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Abstract

The work presented in this thesis mainly focuses on two subjects related to the application
of remote sensing data: (1) for land cover classification combining optical sensor, texture
features generated from spectral information and synthetic aperture radar (SAR) features,
and (2) to develop a non-destructive approach for above ground biomass (AGB) and forest
attributes estimation employing multi-source remote sensing data (i.e. optical data, SAR
backscatter) combined with in-situ data. Information provided by reliable land cover map is
useful for management of forest resources to support sustainable forest management,
whereas the generation of the non-destructive approach to model forest biophysical
properties (e.g. AGB and stem volume) is required to assess the forest resources more
efficiently and cost-effective, and coupled with remote sensing data the model can be
applied over large forest areas. This work considers study sites over tropical rain forest
landscape in Indonesia characterized by different successional stages and complex
vegetation structure including tropical peatland forests. The thesis begins with a brief
introduction and the state of the art explaining recent trends on monitoring and modeling of
forest resources using remote sensing data and approach. The research works on the
integration of spectral information and texture features for forest cover mapping is
presented subsequently, followed by development of a non-destructive approach for AGB
and forest parameters predictions and modeling. Ultimately, this work evaluates the
potential of mosaic SAR data for AGB modeling and the fusion of optical and SAR data for
peatlands discrimination. The results show that the inclusion of geostatistics texture
features improved the classification accuracy of optical Landsat ETM data. Moreover, the
fusion of SAR and optical data enhanced the peatlands discrimination over tropical peat
swamp forest. For forest stand parameters modeling, neural networks method resulted in
lower error estimate than standard multi-linear regression technique, and the combination
of non-destructive measurement (i.e. stem number) and remote sensing data improved the
model accuracy. The up scaling of stem volume and biomass estimates using Kriging method
and bi-temporal ETM image also provide favorable estimate results upon comparison with

the land cover map.



Zusammenfassung

Die in dieser Dissertation prasentierten Ergebnisse konzentrieren sich hauptsichlich auf
zwei Themen mit Bezug zur angewandten Fernerkundung: 1) Der Klassifizierung von
Oberflachenbedeckung basierend auf der Verkniipfung von optischen Sensoren,
Textureigenschaften erzeugt durch Spektraldaten und Synthetic-Aperture-Radar (SAR)
features und 2) die Entwicklung eines nichtdestruktiven Verfahrens zur Bestimmung
oberirdischer Biomasse (AGB) und weiterer Waldeigenschaften mittels multi-source
Fernerkundungsdaten (optische Daten, SAR Riickstreuung) sowie in-situ Daten. Eine
zuverldssige Karte der Landbedeckung dient der Unterstiitzung von nachhaltigem
Waldmanagement, wahrend eine nichtdestruktive Herangehensweise zur Modellierung von
biophysikalischen Waldeigenschaften (z.B. AGB und Stammvolumen) fiir eine effiziente und
kostengiinstige Beurteilung der Waldressourcen notwendig ist. Durch die Kopplung mit
Fernerkundungsdaten kann das Modell auf grofle Waldflachen iibertragen werden. Die
vorliegende Arbeit berlicksichtigt Untersuchungsgebiete im tropischen Regenwald
Indonesiens, welche durch verschiedene Regenerations- und Sukzessionsstadien sowie
komplexe Vegetationsstrukturen, inklusive tropischer Torfwéalder, gekennzeichnet sind. Am
Anfang der Arbeit werden in einer kurzen Einleitung der Stand der Forschung und die
neuesten Forschungstrends in der Uberwachung und Modellierung von Waldressourcen
mithilffe  von  Fernerkundungsdaten  dargestellt. = Anschlieffend werden die
Forschungsergebnisse der Kombination von Spektraleigenschaften und
Textureigenschaften zur Waldbedeckungskartierung erlautert. Desweiteren folgen
Ergebnisse zur Entwicklung eines nichtdestruktiven Ansatzes zur Vorhersage und
Modellierung von AGB und Waldeigenschaften, zur Auswertung von Mosaik- SAR Daten fiir
die Modellierung von AGB, sowie zur Fusion optischer mit SAR Daten fiir die Identifizierung
von Torfwaldern. Die Ergebnisse zeigen, dass die Einbeziehung von geostatistischen
Textureigenschaften die Genauigkeit der Klassifikation von optischen Landsat ETM Daten
gesteigert hat. Desweiteren fiihrte die Fusion von SAR und optischen Daten zu einer
Verbesserung der Unterscheidung zwischen Torfwaldern und tropischen Sumpfwaldern. Bei
der Modellierung der Waldparameter fiihrte die Neural-Network-Methode zu niedrigeren
Fehlerschiatzungen als die multiple Regressions. Die Kombination von nichtdestruktiven
Messungen (z.B. Stammzahl) und Fernerkundungsdaten fiihrte zu einer Steigerung der
Modellgenauigkeit. Die Hochskalierung des Stammvolumens und Schiatzungen der Biomasse
mithilfe von Kriging und bi-temporalen ETM Daten lieferten positive Schatzergebnisse im

Vergleich zur Landbedeckungskarte.
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Chapter 1

Introduction

ABSTRACT

The research presented in this thesis deals with the development of alternative approaches
to improve the classification accuracy of remotely sensed data and to propose an alternative
non-destructive approach for mapping of above ground biomass over tropical forest
landscape. This chapter introduces the background of the study, explaining tropical forest
disturbance and monitoring and deforestation in Indonesia and its impacts on carbon
storage. Also, research questions, scientific challenges and objectives, materials and
methods used for the study, description of the study areas, motivations behind the present

study, and a thesis outline are briefly explained.

Keywords: introduction, background, research questions, scientific challenge, objectives,

materials and methods



1.1 Tropical forest disturbance and monitoring

Forest is a specific territory of ecosystems and consists of vegetation formation with a
continuous canopy of trees (FAO, 2003). Forest ecosystems are distinguished depending on
the dominant vegetation type, stand structure, climate, soil type, and topography. Based on
the local climate forest ecosystems may be divided as tropical, boreal and temperate forests.
In the last two decades, tropical forest is the most severely degraded and deforested
compared to other forest ecosystems, mainly due to anthropogenic factors and natural
hazards. Tropical rainforests belong to the most heterogeneous ecosystems and exhibit the
highest biodiversity in the world, comprising more than half of all the world plant and
animal species (Butler, 2006). Although the tropical rainforests cover only less than 6% of
land surface on the earth, they play an important role for the global carbon cycle, as tropical
rainforests store 30% of all terrestrial carbon (up to 200 Mg/ha) and sequester about 12 Mg
C/ha per year, i.e. 22% of all carbon fixed on Earth. Carbon dioxide is released from forest
ecosystems during decomposition process or when the forest is disturbed or destroyed,
either due to natural hazards or human activities. Tropical forest ecosystems recently have
been severely devastated, mainly due to excessive forest encroachments, such as timber
harvesting, conversion to agricultural land and settlement area, and exploitation of non-

timber forest resource (Collins et al., 1991).

Monitoring of forest resources is essential to assess their carrying capacity and to observe
the dynamics of forest cover changes. Mapping of forest cover is an ultimate way to assess
forest cover changes and to study the forest resource within a period of time (Wijaya et al,,
2008b). Estimation of forest biophysical parameters, such as stand volume and woody
biomass is also important for forest inventory and management and for scientific purposes

(Parresol, 1999).

1.2 Deforestation in Indonesia and its Impacts on Carbon Storage

Indonesia possesses one of the largest tropical forests after the Amazonian in Brazil and the
tropical rainforest of the Republic of Congo, representing 10% of the remaining tropical
forests in the world (FWI/GFW, 2002). With total terrestrial areas of 187.9 million hectares,
the Indonesian Ministry of Forestry (MoF) noted that 133.7 million hectares or more than
70% areas were designated as forests (MoF, 2006). These do not include inland water
ecosystems which cover 3.4 million hectares. Tropical forests in Indonesia support very
high biodiversity and are considered among the richest ecosystems in the world. More than

16% of the entire world’s bird species, 11% of plant species, and 10% of all mammals are



found in the Indonesian tropical forests. Among the unique species found in this region are

the endangered species orangutan and Sumatran tiger.

Compared to other South East Asian countries, Indonesia has the highest deforestation rate,
and this is of major local and global concern (MoF, 2002). We noted that about 1.87 million
ha/year of Indonesian forests were deforested from 1985 to 1997. This situation worsened
during a severe drought event of El Nino in 1997 - 1998 causing sporadic and devastating
fires in most tropical rainforests in South East Asian region, especially in Indonesia (Page et
al,, 2002). After the El Nino drought event in 1998, the government updated the database
recording forest losses in five main islands of Indonesia, and reported that deforestation
rate from 2000 - 2005 was over 1 million ha/year, whereas in 2002 - 2003 the

deforestation rate reached more than 1.9 million ha (Fig. 1.1).
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Fig. 1.1 Deforestation rate in five major islands of Indonesia from 1985 - 2005 (MoF, 2006)

Deforestation, peat degradation and forest fires are major contributors of carbon emissions
in Indonesia (Sari et al., 2007). The amount of carbon released from deforestation and forest
fires is five times greater than that of the non forestry sector, and the number of carbon
released from the forestry sector has made Indonesia as one of the top five carbon emitters
in the world (Sari et al.,, 2007). Of about 19 billion tons of terrestrial carbon stocks (80% of
all terrestrial carbon) in Indonesia are stored in the forested lands, and a single devastated
forest fire, such as El Nino event in 1997, had released 0.19 - 0.23 Gt (1 Gigaton = 1 billion
tons) of carbon to the atmosphere only from peatland forests (Page et al., 2002). If this

number was extrapolated for the entire country, 0.81-2.57 Gt of carbons or equal to 13-40%
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of mean annual global carbon emission from fossil fuels were liberated in 1997 (Hoekman,

2007).

We consider it as scientifically challenging and desirable to develop accurate and adequate
means of forest cover mapping and modeling the forest biophysical parameters, such as
biomass, over larger areas. The research proposed here aims at the development of remote
sensing and geographical information systems, which are relevant for the mapping of forest
cover and the estimation of forest biophysical parameters. The application of remote
sensing data is the only possible way for effectively and efficiently extracting this

information over large areas.

1.3 Research Questions

Several research questions are to be answered in this present work and explained as

follows.

1. Which texture features are useful to improve the classification accuracy over tropical
forest landscape?

2. How can multi-source remote sensing coupled with in situ data improve the assessment
of above ground biomass (AGB)?

3. Which types of remotely sensed data and vegetation indices are important for the
modeling of the AGB?

4. How do land cover changes affect the dynamics of forest biomass?

5. How can AGB changes be estimated using bi-temporal satellite data? What is the
predictive ability of linear regression method as compared to a non-parametric neural
network model?

6. Which features generated from Synthetic Aperture Radar (SAR) data are more
important to assess the biomass? How accurate is the estimated biomass model?

7. How does the combination of Landsat ETM sensor and SAR data improve the

classification of peatland forest?

1.4 Scientific Challenge and Objectives

The objectives of this thesis are:

1. To briefly review already published approaches for the mapping of forest cover and
modeling of forest parameters, above ground biomass (AGB) in particular, defining the
limitations of these approaches and identifying possibilities for innovation in mapping

the forest biomass distribution.



2. To investigate the possibility of combining texture data with Landsat ETM data for
improving the accuracy of land cover classification in complex forest landscape.

3. To develop a non-destructive approach to model the spatial distribution of above
ground biomass applying the spectral information and vegetation indices, modeled
using neural networks method and kriging interpolation technique.

4. To develop a model to estimate the above ground biomass (AGB) using Landsat ETM
data, vegetation indices, and digital elevation models (DEM), and to study the possibility
to assess the AGB from a bi-temporal dataset.

5. To investigate the potential of mosaic ALOS Palsar data for AGB modeling and to study
the possibility for mapping the AGB over larger forest regions.

6. To combine the Landsat ETM data and SAR data for land cover classification in tropical
lowland- and peatland forests, and to assess the drawbacks of the data combination.

7. To make an integrated assessment of the complexity of deforestation and forest
degradation in relation to the forest cover dynamics and the modeling of the AGB over a

tropical forest environment.

1.5 Materials and Method

This thesis is generally divided into two main topics: (1) land cover classification in complex
forest landscape using optical data and geostatistics texture features and (2) estimation of
biophysical forest parameters employing optical data and synthetic aperture radar (SAR)
image. Besides, a land cover map, precipitation data and digital elevation models were also

collected as additional information (Tab. 1.1).

The Landsat ETM data preprocessing was conducted beforehand. Corrections of
atmospheric and topographic effects were carried out using a standard method explained in
Chapter 3. The SRTM DEM was resampled into a 30 m resolution to fit with the ETM data.
The topographical map, land use map, and SAR data were georeferenced with the ETM data
and projected into UTM coordinate system and WGS84 datum. Descriptions of the satellite
data corrections, image preparation, filtering, classification technique, and the modeling of

biophysical parameters from RS data are briefly explained further in each chapter.



Tab. 1.1 Materials of the study

Data type Acquisition date Path/Row Spatial Season Description
resolution
Landsat ETM 31 May 2003 117/59 30 m Beginning of dry Clear atmosphere, with almost no
season clouds
Landsat ETM 26 August 2000 117/59 30 m Dry season Hazy conditions, some clouds persist
Mosaic ALOS Palsar 2006 - 2008 50 m Image preprocessing was conducted
by JAXA
SRTM DEM 117/59 90 m Downloaded from USGS website
TerraSAR X data 13 March 2008 6.5m Mid wet season Single Look Sland Range Complex

Land use/land cover
map of Kalimantan

Peatlands map of
Kalimantan
Precipitation data

Forest inventory data

Field work data

Ground truth data

2002

2004

April 1997
March 1998
September 2004

March 2007

(SSC) image, dual-polarization (HH
and VV)

Generated from 1:50,000 topography
map and observation on the ETM
data (National Surveying Agency of
Indonesia)

Provided by Wetlands International -
Indonesia Programme

Obtained Indonesian
meteorological and  Geophysics
organization (Badan Metereologi dan
Geofisika/BMG)

from

Circular sampling plot, data was
collected in transect.

Circular sampling plot, data was
collected based on purposive
sampling

Collecting additional ground truth
data




1.6 The Study Areas

1.6.1 Labanan concession forest (study site 1)

Chapter 3, 4, 5 and 6 of this thesis consider the Labanan concession forest in Berau District,
East Kalimantan Province, Indonesia. The concession area consists of mostly logged
over/secondary forests mixed with some primary forest patches (Fig. 1.2). Several research

projects have been conducted in this forest concession.

Silvicultural Techniques for the Regeneration of logged over forest in East Kalimantan
(STREK) Project, a cooperation between the Center of International Cooperation in
Agronomic Research for Development (CIRAD) and the Indonesian Ministry of Forestry
(MoF) was conducted from 1989 to 1996 to develop silvicultural and management rules for
sustainable forest productivity (Fauzi, 2001). Berau Forest Management Project (BFMP)
was established from 1996 to 2002 as a cooperation between the European Union and the
MOF of Indonesia continuing the related research to support sustainable forest management
(BFMP, 1997).The Ministry of Forestry gave a special status to Labanan concession in 1999
as a research forest, which was then certified by ISO 14001 in 2001. Currently, design and
development of an effective monitoring and certification system to support sustainable
management of production forest in Indonesia (known as the MONCER project) is operating.
This project aims to design and to implement a practical, purpose-oriented, effective and
efficient forest certification system for supporting a monitoring system of sustainable forest

management (Widayat, 2005).

The study area is geographically situated along the equator at the coordinates of 1°45’ to
2°10’ N, and 116°55 to 117°20’ E and has a size of 83,240 hectares, of which 54,567 ha are
production forests, 26,997 ha are limited production forests, and 1,676 ha are non-
production forests (Fig. 1.3). According to Provincial land use planning (Rencana tata ruang
wilayah propinsi: RTRWP), 81,564 ha were allocated for forest areas (kawasan budidaya
hutan) and 1,676 ha were allocated for non-forest areas (kawasan budidaya non-

kehutanan) (Wijaya et al., 2005).

The forest area is mainly situated on inland of coastal swamps and consists of undulating to
rolling landforms with isolated masses of highly and high mountain (BFMP, 1997). The
lowland landscape is derived from sediments, mudstone, siltstone, sandstone and gravel,

laid down in the Miocene and Pliocene periods, and recent alluvial deposits.



(b)

Fig. 1.2 Logging roads along logged over secondary tropical forest in the Labanan concession
(a) and left over timber from illegal forest harvesting caused wide gaps on forest canopies
(b) (Photos by Yohanes Budi Sulistioadi)
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Fig. 1.3 Two study areas in tropical forests of Kalimantan, Central Indonesia, showing
Labanan concession forest, a typical lowland dipterocarp forest in Indonesia (study site 1)
and Tanjung Puting national park which comprises of tropical peatlands and swamp forests
(study site 2) (Color figures is a composite of Landsat ETM image band 5, 4 and 3 in RGB
channels)



Significant erosion has developed a landscape which is relatively low lying, but broken.
Relative relief is seldom more than 50 m, although the elevation reaches almost 500 m
above sea level in the hills to the west of the Labanan concession. Wetlands are not
particularly important in the Labanan area with only limited swampy areas along the Segah
and Kelai rivers. Soils are generally well drained, red clayey and highly leached, i.e. poor in
nutrients, tropudults or paleudults (red-yellow podzolics in the Indonesian classification),
but with a relatively high silt and fine sand content. The soils are highly erosion prone. Land
slides are common on road cuttings and on steeper uncleared land. Slopes in the region are
generally rolling to steep and very steep in places, though slope lengths are not often long.
Selective felling of the natural forest with reforestation of degraded areas is the best use for

most of the forested land (Mantel, 1998).
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Fig. 1.4 Annual precipitation rate in the Labanan concession forest (source: Indonesian
meteorological and Geophysics organization, 2007)

The climate is wet tropics with rainfall ranging from 1800-2000 mm per year on average at
Tanjung Redeb (capital of Berau municipality), but rising rapidly inland to almost 3000 mm
(BFMP, 1997). The months of June to October are drier; the wettest months are from
November through to February. No months receive less than 30 mm on average, though
extended dry spells do occur they are not annual or regular (Sist and Nguyen-Thé, 2002).
The average annual and monthly precipitation rates in the Labanan concession are 1840
mm and 51 mm, respectively (Fig. 1.4). Temperatures are between 23 - 33 degrees Celsius

with a long term average of 26 degrees Celsius. Relative humidity is 91% or higher and
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winds seldom exceed 9 km/hour. The forest is a mixed lowland dipterocarp forest with
Shorea, Dipterocarpus and Vatica as the predominant genera in the pristine forest followed

by the Euphorbiaceae family (BFMP, 1997).

1.6.2 Tanjung Puting national park (study site 2)

Chapter 7 of this thesis considers another study area over peatland forests in Central
Kalimantan Province. The Borneo is actually the third largest island in the world that is
comprised of Malaysian and Brunei Darussalam territories and for the most part the
Indonesian provinces of Kalimantan. The Kalimantan is approximately 543,900 km2 or 73%
of Borneo and has a population of 11.3 million (Hecker, 2005). The Indonesian Borneo is
divided into four provinces: Kalimantan Barat (West Kalimantan), Kalimantan Tengah
(Central Kalimantan), Kalimantan Selatan (South Kalimantan), and Kalimantan Timur (East

Kalimantan).

Peatland forests in Central Kalimantan are one of the few regions in the world, where
unique and valuable tropical peatlands can be found. A peat layer of up to 20 meters deep
mostly covers this area of more than 1 million hectares of peatlands in this province
(Wetlands International, 2007). Unfortunately, a large portion of the peatlands is severely
degraded and only small peat swamp forests remain. Nowadays, the degraded peatlands
which were used for agriculture, industrial plantations, and settlements, are mostly
abandoned. As a consequence, these areas continuously suffered from major forest fires and

river floods (Wetlands International, 2007).

This study considers the Southern part of Central Kalimantan province, which is one of the
most problematic areas in terms of peatland degradation in SE Asia (van Beukering et al,,
2008). The study site includes Tanjung Puting National Park, which has a total size of 400
thousand hectares and is mostly dominated by tropical heath forest, peat swamp forest and
mangrove forest (Fig. 1.5). This national park is recognized as one of the world biosphere
reserves by the United Nations and forms the largest protected peat swamp forests in the SE
Asia. It is situated between 2°35’ - 3°20’ South and 111°50’ - 112°15’ East (Fig. 1.3) (Susilo,
1997). The national park has been highly degraded and deforested at an alarming rate,
mainly due to illegal forest harvesting, opening of agricultural lands, and conversion to palm

oil plantations.

1.7 Motivations

A considerable amount of research has been done in improving the accuracy of land cover

classification and the modeling of biophysical properties over forested regions using remote
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sensing data and approaches. Nevertheless, the following encourages this study which
mainly has an ultimate goal to enrich scientific knowledge and references of this particular

subject.
Transferability problem of available biomass models

Transferability of biomass model developed in tropical forest environments and estimated
from remote sensing data is rather limited (Foody et al., 2003). This is because the allometric
biomass models generated from a particular forest landscape cannot be easily applied for
another forest region. We, therefore, are encouraged to generate the biomass model which is
suitable for tropical forest environment in Indonesia, as well as to compare its performance

with the existing model estimated from other forest regions.

To develop an alternative approach in combining optical and microwave sensors for land

cover classification

Data fusion is the seamless integration of data from distinctive sources. Optical and
microwave RS are complementary to each other as their characteristics are different. Optical
data basically measures the physical properties of ground objects, whereas the SAR data
provides more information about geometric properties of the objects (Lillesand and Kiefer,
1994). Moreover, the capability of microwave data to penetrate the atmosphere under

virtually all conditions can also give an advantage for the fused data.

The fusion of both data can be based on pixel-level or feature-level image fusion. Pixel-level
image fusion combines pixel by pixel of the reflectance of optical images and radar
backscatter to generate the fused image, which has more information about object features
(Wu and Chen, 2007). Feature-level image fusion on the other hand, is conducted by
combining both sensors in the classification processes employing the neural networks
method (Kuplich, 2006), or by linking the optical and SAR data classification results
applying Dempster-Shafer evidence theory (Wu and Chen, 2007). Another alternative is to
fuse optical and microwave sensors using a Bayesian approach which jointly uses the
classification results of individual sensors to improve class labeling using statistical
measures (Venkataraman et al., 2004). The fusion of optical and SAR data has recently been
of great interest for land cover classification because SAR data are widely available, and due
to the fact that the data fusion is promising resulting in more accurate information of the

classified image.
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Fig. 1.5 Peatland forest in Central Kalimantan Province (a) and destruction of peatlands due
to forest clear cutting (b) (source: www.mongabay.com)
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To enrich scientific studies on biomass over another tropical rainforests environment beside

the Amazon

A great number of studies, as exhibited in Tab. 1.1, has been conducted in the tropical forest
of the Amazon, and only few studies were carried out in another tropical forest landscapes,
such as in Indonesia. The forested lands in this region were heavily deforested at an alarming
rate and greatly devastated especially after the severe El Nino drought and mass forest fires
in the 1990’s (Stibig and Malingreau, 2003). Few references are found conducting forest
biomass studies in the South East Asia region especially those implementing remote sensing
data (Foody et al, 2001). We found even fewer studies conducting field measurement

approach for estimating forest biomass in Indonesia (Samalca, 2007).

This motivates us to undertake this study in order to enrich the knowledge and scientific
references on biomass estimation and modeling over tropical forest regions, especially in

Indonesia.

1.8 Thesis Outline

In chapter 2, the state of the art of research is briefly presented. A literature review of some
recent publications on land cover classification is presented first, followed by a review of
different image classification techniques applied in remote sensing. The review on forest
biomass monitoring and assessment is explained afterwards, followed by some recent
studies on the retrieval of forest biomass using remote sensing approaches. Finally, the

issues of biomass model transferability and model accuracy are reviewed.

Chapter 3 of this thesis focuses on the classification of Landsat ETM data and geostatistical
texture features to increase the classification accuracy of complex land cover mapping. We
compared the conventional maximum likelihood method, support vector machine (SVM)
classification, and neural networks algorithm. Different variations of the texture features

were tested to find the best input combination for the classification.

The study proposing a non-destructive method for estimating above ground biomass (AGB)
from remote sensing is presented in chapter 4. Landsat ETM data combined with number of
stems are used to model the AGB using neural networks algorithm and kriging method. The

estimation is compared with recent studies and the results are discussed.

Chapter 5 presents the utility of remote sensing, GIS and field observation data to model
AGB and stem volume, as well as their changes over time. Ancillary data from the Landsat
ETM bands reflectance, e.g. vegetation indices, PCA bands and GLCM texture, are generated

and used for the modeling. Two land cover maps are generated from the Landsat ETM 2000
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and 2003 to predict the AGB over different forest classes. The biomass level and its changes

over time are then estimated.

In chapter 6, the quantification of forest parameters in different successional forest stages is
investigated. This information is useful for understanding the relationship between different
regenerating stages and ecosystem changes. For the modeling of forest attributes, the
multiple linear regression technique and neural networks approaches were used and
compared. A possibility to estimate the forest attributes from bitemporal Landsat ETM data
was conducted by normalizing the second Landsat ETM data using the multivariate

alteration detection (MAD) method.

The retrieval of AGB and stem volume from SAR data is experimented in chapter 7, where
mosaic ALOS Palsar data is employed to model both forest properties. The radar backscatter
and their ratios are used to model the forest properties employing non-linear models. The

results are discussed afterwards.

Integration of SAR backscatter and optical data for peatlands classification is presented in
chapter 8. The TerraSAR X data and Landsat ETM data are used to discriminate peatlands in
tropical swamp forest of Central Kalimantan. Discriminant analysis is used to select the
input data which are useful for the classification. Using a maximum likelihood classification
technique, the fusion of SAR and Landsat ETM data is conducted and the accuracy is

assessed using confusion matrices.
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Chapter 2

State of the Art of Research

ABSTRACT

This chapter presents a brief review on the application of remote sensing data approaches
for land cover mapping and forest parameters modeling and estimation. It begins with a
brief description on land cover classification using remote sensing data and approaches,
followed by a description of image classification techniques. Subsequently, reviews on
tropical forest biomass monitoring and assessment are explained. Some theoretical and
practical definitions of biomass are also described, including the definition of biomass used
for this particular study. Furthermore, references related to the retrieval of forest biomass
using remote sensing data and the limitation of biomass model transferability and issues on

the model accuracy are presented.

Keywords: image classification techniques, model transferability, forest, land cover

classification, remote sensing, biomass
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The topics of land use, land use change and forestry (LULUCF) have become more critical
issue for Indonesian rainforests for over the last two decades, since a large number of
forests in the country has been severely degraded, deforested, and/or converted into
another land use, such as for cultivation, urban areas, mining areas, etc. Forest management
practices for supporting sustainable forest management greatly depend on the development
of new methods and techniques based on scientific approaches. The importance of remote
sensing data for forest inventory and management has increased since the conclusion of the
first meeting related to global change issues, which was mainly encouraged by the
discussions on carbon emissions explaining a huge number of mature tropical forests
conversion into different landscape and/or various secondary forest stages (Ramankutty et
al, 2007). This chapter explains the state of the art of the research of remote sensing
applications, mainly focusing on land cover classification and biomass modeling and

estimation.

2.1 Land Cover Classification using Remote Sensing

Provision of accurate information on land use/land cover requires an accurate land cover
map, mainly generated from the interpretation and classification of remote sensing data.
Remote sensing and digital image processing research have produced many approaches to
multi-spectral land cover classification over the last two decades, with major differences in

accuracies attributed to both training methods and classification algorithms (Yool, 1998).

Optical sensors, e.g. Landsat data, are probably the most popular sensors for land cover
classification because the data has relatively high temporal resolution and is widely
available. Wide variations of spatial resolutions, e.g. 15m (ASTER), 30m (Landsat), 250m
and 500m (MODIS), and 1km (AVHRR), have also given flexibility to the data applicability.
Upon image corrections and preprocessing, the classification employing these data are
relatively straightforward, and the complexity of the classification procedure greatly
depends on the selected classification algorithm and methods. Spectral information
(normalized digital number or DN) of the satellite data is usually used as input for the

classification (Wijaya et al., 2008b).

Vegetation indices (VI's) are commonly used as an additional input of spectral data to
increase the discrimination of different forest classes or forest disturbances. Phenological
changes of different tree species were captured using the conjunction of Landsat MSS and
TM data, normalized difference greenness index (NDGI), and normalized difference
vegetation index (NDVI) (Wolter et al., 1995). The indices, which can be generated from

single bands, band ratios, vegetation indices and multivariate components of the Landsat
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data, are also useful to assess burn severity due to forest fires (Epting et al., 2005). Despite
of its advantage, the sensitivity of vegetation indices is rather limited to some wavelength
windows, such as red or near infra red bands, and the saturation problem which commonly

occurs for some VI's also reduces their applications (Huete et al., 1997).

In addition to spectral information, the utility of spatial information in the form of texture
features may also be useful for the image classification. The inclusion of texture information
involves the information from neighboring pixels which is important to characterize the
identified objects or regions of interest in an image (Haralick et al., 1973). The texture data
is particularly important if the classification involves no dominant distinct object (i.e. object
with particular shape or boundary) and spatial correlation of neighboring pixels of that
particular object forms similar texture variation (Jakomulska and Clarke, 2001). This study
experimented with the classification of texture layers generated using geostatistics
approach, as demonstrated in several recent studies (Chica-Olmo and Abarca-Hernandez,
2000; Miranda and Carr, 1994; Miranda et al., 1998; Zhang et al., 2004). These studies found
that the classification accuracy is notably improved when the geostatistics texture layers
were used as additional input for spectral data classification. Additionally, the inclusion of

texture features calculated from fractal dimension is also experimented in the present study.

Application of synthetic aperture radar (SAR) data for land cover classification is greatly
encouraged by the problem of optical data particularly in humid and tropical regions due to
the presence of persistent clouds (Salas et al., 2002). The utility of multi-wavelength SAR
data was demonstrated by Kuplich et al. (2005) combining JERS-1, SIR-C and XSAR and
optical bands from Landsat TM for discriminating regenerating forest stages in the tropical
Amazon. Classification of flooded and upland vegetation in tropical forest landscape was
also conducted with success using L-band JERS-1 data (Miranda et al., 1998). Recent
generation of ALOS Palsar data has been planned to cover global tropical forest
environments to frequently map the forest cover over these regions. This is initiated by the
Kyoto and Carbon Initiative Project and fully supported by JAXA, the provider of ALOS
Palsar data (Rosengvist et al., 2008). However, the great challenge in remote sensing study
recently is to combine optical and microwave (i.e. SAR data) sensors for improving the
classification accuracy and to generate better visual characteristics of the classified image
(Lu, 2006). Attempts to combine optical and SAR data are also experimented in the present
study, combining both sensors for the classification of peatlands in tropical swamp forest

and to discriminate forest regenerating stages in a tropical lowland forest regime.
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2.2 Image Classification Techniques

Multispectral image classifications are basically attempts for finding patterns in the spectral
response in relation to land cover groups known to be present. The thematic map describing
forest characteristics is often the goal of an image classification in a forestry context
(Wulder, 1998). Image classifications label pixels into classes, or categories, based on
distinctive patterns of digital numbers (DN value). The classification procedures are
normally grouped either as supervised or unsupervised. For more accurate information, a
supervised classification is recommended as it involves field observation data and the
classification has a strong basis on a priori knowledge of land cover over a study area

(Lillesand and Kiefer, 1994).

The most popular method for image classification is the maximum likelihood approach. This
approach is a statistical decision rule method that examines the probability of a pixel in
relation to each class with assignment of the pixel to the class with the highest probability
(Jensen, 1996). It has an underlying assumption of a normal distribution to the data within

each class and may be biased with unequally sized training classes.

Another approach which needs no assumption on data distribution is the neural networks
method. Neural networks are essentially learning systems based on interconnected
networks of simple processing elements (Rumelhart et al, 1986), and when applied for
image classification this method is concerned with the transformation of data from feature
space to class space. The wide application of neural networks in remote sensing is due
mainly to their ability to perform more accurately than other techniques such as statistical
classifiers, particularly when the feature space is complex and the source data has different
statistical distributions (Atkinson and Tatnall, 1997). Various neural network types have
been widely studied and explored in remote sensing studies mainly for satellite image
classification. Feed forward back-propagation neural network is probably among the most
popular neural network approaches applied for the classification of multi-source remote
sensing data (Kanellopoulos and Wilkinson, 1997). This particular neural network is proven
effectively to enhance the classification of forest regenerating stages (Liu et al, 2005),
although the training algorithm is relatively time consuming and sometimes fails to find the
optimum solution (Ardo et al., 1997). More effective learning algorithms are explored to
reduce the network training, like combining Kalman filter and conjugate gradient methods
in training the network (Canty, 2009; Marpu et al., 2008). The development of an automatic
mapping of land cover classification using fuzzy ARTMAP neural networks by finding the
minimal number of recognition categories to meet the accuracy criteria was also studied

(Carpenter et al., 1997). The possibility to increase the spatial resolution of a land cover map
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at sub pixel level by combining the information from the land cover proportion data and

fused imagery was explored by Tatem et al. (2001).

Another non-parametric classification approach is support vector machine (SVM) which is
based on statistical learning theory (Vapnik, 2000). The learning theory was developed for
solving pattern recognition problems. The SVM, originally introduced by Vapnik (1999) is a
classification and regression technique which is now widely used in very different fields,
including remote sensing (He et al., 2005). Recent remote sensing studies evaluated the
performance of the SVM for land cover classification and compared the results with more
popular classification techniques, like maximum likelihood and neural networks
classification (Hahn et al., 2007; Huang et al., 2002; Pal and Mather, 2005). Those studies
show that SVM has the potential to increase classification accuracy. This study, moreover,
applies the SVM for image classification in the tropical rainforest landscape combining
Landsat ETM data and texture information generated from geostatistics and fractal
dimension algorithm (Wijaya and Gloaguen, 2007b; Wijaya et al.,, 2008b). In general, the
SVM method is relatively faster than standard neural networks classification. However, the
main challenge of this method is to select ground truth data which optimize class

separability from the predefined hyperplane.

2.3 Tropical Forest Biomass Monitoring and Assessment

Assessment of forest biomass has two major objectives: (1) for resource use and (2) for
environmental management (Parresol, 1999). The first objective implies that to determine
how much fuel wood or timber available for use is important as we need to know how much
biomass is available at any given time. In environmental management, biomass quantification
is important to assess the productivity and sustainability of forests. Biomass and its
temporal changes is also an important indicator for carbon sequestration estimation. For this
purpose, we need to know how much biomass is lost or accumulated over time. Since over
50% of the forest dry biomass is carbon, the amount of carbon sequestered can be inferred
from the biomass change (Losi et al, 2003). The Kyoto protocol requires transparent
reporting of forest removal and accumulation (biomass change). This implies we need the
development of precise procedures to quantify forest biomass, which generally can be
divided into above ground- and below ground biomass. Above ground biomass (AGB)
consists of all living and dead biomass above the soil including stem, stump, branches, bark,
foliage and seeds or fruits. The below ground biomass consists of all living and dead roots.
Fine roots of less than (suggested) 2 mm diameter are excluded because these often cannot

be distinguished empirically from soil organic matter or litter (FAO, 2004).
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There are three approaches to mapping biomass in forest areas, which are field
measurement, remote sensing, and GIS-based approaches (Lu, 2006). Field measurement is
considered to be accurate but proves to be very costly and time consuming as destructive
sampling is required (De Gier, 2003). While the GIS approach is not widely studied so far, the
remote sensing approach has become an efficient and popular technique for many ecological
studies, including for biomass assessment taking into account the launching of several new
sensors into space with more sophisticated technology (e.g. increased temporal, spectral and
spatial resolutions). Recent remote sensing studies have explored the potential of optical
satellite (Foody and Cox, 1994; Houghton et al., 2001; Lu et al., 2004), LIDAR data (Lefsky et
al., 2002), or radar data (Austin et al., 2003; Rauste, 2005) for estimating forest biomass.
Those studies as well as other references on forest biomass, however, mostly addressed

tropical rainforests of the Amazon (Houghton et al., 2001).

Tab. 2.1 shows the state of research on biomass estimation in the tropics which is relevant to
the present work. As mentioned before, these studies mostly focused on the regenerating-
and secondary forests in tropical forest of the Amazon. The applications of moderate
resolution of Landsat TM data are widely implemented in these studies. Although more
accurate remote sensing data (e.g. Laser scanner (Lidar) or polarimetric Synthetic Aperture
Radar (SAR) data) may improve the accuracy of biomass estimation of the forest regions, low
temporal resolution and limited coverage of the data, which usually cover only very small
portions of test sites, have restricted broader applications of these data, particularly in the

tropical forest landscape.

2.4 Definition of Biomass

Biomass is generally defined as organic materials produced by plants, such as leaves, roots,
seeds, and stalks. In some cases, microbes and animals are also included as biomass
(Ashton, 2006). Ecology studies, however, have described biomass as the mass of living

biological organisms in a given habitat or ecosystem at a given time.

Biomass can refer to species biomass, which is the mass of one or more species, or to
community biomass, which is the mass of all species in the community. It can also include
microorganisms, plants or animals (McNaught and A.Wilkinson, 1997). In this study,
biomass is defined in a more specific manner, which is the total amount of above ground
living organic matter in trees, expressed as oven-dry weight per unit area. This definition
also refers to biomass density when expressed as mass per unit area, e.g. Mega gram

(Mg)/ha (Brown, 1997).
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Tab. 2.1 Recent studies on forest biomass assessment

AGB Estimate Study Area Forest Type Climate/Topography Methodology/Instruments Data Used Reference
Altamira: 140+130 Mg.ha'! Eastern Brazilian Secondary forest - Rainfall 2000-3000 mm Remote Sensing (RS) approach - TM Landsat TM (Luetal,
Bragantina: 100+90 Mg.ha! Amazon: different Mixture of flat and rugged bands, vegetation indices, band ratios, 2004)
Pedras: 120+110 Mg.ha! Altamira, Pedras, successional terrains. The elevation image transform (e.g.  Principal

and Bragantina vegetation stages ranges from 50 - 300 m component analysis, Tasseled cap)
285+57 Mg.ha't Rondonia State, Moist forest - Annual rainfall 2300 mm Allometric equation based on Field measurement (Brownetal,
Southwestern dominated with Topography: flat to  destructive sampling approach data 1995)
Brazilian Amazon open forest, some undulating
palms and lianas Elevation: 80 - 140 m
Brazil: 72 and 76 Mg.ha! Bolivia and Brazil = Regenerating - RS approach - TM band 3,4,5 validated Landsat TM (Steininger,
Bolivia: ranged from 24 - secondary forest with allometric equations 2000)
134 Mg.hat
Estimate: 225 - 486 Mg.ha! Rondonia State, Open moist tropical Annual rainfall 2600 mm Stem volume - AGB equation and Field data (Salesetal,
SD: 62 - 202 Mg.hat Southwestern forest Topography: flat to  Kriging method (RADAMBRASIL 2007)
Brazil undulating database)
Elevation: 80 - 140 m
20 - 160 Mg.ha't Luquillo Mountainous - RS approach - Normalized Difference Landsat MSS and TM, (Saderetal,
Mountains, tropical forest - early Vegetation Index (NDVI) Thematic Mapper 1989)
Puerto Rico successional Forest Simulator, airborne
multispectral scanner
Regenerating forest: 15 - 157  Manaus and Mainly regenerating - RS approach - radar backscatter () and JERS-1 SAR image with  (Kuplich etal,,
Mg.ha! Tapajos forests, forests with some GLCM  texture based allometric Lband 2005)
Mature forest: 387 Mg.ha'! Brazil mature forest equations

Moisture gradient
regenerating forests: 4 - 310
Mg.ha'!

Brazil: 76 - 421 Mg.hat
Thailand: 29 -329 Mg.ha'!
Malaysia: 65 -639 Mg.ha!

Sungai Wain:
Mg.ha'!

Mawas: 20 - 350 Mg.ha'!

up to 400

Hawaii Volcanoes
National Park

Manaus (Brazil),

Danum Valey
(Malaysia) and
Khun Khong
(Thailand)

Mawas and
Sungai Wain,
Kalimantan,
Indonesia

patches and pasture

Mixture of two tiered
wet forest, single tier
mesic forest, open
woodland and very
scattered woodland

Brazil: dense tropical
forest, Malaysia and
Thailand: logged
over forests

Tropical lowland
dipterocarp and peat
swamp forests

Rainfall 1270 - 2540 mm

Annual rainfall: >2000 mm
Topography: flat to
undulating

RS approach - multi polarization (HH,
HV, VV) radar backscatter (o) and
polynomial regression model

RS approach - vegetation indices,
complex band ratios complemented with
multi-linear regression and neural
networks method

RS approach - Random Volume over
Ground (RVoG) model and inversion of
dual-polarization model

NASA/JPL Airsar data
with C, L, and P band

Landsat TM

Airborne  multi-band
(C, L, P, X band) and
multi-polarization
(Polinsar) data

(Imhoff, 1995)

(Foody et al.,
2003)

(Hajnsek et al.,
2009)
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The terms of dry weight biomass is used here to distinguish from the fresh weight biomass
prior to removal of water contents. while the term of above ground biomass (AGB) is
applied to differentiate from below ground biomass (BGB) that contains of all living roots

over 2 mm in diameter (Ravindranath and Ostwald, 2007).

The AGB of many ecosystems accounts for about 70 - 80% of total biomass and acts as an
important carbon pool for many vegetation types and land use systems (Ravindranath and
Ostwald, 2007). Replanting of degraded land leads to continual accumulation of AGB
whereas any disturbance to vegetated areas leads to loss of the AGB. Therefore, it is
important to study this pool for most carbon mitigation as well as other land-based projects.
Estimation of stock changes in the AGB is also necessary for greenhouse gas inventory at
national level for different land use categories such as forest lands, cropland and grassland.
This present study presents methods of estimating and monitoring above ground biomass
from remotely sensed data and GIS combined with field measurement data by developing an

alternative, non-destructive approach of AGB estimation.

2.5 Retrieval of Forest Biomass using RS Data

Retrieval of forest stand properties, such as biomass, from remote sensing data means that
the forest properties are modeled using spectral information from the satellite data, and the
predicted results are then validated using a set of field observation data. The applicability of
remote sensing data for environmental studies is growing rapidly since the issues of global
warming and accelerated carbon emission rate have become of major concern around the

globe (UNFCCC, 1992).

Forest biomass assessments have greatly benefited owing to the availability of optical
sensors, especially Landsat data (Tab. 2.1). The wide application of this particular sensor is
due to its spatial and temporal resolution and wide coverage area. Application of the
Landsat data for biomass estimation is relatively straightforward and the model complexity
mostly depends on the selected regression model. Additionally, ancillary data (e.g.
vegetation indices, simple ratios, image transforms, etc) to increase the estimation accuracy
can be easily generated from the multi-spectral bands and fused together with the spectral

information (Lu et al., 2004).

Vegetation indices generated from the multispectral bands are sensitive to characterize
green vegetation/forested regions from other objects on the ground (Jensen, 1996). In
vegetated regions, the cells in plant leaves are very effective scatterers of light because of
the high contrast in the index of refraction between the water-rich cell contents and the

intercellular air spaces. Vegetation is very dark in the visible bands (400-700 nm) because
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of the high absorption of pigments which occur in leaves (chlorophyll, protochlorophyll,
xanthophyll, etc.). There is a slight increase in reflectivity around 550 nm (visible green
band) because the pigments are least absorptive. In the spectral range of 700-1300 nm
plants are very bright because this is the spectral range of electronic transitions, providing
absorption in the visible and molecular vibrations that absorb in longer wavelengths. There
is no strong absorption in this spectral range, but the plant scatters strongly. From 1300 nm
to about 2500 nm vegetation is relatively dark, primarily because of the absorption by leaf
water. Cellulose, lignin, and other plant materials are also absorbed in this spectral range

(Lillesand and Kiefer, 1994).

The main problem of modeling forest biomass using Landsat data is the saturation of
vegetation indices at higher biomass density, as reported in previous studies (Lu, 2005;
Steininger, 2000). Various factors might cause the saturation of the Landsat data, e.g. high
variability and complex structure of forest attributes and limited range of vegetation indices
(Lu, 2006). Evaluation of input data variations for modeling the biomass, combining spectral
data, vegetation indices, simple ratios, and image transformation generated from the
Landsat data, digital elevation model (DEM), and field observation data are explored in this
work. We propose to model above ground biomass (AGB) using a non-destructive approach

regardless of destructive tree sample collection.

On the other side, microwave remote sensing allows the provision of additional information
measured from the ground objects, since they are insensitive to the cloud-free daylight
conditions for image acquisition. Application of SAR data for mapping of forest properties
has already been widely applied (Fransson and Israelsson, 1999; Hajnsek et al., 2005; Isola
and Cloude, 2001; Kuplich et al., 2005; Luckman et al., 1996). Besides, empirical models of
microwave instrument data are known to be very sensitive to the density, shape, length,
dielectric properties, and orientation of the scatterers (Kingsley and Quegan, 1992). The X-
band (2.4 - 3.75 cm) SAR data is useful for terrain mapping and for discriminating the top
canopy of vegetated land. Some studies showed that the utility of single polarization C-band
data (3.75 - 7.5 cm) may bring some limitations for distinguishing biomass in regenerating
forests and deforested areas, because the radar backscatter becomes insensitive especially if

the soil is dry and the influence of water is minimized (Saatchi et al., 1997).

In contrast, L-band SAR data (15 - 30cm) showed good ability for modeling the forest
parameters under dense vegetation (Luckman et al,, 1997; Rauste, 2005). The capability of
L-band radar backscatter to penetrate through the forest canopy makes this data useful for

mapping the forest structure, including above ground biomass (AGB) estimation (Luckman
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et al,, 1997). Recent studies confirmed that the empirical AGB model generated from the L-
band radar backscatter provides favorable estimation results, especially if the data has dual-
polarization configuration. Using dual polarimetry SAR data the backscatter signal is more
sensitive to forest biomass and forest structure because of tree trunk scattering thus
showing some discrimination between different forest succession stages (Ranson et al.,
1997; Rignot et al., 1997; Saatchi et al., 1997). Similar to vegetation indices generated from
optical RS data, the biomass estimation from radar backscattering is also limited up to a
certain biomass level due to saturation problems. The backscatter saturation limits are
dependent on the geometry of data acquisition, the polarization compositions, the
wavelength, and the complexity of vegetation structure. These values may vary from 20 - 40
Mg/ha at C-band to close to 100 Mg/ha at L-band (Imhoff, 1995). However, in very dense
tropical rain forests it is common to find biomass over 300 Mg/ha which is far beyond the

suggested saturation limit.

The use of polarimetry SAR interferometry (Polinsar) data is an alternative approach to
estimate AGB from stem volume more accurately. The coherence of interferometry SAR data
is used to generate a digital surface model, which is used as a basis to estimate tree height.
Using random volume over ground inversion model the tree volume is estimated, thus
above ground biomass is predicted using allometric models (Hajnsek et al., 2009; Mette et
al, 2003). The estimation of biomass using this approach could eliminate the saturation
problem, but to accurately model tree height from coherence values is somehow
problematic, since to optimize the interferometry coherence one has to deal with the

minimization of the baseline and temporal decorrelation of the image pairs.

Some studies have mentioned that the individual use of SAR data does not provide complete
information for land cover classification and the extraction of forest biophysical parameters,
and additional information can be provided if a microwave sensor is combined with optical
data (Kuplich, 2006; Rauste, 2005; Rignot et al., 1997). These authors found that fusion of
both sensors increased the discrimination of different forest regenerating stages. The
classification procedures combining microwave and optical sensors are yet under
development and remain a great challenge for remote sensing studies (Lu, 2006). Here, we
are experimenting with the combination of both sensors for characterizing different classes

on tropical forests landscape and peatland forests.

2.6 Biomass Model Transferability and Issues on the Model Accuracy
Foody (2003) found that the transferability of biomass models over different forest regions

are limited not only due to forest structure and vegetation composition differences, but also
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uncertainties of remotely sensed data that can arise from data handling and preprocessing.
The issues on model transferability also occur for the application of multi-temporal datasets
over the same forest regions, caused by different spectral data characteristics and
disturbance from haze and atmospheric aerosols. Lu (2006) mentioned that the accuracy of
estimated AGB in boreal forests was around 9%. However, Sales et al. (2007) obtained
around 30 - 40% of error estimate for the AGB estimated in the tropical Amazonian forests.
The uncertainty on biomass modeling and the issues of model transferability have
encouraged us to conduct the present study to assess the proper knowledge on the biomass
modeling and to evaluate the biomass estimation over complex vegetated landscape of
tropical humid forests. The combination of optical sensor (i.e. Landsat data), texture features

and vegetation indices for AGB estimation is considered in this study.
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Chapter 3

Study of Geostatistics Texture Features
for Complex Land Cover Mapping

ABSTRACT

Provision of accurate information from land cover maps derived using remote sensing data
can effectively support sustainable forest management. Land cover maps were mostly
classified using per pixel or spectral data. This approach ignored the potential of useful
spatial information from proximate pixels. Although the benefits of spatial information have
been greatly explored, there have been limited attempts to enhance image classification
combining spectral and spatial information. This study aims to explore the potential of
spatial texture variability for the classification of complex land cover. Band 5 and 4 of
Landsat ETM image were selected as primary and secondary predictors for the estimation of
Geostatistics texture features. We used semivariogram, madogram, rodogram, pseudo-cross
variogram and pseudo-cross madogram in calculating the texture. Another texture features
generated from fractal dimension was also estimated. Support Vector Machine (SVM), Back-
propagation Neural Network and Maximum Likelihood Classification (MLC) methods were
applied to classify the spectral data of Landsat ETM image and the texture features. The
accuracy assessment obtained that spatial information provided from the texture features
improved the accuracy of spectral data classification. This study recommended rodogram,
madogram and fractal dimension texure features as useful ancillary data for spectral data

classification.

Keywords: geostatistics, texture features, land cover classification, SVM, MLC, neural network,

fractal

* This chapter is based on:
Wijaya, A., P.R. Marpu and R. Gloaguen (2008). Geostatistical Texture Classification of Tropical
Rainforest in Indonesia. Quality in Spatial Data Mining. Editor: Stein, A., Shi, S. and Bijker, W. CRC
Book Series, pp. 199 - 210.
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3.1 Introduction

Mapping of land cover is an ultimate way to assess changes on forest cover and to study
forest resource dynamics within a range of time. Forest encroachments have been hardly
reduced due to excessive human exploitation of forest resources. In the last two decades,
forest degradation and deforestation in tropical regions occur at an alarming rate. Tropical
forests in Indonesia are also under serious threats, mainly due to anthropogenic factors.
Regular monitoring on forest cover and its changes is important to support the objectives of
sustainable forest management. The provision of accurate and updated land cover information
over the forested lands may support these objectives. Accurate classification of satellite data
can efficiently and rapidly monitor huge forest areas at relatively low cost. Interpretations of
satellite image data usually take into account per pixel classification rather than correlation
with its neighboring pixels. In this study, we propose geostatistics approach that considers
spatial variability among neighboring pixels (Jakomulska and Clarke, 2001; Wijaya et al.,
2007). Geostatistics and the theory of regionalized variables were introduced to remote
sensing by Woodcock et al. (1988). The application of geostatistics texture feature for remote
sensing study has been made popular by several studies (Miranda and Carr, 1994; Miranda et

al,, 1998; Miranda et al.,, 1996; Miranda et al., 1992).

This work contributes to provide alternative texture features estimated using multivariate
geostatistics and fractal dimension. Another objective was to combine textures features and
spectral data for satellite image classification comparing Maximum likelihood classification
(MLC), Support Vector Machine (SVM) and Multi Layer Perceptron Neural Network (MLP-
NN) methods. We also identified the texture features that were useful for the classification
of tropical forests with complex vegetation structure. Texture in this work is defined as a
representation of the digital number (DN) values variation in an satellite image, which
provides important information about the structural arrangements of the image objects and
their relationship to the environment (Chica-Olmo and Abarca-Hernandez, 2000). This work
was greatly encouraged by the following factors: (1) texture features providing extra
information should improve the classification results; (2) image classification over forest
regions where no dominant distinct objects (i.e. objects with particular shape or boundary)
were exist can benefit from the additional information provided by the texture variation;
and (3) provided similar spectral values, the texture arrangement of these values was
distinguishable so that the use of texture feature should improve the classification accuracy

(Asner et al,, 2002; Kayitakire et al., 2006; Wijaya et al., 2007).

Estimation of geostatistics texture information considers spatial correlation of a single pixel with

respect to its neighboring pixels (Chica-Olmo and Abarca-Hernandez, 2000). In the case of
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supervised classification, texture estimates should take into account spatial variability of
training data and the relation of which with their neighboring pixels. This means, in a satellite
image, variations of similar adjacent DN values which represent certain types of land cover
should be first recognized before texture data are estimated. The information on this spatial
variation was used to select the size of moving window for calculating geostatistics texture data.
Upon selection, geostatistics texture data were calculated using univariate spatial variability
measures (i.e. semivariogram, madogram, rodogram, and fractal dimension) and multivariate

measures (i.e. pseudo-cross semivariogram and pseudo-cross madogram).

3.2 Satellite Image Preprocessing

3.2.1 Atmospheric correction approaches

This study used a 30 m resolution Landsat 7 ETM+ image acquired on May 31, 2003. The
image was geometrically corrected using 30 ground control points and resampled using
nearest neighborhood algorithm to minimize image histogram changes. The root mean
square error was maintained below one pixel resulting in an accurate orthorectified image.
For atmospheric corrections of the ETM data several approaches are available. Some are
relatively straightforward while others are complex, being founded on physical principles
and requiring a significant amount of information to function properly (Jensen, 1996). In
general, there are two types of atmospheric corrections, which are absolute and relative
corrections. Absolute atmospheric correction converts digital number (DN) values into
surface reflectance, while relative correction converts DN values of multi temporal satellite
images to the same reflectance regardless the actual condition may be on the ground (Song

etal, 2001).

Absolute correction of the image data for the effects of atmospheric propagation can be
carried out in essentially three ways. Physically based methods attempt to model the
atmospheric scattering and absorption on image data based on computer modeling, or so-
called Radiative Transfer Modeling. Two best known methods applying the physical based
correction are LOWTRAN and MODTRAN (Cooley et al., 2002). The second approach to
atmospheric correction of satellite imagery is based on calibration against targets of known
reflectance (Rees, 2001). These targets can be artificially constructed or naturally occurring,
but their reflectance should be accurate and sufficient, and the availability of well-
distributed sensor calibrators within the corrected image scene is necessary. Finally, the
simplest, and most widely applied method of atmospheric correction is based on dark pixel
subtraction or dark object subtraction (DOS) (Chavez Jr., 1996). This approach assumes that

in every image scene dark objects are exist, thus the radiometric correction can be done by
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subtracting the pixel values of dark object from all pixels in the image scene. Using DOS
technique only the atmospheric effects caused by atmospheric scattering is corrected,
because this method does not model a complex atmospheric absorption effect in its
equation (Lu et al., 2004). Another assumption that should exist is that the earth surface
should be a Lambertian surface, i.e. a surface which reflects radiated radiance equally in all

directions.

The selection of atmospheric and radiometric corrections to the image data depends upon
the application and the accuracy of corrected reflectance needed for the purpose of the
study. While physically based method may be the most accurate means of correcting for
atmospheric effects such a method requires information on atmospheric properties that are
typically unavailable. Therefore, simple methods are often quite effective for atmospheric
correction of remote sensing data (Foody et al., 2003; Schroeder et al., 2006; Song et al,,

2001).

3.2.2 Radiometric calibration and topographic corrections methods

Radiometric calibration is a multi-step process that involves the use of standard equations
to convert 8-bit satellite-quantized calibrated digital numbers (DN) to at-satellite

reflectance. Landsat 7 images were converted to at-satellite radiance using Eq. 3.1,

Lege = ((Lmaxsy; — Lming,,)/(DNmax — DNmin)) X (DN — DNmin) Eq.3.1

+ Lming,,

where Lmaxq is band-specific spectral radiance scaled to DNmax (W m-2 sr-! um-1), Lming is
band-specific spectral radiance scaled to DNmin (W m2 sr! um-), DNmax is maximum
quantized calibrated digital number (255), and DNmin is minimum quantized calibrated
digital number (0 for LPGS data, 1 for NLAPS and EOS data). Equation 3.1 accounts for gain
state (i.e. high/low settings) by using respective published Lmax and Lmin values as

published in Landsat 7 Science Data User Handbook (Landsat Project Science Office, 1998).

Converting to at-satellite radiance, each Landsat band was converted into top-of-
atmosphere reflectance (prg4) using following equation (Lu et al., 2004),

m.d?. Legs

Proa = E

sun-cos(e) Eq 3.2
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where d? is square of the earth-sun distance in astronomical units (Au) that can be found in
Landsat 7 Science Data User Handbook (Landsat Project Science Office, 1998), Eqn is mean

solar exo-atmospheric irradiance (W m-2 um-1), and @ is sun zenith angle.

The conversion from at-satellite radiance to top of atmosphere reflectance is known as
partial correction case since by definition this value does not remove atmospheric effects

due to atmospheric scattering.

For absolute atmospheric correction case, the at-satellite radiance is converted to surface
reflectance (p), assuming a uniform Lambertian surface under cloudless condition, using

following formula (Chavez Jr., 1996; Schroeder et al., 2006),

m.d?% (Lsqe — L)
Ty (Esyn-c0s(0).T, + Egown)

p= Eq. 3.3

where Lp is path radiance (W m2 sr-! pm-1) or so-called haze layer (Chavez Jr., 1988), T, is
atmospheric transmittance from the target toward the sensor, T, is atmospheric
transmittance in the illumination direction, and Egown is downwelling diffuse irradiance (W
m2 um-1). The output of atmospheric correction is the percentage of surface reflectance.
There are different variations of DOS technique according to a study conducted by Song et
al. (2001). This study initially adopted two variations of DOS technique, which are DOS1 and
DOS2. We found afterward that DOS2 has better correction result in terms of the spectral
response of corrected image in relation with the actual spectral of vegetation types. Thus,

hereafter the satellite image was corrected using DOS2 technique.

In flat terrain condition, illumination effects due to local zenith angle is minor, but in rugged
terrain areas due to different topographic position this effects is noteworthy and thus
topographic effects should be corrected even if the areas are directly illuminated by the sun
(Mather, 2004). Topographic effect causes a high variation in the reflectance response for
similar vegetation types; shaded areas show less than expected reflectance, whereas in

sunny areas the effect is the opposite (Riafio et al., 2003).

One way to correct topographic effects is by assigning the Digital Elevation Model (DEM) of
the area. The DEM should be firstly geo-referenced in the same coordinate system as the
satellite image to be corrected and the DEM should also be of a scale that is close to that of
the satellite image, so that the slope angle and aspect can be derived for each pixel position

of the satellite image. Thus, the DEM is also used to compute the incident angle (y;), defined
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as the angle between the normal to the ground and the sun rays (Riafio et al.,, 2003). The y;

parameters varies from -1.0 to +1.0, and are computed as:

cosy; = cos 6, cos 8, + sin 8, sin 6, cos (B, — D) Eq.3.4

where 6, is the slope angle; 6, is the solar zenith angle; @, is the solar azimuth angle; and

@, is the aspect angle; each angle should firstly be converted into radian.

Thus, the incident angle was estimated for the whole image and the topographic correction
can be carried out using available methods. A simple method to correct terrain slope in
areas that receive direct solar illumination is simply to adopt Lambertian assumption (i.e. a
surface reflects radiation in a diffuse fashion, so that it appears equally bright from all
feasible observation angles). Instead of applying terrain correction with Lambertian
assumption, this study is more cautious of diffuse irradiance since most rugged terrains
basically have a non-Lambertian behavior. This non-Lambertian correction models include
Minnaert correction (Minnaert, 1941), which is probably the most popular empirical
method for computing a complicated Bidirectional Reflectance Distribution Function
(BRDF) of rugged terrain areas. This study however implemented another empirical-
statistical method assuming a linear correlation between the reflectance of each satellite

band and the incident angle cosine (cos y;) as (Teillet et al.,, 1982)

pr = bx +my - cosy; Eg.3.5

where my, is the slope of the regression line for band k. The by, is considered constant for the
entire image, being the intercept in the regression equation. A variation of this empirical
approach is called the C-correction method (Teillet et al., 1982), and the correction of the

reflectance under an inclined surface (pr) is defined as

cos 0, + (by/my)
cos y; + (b /my)

Pu = Pr Eq.3.6

where 6, is the solar zenith angle, and py is the reflectance of a horizontal surface.
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Fig. 3.1 Spectral responses of multispectral bands Landsat ETM data for different land cover
types (band 6 in the plot represents far infra red band of ETM band 7). The relative
reflectance values clearly show the effects of atmospheric attenuations in partially corrected
image (top of atmosphere reflectance profiles) as compared to surface reflectance profiles



3.2.3 Spectral profiles and histogram of the Landsat ETM image

We collected spectral sample of calibrated image, partially corrected image (i.e. top of
atmosphere (TOA) reflectance), and uncorrected images from different forest
physiognomies, namely mature forests, very dense forests, dense forests, riparian forests

and shrubs, as presented in Fig. 3.1.

The band 6 in the horizontal axis of Fig. 3.1 refers to the ETM band 7, as we plotted only the
ETM multispectral bands (ETM band 1 - 5, and band 7). Comparing those spectral
responses, we obtained that the DN value was simply a number scaled from 0 - 255 showing
the brightness of different objects on the earth surface, therefore, it could not be directly
compared, both with TOA reflectance and surface reflectance. The spectral profiles of
atmospherically corrected image in all forested lands and bare soil classes expressed similar
patterns, which were lower values at visual bands (ETM band 1, 2, 3) and higher values at
infrared bands (ETM band 4, 5, and 7). The spectral profile of each land cover type shows
that the partially corrected image is yet affected by atmospheric attenuations. These effects,
which are more prominent for visual bands, are mainly caused by atmospheric scattering
and haze. The atmospheric corrections using DOS technique greatly reduced the attenuation
effects and yielded more favorable image for remote sensing analysis. The infrared bands
(ETM band 4, 5, and 7) on the other hand, are less sensitive to the atmospheric effects
because the reflectance values of partially corrected and atmospherically corrected images
were slightly different. Non-vegetated areas, i.e. bare soils and water body, are less sensitive
to the atmospheric effects, yet the radiometric calibration improved the spectral profiles of

both land cover classes.

The histograms of uncorrected ETM data, the atmospheric corrections using DOS and
MODTRAN methods were calculated and compared (Fig. 3.2). The DN values of the
uncorrected image confirmed that ETM band 1, 2 and 3 mostly suffered from the
atmospheric attenuations. Physical-based atmospheric corrections based on MODTRAN
method, normalized the surface reflectance from 0 - 10,000 (for 0.0 to 1.0 interval),
corrected these effects accurately. This method considered not only the atmospheric
scattering and haze in the corrections, but also the atmospheric absorption. Unfortunately,
the result could not be validated, due to the absence of measured spectral values on the
ground. The histograms of MODTRAN method and DOS technique were compared, and each
ETM band showed respectively similar data distribution, only the reflectance of the earlier
method were about two times of the latter. Limitations of DOS approach for correcting the
atmospheric scattering and to accurately model the aerosol type and visibility may be the

underlying factors of this difference.
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Fig. 3.2 Histogram comparison of the uncorrected ETM image and corrected images based
on a physical based MODTRAN method, and an image based DOS corrections approach. Both
methods greatly reduced the attenuation effects in visual and near infra red bands and the
histograms of the ETM image, either corrected using MODTRAN or DOS methods, show
similar data distribution.

3.2.4 Image corrections results

The C-correction method is a simple method which is used to reduce the shadows and
topographic effects very efficiently. This method is easy to implement and could provide an
adequate result that is sufficient for the purpose of this study. In topographically corrected
images, the shadows due to terrain slope were minimized, although the terrain effects were
not extreme, as the study site was actually dominated by flat terrains (Fig. 3.3). Another
example taken from an image subset representing a mixture of complex vegetation and
rugged terrains also delivers a positive result showing reduced terrain effects upon the
corrections (Fig. 3.3c and Fig. 3.3d). Successful topographic corrections in the preprocessing

stage may improve interpretation and classification of the satellite image.

Compared to ATCOR3 module-an integrated atmospheric and topographic corrections
module which is commercially available in PCI Geomatics software with extra license, the C-
correction method, whose script is written in IDL programming language, is available for
free in the internet. Hereinafter, the Landsat ETM image used for the entire study is the

resulted products of the atmospheric and topographic corrections presented in this chapter.
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¢) Uncorrected image d) Topographically corrected

Fig. 3.3 The result of topographic corrections in two subsets of the study site. The
topography effects that cause shadows in the back side of the slope were reduced, although
the study area is located in relatively flat region.

3.3 Geostatistics texture features

Texture layers using geostatistics can be computed over each band of the satellite data.
However, not all the texture features are useful for spectral data classification. Therefore,
pre-selection of the satellite band containing most texture information should be conducted.
For each satellite band we computed the covariance matrix showing the variance of each land
cover class, and two satellite bands correspond to the highest mean variance of forest classes were
selected, because we need primary and secondary predictors for estimating multivariate

semivariance.
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To incorporate geostatistical texture features in spectral classification, we computed the
semivariogram from each neighboring pixel. Generally, spatial variability y() increases
gradually with distance separating the observations up to a maximum value (the sill)
representing the maximum spatial variance. The distance at which the sill is reached
represents the range of variation, i.e., the distance within which observations are spatially
dependent. Respectively, the size of moving window used to extract texture information of
spectral data has an important role in providing an accurate estimation of semivariance,

which eventually affects the classification accuracy.

Semivariogram is an univariate estimator, which describes the relationship between
similarity and distance in the pixel neighborhood. Z(x) and Z(x + h) are two values of the
variable Z located at points x and x + h. The two locations are separated by the lag, h. The
semivariogram values, y@) are calculated as the mean sum of squares of all differences
between pairs of values with a given distance divided by two as described in the following

equation (Carr, 1995).

n
1 2
Y = 5> (20x) = Z(x + 1) Eq.37
i=1
Where n is the number of data pairs.

The madogram, instead of measuring squares of all differences takes the absolute values.
Madogram is simply a first-order variogram and has its roots in traditional geostatistics.
Avoiding the squared term, madogram has a more robust measure of the spatial correlation
structure than semivariogram and it has a convenient relationship with multi-variate
extreme value. Madogram was calculated using following equation (Chica-Olmo and Abarca-

Hernandez, 2000; Deutsch and Journel, 1998).

n
1
V(R = 5= > 12(x) = Z0x; + )| Fq. 3.8
i=1

By calculating square root of absolute differences, we can derive a spatial variability
measure which can reduce the impact due to the presence of data outliers, called rodogram.

The rodogram was estimated as follow (Lloyd et al., 2004).

n
1 1
7o) = 5= Y 120x) = Z0xi + DI2 q. 39
i=1

Spectral data of satellite image mostly have correlation effect particularly among two
respective bands (Wijaya et al., 2008b). Given the fact that this correlation effect can provide

useful texture information, we computed the multivariate estimators quantifying the joint
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spatial variability (cross correlation) between two bands, namely pseudo cross variogram
and pseudo cross madogram. The pseudo-cross variogram represents the semivariance of

the cross increments calculated as follows:

1 n
VYeev(h) = %Z(Y(xi) — 20 + W)’ Eq.3.10
i=1

The pseudo-cross madogram is similar to the pseudo-cross variogram, but again, instead of
squaring the differences, the absolute values of the differences area were taken, which leads

to a more generous behavior toward outliers (Buddenbaum et al.,, 2005).

n
1
Veca(R) = 5= Y 1Y () = Z(x; + ) Fq.3.11
i=1

The fractal dimension was used in various applications (Biswasa et al., 1998; Chaudhuri and
Sarkar, 1995; Jaenisch et al., 1993; Rogers et al.,, 1995). In pattern recognition, the fractal
dimension is defined as a measure for the coarseness of objects and textures, which can be
assigned to a gray level image to get the texture measure of the image. In remote sensing,
fractal dimension is considered as a good texture measure that can improve classification
accuracy (Chica-Olmo and Abarca-Hernandez, 2000). For texture segmentation, the fractal

dimension can be calculated using (Gloaguen et al., 2007)

y(h) o« 2|h|" Eq.3.12
where y(h) is the semivariance at lag h and H is defined as the slope log y(h) vs log h. Given
the semivariogram of any spatial distribution, fractal dimension (D) of the area is commonly

estimated as follows (Burrough, 1983; Carr, 1995; Gloaguen et al., 2007).

H
D=2- Eq.3.13

Fractal dimension is very effective in improving classification accuracy providing useful

texture information image regions (Wijaya et al., 2007).

To observe textural variation among different land cover classes which corresponds to lag
distance, semivariance values of training dataset for each land cover class were sequentially
computed using a 7x7 window for up to 8 neighboring pixels (lags). The computed
semivariance provide useful information for data classification as these values revealed

spatial correlation of each land cover type with respect to the lag distance.

The estimation of texture features was explained as follows. For example, in a 5x5 window

size, every adjacent pixel in the NSEW direction was considered as semivariance at 1, 2, 3

and 4 lags. For diagonal direction (e.g. V2, V3, v/4, etc) the lags were rounded up or down to
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the closest integer value. Using Eq 3.7 - 3.13, median of semivariance values in every lag
was calculated and used as a new DN value for the respective pixel (see appendices for the

scripts used for generating the geostatistics texture features).

3.4 Classification methods

3.4.1 Support Vector Machine Classification

The SVM is a type of universal learning machine, which is used for pattern recognition and
was originally designed to solve binary classification problems. Details of the SVM principle
may be found in several recent publications (Bazi and Melgani, 2006; Foody and Mathur, 2006;
Scholkopf and Smola, 2001; Vapnik, 2000). Two main approaches have been developed for
multi-class classification using SVV, i.e. the One-Against-All (OAA) and the One-Against-One
(OAO) methods (Hsu and Lin, 2002). The OAA method compares one class with all the others
taken together. For n classes, n hyper planes are determined, n optimization problems need to
be solved and n classifiers are generated. The OAO approach performs a binary SVM on all
possible pairs out of n classes. Each classifier is trained on two out of n classes, and number
of classifiers therefore is n(n - 1)/2. Applying these classifiers to a test data point leads to
n(n - 1)/2 class votes (Hahn et al, 2007). The test data is then labeled from the class that
received the most votes. In general, the OAA and OAO reduce the multi-class dataset into
several binary problems that have to be solved (Hsu and Lin, 2002). This study subjectively
implemented multi-class OAO SVM classification using LIBSVM software developed by
Chang and Lin (2001).

Multi-class image classification using the SVM method is conducted by combining several
binary classifications with the support of optimum hyperplane. The optimum performance
of this method is mainly affected by a proper selection of kernel parameters involved in the
algorithm (Wijaya and Gloaguen, 2007a). For the classification, Radial Basis Function kernel
was used. Estimation of the generalized accuracy using different kernel parameters (y) and
cost parameters (C) were applied with the following intervals: y, C = {215, 2-13,2-11 27} For
each possible kernel parameters, SVM classifications were carried out and its accuracies
were assessed using confusion matrices. We divided the training dataset into five subsets
and each time one subset was used for the classification and its accuracy was assessed using
other subsets. The iterations were repeated for other subsets, and the input data, kernel

parameter (y) and cost paratemer (C) which yielded highest accuracy were recorded.

First of all the classification iterations were performed using each possible combination of
three out of six ETM multispectral bands, and then continued with four and five ETM bands

iterations. We assessed the classification accuracies using confusion matrices, and recorded
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the input variations of three, four and five ETM bands with highest accuracies, as well as

their kernel parameters.

3.4.2 Multi Layer Perceptron Neural Network

Neural Network are essentially learning systems based on interconnected networks of
simple processing elements (Wijaya, 2006). In general, there are three phases in neural
network classification. The first phase is a training procedure using input data. The second
is a validation phase that determines the success of training phase and the accuracy of the
network when it is applied to predict unseen data. The last stage is classification of a full
image (Gahegan et al,, 1999). The use of neural network for multi source data classification
was made popular because the data distribution needs no normality assumption. Due to
different data distributions, the combination of spectral and texture data could violate
normality assumption that was required by most of statistical classifiers, e.g. maximum
likelihood (Tso and Mather, 2001). This study implemented three-layered neural network
consisting of a single input, hidden, and output layer, so-called multi-layer perceptron
neural network (MLP-NN), and the network was trained by back-propagation algorithm.
The MLP neural network trained by back-propagation algorithm was commonly used for
image classification in remote sensing study (Kanellopoulos and Wilkinson, 1997). Training
iterations were carried out by estimating root mean square error (RMSE) of gradient
descent. The training was stopped, either when total RMSE was less than 0.0001 or before
the cross-validation accuracy of training data started decreasing. Sigmoid model was

selected as the transfer function of the neural network.

3.4.3 Variations of Input Data

Given the cross validation results from SVM classification, we found that the combinations of
ETM band 3,4,5 ETM band 1,2,4,7; and ETM band 1,2,3,4,7 outperformed other
combinations. Our experiments found that band combinations 1,3,4,5 and 1,2,3,4,5,7 (multi-
spectral bands) of ETM data have similar accuracies with those of earlier mentioned

spectral data. Therefore, further classification considered these ETM data variations.

We applied the same approach to find combinations of texture features which are more
useful in improving classification accuracy. We obtained that the two geostatistics texture
features, fractal dimension and median of rodogram outperformed other texture variations.
Different result was found when three texture layers were introduced in the SVM
classification as fractal dimension, variogram and pseudo-cross variogram yielded better
accuracy compared to other texture features. Subsequently, four texture features were used

as additional information and the accuracy assessment showed that fractal dimension,
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rodogram, madogram and pseudo-cross variogram have better accuracy compared to other
texture variations. The experiments with Grey Level Co-occurrence Matrix (GLCM) texture
features were conducted by estimating second order statistics, namely variance, contrast,
homogeneity, and dissimilarity (Haralick et al, 1973). However, classification using
geostatistics texture features provided higher accuracy than of using GLCM texture features.

Thus, we did not consider GLCM texture features for further analysis.

3.5 Results and Discussion

3.5.1 Texture features generation

For forest classes the middle infra red band (ETM Band 5) and near infra red band (ETM Band
4) have higher mean variance compared to ETM Band 1,2,3 and 7 (Tab. 3.1). Thus,
univariate geostatistical texture features, i.e. fractal, variogram, rodogram, and madogram,
were estimated using ETM band 5. Computation of multi-variate texture features (i.e.
pseudo-cross variogram and pseudo-cross madogram) which needs two predictors were
performed using ETM band 5 and ETM band 4 as primary and secondary predictors,
respectively. Logged over forest, burnt areas/open forest, dense forest and hill shadow
classes were spatially correlated within 5 lags, whilst road network and clear cut
forest/bare land showed spatial correlation of more than 7 lags (Fig. 3.4). As we concerned
for the classification of forest classes, a 5x5 window size was selected in calculating the

texture features.

Tab. 3.1 Variance matrix of forest cover classes training data based on Landsat ETM image

Land Cover Class Band Band Band Band Band Band Band
1 2 3 4 5 6 7
Logged Over Forest 3.49 3.03 8.46 23.56 50.98 0.70 15.46

Burnt Areas/Open Forest  2.59 1.76 2.59 2419 18.46 0.46 5.04

Road Network 65.68 16539 332.63 7412 38645 191 294.98
Clear Cut Forest/Bare 270 520 290 3352 3249 083 870
Land

Dense Forest 292 156 149 182 1108 049 473
Hill Shadow 262 278 258 4028 3032 057 663

Mean Variance of total

13.33 2995 5844 3291 88.30 0.83 55.92
classes
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Fig. 3.4 Variogram plots of training data show the spatial variability of land cover classes
under study

The estimated texture layers show that fractal dimension texture has lower values for non-
forest areas and higher values for forested lands. Unlike the fractal dimension texture, other
texture features show lower and higher values for forested- and non-forested lands,
respectively (Fig. 3.5). The distribution of semivariance values showed that semivariogram,
pseudo-cross madogram and pseudo-cross semivariogram showed few differences among
forest classes. These texture layers might be less useful to improve the accuracy of spectral
data classification. The texture derived using madogram, rodogram and fractal dimension,
on the other hand showed better discriminations among forested classes, as well as between
forested and non-forested classes. The spectral data classification might gain some benefits

by these additional texture features.

3.5.2 Image Classification

Image classifications were assessed using confusion matrices and we found the average
accuracy of MLC was 79.28% which was higher than the MLP-NN and SVM methods with
76.77% and 77.01% of accuracies, respectively. Introducing one texture layer in the spectral
data classification, we found fractal dimension has increased the classification accuracy of
2% for SVM classification and up to 4% for MLP-NN classification. In the case of maximum
likelihood, fractal dimension contributed no significant improvement in the classification

accuracy (Fig. 3.6).
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(¢) Rodogram (d) Semivariogram

(e) Pseudo-Cross Madogram (f) Pseudo-Cross Semivariogram

Fig. 3.5 Texture features derived from Landsat ETM data using spatial variability measures
of Geostatistics and fractal dimension approach
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Fig. 3.6 Accuracy assessments of classification results using different texture data. Each bar
represents different variations of texture features used in the classification as explained in
the figure legend
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Experiments initiating two variations of texture features were performed, we found fractal
dimension and rodogram provided better accuracy as compared to other texture variations.
Combined with both textures, classification accuracies of MLC, MLP-NN and SVM reached
82.51%, 81.80% and 80.24%, respectively. The mean accuracy of these methods was

81.52% higher than the mean accuracy of spectral data classification (77.69%).

The experiments featuring more texture layers were conducted, and we found that by
introducing fractal dimension, variogram and pseudo-cross variogram the accuracies of
MLC, MLP-NN and SVM increased up to 82.51%, 81.08% and 79.28% respectively with an
average of 80.96% accuracy. Four texture features, namely fractal dimension, madogram,
rodogram and pseudo-cross variogram, and Landsat data were employed and we obtained
the classification accuracies of MLC, MLP-NN and SVM were 85.39%, 82.28% and 80.72%
with an average of 82.79% accuracy. In general, the experiments conducted in this study
revealed that addition of geostatistics texture features certainly can improve classification
accuracy of spectral data. Performance of geostatistics texture features have been tested on
a statistical classifier, i.e. MLC, and two non-statistical classifiers, i.e. MLP-NN and SVM.
Application of geostatistics texture features on these classifiers demonstrated a positive

result on the classification accuracy.

3.6 Discussion

3.6.1 Estimation of texture features moving window size

Geostatistics texture data performed well in the classification when the data were used as
extra information and were combined with spectral information. The attempts applying
only geostatistics texture as the primary input for the classification yielded a very poor
accuracy. This is because the texture data, considering neighboring values of a single pixel,
reduced coarseness of unsimilar and small substance pixels in a neighborhood, which in

turn reduced the classification accuracy.

Selection of a moving window size is probably the main issue that is important for
extracting useful information of texture features from satellite data. Similarities of
neighboring pixels which mainly represent certain land cover types only provide useful
texture information if such texture is estimated at proper scale. This means before
estimating texture data, a proper moving window size representing an object (i.e. certain
land cover type) on the ground should be determined. Using geostatistics, spatial variability
of adjacent pixels was explained by semivariance parameters, namely sill and optimal lag
distance (range), and the size of moving window was selected accordingly. To observe

spatial correlation of each land cover type, semivariance values of the land cover types were
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calculated at a 7x7 window size using training dataset up to 8 lag distance (or pixels), and
the result is shown in Fig. 3.4. This figure shows that neighboring pixels of each land cover
type reached maximum sill within 5 lags (or range is equal to 5 pixels), except for road
network class which reached maximum sill of more than 5 lags. For all land cover types
except road network, spatial correlation appeared within 5 pixels distance. However, the
fact that road network has range larger than other land cover types, and texture data of this
respective class should be estimated separately is beyond the scope of this study. Therefore
as a compromise with other land cover types, geostatistics texture was estimated using 5x5
window size. This finding is confirmed by other studies that found useful spatial information
from geostatistics texture features in a relatively small moving window (Chica-Olmo and

Abarca-Hernandez, 2000; Miranda and Carr, 1994).

3.6.2 Behavior of texture features

The behavior of geostatistics texture was studied introducing variations of texture layer in
the spectral data classification. From the accuracy assessment of confusion matrices, we
obtained that assigning single texture data, semivariogram and pseudo-cross
semivariogram performed less satisfactorily than fractal dimension, rodogram and
madogram. This is due to the nature of semivariogram and pseudo-cross semivariogram,
estimating the mean sum of square of semivariance for all observed lag distance, is less friendly
with the presence of data outliers. Compared to semivariogram and pseudo-cross
semivariogram, semivariance in rodogram were estimated by computing the mean sum of
square root of absolute pixel values difference, while in madogram semivariance were
estimated by calculating the mean sum of absolute pixel values difference. The two latter
approaches have a ‘softer’ effect to data outliers as well as extreme values as compared to
semivariogram and pseudo-cross semivariogram. In fractal dimension, slope of log-log
semivariogram fractal dimension was estimated and this texture measure provides higher
variance of land cover classes, resulting better separability of training data in the

classification.

We also obtained that application of fractal dimension and rodogram in spectral classification
provided better accuracy compared to other two-texture variations. Classification using
spectral data, rodogram and fractal dimension yielded considerably good results, with an
average accuracy of 81.52% higher than the best three-texture variation, i.e. using fractal
dimension, semivariogram and pseudo-cross semivariogram, with 80.96% average accuracy
(Tab. 3.2). To visualize how rodogram and fractal dimension can improve data separability,
training data of these texture measures were plotted on two dimensional feature spaces as

described on Fig. 3.7. Spatial distribution of training data plotted on rodogram and fractal
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Tab. 3.2 Overall accuracy assessment (OAA) and Kappa statistics of spectral and geostatistics texture data classification

Input Data SVM+ Maximum Likelihood+t MLP Neural Networkt Accuracy
0AA (%) Kappa 0AA (%) Kappa 0AA (%) Kappa Averaget

ETM* 77.01% 0.7242 79.28% 0.7517 76.77% 0.7210 77.69%
ETM*, fractal 79.40% 0.7528 79.40% 0.7531 80.72% 0.7676 79.84%
ETM*, fractal, variogram, pseudo-cross
variogram 79.28% 0.7513 82.51% 0.7904 81.08% 0.7724 80.96%
ETM*, fractal, madogram, rodogram,
pseudo-cross variogram 80.72% 0.7684 85.39% 0.8247 82.28% 0.7866 82.79%
ETM*, fractal, rodogram 80.24% 0.7627 82.51% 0.7904 81.80% 0.7809 81.52%

“ETM here refers to different Landsat band variations, i.e. band 345, band 1345, band 1247, band 12347 and band
123457 (Multispectral bands)

1The overall accuracy assessment (OAA) and Kappa statistics are the average accuracy of respective values resulted
either from the SVM, Maximum Likelihood and MLP Neural Network methods using variation of ETM input data
mentioned in (*)

$The accuracy average is calculated from the OAA of the SVM, maximum likelihood and MLP Neural Network
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dimension data clearly shows how these texture measures could ease separation of training
data for each land cover type, except logged over forest. Nevertheless, this is a good indicator
showing that rodogram and fractal dimension can improve the classification results. Spectral
classifications applying fractal dimension and rodogram, as expected, provided a high mean

accuracy (Tab. 3.2).

The accuracy assessment of error matrices revealed that dense forest, burnt area/open
forest and road network classes were less misclassified when fractal dimension and
rodogram applied in spectral classification. This was clearly exhibited by the feature space
of rodogram and fractal dimension texture where training data of those classes were

discriminated by both textures (Fig. 3.7).

Finally, we tested four-texture features in spectral classification and the accuracy
assessments showed that fractal dimension, madogram, rodogram and pseudo-cross
variogram outperformed other texture variations with the accuracy average of 82.79%.
These input data significantly improved the overall classification accuracy and the
accuracies of each land cover were more than 50%. In general, these texture features
improved the accuracies of less accurate land cover classes (i.e. classes with the accuracy of

less than 60%) up to 20% in average.
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Fig. 3.7 Feature Space of rodogram and fractal dimension showing spatial distribution of
total pixels on the study area and training data of each land cover class
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Fig. 3.8 Subsets of maximum likelihood classification using the input data of (a) ETM 12347,
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Texture features, considering spatial arrangement of neighboring pixels, have the potential
to improve the classification of linear objects, such as road network. This study found that
madogram and fractal dimension were useful for extraction of road network class, provided

the evidence that this particular object was clearly exhibited in both texture layers (Fig. 3.5).

Based upon visual observation on the classification results (Fig. 3.8), geostatistics texture
data has reduced ‘salt and pepper’ effects, in which some pixels of certain land cover types
are scattered and scratched among other land covers. These effects, which make classified
image becomes very heterogeneous, are very common on the classification results of
spectral data and cause delineation of land cover boundaries becomes more difficult. The
salt and pepper effects were reduced especially when four texture layers, namely fractal
dimension, madogram, rodogram and pseudo-cross variogram were assigned as extra
information in the spectral classification. Apparently considering the value of neighboring
pixels, geostatistics texture lowered the gray level differences of adjacent pixels; thus

reduced the salt and pepper effects and improved the classification accuracy.

3.7 Conclusions

This study found that texture layers estimated using geostatistics have significantly
improved spectral data classification of Landsat 7 ETM+ image. Texture layers were
computed using 5x5 of moving window since the properties of land cover types in the study
area were better described using this window size. Selection of the window size was very
important as useful texture information could be provided if the moving window had similar
size as the actual scale of the features. Image classifications were conducted using MLC, SVM
and MLP-NN methods and the results showed that the performance of geostatistics texture
features was very effective in improving the classification accuracy and the characteristics

of classified image.

We found that texture features derived using rodogram, madogram and fractal dimension
have more information than other texture features. The highest accuracy is achieved when
fractal dimension, madogram, rodogram and pseudo-cross variogram were applied as

additional information of the classification of spectral data.
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Chapter 4

Improved Strategy for the Estimation
of Above Ground Biomass using Non-
Destructive Approachf

ABSTRACT

We propose a non-destructive approach using a neural network method on optical remote
sensing data to estimate stand volume and above ground biomass (AGB). The Levenberg-
Marquardt algorithm was selected for training the network, as it was found faster than
standard back-propagation algorithm. Surface reflectance of Landsat ETM+, vegetation
indices, and SRTM DEM were used to predict stand volume per hectare combined with
number of stems data. The combination of satellite and field observation data explained the
predicted variable better than did the individual data. AGB was converted from the
estimated stem-volume using the Brown - Lugo and Fearnside models. The results for the
Brown - Lugo model were similar to those found in previous studies. The estimated AGB
was extrapolated over the study area using Kriging. We related the spatial distribution of
AGB with aggregated land cover map of the study area and found higher AGB in mature

forests than in regenerating- and open/riverine forests.

Keywords: above ground biomass, stand volume, remote sensing, neural networks, Levenberg-

Marquardt, Kriging interpolation

T This chapter is based on:

Wijaya, A., R. Gloaguen and H. Heilmeier. Non-Destructive Approach Development using Levenberg-
Marquardt Neural Network for Estimating Stand Volume and Above Ground Biomass in Secondary
Tropical Forests of Indonesia. International Journal of Remote Sensing (In review).
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4.1 Introduction

In environmental study, biomass assessment is important for many purposes. It is aimed at
two major objectives: (1) for resource use and (2) for environmental management
(Parresol, 1999). It is important to determine how much fuel wood or timber is available for
use. Thus, one needs to know how much biomass is available at one given time. In
environmental management, biomass quantification is important to assess the productivity
and sustainability of forests. Biomass and its temporal change is also an important indicator
in carbon sequestration. For this purpose, one needs to know how much biomass is lost or
accumulated over time. Consequently, the amount of carbon sequestered can be inferred
from the biomass change since 50% of the forest dry biomass is carbon (Losi et al.,, 2003).
The Kyoto protocol requires transparent reporting of forest removal and accumulation
(biomass change). This implies the requirement of precise procedures to quantify forest
biomass. Forest biomass in general may be divided into above ground- and below ground
biomass. The above ground biomass (AGB) consists of all living biomass above the soil
including stem, stump, branches, bark, foliage and seeds or fruits. Below ground biomass
consists of all living roots. Fine roots of less than (suggested) 2 mm diameter are excluded
because these often cannot be distinguished empirically from soil organic matter or litter
(FAO, 2004). While the BGB dynamically changes once a forest area is disturbed, the AGB
has more contributions to total forest biomass, which are often around 75% - 85%
(Houghton et al., 2001). This study focuses to estimate the AGB using an improved strategy
combining remote sensing and in situ data. Within this study the AGB is defined as the total
amount of above ground living organic matter of forest stands expressed in oven-dry weight

per unit area.

There are basically three approaches for AGB mapping, which are based on field
measurements, Geographic Information Systems (GIS), and remote sensing (RS) data (Lu,
2006). The first approach is accurate but very costly and time consuming, as a destructive
sampling is required (De Gier, 2003). Recently, a remote sensing based approach has become
an efficient and popular technique for biomass assessment, especially when in situ data are
unavailable. Previous studies explored the potential of optical satellites (Foody and Cox,
1994; Houghton et al., 2001; Lu et al., 2004), laser scanner (LIDAR) data (Lefsky et al., 2002),
or radar data (Austin et al., 2003; Rauste, 2005) to estimate the AGB. The state of the arts of
remote sensing based biomass estimate was based on LIDAR data, which could measure tree
height and volume of canopy cover accurately. This data is suitable for mapping of the local
scale of forest biomass, which needs high accurate estimation. However, temporal resolution

of this data is low as data acquisition is expensive, and if available, the LIDAR data usually
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covers only very small portions of a forest region. Moreover, this data are mostly available for
boreal and temperate forests, which is not a concern of this current work. For regional and
global biomass assessments, remote sensing studies usually used moderate resolution of
optical remote sensing data, e.g. Landsat ETM and MODIS sensors, or Synthetic Aperture
Radar (SAR) data which are now widely available, including those in the tropical rainforests

(Hajnsek et al., 2009; Kuplich et al., 2005; Luckman et al., 1996).

For over a decade the biomass study in tropical environments mainly addressed the
challenge and problem in the Amazonian forests (Brown and Gaston, 1995; Kuplich et al.,
2005; Lu et al., 2004; Sales et al., 2007; Steininger, 2000). The AGB model for this particular
region is already well established (Houghton et al,, 2001), whereas in another tropical forest
region, e.g. South East Asian rainforests, only few studies, particularly those applying remote
sensing approach, were documented. (Foody et al., 2003; Hajnsek et al., 2009). Indonesia
possesses the third largest tropical rainforests around the globe after the Brazilian Amazon
and tropical forest of Republic of Congo (FAO, 2003). Indonesian rainforests, however, were
greatly devastated, especially during El Nino and severe droughts and massive forest fires in
the 1990s (Stibig and Malingreau, 2003). Persistence forest encroachment mainly triggered
by timber harvesting and agricultural land conversion, complemented with the force of
population increase were the major problem for the forest region (Sist and Nguyen-Thé,
2002). Once the forests were deforested, their economic values become lower, and the area
is prone to be converted as agricultural lands or other uses. In relation to total biomass
abundance, the carbon storage capacity in these deforested lands was heavily depleted.
Gradient of forest successional stages markedly appeared in the degraded forests, and were
generally expressed as mature forests, regenerating forests, and open forests. The AGB
assessment in the different forest gradient is required, so that the biomass density from

different forest physiognomy can be estimated.

More specifically, this study is conducted in a lowland dipterocarp forest of the Kalimantan
Island. For the last two decades, most of tropical lowland forests in this island were either
heavily logged or severely degraded and deforested. Evaluation of biomass estimate that can
easily be applied without using destructive sampling is required, because this approach is
useful to monitor the biomass dynamics in regular basis. A study reported in this forest
region estimated the AGB by destructively sampling of more than 40 trees (Samalca, 2007),
but failed to find correlations between the biomass and satellite data, which if successfully
implemented, this approach may have potential to complement the conventional approach
and might be used to assess the biomass regularly. Most studies, even if they found a

correlation between the AGB and RS data, usually used a regression method (Lu et al., 2004;
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Sales et al., 2007), which is questionable, especially if the input data were from different
sources (Wijaya and Gloaguen, 2008). This is because the regression method is a parametric
approach that requires normal distribution of the input data to perform properly, and the
utility of multi source data may certainly violate this normality assumption. Unlike previous
study, we proposed a nonlinear least square function based on a neural network method,
which was trained using the Levenberg-Marquardt algorithm to estimate the forest biomass
(Hagan and Menhaj, 1994). This algorithm was more efficient than the normal back-
propagation method in training the neural network (Wijaya and Gloaguen, 2008; Wijaya et
al., 2008a). Calibrated spectral data of Landsat 7 ETM+ image, vegetation indices, DEM and
number of stems data were used as predictors in estimating forest stand volume, and the
AGB was predicted from the stand volume estimate applying two biomass conversion
models (Brown and Lugo, 1992; Fearnside, 1997). We expect this improved strategy for
predicting the forest stand volume may result in more favorable AGB estimation. The
estimate results are compared with previous studies and the results are discussed.
Additionally, the spatial distribution of the AGB is calculated using Kriging interpolation
method, and the effects of land cover change and current policies on the biomass density are

explained.

4.2 Data and Methods

4.2.1 Field data analysis

We used a temporary sample plot (TSP) field inventory data acquired in 1997 - 1998 (Tab.
4.1). The forest concession management implemented a stratified systematic approach for
collecting the TSPs, which were diagonally set up along six transects following a SE to NW
direction. Each transect was 30 km long; the distance between transects spanned between
3.4 - 5 km. The TSPs were bordered by the Kelai River in the east and the Siduung River in
the west. The spacing between each TSP was 100 m on average. In each TSP, tree
measurements (i.e.,, diameter at breast height (dbh) and number of stems) were conducted
using three nested subplots, i.e.,, 0.125 ha for dbh >50 cm, 0.04 ha for dbh 20-49 cm, and
0.0125 for dbh 10-19 cm. Coordinates of sample plot center were also recorded using GPS.
The total amount of sample was 1512 plots covered approximately 0.24% of the total area
of 81,224 ha. From the tree measurements, the basal area of each tree was calculated and

stem volume per hectare was estimated using stand volume table.
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Tab. 4.1 Descriptive statistics of transect data

Number of stems (hal) dbh (cm) BA (m2.ha1) Stand Volume (m3.ha't)
Mean 264 33.7 14.0 159.3
Min 5 10.0 0.4 1.0
Max 1055 130.0 53.6 628.6
SD 146 10.6 7.4 92.7
N 1512

4.2.2 Satellite image preprocessing and vegetation indices generation

We used a 30 m resolution Landsat 7 ETM+ image acquired on August 26, 2000 for this
study. The image was atmospherically and topographically corrected, resulting in surface
reflectance values. There are several ways to conduct atmospheric corrections on remote
sensing data (Chavez Jr., 1996; Richter, 1996; Schroeder et al., 2006; Song et al., 2001). Due
to unavailability of physical atmospheric data, this study implemented the atmospheric
correction based on the dark pixel or dark object subtraction (DOS) method (Chavez Jr.,
1996). This approach assumes that in each image scene, dark objects exist; thus, the
radiometric correction can be done by subtracting the pixel values of dark objects from all
pixels in the image scene. Using DOS technique, only the atmospheric effects caused by
atmospheric scattering were corrected, as this method does not model a complex

atmospheric absorption effect in its equation.

Topographic corrections were conducted to reduce the compensation of solar illuminations
due to the irregular shape of terrain. We used a Digital Elevation Model (DEM), which was
geo-referenced into the same coordinate system as the satellite image so that the slope
angle and aspect of each pixel position could be derived. The topographic corrections were
carried out using C-Correction method assuming Lambertian surface on the earth surface

(Riafio et al.,, 2003).

From the corrected image, we calculated vegetation indices, i.e., Normalized Difference
Vegetation Index (NDVI), Simple Ratio (SR), Enhanced Vegetation Index (EVI), and
Atmospherically Resistant Vegetation Index (ARVI). Details about vegetation indices can be
found in remote sensing references (Jensen, 1996; Mather, 2004; Richards, 1993). We also
used DEM from Shuttle Radar Topography Mission (SRTM) data to derive elevation, slope,

and aspect maps over the study area.
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4.2.3 Estimation of stand volume

Prediction of stand volume was carried out using a neural network method combining
remote sensing and field observation data. This combination could violate normality
assumption and reduce the predictive ability of parametric methods, such as regression
(Berry and Feldman, 1985). With a neural network, the data do not need be normally
distributed, as this method has characteristics between parametric and non-parametric
models (Cohen and Cohen, 1983). To predict the stand volume, we experimented using
three input variations, namely (1) number of stems data (i.e., field data), (2) spectral values,

vegetation indices, and DEM (hereinafter satellite data), and (3) combination of both data.

Neural networks work by aggregating the weighing of the input values and applying a
threshold function into those values. This training process is sometimes very time-
consuming, and the selection of a faster and more efficient training algorithm is preferable.
For remote sensing applications, back-propagation is probably the most widely used
training algorithm for the neural networks (Atkinson and Tatnall, 1997). Unfortunately, this
algorithm is very time consuming, and to yield an accurate result the training parameters

should be selected carefully.

Within this study the network was trained using the Levenberg-Marquardt algorithm, which
we found more efficient than back-propagation algorithm. The Levenberg-Marquardt is
basically an iterative technique that locates the minimum of a function expressed as the sum
of squares of nonlinear functions (Hagan and Menhaj, 1994). It is a standard technique for
nonlinear least-squares problems and can be thought of as a combination of steepest
descent and the Gauss-Newton method. When the current solution is far from the correct
one, the algorithm behaves like a steepest descent method: slow, but guaranteed to
converge. When the current solution is close to the correct solution, it becomes a Gauss-

Newton method. Given a function F(x) that is a sum of squares of nonlinear functions,

F(x) =5 TG0 Eq. 4.1

to find the minimum of function F(x), the Jabobian of fi(x) is denoted Ji(x), and the
Levenberg-Marquardt method searches in the direction given by the solution p to the

equation

(]kT]k + Akl)pk = —Ji fr Eq. 4.2
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where A, are nonnegative scalars and I is the identity matrix. For some scalar 4 related to A,
2
the vector pi is the solution of the constrained sub-problem of minimizing ||]kTp + fk||2/2

subject to ||p|l, < A.

Before training the network, we divided the input data into three subsets, i.e.,, 60% of the
data were used as a training dataset, and 40% of the sample data were divided into two
subsets and used as validation and test data. Training datasets were used to train neural
networks, while validation datasets were used as a control of the training process. When the
accuracy of validation data increased, the training was stopped to avoid overtraining of the
network. A test dataset was used as independent data to assess the prediction accuracy. We
tested different learning parameters, such as number of hidden neurons and number of
iterations, and averaged the estimated value. We compared the results with back-
propagation neural network and linear regression and assessed the accuracy of each

method in predicting the stand volume.

4.2.4 Above ground biomass (AGB) prediction

We estimate the AGB using the stand volume - biomass equation proposed by Brown and
Lugo (1992) and Fearnside (1997). Both equations were developed for tropical moist
forests of the Brazilian Amazon, and were commonly used for the biomass assessment over
this forest region (Houghton et al,, 2001; Sales et al., 2007). The Brown - Lugo AGB (AGB51)

is explained as follows:

AGB g,y = SB - BEF - (1 + (0.09 + 0.21)) Eq. 4.3

where SB is the stemwood biomass, and is defined by

SB = Volume X VEF x WD Eq. 4.4

with Volume (m3-ha-1) obtained from forest inventory data. VEF (volume expansion factor to
account for trees smaller than the minimum diameter measured) was 1.25 for dense forests
and 1.5 for other than dense forests. WD is the wood density (0.69 ton.m3 as a weighted
average of wood density), and BEF (biomass expansion factor to account for biomass in
addition to stemwood biomass) varied as a function of stemwood biomass (SB) as follows

(Brown and Lugo, 1992).
for SB < 190 Ton hal, BEF = el3-213 - 0.506In(SB)]

for SB> 190 Ton ha'l, BEF = 1.74 Eq. 4.5
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In Eq. 4.3, SB x BEF is the conversion of volume to above ground biomass originally
proposed by Brown and Lugo (1992). The constants 0.09 and 0.21 in the formula were
introduced by Houghton et al. (2001) to include below ground biomass and dead above

ground biomass.

The second conversion equation, which suggested modification of the first model, was

proposed by Fearnside (1997):

AGB g5y = SB x BEF x (1 + CF) Eq. 4.6

where CF = 96.2%, which represents the sum of various correction factors (lianas = 5.3%;
trees smaller than 10 cm DBH = 12%; tree form factor = 15.6%; trees between 30 and 31.8
cm DBH = 3.6%; hollow trees = -6.6%; bark = 0.9%; palms = 2.4%; below ground biomass =
33.6%; dead above ground biomass soil = 31%; and other components = 0.2%) (Sales et al.,
2007). In this study, correction factors from Eq. 4.3 - Eq. 4.6 were assumed constant, i.e., not
spatially variable. Comparison with the results of previous studies (Brown, 1997; Samalca,
2007) was conducted and the results were discussed. We used biomass and AGB terms

interchangeably in this study.

4.2.5 Spatial distribution of the AGB

AGB estimate was mapped over the study area using the Kriging method, as we assumed the
values were spatially correlated and the stationarity assumptions were fulfilled. We
transformed the AGB values using log-transform, so that the data were more likely to be

normally distributed. An empirical Gaussian variogram model formulated as,

h2 Eq. 4.7
y(h) =c¢ {1 —exp <— r_2>}

where cis the sill, h is the lag number, and r is a sill parameter, was fitted to the spatial
variability of the data. The semivariogram modeling showed that no special pattern of
spatial variability changed within a certain direction; i.e., no anisotropy appeared. Thus, an

omni-directional variogram was selected.

Ordinary Kriging was selected in interpolating the AGB, assuming an unknown constant
mean. We assumed that as the predicted location moved farther from the sample data, those
points would have less spatial auto-correlation. Thus, interpolation of unknown values
considered neighboring pixels within certain distance and direction (i.e., in the NE-SW and
NW-SE direction). We selected 40 neighboring pixels for the interpolation of each ‘unknown’

value. The error estimate was calculated and assessed.
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4.3 Results and Discussion

4.3.1 Structure of forest stand properties

In total we analyzed 13050 stands divided into 1512 sample plots. Distribution of measured
trees showed that >95% of the trees had a diameter between 10 - 80 cm and the mean dbh
of measured trees was 33.7 cm. However, the mean volume of these trees was 5.6 - 27.3
m3.hal, which was very small compared to the volume of trees with dbh >80 cm (mean

volume 49.3 m3.ha1) (Tab. 4.2).

The data showed that >70% of sampled trees had dbh <40 cm; however, there was a slight
difference between the number of trees with 21< dbh <40 cm and trees with 41< dbh <80
cm. This indicated that many sample plots were dominated by old secondary forests or
primary forests. A primary forest has fewer trees but more diverse vegetation than a
secondary forest, resulting in greater ecosystem biodiversity. Landsat ETM+ data may be
problematic to use with these forests because of the complexity of crown closure structure

due to shadow effects (Lu, 2005).

Tab. 4.2 Distribution of forest properties

dbh Count Mean dbh (cm) Mean Basal Area (m?2/ha) Mean Volume (m3/ha)
10-20 cm 5066 14.7 0.8 5.6
21-40 cm 4350 28.9 1.7 18.5
41-80 cm 3035 57.8 2.0 27.3
81-100 cm 435 90.5 3.2 49.3
>100 cm 164 121.9 6.0 96.0
N 13050

4.3.2 Prediction of stand volume

The predictive ability of Levenberg-Marquardt algorithm (r=0.641, MSE=71.2 ms3.ha?,
a=0.05, n=1512) was better than that of the back-propagation algorithm (r=0.608,
MSE=73.6 m3.ha'!) and linear regression methods (r=0.615, MSE=73.1 m3.ha'!) in estimating
stand volume (Tab. 4.3). The measurement data showed high variations of stem volume
(159.3+92.7 m3.ha'l), which was confirmed by the volume estimates. The high error
estimate (~50% of the estimated stem volume) is because the study area is a natural forest
dominated with mixed dipterocarp sp. vegetations coupled with complex forest structure.

The linear regression method (r = 0.615) explained the stand volume slightly better than the
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back-propagation neural networks (r = 0.608), probably due to the problem in selecting

proper algorithm parameters.

Tab. 4.3 Prediction results of stand volume

Mean estimate

Min Max SD r MSE
(m3 hat)

Stem data
Linear regression method 159.12 62.61 454.26 54.44 0.586 75.0
Back-propagation neural
networks 158.11 60.17 530.76 55.26 0.585 75.1
Levenberg Marquardt neural
networks 159.22 3690 502.64 5696 0.600 74.1
Satellite data
Linear regression method 159.04 78.74  338.17 22.58 0.247 89.8
Back-propagation neural
networks 158.45 94.01 279.20 24.28 0.247 89.9
Levenberg Marquardt neural
networks 154.63 11.87 39246 31.76 0.247 87.7
Satellite and Stem data
Linear regression method 159.29 39.01 465.21 57.01 0.615 73.1
Back-propagation neural
networks 156.73 40.21 408.22 56.05 0.608 73.6
Levenberg Marquardt neural
networks 158.11 9.41 52419 62.60 0.641 71.2

Training process using Levenberg-Marquardt algorithm was very efficient and requires
fewer than 100 iterations to find the optimal solution. The back-propagation method on the
other hand, needs at least more than 1000 iterations to obtain similar results. We observed
that a 2-layer neural network (1 input, 1 hidden, 1 output layer) was sufficient to solve a
general complex problem for this study (we used a maximum of 14 predictors in estimating
the stand volume). Higher estimate accuracy was revealed when we used the same- or a

similar numbers of hidden neurons to the total input number in the neural networks.

Number of stems per hectare combined with satellite data (0.608 < r < 0.641) explain the
stand volume better than individual use of data. We also found that the satellite data had a
lower correlation coefficient (r = 0.247) compared to the stems (0.585 < r < 0.6). This was
due to the saturation of the satellite data, especially when associated with large stand

volume, i.e.,, mean volume > 300 m3.ha! (Fig. 4.1).
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Fig. 4.1 Plot of estimated and measured stand volume

The problem occurred because the interval values of satellite data and vegetation indices
were small. The NDVI of green vegetation, for example ranges usually from 0.7 - 1.0. This
condition causes the prediction of dependent variable (i.e., stand volume) less accurate

when data variance is large (the stand volume varies from 1.0 - 628.6 m3.ha-1).

The coarseness of spatial resolution (30 m for Landsat 7 ETM+) was another issue affecting
estimation of the stand volume. One pixel of Landsat ETM+ data covered 900 m2 on the
ground; with this spatial resolution, variations of the stand volume within a pixel were
inaccessible. The satellite data might have been a problem, as our study area was comprised
of a highly variable mixture of different forest types and tree species. Spectral energy
radiated back from mature or very dense forests and captured by the Landsat ETM+ sensors
normally comes from canopy closure or crown cover; tree density is relatively high and
often there is no opening in the crown cover. This could be another explanation for the lack
of correlation between the Landsat ETM+ data and the predicted stand volume.
Nevertheless, this study demonstrated that moderate spatial resolution of optical data (i.e.,
Landsat 7 ETM+) combined with selected measurement data can improve the estimates of

stand volume in highly complex forest environments.

4.3.3 Conversion to above ground biomass

The Brown - Lugo equation predicted lower AGB (mean = 368.3 Mg.ha'l) compared to the
Fearnside model (mean = 555.9 Mg.ha'1). This was because of conversion factors difference
considered in both models. The Brown - Lugo model included the corrections for dead AGB

and BGB in the estimation, while the Fearnside model considered an adjustment factor
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related to the physiognomy of various vegetation structures. We found that the Fearnside
model overestimated the AGB as confirmed by Samalca (2007) that conducted the study in
the Labanan forests estimating the AGB using in situ data and found 335 Mgha! of dry
weight biomass (Fig. 4.2). The Brown - Lugo model obtained more favorable estimate
especially if the dead AGB and BGB components considered in the equation were excluded.
Using the same dataset, we also predicted the AGB using tree diameter (dbh) as the
predictor applying available allometric equation proposed for tropical moist forest
environments (Brown, 1997). Using this allometric equation, we predicted in average 155
Mg.ha1 of AGB, considerably lower than previous estimates. This difference is probably due
to above ground biomass in the allometric model was modeled from tree diameter which
represents only the biomass of tree stems regardless other parts of forest stands, such as
foliage and tree branches, which might also contain biomass. For the purpose of this work,
the Brown - Lugo’s AGB estimate was used for the kriging interpolation and compared with

land cover map of the study area.

Samalca (2007)

Brown (1997)

Fearnside
(this study)

Brown & Lugo
(this study)

0 100 200 300 400 500 600

Biomass Estimate (Mg.ha'l)

Fig. 4.2 Comparison of biomass estimates. This study used stand volume - AGB equations,
which include correction factors for dead AGB, below ground biomass. The study by Samalca
and Brown estimated AGB from the allometric equation to relate dbh and AGB
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To explain the relationship between biomass and forest stand properties, correlation of
those parameters were plotted (Fig. 4.3). Number of stems shows a strong correlation (r =
0.82, p < 0.0001) with the biomass greater than basal area (r = 0.68, p < 0.0001) and
observed stand volume (r= 0.60, p < 0.0001). The sample plots were highly scattered, but
many of those formed a great cluster of AGB within the range of 250 - 425 Mg.hal. This also
indicates that most sample data were collected from secondary regenerating forests that

expressed moderate biomass density.

The utility of satellite data, e.g. Landsat TM sensor, for estimating the above ground biomass
were limited to the saturation of spectral values and vegetation indices, which usually
occurs in dense vegetated- or advanced successional forests (biomass density of more than
20 kg.m2 or 200 Mg.hal), due to the complexity of forest canopy structure and shadow
effects (Lu, 2005). Another study by Steininger (2000) even found the asymptotic point of
spectral data at lower biomass density (15 kg.m2 or 150 Mg.ha'l). Variations of spectral
data, vegetation indices and in situ data, i.e. number of stems, are very effective in improving
the reliability of the biomass model and to increase the sensitivity of RS data, which in turn

may result in more accurate estimation.

4.3.4 Spatial distribution of AGB

We predicted the biomass estimate over the study area using the ordinary kriging method
and found that the AGB density ranged from 214 - 543 Mg.ha'! with variable error estimate
from 55 - 86 ton/ha (Fig. 4.4). Upon kriging interpolation, we found that the error estimate
varied from 10 - 43%. These high error estimate were similar with the result of Samalca
(2007), who estimated the AGB using a destructive sampling approach and yet found 40%

of error estimate.

We found that the error estimate increased as the unknown pixels were located more
distant than the sampling points (Fig. 4.4b) and confirmed the basis of spatial correlation
principle (Journel and Huijbregts, 1981). The error estimate, which is applicable for any
spatial based interpolation technique, might be caused by the uneven distribution of
sampling intensity among other conditions. In fact, the transect data, which were collected
on the ground and originally used for forest inventory, were more concentrated on the

central part of the study area.

Another sampling technique, such as stratified random sampling, might be proposed to
reduce the error estimate of the kriging method. Unfortunately, it is nearly impossible to

collect biomass data only for this study. Despite the error estimate, the interpolated biomass
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showed a reasonable relationship with land cover of the study area and is discussed in the

following section.

AGB Estimate
(Mg/ha)
450 - 700
400 - 450

I 375-400
I 350-375
I 325-350
B 300-325
B 250 - 300

(@

Error estimate
(Mg/ha)

63.21 - 85.59

. 57.14-63.21
P 55.49-57.14
B 55.04 - 55.49
B 5492-5504

(b)

Fig. 4.4 Kriging interpolation results (a) and error estimate (b)
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4.3.5 Relationship between AGB and land cover classification

Based upon the classified land cover map, we found that the study area had been widely
logged selectively and by the forest concession management this area in general was
classified into open forests, dense forests, very dense forests, mixed forests and swamp

forests (Fig. 4.5).

116°565'0"E 117°0'0"E 117°5'0"E 117°10'0"E 117°15'0"E

=z [ 1 1 _ 1 =
g - Legend + + - g
s —Main Rivers o
N — | ogging Roads ™~

[ Ivilages

[ LDB Logged over, dense forest, brown color

[I0 LDG Logged over, dense forest, green color

[TILDY Logged over, dense forest, yellow color
=Z [ILM Logged over, mixed forest
© _ []LOG Logged over, open forest, green color
'60 [71LOY Logged over, open forest, yellow color
~ 771 LVB Logged over, very dense forest, brown color

I LVD Logged over, very dense forest, dark brown color

B LVG Logged over, very dense forest, green color

Bl SV Swamp forest

q

= =
o_ n o
o o
-] L]
™~ N
z z
) o
w- T T
[Xe] Yol
o o
— —

1"50I'0"N
f
|
1°50'0"N

0 5 10
e wmmmw——— Kilometers

1 ] ] I 1
116°55'0"E 117°0'0"E 117°5'0"E 117°10'0"E 117°15'0"E

Fig. 4.5 Land cover map of the study area based on the interpretation of Landsat 7 ETM+
images and field survey (Modified from Berau Forest Management Project, 2001)

Considering the gaps of canopy cover, similarity in vegetation structure, and additional
information obtained during the field visit, we aggregated some class labels in the land
cover map (Fig. 4.5) and merged some similar classes into more general definition, namely
open/riparian forests, regenerating forests, and mature forests. The logged over, open
forest, green (LOG), logged over, open forest, yellow (LOY), and mixed forest (LM) classes
were grouped as open/riverine forests; while logged over, dense forest, brown (LDB),
logged over, dense forest, green (LDG), and logged over, dense forest, yellow (LDY) were
regenerating forests; and logged over, very dense, forest, brown (LVB), logged over, very
dense forest, dark brown (LVD), and logged over, very dense forest, green (LVG) were
labeled mature forests. Swamp forest (SV) class was excluded since no sample data were

collected in this region.
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Open/riverine forests were mainly situated along the rivers or other transportation facility,
such as logging roads, giving easy accesses for forest encroachments and expansion of
agriculture lands. Regenerating forests were basically secondary forests that had been
logged for the last 5 years and were characterized by moderate canopy cover (60% - 75%)
and similar tree species distribution to that of an old secondary forest. Mature forests, on
the other hand, had a very dense canopy cover which is over 80% and had similar
characteristics with undisturbed forests. Some primary forests patches were also found in
these areas, which was due to difficult topographic conditions the timber extraction was

problematic and the forests remained undisturbed.
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Regenerating forest | Riverine/open forest Mature forest

Fig. 4.6 Biomass estimate of each land cover class

The estimation results of stand volume and biomass for each land cover type showed that
175 - 275 m3.ha!l of stand volume and 400 - 600 Mg.ha'l of AGB were obtained in mature
forests. These values were higher than those obtained in regenerating forests (125 - 160
m3.ha! of stand volume, 350 - 400 Mg.ha! of AGB) and open forests (75 - 125 m3.ha! of
stand volume, 200 - 325 Mg.ha! of AGB), respectively (Fig. 4.6). The lowest stand volume
and AGB were found in a mixed forest (LM), as this forest was dominated by the mixture of
swamp vegetation and small trees of the dipterocarp species. The appearance of new tree
species in logged over forests is much faster than the growing process of tree volume and
biomass. The stand volume and AGB of regenerating- and open/riverine forests were

noticeable but not significantly different when compared with those in mature forests.
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4.4 Policy Implications

Timber harvesting in Labanan forest concession, which had been carried out for over 25
years, stopped in 2003 with the cessation of government licensing. The study area was
dominated by secondary and mature forests with the stand volume varies from 9 - 524
m3.ha'l, higher than that in the tropical secondary forests of Amazon, Brazil (Sales et al,
2007). The previous study also reported 225 - 486 Mg.hal of AGB estimated from the
secondary forests of the Amazon, slightly lower than the findings of this study (AGB ranges
from 214 - 543 Mg.ha'1).

The spatial distribution of AGB and the land cover map were compared. Relatively low
forest biomasses and timber stocks were found in forest areas adjacent to the logging roads
and main rivers. During the field visit we found many illegal logging sites within 5 km of the
roads; the harvested timbers from these areas were easily transported out using trucks,
making the areas more susceptible to illegal operations. The rate of illegal logging inside the
concession area has increased since implementation of the decentralization policy for the
forestry sector in Indonesia, which states that local people can open new agriculture land
inside concession boundaries (for up to 100 ha/household). This policy has created serious
problems for concession management. Because the opening of new agriculture land
supposedly no further than 10 m away from the main roads was ignored, the practice of
slash and burn for opening the new agriculture land went further inside undisturbed
forests. We obtained lower AGB adjacent to settlement areas as well. Given that two villages
shared borders with the forest concession, the excessive slash and burn practice was the
major concern for the concession management. The implementation of decentralization
policy has triggered a great amount of illegal logging and in general has discouraged forest

conservation in Indonesia.

4.5 Conclusion

This study demonstrated that a 30 m resolution of Landsat 7 ETM+ data, combined with
selected measurement data, could be used to predict stand volume per hectare. A non
destructive approach using remotely sensed data was successfully applied for estimating
above ground biomass in a tropical secondary forest. We found 158 * 63 m3.ha! of stand
volume and 368.3 Mg.ha! of above ground biomass over the study area. The Levenberg-
Marquardt neural network outperformed the Back-propagation neural network and
Regression methods in estimating stand volume per hectare. Satellite data in combination
with number of stems predicted the stand volume better than the individual use of those

data. The Levenberg-Marquardt algorithm requires fewer training iterations than the Back-
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propagation method to find the optimal solution of the neural network problem. The results
of the Kriging method showed that the error estimate of biomass depends on the
distribution of sample data. However, this study found a strong relationship between the
spatial distribution of AGB and land cover classification. We found higher stand volume and

AGB in mature forests than in regenerating- and open/riverine forests.

73



74



Chapter 5

Estimation of Stem Volume and Forest
Biomass from Remote Sensing and GIS*

ABSTRACT

This study presents the utility of remote sensing (RS), GIS and field observation data to
estimate above ground biomass (AGB) and stem volume over tropical forest environment.
The AGB density was estimated applying an existing DBH - biomass equation. The estimate
was superimposed over the modified GIS map of the study area, and the biomass density of
each land cover was calculated. The RS approach was performed using a subset of sample
data to develop the AGB and stem volume linear equation models. Pearson correlation
statistics test was conducted using Landsat ETM bands reflectance, vegetation indices,
image transform layers, Principal Component Analysis (PCA) bands, Tasseled Cap (TC), Grey
Level Co-Occurrence Matrix (GLCM) texture features and DEM data as the predictors. To
analyze total biomass and stem volume of each land cover, Landsat ETM images from 2000
and 2003 were preprocessed, classified using maximum likelihood method, and filtered
with the majority analysis. We found 158+16 m3/ha of stem volume and 168+15 ton/ha of
AGB estimated from RS approach. Whereas the field measurement and GIS estimated
157492 m3/ha and 167+94 ton/ha of stem volume and AGB, respectively. We found a
slightly declining trend of total biomass from 2000 to 2003. Remote sensing approach

estimated lower biomass abundance than did the GIS and field measurement data.

Keywords: above ground biomass, stem volume, remote sensing, GIS, field observation data

¥ Wijaya, A, S. Kusnadi, R. Gloaguen and H. Heilmeier (2010). Improved Strategy for Estimating Stem
Volume and Forest Biomass using Moderate Resolution Remote Sensing Data and GIS. Journal of
Forestry Research, Vol. 21 No. 1, pp. 1 - 12.
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5.1 Introduction

Current information on above ground biomass (AGB) is important to estimate carbon
accumulation over a forest region and it is required to study the impacts of forest
disturbance on total biomass. The AGB can be estimated using different data and
approaches, namely using field observation data (Brown et al., 1989; Brown and Lugo, 1984;
Brown and Lugo, 1992), remote sensing (RS) data (Barbosa et al., 1999; Foody, 2003; Roy
and Ravan, 1996; Steininger, 2000; Thenkabail et al., 2004), and GIS (Brown and Gaston,
1995; Brown et al., 1994). Field observation approach is known to be the best and the most
accurate method, but it is costly and time-consuming as destructive sampling data is
required (De Gier, 2003; Lu, 2006). RS and GIS approaches recently become more popular as
huge areas can be covered with less efforts and time, with regard to different sensor
characteristics and limitations (Houghton et al., 2001; Lu, 2005; Lu, 2006). Estimation of
AGB is still a challenging task since the utility of RS and GIS for the biomass modeling is site
specific and is highly uncertain (Foody et al., 2003; Houghton et al., 2001). Performance of
RS data and combination of field data - GIS in estimating the AGB is presented in this work.

The application of remote sensing data and techniques for AGB prediction have been widely
studied, employing optical sensor (Lu, 2005), SAR data (Hajnsek et al., 2005) or LIDAR data
(Lefsky et al., 2002). These studies found that state of the art LIDAR data could provide the
most accurate result as it allows a deep penetration through forest canopy (Lu, 2006). The
utility of polarimetric interferometry SAR data (PolinSAR) for biomass estimation is also
widely studied (Hajnsek et al., 2005). This data provides useful information on digital
surface model, which can easily be converted into biomass using some inversion models
(Cloude et al, 2008; Hajnsek et al, 2005; Isola and Cloude, 2001). Unfortunately, the
potential of these data cannot be demonstrated here due to data unavailability.
Alternatively, moderate resolution of Landsat ETM data coupled with vegetation indices,
image transform layers, PCA, Tasseled caps, Grey Level Co-occurrence Matrix (GLCM)

texture features and SRTM DEM were considered.

Different forest disturbance and harvesting regimes could have occurred over a forest area.
Once these disturbances were over, forest regenerating processes are started. The intensity
of these processes is different for each forest region depending on climate, terrain
conditions, soil fertility and nutrient contents, characteristics of pioneer vegetation species,
etc. In natural secondary forests, a mixture of different forest physiognomy, e.g. young
forest, regenerating forest, old secondary forest, etc, is easily noticed. This study has
objectives to estimate AGB and stem volume over different forest succession stages. Because

recent studies arrived at different conclusions on the biomass assessment when RS data
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were applied applied (Foody et al., 2003; Ketterings et al., 2001; Rahman et al,, 2005), thus it

is important to conduct further study on this topic.

5.2 Data and methods

5.2.1 Field Observation Data

This work used 1460 sampling plots allocated to 16 transects, and the size of each plot was
approximately 225 m2. In total, 13048 trees with diameters from 10 - 210 cm were
measured and used to calculate basal area per hectare and stem volume per hectare using
the allometric models adjusted for specific tree species (Tab. 5.1). Above ground biomass
(AGB) was estimated subsequently using diameter at breast height (DBH) - biomass

conversion model developed for low dipterocarp forests (Samalca, 2007).

The stem volume varied from 1.73 - 628.62 m3/ha and the mean volume was 15692
m3/ha. Similar with stem volume, the AGB also showed highly variable values and the mean
AGB was 16794 ton/ha. These variations are common for natural forests especially those
which are occupied by secondary and regenerating forests. Tree regenerating processes
take place following the completion of forest harvesting, forest burning, and other types of
forest disturbance. These processes which can continue for over 30 years are affected by

various intrinsic and extrinsic aspects, e.g. anthropogenic factors, drought, disease, etc.

5.2.2 Images Acquisition and Preprocessing

Two sets of Landsat 7 ETM+ images with 30 meter spatial resolution were used. The first
Landsat image was acquired on August 26, 2000 under hazy and cloud conditions, and the
second image, acquired on May 31, 2003, showed clear atmospheric conditions with no
apparent clouds. The satellite data were orthorectified into WGS 84 datum and projected on
Zone 50N using Universal Transverse Mercator (UTM) projection. Preprocessing of ETM
images were conducted for correcting the atmospheric and topographic effects to minimize
the artifacts caused by the atmospheric attenuations, e.g. haze and irradiance scattering, and

the terrain effects.
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Tab. 5.1 Descriptions of sampling plots describing parameters of different forest physiognomies

Riparian forest

Shrub (Sh) (RF) Dense forest (DF)  Very dense forest (VDF) Mature forest (MF)
Number of Stems (stems/ha) 219.2+£125.7 290.6+£104.8 224.5£110.0 319.3£168.5 262.2+281.8
DBH (cm) 25.7+9.4 26.7+4.9 34.1+9.7 32.7+8.5 54.1+24.3
Basal Area (m?/ha) 8.9+6.0 11.8+5.1 12.3+6.2 16.6+8.1 18.2+11.8
Stem Volume (m?3/ha) 92.4+69.5 121.5+60.3 142.5+81.3 189.4+97.7 221.1+144.4
Biomass (ton/ha) 105.4+72.2 139.0+63.1 152.4+82.6 200.4+99.7 234.2+154.7
Number of plots (n = 1460) 58 24 885 455 38

Descriptions

Mixture of pioneer

species, low to medium

tree size and shrubs,
canopy cover < 50%,
currently disturbed,

shows noticeable marks

of forest burning and
clearing

Sparse forest
dominated with
slim and tall
vegetation,
canopy cover <
50%, located
adjacent to the
streams

Dense forest
(canopy cover 50 -
70%), logged over
< 10 years, located
in flat and
moderate slope

Very dense forest
(canopy cover 70 -
80%), logged over

between 10 - 20 years,
located in moderate and

highly steep regions

Advanced forest
stucture, closed
canopy (over 80%),
logged over > 20
years, located
mostly in highly
steep region
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Moreover, calculation of vegetation indices required the surface reflectance rather than
digital number (DN) values or top of atmosphere reflectance, thus the corrections on the

images were required.

Atmospheric corrections were applied on the ETM data using dark object substraction
(DOS) method proposed by Chavez (1988). According to a study conducted by Song et al.
(2001), different variations of DOS technique are available. We experienced the COST-DOS
technique offered more preferable results with regard to the spectral responses of
vegetated areas. Topographic corrections were implemented using C-Correction procedure
assuming Lambertian effects on the earth surface (Riafo et al.,, 2003). Hereafter, we refer

the satellite images to the corrected ETM data.

Digital Elevation Model (DEM) of the area was obtained from the Shuttle Radar Topography
Mission (SRTM) data. The DEM originally 90 meter resolution was orthorectified with the
ETM data and resampled using nearest neighborhood method into 30 meter spatial
resolution to fit with the resolution of the ETM image. Slope angle and aspect were
computed from the resampled DEM and applied as ancillary input for AGB and stand volume

modeling.

5.2.3 Methods

Generally, this study approached the above ground biomass (AGB) and stem volume using
RS data and synergy of GIS - field observation data (Fig. 5.1). To estimate AGB using field
observation approach and GIS, we used a stem diameter (DBH) - AGB allometric equation
developed for tropical lowland dipterocarp forest (Eq. 5.1). The following equation was

generated by destructively measuring 40 sampling trees (Samalca, 2007).

AGB = exp(—1.2495 +2.3109 x In(dbh) Eq. 5.1

The AGB estimated from Eq. 5.1 was superimposed over the modified GIS land cover map
provided by the forest management unit to analyze the AGB density of particular land cover
type. The land cover map was based on Landsat ETM image interpretation coupled with

field surveying data.

The corrected Landsat ETM images were classified using Maximum likelihood method, and
post-classification processing was carried out implementing majority analysis for removing

minor spurious pixels within a large single class. In the majority analysis, we set up a
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Fig. 5.1 Workflow of the study describes two main approaches for estimating the AGB, using remote sensing method (left shaded box) and
combination of field data and GIS method (right shaded box). The middle part of the workflow (non shaded area) explains the classification

procedure of multi-temporal ETM images (2000 and 2003) performed in this study
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parameter of kernel size, using which the center pixel in the kernel was replaced with the
class label that was dominant within this kernel. This process was iterated for the entire
image resulting in a more homogenous classified image. Principal Component Analysis
(PCA) bands were also estimated and used for the classification alternatively. The
classification accuracy was assessed using confusion matrices and the associated kappa

statistics.

To integrate the remote sensing data in estimating the AGB, the Landsat ETM data,
vegetation indices (VI), simple ratio (SR), image transform data (i.e. VIS123, ALBEDO,
MID57), tasseled cap (TC), three bands of principal component analysis (PCA), GLCM
texture features, and slope and aspect from the DEM data were statistically correlated with
the biomass data following the Pearson correlation test procedure. The biomass data was
carefully selected using GLCM mean texture feature as the reference, as we obtained this
texture feature had the highest correlation coefficient compared to other RS data. The
modeling of the AGB and stem volume equations was conducted using SPSS version 11.5
software applying a stepwise multi-linear regression method. The modeling used a subset of
sample data, and was validated with the complete dataset. Biomass density and total
biomass of each land cover class was predicted overlaying the AGB estimate with the land
cover maps of 2000 and 2003. Subsequently, the total biomass change during this period
was calculated. Dynamics of the estimated forest properties assessed from RS and
combination of GIS - field observation approaches, and substantial correlation between

GLCM mean texture and the AGB are discussed.

5.2.4 Vegetation Indices Generation and Land Cover Classification

Various vegetation indices may be computed from the satellite data. These vegetation
indices were proposed for different applications, such as soil moisture, vegetation
monitoring, mineral deposits mapping, etc (Jensen, 1996). Vegetation indices generated
from certain satellite image bands are sensitive to characterize green vegetation/forested
regions from other objects on the ground. In vegetated regions, the cells in plant leaves are
very effective scatterers of light because of the high contrast in the index of refraction
between the water-rich cell contents and the intercellular air spaces. Vegetation is very dark
in the visible bands (400-700 nm) because of the high absorption of pigments in leaves
(chlorophyll, protochlorophyll, xanthophyll, etc.). There is a slight increase in reflectivity
around 550 nm (visible green band) because the pigments are least absorptive in this range.
In the spectral range of 700-1300 nm plants are very bright because this is a spectral no-
man's land between the electronic transitions, providing absorption in the visible and

molecular vibrations that absorb in longer wavelengths. There is no strong absorption in
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this spectral range, but the plant scatters strongly. From 1300 nm to about 2500 nm
vegetation is relatively dark, primarily because of the absorption by leaf water. Cellulose,
lignin, and other plant materials are also absorbed in this spectral range (Lillesand and
Kiefer, 1994). This study, moreover, demonstrated the utility of vegetation indices,
especially those proposed for vegetation monitoring, for estimating the AGB and stand
volume (Tab. 5.2). Besides those indices explained above, we also computed three bands of
principal component analysis (PCA) and three bands of tasseled cap (TC), i.e. brightness
(TC1), greenness (TC2) and wetness (TC3). Another attempt to include more Landsat ETM
features was to calculate the Gray Level Co-Occurrence Matrix (GLCM) texture features.
Eight GLCM texture computed using second derivatives of mean (GLCM_MEAN), variance
(GLCM_VAR), homogeneity (GLCM_HOMO), contrast (GLCM_CONT), dissimilarity
(GLCM_DISS), entropy (GLCM_ENTR), second moment (GLCM_SECM), and correlation
(GLCM_CORR) were generated. We analyzed the variance matrix of Landsat ETM bands and
found substantial variance of forested lands from Landsat ETM band 5 (Wijaya et al,
2008b). This band was ultimately selected for generating the texture features using 5x5
moving window (cf. chapter 3 for moving window size selection procedures). The texture
layers were calculated to each direction with single shifting pixel and were quantified into a

64 gray levels.

5.3 Results

5.3.1 Biomass Mapping using Field Data and GIS

The estimated biomass, stem volume and count of stems were plotted against DBH classes
(Fig. 5.2), and the result show that small and medium tree diameters (10 - 60 cm), although
contributing to large number of trees, represented small amounts of stem volume and
biomass. These DBH’s were dominant for young- and regenerating forests, which were
mostly occupied by small and fast growing pioneer species, e.g. Macaranga sp.,
complemented with medium size of non-pioneer species, e.g. Aglaia, Knepa and Artocarpus.
Old secondary- and mature forests on the other hand, were characterized by non-pioneer
species from medium to large tree size, e.g. Shorea, Dipterocarpus, Vatica and Euphorbiaceae
species. The pioneer species and small light demanding species disappeared during the
regenerating process due to natural thinning effects caused by species competition in
pursuing limited nutrient contents and light intensities. Therefore, the old secondary- and

mature forests contributed to higher AGB and stem volume.
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Tab. 5.2 Various simple ratios, different NDVIs, complex vegetation indices and image transform layers computed in this study to generate the

biomass and stem volume equations

Index under study Formula

Description Reference

Simple band ratios

ETM 4/3 ETM4/ETM3
ETM 5/3 ETM5/ETM3
ETM 5/4 ETMS5/ETM4
ETM 5/7 ETMS5/ETM7
ETM 7/3 ETM7/ETM3

Traditional vegetation indices

NDVI (erm 4 - ETv 3)/(ETM 4 + ETM 3)
ND53 (erv s - BT 3)/ (BT 5 + ETM 3)
ND54 (erM 5 - ETM 4)/(ETM 5 + ETM 4)
ND57 (erm s - M 7)/(ETM 5 + ETM 7)
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Measure of green vegetation and (Rouseetal., 1973)
chlorophyll absorption bands (ETM+mniq:
660nm; 830nm)

Modified simple ratio (ETM+mia: 660nm; (Lu etal, 2004)
1650nm)

Modified simple ratio (ETM+mia: 830nm; (Lu et al.,, 2004)
1650nm)

Modified simple ratio (ETM+ma: (Luetal., 2004)
1650nm; 2215nm)

Modified simple ratio (ETM+m;a: 660nm; (Lu etal., 2004)
2215nm)

Measure of green vegetation cover (Rouse etal., 1973)
(ETM+mig: 660nm; 830nm)

Modified vegetation indices (ETM+mi¢: (Lu etal, 2004)
660nm; 1650nm)

Modified vegetation indices (ETM+mi¢: (Lu etal, 2004)
830nm; 1650nm)

Modified vegetation indices (ETM+mi¢: (Luetal, 2004)
1650nm; 2215nm)



ND32

(erm 3 - BT 2)/(ETM 3+ ETM 2)

Complex vegetation indices

ARVI

EVI

SAVI

MSAVI2

GEMI

(NIR + 2RED + BLUE )/(NIR + 2RED - BLUE )

2.5 (NIR = RED )/(NIR - 6RED — 7.5BLUE +1)

(niR - RED )x (1+ L)/(NIR + RED + L)

((2N1R+1)—J (2NIR+1)* —8(NIR—2RED) ) /z

£(1-0.25¢)~(RED—-0.125)/(1- RED)

where £
RED2)+1.5NIR+0.5RED)/(NIR+RED+0.5)

Image transform indices

VIS123

MID57

ALBEDO

ETM1+ ETM?2+ ETM3
ETMS5+ ETM’T

=(2(NIRz-

ETM1+ ETM2+ ETM3+ ETM4+ ETMS+ ETM7

Modified vegetation indices (ETM+mia: (Luetal., 2004)
560nm; 660nm)

Enhancement of NDVI that is relatively (Kaufman and Tanre,
resistant to  atmospheric  factors 1996)
(ETM+mig: 485nm; 660nm; 830nm)

Reduce the atmospheric influence and (Huete etal., 1997)
optimize the vegetation signal (ETM+miq:
485nm; 660nm; 830nm)

Modified green vegetation index with an (Huete, 1988)
adjustment factor (ETM+mia: 660nm;
830nm)

Measure of vegetation that is less (Qietal, 1994)
sensitive to atmosphere and soils
(ETM+mig: 660nm; 830nm)

Global environmental monitoring index (Pinty and Verstraete,
that is insensitive to empirical 1991)
atmosphere (ETM+mniq: 660nm; 830nm)

(ETM+miq: 485nm; 560nm; 660nm) (Luetal., 2004)

(ETM+mig: 1650nm; 2215nm) (Luetal., 2004)

(ETM+mia: 485nm; 560nm; 660nm; (Luetal., 2004)
830nm; 1650nm; 2215nm)
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Fig. 5.2 Plot of Stem volume/biomass and number of stems/ha vs. tree diameter (DBH)

The AGB was exponentially increased with DBH following the forest regenerating processes.
This is because the biomass has an exponential relationship with DBH, and stem volume is
basically a square function of DBH. Assuming other conditions are constant, stem volume is
linearly related to AGB. Besides that, biomass of a single tree is equal to the product of the
wood density and the volume (Ketterings et al.,, 2001). Many large trees in our study area
comprise of hardwood trees, such as teak (Tectona grandis), mahogany (Swietenia sp.),
ebony (Diospyros sp.), keruing (Dipterocarpus sp.), and meranti (Shorea sp.). The hardwoods
are mostly broad-leaved, and in the tropics and subtropics these trees are usually
evergreen. On average, hardwood has higher wood density and hardness than softwood,
although there is an enormous variation in actual wood hardness in both groups, with the

range in density in hardwoods completely including that of softwoods.

Based on the interpretation of the Landsat image and DEM data in 2001, eleven land cover
classes were identified in the concession area. The forest management unit digitized GIS
land cover map and used it as the reference in managing the concession area (Fig. 5.3).
Mature forest was defined as an old forest comprising large growing trees and some patches
of primary forest. Very dense forests was explained as old secondary forest, which were
logged >20 years ago and comprised of more large trees rather than the regenerating ones.

Dense forests were described as current regenerating
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Fig. 5.3 Landsat ETM of the study area with ETM bands 453 as RGB combination (a), and modified GIS land cover map of 2001 (b)
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forests with the age of <20 years old. Riparian forests were situated along the main rivers

that flow over the study area from NE - SW to west directions.
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Fig. 5.4 Above ground biomass (AGB) and stem volume of each land cover type, sorted with
the most advanced vegetation structures, i.e. mature forest-hilly, to the least complex
structures, i.e. shrubs

Using GIS land cover map as a reference, the stem volume, AGB and number of stems per
hectare were plotted (Fig. 5.4). The mean AGB of mature forest was 234.2 ton/ha, almost
double than in dense forests (149.8 ton/ha). The stem number in mature forest was
extremely high, mainly due to the presence of undisturbed forests within this class which
mostly situated in the protection forest. Riparian forest on the other hand, represented
higher stem number but contributed to low biomass. This was because most riparian forests
were characterized with tall and very slim trees, thus contributed to less biomass. The
presence of riparian forest was usually mixed with shrubs which may become a problem for
RS data to classify both forest classes. Similarly, a number of shrubs was also found along
the rivers indicating the presence of former slash and burn practice and opening of

agricultural lands.

During field work, we observed more disturbance on forests occurred with declining slope.
These disturbances were mainly caused by anthropogenic factors, such as illegal forest

harvesting, forest burning and opening of agricultural farms (Wijaya, 2006). This condition
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was similar with the finding of this study which predicted lower AGB and stem volume in
less steep areas (Fig. 5.4). For example, the biomass density in very dense forest-hilly (225.9
ton/ha) was significantly higher than in very dense forest-flat (182.5 ton/ha), while the AGB
in dense forests under moderate (155.2 ton/ha) and under hilly terrains (168.4 ton/ha) was

slightly different.

Our ground observation also suggested that vegetation complexity and canopy cover in
mature forests and very dense forests were similar, given the fact that the estimated AGB in
mature forests (234.2 ton/ha) was slightly higher than in very dense forests (204.2 ton/ha).
As mentioned earlier, mature forests indicate the presence of pristine forests which mostly
are undisturbed, whereas very dense forests were assumed as old secondary forests that
were harvested more than 20 years ago. The similarity in vegetation structures for both
forests occurred because these forests were selectively logged over, depending on tree
species (i.e. commercial timber) and size (i.e. DBH > 50 cm), and the gaps of forest canopy
were rapidly recovered just one year after the completion of forest harvesting. However, the
density of large trees (DBH > 80 cm) in secondary forests (i.e. very dense forests) was not as
high as in primary forests (i.e. mature forests), so that lower biomass was found in the
secondary forests even after 20 years of forest harvesting, as indicated by number of stems

per hectare in both forest regimes (Fig. 5.4).

5.3.2 Prediction and Dynamics of Biomass and Stem Volume using
Remote Sensing

5.3.2.1 Model generation

Analysis of Pearson correlation test showed that GLCM mean texture explained the stem
volume (r = -0.669) and AGB (r = -0.544) better than other remote sensing data, including
Landsat ETM band 4, 5 and 7, NDVI, SAV], and PC1, which were usually among the ‘favorite

bands’ used for vegetation assessment (Tab. 5.3).

This high correlation between GLCM mean texture and AGB and stem volume was probably
due to the smoothing effects of the texture feature calculating second derivatives mean
values of particular pixels based on the values of neighboring pixels. The utility of GLCM
texture features was useful to remove the shadow effects of broadleaf and/or large trees
and shows higher correlation between the GLCM entropy and AGB in mature tropical forests

of the Amazon (Lu, 2005).
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Tab. 5.3 Correlations between Remote Sensing Data, Stem Volume and Above Ground
Biomass (AGB)

Stem Volume  AGB Stem Volume AGB
B1 -250(*%) -.246(*%) SAVI -101 -076
B2 -278(*%) -275(*%) MSAVI2 -.075 -.052
B3 -211(*) -194(*%) GEMI .368(**) 313(*)
B4 -.395(*) -336(*%) VIS123 -276(*%) -267(*%)
B5 -418(*%) -375(*%) MID57 -425(*) -382(*%)
B7 -.390(*%) -.349(*%) ALBEDO -443(*%) -.394(*%)
ELEV -.009 -160(**) PC1 -426(*) -.383(*%)
SLOPE .082 .082 PC2 .399(**) .340(*)
SR -137(%) -109(%) PC3 -077 -.085
SR53 -177(*%) -160(*%) TC1_BR -427(*) -374(*%)
SR54 -.082 -.093 TC2_GR -300(*%) -241(*%)
SR57 -.037 -.037 TC3_WE .380(**) .338(**)
SR73 -147(*%) -130(%) GLCM_MEAN -.669(*%) -544(*%)
NDVI -.085 -.063 GLCM_VAR -.067 -.035
ND53 -129(%) -111(%) GLCM_HOMO .081 .078
ND54 -.084 -.095 GLCM_CONT -100 -.063
ND57 -.034 -.032 GLCM_DISS -.099 -.085
ND32 .061 .083 GLCM_ENTR -011 -016
ARVI -.099 -073 GLCM_SECM 011 .027
EVI .014 -.002 GLCM_CORR -.020 -016

That study explained the combination of texture features and Landsat ETM spectral data

could improve the predictive ability of multi-linear regression method in estimating the

AGB. Another study carried out in the regenerating tropical forest of Brazilian Amazon

described that GLCM contrast improved the correlation between radar backscatter and the

AGB (Kuplich et al, 2005). The study area in fact, was a secondary forest that mostly

classified as moderate - late regenerating forest stages and mature forest (as shown in Fig.
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5.5). With relatively complex vegetation structure, the GLCM texture features were more

sensitive to AGB than Landsat ETM spectral data and vegetation indices.

Providing the highest correlation coefficients with the AGB and stem volume, the GLCM
mean texture was ultimately used as a basis for sample data selection, resulting in the
subset data exhibited in Tab. 5.4. The data selection was actually a process to remove the
extreme values from the complete dataset, and hence, reduced standard deviation of the
subset data. Comparison between the subset and complete datasets found similar mean AGB
and stem volume, and spatial distribution of the data was also similar with the complete
dataset, as only the data within #1.SD were selected. Assuming there was no change on the
data distribution, the subset data was used to build the remote sensing-based AGB and stem
volume linear equations. Landsat ETM multispectral bands (ETM Bands 1-5, and 7), SR53,
SR73, GEMI, VIS123, MID57, ALBEDO, PC1, TC1, TC2, TC3, and GLCM mean were
significantly correlated with AGB and stem volume (p < 0.05), although the correlation

coefficients on average were relatively low (r < 0.5) (Tab. 5.3).

Tab. 5.4 Comparison of stem volume and AGB from complete and selected datasets

Complete Dataset Subset Data

Stem Volume (m3/ha) AGB (ton/ha) Stem Volume (m3/ha) AGB (ton/ha)

Mean 156.79 167.36 156.60 166.82
Min 1.73 4.69 59.95 60.85
Max 628.62 663.35 221.97 234.03
SD 9215 94.16 24.69 27.12
%SD 59% 56% 16% 16%

N 1460 388

Using Stepwise method, these data were iteratively selected to model the stem volume

(StVol), and the linear equation model was generated (SEE=18.4, F=34.719, p < 0.05).

StVol =(9.703x B4)+(11.910x B5)+(8.51x B7)+(0.001x GEMI ) - Eq.5.2
(22.444 x ALBEDO)+(4214.699 x PC1)—(254.412x TC3_WE)—-
(15.595x GLC _MEAN)+1192.511
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Fig. 5.5 Classified Landsat ETM images of year 2000 (a) and 2003 (b) showing mature forest, very dense forests, dense forests, riparian forest,
shrubs and bare soil. The bare soil class was masked out from the classification prior to the estimates of AGB density and stem volume of each
land cover type
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Similar to stem volume, the AGB was estimated using combination of the RS data for

predicting the biomass linear equation (SEE=22.7, F=21.44, p < 0.05).

AGB = (6.569 x B4)—(14.198 x B5)—(9.366 x B7) - Eq.5.3
(14.784 x ALBEDO)+(3430.451x PC1) - (2647.087 x TC3_WE)—
(12.991x GLC _ MEAN )+1029.644

Applying Equations (2) and (3), we estimated 157.8+16.12 m3/ha of stem volume and
168.06+14.57 ton/ha of AGB over the study area. These estimates were similar with those
predicted from the field observation data obtaining 156.79£92.15 m3/ha and 167.36+x94.16
ton/ha of stem volume and AGB, respectively (Tab. 5.4).

5.3.2.2 Land cover classification

The accuracy of classification results was assessed using confusion matrices and Kappa
Statistics (Tab. 5.5), and found the classification using Landsat ETM image and processed
using majority analysis had better accuracy (OA00 = 82.8%, 0A03 = 85.1%) than the use of
PCA bands (0OA00 = 75.9%, OA03 = 80.8%) or Landsat ETM data without post-classification
process (OA00 = 77.9%, OA03 = 81.9%).

Tab. 5.5 Classification Accuracy of Landsat ETM 2000 and 2003

ETM 2000 ETM 2003
0Aopo (%) Kappa 0Aoz (%) Kappa
ETM image (Band 1-5,7) 77.9 0.75 81.9 0.79
PCA Bands (PC 1-3) 75.9 0.73 80.8 0.78
ETM image, majority analysis 82.8 0.80 85.1 0.83

Majority analysis was basically an attempt to remove minor spurious pixels surrounded
within a large single class using a kernel matrix. The analysis resulted in more homogenous

classification map, which had higher accuracies and better visualization characteristics.

Based on the Landsat ETM data, nine land cover classes, namely mature forest, very dense
forest classes (VDF-closed, VDF-gaps), dense forest classes (DF-closed, DF-gaps, DF-
disturbed), riparian forest (RF), shrubs and bare soil were classified. The classification map
showed noticeable marks of forest degradation and deforestation from 2000 to 2003 (Fig.
5.5). Southern part of the study area, which were dominated by very dense forests in 2000
were mostly converted into dense forest in 2003, indicating prominent forest degradation.

The expansion of road networks and slash and burn practice for the opening of new
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agriculture lands were the major problems compromising the sustainability of forest

management over this forest region.

5.3.3 Comparison of AGB and stem volume estimates

We have so far two land cover maps, namely the GIS land cover map and land cover map of
Landsat ETM data classification. Unfortunately, both maps have different number of classes
and class descriptions. There were eleven classes and nine land cover types identified in the
GIS land cover map and the classification of Landsat ETM data, respectively. To compare the
biomass density and standing stocks estimated from RS and GIS - field observation based
approaches, the incompatible class labels were excluded or aggregated following general
classification rule. The incompatible land cover classes, i.e. agriculture, mixed forest and
swamp forest classes were excluded from the GIS land cover map. The remaining classes
were aggregated resulting in five final classes for both land cover maps, namely mature
forest, very dense forest, dense forest, riparian forest and shrubs. Using the aggregated land
cover classes, the assessments of biomass and stem volume changes from 2000 to 2003

were conducted.

Tab. 5.6 Comparison of AGB and stem volume estimates for particular land cover type

Remote Sensing Estimate GIS and Field Data Estimate

Stem Volume AGB Stem Volume AGB

(m3/ha) (ton/ha) (m3/ha) (ton/ha)
Mature forest 171.8 180.8 2711 287.9
Very dense forest 161.5 171.0 193.3 204.2
Dense forest 152.8 163.4 140.3 149.8
Riparian forest 146.1 154.1 121.5 139.0
Shrubs 105.2 118.7 96.5 107.5

An attempt using GIS and field data obtained higher AGB and stem volume in mature- and
very dense forests classes than did the remote sensing approach. For dense forest, riparian
forest and shrubs, the AGB and stem volume were higher when the RS data was applied
(Tab. 5.6). In general, both approaches lead to similar conclusion, as the regenerating stage
becomes more advanced, the more AGB and standing stocks were found in the study area.

This study considered shrubs as the least complex vegetation structure, representing the
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earliest regenerating stage. In contrast, mature forest was associated with the most

advanced vegetation structure.

5.3.4 Dynamics of biomass abundance

The land cover map of classified Landsat ETM data was used as the reference for analyzing
the total areas of each land cover type and biomass change from 2000 to 2003. Of about
4,200 ha of mature forests in 2000 were converted into other land cover types in 2003

showing forest degradation within this particular forest.

Mature forests are important for forest ecosystem, as these forests represent the most
complex vegetation structure and indicate the presence of undisturbed forests. Very dense
forests increased from 8,859 ha to 16,865 ha (Tab. 5.7). This was probably due to the
degradation of mature forests, or due to the growth of dense forest into a more complex
structure reducing the area of this particular class from 35,563 ha (2000) to 27,624 ha
(2003). The riparian forest areas increased up to 4,962 ha in 2003, this implied the
excessive extension of shrubs into respective forest class. The bare soil class was none of

our interest, therefore excluded prior to the biomass change assessment.

Tab. 5.7 Percentage of Land cover change from 2000 to 2003 based on Landsat ETM data
classification (percentage is shown in brackets)

Land Cover 2000 Land Cover 2003 Difference (2003 - 2000)

(ha) /(%) (ha) /(%) (ha)/(%)
Mature forest 15,297 (24.4%) 11,094 (17.7%) -4,202 (-6.7%)
Very dense forest 8,859 (14.2%) 16,865 (27.0%) 8,006 (12.8%)
Dense forest 35,563 (56.8%) 27,624 (44.2%) -7,939 (-12.7%)
Riparian forest 1,550 (2.5%) 4,962 (7.9%) 3,413 (5.5%)
Shrub 1,150 (1.8%) 1,134 (1.8%) -15 (0.0%)
Bare Soil 151 (0.2%) 888 (1.4%) 737 (1.2%)

Total classified area 62,568 (100%) 62,568 (100%)

Calculating the sum products of AGB and stem volume (Tab. 5.6) and total forest areas in
2000 and 2003 (Tab. 5.7), the changes on biomass and standing stocks over the study area
were obtained (Tab. 5.8). The AGB in mature forest decreased by 25% from 2.77 Gt in 2000
to 2.0 Gtin 2003 estimated from RS data. Similarly, the GIS - field data assessed
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Tab. 5.8 Dynamics of Forest Biomass (AGB) and Stem Volume (Vol) from 2000 to 2003

Remote Sensing data estimate

2000 2003 Differences (2003 - 2000)

Vol (m3) (%) AGB (Gton) (%) Vol (m3) (%) AGB (Gton) (%) Vol (m3)  AGB (Gton)

Mature forest 2,627,681 26.7% 2766 26.4% 1,905,789 19.7% 2.006 19.5% -721,893 -0.760
Very dense forest 1,430,454 14.5% 1.515 14.5% 2,723,228 28.1% 2.884 28.0% 1,292,774 1.369
Dense forest 5,435,006 55.2% 5812 55.5% 4,221,747 43.5% 4515 43.8% -1,213,260 -1.298
Riparian forest 226,391  2.3% 0.239 2.3% 725,013  7.5% 0.765  7.4% 498,621 0.526
Shrub 120,894 1.2% 0.136 1.3% 119,295 1.2% 0.135 1.3% -1,599 -0.002
Total 9,840,427 100% 10.469 100.0% 9,695,071 100.0% 10.304 100.0% -145,356 -0.164

GIS and field data estimate

2000 2003 Differences (2003 - 2000)

Vol (m3) (%) AGB (Gton) (%) Vol (m3) (%) AGB (Gton) (%) Vol (m3)  AGB (Gton)

Mature forest 4,147,107 37.2% 4403 37.1% 3,007,788 27.7% 3.194 27.6% -1,139,319 -1.210
Very dense forest 1,712,045 15.4% 1.809 15.2% 3,259,308 30.0% 3.444 29.7% 1,547,262 1.635
Dense forest 4,987,952 44.7% 5329 44.9% 3,874,489 35.7% 4139 35.7% -1,113,463 -1.189
Riparian forest 188,261 1.7% 0.215 1.8% 602,902  5.6% 0.690 6.0% 414,641 0.474
Shrub 110,976 1.0% 0.124 1.0% 109,508 1.0% 0.122 1.1% -1,468 -0.002
Total 11,146,342 100.0% 11.880 100.0% 10,853,995 100.0% 11.588 100.0% -292,347 -0.292
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lower biomass in this particular forest with greater magnitude. Both approaches found an
increased AGB in very dense forest and riparian forest. The dense forest class, representing
of more than 56% of forested lands, contributed to over 55% of total biomass in 2000
estimated using RS data. In overall, there was a slightly declining trend in total biomass
(range from -0.164 Gt to -0.292 Gt) from 2000 - 2003. This indicates continuous
degradation and deforestation within the forest region and consequently reduced the total

abundance of biomass and the volume of standing stocks.

Carbon accumulation over this period definitely was reduced, and more carbon was
released into the atmosphere. Remote sensing approach in general calculated lower biomass
abundance and stem volume than those from GIS - field data. The earlier approach
predicted 10.45 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while the later
estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively.

5.4 Discussion

5.4.1 Prediction Results Assessment

This study successfully predicted the above ground biomass (AGB) and stem volume over a
tropical forest region using remote sensing and GIS - field data approaches. Estimation of
stem volume is important for mapping of standing stock and for forest inventory purpose, as
it provides initial prediction on timber amount that could be commercially harvested. The
biomass on the other hand is important for indicating carbon accumulation in a forest
region over time, and information on total AGB estimated for each land cover type is useful
to assess how different regeneration stages could have an effect on the forest as a source of

carbon sink.

Remote sensing based estimates have potential to predict the dynamics of forest biomass
and stem volume over large forest region with less efforts, time and cost than field based
estimate. However, the accuracy of the estimates is somehow questionable, as it depends on
the quality of remote sensing data and its relationship with field observation data being

modeled.

Several attempts to estimate AGB from remote sensing data found high uncertainties which
were around 30 - 40% (Sales et al., 2007). This study confirmed this high error estimate in
assessing the AGB using RS data and found slightly lower error estimate (Tab. 5.9), and the
result might be used as an initial prediction of AGB over the study area. To elevate the
estimate precision, correlation analysis between the RS data and biomass can be separately

implemented for different land cover, and it should be considered for further study.
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Tab. 5.9 Above ground biomass estimates computed in this study using different allometric
equations developed for tropical forest environment

AGBgrs AGBgs FAO Model Brown & Lugo Ketterings, et.al.

(This (This (1997) (1992) (2001)
study) study)

AGB Estimate . 166.8 164 155.7 88.46

(ton/ha)

SD (ton/ha) 94.2 271 91.8 94.5 475

An attempt to estimate the AGB using remote sensing (RS) tends to underestimate the result
due to the saturation of the Landsat ETM spectral values and vegetation indices. The RS data
saturated at higher AGB and stem volume, reducing the coefficient correlation with the
measured forest properties. In order to reduce the saturation problem, we masked the
extreme values out from RS data to get better correlation with the forest properties under
study. The present study as well as previous studies confirmed that reflectance of Landsat
data and NDVI were saturated at higher biomass density (Lu, 2005; Steininger, 2000).
Several underlying factors may cause this problem, namely the size of sampling plot that
was not designed to be related to spaceborne data, or the saturation from dense leaf
canopies that restricts the AGB estimates into a low level when passive sensors, such
Landsat ETM, are used (Anaya et al., 2009). Nevertheless, the utility of moderate resolution
of satellite data, such as Landsat ETM image, is the only alternative to predict the AGB and
stem volume in this particular forest due to the lack of active sensors, e.g. SAR and Lidar, or

high spatial resolution satellite imagery, e.g. IKONOS and Quickbird.

The biomass estimates of this study were compared with those computed using another
allometric model generated with destructive sampling and developed for similar forest
environment. Assuming the similarity of forest structure and vegetation compositions, those
models were implemented in this study for estimating the AGB using available sample
dataset. Our estimates (AGBgis and AGBgrs) were similar with the results of FAO model
(Brown, 1997) and Brown and Lugo study (Brown and Lugo, 1992). However, Ketterings
model (Ketterings et al., 2001) estimated significantly lower biomass than did other models
(Tab. 5.9). This was probably due to the forest composition in Sumatra, the site where this
particular model was developed, did not represent the forest in the Labanan, although both
forests were geographically located in one country. The AGB models developed for general
tropical forest (Brown, 1997; Brown and Lugo, 1992) are more suitable for our study site.

The Brown & Lugo model (Brown and Lugo, 1992) was generated collecting tree sample
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from Brazil, Cambodia and Indonesia. Similarly, the FAO model (Brown, 1997) was

developed for tropical moist forest environment in general.

5.4.2 Relationship between GLCM Mean Texture, Land Cover, and Forest
Biomass

We found texture features derived from the Grey Level Co-ocurrence Matrix (GLCM) mean
texture had a strong correlation with the AGB and stem volume (Tab. 5.3). To study the
capability of mean texture feature in discriminating the AGB of particular land cover type,
the GLCM mean texture, AGB estimate, and land cover type were plotted showing that
moderate- and flat terrain-dense forests represented higher texture values compared to that

of very dense forest classes (Fig. 5.6).
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Fig. 5.6 Distribution of GLCM Mean Texture of Different Land Cover Type

The GLCM mean texture values of dense forest-hilly class have large interval and highly
overlaps with other forests texture values. During field observation we found many
similarities between very dense- and mature forests, and to differentiate these forest classes
is sometimes problematic, especially those located in moderate and steep slope. Within

these forest classes, we found numbers of moderate trees (dbh>50 cm) configured with a
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very small gap of canopy opening. Calculating mean texture features, the shadow effects
from tree canopies was removed, but the limited ability of Lndsat ETM data in penetrating
through the forest canopies created problems for characterizing each land cover biomass

using individual texture data.

5.5 Conclusions

The assessment of above ground biomass (AGB) and stem volume was presented in this
study implementing RS data and GIS - field data approach. The Landsat ETM data,
vegetation indices, image transform layers, simple ratio, PCA, tasseled caps bands, GLCM
texture features and DEM were generated and correlated with the AGB and stem volume.
We found the GLCM mean texture had higher coefficient correlation than other RS data, but
was difficult for discriminating the biomass of each land cover type due to the limitation of
Landsat ETM data. Based on selected dataset, the linear equation models of AGB and stem
volume were predicted. On average, 158+16 m3/ha of stem volume and 168+15 ton/ha of
AGB were estimated using RS approach. Based upon the field observation data, 157+92
m3/ha and 167494 ton/ha of stem volume and AGB were predicted, respectively. The
dynamics of biomass abundance from 2000 to 2003 were assessed using classified Landsat
ETM data. In general, there was a declining trend of total biomass over this period. Remote
sensing approach estimated lower biomass abundance than did the GIS and field data. The
earlier approach predicted 10.47 Gt and 10.3 Gt of total biomasses in 2000 and 2003, while
the later estimated 11.9 Gt and 11.6 Gt of total biomasses, respectively.
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Chapter 6

Retrieval of Forest Attributes using Bi-
Temporal Remote Sensing Data’

ABSTRACT

Quantification of forest parameters in different successional stages is important to assess
the physical characteristics of the forest physiognomy. We modeled the forest attributes
using both a parametric multiple linear regression analysis and neural networks approach,
using Landsat ETM data acquired in 2000 (ETMO00). We compiled sample plot data using
forest inventory data collected from 1997 to 1998. There were 226 plots used to train the
models and 112 plots were used for the validation. The remote sensing data (spectral
values, vegetation indices, texture, etc) coupled with digital elevation model (DEM) were
experimented and selectively used to model basal area, stem volume and above ground
biomass (AGB). We investigated the possibility to estimate the forest attributes using
Landsat ETM image from 2003 (ETMO03) and applying multivariate alteration detection
method. Our results showed that the mean texture index is strongly correlated with the
forest attributes. We also show that neural networks perform better than multiple
regression for predicting the forest attributes. The modeled basal area, stem volume and
AGB varied from 10.7 - 15.1 mzha, 123.2 - 181.9 m3.ha't, and 132.7 - 185.3 Mghat,
respectively. The RMSE; values of model fitting ranged from 11.2% to 13.3%, and the test
dataset estimated slightly higher RMSE, which varied from 12% to 14.1%. The
transferability of the forest attribute models from the ETMO0O data to ETMO03 revealed
favorable estimates, although the ETMO03 shows considerably higher estimates than the
ETMOO.

Keywords: successional forests, forest attributes, tropical forests, Landsat ETM image, multiple

linear regression, neural networks, basal area, stem volume, AGB

§ Wijaya, A., V. Liesenberg and R. Gloaguen (2010). Retrieval of Forest Attributes in complex
Successional Forests of Central Indonesia: Modeling and Estimation of Bi-Temporal Data.
Forest Ecology and Management, Vol.259, Page 2315 - 2326.
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6.1 Introduction

Indonesia has the third largest tropical forest after Brazil and the Democratic Republic of
Congo around the globe (FAO, 2006). However, the rate of forest loss in Indonesia is
accelerating rapidly. On average, about 1 million hectares per year of forests were cleared in
the 1980s, rising to about 1.7 million hectares per year in the first part of the 1990s. Since
1996, deforestation appears to have increased to an average of 2 million hectares per year
(FWI/GFW, 2002). Nonetheless, some efforts have been made to recover previously forested
areas. Regeneration of vegetation is common in some areas following the completion of
forest disturbances and/or deforestation. The intensity of regenerating processes applies
differently within different forest environments depending on the climate, terrain
conditions, soil fertility and nutrient contents, light intensities, characteristics of pioneer
vegetation species, etc (Lu et al., 2003; Moran and Brondizio, 1998). The resulting landscape
often consists of patches of successional forests and agricultural lands (Lu et al., 2003). This
successional forest plays an important role in soil restoration through the accumulation of
biomass, the buildup of litter and soil organic matter and other beneficial soil/plant

interactions (Moran et al., 2000).

The successional forests might be distinguished based upon the time since the last
abandonment, the average stand height and basal area, the stand volume and biomass
density, and physiognomic characteristics (Moran and Brondizio, 1998; Uhl et al., 1988).
The quantification of specific forest parameters in different successional stages is therefore
important to assess the status of successional forest at different stages of their evolution.
This information is also useful to better understand the relationship between successional
stages and ecosystems change (Lu et al, 2003). Finally, the fundamental ecological
properties impacting the functioning of many terrestrial processes, such as water and
nutrient cycling and carbon sequestration need to be understood at different successional

stages (Song et al., 2007).

Foody and Curran (1994) highlighted that basic information on the extent and the
biophysical properties in different successional forest physiognomies are relatively poorly
unknown. We propose to investigate such properties using multi-temporal remote sensing

data.

This study focuses over a lowland tropical forest in East Kalimantan province, Indonesia.
The island of Kalimantan includes the largest forest areas within this country (MoF, 2006).
The Indonesian lowland tropical forest is among the world’s richest in timber resources and

biodiversity (FWI/GFW, 2002). Different forest physiognomies and successional stages,
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such as tropical peat swamp forest, open forest, riparian forest, successional forests
characterized with dense and very dense forest canopy, advanced secondary forest, and
primary forest may be found in the Kalimantan forests (BFMP, 1997). Compared to the
Brazilian Amazon (Li et al., 1994; Lucas et al., 2002; Lucas et al., 1993; Mausel et al,, 1993;
Moran and Brondizio, 1998; Moran et al., 1994; Steininger, 1996; Tucker et al., 1998), there
are relatively few studies dealing with the characterization of successional forest stages in
Kalimantan (Nykvist, 1996; Sist and Nguyen-Thé, 2002). Therefore, an attempt to assess the
forest properties, which yields accurate information on the forest structure at different
successional stages is of great interest. It is even highly appreciable, if the proposed method
is reproducible, easy to implement and transferable to another forest region (Foody et al,,

2003).

Remote sensing approaches become more popular as huge areas can be covered with less
efforts and time, with regard to different sensor characteristics and limitations (Houghton et
al,, 2001; Lu, 2005; Lu, 2006). Different types of spaceborne remote sensing data employing
optical sensor (Lu, 2005), synthetic aperture radar (SAR) data (Hajnsek et al., 2005) or light
detection and ranging (LIDAR) data (Lefsky et al., 2002) have been explored to quantify
forest biophysical properties. In the last decade, forest biomass assessment has become one
of the major concerns for scientists working with remote sensing for forestry applications
(Kuplich et al., 2005; Li et al.,, 2008; Lu, 2005; Lu, 2006; Luckman et al., 1996). Previous
studies reported that the transferability of the models generated from remote sensing data
is limited because these models are rather site specific (Foody et al., 2003; Houghton et al,,

2001).

The application of coarse resolution data, e.g. Advanced Very High Resolution Radiometer
(AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, are feasible
for regional mapping of forest biophysical properties (Hame et al.,, 1997), but the sensors
with moderate resolution, such as Landsat or ASTER data, is required for more accurate
estimation (Muukkonen and Heiskanen, 2005). Although the most accurate estimate is
achieved using LIDAR data, the relatively small covered areas and relatively expensive
acquisition are the major obstacle limiting the utility of this particular sensor in larger scale
(Drake et al., 2003; Gillespie et al., 2004). Besides, the utility of SAR data for biophysical
properties estimation is also widely studied (Cloude et al., 2008; Hajnsek et al., 2005; Isola
and Cloude, 2001). Here, we used Landsat ETM data which is highly abundant and at the
same time is underutilized, to develop the statistical models of forest attributes, namely
basal area, stem volume and above ground biomass (AGB) in Indonesian forest

environments.
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A great number of studies has been undertaken to predict the forest structural properties
using the Landsat ETM data (Lu and Batistella, 2005; Lu et al., 2004; Sader et al., 1989; Sales
et al,, 2007; Steininger, 2000; Steininger, 1996). These studies delivered mixed results in
estimating the forest structure properties, especially those conducted in tropical forests
(Foody et al.,, 2003; Ketterings et al., 2001; Rahman et al.,, 2005), where the vegetation
structure is very complex and relatively few accurate field observation data are available.
Thus, further study to model the forest attributes in this particular forest environment is
still necessary. Any additional information might improve the correlations between the
modeled forest attributes and remote sensing data (Foody et al., 2003; Kimes et al., 1998;
Lu, 2005; Lu and Batistella, 2005). Therefore, in order to increase the estimation accuracy,
we coupled Landsat ETM reflectance, with vegetation indices, image transform layers,
texture features, and digital elevation model (DEM). Each feature was tested for its

predictive potential and then selectively used to model forest attributes.

We modeled the forest attributes using (1) a parametric multiple linear regression analysis
and (2) a neural networks approach. Both methods have been successfully used in the
estimation of forest structure properties, using remote sensing (Ardo, 1992; Boyd et al,
2002; Hame et al., 1997; Hyyppa et al., 2000). A possibility to estimate the forest attributes
from bitemporal Landsat ETM data was also investigated by calibrating the radiometric
properties of across date ETM image using an automatic relative radiometric calibration
approach based on multivariate alteration detection (MAD) (Canty et al., 2004; Nielsen et al,,
1998).

6.2 Data and Methods

6.2.1 Image acquisition and preprocessing

Satellite data used in this study includes Landsat 7 Enhanced Thematic Mapper plus (ETM+)
and digital elevation model (DEM) from Shuttle Radar Topography Mission (SRTM) sensors.
Two Landsat ETM data acquired on August 26, 2000 and May 31, 2003 were employed. The
Landsat ETM data from 2000 (henceforth ETM00) was used to model the forest attributes,
whereas the ETM of 2003 (ETMO03) was used to investigate the estimations of forest

attributes from across date ETM scene.

The ETM00 image was projected into WGS 84 datum and Zone 50N using Universal
Transverse Mercator (UTM) projection. Preprocessing of the ETM00 data was conducted for
correcting the atmospheric and topographic effects by minimizing the artifacts caused by
the atmospheric attenuations, e.g. haze and irradiance scattering, and the terrain effects.

Also, calculation of vegetation indices required the surface reflectance instead of DN values
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or top of atmosphere reflectance, so that the image corrections were required. Atmospheric
corrections were applied on the ETMO0O0 using dark object subtraction (DOS) method
proposed by Chavez (1988). A study conducted by Song et al. (2001) proposed different
variations of DOS techniques. We experienced that the COST-DOS technique offered more
preferable results with regard to the spectral responses of vegetated areas. Topographic
corrections were implemented using C-Correction procedure assuming Lambertian effects

on the earth surface (Riafio et al., 2003).

To update the existing GIS-based land cover map, we used the ETM00 data and additional
ground truth data obtained from field work. A maximum likelihood supervised classification
was used and the classification accuracy was assessed using an independent test dataset,
resulted in 78% of overall accuracy and Kappa statistics of 0.75. We applied a majority
analysis on the classification image, which is basically an attempt for removing minor
spurious pixels within a large single class. Prior to the analysis, a 5x5 kernel size was
selected, in which the center pixel was replaced with the dominant class label within the
area covered by the moving window. This process was iterated for the entire image
resulting in more homogenous classification results. The accuracy of the processed land
cover map increased to 83% and Kappa of 0.80. Also, the classified image showed more
favorable visual characteristics than did the unprocessed one. Ultimately, the ‘updated’ land
cover map, consists of five land cover types, namely open forest (OF), riparian forest (RF),
successional forest 1 (SF1), successional forest 2 (SF2) and advanced secondary forest

(ASF), and were briefly explained in Tab. 6.1.
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Tab. 6.1 Description of sample data showing number of plots, total stems, mean diameter at breast height (DBH), basal area and stem volume for
different forest physiognomies

Successional forest 1 ~ Successional forest 2 Advanced
Open forest (OF) Riparian forest (RF) secondary forest
(SF1) (SF2)
(ASF)

Number of Stems (ha™) 221.7 255.3 250.7 266.1 244.7
DBH (cm) 29.1 31.4 35.5 35.0 43.8
Basal Area (m®.ha) 10.9 13.3 13.5 14.1 15.9
Stem Volume (m>.ha1) 114.8 148.0 154.5 161.0 193.0
Biomass (Mg.ha?) 124.5 157.0 165.7 169.9 201.1
Number of plots (n =338) 12 16 190 104 16
Canopy cover < 50%, <50%, 60% - 75% 75% - 90% over 90%

Descriptions

Mixture of pioneer
species, low to
medium tree size
and shrubs,
currently disturbed,
exhibits noticeable
marks of forest
burning and clearing

Sparse forest
dominated with slim
and tall vegetation,
located adjacent to
the streams

Dense forest, logged
over < 10 years,
located in flat and
moderate slope

Very dense forest,
logged over between
10 - 20 years, located
in moderate and
highly steep regions

Advanced forest
structure, closed
canopy, logged
over > 20 years,
located mostly in
highly steep region

106



To investigate the possibility for estimating the forest attributes from bitemporal ETM data
and to test the robustness of the generated models, we used the ETM image from 2003. The
ETMO03 image was co-registered to the ETMO0O data and resampled using nearest
neighborhood algorithm. To normalize the radiometric properties of the ETMO03, a relative
radiometric normalization, the multivariate alteration detection (MAD) (Nielsen et al., 1998)
was applied using the ETMOO as reference. The linear scale invariance of the MAD
transformation was used to obtain invariant pixels for automatic relative radiometric
normalization of the bitemporal Landsat ETM data (Canty et al., 2004). Invariant pixels were
selected from the ETM00 and ETMO3 subsets which show relatively no-change pixels.
Linear combinations of the intensities were iterated to all six bands in both ETM subsets.
These linear combinations in each paired band, or called MAD components (MAD;) are
invariant under linear transformations of the original image intensities. For radiometric

normalization, we selected all pixel coordinates, which satisfy

S| < Eq. 6.1

where %win s the standard deviation of each MAD components (MAD;) and ¢ is a decision
threshold. Under the hypothesis of no-change pixels, the above sum of squares of
standardized MAD variables is approximately chi-square distributed with N degrees of

2
freedom. We therefore choose ! = ZN,p = (.05 where p is the probability of observing the

value of t or lower. The selected pixels should correspond to truly invariant features so long
as the overall radiometric differences between the two images can be attributed to linear
effects. Since this method identified quite a large number of no-change pixels (n = 105844),
half of selected pixels were randomly selected for performing the linear regression. The
remaining pixels (n = 52921) were used for validating the regression model by performing
paired t-tests for equal means and its counterpart F-tests for equal variances. Normalization
on the basis of no-change pixels was performed to the entire ETM03 image by means of

ordinary least square (OLS).

The SRTM DEM originally of 90 meter resolution was also registered with the ETMO0O0 data
and resampled using nearest neighborhood algorithm into 30 meter spatial resolution to
allow the forest attributes modeling jointly with the ETM data. Slope angle and aspect were

then computed from the resampled DEM.
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6.2.2 Generation of ancillary remote sensing data

Additional remote sensing variables were calculated from the ETMO0O surface reflectance.
The application of simple ratios and both of traditional and complex vegetation indices is
wide, ranging from soil moisture, vegetation monitoring to mineral deposits mapping
(Jensen, 1996). This study, however, selected the ratios or indices which were proposed for
the monitoring of green vegetation and the assessment of forest biophysical properties
(Tab. 6.2). Most of these indices were calculated using a combination of red (ETM band 3),
near infrared (ETM band 4), and middle infrared (ETM band 5) bands.

Besides, three bands of principal component analysis (PCA) and tasseled cap (TC) bands, i.e.
brightness (TC1), greenness (TC2) and wetness (TC3) were calculated as well. We also
include texture features based on the grey level co-occurrence matrix (GLCM). Prior to the
computation of the texture features, a variance matrix calculated from each ETM band was
analyzed, to find specific ETM band representing the highest variance of forested lands. We
found the ETM band 5 (middle infra red band, ETM+yiq = 1650 nm) revealed a substantial
variance for different forest physiognomies. It means that this particular band may contain
more information than other ETM bands, to develop the correlations between the ETM data
and forest properties under study. The middle infra red band of ETM data was ultimately
selected for the texture features generation using a 5x5 moving window. The texture layers
were calculated in each direction with single shifting pixel and were quantified into a 64
gray levels. Eight texture features computed from mean (GLCM_MEAN), variance
(GLCM_VAR), homogeneity (GLCM_HOMO), contrast (GLCM_CONT), dissimilarity
(GLCM_DISS), entropy (GLCM_ENTR), second moment (GLCM_SECM), and correlation
(GLCM_CORR) were produced.
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Tab. 6.2 Various simple ratio, different NDVIs, complex vegetation indices and image transform layers computed in this study to generate the

biomass and stem volume equations

Index under study Formula

Description Reference

Simple band ratios

ETM 4/3 ETM4/ETM3
ETM 5/3 ETM5/ETM3
ETM 5/4 ETMS5/ETM4
ETM 5/7 ETM5/ETM7
ETM 7/3 ETM7/ETM3

Traditional vegetation indices

NDVI (erv 4 - ETv 3)/ (BT 4 + ETM 3)
ND53 (1 s - BT 3)/(ETm 5 + ETM 3)
ND54 (v 5 - ETM 4)/(ETM 5 + ETM 4)
ND57 (erv s — v 7)/(ETM 5 + ETM 7)

109

Measure of green vegetation and (Rouseetal., 1973)
chlorophyll absorption bands (ETM+mniq:
660nm; 830nm)

Modified simple ratio (ETM+mia: 660nm; (Lu etal, 2004)
1650nm)

Modified simple ratio (ETM+mia: 830nm; (Lu et al.,, 2004)
1650nm)

Modified simple ratio (ETM+mia: 1650nm; (Lu et al.,, 2004)
2215nm)

Modified simple ratio (ETM+mia: 660nm; (Lu et al.,, 2004)
2215nm)

Measure of green vegetation cover (Rouse etal., 1973)
(ETM+miq: 660nm; 830nm)

Modified vegetation indices (ETM+mi¢: (Lu etal, 2004)
660nm; 1650nm)

Modified vegetation indices (ETM+mi¢: (Lu etal, 2004)
830nm; 1650nm)

Modified vegetation indices (ETM+mia: (Luetal., 2004)
1650nm; 2215nm)



ND32 (v 3 - M 2)/(ETM 3 + ETM 2)

Complex vegetation indices

ARVI (NIR + 2RED + BLUE )/(NIR + 2RED - BLUE )
EVI 2.5x (NIR = RED )/(NIR - 6RED — 7.5BLUE +1)
SAVI (MR - RED )% (1+ L)/(NIR + RED + L)
MSAVI2

((2N1R+1)—J (2NIR+1)* —8(NIR—2RED) j /2

GEMI £(1-0.25¢)~(RED~0.125)/(1- RED)

Where
€ =(2(NIR2-RED?)+1.5NIR+0.5RED) /(NIR+RED+0.5)

Image transform indices

VIS123 ETM1+ ETM2+ ETM3
MID57 ETMS5+ETM7
ALBEDO ETM1+ ETM2+ ETM3+ ETMA4+ ETMS+ ETM7

Modified vegetation indices (ETM+mia: (Luetal., 2004)
560nm; 660nm)

Enhancement of NDVI that is relatively (Kaufman and Tanre,
resistant to  atmospheric  factors 1996)
(ETM+mig: 485nm; 660nm; 830nm)

Reduce the atmospheric influence and (Huete etal., 1997)
optimize the vegetation signal (ETM+miq:
485nm; 660nm; 830nm)

Modified green vegetation index with an (Huete, 1988)
adjustment factor (ETM+mia: 660nm;
830nm)

Measure of vegetation that is less (Qietal., 1994)
sensitive to atmosphere and soils
(ETM+mig: 660nm; 830nm)

Global environmental monitoring index (Pinty and Verstraete,
that is insensitive to empirical 1991)
atmosphere (ETM+mniq: 660nm; 830nm)

(ETM+mig: 485nm; 560nm; 660nm) (Luetal., 2004)

(ETM+mig: 1650nm; 2215nm) (Luetal, 2004)

(ETM+mia: 485nm; 560nm;
830nm; 1650nm; 2215nm)

660nm; (Luetal, 2004)
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6.2.3 Field observation data

Field observation data were compiled from the inventory data collected by the forest
concession management from April 1997 to January 1998. We selected 338 sampling plot
data (15m x 15m), and divided the data into training dataset (n = 226) and test data (n =
112), for modeling and validating the forest properties, respectively. The sample data,
collected in 16 transects, were spanned along the NW - SE directions within the study area.
In each measurement plot, diameter at breast height (DBH) ranging from 10 - 140 cm,
number of stems, and geographical coordinates were recorded. In total 3078 trees were
measured, using which tree basal area and stem volume were calculated. The estimation of
tree volume considered the adjustment factor for different tree species. Above ground
biomass (AGB) was subsequently estimated from tree diameter using an existing AGB
allometric equation modeled for particular tropical lowland dipterocarp forests (Samalca,

2007).

AGB=exp(—1.2495+2.3109x In(dbh)) Eq.6.2

The Eq. 6.2 was generated by destructively sampling 40 trees, to estimate dry weight of
carbon contents. To date, field measurement based approach is considered as the most

accurate method for forest biomass assessment (Lu, 2006).

All those parameter estimates were multiplied by the number of stems per hectare and for
each sample plot the values were aggregated to calculate per hectare measures (i.e. basal
area, stem volume and AGB per hectare) in each plot. The updated land cover map was
subsequently used to characterize the land cover type of each sample plot, as this
information was not collected by the forest concession management during the field
campaign. Descriptions on the physical characteristics of the forest successional stages were

briefly explained in Tab. 6.1.

Within the scope of this study, basal area, stem volume, and AGB from different successional
forests were modeled. The basal area, defined as the cross section area of trees measured at
breast height (~138 cm), is generally expressed as square units per unit area. Calculation of
tree basal area is used as a measure of tree density and to determine percent stocking.
Estimation of stem volume is important for mapping of standing stock and for forest
inventory purpose, as it provides initial prediction on timber amount that could be
commercially harvested. The AGB estimate, on the other hand, indicates the carbon
accumulation in a forest region over the time, and information on total AGB estimated from
each forest successional stage is useful to assess how different regeneration stages could

have an effect on the forest as a source of carbon sink.
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6.2.4 Statistical modeling

Estimation of the forest parameters from Landsat 7 ETM+ and SRTM DEM data employed a
multi-linear regression analysis and neural networks. Variations of multispectral bands,
vegetation indices, image transform bands, texture features, and DEM data were used as the
predictors. The selection of the predictors was based on the correlations with the forest
attributes under study. The regression analysis followed a forward stepwise regression

procedure to estimate the model parameters,
y,=ax, +bx, +...+gx +¢ Eq. 6.3

where the y; is the forest parameters, the a - g are the parameters of respective predictors
(x7), and &; is the error term. Several predictor variations were also tested to find the best

fitted model for each forest attribute.

Neural networks were mainly used for the classification of remotely sensed image (Atkinson
and Tatnall, 1997). This study demonstrates the utility of neural network for regression
analysis to quantify the forest attributes. A possibility to combine various RS data (e.g.
spectral data, vegetation indices, etc) considered in this study may certainly violate a
normal-distribution assumption which is required by a linear regression method to predict
the forest attributes accurately. Also, application of different RS data may compromise the
underlying assumptions of a parametric approach which are required by the regression
analysis (Boyd et al, 2002). Thus, a typical free assumptions approach, such as neural
network, might provide better estimates than do conventional parametric approaches

(Muukkonen and Heiskanen, 2005).

The neural networks were trained using Matlab version 2006a software (Demuth et al,,
2006). This method works by aggregating the weighing of the input values and applying a
threshold function into those values. The network training process is sometimes very time-
consuming, and the selection of a faster and more efficient training algorithm is preferable.
Instead of applying the back-propagation algorithm which is widely applied for remote
sensing study but actually inefficient in training the networks (Atkinson and Tatnall, 1997),
this study alternatively used the Levenberg-Marquardt algorithm in training the networks.
The Levenberg-Marquardt algorithm is basically an iterative technique that locates the
minimum of a function expressed as the sum of squares of nonlinear functions (Hagan and
Menhaj, 1994). It is a standard technique for nonlinear least-squares problems combining
the steepest descent and Gauss-Newton methods. When the current solution is far from the

correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to
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converge, and it becomes a Gauss-Newton method when the current solution is close to the
correct one. The networks employed had one hidden layer with 14 hidden nodes between
the input and output layers, i.e. between remote sensing data and forest properties. The
hyperbolic tangent sigmoid and linear transfer functions were selected to estimate the
hidden- and output neurons, respectively (Demuth et al, 2006). Before training the
networks, the training dataset (n = 226) was randomly allocated into training (80%) and
validation (20%) subsets. The training subset was used for training the neural networks,
while the validation subset was used as a proxy of the training processes to avoid the over

fitting problem.

6.2.5 Validation

The linear regression analysis and neural networks were applied to the test dataset
(n=112) to calculate the accuracy statistics. The accuracy statistics include the root mean
square error (RMSE) and bias, and their relative counterparts RMSE; and bias, (Muukkonen

and Heiskanen, 2005).

1 2 .2
RMSE = |~ (», - j.) Eq. 6.4
1 u . \2
~3(v,- )
RMSE, =1~ x 100 Eq. 6.5
Yo
: 1l :
Bias =;!Z=1:(yi —],) Eq. 6.6
Bias :{li(y_—j_)}y x100
=R Eq. 6.7

Where j; is the predicted value, y; is the observed value, y,, is the mean of observed value and

n is the number of plots in test dataset.

To examine if there were significant differences between the observed forest attributes and
those estimated from the linear regression and neural networks, a non parametric Wilcoxon
signed rank test was applied. We expect the results might reject the hypothesis that the

mean values of the observed and modeled forest properties differ significantly.
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6.3 Results

6.3.1 Distribution of forest attributes

The number of stems, basal area, stem volume and AGB (n = 3078) were plotted against
DBH classes showing that 95% of sampled trees (n = 2909) have DBH < 80 c¢m, and more
than 65% of the trees (n = 2090) have DBH < 40 cm (Fig. 6.1). The high abundance of small
trees (DBH < 40 cm), however, contributes only to relatively low stem volume (15.4 m3.ha-1)
and AGB (15 Mg.ha1), as compared to large trees (DBH > 80 cm) with mean stem volume
and AGB of 72.6 m3.ha'1 and 72 Mg.ha'%, respectively.

The small trees (DBH < 40 cm) were dominant in the OF and SS1 classes, and partly in the
SS2 plots, which were mostly occupied by small and fast growing pioneer species. The
pioneer trees and small light demanding species disappeared during the regenerating
process due to natural thinning effects caused by species competition in pursuing limited
nutrient contents and light intensities (Moran et al., 2000). The RF on the other hand,
comprises of a mixture of shrubs, young trees, and tall and slim emergent palm trees in the
top canopy layer which is similar with the OF and SS1. But the presence of the emergent

palm trees in the canopy layer distinguishes the RF from the other forest classes.

Based on the tree sample data (not shown here), successional forests plots comprise of trees
with mean diameter varies from 20 - 65 cm. The high variation in DBH explained the
variations of stem volume (60 - 222 m3.ha!) and AGB (61 - 234 Mg.ha!) in the successional
forests. In the ASF plots, the mean tree diameter ranges from 27 - 77 cm. The stem volume
and AGB in these particular plots varied from 142- 214 m3.ha! and 168 - 227 Mg.ha'l,
respectively. These variations were common for natural forests especially those which are
occupied by successional and secondary forests. Tree regenerating processes take place
following the completion of forest harvesting, forest burning, and other forest disturbances.
These processes which can continue for over 30 years are affected by various dependent
and independent aspects, e.g. anthropogenic factors, drought, disease, etc (Bischoff et al,,

2005; Vieira et al,, 2003).

The stem volume and AGB exponentially increased with the DBH (Fig. 6.1). These were
because the biomass has an exponential relationship with the tree diameter (DBH), and the
stem volume is basically a square function of DBH. Keeping all other conditions constant, the

stem volume and AGB presented a linear relationship with each other.
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Fig. 6.1 Distribution of forest properties in different diameter at breast height (DBH)

6.3.2 Correlations

Pearson correlation analyses showed negative correlations between the forest attributes
and remote sensing data (Tab. 6.3). The GLCM mean texture feature had relatively strong
correlation with basal area (r =-0.517, p < 0.01), stem volume (r=-0.669, p < 0.01) and AGB
(r=-0.544, p < 0.01), whereas elevation of DEM showed the highest correlation with stem
number (r=-0.217, p < 0.01). An attempt to increase the correlations were experimented by
generating the GLCM texture features using larger window size, e.g. 11x11, but we found
low correlations with the forest properties data. The reflectance of ETM band 4 (NIR), band

5 (MIR) and band 7 showed relatively moderate correlations with all forest attributes
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except stem number (correlation coefficient r ranged from -0.298 to -0.418). For simple
band ratios, only SR53 and SR57 significantly correlated with the forest attributes at p =
0.01, although the correlations were relatively weak (-0.195 < r < -0.147). The traditional
vegetation indices showed almost no correlations with the forest properties, except for
ND53 that significantly correlated with basal area (r =-0.147, p < 0.01). From the complex
vegetation indices, only GEMI showed significant correlations with all forest attributes
except stem number (-0.368 < r < -0.293). Also, the image transform indices (i.e. VIS123,
MID57 and Albedo) showed relatively good significant correlations with the forest
attributes except number of stem (-0.443 < r < -0.201). The two first principal components
were significantly correlated with basal area, stem volume and AGB (-0.426 < r < -0.323).
Similarly, the tasseled cap (TC) bands also showed significant correlations with forest
properties (-0.427 < r < -0.229), whereas only GLCM mean texture showed significant
correlations with the forest attributes (-0.669 < r < -0.163). In general, most of the RS data
had relatively low correlations with the forest attributes (r < 0.4), except for ETM band 5,
MID57, Albedo, PC1, TC1 and GLCM mean, which showed relatively strong correlations with
the forest properties (-0.7 < r < -0.4).

6.3.3 Statistical models

Application of a stepwise multiple regression analysis suggested ETM B4, ETM B5, ETM B7,
DEM elevation, PC1, TC3 and GLCM mean texture as the predictors in the forest attributes
modeling. This combination of variables significantly predicted basal area (F = 15.7, p <
.001), stem volume (F = 26.9, p <.001), and AGB (F = 15.7, p <.001). The beta weights (f5),
presented in Tab. 6.3, suggest that the ETM B5 and TC3 contribute most for predicting the
basal area and AGB, whereas the ETM B4 and DEM elevation have more contribution for the
stem volume estimation. The explanatory power r? values of the basal area, AGB, and stem
volume were 0.34, 0.34 and 0.46, respectively. These indicate that 34% of the variances in
basal area and AGB were explained by the models. Similarly, 46% of the stem volume
variance was explained by the regression model. The RMSE; values varied between 11.5%
and 13.3%, assessed from the training dataset, and between 12.2% and 14.4% when the
models were applied to the test dataset. In general, for all forest attributes the RMSE; values

of the testing data were higher than those of the training data.
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Tab. 6.3 Correlations between remote sensing data and forest biophysical parameters

Stem number  Basalarea  Volume AGB (Mg Stem number Basalarea Volume AGB (Mg
(stems ha'l) (m2hal) (m3hal) hatl) (stems ha'l) (m2hal) (m3 hal) ha1)
Landsat ETM Reflectance Complex vegetation indices
B1 -.092 -197(*%)  -.250(*%) -.246(*) SAVI -.070 -112(%) -101 -.076
B2 -.092 -220(%%)  -.278(*%) -275(*) MSAVI2 -.060 -.088 -.075 -.052
B3 .000 -122(%)  -211(*) -194(*) GEMI .108(*) .293(*%) .368(**) 313(*%)
B4 -.092 -298(**)  -.395(*%) -.336(**) Image transform indices
B5 -132(%) -337(*%)  -.418(*%) -375(*%) VIS123 -.066 -201(*) -276(*)  -267(*)
B7 -.142(**) -304(*%)  -.390(**) -.349(*%) MID57 -.142(*%) -.339(**) -425(**)  -.382(*)
Digital elevation model (DEM) Albedo -121(%) -.339(*%) -443(*%)  -394(*)
Elevation -217(*) -144(*) -.009 -160(**) Principal component analysis (PCA)
Slope .021 074 .082 .082 PC1 -112(%) -323(*") -426(**)  -.383(*)
Simple band ratios PC2 102 307(%%) 399(*%) 340(*%)
SR -.092 -151(*) -137(%) -109(*) PC3 -.075 -.083 -077 -.085
SR53 -123(%) -195(*%)  -177(*%) - 160(**) Tasseled cap (TC) transformation
SR54 -.064 -.089 -.082 -.093 TC1 -107(%) -.323(**) -427(**%)  -374(*)
SR57 .026 -.043 -.037 -.037 TC2 -.064 -.229(*%) -300(**)  -.241(*)
SR73 -129(*) -162(%%)  -.147(*%) -130(*) TC3 133(%) .309(*%) .380(**) .338(**)
Traditional vegetation indices GLCM texture features
NDVI -.068 -101 -.085 -.063 GLCM_MEAN -163(**) -517(*%) -669(**)  -.544(*)
ND53 -.099 -147(*) -129(%) -111(%) GLCM_VAR .032 -.068 -067 -.035
ND54 -.065 -.091 -.084 -.095 GLCM_HOMO .074 112(%) .081 .078
ND57 .029 -.041 -.034 -.032 GLCM_CONT .021 -.089 -.100 -.063
ND32 .108(*%) .108(*) 061 .083 GLCM_DISS -.057 -126(*) -.099 -.085
Complex vegetation indices GLCM_ENTR -.083 -.066 -011 -016
ARVI -.062 -107(%) -.099 -.073 GLCM_SECM .099 .076 011 .027
EVI -.090 -.048 .014 -.002 GLCM_CORR .018 .014 -.020 -016
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Tab. 6.4 Statistics and validation of linear regression analysis

Unstanfia_\rdlzed Standardized Train dataset Test dataset
Dependent Predictor coefficients coefficients
variable Standard RMSEr RMSEr
, .
B rTor B) F Rz RMSE %) RMSE %) Bias
Basal area (Constant) 66.366 17.169
B4 -.238 145 -285
B5 -4.420 2.195 -2.706
B7 -3.342 1.680 -1.297 15668 434 183 1331 196 1437 -0.135
Elevation -.009 .002 -228 (p<0.001)
PC1 187.235 89.988 1.435
TC3 -518.050  261.934 -2.890
GLCM mean -1.057 160 -475
Stem volume (Constant) 725.369 169.980
B4 -43.512 21.728 -2.385
B5 -34.542 16.632 -1.201
B7 1724.655 890919 1.184 26997 046 1809 1151 1891 1217 -2.781
Elevation -5281.835 2593.258 -2.639 (p<0.001)
PC1 -2.404 1.440 -258
TC3 -.043 024 -097
GLCM mean -14.842 1.581 -597
AGB (Constant) 585.102  207.272
B4 -918 1.756 -.090
B5 -29.092 26.495 -1.458
A -21.991  20.281 ~699 15668 434 2206  13.16 2193 1328 -3.100
Elevation -113 029 -231 (p<0.001)
PC1 1051.897 1086.380 660
TC3 -3339.196  3162.200 -1.525
GLCM mean -12.586 1.927 -463

118



The explanatory power (r?) and error estimates of neural networks, presented in Tab. 6.4,
show that the neural networks models explain 36% of basal area, 50% of stem volume and
38% of AGB variances. Similar with the multiple regression analysis, the neural networks

estimated higher RMSE; for the testing data than for the training data.

Comparison between the regression analysis and neural networks (Tab. 6.4 and Tab. 6.5)
found that the models developed with a non parametric neural networks (NN) approach
performed slightly better than the multiple regression (MLR) method for predicting the
basal area (r?ww=0.36 vs rmir)=0.34, RMSE nw=14.14 vs RMSE;mir=14.37) and stem
volume (r?yn=0.50 vs r?mir)=0.46, RMSE;nn=11.99 vs RMSE;mLry=12.17). The neural
networks model, however, resulted in better explanatory power (r?nw=0.38 vs rZmir)=0.34)
but slightly higher error estimate than the multiple regression model (RMSE;nn=13.76 vs
RMSE;(mLr)=13.28), for predicting the AGB. This was likely due to the over fitting problem
during the networks training processes. The biases estimated from the neural networks

were lower than those of the regression models with an exception of the basal area.

Tab. 6.5 Statistics and validation of neural networks regression analysis

Train dataset Test dataset
Dependent variable
R2 RMSE RMSEr (%) RMSE  RMSEr (%) Bias
Basal area 0.36 1.81 13.17 1.93 14.14 0.225
Stem volume 0.50 17.58 11.18 18.63 11.99 -1.321
AGB 0.38 21.68 12.94 22.72 13.76 1.183

The predictions of the neural networks and the regression models are quite close to each
other (Fig. 6.2). The models, however, tend to overestimate lower forest attributes values
and vice versa. The reversal estimation points for the basal area, stem volume and AGB are
~14 mzhal, ~160 m3.hal, and 170 Mgha', respectively. These points indicate the
asymptotic problem of the Landsat ETM data, which are not sensitive to model higher forest
properties values. Some studies also reported similar problem, especially when Landsat

data were used for estimating forest biomass (Lu, 2005; Steininger, 2000).
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Fig. 6.2 The linear regression and neural network estimations of basal area (a), stem volume
(b) and biomass (c) against the observed data. The forest attributes include complete
dataset (n = 338)

6.3.4 Results evaluation

The non-parametric Friedman test showed that at the p-value = 0.05, the basal area (X2 =
7.1 with p-value 0.025), stem volume (X2 = 10.7 with p-value 0.005) and AGB (X2 = 23.5
with p-value < 0.001) of the multiple linear regression estimates, neural networks, and the

observed data were significantly different.

The forest attribute estimates were compared by forest classes with the observed data. The
Wilcoxon signed rank sum test presented in Fig. 6.3 suggests that at the p-value of 0.01 level
of significance, there were no significant differences between the multiple linear regression
and observed data (p-value from 0.082 to 0.345), and between the neural networks and
observed data (p-value from 0.319 to 0.835). The multiple linear regression and neural
networks were also statistically compared, and the results highlighted significant
differences in the basal area (z-test = -3.9, p-value < 0.001) and AGB (z-test = -4.9, p-value <
0.001), but not the stem volume (z-test = -2.3, p-value = 0.019).
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Fig. 6.3 Comparison of multiple linear regression and neural networks predictions of basal
area (a), stem volume (b) and biomass (c) against observed data by forest classes and z-test
statistics of Wilcoxon signed rank sum test for paired dependent sample data. The
regression and neural networks were tested separately against the observed test dataset (n
=112)

In general, the statistical test results suggest that the distributions of the forest attributes
from the regression analysis, neural networks and observed data were significantly
different. This difference is due to the statistical differences between the regression analysis
and neural networks. Also, there was evidence that the neural networks performed
significantly better than the regression analysis for predicting the basal area and AGB. For

the stem volume, the neural networks were not significantly better than the regression

analysis.

6.3.5 Forest attributes prediction from Bitemporal ETM data

To investigate the possibility for estimating the forest attributes from bitemporal ETM
image, the ETMO03 data was radiometrically normalized using the ETMO0O as the reference.
The ordinary least square regression analysis was employed to model the randomly
selected invariant pixels from both ETM images (n = 105844). The correlations between
both ETM bands, presented in Tab. 6.6, ranged from 0.68 (ETM band 1) to 0.89 (ETM band
5). Also, the RMSE calculated from independent test dataset (n = 52921) varied from 0.16
(ETM band 1) to 1.19 (ETM band 4).
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Tab. 6.6 Ordinary least square regression on randomly selected training pixels (n = 105844)
and the root mean square error (RMSE) calculated from the testing pixels (n = 52921); a is
the fitted intercept, £ is the fitted slope, o, and o are the standard deviation, and r is the
correlation coefficient.

ETM Band a Oa B op r RMSE
1 -3.71 0.02 0.10 0.0003 0.68 0.16
2 -8.16 0.03 0.27 0.0006 0.80 0.32
3 -2.86 0.02 0.19 0.0006 0.70 0.29
4 -3.10 0.04 0.32 0.0005 0.89 1.19
5 -1.18 0.02 0.20 0.0003 0.89 0.65
7 -0.48 0.01 0.25 0.0006 0.81 0.45

Tab. 6.7 Comparison of mean intensities of randomly selected testing pixels (n = 52921) for
the ETM 2003 before and after normalization against the image reference (ETM 2000), with
paired t-tests for equal means (p-value = 0.01). The statistical tests were calculated from the
uncalibrated ETMO03 and ETMO00 data

ETM Band 1 2 3 4 5 7

ETMO03 mean (uncorrected) 6398 46.09 33.85 73.09 5335 2395
ETMO03 mean (normalized) 2.67 4.40 3.41 20.55 9.52 5.61
ETMO0O mean (reference) 2.67 4.39 341  20.54 9.52 5.61
t 1.75 -1.21 1.08 -1.75 0.69 -0.03
p 0.08 0.23 0.28 0.08 0.49 1.00

Tab. 6.8 Comparison of variances of the testing pixels (n = 52921) for the ETM 2003 before
and after normalization against the image reference (ETM 2000), with F-tests for equal
variances (p-value = 0.01). The statistical tests were calculated from the uncalibrated
ETMO03 and ETMO0O data

ETM Band 1 2 3 4 5 7

ETMO3 variance (uncorrected) 2.31 2.78 2.57 61.94 39.96 6.63
ETMO3 variance (normalized) 0.02 0.21 0.09 6.48 1.61 0.43
ETMOO0 variance (reference) 0.05 0.30 0.17 7.74 2.01 0.62
F 2.14 1.45 1.93 1.19 1.25 1.44
p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Comparison of mean intensities presented in Tab. 6.7 showed that the mean differences
between the normalized ETM03 and ETMO0O bands were between 0.0 and 0.1. The t-test for
equal means revealed that at the p-value of 0.01 level of significance, the means of
normalized ETMO03 and the reference image, ETMO00, were not significantly different (p-
value from 0.08 to 1.0). Upon band-wise variances comparison using the F-tests statistics (at
the p-value of 0.01 level of significance) however, there was no sufficient evidence that the

variances were equal (p-value < 0.001) (Tab. 6.8).

The forest attributes predictions showed that the calibrated ETM03 data estimated 64%,
63% and 44% of higher basal area, stem volume and AGB, respectively, than predicted from
the ETMO0O (Tab. 6.9). The ETMO00 found 14+1.2 m2.ha! of the basal area, distinctly lower
than the ETMO3 prediction (23+1.7 m2.ha-1). Also, the stem volume (258+20.3 m3.ha'l) and
AGB (242+18.6 Mgha) predicted from the ETMO03 were markedly higher than those
predicted from the ETMO0O0 data (stem volume 158+16.8 m3.ha'! and AGB 168+15.7 Mg.ha'1).

For all forest attributes, the coefficients of variations ranged from 7% to 11%.

Tab. 6.9 Forest attributes estimated from the sampling plots locations using the predictors
of ETMOO and calibrated ETMO03. The forest attributes were predicted using the regression
models generated using the ETMO0O data.

Basal area (m2.ha1) Stem volume (m3.ha1) AGB (Mg.ha'1)

ETMO00 ETMO03 ETMO00 ETMO03 ETMO00 ETMO03
Mean 14 23 158 258 168 242
Min 8 10 76 51 100 52
Max 17 30 207 299 211 304
Range 9 20 131 248 111 252
SD 1.2 1.7 16.8 20.3 15.7 18.6
Cv 9% 7% 11% 8% 9% 8%

To better understand the underlying factors that caused remarkable increase of the ETM03
forest attributes, land cover classes and above ground biomass (AGB) estimations from both
ETMOO and calibrated ETMO03 subsets are displayed (Fig. 6.4). Prior to the comparison, non
forest classes were masked out, so that only AGB on the forest classes under study were
considered. The ETMO0O found relatively lower AGB in the RF and SS1 classes, and moderate
AGB level in the areas close to the logging roads, which were mainly classified as the SS2
forest (Fig. 6.4a and Fig. 6.4b). Similarly, the ETM03 data showed the same trends, except
that the AGB estimates were higher than those predicted from the ETMO00 (Fig. 6.4b, Fig.
6.4d). Also, both ETM images predicted a great number of forest biomasses in the ASF class.
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Fig. 6.4 Comparison of bitemporal ETM data showing the subsets of ETMO0O land cover
classification (a) with the ETMO0O above ground biomass (AGB) estimates (b), and the
ETMO03 land cover map (c) and the AGB predictions of the radiometrically calibrated ETM03
image (d)

Comparison of the ETM00 and ETMO03 land cover maps found more ASF pixels in the ETM03
than the ETMO00, which were previously classified as the SS2 class by the ETM00 (Fig.
6.4a, Fig. 6.4c). This implies constant forest regenerating processes within this period.
Generally, both ETM images were in agreement, explaining that the AGB increased with the

forest regenerating processes, from the least to the more complex vegetation structures (i.e.

from open forest (OF) to advanced secondary forest (ASF) class).
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6.3.6 Discussion

6.3.6.1 Correlations

Texture features generated from the GLCM mean texture lead to the strong coefficient
correlations with the forest attributes, except for the stem number. The correlation
magnitudes were greater than those of the ETM multispectral bands, which normally were
used to characterize the attributes of green vegetation. To facilitate better understanding
about the relation of the mean texture and the forest attributes by each forest class, we
plotted the mean texture feature against the observed AGB (Fig. 6.5). The ASF pixels were
clustered on lower mean texture, whereas higher texture values mostly belong to the OF
pixels. The SS1 and SS2 pixels are highly mixed and hardly to discriminate from this
individual texture feature. Thus, the inclusion of other input variables, such ast ETM
spectral, vegetation indices, etc, is useful for generating more robust equations of the forest

attributes, as performed in this study.

The strong correlation between the mean texture and the AGB as well as other forest
attributes is probably due to the smoothing effects generated from the texture features that
include the neighboring pixels in its calculation. Results of the present work are similar with
a previous study that found the utility of texture features is useful for removing the shadow
effects on broadleaf and/or large trees (Lu, 2005). That study highlighted a strong
correlation between the entropy texture and AGB in uneven tropical forests of the Amazon.
Another study conducted by Kuplich et.al. (2005) suggested the contrast texture to improve
the correlation with the forest biomass. Negative correlations between the forest attributes
and the ETM multispectral bands, particularly near infra red band were also confirmed by
previous study (Lu et al, 2004). Another study by Lu and Batistella (2005) also found
negative correlation between the texture features and the AGB, which was confirmed in this

study.

6.3.6.2 Assessment of forest attributes estimation

Remote sensing based estimates have potential to predict the dynamics of forest attributes
over large forest region with less efforts, time and cost (Lu, 2006). However, the accuracy of
the estimates is somehow questionable, as it considerably depends on the quality of remote
sensing data and its relationship with forest attributes being modeled (Foody et al.,, 2003).
For instance, attempts to estimate above ground biomass using the Landsat data found high
uncertainties which were around 30 - 40% (Lu et al., 2004; Lu, 2006; Sales et al., 2007). This
study, however, found the RMSE of the AGB around 13% - 14% lower than the previous

study. Given the fact that at some extent the AGB also correlates with the basal area and

127



stem volume, we can assume that the error estimates of these forest properties are also
lower than in those studies. The relatively low error estimate can be explained from
different perspectives, like the satellite data quality, selection of the models’ predictors, the
fitness of selected regression models (i.e. multiple regression and neural networks), or

combination of those factors.
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Fig. 6.5 Distribution of GLCM Mean Texture of Different Land Cover Type.

As explained earlier, estimation of the forest attributes employing Landsat ETM data was
saturated at higher forest attributes and lowered the coefficient correlations. Beyond the
saturation point, the ETM data is no longer sensitive to the forest attribute patterns. Several
underlying factors might cause this problem, namely the size of sampling plot that was not
designed to be related with spaceborne data, or the saturation from dense leaf canopies that
restricts the forest attributes into a low level when the Landsat ETM was used (Anaya et al,,
2009). Better results may be achieved either by applying laser scanner (LIDAR) data, SAR
radar images, or high spatial resolution satellite imagery, e.g. IKONOS and Quickbird, which

is beyond the scope of this study.

The correlation magnitudes between the ETM data and the forest attributes were relatively
weak, although statistically the correlations were significant. For this particular case, the

modelling of ETM data as a basis for the forest attributes prediction is problematic, as it may
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affect the robustness of the developed models. Application of the non parametric method
based on neural networks was used to evaluate the suitability of the multiple linear
regression approach in estimating the forest attributes under these circumstances. We
found the predictive ability of both methods seems comparable, although the neural
network was slightly better than the regression analysis (Tab. 6.4 and Tab. 6.5). Also, the
robustness of the regression models was tested on across date ETM image for predicting the

AGB. The results obtained were markedly reasonable (Fig. 6.4).

Comparison of both land cover maps (i.e. ETM00 and ETMO03) highlighted remarkable
regenerating processes on the forested lands, which was explained by the presence of a
great number of the ASF pixels in the ETM03 map. Atmospheric effects remaining in the
ETMO3 that were not compensated by the MAD normalization might explain some of the
AGB differences from both ETM dates. Besides, severe El Nino drought and forest fires in
1997/1998 caused huge burned forest areas in 2000 and suppress the AGB into the lowest
level as estimated from the ETMO0O. The increase of AGB in 2003 (i.e. the ETM03 estimate)

was mainly due to forest regenerating processes following the completion of the fire event.

In spite of the results obtained in this study, further study may be conducted under other
environmental conditions in order to test the models on different satellite sensors, such as
MODIS, for regional mapping of forest attributes. It is a possible alternative to assess the

forest attributes at larger scale given limited field data.

6.4 Conclusions

Generation of the GLCM texture features lead to relatively strong correlations between the
mean texture with the basal area (r=-0.517), stem volume (r = -0.669) and above ground
biomass (AGB) (r = -0.544). The correlation magnitudes were greater than the ETM
reflectance (r < -0.418), simple ratio and vegetation indices (r < -0.368), image transform
layers (r < -0.443), PCA (r< -0.426) and TC bands (r < -0.427). The elevation DEM showed
the highest correlation with the number of stem (r=-0.217).

The forest attributes, modeled from the multiple linear regression (MLR), neural networks
(NN) and the observed data were jointly tested using the Friedman statistical test, and the
result showed that the data distribution were significantly different (p-value > 0.05). The
Wilcoxon signed ranked test proved that this difference was due to statistical differences
between the MLR and the NN estimates. The neural networks performed significantly better
than the regression model for predicting the basal area and AGB, but not for the stem
volume that showed no significant differences between both methods. The forest attributes

increased with the advancement of canopy layers and vegetation complexity, from the least

129



to the most complex structure (i.e. the open forest (OF) class to the advanced secondary
forest (ASF) class). The modeled basal area, stem volume and AGB varied from 10.7 - 15.1
m2.hal, 123.2 - 181.9 m3.ha'l, and 132.7 - 185.3 Mg.ha'l, respectively, depending on the
forest types identified over the study area. The RMSE; values of model fitting ranged from
11.2% to 13.3%, whereas the test dataset estimated slightly higher RMSE,, which varied
from 12% to 14.1%. These error estimates were relatively lower as compared to previous

studies (Lu et al., 2004; Lu, 2006; Sales et al., 2007).

Normalization of the ETM03 data with the MAD method found similar mean intensities
between the normalized image and the reference ETM00 image, but the variances were
statistically different. The AGB were modeled using the calibrated ETMO03 data as predictors,
and the estimates were considerably higher than those predicted from the ETMOO.
Comparison of ETM00 and ETMO03 land cover maps highlighted remarkable regenerating
processes on the forested lands, which was explained by the presence of a great number of

the ASF pixels in the ETMO03 land cover map.
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Chapter 7

Retrieval of Forest Biomass Using
Mosaic SAR data

ABSTRACT

This study demonstrates the utility of mosaic ALOS PALSAR data for the estimation of above
ground biomass and stem volume in tropical lowland forest of Kalimantan, Central
Indonesia. The horizontal - horizontal (HH) polarization pair, horizontal - vertical (HV) pair
and ratio of HV/HH polarizations were correlated with the forest properties using
polynomial empirical models. The HV and HV/HH polarizations were best fitted for
estimating the AGB and stem volume, respectively. The results showed that mosaic ALOS
PALSAR data may be used as initial predictions of the AGB and stem volume, and the

proposed approach have potential to apply for global datasets.

Keywords: ALOS PALSAR, radar backscatter, above ground biomass, stems volume

* This chapter is based on:

Wijaya, A. and R. Gloaguen. (2009). Fusion of ALOS Palsar and Landsat ETM Data for Land cover
Classification and Biomass Modeling using Non-Linear Methods. In Proceeding of International
Geosciences and Remote Sensing Symposium (IGARSS), 13 - 17 July 2009, Cape Town, South Africa;
and

Wijaya, A. (2009). Evaluation of Mosaic ALOS Palsar Data for Estimating Above Ground Biomass and
Stem Volume: A Case Study of Tropical Lowland Forest of Indonesia. Jurnal Geografi, University of
Indonesia, January 2009.
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7.1 Introduction

Above ground biomass (AGB) and stem volume are two parameters which may be used to
characterize current state of a forest. The estimation of these parameters is useful for
environmental purpose as well as for forest inventory. The use of SAR data for estimating
stem volume and AGB have been common practice for remote sensing study (Fransson and
Israelsson, 1999; Luckman et al,, 1996), as a previous study showed that optical data (e.g.
Landsat ETM) has lack of correlations with the AGB and stem volume due to the sensor
problem to penetrate through forest canopy cover (Lu et al, 2004). Alternatively,
correlation with vegetation indices generated from those optical remote sensing data were
usually used to assess the forest biophysical properties applying linear regression or neural
network methods, but the results are questionable due to generalization and transferring

ability problems (Foody et al., 2003).

SAR data is proved effectively for estimating above ground biomass and stem volume using
an empirical model (Fransson and Israelsson, 1999; Luckman et al., 1996). Similar with the
optical data, SAR data are also saturated at higher stem volume and AGB, but the capability
to penetrate to cloud cover is the main advantage of this data compared to the optical data,
particularly when the study focuses in tropical regions. This study experimented with a 50
meter spatial resolution of ALOS PALSAR mosaic data to assess the stem volume and AGB in
tropical forest of Indonesia. The mosaic PALSAR data is freely available at the Kyoto and

Carbon Initiatives Project website.

The present study contributes to develop empirical models for estimating the AGB and stem
volume using radar backscatter of mosaic ALOS PALSAR data as the predictors. Relationship
between HH, HV, HH/HV and HV/HH polarizations with the AGB and stem volume was
analyzed. Allometric equation models for both forest parameters were estimated
afterwards. The suitability of ALOS PALSAR data for estimating the AGB and stem volume is

discussed.

7.2 Data and Methods

We used two sample datasets collected in 1997-1998 and 2003. The first dataset consists of
1512 temporary sample plots, and was used to generate the stem volume model using basal
area (BA) as the predictor. The tree basal area was estimated and up scaled into per hectare

measure. In total, 13050 trees were measured in the 1997-1998’s dataset.

The 2003 dataset, collecting 38 circular sample plots was used to estimate stem volume

based on the allometric equation developed from the 1997-1998 dataset. Above ground
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biomass was estimated applying diameter at breast height (dbh) - dry weight AGB equation
(Eqg. 7.1) proposed by Samalca (2007).

AGB =-1.2495 +2.3109 x In(dbh) Eq.7.1

The 50-m resolution orthorectified mosaic ALOS PALSAR data was used to estimate the AGB
and stem volume. The data has HH and HV polarization and was acquired during dry season
in June-July 2007. The SAR data was resampled into 30-m resolution and was registered to
LANDSAT ETM image acquired in May 31, 2003. These data were geo-referenced into UTM
zone 50 projections and were resampled using nearest neighborhood algorithm, to
minimize radiometric changes in the corrected data. The optical data was used as a

reference for the AGB and stem volume assessments.

Digital Number (DN) values of each polarization (i.e. HV and HH) were converted into

normalized radar backscattering (o) using following equation:
o =10x[ DN? |-83.0dB
: Eq.7.2

We used three polarization bands of radar backscattering (o), namely HH (oun), HV (onv)
and HV/HH (ouv/un) to correlate with the forest attributes. The correlations between the
radar backscatter and the forest properties showed non-linear relationship. The above
ground biomass was modeled using exponential equation recommended by Luckman, et.al.

(1996).

c
azax(l—e_bx) Eq.7.3

where x is AGB; a,b and c are free parameters. Non-linear least square method was
conducted using Levenberg-Marquardt algorithm to estimate the model which minimizes

the error estimate.

Stem volume (V) on the other hand, was modeled using quadratic model,

a:a+(be)+(ch2) Eq.7.4

where a,b,c are equation parameters.
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7.3 Results and Discussion

7.3.1 Estimation of AGB and Stem Volume based on field observation
data

Multi-linear regression method was used to model stem volume (V) using basal area (BA) as

the predictor, and the following equation was generated.

V =0.061x BA+0.494 Eq.7.5

The utility of basal area to correlate with the stem volume was due to the basal area had
strong correlation with stem volume (r?= 0.937, df = 13049, o = 0.01, SEE = 0.28). We

used Eq. 7.5 to estimate stem volume from the sample data collected in 2003.

The AGB estimate was 363.1+143.5 ton/ha (95% of confidence interval) (Tab. 7.1), similar
with the finding of Samalca (328+29.7 ton/ha, 95% of confidence interval) who conducted
study in a similar forest region for estimating biomass using destructive sampling approach

(Samalca, 2007).

Tab. 7.1 Statistics of forest biophysical properties

DBH Basal Area Stem Volume AGB Estimate
(cm) (m2/ha) (m3/ha) (ton/ha)
Mean (n = 38) 22.4 31.8 336.8 363.1
Min 14.6 7.4 140.3 65.2
Max 31.8 58.1 545.2 853.0
SD 3.4 10.2 94.5 143.5

We also found that the standard deviation of AGB was relatively high (~ 40% of the
estimate). This uncertainty is a challenging task for any remote sensing study in predicting
the forest biomass, particularly those conducted in tropical forest environments which are
characterized by highly complex vegetation structure and uneven forest stand age (Lu,

2006).

For smaller trees (dbh < 30 cm), the difference between the AGB and stem volume were
considerably high. For larger trees (dbh > 61 cm), there was only a slight difference between
the stem volume and AGB, as the biomass sharply increased during the regenerating

processes. This implies that the functionality of the forests as a carbon sink was highly
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disrupted once those forests have been disturbed and the recovery processes to return to

the initial state of carbon accumulation, is not an instant process.
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Fig. 7.1 Estimates of above ground biomass and stem volume

7.3.2 Relationship between radar backscatter and forest properties

The HH, HV and HV/HH polarizations of ALOS PALSAR data showed relatively low
correlations with the AGB (Fig. 7.2a, Fig. 7.2b, Fig. 7.2c). The HH polarization saturated at -
7.5 dB, higher than the HV band that saturated at -15.5 dB. The HV/HH band showed the
saturation point at -7.75 dB which was slightly lower than the HH band. Previous study
found the HV band has greater dynamic anticipated by microwave interaction models,
which make this cross-polarized signal is due predominantly to crown scattering

mechanisms and is therefore better coupled to the AGB (Luckman et al., 1996).

Unlike the AGB, the HH band was more sensitive than other bands in explaining the stem
volume up to 7.7 dB (Fig. 7.2d). The correlation reversed into a negative direction at higher
radar backscatter (Fig. 7.2d). This is unlikely for the radar backscatter, because normally
the backscatter values reveal similar correlation characteristics as shown by the correlation

with the AGB (Fransson and Israelsson, 1999).
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This condition occurred probably due to the sample data being mainly collected on
advanced secondary forests which were dominated by complex vegetation and canopy
structure. The study area, in fact, is a natural forest dominated with mixed Dipterocarp sp.,
which consists of overstory, canopy layer, understory, and shrub layers. The overstory
vegetation may exceed 50 m height, while the understory trees varied from 2 - 5 m. The
complexity of the forest structure limited the radar backscatter to partially explain the stem
volume variations without the interference from the canopy cover. Another explanation is
that the stem volume has lower variations than the AGB that exponentially increased with
the tree diameter (Fig. 7.1). Due to this relatively low variation, the radar backscatter was
not sensitive to explain higher stem volume, showing negative correlation between both

variables.

7.3.3 Radar backscatter modeling

We observed that the HV band could explain the AGB better than other polarization bands
(R?2nv=0.34 vs R?yy=0.19 and R2nv/uy=0.19) (Fig. 7.2a, Fig. 7.2b, Fig. 7.2c). Thus, the modeling
of radar backscatter with the AGB was conducted by fitting the HV band (onv). The

backscatter - AGB data was fitted and the following model was generated.

o :_15776X(1—e_(00122AGB))_0933

Unlike AGB, the HV/HH band explained the stem volume better than did other polarization
bands (R2nv/un=0.33 vs R2yy=0.22 and R?yy=0.15) (Fig. 7.2a, Fig. 7.2b, Fig. 7.2c). The HV/HH

band (onv/un) - stem volume model is described as follows.

_ _ 2
Oy =~ 14478+ (0.6724x V) +(<0.0163x V) Eq.7.7

Generally, the modeling of radar backscatter was problematic since the scatter plots of the
radar backscatter against the forest properties were greatly disperse (Fig. 7.2). The
correlations of these variables, however, were non-linear. Therefore, the predictions of stem
volume and AGB from the radar backscatter (o) were modeled using polynomial approach.
The more complex model, e.g. water cloud model, might be used alternatively to better

correlate the stem volume with radar backscatter (Fransson and Israelsson, 1999).

137



7.3.4 Prediction of AGB and Stem Volume using Radar Backscatter

Inversion of the exponential AGB equation (Eq. 7.6) was not successful, as the nature of the
modeled variable correlations was changed once the equation was reversed. Instead, a

polynomial model was developed to predict the AGB.

AGB=-7859—(1035.258xG,,) —(32.635%G ) Eq.7.8

The model might be used to estimate the AGB which was less than 400 ton/ha and the HV
backscatter (onv) should range from -18.5 dB to -15.75 dB (Fig. 7.3).
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Fig. 7.3 Fitting of AGB model

The AGB estimate was 308.5+52.8 ton/ha (r=0.35, SEE=156.3) markedly lower than the
observed AGB (363.1+143.5 ton/ha). The error estimate was high (~50% of the estimate)
due to high variability of the observed AGB. The estimate, however, might be used as an
initial prediction of the AGB density over the forest area, given the mentioned above

conditions (i.e. AGB and HV limits) were satisfied.

Stem volume (V) was estimated using the HV/HH backscatter (ouv/uu) as predictor resulted

in the following polynomial model.

V =256.85-(65.4580 1) — (6.8X 6y st ) Eq.7.9

Similar with the AGB model, the predictive ability of the stem volume model was rather
limited to relatively low values, which were less than 500 m3/ha, and the HV/HH band
should range from -10.0 to -6.0 (Fig. 7.4). The estimated stem volume was 340.4+67.1 m3/ha
(r=0.57, SEE=67.12) slightly higher than the observed volume (336.8+94.5 m3/ha).
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7.3.5 Evaluation of AGB Estimate

To facilitate better understanding of the forest properties modeling using mosaic ALOS

PALSAR backscatter, the AGB estimate is further discussed in this section.

Forest biomass assessment is important to indicate carbon contents over a forest area,
because an accurate mapping of the biomass could explain the amount of absorbed carbon
by the forest over certain periods. This study found the estimated AGB density ranged up to
350 ton/ha (Fig. 7.3).

Interpretation of the Landsat ETM image confirmed that lower AGB were found along the
rivers and main logging roads, and in the surrounding of settlement areas (see Fig. 7.5). In
flat terrains, the AGB estimate resulted in favorable results, but in higher slope areas, like in
the southern part of the study site, the estimate was less accurate. This might be probably
due to shadow effects from the backside of rugged terrains which returned lower

backscatter to the radar sensor (less than -18.5 dB).
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The results might be improved by correcting the topographic effects on the SAR image, but
since the image is a mosaic image the topographic corrections could be problematic,
especially in finding proper solar azimuth and sun angle values. Although the mosaic SAR
data provided by JAXA in K & C Initiatives Project website has already been preprocessed,
including for topographic corrections, unfortunately there are still some topographic effects

remaining on the image.

The empirical biomass equation modeled from the HV band was sensitive only if the radar
backscatter ranged from -18.5 to -15.75; this limitation was rather a problem to accurately
map higher AGB values at higher slope regions. Our observation comparing the biomass
estimate and the ETM data confirmed that the HV band was more sensitive to assess above

ground biomass (AGB) in flat terrains rather than in high slope regions (Fig. 7.5).

The HV band is also more sensitive to estimate the AGB in logged over forests, where even
forest stands are found, compared to mature forests or primary forests, which have more
variable stand age. The backscattering of mosaic ALOS PALSAR data to characterize volume
scattering which usually comes from dense vegetation was partially reduced, leaving only its
ability to identify the surface scattering from smooth geometry objects. Therefore, this data
could give favorable results to characterize the biomass over regenerating forests, or less

complex vegetation landscape, such as shrubs, savanna, and grassland.

The proposed approach may be suitable for regional study estimating forest biomass over a
large region where no high estimate accuracy is required. Given the condition that the
mosaic ALOS PALSAR data can be downloaded free of charge from Kyoto and Carbon
Initiatives Project website (Rosenqvist et al., 2008), this study has demonstrated that the
data may be used to estimate the forest attributes from global datasets. JAXA as a provider
of the ALOS PALSAR mentioned that the data will always be made available for public and
be updated regularly once a year, especially those of tropical regions, such as Indonesia. It
means that the data might be alternatively used for regular monitoring of deforestation and
forest degradation, as well as for predicting the dynamics of forest biomass over certain

period.

7.4 Conclusions

This study found relatively low correlation between radar backscatter and forest properties
data, mainly due to high variations of forest properties data under study and the asymptote
problem of radar backscatter. The radar backscatter was saturated at higher stem volume
and AGB values. Among other bands, the HV polarization band correlated better with the

AGB, whereas the stem volume was better explained by the HV/HH band. These estimates,
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however, might be used as an initial prediction of the forest parameters, where no high
accuracy is needed. The proposed approach has potential for estimating the forest attributes
using global datasets. This study has shown that free mosaic data of ALOS PALSAR may be
useful for predicting the AGB, and given the availability of multi-temporal datasets the

dynamics of biomass density can be monitored regularly.
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Chapter 8

Dual-Polarimetry SAR and Optical
Remote Sensing Data for Tropical
Peatlands Discrimination’

ABSTRACT

This study investigates the potential of dual-polarimetric TerraSAR-X data to characterize
different peatlands in tropical swamp forests of Central Indonesia. Discrimination of
peatlands is important to assess the carbon contents below the ground. The HH and VV
polarizations of TerraSAR-X data are extracted from the Single Look Slant Range Complex
(SSC) images. Matrix decomposition is calculated from the covariance matrix resulting in the
a-angle, scattering entropy and anisotropy. The images are then converted from slant range
into ground range resolution resulting in 6.5 meter of spatial resolution images, and were
coregistered with Landsat ETM data. Our results show that scattering entropy/a-angle
plane segmentation of sampled peatlands data were highly overlapped, except for very
shallow peat in sparse forest. To estimate the importance of radar backscatter and its
polarimetric properties for distinguishing different peatlands, we used a canonical
discriminant analysis method. We found that although entropy and anisotropy were
strongly correlated, but these variables were more important than HH, VV, and alpha angle
for discriminating the peatland classes. Different inputs combining SAR and ETM data were
experimented in the maximum likelihood classification, and we found the classification
using HH, VV, and entropy of SAR data combined with ETM band 123457 yielded 80% of
accuracy. A majority analysis was performed on the classified image, and increased the

accuracy up to 87% with Kappa statistics of 0.85.

Keywords: TerraSAR-X, dual polarimetry, peatlands, tropical forests, scattering entropy, a-

angle, canonical discriminant analysis, maximum likelihood classification

1 This chapter is based on:

Wijaya, A. P.R. Marpu and R. Gloaguen. Discrimination of Peatlands in Tropical Swamp Forests using
Dual-Polarimetric SAR and Landsat ETM Data. International Journal of Image and Data Fusion, Taylor
and Francis Publisher (Accepted for publication).
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8.1 Introduction

Peatlands are the most efficient carbon sink sources as compared to all other terrestrial
ecosystem (van Beukering et al., 2008). Although peatlands cover only 3% of the Earth land
surface, they contain as much carbon as all terrestrial biomass, twice as much as all global
forest biomass, and about the same as can be found in the atmosphere. Peatlands store
carbon for thousands of years and play critical role in biodiversity conservation and

hydrological regulation (Wetlands International, 2007).

There are different types of peatlands, but this study focuses on tropical peatlands, so-called
peat swamps. The peat swamps are important ecosystems in Indonesia as they have an
abundance of fauna and flora and confirm the uniqueness of the ecosystem and its ecological
attributes and values (Rieley and Page, 2005). The very special characteristics of tropical
peat swamp arise because it is actually two biological communities - peatland and tropical

rain forest - that have evolved together and co-existed for thousands of years.

Indonesia has almost 30 million ha of intact peatlands, which is the largest area in South
East Asia and about 7.5% of all peatlands on earth. Kalimantan is one of three regions in
Indonesia that has most of the peatland forests (Muhamad and Rieley, 2002). In Kalimantan
alone before 1996, there were about 3 million ha of peatlands (Page et al, 2002).
Continuous environmental change, such as forest burning and clearing, excessive
agricultural lands expansion, and conversion to palm oil plantations has threatened the peat
swamp forests stability and makes them prone to forest fires. This was demonstrated during
the El Nino event in 1997, where 0.79 Mha of forests in Central Kalimantan had burned
(32% of total forests), of which 0.73 Mha of peatlands were burned (92% of total burned
forests) (Page et al.,, 2002). Due to this forest fire event, 0.19 - 0.23 Gt of carbons from the
peatlands were released to the atmosphere, and if this number was extrapolated for the
entire country, 0.81-2.57 Gt of carbon or equal to 13-40% of mean annual global carbon

emission from fossil fuels were liberated in 1997 (Hoekman, 2007).

Below ground carbon contents in the peatlands are estimated from the peat thickness, peat
ripening level, and total peatland areas. Usually peat thickness is directly measured on the
ground by drilling a peat corer into the peat soil until it reaches the mineral soil layer. In
addition the degree of peat ripening and bulk density is also determined directly in the field,
and the carbon content in different peat layers and various level of peat ripening are
collected from available literature (Wetlands International, 2004). Major problems in
classifying peat types and understanding peat-forming processes in the tropics arise from

the lack of detailed, standardized and precise site-based information across the equatorial
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zone. It is also difficult to accurately determine the boundaries between mineral and peat

soils since both support forests, often of similar structure (Rieley and Page, 2005).

Remote sensing is a promising approach for characterizing different types of peatland at
large scale, because the data could cover huge areas and eventually it may complement in
situ approach which needs a great number of accurate ground truth data. Classification of
different peatlands in Kalimantan was successfully carried out using ALOS Palsar data
discriminating various types of tropical peat forests (Wielaard and Hoekman, 2009). The
potential of Chris Proba data was successfully applied for characterizing different peatlands
in similar forest landscape (Liesenberg et al., 2009). The present study, however, proposes
the utility of TerraSAR X image to characterize different peat thickness associated with the
peatland types above the ground. The peat thickness in Kalimantan varies from very shallow
(<50 cm) to very deep layers (up to 20 m) (Rieley and Page, 2005). The identification of peat
thickness using satellite imagery is rather impossible due to the complexity of peat soils
composition and the vegetation structure on the top of soils surface, which could have
similar vegetation structure for different peat types and thickness. Therefore, relative

association between certain peatlands and peat thickness should be considered.

This study evaluates the potential of dual polarimetric high resolution SAR data for mapping
different peatland forests. Variations of HH and VV polarization and «a-angle (alpha),
scattering entropy (H) and anisotropy (A) layers generated from the decomposition of
covariance matrix were used. We generated the scattering entropy/a-angle plane
segmentation and discussed the results. Additionally, canonical discriminant analysis was
used to determine the importance of predefined variables of the SAR data for distinguishing
the peatlands. Image classification was carried out using variations of the SAR data
afterwards. Combination with the optical Landsat ETM data was also experimented to
improve the classification accuracy. Contributions of the dual-polarimetric SAR data for

mapping the peatland forests were then discussed.

8.2 Data and Methods

8.2.1 Preparation of satellite data and ground truth data collection

Dual-polarimetric TerraSAR X data used for this study was acquired on March 13, 2008. The
HH and VV polarization bands were extracted from the Single Look Slant Range Complex
(SSC) images and converted into 54-looks complex images to enhance the radiometric
resolution. The enhanced Lee filter was applied to reduce speckle noise and to improve the
visual characteristics of the SAR data. Matrix decomposition is generated from the

covariance matrix calculating the a-angle (alpha), scattering entropy (H) and anisotropy (A).
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The SAR images were converted from slant range into ground range resolution resulting in
6.5 meter of spatial resolution images, and georeferenced with the Landsat ETM data
acquired on August 19, 2004, and resampled into 30 meter resolution using nearest
neighborhood algorithm. The images were projected into WGS 1984 coordinate system and
UTM Zone 49 datum (Fig. 8.1).

Peatlands distribution map and below ground carbon contents were acquired from
Wetlands International - Indonesian Program, which conducted study for mapping and
estimating the carbon content in Indonesian peatland forests from 2000 - 2002 (Wetlands
International, 2007). Land cover map over the study area was acquired from National
Coordination Agency for Surveys and Mapping (Bakosurtanal). This map was basically
generated using a 1:50,000 topographic map and visual interpretation of the Landsat data
series from 2001 - 2003. These maps were overlaid on the top of the orthorectified SAR
data and used as a basis for collecting the ground truth data. Polygons of sample data
identified four peatland classes, i.e. shallow peat in secondary forest (PSS), very shallow
peat in sparse forest (PVSp), deep peat in primary forest (PDP), shallow peat in primary
forest (PSP). We also collected sample data from mangrove forest (MF) areas as this forest
shares similar characteristic as the peatlands, but contains no peat soils, and is also included
as wetlands (Tab. 8.1). Additionally, for maximum likelihood classification combining SAR
and Landsat ETM data, samples of cultivated lands (CL), palm oil plantation (PO), non-

vegetated areas (NV) and water body (Wt) were also collected.

8.3 Methods

8.3.1 Matrix decomposition of SAR data

The H/A/Alpha polarimetric decomposition is based on an eigenvector decomposition of

the (2x2) complex covariance [C2] matrix,
([c2) =[] [A]- V] Eq. 8.1

where [A] and [V] represent (2x2) real eigenvalue and special unitary eigenvector matrices,

respectively.

The (2x2) complex covariance matrix [C2] is a hermitian and semi-definite positive matrix, and its
eigenvectors are orthogonal and the respective eigenvalues are real positive. The eigenvector
decomposition of certain distributed target covariance matrix is considered as a simple statistical
model consisting in the expansion of the (2x2) complex covariance matrix into a weighted sum of two

covariance matrices (European Space Agency (ESA), 2007),
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Fig. 8.1 Dual polarimetry SAR data: (a) RGB combination of HH, VV, HH-VV bands, (b) scattering entropy, (c) anisotropy, and (d) alpha angle
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Tab. 8.1 Characteristics and carbon contents below the ground of different peatlands found in the study area

Peat classes Peat types/ Peat thickness Peat carbon stocks Land cover type
Proportions (%) (ton/ha)
Mangrove forest (MF) - - - Mangrove forest
Deep peat in primary Hermists/fibrists 2 -4 m (deep) 1158 ton/ha Primary forest
swamp forest (PDP) (H3a)/(60/40)
Shallow peat in primary Hermists/fibrists/ 0.5-1m 232 ton/ha Primary forest
swamp forest (PSP) mineral (H1b) / (shallow)
(50/30/20)
Very shallow peat in Hermists-mineral <0.5 m (very 41.5 ton/ha Sparse forest
sparse forest (PVSp) (H1i) / (20/80) shallow)
Shallow peat in Hermists/fibrists/ 0.5-1m 232 ton/ha Secondary forest
secondary swamp forest  mineral (H1b) / (shallow)
(PSS) (50/30/20)

Source: (Wahyunto et al., 2004)
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2
([c2])=> avy! =a[c2] +4,[c2], Eq. 8.2
i=1

Pseudo-probabilities of the (2x2) complex covariance matrix expansion element are defined
from the set of sorted eigenvalues.

7 7

D= = , with p; = p;, Eqg. 8.3
A, span

J=1

where p; is the pseudo-probability of the eigenvalue A;, representing the relative importance
of this eigenvalue with respect to the total scattered backscatter power, and by convention

p1 2 p2. The scattering entropy (H) is calculated using the following formula,

H:_pl 10g2(p1)_p2 logz(pz) Eq. 8.4

The anisotropy (4), which may also be used to characterize the scattering mechanism of

peatlands was calculated as follows.

A=PL1" P Eq. 8.5
Pt P

The distribution of the scattering mechanism probabilities can be fully described by the

entropy (H) and anisotropy (A). The Entropy indicates degree of statistical disorder of the

scattering phenomenon, whereas the anisotropy is defined as the relative importance of the

secondary scattering mechanisms. For high entropy values, i.e. more than 0.7, the

anisotropy is used to fully characterize the set of scattering probabilities.

Additionally, mean alpha angle (a-angle) is also generated from
2

o= Z p.a, Eq. 8.6
i=1

The alpha angle may be interpreted as follows: a ~ 0 means that the scattering mechanism
corresponds to the single bounce scattering, mainly from a rough surface, a ~ 45°, means
that the volume scattering dominates the scattering mechanism, and if a ~ 90° the

scattering mechanism is mainly due to double-bounce scattering.

8.3.2 Image classification

The HH, VV, entropy, anisotropy and alpha angle were used to model the peatlands data

under study (Tab. 8.1). Canonical discriminant analysis is conducted to maximize the
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difference between values of different peatland classes, and to determine the most weighted
variable in discriminating the peatland class. Correlation between the predictors was also
estimated following pearson correlation procedure. The classification using discriminant
analysis (Liesenberg et al., 2009) was then carried out and the classification accuracy was
assessed from cross-validation dataset using confusion matrices. We also experimented
with more robust classification technique based on Bayesian approach, maximum likelihood
technique, combining different variations of input data (i.e. HH, VV, entropy, anisotropy, and
alpha). Also, integration with the optical Landsat ETM data was experimented and similarly
the classification accuracy was assessed using confusion matrices. The observation on visual

characteristics of the classified image was evaluated and the results were discussed.

8.4 Results and discussion

8.4.1 SAR Backscatter Responses

Radar backscatter responses from the HH and VV bands were relatively high for mangrove
forests (MF) (> -2.0 dB) and low for very shallow peat in sparse forests (PVSp) class (< -3
dB) (see Fig. 8.2). This is definitely due to different dominant scattering mechanism between
both classes. More homogenous vegetation structure and top canopy height were found in

mangrove forests than in the sparse forest.

There was a slight difference between the mean HH and VV values of the PDP, PSP and PSS
classes. This was because the high overlap between the radar backscatter of the primary and
secondary forests, therefore the utility of the HH and VV bands solely for the discrimination
of peat types under these landscape might be problematic. In fact, the correlation between
the HH and VV was relatively strong (r = 0.722, p-level 0.01, two-tailed test) as compared to
the correlations between these bands with the entropy, anisotropy and alpha angle (r <

0.30).

For each peatland class, anisotropy showed almost exact mirrored values to that of the
scattering entropy (Fig. 8.2). The anisotropy values increased with the peat soil thickness
and vice versa for the entropy. Pearson coefficient correlation confirmed that both variables
were highly correlated (r=-0.991, p-level 0.01, two-tailed test). The alpha angle (a-angle),
however, revealed similar trends as the radar backscatter in overall, and it might still be

useful to improve the discrimination of the peatland types.
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Fig. 8.2 Radar backscatter, entropy, anisotropy, and alpha angle responses to different
peatland classes

The a-angle/scattering entropy plane segmentation is plotted and we found that PSS, PDP
and PSP were highly overlapped (Fig. 8.3). These classes, including the PVSp class, show
dominantly volume scattering mechanism (segmentation plane area 4), where the alpha
values are moderate and the entropy of over 0.5. The PVSp class was partly overlapped with
other peatland classes, due to the occurrence of surface scattering mechanism in this
particular class, as an effect of more even forest canopy and less complex vegetation

structure.

Dual polarimetry TerraSAR X data is rather restricted for characterizing the thickness of
peat soils, because of the limitation of x-band in penetrating through canopies over primary
and secondary forests, i.e. the thickness of shallow and deep peat soils under these forest
canopies could not be easily discriminated. However, in sparse forest or less vegetated

areas, we can expect that this SAR data is useful for the peatland classification.

8.4.2 Canonical Discriminant Analysis

To provide better understanding on the importance of radar backscatter and matrix
decomposition features for the classification of peatlands, the canonical discriminant
analysis was applied. The F-test indicates that the homogeneity assumption of the

covariance matrices has not been met (approx. F-test value = 703.58, p-level < 0.0001).
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However, this test is strongly influenced by data non-normality and may not be accurate.

This is a general case, especially for remote sensing study which is dealing with high

dimensional data.
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Fig. 8.3 Sample data plotted on the alpha angle / scattering entropy segmentation plane. In
general, regions 1, 3 and 6 identify regions are dominated by multiple scattering, regions 2,
4 and 7 are dominated by volume scattering, and regions 5 and 8 characterize surface
scattering mechanism

Tab. 8.2 Tests of Equality of Group Means

Wilks'

Lambda F df1l df2 p-value.
Alpha .869 821.628 4 21752 .000
Anisotropy .535 4731.239 4 21752 .000
Entropy 570 4109.281 4 21752 .000
HH band .709 2235.333 4 21752 .000
VV band .607 3523.479 4 21752 .000
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The discriminant analysis was conducted to assess whether the HH, VV, entropy, anisotropy
and alpha angle could correctly distinguish the peatlands under study. The F-test for
equality of group means confirmed that each predictor was individually significant to

differentiate the peatlands (p-value < 0.0001) (Tab. 8.2).

Four empirical functions were generated from the canonical discriminant analysis and used
for maximizing the differences of the peatland classes. Wilk’s lambda tests (not shown here)
was significant for each model combinations (p-value < 0.0001), except if the model 4 was
solely tested (p-value > 0.05). The absolute correlation between each variable and any
discriminant function revealed that anisotropy and entropy were strongly correlated with
the function 1 (ranis -0.559, rene = 0.67) and 3 (ranis 0.77, rene = -0.716), whereas the HH (r = -
0.795) and VV (r = -0.684) bands had strong correlations with the model 2. The alpha angle,
on the other hand, was highly correlated with the empirical model 4 (r = -0.875). The
standardized canonical discriminant function coefficients suggested that the entropy and
anisotropy contributed most to distinguishing the peatlands. However, both variables were
also highly correlated, so that the joint use of both variables might be redundant and might
reduce the predictive ability of any classification methods, especially if the classification

algorithm works based on some statistical assumptions.

The classification results show that the models had favorable classification accuracy merely
for the PVSp (78.3%) and MF (57.6%) classes (Tab. 8.3). Due to complex vegetation
structure, the accuracy of the PSS, PDP and PSP classes were considerably low (< 50%). The
highly overlapped radar backscatter values of these classes might explain low classification
accuracy results (Fig. 8.4). In overall the accuracy of discriminant analysis classification was
46.3%, which was unfavorable. Therefore, we used Maximum likelihood technique, which is

well-known for its robustness to classify mixed land cover classes (Mather, 2004).
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Tab. 8.3 Classification results and accuracy assessment based on cross validation (@b)

Peatland Predicted Group Membership Total
Class PSS PVSp PDP PSP MF
PSS 1324 333 1210 1738 1252 5857
PVSp 14 3735 36 985 0 4770
Count PDP 537 99 1313 1007 844 3800
PSP 734 312 935 1914 344 4239
MF 383 42 539 348 1779 3091
PSS 22.6 5.7 20.7 29.7 214 100.0
PVSp 3 78.3 .8 20.6 .0 100.0
% PDP 14.1 2.6 34.6 26.5 22.2 100.0
PSP 17.3 7.4 22.1 45.2 8.1 100.0
MF 12.4 1.4 17.4 11.3 57.6 100.0

aCross validation is done only for those cases in the analysis. In cross
validation, each case is classified by the functions derived from all cases other
than that case.

b46.3% of cross-validated grouped cases correctly classified.
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Fig. 8.4 Canonical discriminant function plot. The function 1 and 2 refer to the functions
generated using HH, VV, entropy, anisotropy, and alpha as predictors, employing the
coefficient of discriminant analysis
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8.4.3 Classification of Radar Backscatter and Optical Data

Given the discriminant analysis results, we experimented with supervised maximum
likelihood classification combining HH and VV bands, and SAR polarimetric properties, i.e.
alpha angle, entropy and anisotropy for peatlands classification. The individual use of radar
data found that the combination of HH, VV, alpha and entropy yielded higher accuracy
(overall accuracy 49%, Kappa 0.43) than other SAR data combinations (Fig. 8.5). The
confusion matrices show that the dual-polarimetric SAR data was suffered for
discriminating the peatlands in primary and secondary forest. This is because the
polarimetric signatures of volume scattering in X-bands is somehow limited and could only
partially explain the scattering phenomenon over the forest areas. Moreover, the maximum
likelihood algorithm has similar problem as the discriminant analysis method to accurately

classify the PSS, PDP and PSP classes using only radar backscatter inputs.
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Fig. 8.5 Comparison of classification accuracy using confusion matrices for each class label,
namely shallow peat - secondary forest (PSS), very shallow peat - sparse forest (PVSp),
deep peat - primary forest (PDP), shallow peat - primary forest (PSP), palm oil plantation
(PO), cultivated lands (CL), non-vegetated lands (NV) and water body (Wt)

Combining the SAR backscatter with optical ETM data has greatly increased the accuracy up
to 80% using the HH, VV, entropy and ETM band 123457 in the classification (Fig. 8.5). An
attempt to combine entropy and anisotropy of SAR data with ETM bands slightly reduced
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the classification accuracy, because of high correlation of both SAR features as observed
from the discriminant analysis results. Fusion of both sensors for the classification has
overcome the limitation of individual use of SAR data for discriminating highly overlapped
training signatures on PSS, PDP, and PSP classes. However, a large difference in spatial
resolution (SAR data has originally 6.5 m and Landsat ETM is 30 m of spatial resolution) and
different properties acquired by both sensors caused the classification arrived at mixing
results in some extent. Radar backscatter captured geometric properties of objects on the
ground, whereas the ETM surface reflectance measured the energy radiated back from the

ground objects.

Fig. 8.6 showed that due to higher spatial resolution and the advantage of different
scattering mechanism characteristics from smooth and rough objects on the ground (e.g.
non-vegetated and dense vegetation), the SAR data classification produced relatively more
accurate delineation than the ETM data in less complex and sparse vegetation, but
overlooked the peatlands classification on primary and secondary forests (Fig. 8.6b). The
ETM data, on the other hand, yields more accurate results than the SAR data for
characterizing the mangrove forest and in discriminating the peatlands on primary and
secondary forests (Fig. 8.6a). The fusion of the SAR backscatter and ETM image (Fig. 8.6¢c
and Fig. 8.6d) could resolve this problem, although the classifications of PSS and PDP classes
were still problematic (Tab. 8.4). To improve the classification result, we filtered the
classified image using a majority analysis employing 3x3 moving window to minimize
minority spurious pixels within certain class labels. This process significantly increases the
classification accuracy (overall accuracy 87%, kappa 0.85) and the visual appearance of the

classified image as well (see Fig. 8.6d and Tab. 8.4).

Better classification results could be achieved employing longer wavelength of SAR image
(e.g. ALOS Palsar with L-band) which could penetrate forest canopy, or by applying better
filtering processes prior to the classification. The SAR data has more advantage than the
ETM data due to its cloud penetration capability, and especially for the study in tropical

humid regions it may have great benefits given the data availability.

8.5 Conclusion

Contribution of dual-polarimetric SAR data to characterize tropical peatlands was
investigated in this study. The HH, VV, entropy, anisotropy and mean alpha angle might be
useful for discriminating the peat types under some limitation. Discriminant analysis
method revealed that anisotropy and entropy were more important for peatlands

classification than other SAR features (i.e. HH, VV and alpha angle). However, this method
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Fig. 8.6 Maximum likelihood classification: (a) ETM Band 123457, (b) HH, VV, Alpha, Entropy, (c) ETM Band 123457, HH, VV, Entropy and (d)
ETM Band 123457, HH, VV, Entropy-filtered with majority analysis. The water body (Wt) class label is masked out for better visual

representation
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Tab. 8.4 Accuracy assessment of the classification using ETM band 123457, HH, VV and
entropy, and filtered with majority analysis using 3x3 moving window"

User
Class Accuracy
labels PSS PVSp PDP PSP MF Wt PO NV CL (%)
PSS 439 0 92 0 0 0 0 0 52 75.3
PVSp 0 504 0 2 0 0 0 0 0 99.6
PDP 63 0 301 2 0 0 0 0 53 71.8
PSP 1 0 98 | 473 0 0 0 0 0 82.7
MF 0 0 0 0 500 0 0 0 0 100.0
Wt 0 0 0 0 0 507 0 0 0 100.0
PO 0 0 0 0 0 0 499 8 0 98.4
NV 0 0 0 0 3 0 48 | 466 141 70.8
CL 1 2 0 0 0 0 0 34 | 272 75.3
Producer

Accuracy 871 996 613 992 994 1000 912 917 525
(%)

* Overall accuracy = 87%, Kappa statistics = 0.85

found unfavorable results and yielded 46.3% of accuracy for discriminating the peatland

classes.

Using a supervised maximum likelihood classification, we found the classification of HH, VV,
and entropy of SAR data combined with ETM band 123457 yielded 80% of accuracy. A
majority analysis was performed on the classified image, and the classification accuracy

increased up to 87% with Kappa statistics of 0.85.

The fusion of the SAR backscatter and ETM image has improved the classification result, but
the classification of shallow and deep peat soils under relatively closed canopy (i.e. primary

and secondary forests) is still problematic.
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Chapter 9

Summary

9.1 Thesis Contributions

This thesis mainly focuses on two subjects related to the application of remote sensing data
for land cover classification using non-parametric methods (i.e. neural networks and
support vector machine methods) and development of a non-destructive approach for
above ground biomass (AGB) and forest attributes estimation employing multi-source
remote sensing data. Information provided by reliable land cover map is useful for
management of forest resources and to support sustainable forest management. Generation
of a non-destructive procedure to model forest biophysical properties (e.g. biomass and
stem volume), on the other hand, is required to assess the forest resources more efficiently,
and coupled with remote sensing data the model can be applied over large areas.

Contributions of the present work include:

1. Improved strategy for land cover mapping and above ground biomass estimation using
multi-source, multi-resolution remote sensing data.

2. Development of a non-destructive approach for estimating forest biophysical properties
applying non-linear analysis based on neural network algorithm.

3. Generation and inclusion of Geostatistics texture features in spectral data classification
to provide reliable information provided by a land cover map.

4. Analysis on different features of optical and SAR data for tropical peatlands

classification, also fusion of both sensors to improve the discrimination of the peatlands.

9.2 Research Questions Answered
According to the results obtained from this study the research questions formulated in

chapter 1 are answered as follows.

1. Which texture features are useful to improve the classification accuracy over tropical

forest landscape?

Chapter 3 of the thesis presents the classification of complex forest landscape using
Geostatistics texture features. The results concluded that the texture features generated

using madogram, rodogram and fractal dimension provide useful information which can
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increase the accuracy of spectral data classification. The accuracy increases up to 9%
combining the spectral data with texture features in the classification (i.e. overall
accuracy of maximum likelihood classification using spectral data only is 79.3%, while
combination with texture features inflates the accuracy up to 85.4%). Additionally,
maximum likelihood method outperforms support vector machine (SVM) and MLP

neural network approaches resulting in higher classification accuracy.

How multi-source remote sensing data coupled with in situ data could improve the

assessment of above ground biomass (AGB)?

This study proposes a non-destructive approach for above ground biomass (AGB)
combining remote sensing and number of stems. Based on the results of chapter 4
higher correlation between estimated and observed AGB is obtained if the reflectance
values, vegetation indices, DEM and texture features are included in the AGB modeling.
Additionally, application of non-parametric regression method based on Levenberg
Marquardt neural network algorithm yields lower error estimates than does of

statistical multi regression method.

Which types of remotely sensed data and vegetation indices are important for the

modeling of AGB?

In chapter 5, spectral data of Landsat ETM, vegetation indices, image transform layers,
simple ratios, PCA, tasseled caps bands, GLCM texture features and DEM were generated
and combined to model AGB and stem volume. The GLCM mean texture has higher
correlation coefficient (r) than other remote sensing (RS) data. Chapter 6 of the thesis
explores the capability of bi-temporal Landsat data for estimating basal area, stem
volume and AGB. Combining remote sensing and in-situ data, the estimated model can
be applied to predict the biophysical properties of different stages of successional

forests resulting in favorable error estimates.
How land cover changes could affect the dynamics of forest biomass?

This study found that estimated above ground biomass increased with respect to forest
successional stage and/or the complexity of vegetation structure. We defined mature
forests or advanced secondary forests as the most complex vegetation structure and
shrubs as the least complex structure. Stem volume and biomass are markedly increased
during the regeneration stages and reached relatively stable condition in
advanced/mature forest stage. This is confirmed in chapter 5 which found similar

biomass density over mature forest-hilly and very dense forest-hilly landscape (Fig. 5.4).
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How to estimate the AGB changes using bi-temporal satellite data? What is the
predictive ability of linear regression method as compared to a non-parametric neural

network model?

Upon radiometric calibration of multi-dates satellite images, the biomass model
developed in one image scene can be applied for other image scenes. Unfortunately,
problems due to atmospheric variations and attenuations may still persist even if the
images are atmospherically corrected and radiometrically calibrated using any standard
methods. In chapter 6, multivariate alteration detection technique was applied for
radiometric calibration of multi-date Landsat ETM images. This method works based on
statistical measures and parameters to calibrate histogram of the target image to the
values of reference image. The calibrated target image and the reference image were
statistically compared, and we found histograms of both images are not significantly
different. Thus, the biomass model generated from the reference image is applied to the
normalized image scene. We also tested the ability of multiple linear regression method
and neural network model to generate basal area, stem volume and biomass models.
The results show that the neural network model has lower error estimates in predicting

the forest parameters as compared to the statistical linear regression approach.

Which features generated from Synthetic Aperture Radar (SAR) data is more important

to assess the biomass and stem volume? How accurate the estimated biomass model?

The modeling of biomass and stem volume using normalized radar backscatter
generated from mosaic ALOS Palsar data concluded that HV band is suitable for
predicting the biomass while HV/HH band is useful for stem volume estimation. The
results, however, suggested that the models are favorable for initial assessment of
biomass and stem volume over forested landscape, due to high error estimate and low
correlation between SAR data and AGB and stem volume mainly affected by saturation

of the SAR data.

How the combination of Landsat ETM sensor and SAR data improves the classification of

peatland forest?

Chapter 8 investigates the possibility of combining Landsat ETM data (optical sensor)
and TerraSAR X data (Microwave sensor) for discriminating peatlands over tropical
forest environment. The optical data measures mainly physical properties of ground
objects, whereas the microwave sensor captures geometric properties of the ground

objects. Combination of both sensors can be an advantage to achieve better classification
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results. Using a supervised maximum likelihood classification, we found the
classification of HH, VV, and entropy of SAR data combined with ETM band 123457
yielded 80% of accuracy. A majority analysis was performed on the classified image, and
the classification accuracy increased up to 87% with Kappa statistics of 0.85. Although
the fusion of SAR backscatter and ETM image has improved the classification results, but
the classification of shallow and deep peat soils under relatively closed canopy (i.e.

primary and secondary forests) is still problematic.

9.3 Conclusion and Recommendations

The final conclusion and recommendations of this study are briefly described as follows.

1. The inclusion of spatial information based on Geostatistics texture feature improves the
classification of ETM data over complex forested landscape.

2. Modeling of AGB and stem volume provides more accurate results when remote sensing
and in-situ measurement data (based on non-destructive sampling) are combined.

3. Combining multi-source remote sensing data, neural network method has higher
accuracy than statistical multi-linear regression technique in modeling the forest
parameters.

4. Biomass model estimated from a satellite image can be applied to another image scene
upon proper radiometric calibration.

5. Application of Mosaic ALOS Palsar data to predict biomass and stem volume yields
favorable estimates which are sufficient for initial assessment of both forest properties.

6. Fusion of optical sensor and SAR data has reduced penetration ability problem of each
sensor and improved the classification of tropical peatlands.

7. For future study we recommend that:

a. better image classification results may be achieved by combining texture features of
SAR data with spectral information from optical data.

b. more accurate biomass estimate and forest parameters modeling can be obtained
using laser data (LIDAR) or Polarimetric radar interferometry (PolinSAR) data.

c. the size of sampling plots on the ground should represent variations of forest stand
parameters under study taking into account spatial resolution of satellite data being

used.
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