. Depending

on how close an edge lies to the overlooked neighbourhood (if both end vertices are in the

neighbourhood or just one of them) the next added edge is chosen. Furthermore a recalculating

of the lcd values is considered, leading to a much larger complexity, but no significant better

approximation ratio. Therefore we renounce these algorithms.

4.3. MaxNewColour 42

4.3. MaxNewColour

In this section we discuss a various number of algorithms, developed during the internship of

Franziska Heinicke ([12]). The goal was to provide some "small" algorithms. They should run

very fast in order to being used quite a lot of times for the same problem. Therefore, in most of

them some random element was implemented and in the end the best solution was issued after

some passes.

We start with the basic algorithm:

Algorithm MaxNewColour ([12]):

input: a p-edge-coloured graph G = (V,E)

output: a rainbow subgraph H ⊆ G

S1 choose a vertex v ∈ N(H), such that the degree d(v,G[H∪ {v}]) is maximal; add v and the

edges between v and H to H and delete all edges of these colours in G and the vertex v

S2 if there is no v in the neighbourhood of H left, choose an edge e ∈ E to start a new

component

We slightly altered step 1 as opposed to [12]. Now the algorithm deletes every chosen colour

and vertices for performance reasons.

In step 2 we have the possibility of different arguments of choice. We will also use this step to start

the algorithm, for H being empty at the beginning and therefore the neighbourhood of H being

empty, too. The most simple argument is to choose the next edge randomly. But this approach

seems to be very poor. As we have seen before, a well chosen starting edge can accelerate

the algorithm and rises the chance for a better approximation ratio. On the other hand, this

argument of choice is very cheap in terms of running time. Therefore, we execute the algorithm

on the same problem for some number of passes and take the smallest solution. When we refer

to MaxNewColour, we will always talk about the random choice version.

For complexity considerations we only need to take a closer look at step 1. The first edge is

chosen in step 2, then for every vertex in H, which are at first 2, then 3, 4, . . . vertices, the

neighbourhood is examined. From time to time, when there are no usable neighbours left, we

4.3. MaxNewColour 43

add two instead of one new vertex in step 2. Thus we have to check O(∆p2) times, leading to an

overall complexity of O(p3), since ∆ 6 p.

Another reason for a simple argument of choice like randomness arises from experimental data:

In [12] it was tested how often step 2 was actually used. Given random graphs on n vertices

with an edge probability p, we used two different approaches to colour the edges properly. KF1

was a simple random colouring with 2 · ∆(G) − 1 colours. Here every colour appears almost

equally. KF2 is a Greedy approach. It will start with edges with a large neighbourhood and uses

the smallest available colour. Obviously, this colouring results in a much smaller number of used

colours. Table 4.1 provides these results.

Tab. 4.1.: frequency of using step 2 in "smooth" graphs

n = 10 n = 10 n = 25 n = 25 n = 50 n = 50 n = 50

p = 0.2 p = 0.5 p = 0.2 p = 0.5 p = 0.2 p = 0.5 p = 0.8

KF1 1.38 1.16 1.34 1.12 1.12 1 1

KF2 1.12 1.04 1.32 1.22 1.28 1.3 1.1

Remark. We call these used graphs "smooth" for the edges being uniformly distributed with prob-

ability p. In addition to this we define "non-smooth" graphs, which arise from k random ("smooth")

graphs components connected by at most six edges.

Even for "non-smooth" graphs, the average number using step 2 turns out to be small. Table 4.2

shows the results with such graphs on n vertices.

Tab. 4.2.: frequency of using step 2 in "non-smooth" graphs

n = 15 n = 15 n = 25 n = 25 n = 25

k = 2 k = 3 k = 3 k = 4 k = 5

KF1 1.34 1.41 1.3 1.48 1.45

KF2 1.23 1.14 1.13 1.22 1.31

The number of vertices in the graphs is small due to the fact, that the algorithms were imple-

mented in MAPLE. Nonetheless, it is noticeably that the algorithm has to start a new component

very rarely.

4.3. MaxNewColour 44

Another simple argument of choice is realized in the version we call MaxNewColourDelta. The

goal is to choose an edge with a large neighbourhood. Therefore, at the beginning we calculate

the size of every edge’s neighbourhood and sort the edges according to that. If H turns out

not being expandable in step 1, we choose an edge of an unused colour, having the largest

neighbourhood at the beginning of the algorithm. In this case the complexity differs only at

the beginning. Building up the edge ordering consists mainly of sorting, which can be done in

O(np · lnnp). Thus the overall complexity results in O(p3 + np · lnnp).

Up to now the versions of the algorithm did not pay any attention to the number of colours that a

new vertex provides in the next step. Now we will change this. In the version MaxNewColourBunt

the algorithm will take, out of the set of vertices adding the largest number of new colours to

H, that one with the largest neighbourhood. In step 2 we choose an edge which the largest

number of adjacent new colours. Therefore we not only need to check the degree of a vertex v

with respect to H, but also outside H∪
{
v
}
. But this can be done in the same step, so we end up

again with O(np · lnnp).

For the last variant we thought of starting with colours, that appear only a few times. Frequent

colours are simple being added, because the chance of finding them in the neighbourhood of

H is large. So we start with counting the number of appearance for each colour and sorting this

list. Every time the algorithm is forced to execute step 2, it will take a random edge of a colour,

which is not included in H until now, but occurs as rare as possible. This algorithm was designed,

likewise the basic one, to be executed several times. Here the big advantage is, that the sorting

step is only needed once. This variant is called MaxNewColourFH.

The complexity differs from the one of the basic algorithm in counting and sorting, which can be

realized in O(np+ p log lnp). This leads to O(np+ p3).

We will merge these results in the following theorem:

Theorem 4.7. Let G be a proper p-edge-coloured graph on n vertices and with maximum degree

∆. Then the variants of the algorithm MaxNewColour have the run-time complexities as shown as

in Table 4.3.

Remark. We did not pay any attention to the part, where the algorithm deletes the already added

colours. We state that the complexity concerning this step can be neglected by using effective

4.3. MaxNewColour 45

Tab. 4.3.: run time complexity for MaxNewColour and its variants

MaxNewColour O(p3)

MaxNewColourDelta O(p3 + np · lnnp)

MaxNewColourFH O(np+ p3)

MaxNewColourBunt O(p3 + np · lnnp)

data structures handling the graph. Otherwise deleting would mean checking every edge in G

for its colour, which can be done in O(np).

Compared with the complexities in [12], the results presented vary. The reason is that we tried

to make a much closer estimation and constrained ourselves to results only using the number

of different colours p and the maximum degree ∆ as parameters. Surely, the maximum degree

could be approximated by p as well, but in our opinion this would lead to a way too loose

approximation. Furthermore, we did not consider special implementations using MAPLE, as

done in the paper.

In [12] the variants of MaxNewColour were compared with respect to their running time on some

example graphs. The algorithms were tested on the two different colourings KF1 and KF2 given

above. In order to compare the algorithms, a set of graphs was created and all algorithms were

executed on these ones. Afterwards we calculated the average order of the solutions found. If

there are numbers in the brackets behind an algorithm, then it means, that we have run this one

as many times as given. The results are presented in the following four tables 4.4 to 4.7.

Let’s have a closer look at the approximation ratio of the several versions of the algorithm.

For MaxNewColour we are not able to guarantee a better solution than the worst case solution,

namely p single edges, one for each colour. Since the basic version chooses the starting edge and

the ones in step 2 randomly, we can say that MaxNewColour has a guaranteed approximation

ratio of
√

2p, using the lower bound of Fact 2.2. The same is true for MaxNewColourFH, since

the edge in step 2 is, again, chosen randomly in the set of edges of a fewest appearing colour.

In the case of MaxNewColourDelta we choose an edge with largest neighbourhood in step 2.

4.3. MaxNewColour 46

Tab. 4.4.: average order of the solutions with MaxNewColour in "smooth" graphs coloured by KF1

n = 25 n = 25 n = 50 n = 50 n = 50

p = 0.2 p = 0.5 p = 0.2 p = 0.5 p = 0.8

MaxNewColour 12.6 13.9 17.3 19.4 20.2

MaxNewColourDelta 12.2 13.7 16.9 19.2 20.3

MaxNewColourFH 12.0 13.5 17.0 19.4 20.1

MaxNewColourBunt 11.6 13.3 16.3 18.7 19.6

MaxNewColour (20) 11.2 12.6 15.5 18.0 19.0

MaxNewColour (50) 11.1 12.4 15.3 17.8 18.8

MaxNewColourFH (20) 11.6 12.9 15.9 18.2 19.1

Tab. 4.5.: average order of the solutions with MaxNewColour in "smooth" graphs coloured by KF2

n = 25 n = 25 n = 50 n = 50 n = 50

p = 0.2 p = 0.5 p = 0.2 p = 0.5 p = 0.8

MaxNewColour 8.2 9.6 11.8 14.4 16.5

MaxNewColourDelta 7.5 9.7 10.9 14.1 16.8

MaxNewColourFH 7.4 8.7 10.5 13.1 15.7

MaxNewColourBunt 7.3 8.8 10.3 13.0 15.6

MaxNewColour (20) 6.9 8.3 10.0 12.6 14.9

MaxNewColour (50) 6.8 8.2 9.8 12.4 14.7

MaxNewColourFH (20) 7.1 8.5 10.2 12.8 15.4

Remember that no further attention is paid on the number of distinct colours adjacent to this

edge. Therefore the worst case appears if a vertex of this edge is incident to the same colours

as the other one. This looks familiar. It is almost the same situation as choosing a star of largest

cardinality, leading to the approximation ratio of Theorem 4.1.

Now consider MaxNewColourBunt. If we need step 2, then an edge with the largest number

of unused colours adjacent to it is chosen. Assume that the minimum rainbow subgraph is

a complete graph. Then at the beginning of the algorithm the neighbourhood of every edge

4.3. MaxNewColour 47

Tab. 4.6.: average order of the solution with MaxNewColour in "non-smooth" graphs coloured by KF1

n = 25 n = 25 n = 25

k = 3 k = 4 k = 5

MaxNewColour 11.5 11.4 11.6

MaxNewColourDelta 11.3 11.4 11.7

MaxNewColourFH 10.8 10.9 11.2

MaxNewColourBunt 10.4 10.3 10.6

MaxNewColour (20) 10.0 10.0 10.2

MaxNewColour (50) 10.0 9.9 10.2

MaxNewColourFH (20) 10.3 10.4 10.7

Tab. 4.7.: average order of the solution with MaxNewColour in "non-smooth" graphs coloured by KF2

n = 25 n = 25 n = 25

k = 3 k = 4 k = 5

MaxNewColour 7.92 8.02 7.94

MaxNewColourDelta 7.78 7.92 7.79

MaxNewColourFH 6.96 7.04 6.85

MaxNewColourBunt 6.95 6.96 6.86

MaxNewColour (20) 6.56 6.64 6.48

MaxNewColour (50) 6.50 6.58 6.43

MaxNewColourFH (20) 6.83 6.83 6.67

consists of exactly 2(n − 2) unused colours. The worst case arises if the algorithm chooses an

edge e with this configuration, but no other colour in N[N[e]]. Therefore it added 2 + 2(n − 2)

vertices and 2(n− 2) + 1 colours to H and

(
n

2

)
− (2n− 3) =

n2 − 5n+ 6
2

=

(
n− 2

2

)

edges, respectively colours, are left. A new edge is needed and we can apply this procedure

4.3. MaxNewColour 48

again, assuming that the optimal solution for the rest is complete. It leads to

|V(H)| 6

dn−1
2 e∑
k=1

2 + 2(n− 2k) =

n
2∑
k=1

4k− 2 =
n2 − 4n

2
, if n even,

n−1
2∑
k=1

4k =
n2 − 3n+ 2

2
, if n odd.

For this reason the approximation ratio is
∆

2
+

∆

2(∆+ 1)
.

The next theorem provides an overview over the complexities:

Theorem 4.8. Let G be an p-edge-coloured graph with maximum degree ∆(G) = ∆ and an

optimal MRS-solution F. Then the variants of MaxNewColour provide solutions with the following

approximation ratios:

Tab. 4.8.: approximation ratios of MaxNewColour

MaxNewColour
√

2p

MaxNewColourDelta
∆

2
+

ln∆+ 1
2

MaxNewColourFH
√

2p

MaxNewColourBunt
∆

2
+

∆

2(∆+ 1)

49

5. What is real data telling us?

As seen before, the foundations of the MRS problem came from the bioinformatics. Therefore,

instead of studying MRS on general graphs, graphs derived from real data, i.e., graphs con-

structed out of a given set of genotypes, may have some certain properties leading to more

efficient heuristics attacking MRS. For example, instances only consisting of genotypes with at

most one SNP would lead to graphs, where every colour appears exactly once.

In the following chapter we will discuss structural characteristics of graphs corresponding to a set

of genotypes. For short, we call such graphs real data graphs. Notwithstanding, these graphs

will not necessarily refer to real biological problem instances of pure parsimony haplotyping.

We start with a closer look at the number of 2-entries in the genotypes:

Theorem 5.1. Let G = (V,E) be a real data graph and G the corresponding set of genotypes.

Then G is bipartite if there is no genotype g ∈ G with an even number of 2-entries.

Proof. For the proof we will identify the vertices of G with the corresponding haplotypes explain-

ing the genotypes of G. Suppose that all genotypes g ∈ G have an even number of 2-entries.

At first assume there is a triangle consisting of the three vertices a,b, c ∈ V. W.l.o.g. let a and b

be of the form (i, j,k, l,m ∈ N)

a =

2i+1︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

2j+1

11 . . . 11︸ ︷︷ ︸
2k

00 . . . 00︸ ︷︷ ︸
2l+1

00 . . . 00︸ ︷︷ ︸
2m

00 . . .

b =

2i+1︷ ︸︸ ︷
00 . . . 00︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k

00 . . . 00︸ ︷︷ ︸
2l+1

00 . . . 00︸ ︷︷ ︸
2m

00 . . .

5. What is real data telling us? 50

The number at the braces indicates the length of this block in the vector. Let |x|r denote the

number of rs in the entries of the vector x.

In order to get an odd number of 2s in b+ c, there are the following possible cases:

(i)

c =

2i+1︷ ︸︸ ︷
00 . . . 00︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k

11 . . . 11︸ ︷︷ ︸
2l+1

00 . . . 00︸ ︷︷ ︸
2m

00 . . .

But then |(a+ c)|2 = (2i+ 1) + (2l+ 1) is even, a contradiction.

(ii)

c =

2i+1︷ ︸︸ ︷
00 . . . 00︸ ︷︷ ︸

2j+1

11 . . . 11︸ ︷︷ ︸
2k

11 . . . 11︸ ︷︷ ︸
2l+1

00 . . . 00︸ ︷︷ ︸
2m

00 . . .

But then, again, |(a+ c)|2 = (2j+ 1) + (2l+ 1) is even.

(iii)

c =

2i+1︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k

00 . . . 00︸ ︷︷ ︸
2l+1

11 . . . 11︸ ︷︷ ︸
2m

00 . . .

This time |(a+ c)|2 = 2k+ 2m, which is, of course, an even number.

Therefore such a triangle does not exist.

By the way, in almost the same way we can conclude that there is no triangle consisting of two

genotypes with an even number of 2s and only one with an odd, say |a+b|2 and |a+c|2 is even,

but |b+ c|2 is odd. Let here w.l.o.g. a and b of the form (i, j,k, l,m,n ∈ N):

a =

2i︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

2j+1

11 . . . 11︸ ︷︷ ︸
2k+1

11 . . . 11︸ ︷︷ ︸
2l

00 . . . 00︸ ︷︷ ︸
2m+1

00 . . . 00︸ ︷︷ ︸
2n

00 . . .

b =

2i︷ ︸︸ ︷
00 . . . 00︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k+1

00 . . . 00︸ ︷︷ ︸
2l

00 . . . 00︸ ︷︷ ︸
2m+1

00 . . . 00︸ ︷︷ ︸
2n

00 . . .

(i)

c =

2i︷ ︸︸ ︷
11 . . . 11︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k+1

00 . . . 00︸ ︷︷ ︸
2l

11 . . . 11︸ ︷︷ ︸
2m+1

00 . . . 00︸ ︷︷ ︸
2n

00 . . .

But then |b+ c|2 = (2j+ 1) + (2m+ 1) is even, too.

5. What is real data telling us? 51

(ii)

c =

2i︷ ︸︸ ︷
00 . . . 00︸ ︷︷ ︸

2j+1

00 . . . 00︸ ︷︷ ︸
2k+1

11 . . . 11︸ ︷︷ ︸
2l

00 . . . 00︸ ︷︷ ︸
2m+1

11 . . . 11︸ ︷︷ ︸
2n

00 . . .

Here |b+ c|2 = 2l+ 2n is even, again.

But a triangle with exactly two genotypes having an odd number of 2s is possible, see

a = 111, b = 000, c = 100.

Furthermore, a triangle consisting of genotypes with an even number of 2-entries is possible,

too. Here you may consider

a = 000, b = 101, c = 110.

Now we take a closer look on an arbitrary odd cycle Ck = v1v2 . . . vkv1. Then only an even

number of genotypes gi = vi ⊕ vi+1, where i ∈
{
1, 2, . . . , k

}
mod k, may have a 2 at site j.

Otherwise, consider this number t being odd. If t = k and site j is 0 in v1, then this site has to

be a 1 in every haplotype of even order and a 0 in every haplotype of odd order. Following this

we must have a 1 in v1, a contradiction.

Thus, if t is odd, it has to be less than k. But then we can decompose the Ck into paths

P1,P2, . . .Ps, for some s ∈ N, such that P1 = v1v2 . . . va, P2 = vava+1 . . . vb, . . . , Ps =

vcvc+1 . . . vkv1, with 1 < a < b < c 6 k, and the corresponding genotypes alongside one

path equal at position j. Furthermore, the ambiguous position j differs in paths sharing an end

vertex.

Obviously, there has to be at least one path of odd length with the genotypes having a 2 at

position j. Assume P1 is such a path. Then the end vertices of P1 differ at the jth position, say for

v1 we have a 0, respectively for va we have a 1. If the rest of the paths with a 2 in the genotypes

at site j are of even length, then this site is a 1 in Ps, a contradiction. But if there is another path

of odd length with a 2 at the ambiguous site, then we have an even number of genotypes with a

2-entry at position j and we need a third path of odd length and so on.

We see, for each position j we have an even number of genotypes with a 2 at this ambiguous site

in our Ck. Thus, if we have 2l genotypes G∗ =
{
g1,g2, . . . ,g2l

}
(l being an integer less than

k

2
)

5. What is real data telling us? 52

with a 2-entry at position one, then we may have one of the following three cases for the second

site:

• None g ∈ G∗ has a 2 at the second position: Then we have 2l ′ other genotypes having a

2 at this position, where l ′ is an integer less than
k

2
− l. But now we end up with an even

number of genotypes with a 2 at one of the first two sites, which is similar to the situation

at the begin of the case analysis.

• An even number of genotypes g ∈ G∗ has a 2-entry at the second position. Then, only

considering the first and second site, we have an even number of genotypes with two

2-entries, and an even number with one 2-entry, which is again the situation from the start.

• An odd number of genotypes g ∈ G∗ has a 2-entry at the second postion. But then there

has to be an odd number of genotypes with a 2 at the second, but no 2 at the first position.

This again ends up in an even number of genotypes with exactly one 2-entry in the first two

positions.

We can generalize this procedure and will always end up with an even number of genotypes

having an odd number of 2-entries, which is a contradiction to the existence of such a Ck.

Therefore G has to bipartite. q.e.d.

Another interesting question is the distribution of the colours in G. If you guarantee, e.g., that

a colour is not likely to be repeated in the closer neighbourhood of a vertex, then taking larger

subgraphs in the heuristics would not impair the approximation ratio that much.

Theorem 5.2. Let G = (V,E) be a real data graph and G the corresponding sets of genotypes.

Then there are no dichromatic cycles or paths of length 4 or longer.

Proof. First assume that there is a dichromatic C4 = abcda with a,b, c,d ∈ V. Let us denote by

xi the ith position of the corresponding haplotype to the vertex x ∈ {a,b, c,d}. W.l.o.g. assume

that ai+bi = ci+di and bi+ ci = di+ai, since ab, cd and bc, da are coloured with the same

colour. Let i be fixed for the following enquiry:

(A) bi + ci = 2

(i) If ai + bi = 2, too, then also ci + di = 2.This leads to ai = ci and bi = di.

5. What is real data telling us? 53

(ii) For ai + bi 6= 2, we have ai = bi and of course ci = di. With ai + bi = ci + di, this

is a contradiction to bi 6= ci.

(B) bi + ci 6= 2, i.e., bi = ci.

(i) If ai + bi = 2, then ai 6= bi and ci 6= di, leading to bi + ci 6= ai + di. I.e., there has

to be a third colour, a contradiction.

(ii) On the other hand, if ai + bi 6= 2, then ai = bi = ci = di.

Only a combination of the cases A (i) and B (ii) could lead to a dichromatic C4, but as you see,

this would mean that ai = ci and bi = di, for all positions i in the corresponding haplotypes, a

contradiction.

Now consider a dichromatic P5 = abcde with a,b, c,d, e ∈ V and ai + bi = ci + di, bi + ci =

di+ ei. As seen before, if bi+ ci = 2 and ab, cd are of the same colour, i.e., the corresponding

haplotypes can form the same genotype, then ai + bi and ci + di must be a 2, too. The same

is true for ci + di = 2, meaning if we have a 2-entry in any of the colours, then there is a 2

at the same position in the other colour, too. Furthermore, remembering case B (ii), the same

appears for non-2-entries. Therefore, if there is a dichromatic P5, then the five vertices cannot

be distinct. q.e.d.

Corollary 5.1. Let G be a real data graph and G ′ ⊂ G a subgraph of G. If G ′ ∼= K4, then

rs(G ′) > 5.

The question remains, what happens for larger complete subgraphs. For small instances of n,

you can simply try and count the number of colours in a Kn. If we denote the minimum number

of colours, that you find in a complete subgraph Kn of a real data graph G, by rd(G), then in

Table 5.1 this number is given for complete real data graphs on two up to seven vertices.

Tab. 5.1.: minimum number of distinct colours in complete real data graphs

rd(K2) = 1 rd(K5) = 9

rd(K3) = 3 rd(K6) = 12

rd(K4) = 5 rd(K7) = 16

5. What is real data telling us? 54

Certainly it would be more convenient to find a closed formula for this number instead of ruling

it out by try and error. The most promising subgraphs for such a formula seem to be subgraphs,

where the order is a power of 2. It appears that in this case rd(K2n) > 3n − 2n. The conjecture

arises from genotypes of length n. If the set G consists of all possible genotypes of length n, then

it corresponds to the complete graph of order 2n with an edge colouring on 3n − 2n colours.

Conjecture 1. Let G = (V,E) be a real data graph and K ⊂ G a complete subgraph of G. Then

the minimum number of colours in K is given by

rd(K) >

3n − 2n , if n(K) = 2n

3n − 2n − n , if n(K) = 2n − 1

3n , if n(K) = 2n + 1.

For a short motivation of these bounds, consider in the case n(K) = 2n − 1 that we delete a

vertex of a real data K2n . Then the best chance to end up with less colours is that we delete in this

procedure a lot of edges of single occurring colours. Since the corresponding haplotype of this

deleted vertex is fixed and a single colour refers to a genotype with exactly one 2-entry, we loose

at most n such colours, preconditioned rd(K2n) = 3n − 2n being best possible. On the other

hand if, we add a new vertex to an, by assumption, optimal coloured real data K2n representing

genotypes of length n, then it will differ in at least one position in with every other genotype.

(Assume that we extend every "old" genotype with one new position.) But then the incident edges

of this new vertex are all distinct, even from the "old" edges. So we have 2n new colours.

55

And the work goes on and on

In the present thesis we took a closer look at the Minimum Rainbow Subgraph problem. Starting

with a short introduction to its biological roots and first approaches from the bioinformatics,

we translated the problem into mathematics and developed a graph theoretical model, the

Minimum Rainbow Subgraph problem. It turned out that, beside the original problem (given a

set G of genotypes, find a set H of haplotypes of minimum cardinality such that H explains G), the

more general problem (given a p-edge-coloured graph G, find a subgraph F ⊂ G of minimum

order and size p such that every colour occurs once in F) is hard to attack but, nevertheless, very

interesting to work with.

After some observations concerning the complexity and approximability, we addicted the main

part of the thesis to present several algorithmic approaches tackling the problem. We discussed

three different greedy algorithms (Greedy star, MRS matching and MRSk) in terms of their run-

ning time and approximation ratio. Furthermore, the complexity consideration made for Greedy

star led to results, which could be used to observe guarantees for the maximum order of solu-

tions found by several other heuristics. We continued with the local colour density, a measure for

possibly good seed of small rainbow subgraphs, and developed algorithms using this argument

of choice. The final part of this chapter was dedicated to a family of algorithms, called MaxNew-

Colour. Using the same algorithmic body, we tried several approaches in order to chose "good"

new vertices. The following Table 5.2 provides an overview of the algorithms and their run-time

complexity and approximation ratio.

These results show, that the Minimum Rainbow Subgraph problem is indeed difficult to handle

and even hard to approximate. More efforts must be taken to find better and faster algorithms.

One promising approach for future work may be taking a closer look at the so-called real

data graphs, as introduced in Chapter 5. We presented some first remarks on their special

5. What is real data telling us? 56

Tab. 5.2.: comparison of the discussed algorithms

algorithm complexity ratio

Greedy star pn
∆

2
+

ln∆+ 1
2

MRS matching np2 + p
5
2

3
4
∆+

1
2(∆+ 1)

MRSk pk2nk
1
2
+

pk

(k− 1)(∆+ 1)

SortLCD p2n2
√

2p

LCDk p3k2nk
∆

2
+

ln∆+ 1
2

MaxNewColour p3
√

2p

MaxNewColourDelta p3 + np · lnnp ∆

2
+

ln∆+ 1
2

MaxNewColourFH np+ p3
√

2p

MaxNewColourBunt p3 + np · lnnp ∆

2
+

∆

2(∆+ 1)

structure, but more investigation is needed in order to develop algorithms fitting these special

colourings. Maybe a first step would be to tackle Conjecture 1. The advantage might be that

small dense subgraphs guarantee a larger number of distinct colours than arbitrary subgraphs of

the same order. Here "dense" is being conceived as complete. But in general even the expensive

lcd value, the local colour density of Chapter 4, might be a powerful instrument worth further

consideration.

On the other hand, more work has to be done in order to improve the algorithms for general

graphs. Without any information on special substructures or the like it seems hard to find fast

algorithms guaranteeing an approximation ratio near 1 + ε. One of the properties, speed or

accuracy, has to be relaxed in order to strengthen the other.

Another possible approach is the search for other graph classes reducing the hardness of the

MRS problem. We showed that even a maximum degree of ∆ = 2 forced NP-hardness. So this

seems a quite challenging task, too, but nevertheless worth trying.

5. What is real data telling us? 57

Concluding, this thesis is only an introduction, a first step into the so far hardly explored world

of minimum rainbow subgraphs. We were able to provide some basic concepts and to initially

check the boundaries of the problem. Until now a lot remains unseen, a lot has to be uncovered

and proved.

58

Bibliography

[1] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, Haplotyping as perfect phylogeny: a direct approach, Journal

of Computational Biology 10 (2003), no. 3-4, 323-340. ↑7, 10

[2] P. Berman and M. Karpinksi, On some tighter inapproximability results, Proc. of the 26th. Int. colloquium on

Automata, Languages and Programming, in Lecture Notes in Comput. Sci., Vol. 1644, Springer, Berlin, 1999,

pp. 100-209. ↑21

[3] P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li, The haplotyping problem: an overview of computational

models and solutions, J. Comput. Sci. Technol. 18 (2003), no. 6, 675-688. ↑11

[4] N. Christofides, Worst-case analysis of a new heuristioc for the travelling salesman problem, Technical Report

388, Graduate School of Industrial Administration, Carnegie Mellon University, 1976. ↑6

[5] A. Clark, Inference of haplotypes from PCR-amplified samples of diploid populations, Molecular Biology and

Evolution 7 (1990), 111-122. ↑11

[6] J. Edmonds, Paths, trees, and flowers, Cand. J. Math. 17 (1965), 449-467. ↑14

[7] E. Eskin, E. Halperin, and R. Karp, Efficient reconstruction of haplotypestructure via perfect phylogeny, Journal

of Bioinformatics and Computational Biology 1 (2003), no. 1, 1-20. ↑7, 10

[8] L. Excoffier and M. Slatkin, Maximum-likelihood estimation of molecular haplotype frequencies in a diploid pop-

ulation, Molecular Biology and Evolution 12 (1995), no. 5, 921-927. ↑14

[9] D. Gusfield, A practical algorithm for optimal inference of haplotypes from diploid populations, Proceedings of

the Annual International Conference on Intelligent Systems for Molecular Biology (USMB) (R. Altman, T.L. Bailey,

P. Bourne, M. Gribskov, T. Lengauer, I.N. Shinyalov, L.F. Ten Eyck, and H. Weissig, eds.), AAAI Press, Menlo Park,

CA, 2000, pp. 183-189. ↑11

[10] D. Gusfield, Inference of haplotypes from samples of diploid populations: Complexity and algorithms, Journal of

Computational Biology 8 (2001), no. 3, 305-324. ↑7, 11

[11] D. Gusfield, Haplotype inference by pure parsimony, Proceedings of the Annual Symposium on Combinatorial

Pattern Matching (CPM), Lecture Notes in Computer Science, vol. 2676, 2003, pp. 144-155. ↑11

BIBLIOGRAPHY 59

[12] F. Heinicke, Praktikumsbericht - Heuristiken für das Regenbogenproblem, Hochschule Mittweida, TU

Bergakademie Freiberg, 2009. ↑39, 41, 42, 43, 45

[13] J.E. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2

(1973), 225-231. ↑14

[14] Y.-T. Huang, K.-M. Chao, and T. Chen, An approximation algorithm for haplotype inference by maximum parsi-

mony, J. Comput. Biol. 12 (2005), no. 10, 1261-1274. ↑7, 14

[15] E. Hubbel, Finding a Maximum Parsimony Solution to haplotype Phase is NP-hard, 2001, personal communica-

tion. ↑11, 13

[16] The International HapMap Consortium, A Haplotype Map of the Human Genome, Nature 437 (2005), 1299-

1320. ↑9

[17] J. Katrenič and I. Schiermeyer, Improved approximation bounds for the minimum rainbow subgraph problem,

Information Processing Letters 111 (2011), 110-114. ↑21, 36, 37, 38

[18] M. Koch, Das Population Haplotyping Problem: Graphentheoretische Ansätze, TU Bergakademie Freiberg, 2008.

↑23, 24, 25

[19] M. Koch, S. Matos Camacho, and I. Schiermeyer, Algorithmic approaches for the minimum rainbow subgraph

problem, Elec. Notes in Disc. Math. 38 (2011), 765-770. ↑23, 24

[20] D. König, Graphs and matrices, Mat. Fiz. Lapok 38 (1931), 116-119 (Hungarian). ↑14

[21] A. Kotzig, From the theory of finite regular graphs of degree three and four, Časopis Peětov. Mat. 82 (1957),

76-92. ↑32

[22] G. Lancia, C.M. Pinotti, and R. Rizzi, Haplotyping populations by Pure Parsimony: Complexity of Exact and

Approximation Algorithms, INFORMS Journal on Computing 16 (2004), no. 4, 348-359. ↑6, 9, 10, 12, 13, 14

[23] G. Lancia and R. Rizzi, A polynomial case of the parsimony haplotyping problem, Oper. Res. Lett. 34 (2006),

289-295. ↑14

[24] S. Matos Camacho, I. Schiermeyer, and Z. Tuza, Approximation algorithms for the minimum rainbow subgraph

problem, Disc. Math. 310 (2010), 2666-2670. ↑21, 22, 26, 31, 32

[25] S. Micali and V.V. Vazirani, An O(
√
|V | · |E|) algorithm for finding maximum matching in general graphs, Proc.

Twenty-first Annual Symposium on the foundations of Computer Science (FOCS), 1980, pp. 17-21. ↑35

[26] R. Sharan, B.V. Halldorsson, and S. Istrall, Islands of Tractability for Parsimony Haplotyping, IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics 3 (2006), no. 3, 303-311. ↑17, 18

[27] R.S. Wang, X.S.Zhang, and L. Sheng, Haplotype inference by pure parsimony via genetic algorithm, Lecture notes

on Operation Reasearch (ISORA2005) 5 (2005), 308-318. ↑14

[28] D.B. West, Introduction to Graph Theory, 2nd, 2001. ↑16

