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Chapter 1

Introduction

Within the past decades, wavelets and associated wavelet transforms have been intensively

investigated in both applied and pure mathematics. They and the related multi-scale analysis

provide essential tools to describe, analyse and modify signals, images or, in rather abstract

concepts, functions, function spaces and associated operators. A comprehensive exposition

about the theory is given for instance by Daubechies [Dau93] and Coifman-Mayer [MC97].

One of the reasons for the great interest in this subject is that one of their applications is

the �eld of signal processing and compression, which is becoming more and more important

in our technological world. Since the early 1990s, wavelet transform has been propagated as

a mile stone in image and audio compression, and the methods currently used are based on

wavelets. An introductory book on wavelet theory is provided in [LMR94].

A mathematically important milestone was the development of the Fourier transform, which

was introduced in the famous "Théorie analytique de la chaleur" by Jean Baptiste Joseph

Fourier in 1822. There it was described the decomposition of a signal into frequencies and

amplitudes. The wavelet transform is an improvement on this theory, which is motivated by

the necessity of a more �exible tool.

The most in�uential constructions of wavelets in Rn can be found in the works of Haar [Haa11],
Grossmann Morlet [GM84] and Daubechies [Dau88].

Theoretical investigations in that direction belong to the �eld of harmonic analysis. From the

modern point of view, harmonic analysis is the theory of locally compact groups. By having a

look at this abstract approach, the algebraic structure behind wavelet transforms and related

questions is revealed.

The constructions of wavelet transforms can be entirely based on an abstract group-theoretical

and representation-theoretical approach. An abstract exposition of this topic can be found

in Kisil [Kis99b], [Kis99a]. For the particular situation of the Lorentz group SO(n + 1, 1)

acting on the sphere Sn, an associated wavelet construction was carried out by Antoine and

Vandergheynst [AV99], [ADJV02]; see also [Fer09], [Fer08]. Their approach is extended to

further non-Euclidean manifolds such as the hyperboloid, by Bogdanova [Bog05].

9



10 CHAPTER 1. INTRODUCTION

We aim to investigate functions on Lie groups and homogeneous spaces. Thereby our desire

is to develop wavelets on these manifolds. Therefore we have to discuss the harmonic analysis

in a very general way such that its algebraic and group theoretical nature can be understood.

It is also important to look at the wavelet transform from the group theoretical point of view

in order to formulate (admissibility) conditions for wavelets.

An alternative approach to wavelets was followed by Coifman-Maggioni [CM06] and on the

sphere By .

Classical wavelet theory on Rn is based on the group which is generated by translations and

dilations. It is evident that translations are rotations on a sphere (seen as homogeneous

space of the rotation group), but there is no canonical choice for dilations. Some alternative

constructions on the sphere are given by Freeden [FGS98] or for graphs there are constructions

by Coifman-Maggioni [CM06]. The key idea of di�usive wavelets is to generate dilations from

a di�usive semigroup, e.g. from time evolution of fundamental solution to the heat equation

on the homogeneous space. The advantage of using compact groups is the availability of

powerful tools like the Peter-Weyl theorem and the connected classi�cations of irreducible

representations. A related concept which is based on spectral calculus of the Laplace operator

on closed manifolds was proposed by Geller [GM09].

Discrete wavelet transforms in such a setting were discussed in [CM06] and [BCMS06], where

heat evolution is combined with an orthogonalization procedure to model a multi-resolution

analysis within L2(S3).

Due to the generality of this concept, we can formulate a Fourier analysis on compact Lie

Groups, homogeneous spaces, and also some noncompact manifolds.

The Fourier analysis on these manifolds helps us to solve partial di�erential equations such as

the heat equation, as our most important application. The analytical approach for wavelets

uses semigroups of operators. The fundamental solution of the heat equation is the basis for

the semigroup of convolution operators, which we use to formulate di�usive wavelets.

The structure of the present thesis is as follows. At �rst, we give an introduction about the

harmonic analysis on compact Lie groups by using the group theoretical approach. Therefore,

important points and relations between famous theorems of representation theory are worked

out and discussed in an appropriate way for our use. Since we aim to discuss the harmonic

analysis on manifolds, especially on Lie groups, the necessary theory of Lie groups and Lie

algebras is presented emphasizing its relation to geometrical and analytical aspects.

In the third chapter, we describe the basic idea of di�usive wavelets and we formulate the

theory for compact Lie groups and their homogeneous spaces.

We discuss special cases of di�usive wavelets which possess additional symmetries, in the

sense that they are invariants under the action of some group. The construction of wavelets

possessing those symmetries is also investigated in [BBCK10].

In the fourth chapter, we discuss a row of important examples for which the explicit realization

of wavelets is given in terms of their Fourier series. The torus is the most natural manifold
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to discuss wavelets, since the periodizations of functions in Rn can be regarded as functions

on the torus of appropriate dimension. The Fourier analysis of those functions simpli�es to

the usual exponential Fourier series. Hence the form of the wavelets on the torus is easy to

understand and can even be visualized.

Another object of great interest is the sphere, since it appears in many applications. For in-

stance in geoscience the case of the two-dimensional sphere is interesting [FGS98, Fer09, AV07].

Other �elds, e.g. texture analysis, ask for wavelets on the rotation group SO(3) and its dou-

ble covering manifold which is the three-dimensional sphere ([BS05, Hie07, BE10] and others).

In [Ebe08] constructions of wavelets on S3 are discussed. We investigate the n-dimensional

sphere as homogeneous space SO(n+1)/SO(n). Thus, we also discuss the n-dimensional rota-

tion group as the �rst non-commutative example of a compact Lie group. Here, we formulate

the general construction and we also consider special cases, such as zonal wavelets which are

common for spherical constructions. Especially for applications, the discretization of wavelets

is an important task. Nevertheless we do not aim here to discretize our wavelet. We only give

some hints in Section 3.4.1 about scale-discretized wavelets.

A crucial point for the construction on Lie groups is the existence of a Plancharel measure,

which is ensured in the compact case. In the noncompact case, our constructions will work if

the Plancharel measure exists.

As noncompact example we consider the Heisenberg group. The Heisenberg group is one

of the most important Lie groups in time-frequency analysis and the Plancharel measure

is explicitly known [Str91], [Tha98]. Furthermore the construction on compact groups uses

the Peter-Weyl theorem which requires the compactness of the group. For the Heisenberg

group all the irreducible representations are characterized by the Stone von-Neumann theorem.

As appropriate equation for our di�usion process on the Heisenberg group, we use the heat

equation with respect to the sub-Laplacian, since its natural structure is the sub-Riemannian

one.

Another interesting example is the spin group Spin(m). In [Som96], we �nd an outline for

properties about functions on Spin(m). We consider and develop it to introduce di�usive

wavelets on Spin(m). In [CFKS07], [CFK06] we can also �nd some investigations of wavelets

related to Cli�ord analysis. For our investigations, we have to discuss the representations of

Spin(m). We know half of the representations of Spin(m) from the rotation group SO(m),

since Spin(m) is a double covering of it, but this is not enough. For a comprehensive discussion

we have to introduce weights and routs of all irreducible representations; in that way all

irreducible representations can be characterized and explicitly realized, see [VLSC01].

We introduce Spin(m) as a group in the Cli�ord algebra and we aim to construct di�usive

wavelets on Spin(m) also for Cli�ord valued functions. In order to give a clear exposition we

will present the necessary calculations extensively, at least in the Appendix. As a homogeneous

space of Spin(m+ 1) we will consider the sphere Sm.

In the closing chapter we consider the Radon transform as a further object of interest, where
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the theory of di�usive wavelets can be applied successfully. The amount of publications and

results in this research �eld is huge. We consider the Radon transform on compact Lie groups

and we rewrite it in our language for compact Lie groups. The resulting transform di�ers

from that one investigated by Helgason [Hel99, Hel11]. The Radon transform of our type is

motivated by some applications in texture analysis during the investigation of crystals with

respect to their structure.

The Radon transform can be inverted with the help of di�usive wavelets, for the special case

of SO(3), which comes from the application in texture analysis. The fact that the Radon

transform of wavelets on SO(3) gives wavelets on S2 is described in detail. The related

concept of Gabor frames enables an inversion too, see [CFKT11].

For applications, it is not possible to measure all the data which give the continuous Radon

transform. Consequently, we can only consider a �nite set of measurements. The inversion of

this incomplete1 Radon transform is discussed in Section 5.2. A work of Peasenson [Pes04]

�ts very well to our situation.

Eventually, we are able to formulate a Shannon-sampling-theorem for compact Lie groups

which assumes a very convenient form in terms of representation theory. Beside the theoretical

value of the Shannon-sampling theorem, it can also be used to discuss many questions for the

applications, such as the optimal choice of points of measuring to obtain a stable inversion.

1in the sense that there are only �nitely many measurements



Chapter 2

General theory

2.1 Preliminaries on representation theory

The list of literature about Lie groups is enormous long and even if we restrict to the very

important contributions, we can not list an appropriate collection here. A collection of im-

portant theorems and proofs is given by Fegan in [Feg91]. More detailed investigations can

be found in [Bum04] and a comprehensive overview of the theory and explicit examples are

given by the three books of Vilenkin and Klimyk [VK93, VK91, VK92].

It is often seen, that authors consider Lie groups as matrix groups ([Bir37] for instance), at least

in the �nite dimensional case. This identi�cation is possible because there exists a faithful

representations of �nite dimensional Lie groups and in Rn (for n large enough). We start

by introducing the notion of representations. Afterwards we will also introduce the concept

of Fourier transform on compact Lie groups, which is closely connected to representation

theory. The Fourier expressed in terms of representation theory will turn out to be one of the

fundamental concepts for our study.

De�nition 2.1.1 (Representation). Let G be a Lie group and H a d-dimensional Hilbert

space with inner product 〈 , 〉H. Further GL(H) denotes the group of linear, invertible and

bounded operators on H. A representation of G in H is a continuous group homomorphism π

from G to GL(H), i.e. π : G → GL(H), with

π(g1g2) = π(g1)π(g2) ∀g1, g2 ∈ G,

π(e) = IdH,

where e denotes the unit element in G and IdH the identity mapping on H. The dimension of

the representation is denoted by dπ and equals the dimension of H.

A representation π is unitary if π(g) is an unitary operator for all g ∈ G.

A representation is faithful, if π is injective or equivalently π(g) 6= IdH for all g 6= e.

13



14 CHAPTER 2. GENERAL THEORY

Let πj be a representation in the Hilbert space Hj (j = 1, 2). One says, that π1 is equivalent

to π2 (writing π1 ∼ π2) if there exists a bounded, linear operator

A : H1 → H2

so that

Aπ1(g) = π2(g)A ∀g ∈ G.

A is called intertwining operator between π1 and π2.

This de�nes an equivalence relation on the set of irreducible representations and enables us

to investigate equivalence classes of representations.

Remark 2.1.2 (Integration on Lie groups). Integration on manifolds or Lie groups can be given

by the usual concept of partition of unity. On locally compact Lie groups we have an invariant

measure, the so called Haar measure, i.e.∫
G
f(g) dg =

∫
G
f(sg) dg left Haar measure∫

G
f(g) dg =

∫
G
f(gs) dg right Haar measure.

In case there exist a measure which is left- and right-invariant, G is called to be unimodular.

Every compact group is unimodular and the invariant measure is unique up to equivalence.

Furthermore, to every representation π in H can be associated an equivalent unitary repre-

sentation in the following way. Let 〈 , 〉 be the scalar product on H, then

(u, v) :=

∫
G
〈π(g)(u), π(g)(v)〉 dµ(g).

de�nes another scalar product in H. The integration is taken with respect to the (right-

invariant) Haar measure dµ. Obviously π is unitary with respect to the scalar product (·, ·)
on H, which is de�ned in (2.1.1):

(π(g)u, π(g)v) =

∫
G
〈π(g′)π(g)(u), π(g′)π(g)(v)〉 dµ(g′)

=

∫
G
〈π(g′g)(u), π(g′g)(v)〉 dµ(g′) = (u, v).

So it is enough to look at unitary representations.

De�nition 2.1.3 (irreducibility). Let π be a representation of G in H. A subspace U ⊂ H is

invariant under π if

{π(g)u, u ∈ U} ⊂ U ∀g ∈ G.

If the only invariant subspaces of π are the trivial ones (i.e. {0} and H), π is called to be

irreducible.
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Equivalently one can say that for any linear operator A : H → H, π(g)A = Aπ(g) implies that

A = c IdH for some constant c ∈ C. Later on a generalization of this fact will give Schur's

Lemma 2.1.6.

For two representations πj in Hj (j = 1, 2), the direct sum π1 ⊕ π2 of π1 and π2 in H1 ⊕H2

is given by

π1 ⊕ π2(g)(x, y) = π(g)(x, y) = (π1(g)x, π2(g)y), x ∈ H1, y ∈ H2, (2.1.1)

where in the above formula (π1(g)x, π2(g)y) should be understood as a pair and not as an

inner product.

In this way the direct orthogonal sum
∑⊕

n Tn is de�ned and can be extended to the direct

integral
∫ ⊕

Λ Tλ dµ(λ) of representations, where dµ denotes the Plancherel measure.

If π1 and π2 are irreducible representations of dimension d1 and d2, the direct sum π1 ⊕ π2 is

a reducible representation of dimension d1 + d2, which posses exactly two nontrivial invariant

subspaces, namely (0,H2) and (H1, 0). The restriction of π1 ⊕ π2 to (H1, 0) is equivalent to

π1, while the restriction to (0,H2) is equivalent to π2.

A precise form is given in

Lemma 2.1.4. Let U be an invariant subspace with respect to representation π of G in H.
Then the orthogonal complement U⊥ is also invariant under π. Hence π1 ⊕ π2 decomposes

into two irreducible components.

Proof: For u ∈ U and v ∈ U⊥ it holds

0 = 〈π(g−1)u, v〉 = 〈u, π(g)v〉 ∀g ∈ G.

Obviously, we have π(g−1) = π∗(g).

Corollary 2.1.5. More important than the lemma itself is the conclusion, that every �nite

dimensional unitary representation is complete reducible, i.e. can be written as the direct sum

of irreducible representations.

One of the fundamental theorems of representation theory is the following lemma.

Lemma 2.1.6 (Schur). Let A be the intertwining operator between irreducible representations

π1 in H1 and π2 in H2, then A is either the null operator or invertible.

A proof can be found in [Fol95,Chapter 3].

A consequence is the uniqueness (up to a constant) of intertwining operators of equivalent

representations. To see this fact, one chooses another intertwining operator B, then for all

scalars λ: B − λA is an other intertwining operator between π1 and π2. Choosing λ = λ0, so

that det(B−λ0A) = 0 and hence B−λ0A is not invertible. By Schur's Lemma (Lemma2.1.6)

B − λ0A is the null operator, consequently B = λ0A.
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2.1.1 Matrix coe�cients and characters

Every �nite dimensional representation can be identi�ed with a matrix subgroup, this comes

from the fact that for a �xed basis in the representation Hilbert space H of the representation

π of G one can �x a basis B = {ui, i = 1, ..., dπ} so that one can identify the linear mapping

π(g) with the corresponding matrix with respect to B.

De�nition 2.1.7. The entries of the matrix corresponding to the representation π are of the

form

πij(g) := 〈π(g)ui, uj〉H i, j = 1, ..., dπ. (2.1.2)

πij are the matrix coe�cients of π.

We will make use of both notations, if we have a certain basis in mind we will write πij as we

de�ned in (2.1.2). In general we also write πxy(g) = 〈π(g)x, y〉 for x, y ∈ H.
Let A ∈ GL(dπ) be a change of the basis, than the matrix changes to a similar matrix

A−1(πij(g))dπi,j=1A. Independent of the choice of the basis is the notion of the character.

De�nition 2.1.8. The character of a representation π is given by

χπ(g) = trace(π(g)) =

n∑
i=1

πii(g).

The characters χπ posses the following invariance property of being a class function.

De�nition 2.1.9. If a function on a Lie group is constant over conjugate classes, i.e.

f(g) = f(h−1gh) ∀h ∈ G

than f is called class function.

2.1.2 Regular representation and Peter Weyl theorem

De�nition 2.1.10 (Regular representations). The (right- and left-) regular representation is

a representation in the Hilbert space L2(G), given by

Lg : f(x) 7→ f(g−1x) left-regular representation

Rg : f(x) 7→ f(xg) right-regular representation,

for f ∈ L2(G). Indeed Lg is a representation. Setting Lgf = fg:

Lg1Lg2f(x) = Lg1fg2(x) = fg2(g−1
1 x) = f(g−1

2 g−1
1 x) = Lg1g2f(x).

The reason, why one can use the presented tools of representation theory to establish a har-

monic analysis on Lie Groups is given in the following theorem. An improvement of it will

give the Peter-Weyl theorem later which asserts the complete reducibility of the regular rep-

resentations.
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Theorem 2.1.11. Every irreducible representation π of G in H is equivalent to the right-

regular representation in a certain vector space of scalar valued functions on G.

The certain vector space is spanned by the matrix coe�cients πxy(g). We make use of the

notation

πxH := span{πxy| y ∈ H}

πHx := span{πyx| y ∈ H}.

Proof: Let π be a irreducible representation of G in H and H 3 a 6= 0. The linear mapping

A : H → πHa shall be de�ned by

Ax = πxa(g) = 〈π(g)x, a〉H ∈ πHa.

Setting y = π(g0)x one �nds

(Aπ(g0)x)(g) = Ay = 〈π(g)y, a〉H = 〈π(gg0)x, a〉H = Ax(gg0) = Rg0Ax(g),

where Rg denotes the restriction of the right-regular representation to AH = {Ax| x ∈ H} =

πHa. Obviously A is the intertwining operator between π and R.

To ensure the equivalence of π and R one has to show the invertibility of A.

For x ∈ Ker(A) it follows that Aπ(g)x = RgAx = 0, hence Ker(A) is invariant under π.

Irreducibility of π and Aπ(e)a = 〈a, a〉H 6= 0 implies Ker(A) = {0}.

By the continuity of the representation for compact groups G it follows πax(g) ∈ L2(G) and

πHx, πxH ⊂ L2(G).

The assertion of the above theorem is also valid for the left-regular representation Lg0f(g) =

f(g−1
0 g). Replacing A in the proof by Ax : x 7→ πax(g) results in

(Lg0A)y(g) = 〈π(g−1
0 )π(g)a, y〉 = 〈π(g)a, π(g0)y〉 = (Aπ(g0))y(g).

Hence A is the intertwining operator between π in H and L in πaH.

From the transitivity of the equivalence of representations follows now R ∼ L.
The space π(H) = {πxy(g) = 〈π(g)x, y〉H| x, y ∈ H}, spanned by matrix coe�cients, is right-

and left-invariant. This can be easily seen. Let be z = π(g0)x, v = π∗(g−1
0 )y, then one has

πxy(gg0) = 〈π(g)π(g0)x, y〉H = 〈π(g)z, y〉H = πzy(g) ⇒ πHy is right- invariant

πxy(g
−1
0 g) = 〈π(g−1

0 )π(g)x, y〉H = 〈π(g)x, π∗(g−1
0 )y〉L2(H) = πxv(g) ⇒ πxH is left-invariant.

Lemma 2.1.12. The spaces π(Hπ) and ξ(Hξ) are equal if π and ξ are equivalent representa-

tions in Hπ and Hξ, respectively.
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Proof: Let A be the intertwining operator between π and ξ: π(g) = A−1ξ(g)A, z = Ax,

v = (A∗)−1y, then

ξzv(g) = 〈ξ(g)z, v〉Hξ = 〈ξ(g)Ax, (A∗)−1y〉Hξ = 〈A−1ξ(g)Ax, y〉Hπ = 〈π(g)x, y〉Hπ = πxy(g)

The invariance of π(H) under right- and left-translations should not be missunderstood as

invariance of πHy. πHy is only invariant under right-translations. The space πyH is left-

invariant, i.e. π(g−1
0 )πxy(g) = πxπ(g−1

0 )y(g).

Theorem 2.1.13 (Burnside). For an irreducible representation π of a compact group G in

the Hilbert space H with a basis {ui, i = 1, ..., dπ}, the matrix coe�cients πuiuj are linearly

independent and span π(H), dimπ(H) = d2
π.

Proof: By πi we denote the function space πHui . The functions πxui and πxuj are linearly

independent for i 6= j. To show this fact one uses a contraposition.

Form the contrary assumptionπxui(g) =
∑
i 6=j

λjπxuj it follows that

〈π(g)x, ui〉 =
∑
j 6=i

λj〈π(g)x, uj〉 = 〈π(g)x,
∑
j 6=i

λjuj〉 ⇒ ui =
∑
j 6=i

λjuj .

But this contradicts to the assumption of linear independence of {ui, i = 1, ..., dπ}.
In order to obtain, that the whole spaces πi and πj are orthogonal to each other we show that

K := πi ∩ πj = {0} for i 6= j.

Because πi and πj are right-invariant, also K = πi ∩ πj is right-invariant. By irreducibility of

π and the equivalence of π to the (right-regular) representation in πi, π is either K = {πi}
or {0}. If K = {πi}, it follows that πi = πj and hence i = j, which contradicts to πi 6= πj .

Consequently, we have K = {0}.

So all πxy(g) ∈ π(H) can be uniquely decomposed into πxy(g) =
n∑
i=1

αiπxei(g), where y =

n∑
i=1

αiui and

π(H) =

n⊕
i=1

πi.

One obtains as well the decomposition of π(H) into left-invariant subspaces πli := πuiH

π(H) =

n⊕
i=1

πli.
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One of the most important theorems of harmonic analysis was proven by Hermann Weyl and

his student Peter in [PW27]. The theorem can also be found in [Feg91, Tay86, Bum04, Fol95]

and many others.

Theorem 2.1.14 (Peter-Weyl; 1927). Let Ĝ := {πα, α ∈ I} be the set of all equivalence

classes of irreducible representations of the compact Lie group G, then the following orthogonal

decomposition of L2(G) into translation invariant subspaces hold true

L2(G) =
⊕

πα, α∈I
πα(G).

Because of the compactness of G the parameter set of irreducible representation I is discrete,

just like the spectrum of the Laplace operator on G. Furthermore, the translation invariant

subspaces πα are exactly the πi from above, spanned by the corresponding matrix coe�cients.

We will discuss later the di�culties in the case of the Heisenberg group, which arise when G
is not compact. (see Chapter 4.4.3)

There is a one-to-one correspondence between irreducible representations π and their charac-

ters χπ(g) = trace(π(g)) (see De�nition 2.1.8) and we have the following corollary.

Corollary 2.1.15. Let π1, π2 are two irreducible representations of G then it is

〈χπ1 , χπ2〉L2(G) =

{
1, π1 ∼ π2

0, else
.

We know, that χπα and χπβ are living in the translation invariant subspaces πα(H) and

πβ(H) of L2(G). πα(G) and πβ(G) are orthogonal to each other. It is left to show that

〈χπ1 , χπ2〉L2(G) = 1 for α = β, but this follows from (2.1.5).

2.1.3 Fourier transform on compact Lie groups

We choose a unitary representation from the equivalence class of irreducible representations

[πα]. Because the corresponding matrix of matrix coe�cients (παij)
n
i,j=1 is unitary, it follows

παij(g) = παji(g) and for all i = 1, ..., dπ

n∑
j=1

|παij(g)|2 = 1. (2.1.3)

Note that by compactness of G, it is also unimodular. Integration over G yields

n∑
j=1

∫
G
|παij(g)|2 dg = 1,
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where dg denotes the normalized Haar measure. Furthermore,
∫
G
|παij(g)|2 dg =

∫
G
|παji(g)|2 dg.

By irreducibility of πα there is a g0 ∈ G, so that πα(g0)ej = uk and hence:∫
G
|παij(g)|2 dg =

∫
G
|〈πα(g−1

0 g)ui, uj〉|2 dg

=

∫
G
|〈πα(g)ui, πα(g0)uj〉|2 dg =

∫
G
|παik(g)|2 dg,

where for integration we make use of the Haar measure. Consequently, for 1 ≤ i, j, l,m ≤ n

we have ∫
G
|παij(g)|2 dg =

∫
G
|παlm(g)|2 dg (2.1.4)

With (2.1.3) and (2.1.4) we can choose an orthogonal basis in Theorem2.1.13. By unitarity of

π then follows that

〈παij , παkl〉L2(G) = δikδjl
1

n
, (2.1.5)

where n = dπα is the dimension of the representation πα and δij denotes the Kronecker delta.

Therewith we obtain the orthonormal system {
√
dπαπ

α
ij , 1 ≤ i, j ≤ dπα}.

De�nition 2.1.16. Let G be a compact Lie group. With decomposition

L2(G) =
⊕

πα, α∈I
πα(G),

then the expansion of f ∈ L2(G) with respect to the basis {
√
dπαπ

α
ij} which is given by

f(g) =
∑
α∈I

dπα∑
i,j=1

cαijπ
α
ij(g); (2.1.6)

cαij = dπα

∫
G
f(g)παij(g) dg (2.1.7)

is the Fourier transform on G.

This shows that the Fourier coe�cients (cαij)
dπα
i,j=1 for functions on non-commutative, compact

Lie groups are matrix-valued.

Coming from (2.1.6) one can represent the above Fourier expansion in terms of characters,

which gives the spectral decomposition. Therefore

fα(g) :=

dπα∑
i,j=1

cαijπ
α
ij(g) ∈ πα(G). (2.1.8)

Therewith (2.1.6) assumes the form

f(g) =
∑
α∈I

fα(g), (2.1.9)

where I parameterizes Ĝ, the set of all equivalence classes of irreducible representations.
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De�nition 2.1.17. The convolution product of f, h ∈ G is de�ned by

(f ∗ h)(g) :=

∫
G
f(a)h(a−1g) da. (2.1.10)

The projection of f onto πα(G) is denoted by fα(g) and we will show, that fα(g) can by given

by

fα(g) = dπα(f ∗ χπα)(g). (2.1.11)

Because πα is unitary παij(h) = παji(h
−1) holds true. To verify (2.1.11) we pluck (2.1.7) into

(2.1.8). This results in

fα(g) =

dπα∑
i,j=1

dπα

∫
G
f(h)παji(h

−1)παij(g) dh = dπα trace
(∫
G
f(h)πα(h−1) dh︸ ︷︷ ︸

=:f̂(πα)

πα(g)
)

= dπα

∫
G
f(h)χπα(h−1g) dh = dπα(f ∗ χπα)(g).

The Fourier coe�cients of f ∈ L2(G) are given by the operator-valued integral

f̂(πα) =

∫
G
f(h)π∗α(h) dh.

Theorem 2.1.18 (Convolution theorem). It holds

φ̂ ∗ ψ = φ̂ ψ̂, ∀φ, ψ ∈ L2(G).

Proof: ∫
G

∫
G
φ(h)ψ(h−1g) dh π∗α(g) dg =

∫
G

∫
G
ψ(g)πα(g−1h−1) dg φ(h) dh

=

∫
G
ψ(g)πα(g−1) dg

∫
G
φ(h)πα(h−1) dh =

∫
G
ψ(g)π∗α(g) dg

∫
G
φ(h)π∗α(h) dh = φ̂ ψ̂.

We �nish this section by introducing an involution, which will make use of later.

De�nition 2.1.19. Let f be a function on G, we de�ne

f̌(g) := f(g−1). (2.1.12)

With

f̌(g) =
∑
π∈Ĝ

dπ trace(f̂(π)π∗(g)) =
∑
π∈Ĝ

dπ trace(f̂∗(π)π(g)),

where Ĝ denotes again the set of all equivalence classes of irreducible representations of G, we
have ̂̌f(π) = f̂∗(π). (2.1.13)
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De�nition 2.1.20 (Hilbert Schmidt operator). Let H1 and H2 be Hilbert spaces and {ui}
a basis of H1. A Hilbert Schmidt operator from H1 to H2 is a continuous linear operator

A : H1 → H2 with

‖A‖HS :=
∞∑
i=1

‖Aui‖H2 <∞. (2.1.14)

For Hilbert Schmidt operators from H1 onto itself one has

‖A‖HS =
∑
i

‖Aei‖H1 =
∑
i

〈A∗Aei, ei〉H1 = trace(A∗A). (2.1.15)

‖ · ‖HS denotes the Hilbert Schmidt norm.

Theorem 2.1.21 (Parseval identity).

‖f‖2L2(G) =
∑
π∈Ĝ

dπ‖f̂(π)‖2HS ∀f ∈ L2(G). (2.1.16)

Proof: We expand f in a Fourier series and use the index notation for the trace. With

|f |2 = ff an easy calculation yields

∫
G
|f(g)|2 dg =

∑
ξ,π∈Ĝ

dξdπ

∫
G

dπ∑
i,j=1

f̂ij(π)πji(g)

dξ∑
l,m=1

fml(ξ)ξlm(g) dg

=
∑
π∈Ĝ

dπ

dπ∑
i,j=1

fij(π)fij(π) =
∑
π∈Ĝ

dπ trace(f∗(π)f(π)),

under consideration of (2.1.5).
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2.2 Quasi regular representations and functions on homoge-

neous spaces

A homogeneous space of a Lie group is a manifold X with a given (left) action1 A of the

group G, A : G ×X → X so that the action is transitive2, i.e. ∀x, y ∈ X,∃g ∈ G : g · x = y,

where we use the notation A(g, x) = g · x. The fundamental di�erence between a Lie group

and a homogeneous space is, that there is a distinguished element in G, namely the neutral

element e but no distinguished point exists in the homogeneous space. This is given in a

non-canonical way to X. So we choose an arbitrary point x0 ∈ X. Let H be the stabilizer

of the point x0: H = {h ∈ G| h · x0 = x0}. Clearly H is a subgroup since e ∈ H and by

(g1g2) · x0 = g1 · (g2 · x0) it is closed under group multiplication.

The stabilizer of another point y ∈ X is like follows. By transitivity of the group action there

is a g ∈ G with g · x0 = y. Hence the stabilizer of y ∈ X is gH g−1. Here one sees in which

way the construction is independent of the choice of the base point. The change of the base

point on X corresponds to an conjugate action on G.
Hence, every point x ∈ X can be identi�ed with a �ber of the form gH = {gh| h ∈H }, the
set of gy ∈ G for which gy · x0 = y.3

Of course we have to distinguish between left- and right-factorization, since gH = {gh| h ∈
H } 6= H g = {hg| h ∈H } and such that

G/H 6= H \G.

2.2.1 Functions on homogeneous spaces

In this section we want to investigate properties of functions on homogeneous spaces. An

important point will be to extend the de�nition of the Fourier transform to functions on

homogeneous spaces. This will reveal how the restriction of functions to the homogeneous

space looks like in Fourier domain.

We introduce the following isomorphism between function spaces on G and corresponding

function spaces on X ' G/H .

Let f be a function on X with base point x0 then it is clear that f(g · x0) can be viewed

as function on G with variable g. To make this precise we look at the canonical projection

P : G → G/H (g 7→ gH ). The pullback applied to functions on X then gives a corresponding

function on G:

f̃(g) = f(P (g)) (2.2.1)

Obviously f̃(g) is constant over �bers of the form gH . For functions on H \G a similar

construction yields functions, which are constant over �bers of the form H g.
1By de�nition a group action is associative and e · x = x
2Such X are also refereed as G-space.
3De�ning a right action as group action on X the same construction leads to the homogeneous space H \G.
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In the other direction we introduce a push forward method to project functions from G to X:

Pf(x) =

∫
P−1(x)

f(g) dH g, (2.2.2)

where dH denotes the normalized Haar measure on H . The measure on X can be chosen

so that ∫
G
f(g) dg =

∫
X
Pf(y) dXy, (2.2.3)

with a quasi-invariant1 measure dX , where the quasi-invariant measure in opposite to the

invariant one is not unique. A comprehensive discussion about appropriate measures can be

found in [Füh05]. In the present study, no di�culties arise since G is compact and

P(f̃) = f. (2.2.4)

In what follows we identify functions on X with those which are constant over the appropriate

�bers gH . This allow us to write (2.2.2) as

Pf(g) =

∫
H
f(gh) dH h, (2.2.5)

Where now x = [g] is the equivalence class of g with respect to the equivalence relation

g1 ∼ g2 ⇔ ∃h ∈H : g1h = g2. In a similar way one has x = g · x0.

De�nition 2.2.1. A function on X ' G/H is called zonal if it is invariant under the action

of the stabilizer of the base point of X, i.e.

f(x) = f(h · x) ∀h ∈H .

Class one � and quasi regular representations

One important point in what follows will be to understand the Fourier transform of functions

on homogeneous spaces of the group G and the corresponding symbol action of projection and

lifting method on the Fourier domain.

De�nition 2.2.2. Let G be a Lie group and H be a subgroup of G , which fact we denote

by H < G. A representation π of G is called to be of class one with respect to H if the

corresponding matrix coe�cients are invariant under H , i.e.

πij(g) = πij(gh) ( or πij(g) = πij(hg)) ∀h ∈H .

Later we will use matrix coe�cients of class one representations to span the space of functions

on the homogeneous space G/H ( or H \G).
1Sets of measure zero are preserved under translation.
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De�nition 2.2.3. Let H < G. If for any representation π (of G in H) the set of H invariant

vectors in H is at most of dimension one, H is called a massive subgroup of G.

Applying the projection method to the regular representation we obtain a quasi regular rep-

resentation in L2(X).

De�nition 2.2.4. 1 Let G be a compact Lie group and H < G. The quasi regular represen-
tation of G is a representation in L2(G/H ) given by

πqreg(g) : f(x) 7→ f(g−1 · x) f ∈ L2(G/H ). (2.2.6)

As an example we want to look at the equivalence irreducible components of quasi regular

representation to irreducible components of the regular representation.

Let again X ∼ G/H be a homogeneous space of a compact Lie group G. Let πk be the

(left) regular representation of G in L2(X), restricted to an minimal invariant subspace (so

that it is irreducible) of dimension dk. The left-regular representation Lk of G, restricted to

span {πkij , 1 ≤ i, j ≤ dk} and πk posses the same character and hence are equivalent by

irreducibility.

Lk(i,j)(l,m)(g) =

∫
G
πkij(gh)πklm(h) dh =

dk∑
p=1

∫
G
πkip(g)πkpj(h)Tlmk(h) dh

=
1

dk

dk∑
p=1

δplδjmπ
k
ip =

1

dk
T kil(g)δjm

And hence

χLk =

dk∑
i,j=1

Lk(i,j)(i,j)(g) =

dk∑
i,j=1

1

dk
πkii(g)δjj = χπk

Hence every quasi regular representation is equivalent to a regular representation as we have

asserted before. Here we have seen the concrete construction.

The converse is in general not true i.e. not every irreducible representation is equivalent to a

quasi regular representation.

As we will see later in Chapter 4.3 in the case of SO(3) we are in the comfortable situation

that also the converse is true.

Fourier transform of functions on X ' G/H

Let f be a function on X. (2.2.4) is written as f(g) =
∫
H f(gh) dH h, this uses the identi�-

cation of functions which are constant over gH and functions on X, i.e. holds true if there is

a function g de�ned on X with g̃ = f .
1This de�nition can be adapted to homogeneous spaces H \G and the corresponding right action (here

denoted in the same way) of G on H \G. While that πqreg(f(x)) = f(g · x)
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Remark 2.2.5.

P̂f(π) = πH f̂(π), with πH =

∫
H
π(h) dH h. (2.2.7)

Using the Fourier series expansion of f we �nd:

f(g) =

∫
H

∑
π∈Ĝ

dπ trace
(
f̂(π)π(gh)

)
dH h

=

∫
H

∑
π∈Ĝ

dπ trace
(
f̂(π)π(gh)

)
dH h

=
∑
π∈Ĝ

dπ trace
(
πH f̂(π)π(g)

)
, (2.2.8)

where

πH =

∫
H
π(h) dH h, (2.2.9)

and we remark, that we are taking the trace and hence can make a cyclic permutation of

matrices.

Lemma 2.2.6. πH is a projection matrix onto the subspace of H invariant vectors in H.

Parts of the idea of the proof can also be found in [VK91]. Regarding the case of H \G,
equation (2.2.8) changes to f(g) =

∑
dπ trace(f̂(π)πH π(g)), with πH as in (2.2.9).

Proof: We have to show two things.

At �rst πH πH = πH : This can be easily seen by

π2
H =

(∫
H
π(h) dh

)2

=

∫
H

∫
H
π(h1h2) dh1 dh2 =

∫
H

∫
H
π(h)dh dh2 =

∫
H
π(h) dh = πH .

This implies that πH is the projection onto the space of Fourier coe�cients in Cdπ×dπ of

functions which are invariant on �bers of the form gH . In other words which are Fourier

coe�cients of functions on X.

The second point is to show πH v = v ∈ H, if and only if π(h)v = v ∀h ∈ H . Equivalently,

πH is the null projection if H contains no H invariant vectors.

Let H be the representation Hilbert space of π and HH := {v ∈ H|π(h)(v) = v ∀h ∈ H }.
If HH = ∅, the restriction of π to H gives an irreducible representation of H . Due to Peter-

Weyl theorem the matrix coe�cients of this representation are orthogonal to the character of

the trivial representation of H , which is the identity, hence∫
H
π(h) dh = 〈Id, π〉L2(H ) = 0⇒ f̂(π) = 0 ∀π with HH = ∅. (2.2.10)
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We sort the basis {ui, i = 1, ..., dπ} of H in that way, that {ui, i = 1, ..., k} spans HH (the

k-dimensional subspace of H invariant vectors). Consequently,

πH =

(
Ik O

O O

)
, (2.2.11)

where Ik denotes the k-dimensional identity matrix. O are zero-matrices of appropriate di-

mension.

Therefrom we see:

Corollary 2.2.7. Fourier coe�cients of functions on X are of the form

f̂(π) =

(
A

O

)
, (2.2.12)

where A is a matrix of dimension k × dπ.

This is equivalent to say that functions on G which are invariant on �bers gH, can be expanded
in a series of matrix coe�cients πij with j ≤ k.

Remark 2.2.8. For the case of functions on H \G the assertion of Corollary 2.2.7 assumes the

form

f̂(π) =
(
A O

)
, (2.2.13)

where A is a matrix of dimension dπ × k.

The property of a function f to be zonal can be also be expressed in the special form of its

Fourier coe�cients. For a zonal function f on X the function f̃ is invariant under right- and

left-shifts with h ∈ H , i.e. f̃(g) = f̃(hg) = f̃(gh) ∀h ∈ H . Hence f̃ is a function on G/H
as well as it is a function on H \G. Corollary 2.2.7 and Remark 2.2.8 implies the Fourier

coe�cients of zonal functions are of the following form:

f̂(π) =

(
A O

O O

)
, (2.2.14)

with A ∈ Ck×k (k is again the number of H invariant vectors in the representation Hilbert

space H of π) and O of appropriate dimension.

Also for class functions we want to deduce the special shape of their Fourier coe�cients.

Writing down the class function property f(a) = f(g−1ag) for the Fourier series expansion of

such a function one �nds∑
π

dπ trace(f̂(π)π(a)) =
∑
π

dπ trace(f̂(π)π(g−1ag)). (2.2.15)

By Peter-Weyl theorem this is equivalent to

trace
((
f̂(π)− π(g)f̂(π)π(g−1)

)
π(a)

)
= 0. (2.2.16)
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Cdπ×dπ shall denote the space of matrices of dimension dπ × dπ. In a �rst step we verify

span{π(g), g ∈ G} = Cdπ×dπ . (2.2.17)

Cdπ×dπ becomes a Hilbert space equipped with the Hilbert-Schmidt inner product

〈A,B〉Cdπ×dπ = trace(B∗A).

For every A ∈ Cdπ×dπ there is a function having A as a Fourier coe�cient of it. At least there

is φ(g) = dπ trace(Aπ(g)), where only A appears in its Fourier series.

By Peter-Weyl Theorem, character functions (matrix coe�cients) are linearly independent.

Hence from (2.2.16) one deduces, that (f̂(π)−π(g−1)f̂(π)π(g)) is the orthogonal complement

of span{π(g), g ∈ G} with respect to the Hilbert-Schmidt inner product trace(B∗A) in Cdπ×dπ ,
so that

f̂(π)− π(g−1)f̂(π)π(g) = 0 ⇔ f(π)π(g) = π(g)f(π).

Matrices, which are commuting with every matrix in Cdπ×dπ are a multiples of the identity

matrix. This results in the following Corollary.

Corollary 2.2.9. Fourier coe�cients of class functions are multiplies of the identity. Hence

every class function posseses an expansion in character functions.

Remark 2.2.10. The projection of a class function to X results in a zonal function.
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2.3 General remarks on wavelets

For construction of wavelets on a manifold M the general idea is to form a frame in L2(M)

by dilating and translating a mother wavelet Ψ. Starting with a mother wavelet Ψ ∈ L2(M)

one has to introduce a dilation and translation operator Dρ and Tx, where the set of dilations

is parameterized by ρ ∈ R and that of translations by x ∈ L. In general one needs not to

restrict to dilations and translations but can also call in further operators. For example on

Rn beside the canonical dilation and translation operator in L2(Rn) it is possible to add the

rotation operator.1 On the sphere dilations and translations are part of the Möbius group

[Cno94]; all possible dilations and translations are worked out in [Fer09, Fer08], this involves

comprehensive discussions of geometrical aspects from [Cno93, Kna02, Por81] and others. The

mother wavelet has to be chosen in a way, that

{TxDρΨ, (x, ρ) ∈ L×R}

forms a frame in L2(M). This requirement or equivalent conditions leads to admissibility

conditions for Ψ ∈ L2(M) to be a mother wavelet.

2.3.1 Group theoretical formulation of wavelet theory

From the group theoretical point of view dilation and translation operators are provided by an

irreducible representation π of a group G in the Hilbert space L2(M).1 The general formulation

for Banach spaces, where the crucial notions can be formulated with a convenient measure of

generality, can be found in [Kis99b, Füh05].

The condition, that 0 6≡ Ψ ∈ L2(M) is admissible if {π(g)Ψ, g ∈ G} forms a frame in L2(M)

is equivalent to say, there are constants c1, c2 > 0, so that

c1‖f‖L2(M) ≤
∫
G

∣∣〈π(g)Ψ, f〉L2(M)

∣∣2 dg ≤ c2‖f‖L2(M) ∀f ∈ L2(M). (2.3.1)

De�nition 2.3.1. Let Ψ ∈ L2(M) be admissible, than the wavelet transformWT : L2(M)→
L2(G) is de�ned by

WT : f 7→ 〈π(g)Ψ, f〉L2(M).

In (2.3.1) we have two conditions. The estimate to below and hence the invertibility of

WT is ensured by irreducibility of π. This can be seen by a contraposition. We assume a

0 6≡ f ∈ L2(M) with WT (f) = 〈π(g)Ψ, f〉 ≡ 0. This is f ⊥ span{π(g)Ψ, g ∈ G} = L2(M)

1Here some di�culties arise, since there is no square-integrable non zero Ψ ∈ L2(R2). Therefore the

parameter set of rotations can not be independent of that of dilations and translations. One has to choose an

admissible section in the sense of (2.3.2).
1Here and in the rest of this section L2(M) can be replaced by any other Hilbert space H. In consequence

one de�nes the wavelet transform in H corresponding to π.
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by irreducibility of π and Ψ 6≡ 0. But this implies f ≡ 0, which is a contradiction. So

Ker(WT ) = {0}.
The upper estimate gives a proper admissibility condition of Ψ to be square-integrable∫

G
‖π(g)Ψ‖2L2(M) dg <∞

and guaranties that WT is a bounded operator from L2(M) into L2(G).

Since L2(M) is in�nite dimensional there is no compact G for which an irreducible represen-

tation π exists so that a wavelet transform is provided in the way we have sketched above.

But the crucial tools of harmonic analysis which we have introduced in the �rst chapter, such

as the Peter-Weyl theorem requires the condition of a compact Lie group G.
In most cases there is no irreducible representation which is also square-integrable. This

case appears for example discussing the sphere [Fer09, ADJV02, AV07, AV99, BE10]. There

the sphere is observed as homogeneous space of the Lorentz group SO(1, n + 1)/SO(1, n) '
Sn so that there is a canonical action of SO(1, n + 1) on Sn. Nevertheless all irreducible

representations of SO(1, n+ 1) in L2(Sn) are not square-integrable.

The concept can be weaken in the following way. Let π be a irreducible representation of G
in L2(M). Instead of asking for the square- integrability of the whole group one restricts to a

homogeneous space X ' G/H of G. Let σ : G/H → G be a section, satisfying

c1‖f‖L2(M) ≤
∫
X
|〈π(σ(x))ψ, f〉L2(M)|2 ≤ c2‖f‖L2(M), (2.3.2)

then σ is called an admissible section. That means, the set of dilations and translation is

parameterized now by X. The set of dilated and translated wavelets {σ(x)ψ, x ∈ X} forms a

frame in L2(M). Di�erent admissible section leads to di�erent looking dilations1.

An even more general formulation of admissibility condition is assumed by Dahlke, Steidel and

Teschke in [DST07], considering that the transformation, which in our case gives the identity,

gives a bounded, invertible operator Aσ, namely

Aσf =

∫
X
〈f, U(σ(x)Ψ)〉U(σ(x))Ψ dx.

2.3.2 The idea of di�usive wavelets

To motivate the subjects of the following chapter we introduce here the general idea of di�usive

wavelets.

With the concept of di�usive wavelets we are able to use the powerful tools of harmonic

analysis to construct wavelets on compact2 Lie groups and homogeneous spaces.

1Also di�erent looking translations are possible, but here one chose usually some natural action of the

Group.
2We will sketch how one can overcome the critical points of non compactness and apply the method the

Heisenberg group.
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In the concept of di�usive wavelets dilation and the translation operator are separated from

each other. Translation will be given as left shift operator, hence as left-regular representation.

Of course the left-regular representation is not irreducible in L2(G) but will decompose into

irreducible components, where each of it can be viewed as a scale space. In order to �nd an

admissible mother wavelet one has to add a dilation operator which changes between di�erent

scale spaces. In the concept of di�usive wavelets this is achieved by an evolution process

comparable to the heat evolution of the heat kernel. Hence dilations will be parameterized by

R+ and translations by the compact group G.
The reconstruction property, which we need if we want to invert the wavelet transform comes

from the action of a certain semigroup, de�ned by an evolution process. The following two

de�nitions are usual and can be found for instance in [AR05] and elsewhere. Later we will

adjust the motions to our special purposes which will give an almost similar notion.

De�nition 2.3.2. Let {Dρ, ρ > 0} be a continuous family of operators on L2(G). This family

is called an admissible semigroup if the following conditions are satis�ed:

• Dρ is a bounded operator, independent of ρ

• lim
ρ→0

Dρ = Id, s.t. Dρ approximates the identity operator

• Dρ is positive for all ρ

• Dρ1Dρ2 = Dρ1+ρ2 , such that {Dρ, ρ > 0} forms a semigroup.

For understanding the construction as usual dilation one would need only the �rst and the

second condition. For a convenient formulation one requires the positivity and the semigroup

property. This is not a big restriction of generality and most of the imaginable and all of the

appearing examples here satisfy these conditions.

Many important examples of approximate identities come from a di�usion process. As solution

of the corresponding partial di�erential equation those process is often given by convolution

with the fundamental solution.

De�nition 2.3.3. If {Dρ, ρ > 0} is an admissible semigroup and Dρ can be written as

convolution operator, i.e. there is a family of kernels {Kρ, ρ > 0} ⊂ L1(G) so that Dρ(f) =

f ∗Kρ, {Dρ, ρ > 0} is called an approximate identity with kernel Kρ.

Remark 2.3.4. From Kρ ∈ L1(G) it follows that the corresponding convolution operator Kρ∗ :

f 7→ Kρ ∗ f is bounded from Lp(G) to Lp(G).

The aim is now to �nd families of convolution kernels {ψρ, ρ > 0} and {Ψρ, ρ > 0}, so that

KR =

∫ ∞
R

ψ̌ρ ∗Ψρ α(ρ) dρ, (2.3.3)
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forms a family of kernels of an approximate identity. We use again of the notation ψ̌(g) =

ψ(g−1). Both families, {ψρ} and {Ψρ} shall be in L1(G), so that the convolution is a mapping

Lp → Lp. For a function f we can then de�ne the transformation

WT : f 7→ (f ∗ ψ̌ρ)(g) =

∫
G
f(h)ψ̌(h−1g) dh = 〈f, Tgψρ〉L2(G).

Hereby Tg is the translation operator and the dilations are parameterized by ρ ∈ R+. By

Assumption (2.3.3) this transform can be inverted via

f = lim
R→0

∫ ∞
R

WT (f)(ρ, ·) ∗Ψρ α(ρ) dg

= lim
R→0

f ∗
∫ ∞
R

ψ̌ρ ∗Ψρ α(ρ) dρ.

The dilation operator in that approach is given as choice of the parameter ρ of ψρ

Dρ2ψρ1 7→ ψρ1+ρ2

This approach works for arbitrary approximate convolution identities Kρ and we will see, that

also classical wavelets can be described in that way.

In particular we are interest in those approximate identities for which the operator ∗∂ρKρ :

f 7→ f ∗ ∂ρKρ is positive. Then the corresponding Fourier coe�cients of the kernel functions

∂ρKρ are positive matrices and the choice ψρ = Ψρ seems reasonable. We will later implement

this general philosophy in the particular situation where Kρ is the heat kernel and where both

families coincide.

Four our purpose we translate De�nition 2.3.3 into the Fourier domain.

Corollary 2.3.5. Let Ĝ+ ⊂ Ĝ be co-�nite. If {Kρ, ρ > 0} is the kernel of an approximate

identity if and only if it is a subfamily of L1(G) which satis�es

• ‖K̂ρ(π)‖HS ≤ C independent of π ∈ Ĝ and t ∈ R+

• lim
ρ→0

K̂ρ = Id for all π ∈ Ĝ

• −∂ρK̂ρ is a positive matrix for all π ∈ Ĝ+ and t ∈ R+

• K̂ρ1K̂ρ2 = K̂ρ1+ρ2 .

We would like to remark, that our point of view on the construction of wavelets is not contrary

to the classical wavelet theory. That means, that classical wavelets can also be obtained from

our construction, i.e. the dilation of a usual wavelet construction can always be observed as

coming from the action of an operator family in the sense of De�nition 2.3.3 as it will be the

case for di�usive wavelets. For di�usive wavelets the family of operators will be given as a

di�usion process.
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As a representative example for showing, that the concept is valid for classical wavelets, we

chose the Mexican hat wavelet on R, which is given by

ψ(x) := − d2

dx2
e−x

2/2 = (1− x2)e−x
2/2. (2.3.4)

In Fourier domain these wavelets are of the following form

ψ̂(x) :=
1√
2π
ω2e−ω

2/2.

For a description of the theory behind the Mexican hat wavelet and other classical wavelets

like Haar and Daubchies wavelets we recommend [Dau92, LMR94, Grö01]. As expected, no

di�culties rise from the translation operator. This is given as left-regular representation of

(R, +) on L2(R). The dilation operator in L2(R) is given by the following action of the

a�ne-linear group in L2(R)

Dρ : ψ(x) 7→ 1
√
ρ
ψ

(
x

ρ

)
. (2.3.5)

The Haar measure of the a�ne-linear group, also called ax + b-group. This group is the set

R+ × R with the multiplication law (a, b)(c, d) = (ac, ad + b) for (a, b), (c, b) ∈ R+ × R and

the Haar-measure da
|a|2 db. The dilation Dρ in (2.3.5) comes from the representation of the

sub-group (ρ, 0) of the (ax+ b)-group in L2(R).

To �nd the corresponding approximate identity, so that the dilation in the case of the Mexican

hat wavelet can be given as a dilation from the di�usive wavelet approach we verify that the

kernel of the convolution approximate identity

Kt(x) =

∫ ∞
t

(ψ̌ρ ∗ ψρ)(x)
dρ

|ρ|2

satis�es conditions of Corollary 2.3.5, such that it is an approximate identity in the sense of

De�nition 2.3.3.

Therefore we note, that the dilation operator Dρ for classical wavelets which is given in (2.3.5)

on Fourier domain corresponds to the dilation operator Da−1

D̂af = Da−1 f̂ .

Since the Mexican hat wavelets are real and even functions we have ψ̌ρ = ψρ and hence

Kt(x) =
∫∞
t (ψρ ∗ ψρ)(x) dρ

|ρ|2 . Consequently, for the Mexican hat wavelets the corresponding

approximate identity Kt has Fourier coe�cients of the following form:

K̂t(ω) =

∫ ∞
t

Dρ−1ψ̂2
ρ(ω)

dρ

|ρ|2

=

∫ ∞
t

ρ(ρω)4e−|ωρ|
2 dρ

|ρ|2

=

[
−1

2
e−ω

2ρ2(ω2ρ2 + 1)

]∞
t

=
1

2
e−ω

2t2(ω2t2 + 1).
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Since R is non-compact and hence the set R̂ = R+ of irreducible representations is continuous

as well as the spectrum of the Laplacian. Nevertheless one sees immediately, that Kt is the

kernel of an approximate identity.

For the construction of di�usive wavelets we shall use the notion of

De�nition 2.3.6 (di�usive approximate identity). Let Ĝ+ ⊂ Ĝ be co-�nite. A continuous

di�erentiable1 family of functions {pt, t > 0} ⊂ L1(G) forms a di�usive approximate identity

if

‖p̂t(π)‖HS < C independent of π ∈ Ĝ and t ∈ R+ (2.3.6)

lim
t→0

p̂t = Id for all π ∈ Ĝ (2.3.7)

lim
t→∞

p̂t = 0 for all π ∈ Ĝ+ (2.3.8)

(2.3.9)

To Ĝ+ we associate the subspace of L2(G), which is spanned by the matrix coe�cients of the

corresponding representations. Later we will make use of the notation

L2
0(G) =

⊕
πα∈Ĝ

πα(G) (2.3.10)

For an approximate identity as well as for a di�usive approximate identity holds

lim
t→0

pt ∗ f → f, f ∈ Lp(G),

where the convergence is in the Lp-sense. This follows from condition (2.3.6) and (2.3.7).

Since by (2.3.6) it is ‖pt ∗ f‖Lp ≤ ‖f‖Lp , hence one can investigate pt ∗ f in Fourier domain

and by convolution theorem (Theorem 2.1.18) p̂t ∗ f(π) = f̂(π)p̂t(π)→ f̂(π) as t→ 0.

From (2.3.6), (2.3.7), (2.3.8) and the fact that pt ∈ C1(R+, L
1(G)) on deduces that

pt|Ĝ+ = −
∫ ∞
t

∂tpt dt.

The most important example of an di�usive approximate identity is the heat kernel. It satis�es

in addition the semigroup property

pt1 ∗ pt2 = pt1+t2 .

Another important example, especially for the case of the sphere are di�usive wavelets corre-

sponding to the Abel-Poisson kernel [Ebe08, FGS98]. The Abel-Poisson kernel arises as the

integral kernel to solve the Dirichlet problem of the Laplace equation ∆u = 0 on the unit ball.

One can also ask for this construction for arbitrary manifolds, that are surfaces of higher-

dimensional manifolds. The convolution operator with the corresponding Abel-Poisson kernel

1i.e. the mapping t 7→ pl is C
1(R+, L

1(G)).
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will always give a di�usive approximate identity, where the dilation parameter can be given

as the distance to the boundary. This can be seen in the example of the sphere. We have to

observe the radius variable as evolution (dilation) parameter. Since the radius is a quantity

0 < r < 1, the substitution t = − ln(r) gives the right di�usive evolution parameter for our

de�nition, where the parameter varies over R+.

The di�erence of the approximate identity coming from the Abel-Poisson kernel and the

approximate identity coming from the heat kernel are the eigenvalues of the corresponding

kernel with respect to the Laplacian. We will list both examples for the case of the sphere.
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2.3.3 Universal enveloping algebra

In our construction of di�usive wavelets we have to investigate the fundamental solution of the

heat equation which is closely related to the Laplace-Beltrami operator of the corresponding

manifold.

In order to understand the Laplace operator1 we have to investigate its geometrical rise. In

general, �rst order di�erential operators can be identi�ed with tangential �elds. Especially the

left invariant �elds forming the Lie algebra are interesting and give left invariant Di�erential

operators. Since the Laplace operator is not only left but also right invariant and of order two

it is not enough to look at the Lie algebra and its representation regarding it as di�erential

operators. We introduce the universal enveloping algebra in order to represent also higher

order di�erential operators with the help of appropriate representations. The invariance will

come from the property of the Casimir element to be in the center of the universal enveloping

algebra. The Laplace operator appears as the result of the appropriate representation of the

Casimir element.

The constructions we give here rises from a collection of contributions from [Bum04, Str91,

Feg91, VK93].

The notion of representations can be transferred to algebras. So the representation ζ of a Lie

Algebra g is a Lie Algebra homomorphism into the the Lie Algebra of Linear operators on a

Hilbert space H.

ζ : g→ End(H)1 (2.3.11)

ζ([h1, h2]) = ζ(h1)ζ(h2)− ζ(h2)ζ(h1) = [ζ(h1), ζ(h2)]. (2.3.12)

Remark 2.3.7. There is a one to one correspondence between representations of simply con-

nected Lie groups and Lie algebras. The di�erential of the representation of a Lie group gives

a representation of its Lie algebra.

g
ζ //

exp

��

End(H)

exp

��
G π

// GL(H)

With dπ = ζ.

To investigate general properties of mathematical objects one often uses some isomorphic

object and investigate it instead of the original one. In this way one can translate questions

into di�erent languages like from analysis to algebra or representation theory. But of course one

has to care that the properties of interest are invariant under the mapping. Some properties

1Since we are on a manifold rather than in Rn one often says Laplace-Beltrami operator instead of Laplace

operator.
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are even not invariant under an isomorphism. A stronger connection exists between the so

called universal enveloping algebras and a corresponding object. The crucial property is the

universal property of it.

De�nition 2.3.8. Beside the usual notion of a Lie algebra homomorphism between Lie alge-

bras, we de�ne for a associative, unital1 algebra A a Lie algebra homomorphism hA between

a Lie algebra g and A as a linear mapping hA : g → A with hA([X,Y ]) = hA(X)hA(Y ) −
hA(Y )hA(X).

Every unital algebra A becomes a Lie algebra Lie(A) equipping A with the Lie bracket [a, b] =

ab− ba.
The map j : A→ Lie(A) from the set of associative, unital algebras to the set of Lie algebras

is not surjective, i.e. not for every Lie algebra g there is an associative, unital algebra A in

with Lie(A) = g. But one can always �nd a algebra A so that g is embedded in Lie(A). In

this way A arises as the universal enveloping algebra of g.

De�nition 2.3.9 (Universal enveloping algebra). Let g be a Lie algebra. The universal

enveloping algebra of g is the associative, unital algebra Ug which posses the universal property.

The universal property is de�ned as follows:

Let hUg be a Lie algebra homomorphism hUg : g→ Ug, so that for any unital algebra A with

Lie algebra homomorphism

hA : g→ A

exists a algebra homomorphism

h : Ug → A,

with

hA = hhUg .

The uniqueness of the universal enveloping algebra holds in the sense of equivalence class

with respect to the equivalence relation of algebras being homomorphic to each other. A

construction of the universal enveloping of the Lie algebra g uses the tensor algebra of g. The

construction is rather formal. Let ⊗g be the tensor algebra of g, i.e. ⊗g =
∞⊕
k=0

⊗kg, where

⊗kg denotes the module of tensors of order k over the �eld C or R respectively.

Now let I be the ideal in ⊗g which is generated by elements of the form [X,Y ]+X⊗Y −Y ⊗X.

Constructing the Quotient ⊗g/I identi�es elements a, b in ⊗g for which there is an i ∈ I, so
that i · a = b, where · denotes the multiplication in ⊗g.
Every (Lie) algebra g is naturally embedded in ⊗g via the subspace ⊗1V . This embedding

shall be denoted by j : g→ ⊗g.
1unital means there is a unit element in A
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Now one has to verify, that the universal property is satis�ed by ⊗g/I. Let φ : g → Lie(A)

be a Lie algebra homomorphism.

Let now hA be any Lie algebra homomorphism g → A, then hA can be extended to ⊗g by

setting ⊗hA(X1⊗ ...⊗Xk) = hA(X1)...hA(Xk). It is left to show that the kernel of ⊗hA is I.

This is strait forward

⊗hA([X, y]−X ⊗ Y + Y ⊗X) = hA([X,Y ])− hA(X)hA(Y ) + hA(Y )hA(X) = 0.

From the fundamental Poincaré-Birkho�-Witt theorem, which can be found in [Bir37] it fol-

lows, that j : g→ Ug is injective.

2.3.4 Killing form and adjoint representation

A Lie group can always be regarded as Riemannian manifold. This is done by equipping the

tangential space with the naturally given Killing Form.

For a comprehensive understanding of the Laplace operator on Lie groups we want to discuss

the geometrical rise of it. Therefore one uses the natural, geometrical induced notion of the

killing form. We have to have a look at the adjoint representation of Lie groups and its Lie

algebra.

The conjugate mapping g(h) = ghg−1 induces an action of G on itself. The di�erential of g at

the neutral element e gives an invertible, linear mapping in g.

dg ∈ GL(g). (2.3.13)

De�nition 2.3.10. The adjoint representation of a Lie Group G is de�ned by

Ad : G → GL(g) (2.3.14)

g 7→ dg (2.3.15)

Corresponding to Remark 2.3.7 the di�erential of Ad at e will give a representation ad of the

Lie algebra of G1- the adjoint representation of g:

ad = d(Ad)e. (2.3.16)

Using the notion of integral curves one �nds the comfortable relation: ad(x) = [x, ·]. Let

V,W ∈ g, left invariant vector �elds on G and let φVt be the integral curve passing through e

for t = 0. Than we can write

(ad(V ))(W ) =
d

dt
( dφV−t)φVt (e)W (φVt (e))

∣∣∣
t=0

= [V,W ],

that gives End(g) 3 ad(V ) = [V, ·]. A proof can bee found in [Bum04].

1Here we understand the Lie algebra as the tangential space of G at e.
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Therewith one can obtain easily the Lie homomorphism property of ad. By the Jacobian

identity [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 and antisymmetry of the Lie brackets it is

ad([X,Y ]) = [[X,Y ], ·] = [X, [Y, ·]]− [Y, [X, ·]] = ad(X)ad(Y )− ad(Y )ad(X). (2.3.17)

Since the Laplace operator can be de�ned for Riemannian manifolds we will demonstrate

how a Riemannian structure arises naturally on a Lie group. The Lie algebra of a Lie group

can be equipped in a natural way with a bilinear form, from which then we can deduce the

corresponding Laplace operator.

De�nition 2.3.11 (Killing form). The killing form B(, ) : g × g → K (K = R or C) is a

symmetric bilinear form:

B(X,Y ) := trace(ad(X)ad(Y )) = trace([X, [Y, ·]]), X, Y ∈ g (2.3.18)

Let {Xi, i = 1, ..., n} be a basis of g, and [X, [Y,Xi]] =
∑n

j=1 ξ
ijXj then

trace([X, [Y, ·]]) =

n∑
i=1

ξii. (2.3.19)

De�nition 2.3.12. A Lie algebra g is semi simple, if its killing form is non-degenerated

(positive de�nite). A Lie group G is semi simple, if its Lie algebra is semi simple.

2.3.5 Casimir element and Casimir operator

The Laplace operator can be identi�ed with the Casimir element of the universal enveloping

algebra, i.e. the tensor of order two, which is in the center of Ug.

De�nition 2.3.13. Let g and G be semi simple. Let B be the killing form and {Xi} a

orthogonal1 basis of g. Further let Xi be the corresponding dual basis of the dual space of g.

Then the Casimir element is de�ned by

Ω =

n∑
i=1

Xi ⊗Xi (2.3.20)

By Riesz representation theorem Xi can be identi�ed with a basis Xi in g.

Ω =

n∑
i=1

XiB(Xi, ·) ∈ Ug (2.3.21)

is in the centre of Ug and independent of the choice of Xi.

1Orthogonality with respect to B.
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For a representation ζ of g in

∆G = ζ(Ω) =
n∑
i=1

ζ(Xi)ζ(Xi). (2.3.22)

A natural representation in the vector space2 C∞ and the one we want to use here is de�ned

by:

Xi 7→
∂

∂xi
, (2.3.23)

where ∂
∂xi

denotes the derivation in C∞, mapping every f to its Lie derivative. The Lie

derivative gives the �rst derivative in the direction of the tangential vector given by Xi at

every point on G. Precisely said, let {(Ui, ϕi)} be an atlas on G, then

∂

∂xi
f(g) =

d

dt
f(ϕ−1(ϕ(g) + tv))|t=0, ϕ−1(tv)|t=0 = Xi(g) ∈ TgG (v ∈ Rn), (2.3.24)

where n denotes the dimension of G and TgG the tangential space of G at g. The extension of

ζ to Ug works in the usual way, so that

∆G =
n∑
i=1

(
∂

∂xi

)2

(2.3.25)

To show that ∆G is translation invariant one has to verify that Ω is in the centre of Ug.

De�nition 2.3.14. Let π be a representation of G in H and let B be a bilinear form in H.
B is invariant with respect to π, if

B(π(g)v, π(g)u) = B(v, u). (2.3.26)

In that case B is also invariant for the corresponding representation dπ of the Lie Algebra

g. The de�ning equation one obtains by deriving (2.3.26)

d

dt
B(π(exp(tX))v, π(exp(tX))u)|t=0 = B(π∗(X)v, u) +B(v, π∗(X)u) = 0. (2.3.27)

For z ∈ g there are constant coe�cients aij , with [z, xi] =
∑n

j=1 aijxj and by the invariance:

0 = B([z, xi], xj) +B(xi, [z, xj ]) = αij + αji. (2.3.28)

Further

zΩ = z
n∑
i=1

xixi =
n∑
i=1

([z, xi]xi + xizxi) =
n∑

i,j=1

aijxjxi +
n∑
i=1

xizxi (2.3.29)

2The notion of representations is similar de�ned for an topological vector space in place of a Hilbert space.

In the case of G being compact we have C∞ ⊂ L2(G) is dense.
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and on the other hand

Ωz =

n∑
i=1

xixiz =

n∑
i=1

(−xi[z, xi] + xizxi) = −
n∑

i,j=1

aijxixj +

n∑
i=1

xizxi, (2.3.30)

by (2.3.28) we have aij = −aji, hence zΩ = Ωz. Since g generates Ug, consequently Ω

commutes with all u ∈ Ug.

Remark 2.3.15. The killing form B is ad invariant. That is the adjoint representation of G in

unitary and that of g is has the killing form as invariant bilinear form.

B([x, y], z) = trace(ad(x)ad(y)ad(z)− ad(y)ad(x)ad(z)) (2.3.31)

B(y, [x, z]) = trace(ad(y)ad(x)ad(z)− ad(y)ad(z)ad(x)) (2.3.32)

Since the trace is invariant under change of the sequence in cyclic order, i.e. trace(ABC) =

trace(CAB) = trace(BCA) it is B([x, y], z) = B(y, [x, z]).

2.4 Eigenfunctions of di�erential operators on G

The concept of identi�cation of the Lie algebra of G with the set of left invariant operators

acting on smooth functions on G is well known. In the same way left invariant operators of

higher order can be represented with the help of the universal enveloping algebra of Lie group

G (see also Chapter 2.3.3).

Let D be a left invariant di�erential operator. The corresponding element of the Lie algebra

of G is denoted in the same way. For the representation π of G in the Hilbert space H one can

consider the operator D in H by

π∗(D)f :=
d

dt
π(exp(tX))u

∣∣∣∣
t=0

. (2.4.1)

The straightforward extension to the universal enveloping algebra gives all left-invariant dif-

ferential operators to H.
Since we are looking for the eigenfunctions of the Laplacian in particular, the following asser-

tion is very interesting

D〈π(g)ui, uj〉H = 〈π(g)π∗(D)ui, uj〉H. (2.4.2)

This follows from the direct calculation. Let D ∈ Lie(G), then Af(e) = d
dtf(exp(tA))|t=0 and

by left invariance we have LgDf(e) = Af(g). Hence

D〈π(g)ui, uj〉 =
d

dt
〈π(g exp tD)ui, uj〉|t=0 =

d

dt
〈π(g)π(exp tD)ui, uj〉|t=0

= 〈π(g)π∗(D)ui, uj〉

The crucial assertion is that 〈π(g)ui, uj〉H is an eigenfunction of D if ui is an eigenvector of

π∗(D).
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2.5 Heat kernel and heat equation on compact Lie groups

The Heat kernel on a Group G is the fundamental solution eh : G × R+ → C of the heat

equation, (∆G − ∂t)u = 0. So that the initial value problem

∆Gu(g, t)− ∂tu(g, t) = 0 (2.5.1)

u(g, 0) = f(g) (2.5.2)

has the solution

u(g, t) = (eheatt ∗ f)(g). (2.5.3)

The Laplace operator on G can also be characterized as the second order di�erentiable operator
∆G which is translation invariant under right and left shifts.

∆Lg = Lg∆ and ∆Rg = Rg∆. (2.5.4)

The correct way of its description is connected to the Casimir element of the universal en-

veloping algebra and the extension of the adjoint representation of the Lie algebra of G to the

universal enveloping algebra as saw in Section 2.3.3. The image of the Casimir element under

the extended representation will give the Laplace operator on G.

2.5.1 Heat kernel on G

Eigenfunctions of the Laplacian are given by matrix coe�cients of irreducible representations.

From (2.5.4) we see that

Rg1∆G〈π(g2)v, u〉H = 〈π(g2)π∗(∆G)π(g1)v, u〉H (2.5.5)

= 〈π(g2)π(g1)π∗(∆G)v, u〉H = ∆GRg1〈π(g2)v, u〉H, (2.5.6)

which means

π∗(∆G)π(g2) = π(g2)π∗(∆G) ∀g2 ∈ G. (2.5.7)

Consequently the linear operator π∗(∆G) = −λ2
πId is a multiple of the identity operator

and depends on π. Consequently, the projection of any function f ∈ L2(G) to a translation

invariant subspace πα(G) (given in (2.1.11)) is an eigenfunction of ∆G :

∆G(f ∗ χ) = −λ2
α(f ∗ χ). (2.5.8)

We have ∆G(f ∗χπα) = (f ∗∆χαχπα). We will use the characters as a system of eigenfunctions

of ∆G to express the heat kernel on G by

eheatt (g) =
∑
πα

dπαe
−λ2αtχα(g). (2.5.9)
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It is obvious, that eheatt (g) satis�es the heat equation (2.5.1). A short calculation shows,

that for u(g, 0) = f(g) the initial value problem of the heat equation is solved by u(g, t) =

(f ∗ eheatt )(g):

lim
t→0

f ∗ eheatt = lim
t→0

∑
πα

eλ
2
αt(f ∗ χα) =

∑
πα

fα = f. (2.5.10)
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Chapter 3

Di�usive wavelets on Lie groups and

homogeneous spaces

3.1 Di�usive wavelets on compact Lie groups

In this chapter we give the general construction of di�usive wavelets for compact Lie groups G
and homogeneous spaces. We will follow the idea we described in Chapter 2.3.2. For concrete

constructions we restrict us here to the heat kernel on G to construct the corresponding

di�usive wavelets. Let L2
0(G) the subspace of L2(G) as de�ned in (2.3.10), corresponding to

the approximate di�usive identity {pt, t > 0} arising from the heat kernel. For f ∈ L2(G) the

projection onto L2
0(G) is denoted by

f |Ĝ+ =
∑

πα∈Ĝ+

f ∗ χπα . (3.1.1)

The Fourier transform and its inversion will be de�ned for functions in L2
0(G).

De�nition 3.1.1. Let pt be the kernel of an di�usive approximate identity and α(ρ) > 0 a

weight function. A family {ψρ, ρ > 0} ⊂ L2
0(G) is called di�usive wavelet family, if it satis�es

the admissibility condition

pt|Ĝ+ =

∫ ∞
t

ψ̌ρ ∗ ψρ α(ρ) dρ. (3.1.2)

where again ψ̌ρ(g) = ψρ(g−1).

Thanks to the convolution theorem the admissibility condition (3.1.2) can be studied in Fourier

domain. An application of Fourier transform to both sides yields:

p̂t(πα) =

∫ ∞
t

ψ̂ρ(π)ψ̂∗ρ(π)α(ρ) dρ, ∀π ∈ Ĝ+. (3.1.3)

Di�erentiation with respect to t results in

−∂tp̂t(π) = ψ̂ρ(π)ψ̂∗ρ(π)α(ρ), ∀π ∈ Ĝ+. (3.1.4)

45
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Let ψρ be a wavelet with Fourier coe�cients ψ̂ρ(π). We would like to mention a certain freedom

in the choice of the Fourier coe�cients of the wavelets. If ψ̂ρ(π) are Fourier coe�cients of

wavelets, then a multiplication with a unitary matrix ηρ(π) from the right still leads to Fourier

coe�cients of a wavelet ψ′ρ. Later on we will take a closer look at the choice of ηρ(π) and the

weight function α(ρ). First we consider the special case of the di�usive wavelets based on the

heat kernel.

Let pt be the heat kernel eheatt , given in (2.5.9). First we have to determine the appropriate

spectrum Ĝ+. From the de�nition of di�usive approximate identity (De�nition 2.3.6) we know

that

lim
t→∞

êheatt (π) = 0 (3.1.5)

for all π ∈ Ĝ+. This is the case for all nontrivial representations π0 of G. Trivial represen-

tation means π0(g) ≡ IdH. Since the character of the trivial representation is χπ0 ≡ 1 the

corresponding translation invariant subspace in L2(G) is the space of constant functions. Con-

sequently, the corresponding eigenvalue of ∆G vanishes λ0 = 0. Hence (3.1.5) is not satis�ed

by êheatt (π0) = Id. The Fourier coe�cients of all other irreducible representations, êheatt (π),

π 6= π0 satis�es this condition and we �nd for the heat kernel

Ĝ+ = Ĝ\{π0}. (3.1.6)

The admissibility condition (3.1.2) is formulated in Fourier domain by (3.1.4). For di�usive

wavelets corresponding to the heat kernel from (3.1.4) follows

ψ̂ρ(π)ψ̂∗ρ(π) = − 1

α(ρ)
∂ρê

heat
ρ (π) (3.1.7)

= − 1

α(ρ)
∂ρe
−λ2πρId (3.1.8)

=
1

α(ρ)
λ2
πe
−ρλ2πId, (3.1.9)

such that

ψ̂ρ(π) =
1

α(ρ)
λπe

−λ2πρ/2Id. (3.1.10)

If we multiply ψ̂ρ(π) with any unitary matrix ηρ(π), the result still satis�es the admissibility

(3.1.4).

Now, the expansion of the wavelet has the form

ψρ(g) =
1√
α(ρ)

∑
π∈Ĝ+

dπλπe
−ρλ2π/2 trace(ηρ(π)π(g)). (3.1.11)

We remark, that the freedom of the choice of ηρ(π) corresponds to the freedom of choosing an

admissible section σ for the construction which was sketched in section 2.3.1 (formula (2.3.2)).
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Hence here one can adapt the special form of dilations but also the focus of localization of the

wavelets is �xed by the choice of ηρ(π). Since translating the wavelet corresponds to multi-

plying the Fourier coe�cients with the unitary matrix π(g) from the right, this corresponds

to the choice π(g) = ηρ(π).

A natural choice seems to be ηρ(π) = Iddπ×dπ . In this case the wavelet family localizes at

e ∈ G for ρ→ 0.

The weight function α(ρ) shall be used to normalize the wavelet family in L2(G). By Parsevals

Identity we have ∫
G
|f(g)|2 dg =

∑
Ĝ

dπ

∫
G
| trace(f̂(π)π(g))|2 dg. (3.1.12)

For the wavelet Ψρ we have the expansion in terms of character functions, hence

‖Ψρ‖L2(G) =
1

α(ρ)

∑
π∈Ĝ+

d2
πλπe

−ρλ2π‖χπ(g)‖L2(G) =
1

α(ρ)

∑
π∈Ĝ+

d2
πλπe

−ρλ2π . (3.1.13)

For normalized wavelet family {ψρ, ρ > 0} we choose

α(ρ) =
∑
π∈Ĝ+

d2
πλπe

−ρλ2π . (3.1.14)

Looking at the expansion of the heat kernel (2.5.9), one sees that this choice of α(ρ) means

α(ρ) = −∂ρeheatρ (e) = −∆Ge
heat
ρ (e). (3.1.15)

Theorem 3.1.2 (Parsevals Identity). The wavelet transform, de�ned in the usual way by

WTf(ρ, g) := (f ∗ ψ̌ρ)(g) = 〈f, Tgψρ〉L2(G), (3.1.16)

is an unitary operator WT : L2
0(G)→ L2(R+ × G, α(ρ) dρ, dg).

Proof:

〈WTf(ρ, g),WTh(ρ, g)〉L2(R+×G,α(ρ) dρ, dg)

=

∫
R+

∫
G
WTf(ρ, g)WTh(ρ, g) dg α(ρ) dρ

=

∫
R+

∫
G

∫
G

∫
G
f(x)ψ̌ρ(x

−1g)h(y)ψ̌ρ(y−1g) dx dy dg α(ρ) dρ

= lim
t→0

∫
G

∫
G
f(x)h(y)

∫ ∞
t

∫
G
ψ̌ρ(x

−1g)ψρ(g
−1y) dg α(ρ) dρ dx dy

= lim
t→0

∫
G

∫
G
f(x)h(y)eheatt |Ĝ+(yx−1) dx dy

= 〈f, h〉L2
0(G).
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By Theorem 3.1.2 the inverse of the wavelet transform is given by the adjoint.

Theorem 3.1.3. The wavelet transform is invertible on its range by∫
R+

∫
G
WTf(ρ, x)ψρ(x

−1g) dx α(ρ) dρ = f(g) ∀f ∈ L2
0(G). (3.1.17)

While the invertibility follows from the previous theorem, we would like to give a direct proof

here, based on the property of approximate identity.

Proof: This is straitforward via∫
R+

∫
G
WTf(ρ, x)ψρ(x

−1g) dx α(ρ) dρ =

∫
R+

∫
G
(f ∗ ψ̌ρ)(x)ψρ(x

−1g) dx α(ρ) dρ

= lim
t→0

∫ ∞
t

f ∗ ψ̌ρ ∗ ψρα(ρ) dρ = lim
t→0

(f ∗ eheatt )(g) = f(g).

3.2 Di�usive wavelets on homogeneous spaces

Let again X ' G/H , where H is a subgroup of G, be a homogeneous space with base point

x0. In this chapter we extend the construction of wavelets from the previous chapter, done for

the case of compact Lie Groups G to their homogeneous spaces X ' G/H . In Chapter 2.2.1

we have already discussed the question of functions on homogeneous spaces. There are two

basic approaches. On one hand following the idea of projection - and lifting method we can

lift functions from X to G and work on G. On the other hand we can discuss the transfer of

wavelets from G to X. In the latter case it is more complicate to understand the corresponding

wavelet transform and inversion formula. This will become clear when we look at the Fourier

transform of these transformations.

We will discuss both approaches in this chapter.

3.2.1 Di�usive wavelets of class type

We start by taking a function from X and lift it to G by the lifting method (2.2.1). Then we

can apply the wavelet transform on the lifted function f̃ , make inversion on G and project the

result back to X.

The wavelet transform on X, denoted by WTX assumes the following form: Let f ∈ L2
0(X) =

L2
0(G) ∩ L2(X), then

WTXf(ρ, g) = WTf̃(ρ, g) =

∫
G
f(x · x0)Ψ̌ρ(x

−1g) dx (3.2.1)

=

∫
G
f(x · x0)Ψρ(g−1x) dx (3.2.2)

=

∫
X
f(y)PxΨρ(g−1 · y) dy = 〈f, TgΨρ〉L2(X). (3.2.3)
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Hence, in this case the wavelet transform can be written as an integral over the homogeneous

space and assumes the well-known form, where the translation is given by the canonical

action of G on X. In this case the wavelet transform of any function assumes values in

L2(R+ × G, α(ρ) dρ, dg) and is also unitary according to Theorem 3.1.2.

Let us make some observations on this construction.

Remembering De�nition 2.1.9, a class function is a function f on a Lie group G, which is

constant over conjugate classes, i.e. f(g) = f(h−1gh) ∀h ∈ G.
For the �rst step let us assume wavelets of class type functions. In particular this corresponds

to the choice of ηρ(π) = Iddπ×dπ for the di�usive wavelet which we obtained in (3.1.11).

Here we can continue the above formulation of the wavelet transform and get

WTXf(ρ, g) =

∫
G
f(x · x0)Ψρ(g−1x) dx (3.2.4)

=

∫
G
f(xg · x0)Ψρ(x) dx (3.2.5)

=

∫
G
f(x · y)Ψρ(x) dx, with y = g · x0, (3.2.6)

since Ψρ(g
−1x) = Ψρ(xg

−1) for class type functions and the invariance of dx.

Corollary 3.2.1. Let ψρ be a di�usive wavelet family and assume that ψρ are class type

functions on G. Then the associated zonal wavelet transform WTX : L2
0(X) → L2(R+ ×

X,α(ρ) dρ⊗ dx) is unitary.

Proof: The calculation is reduced to the one on G. Indeed,

〈WTXφ1,WTXφ2〉 =

∫ ∞
0

∫
X
WTXφ1(ρ, x)WTXφ2(ρ, x) dxα(ρ) dρ

= 〈WTφ̃1,WT φ̃2〉 = 〈φ̃1, φ̃2〉 = 〈φ1, φ2〉

follows from Theorem 3.1.2 and (2.2.3).

3.2.2 Zonal wavelets

We recall De�nition 2.2.1 of a zonal function, that is a function on X which is invariant under

the action of the stabilizer of the base point x0. Also in Chapter 2.2.1 we have seen, that the

Fourier coe�cients of zonal functions are matrices with the special form

f̂(π) =

(
A O

O O

)
. (3.2.7)

Let us remark that the Projection of a class function PX is always zonal, but the lifted zonal

function is not necessarily constant over conjugate classes.

Nevertheless the special form of the wavelet transform (3.2.6) can be kept for zonal wavelets.
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For any di�usive approximate identity pt, the zonal average

pXt (g · x0) =

∫
H

∫
H
pt(h1gh2) dµH (h1) dµH (h2) (3.2.8)

gives a zonal approximate identity pXt on X.

De�nition 3.2.2. Let pXt be a zonal di�usive approximate identity on X and let α(ρ) > 0

be a given weight function. A family ψρ ∈ L2(X) is called zonal di�usive wavelet family if

1. ψρ is zonal with respect to x0,

2. the admissibility condition

pXt (x)
∣∣
Ĝ+ =

∫ ∞
t

ψ̌ρ ∗ ψρ(x) α(ρ) dρ (3.2.9)

is satis�ed.

The reason why it is comfortable to formulate the wavelet transform for zonal wavelets can be

seen from the de�nition WTf = f ∗ Ψ̌ρ. Here appears the ∨-involution that maps functions

which are invariant over right �bers gH into those which are invariant over left �bers H g.

Hence, if Ψρ is a function on G/H , then Ψ̌ρ is a function on H \G and cannot be de�ned

on G/H . On the Fourier side the ∨-involution acts on the Fourier coe�cients by taking

them to their adjoint. This means, that ∨-involution does not preserve the special form of

the Fourier coe�cients of functions on X (c.f. Corollary 2.2.7). Furthermore, the Fourier

coe�cients of a zonal function are of the form (3.2.7) and the adjoint gives a matrix of the

same form. Consequently the ∨-involution maps zonal function to zonal functions, such that

in time-domain by zonality, i.e. f(h · x) = f(x) for all h ∈H we have that f̌ lives on G/H :

f̌(h · x) =
ˇ̃
f(hg) = f̃(g−1h−1) with g · x0 = x (3.2.10)

Because of zonality this equals

f̌(x) =
ˇ̃
f(g) = f̃(g−1) ∀h ∈H , (3.2.11)

hence ˇ̃
f is a function, which is constant over right �bers gH . We have

f̌(g · x0) = f(g−1 · x0). (3.2.12)

Theorem 3.2.3. The zonal wavelet transform WTX : L2
0(X) → L2(R+ ×X,α(ρ) dρ ⊗ dx)

is unitary and invertible by

φ =

∫ ∞
0

∫
G
WTXφ(ρ, g)ψρ(g

−1 · x)α(ρ) dρ. (3.2.13)
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Proof: By admissibility condition 3.2.9 and its formulation in Fourier-domain (c.f. Remark

2.2.5) we have
∫∞

0 ψ̂ρ(π)ψ̂∗ρ(π)α(ρ) dρ = πH . The explicit form of πH is given in (2.2.11).

〈φ1, φ2〉 =
∑
π∈Ĝ+

dπ trace(φ̂∗2(π)φ̂1(π)) =
∑
π∈Ĝ+

dπ trace(φ̂∗2(π)πH φ̂1(π))

=

∫ ∞
0

∑
π∈Ĝ+

dπ trace(φ̂∗2(π)ψ̂ρ(π)ψ̂∗ρ(π)φ̂1(π))α(ρ) dρ

= 〈WTXφ1,WTXφ2〉.

The inversion formula is similar to the inversion formula on G, which is given in (3.1.17).

3.2.3 General case

We now would like to consider the general case of nonzonal wavelets. As stated in the previous

section, there major problem arises due to the admissibility condition, where we make use of

the ∨-involution. To this end we will outline our previous approach.

To formulate the wavelet transform and the inversion formula for wavelets on X we consider

the transformation in Fourier domain. There the wavelet transform is given by

̂WTf(ρ, g) = Ψ̂∗ρf̂ . (3.2.14)

Hence, this transform corresponds to a multiplication with the adjoint Fourier coe�cient from

the left.

The reconstruction formula (3.1.17) is a usual convolution, combined with an integration over

all scales ∫
R+

̂WTf(ρ, ·) ∗Ψρ α(ρ) dρ =

∫
R+

Ψ̂ρΨ̂
∗
ρf̂ α(ρ) dρ. (3.2.15)

The admissibility condition (3.1.2) has the form (3.1.4) in Fourier domain, where appears the

multiplication with the adjoint from the right.

p̂t(πα) =

∫ ∞
t

ψ̂ρ(π)ψ̂∗ρ(π)α(ρ) dρ, ∀π ∈ Ĝ+. (3.2.16)

Now we are going to formulate these three steps for the case of the homogeneous spaces. Let

us start by introducing a few notations.

De�nition 3.2.4. Let φ, ψ ∈ L1(X). Then we de�ne

1. the group convolution

φ ∗ ψ(x) =

∫
G
φ(g · x0)ψ(g−1 · x) dg ∈ L1(X); (3.2.17)
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2. the •-product

φ • ψ(g) =

∫
X
φ(x)ψ(g−1 · x) dx = 〈φ, Tgψ〉 ∈ L1(G); (3.2.18)

3. the zonal product

φ •̂ψ(x) =

∫
G
φ(g · x0)ψ(g · x) dg ∈ L1(X). (3.2.19)

For these products we have the following properties.

Proposition 3.2.5. Let φ, ψ ∈ L1(X).

1. φ̃ ∗ ψ = φ̃ ∗ ψ̃ and thus φ̂ ∗ ψ(π) = ψ̂(π)φ̂(π).

2. φ • ψ = φ̃ ∗ ˇ̃
ψ and thus φ̂ • ψ(π) = ψ̂∗(π)φ̂(π).

3. If ψ is zonal with respect to x0 then φ • ψ is constant on cosets gH and thus de�nes a

function on X.

4. φ̃ •̂ψ =
ˇ̃
φ ∗ ψ̃ and φ̂ •̂ψ(π) = ψ̂(π)φ̂∗(π).

5. φ •̂ψ is zonal with respect to x0.

Proof: (1) obvious, from φ̂ ∗ ψ(π) = ψ̂(π)φ̂(π) one sees that the form of Fourier coe�cients

of functions on X is preserved.

(2) Calling in (2.2.3) and (2.2.4) one �nds

(φ • ψ)(g) =

∫
X
φ(x)ψ(g−1 · x) dx

=

∫
G
φ̃(h)ψ̃(g−1h) dh =

∫
G
φ̃(h)

ˇ̃
ψ(h−1g) dh = (φ̃ ∗ ˇ̃

ψ)(g)

(3) A calculation based on the zonality of ψ yields

φ • ψ(gh) =

∫
X
φ(x)ψ(h−1g−1 · x) dx =

∫
X
φ(x)ψ(g−1 · x) dx = φ • ψ(g).

On the Fourier side one sees directly from (2), that for functions acting on a zonal function ψ

the Fourier coe�cient ψ̂∗(π)φ̂(π) has the form of a function on X.

(4)

φ̃ •̂ψ =

∫
G
φ(g · x0)ψ(g · x) dg =

∫
G
φ̃(g)ψ̃(g · h) dg with h · x0 = x

=

∫
G

ˇ̃
φ(g−1)ψ̃(g · h) dg = (

ˇ̃
φ ∗ ψ̃)(h)

The second relation follows immediately.
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(5)For h ∈ H a direct calculation shows

φ •̂ψ(h · x) =

∫
G
φ(g · x0)ψ(gh · x) dg =

∫
G
φ(gh−1 · x0)ψ(g · x) dg = φ •̂ψ(x)

by the right invariance of d. On the Fourier side one sees immediately that for functions

φ and ψ on X we have that from φ̂ •̂ψ(π) = ψ̂(π)φ̂∗(π) it follows that ψ̂(π)φ̂∗(π) has form

(3.2.7) and hence is the Fourier coe�cient of a zonal function.

Remark 3.2.6. We have introduced now all necessary transformations on X. The problem is

how can we de�ne a wavelet directly on X? Our idea is to use the projection of the heat

kernel on G to X in order to obtain the heat kernel on X. Therefore we have to ensure that

the projection of an G-invariant operator on G gives an G-invariant di�erential operator on X
i.e. the following diagram commutes:

C∞(G)
D //

PH

��

C∞(G)

PH

��
C∞(X)

µ(D)
// C∞(X)

where µ is a surjective homomorphism from G-invariant operators on G to those on X. This

question is investigated by Helgason [Hel11, Hel01], Wolf [Wol84] and others. The commuta-

tion of the diagram and the existence of µ is true if the homogeneous space X is reductive,

i.e. when H contains no normal subgroup of G or equivalently, there is an Ad(H )-invariant

subspace in g which is complementary to the Lie algebra of H in g. In this case, µ is given

by µ(D)PH f = D(f ◦ π).

Consequently, in all what follows X is a reductive homogeneous space1.

PXeheatt = eheat,Xt , (3.2.20)

where eheat,Xt denotes the heat kernel on X.

We already know, that the wavelet transform shall be of the form

WTφ(ρ, g) = φ • ψρ(g) = 〈φ, Tgψρ〉. (3.2.21)

Let us remark, that the transform lives on G rather than on X for nonzonal wavelets. We aim

for an inversion formula of the kind

φ(x) = PH

∫ ∞
0

WTφ(ρ, ·) ∗ Ψ̃ρ(g)α(ρ) dρ (3.2.22)

with a second family Ψρ ∈ L2(X). By a short computation we see that (φ•ψ)∗ χ̃ = φ• (χ •̂ψ)

for φ, ψ, χ ∈ L1(X). Since our reconstruction formula is of the form (φ•ψ)∗ Ψ̃, this motivates

us to give the following de�nition.
1In our construction the homogeneous space is reductive if and only if it is isotropy irreducible[WZ91]
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De�nition 3.2.7. Let pt be a di�usive approximate identity and α(ρ) ≥ 0 be a given weight

function. A family ψρ ∈ L2(X) is called (non-zonal) di�usive wavelet family if the admissibility

condition

pXt (x)
∣∣
Ĝ+ =

∫ ∞
t

ψρ •̂ψρ(x)α(ρ) dρ (3.2.23)

is satis�ed.

We have seen, that under the projection PH a family of di�usive wavelets on G {Ψρ, ρ > 0}
becomes a family of wavelets on G/H . On G we have the freedom to multiply the Fourier

coe�cients of a wavelet by unitary matrix ηρ(π) from the right in order to obtain another

wavelet. Under the projection to the homogeneous space such a multiplication means a de-

formation of the wavelet in the sense that a zonal wavelet becomes a nonzonal wavelet. For a

nonzonal wavelet ηρ(π) can be chosen in such a way, that we obtain a zonal wavelet.

Let {Ψρ, ρ0} be a zonal di�usive wavelet on G/H . Then a family of L2-functions {Ψ′ρ, ρ > 0}
with Ψ̂′ρ(π) = Ψ̂ρ(π)ηρ(π) where

ηρ(π)∗ηρ(π) = πH (3.2.24)

forms a (possibly nonzonal) wavelet on G/H .

In that way all di�usive wavelets, corresponding to a �xed di�usive approximate identity

can be obtained from zonal wavelets, unique up to α(ρ), which corresponds to the di�usive

approximate identity.

Remark 3.2.8. The wavelets Ψρ and TgΨρ′ are not orthogonal in general. A calculation yields,

for heat wavelet families, the identity

〈Ψρ, TgΨρ′〉L2(G) =
1√

α(ρ)α(ρ′)

∑
π∈Ĝ

dπλ
2
πe
−λ2π(ρ+ρ′)/2χπ (3.2.25)

= − 1√
α(ρ)α(ρ′)

∆Gp
heat
(ρ+ρ′)/2 (3.2.26)

Orthogonal wavelets are obtained by di�usion wavelets by Coifman and Maggioni [CM06],

there a discrete di�usion method is combined with a orthogonalization method.

3.3 Further symmetries

One can ask for wavelets on manifolds which satisfy additional symmetries. This question

is investigated in [BBCK10]. There the symmetry is given by the invariance of the wavelets

under action of a �nite re�ection group, which involves the theory of Coxeter groups.

The property, that a wavelet Ψρ satis�es further symmetries on a manifold means, that Ψρ is

invariant under the action of a certain subgroup J of G,

Ψρ(j · x) = Ψρ(x) ∀j ∈ J .
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i.e. Ψ̃ρ is invariant over right cosets gH as well as over J g.
In Fourier domain this corresponds to

Ψ̂ρ = πH Ψ̂ρπJ ,

where J is the projection onto the J invariant subspace in representation space Lπα .

If we ask wavelets Ψρ to satisfy this additional symmetry, also the translates of Ψρ should

have this property. This means that

T̂gΨρ = Ψ̂ρπ(g−1),

but TgΨρ is only invariant under the action of J if

Ψ̂ρπJ π(g−1) = Ψ̂ρπ(g−1)πJ ⇔ πJ π(g−1) = π(g−1)πJ .

Consequently, πJ is multiple of the unitary matrix, since π(g−1) is not. Furthermore πJ
comes from an unitary representation, such that the only possibility is πJ = ±Id.
In [BBCK10] the construction is expressed by an Intertwining operator between the usual

action of dilation and translation on G/H and the action on which is given via the projection

J \G/H . We have the following commutative diagram

G/H Da //

P
��

G/H

P
��

J \G/H
P(Da)

// J \G/H

where P(Da) = P ◦Da ◦ P−1. As we see from our investigations in Fourier domain a explicit

calculation of P(Da) is not possible, such that one has to lift the wavelet to G/H , apply the

dilation operator Da and project it back to J \G/H in order to obtain the dilation operator

P(Da) an J \G/H .

3.4 The non-compact case

At least we have to mention the critical points for non- compact groups, which is the reason to

restrict the general investigations to the compact case. In special cases we will also investigate

the construction for non-compact groups. In this thesis we look at the Heisenberg group for

that purpose (section 4.4.3).

The spectrum of the Laplacian of non-compact groups becomes continuous. Consequently the

expansion in Eigenfunctions of the Laplacian becomes a direct integral

f(g) =

∫ ⊕
R
f̂(λ)πλ(g) dµ(λ). (3.4.1)
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Furthermore the expansion in matrix coe�cients of irreducible representations in the compact

case is weighted with the dimension of the representation, which is always �nite but can

become in�nite in the non-compact case. The critical question hence is, if there is a measure

on Ĝ, so that the integral∫
Ĝ
f̂(λ)πλ dµ(λ), with f̂(λ) :=

∫
G
π∗λ(g)f(g) dg (3.4.2)

is well de�ned for some function space on G. The measure dµ(λ) is the so called Plancherel-

measure. If the Plancherel measure exists, the construction of di�usive wavelets works similar

to the compact case.

The existence of the Plancherel-measure, and hence the construction of di�usive wavelets can

not be guarantied for general locally compact groups. But since the Plancherel-measure exists

for nilpotent Lie groups [CG90], one can extend the investigations of our work to nilpotent

Lie groups.

3.4.1 Scale discretized di�usive wavelets

A naturally rising task in wavelets theory is the discretization of continuous wavelets. The

full discretization is not our aim, nevertheless we want to make the step into the direction of

application and give the discretization of the scaling parameter.

De�nition 3.4.1. Let {ρj , j ∈ Z} be a strictly decreasing sequence of real numbers, satisfying

lim
j→∞

ρj = 0, lim
j→−∞

ρj =∞. (3.4.3)

Further let {Ψρ, ρ > 0} be a family of di�usive wavelets.

The family of scale discretized wavelets (a wavelet packet) is de�ned by

Ψ̂P
j (π) =

(∫ ρj

ρj+1

(Ψ̂ρ)
2α(ρ) dρ

) 1
2

, (3.4.4)

which is in space domain

ΨP
j =

∑
π∈Ĝ

dπλπ

(∫ ρj

ρj+1

e−ρλ
2
π dρ

) 1
2

trace(η(π)π(g)) (3.4.5)

The admissibility condition for scale discretized wavelets the reads now as

pheatρm (g) =
m∑

j=−∞
(Ψ̌P

ρ ∗ΨP
ρ )(g). (3.4.6)
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It is easily seen that by our assumptions the admissibility condition (3.4.6) is satis�ed:

m∑
j=−∞

(Ψ̌ρ ∗Ψρ)(g) =
m∑

j=−∞

∑
π∈Ĝ

dπλπ

(∫ ρj

ρj+1

e−ρλ
2
π dρ

)
trace(η∗(π)η(π)π(g)) (3.4.7)

=

∫ ∞
ρm

∑
π∈Ĝ

dπλπe
−ρλ2π trace(π(g)) dρ =

∫ ∞
ρm

(Ψ̌ρ ∗Ψρ)(g)α(ρ) dρ = pheatρm (g). (3.4.8)

The wavelet transform is now given naturally by

WTP f(j, g) := 〈f, TgΨP
j 〉L2(G) = (f ∗ Ψ̌P

j )(g). (3.4.9)

Theorem 3.4.2. The wavelet transform WTP is an isometry between L2(G) and L2(Z×G)2

Proof: A direct calculation yields

‖WTf(j, g)‖2L2(Z×G) =
∑
j∈Z

∫
G
WTf(j, g)WTf(j, g) dg (3.4.10)

=
∑
j∈Z

∫
G
(f ∗ Ψ̌P

ρj )(g) (f ∗ Ψ̌P
ρj )(g) dg (3.4.11)

=
∑
j∈Z

∫
G

∫
G

∫
G
f(a)Ψ̌P

j (g−1a)f(b)ΨP
ρj (b

−1g) dg da db (3.4.12)

= lim
t→0

∫
G

∫
G
f(a)f(b)(Ψ̌ρ ∗Ψρ)(ba

−1)α(ρ) dρ da db (3.4.13)

= ‖f‖2L2(G). (3.4.14)

Theorem 3.4.3. The scale discretized Wavelet transform is invertible on its range by the

following inversion formula

f(g) =
∑
j∈Z

(WTP f(j, ·) ∗ΨP
j (·))(g). (3.4.15)

Proof: We just have to use the de�nition of WTP and see

lim
m→∞

m−1∑
j=−∞

(WTP f(j, ·) ∗ΨP
j (·))(g) (3.4.16)

= lim
j→∞

∫ ∞
ρm

(WTf(ρ, ·) ∗Ψρ(·))(g)α(ρ) dρ, (3.4.17)

which coincides with our usual reconstruction formula.

2Where the measure is the tensor product of that of l2(Z) and that of L2(G).
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A common strategy is to build up a multiresolution analysis corresponding to ΨP . For a

detailed discussion of multi resolution analysis we refer to [Dau92] or [LMR94]. Here we

mention that this can be done also for our scale discretized wavelets. Since we do not aim the

complete discretization give only a short description.

De�nition 3.4.4. The scaling function, corresponding to ΨP
j is de�ned via its Fourier coef-

�cients by

Φ̂P
j (π) :=

 Idπ π 6∈ Ĝ+(∫∞
ρj

(Ψ̂ρ(π))2α(ρ) dρ
)2

π ∈ Ĝ+

.

For the �ltering properties we de�ne further

Pρ(f) := ΦP
ρ ∗ ΦP

ρ ∗ f (3.4.18)

Sρ(f) := ΨP
ρ ∗ΨP ∗ρ f, (3.4.19)

for f ∈ L2(G).

By construction we have that Pρ is an approximation of the identity operator. De�ning

VR(G) = PR(L2(G)) =
{
PR(f), f ∈ L2(G)

}
R ∈ R+, (3.4.20)

WR(G) = SR(L2(G)) =
{
SR(f), f ∈ L2(G)

}
R ∈ R+, (3.4.21)

it is clear that VR ⊂ VR′ for R ≥ R′.
From the de�nition of scaling function and the above property we conclude:

• L2(G)\L2
0(G) ⊂ VR′(G) ⊂ VR(G) ⊂ L2(G), 0 < R < R′ <∞

• { lim
ρ→∞

Φ
(2)
ρ ∗ f | f ∈ L2(G)} = L2(G)\L2

0(G)

• {f ∈ VR| R ∈ (0,∞)}‖·‖L2
= L2(G).

By de�nition of ΦP
j and ΨP

j and under consideration of (3.4.18) and (3.4.19) we have

Vρj = Vρj−1 ⊕Wρj . (3.4.22)
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4.1 The torus

In the case of the torus we are treating an abelian structure, hence all representations are

one-dimensional. Let Tk denote the k-dimensional torus which can be identi�ed with1

Tk = Rk/(2πZ)k. (4.1.1)

Hence functions on Tk are regarded as k-fold periodic functions on Rk. We identify elements

on Tk with equivalence classes of elements on Rk via projection (4.1.1): x ∼ x mod Zk,
where the modulus is taken componentwise. The character functions corresponding to the

one-dimensional representations πα are given by the standard Laplace operator

χα(x) =
1

(2π)k
ei
∑k
l=1 αlxl , (4.1.2)

where α is a k-dimensional multi index α ∈ Zk and we write

|α|p =

 k∑
j=1

|α|p
 1

p

for p ∈ N.

The Laplace operator on Tk is given by ∆Tk =
∑k

l=1 ∂
2
xl
. Hence the corresponding eigenvalues

are −
∑k

l=1 α
2
l = −|α|22. Consequently, corresponding to (2.5.9) the heat kernel on Tk has the

series expansion

eheat,T
k

t =
1

(2π)k

∑
α∈Zk

e−|α|
2
2teiα·x, (4.1.3)

where we make use of the notation α · x =
∑k

l=1 αlxl.

Also on Tk we �x the function space L2
0(T), which we wish to investigate by di�usive wavelets,

as the span of all eigenfunctions of ∆Tk with non vanishing eigenvalue. We set T̂k+ to be

T̂k\{πα(Tk), ∆Tk χα = 0}, i.e. we choose L2
0(Tk) again to be the space of L2-functions with

vanishing mean value, i.e. the standard L2-space without the constant functions. Hence, in

what follows we exclude the vanishing multi index α0
l := 0 for l = 1, ..., k.

For the de�nition of di�usive wavelets on Tk corresponding to the heat kernel on Tk we follow
(3.1.11) and �nd the family {Ψρ, ρ > 0} of di�usive wavelets, de�ned by

Ψρ(x) =
1√

(2π)kα(ρ)

∑
α∈Zk\{0}

|α|1e−|α|
2
2ρ/2eiα·x (4.1.4)

where α(ρ) is an appropriate weight function.

1It would be enough to assume k linearly independent vectors and factorize Tk = Rk/Ωk, where the lattice
Ωk is given by Zω1 + ...+ Zωk. Our stronger formulation represents no loss of generality.
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To determine more explicit formulae we restrict to the case k = 1. Since Tk = S1 × ... × S1

and hence L2(Tk) = ⊗kl=1L
2(S1) , one can construct wavelets on Tk by tensor products of

those on S1. The heat kernel becomes

eheat,T
1

t (x) =
1

2π

∞∑
α=−∞

e−α
2t(eix)α = 1 + 2

∞∑
k=1

e−α
2t cos(αx) =

1

2π
ϑ3(x/2, e−t) (4.1.5)

in terms of Jacobi's ϑ3-function, cf. [WW96, Chapter XXI].

Therewith the heat kernel on Tk, given by (4.1.3) can be written as

eheat,T
k

t =
1

(2π)k

k∏
l=1

ϑ3(xl/2, e
−t). (4.1.6)

The corresponding wavelet on T 1 can be written as

Ψρ(x) =
1√

2πα(ρ)

∞∑
α=−∞

|α|e−α2ρ/2eixα (4.1.7)

=
1√

2πα(ρ)

∞∑
α=−∞

ηρ(α)|α|e−α2ρ/2eixα (4.1.8)

Here we use the choice ηρ(α) = −i signα and �nd

Ψ′ρ(x) =
1√
2π
∂xϑ3(x/2, e−ρ/2) (4.1.9)

The wavelet (4.1.3) now reads as

Ψρ(x) =
1√

(2π)kα(ρ)

k∏
l=1

∂xlϑ3(xl/2, e
−ρ/2). (4.1.10)

The corresponding wavelet transform of a function f ∈ L2[0, 2π] ' L2(T) with normalisation

α(ρ) = 1 is

WTφ(ρ, θ) =

∫ 2π

0
f(τ)∂τϑ3

(
1

2
(τ − θ), e−ρ/2

)
dτ

=

∫ 2π

0
f ′(θ − τ)ϑ3(

1

2
τ, e−ρ/2) dτ (4.1.11)

with inversion formula

φ(θ) =

∫
φ(τ) dτ −

∫ ∞
0

∫ 2π

0
WTφ(ρ, θ − τ) ∂τϑ3(

1

2
τ, e−ρ/2) dτ dρ. (4.1.12)

The wavelet transformWTφ(ρ, θ) describes for small ρ the `high-frequency part' of φ localized

near the point θ.

We conclude this example with some pictures of the family ψρ on T1 for di�erent ρ depicted

in Figure 5.1.
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Figure 4.1: The toroidal family ϑ′3(θ/2, e−ρ/2) for −3π ≤ θ ≤ 3π and scale parameters ρ ∈
{0.005, 0.01, 0.015, 0.025, 0.04, 0.1}.

4.1.1 Second possibility for the torus

In the previous section we regarded the torus as a compact abelian group. A second possibility

is to de�ne a projection of functions on Rk to those on Tk, which can be done by periodization.

Basically one identi�es k-fold periodic functions on Rk with those on Tk.

While that we consider the group (Rn,+) which is commutative. The Fourier theory for Rn

is well known and inversion formulae as well as convolution theorem, which is necessary for

our construction of di�usive wavelets, are available in that setting. Consequently in this case

we do not need to discuss the non-compactness and formulation of di�usive wavelets on Rn is

straightforward and give no rise of di�culties. We will consider the subgroup (Zn,+) and look

at the projection from which we already mentioned in (4.1.1). The corresponding projection

of functions on Rn onto Tk will be called periodization of the function and is de�ned by

Pf(x) = fp(x) :=
∑

ω∈2πZk
f(x+ ω). (4.1.13)

We will see, that the periodization of the heat kernel on Rk will give that one on Tk. The

construction leads to the same wavelets which we obtained in the previous section.

The function fp is k-fold periodic, but it is not clear if the sum (4.1.13) is well de�ned.

Lemma 4.1.1. For f ∈ Lp(Rk) with 1 ≤ p <∞ the projection of fp belongs to L
p(Tk).
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Proof: Let Qf be the fundamental domain of Tk, i.e. [−π, π]k,

∫
Tk
|fp(x)|p dx =

∫
Qf

∣∣∣∣∣∣
∑

ω∈2πZk
f(x+ ω)

∣∣∣∣∣∣
p

dx

≤
∫
Rn
|f(x)|p dx.

The heat kernel on Rn is given in the usual way. The eigenfunctions of the Laplacian ∆ in

Rn are eiλ·x with respect to the eigenvalues −λ2 with λ ∈ Rn. The corresponding heat kernel

can by given be given by

eheat,R
n

t (x) =
1

2π

∫
Rn
e−λ

2teiλ·x dλ (4.1.14)

=
1

2π

∫ ∞
0

e−λ
2t

∫
Sn−1

ei|λ|ξ·x dξ d|λ|, (4.1.15)

which is the expansion in a direct integral i.e. the Fourier integral of the heat kernel

eheat,R
n

t (x) =
1

2(πt)n
e−
‖x‖2
4t . (4.1.16)

Obviously, eheat,R
n

t belongs to Lp(Rn) and hence the periodization

Pneheat,R
n

t (4.1.17)

exists, is n-fold periodic and satis�es the heat equation in every point. Thus it represents the

heat kernel on the n-dimensional torus.

Since Tn is a compact manifold, the spectrum of the Laplacian and the expansion in a Fourier

series is discrete (see (4.1.3)).

For simplicity we write m = (m1, . . . ,mn)T ∈ Zn. For an f ∈ L2(Tn) we have

f(x) =
∑
m∈Zn

f̂(m)ei
∑n
j=1mjxj f̂(m) =

1

(2π)n

∫ 2π

0
. . .

∫ 2π

0
f(x)e−i

∑n
j=1mjxj dx1 . . . dxn,

(4.1.18)

where x = (x1, . . . , xn)T .

Remark 4.1.2. Let f, g ∈ L2(Tn) with Fourier coe�cients fm, gm respectively. The convolution

theorem can be can be written in the form

(f ∗ g)(x) =
1

(2π)n

∑
m∈Zn

f̂(m) ĝ(m)

∫ 2π

0
. . .

∫ 2π

0
e−i

∑n
j=1mjyje−i

∑n
j=1mj(xj−yj) dy1 . . . dyn

=
∑

m=∈Zn
f̂(m) ĝ(m)ei

∑n
j=1mjxj .
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De�nition 4.1.3. Let {ht, t > 0} be a di�usive approximate identity, and let ĥt(m) be the

Fourier coe�cients of the kernel functions ht. Then the corresponding di�usive wavelet is

de�ned by

ψρ(x) :=
∑
m∈Zn

(
− d

dt
ĥt(m)

) 1
2

ei
∑n
j=1mjxj . (4.1.19)

Utilizing the convolution theorem (Remark 4.1.2), by our construction we �nd∫ ∞
t

∫
Tk
ψρ(y)ψρ(x− y) dy dρ =

∑
m∈Zn

ĥt(m)ei
∑n
j=1mjxj = ht(x).

Since the approximate identity ht is uniformly bounded in L1(Tn), we get∫ ∞
t

∫
Tn
|(ψρ ∗ ψρ)(x)| dx dρ =

∫
Tn

∣∣∣∣∣
∞∑

m∈Zn
ĥt(m)ei

∑n
j=1mjxj

∣∣∣∣∣ dx <∞,

independently of t.

As a concrete example of a di�usive wavelet on Tn we will present di�usive wavelets which

corresponds to the heat kernel. The construction is already given in De�nition 4.1.3, we just

need to calculate.

The Fourier coe�cients for of the expansion (4.1.3) of the heat kernel eheat,T
n

t can be given

explicitly

êheat,T
n

t (m) =
1

(2π)n

∫ 2π

0
. . .

∫ 2π

0

∑
ω∈Q

eheat,R
n

t (x+ ω)e−i
∑n
j=1mjxj dx1 . . . dxn

=
1

(2π)n

∫
Rn

1

2(πt)n/2
e−
‖x‖2
4t e−i

∑n
j=1mjxj dx

=
1

2πn
e−
∑n
j=1m

2
j t

De�nition 4.1.4. Let {ψρ} be a subfamily of L2(Tn) with Fourier series expansion (4.1.18).

The wavelet we are looking for has the Fourier series expansion:

ψρ(x) =
∑
m∈Zn

1√
2πn

n∑
j=1

m2
je
−
∑n
j=1m

2
jρei

∑n
j=1mjxj

In the case of the two dimensional torus T2 the explicit form of the di�usion wavelet corre-

sponding to the heat kernel is

ψρ(x) =
∑
m∈Z

∑
n∈Z

1√
2π

(m2 + n2)e−m
2ρe−n

2ρeimx1einx2 .

A visualization for di�erent dilation parameters ρ = 0.3, 0.5, 0.7, 0.9 and similar translation

parameter is given in �gure 5.1-4.5. The �gures illustrates the localization property of the

wavelets for dilation parameter tending to zero.
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Figure 4.2: Wavelet on

T2, ρ = 0.3

Figure 4.3: Wavelet on

T2, ρ = 0.5

Figure 4.4: Wavelet on

T2, ρ = 0.7

Figure 4.5: Wavelet on

T2, ρ = 0.9

4.2 Spherical di�usive wavelets

There is a big interest in wavelets on the sphere. For geosciences this rises from the outer

form of the earth and investigations by Freeden for the two-dimensional sphere can be found

in [FGS98] where the approach is chosen via special functions. Behind the construction of

Freeden one can �nd the action of a semigroup given by convolution integrals which can be

seen as special type the same type of convolution kernel which we use. A group theoretical

approach is investigated by Antoine and Vandergheynst in [AV99]. Here the dilation and the

translation are given as representation of a group and the sphere is viewed as homogeneous

space of the Lorentz group SO(n, 1). In this approach the di�culty is to overcome the problem,

that there is no irreducible representation of SO(n, 1), which is square-integrable.

In this section we investigate the group SO(n) of rotations in Rn. As homogeneous space we

are particularly interested in SO(n+ 1)/SO(n) ∼ Sn. As we mentioned in Remark 3.2.6, we

need that the subgroup SO(n) contains no normal subgroup of SO(n + 1). This is obvious,

since the conjugate classes of SO(n) in SO(n+ 1) are stabilizer of di�erent points on Sn.

From De�nition 2.2.2 and 2.2.3 we deduce, that a irreducible representation π of G is of class

one with respect to H if and only if rankπH ≥ 1 and H is a massive subgroup of G if and

only if rankπH ≤ 1 for all π ∈ Ĝ.
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Lemma 4.2.1. SO(n) is a massive subgroup of SO(n+ 1) for all n ∈ N.

A proof can be found in Vilenkin [VK93, Chapter IX.2.6].

In the case of SO(3) we have a comfortable situation since all irreducible representations are

of class one with respect to SO(2). Before we take a closer look at SO(3) we pursue the aim

of wavelets on Sn.

An orthonormal system in L2(Sn) is provided by spherical harmonics {Y ik, k ∈ N0, i =

1, ..., dk(n)}, where

dk(n) = (2k + n− 1)
(k + n− 2)!

k!(n− 1)!
(4.2.1)

denotes the dimension of the subspace spanned by spherical harmonics of degree k. These

subspaces

Hk := span{Y ik, i = 1, ..., dk(n)} (4.2.2)

are the rotation/translation invariant subspaces, hence are the invariant subspaces of the quasi

regular representation T . In that way the quasi-regular representation

T (g) : f(ξ) 7→ f(g−1 · ξ) f ∈ L2(Sn) (4.2.3)

decomposes into dk(n)-dimensional irreducible representations T k(g) in Hk. The correspond-
ing matrix coe�cients are the Wigner-polynomials

T kij(g) = 〈T k(g)Y ik, Y
j
k〉L2(Sn). (4.2.4)

Consequently, we have

Y ik(g−1 · ξ) =

dk(n)∑
j=1

T kij(g)Yjk(ξ). (4.2.5)

By Lemma 4.2.1 it follows, that the subspace of zonal functions in Hk is one-dimensional. It

is spanned by Gegenbauer polynomials of order λ = n−1
2 denoted by C(n−1)/2

k (ξ0 · ξ) where ξ0

denotes the base point on SO(n+ 1)/SO(n) ∼ Sn. Usually ξ0 is chosen to be the north pole.

Remark 4.2.2. There is a natural identi�cation of zonal functions on Sn and functions on

[0, π], since zonal functions depends only on the angle between their argument and the point

to which they are zonal. For any function f on [−1, 1] (so that f(cos(·)) is de�ned on [0, π])

the function f(ξ0 · η) is zonal with respect to ξ0 ∈ Sn as a function of η ∈ Sn. It is clear that∫
Sn
f(ξ0 · η) dη = Ωn−1

∫ π

0
f(cos θ) sin(θ)2λ dθ λ =

n− 1

2
. (4.2.6)

Here and later on we denote the surface measure of Sn by Ωn = |Sn|. So for zonal wavelets

we will make use of the notation f(η) = f(ξ0 · η). There is no danger of confusion since the

domain Sn or [0, π] of f makes clear in which way we look at it.

The Gegenbauer polynomials Cλk (cos(·)) form an orthogonal system on L2([0, π]) with respect

to the measure sin(θ)2λ dθ.
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There exists a long list of interesting formulas described for example in [BBP69]. Since the

theory of special functions can be described in a natural way by representation theory we

discuss some of them from our point of view.

Theorem 4.2.3 (Addition theorem). For all ξ, η ∈ Sn and k ∈ N0 we have

C(n−1)/2
k (ξ · η)

C(n−1)/2
k (1)

=
Ωn

dk(n)

dk(n)∑
i=1

Y ik(ξ)Y ik(η). (4.2.7)

Proof: It su�ces to check that the right hand side is zonal with respect to ξ, which follows

from (4.2.5) with g being in the stabilizer of ξ and exchanging orders of summation yields

dk(n)∑
i=1

Y ik(ξ)Y ik(g−1 · η) =

dk(n)∑
i=1

Y ik(ξ)
dk(n)∑
j=1

T kij(g)Yjk(η) (4.2.8)

=

dk(n)∑
j=1

dk(n)∑
i=1

T kji(g
−1)Y ik(ξ)Y

j
k(η) =

dk(n)∑
j=1

Yjk(g · ξ)Yjk(η) (4.2.9)

Then, in order to �nd the constants it su�ces to choose ξ = η and integrate both sides over

Sn.

Since we are interested here in wavelets on Sn, which we obtain by projection from SO(n+1),

we have to consider all irreducible representations of SO(n+ 1) which do not have vanishing

matrix coe�cients under the projection PSO(n). These are the representations of class one with

respect to SO(n) and we realize them by the usual quasi-regular representations in L2(Sn).

To express the heat kernel on Sn we have to calculate the projection of matrix coe�cients

PSO(n)T
k
ij . Therefore the following lemmas are useful.

Lemma 4.2.4. Let ξ, ξ0 ∈ Sn, where ξ0 is the base point, k ∈ N0 and i = 1, ..., dk(n), then∫
SO(n)

Y ik(h · ξ) dh =
Y ik(ξ0)

Cλk (1)
Cλk (ξ0 · ξ) λ =

n− 1

2
. (4.2.10)

With our zonal averaging method, (see subsection 3.2.2) every function on Sn can be averaged

over orbits of SO(n) on Sn to become a zonal function with respect to the point with stabilizer

SO(n).

Proof: Since the result is obviously a zonal (with respect to ξ0) it it a multiple of Cλk . To

determine the right constant we only have to choose ξ = ξ0 that gives
∫
Sn Y

i
k(h · ξ0) dh =

Y ik(ξ0).

Theorem 4.2.5 (Funk-Hecke). Let f be a zonal L1-function. Then for i = 1, ..., dk(n) it is∫
Sn
f(ξ · η)Y ik(η) dη = Y ik(ξ)

Ωn−1

Cλk (1)

∫ π

0
f(cos(θ))Cλk (cos(θ)) sin(θ)2λ dθ. (4.2.11)



68 CHAPTER 4. IMPORTANT GROUPS AND MANIFOLDS

Proof: We decompose the integral over Sn into one over [0, π]× SO(n). SO(n) shall be the

stabilizer of ξ. Further let γ(t) be a geodesic from ξ to −ξ that we parameterize by the angle

between ξ and γ(θ), namely ξ · γ(θ) = θ ∈ [0, π]. Since f is zonal with respect to ξ there is

constant on SO(n) · γ(θ) such that∫ π

0

∫
SO(n)

f(h · γ(θ))Y ik(h · γ(θ)) dh dθ

= Ωn−1

∫ π

0
f(cos(θ))

∫
SO(n)

Y ik(h · γ(θ)) dh sin(θ)2λ dθ

= Y ik(ξ)
Ωn−1

Cλk (1)

∫ π

0
f(cos(θ))Cλk (cos(θ)) sin(θ)2λ dθ

Therefrom we can deduce the projection of matrix coe�cients T kij of representations of SO(n+

1), which are class one with respect to SO(n). Using the zonal averaging formula (4.2.10) and

Funk-Hecke Theorem 4.2.5 we �nd

PSO(n)T
k
ij(g) =

∫
SO(n)

〈Y ik(g−1·),Yjk(h·)〉L2(Sn) dh

=
Yjk(ξ0)

Cλk (1)
〈Y ik(g−1·), Cλk (ξ0·)〉L2(Sn)

= Y ik(g · ξ0)Yjk(ξ0)
Ωn−1

(Cλk (1))2

∫ π

0
Cλk (cos(θ))Cλk (cos(θ)) sin(θ)2λ dθ

= Y ik(g · ξ0)Yjk(ξ0)
Ωn

dk(n)
. (4.2.12)

Hereby the normalization relation of Gegenbauer polynomials∫ π

0
Cλl (cos θ)Cλk (cos θ) (sin θ)2λ dθ = (Cλk (1))2 Ωn

dk(n)Ωn−1
. (4.2.13)

The eigenvalues of the Laplacian on Sn and hence that of the Laplacian on SO(n + 1) are

−λ2
k = −k(k + n− 2) with respect to the eigenfunctions Y i

k and T kij , respectively.

Now we can formulate the heat kernel on Sn, that is

eheat,S
n

t (ξ) =
∞∑
k=0

dk(n)e−λ
2
kt
Cλk (ξ0 · ξ)
Cλk (1)

(4.2.14)

=

∞∑
k=0

2k + n− 1

n− 1
e−k(k+n−2)tCλk (ξ0 · ξ), (4.2.15)

whereby dk(n) =
(
n+k
n

)
−
(
n+k−2
n

)
and Cλk (1) =

(
n+k−2

k

)
.

Consequently, we have shown
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Theorem 4.2.6 (zonal di�usive wavelets on Sn). Let α(ρ) be a weight function on Sn. Then

zonal di�usive wavelets on Sn are given by

Ψρ(ξ) =
1√
α(ρ)

∞∑
k=0

(2k + n− 1)λk
n− 1

e−λ
2
kρ/2Cλk (ξ0 · ξ), (4.2.16)

where λk =
√
k(k + n− 2).

Also here it is interesting to discuss di�usive wavelets corresponding to any other di�usive

approximate identity. In fact λk can be replaced by any other monoton sequence λk → ∞.

This leads to replacing the Laplacian by any other left and right translation invariant operator,

having the same eigenspaces span{T kij , i, j = 1, ..., dk}.
A second important approximate identity on the sphere comes from the Abel-Poisson kernel.

This kernel has eigenvalues −k with respect to the Laplacian. So the corresponding choice

λ =
√
k gives the di�usive approximate identity, corresponding to the Abel-Poisson kernel.

The kernel itself is a zonal function, and hence depends only on an angle θ ∈ [−π, π]. In

Figure 5.1 we �nd a visualization of the Abel-Poisson kernel. It localizes much faster than the

Weierstrass kernel, which is visualized in Figure 4.2

Figure 4.6: Kernel of the Abel-

Poisson kernel on the two-

dimensional sphere

Whenever the construction of di�usive wavelets is done on a manifoldM that is the surface

of another Riemannian manifold N with metric d, one can use use the Abel-Poisson kernel as

fundamental solution of the Laplace equation on N as approximate di�usive identity onM.

The dilation/ di�usive parameter can be chosen as − ln(r), where r shall be the distance of a

point in N to the boundary that isM.

4.2.1 Nonzonal wavelets

In this section we want apply the construction of nonzonal di�usive wavelets and show how

they are obtained on the sphere Sn.
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Figure 4.7: Heat kernel on the two-

dimensional sphere

From Lemma 4.2.1 it follows, that the bases in L2(Sn) can be chosen, so that

πSO(n) =

(
1 O

O O

)
. (4.2.17)

Because the projection in Fourier domain corresponds to left multiplication of the Fourier

coe�cients by πSO(n) with (4.2.12) and Y ik(ξ0) =
√

dk(n)
Ωn

for i = 1. This gives

PSO(n)T
k
i1(g) =

√
Ωn

dk(n)
Y i
k (g · ξ0) (4.2.18)

Now, nonzonal wavelets can be obtained by multiplying Fourier coe�cients from the right by

ηρ(k), which is determined by (3.2.24). So let ω(k) = (ωi(k))
dk(n)
i=1 ∈ Cdk(n) be the unit length

vector of entries of the �rst ( and the only non-zero) line of ηρ(k).

The one-dimensional subspace of zonal functions in Hk is spanned by T k11(g) hence T k11(g) =

cCλk (g · ξ0). The constant c can be determined from (4.2.12) and gives c = 1
Cλk (1)

.

As we have seen in the previous subsection Fourier coe�cients of zonal wavelets are of the

from

ψ̂ρ(k) = λke
−λ2kρ/2

(
1 O

O O

)
(4.2.19)

Consequently a nonzonal wavelet on Sn has the from

ψρ(g) =
∞∑
k=0

dk(n)λke
−λ2kρ/2 trace(ηρ(k)T k(g)) (4.2.20)

=
∞∑
k=0

dk(n)λke
−λ2kρ/2

√
Ωn

dk(n)

dk(n)∑
i=1

ωi(k)Y ik(g · ξ0), (4.2.21)

where T k(g) := (T kij(g))i,j .

Also in [BCEK09] we calculated nonzonal wavelets with formulae of special functions, which

we used here. The context in which we presented the result here posses a completeness in the

sense that it follows, that all di�usive spherical wavelets are of the form (4.2.20).
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4.3 The case of SO(3) and S2

Now we are going to apply the di�usive wavelet method to the special case of the two dimen-

sional sphere. All results we need are given in Section 4.2.1. Later we will make use of the

results of this section, in order to discuss the behaviour of our di�usive wavelets under Radon

transform on SO(3), when we discuss the Radon transform on compact Lie groups.

In the same way as in L2(Sn), in L2(S2) the translation invariant subspaces Hk are spanned

by the spherical harmonics of same degree of homogeneity {Y ik, i = 1, ..., 2k + 1} ([Mül66]).

Now we �nd dk(2) =dimHk = 2k + 1 and the eigenvalue of the Laplacian corresponding to

the subspace Hk is −λ2
k = −k(k + 1). The corresponding matrix coe�cients are known as

Wigner polynomials ([AW82])

T kij(g) = 〈T k(g)Y ik, Y
j
k〉L2(S2). (4.3.1)

Using the results of the previous section, for the two-dimensional sphere we �nd the general

form of di�usive wavelets corresponding to the heat kernel to be

Ψρ(ξ) =
∞∑
k=0

(2k + 1)
√
k(k + 1)e−k(k+1)ρ/2

√
4π

2k + 1

2k+1∑
i=1

ωi(k)Y ik(ξ). (4.3.2)

We remark that these wavelets where already constructed in [BCEK09].

Zonal wavelets on S2 are of the form

Ψρ(ξ) =
1√
α(ρ)

∞∑
k=0

(2k + 1)
√
k(k + 1)e−k(k+1)ρ/2C

1
2
k (ξ0 · ξ). (4.3.3)

These wavelets, which we obtain here as di�usive wavelets where also constructed in [FGS98]

using the appropriate formulae of special functions. We would like to point out, that our

construction, based on representation theory, is more general.

4.3.1 Di�usive wavelets on SO(3)

As we have mentioned in the previous section, for SO(3) all irreducible representations are

unitary equivalent to one of the irreducible components of the quasi-regular representation in

L2(S2), i.e. all irreducible representations are of class one with respect to SO(2). In [BE10]

the double covering property of S3 and SO(3) is used to project wavelets from S3 to SO(3),

which results in deleting the odd Fourier coe�cients from a wavelets on S3, which is discussed

in [Ebe08]. The manifold S3 has the advantage, that it can be equipped with a group structure

by identifying it with the set of unit quaternions Hu. The group structure is given by the

usual multiplication of quaternions. There are two ways to embed R3 into the quaternions.

One can identify R3 with the vectorial part of quaternion H and arbitrary scalar part, or one

considers quaternions with vanishing scalar part. A rotation in R3, hence an action of SO(3)

in R3 is realized by the map s 7→ q−1sq with q ∈ Hu. Consequently q and −q give the same
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rotation. Even functions, i.e. functions f on S3 with f(−x) = f(x), can be identi�ed with

functions on SO(3). Since S3 in that manner is a group we can also calculate wavelets on

S3 as group and project it to S3/{±1} in order to construct wavelets on a manifold which is

di�eomorphic to SO(3) as a manifold.

Here we want to go the direct way and calculate the characters of SO(3).

The eigenvalues of the Laplacian on SO(3) corresponding to the eigenfunctions in

Hk = span{T kij , i, j = 1, ..., 2k + 1}

are the same as the eigenvalues of the eigenfunctions of the corresponding subspace on S2:

∆GT
k
ij = (2k + 1)T kij . (4.3.4)

The characters are given by

χk(g) = trace(T k(g)) =

dk∑
k=1

〈Y ik(g−1(·)),Y ik〉

=

dk∑
k=1

∫
S2
Y ik(g−1(ξ)Y ik(ξ) dµ(ξ)

=
(2k + 1)

4π

∫
S2
C

1
2
k (g−1(ξ) · ξ) dµ(ξ).

To calculate χ(g) for SO(3) we use polar coordinates, which identify η ∈ S2 with the values

of its Euler angles η = (θ1, θ2) ∈ [0, 2π) × [−π
2 ,

π
2 ]. Rotations g ∈ SO(3) are parameterized

by a rotational axis and a rotational angle. Since the characters on SO(3) are independent of

the rotational axis, one can choose the axis, which contains the north pole. Hence g−1 · η =

(θ1 + γ, θ2). With cos(g−1 · η, η) = sin2 θ2 + cos γ cos2 θ2 and ( see [GR65]):

Cλk (x) =
Γ(2λ+ k)

Γ(k + 1)Γ(2λ)
2 F1

(
2λ+ k,−k;λ+

1

2
;
1− x

2

)
,

hence for λ = 1
2 we have

C
1
2
k (x) = 2 F1

(
1 + k,−k; 1;

1− x
2

)
,

and therewith

χk(g) =
(2k + 1)

2π

∫ π
2

0
C

1
2
k (sin2 θ2 + cos γ cos2 θ2) cos θ2 dθ2

=
(2k + 1)

2π

∫ 1

0
C

1
2
k (x2 + cos γ(1− x2)) dx, with x = sin θ2

=
(2k + 1)

2π

∫ 1

0
2 F1(k + 1,−k; 1;

1

2
(1− cos γ) (1− x2)︸ ︷︷ ︸

=y

) dx

=
(2k + 1)

2π

∫ 1

0
2 F1(k + 1,−k; 1;

1

2
(1− cos γ)︸ ︷︷ ︸
=sin2( γ2 )

y)
1

2
(1− y)−

1
2 dy.
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Since ∫ 1

0
(1− x)µ−1xν−1

2 F1(a1, a2; ν; ax) dx =
Γ(µ)Γ(ν)

Γ(µ+ ν)
2 F1(a1, a2;µ+ ν; a)

with ν = 1 and µ = 1
2 we get

χk(g) =
(2k + 1)

4π

Γ(3
2)Γ(1)

Γ(5
2)

2 F1

(
k + 1,−k;

3

2
; sin2

(γ
2

))
and further (also from [GR65]) by

Cλ2k(t) =
(−1)k

(λ+ k)

(
k + 1

λ

)−1

2 F1(k + λ,−k;
1

2
; t2)|

we obtain

χk(g) =
(2k + 1)

4π

(
2k + 1

2k

)−1

C1
2k

(
sin
(γ

2

))
=

1

4π
C1

2k

(
sin
(γ

2

))
.

Hence the heat kernel on SO(3) is given by

pSO(3)(t, g) =
1

4π

∞∑
k=0

(2k + 1)e−k(k+1)tC1
2k

(
sin

(
γ(g)

2

))
,

where γ(g) denotes the angle of g, which is parameterized by a rotational axis and a rotational

angle. It holds

γ(g) = arccos

(
trace(g)− 1

2

)
.

For more details about the discussion of such parameterizations can be found in [Hie07].

By our construction a family of wavelets on SO(3) corresponding to the heat kernel is given

by

Ψρ(g) =
1√
α(ρ)

1

4π

∞∑
k=0

(2k + 1)
√
k(k + 1)e−

k(k+1)
2

ρC1
2k

(
sin

(
γ(g)

2

))
. (4.3.5)

We will come back to this in the discussion of the Radon transform of wavelets on SO(3).

Before we generalize the wavelets to Cli�ord-valued wavelets on the spin group and on the

sphere which involves further constructions on representation theory, we investigate the con-

struction of di�usive wavelets on a non-compact Lie group, the Heisenberg group. With the

knowledge of the previous chapters this can be done by a little supplement which is devoted to

the harmonic analysis on the Heisenberg group which is connected to the continuous spectrum

of the Laplacian and the Sub-Riemanian structure.
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4.4 Introduction to Heisenberg group Hn

There are many di�erent branches in mathematics where the Heisenberg group plays an im-

portant role. Consequently it is one of most investigated groups. It is also a good example for

a noncompact group. That is why after a short introduction we want to show that our notion

of di�usive wavelets can be extended to the Heisenberg group.

Central points of the facts about the Heisenberg group are collected from [Grö01, Str91, Tha98,

BFI11].

In Quantum mechanics the Heisenberg group is generated by position and momentum opera-

tors. The Fourier transform Ff = f̂ in Rn is de�ned as

f̂(ξ) =
1√

(2π)n

∫
Rn
e−i x·ξf(x) dx.

The position operator is given as a translation operator in space domain

T (y)f(x) = f(x+ y),

while the translation in frequency domain, which corresponds to the momentum operator, is

de�ned by

e(η)f(x) = F−1((Ff)(ξ + η)) = F−1T (η)Ff(x).

It is easy to see that is a modulation in space domain

e(η)f(x) = eix·ηf(x).

By Borel functional calculus (see [KR97] for an introduction and Appendix A.3 for a brief

de�nition) the corresponding generating operators are Qj = xj , with Q · x =
∑n

j=1 xjQj and

Dj = −i ∂
∂xj

with D · y =
∑n

j=1 yjDj with , i.e.

e(x) = eiQ·x T (y) = eiD·y.

The Heisenberg uncertainty principle tells us, that momentum and position operators of the

same index do not commute. The physical meaning of this fact is that the location in space and

the momentum of some particle cannot be determined simultaneously. From the mathematical

point of view we have

[Qj , Dj ] = i Id, j = 1, ..., n. (4.4.1)

where Id denotes the identity operator.

Since the Qj and Dj span the Heisenberg algebra, the Lie group we get in the usual way

by exponentiation. The commutator relation 4.4.1 implies that Hn is a nilpotent Lie group.

Every nilpotent Lie group is completely determined by its commutation relation of its Lie
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algebra (For a brief description see Appendix A.2). A discussion of nilpotent Lie groups and

their geometry can be found, e.g. in [BFI11].

From the relations (4.4.1) the group law of Hn follows as

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(yx′ − xy′)). (4.4.2)

As usual there is a corresponding matrix group, which is obtained by a faithful representation

m, which is here given by the subgroup of matrices of the form

m(x, y, t) =


1 xT yT t/2

0, Id2n × 2n −y
x

0 0 0 1

 .

In this case the Lie Algebra can be easily represented by the set of matrices of the form

m(x, y, t) =


0 xT yT t/2

0, O2n × 2n −y
x

0 0 0 1

 ,

where the exponential mapping is the usual matrix exponential.

We want to go back to the abstract view, identifying Hn with Rn × Rn × R, equipped with

the group law (4.4.2).

4.4.1 Lie algebra of Hn

We are interested in the analysis of the Heisenberg group. Especially the heat equation plays

an important role in our purpose to investigate di�usive wavelets. Therefore we need a better

understanding of the Lie Algebra as the set of left invariant di�erential operators rather than

looking at it as the matrix Lie algebra of the homomorphic matrix subgroup.

Later we will emphasize the special form of the Lie algebra, which admits a sub-Riemannian

structure on Hn.

A basis in the linear space of �rst order di�erential operators is given by

Xj =
∂

∂xj
, Yj =

∂

∂yj
, T =

∂

∂t
,

such that a vector �eld/ �rst order di�erential operator V can be written in coordinate form

V =
n∑
j=1

(
aj

∂

∂xj
+ bj

∂

∂yj

)
+ c

∂

∂t
.

V is a left-invariant vector �eld, if it commutes with the left translation Lg,i.e. LgV = V Lg,

this means that the following diagram commutes:
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TaG
dLg // TgaG

G
Lg //

V (a)

OO

G

V (ga)

OO

A left-invariant vector �eld is uniquely determined if it is known at one point a on the group.

One can choose the unit element e to be this point. So for every tangential vector at the unit

there is a corresponding left-invariant vector �eld and vice versa. V (g) = dLgX(e), where

dLg is the di�erential of Lg.

The left-invariant vector �elds VXk shall have the tangential vector Xk at the unit element,

which has coordinates aj = δjk, bj = 0 for j = 1, ..., n and c = 0. Yk has only the coordinate

bk = 1 to be non-zero at (0, 0, 0) and for T it is c = 1.

Let f be a smooth function on Hn and let γ = (xγ(t), yγ(t), sγ(t)) be a curve in Hn with

(γXk(0)) = (0, 0, 0) and γ̇Xk = Xk such that by left-invariance of Xk we know

(VXkf)(h) =
d

dt
f(h · γ(s))

∣∣∣∣
s=0

.

Let h = (x, y, t), such that

(h · γ(s)) = (x+ xγ(s), y + yγ(s), t+ tγ(s) + 2(yxγ(s)− xyγ(s))),

hence

VXk =
∂

∂xk
+ 2yk

∂

∂t
.

Analogously one obtains

VYk =
∂

∂yk
− 2xk

∂

∂t
and VT =

∂

∂t
.

The commutation relations are now

[VXk , VYk ] = 4T,

whereby all other commutators vanish. Therefore, {VXk , VYk , T, k = 1, ..., n} form a basis of

the Lie algebra of Hn.

4.4.2 Sub-Riemannian structure on Hn

A manifold posses a sub-Riemannian structure, if its tangent bundle contains a subbundle H,

such that all linear combinations of H are in H and a �nite application of the Lie Bracket to

elements from H generates the whole tangent space.

The Heisenberg group possesses a sub-Riemannian structure and it is convenient to look at

the geometry of the group by considering this natural structure.

Therefore, also the Laplacian shall be considered as the sub-Laplacian coming from the sub-

Riemannian structure.
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The sub-bundle B := {VXk , YYk , k = 1, ..., n} of the tangent bundle is bracket generating,

i.e. if we add the vector �elds, obtained by application of the Lie-bracket we get the whole

tangent bundle. Therefore B is called non-holonomic and de�nes a sub-Riemannian structure

of step two on Hn. Hereby the step two means, that one has to add Vector �elds, which are

obtained by applying the Lie bracket one time.

Therefore, the sub-Laplacian (sub-Riemannian Laplacian) results in

∆sub :=

2n∑
j=1

V 2
Xk

+ V 2
Yk
.

We do not discuss here the physical meaning of sub-Rimannian structures. Further discussions

about sub-Riemannian structure can be found in [BFI11]. Here we will only mention the

following important theorem

Theorem 4.4.1 (Chow's Theorem). Any two points on a sub-Riemannian Manifold can be

joined by a piece-wise smooth horizontal curve.

A curve γ : R ⊃ I 3 t 7→ γ(t) ∈ Hn is horizontal if γ̇ ∈ B for all t ∈ I.

4.4.3 Harmonic analysis on Hn

Since Hn is a noncompact group it is not clear that constructions we have for compact groups

due to Peter-Weyl theorem can be obtained on Hn. Fortunately, there are similar tools like

Stone-von-Neumann theorem which creates hope to achieve some results for Hn. Thanks to

the existence of a Plancherel measure the Fourier transform can be developed in a similar way,

where of course now the sum over irreducible representation becomes an integral, since the

spectrum of Laplacian now is continuous.

Where in the compact case every irreducible component is multiplied by the dimension of the

corresponding representation it is not clear what happens in the case of in�nite dimensional

representations for noncompact groups. But this is precisely the question for a Plancherel

measure, which ensures that the integral over all irreducible representations exists.

Schrödinger representation and Fourier transform

Since for the Heisenberg group we need a replacement of the Peter-Weyl theorem, we need to

take a look at all irreducible representations. A classi�cation of all irreducible representations

is given by

Theorem 4.4.2 (Stone-von-Neumann). Every irreducible representation of Hn is unitary

equivalent to one and only one of the representations

• πλ(x, y, t)ϕ(ξ) = eiλt/4eiλ(xξ+ 1
2
xy)ϕ(ξ + y), λ ∈ R\{0} in L2(R)

• χ(ξ,η)(x, y, t) = ei(xξ+yη) in C.
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Since the representations χ are one-dimensional and of Plancherel measure zero, for the Fourier

transform we have to consider only the in�nite dimensional representations πλ. For our pur-

poses it is enough that we treat here only the Schrödinger representations πλ, but at least

we have to mention that there is a further possibility to look at representations of Hn, the

so-called Bargmann-Fock representations [Fol95].

The left- and right translation invariant measure on Hn, with respect to the underlying man-

ifold Rn × Rn × R is given by usual Lebesgue-measure dx dy dt.

De�nition 4.4.3. The Fourier transform of a function f ∈ L1(Hn) is given by the operator

valued (Bochner) integral

f̂(λ) =

∫
Hn

f(x, y, t)π∗λ(x, y, t) dx dy dt.

Like in the compact case, the convolution theorem holds:

(̂f ∗ g)(λ) = ĝ(λ)f̂(λ).

Analogously to the well-known Fourier transform in the Euclidean setting one �nds for the

Heisenberg group the following results (for proofs we refer to [Str91] and [Tha98]).

Because all πλ are unitary it follows, that

|〈f̂(λ)φ, ψ〉L2(Rn) ≤ ‖φ‖2‖ψ‖2‖f‖1,

hence the Fourier transform f̂(λ) of f ∈ L1(Hn) gives for every λ ∈ R\{0} a bounded operator

on L2(Rn).

De�nition 4.4.4. A linear operator A on a separable Hilbert spaceH is a p-schatten operator,

if its p-schatten norm

‖A‖p := ( trace|A|p)
1
p (4.4.3)

is �nite. Hereby, we have |A| :=
√
A∗A in the sense of functional calculus. For the special

case p = 1 the operator A is a trace class operator. For the case p = 2, i.e. if the Hilbert-

Schmidt norm ‖A‖HS := trace(A∗A) is �nite, A is a Hilbert-Schmidt operator. The Hilbert

space HS(L2(R)) contains all Hilbert-Schmidt operators on L2(Rn), the inner product of

A,B ∈ HS(L2(Rn)) is given by trace(A∗B) =
∑

α〈Aeα, Beα〉L2(Rn), where {eα} is a basis in

L2(Rn).

In the following Lq(R\{0}, HS(L2(R)), dµ(λ)) will denote the space of mappings R\{0} →
HS(L2(R)), so that ‖f‖p :=

∫
R\{0} ‖m(λ)‖HS(L2(R)) dµ(λ) <∞ where the Plancherel measure

is given by dµ(λ) = (2π)−(n+1)|λ|n dλ.
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The necessity of the existence of the Plancherel measure:

〈f, g〉L2(Hn) =

∫
R\{0}

trace(f̂(λ)ĝ∗(λ)) dµ(λ). (4.4.4)

appears in the following theorem.

Theorem 4.4.5. Let B(L2(R) denote the set of bounded operators on L2(R).

Fourier transform is continuous from L1(Hn) into L∞(R\{0},B(L2(R)), dµ(λ)).

If f ∈ L2(Hn), then f̂(λ) gives a Hilbert-Schmidt operator and

‖f̂‖L2(R\{0},HS(L2(R)), dµ(λ)) = ‖f‖L2(Hn).

By some interpolation argument one can obtain:

Theorem 4.4.6. Let 1 ≤ p ≤ 2 and 1
p + 1

q = 1. Then the Fourier transform maps Lp(Hn)

continuously into Lq(R\{0}, p− Schatten(L2(R)), dµ(λ)), where p− Schatten(L2(R)) denotes

all linear operators on mapping L2(R) onto itself and having �nite p−schatten norm.

Theorem 4.4.7. The Fourier transform of f ∈ L2(Hn) is invertible by

f(x, y, t) =

∫ ∞
−∞

trace(f̂(λ)πλ(x, y, t)) dµ(λ) (4.4.5)

Here some di�culties arise. For instance it is not clear whether f̂(λ)πλ(x, y, t) is of trace class.

To verify (4.4.5) one uses that L1(R, trace class) is dense in L2(R, HS). This will be shown

by the continuity of the Fourier transform and the well-known fact that the space of test

functions S(Hn) is dense in L2(Hn).

For a test function f , the Fourier transform f̂(λ) for λ 6= 0 is a Hilbert-Schmidt operator.

f̂(λ)ϕ(ξ) =

∫
Hn

f(x, y, t)π∗λ(x, y, t)ϕ(ξ) dx dy dt (4.4.6)

=

∫
Hn

f(x, y, t)eiλt/4eiλ(xξ− 1
2
xy)ϕ(ξ − y) dx dy dt, (4.4.7)

substituting now s = ξ − y (consequently y = ξ − s)

=

∫
Hn

f(x, ξ − s, t)eiλt/4eiλ( 1
2
x(ξ−s))ϕ(s) dx ds dt (4.4.8)

= (ϕ ∗Rn Kλ)(ξ), (4.4.9)

where

Kλ(y) =

∫
Rn

∫
R
f(x, y, t)eiλt/4eiλ( 1

2
xy) dx dt. (4.4.10)

Consequently, the operator which corresponds to the Fourier coe�cient f̂(λ) is nothing but

the convolution operator with kernel Kλ.
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To calculate the norm ‖Kλ‖HS we use the usual basis of trigonometric polynomials {eiω·x, ω ∈
Rn} in L2(Rn) and the Plancherel theorem in Rn.

‖Kλ‖2HS =

∫
Rn
〈K∗λKλe

iω, eiω〉L2(Rn) dω =

∫
Rn
〈Kλe

iω,Kλe
iω〉L2(Rn) dω

=

∫
Rn

∫
Rn

∫
Rn
Kλ(ξ − s)eiωs ds

∫
Rn
Kλ(ξ − z)eiωz dz dξ dω

=

∫
Rn

∫
Rn
|T̂sKλω(ω)|2 ds dω

=

∫
Rn
|TsKλ(ω)|2L2(Rn) ds

=

∫
Rn

∫
Rn
|Kλ(ξ − s)|2 dξ ds

In our special case, this is∫
Rn

∫
Rn

∣∣∣∣∫
Rn

∫
R
f(x, ξ − s, t)eiλt/4eiλ( 1

2
x(ξ−s)) dx dt

∣∣∣∣2 dξ ds (4.4.11)

For the detailed calculation we use the following notation for partial Fourier transform.

Fx→ξ(f(..., ·, x, ·, ...))(ξ) stands for the partial Fourier transform of a function f of many

variables, where the Fourier transform is taken with respect to x only.

Substituting 2o = ξ − s in (4.4.11) yields

=

∫
Rn

∫
Rn

∣∣∣∣∫
Rn

∫
R
f(x, 2o, t)eiλt/4eiλ(x(ξ−o)) dx dt

∣∣∣∣2 dξ(−2) do (4.4.12)

=

∫
Rn

∫
Rn

∣∣∣∣Fx→λ(ξ−o)Ft→λ(f((x, 2o, t)))(λ(o− ξ),−λ
4

)

∣∣∣∣2 dξ(−2) do (4.4.13)

=

∫
Rn

∫
Rn

∣∣∣∣f(λ(ξ − o), 2o,−λ
4

)

∣∣∣∣2 (−2) dξ do, (4.4.14)

by using again Plancherel theorem in Rn. Now substituting (o− ξ) = z leads to

=

∫
Rn

∫
Rn

∣∣∣∣f(λz, 2(z + ξ),−λ
4

)

∣∣∣∣2 2 dξ dz (4.4.15)

=

∫
Rn

∫
Rn

∣∣∣∣f(λz, ξ,−λ
4

)

∣∣∣∣2 dξ dz (4.4.16)

=

∫
Rn

∫
Rn

∣∣∣∣f(z, ξ,−λ
4

)

∣∣∣∣2 |λ|−n dξ dz. (4.4.17)

Integration with respect to λ now yields∫
Hn

|f(x, y, t)|2 dx dy dt =
1

4

∫
R
‖f̂(λ)‖HS |λ|n dλ. (4.4.18)

This gives the Plancherel measure.



4.4. INTRODUCTION TO HEISENBERG GROUP HN 81

4.4.4 Spectral decomposition and heat kernel on Hn

The spectral decomposition of a function with respect to the irreducible components is given by

the convolution with the characters. The component, corresponding to the representation π is

obtained by convolution with the character of π. We aim to obtain the spectral decomposition

of the heat kernel (of the heat equation, which involves the sub-Laplacian) for our purpose to

develop di�usive wavelets on Hn.

While the Laplacian coming from the Casimir element involves a complete basis of the Lie

Algebra (c.f. (2.3.25)), the sub-Laplacian involves only those operators which corresponds to

vector �elds belonging to the sub-Riemanian structure.

The eigen-subspaces of the Laplacian decomposes into smaller eigen-spaces of the sub-Laplacian,

since the sub-Laplacian is only left-invariant but not right-invariant.

For our purpose we calculate (πλ)∗(∆sub). We start with the calculation of

Lemma 4.4.8. For the vector �elds spanning the sub-Riemannian structure we have

(πλ)∗(VXk) = −iλxk

(πλ)∗(VYk) =
∂

∂xk
.

This reminds us of the beginning of this chapter where the construction of the Heisenberg

group is motivated by these operators. Here we have another example, where a mathematical

object of a special group can be observed �rst only via its representations in other applications.

Proof: Let {ek, k = 1, ..., n} be the canonical basis in Rn. We have

(πλ)∗(VXk) =
d

dt
πλ

(
exp

(
t
∂

∂xk
+ 2tyk

∂

∂s

))
ϕ(ξ)

∣∣∣∣
t=0

.

With the Baker-Campbell-Hausdor� formula and
[
∂
∂t ,

∂
∂xk

]
= 0 we obtain

(πλ)∗(VXk) =
d

dt
πλ (tek, 0, 2tyks)ϕ(ξ)|t=0 , while yk = 0

=
d

dt

(
eiλtξkϕ(ξ)

)∣∣∣
t=0

= iλξkϕ(ξ).

Analogously, for VYk we get

(πλ)∗(VYk) =
d

dt
πλ

(
exp

(
t
∂

∂yk
− 2txk

∂

∂s

))
ϕ(ξ)

∣∣∣∣
t=0

=
d

dt
πλ (0, tek,−2txks)ϕ(ξ)|t=0 , while xk = 0

=
d

dt
ϕ(ξ + tek)|t=0

=
∂

∂ξk
ϕ(ξ).
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Now it is easily seen, that the sub-Laplacian ∆sub on Hn under transfer by the representation

πλ gives the harmonic oscillator/ Hermite operator on L2(Rn).

Corollary 4.4.9. For the sub-Laplacian we have

(πλ)∗(∆sub) = (πλ)∗

 n∑
j=1

V 2
Xj + V 2

Yj

 =
n∑
j=1

(
∂

∂ξj

)2

− λ2|ξj |2

= ∆− λ2|x|2. (4.4.19)

Since the Hermite functions

φλα = |λ|
n
4 Φα(|λ|

1
2x)

are eigenfunctions of (4.4.19) with respect to the eigenvalues

(2|α|+ n)|λ|. (4.4.20)

and {Φα, α ∈ Zk, k ∈ N} form a basis in L2(Rn), the eigenfunctions of ∆sub on Hn are of the

form

〈πλ(x, y, t)φλα, φ
λ
β〉L2(Rn).

A calculation shows that this equals

〈πλ(x, y, t)φλα, φ
λ
β〉L2(Rn) =

{
(2π)

n
2 eiλtΦα,β(

√
|λ|(x+ iy)) λ > 0

(2π)
n
2 eiλtΦα,β(

√
|λ|(x+ iy)) λ < 0,

(4.4.21)

where Φα,β are the special Hermite functions which form an orthonormal system in L2(Cn).

(See also Appendix A.1).

Simultaneously (4.4.21) are eigenfunctions of T with respect to the eigenvalue iλ. Hence

(4.4.21) provides eigenfunctions of the Laplacian ∆ = ∆sub + T 2 on Hn with respect to the

eigenvalues (2|α| + n)|λ| − |λ|2. This enables us to construct di�usive wavelets also for the

heat equation which involves the whole Laplacian. Nevertheless we continue to investigate the

di�usive wavelets for ∆sub, which is more appropriate with respect to the geometry of Hn.

The radial-symmetric eigenfunctions of ∆sub are given by

φλk(x, y, t) = eiλt
∑
|α|=k

Φα,α(
√
|λ|(x+ iy)), (4.4.22)

Hence the characters are

χλ(x, y, t) = (2π)
n
2

∞∑
k=0

φλk(x, y, t).

And hence fλ(x, y, t) = (f ∗ χλ)(x, y, t) are the spectral components of f ∈ L2(Hn) and

furthermore

f(x, y, t) =

∫ ∞
−∞

fλ(x, y, t) dµ(λ),

holds true. One can also obtain this spectral decomposition for f ∈ Lp(Hn) with 1 < p <∞,

see [Str91].
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4.4.5 Di�usive wavelets on Hn

Now we are at the point where we can construct our di�usive wavelets on Hn.

Since the eigenvalues of ∆sub (4.4.20) depend on |α| = k the expansion with respect to char-

acters is not suitable for the heat kernel. The expansion into radial-symmetric eigenfunctions

of ∆sub, given in (4.4.22), is a more appropriate one.

We can now write down the fundamental solution of the heat equation involving the sub-

Laplacian

(∆sub − ∂r)u((x, y, t), r) = 0,

the following expression

pr(x, y, t) =

∫
(2π)

n
2

∞∑
k=0

∑
|α|=k

e−((2|α|+n)|λ|)rφλk(x, y, t) dµ(λ).

Since the number of multi-indexes with |α| = k is kn

p̂r(λ) = (2π)
n
2

∞⊕
k=0

e−(2k+n)|λ|rIdkn×kn .

and hence we �nd for the Fourier transform of a di�usive wavelet {ψr, r > 0} on Hn the

condition

ψ̂r(λ) =

(
(2π)

n
4

∞⊕
k=0

e−(2k+n)|λ|r/2Idkn×kn

)
U,

where U is an unitary operator on L2(Rn) expressed as a matrix with respect to the basis of

Hermite functions {Φα, α ∈ Nn0}. As in the compact case the freedom of choosing U represents

the choice of the point on Hn where the wavelet ψr localizes for r tending to 0. Since we choose

e = (0, 0, 0) to be that point U is uniquely determined to be the identity operator.

We want to calculate explicitly the di�usive wavelets for the special example of the three

dimensional Heisenberg group H1.

Ψρ(x, y, t) =

∫
R

trace

(
πλ(x, y, t)

∞⊕
k=0

e−(2k+1)|λ| ρ
2 Idkn×kn

)
dµ(λ) (4.4.23)

=
√

2π

∫
R

∞∑
k=0

e−(2k+1)|λ| ρ
2 eiλt

∑
|α|=k

φα,α(
√
|λ||x+ iy|) dµ(λ) (4.4.24)

=
√

2π

∫
R
eiλt

∞∑
k=0

e−(2k+1)|λ| ρ
2 φk,k(

√
|λ||x+ iy|) dµ(λ) (4.4.25)

with (A.1.2) this equals to

=

∫
R
eiλt

∞∑
k=0

e−(2k+1)|λ| ρ
2 Lk

(
1

2
|λ||x+ iy|2

)
e−

1
4
|x+iy|2 dµ(λ) (4.4.26)
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To solve this we have to calculate the integral∫
R
eiλt e−(2k+1)|λ| ρ

2 Lk

(
1

2
|λ||x+ iy|2

)
dµ(λ). (4.4.27)

By (A.1.1), this equals to∫
R
eiλt e−(2k+1)|λ| ρ

2
e(

1
2
|λ||x+iy|2)

k!

(
d

d
(

1
2 |λ||x+ iy|2

))k (e−( 1
2
|λ||x+iy|2)

(
1

2
|λ||x+ iy|2

)k
) dµ(λ)

=

∫
R
eiλt e−(2k+1)|λ| ρ

2
e(

1
2
|λ||x+iy|2)

k!

(
d

d|λ|

)k 1

(1
2 |x+ iy|2)k

(e−( 1
2
|λ||x+iy|2)

(
1

2
|λ||x+ iy|2

)k
) dµ(λ)

=

∫ ∞
0

eiλt e−(2k+1)λ ρ
2
e(

1
2
λ|x+iy|2)

k!

(
d

dλ

)k
(e−( 1

2
λ|x+iy|2)λk) dµ(λ)

+ (−1)k
∫ ∞

0
e−iλt e−(2k+1)λ ρ

2
e(

1
2
λ|x+iy|2)

k!

(
d

dλ

)k
(e−( 1

2
λ|x+iy|2)λk) dµ(λ)

For simplicity we only calculate the �rst integral (the second integral can be calculated anal-

ogously)∫ ∞
0

eiλt e−(2k+1)λ ρ
2
e(

1
2
λ|x+iy|2)

k!

(
d

dλ

)k
e−( 1

2
λ|x+iy|2)λk dµ(λ)

=
(−1)k

k!

∫ ∞
0

(
d

dλ

)k (
eiλt−(2k+1)λ ρ

2
+ 1

2
λ|x+iy|2

)
e−( 1

2
λ|x+iy|2)λk dµ(λ)

=
(−1)k

k!

(
it− (2k + 1)

ρ

2
+

1

2
|x+ iy|2

)k ∫ ∞
0

(
eiλt−(2k+1)λ ρ

2
+ 1

2
λ|x+iy|2

)
e−( 1

2
λ|x+iy|2)λk dµ(λ)

=
(−1)k

k!
(−1)k

(
it− (2k + 1)

ρ

2
+

1

2
|x+ iy|2

)k ∫ ∞
0

eiλt−(2k+1)λ ρ
2

1(
it− (2k + 1)ρ2

)k dµ(λ)

= − 1

k!

1

it− (2k + 1)ρ2

(
1 +

1
2 |x+ iy|2

it− (2k + 1)ρ2

)k
Consequently, the wavelet assumes the form:

Ψρ(x, y, t) =

−
∞∑
k=0

 1

k!

1

it− (2k + 1)ρ2

(
1 +

1
2 |x+ iy|2

it− (2k + 1)ρ2

)k

+
(−1)k

k!

1

−it− (2k + 1)ρ2

(
1 +

1
2 |x+ iy|2

−it− (2k + 1)ρ2

)k e−
1
4
|x+iy|2 .

For ρ tending to 0 we observe, that the wavelet tends to

Ψρ→0(x, y, t) =
1

it

(
e

(
1− i

1
2 |x+iy|

2

t

)
+ e
−
(

1+
i 12 |x+iy|

2

t

))
e−

1
4
|x+iy|2 (4.4.28)

=
1

it
2 cosh(1)e−

i 12 |x+iy|
2

t e−
1
4
|x+iy|2 (4.4.29)
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Conspicuous is the singularity, that we have for t → 0 when x + iy 6= 0. This is a charac-

teristic phenomena for the Heisenberg group, which is caused by it special geometry - the

sub-Riemannian structure. The rest of the form equals the behavior of the heat kernel on H1,

just as we expected.

Remark 4.4.10. Note that the subgroup T {(0, 0, t)} of Hn is always normal, such that accord-

ing to Remark 3.2.6 the construction of di�usive wavelets on the homogeneous space Hn/T
makes no sense. This is no gap of the theory but shows that there is a di�cult singularity

in Hn/T . Nevertheless it shall be possible to look at Heisenberg manifolds, for which one

factorizes a discrete subgroup from Hn.

4.5 The Spin group Spin(m)

A further non-trivial but important example of a compact Lie group is the Spin group Spin(m).

The main di�culty will be to determine all irreducible representations of Spin(m). Therefore

we introduce the notion of roots and weights of representations. This concepts can be used

to label all representations. Since we will use regular non-regular representations on Cli�ord-

valued functions on Spin(m) we have to spend some e�ort for determining the invariant

subspaces.

4.5.1 Roots and weights

In this section we collect the assertions about weights of representations, that are necessary

for the construction of the weights of Spin(m) that are usually used to label all irreducible

representations of Spin(m). A more comprehensive discussion about the theoretical bases can

be found in [Bum04], [Feg91], [VK95], [VK92] and elsewhere.

We already mentioned that a representation π is uniquely determined by the values that it

character assumes on T. We now restrict π itself to T. What we obtain is the representation

T that decomposes into one-dimensional irreducible components, since T is commutative.

Since T is compact, all irreducible representations π are of the form

π : T→ {eix| x ∈ R}

t 7→ eiθ(t). (4.5.1)

Note that θ : T→ R/(2πZ) is a homomorphism and hence a representation of T. Consequently,
the derivative dθ : t→ R is a representation of t, the Lie algebra of T. This de�nes the weights
of π:

De�nition 4.5.1. Let π be a representation of G with dim(t) = r. Let πj(t) = eiθj(t),

j = 1, ..., r be the one-dimensional representations in which π decomposes when restricted to

T.
We denote the restriction of π to T by πT.
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The set of weights of π is given by {± dθj} ⊂ t∗. The weights of the adjoint representation

are called roots.

If one regards π as a matrix with respect to a �xed basis of the representation space its

restriction to T contains 2×2 block matrices (up to change of rows and lines), which correspond

to a rotation in the respective plane.

π|T =



Θ1

Θ2

. . .

Θr

1
. . .

1


, with Θj =

(
cos(θj(t)) sin(θj(t))

− sin(θj(t)) cos(θj(t))

)
.

Further, note that the eigenvalues of the derivative of π|T for X ∈ t are always purely imagi-

nary:

d

ds
eiθj(exp(sX))

∣∣∣
s=0

= i dθj(X). (4.5.2)

Multiplying it with imaginary unit i determines the weights of π.

The weights dθj are homomorphisms and are uniquely determined by the values in t, which

are mapped to 0 mod 2π. Under dθj , the so-called integer lattice I is determined by the

following property

2πI = exp−1(1) ⊂ t.

Roughly speaking, the speci�c form of the weights of the representation π corresponds to the

density of dθj(2I) in Z. This is meant like follows: let tj ∈ t be so that for every s ∈ R (or C)
dθj(stj) is zero for all j but exactly one j ∈ {1, ..., r}. This gives us a direction on T which we

associate to θj and we denote it by tj ∈ t. There is a smallest sj ∈ R (in C one with smallest

absolute value) so that exp(sjtj) = 1 and hence

dθj(sjtj) = mj ∈ Z. (4.5.3)

Any integer multiple of (sjtj) will be mapped to the corresponding integer multiple of mj in

Z. This is what we mean by the density of dθj(I) in Z. The correspondence between dθj

and mj is one to one, so we will also call mj weight of π.

Let t1, ..., tr ∈ t be a normalized (with respect to the killing form) basis of t and m1, ...,mr be

the weights of π, then the mapping

β : T→ Rn/(2πm1Z× ...× 2πmrZ) (4.5.4)

exp

(
r∑

k=1

aktk

)
= Πr

k=1 exp(aktk) 7→ (a1, ..., ar)/(2πm1Z× ...× 2πmrZ), (4.5.5)



4.6. CLIFFORD ALGEBRA SETTING 87

gives an embedding of T in Rn.
In fact for every (m1, ...,mr) ∈ Zr+ there is a representation π with weights m1, ...,mr. In this

way we have labeled the representations by its weights m1, ...,mr ∈ Z and it is necessary to

mention the connection (4.5.5) between mj and dθj . One can also choose the lattice so that

(m1, ...,mr) ∈ (lZ)r+ for any l ∈ Q as we will see in the case of Spin(m), where the appropriate

choice of l will be 1
2 .

In t we obtain a lattice corresponding to weights that is given by {
∑r

j=1 kjmjtj , kj ∈ Z}.
The symmetry of this lattice is of importance and can be expressed by the Weyl group of the

corresponding representation.

If there are at least two points in T that belong to the same conjugate class then the information

about the representation is the same at all these points. Hence we can factor out these

symmetry:

De�nition 4.5.2. The Weyl group is de�ned by

W = N(T )/T, (4.5.6)

where N(T ) is the normalizer of T in G, i.e. gTg−1 = T ∀g ∈ GG

W acts on T by conjugation, and hence on t by the adjoint representation ad(w) for w ∈W .

The weights of the adjoint representation are called roots of the representation. We can look

at the hyperplanes in t that are the kernel of the roots αi: Lαi = {αi(t) = 0}. The complement

of the union of all hyperplanes consists of open connected components; the closure of every of

this components is called a Weyl chamber.

The Weyl group permutes the Weyl chambers transitively and hence also the weights that we

can identify with elements in t by Riesz theorem and that are symmetric to each other in the

above sense.

The re�ections at the plains Lαi generate W .

One can distinguish an arbitrary Weyl chamber and call it positive. All weights are positive,

that are in the dual of the positive Weyl chamber.

A weight dθ is a highest weight if it is positive and if dθ − dλ is not positive for all other

weights dλ of the same representation.

Note that in the construction above (4.5.3) where we obtained dθj(rsjtj) = rmj , the vector

(m1, ...,mn) corresponds to the highest weight of the representation.

There is a famous theorem of Weyl which says that the correspondence between irreducible

representations and highest weights is one to one.

4.6 Cli�ord algebra setting

Cli�ord algebras arise in many �elds. As algebra of operators they play an enormous role

in physics. A realization of it as linear operators on the Grassmann algebra can be found in

[GM91], here the realization of the spinor space comes out as the Grassmanian itself.
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A comprehensive set of results for Cli�ord analysis is given by [DSS92]. There the realization

of the Cli�ord algebra is given for instance as a full matrix algebra of appropriate dimension.

Further descriptions can be found in [GHS08, GHS06]. Since the spinor spaces are minimal

left ideals of the algebra, they can be given very conveniently in this realization of the Cli�ord

algebra.

To every vector space one can associate a corresponding complex-valued Cli�ord algebra. Here

it is su�cient to de�ne the basic properties of the Cli�ord algebra as starting point.

Let {ei, i = 1, ...,m} be a basis of Cm; the corresponding complex-valued Cli�ord algebra Cm
is determined by the anti commutative relation −2δij = eiej + ejei

1. Therefore the algebra is

given by

Cm =

 ∑
A⊂{1,...,m}

aAeA, aA ∈ C

 , (4.6.1)

where the set A = {α1, ..., αk} is sorted, i.e. α1 < ... < αk, k ≤ m, and eA = eα1 ...eαk . The

dimension of Cm is 2m. The scalars are contained in Cm as 0-vectors, hence the unit element

of Cm is 1.

We will make use of the main anti-involution (also called conjugation):

a =
∑

A⊂{1,...,m}

aAeA, eiej = ej ei, ei = −ei. (4.6.2)

The subspace of Cm of k-vectors is given by span{eA, |A| = k}2. The k-vector part of an

a ∈ Cm is given by [a]k =
∑
|A|=k aAeA with |A| = k. The subspace of k-vectors in Cm is

denoted by Cm,k.
Also of importance is the Cli�ord inner product

〈a, b〉Cm = [ab]0 =
m∑
|A|=0

(−1)|A|aAbA. (4.6.3)

This makes Cm being a Hilbert space with orthonormal basis {eA, A ⊂ {1, ...,m}}. The outer
product in Cm is de�ned by

a ∧ b =
1

2
(ab− ba). (4.6.4)

4.7 Spin group

There are several important subgroups in Cm. The Cli�ord group is de�ned as set of invertible

elements. The Pin group is given as the set of products of unit vectors. Hereby a vector a is

a unit vector if it is a vector with
∑
|A|=1 |aA|2 = 1 and aA = 0 for |A| 6= 1.

1δij denotes the usual Kroneker symbol
2|A| denotes the cardinality of A
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The Spin group, in which we are interested, is a subgroup of the Pin group and is de�ned as

the set of even products of unit vectors

Spin(m) = {
2k∏
j=1

sj , sj ∈ Sm}. (4.7.1)

In each of these cases, the group multiplication is given by the usual Cli�ord multiplication.

4.7.1 Lie algebra of Spin(m)

The Lie algebra spin(m) of Spin(m) is the space of bi-vectors in Cm: spin(m) = Cm,2. This
can be seen as follows: Since we are in the comfortable situation to expand the exponential

mapping exp : spin(m)→ Spin(m) in a series, for Xij = eij ∈ Cm,2 we �nd:

exp(tXjk) =
∞∑
l=1

1

l!
(
1

2
ejk)

l = ejk

∞∑
l=1

1

(2l − 1)!
t2l−1 +

∞∑
l=1

1

(2l)!
t2l

= cos(t) + ejk sin(t) = ej(ek sin(t)− ej cos(t)), (4.7.2)

obviously ej , (ek sin(t)− ej cos(t)) ∈ Sm, hence the exponential of an element from Cm,2 gives

always an element, that can be written as a sum of an even number of unit vectors.

Since Spin(m) is a double covering of SO(m) we have dimSpin(m) =dimSO(m) = 1
2n(n+ 1),

but this is also the dimension of Cm,2 which hence is the complete Lie algebra of Spin(m).

In order to follow the general concept of determining all irreducible representations we need

to look at the maximal torus of Spin(m). Let us study the weights of Spin(m).

4.8 Weights of Spin(m)

In order to get the weights we look at the torus of Spin(m) and its Lie algebra t. The

Lie algebra can be given as the span of a maximal1 system of commuting vector �elds, i.e.

t = span{Yi, i = 1, ..., r} ⊂ spin(m) with [Yi, Yj ] = 0 for all Yi, Yj ∈ t. Such a system is

obviously given by

{Yj = X2j−1,2j = e2j−1e2j , j = 1, ...,
[m

2

]
} (4.8.1)

and hence T =

{
[m
2

]∏
j=1

exp(tjYj), t ∈ [0, 2π)

}
. According to (4.5.2), the weights can be given

now as the derivative of

θj : T→ R/2π, (4.8.2)

1maximal in the sense, that there is no further vector �eld which commutes with all vector �eld of the

system.
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where θj is given in (4.5.1). This results in

[m
2

]∏
j=1

exp(tjYj) 7→ mjtj2π mod 2π, (4.8.3)

where the derivative has to be taken with respect to all tj , so that (m1, ...,m[m
2

]) stands for

the weights. We have to verify, which (m1, ...,m[m
2

]) are admissible weights.

From (4.7.2) we see that the natural representation of every element t = exp(tjej,n−j+1) ∈ T
of the torus is a rotation in the plane Ef = span{ej , en−j+1} ⊂ Cm by the angle mjtj2π.

Hence, for any representation π of Spin(m) we obtain its restriction to T as the direct sum of

rotations

π

[m2 ]∏
j=1

exp(tjYj)

 = π(t1, ..., t[m2 ])v = e
i(m1t1+...+m[m2 ]t[m2 ]), (4.8.4)

for some (m1, ...,m[m
2

]).

Since the weights corresponds to the dual of the integer lattice in T we pick out those

(m1, ...,m[m2 ]), such that (t1, ..., t[m2 ]) ∈ ker(exp)⇒ (m1t1, ...,m[m2 ]t[m2 ]) ∈ ker(exp).

For eigenvalues of rotations we remark, that the rotation must be by an angle of 0 or π.

From (4.8.4) we see, that for the integer lattice (m1t1, ...,m[m2 ]t[m2 ]) ∈ ker(exp) we have

e
i(m1t1+...+m[m2 ]t[m2 ]) = 1. Consequently (m1t1, ...,m[m2 ]t[m2 ]) ∈ ker(exp) implies

mjtj = 0 or mjtj = π and m1t1 + ...+m[m2 ]t[m2 ] = 0 mod 2π, (4.8.5)

such that mj has to be an integer for all j.

If tj = 0 mod 2π one can always remove this component from
[m2 ]∏
j=1

exp(tjYj), i.e. setting

tj = 0, without loosing the property of being an element of the integer lattice. If tj = π

mod 2π one has to remove additionally another component with the same property in order

to stay in the integer lattice.

Hence for any choice of εj = 1 or 0 (j = 1, ...,
[
m
2

]
) and ε1 + ... + ε[m2 ] is an even integer,

(tjmj = πεj) satis�es (4.8.5).

We assume now, that (t1, ..., t[m2 ]) belongs to the integer lattice. Then also (m1t1, ...,m[m2 ]t[m2 ])

shall belong to this lattice. But since if (ε1t1, ..., ε[m2 ]t[m2 ]) belongs to it, also

(m1ε1t1, ...,m[m2 ]ε[m2 ]t[m2 ]) does, we have that either all mj are even, or all mj are odd.

This can also be seen in an easy counterexample, where we assume tl, tk = π and εj =

0 except j = k and j = l. Then (ε1t1, ..., ε[m2 ]t[m2 ]) belongs to the integer lattice but

(m1ε1t1, ...,m[m2 ]ε[m2 ]t[m2 ]) does only for ml and mk both even or both odd.

A discussion about the admissible weights can also be found in [GM91], where the connection

between mj and dθj is another one than the one we have given by (4.5.5), so that the

corresponding weights are from (1
2Z)[

m
2 ].
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We have to look now at the action of the Weyl group to select the highest weight for every

representation.

The Weyl group acts on T and hence on t and t∗. Its action on the weights is closed1 and

corresponds to a permutation of the mj ; also a change of sign of mj is possible. In the case

where m is odd, an arbitrary number of sign changes is allowed; while in the case of an even

m, only an even number of sign changes is possible.

The positive Weyl chamber shall be the chamber where

m1 ≥ ... ≥ m[m2 ]−1 ≥ |m[m2 ]|. (4.8.6)

In the case of an odd m, all mj of positive weights are positive. When m is even, m[m2 ] can

be negative.

We can also compare weights of di�erent representations by the so called lexicographic order,

i.e. (m1, ...,mk) < (l1, ..., lk), if the di�erence lj−mj in the �rst component where the weights

are di�erent is positive.

For the construction of all irreducible representations of Spin(m) we make use of the so-called

Cartan product.

The Cartan product is a procedure to build up an irreducible representation from two known

irreducible representations. Let π1 and π2 be irreducible representations in H1 and H2 re-

spectively, let (m1, ...,mk) and (l1, ..., lk) be the highest weights of π1 and π2. The canonically

given representation π1⊗π2 in H1⊗H2 is highly reducible. The irreducible component of the

maximal weight1 occurring in π1 ⊗ π2 has the highest weights (l1 +m1, ..., lk +mk).

A minimal set of irreducible representations from which we can build up every irreducible

representation is called fundamental.

4.9 Representations of Spin(m) and Cli�ord-valued wavelets

From the previous section we already know, that a fundamental system of irreducible repre-

sentations of Spin(m) in the case of an odd m is contained in the set of representations with

weights of the form (1, 0, ..., 0), ..., (1, ...., 1) and (1
2 , 0, ..., 0), ..., (1

2 , ...,
1
2) and in the case of m

even in the set of representations of weights (1, 0, ..., 0), ..., (1, ...., 1), (1
2 , 0, ..., 0), ..., (1

2 , ...,
1
2)

and (1, ..., 1,−1), (1
2 , ...,

1
2 ,−

1
2).

For convenience we consider the above system instead of the (minimal) fundamental system,

for which we would not need to consider (1, ..., 1) or (1, ...,±1).

From this starting point the corresponding irreducible representations are obtained in [LSC01]

as representations in some Cli�ord-valued function spaces of spherical monogenics and har-

monic functions.

1The Weyl group maps weight to weights
1with respect to the lexicographically order
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We remark, that for Spin(m) the usual way of harmonic analysis using matrix coe�cients as

eigenfunctions of the Laplacian leads to problematic calculations of integrals which would give

the matrix coe�cients (see (4.11.1), (4.11.2)).

Therefore, here we prefer another way of thinking: we directly use representations of the

group (here Spin(m)) in the function spaces in which we are interested. In that way, we can

investigate operators in our function space as derivatives of representations.

In the end we can formulate Cli�ord-valued di�usive wavelets corresponding to a modi�ed

di�usion equation, where the corresponding operator is a realization of the Casimir element,

just as in the classical case.

There are two types of fundamental representations of the spin group in the Cli�ord algebra

Cm given by

h(s)a = sas−1 (4.9.1)

l(s)a = sa. (4.9.2)

The invariant subspaces, where h is irreducible, are the k-vector spaces. The invariant sub-

spaces of l are the so-called spinor spaces. Obviously they are minimal left ideals in Cm.
Spinor spaces can be determined explicit by primitive idempotents ([DSS92],[LSC01]). This

goes as follows: Set

Ij =
1

2
(1 + iejej+m), (4.9.3)

then one easily sees I2
j = 1

4(1+2iejej+m+(iejej+m)2) = 1
4(1+2iejej+m−ejej+mejej+m) = Ij .

Furthermore ejIj = 1
2(−iej+m + ej) = −iej+mIj and similarly ej+mIj = −iejIj . A minimal

left ideal is generated by I = I1...Im, namely C2mI. Clearly I2 = I.

We introduce also

Tj =
1

2
(e2j−1 − ie2j), (4.9.4)

and note that Ij = TjT j .

There are many possibilities to realize representations of Spin(m) in L2(Cm). For instance

one can just take the regular representations hr and lr of h and l respectively:

hr(s) : f(a) 7→ f(sas−1) (4.9.5)

lr(s) : f(a) 7→ f(sa). (4.9.6)

hr is a representation, which does not distinguish between hr(s) and hr(−s) and acts exactly

like the usual regular representation of SO(m). Here the double covering nature of Spin(m)

with respect to SO(m) is revealed.

The L2-space of Cli�ord-valued functions involves the choice of an appropriate inner product.

This is discussed in chapters 0 and 1 in [DSS92]. Applying the regular representations to
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L2(Sm → Cm) separates it into Cli�ord-valued functions over rotation invariant domains. So

it is enough to look at L2(Sm,Cm). We can build up all irreducible representations by Cartan

product, from the irreducible pieces of these fundamental representations. The inner product

in our case shall be given by

〈f, g〉L2(Sm) =

∫
Sm
〈f(ξ)g(ξ)〉Cm dξ.

The tensor product representations hr⊗h and hr⊗ l in L2(Sm)⊗Cm ' L2(Cm,Cm) are given

by

H(s) : f(a) 7→ sf(s−1as)s−1 (4.9.7)

L(s) : f(a) 7→ sf(s−1as). (4.9.8)

Remark 4.9.1. One important observation is, that the representations are unitary:

〈Hsf(a), Hsg(a)〉L2(Sm→Cm) =

∫
Sm
〈s−1f(sas−1)s, s−1g(sas−1)s〉Cm da (4.9.9)

=

∫
Sm
〈f(sas−1)g(sas−1)〉Cm da. (4.9.10)

A similar line shows that also Ls is unitary.

By unitary of H and L, the invariant subspaces in the representation Hilbert space L2(Cm →
Cm) are orthogonal.

We should assure us, that we are dealing with bounded operators. This follows from com-

pactness of Spin(m): By smoothness of representations, from compactness follows the �nite

dimensionality of all irreducible representation spaces and hence the compactness of all deriva-

tives of the representation.

The most interesting question is now to �nd the invariant subspaces. This is comprehen-

sively investigated in [LSC01]. The desired invariant subspaces are spanned by eigenfunctions

of the operators, that one obtains by mapping the Casimir element via the corresponding

representation into the representation space.

So we shall look at H∗(Ω) and L∗(Ω) according to De�nition (2.4.1). We mentioned already

that the space of bivectors Cm,2 can be identi�ed with the Lie algebra spin(m). We equip it

with the natural given killing form B(·, ·). A calculation (Appendix A.4) yields

B(x, y) = −1

4

∑
i 6=j

∑
k 6=j
k 6=i

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki). (4.9.11)

So that ‖1
2eij‖B = 1. Consequently we use a basis on spin(m), which is orthonormal with

respect to B

{1

2
eij , 1 ≤ i < j ≤ m}. (4.9.12)
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Moreover, as stated in Section 2.3.5 the Casimir element, mapped by π is given by

π∗(Ω) =
∑

i,j=1,...,m
i<j

π∗

(
1

2
eij

)2

=
1

4

∑
i,j=1,...,m

i<j

π∗ (eij)
2

 . (4.9.13)

In [Som96], [DSS92], [VLSC01] and in many other places we �nd the calculation of the image

obtained from mapping Ω by H∗ and L∗:

H∗

(
1

2
eij

)
= 2(xj

∂

∂xi
− xi

∂

∂xj
) =: Lij (4.9.14)

Having in mind, that our representation Hilbert space is a function space, the operator Lij can

be interpreted as a di�erential operator along the surface of the sphere, also called tangential

derivative. The precise direction is given by the section of the plane, spanned by xi and xj
and the sphere. In consequence we have

H∗(Ω) =
∑

i,j=1,...,m
i<j

H∗

(
1

2
eij

)2

=
∑

i,j=1,...,m
i<j

L2
ij , (4.9.15)

and further

L∗

(
1

2
eij

)
= H∗

(
1

2
eij

)
+

1

2
eij1, (4.9.16)

where 1 denotes the identity operator. Hence we have

L∗(Ω) = H∗(Ω) +
∑

i,j=1,...,m
i<j

1

2
eijH∗(

1

2
eij) +

∑
i,j=1,...,m

i<j

(
1

2
eij

)2

= H∗(Ω) + Γ− 1

4

(
m+ 1

2

)
1, (4.9.17)

with

Γ =
∑

i,j=1,...,m
i<j

eijLij . (4.9.18)

We now brie�y introduce a special type of functions, which will be the type of eigenfunctions

of H∗(Ω) and L∗(Ω) and which give us the possibility to have a new look at functions on

Spin(m).

Functions of simplicial variables

In this section we show that the function spaces, consisting of functions which depend on

simplicial variables, are invariant under Hs and Ls.
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Let u1, ..., um ∈ Cm be a orthonormal basis in Cm. The corresponding simplicial variable in

Cm is given by

a(u1, ..., um) = u1 + u1 ∧ u2 + u1 ∧ u2 ∧ u3 + ...+ u1 ∧ ... ∧ um. (4.9.19)

One the other hand one can match a unique right-handed orthonormal basis to a simplicial

variable taking u1 as normalized vector. In a second step one takes a linearly independent

vector from the plane that is represented by u1 ∧ u2 and that is spanned by u1 and u2. Now

one applies the Gram-Schmidt procedure to obtain a righthanded orthonormal basis after m

steps.

In what follows we restrict the function of simplicial type to a(u1, ..., um), while u1, ..., um are

assumed to be unit vectors. This gives a one to one correspondence to functions on SO(m),

resulting in the following lemma.

Lemma 4.9.2. Functions that depend on simplicial variables can be identi�ed with functions

on SO(m)

Furthermore, by de�nition of the outer product x ∧ y = 1
2(xy − yx) we have

sa(u1, ..., um)s = su1s+ su1 ∧ u2s+ su1 ∧ u2 ∧ u3s+ ...+ su1 ∧ ... ∧ ums = a(su1s, ..., sums).

Consequently, H(s)f(a) = sf(sas)s is a function of a simplicial variable, if and only if f(a)

is such a function. Hence we have:

Corollary 4.9.3. Functions of simplicial type are invariant under H.

Later we will make use of the following lemma.

Lemma 4.9.4. A function on the spin group can be represented as a pair of functions of a

simplicial variable.

Proof: A function f(s) on Spin(m) can be decomposed in an odd and an even part: f(s) =

α(s) + γ(s), with α(s) = α(−s) and γ(s) = −γ(−s). For the odd part γ(s), there is an even

function β(s) so that sβ(s) = γ(s). Hence the pair (α, β) can be identi�ed with f . Since

Spin(m) is a double covering of SO(m), even functions on Spin(m) can be identi�ed with

functions on SO(m). Furthermore, all right-handed orthonormal bases of Cm can be obtained

by the action of exactly one rotation on one of these bases. This identi�cation gives a faithful

and irreducible representation (an identi�cation) of SO(m). We have already discussed, that

the set of right-handed orthonormal bases of Cm are represented by simplicial variables.

4.9.1 Eigenfunctions of H∗(Ω) and L∗(Ω)

For a comprehensive discussion of the eigenfunction we refer to [VLSC01, DSS92]. Here we

want to recall the results of the discussion in order to use them for further constructions in
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the next section, where we are more interested in their restriction to the sphere in order to

obtain Cli�ord-valued wavelets on the sphere.

Simplicial functions are functions can be viewed as functions on many Cli�ord-variables

x1, ..., xk. Where every variable xi has components xij . By operators

∆xif(x1, ..., xk), (4.9.20)

∂xif(x1, ..., xk) (4.9.21)

we denote the Laplacian and the Dirac operator, acting on the Cli�ord-variable xi of f .

For vector variable functions, a rotation -and hence a H- invariant di�erential operator is the

Laplacian. The harmonic polynomials satisfy

∆xiP (x1, ..., xk) = 0 for i = 1, ..., k

∂xi∂xjP (x1, ..., xk) = 0 for i 6= j.
(4.9.22)

A monogenic function is given, if

∂xiP (x1, ..., xk) = 0 for i = 1, ..., k. (4.9.23)

Simplicial functions are special kind of functions of vector variables. Its symmetry can be

expressed by the characteristic di�erential equation

〈xi∂xi+1〉P (x1, ..., xk) = 0 for i = 1, ..., k − 1, (4.9.24)

where the de�nition

〈xi∂xi+1f(x1, ..., xn)〉 := −[xi∂xi+1f(x1, ..., xn)]0 (4.9.25)

is used.

Consequently, the simplicial harmonic system H consists of polynomials satisfying (4.9.22)

and (4.9.24); the simplicial monogenics are polynomials which satisfy (4.9.23) and (4.9.24).

It can be proven, that the simplicial harmonics span the irreducible subspaces spaces for H

and the simplicial monogenics span those of L.

This is calculated in [LSC01] and the highest weight vectors for the weight ( 2, ..., 2︸ ︷︷ ︸
k times

, 0, ..., 0)

is of the form

〈x1 ∧ ... ∧ xk, T1 ∧ ... ∧ Tk〉Cm ,

c.f. (4.9.4).

The tensor products, which we use to represent higher even integer weight representations

(2s1, ..., 2sk), correspond to the weight vector

〈x1T1〉2s1Cm〈x1 ∧ x2, T1 ∧ T2〉2s2Cm ...〈x1 ∧ ... ∧ xk, T1 ∧ ... ∧ Tk〉2skCm . (4.9.26)
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In the case of an odd m, for odd integer weights one just has to multiply the weight vectors

given above from the right by the primitive idempotents I1, ..., Ik (c.f. (4.9.3)) in order to

obtain the weight of the even integer weight "+1
2" in every component.

For the case of an even m there the concept is nearly the same, except for the weights of type

(2n1 + 1, ...,±(2nk + 1)). For the ones with the plus sign one has to multiply the function

in (4.9.26) with Im from the right and for those with a minus sign one has to multiply with

I ′ = TmTm (notation from (4.9.4)) in place of Im.

For example in [VLSC01] we �nd that the eigenvalue of H∗(Ω) for the simplicial harmonic

Km := 〈x1T1〉m1
Cm〈x1 ∧ x2, T1 ∧ T2〉m2

Cm ...〈x1 ∧ ... ∧ xk, T1 ∧ ... ∧ Tk〉mkCm (4.9.27)

of weight m = (m1, ...,mk) is given by

−
k∑
j=1

kj(mj +m− 2j), (4.9.28)

while the eigenvalue of L∗(Ω) for simplicial monogenic

Lm〈x1T1〉m1
Cm〈x1 ∧ x2, T1 ∧ T2〉m2

Cm ...〈x1 ∧ ... ∧ xk, T1 ∧ ... ∧ Tk〉mkCmI1...Ik (4.9.29)

is given by

−
k∑
j=1

mj(mj +m− 2j + 1)− m(m− 1)

8
. (4.9.30)

Before we construct di�usive wavelets directly on Spin(m), we look for di�usive wavelets on

the sphere which is a homogeneous space of Spin(m). If the reader is only interested in the

construction of di�usive wavelets on Spin(m), it is also convenient to continue with Section

4.11.

4.10 Di�usive wavelets on the sphere and Cli�ord analysis

We have already seen in Section 4.2.1 how we can construct wavelets on the sphere as a

homogeneous space of SO(n+1), of course the sphere is also a homogeneous space of the spin

group. Since the representations H and L act on the argument of the function by a rotation,

the invariant functions will be de�ned on rotation invariant subspaces. We utilize this fact to

consider only functions on the sphere Sm = {u ∈ Cm+1,
∑

A uAeA =
∑m+1

j=1 ujej , 〈u, u〉Cm+1 =

1} ⊂ Cm+1.

Since functions on the sphere depend only on one vector, one sees no longer their simplicial

character. In case of simplicial monogenic functions of degree k, after this restriction we end

up with the space of spherical monogenics of degree k. Following [DSS92] this space shall

be denoted byM(k, V ) orM(m, k, V ) if we wish to emphasize the dimension of the sphere.
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Values of spherical monogenics are in V which is chosen to be a spinor space or the whole

Cli�ord algebra.

The spherical monogenics decompose further into two disjoined subspaces, namely

• The so-called inner spherical monogenics, i.e. homogeneous monogenic polynomials of

degree k (harmonics of order k): M+(m, k, V )

• The so-called outer spherical monogenics, i.e. homogeneous monogenic functions of

degree −(k +m) (harmonics of order k + 1): M−(m, k, V )

M+(m, k, V ) andM−(m, k, V ) are eigenspaces of the Gamma operator (c.f. (4.9.18)):

ΓξPk(ξ) = (−k)Pk(ξ), ∀Pk ∈M+(m, k, V )

ΓξQk(ξ) = (k +m+ 1)Qk(ξ), ∀Qk ∈M−(m, k, V ).
(4.10.1)

and of the spherical Laplace-Beltami operator ∆ξ:

∆ξPk(ξ) = H∗(Ω)Pk = (−k)(k +m)Pk(ξ), ∀Pk ∈M+(m, k, V ) (4.10.2)

∆ξQk(ξ) = H∗(Ω)Qk = −(k + 1)(k +m+ 1)Qk(ξ), ∀Qk ∈M−(m, k, V ) (4.10.3)

The theory of these function systems is well described in [DSS92] and elsewhere. There one

�nds the decomposition

L2(Sm,Cm+1) =
∞⊕
k=0

(M(k,Cm+1)) =
∞⊕
k=0

(M+(k,Cm+1)⊕M−(k,Cm+1)) (4.10.4)

and Pk and Qk form an orthogonal basis with respect to the L2 scalar product

〈f, g〉L2 =

∫
Sm
〈f(ξ)g(ξ)〉Cm+1 dξ.

The space of harmonic functions clearly contains the monogenic functions. The space of

k-homogeneous functions H(m, k,Cm+1) can be decomposed into

H(m, k,Cm+1) =M+(m, k,Cm+1)⊕M−(m, k − 1,Cm+1). (4.10.5)

Consequently, considering (4.9.17) and (4.10.1) we have

• The space of spherical monogenicsM(k,Cm+1) =M+(k,Cm+1 ⊕M−(k,Cm+1) forms

the eigenspace of L∗(Ω) with respect to the eigenvalue (−k)(k +m+ 1)−
(
m+2

2

)
, i.e.

L∗(Ω)Pk = (−k(k +m+ 1)−
(
m+ 2

2

)
)Pk (4.10.6)

L∗(Ω)Qk = (−k(k +m+ 1)−
(
m+ 2

2

)
)Qk. (4.10.7)

From (4.10.3) and (4.9.15) one sees
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• The space of harmonic functions H(k;Cm+1) =M+(k,Cm+1)⊕M−(k−1,Cm+1) forms

the eigenspace of H∗(Ω) with respect to the eigenvalue (−k)(k +m), i.e.

H∗(Ω)Pk = −k(k +m)Pk(ξ) (4.10.8)

H∗(Ω)Qk−1 = −k(k +m)Qk−1(ξ). (4.10.9)

For concrete calculations one has to construct the functions Pk and Qk. Let

α = (α1, ..., αm+1) ∈ Nm+1 denote a multi-index, with the usual notations

xα = xα1
1 ...x

αm+1

m+1 for x ∈ Cm+1 (4.10.10)

∂α = ∂α1
x1 ...∂

αm+1
xm+1

(4.10.11)

α! = α1!...αm+1! (4.10.12)

|α| =
m+1∑
j=1

αj (4.10.13)

Starting from a natural system of polynomials, namely { 1
αξ

α}, a system of monogenic functions

can be given as Cauchy-Kovalevskaya extension of these polynomials

Vα(ξ) = CK

(
1

α!
ξα
)

=

|α|∑
j=0

(−1)jξj0
j!

[(e0∂ξ)
jξα]. (4.10.14)

For details we refer to [DSS92]. A basis ofM+(k,Cm) is given by the set:

{Vα, |α| = k}. (4.10.15)

De�ning further

Wα(ξ) = (−1)|α|∂α
ξ

Am
, (4.10.16)

where Am denotes the area of Sm, a basis ofM−(k,Cm+1) can be given by

{Wα, |α| = k}. (4.10.17)

Further expansions can be found in [DSS92].

With these function systems we are now in the condition to apply our method of constructing

di�usive wavelets in the same way we did it for scalar-valued functions on the sphere ([BE10]

and 4.2.1).

4.10.1 Heat kernel of L∗(Ω)− ∂t

We have mentioned in many places, that the Laplacian can be replaced by other operators.

Using any representations U which is di�erent from the left-regular representation but is also
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in L2(G) such that the irreducible components give a orthogonal decomposition of the L2-

space, we can replace the Laplacian by U∗(Ω). This is exactly the situation which we have for

Spin(m+ 1) and the representation L and we would like to construct wavelets of the di�usive

process which involves L∗(Ω).

Let us start by construction the heat kernel for the heat operator coming from L∗(Ω) on the

sphere.

Since H∗(Ω) is the usual spherical Laplace Beltrami operator, H∗(Ω) − ∂t represents the

canonical heat operator. Its fundamental solution is given by

PH(t, ξ) =
∞∑
k=0

∑
|α|=k

∑
|β|=k−1

exp (−k(k +m)t) (Vα(ξ) +Wβ(ξ)). (4.10.18)

This fundamental solution allows us to obtain the series expansion of of the fundamental

solution of L∗(Ω)− ∂t. It has the form

PL(t, ξ) =

∞∑
k=0

∑
|α|=k

exp

((
−k(k +m+ 1)−

(
m+ 2

2

))
t

)
(Vα(ξ) +Wα(ξ)). (4.10.19)

As we already mentioned we can expand f ∈ L2(Sm,Cm+1) into spherical monogenics by

f(ξ) =
∞∑
k=0

∑
|α|=k

(f̂V (α)Vα(ξ) + f̂V (α)Wα(ξ)), (4.10.20)

where f̂V (α) and f̂V (α) are the Fourier coe�cients.

For the construction of di�usive wavelets we can go the usual way which we developed in

Chapter 3. All notations of the following section are taken from there.

There are many ways to consider the sphere as a homogeneous space. Here we look at it as

Sm ' SO(m+ 1)/SO(m). Let f, h ∈ L2(Sm,Cm), then the following convolution

(f ∗ h)(ξ, ω) =

∫
SO(m+1)

f(g(ξ))h(g(ω)) dg, (4.10.21)

where dg is taken as the Haar measure and g(ξ) stands for the element obtained by the

rotation g applied to ξ, gives a function on SO(m+1), which is constant over co-sets gSO(m)

and hence de�nes a function on Sm [EW11].

We shall look at the invariance property of this convolution. There exist an η ∈ SO(m) such

that

(f ∗ h)(ξ, η(ξ)) = (f ∗ h)(g(ξ), g(η(ξ))) =: (f ∗ h)(η) ∀g ∈ SO(m+ 1). (4.10.22)

Since η is not unique but can be chosen as ηζ, with ζ coming from the stabilizer of η we

�nd (f ∗ h)(ηSO(m)) = (f ∗ h)(η) for the subgroup SO(m) in SO(m+ 1). By factoring this

subgroup (f ∗ h) becomes a function on Sm.
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On the other hand this function is invariant under the left action of the stabilizer in SO(m+1)

of ξ. Functions with this property are called to be zonal (c.f. De�nition 2.2.1).

One can formulate the convolution theorem, which assumes the following form.

Theorem 4.10.1. For f, h ∈ L2(Sm,Cm+1) we have

f ∗ g =
∞∑
k=0

∑
|α|=k

(f̂V (α)ĥV (α)Vα(ξ) + f̂W (α)ĥW (α)Wα(ξ)) (4.10.23)

Sketch of the proof: One considers the expansion of the functions into spherical mono-

genics. Subsequently one changes order of integration and summation, which is possible by

Fubini's theorem and uses the orthonormality property of Vα and Wα.

De�nition 4.10.2. The family of functionsψρ(ξ) :=
∞∑
k=0

∑
|α|=k

exp

((
−k(k +m+ 1)−

(
m+ 2

2

))
t

2

)
(Vα(ξ) + α)Wα(ξ)

 , (4.10.24)

de�nes di�usive wavelets corresponding to the modi�ed Laplace operator L∗(Ω) = ∆ξ + Γξ −(
m+2

2

)
1.

The corresponding wavelet transform is given by

WT f(ρ, g) := 〈f(·), ψρ(g−1(·))〉L2(Sm,Cm+1). (4.10.25)

For the wavelet transform we have the following theorem.

Theorem 4.10.3. The wavelet transform is invertible on its range by

f(ξ) =

∫ ∞
0

WT f(ρ, g) ∗ ψ%(g(ξ)) dρ ∀f ∈ L2(Sm,Cm+1). (4.10.26)

Proof:∫ ∞
0

WT f(ρ, g) ∗ ψρ(g(ξ)) dρ =

∫ ∞
0

∫
SO(m+1)

(∫
Sm

f(ζ)ψρ(g
−1(ζ)) dζ

)
Ψρ(g

−1(ξ)) dg dρ

(4.10.27)

By construction we are dealing with an di�usive approximate identity, hence the change of

order of integration is valid.

=

∫ ∞
t→0

∫
Sm

f(ζ)

(∫
SO(m+1)

Ψ%(g
−1(ζ)Ψ%(g

−1(ξ))

)
dg) dζ d% (4.10.28)

=

∫
Sm

f(ζ)

(∫ ∞
t→0

(Ψ% ∗Ψ%)(ζ, ξ)

)
d% dζ (4.10.29)

= lim
t→0

f ∗ Pt(ξ) = f(ξ) (4.10.30)
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4.10.2 Some modi�cations of the operator L∗(Ω)

In our approach one can easily consider the operator ∆− Γ instead of L∗(Ω), we just replace

the eigenvalues in the series expansion of the fundamental solution by the eigenvalues of ∆−Γ,

which is obviously −k(k+m+1), since these operators di�er from each other only by a multiple

of the identity operator

∞∑
k=0

∑
|α|=k

exp (−k(k +m+ 1)t) (Vα(ξ) +Wα(ξ)) (4.10.31)

The corresponding wavelets are now of the formψρ(ξ) :=
∞∑
k=0

∑
|α|=k

exp

(
−k(k +m+ 1)

t

2

)
(Vα(ξ))Wα(ξ)

 , (4.10.32)

Now we can easily write the di�usive wavelets with respect to further di�usive approxi-

mate identities. The importance of the magnetic Laplacian ∆mag := ∆ + (1 − Γ)Γ can

be motivated by physical meaning. Again from (4.10.1) and (4.10.3) the eigenvalues are of

Vα ∈M+(k,Cm) with respect to the magnetic Laplacian ∆mag are −k(2k +m+ 1) and that

of Wα ∈M−(k,Cm+1) are −(2k2 + 3k(m+ 1) + (m+ 1)2). Consequently, the corresponding

di�usive wavelets are of the form

ψρ(ξ) :=
∞∑
k=0

∑
|α|=k

(
exp

(
−k(2k +m+ 1)

t

2

)
Vα(ξ)

+ exp

(
−(2k2 + 3k(m+ 1) + (m+ 1)2)

t

2

)
Wα(ξ)

)
.

4.11 Eigenfunction of ∆Spin and the heat kernel on Spin(m)

Let us now take a look at the case of the Spin group. Eigenfunctions of ∆Spin on Spin(m) can

be given as matrix coe�cients of eigenvectors of π∗(Ω), for any irreducible representation π.

All irreducible representations are of the form H or L in the subspace of simplicial harmonics

or monogenics, respectively. For the moment we denote the eigenfunction with respect to the

weight (l1, ..., l[m
2

]) by v(l1,...,l[m2 ])
. Consequently, all functions of the form

h(s) =

∫
Cm

H(s)v(l1,...,l[m2 ])
(a)v(s1,...,s[m2 ])

(a) da, (l1, ..., l[m
2

]), (s1, ..., s[m
2

]) ∈ (2Z)[m
2

]

(4.11.1)

l(s) =

∫
Cm

L(s)v(l1,...,l[m2 ])
(a)v(s1,...,s[m2 ])

(a) da, (l1, ..., l[m
2

]), (s1, ..., s[m
2

]) ∈ ((2Z + 1)[m
2

]

(4.11.2)

represents harmonics and harmonic functions are linear combinations of them.
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We can also chose the following way:

Since we already know the eigenfunctions of H∗(Ω) and L∗(Ω) if we can express ∆Spin in terms

of H∗(Ω) and L∗(Ω), then we easily obtain the eigenfunctions of ∆Spin.

This can be easily done for the Dirac operator on Spin(m), which we denote by ∂s. From

Lemma 4.9.4 we know that a function on Spin(m) can be regarded as a pair of functions α(g)

and β(g) on g ∈ SO(m) or as a pair of a simplicial variable, respectively. Consequently, for a

function f on Spin(m) we have

f(s) = H(s)α(a(u1, ..., um)) + L(s)β(a(u1, ..., um)), (4.11.3)

where the simplicial variable a(u1, ..., um) is �xed, in order to have the dependance on s only.

For the action of the Dirac operator ∂s =
∑

Cm,2 eij(H∗(eij) + L∗(eij)) on f , by (4.9.14) and

(4.9.16) we have

∂sf(s) =
∑
i<j

eij(H∗(eij)α+ L∗(eij)β) (4.11.4)

= ΓH(s)α+ (Γ−
(m

2

)
)L(s)β) (4.11.5)

Hence, we can immediately deduce the eigensystem of ∂s. The same construction we would

like to have for ∆s. Therefore we look at the action of ∆s on H(s)α and L(s)β separately:

∆SpinH(s)α(a(u1, ..., um)) = (
m∑
j=1

∆uj +
∑
k<l

∆ukul)H(s)α(a(u1, ..., um)) (4.11.6)

∆SpinL(s)β(a(u1, ..., um)) = (
m∑
j=1

∆uj +
∑
k<l

∆ukul +
m∑
j=1

Γuj −
(m

2

)
)L(s)β(a(u1, ..., um)).

(4.11.7)

Since for the Laplacian in the components um we have

∆u =
∑
i<j

L2
u,eij = Γu(m− 2− Γu), with Γu = u ∧ ∂u, (4.11.8)

the only critical point is the study of the part of the mixed Laplacian

∆uv =
∑
i<j

Lu,eijLv,eij . (4.11.9)

To this end we can express the action of ∆uv on monogenics in terms of u, v, ∂u and ∂v, as we

did for ∆u. A rather technical calculation, which can be found in Appendix A.5 gives

∆uvf(u, v) = − < v, ∂̇u >< u, ∂v > ḟ(u, v). (4.11.10)

where the dot means, that the derivative ∂u is applied directly to f(u, v), but not to 〈u, ∂v〉
(Hestenes overdot notation).
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Consequently, we have

∆SpinH(s)α(a(u1, ..., um))

=

 m∑
j=1

Γuj (m− 2− Γuj )−
∑
k<l

〈uk, ˙∂ul〉〈ul, ∂uk〉

H(s)α̇(a(u1, ..., um))

∆SpinL(s)β(a(u1, ..., um))

=

 m∑
j=1

Γuj (m− 2− Γuj )−
∑
k<l

〈uk, ˙∂ul〉〈ul, ∂uk〉+

m∑
j=1

Γuj −
(m

2

)L(s)β̇(a(u1, ..., um))

A closer look to the operator 〈uk, ˙∂ul〉 shows that

〈u, ∂v〉 =
m∑
i=1

ui∂vi , (4.11.11)

which can be viewed as a mixed Euler operator c.f. Appendix A.5. In fact, from the char-

acteristic system of simplicial monogenics (4.9.24) we know that simplicial functions vanish

under the mixed Euler operator.

We discussed already simplicial monogenics in Section 4.9. Let k1, ..., km (l1, ..., lm) denote

the degree of homogeneity of α ( or β) in the variable u1, ..., um, respectively. Therefore,

Γui(H(s)α+L(s)β) = (kiα+ liβ). Hence for functions f(s) = H(s)α+L(s)β on Spin(m) we

have

∆SpinH(s)α(a(u1, ..., um)) (4.11.12)

=

 m∑
j=1

Γuj (m− 2− Γuj )

H(s)α̇(a(u1, ..., um)) (4.11.13)

=

 m∑
j=1

kj(m− 2− kj)

H(s)α(a(u1, ..., um)) (4.11.14)

(4.11.15)

and

∆SpinL(s)β(a(u1, ..., um)) (4.11.16)

=

 m∑
j=1

Γuj (m− 2− Γuj ) +

m∑
j=1

Γuj −
(m

2

)L(s)β̇(a(u1, ..., um)) (4.11.17)

=

 m∑
j=1

lj(m− 2− lj)

L(s)β(a(u1, ..., um)). (4.11.18)
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Such that according to our construct wavelets, Cli�ord-valued di�usive wavelets on Spin(m)

assume the form

ψρ(s) =

∞∑
k=1

∑
m∈Zk

exp

 m∑
j=1

kj(m− 2− kj)

 t

2

H(s)Km (4.11.19)

+ exp

 m∑
j=1

kj(m− 2− kj)

 t

2

L(s)Lm (4.11.20)

where Km and Lm form a complete system of simplicial functions. (see (4.9.27) and (4.9.29)).
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Chapter 5

Di�usive wavelets and Radon

transform on SO(3)

5.1 Radon transform on compact Lie Groups

A comprehensive discussion of Radon transforms on Rn and also on homogeneous spaces can

be found in the book of Helgason [Hel99, Hel11]. In 1917 J. Radon showed that a di�erentiable

function on R2 and R3 can be reconstructed from their values of integrals over hyperplanes.

What are the submanifolds of integration for a Radon transform on another manifold? Having

an application of our wavelets in mind we answer this question for compact Lie groups G. In the
example of the spherical Radon transform on S2 the integrals are taken over great circles, that

are orbits of the action of SO(2). The great circles can be parameterized by the points, which

are invariant under rotations which has the corresponding great circle as orbit. Introducing

θ ∈ S2 as the parameter of the great circle {ξ ∈ S2, θ · ξ = 0} ⊂ S2 this transformation is not

invertible, since θ and −θ represents the same great circles. But it clearly becomes invertible

if we restrict it to even functions on S2.

In sketched situation we look at functions on S2 or equivalently on those on SO(3), which are

constant on right co-set of the form gSO(2). Applying further the Radon transform leads to

a further averaging over left co-sets SO′(2)g, where SO′(2) means that the left co-set can be

taken based on another subgroup than the right co-set. Right as well as left co-sets can be

parameterized by points on S2 which are invariant under its action.

This leads to the de�nition of the Radon transform on G which shall be de�ned as an integral

over right� and left-translated subgroups H of G.

Further we will show that the Radon transform of wavelets on SO(3) gives wavelets on S2.

This can also be found in [BE10], while we start the discussion here in a more general manner.

De�nition 5.1.1. Let H be a subgroup of the compact Lie group G. The Radon transform

107
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of a integrable function f on G is de�ned by

Rf(x, y) =

∫
H
f(xhy−1) dh x, y ∈ G, (5.1.1)

where d here is the normalized Haar measure on H .

Next we discuss the range of the Radon transform R. Since x, y in (5.1.1) are in G a �rst

look gives the impression that the Radon transform is de�ned over G × G. But by deeper

investigation we see that Rf(x, y) is invariant under right shifts of x and y, hence R is

de�ned over G/H × G/H .

To prove this fact we look at R in Fourier domain. There we �nd that R acts in the following

way: Let �rst y ∈ G be �xed and regard Rf(·, y) as a function on G in the �rst argument,

then

R̂f(·, y)(π) = πH π∗(y)f̂(π) π ∈ Ĝ. (5.1.2)

Hence the function Rf(·, y) is invariant under the projection PH , since the Fourier coe�-

cients are invariant under the left multiplication by πH : πH πH π∗(y)f̂(π) = πH π∗(y)f̂(π).

Consequently, we have

Rf(x · h, y) = Rf(x, y) ∀h ∈H . (5.1.3)

Now a look at the Radon transform as function in the second argument y, while the �rst

argument x is �xed, we �nd

PH Rf(x, y) =

∫
H

Rf(x, yh) dh

=

∫
H

∑
π∈Ĝ

dπ trace(f̂(π)π(x))πH π(h−1y−1) dh

=
∑
π∈Ĝ

dπ trace(f̂(π)π(x))πH π∗(y) = Rf(x, y). (5.1.4)

Hence, Rf(x, y) is constant over �bers of the form yH and

R̂f(x, ·)(π) = πH π∗(x)f̂(π)∗. (5.1.5)

Consequently, R maps functions over G to functions over G/H × G/H . Now an interesting

question is to determine the concrete spaces for the domain and range of R. We will restrict

us here to consider the Radon transform over the space L2(G).

Theorem 5.1.2. Let H be the subgroup of G which determines the Radon transform on G and

let Ĝ1 ⊂ Ĝ be the set of irreducible representations with respect to H . Then for f ∈ C∞(G)

we have

‖Rf‖2L2(G/H ×G/H ) =
∑
Ĝ1

rank(πH )‖f̂‖2HS . (5.1.6)
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Proof: For the proof we expand Rf(x, y) for a �xed y as function in x over G (or better

G/H ) and apply Parseval's identity (2.1.16). With (5.1.2) we have

‖Rf‖L2(G/H ×G/H ) =
∑
π∈Ĝ

dπ

∫
G
‖πH π∗(y)f̂(π)‖2HS dy

=
∑
π∈Ĝ

dπ

∫
G

trace
(
f̂∗(π)π(y)πH π∗(y)f̂(π)

)
dy

=
∑
π∈Ĝ

dπ trace

(
f̂

∫
G
f∗(π)π(y)πH π∗(y) dy

)
=
∑
π∈Ĝ1

rank(πH ) trace(f̂∗f̂)

Here we made use of the fact

∫
G
f̂∗(π)π(y)πH π∗(y) dy =

rankπH∑
k=1

∫
G
πik(y)πkj(y) dy

dπ

i,j=1

=
rank(πH )

dπ
Id.

The Theorem 5.1.2 give us the important result, that the Radon transform is an isometry

between L2(G) and the some Sobolev space on G/H ×G/H . The Sobolev space is determined

by the class one representations of G with respect to H or more precisely by the dimension

of the H invariant vectors for all representations of G. Consequently, the inversion formula

can be given as the adjoined operator of the Radon transform.

In the next section we will have a detailed look at this situation for the Radon transform on

SO(3).

5.1.1 Radon transform on SO(3)

The Radon transform on SO(3) is intensively investigated, examples are [BS05], [Hie07],

[Hel99], [Hel11], [BE10]. One of the reasons is, that the subgroup over which the integration

is taken is H = SO(2), which has practical applications in crystallography, a �eld of texture

analysis and geophysics.

We will look at it from our point of view which we build up in the previous chapters.

The practical problem can be described as follows1. The desire is to determine the structure

of a specimen of crystals. Because of the structure of the crystal one can equip it with an inner

orthogonal coordinate system {e1, e2, e3}. Additionally one distinguish an outer orthogonal

coordinate system {u1, u2, u3} related to the specimen. The orientation of a crystal in the

1For simplicity we neglect here spherical symmetries.
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specimen is de�ned by the unique rotation γ ∈ SO(3) which maps the inner coordinate system

to the outer one, i.e. gei = ui for i = 1, 2, 3.

Now, the function of interest is the orientation density �ction (ODF) f ∈ L2(SO(3)) that is

a probability measure on SO(3). The function value f(g) gives the amount of crystals in the

specimen with orientation g.

The practical measurement sends a electron beam through the specimen coming from the

direction h ∈ S2 and measures the intensity of electrons, emitted from the specimen in the

direction r ∈ S2. One can interpret the result as the integral over all orientations g ∈ SO(3)

with g ·h = r, the set of those orientations are called great circle Chr = {g ∈ SO(3), g ·h = r}
in SO(3). The situation is sketched in Figur5.1.

Figure 5.1: Orientation of a crystal in a specimen, Radon measurements

It is clear that the great circle is given by

Ch,r = h′ SO(2) r′−1 := {h′gr′, h ∈ SO(2)} h′, r′ ∈ SO(3), (5.1.7)

where h′, r′ ∈ SO(3) satisfy h′ · ξ0 = h and r′ · ξ0 = r with SO(2) being the stabilizer of

ξ0 ∈ S2, hence ξ0 is the north pole.

For the Radon transform we have.

De�nition 5.1.3. The Radon transform on SO(3) is de�ned by

Rf(x, y) =

∫
Cx,y

f(g) dg f ∈ L2(SO(3)). (5.1.8)

De�nition 5.1.4. The Sobolev space Ht(G) on a compact Lie group is de�ned as the domain

of the operator (Id−∆)t in L2(G):

Ht(G) := {f ∈ L2(G), ‖f‖2t = ‖(Id−∆)
t
2 f‖2L2(G) <∞} (5.1.9)

Theorem 5.1.5. The Radon transform on SO(3) is an invertible mapping

R : L2(SO(3))→ H 1
2
(S2 × S2) (5.1.10)
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Proof: With dk = 2k + 1 is the dimension of the irreducible representations and −λ2
k =

−k(k + 1) are the eigenvalues of the Laplacian ∆ we have dk =
√

1 + 4λ2
k. Furthermore, for

SO(3) we have Ĝ = Ĝ1. Now the assertion follows from (5.1.6)

‖Rf‖L2(S2×S2) = ‖(1− 4∆)−
1
4 f‖L2(G). (5.1.11)

Remark 5.1.6. From Theorem 5.1.5 we deduce the reconstruction formula for the Radon trans-

form on SO(3) so let

f(x, y) =

∞∑
k=0

2k+1∑
i,j=1

f̂(k, i, j)Y ik(x)Yjk(y) ∈ H 1
2
(S2 × S2) (5.1.12)

be the result of a Radon transform. Then the pre-image g ∈ L2(SO(3)) is given by

g =
∞∑
k=0

2k+1∑
i,j=1

(2k + 1)

4π
f̂(k, i, j)T kij =

∞∑
k=0

(2k + 1) trace(ĝ(k)T k) (5.1.13)

(5.1.14)

From which follows for the Fourier coe�cients

ĝ(k)ij =
1

4π
f̂(k, j, i). (5.1.15)

5.1.2 Radon transform of wavelets on SO(3)

Let us now take a look at our wavelets on SO(3), which we constructed in Section 4.3, c.f.

(4.3.5). For these wavelets we have the following result.

Lemma 5.1.7. Let {Ψρ, ρ > 0} be a family of class type1 wavelets on SO(3), then the family

of functions {RΨρ(x, ·), ρ > 0, ξ ∈ S2 �xed} de�nes a family of zonal wavelets on S2.

The lemma can be seen in the following way.

The general formula for the Fourier expansion of the Radon transform (5.1.4) reads in our

case as

Rf(x, y) =

∞∑
k=0

(2k + 1) trace(f̂(k)T k(x)πSO(2)T
∗(y)) (5.1.16)

=
∞∑
k=0

(2k + 1)
2k+1∑
i,j=1

f̂(k)ijT
k
j1(x)T ki1(y) (5.1.17)

= 4π

∞∑
k=0

2k+1∑
i,j=1

f̂(k)ijY ik(x)Yjk(y), (5.1.18)

1Every wavelet is a class type function in case of ηρ(π) = Id, which we used in (4.3.5).
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where we also considered (4.2.18). This formula can also be found in [BS05].

Recall the form of our di�usive wavelets on SO(3) (4.3.5) we �nd for the Fourier coe�cients

ψ̂ρ(k) =
1√
α(ρ)

1

4π

√
k(k + 1)e−

k(k+1)
2

ρId. (5.1.19)

Hence the Radon transform of ψρ yields

Rψρ(x, y) =
1√
α(ρ)

∞∑
k=0

2k+1∑
i,j=1

√
k(k + 1)e−

k(k+1)
2

ρδijY ik(x)Yjk(y) (5.1.20)

=
1√
α(ρ)

∞∑
k=0

(2k + 1)
√
k(k + 1)e−

k(k+1)
2

ρC
1/2
k (x · y). (5.1.21)

This can be easily seen by Theorem 4.2.3 and C1/2
k (1) = 1. Hence, the image of the wavelets

under the Radon transform are exactly the wavelets we constructed for S2 (c.f. (4.3.3)). The

choice of x ∈ S2 corresponds to the choice of the point to which the wavelets are zonal and

by application of the translation operator all wavelets can be mapped onto the zonal wavelet

family, given by the choice x being the north pole.

5.1.3 Radon transform of non-class type functions

We chose now wavelets on SO(3), where we make a non-trivial choice of ηρ(k), hence we chose

non-zonal wavelets. Furthermore, we assume that ηρ(π) is independent of ρ without loss of

generality. We will show, that the Radon transform will result in non-zonal wavelets on S2.

The general form of wavelets on SO(3) (c.f. (4.3.5)) is given by the Fourier coe�cients

ψ̂ρ(k) =
1√
α(ρ)

1

4π

√
k(k + 1)e−

k(k+1)
2

ρηρ(k) ηρ(k) ∈ U(2k + 1). (5.1.22)

Now, the Radon transform yields

RΨρ(x, y) =
∞∑
k=0

√
k(k + 1)e−

k(k+1)
2

ρ
2k+1∑
i,j=1

(ηρ(k))ijY ik(x)Yjk(y) (5.1.23)

since the vector (Y ik(x))2k+1
i=1 has Euclidean norm

√
2k+1

4π (by Theorem 4.2.3). Since ηρ(k) is

unitary the vector

ωj(k) :=

√
4π

2k + 1
ηρ(k)(Y ik(x))i=j (5.1.24)

has also Euclidean norm 1. Consequently we obtain exactly the form (4.2.20) of a non-zonal

spherical di�usive wavelet for S2:

RΨρ(x, y) =
∞∑
k=0

(2k + 1)

4π

√
k(k + 1)e−

k(k+1)
2

ρ

√
4π

2k + 1

2k+1∑
j=1

ωj(k)Yjk(y) (5.1.25)
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5.2 Variational interpolation problem

For the application in texture analysis, the number of measurements is �nite. Consequently,

the invertibility will be lost. Since the Radon transform of a function on a Lie group G is

given as an integral over submanifolds of G we will look at the situation in the following way.

The Radon transform is the collection of functionals Fx,y := R(x, y) which maps a function

f to the integral over the submanifold xH y for some sub-group H of G and x, y ∈ G. In the

application in texture analysis we have a �nite set of functionals Fxν ,yν for ν = 1, ..., N and

we have to �nd a good approximation of f from Fxν ,yν (f).

This task is formulated in [Pes04] as a variational spline problem. There a set of functionals

Fν is given as integrals over dν-dimensional submanifoldsMν of a d-dimensional Riemannian

manifoldM (0 ≤ dν ≤ d). We assume a �nite number N of manifoldsMν ,

Fν(f) =

∫
Mν

f(x) dx = vν ν = 1, ..., N. (5.2.1)

The variational spline problem �ts in some sense optimal to the practical question of deter-

mining the ODF f from measurements of the Radon transformed f . On the one hand we are

interested in regions where the values of f are large but if the curvature of f is small in those

regions it would be more useful to increase the measurements around the maximum of f and

those points where the curvature is large. Hence the right criteria is the value of (1 +Delta)f

and on should increase the density of measurements around points where (1 + ∆)f is large.

The density of measurements should be high at those points where the interpolation is highly

nonlinear.

De�nition 5.2.1. The Sobolev space Ht(M) is de�ned by

Ht(M) = {‖f‖t := ‖(1 + ∆M)t/2f‖L2(M) <∞}, (5.2.2)

where ∆M denotes the Laplace-Beltrami operator onM.

Now the question of interest is to �nd for given vν , ν = 1, ..., N , a function st(f) ∈ Ht(M)

with

Fν(st(f)) = vν

‖st(v)‖t → min .

}
(5.2.3)

De�nition 5.2.2. A set of functionals Fν is called to be independent, if there are test functions

ϕµ ∈ C∞0 (M) (µ, ν = 1, ..., N) such that:

Fν(ϕµ) = δνµ, (5.2.4)

where δνµ denotes the Kronecker delta.

The essential result in [Pes04], which we utilize here is the following.

Theorem 5.2.3. Let Fν (ν = 1, ..., N) be a set of linear functionals, independent in the

sense of De�nition 5.2.2 and belonging to H−t0
1. Then for t > t0 + d/2 and a given vector

1In distributional sense, i.e. Fν : Ht0(M)→ L2(M) and (Ht0)′ = H−t0
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v = (vν)Nν=1 ∈ Rn the solution of (5.2.3) is given by

st(v) =
∞∑
j=0

cj(st(v))φj , (5.2.5)

where φj are the eigenfunctions of ∆M with respect to the eigenvalues −λ2
j . The Fourier

coe�cients cj(st(v)) are given by

cj(st(v)) = (1− λ2
j )
−t

N∑
ν=1

αν(st(v))Fν(ϕj), (5.2.6)

where α(st(v)) = (αν(st(v)))Nν=1 ∈ RN solves

βα(st(v)) = v, (5.2.7)

with β ∈ RN×N is given by

βνµ =
∞∑
j=1

(1− λ2
j )
−tFν(ϕj)Fµ(ϕj). (5.2.8)

By the independence assumption of Fν the system (5.2.7) is solvable for all v ∈ RN .
The assumption t > t0 + d/2 ensures that (5.2.8) converges (see [Pes04] for description).

We continue by applying this theorem to our case of a manifold being a compact Lie group.

We used frequently that the eigenfunctions of ∆G for compact Lie groups G are given by

matrix coe�cients πij of all irreducible representations π. Again Ĝ shall denote the set of all

irreducible representations and the characters of π are again given by χπ = trace(π).

The task to �nd a function f on G so that for a given �nite set {Rf(xν , yν), ν = 1, ..., N}
the function f solves Problem (5.2.3) for the special case of the Radon transform on G. We

substitute the relevant notions in order to obtain the formulation for the case of the Radon

transform. Hence dν = dimH ∀ν = 1, ..., N andMν = xνH y−1
ν .

This means we have to solve the linear system (5.2.7) for the special case where β, given in

(5.2.8) assumes the form

βµν =
∑
π∈Ĝ

(1− λ2
π)−t

dπ∑
i,j=1

R(πij(xν , yν))R(πij(xµ, yµ)). (5.2.9)

In order to determine the entries of the matrix β we have to calculate Rπ(gν) and∑dπ
i,j=1 R(πij(xν , yν))R(πij(xµ, yµ)).

Here we have
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dπ∑
i,j=1

R(πij(xν , yν))R(πij(xµ, yµ)) =

dπ∑
i,j=1

∫
H
πij(xνhy

−1
ν ) dh

∫
H
πij(xµhy

−1
µ ) dh (5.2.10)

=

dπ∑
i,j=1

∫
H

∫
H
πji(yνhx

−1
ν ) dhπij(yµhx

−1
µ ) dh (5.2.11)

= trace(πH π(yν)πH π(x−1
ν )πH π(xµ)πH π(y−1

µ )).

(5.2.12)

Hence we obtain the function that is zonal in every component. A special case is given by the

addition theorem 4.2.3 of spherical harmonics. Since we have the application of the Radon

transform on SO(3) in mind and SO(2) is a massive subgroup in SO(3) we would like to study

weather there is any simpli�cation for this case. Indeed, when H is a massive subgroup1 of

G we �nd

dπ∑
i,j=1

R(πij(xν , yν))R(πij(xµ, yµ)) = π11(yν)π11(x−1
ν )π11(xµ)π11(y−1

µ ) (5.2.13)

= π11(yνx
−1
ν xµy

−1
µ ), (5.2.14)

and hence we obtain for the matrix coe�cients

βµν =
∑
π∈Ĝ

(1− λ2
π)−tπ11(yνx

−1
ν xµy

−1
µ ) (5.2.15)

where Ĝ1 denotes the set of irreducible representations with rankπH = 1.

5.2.1 Variational interpolation problem for the Radon transform on SO(3)

Special functions of rotation group of arbitrary dimension and related theorems are discussed

in Section 4.2.1. Special functions and relations between them for the special case of SO(3)

and S2 are given in Section 4.3. Here we brie�y recall some facts in order to remind the

notation and to have all relations at hand for investigations of the Radon transform on SO(3)

All irreducible representations are equivalent to an irreducible component of the left regular

representation

T (g) : f(ξ) 7→ f(g−1 · x), (5.2.16)

where · denotes the canonical action of SO(3) on S2. The T invariant subspaces of L2(S2)

are Hk = {Y ik, i = 1, ..., 2k+ 1}- spanned by spherical harmonics of degree k. T k shall denote

the irreducible representation, obtained by restriction of T to Hk.
1i.e. rankπH ≤ 1
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The matrix coe�cients of T k are the Wigner polynomials T kij of degree k:

Yjk(g−1 · ξ) =
2k+1∑
i=1

T kij(g)Y i
k (ξ) T kij = 〈Yjk(g−1·), Y i

k (·)〉L2(S2). (5.2.17)

Since matrix coe�cients always have the norm 1
dπ
, where dπ = 2k + 1, we have

T ki1(g) =

√
4π

2k + 1
Y ik(g · ξ0), (5.2.18)

where ξ0 ∈ S2 is the base point of SO(3)/SO(2) ∼ S2, often chosen as north pole. The

eigenvalues of Laplacian on SO(3) and on S2 corresponding to polynomials of degree k is

−k(k + 1), i.e. ∆SO(3)T
k
ij = −k(k + 1)T kij and ∆S2Y ik = −k(k + 1)Y ik.

Furthermore the dimension of zonal functions in Hk is one and is spanned by Gegenbauer

polynomial of order C
1
2
k (ξ0 · ξ). Consequently, zonal functions depend only on the angle

between the argument ξ and the base point (north pole).

The Addition Theorem 4.2.3 for S2 assumes the following form.

Theorem 5.2.4 (Addition theorem). For all ξ, η ∈ S2 and k ∈ N0

C
1
2
k (ξ · η) =

4π

2k + 1

2k+1∑
i=1

Y ik(ξ)Y ik(η). (5.2.19)

Let us now take a look at the concrete case of R on SO(3).

In order to determine β for our problem at hand, we have to calculate

R(T kij). Since R(T k)(x, y) = T k(x)πSO(2)(T
k(y))∗ we have

RT kij(ξ, η) = T ki1(ξ)T kj1(η) =
4π

2k + 1
Y ik(ξ)Y

j
k(η). (5.2.20)

Consequently, for the variational spline problem with t > 1 we have

βνµ =

∞∑
k=0

(1− k(k + 1))−t
(

4π

2k + 1

)2 2k+1∑
i,j=1

Y ik(ξν)Yjk(ην)Y ik(ξµ)Yjk(ηµ) (5.2.21)

=
∞∑
k=0

(1− k(k + 1))−tC
1
2
k (ξν · ην)C

1
2
k (ξµ · ηµ), (5.2.22)

where we made use of Addition Theorem 5.2.4.

Summarizing the results of this section we have the following theorem. Given the problem of

the Radon transform on SO(3)

R(st(f))(xν , yν) = vν

‖st(v)‖t → min .

}
(5.2.23)
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Theorem 5.2.5. Let {(x1, y1), ..., (xN , yN )} be a set of pairs of points from SO(3), such that

there are test functions φ1, ..., φN with

Rφµ(xν , yν) = δνµ.

Then for t > 3
2 and a vector (of measurements) v = (vν)Nν=1 ∈ RN the solution of (5.2.23) is

given by

st(v) =
∞∑
k=0

2k+1∑
i,j=1

cjik (st(v))T kij =
∞∑
k=0

trace(ck(st(v))T k), (5.2.24)

where T kij are the Wiegner polynomials. The Fourier coe�cients ck(st(v)) of the solution are

given by their matrix entries

cjik (st(v)) = (1− k(k + 1))−t
N∑
ν=1

αν(st(v))R(T kij)(xν , yν), (5.2.25)

whereby α(st(v)) = (αν(st(v)))Nν=1 ∈ RN is the solution of

βα(st(v)) = v, (5.2.26)

with β ∈ RN×N given by

βνµ =

∞∑
k=0

(1− k(k + 1))−tC
1
2
k (ξν · ην)C

1
2
k (ξµ · ηµ). (5.2.27)

For applications, one just has to apply standard methods to solve (5.2.26) and one will get

the solution (5.2.24). A discussion of the stability of the solution will involve the condition

number of the matrix β. But the concrete discussion depends on the choice of the solution

method. Since here we do not lead the discussion of the numerics we restrict to have a look

at the Shannon sampling theorem on a rather abstract level.

We assume a signal f ∈ G that is bandlimited i.e. f̂(π) 6= 0 only for �nite many π ∈ Ĝ. We

denote Ĝf = {π, f̂(π) 6= 0} and let dmax := max
π∈Ĝf dπ the corresponding representation of

dimension dmax shall be denoted by πmax. For a set of pointsX = {ga,b ∈ G, a, b = 1, ..., dmax}
with

det
(
πij(g(a,b))

)(dmax,dmax)

(a,b),(i,j)=(1,1)
6= 0 (5.2.28)

By the expression
(
π(g(a,b))ij

)(dmax,dmax)

(a,b),(i,j)=(1,1)
we denote the matrix where the matrix coe�cients

of π vary along the rows evaluated at a point g(a,b). The point g(a,b) vary along the lines over

X.
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Existence of points with (5.2.28)

Let {ui}dπi=1 be a basis in the representation Hilbert space H. By irreducibility of π we can

chose points gab = gagb in G so that π(gb)ui = ui(b) and π(g−1
a ) = uj(a). Hence,

πij(gab) = 〈π(e)π(gb)ui, π
∗(ga)uj〉 = πi(b)j(a)(e) = δi(b)j(a), (5.2.29)

for arbitrary permutations i(b) and j(a).

Theorem 5.2.6 (Shannon).

f(g) =

dmax∑
a=1

dmax∑
b=1

f(g(a,b))L(a,b)(g), (5.2.30)

while

L(a,b)(g) :=
∑
π∈Ĝf

dπ

dπ∑
i,j=1

cπ(a,b)(i, j)πij(g) (5.2.31)

and

dπ∑
a,b=1

cπ(a,b)(i, j)πnm(g(a,b)) = δm,jδn,i ∀π ∈ Ĝf (5.2.32)

Here δk,l denotes the Kroneker Delta.

The solvability of (5.2.32) is ensured by the existence of general distributed points (i.e.

those which satisfy (5.2.28)). The matrix (cπ(a,b)(i, j))
(dπ,dπ )

(i,j),(a,b)=(1,1) is the inverse matrix of

(πnm(g(a,b)))
(dπ,dπ )

(n,m),(a,b)=(1,1).

Proof: Inserting (5.2.31) in (5.2.30) yields

dmax∑
a,b=1

F (gab)L(a,b)(g) =
∑
π∈Ĝf

dπ

dmax∑
i,j=1

dmax∑
a,b=1

cπ(a,b)(i.j)πij(g)F (gab). (5.2.33)

Using the Fourier series expansion of F and changing the order of summation we obtain

=
∑
π∈Ĝf

dπ

dmax∑
i,j=1

dmax∑
a,b=1

cπ(a,b)(i, j)πij(g)

dmax∑
n,m=1

F̂nm(π)πmn(gab) (5.2.34)

=
∑
π∈Ĝf

dπ

dmax∑
i,j=1

dmax∑
n,m=1

dmax∑
a,b=1

cπ(a,b)(i, j)πmn(gab) F̂nm(π)πij(g), (5.2.35)

Finely by (5.2.32) this equals the Fourier series expansion of F :

=
∑
π∈Ĝf

dπ

dmax∑
i,j=1

F̂ji(π)πij(g) = F (g). (5.2.36)
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This generalization of the classical Shannon sampling theorem makes use of the group structure

and can be utilized as starting point for further discussion of the choice of points x, y ∈ G
such that measure points of the Radon transform and the connected discretization.

Beside the theoretical value of the Shannon sampling theorem this can also be used to discuss

many questions for the applications, such as the optimal choice of points of measuring in order

to obtain a stable inversion.
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Appendix A

Appendix

A.1 Hermite polynomials

In order to evaluate the Schrödinger representations of Hn, which are in the Hilbert space

L2(Rn) we introduce here the basic facts about the orthonormal system of Hermite polynomials

and Hermite functions.

The Hermite Polynomials are de�ned by

Hk(t) := (−1)ket
2
(

dk

dtk
e−t

2
) k ∈ N0, t ∈ R.

The Hermite polynomials form an orthonormal system with respect to the measure e−t
2
, in

that case their norm is ‖Hk‖L2(R,e−t2 dt)
=
√

2k
√
πk!. Hence an orthonormal system in L2(R)

is given by the Hermite functions, which are de�ned as

hk(t) :=
(

2k
√
πk!
)− 1

2
Hke

− 1
2
t2 .

The tensor product of Hermite functions gives an orthonormal system in L2(Rn)

Φα(x) = Πn
j=1hαj (xj),

in the usual multi index notation α = (αj)
n
j=1 and |α| =

∑n
j=1 αj .

The heat equation (corresponding to the sub-Laplacian) has the symbol of the harmonic

oscillator −∆ + |x2|, also called Hermite operator for which the eigenfunctions are the the

Hermite functions Φα.

(−∆ + |x|2)Φα(x) = (2|α|+ n)Φα(x)

Simultaneously Φα(x) is an eigenfunction of the Fourier transform FΦα = (−i)|α|Φα.

For α. β ∈ N0, the special Hermite functions are de�ned by

Φα,β(z) = (2π)
n
2

∫
Rn

Φα(ξ +
y

2
)Φα(ξ − y

2
)eixξ dξ z = x+ iy ∈ Cn

121
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The special Hermite function form an orthonormal system in L2(Cn).

The special hermite functions can be expressed in terms of Laguerre functions.

Lδk(t) =
ett−δ

k!

(
d

dt

)k
(e−ttk+δ); Lβα = Πn

j=1L
βj
αj (A.1.1)

The following formulae hold

Φα,α = (2π)−
n
2 Πn

j=1Lαj (
1

2
|zj |2)e−

1
4
|zj |2 (A.1.2)

Φα+β,α = (2π)−
n
2

(
α!

(α+ β)!

) 1
2
(

i√
2

)|β|
zβLβα(z)e−

1
4
|z|2 , (A.1.3)

Φα,α+β = (2π)−
n
2

(
α!

(α+ β)!

) 1
2
(
− i√

2

)|β|
zβLβα(z)e−

1
4
|z|2 . (A.1.4)

A.2 Nilpotent Lie groups

The property of a Lie group G possessing an abelian structure is very strong and brings many

simpli�cations for the general theory. The property of a Lie group to be nilpotent is somehow a

measure of the non-commutativity of the group. If a group is non-commutative, equivalently

the commutators [X,Y ] of vector �elds X and Y do not vanish for some X,Y ∈ g. But

if [X,Y ] does not vanish, may further applications of the commutator vanishes and we can

deduce therefrom structural simpli�cations.

De�nition A.2.1. A Lie group G is nilpotent if for all elements X,Y of the Lie algebra g the

expression

[X, [..., [X, [X,Y ]]]] (A.2.1)

vanishes after �nitely many applications of the commutator. A nilpotent Lie group is of step

n ∈ N, if n is the smallest number for which the expression after n applications of [ , ] (A.2.1)

vanishes for all X,Y ∈ g.

By Baker-Campbell-Hausdor� formula

eXeY = eZ , Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [[X,Y ], Y ]) + · · · (A.2.2)

the complete structure is determined if G is nilpotent, since in that case the sum for Z in

(A.2.2) is �nite.

A.3 Borel functional calculus

We frequently make use of application of functions to operators. For example the square root

of the Laplacian ∆G gives the dilation operator, which we use to vary wavelets in their scale.

The Borel functional calculus formulates the general concept.
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For a linear, selfadjoint operator A on a Hilbert space H, there is a basis {ej , j ∈ J with |J | =
dimH} of eigenvectors of H, so that Aej = λjej for all j ∈ J . Hence the operator A acts on

v =
∑

j∈J cjej ∈ H by

Av =
∑
j∈J

vjλjej . (A.3.1)

Let now f : R→ R be a functions, then the operator f(A) is de�ned by its action via

f(A)v =
∑
j∈J

vjf(λj)ej (A.3.2)

A.4 Killing form of Spin(m)

The Lie Bracket of Spin(m) is given by

[x, y] := xy − yx, (A.4.1)

as the usual commutator with respect to the cli�ord multiplication. For the bases {eij , i < j}
it is

[eij , ekl] = 2(δikejl + δjleik − δilejk − δjkeil). (A.4.2)

The killing form is given by trace(ad(x)ad(y)) = trace[x, [y, ·]]. For an general element

y ∈ spin(m) = Cm,2 we make the convention y =
∑
i<j

yijeij = 1
2

n∑
i,j=1

yijeij , that the matrix

(yij) is skew symmetric and has zero entries on the diagonal.

[y, eij ] =
1

2

∑
kl

ykl[ekl, eij ] (A.4.3)

=
∑
kl

ykl(δkielj + δljeki − δliekj − δkjeli) (A.4.4)

=
∑
l

(yilelj − yjleli) +
∑
k

(ykjeki − ykiekj) (A.4.5)

=
∑
k

(ykj − yjk)eki + (yik − yki)ekj (A.4.6)
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And further

[x, [y, eij ]]

=
1

2

∑
mn

∑
k

xmn(ykj − yjk)[emn, eki] + xmn(yik − yki)[emn, ekj ]

=
∑
mn

∑
k

xmn(ykj − yjk)(δmkeni + δniemk − δmienk − δnkemi)

+ xmn(yik − yki)(δmkenj + δnjemk − δmjenk − δnkemj)

=
∑
n

∑
k

xkn(ykj − yjk)eni − xin(ykj − yjk)enk + xkn(yik − yki)enj − xjn(yik − yki)enk

+
∑
m

∑
k

xmi(ykj − yjk)emk − xmk(ykj − yjk)emi) + xmj(yik − yki)emk − xmk(yik − yki)emj)

=
∑
n

∑
k

xkn(ykj − yjk)eni − xin(ykj − yjk)enk + xkn(yik − yki)enj − xjn(yik − yki)enk

+
∑
n

∑
k

xni(ykj − yjk)enk − xnk(ykj − yjk)eni) + xnj(yik − yki)enk − xnk(yik − yki)enj)

=
∑
n

∑
k

(xkn − xnk)(ykj − yjk)eni + (xni − xin)(ykj − yjk)enk

+ (xkn − xnk)(yik − yki)enj + (xnj − xjn)(yik − yki)enk

We have to calculate the eij part of this expression.

The part is (xkn−xnk)(ykj−yjk)eni contributes −(xkj−xjk)(ykj−yjk) = (xjk−xkj)(ykj−yjk)
for n = j.

From (xni − xin)(ykj − yjk)enk we get (xii − xii)(yjj − yjj) = 0 for n = i and k = j, but for

n = j and k = i this gives a eij part: −(xji − xij)(yij − yji) = (xij − xji)(yij − yji).
The part (xkn − xnk)(yik − yki)enj gives (xki − xik)(yik − yki) for n = i.

And the term (xnj − xjn)(yik − yki)enk brings (xij − xji)(yij − yji) for n = i and k = j.

Consequently the eij-part is

2(xij − xji)(yij − yji) +
∑
k

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki) (A.4.7)

=
∑
k 6=j
k 6=i

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki). (A.4.8)

In order to obtain the trace, we have to take the sum over all i < j or half the sum over all

i, j. This gives:

trace([x, [y, eij ]]) =
∑
i<j

∑
k 6=j
k 6=i

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki) (A.4.9)

=
1

4

∑
i 6=j

∑
k 6=j
k 6=i

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki) (A.4.10)
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We shall look at the norm of a basis vector emn = 1
2

∑
i 6=j(δimδnj + δinδmj)eij with respect to

the killing.

‖emn‖2 =
1

4

∑
i 6=j

∑
k 6=j
k 6=i

(xjk − xkj)(ykj − yjk) + (xki − xik)(yik − yki) (A.4.11)

=
1

4
(−4− 4− 4− 4) = −4 (A.4.12)

Consequently

{1

2
eij , 1 ≤ i < j ≤ m} (A.4.13)

is the orthonormal (with respect to the killing form) Bases of spin(m)

A.5 The mixed Laplacian ∆uv

We make use of the following fundamental Equalities:

−x ∧ ∂x = −1

2

 m∑
i,j=1

xiei∂xjej −
m∑

i,j=1

∂xieixjej

 (A.5.1)

= −1

2
(xi∂xj − xj∂xi)eij =

∑
i<j

Lijeij (A.5.2)

= Γx (A.5.3)

Eu =
m∑
i=1

ui∂ui (A.5.4)

Consequently:

Γu + Eu = −u∂u (A.5.5)

The Mixed Laplacian is given by

∆uv =
∑
i<j

Lu,ijLv,ij =
∑
i<j

(uj∂ui − ui∂vj )(vj∂vi − vi∂vj )

=
∑
i<j

uivi∂uj∂vj + ujvj∂ui∂vi − uivj∂vj∂vi − ujvi∂ui∂vj .

Lemma A.5.1.

{Γu,Γv}+
1

2
[{(u ∧ ∂v), (v ∧ ∂u)}+ {(u ∧ v), (∂u ∧ ∂v)}] = −3∆uv + (m− 2)(Γu + Γv)−

(m
2

)
.
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We will see, that the scalar part of 1
2(ΓuΓv +ΓvΓu) is already ∆uv. The rest of the calculation

will be devoted to cancelation of the appearing four-vector part and eventually to calculate

the corresponding bi-vector part of the expression, which we �nd for vanishing four-vector

part.

Because of [ΓuΓv]2 = −[ΓvΓu]2 it is

1

2
{Γu,Γv} :=

1

2
(ΓuΓv + ΓvΓu) (A.5.6)

= [ΓuΓv]0 + [ΓuΓv]4 (A.5.7)

By

ΓuΓv = (−u ∧ ∂u)(−v ∧ ∂v) (A.5.8)

=
1

4
(−u∂u + ∂uu)(−v∂v + ∂vv) (A.5.9)

=
∑
i<j

∑
k<l

(uj∂ui − ui∂uj )(vl∂vk − vk∂vl)eijkl (A.5.10)

we see that

[ΓuΓv]0 =
∑

i=k<j=l

(−1)(uj∂ui − ui∂uj )(vl∂vk − vk∂vl) = −
∑
i<j

Lu,ijLv,ij = −∆uv (A.5.11)

[ΓuΓv]4 =
1

4

∑
i,j,k,l di�erent

eijklLu,ijLv,kl (A.5.12)

The task is now, to cancel the four-vector part!

Therefor we look at

−1

2
{(u ∧ ∂v), (v ∧ ∂u)} − (u ∧ v)(∂u ∧ ∂v)

and we will �nd, that the scalar part also contains ∆uv and the four-vector part is proportional

to that of ΓuΓv.

− 1

2
[(u ∧ ∂v)(v ∧ ∂u) + (v ∧ ∂u)(u ∧ ∂v)]0

=
1

4

∑
i 6=j

(ui∂vj − uj∂vi)(vi∂uj − vj∂ui) +
∑
i 6=j

(vi∂uj − vj∂ui)(ui∂vj − uj∂vi)

=
1

2

∑
i 6=j

uivi∂uj∂vj + ujvj∂ui∂vi − uivj∂vj∂ui − ujvi∂uj∂vi

+
1

4

∑
i 6=j
−ui∂ui − uj∂uj − vi∂vi − vj∂vj

=
1

2

∑
i 6=j

uivi∂uj∂vj + ujvj∂ui∂vi−uivj∂vj∂ui − ujvi∂uj∂vi −
(m− 1)

2
(Eu + Ev) ,
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where the last term comes from the action of ∂u on u and of ∂v on v in the term, which we

have to consider by the product rule. Furthermore

−[(u ∧ v)(∂u ∧ ∂v)]0 =
1

2

∑
i 6=j

(uivj − ujvi)(∂ui∂vj − ∂uj∂vi)

=
1

2

∑
i 6=j

(uivj∂ui∂vj + ujvi∂uj∂vi − uivj∂uj∂vi − ujvi∂ui∂vj ).

We take the sum of the two calculations above and obtain:

− [
1

2
{(u ∧ ∂v), (v ∧ ∂u)}+ (u ∧ v)(∂u ∧ ∂v)]0

=
1

2

∑
i 6=j

uivi∂uj∂vj + ujvj∂ui∂vi − uivj∂uj∂vi − ujvi∂ui∂vj − (m− 1) (Eu + Ev)


=

1

2

∑
i 6=j

ui∂uj (vi∂vj − vj∂vi) + uj∂ui(vj∂vi − vi∂vj )− (m− 1) (Eu + Ev)


= −1

2

∑
i 6=j

(ui∂uj − uj∂ui)(vj∂vi − vi∂vj )− (m− 1) (Eu + Ev)

 (A.5.13)

= ∆uv −
(m− 1)

2
(Eu + Ev) . (A.5.14)

We have to evaluate also the four-vector part:

[(u ∧ ∂v)(v ∧ ∂u) + (v ∧ ∂u)(u ∧ ∂v)]4 (A.5.15)

=
1

4

∑
i,j,k,l di�erent

(ui∂vj − uj∂vi)(vk∂ul − vl∂uk)eijkl (A.5.16)

=
1

4

∑
i,j,k,l di�erent

(uivk∂ul∂vj + ujvl∂vi∂uk − ujvk∂ul∂vi − uivl∂vj∂uk)eijkl (A.5.17)

The same we obtain for

[(u ∧ v)(∂u ∧ ∂v)]4 =
1

4

∑
i,j,k,l di�erent

(uivj − ujvi)(∂vk∂ul − ∂vl∂uk)eijkl

=
1

4

∑
i,j,k,l di�erent

(uivk∂ul∂vj + ujvl∂vi∂uk − ujvk∂ul∂vi − uivl∂vj∂uk)eijkl

And also for

[ΓuΓv]4 = [(u ∧ ∂u)(v ∧ ∂v)]4

=
1

4

∑
i,j,k,l di�erent

eijkl(ui∂uj − uj∂ui)(vk∂vl − vl∂vk)

=
1

4

∑
i,j,k,l di�erent

eijkl(uivk∂uj∂vl + ujvl∂ui∂vk − uivl∂uj∂vk − ujvk∂ui∂vl)
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So that the Sum

ΓuΓv + ΓvΓu +
1

2
{(u ∧ ∂v), (v ∧ ∂u)}+ (u ∧ v)(∂u ∧ ∂v) (A.5.18)

has a vanishing four vector part:

1

2

∑
i,j,k,l di�erent

(uivk∂uj∂vl + ujvl∂ui∂vk − ujvk∂ui∂vl − uivl∂uj∂vk) (A.5.19)

+
1

2

∑
i,j,k,l di�erent

(uivk∂ul∂vj + ujvl∂vi∂uk − ujvk∂ul∂vi − uivl∂vj∂uk)eijkl (A.5.20)

= 0. (A.5.21)

The Scalar part of (A.5.18) is, according to (A.5.13) and (A.5.11):

[ΓuΓv + ΓvΓu +
1

2
{(u ∧ ∂v), (v ∧ ∂u)}+ (u ∧ v)(∂u ∧ ∂v)]0 = −3∆uv +

(m− 1)

2
(Eu + Ev)

(A.5.22)

Note that the scalar � and the four-vector part of {a, b} is the same as that of ab for all

bi-vectors. Hence we have formally

[ΓuΓv + ΓvΓu + (u ∧ ∂v)(v ∧ ∂u) + (u ∧ v)(∂u ∧ ∂v)]0 (A.5.23)

= [2{ΓuΓv}+
1

2
({(u ∧ ∂v), (v ∧ ∂u)}+ {(u ∧ v), (∂u ∧ ∂v)})]0 (A.5.24)

Since we are in the situation with operator calculus, we have to be careful with the above

equation. There is an action of ∂u (∂v) on the appearing u(v). It is left to look at the

bi-vector part and to consider the action, which we mentioned just now.

We can look at the bi-vector part as it is build up by two contributions: The FIRST contribu-

tion comes from the action of [ΓuΓv+ΓvΓu+ 1
2((u∧∂v)(v∧∂u))+(u∧v)(∂u∧∂v)]2 on a function f

and a second one by the action of all ∂u, ∂v in [ΓuΓv+ΓvΓu+ 1
2((u∧∂v)(v∧∂u))+(u∧v)(∂u∧∂v)]2

on all appearing u, v in [ΓuΓv + ΓvΓu + 1
2((u ∧ ∂v)(v ∧ ∂u)) + (u ∧ v)(∂u ∧ ∂v)]2, respectively.

Since the bi-vector part [{a ∧ b, c ∧ d}]2 vanishes for arbitrary vectors a, b, c, d, also FIRST

part of the contribution to the bi-vector part vanishes.

The bi-vector part, that doesn't vanish comes from the action of ∂u and ∂v on u and v in the

operator itself. Also the part (m − 1)(Eu + Ev) in the scalar part (A.5.13) comes from that

action. We will calculate the action this kind in a whole and write

ΓuΓv + ΓvΓu +
1

2
{(u ∧ ∂v), (v ∧ ∂u)}+

1

2
{(u ∧ v), (∂u ∧ ∂v)} = −3∆uv +A (A.5.25)

The part

A = C +D (A.5.26)
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decomposes in the action of ∂u and ∂v on u and v in {(u∧ ∂v), (v ∧ ∂u)}, which we denote by

C, and the same action in {(u ∧ v), (∂u ∧ ∂v)}, which we denote by D.

So we have to calculate:

C =
1

2
((u ∧ ∂̇v)(v̇ ∧ u) + (v ∧ ∂̇u)(u̇ ∧ v)) (A.5.27)

=
1

8
([u, ∂̇v][v̇, ∂u] + [v, ∂̇u][u̇, ∂v]) (A.5.28)

For further evaluation of this expression we have a look at

[u, ∂̇v][v̇, ∂u] = (u∂̇v − ∂̇vu)(v̇∂u − ∂uv̇) (A.5.29)

=

m∑
i,j,k,l=1

uiei∂̇vjej v̇kek∂ulel + ∂̇vieiujej∂ukekv̇lel (A.5.30)

− uiei∂̇vjej∂ukekv̇lel − ∂̇vieiujej v̇kek∂ulel (A.5.31)

=
m∑

i,j,k,l=1

−uiei∂ulel + eiujej∂ukekei (A.5.32)

− uieiej∂ukekej − eiujejei∂ulel (A.5.33)

= −mu∂u +
m∑

j,k,l=1

ejulel∂ukekej − ulelej∂ukekej − ejulelej∂ukek (A.5.34)

= −mu∂u +
m∑
j=1

eju∂uej − uej∂uej − ejuej∂u

 (A.5.35)

=: −mu∂u +
m∑
j=1

αj − βj − γj (A.5.36)

Because of complexity of the calculation, we look separated at α�, β� and γ-part. For each, we

partition the sum over j into four parts: k 6= j, j 6∈ {k, l}, k 6= j, j ∈ {k, l}, k = j, j 6∈ {k, l}
and k = j, j ∈ {k, l}

∑
αj :

k 6= j, j 6∈ {k, l} −(m− 2)
∑

k 6=l elulek∂uk
k 6= j, j ∈ {k, l} 2

∑
k 6=l ulel∂ukek = 2(u ∧ ∂u) = −2Γu

k = j, j 6∈ {k, l} −(m− 1)
∑m

k=1 ukek∂ukek

k = j = l
∑m

k=1 uk∂uk∑m
k,j,l=1 −(m−2)u∂u+2Eu+2(u∧∂u) = −(m−2)u∂u+2Eu−2Γu

∑
βj :

k 6= j, j 6∈ {k, l} (m− 2)
∑

k 6=l ukek∂ulel

k 6= j, j ∈ {k, l} 0, da ukekej∂ulelej = −ulelej∂ukekej
k = j, j 6∈ {k, l} (m− 1)

∑m
k=1 ukek∂ukek

k = j = l
∑m

k=1 uk∂uk∑m
k,j,l=1 (m− 2)u∂u
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∑
γj :

k 6= j, j 6∈ {k, l} (m− 2)
∑

k 6=l ukek∂ulel

k 6= j, j ∈ {k, l} 0, da ukekej∂ulelej = −ulelej∂ukekej
k = j, j 6∈ {k, l} (m− 1)

∑m
k=1 ukek∂ukek

k = j = l
∑m

k=1 uk∂uk∑m
k,j,l=1 (m− 2)u∂u

such that, with the use of (A.5.5) we have:

(A.5.36) = −mu∂u + 2Eu − 2Γu − (m− 2)u∂u − (m− 2)u∂u (A.5.37)

= (4m− 4)Eu + (4m− 8)Γu (A.5.38)

Consequently the part C in (A.5.26) is

C =
1

2
(m− 1)(Eu + Ev) +

1

2
(m− 2)(Γu + Γv) (A.5.39)

For the part D we have

D =
1

2
((∂̇u ∧ ∂̇v)(u̇ ∧ v̇) + (∂̇u ∧ ∂v)(u̇ ∧ v) + (∂̇v ∧ ∂u)(v̇ ∧ u)) (A.5.40)

We have listed in detail, how the calculations work. A short calculation of the the seen type

shows

1

2
(∂̇u ∧ ∂̇v)(v̇ ∧ u̇) = −

(m
2

)
(A.5.41)

1

2
(∂̇v ∧ ∂u)(v̇ ∧ u) =

1

8
[∂̇v, ∂u][v̇, u] = −1

8
[∂u, ∂̇v][v̇, u], (A.5.42)

We have already calculated [u, ∂̇v][v̇, ∂u], and in the same way we see that (note that −∂uu =

Eu − Γu, since Eu − Γu =
∑m

k=1 uk∂uk + 1
2(u ∧ ∂u) =

∑m
k=1−ukek∂ukek + 1

2

∑
j 6=i uiei∂ujej −

1
2

∑
k 6=l ∂lelukek = −

∑m
k=1 ukek∂ukek −

∑
j 6=i ∂uieiujej = −∂uu)

[∂̇v, ∂u][v̇, u] = −(∂u∂̇v − ∂̇v∂u)(v̇u− uv̇) (A.5.43)

=
m∑
j=1

−∂uejeju− ej∂uuej + ∂uejuej + ej∂ueju (A.5.44)

= m∂uu+ (m− 2)∂uu− 2Eu + 2Γu + 2(m− 2)∂uu (A.5.45)

= −m(Eu − Γu)− (m− 2)Eu − Γu − 2Eu − 2Γu − 2(m− 2)(Eu − Γu)

(A.5.46)

= −(4m− 4)Eu + (4m− 8)Γu (A.5.47)

consequently:

D = −1

2
(m− 1)(Eu + Ev) +

1

2
(m− 2)(Γu + Γv)−

(m
2

)
(A.5.48)
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Such that

A = C +D

=
1

2
(m− 1)(Eu + Ev) +

1

2
(m− 2)(Γu + Γv)−

1

2
(m− 1)(Eu + Ev)

+
1

2
(m− 2)(Γu + Γv)−

(m
2

)
= (m− 2)(Γu + Γv)−

(m
2

)
All together gives the result of Lemma A.5.1:

{Γu,Γv}+
1

2
[{(u ∧ ∂v), (v ∧ ∂u)}+ {(u ∧ v), (∂u ∧ ∂v)}] = −3∆uv + (m− 2)(Γu + Γv)−

(m
2

)
As special case we are interested in the action of the mixed Laplacian on functions f(u, v),

which are spherical monogenic in both variables u and v, i.e. f(u, v) is homogeneous of degree

(k, l) in (u, v) and ∂uf(u, v) = ∂vf(u, v) = 0. Consequently,

Γuf(u, v) = −kf(u, v), Γvf(u, v) = −lf(u, v), (A.5.49)

and

{Γu,Γv}f(u, v) = 2klf(u, v) (m− 2)(Γu + Γv)f(u, v) = −(m− 2)(k + l)f(u, v). (A.5.50)

Further, in order to determine the action of the mixed Laplacian, we have to calculate the

action of (u ∧ ∂v)(v ∧ ∂u) on f . Since f is monogenic, we have

(v ∧ ∂u)f(u, v) =
1

2
[v, ∂u]f(u, v) = −1

2
∂uvf(u, v) =< v, ∂u > f(u, v), (A.5.51)

where the last equality can be seen in the following way.

−1

2
∂uvf(u, v) = −1

2

m∑
i,j=1

∂uivjeijf(u, v) = (
1

2

m∑
i,j=1

vj∂uieji +

m∑
i=1

vi∂ui)f(u, v)

=
1

2
v∂uf(u, v)+ < v, ∂u > f(u, v) =< v, ∂u > f(u, v).

The action of (u ∧ ∂v)(v ∧ ∂u) separates as usual into

(u ∧ ∂v)(v ∧ ∂u)f(u, v) = (u ∧ ∂̇v)(v̇ ∧ ∂u)f(u, v) + (u ∧ ∂̇v)(v ∧ ∂u)ḟ(u, v) (A.5.52)

= (u ∧ ∂̇v)(v̇ ∧ ∂u)f(u, v)+ < u, ∂̇v >< v, ∂u > ḟ(u, v) (A.5.53)
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further,

(u ∧ ∂̇v)(v̇ ∧ ∂u)f(u, v) = −1

4
[u, ∂̇v]∂uv̇f(u, v) = −1

4
(u∂̇v − ∂̇vu)∂uv̇f(u, v) (A.5.54)

= −1

4
(u∂̇v∂uv̇ − ∂̇vu∂uv̇)f(u, v) (A.5.55)

= −1

4
(
m∑
j=1

uej∂uej − eju∂uej)f(u, v) (A.5.56)

= −1

4
((m− 2)u∂u + (m− 2)u∂u − 2Eu − 2(u ∧ ∂u))f(u, v) (A.5.57)

=
1

2
(Eu − Γu)f(u, v), (A.5.58)

since f(u, v) is monogenic.

We noted already, that −∂uu = Eu − Γu, further we have for f(u, v):

Γuf(u, v) = −(u ∧ ∂u)f(u, v) =
1

2
∂uu,

hence:

1

2
(Eu − Γu)f(u, v) = −1

2
(∂uu)f(u, v) = −Γuf(u, v), (A.5.59)

Consequently:

Euf(u, v) = −Γf(u, v) (A.5.60)

Together this gives

(u ∧ ∂v)(v ∧ ∂u)f(u, v) =
1

2
(Eu − Γu)f(u, v)+ < u, ∂̇v >< v, ∂u > ḟ(u, v) (A.5.61)

= Eu+ < u, ∂̇v >< v, ∂u > ḟ(u, v). (A.5.62)

The result for (v∧∂u)(u∧∂v) is obtained by replacing u by v and vis versa in the above lines.

A short calculation shows, that < u, ∂̇v >< v, ∂u > ḟ(u, v) =< v, ∂̇u >< u, ∂v > ḟ(u, v), so

that

1

2
{u ∧ ∂v, v ∧ ∂u}f(u, v) (A.5.63)

=
1

2
(Eu + Ev)f(u, v) +

1

2
(< u, ∂̇v >< v, ∂u > ḟ(u, v)+ < v, ∂̇u >< u, ∂v > ḟ(u, v))

(A.5.64)

=
1

2
(Eu + Ev)f(u, v)+ < u, ∂̇v >< v, ∂u > ḟ(u, v) (A.5.65)

=
1

2
(Eu + Ev)f(u, v) + kaartf(u, v). (A.5.66)
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Finally we have to calculate 1
2{u ∧ v, ∂u ∧ ∂v}f(u, v).

1

2
{u ∧ v, ∂u ∧ ∂v}f(u, v) =

1

2
{u ∧ v, ∂̇u ∧ ∂̇v}ḟ(u, v) +Df(u, v)

= ([(u ∧ v)(∂u ∧ ∂v)]0 + [(u ∧ v)(∂u ∧ ∂v)]4 + [(u ∧ v)(∂u ∧ ∂v)]2
− [(u ∧ v)(∂u ∧ ∂v)]2 +D)f(u, v)

= (u ∧ v)(∂u ∧ ∂v)f(u, v)− [(u ∧ v)(∂u ∧ ∂v)]2f(u, v) +Df(u, v)

= Df(u, v)− [(u ∧ v)(∂u ∧ ∂v)]2f(u, v).

So we calculate the two-vector part

[u ∧ v, ∂u ∧ ∂v]2ḟ(u, v) =

∑
i 6=j

uivjeij
∑
k 6=l

∂uk∂vlekl


2

ḟ(u, v)

=

 ∑
i=k;j 6=l

ui∂uivjej∂vlel −
∑

i=l;j 6=k
uivjej∂ukek∂vi

−
∑

j=k;i 6=l
uieivj∂uj∂vlel +

∑
j=l;i 6=k

uieivj∂ukek∂vj

 ḟ(u, v)

= (Eu(v ∧ ∂v)− 〈u, ∂̇v〉(v ∧ ∂u)− 〈v, ∂̇u〉(u ∧ ∂v) + (u ∧ ∂u)Ev)ḟ(u, v)

= (EuΓv − 〈u, ∂̇v〉〈v, ∂u〉 − 〈v, ∂̇u〉〈u ∧ ∂v〉+ ΓuEv)ḟ(u, v)

= −EuΓvf(u, v)− ΓuEvf(u, v)− 2kaartf(u, v)

Eventually we have:

({Γu,Γv}+
1

2
[{(u ∧ ∂v), (v ∧ ∂u)}+ {(u ∧ v), (∂u ∧ ∂v)}])f(u, v)

=

(
{Γu,Γv}+

1

2
(Eu + Ev)f(u, v) + kaart+D + 2kaart+ (EuΓv + EvΓu)

)
f(u, v)

= (2kl +
1

2
(k + l)− 1

2
(m− 1)(Eu + Ev) +

1

2
(m− 2)(Γu + Γv)−

(m
2

)
− 2kl + 3kaart)f(u, v)

= (3 kaart− (m− 2)(k + l)−
(m

2

)
)f(u, v).

From Lemma A.5.1 we know, that this is equal to

= −3∆u,v + (m− 2)(Γu + Γv)−
(m

2

)
f(u, v)

= (−3∆u,v − (m− 2)(k + l)−
(m

2

)
)f(u, v),

such that

∆uvf(u, v) = − < v, ∂̇u >< u, ∂v > ḟ(u, v).
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List of symbols

Rn n-dimensional, real Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Sn n-dimensional sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

SO(1, n) Lorentz group of n+ 1-dimensional Minkowski space . . . . . . . . . . . . . . . . . . . . 9

SO(n) n-dimensional rotation group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

G Compact (except in Section 3.4) Lie group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

H Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

dπ Dimension of the representation π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

GL(H) Group of invertible endomorphisms of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Hπα ,Hα Representation Hilbert space of the representation πα . . . . . . . . . . . . . . . . . . 15

GL(n) Group of invertible n× n matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

πij Matrix coe�cient of the representation π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

L2(G) L2-space over the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Lg left-regular representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Rg right-regular representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

χπ Character of the representation π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

π(H) Span of matrix coe�cients of the representation π in H . . . . . . . . . . . . . . . . .17

πxH Left-invariant subspace of π(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

πHx Right-invariant subspace of π(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Ĝ Set of equivalence classes of irreducible representations . . . . . . . . . . . . . . . . . 19

trace Trace of a matrix or an operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

π(G) Translation invariant subspace of L2(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

δij Kronecker symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

f ∗ h Convolution product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

f̂(π) Fourier coe�cient of f with respect to π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
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