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Preface 

The present PhD dissertation “Rainfall-Runoff Modeling in Arid Areas, Jordan” has been 

submitted as a part of the requirement for the Ph.D. degree at the Technical University of 

Freiberg (TUBAF). The PhD supervisor was Professor Dr. Broder Merkel. The research was 

partially funded by Sächsisches Landesstipendium, DAAD, and BAFöG-Amt. The thesis is 

organized as a synopsis and an appendix, of which the synopsis contains an introduction, the 

objectives, review of existing work, and a short outline of three manuscripts in international 

journals with peer review in place. The study has taken place at the Department of Geology 

from October 2007 to March 2011. An external research stay of two months was spent at the 

Environment Centre, The Lancaster University/ England, with Professor Keith Beven. Three 

field campaigns were essential for developing cooperation with local partner universities: 

University of Jordan, and Al-Albyat University, gathering data of geo-referenced objects as 

well as from the Jordanian water authorities, and installing a stand alone weather station. 

 

Freiberg, March 2011, 

 

MSc. Eng. Eyad Hamad Abushandi 
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Abstract 

The Wadi Dhuliel catchment/ North east Jordan, as any other arid area has distinctive 

hydrological features with limited water resources. The hydrological regime is characterized 

by high variability of temporal and spatial rainfall distributions, flash floods, absence of base 

flow, and high rates of evapotranspiration. The aim of this Ph.D. thesis was to apply lumped 

and distributed models to simulate stream flow in the Wadi Dhuliel arid catchment. Intensive 

research was done to estimate the spatial and temporal rainfall distributions using remote 

sensing. Because most rainfall-runoff models were undertaken for other climatic zones, an 

attempt was made to study limitations and challenges and improve rainfall-runoff modeling in 

arid areas in general and for the Wadi Dhuliel in particular.  

The thesis is divided into three hierarchically ordered research topics. In the first part and 

research paper, the metric conceptual IHACRES model was applied to daily and storm events 

time scales, including data from 19 runoff events during the period 1986-1992. The 

IHACRES model was extended for snowfall in order to cope with such extreme events. The 

performance of the IHACRES model on daily data was rather poor while the performance on 

the storm events scale shows a good agreement between observed and simulated streamflow. 

The modeled outputs were expected to be sensitive when the observed flood was relatively 

small. The optimum parameter values were influenced by the length of a time series used for 

calibration and event specific changes. 

In the second research paper, the Global Satellite Mapping of Precipitation (GSMaP_MVK+) 

dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment for 

the period from January 2003 to March 2008. Due to the scarcity of the ground rain gauge 

network, the detailed structure of the rainfall distribution was inadequate, so an independent 

from interpolation techniques was used. Three meteorological stations and six rain gauges 

were used to adjust and compare with GSMaP_MVK+ estimates. Comparisons between 

GSMaP_MVK+ measurements and ground rain gauge records show distinct regions of 
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correlation, as well as areas where GSMaP_MVK+ systematically over- and underestimated 

ground rain gauge records. A multiple linear regression (MLR) model was used to derive the 

relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative 

humidity, and wind speed. The MLR equations were defined for the three meteorological 

stations. The ‘best’ fit of the MLR model for each station was chosen and used to interpolate a 

multiscale temporal and spatial distribution. Results show that the rainfall distribution over 

the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates 

from the monthly MLR model were more reliable than estimates obtained using daily data. 

The adjusted GSMaP_MVK+ dataset performed well in capturing the spatial patterns of the 

rainfall at monthly and annual time scales, while daily estimation showed some weakness for 

light and moderate storms. 

In the third research paper, the HEC-HMS and IHACRES rainfall runoff models were applied 

to simulate a single streamflow event in the Wadi Dhuliel catchment that occurred in 30-

31.01.2008. Both models are considered suitable for arid conditions. The HEC-HMS model 

application was done in conjunction with the HEC-GeoHMS extension in ArcView 3.3. 

Streamflow estimation was performed on hourly data. The aim of this study was to develop a 

new framework of rainfall-runoff model applications in arid catchment by integrating a re-

adjusted satellite derived rainfall dataset (GSMaP_MVK+) to determine the location of the 

rainfall storm. Each model has its own input data sets. HEC-HMS input data include soil type, 

land use/land cover map, and slope map. IHACRES input data sets include hourly rainfall and 

temperature. The model was calibrated and validated using observed stream flow data 

collected from Al-Za’atari discharge station. IHACRES shows some weaknesses, while the 

flow comparison between the calibrated streamflow results agrees well with the observed 

streamflow data of the HEC-HMS model. The Nash-Sutcliffe efficiency (Ef) for both models 

was 0.51, and 0.88 respectively. The application of HEC-HMS model in this study is 

considered to be satisfactory. 
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Kurzfassung (German) 

Das Untersuchungsgebiet Wadi Dhuliel im Nordosten Jordaniens hat wie alle anderen ariden 

Gebiete besondere hydrologische Eigenschaften mit begrenzten Wasserressourcen. Das 

hydrologische System ist durch hohe Variabilität der zeitlichen und räumlichen Verteilungen 

von Niederschlag, Durchfluss, des Fehlens einer Basisabflusskomponente und hohe 

Verdunstung charakterisiert. Das Hauptziel dieser Doktorarbeit ist Anwendung verschiedener 

Niederschlags-Abflussmodells (Lumped und distributed ) um das Abflussverhalten im 

Einzugsgebiet des Wadu Dhuliel zu simulieren. Diese Modelle sind wichtig, um räumliche 

Zusammenhänge und Rückkopplungsmechanismen verschiedener hydrologischer Variablen 

in ariden Gebieten zu verstehen und die tatsächliche Wasserbilanz zu beschreiben. Dies 

erlaubt einen realistischen Überblick über alle Aspekte der Nachhaltigkeit. Die Dissertation 

ist in eine Synopse und einen Anhang eingeteilt. Die Synopse enthält eine Einleitung, die 

Ziele, die Literaturrecherche und einen kurzen Überblick über drei Publikationen. Die Anlage 

umfasst drei Publikationen, welche die eigentliche wissenschaftliche Arbeit dieser 

Dissertation bilden. Das Untersuchungsgebiet (Wadi Dhuliel) ist vor allem Ackerland; es 

befindet sich im Nordosten Jordaniens mit einer Fläche von 1985 km2. Die Wahl Gebietes 

wurde auf der Grundlage der Kombinationen von ökologischen und anthropogenen Faktoren 

getroffen, die Einfluss auf die hydrologische Bilanz in diesem Gebiet Jordaniens haben. 

Darüber hinaus ist das Untersuchungsgebiet Teil des Badia Forschungs- und 

Entwicklungsvorhabens. 

In der ersten Forschungsarbeit wurde das konzeptionelle Niederschlag-Abfluss-Modell 

IHACRES auf tägliche Zeitskalen und Starkregenereignisse unter Einbeziehung von Daten 

von 19 (Oberflächen)Abflussereignissen (Zeitraum 1986-1992) angewendet. Die 

ursprüngliche Struktur des Modells IHACRES verwendet einen exponentiell abklingenden 

Bodenfeuchte-Index, Infiltrationsrate und Evapotranspiration, um den Niederschlag in 

effektiven Niederschlag umzuwandeln. Eingabeparameter in IHACRES sind a) Niederschlag, 
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b) Temperatur (optional) und c) Abflussmessungen ( zur Kalibrierung des Modells). Die 

zeitliche Auflösung erfolgt stündlich, täglich und monatlich ohne Lücken. Das IHACRES-

Modell wurde für Schneefall erweitert, um solche Extremereignisse mit einzubeziehen. 

Während das Ergebnis des IHACRES-Modells auf der Basis täglicher Werte mangelhaft ist, 

zeigte die Modellierung für Starkniederschlagsereignisse eine gute Übereinstimmung 

zwischen gemessenen und simulierten Durchflusswerten. Das Modell reagiert sehr sensitiv 

für kleine Abflussereignisse. Die optimalen Parameterwerte wurden durch die Länge der 

Kalibrierungszeiträume und ereignisspezifische Änderungen beeinflusst. 

In der zweiten Forschungsarbeit wurde der Datensatz der globalen Satellitenkartierung 

von Niederschlägen (GSMaP_MVK+) verwendet, um die Niederschlagsraten des 

Einzugsgebietes Wadi Dhuliel für den Zeitraum von Januar 2003 bis März 2008 zu bewerten. 

Aufgrund der geringen Zahl von  an Niederschlagssammlern konnten die detaillierte Struktur 

der Niederschlagsverbreitung nicht angemessen bestimmt werden; deshalb wurde eine 

unabhängige Interpolationstechnik verwendet. Drei meteorologische Stationen und sechs 

Regensammler wurden benutzt, um Schätzungen des GSMaP_MVK+ Datensatzes zu 

optimieren. Ein Vergleich von GSMaP_MVK+ Messungen und Bodenniederschlags-

messungen zeigt bestimmte Gebiete, die miteinander korrelieren, sowie Gebiete, in denen die 

GSMaP_MVK+ Daten systematisch die Bodenniederschlagsmessungen über- und 

unterschätzen. Ein multiples lineares Regressionsmodell (MLR) wurde angewendet, um die 

Beziehungen zwischen Niederschlag und dem GSMaP_MVK+ Datensatz, in Verbindung mit 

Temperatur, relativer Luftfeuchtigkeit und Windgeschwindigkeit abzuleiten. Die MLR-

Gleichungen wurden für die drei meteorologischen Stationen definiert. Die beste Anpassung 

des MLR-Modells für jede Station wurde ausgewählt und dazu verwendet, eine zeitliche und 

räumliche Verteilung zu interpolieren. Die Ergebnisse zeigen, dass die Verteilung der 

Niederschläge über dem Wadi Dhuliel durch ein deutliches West-Ost- und Nord-Süd-Gefälle 

geprägt ist. Schätzungen aus dem monatlichen MLR-Modell erbrachten bessere Korrelationen 

als Schätzungen, die sich aus der Verwendung von Tageswerten ergaben. Die angepassten 
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GSMaP_MVK+ Daten eignen sich gut für die Erfassung der räumlichen Muster von 

Niederschlägen in monatlichen und jährlichen Zeitskalen, wohingegen tägliche Schätzungen 

Schwächen bei leichten und moderaten Starkregenereignissen zeigten. 

In der dritten Forschungsarbeit wurden die hydrologischen Modelle HEC-HMS und 

IHACRES angewendet, um ein einzelnes Abflussereignis zu simulieren, das vom 30.-

31.01.2008 im ariden Wadi Dhuliel-Einzugsgebiet auftrat. Beide Modelle werden als geeignet 

für aride Bedingungen eingeschätzt. Die Anwendung des Modells HEC-HMS erfolgte in 

Zusammenarbeit mit der HEC-GeoHMS-Erweiterung in ArcView 3.3. 

Oberflächenabflussschätzungen wurden auf der Grundlage von stündlichen Daten 

durchgeführt. Das Ziel dieser Studie war es, durch die Integration von modifizierten, 

satellitengestützten Daten der Niederschlagsmengen (GSMaP_MVK +) einen neuen Rahmen 

der Niederschlags-Abfluss-Modellanwendungen in ariden Einzugsgebiet zu schaffen, . Jedes 

Modell hat seinen eigenen Datensatz. Die HEC-HMS-Datensätze umfassen Bodenart, 

Bodennutzung/Bodenbedeckungkarte und eine Neigungskarte, die unter Verwendung von 

GIS enstanden. Die IHACRES-Eingangdatensätze umfassen stündliche Werte des 

Niederschlages und der Temperatur. Das Modell wurde kalibriert und validiert mit Hilfe 

beobachteter Durchflussdaten, die von der Messstation Al-Za'atari stammen. Das IHACRES-

Modell zeigt einige Schwächen, wobei der Vergleich zwischen den kalibrierten 

Starkregendurchflüssen und den beobachteten Durchflussdaten im HEC-HMS Modell eine 

gute Übereinstimmung zeigt. Die Nash-Sutcliffe-Effizienz (Ef) für beide Modelle beträgt 

jeweils 0,51 und 0,88. Die im Rahmen dieser Studie realisierte Anwendung des HEC-HMS-

Modells wird als zufriedenstellend angesehen. 
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Introduction 

1 Background and significance 

The scarcity of water and threats of flash floods in Jordan require further 

understanding the natural processes of water resources in order to manage and sustain 

current and future water resources. If current population and water consumption 

trends continue, by the year 2025, water supply per capita will fall from current 

145m3/yr to 91m3/yr (Hadadin et al 2010). To make matters worse, rainfall 

fluctuation and climate change are expected to increase water scarcity in Jordan 

(Freiwan and Kadioglu 2008a). These combined factors will drive Jordan to severe 

water stress. Around 91% of Jordan lies in arid and semi-arid regions, which receive 

less than 200 mm of annual rainfall. The rainfall distribution displays a sharp west-

east gradient, from relatively wet west regions with about 600mm per annum to dry 

east regions (the Jordanian desert) with rainfall less than 100mm per annum (Figure 

1). 

Both the arid climate and topographic variations contribute to the variation in 

rainfall. However, only small fraction of the rainfall (8.5%) can be captured, while the 

rest is lost due to evapotranspiration (87.9%) and floods (3.7%) (JMWI). With rapid 

depletion of ground water resources, flood management could provide a potential 

means for futher optimize water resources. Since agriculture comprises much of the 

Jordanian economy, water availability is the vital factor controlling the economic 

growth in Jordan. Moreover, the management of infrequent flash floods requires 

detailed hydrological information about catchment. 
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Figure 1. Average distribution of long-term (1938–2005) rainfall in Jordan 

(Hadadin et al 2010), modified. The red square outlines the area 

studied within this thesis. 

Despite the importance of water resource management in Jordan, a substantial 

number of short-term flood flow studies have not yet been conducted for several 

reasons. (i) lack of awareness of the importance in monitoring floods (ii) cost of flood 

monitoring devices and (iii) difficulty of securely installing measurement devices 

within the study area. Even in the rare cases where gauging stations exist, 

measurement problems may occur during intense flood events, reducing the quality 

and completeness of the data (Lange et al 2000). 

The term aridity describes a dry hot climate, with a precipitation threshold less 

than 250 mm per year. Arid zones can be classified according to the degree of aridity. 

Study area 
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de Martonne suggested the following expression for use as an aridity index (Lin 

1999): 

 
)10/( TPX +=  

where X is the aridity index, P is the annual precipitation in mm, and T is the mean 

annual air temperature in oC. 

Another aridity metric, the UNEP Aridity Index (Al) takes the ratio of average 

annual precipitation (P) to potential evapotranspiration (PET)  (Safriel 2006) to 

determine the degree of aridity. Based on the UNEP classification, the study area in 

this research is classified as an arid region. 

2 Research objectives 

The general objectives of this research are to: 

1. collect high quality rainfall and runoff data for hydrological 

modeling, 

2. assess the feasibility of lumped and distributed rainfall-runoff models 

in arid region, where monitored data are rare. 

3. critically analyze the selected models’ performance in the study area, 

4. develop a comprehensive analysis of spatial rainfall in the Wadi 

Dhuliel arid catchment using remote sensing data,  

5. provide a platform on which future research can be developed using 

the available hydrological data.  

The following specific objectives are addressed in different appendices:  

1. evaluate all available rainfall-runoff models in order to find two 

which perform adequately for the boundary conditions of a Jordanian 

arid catchment. 
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2. analyze the accuracy of the calibration method in that region. 

3. investigate rainfall characteristics of the Wadi Dhuliel catchment in 

north-eastern Jordan by comparing remote sense data with ground-

based rain gauge data 

4. develop a technique to enhance remote sense data of rainfall 

variability in arid regions using  rain gauge data and standard 

interpolation techniques 

5. reduce the potential errors of rain gauge estimates and produce 

improved catchment scale rainfall distribution maps 

6. examine the performance of different models during a single heavy 

rainstorm event that caused streamflow in the Wadi Dhuliel sub-

basin  

7. parameterize the Wadi Dhuleil terrain using a high resolution digital 

terrain model (ASTER) 

3 Study area description 

Wadi Dhuliel, located in northeast Jordan, fulfils two important water 

management-related functions: the discharge of the Al-Zarqa River and natural 

groundwater recharge. Most of the catchment area belongs to the Al-Zarqa Basin. In 

Arabic, the term Wadi is defined as a channel of water that is dry except during heavy 

rain events. Around 10% of the upper part of Wadi Dhuliel catchment is situated on 

Syrian territory (Figures 1 and 2). The region has an arid climate with cold, rainy 

winters and a hot, dry summer. 
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Figure 2. Map of Al-Zarqa basin, including Seil Al-Zarqa subbasin and Wadi 

Dhuliel sub-basin (map datum: WGS 84) 

 

The Wadi Dhuliel catchment, a typical example of an arid catchment, passes 

floodwater from northern Jordan into the Al-Zarqa River. The area is characterized by 

a very gently undulating topography with elevation varying from 512 m in the south-

west to 1400 m in the north. The area of interest is approximately 1985 km2 (Figure 

3). 



 

 19

 

Figure 3. Al-Zarqa basin including the study area (Wadi Dhuliel) and the Seil 

Al-Zarqa sub-basin 

Besides Wadi Dhuliel, there are a number of side-wadis in the catchment area 

such as Wadi Al-Za’atari, Wadi Al-Ajeb and Wadi Alghar. The flow direction is from 

the north towards the Seil Al-Zarqa subbasin in the southwest. Irrigation for 

agriculture in the Wadi Dhuliel taxes existing groundwater resources and strongly 

distorts hydrological features of this arid catchment. 

The following general arid region characteristics describe the Wadi Dhuliel 

arid catchment: 

(i) Stream flow characterized by absence of base flow and flash-floods during 

infrequent high-intensity rain events. 

(ii) High evaporation rates. 

(iii) Highly-localized spatial rainfall distribution (Wheater et al 1991)--the 

storm rainfall correlation coefficient decreases rapidly with distance 

(Osborn et al 1979). 
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(iv) Sparse plant cover and organic matter (McIntyre and Al-Qurashi 2009; 

Pilgrim et al 1988). 

3.1 Rainfall 

Short, high-intensity rain storms account for the dominant contribution to the 

low annual total rainfall in arid regions. Rainfall in the Wadi Dhuliel tends to vary 

markedly from year to year with an irregular distribution in time and space. As an 

illustrative example of the extreme yearly variability in Wadi Dhuliel, one rain gauge 

measured the annual rainfall to be 275.7, 93.1, 111.1, 230.4, 194.8, 63.1, and 209.5 

mm over seven years. On one single day, 62 mm of rainfall occurred, even though the 

total annual rainfall in the same year was 100 mm (Sukhnah rain gauge). These kinds 

of rainfall events can generate significant surface runoff, resulting in severe soil 

erosion. Weather behavior and topographical characteristics play important roles in 

this variation. Around 73% of the total annual rainfall (mean 123 mm) occurs during 

November, December, January, and February.  

3.2 Temperature 

The area of interest is characterized by warm and dry summers (May to 

September) and moderate cold and wet winters (October to April) (Table 1). The 

average annual temperature is 16.8 C (1976–2005). 
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Table 1. Temperature description for the period of 1976–2005 (Um-Aljimal 

Meteorological Station) 

 Jan. Feb. Mar. Apr. May Jun. 

Average (°C) 7.4 8.6 11.5 16.2 20.4 22.9 

Average maximum (°C) 12.7 14.2 18 24 28.7 31.6 

Average minimum (°C) 2.1 2.9 5.1 8.5 12.0 14.1 

 Jul. Aug. Sep. Oct. Nov. Dec. 

Average (°C) 24.7 24.6 23.1 19.5 13.6 9.0 

Average maximum (°C) 33.1 33 31.3 27.2 20.2 14.5 

Average minimum (°C) 16.32 16.31 14.9 11.73 6.92 3.51 

 

3.3 Surface runoff 

The Wadi Dhuliel catchment is exemplified by ephemeral wadis, where a 

stream runs fully for a short period of time, usually during and after heavy rain events 

(Figures 4 and 5), and is dry most of the year. Flash floods events fill desert dams and 

may recharge groundwater resources. The complex relationship between rainfall and 

streamflow is influenced by many factors, such as catchment slope, land cover type 

and density, soil type and infiltration rate, and evapotranspiration. Moreover, the 

quality and quantity of streamflow are strongly affected by urbanization and 

agricultural activity. 
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Figure 4. Dry condition in the Wadi Dhuliel/ Northern Jordan (13.04.2008) 

 

Figure 5. Wadi Dhuliel, northern Jordan after a storm event (14.11.2008) 

 

Flash flood hydrographs are generally sharp with durations between three 

hours and three days following the rain storm. In general, the runoff coefficient in the 

study area was 2.3% on average. Some flood flow events show more than one peak 

during a single rainstorm (Figure 6). 
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Figure 6. Typical Stream flow event in the Wadi Dhuliel (January 

30-31, 2008) 

The only flood records available from the study area are provided from the Al-

Za’atari gauging station, which is located on the lower part of the catchment area 

(Figure 7). 

 

Figure 7. Al-Za’atari gauging station including chart recorder  

(Stevens Type A) 
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3.4 Land use and soil types 

The regional ecology, typified by vegetation cover, soil characteristics, plant 

and anthropogenic densities, affects the infiltration characteristics and influences the 

storage coefficient and runoff behaviour. Images from the Landsat Thematic Mapper 

(TM) allow categorization of land use in the Wadi Dhuliel into six classes (Figure 8 

and Table 2). Much of the upstream land in the Wadi Dhuliel (36.3% of the total) of is 

largely cultivated while bare soil and settlements typify downstream surface cover. 

 

Figure 8. Land use map of Wadi Dhuliel sub-basin, Landsat Thematic Mapper 

(TM) of the year 1987, 30 m resolution. 

Table 2 Land use features for the Wadi Dhuliel area derived from TM (1987) 

Land use type 

(%) 

 

Settlement  Arable 

land 

Bare 

soil 

Basalt 

cover 

Seasonal 

cultivation  

Water 

body 

Contribution (%) 34.2 13.17 19.7 9.6 23.11 0.23 
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The physical properties of the catchment soil govern water flow potential.  The 

soil within the study area is primarily classified as Aridisols and belong to loam or 

silty loam.  Aridisols contain high concentrations of lime (Al-Qudah 2001) withlow 

gypsum and basalt content in the subsoil and parent materials.  Soil crusting most 

often occurs due to the high silt content in this type of soils. 

4 Literature review 

4.1 Hydrological modeling in arid region 

Hydrological models provide a simplified mathematical representation of the 

hydrological system and are designed to model surface flow and/or groundwater 

processes and comprise essential tools for controlling and managing water resources. 

Additionally, hydrological models may increase our understanding of streamflow 

frequency (Reed et al 2007). Hydrological models are often employed due to the 

limitations of hydrological measurement techniques (Beven 2001b).  

Hydrological studies are often aimed at establishing rainfall-runoff 

relationships (Shah et al 1996). Rainfall-runoff models cover a wide range objectives 

and applications. Due to harsh climatic conditions and the lack of high quality 

observations, flood simulation in arid environment, especially flash flooding 

scenarios, is one of the greatest challenges facing hydrological modelers today. 

Different types of hydrological models exist to represent hydrological processes at a 

wide range of climatic and time scales. 

Rainfall-runoff models can be categorized according to the model type. The 

most common models are data-driven.  Within this category, the rainfall-runoff 

models falls into three sub-categories: (i) metric, (ii) conceptual, and (iii) physical-

based models (Wheater et al 1993). The models vary in complexity, amount of 
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observational data required as input parameters, and performance for different 

catchment types. 

Knowledge-driven systems comprise the second category. These rainfall-

runoff models fall into two sub-types: lumped and distributed models. Lumped 

models treat the catchment as single homogenous unit.  Previous published lumped 

models include the IHACRES model (Jakeman and Hornberger 1993), AWBM 

(Boughton and Chiew 2007), GR4J (Perrin et al 2003), and NAM (DHI 1993). 

Lumped models require limited amounts of input data at the expense of model 

resolution; detailed spatial fluctuations can not be resolved by these models. 

At the opposite end of the spectrum, distributed models make predictions by 

discretizing the catchment into a large number of grid squares (Beven 2001b). 

Available grid models include USDA SWAT (Arnold et al 1998b), TOPMODEL 

(Beven et al 1995), and HEC-HMS (Scharffenberg and Fleming 2010). Lumped 

models can be applied into catchments of limited data. Distributed models allow 

detailed description of hydrological processes which may fluctuate in space and time. 

Additionally, distributed models have the opportunity for parameterization with 

respect to geo-referenced objects within the catchment. Therefore, a great amount of 

spatially-related hydrological and physical data sets need to be prepared in order to 

run the model. Figure 8 shows the general classification of hydrological models. 
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Figure 9. General classification of hydrological models (Chow et al 2005) 

modified 

The choice of the model depends on the study objectives; several 

considerations when must be taken into account when selecting a rainfall-runoff 

model: 

1 Availability and the quality of hydrological data, especially rainfall and runoff 

data, 

2 Model structure and model ability of regionalization, 

3 Catchment characteristics and flow homogeneity. 

Many researchers recognize that rainfall-runoff models cannot give a full 

picture of reality (Al-Qurashi et al 2008; Beven 1984; Bronstert 2004; McIntyre and 

Al-Qurashi 2009; Pilgrim et al 1988); the spatial and temporal fluctuations in arid 

regions only intensify this dilemma for hydrologists working in these regions. 

Flash floods in arid regions result from extreme,irregular rainfall events. These 

events occur when conditions, such as soil moisture , infiltration conditions, steep 

slope (Rodier and Roche 1978), and high rainfall intensity (Gheith and Sultan 2002), 
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are fulfilled. The extreme irregularity of yearly flood events reduces the effectiveness 

of flood prediction methods. Flow measurement is particularly difficult in arid zones 

for several reasons:  

(i) low population density (Pilgrim et al 1988; Rodier and Roche 

1978) 

(ii) few driveable roads, especially during in rainy (Pilgrim et al 1988) 

and flooding seasons 

(iii) lack of suitable natural control sections in streams with movable 

beds, and high cost of artificial control (Pilgrim et al 1988) 

(iv) harsh climatological and physical conditions (Pilgrim et al 1988) 

(v) moving rocks and debris may damage instruments placed in the 

Wadi (Kilpatrick and Cobb 1985) 

The quick rise and fall of the water level during flash floods makes flow 

measurements difficult (Lin 1999). Measuring flash floods in such areas are generally 

conducted via the velocity-area method (Rodier and Roche 1978) (e.g. Tunisia and 

China, Lin 1999). This method depends on measuring the average velocity of flow 

and calculating the cross sectional area of the Wadi. However, under unstable Wadi 

beds, this traditional flow measurement technique is problematic. Furthermore, 

turbulence and moving rocks pose could damage instruments for tracers and/or 

current-meter techniques. Therefore, new techniques of stream flow for arid 

environments should be developed to meet the project budget and overcome these 

challenges. Although a new diver from the Schlumberger Water Services Company 

was installed in the Wadi Dhuliel to measure water level during streamflow events 

(Figure 10), the resulting data set is rather short. 
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Figure 10. Diver installation in the study area to measure streamflow 

magnitudes 

 

Only a limited number of rainfall-runoff models have been developed and 

modified for arid environments. Osborn and Hickok published the first scientific 

research on characterization of rainfall-runoff relationships in 1968. They analyzed 

the effect of rainfall variability in producing runoff for the Alamogordo Creek 

watershed in New Mexico. For areas the size of the Wadi Dhuliel catchment, a few 

potential available rainfall-runoff models demonstrated acceptable performance in 

arid regions: the IHACRES model in Australia and South Africa and Oman (Croke et 

al 2006; Dye and Croke 2003; McIntyre and Al-Qurashi 2009), The KINEROS2 

model in Oman and India (Al-Qurashi et al 2008; Sharma and Murthy 1996), the 

RORB3 model in Australia (Kotwicki 1987),  the Pitman model in South Africa 

(Hughes et al 1997), the AHYMO model in the New Mexico (Schoener 2010), the 

HEC-HMS model in the UAE, West Bank-Palestine (Al-Rawas and Valeo 2008; 

Schoener 2010; Shadeed and Almasri 2010; Sherif et al 2011), , and the SWAT model 

in the UAE (Al Mulla 2005). 
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Abdulla et al. (2002) developed and applied a simple single event watershed 

model to simulate and predict the surface runoff hydrograph in the western part of 

Iraq. Their model was based on the water balance equation and their results showed 

good agreement between simulated runoff hydrograph and observed data. In Saudi 

Arabia, Al-Turbak (1996) applied a geomorphoclimatic model, where rainfall 

intensity and duration are calculated from physically-based infiltration components, in 

three arid catchments. Their results showed that this model could successfully 

reproduce surface runoff hydrographs, at least for events in which detailed and 

accurate data were available. In Israel, Lange et al., (2000) studied the importance of 

single events in arid zone rainfall-runoff modeling. The study concluded that separate 

analysis of single events is crucial for the understanding of high magnitudes floods in 

arid regions.Finally, the Spatial Water Budget Model (SWBM) and HEC-HMS / 

HEC-GeoHMS extension model were applied for managing water resources in the 

Zarqa River basin. The study of Al-Abed and Abu Khyara (2005) showed satisfactory 

results from both models. 

In this Ph.D. research study, the IHACRES and HEC-HMS rainfall runoff 

models were selected for several reasons: (i) model availability and structure, (ii) data 

availability, and (iii) model applicability in arid catchments. The model IHACRES 

(Identification of unit Hydrograph And Component flows from Rainfall, Evaporation 

and Stream flow data) is a simple model, parametrically efficient, and statistically 

rigorous (Dye and Croke, 2003). The IHACRES input requirements are only 

precipitation and temperature, and streamflow for calibration purpose. The other 

model, HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System), 

requires inputs for the basin model, meteorologic model, and control specifications 
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but then allows several different techniques to be used to model the rainfall-runoff 

process. 

4.2 Rainfall derived from remote sensing data 

Hydrologists are extending their models to incorporate new data from remote, 

satellite-based rainfall (Geographic Information System or GIS) estimates for arid 

regions. GIS-compliance has already been implemented in many physical models, 

such as SWAT, HEC-HMS, and WEPP, not as data preparation tools but as a 

procedural step (Figure 11). 

 

Figure 11. Integrating GIS with hydrological modeling (Matson et al 1995) 
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Satellite-based rainfall estimates could compensate for the lack of high quality 

observational rainfall data as an input for rainfall runoff models in arid regions. 

Recently, a number of global precipitation determination systems have been 

developed to meet scientific demand, such as PERSIANN (Sorooshian et al 2000), 

Global Precipitation Climatology Project (GPCP) (Adler et al 2000; Huffman et al 

2001; Xie et al 2003), and Multi-satellite Precipitation Analysis (TMPA) (Huffman et 

al 2007). Global or near-global satellite datasets are important to identify temporal 

and spatial rainfall changes in arid regions. Global Satellite Mapping of Precipitation 

(GSMaP) technique employs passive microwave radiometer data to estimate rainfall 

rates with mm/h precision (Ushio et al 2009). GSMaP combines precipitation 

retrievals from polar-orbiting satellites and cloud motion vectors derived from 

infrared images. 

5 Deliverables 

• generate a weather parameters data set (rainfall, temperature , relative 

humidity, barometric pressure, and soil moisture) with 10 minute time steps 

over a range of 2 years by installing a stand alone weather station within the 

campus of Al-albayt University, 

• improve IHACRES model by adding an option for snow precipitation 

• develop a new methodology to re-adjust satellite-derived rainfall datasets 

(GSMaP_MVK+) using ground based rainfall data 

• optimize the use of acquired weather data from the study area for present and 

future studies by designing a database management system (DBMS)  

• develop a water resource management plan for the Wadi Dhuliel. 
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The above-mentioned deliverables will improve the understanding of 

hydrological processes not only in the Wadi Dhuliel, by also in regions with different 

climatic and topographic variations. At a more general level, it could lead to a better 

understanding of the correlation between all weather variables. 

Despite limitations from the availability of input data, the results of this study 

help establish criteria for simulating streamflow in arid regions at different time 

scales.  Specifically, this research explains how hydrological models should be used 

to model streamflow in arid regions when there is a dearth of observational data.  The 

choice and quality of input data, model section, model parameters, model 

modifications, and applicability of results to different arid catchments on different 

timescales are discussed. The main research question was: what are the ‘best’ 

hydrological models that can be applied to assess stream flow in arid regions under 

the lack of observational data. More specific questions have been addressed by this 

PhD research study: 

a. Which data should be collected to achieve research objectives? 

b. What is the quality of available data from local water authorities? 

c. What are the optimal sets of model parameter values? 

d. How can the research modify the model to meet the catchment 

characteristics?  

e. How can the research improve the accuracy of spatial rainfall 

estimation in arid regions? 

f. Is there any significance of using different rainfall runoff models in 

assessing same event or period? 
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The first four questions were answered in the first paper; the fifth question was 

addressed in the second paper, and the last question was answered in the third 

research paper. 

6 Summary of appendices  

The above targets have been achieved via publication of three articles in peer-

reviewed journals. The first publication was already published, the second has been 

accepted as a discussion paper, and the third is currently under review. The first 

author in all 3 papers is Eyad Abushandi. His contribution was 90% while the 

coauthor (Prof. Dr. Broder Merkel) contributed to 10% to the papers (ideas, 

proofreading). 

In the first paper, the metric conceptual IHACRES model was applied to daily 

time scales for storm events and was also extended for snowfall in order to cope with 

such extreme events. The detailed descriptions of the model, including model 

structure, formulation, data preparation, parameter identification, model calibration 

and evaluation, etc. were presented. Additionally, a general literature review on the 

subject was also incorporated. 

In the second paper, the investigation of rainfall characteristics over the Wadi 

Dhuliel catchment was madeutilizing Global Satellite Mapping of Precipitation 

GSMaP data and ground based rain gauge data. This study aimed to develop a 

technique to adjust or re-calibrate the GSMaP data by means of ground-based weather 

variables data and standard interpolation techniques. The study began with a detailed 

history recounting hydrological study in Jordan, then moved to the concept of using 

GSMaP_MVK+ in both arid reasons in general and the Wadi Dhuliel specifically. A 

statistical re- process was presented by which GSMaP_MVK+ data could be modified 

to account for complex terrain is the effects of rainfall variation with altitude were 
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briefly described. Finally, the influential factors for the over- or underestimation of 

the GSMaP_MVK+ in arid regions were summarized. 

The third paper discussed the advantages and the disadvantages of using 

distributed and lumped models. The applicability of GIS to hydrological modeling 

was highlighted and particular attention was given to explain the benefits of geo-

referenced datasets. The HEC-HMS distributed model and IHACRES lumped model 

were applied to simulate a single event streamflow in the Wadi Dhuliel arid catchment 

occurring from March 30-31, 2008. The paper began with a brief discussion about the 

concepts of both models and how GIS was integrated into the HEC-HMS model. The 

mathematical background of the models was then presented. The models were 

calibrated and validated using observed stream flow data set collected from Al-

Za’atari discharge station and results presented. 

7 Conclusions 

In this study, a distributed hydrological model (HEC-HMS) and a lumped 

model (IHCRES) are applied to the Wadi Dhuliel arid catchment to simulate 

streamflow on different time scales. Both models are applicable in arid areas of 

Jordan, which are dominated by ephemeral streams and rapid responses to storm 

events. The results indicate that both models can adequately simulate streamflow in 

arid catchments on the time scale of a single storm event but overall accuracy depends 

on the length of the chosen time interval. 

This study concluded that longer calibration periods were needed in order to 

reduce the uncertainty in model parameters, as well as predict long-term climate 

change and anthropogenic impact on the study area. A major source of uncertainty for 

the hydrological modeling is the lack of spatial rainfall input, despite the fact that a 

new parameter (snow melt) was added to the IHACRES model. Therefore, the second 
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publication focused on the incorporation of GSMaP_MVK+ data to simulate rainfall 

distribution. Although the GSMaP_MVK+ data proved extremely valuable for 

hydrological modeling, the new, satellite-derived rainfall data requires additional 

improvements for modeling continuous hydrological variables in arid catchments. 

In the third paper, the HEC-HMS and IHACRES models were applied for 

estimating the streamflow volume for a single rainfall event. The HEC-HMS rainfall-

runoff model included the effects of terrain using GIS satellite data, which proved 

advantageous for describing for the variety land-use patterns and soil types.. On the 

other hand, the less-complex IHACRES model required minimal input data.  The 

GSMaP_MVK+ dataset was used to determine the rain storm location and to quantify 

the amount of the rain in each sub-basin. Estimated and observed streamflow volumes 

of the single event were close enough to assume the applicability of the HEC-HMS 

model approach for the region. 
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Abstract 

With increasing stress on water resources in Jordan, application of rainfall-runoff 

models can be part of the solution to manage and sustain the water sector. In this 

paper, the metric conceptual IHACRES model is applied to the Wadi Dhuliel arid 

catchment, north-east Jordan. Rainfall-runoff data from 19 storm events during 1986 

to 1992 have been used in this study. Flood estimation was performed on the basis of 

daily scales and storm events scales. The model was extended for snowfall in order to 

cope with such extreme events. Although the best performance of the IHACRES 

model on a daily basis is poor, the performance on storm events scale showed a good 

agreement between observed and simulated streamflow. Apart from model parameter 

values, the principal reasons for IHACRES model success in this region are thought to 

be based on antecedent soil moisture conditions, rainfall duration and rainfall intensity 

before and during each storm. The model outputs were likely to be sensitive when the 
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monitored flood was relatively small. The optimum parameter values were influenced 

by the length of calibration data and event specific changes. 

Key words: arid regions, effective rainfall, IHACRES, rainfall-runoff, snow 

1 Introduction 

Around 95% of Jordan lies on arid and semi-arid terrains between the latitudes of 

29°11′ N and 33°22′ N and the longitudes of 34°59′ E and 39°12′ E. Water scarcity is 

the major problem in Jordan, which has one of the world’s fastest growing 

populations with a growth rate of 4.5% annually (Al-Halasah and Ammary 2006; 

Jaber et al 1997). Due to both population increase and rising of general prosperity the 

use of water resources in Jordan is dramatically increasing. Sporadic and 

unpredictable severe rainstorm events, flash floods and droughts are the main 

characteristics of the hydrological system in Jordan. Only 9% of Jordan’s territory 

receives more than 200 mm of the annual rainfall (Al-Halasah and Ammary 2006). In 

comparison to some of Jordan’s neighbouring countries, Jordan has the lowest annual 

water share. Therefore, an urgent need to focus on water resource sustainability 

management is essential. 

With the exception of the Yarmouk River, surface water flow in Jordan is 

extremely rare and occurs in the following three ways: 

1 a few creeks fed from groundwater through springs; 

2 streamflow or floodwater formed after significant rainstorms in winter; 

3 discharge of treated wastewater. 

The average annual floodwater for the entire Jordan area is 255 × 106 m3 (Al-

Halasah and Ammary 2006), which contributes 3% of the total annual rainfall. 

Although the quantity of floodwater is relatively small, it might increase the water 

availability at the catchment scale. There are a few short-term projects on flood flow 
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measurements but long-term flow data are generally not available for arid sites in 

Jordan. The major reason for this situation is a lack of awareness of the importance of 

monitoring flood flows in the governmental authorities. In addition, even in the rare 

cases where gauging stations exist, general measurement problems occur during 

intense flood events reducing the quality and completeness of the data (Lange et al 

2000). Thus for arid regions in general and for Jordan in particular two requirements 

can be stated: 

1 improved monitoring systems for flood flows; 

2 evaluation tools based on limited data. 

Rainfall-runoff models have been widely used for the last 50 years (Nash 

1959) as a means of describing hydrological processes. Hundreds of rainfall-runoff 

models have been developed throughout the world, especially in Europe to provide 

river flow forecasting (Beven 2001). However, most of these models are designed to 

estimate runoff from persistent rainfall (Pilgrim et al 1988), making most of them 

appropriate tools for humid environments only. 

Arid and semi-arid areas have particular challenges that have received less 

attention (Wheater et al 2008). A comprehensive review of modelling rainfall-runoff 

in arid and semi-arid regions and related difficulties was made by Pilgrim et al. 

(1988). Because of harsh climatological and physical conditions, modelling the 

rainfall-runoff relationship has been the dilemma for hydrologists working in arid 

regions. Obviously, only a limited number of rainfall-runoff models have been 

developed and modified for arid and semi-arid environments. Perhaps the first 

published research on characterizing the rainfall-runoff relationship in a semi-arid 

area was given by Osborn & Hickok in 1968. They analysed the effect of rainfall 

variability in producing runoff for Alamogordo Creek watershed in New Mexico. 
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Lane & Renard (1971) evaluated stochastic modelling for ephemeral runoff from 

Walnut Gulch semi-arid experimental watershed in Arizona. 

The model was based on five statistical distributions of actual flow events to 

generate synthetic individual flows. The basic assumption of linear correlation 

between the starting date of the wet season and the number of thunderstorm runoff 

events per season was considered. The authors concluded that the length of runoff 

season plays an important role in the variability of the results. Ultimately, the typical 

application of rainfall-runoff models to arid and semi-arid regions is limited to 

parametric models (Drissel & Osborn 1968; Osborn & Hickok 1968; Lane & Renard 

1971; Croke & Jakeman 2008; McIntyre & Al-Qurashi 2009). 

Although it is recognized by many hydrologists that the rainfall-runoff models 

cannot give a full picture or ‘plethora’ of reality (Beven 1984; Pilgrim et al. 1988; 

Bronstert 2004; Al-Qurashi et al. 2008; McIntyre & Al-Qurashi 2009), modelling the 

rainfall-runoff relationship is a very useful tool to predict streamflow in arid 

catchments. 

In general, the choice of rainfall-runoff model is based on three main roles: 

2 The availability and the quality of hydrological data, especially rainfall and runoff 

data; 

3 Model structure and model ability of regionalization; 

4 Catchment characteristics and flow homogeneity. 

These roles can be slightly different depending primarily on the catchment 

type and secondarily on the catchment size. For instance, the challenge of modelling 

urbanizing catchments is how to link the population growth and the effect of growing 

in industrialization. Aucharova & Khomich (2006) have mentioned that the type and 

concentration of urban runoff contaminants are primarily based on seasonal period 
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and type of functional zones, therefore it is necessary to consider this conclusion in 

modelling urbanizing catchments. Attention has been paid to the effect of 

urbanization proceeds and manmade drainage system characteristics on the variability 

of runoff magnitudes (Rao et al. 1971; Hall 1977). In addition urban rainfall-runoff 

models require more spatial details of overland flow, rain-dependent inflow and 

infiltration (Dongquan et al. 2009). 

On the other hand, applications of rainfall-runoff models for agricultural 

catchment have to deal with specific problems such as land degradation (Bulygina et 

al 2009), leaching fertilizers and their impact on surface and ground water quality 

(Sten Bergström & Brandt 1987) and soil erosion assessment (Lopezbermudez 1990; 

Hrissanthou et al. 2003). This usually requires some implementations or 

modifications of rainfall-runoff models. 

The IHACRES rainfall-runoff model has been successfully applied to many 

arid and semi-arid catchments all over the world (e.g. Australia, Oman, Jordan and 

many parts of Africa). IHACRES stands for Identification of unit Hydrograph And 

Component flows from Rainfall, Evaporation and Streamflow. It has been used to 

predict streamflow in ungauged catchments (Kokkonen et al 2003), study land cover 

effects on hydrologic processes (Croke and Jakeman 2004; Kokkonen et al 2001) and 

investigate dynamic response characteristics and physical catchment patterns 

(Kokkonen et al 2003; Sefton and Howarth 1998). 

In a particular study IHACRES has been applied to the Wadi Faynan area of 

south-western Jordan as part of the Water Life and Civilization Project. Monthly flow 

data from the River Jordan gauging station in conjunction with monthly rainfall data 

from Mt Kenaan, Israel, were used to apply IHACRES for the period 1988–1993. A 
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calibrated version of IHACRES was able to explain 96% of flow records variability 

(Whitehead et al 2006). 

The Zarqa River is the second-largest river in Jordan after the Yarmouk River. 

The total area of the river drainage network is around 3882 km2 (the total area may 

differ slightly from one author to another). It is divided into two sub-basins: the Seil 

Al-Zarqa sub-basin and the Wadi Dhuliel sub-basin with a lower outlet near the King 

Talal Dam (Figure.A 1). The river receives water from two main sources: rainwater 

during winter, contributing approximately 47.4% of the annual yield, and 

approximately 52.6% due to treated wastewater from the Khirbet Al-Samra, Al-

Baqa’a, Jarash, Abu-Nsair and Almafraq Wastewater Treatment Plants. In addition, 

there is a very limited contribution of groundwater through surrounding springs. 

Unfortunately this amount of groundwater contribution is not well cited. 

 

Figure.A 1| Location map of Al-Zarqa basin: including Seil Al-Zarqa 

sub-basin and Wadi Dhuliel sub-basin (map datum: WGS 

84). 
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Wadi Dhuliel catchment is an appropriate example of an arid catchment and 

an important source for passing floodwater from the northern part into the Al-Zarqa 

River. In comparison to other hydrological models, the IHACRES model only 

requires three data sets (rainfall, temperature and streamflow) per time unit and a 

small number of parameters. This, however, may overcome the problem of the 

observed data scarcity for arid regions. In addition the structural simplicity of the 

IHACRES model assists the good performance of the model for many types of 

catchment. 

This paper examines the application of the IHACRES model into 19 rainstorm 

events that caused streamflow obtained from the Wadi Dhuliel sub-basin by using 

daily rainfall, temperature and streamflow data to evaluate the accuracy of the 

calibration method in that region. 

2 Methodology 

2.1 IHACRES model structure 

Model developers divide rainfall-runoff models into three categories: metric, 

conceptual and physics-based models (Beck 1991; Croke et al 2006; Kokkonen et al 

2001). Metric rainfall-runoff models are the simplest models based on observed data 

including rainfall and runoff records to characterize the catchment interaction. 

Conceptual models describe many internal aspects to characterize the catchment 

interaction. Physics-based models couple mathematical-physical theories and flow 

equations (Navier-Stokes) to achieve precise simulations. 

IHACRES (Jakeman and Hornberger 1993; Jakeman et al 1990) is a hybrid 

conceptual-metric model, using the simplicity of the metric model to reduce the 

parameter uncertainty inherent in hydrological models (Croke and Jakeman 2005). 
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The main objective of IHACRES is to characterize catchment-scale hydrological 

behaviour using as few parameters (often about six parameters) as possible 

(Littlewood 2003). Therefore, it can successfully be applied to arid regions where 

hydrological data sets are very rare. 

The original structure of IHACRES uses the exponential soil moisture drying 

rate index. Several versions of IHACRES have recently been developed and improved 

to achieve a good simulation of ephemeral streams in arid regions. The model 

contains a non-linear loss module followed by a linear module; the non-linear loss 

module converts rainfall into effective rainfall, while the linear module transfers 

effective rainfall to streamflow. Figure.A 2 shows the model components. 

 

Figure.A 2| Generic structure of IHACRES model. 

 

In this study the classic redesigned IHACRES version (Croke et al 2006; 

Jakeman and Hornberger 1993) has been used. The non-linear loss module converts 

rainfall )( kr  into an effective rainfall )( ku by considering both the infiltration rate and 

evapotranspiration. In order to obtain the effective rainfall, a catchment wetness index 

or antecedent precipitation index, representing catchment saturation, is calculated for 
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each time step. Usually, a non-linear loss module within IHACRES includes three 

parameters: c is the adjustment parameter, f is a temperature modulation parameter 

and )(constwτ  is the rate at which catchment wetness declines in the absence of rainfall. 

The initial stage is to determine the drying rate wτ , and the catchment moisture 

index kS at each time step, which is given by: 

 fe kt
constww ××= − )20(

)(ττ  (1) 

where wτ is the drying rate at each time step, )(constwτ  is the rate at which catchment 

wetness declines in the absence of rainfall, kt  is the temperature at time step k and f is 

a temperature modulation parameter (°C–1), which determines how wτ changes with 

temperature. 

Catchment wetness index kS  is computed for each time step on the basis of 

recent rainfall and temperature records. The loss module is used to account for the 

effect of antecedent weather conditions on the current status ( kS ) of soil moisture and 

vegetation conditions, and evapotranspiration effects (Schreider et al 1995). 

 1
)(

)11( −×−+×= k
k

kk S
w

rcS
τ

 (2) 

where c is the adjustment parameter and controls the amount by which kS  is 

increasing by a rainfall event (Post and Jakeman 1999), kr is the rainfall at time step k.  

Finally the effective rainfall )( ku  in the model is given by: 

 kkk sru ×=  (3) 

if 0〉× kk sr . 

Since the study area is characterized by ephemeral streams where there is no 

runoff if there is no rainfall, computing effective rainfall if kr  is >0 for ephemeral 

streams can make equation (3) true, both physically and dimensionally. In the linear 
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routing module, the effective rainfall is converted into streamflow )( kQ . The storage 

configurations of two parallel storage components have been applied. The linear 

model employs discrete-time intervals, transfer function and a representation of the 

Unit Hydrograph (UH). 

 )()1()( δβα −− +−= kq
q
kq

q
k uQQ  (4) 

 )()1()( δβα −− +−= ks
s
ks

s
k uQQ  (5) 

where ),( )()(
s
k

q
k QQ are quick and slow streamflow components. Delta in the )( δ−ku  is the 

delay between rainfall and streamflow response. The parameters ),( sq αα are the 

recession rates for quick and slow storage, whereas the parameters ( qβ , sβ ) represent 

the fraction of effective rainfall. The UH of total streamflow is the total of both quick 

and slow flow UHs. As an external parameter, snow melt parameter (Cmelt) was 

added into the qβ  fraction in the case of snowfall events: 

 [ ])()1()( ))(( δβα −− +−= kq
q
kq

q
k uCmeltQQ  (6) 

The snow melt parameter (Cmelt) will be automatically blocked if there are no 

snowfall events; it is actually connected to the temperature gradient. In other words; 

the Cmelt parameter is not functioning if the temperature is higher than the freezing 

degree. 

To predict flood flow for ungauged catchments by means of calibrated 

rainfall-runoff models, a technique for estimating parameter values is required. There 

are numerous studies for determining these values. (Merz and Bloschl 2004) 

estimated parameter values based on regression analysis between proposed parameter 

values and catchment attributes. However, this regression application requires 

parsimonious models that have strong relationships between parameter and catchment 

attributes (Croke and Littlewood 2005). In addition, the Nash-Sutcliffe efficiency (Ef) 
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has frequently been applied to assess the goodness of modelled streamflow to 

observed records: 

 
∑
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where iq  is observed streamflow, iq̂  is modelled streamflow and q  is the mean value 

of observed streamflow. The Ef will be used in this study to estimate the goodness of 

model outputs. 

In order to measure the reliability of simulated values the Relative Error of 

Estimate was calculated.: 
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2.2 Study area and available data 

Wadi Dhuliel has always played a key role in increasing water levels in the Al-Zarqa 

River and being a valuable source of natural groundwater recharge. It is located in the 

north-east part of Jordan. Most of the catchment area belongs to the Al-Zarqa Basin. 

Around 10% of the upper part of Wadi Dhuliel catchment is situated on Syrian 

territory (Figure.A 3). The area is characterized by a very gently undulating 

topography with an elevation varying from 512 m in the south-west to 1400 m in the 

north. The area of interest is approximately 1985 km2. 
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Figure.A 3| Wadi Dhuliel sub-basin: location map, drainage network and rainfall 

and discharge stations. DTM based on 90 m SRTM. 

 

Besides Wadi Dhuliel, there are a number of wadis in the catchment area such 

as Wadi Al-Za’atari, Wadi Al-Ajeb and Wadi Alghar. The flow direction is from the 

north towards Seil Al-Zarqa sub-basin in the south-west. Hydrological features of the 

Wadi Dhuliel catchment are disturbed by a strong influence of agricultural activities 

and high pressure on groundwater resources. 

The area of interest is characterized by warm and dry summers (May to 

September) and moderate cold and wet winters (October to April). The overall annual 

rainfall is 123 mm on average (Figure.A 4). The average annual temperature is 

16.8 °C (1976–2005). Table.A1 shows average temperature and standard deviation 
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during the driest and wettest months. The data for this table were compiled by 

Almafraq meteorological station at an elevation of 675 m above sea level. 

 

Figure.A 4| Climograph for Almafraq Meteorological Station/north-east 

Jordan, the period from 1976–2005 (Jordan Meteorological 

Department). 

Table.A 1| Temperature description for the period of 1976–2005 
 Jan. Feb. Mar. Apr. May Jun. 

Average (°C) 7.4 8.6 11.5 16.2 20.4 22.9 

Average maximum (°C) 12.7 14.2 18 24 28.7 31.6 

Average minimum (°C) 2.1 2.9 5.1 8.5 12.0 14.1 

PET (mm)* 145 185 310 566 842 1034 

 Jul. Aug. Sep. Oct. Nov. Dec. 

Average (°C) 24.7 24.6 23.1 19.5 13.6 9.0 

Average maximum (°C) 33.1 33 31.3 27.2 20.2 14.5 

Average minimum (°C) 16.32 16.31 14.9 11.73 6.92 3.51 

PET (mm)* 1186 1181 1054 779 415 204 

* Potential evapotranspiration (PET) is calculated by the Thornthwaite equation. 
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The annual rainfall magnitudes show a distinct west-east gradient from the 

relatively wet west regions with about 600 mm to the Jordanian desert or Al-Badia 

with less than 100 mm. 

Based on average annual precipitation (P) and potential evapotranspiration 

(PET) for the period of 1976 to 2005 of Almafraq Meteorological Station (Figure.A 

5), the degree of aridity was calculated by the UNEP Aridity Index (Al) (Safriel 

2006). 

 

Figure.A 5| UNEP Aridity Index for the study area. Dashed line represents 

the aridity index of Almafraq Meteorological Station. 

 

IHACRES model requires three data sets per time unit: (a) rainfall, (b) 

streamflow for calibration purpose and (c) temperature or potential 

evapotranspiration. 
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Typically, data sets for arid areas are limited to daily rainfall, temperature and 

in lucky cases short periods of flood flow records. The data sets used in this research 

were derived from the Surface Water Resources Unit at the Jordan Ministry of Water 

and Irrigation (JMWI) and Jordan Meteorological Department (JMD). The initial step 

was a careful screening with respect to errors and missing values in the datasets. Daily 

rainfall data are available from seven rainfall gauging stations, which are fairly well 

distributed over the entire catchment area. Recently, new rainfall gauges were added; 

however, their recording period is less than five years. Almafraq station has the 

highest annual rainfall (158 mm) while Qasr Al-Hallabat station has the lowest 

rainfall (79.2 mm). Seventy-three per cent of the annual rainfall occurs during 

November, December, January and February. An average rainfall was calculated from 

seven rainfall and meteorological stations. Table.A 2 presents detailed rainfall 

information and period of records for each station. 
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Table.A 2| Detailed information about rainfall stations utilized for the study 

Station 

code on the 

map (Fig. 

3) 

Station 

code in 

JMWI 

Station 

name 

Height (asl 

in metres) 

Mean 

annual 

precipitation 

(mm) 

Period of 

records 

Total of 

period 

(years) 

A AL0058 
Sabha and 

Subhiyeh 
843 108.1 1968–2002 35 

B AL0059 Um-Jimal * 670 119.3 1969–2002 35 

C AL0048 Al-Khaldiya 600 125.4 1968–2002 35 

D AL0055 

Wadi 

Dhuliel 

Nursery 

580 137 1968–2002 35 a 

G No Code Almafraq *b 675 158 1975–2005 30 

F AL0049 
Qasr Al-

hallabat 
590  79.2 1968–2002 35 

E AL0012 Sukhnah 556 135.3 1968–2002 52 

* Meteorological station. 

a Missing data in the years 1968–1971. 

b Almafraq station is the only meteorological station from Jordan Meteorological Department, all others belong to 

the Jordan Ministry of Water and Irrigation. 

 

Since availability of daily temperature records was limited, daily temperature 

data were taken from Um-Aljimal Meteorological Station only. The station is located 

at the upper part of Wadi Dhuliel catchment with an elevation of 676 m asl. Daily 

stream flow records were collected between 1986 and 1992 from Wadi Al-Zaatari 

streamflow gauging station close to the junction with Wadi Al-Dhuliel. This flow 

record has been used to test IHACRES performance during the calibration stage. 

Table.A 3 provides a very brief summary of the flow measurements. 
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 Table.A 3| Summary of discharge from field measurements (JMWI) 

Cross 

section 

width (m) 

Mean depth 

(m) 

Max depth 

(m) 

Cross 

section area 

(m2) 

Mean 

velocity 

(m s–1) 

Gauge 

reading (m) 

Observed 

discharge 

(m3 s–1) 

6.00 0.16 0.35 0.98 0.478 0.02 0.469 

36.00 0.18 0.27 6.38 1.342 0.225 8.56 

35.80 0.90 1.00 32.30 0.786 0.845 25.4 

38.00 0.91 1.05 34.6 1.066 0.91 36.9 

35.80 1.20 1.36 43.00 1.102 1.15 47.4 

 

The stage-discharge relation was developed from direct discharge 

measurements carried out by the JMWI team by means of a current meter during the 

first and the second significant rainstorms in November 1986 and January 1987. 

Figure.A 6 shows the developed rating curve from a series of observed flow 

measurements plotted versus gauge heights at each time step. Most often the 

discharge in this area is characterized by flash flood waves of very short durations 

ranging from a few hours to five days within an average of three days. The discharge 

varies from Q = 0 to Q = 125.2 m3 s–1. 
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Figure.A 6| The rating curve for Wadi Al-Zaatari in the period of 1986–

1987. 

 

Application of IHACRES was limited to the flow measurements period. As 

explained by (Hansen et al 1996) effective rainfall ( ku ) is calculated from the 

accumulated rainfall depth ( kr ) in the non-linear loss module at each time step, where 

the catchment wetness index kS  values at this stage represent soil moisture 

characteristics in arid regions and runoff generation thresholds. To understand soil 

moisture characteristics, additional data sets were collected from a recently installed 

weather station in the study area (since January 2008). The data included rainfall, 

temperature and soil moisture. The point was to study the changes of rainfall and 

temperature in parallel with soil moisture changes. Since soil physical properties are 

fixed (i.e. infiltration rate), the potential values of the catchment wetness index kS  for 

the years between 1986 and 1992 were adjusted at both daily and storm event scales. 



 

 61

Simple linear interpolation method was used to develop daily and storm event time 

series of soil moisture for the years between 1986 and 1992 based on the additional 

data sets. 

3 Results 

Flood flow records from the Al-Za’atari gauging station show the main 

characteristic of surface water flow in the area. The runoff coefficient in the study 

area was 2.3% on average. Some flood flow events show more than one flow peak 

during a single rainstorm (Figure.A 7) and are characterized by steep rising peaks. 

The results show that the catchment tends to have only very few flood flow events (19 

events during the period of 06.11.1986 to 11.02.1992, with an average of 3 storms per 

year). 

 

 Figure.A 7| Representative behaviours of continuous streamflow: one day (29 

November 1986) and five days streamflow (08 November–14 

November 1986) respectively. 

 

The IHACRES model was calibrated by using the Al-Zaatari daily flood flow 

records over a period from 06.11.1986 to 11.02.1992. The best parameter values 
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containing the best fit between modelled and observed streamflow are listed in 

Table.A 4. 

 Table.A 4| Optimized IHACRES parameter values 

C const)(wτ  F qα  qβ  sα  sβ  Cmelt 

0.002 120 0.09 –0.07 0.04 –1 0 0.1 

 

In general, it is unusual for north-east parts of Jordan to receive a heavy 

snowfall. However, the snowstorm that began in January 1990 and ended in February 

of the same year was heavy enough to reach the arid parts crossing the Wadi Dhuliel 

arid catchment. This snowstorm changed the streamflow magnitudes and behaviour in 

1990. A fraction of snow melt parameter (Cmelt) was added for such particular events 

to reduce the quick fraction ( qβ ) influence. 

The total flood magnitude from each rainstorm was calculated as a single unit 

by the mean of total streamflow of each day recorded. The application of IHACRES 

to both daily and storm events basis gave a better view of streamflow behaviour in the 

catchment. The goodness of fit between observed flood flow ( iq ) and modelled flood 

flow ( iq̂ ) was estimated using the Nash-Sutcliffe efficiency ( fE ). 

A good performance of IHACRES was obtained with fE  equal to 0.86 on the 

storm events scale, while fE  was 0.43 on the daily scale using the same parameter 

values. This, however, shows a poor performance of the IHACRES model on daily 

basis application. 

The result of IHACRES simulations in comparison to monitored data on both 

daily and storm events scales are shown in Figures.A 8 and 9. 
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Figure.A 8| Observed and simulated flood flow on a daily basis. 
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Figure.A 9| Observed and simulated flood flow based on storm events. 

 

The average observed flood on a daily basis was 0.14 mm day–1 while the 

average of simulated flood was 0.16 mm day–1. In contrast, the average observed 

flood per storm event was 0.65 mm storm–1 while the average of simulated floods of 

all storms was 0.62 mm storm–1. As expected from fE the Relative Error of Estimate 

of daily simulated-observed streamflow was 1.45% while in storm events the basis 

was 0.44%. 

4 Discussion 

Rainfall behaviour tends to be asymmetric in both space and time, thus 

affecting the streamflow magnitudes. For this reason, arid catchments are more 

amenable to simplified models. Because IHACRES is a parametric efficient rainfall-

runoff model it is applicable in arid areas, which are dominated by rapid responses to 

weather variables. Since the model is a lumped model, it has the capability to avoid 
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the spatial variability of the rainfall and streamflow. Furthermore the model requires 

only a few input data. 

In general, rainfall-runoff models have many limitations and aim to achieve a 

high accuracy. Errors during simulations often occur because of missing data, or 

complexity of hydrological behaviour. The time step calculation is very important for 

IHACRES modelling in an arid region. As the results show, it is crucial to change the 

calculations from daily time steps to storm event time steps at the same parameter 

values due to the dependency of the present value on previous records. Apart from 

IHACRES structure there are many other reasons that may increase the relative error 

such as the flood fluctuation from one storm to another or stage-discharge errors. The 

Relative Standard Error is likely to be significant when the monitored flood is 

relatively small. 

During the rainy season of the year 1990, the residuals were extremely high in 

both daily and storm event scales, which can be explained by two reasons: the 

occurrence of snow instead of rain, and the relatively very small monitored 

streamflow (0.04 mm storm–1). 

This snowstorm changed the entire behaviour of rainfall and temperature 

gradients. In this particular case the IHACRES model converted the total precipitation 

(including snow) into effective rainfall and then into streamflow through a quick flow 

linear module. The identification of optimum model parameters at this specific event 

was difficult; therefore, a snow melt parameter was added to identify snow melt-

runoff conditions. This extreme event happened only once during the last 50 years as 

it is recorded, therefore it was challenging to study the IHACRES model simulation 

abilities under such conditions. Relatively, the period of observed and simulated data 

is not short as in many other related studies. Therefore, it can provide a higher 
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accuracy of the calibration parameters which might be extended to test streamflow for 

the periods where no observed data are available. Particular attention has been paid to 

the rainfall patterns after the snow storm in 1990 (Figure.A 10). Tracking the rainfall 

rate shows that the average annual rainfall across the entire Wadi Dhuliel catchment is 

112.7 mm for the years 1990–2008 while the average annual rate for the years 1969–

2002 is 123.2 mm. This generally shows that the annual rainfall totals are declining 

but there have been no snowfall events so far. 

 

Figure.A 10| Annual rainfall rate measured in Wadi Dhuliel Catchment for the 

years 1990–2008. Dashed line represents the mean annual rainfall of 

the same period. 

 



 

 67

Based on the land use map derived from a Landsat Thematic Mapper (TM) 

imagery of the year 1987 (Figure.A 11) the agricultural area contributes 

approximately 36.2% from the total catchment area. Due to this fact, significant 

quantities of agrochemicals are expected to be transferred from the Wadi Dhuliel 

catchment to the Seil Al-Zarqa catchment, and end in the King Talal Dam. Therefore 

it is necessary to predict the potential contaminations in future research. 

 

Figure.A 11| Land use map of Wadi Dhuliel sub-basin, Landsat Thematic 

Mapper (TM) of the year 1987, 30 m resolution. 

 

Moreover, application of rainfall-runoff models in Jordan is a challenging task 

because of data scarcity and the complex interaction between climate variables. Apart 

from applying IHACRES rainfall-runoff model for the first time to arid parts of 

Jordan, the paper added three new aspects: 
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1 Adding and testing a new parameter in IHACRES model, the snow melt 

parameter, because arid regions do not have snowfall events. 

2 Dividing the data into daily and storm event simulation, not just daily simulation. 

3 Taking advantage of a data set obtained recently to correlate historical data, i.e. the 

soil moisture data set from our weather station. 

5 Conclusion 

The IHACRES rainfall-runoff model is applicable in the Jordanian arid areas, which 

are dominated by ephemeral streams and rapid responses to storm events. According 

to the obtained results, the model is able to adequately simulate streamflow in arid 

catchments when applying the model on a storm event scale. Dividing the same data 

into daily and storm event was a good option to evaluate IHACRES at different 

scales. A good performance of the IHACRES model showed fE  equal to 0.86 on the 

storm events scale, while fE  was 0.43 on a daily scale. The results therefore depend 

on the chosen time interval. A new parameter (snow melt) has been added into the 

IHACRES model. By adding a snow melt parameter the model could be enforced 

significantly. Changes in rainfall and temperature significantly affect soil moisture 

capacity, therefore calibration methods of IHACRES models need to be extended. The 

extension of calibration methods might include automated techniques instead of 

manual. Longer calibration periods are needed in order to reduce the uncertainty in 

model parameters and predict both climate change and anthropogenic impact on the 

study area. A key role of runoff generation can be concluded in four points: (1) 

antecedent soil moisture conditions, (2) rainfall intensity, (3) rainfall amounts before 

and during streamflow events and (4) the period of rainfall storms which affect soil 

storage capacity. 
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Abstract: 

The GSMaP_MVK+ (Global Satellite Mapping of Precipitation) dataset was used to 

evaluate the precipitation rates over the Wadi Dhuliel arid catchment in northeast 

Jordan for the period of January 2003 to March 2008. The scarcity of the ground rain 

gauge network alone did not adequately show the detailed structure of the rainfall 

distribution, independent form interpolation techniques used. This study combines 

GSMaP_MVK+ and ground rain gauges to produce accurate, high-resolution datasets. 

Three meteorological stations and six rain gauges were used to adjust and compare 

GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and 

ground rain gauges records showed distinct regions where they correlate, as well as 

areas where GSMaP_MVK+ systematically over- and underestimated ground rain 

gauge records. A multiple linear regression (MLR) model was used to derive the 

relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, 

relative humidity, and wind speed. The MLR equations were defined for the three 

meteorological stations. The ‘best’ fit of MLR model for each station was chosen and 
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used to interpolate a multiscale temporal and spatial distribution. Results show that 

the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and 

north-south gradients. Estimates from the monthly MLR model were more reasonable 

than estimates obtained using daily data. The adjusted GSMaP_MVK+ performed 

well in capturing the spatial patterns of the rainfall at monthly and annual time scales 

while daily estimation showed some weakness in light and moderate storms. 

Keywords: Rainfall, Arid Regions, IDW, GSMaP_MVK+, MLR 

1 Introduction 

Jordan has one of the world’s lowest levels of available water resources (WHO, 

2011). Due to this scarcity, Jordanian scientists and government have taken an 

increasingly active role in studying and managing water within Jordan during the last 

decade. Around 91% of Jordan lies on arid and semi-arid ground which receive less 

than 200 mm of total annual rainfall (Figure.B 1). Precipitation occurs primarily as 

rainfall with relatively high intensity in limited range of space and time. Since 

precipitation is Jordan’s first source of water, it is important to investigate and analyze 

the rainfall behaviour. The rainfall distribution in Jordan varies with location mainly 

due to arid climatic conditions and topographic variations. Rainfall controls domestic 

and agricultural activities, especially in the rural area where the percentages of water 

use are 31% and 65% respectively (Aquastat-FAO, 2009). In comparison to other 

Middle Eastern countries, Jordan has the lowest magnitude of annual rainfall 

coincident with high evaporation rates. 

Rainfall is also the most important input parameter in rainfall runoff models 

(Beven 2001a; Croke and Jakeman 2008), groundwater recharge models (Abdulla and 

Al-Assa'd 2006; Merkel and Sperling 1993), climate change scenarios (Dolman and 

Gregory 1994) and hydro-chemical models (Brezonik and Stadelmann 2002). 
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Additionally, rainfall information is a critical component in efficient management of 

urban drainage systems (Vieux and Vieux 2005). Consequently, an accurate 

assessment of rainfall variability is essential to reduce models uncertainty in the input 

data of these models. 

Due to the arid climate, topographic variations, and a complicated land cover 

structure temporal and spatial rainfall distributions in Jordan are characterized by a 

high degree of variability. The annual rainfall magnitudes distinctly include a sharp 

west-east gradient from relatively wet west regions with about 600mm per year, to the 

Jordanian desert (Al-Badia), with rainfall less than 100mm per year. 

 

Figure.B 1| Rainfall distribution in Jordan (JMWI) 
 

The surface water resources and ground water recharges in the country depend 

on the magnitude of yearly rainfall. The total annual rainfall on Jordan is 

approximately 8500 ×106m3 (Abu-Zreig et al 2000). According to the Jordan Ministry 

of Water and Irrigation (JMWI), the majority of the rainfall is lost through 

evapotranspiration (87.9%), 8.5% is groundwater recharge, while the smallest portion 

is surface runoff (3.6%) (Figure.B 2A). These distributions are slightly different in 

drier regions of north east Jordan (Figure.B 2B). 
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Figure.B 2| The percentages of hydrologic water balance for Jordan (A) and 

particularly the Wadi Dhuliel in northeast Jordan (B) (JMWI) 

Rainfall temporal analysis may include rainfall periodicity (Gajiccapka 1994), 

risk of drought (Akhtari et al 2009; Pal and Al-Tabbaa 2009; Wong et al 2010), 

chance of rain and frequency (Goldreich 1995), and time series analyses (Momani 

2009). In contrast, spatial rainfall analysis focuses on the rainfall distribution within a 

watershed. Many different rainfall interpolation methods, such as Arithmetic Average, 

Isotheral method, and the Grid method are employed in current scientific literature. 

Thiessen polygons are the simplest interpolation method to estimate areal rainfall at a 

sample point (Thiessen 1911), These methods may not be the optimal to estimate the 

temporal and spatial rainfall changes in arid regions without additional information or 

techniques. In some cases, these methods were included in a hybrid approach that 

utilized other datasets and techniques in order to ensure output quality or to avoid 

rainfall observation scarcity. 

A relatively limited number of rainfall analysis techniques have been 

developed and modified for arid and semi-arid environments. Perhaps the earliest 

published research on rainfall magnitudes analysis in arid regions was performed by 

Winkwort (1967) in Australia and Osborn and Hickok (1968) in the United States. 
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Generally, the few published studies available from Jordan have tried to analyze 

rainfall characteristics in the entire country, rather than for individual catchments 

(Freiwan and Kadioglu 2008b; Tarawneh and Kadioglu 2003), even though many arid 

drainage basins might be smaller than 10 km2 (Pilgrim et al 1988). 

Two studies have focused on the techniques of optimizing the number and 

location of rain gauges (Manik and Sidle 2003; Tarawneh and Kadioglu 2003). 

Comprehensive surface hydrology studies including rainfall characteristics with 

respect to temporal and spatial variability have been carried out in Jordan for the last 

decade. Some of these studies examined the changes of rainfall temporal patterns 

only; other cases analyze both spatial and temporal patterns. 

In 2009, Momani analyzed the monthly rainfall temporal variation by applying 

ARIMA time series analysis to data recorded at the Amman airport. In order to 

achieve a proper rainfall forecast of his research, ARIMA model parameters were 

adjusted (Momani 2009).  

Smadi and Zghoul (2006) examined the recent rainfall temporal trends and 

fluctuations for three meteorological stations, Amman, Madaba, and Al-Mafraq. They 

observed a direct interrelationship between rainfall levels at these stations. 

Dahamsheh and Aksoy (2007) studied the structural characteristics of annual 

precipitation data for 13 meteorological stations distributed across Jordan and utilized 

the Isohyetal method to plot rainfall distribution. They employed a number of tests, 

such as consistency, randomness, best-fit distribution, and others in order to 

characterize the annual precipitation. There was no evidence of negative or positive 

precipitation trends at any station. However, these results can not be directly 

compared with previous studies.  
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Tarawneh and Kadiolgu (2003) selected seventeen meteorological stations 

corresponding to different climatic regions of Jordan in order to depict spatial 

monthly precipitation characteristics. The frequency amplitude, periodicity phase 

angle, and basic statistical parameters from the meteorological stations were 

calculated as steps of harmonic analysis of the precipitation. The results showed that 

the variance percentage of harmonic analysis is changing rapidly by moving to the 

east. 

According to the results of local studies water harvesting is one possible future 

solution to capture and store rainfall in Jordan (Abu-Zreig et al 2000; AbuAwwad and 

Shatanawi 1997; Oweis  and Taimeh 1995). In order to achieve highest efficiencies, a 

thorough knowledge of rainfall distribution is essential. 

Spatial rainfall analysis requires a network of rain gauges or meteorological 

stations. The accuracy of spatial rainfall interpolation method depends on the density 

distribution and the distance between rainfall rain gauges. Frequently, rain gauge 

density is not sufficient in arid regions (Pilgrim et al 1988), leading to biased analyses 

of rainfall temporal and spatial distributions at the catchment scale. State-of-the-art 

techniques may solve this issue by matching precipitation data from ground-based 

rain gauges and high-resolution satellites in hybrid interpolation analysis. 

Recently, a number of global precipitation systems have been developed to 

meet scientific demand, such as PERSIANN (Sorooshian et al 2000), Global 

Precipitation Climatology Project (GPCP) (Adler et al 2000; Huffman et al 2001; Xie 

et al 2003), and Multi-satellite Precipitation Analysis (TMPA) (Huffman et al 2007).  

Global or near-global satellite datasets are important to identify temporal and 

spatial rainfall changes in arid regions. Global Satellite Mapping of Precipitation 

(GSMaP) is based on passive microwave radiometer data and has shown to be 
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effective for accurately estimating rainfall rate in mm/h (Ushio et al 2009). GSMaP 

combines precipitation retrievals from polar-orbiting satellites and cloud motion 

vectors derived from infrared images. GSMaP_MVK+ uses four different types of 

satellite sensors as shown in table.B 1 and an algorithm combining the CMORPH 

technique and Kalman filter (Tian et al 2010). 

 

Table.B 1| Input datasets to produce GSMaP_MVK+ from four different types of 
satellite sensors  

Input data Sensor GSMaP near-
realtime system 

GSMaP standard 
system 

TRMM/ The Tropical 
Rainfall Measuring 
Mission (TMI) 

NASA/GSFC 
Real-time Version 

NASA/GSFC 
Standard Version 

Aqua/AMSR-E JAXA/EORC JAXA/EORC 

Passive microwave 
radiometer 

DMSP/SSMI(F13, 
14, 15) 

NOAA/NWS Remote Sensing 
Systems 

GEO Infrared 
radiometer 

MTSAT, 
METEOSAT-
7/8,GOES-11/12 

Globally-merged 
pixel-resolution data 
by JWA 

Globally-merged 
pixel-resolution data 
by GSFC/DAAC 

Atmospheric 
information 

--- JMA Global Analysis 
(GANAL) Real-time 
Version 

JMA Global Analysis 
(GANAL) 

Sea Surface 
Temperature 

--- JMA MGDSST JMA MGDSST 

 

The aim of this paper is to investigate rainfall characteristics of the Wadi 

Dhuliel catchment in northeastern Jordan by utilizing GSMaP data and ground based 

rain gauge data. Moreover, this study aims to develop a technique to adjust the 

GSMaP data by means of rain gauge data and standard interpolation techniques to 

perceive a good understanding of rainfall variability in arid regions, reduce the 

potential errors of rain gauge estimates, and produce improved catchment scale 

rainfall distribution maps. 
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2 Materials and methods  

2.1 Study area description 

The Wadi Dhuliel is an appropriate example of an arid catchment in which 

rainfall and rainfall intensity varies significantly both with with time and space. The 

total area of the Wadi Dhuliel is approximately 1985 km2 and is located in northeast 

of Jordan. Most of the catchment area belongs to the Al-Zarqa river basin. Around 

10% of the upper part of Wadi Dhuliel catchment passes over the Syrian border 

(Figure.B 3). The altitude in the area is characterized by a very gentle undulating 

topography varying between 512m in the southwest to 1400m in the north.  

 

 

Figure.B 3| Study area location map of Al-Zarqa basin including the sub-

basins Seil Al-Zarqa and Wadi Dhuliel. 
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Rainfall temporal magnitude in the Wadi Dhuliel tends to vary markedly from 

year to year with an irregular distribution over the year. As an example of the extreme 

yearly variability in Wadi Dhuliel one rain gauge measured the annual rainfall to be 

275.7, 93.1, 111.1, 230.4, 194.8, 63.1, and 209.5 mm over seven years. In one single 

day, a 62 mm rainfall event occurred, though the total annual rainfall in the same year 

was 100 mm (Sukhnah rain gauge). These kinds of rainfall events can easily generate 

significant surface runoff, resulting in severe soil erosion. Weather behaviour and 

topographical aspects play important roles in this variation. 

The region has essentially an arid climate with cold, rainy winter and a hot, 

dry summer. The average monthly rainfall showed that around 73% of the annual 

rainfall occurs during November, December, January, and February (Figure.B 4). 

 

Figure.B 4| Monthly average rainfall (1976-2005) 
 

Almafraq station has the highest rainfall magnitudes per annum with 158mm, 

Qasr Al-Hallabat station has the lowest rainfall with 79.2mm. Overall, the annual 

rainfall is around 123mm on average. In addition, the lowest temperatures are also 

during the winter months, with an average annual temperature (1976-2005) of 16.8 ºC 

(Figure.B 5).  
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Figure.B 5| Monthly average of the minimum and maximum 

temperature (1976-2005) 

2.2 Data and method of data analysis 

The datasets used in this work included ground rainfall data of nine gauging 

stations at daily, monthly, and annual time steps between January 2003 and March 

2008. A complementary Global Satellite Mapping of Precipitation dataset, currently 

known as GSMaP_MVK+ version 4.8.4 (short for GSMaP moving vector with 

Kalman filter method), was also examined. 

 

Figure.B 6| Research process flowchart 
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The rain gauges dataset (Table.B 2) was gathered from the Surface Water 

Resources Unit at the Jordan Ministry of Water and Irrigation (JMWI), and the Jordan 

Meteorological Department (JMD). Eight rain gauges are distributed in and near to 

Wadi Dhuliel I, and one station is located in Wadi Dhuliel II (Figure.B 7). Almafraq 

meteorological station has records only until 2005. However, only these nine stations 

produced a sufficient length of reliable data appropriate for this study. 

 

Table.B 2| Information about meteorological and rain gauging stations utilized for the 

study 

Station code on 
the map 

(Figures.B 3 
and 7) 

Station code 
(JMWI) 

Station name Altitude [above 
M.S.L. in 
meters] 

Data type Mean annual 
rainfall [mm] 

A AL0058 Sabha and 
Subhiyeh 

843 Monthly and 
daily  

109.3 

B AL0059 Um-Jimal* 670 Monthly and 
daily 

110 

C AL0048 Al-Khaldiya 600 Monthly and 
daily 

123.9 

D AL0055 Wadi Dhuliel 
Nursery 

580 Monthly and 
daily 

130.3 

E AL0049 Qasr Al-hallabat 590 Monthly and 
daily 

72.4 

F AL0054 Hashimiya 566 Monthly and 
daily 

135.3 

G AL0066 Khirebit Es 
Samra Evap. 

St.* 

564 Monthly and 
daily 

131.9 

H No code Almfraq 
 

675 Monthly 158 

I No code Mafraq_60* 

 

675 Hourly 143 

* Meteorological station 

The Global Satellite Mapping of Precipitation (GSMaP) project started in 

2002 with support of the Japan Science and Technology Agency (Ushio et al 2009). A 

frame from 31.95oN - 32.55oN and 36.15oE – 36.85oE was extracted from the 

GSMaP_MVK+ dataset to cover the entire Wadi Dhuliel catchment area with 64 

knots (8× 8) and a spatial resolution of 10.8 km (Figure.B 7). Based on the altitudes, 
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rainfall magnitudes, and land cover characteristics, the area was divided into two 

distinct sub-catchments Wadi Dhuliel I and Wadi Dhuliel II. 

 

Figure.B 7| The GSMaP_MVK+ pixels distribution around and over 

Wadi Dhuliel catchment (Rainfall mm/month, [January 

2003]) 

 

Rainfall ground dataset was based upon the acquisition period of 

GSMaP_MVK+ data, from January 2003 to April 2008. In order to assess at which 

time scale the GSMaP_MVK+ estimates have sufficient match, the daily datasets 

from the GSMaP_MVK+ and ground rain gauging station were aggregated to 

monthly and annual records. 

For the comparison between ground rain gauges and GSMaP_MVK+ datasets 

values of all ground rain gauge station were calculated from the four neighbouring 

GSMaP_MVK+ knots using inverse distance weighting (IDW) interpolation method.  
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2.3 Satellite measurements adjustment with rain gauges  

Since the GSMaP_MVK+ algorithm has been developed for precipitation over 

tropical and subtropical regions (Iwasaki 2009); ground observations are required to 

adjust the satellite information. Furthermore, the input data to the GSMaP_MVK+ is 

based upon brightness temperature and cloud microphysical properties, and therefore 

gives relatively indirect information about rainfall rate. This adjustment process is 

needed to tune the residuals between local observation datasets and GSMaP_MVK+ 

estimates. 

The adjustment process was based on remapping GSMaP_MVK+ pixel values 

with respect to rain gauge observations. Datasets from three meteorological stations 

were used to adjust GSMaP_MVK+ dataset. Khirebit Es Samra and Um-Jimal 

meteorological stations provide monthly rainfall, temperature, and wind speed data 

sets from 2003 and 2008, while Mafraq_60 meteorological station provides 1-hourly 

rainfall, temperature, and relative humidity records for the period between 2004 and 

2006. Unfortunately, some hourly records are missing from Mafraq_60 

meteorological station. As observed from Mafraq_60 station, most of the rain events 

are related to low temperature and high relative humidity (Figure.B 8 and table 3).  

Furthermore, a significant correlation between rainfall, temperature and 

relative humidity (RH) was observed. The Spearman correlation coefficient (rho) 

between hourly temperature and rainfall rate is -0.28 (two tailed P =0.48), while 

Spearman’s rho is 0.089 (two tailed P=0.026) between rainfall rate and RH. Hourly 

wind speed records have also a positive correlation coefficient with rainfall records 

but not significant (rho =0.122, two tailed P =0.002). However, some anomalous 

satellite pixel values are detected and skipped from the adjustment process. 
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Figure.B 8| Comparison between hourly rainfall rate with air 

temperature, relative humidity and wind speed from 

Mafraq_60 meteorological station (2004-2006) 

 
The next step towards adjustment is to aggregate 1-hourly dataset into daily, 

monthly, and annual datasets. For this the daily rainfall rates have been categorized 

into three groups: (i) Light 0.1-1.0 mm/day (ii) Moderate 1.1-5.0 mm/day, and (iii) 

Heavy >5.0 mm/day. Zero values from both ground gauges and GSMaP_MVK+ were 

excluded. Consequently, GSMaP_MVK+ pixel estimates were compared to daily and 
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monthly ground rain, temperature, wind speed, and relative humidity (Figures.B 9 and 

10). The comparison shows three groups: 

1. GSMaP_MVK+ estimates matched the rain ground records rather fairly 

2. GSMaP_MVK+ values are underestimates 

3. GSMaP_MVK+ values are overestimates 

 

Figure.B 9| The daily rainfall rates at the ground and their estimates by 

GSMaP_MVK+ from Mafraq_60 (2004-2006) 
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Figure.B 10| The monthly rainfall rates monitored at ground and their 

estimates by GSMaP_MVK+ from Um-Jimal metrological 

station (Left) and Khirebit Es Samra metrological station (Right) 

(2003-2008) 

 

In order to categorize monthly rain events into groups of similar trajectories 

K-means clustering was applied (Tables.B 3 and 4). The aim of this categorization 

was to assess the effect of external variables on rainfall rates to GSMaP_MVK 

estimates, air temperature, and wind speed records. The events with totals less than 

2mm/month were excluded. 
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 Table.B 3| K-means cluster analysis of monthly air temperature, wind speed, and 

GSMaP_MVK+ for Um-Jimal metrological station (2003-2008) 

Variable Cluster No 1*
Cluster No 

2** 
Std. Deviation 

[Cluster1 ] 
Std. Deviation 

[Cluster2 ] 

Average 
Temperature [°C] 

11.3 10.0 3.56 6.4 

Wind Speed 
[km/h] 

9.3 5.54 5.54 1.6 

GSMaP_MVK+ 
[mm/month] 

23.3 105.9 16.6 48.8 

* The number of cases in cluster number 1 is 22 
** The number of cases in cluster number 2 is 2 
 

Table.B 4| K-means cluster analysis of monthly air temperature, wind speed, and 

GSMaP_MVK+ Khirebit Es Samra metrological station (2003-2008) 

Variable Cluster No 1*
Cluster No 

2** 
Std. Deviation 

[Cluster1 ] 
Std. Deviation 

[Cluster2 ] 

Average 
Temperature [°C] 

10.77 13.3 3.52 2.87 

Wind Speed 
[km/h] 

2.5 2.7 1.17 0.9 

GSMaP_MVK+ 
[mm/month] 

86.45 15.6 12.92 20.1 

* The number of cases in cluster number 1 is 6 
** The number of cases in cluster number 2 is 19 

 
Multiple linear regressions (MLR) method was carried out to estimate 

convective and stratiform rain rates from GSMaP_MVK+ among temperature, 

relative humidity, and wind speed of daily and monthly records. The relationship 

between the ground rainfall records and the explanatory variables is represented for 

each station by the following equations: 
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1. The MLR model for Mafraq_60 meteorological station daily records: 

 

1002.0023.0012.0 CRHTempGSMaPRfLight −×+×+×=   (Equation 1) 

201.0068.0027.0 CRHTempGSMaPRfModerate +×+×−×=   (Equation 2) 

399.003.17.1 CRHTempGSMaPRfHeavy −×+×+×−=   (Equation 3) 

 

Where LightRf  stands for the rainfall rate between 0.1-1.0 mm/day, ModerateRf  is 

the rainfall between rate between 1.1- 5.0 mm/day, HeavyRf  is the rainfall rate more 

than 5.0 mm/day, GSMaP is the GSMaP_MVK+ estimates version 4.8.4 recorded in 

mm/day, Temp is the temperature records in Celsius degree, RH is the relative 

humidity in percentage, 1C  is the LightRf  constant and equal to 164.0 , 2C is the 

ModerateRf constant and equal to 4.46, and 3C  is the HeavyRf constant and equal to 71.8. 

 
2. The MLR model for Um-Jimal meteorological station monthly records: 
 

11 008.185.129.0 clustercluster CWSTempGSMaPRf +×+×−×−=  (Equation 4) 

22 53.3 clustercluster CGSMaPRf +×−=      (Equation 5) 

 

Where 1clusterRf  stands for the rainfall rate in mm/month for the first group of 

cluster, 2clusterRf  is the rainfall rate in mm/month for the second cluster, and 1clusterC  is 

the first cluster constant and equal to 38.8, 2clusterC is the second cluster constant and 

equal to 78.42, and WS is wind speed in km/h. 
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3. Monthly records of Es Samra meteorological station: 

 
11 13.586.103.1 clustercluster CWSTempGSMaPRf −×−×+×=   (Equation 6) 

22 12.577.264.0 clustercluster CWSTempGSMaPRf +×+×−×−=  (Equation 7) 

 

Where 1clusterC  is equal to 44.2 and 2clusterC is equal to 56.1 

 

Then, the MLR equations were chosen from all these combination to adjust 

GSMaP_MVK+ estimates:  

)_(__ REMVKGSMaPMVKGSMaPMVKGSMaP originaloriginaledrecalibrat ×±=  

(Equation 8) 

RE is the relative error and can be determined by using the following equation: 

originaloriginaledrecalibrat MVKGSMaPMVKGSMaPRfRE _/)_(% −=  (Equation 9) 

In order to measure the reliability of simulated values the bias calculation 

assesses the average difference between GSMaP_MVK+ and ground rain gauges: 

∑
=

−=
n

i
edrecalibrat GaugeMVKGSMaP

n
BIAS

1
)_(1  

Where edrecalibratMVKGSMaP _ is the GSMaP_MVK+ estimates after the adjustment 

process at the station location, Gauge  is the observed rainfall ground. N is the number 

of elements. 
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3 Results 

 
Using the available weather records between 2003 and 2008 from nine 

meteorological and rain gauge stations over the Wadi Dhuliel complementary with 

GSMaP_MVK+ rainfall data showed a complex rainfall pattern in the Wadi Dhuliel. 

The evaluation of daily and monthly GSMaP_MVK+ datasets exhibited good 

performance in capturing relative values of rainfall pattern but poor results with 

respect to estimating the absolute values of the rainfall. The comparison of daily and 

monthly GSMaP_MVK+ and ground records showed significant under- and 

overestimations in both spatial and temporal distributions. Separate from cases where 

GSMaP_MVK+ and ground records are correlated, in general GSMaP_MVK+ 

records showed overestimation. Daily records of the GSMaP_MVK+ are showing 

84% overestimation while in monthly records it is 59%. Most of the annual rainfall 

magnitudes of GSMaP_MVK+ were overestimates (85.7%); only the year 2003 

exhibited correlation (Table.B 5). 
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Table.B 5| Annual rainfall of GSMaP_MVK+ compared to 8 ground rain gauge 

stations 

Data Type Date Hashimiya Khirebit Es-Samra W. Dhuliel Nursery  Um El-Jumal
GSMaP  114.02 136.44 125.71 162.08 
Ground Record  2003 184.2 194 138.9 172.8 
GSMaP 365.44 400.99 396.99 597.43 
G Record  2004 114.6 130 85.4 74.2 
GSMaP 232.68 256.72 231.26 455.99 
Ground Records  2005 122.9 124 86.2 105 
GSMaP 321.61 334.07 308.5 367.56 
Ground Records  2006 102.8 86.8 97.5 79.2 
GSMaP 10.04 10.4 9.65 21.58 
Ground Records  Dec-07* 14 12.6 8.5 23 
GSMaP 112.35 109.03 123.22 181.09 
Ground Records  2008 77.7 77 46.8 83 

Data Type Date Khaldiya Sabha and Subhiyeh Qasr El-Hallabat  Al-Mafraq 
GSMaP  127.37 161.7 80.43 162.95 
Ground Record  2003 143.9 146.9 40.8 54.6 
GSMaP 374.49 567.42 295.48 385.96 
G Record  2004 91.5 86.7 74.7 105.7 
GSMaP 248.58 412.07 153.67 466.42 
Ground Records  2005 100.7 97.1 69.7 123.7 
GSMaP 309.86 361.51 311.34 396.41 
Ground Records  2006 99.3 96.8 47 NA 
GSMaP 11.46 20.8 10.24 20.5 
Ground Records  Dec-07 8.5 16.5 6 NA 
GSMaP 124.68 164.18 120.67 122.7 
Ground Records  2008** 62 105.1 30.4 NA 

* The available month from 2007 is December only  
**Jan, Feb, and March in 2008 have no error estimates 

 

In order to match GSMaP_MVK+ values in all cases within some acceptable 

error, an adjustment was performed based on ground data based on multiple linear 

regressions. For daily time step, MLR equations were calculated for Mafraq_60 

meteorological station and derived from temperature and relative humidity records as 

well as from GSMaP_MVK+ daily estimates. Clustering rain events into light, 

moderate, and heavy storm helped to reduce the relative error. For monthly time step, 

explanatory variables used to develop MLR equations were calculated from two 

meteorological stations: Um-Jimal and Khirebit Es Samra. Here, the MLR equations 
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derived from temperature and wind speed records as well as from GSMaP_MVK+ 

monthly estimates.  

Unfortunately monthly relative humidity is not available for these two stations. If the 

relationship between variables is not clear, clustering of monthly rainfall to groups 

with respect to the variation of temperature, wind speed, and GSMaP_MVK+ 

estimates is a primary step to develop MLR models. The results of daily and monthly 

rainfall rates including under- and overestimates corresponding to each 

meteorological station after the calibration process are shown in Figures.B 11 and 12. 

The results showed good agreement between adjusted rainfall rates with ground 

station observations. The Spearman’s correlation coefficient between adjusted and 

observed values for daily records shows significant correlation. The heavy storm 

events correlation coefficient was 0.75 (P =0.084), while for light and moderate storm 

events rho was 0.62 (two tailed P =0.008) and 0.66 (two tailed P =0.071), 

respectively. This may reflect the effect of extreme rain rates on Spearman’s 

correlation coefficient. 
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Figure.B 11| Comparison between daily adjusted rainfall rates from 

Temperature, relative humidity, and GSMaP_MVK+ records with 

ground rainfall rates obtained from Mafraq_60 meteorological station 

(2004-2006) 
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Figure.B 12| Comparison between monthly adjusted rainfall rates from 

Temperature, wind speed, and GSMaP_MVK+ records with 

ground rainfall rates obtained from Um-Jimal metrological 

station (Left) and Khirebit Es Samra metrological station 

(Right) (2003-2008) 

 

Spatial rainfall analysis was based on Inverse Distance Weighting (IDW) 

interpolation method. Daily results included one meteorological station (Mafraq_60) 

and seven rain gauges. The MLR model was carried out for Mafraq_60 

meteorological station and extended to the daily GSMaP_MVK+ pixel values 

(equations 8 and 9). Adjusted daily GSMaP_MVK+ performed well in capturing the 

spatial patterns of the rainfall distribution, and showing more details especially on 
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extreme rainfall events, while some weakness in light and moderate storms spatial 

distributions (Figure.B 13). 

The MLR model was computed for monthly records acquired from Khirebit Es 

Samra and Um-Jimal meteorological stations for the time between 2003 and 2008. For 

ground interpolation, six other rain gauges were also used. The adjustment of 

GSMaP_MVK+ was primarily based on the average of equations 8 and 9 calculated 

from both stations. The MLR model monthly rainfall estimates were found to be more 

reasonable than estimates obtained using daily MLR. 

The evaluation of spatial patterns shows that monthly GSMaP_MVK+ does 

well in capturing the topographic effect on precipitation distribution pattern, in 

particular for the west-east and north-south precipitation gradients (Figure.B 14). A 

key outcome of the spatial and temporal analyses is the advantage of aggregating the 

fine scale data to coarser resolution (Figure.B 15). 
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Figure.B 13| Spatial comparison of daily rainfall between re-calibrated 

GSMaP_MVK+ estimates (Left) and eight ground rainfall station 

records (right) using IDW method, light storm in 24.12.2004, moderate 

storm in 09.03.2005, and heavy storm in 06.02.2005 
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Figure.B 14| Spatial comparison of mean monthly rainfall between adjusted 

GSMaP_MVK+ estimates (Left) and eight ground rainfall 

stations records (right) using IDW method, an example from 

January 2003 

 

 

Figure.B 15| Spatial comparison of average annual rainfall between adjusted 

GSMaP_MVK+ estimates (Left) and eight ground rainfall stations 

records (right) using IDW, an example from 2004 

 
 



 

 101

4 Discussion 

Drawing conclusions from two disparate datasets may improve the quality of 

the combined data. Due to the sparseness of the rain gauge networks, interpolated data 

often are biased by the interpolation algorithms. In some cases, the ground rainfall 

gauges reveal slight homogeneity of rainfall magnitudes but the spatial distributions 

are, in general, heterogeneous. Furthermore, the number of stations and the length of 

historical records affect both spatial and temporal correlation structures. The results of 

this study are in agreement with previous works which showed that the characteristic 

of rainfall in arid catchment varies in space and time (Abu-Zreig et al 2000; Lange et 

al 2000; Pilgrim et al 1988). Overall, GSMaP_MVK+ showed the best performance in 

comparison with other satellite products. This conclusion has been proven by several 

authors (Dinku et al., 2010a; Dinku et al., 2010b; Iwasaki, 2009; Ushio et al., 2009). 

The results of (Dinku et al 2010a; Dinku et al 2010b; Iwasaki 2009; Ushio et 

al 2009) motivated us to use the GSMaP_MVK+ in our study. Results of 

GSMaP_MVK+ were crosschecked against nine rain gauges observations assuming to 

represent reasonable and reliable point data. The compatibility between 

GSMaP_MVK+ and the ground rain gauges was limited to specific months. The over- 

or underestimation of the GSMaP_MVK+ in estimating rainfall in arid regions may 

be influenced by the following factors: 

a) The sensors detected the rainfall aloft, meaning the rain may have evaporated 

before reaching the ground (Dinku et al 2010a; Rosenfeld and Mintz 1988).  

b) The moving vector Kalman filter algorithm was developed for precipitation 

over the tropical and sub-tropical regions (Iwasaki 2009) using IR data as a 

means to move the precipitation estimates from microwave observation during 
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periods when microwave data are not available. Obviously this estimate does 

not work always properly in arid areas. 

c) The available GSMaP_MVK+ product was originally calibrated using ground 

based radar data located in tropical and sub-tropical regions of Japan, which 

may have different weather regime or covered by different cloud systems 

(Petty 2001) than in arid regions.  

d) An abrupt change in wind speed or wind direction below the cloud may have 

affected the rainfall area. A study conducted in Israel and Jordan by Sharon 

(1978) showed that the expansion of rainfall area may not be fully represented 

by point measurements. An increase of 10 km/h would constitute 12-15% of 

total rainfall. 

e) The rainfall duration varied from storm to storm. The rainfall storm over the 

study area was characterized by high rainfall intensity (Figure.B 16). This, 

however, might have occurred at the time when no satellite was overhead. 

f) Desert dust and other aerosols may suppress rainfall and alter cloud 

microphysical properties (Han et al 2008; Rosenfeld et al 2001). The desert 

dust above and in the cloud could have distorted the satellite measurements 

(Rosenfeld et al 2001). However, most of the previous related studies were 

usually based on homogenous water cloud models(Schutgens and Roebeling 

2009). 

Generally, there is no doubt that remote sensing capability to monitor rainfall 

is still under development and has -in particular- some weaknesses related to arid 

regions application. However, there are on-going projects to improve the correlation 

between Satellite based rainfall retrieval algorithms and the real rainfall magnitudes 

(e.g. The Wet-Net Precipitation Inter-comparison Project, and the NASA GPM 
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Project). As previously explained, it was seen that GSMaP_MVK+ over the Wadi 

Dhuliel arid catchment exhibited poor performance in compare with ground data. 

Therefore, developing a new framework to re-adjust the GSMaP_MVK+ data by 

means of ground data and standard interpolation techniques was logically necessary. 

This new concept has caught our attention in order to achieve a reasonable 

representation of the true rainfall distribution. 

 

 

Figure.B 16| The duration of a single storm event recorded at 10 minute 

intervals (25.12.2008) 

Precipitation in this area is very spotty in both time and space. The datasets in 

figure.B 16 were obtained from our station which was newly installed in the study 

area. In addition, global warming increases the rainfall variability and change the rain 

form at global and regional scales, moreover, might cause extreme events. A study 

made by Abushandi and Merkel (2011) showed that the study area received unusual 

snowstorm in 1990. This snowstorm might give an indicator of global warming 

crossing the Wadi Dhuliel arid catchment. Since rainfall is highly fluctuated in arid 
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regions, the rising of temperature gradients is pretty much obvious than the rainfall 

variability. However, studying the impact of climate change on rainfall variability 

from space requires longer period datasets. 

We are fully aware of the uncertainties associated with satellite derived 

rainfall maps and the original calibration from ground radar.  Therefore an adjustment 

process for GSMaP_MVK+ results was needed to achieve better match with ground 

observations in arid regions. Multiple linear regression analysis proved to be an 

appropriate technique using additional weather data. As expected, rainfall events 

showed higher intensities in the western parts, while eastern parts are characterized by 

lower rainfall rates.  

In some cases the rainfall distribution did not show the west-east gradient, as 

can be seen in the Appendix. This may be related to climatic and topographic 

variations. The high-resolution GSMaP_MVK+ dataset allowed us to evaluate and 

estimate the amount of rainfall in regions where no ground rainfall stations were 

available. Thus, the gridding interpolation method provided a qualitative view of the 

rainfall distribution. However, it is important to note that the interpolation technique 

explicitly derived new spatial values based on the number of present rain gauges, and, 

if the number of the gauges is limited, the unknown points may not be interpolated 

properly. 

Allowance for other weather variables such as radiation, evaporation, and 

would improve the accuracy of Global Satellite Mapping of Precipitation estimates. 

Furthermore, employing other satellite and aircraft observation for retrieving clouds 

properties may enhance our understanding of the microphysical impact of aerosols on 

water clouds. However, the quality of this rainfall analysis will be affected by paucity 

of data in the region. 
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In this study, an attempt was made to apply a multiple linear regression (MLR) 

model to derive the relationship between rainfall and GSMaP_MVK+ in conjunction 

with temperature, relative humidity, and wind speed. The application of MLR seems 

to do consistently well under varying time scales. Since there is a very limited number 

of studies on using MLR in arid region, these results will confidently let us apply the 

MLR model in further research. 

In a further research, a new framework of hydrological models application in 

arid catchment will be developed by integrating re-adjusted satellite derived rainfall 

dataset (GSMaP_MVK+) as an input dataset. 

 

5 Conclusion 

The climate in the Wadi Dhuliel area is characterized by high rainfall 

variability. Hence, it is difficult to estimate the spatial rainfall variability by a simple 

gridding method. Rainfall records from different rain gauges showed a complex 

rainfall regime in the area. Rainfall distribution in the Wadi Dhuliel varies with 

location mainly due to topographic variations as one move from semi-arid to arid 

regions. A Global Satellite Mapping of Precipitation dataset, currently known as 

GSMaP_MVK+ Version 4.8.4, was compared with eight rain gauge stations at 

monthly and annual time steps. The performance of GSMaP_MVK+ over arid regions 

in general and over the Wadi Dhuliel arid catchment in particular is limited and 

requires a re-adjustment process. The results showed how topographic variation can 

influence the rainfall distribution, especially in the northern part of the catchment. 

Higher rainfall rates in the western parts and the lower rainfall rates in eastern parts 

may explain the change in climate from arid area to desert area. Moreover, 
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aggregating hourly rain rate into coarser time step, daily and monthly, will contribute 

to more accurate rain estimation.  
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Abstract: 
The HEC-HMS and IHACRES rainfall runoff models were applied to simulate a 

single streamflow event in the Wadi Dhuliel arid catchment occurring on 

30./31.01.2008. The HEC-HMS model application was using the HEC-GeoHMS 

extension in ArcView 3.3. Streamflow estimation was performed on the basis of 

hourly scale. The aim of this study was to develop a new framework of rainfall-runoff 

model applications in arid catchment by integrating re-adjusted satellite derived 

rainfall dataset (GSMaP_MVK+) to determine the location of the rainfall storm. Each 

model has its own input data. HEC-HMS input data include soil type, land use/land 

cover , and slope. IHACRES input data sets include hourly rainfall and temperature. 

The model was calibrated and validated using observed stream flow data set collected 

at Al-Za’atari discharge station. The performance of IHACRES showed some 

weaknesses, while the flow comparison between the calibrated streamflow results fits 

well with the observed streamflow data in HEC-HMS model performance. The Nash-

Sutcliffe efficiency (Ef) for both models was 0.51, and 0.88 respectively. The 

application of HEC-HMS model is considered to be satisfactory. 

Keywords: HEC-HMS, GIS, Arid regoin, Jordan, Wadi Dhuliel SCS-CN method; 
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Introduction 
Poor availability of hydrologic studies for the Wadi Dhuliel arid catchment in the 

northern Jordan leads to miss planning and inadequate water recourses management 

strategies not only at the catchment scale but also for the entire Al Zarqa Basin. 

Implementation of storm water management is essential in the Wadi Dhuliel to 

increase water availability especially for agriculture and livestock sectors. However, 

most of the existing water monitoring projects in Jordan are evaluated as lacking 

comprehensive hydrologic data or accessibility. Based on this fact, there is a growing 

realization of the importance of water management in Jordan from both scientists and 

politicians during the last decade (Abushandi and Merkel 2011b). 

The water availability is the most vital factor controlling the economic growth 

in Jordan as a country based on agriculture and cropping (Figure.C 1). This situation 

drove the Jordanian government to implement new projects to provide Jordan with 

fresh water. The proposed Dead Sea - Red Sea canal project is one of these projects to 

produce hydro-energy, increase the level of Dead Sea to the state of 1960, and 

produce fresh water. The length of this channel would be about 325 km canal length 

(Beyth 2007; Hadadin et al 2010). The second proposed project is the exploitation of 

the Disi aquifer groundwater in the southern desert of Jordan by means of a 2000mm 

diameter pipeline with a length of 300 km to convey additional water (100×106 m3y-1) 

to Amman (Abu Qdais and Batayneh 2002). In addition, the government tries to 

enhance the use of treated wastewater for irrigation instead of groundwater. 

Moreover, water harvesting at the catchment scale is one of the solutions to increase 

water availability for agriculture (Abdulla et al 2002; Al-Adamat et al 2010; 

Alkhaddar et al 2005). 
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Figure.C 1 Water use percentage in Jordan (Hadadin et al 2010) 
 

The Wadi Dhuliel arid catchment shares general arid regions characteristics, 

which can be summarized by: 

(v) stream flow is characterized by flash flooding during high intensity rain 

events only, absence of base flow, and low flood frequency components, 

(vi) high evaporation rates, 

(vii) spatial rainfall distribution is highly localized (Wheater et al 1991) and the 

correlation coefficient of storm rainfall decreases more rapidly with 

distance (Osborn et al 1979), 

(viii) plant cover and organic matter are sparse (McIntyre and Al-Qurashi 2009; 

Pilgrim et al 1988). 

However, studying the complexity of hydrological process in arid region is 

basically based on understanding rainfall characteristics and watershed properties. 

The research community is facing challenges of applying rainfall runoff models in 

arid zone. The main challenge is the lack of monitored data (Pilgrim et al 1988) 

specially rainfall spatial distribution over the catchment area, because the rainfall is 



 

 114

the primary input in any hydrological model. This may force the researcher to 

minimize the research questions or will increase the model uncertainty. 

In hydrological modelling, conceptual-lumped rainfall runoff models usually 

require less input data than distributed models. However, a distributed rainfall runoff 

model may offer a better approach for flood hydrograph simulation in catchments 

characterized by the heterogeneity of rainfall distribution (Yu and Jeng 1997). 

Consequently, spatial rainfall dataset is required for a successful distributed rainfall 

runoff model analysis. In the present time, the availability of spatially distributed data 

sets such as Digital Elevation Model (DEM), Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+), and soil type allow the regionalization of model parameters. 

Additionally, the open access into rainfall data obtained from satellite-borne derive 

microwave radiometers is increasing the use of physically-based distributed models. 

It has been clearly stated the advantage of using Geographic Information 

System (GIS) in hydrological management by many researchers (Jayakrishnan et al 

2005; Martin et al 2005; Reinelt et al 1991). Efforts have also been made on 

integrating some of hydrological models with GIS environment. Most of these models 

are physically based distributed, e.g. HEC-HMS, SWAT, TOPMODEL, and WEPP 

model. This integration allows assessing and predicting the impact of watershed 

management practices (Arnold et al 1998a; Verma et al 2010; Wheater et al 1999; 

Zhang et al 2008). 

On other hand, lumped rainfall runoff models require less input data. 

Furthermore, the analysis can be performed much faster in Lumped model. The 

IHACRES rainfall-runoff model (Jakeman and Hornberger 1993) has been 

successfully applied to several climatic zones. 
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The Hydrologic Engineering Center-the Hydrologic Modeling System (HEC-

HMS) is a physically based distributed model, designed to simulate the rainfall-runoff 

processes of dendritic watershed systems (Scharffenberg and Fleming 2010). The 

model was developed by the US Army Corps of Engineers. HEC-HMS model has 

been widely applied for humid, tropical, sub tropical and arid watersheds to simulate 

and forecast stream flow. Previous studies on HEC-HMS proofed the ability of HEC-

HMS model to simulate and forecast stream flow based on different datasets and 

catchment types (Anderson et al 2002; Bournaski et al 2009; Chu and Steinman 2009; 

Cydzik and Hogue 2009; Knebl et al 2005; Yusop et al 2007). 

More closely, a study conducted by (Al-Abed et al 2005) on Al-Zarqa Basin 

using monthly streamflow proved that the HEC-HMS model gave more acceptable 

results than other models. In contrast, a study by Abushandi and Merkel (2011b) 

proved that the IHACRES rainfall-runoff model is applicable in the Jordanian arid 

areas. According to the obtained results, the IHACRES model was able to adequately 

simulate streamflow in arid catchments when applying the model on a storm event 

scale. In this context, it is important to note that the results quality depends on the 

chosen time interval. 

In this research paper, the IHACRES and HEC-HMS rainfall runoff models 

were selected for several reasons: (i) model availability and structure, (ii) data 

availability, and (iii) model applicability in arid catchments. The model IHACRES 

(Identification of unit Hydrograph And Component flows from Rainfall, Evaporation 

and Stream flow data) is a simple model, parametrically efficient, and statistically 

rigorous (Dye and Croke 2003). The IHACRES input requirements are only 

precipitation and temperature, and streamflow for calibration purpose. The second 

model, HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System), 
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requires inputs for the basin model, meteorologic model, and control specifications 

but then allows several different techniques to be used to model the rainfall-runoff 

process. 

To answer the question of what parameter levels will lead to a desired 

modelled output, the sensitivity analysis (SA) will be carried out to study the 

behaviour of modelled streamflow with respect to the change of parameter values. 

This method is useful for complex hydrological models that involve a large number of 

parameter (Liu and Sun 2010). In addition, it is particularly important for arid 

catchment to identify the local controlling parameters. 

The examination of these two models will based on the application into a 

single heavy rainstorm event that caused streamflow obtained from the Wadi Dhuliel 

sub-basin on 29./31.01.2008 by using hourly rainfall, temperature and streamflow 

data. The key issue of the paper is evaluating whether the distributed HEC-HMS 

model perform sufficiently better than the lumped IHACRES model. The objectives 

of this study are to (i) proof the ability of HEC-HMS and IHACRES rainfall-runoff 

models to simulate stream flow for the Wadi Dhuleil from a single storm event, (ii) 

parameterize the Wadi Dhuleil using a high resolution dataset including the Global 

Satellite Mapping of Precipitation (GSMaP_MVK+) and ASTER data, and finally 

(iii) correlate land activities to water variability through HEC-HMS model.  
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Materials and method 
Study area description and data analysis 

The Wadi Dhuliel arid catchment is located in the northeast part of Jordan as a 

major sub-basin of the Al-Zarqa Basin (Figure.C 2). The total area of the Wadi 

Dhuliel drainage network is around 2687 km2. The size of the area may differ slightly 

from one author to another basically because of the resolution of the DEM image used 

to determine the catchment area, the delineation method, and the software used for the 

catchment delineation. Al-Zarqa, a city of one million people, is located in the outlet 

section of the Wadi Dhuliel Sub-basin. The climate in the area is arid with an average 

rainfall of 123mm per annum. 

 

Figure.C 2 Location of the Wadi Dhuleil arid catchment area in Jordan (ASTER, 30m 

resolution, Map datum: WGS 84) 
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Land use and soil types 

The ecological infrastructure such as vegetation cover type, soil 

characteristics, plant and settlement densities affect the infiltration characteristics and 

influence the storage coefficient and runoff behaviour. Derived from Enhanced 

Landsat Thematic Mapper Plus (ETM+) imagery, the land use categories of the Wadi 

Dhuliel area were classified into six classes (Figure.C 3) ERDAS Imagine (V8.4) 

software was used to develop a land use supervised classification. This procedure was 

based on the Maximum Likelihood Classification method with training area based on 

ground survey and land cover maps (Table.C 1). The ground cover is largely 

cultivated area in the upstream of the catchment and contributes around 36.2% from 

the total area. Bare soil and settlements are the main surface cover in the downstream.  

 

 

Figure.C 3 Land use map of the Wadi Dhuleil (ETM+ 10.04.2005) 
 

Table.C 1 Land use features for each sub basin derived from ETM+ 10.04.2005 



 

 119

 Land use 

type  (%) 

 

Sub basin No. 

Orchard  Seasonal  

cultivation 

Bare soil High land Basalt Settlements 

1 1 11.8 0 66.2 0 21.2 

2 3.2 57.5 12.6 14.8 4.9 7.1 

3 1.2 44.1 27.7 0.1 17.1 9.7 

4 0.9 42 24.2 15.2 7.7 10 

5 1.1 43.5 28.6 0.6 17.2 9.0 

6 5.1 39.1 18.3 1.0 3.7 32.7 

7 0.4 27.4 31.9 1 31.3 8.0 

8 0.5 36.6 21.5 0 0 41.4 

9 1.6 37.5 17.3 0.2 10.9 32.6 

Basin total (%) 1.2 40.0 25.4 4.1 15.0 14.4 

 

Most of the soil types within the study area is classified as Aridisols and 

contains high amount of lime (Al-Qudah 2001) low gypsum and basalt in the subsoil 

and in the parent materials. Soil physical properties and it is relationship to soil 

moisture have important implications in water flow potential. Spatial soil physical 

properties data (e.g. sand, silt, and clay %) are obtained from the soil and terrain 

database, regional project (SOTER) developed by FAO and the International Soils 

References and Information Center (ISRIC) (Figure.C 4 and Table.C 2). Soil crusting 

most often occurs due to the high silt content in this type of soils 
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Figure.C 4 Soil classification maps based on ISRIC 
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Table.C 2 Soil Texture and percent composition (sand, silt, and clay) for each sub-basin 
 

Sub basin No.  Clay [%] Silt [%] Sand [%] Textural 

Triangle* 

 

1 17 42 41 Loam 

2 21 48 31 Loam 

3 24.2 55.7 20.1 Silt loam 

4 21 47 32 Loam 

5 21.25 47.25 31.5 Loam 

6 23.4 54.3 22.3 Silt loam 

7 19.8 49.6 30.6 Loam 

8 22 55 23 Silt loam 

9 22.7 55.7 21.6 Silt loam 

Average  21.4 50.5 28.1 Silt loam 

*Textural classification in various soil classes (Jackson 1965) 
 

The main wet season is between October and March, while the dry months are 

between April and September. Topographic data were generated from Advanced 

Spaceborne Thermal Emission and Reflection Radiometer images (ASTER), and 

show that the area is characterized by a gently undulating with an elevation varying 

from 460 m in the southwest to 1400 m in the north (Figure.C 5) with an average 

slope between 5-30%. The area is considered as the main source of agriculture in 

Jordan arid regions and groundwater is the main source of irrigation. Irrigation for 

agriculture in the Wadi Dhuliel taxes existing groundwater resources and strongly 

distorts hydrological features of this arid catchment. 
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Figure.C 5 The Wadi Dhuleil sub basins altitude (ASTER, 30 m resolution) and GSMaP_MVK points 
 

HEC-HMS model description 

The HEC-HMS can be used to simulate a single watershed or a system of multiple 

hydrologically connected watersheds. The first step in the application of HEC-HMS is 

to define the basin area and sub basins, a stream network, and diversions, junctions. 

As any physically based hydrologic model, HEC-HMS simulate most of the key 

hydrologic processes at watershed scale. The HEC-HMS model requires different 

datasets including Digital Elevation Model (DEM), weather data, soil type, and land 

use. A detailed map of land surface elevation was obtained from ASTER with 30 m 

resolution (Figure.C 5). A comprehensive description of all components in HEC-HMS 

can be found in the user manual (Scharffenberg and Fleming 2010). 

The Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) along with 

ArcHydro extension in ArcView was used to delineate the physical properties from 

ASTER data and generate a stream network. HEC-GeoHMS was also used to create 
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the input file in the form of sub-catchment boundaries, meteorologic model etc. for 

the use in HEC-HMS. Figure.C 6 is showing the output of HEC-GeoHMS with the 

basin being divided into 9 sub-catchments. The Sub-catchments characteristics are 

summarized in Table.C 3. 

 

Figure.C 6 HEC-GeoHMS generated the Wadi Dhuliel catchment (9 sub-catchments) 
 

Table.C 3 Sub-catchments characteristics 

Sub-catchment 

No. 

Area [km2] Mean Altitude

[m] 

Total Rainfall 

[mm]* 

Number of 

GSMaP Points 

1 96 1100 22.6 2 

2 508.2 825 26.8 3 

3 596.1 580 76.1 5 

4 258.7 735 17.7 1 

5 575.4 520 133.7 6 

6 84.01 490 50 2 

7 251.4 663 106.2 5 

8 189.46 605 19.7 1 

9 127.83 483 21.2 1 

*Rainfall for three days period derived from GSMaP_MVK+ (mm) 
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The HEC-HMS model includes three main components: basin model, 

meteorologic model, and control specifications. Basin model stores the physical 

datasets describing the catchment properties. Meteorologic model includes the 

precipitation; evapotranspiration and snowmelt data. Six different historical and 

synthetic precipitation methods, two evapotranspiration methods, and one snowmelt 

method are included. The time span of a simulation is controlled by control 

specifications including a starting date and time, ending date and time, and 

computation time step. However, the stream flow simulation requires carful 

identifications of each model. The loss rate model which has been used in this study is 

the Soil Conservation Service (SCS) Curve Number (CN) method to compute the 

volume of streamflow. The SCS-CN method accounts for most of the runoff 

producing watersheds characteristics such as soil type, land use, hydrologic condition, 

and antecedent moisture condition (Mishra and Singh 2004) using the following 

formula:  

SIP
IP

P
a

a
e +−

−
=

2)(
       Equation 1 

 

Where eP  is the accumulated rainfall excess at time t ( 0=eP if SP 2.0< ), P  

is the accumulated rainfall depth at time t, aI is the initial abstraction, S  is the 

potential maximum retention. 

The SCS developed an imperial relationship between aI  and S  as SI a λ= , 

where 2.0=λ , and then the equation 1 will be:  

SP
SPPe 8.0

)2.0( 2

+
−

=        Equation 2 

Where the parameter S is mapped to the curve number CN as 
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10)1000(
−=

CN
S         Equation 3 

 

The model of direct flow which includes the transformation of precipitation 

into surface runoff was accomplished by SCS Unit Hydrograph. Since the area has no 

base flow, the model of base flow was not used. Transform method requires a lag time 

determination as an input. The SCS developed a relationship between the time of 

concentration ( cT ) and the lag time ( lagT ). The time of concentration can be estimated 

based on subbasin characteristics including topography, length of the reach (Kirpich’s 

formula). 

clag TT 6.0=        Equation 4 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= 385.0

77.0

0078.0
S
LTc      Equation 5 

Where, L is the reach length in feet, and S is slope in %. 

 

IHACRES model description 

IHACRES is the abbreviation of Identification of unit Hydrograph And Component 

flows from Rainfall, Evaporation and Streamflow. IHACRES (Jakeman and 

Hornberger 1993; Jakeman et al 1990) is a hybrid conceptual-metric model, using the 

simplicity of the metric model to reduce the parameter uncertainty inherent in 

hydrological models (Croke and Jakeman 2004). The main objective of IHACRES is 

to characterize catchment-scale hydrological behavior using as few parameters, often 

about six parameters. The IHACRES model only requires three data sets (rainfall, 

temperature, and streamflow) per time unit. 
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The classic redesigned IHACRES version(Croke et al 2006; Jakeman and 

Hornberger 1993) has been used in this study. The original structure of IHACRES 

includes non-linear and linear modules. The non-linear loss module converts rainfall 

( kr ) into an effective rainfall ( ku ) by considering both the infiltration rate and 

evapotranspiration. In order to obtain the effective rainfall, a catchment wetness index 

or antecedent precipitation index, representing catchment saturation, is calculated for 

each time step. Usually, a non-linear loss module within IHACRES includes three 

parameters: c is the adjustment parameter, f is a temperature modulation parameter 

and )(constwτ  is the rate at which catchment wetness declines in the absence of rainfall. 

The initial stage is to determine the drying rate wτ , and the catchment moisture index 

kS at each time step, which is given by: 

fe kt
constww ××= − )20(

)(ττ        Equation 6 

where wτ  is the drying rate at each time step, )(constwτ  is the rate at which 

catchment wetness declines in the absence of rainfall, kt  is the temperature at time 

step k and f is a temperature modulation parameter (°C–1), which determines how 

wτ changes with temperature. 

Catchment wetness index kS  is computed for each time step on the basis of 

recent rainfall and temperature records. The loss module is used to account for the 

effect of antecedent weather conditions on the current status ( kS ) of soil moisture and 

vegetation conditions, and evapotranspiration effects. 

1
)(

)11( −×−+×= k
k

kk S
w

rcS
τ       Equation 7 
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where c is the adjustment parameter and controls the amount by which kS  is 

increasing by a rainfall event (Post and Jakeman 1999), kr  is the rainfall at time step 

k.  

Finally the effective rainfall ( kr ) in the model is given by: 

kkk sru ×=          Equation 8 

if 0〉× kk sr  

Since the study area is characterized by ephemeral streams with no runoff if 

there is no rainfall, computing effective rainfall if kr  is >0 for ephemeral streams can 

make equation (3) true, both physically and dimensionally. In the linear routing 

module, the effective rainfall is converted into streamflow ( kQ ). The linear model 

employs discrete-time intervals, transfer function and a representation of the Unit 

Hydrograph (UH). 

)()1()( δβα −− +−= kq
q
kq

q
k uQQ       Equation 9 

)()1()( δβα −− +−= ks
s
ks

s
k uQQ       Equation 10 

where s
mk

q QQ ,  are quick and slow streamflow components. Delta in the )( δku is 

the delay between rainfall and streamflow response. The parameters ),( sq αα are the 

recession rates for quick and slow storage, whereas the parameters ),( sq ββ  represent 

the fraction of effective rainfall. The UH of total streamflow is the total of both quick 

and slow flow UHs. 

Rainfall data 

The data set of single heavy rainstorm event that caused streamflow in the Wadi 

Dhuliel catchment was collected from the Surface Water Resources Unit at the Jordan 

Ministry of Water and Irrigation (JMWI). The only available climatic data from the 
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JMWI are based on a daily time resolution. However, the hourly data sets were 

obtained directly from the raw chart of Umm-Aljimal meteorological station 

(Figure.C 7). 

 

Figure.C 7 Rainfall bar chart for a single storm event in mm (Umm-Aljimal meteorological 

station, JMWI.)  

 
To overcome the problem of spatial rainfall dataset scarcity and ensure the 

uniformly distribution over the catchment area, re-adjusted satellite derived rainfall 

dataset known as the Global Satellite Mapping of Precipitation (GSMaP_MVK+) 

version 4.8.4 was used to determine the rain storm location. It has also been used to 

determine the ratio of rainfall in each sub-catchment. The GSMaP_MVK+ dataset of a 

heavy storm event in January 29-31 with 26 grid points covering the basin was used 

(Figure.C 8). 

The GSMaP project started in 2002 with support of the Japan Science and 

Technology Agency (Ushio et al 2009) to produce high resolution rainfall dataset. A 

frame from 31.95oN - 32.55oN and 36.15oE – 36.85oE was extracted from the 

GSMaP_MVK+ to cover the entire area Wadi Dhuliel catchment with 24 knots and a 
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spatial resolution of 10.8 km. To consider the spatial distribution of rainfall, standard 

Kriging interpolation (linear variogram) was used to calculate estimates for the 

representative area of each GSMaP_MVK+ pixel (Figure.C 8). Detailed information 

about GSMaP_MVK+ dataset processing and application for the Wadi Dhuliel are 

given by Abushandi and Merkel (2011b). Furthermore, the GSMaP_MVK+ datasets 

show that the highest magnitude of rainfall was during the first day of the storm 

(29.01.2008) (Figure.C 9). 

 

 

Figure.C 8 GSMaP_MVK+ estimates using standard Kriging interpolation for rain storm 

between 29-31.01.2008, and the average for this storm event respectively 

 



 

 130

 

Figure.C 9 Average rainfall rates from all GSMaP_MVK+ pixel values for the three 

days storm (29-31.01.2008) 

 

Streamflow data 

Generally, the runoff production in the Wadi Dhuleil arid catchment is totally 

different from one storm to another. Therefore, the capability of simulating individual 

storms is important for models to adequately capture hydrologic processes at different 

conditions. The rate of rainfall was found to be non-linearly related to streamflow on 

the rising limb of the stream hydrograph. 

The scarce streamflow gauging is common in the Wadi Dhuleil. Only one 

streamflow gauge exists in the Wadi Al-Za’atri (subbasin no. 3) with daily dataset 

covering limited periods. Hourly data can be extracted from the row charts. Due to the 

limitation of calibration and validation data, hourly streamflow data from Al-Za’atari 

gauging station was used to calibrate the HEC-HMS and IHACRES models. The 

objective of the model calibration is to match simulated streamflow volumes with the 
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observed ones. Flash flood hydrograph is generally sharp with timing between 3-24 

hours during and after the rain storm (Figure.C 10). 

 

Figure.C 10 Stream flow event in January 30-31, 2008, (Al-Za’atari Gauging Station, 

Jordan Ministry of Water and Irrigation) 

 
It is recognized that the stream flow volumes in the Wadi Dhuliel have recently very 

limited magnitudes and dramatically decreased over time. For example, in the years 

between October 1986 and February 1992, the average flood was 7.6 m3/Sec., while 

in the years between 2001 and 2008 was 1.2 m3/Sec. This might happen due to 

urbanization, increasing agricultural activity especially in the upper part of the 

catchment, and/or drought events. The runoff coefficient in the study area was 2.3% 

on average (Abushandi and Merkel 2011a). 

A single rainfall-runoff event dataset in 29-31.01.2008 was used to calibrate and 

validate HEC-HMS and IHACRES models. Parameter values were tested manually 

during the calibration processes to reach the best fit between observed and simulated 

values. This calibration was performed by applying different curve numbers in the 

HEC-HMS simulated model. 
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The HEC-HMS offers automated and manual calibration. In this study the automated 

calibration procedure was used. The Nash-Sutcliffe efficiency (Ef) was used to 

quantify the goodness-of-fit between modelled streamflow to observed records: 

∑
∑

−

−
−= 2
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qq

qq
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ii
f        Equation 11 

 

where iq  is observed streamflow, iq̂  is simulated streamflow and q  is the mean value 

of observed streamflow. 

The relative sensitivity analysis (R) was carried out using the following equation (Al-

Abed et al 2005):  

( ) ( )[ ]XFXFXYFYFYR /)12(//)12( −−=     Equation 12 

where FY1 is the output result for the original case, FY2 is the output result for the 

new parameter with specific change, FX1 is the original parameter value, and FX2 is 

the new parameter value with specific change. 
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Results and Discussion  
Based on the hydrologic soil groups (HSGs) and vegetation type, the CN value of 

each subbasin was determined (Table.C 4) 

Table.C 4 Soil Curve Number (CN) method parameters values for each sub basin 

Sub basin 

No.  

Curve 

Number 

Soil Type Land Use Description* 

1 89 Loam High land , settlements, and seasonal cultivation 

2 82 Loam Seaosnal cultivation, high land, and bare soil  

3 87 Silt loam Seasonal cultivation, bars soil, and baslat  

4 85 Loam Sesonal cultivation , bare soil, and high land  

5 86 Loam Sesonal cultivation, bare soil, and basalt  

6 87 Silt loam Sesonal cultivation, settlement, and bare soil,  

7 87 Loam Baslat, bare soil, and sesonal cultivation 

8 86 Silt loam Settelments, Sesonal cultivation, and bare soil  

9 88 Silt loam Sesonal cultivation, Settements and bare soil, 

basalt  

*only main land use cover is presented 
 

The Initial loss, Imperviousness, and the lag time of concentration have also 

been estimated based on subbasin characteristics including topography, length of the 

reach (Table.C 5) 
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Table.C 5 Transform model parameter values 

Sub basin 

No.  

Initial Loss 

[%] 

Imperviousness 

[%]  

Slope [%] Lag Time 

[h] 

1 24.7 21.2 25 3.5 

2 43.9 12 23 10.7 

3 29.9 26.8 21 7.4 

4 35.3 17.7 18 8.5 

5 32.6 26.2 15 6.8 

6 29.9 36.4 9 5 

7 29.9 41.4 17 9.3 

8 32.6 43.5 16 6.6 

9 27.3 29.4 5 8.1 

 

The hydrologic soil groups (HSG) classification reflects soil characteristics 

and the range of infiltration rates (Table.C 6). Based on this classification, the 

infiltration rate in the Wadi Dhuliel catchment was assigned to group C. 

Table.C 6 Summary of HSG characteristics (McCuen 1997) 

Group Minimum Infiltration Rate 
[mm/hr] 

Surface Runoff 
Potential  

A 7.6-11.4 Low 
B 3.8-7.6 Moderately low  
C 1.3-3.8 Moderately high 
D 0-1.3 High 

 

The shape of the simulated hydrograph is generally following the observed 

hydrograph in HEC-HMS Model (Figure.C 11), while the application of IHACRES to 

the same data sets showed some sever weaknesses and overestimation (Figure.C 12). 

Generally HEC-HMS, with few exceptions, tends to overestimate observed 

streamflow only slightly. Parameters for best fit of HEC-HMS are listed in Tables.C 4 

and 5, while best fit parameters of IHACRES are listed in Table.C 7. 
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Table.C 7 Optimized IHACRES parameter values 

C const)(wτ  F qα  qβ  sα  sβ  

0.00 40 0.15 –0.05 0.04 –1 0 

 

The relative sensitivity analysis was carried out by adjusting different parameter 

values in both HEC-HMS and IHACRES models for the subbasin no 3 (where the 

discharge station is located). After running the models repeatedly, the simulated 

streamflow results were compared with monitored values at each change of 

parameters. The most sensitive parameters in HEC-HMS model were the CN with an 

average of 2.7, while the imperviousness relative sensitivity value was 3.1. The 

results, however, showed sensitivity to input initial loss parameter (3.3). The rest of 

parameters in the HEC-HMS model showed a weak effect on the modeled outputs. In 

contrast, most of the IHACRES model parameters are having a strong influence on 

the modeled outputs except the adjustment parameter (c). The most sensitive 

parameter in IHACRES was qβ  (0.5) 

 

Figure.C 11 Wadi Dhuliel catchment observed vs. simulated streamflow hydrographs for the 

calibration 30-31/01/2008) using HEC-HMS 
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Figure.C 12 Wadi Dhuliel catchment observed vs. simulated streamflow hydrographs for the 

calibration 30-31/01/2008) using IHACRESl 

 
To estimate the goodness of fit between observed stream flow ( iq ) and 

modeled stream flow ( iq̂ ) was estimated using the Nash-Sutcliffe efficiency ( fE ). 

A good performance of HEC-HMS was obtained with fE  equal to 0.88, while fE was 

0.51 in IHACRES application. This, however, shows a poor performance of the 

IHACRES model on hourly basis application. The applications of HEC-HMS model 

is considered to be satisfactory. 

HEC-HMS and IHACRES are models widely applied for estimating 

streamflow. The major advantage of employing a GIS based approach in rainfall-

runoff modeling is the use of different land use patterns especially in regions with 

complex mix of land use features and different soil types. While the major advantage 

of using IHACRES is the minimal input data requirements. HEC-HMS and 

IHACRES models were applied in this study to calculate the streamflow volume in a 

single storm of the Wadi Dhuliel arid catchment. GSMaP_MVK+ dataset was used to 
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determine the rain storm location. However, it has also been used to quantify the 

amount of the rain in each subbasin. Estimated and observed streamflow volumes of a 

single event was close enough to assume the applicability of the HEC-HMS model 

approach for the region. However, this was not the case in IHACRES model 

performance. 
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