
A Network-Transparent, Retained-Mode
Multimedia Processing Framework for the

Linux Operating System Environment

Von der Fakultät für Mathematik und Informatik

der Technischen Universität Bergakademie Freiberg

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur

Dr.-Ing.,

vorgelegt

von Dipl.-Math. Helge Bahmann

geboren am 18. Dezember 1976 in Duisburg

Gutachter: Prof. Dr. Konrad Froitzheim, Freiberg

Prof. Dr.-Ing. habil. Bernhard Jung, Freiberg

Prof. Dr. Peter Schulthess, Ulm

Tag der Verleihung: 30. Januar 2009

2

Contents

0 Introduction 7

0.1 Typographic and diagram conventions 9

1 Multimedia representation and processing 11

1.1 Definition . 11

1.1.1 Audible media . 11

1.1.2 Visual media . 15

1.2 Compositing and processing . 19

1.2.1 Audio processing . 19

1.2.2 Still image processing . 20

1.3 Representation in digital systems . 22

1.3.1 Techniques . 23

1.3.2 Audio representation . 25

1.3.3 Color representation . 29

1.3.4 Image representation . 33

1.3.5 Video representation . 36

1.4 Compressed representations . 36

1.4.1 Audio compression . 37

1.4.2 Image Compression . 45

1.4.3 Compressed video . 47

2 Related work 55

2.1 Media processing frameworks . 55

2.1.1 QuickTime . 57

2.1.2 DirectShow . 65

2.1.3 Network Integrated Multimedia Middleware 71

2.2 Media processing in the Linux environment 74

2.2.1 Low-level data capture and playback 75

2.2.2 Media processing tools . 79

3

4 CONTENTS

3 Media processing framework architecture 83

3.1 Design choices . 83

3.1.1 Processing model . 84

3.1.2 Data model . 85

3.1.3 Execution model . 85

3.1.4 Format transformations . 86

3.1.5 Component and object model 86

3.2 Core architecture . 88

3.2.1 Modularization and component model 89

3.2.2 I/O model . 90

3.2.3 Time model . 92

3.3 Media type support . 102

3.3.1 Audio . 102

3.3.2 Still images and video . 108

3.3.3 Compressed media . 111

3.3.4 User-defined representation types 114

3.4 Processing . 114

3.4.1 Compositing . 115

3.4.2 Capture . 115

3.4.3 Rendering concept . 116

3.5 Documents . 121

3.5.1 Accessors . 122

3.5.2 Container file formats . 123

4 Cooperation with the X Window System 125

4.1 Media processing extensions . 126

4.1.1 Timing and synchronization services 130

4.1.2 Audio services . 132

4.1.3 Compressed media services . 141

4.2 Media presentation in the X Window System 143

4.2.1 Video presentation . 143

4.2.2 Audio presentation . 145

4.2.3 Synchronization . 146

4.3 Renderer driver architecture . 147

4.3.1 General media rendering and synchronization 148

4.3.2 Resource caching . 150

4.3.3 Handling of media elements 151

CONTENTS 5

5 System integration 153

5.1 Bindings to audio programming interfaces 153

5.1.1 ALSA . 153

5.2 Desktop audio mixing . 154

5.3 GUI toolkit cooperation . 156

5.3.1 Media framework provisions 157

5.3.2 Gtk+/Qt bridge libraries . 159

5.4 Cooperation with other media frameworks 160

6 Assessment 163

6.1 Architecture model and API assessment 165

6.1.1 API field testing . 166

6.1.2 Comparison to QuickTime . 170

6.1.3 Comparison to DirectShow . 175

6.1.4 Limitations . 181

6.2 Efficiency evaluation . 183

6.2.1 Overhead . 183

6.2.2 Audio latency and the X Window System 189

6.3 Future work . 191

6.3.1 Future development of the "renderer" concept 192

6.3.2 X server infrastructure . 193

6.4 Conclusions . 194

A Implementation notes: Media processing library 197

A.1 Data model . 198

A.2 Stream Demultiplexing . 199

A.3 BufferWindow concept . 200

A.4 Dynamic symbol lookup . 200

A.5 Pixel format and color space conversion 201

B Implementation notes: X Window System Extensions 203

B.1 Real-time audio processing . 203

B.2 Lock-free sample buffers . 203

6 CONTENTS

Chapter 0

Introduction

This project started in 2002 with the goal of providing a comprehensive multi-
media framework for the Linux operating environment. While it is not the sole
project in this field, it is unique in the sense that it is the only one where clean
and useful integration with the network transparent X Window System com-
monly used in this operating environment was an explicit goal from the very
beginning. Most other framework designers have so far completely ignored the
issue of network transparency, as it involves quite a number of technical chal-
lenges. The author explicitly wishes to demonstrate both the feasibility and the
usefulness of network transparency in multimedia frameworks.

As it turned out during the evolution of the system design, this single re-
quirement alone had a tremendous influence on the overall architecture. Ulti-
mately the process of generalizing the key "use-cases" into design concepts led
to an architecture that offers a sufficiently abstract data and processing model
to support this scenario, while providing detailed control to the application –
with remarkabale benefits even in scenarios that are unrelated to network trans-
parency.

As part of this project an implementation of the multimedia framework and
a considerable amount of supporting infrastructure was created, totalling about
80000 lines of code. While the implementation has been indispensable for con-
tinually trying out and evaluating different designs, it has over the course of this
project left behind the seedling stage of a mere research prototype and blossomed
into a usable piece of software. It has been used as the basis for several bache-
lor’s theses as well as other projects, and has also been showcased publically.

While considerable research effort has been undertaken in recent years in the
field of efficient multimedia data representation techniques (e.g. data compres-
sion and coding for storage or transmission), little has been published on the
design of multimedia framework architectures in general. This situation is un-
fortunate, as core software design choices can become a limiting factor in terms
of what capabilities can be added later (at least without "breaking" the design).
It is an explicit goal of this work to close this "blind spot" by comparing and
discussing design alternatives, and point out some weaknesses in many exist-
ing frameworks that generally either adopt an imperative immediate processing

7

8 CHAPTER 0. INTRODUCTION

model, or a data-flow graph based approach (cf. chapter 2). These "traditional"
design approaches strive to minimize the processing overhead imposed by the
framework itself by keeping the abstraction level as low as possible, however
they miss out on several possible optimizations.

The architecture that will be discussed is instead based on the ideas of
retained-mode processing and lazy evalution: "Retained" means that instead of
executing processing operations, an internal abstract model representing the
desired result is built up. "Lazy evaluation" means that the model is built up us-
ing functions and methods that "appear" to immediately affect the data in a way
that programmers are used to from imperative or functional programming, but in
reality only modify the retained representation. These concepts result in a con-
siderably more complex design, but enable several high-level optimizations and
provide a clean mechanism for delegating processing to provide network trans-
parency. The experience gained with the provided implementation indicates that
the overhead incurred through these concepts is so small as to be outweighed by
far by the additional capabilities. The author therefore also wants to make the
case for considerably more abstract processing and data models in multimedia
frameworks.

This work is organized as follows: Chapter 1 gives a formal introduction of
media representation and processing. It contains several precise mathematical
definitions of how the underlying data is meant to be interpreted and trans-
formed to make it clear that the media processing operations to be provided by
a framework have a precise (if slightly idealized) model to which they should
adhere and are not some ad-hoc collection of "best practice" methods. The au-
thor recognizes this is not the approach usually taken in the course of designing
a multimedia framework, yet considers it essential as it provides an important
yardstick to evaluate whether a desired process can usefully be mapped onto a
target framework.

Chapter 2 will investigate the software architecture of existing media process-
ing tools. This includes both comprehensive frameworks encompassing multiple
aspects of media processing as well as singular libraries available in the target
operating environment that are intended for specific narrow purposes (such as
interfacing with playback and capture devices). This is not meant to be a rigorous
discussion of any possible design but rather an overview of architectural ideas
commonly found, highlighting some weaknesses from innocuous-looking design
decisions to prepare the reader to better understand the "hows" and "whys" in
the following chapter...

... number 3 which contains an architectural overview of the framework de-
signed and implemented as part of this project. The chapter focuses on the "core"
library of the media processing framework, providing the basic services and ab-
stractions which the functional processing components plug into. It models the
concepts discussed in chapter 1, but differs in important ways from the frame-
works discussed in chapter 2. The reasoning behind the different architectural
approach will also be discussed in detail here.

0.1. TYPOGRAPHIC AND DIAGRAM CONVENTIONS 9

The library introduced in chapter 3 is generic and agnostic with respect to
types of media, sources for data capture, targets for playback, as well as formats
for data representation. Instead it features a modular approach to provide these
services through substitutable components. One particular such component,
responsible for presentation through the X Window System, will be discussed
in great detail in chapter 4. While this component does not have a "special" or
more "intimate" relationship to the core library than any other component, it
is instructive as it helps shed some light on the thought processes behind the
"co-evolution" of the architectures for the core media processing library, the X
interfacing component as well as several extensions to the X Window System
also introduced in this chapter.

While the previous chapters discussed the media architecture mostly in isola-
tion, chapter 5 takes a look from a different angle: How the architectural choices
affect integration with the pre-existing software stack. This aspect is often over-
looked unfortunately, leading to system designs that look good on paper, but are
of limited usefulness because their design is too sealed off as to be combined
with other important pre-existing frameworks in a single application.

Chapter 6 compares architectural features of the frameworks presented in
chapters 2 and 3, including both qualitative as well as some quantitative results.
The chapter will close with concluding remarks of what goals have been achieved
and discuss possible directions for further research.

0.1 Typographic and diagram conventions

Mathematical formulas will always be set out in italic font, and function or vari-
able names referenced within the text are set out in the same way. The following
mathematical symbols will be used occasionally:

Symbol Meaning

sinc Sinus cardinalis: sinc(x) = limx0→x
sin(πx0)

πx0

sgn Sign: sgn(x) = x/|x| for x 6= 0, sgn(0) = 0
δ Dirac’s delta, defined by:

∫

δ(x)f(x)dx = f(0)
x 7→ f(x) The function object performing the mapping: f

Most diagrams shown follow UML 2.0 notation. In the interest of brevity the
types of diagrams, their elements and their semantics are not repeated here as
they are extensively covered elsewhere (e.g. [44]). The reader is assumed to be
familiar with this notation, as information contained in the diagrams is generally
not repeated in the text. The diagrams are not even remotely intended to pro-
vide a complete and thorough specification of the objects or activities described
therein as they will generally omit information that would be essential to com-
plete an implementation from the model (e.g. private members, utility classes
and functions) but that are of no relevance to the discussion.

10 CHAPTER 0. INTRODUCTION

While UML notation is generally preferred, sometimes short source code frag-
ments are required for illustration. They will always appear in a paragraph or
box on their own and will be set out in Monospace font. The text frequently refer-
ences identifiers (used as class, variable or function names) found in source code
examples or UML diagrams. To allow easy distinction of class, object or function
identifiers from ordinary english text they are always set out in SansSerif font
(following the convention used in UML as well).

Chapter 1

Multimedia representation and
processing

The term media (and its singular medium) refers to content intended for recep-
tion by humans. This includes visual media (such as natural or synthetic still
images, natural or synthetic video), audible media (natural or synthetic music,
voices, noises etc.). It could also include content aimed at stimulating other hu-
man sensual organs (e.g. tactile or olfactory). However, due to lacking technical
apperatus for recording, storage and presentation of these media types they are
not in any widespread practical use, and the following discussion will therefore
omit them. Media can also refer to completely abstract content that does not
directly correspond to a perceptual organ, e.g. narrative, or text in general which
can however be delivered through visual or aural organ. The term digital me-

dia (and its singular) refers to the digitized representation of media. The term
multimedia refers to content integrating two or more different types of media.

1.1 Definition

The most prevalent types of media are audible media and visual media (still
images, video). The following sections will formally introduce these media as well
as mathematical models of media processing operations.

1.1.1 Audible media

The term audible media refers to content intended for reception by the human
acoustic organ (the ear, see figure 1.1). The human ear is receptive to "rapid"
changes in air pressure ("acoustic waves"): The acoustic wave entering the outer
ear is received by the tympanic membrane and mechanically amplified through
the ossicles in the middle ear. The amplified signal is then transferred to the
fluid inside the cochlea. The cochlea is formed like a coiled tube, and it contains
the basilar membrane which runs from the beginning to the end of the spiral

11

12 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

cochlea

auditory canal

tympanic membrane

(eardrum)

ossicles

Figure 1.1: Schematic of the human ear

and acts as a "resonator": its width and stiffness varies along the length of the
basilar membrane so that its resonant frequency varies as well. Hair cells placed
on the basilar membrane detect motion and stimulate the auditory nerves1 (see
figure 1.1).

1.1.1.1 Acoustics

The human ear can be understood as a mechanical real-time Fourier analyzer; it
is sensitive in the frequency range of approximately 20Hz to 20kHz. Frequency
discrimination is not uniform but follows a logarithmic scale: "Pure" sinusoidal
oscillations (and hence sounds) are rare in nature, they are almost always ac-
companied by "higher" modes which are related to the base frequency through
small integer numbers. On a logarithmic scale, higher modes have constant dis-
tance to the base mode thus this scale is better adapted to naturally occuring
sounds.

An undamaged human ear is sensitive to changes in air pressure2 somewhat

1Only the inner hair cells mainly act as "detectors" while the outer hair cells mainly act as
"lock-in amplifiers" for oscillations. This mechanism is unique to mammals and helps to better
localize oscillations on the membrane and thus provide better frequency resolution (but does not
increase sensitivity).
2Pressure differences are indicated as "root mean square" (or "standard deviation"):

p =

√

∫

p(t)2dt −
(
∫

p(t)dt

)2

somewhat below 2 µPa because energy of the wave is proportional to p2. For sinusoidal signals p
is 1/

√
2 times the maximum amplitude.

1.1. DEFINITION 13

below 2 µPa at the lower end – on the upper end of the scale it is "limited" only by
the fact that high pressure differences will damage the ear (about 20 Pa for short
term exposure; long-term exposure at considerably lower intensities can already
be harmful as well), up to the point were the eardrums may actually tear.

Air pressure is however not a good measure for "perceived loudness": Exper-
imental results suggest that the logarithm of the energy of a wave provides a
perceptually more uniform scale, thus "loudness" Lp of sound is usually indi-
cated in the logarithmic decibel scale:

Lp = 10 log10

(

p2

p2
0

)

dB = 20 log10

(

p

p0

)

dB

where p is the pressure of the sound to be measured and p0 is the "zero" level
(usually 2µPa is chosen in acoustics, the unit is then written as dB(A) to denote
this).

Sensitivity is not uniform across the frequency range. Several empirical
studies have determined "equal loudness contours" that measure threshold of
perception and levels of perceived equal loudness across the frequency spec-
trum; the earliest work was performed by Fletcher and Munson [20], however
ISO 226:2003 ("Acoustics – Normal equal-loudness-level contours") and most
psycho-acoustic models used in audio compression are based on more recent
results by Yôiti Suzuki et al [18].

Sensitivity may even change dynamically: The perception of sound may be
affected by the presence of another sound – this effect is known as auditory

masking in psycho-acoustics. Two main kinds of masking affect perception:
Temporal masking, where previous sound reduces sensitivity for later sounds;
and frequency masking, where sounds reduce sensitivity for concurrent sounds
in adjacent frequency ranges.

The brain processes phase information only in a very limited fashion: Phase
differences between signals of identical frequency in both ears are interpreted as
if they were caused by different wave propagation latencies from a single audio
source to the two ears. This assists in determining the "direction" of an audio
source, it should however be noted that the brain also processes various other
cues (such as amplitude differences, or low-pass filtering of waves travelling
"around" the head) to localize an audio source.

1.1.1.2 Audio signals

An audio signal will be defined as the pressure in a medium at a specified point
in space:

Definition 1 A (continuous, monaural) audio signal A is a tuple (TA, sA) where

• TA = [tbegin; tend) or TA = R is a temporal interval

14 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

• sA : TA → R is a function mapping each point in time t to the pressure in a

medium sA(t) at that point in time

Note that there is no requirement that the point of reference remains station-
ary. We will generally assume that the signal is "normalized" such that a value of
zero corresponds to the "average" pressure (since the human ear is only sensitive
to pressure changes).

1.1.1.3 Channels

A signal may represent the "input" signal for the human hearing apparatus (as if
it had been recorded at the locus of the tympanic membrane), it may represent
the "output" signal of a physical audio source (as if it had been recorded at the
point of the source), or it may represent the signal at arbitrary other sampling
points in space. The following definition incorporates this positional information:

Definition 2 An audio channel C is a tuple (sC , pC) consisting of

• an audio signal sC

• a "location" pC

Note that the above definition uses the rather vague term "location" to de-
scribe the positional information included in the channel. This is intentional
as different application scenarios have different requirements as to how the lo-
cation is represented: Often purely logical designations (e.g. "left ear", "center",
"somewhere to the right") are sufficient, while other scenarios require exact spa-
tial coordinates. Thus pC serves as a "placeholder" that allows use-case-specific
positional descriptions to be associated with an audio signal.

Reproduction of audio media is achieved by creating pressure waves at points
in space corresponding to given audio signals (through loudspeakers): Listeners
will perceive the superposition of these signals with their ears (see figure 1.2).
In the absence of crosstalk between different audio signals (by proper spatial
placement of speakers, e.g. headphone) two signals are sufficient to generate
arbitrary stimulus. In general more positional audio sources are required to
achieve a desired stereophonic effect.

The channel concept is used to represent both the "intent" of audio that is
part of multimedia implementations as well as physically available capture and
playback devices. Applications that want to reproduce audio may have to "map"
the input signals to the output channels, i.e. they need to determine the con-
tribution of each input signal to each output signal. This is easy when using
headphones (which are crosstalk-free and the signals thus directly correspond
to the input stimulus for the human ears), but in the general case this is not
trivial.

1.1. DEFINITION 15

L R

α ∗ L + β ∗ R α ∗ R + β ∗ L

Positional audio sources emitting two signals L and R result in the perception of α ∗ L + β ∗ R
and α ∗ R + β ∗ L at the ears (where α and β are transfer functions that describe both delay and
attenuation). Note that a media processing application would have to perform the corresponding
signal transformations if the position of speakers used to reproduce the audio does not match the
positional intent of the signals L and R.

Figure 1.2: Superposition of audio signals from two sources

1.1.2 Visual media

The term visual media refers to content intended for reception by the human
visual organ (the eye). Physically the human eye is receptive to electromagnetic
waves with wavelengths ranging from approximately 350 nm to 700 nm. The waves
are received by different receptor cells in the retina: The cone cells responsible
for daylight and color vision, and the (20-fold more numerous) monochromatic
rod cells mostly responsible for night vision. Rod cells are extremely sensitive –
in an undamaged human eye that has adapted to darkness a single photon per
cell is sufficient to produce a perceptible excitation response.

1.1.2.1 Color perception

Cone cells come in three flavors that exhibit different sensitivities across the
spectrum of visible light (see figure 1.3); they are commonly referred to as L, M
and S cone cells to designate that their peak sensitivity is in the long, medium
or short wavelength range3.

Human color perception has two important characteristics:

• Two spectra that result in the same excitation patterns of cone cells are
indistinguishable (they appear to be the same color for humans).

3They are very often also referred to as ’red’, ’green’ and ’blue’ cone cells which is considerably
more memorable; however as figure 1.3 shows the absorbance spectra correspond only vaguely
to these colors.

16 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

4
0
0
n
m

4
3
5
.8
n
m

5
0
0
n
m

5
4
6
.1
n
m

6
0
0
n
m

7
0
0
n
m

wavelength

0

in
te
n
s
it
y

The curves show the normalized relative excitation intensity of the following classes of cells: black
– rod cells; blue – S cone cells ; green – M cone cells ; red – L cone cells, curves according to [9].
Note that the intensity peaks of the curves have been scaled to fit the diagram and do therefore not
reflect absolute sensitivity.

Figure 1.3: Absorbance spectra of different photoreceptor cells in the human
eye.

• Superposition of two spectra results in the superposition of the excitation
patterns4 (this property is known as "Grassmann’s law").

Both properties suggest the following mathematical model: Let functions L,
M and S correspond to the sensitivity curves of color cells as shown in figure 1.3.
Let a spectrum be represented through a function I mapping each wavelength λ
to its intensity I(λ), then the triplet given by

(
〈

L, I
〉

,
〈

M, I
〉

,
〈

S, I
〉

)

(where 〈X, I〉 =
∫

λ
X(λ)I(λ)dλ denotes the inner product) describes the stimu-

lus response of the three cell types, and we could denote the color impression of
the spectrum I using this triplet5.

CIE XYZ

We can interpret this process as a projection of the vector space of light spec-
tra onto a three dimensional subspace6. Since the choice of basis vectors is
however completely arbitrary we can use without loss of generality the following

4ignoring slight non-linearities due to saturation effects at high intensities
5Sensitivity maxima for cells of the same kind differ by up to 10 nm [9] in the same individual,

and even larger differences in the populace at large; moreover some humans possess only two
kinds of cone cells and thus can distinguish less colors, and reports indicate to rare occurences
of tetrachromats; thus the definition refers to an idealized model of an "average" human’s color
perception.
6defined through the vectors L, M and S of the dual vector space

1.1. DEFINITION 17

4
0
0
n
m

4
3
5
.8
n
m

5
0
0
n
m

5
4
6
.1
n
m

6
0
0
n
m

7
0
0
n
m

wavelength

0

X
Y

Z

Figure 1.4: CIE XYZ color matching functions

Definition 3 (CIE XYZ) The color corresponding to the spectrum I (describing the

intensity I(λ) of light with wavelength λ) is identified through the triplet of non-

negative real values given by (
〈

X, I
〉

,
〈

Y , I
〉

,
〈

Z, I
〉

); the functions X, Y and Z ("CIE

XYZ color matching functions") are given through figure 1.4 .

This defines the CIE XYZ color model [12] based on research by Wright 1928
and Guild 19317. In the following we will always write (X, Y, Z) as a short-hand
for a color triplet as per definition 3. The following properties should be noted:

• The triplet (0, 0, 0) denotes the absence of light, i.e. "black".

• The definition as given is unique only up to a scaling factor that may be
chosen arbitrarily. Uniformly scaling a triplet (X, Y, Z) results in a color
that perceptually is the same "tone", but differs in "intensity". Without loss
of generality we can therefore assume that the scale is normalized such that
[0; 1]3 contains all colors we want to represent.

• For all physically reproducible colors, the triplet (X, Y, Z) is non-negative
(since I(λ) ≥ 0 for every physically emittable spectrum I, and the color
matching functions are non-negative as well). However, not every triplet
(X, Y, Z) corresponds to a physically reproducible color.

• The definition allows to decide when two spectra are perceived as the same
colors, but not (directly) how to physically reproduce a color described by a
given triplet

7Test subjects were asked to adjust the intensities of three monochromatic light sources at
700 nm, 546.1 nm and 435.8 nm wavelength until the superimposed result would match a given
fourth monochromatic color; the collected test data experimentally established a relationship of
light spectra that in turn allowed the construction of (triplets of) basis functions.

18 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

• The Y component measures perceived "brightness" or luminance of a color.

The CIE XYZ color model as defined here is widely used in literature to ob-
jectively specify colors. Sometimes colors are specified through (x, y, Y) instead
with

x =
X

X + Y + Z
, y =

Y

X + Y + Z

from which the original triplet (X, Y, Z) can be derived; this representation
separates chromaticity (x, y) from luminance Y and is referred to as CIE xyY.
(Frequently only (x, y) are given if luminance is of no importance or can be in-
ferred in other ways.)

1.1.2.2 Still images

Images will essentially be defined as "colored rectangular areas"8. However, im-
ages are often used as intermediate data for compositing operations, and thus
we want to be able to associate additional information to every point of the image:
This additional information consists of an "α value" that does not contribute to
the chromaticity information but describes the compositing behavior. Intuitively
it can be understood as "opacity" of the image at the specific point that affects
the outcome if multiple images are "layered" on top of each other (see section
1.2.2 for a discussion how the α value is used in practical image compositing).

Definition 4 An image I is a quadruple (wI , hI , cI , αI) where

• wI and hI are non-negative numbers

• cI is a mapping [0, wI) × [0, hI) → [0, 1]3

• αI is a mapping [0, wI) × [0, hI) → [0, 1]

The definition should be interpreted as follows: An image assigns to every
point (x, y) of the rectangular area [0, wI] × [0, hI] a color cI(x, y) = (X, Y, Z) (which
is to be interpreted as defined in the preceding section), as well as an alpha value
αI(x, y).

1.1.2.3 Video

Video can be understood as an "image that changes over time", or equivalently, as
a function that assigns an image to every point in time. The latter interpretation
directly connects video representation to still image representation and can be
rephrased into the following definition:

8The reader should note that any two-dimensional manifold may (locally) be mapped to a
plane; therefore this definition naturally extends to more complex two-dimensional shapes.

1.2. COMPOSITING AND PROCESSING 19

Definition 5 A video V is tuple (TV , IV) where

• TV = [tbegin; tend) is a temporal interval

• IV is a function mapping each point t ∈ TV to an image IV (t)

1.2 Compositing and processing

The previous sections presented mathematical models for audible and visible
media. This section will introduce compositing and processing operations that
transform media data to achieve a desired effect. The effects can be completely
artificial, but are usually modelled after physical effects. The following sections
will also introduce formal definitions of these compositing and processing oper-
ators.

1.2.1 Audio processing

In physical reality, the audio signals emitted by sources need to travel through
a medium (or several media) before they can be received by the ear. This may
affect the signals in several ways:

1. Delay due to wave propagation latency

2. Attenuation as the wave dissipates into space and loses energy due to fric-
tion

3. Frequency-dependent filtering (including delay and attenuation) in a dis-
persive medium

Furthermore, signals may be reflected by physical objects, and multiple sig-
nals may "mix" (we will assume undisturbed superposition9). Given a signal
function si the above effects can mathematically be modelled as:

1 Delay by τ : so(t) = si(t − τ)

2 Attenuation by a: so(t) = a · si(t)

3 Filter with impulse response function10 k: so(t) = (k ∗ si)(t)

4 (Non-linear) transfer by function11 f : so(t) = f(si(t))

9Air can be modelled as an ideal gas (where the principle of undisturbed superposition of pres-
sure waves holds) as long as the pressure is well below 20Pa. Since this is roughly the threshold
pressure for ear damage, undisturbed superposition can always be assumed in acoustics.
10Note that any linear, time-invariant effect can be represented as a convolution filter using the
effect’s impulse response.
11We will generally assume the transfer function to be monotonic.

20 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

(We could have treated delay and attenuation as special cases of simple im-
pulse response filters). The above set of operations (together with linear com-
bination of signals for superposition) therefore provides a complete compositing
algebra for audio signals if the environment (including listener, audio sources)
remains static.

If the environment is dynamic (e.g. positions of listener, audio sources or
other physical objects are allowed to move), then the requisite parameters τ , a,
k and f become dependent on time t. Assuming that the environmental changes
are "slow" (i.e. movement of objects slow compared to audio propagation latency),
they can usefully be approximated through linear interpolation between two "key
frames" at points in time t1 and t2, i.e:

• Delay: so(t) = si

(

t −
(

t−t1
t2−t1

τ1 + t2−t
t2−t1

τ2

))

= si

((

τ1−τ2
t2−t1

+ 1
)

· t + t2τ2−t1τ1
t2−t1

)

• Attenuation: so(t) =
(

t−t1
t2−t1

a1 + t2−t
t2−t1

a2

)

· si(t) = t−t1
t2−t1

a1 · si(t) + t2−t
t2−t1

a2 · si(t)

• Filter: so(t) =
((

t−t1
t2−t1

k1 + t2−t
t2−t1

k2

)

∗ si

)

(t) = t−t1
t2−t1

(k1 ∗ si)(t) + t2−t
t2−t1

(k2 ∗ si)(t)

• Transfer: so(t) =
((

t−t1
t2−t1

k1 + t2−t
t2−t1

k2

)

∗ si

)

(t) = t−t1
t2−t1

f1(si(t)) + t2−t
t2−t1

f2(si(t))

Since attenuation and filtering are linear operations, they can be exchanged
with interpolation, and interpolation requires multiplication with a function lin-
ear in t. Thus the above operations can be expressed as suitable combinations
of:

1’ Temporal speedup by δ and delay by τ : so(t) = si(δ · t − τ)

2’ Multiplication with envelope function e : R 7→ R: so(t) = e(t) · si(t)

3’ Filter with impulse response function k: so(t) = (k ∗ si)(t)

4’ (Non-linear) transfer by function f : so(t) = f(si(t))

This set of operations (together with linear combination of signals for superpo-
sition) provides a compositing and processing algebra for audio signals that can
represent a static environment and approximate a time-dependent environment
to arbitrary precision through linear interpolation.

1.2.2 Still image processing

The term image processing usually has a very broad meaning, encompassing
processes that take images (and other data controlling the processes) as input
to produce other images or extract features from the original images12. For the
purposes of multimedia the focus of interest is in processes that generate other
images, and the term image processing will only be used in this narrow sense:

12[22] pp. 2–3

1.2. COMPOSITING AND PROCESSING 21

Definition 6 An image processing operator is a function p taking zero or more

images I1, I2, . . . , In as well as arbitrary other data D as input and produces an

image I = p(I1, I2, . . . , In, D).

Image processing operators used in multimedia applications can generally be
decomposed into combinations of operators of the following classes (see figure
1.5):

Point operators transform each point of an input image individually (and
uniformly) to produce a corresponding point of the output image. Typical ex-
amples include color transformations such as brightness, contrast or saturation
adjustments. Each point operator is uniquely characterized by a single func-
tion f , that takes a color triplet and an alpha value as parameter, and maps to
another color triplet and alpha value.

Convolution operators compute each point of the output image by applying
a convolution to the input image using a given kernel function. Typical examples
include blurring or edge detection filters. Each convolution operator is uniquely
characterized by the two-dimensional function used as convolution kernel.

Geometric operators translate each point of an input image to a different
spatial position but leave its color and alpha value unchanged. Typical examples
include scaling and rotation of images, or more generic distortion transforma-
tions. Each geometric operator can be characterized through a single function
f : R

2 7→ R
2 that describes how the point f(x, y) of the input image maps to the

points (x, y) of the output image13. In practical applications, geometric operators
are usually at least piecewise-smooth and can be approximated sufficiently well
using piecewise-linear geometric operators.

Compositing operators compute each point of the output image by "com-
positing" the corresponding points of two input images. Each compositing op-
erator is characterized by a transfer function f that maps color and alpha
values of two input images, (cA, αA) and (cB, αB) to a color and alpha value
(cO, αO) = f(cA, αA, cB, αB) of the output image. In other words: each point of
the output image uniformly depends on the two points of the input images at the
same coordinate location. Examples include the well-known Porter-Duff com-
positing operators [50], e.g.:

• AOVERB: represents A layered on top of B and is defined by:

cC = cA + cB(1 − αA)

αC = αA + αB(1 − αA)

(see also figure 1.6).

• A INB: represents A "punched out" by B (i.e. only those parts of A where B
is non-transparent) and is defined by:

cC = cAαB

αC = αAαB

13In other words, the function f determines the preimage of every point.

22 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

Top left: Original image. Top right: Point operator (color inversion). Bottom left: Convolution
operator (edge detection filter). Bottom right: Geometric operator (spiral distortion).

Figure 1.5: Examples for unary image processing operators.

• AATOPB: represents A composited over B where B is non-transparent
and is defined by:

cC = cAαB + cB(1 − αA)

αC = αAαB + αB(1 − αA) = αB

While the four classes of operators listed above are certainly not "universal"
(in that they can construct arbitrary image processing operators), but they still
represent a vast superset of what practical graphics systems offer.

1.3 Representation in digital systems

Audible and visual media were introduced in sections 1.1.1 and 1.1.2 respec-
tively as functions mapping from continuous time and/or spatial domains into
continuous intensity domains, e.g. a video is conceptually a function of the do-
main R

3 7→ [0; 1]4. The set of all possible media is obviously uncountable, digital
systems can however only represent and process a finite subset of this domain.
This section will discuss media representations that cover or approximate an "in-
teresting" subset of this domain, and which are therefore used in digital systems.

1.3. REPRESENTATION IN DIGITAL SYSTEMS 23

Top left: first image. Top right: second image. Bottom left: alpha channel of second image (black:
fully transparent, white: fully opaque). Bottom right: Composition of first and second image (OVER
operator)

Figure 1.6: Example of compositing operators.

1.3.1 Techniques

1.3.1.1 Quantizing

Quantizing is the process of expressing some infinitely variable quantity by dis-
crete or stepped values14. The range of representable values is partitioned into
a finite set of (disjoint) intervals, and a representative is chosen for each interval
(that representative must be a member of the interval). Each interval is encoded,
usually using a unique integral number. Instead of the original value of the
quantity, this encoding is used for storage and/or processing instead. The in-
verse process, dequantizing, replaces the coded integers by the representatives
of the corresponding intervals. The difference between the original quantity and
the representative is called quantizing error. Note that dequantizing and subse-
quent quantizing is idempotent by this definition.

Intervals do not have to be evenly sized, and the representatives do not nec-
essarily have to be placed at the center of the interval they represent (cf. figure
1.7). A quantizing is said to be linear iff all intervals are of the same size and for
each interval the representative value depends linearly on the integral number

14[69] pp. 56ff

24 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

0

1

2

3

The value range of a continuous quantity is partitioned into four disjoint intervals (horizontal lines)
with a representative value (dots on the left) and code (number on the left) chosen for each interval.
A continuous signal (dashed line) that represents the quantity changing over time is quantized by
determining and encoding the interval the value is in. Dequantizing is performed by replacing the
coded intervals with the chosen representative (solid line).

Figure 1.7: Quantizing a continuous quantity

used for encoding. Linear quantizing has the important property that arithmetic
operations on the values of the quantity can be approximated by corresponding
arithmetic operations on the encoding values used to represent the intervals.
Therefore, linear quantizing is preferentially used where the data needs to be
processed further. (Note that the quantizing scheme illustrated in figure 1.7 can
be considered linear).

Non-linear quantizing allows to adapt the quantizing step sizes to the prob-
lem domain, choosing smaller intervals where more precision is required. This
is especially common where the relative quantizing error needs to be bounded:
Linearly quantizing the interval [0; 1] with N quantizing steps results in an av-
erage absolute quantizing error of (at best) 1/2N which means that the relative
quantizing error exceeds one for values below 1/2N . Choosing intervals [0; α1−N),
[α1−N ; α2−N), ..., [α−1, 1] with 1 < α < 2, then relative quantizing error remains
bounded by 1/(1 − α) for all values larger than α1−N .

Note that non-linear quantizing can always be interpreted as a non-linear
monotonic transformation followed by linear quantizing.

1.3.1.2 Sampling and interpolation

Sampling is the process of taking values of a function (defined over the contin-
uum) at a countable (usually finite) number of points (cf. figure 1.8). Usually,
the sampling points are chosen equidistant to cover an interval of interest, how-
ever this is not of necessity. The inverse process, constructing a function that
connects a given set of samples, is called interpolation. Different interpolation
strategies may be used depending on the application domain.

1.3. REPRESENTATION IN DIGITAL SYSTEMS 25

A function (dashed line) defined over a continuum is sampled at discrete points (solid circles). The
finite set of samples can then be interpolated to produce an approximation of the original function
(solid line)

Figure 1.8: Sampling a continuous signal

Let S be a specific chosen sampling strategy, i.e. it maps the function f to the
set of sample point/value pairs S(f)15. Let I be an interpolation strategy, i.e. it
maps a set of samples s to an interpolating function I(s). We demand that the
interpolating function I(s) "passes through" the samples, as a consequence we
have S(I(s)) = s.

Given a function f , the combination of sampling and interpolation constructs
an approximation I(S(f)) to the function f , but generally I(S(f)) 6= f (i.e. the
original function f cannot be reconstructed after sampling). Furthermore, the
function I(S(f)) will generally not be the best approximation to f16. Sampling is
therefore usually combined with a pre-sampling filter F , where F maps a func-
tion f to another function F (f) such that I(S(F (f))) is the best approximation
to f . The filter F is generally referred to as anti-aliasing filter. Examples for
domain-specific interpolation and anti-aliasing filters will be given in sections
1.3.2.1 and 1.3.4.1.

Combining sampling and quantizing (cf. section 1.3.1.1) allows an approxima-
tion to a continuous function to be represented using a finite number of bits.

1.3.2 Audio representation

Audio signals were introduced as functions of the domain R 7→ R. Digital sys-
tems can only represent the subset of computable functions. The most obvious
representational choice is a mathematical term. This representation can be used
to describe simple synthesis, e.g. using frequency modulation:

15Essentially, S(f) is the restriction of f to the set of sample points.
16as measured by a problem-specific metric

26 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

ac(t) sin (2πfct + am(t) sin(2πfmt)))

with piece-wise linear envelope functions ac and am. This approach can be
used to model the behavior of analog synthesizers in digital systems and is
therefore sometimes applied in digital music applications. Though unwieldy,
more complex audio synthesis can formally be expressed in a similar fashion:
e.g. waveguide synthesis [57] can be regarded as a combination of PCM audio
(see section 1.3.2.1 below), elementary functions representable as terms, and
the audio compositing operators discussed in section 1.2.1.

PCM audio (discussed in the following sections) can be considered an im-
portant special case, as it can formally be interpreted as a continuous signal
interpolating a set of given sample points, and the interpolating function is com-
putable.

1.3.2.1 PCM audio

We assume a representation of an audio signal that is sampled at temporally
equidistant points:

Definition 7 A time-discrete audio signal A′ is a triple (TA′ , sA′, nA′) where

• nA′ is the number of sample points

• TA′ = {tbegin, tbegin + 1
nA′

∆t, tbegin + 2
nA′

∆t, . . . , tbegin + n−1
nA′

∆t} (with ∆t = tend − tbegin)

is a set of equidistant points in time within the interval [tbegin; tend)

• sA′ : tA′ → R is a function mapping each point in time t to the pressure in a

medium sA′(t) at that point in time

(For convenience, the sample at temporal location tbegin + k
nA′

∆t will often be

identified by k alone instead of the corresponding point in time).

Audio signals that are both time-discretized and quantized will be referred to
as PCM audio signals. Depending on the application’s intent linear or non-linear
quantizing may be preferable (cf. section 1.3.1.1): Linear quantizing is preferen-
tially used for audio processing as arithmetic operations on the sample values
can be approximated by arithmetic operations on the ordinal number chosen to
represent the quantizing intervals. Assuming N quantizing steps, the average
absolute quantizing error is 2/N – this means that for N = 255 the quantizing
error exceeds the signal amplitude at −42dB (or for N = 65535 at −90dB). Thus
for linear quantizing the number N of quantizing steps imposes an upper bound
on the representable dynamic range. Note that the quantizing error is uniform
across the whole value range, thus superposition of high-amplitude signals does
not adversely affect low-amplitude signals.

1.3. REPRESENTATION IN DIGITAL SYSTEMS 27

-3 -2 -1 1 2 3

-1

1

x

sinc(x)

Figure 1.9: Plot of the base function x 7→ sinc(x) used for band-limited interpola-
tion of audio signals

Non-linear quantizing schemes are used to encode a larger dynamic range into
the same number of bits per sample than would be possible with linear quan-
tizing. A popular example includes µ-law encoding, which can be understood as
linear quantizing after transforming the input signal using

F (x) = sgn(x)
ln(1 + µ|x|)
ln(1 + µ)

with µ = 255 typically. Assuming 255 quantizing steps, the quantizing error ex-
ceeds the signal amplitude at −75dB. Note however that this increase in dynamic
range comes at the cost of a higher absolute quantizing error, thus superposi-
tion with high-amplitude signals leads to heavy distortion or complete masking
of low-amplitude signals.

Band-limited signals of band-width w can be reconstructed perfectly if sam-
pled at a rate of greater than 2w (see next section). Since human hearing is
limited to the range of about 20Hz to 20kHz perfect acoustic fidelity can therefore
be achieved with 40000 samples per second. In practice, sample rates lower than
40kHz are in use to reduce the number of samples (and thus bits) required to
represent the signal (thus they are more suitable for storage or transmission),
while sampling frequencies higher than 40kHz simplify construction of digital
filters (thus they are more suitable for processing, see next section).

28 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

1.3.2.2 PCM audio interpolation

Interpolation of time-discrete audio signals Ad (and PCM audio signals as a
further specialization) to continuous signals Ac will be performed using the
Whittaker-Shannon interpolation formula:

sAc
(t) =

∑

t′∈TAd

sAd
(t′)sinc

(

t − t′

∆t

)

The interpolation can be visualized as a superposition of scaled versions of the
sinc basis function (cf. figure 1.9) placed at node points. Since sinc vanishes to
zero at other node points, the requirements of section 1.3.1.2 are met. Further-
more, sinc is ideally band-limited, therefore the resulting interpolant is ideally
band-limited as well – the interpolating function is the unique band-limited con-
tinuation of the given sample data.

Given an arbitrary function f , the best interpolation of f (in L2) through a
band-limited function is given by f ∗ sinc. Therefore, the filter function to be
applied before sampling an audio signal takes a particularly simple form: it is
the ideal low-pass filter (characterized by the impulse response sinc itself).

The theoretically correct procedure for constructing a time-discrete represen-
tation of an audio signal is therefore to apply an ideal low-pass filter before sam-
pling the function. This can however usually not be performed in practice, as the
ideal low-pass filter a) does not have finite impulse response (and would for com-
putations in the time domain therefore require an infinite number of operations)
and b) is non-causal (it affects information infinitely backwards in time).

Practical low-pass filter representations can therefore only approximate the
desired ideal filter. The most widely used method to construct such approxi-
mating filters is to "window" the ideal low-pass filter response function sinc such
that it smoothly vanishes to zero at a finite distance from the origin. This filter
design approach is used in a variety of applications, e.g. for band-limited resam-
pling [58], other examples include the band-pass filters used in MP3 coding (see
section 1.4.1.3).

The ideal low-pass filter completely eliminates all signals in the "stop-band",
leaving all other signals (the "pass-band") unchanged. A practical filter only
attenuates "stop-band" signals below a designed threshold, signals in the "pass-
band" are "mostly" unchanged, and exhibits intermediate behavior in a "transi-
tion band". The width of the transition band directly affects the computational
complexity of numerical filter implementations, with larger available bands lead-
ing to computationally simpler filters. For example, assuming that a band-width
of 40kHz is required to losslessly represent acoustic signals, a sample rate of
44.1kHz allows a transition band of only 4.1kHz width, compared to 8kHz for
48kHz sample rate. Thus higher sampling frequencies allow computationally
less expensive filter designs and are therefore prefered for audio processing.

1.3. REPRESENTATION IN DIGITAL SYSTEMS 29

1.3.3 Color representation

While CIE XYZ allows an objective representation of color, other color models are
often more convenient:

Definition 8 A color model C is a tuple (colorsC, mapC) where

• colorsC is a closed subset of R
3

• mapC is a continuous injective mapping colorsC → [0,∞)3

colorsC is the range of colors representable within color model C and mapC maps

every triplet of values in colorsC to a color (as per definition 3).

Note that while sometimes used interchangeably with color model both in
literature and by practitioners, the term color space in the strict sense means
only the set of colors representable within a color model: Since each color
model implicitly defines a color space this slight inaccuracy may be excus-
able. Typically, color models are normalized such that colorsC = [0; 1]3, how-
ever the definition is intentionally generic (e.g. Y PrPb uses the color range
[0; 1] × [−0.5; +0.5] × [−0.5; +0.5]). Note that for storage in digital systems the color
triplet components are typically quantized.

Definition 9 The color model C is called (affine-)linear iff mapC is (affine-)linear.

Trivially CIE XYZ itself can be regarded as a linear color model. A special
class of non-linear color models is of particular interest:

Definition 10 The color model C is called gamma-corrected iff there exist

• continuous monotonic scalar functions γa, γb, γc

• an affine-linear color model C ′ (with suitable color range colorsC′) such that

mapC(a, b, c) = mapC′(γa(a), γb(b), γc(c))

The term gamma refers to the fact that γ is often given through a power law of
the form x 7→ xγ. Gamma-corrected color models are used extensively in practice
for the following reasons:

• Devices for physical reproduction or acquisition of colors (e.g. CRTs, CCDs)
exhibit a non-linear relationship between light intensity and signal.

• The photoreceptor cells become less sensitive to small intensity differences
at higher intensities, thus non-linear quantizing is often employed17.

17This can be understood as a combination of non-linear transformation and linear quantizing.

30 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

The purposes of alternate color models in practical use in the field of multi-
media can roughly be classified into

• physical: Each component of the triplet corresponds to one physically emit-
table color (e.g. "red", "green" and "blue").

• decorrelation: Each component corresponds to a separate psycho-visual
"feature" (e.g. "brightness" and color tone).

• compositing: The topology of the color model is suitable for logical opera-
tions on colors to be expressed as simple mathematical operations on the
vector space (i.e. blending of colors as interpolation along a straight line).

Transformations between two color models can in principle be defined in a
straight-forward fashion (as transformations into CIE XYZ and back). Note that
the definition of color model above may limit the value range of the three coef-
ficients so that in many cases no perfect one-to-one mapping between different
color models is possible, as some colors from the source color model are unrep-
resentable in the target color model. In practice transformations will therefore
either

• map "unrepresentable" colors to the "closest" matching color, preserving
absolute colors where an exact match can be found

• map all colors from the source color model to a "close" matching color in
the target color model, preserving differences between colors, but subtly
distorting colors overall

Note that the second strategy can only be usefully applied if the full source
color range is known before the transformation must be applied; it may therefore
be suitable for still images, but is generally unsuitable for motion pictures as the
color range of "future" images is most certainly unknown before transforming the
first image. While applications may provide their own strategy on a case-by-case
basis [61] we will therefore assume the first strategy as a "safe default".

The following sections will give examples for different classes of color models
that are referenced later. Note that for storage and processing in digital systems,
the continuous-valued triplet components will generally be quantized.

1.3.3.1 Physical color models

Physical reproduction of color is usually achieved using a "red", a "green" and a
"blue" primary color. This naturally leads to the definition of a (family of) "RGB"
color models. One example of particular interest is CIE RGB, defined through





X
Y
Z



 = mapCIE_RGB





R
G
B



 =
1

0.17697





0.49 0.31 0.20
0.17697 0.81240 0.01063

0.00 0.01 0.99









R
G
B





1.3. REPRESENTATION IN DIGITAL SYSTEMS 31

4
0
0
n
m

4
3
5
.8
n
m

5
0
0
n
m

5
4
6
.1
n
m

6
0
0
n
m

7
0
0
n
m

wavelength

0

The curves were obtained from an Asus model LC5800 laptop by optical spectrometry: The light
emitted by red, green and blue phosphors was spectrally split up using a grid mono-chromator, and
light intensities at individual wavelengths were determined using a silicon diode as photoreceptor.

Figure 1.10: Emission spectra of a typical liquid crystal display

In this color model, the components of the (R, G, B) triplet correspond to
the intensity of monochromatic light at wavelengths 700nm (R), 546.1nm (G) and
435.8nm (B) (see also figure 1.3). CIE RGB is notable as its three primary colors
were the ones used in experiments that led to the definition of both CIE XYZ and
CIE RGB.

Device-dependent RGB color models can be defined for capture and display
devices. Typical CRT displays have emission spectra comparable to those shown
in figure 1.10 (the reader should take note that the data shown in the diagram
is in fact sufficient to derive the mathematical relationship to CIE XYZ) and pro-
vides an example of a gamma-corrected RGB color model (as the signal response
of CRTs in non-linear).

Several device-independent color spaces were created that mimic the proper-
ties of existing device-dependent color spaces. One such example is sRGB: linear

sRGB is defined through:





X
Y
Z



 = maplinear_sRGB





r
g
b



 =
1

0.17697





0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505









r
g
b





while gamma-corrected sRGB (or simply sRGB) is related to linear sRGB

through the transfer function γ defined by

γ(c) =

{

12.92c, c ≤ 0.0031308
(1 + 0.055)c1/2.4 − 0.055, c > 0.0031308

}

32 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

Other examples of RGB color models include e.g. PAL RGB which is specified
as using the primary colors

primary x y Y

red 0.6400 0.3300 0.222021

green 0.2900 0.6000 0.706645

blue 0.1500 0.0600 0.071334

and the gamma transfer function

γITU_Rec.709(c) =

{

c
0.018

((1.099 ∗ 0.0180.45) − 0.099) for c ≤ 0.018
((1.099 ∗ c0.45) − 0.099) for c > 0.018

The color models of input and output devices are in practice usually specified
through an ICC color profile which in turn references CIE XYZ as described above
or CIE L*a*b as described below.

1.3.3.2 Decorrelation color models

For digital video color models that decorrelate perceived "brightness" and "chro-
maticity" of a color are desirable; the motivation is twofold: First, the human eye
is more sensitive to spatial differences in brightness than chromaticity; second,
physical objects often have uniform chromaticity while brightness varies due to
illumination effects. The most common (family of) color models used is Y ′PbPr

18

which is defined relative to (gamma-corrected) PAL RGB through





Y ′

Pb

Pr



 =





0.299 0.587 0.144
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312









R′

G′

B′





Note that Y ′PbPr is defined for [0; 1] × [−0.5; +0.5] × [−0.5; +0.5]. Another closely
related color model is Y ′CbCr defined through





Y ′

Cb

Cr



 = 255





Y ′

Pb

Pr



 +





0
128
128





Y ′CbCr was defined for digital PAL television but it is used in many other digital
video applications as well; it remaps the value range of Y ′PbPr into [0; 255]3, due to
its use in television the true value range of Y ′CbCr is however limited to [16; 235]×
[16; 240] × [16; 240] (codes outside this range are used for control purposes)19.

18Note that the "luma" value Y ′ is often incorrectly mixed up with the "luminance" Y from CIE
XYZ or CIE xyY; while both serve a similar purpose they are not to be confused as Y measures
linear brightness whereas Y ′ measures a pseudo-brightness derived from gamma-corrected RGB:
See [39] for more details.
19However, very few implementations outside the field of television actually care about these
ranges.

1.3. REPRESENTATION IN DIGITAL SYSTEMS 33

1.3.3.3 Compositing color models

For image compositing, logical operations on colors have to be expressed in terms
of algebraic operations on the underlying color model; the result of these al-
gebraic operations should closely match experience of the physical world (e.g.
blending between a "red" and "yellow" color should result in some shade of "or-
ange", but no blue).

All linear color models share the property that blending between colors can
usefully be expressed as interpolation along a straight line between the vectors
representing the two colors. However, linear color spaces are not perceptually
uniform – distance between two vectors (in the usual R

3 metric) does not cor-
respond to perceived difference of colors (this is most visible when constructing
color gradients).

One such perceptually uniform color space is CIE L*a*b; it is related to CIE
XYZ through

L = 116
3
√

Y − 16

a = 500

(

3

√

X

0.95
− 3

√
Y

)

b = 200

(

3
√

Y − 3

√

Z

1.09

)

CIE L*a*b is also often used as an intermediate color model for conversion.
Its perceptual uniformity is useful in finding a "closest matching color" when
no exact color match can be found in the target color space. Generally percep-
tual uniformity is more important for artistic than technical purposes as most
physical effects affecting color are better expressed in linear color spaces.

1.3.4 Image representation

Images were introduced as functions mapping a rectangular area of R2 to the set
of color (and alpha) values. Digital systems can only represent the subset of com-
putable functions out of this domain. The most obvious representational choice,
a mathematical term used to describe the dependence of the color of a point from
its position, is frequently used in computer graphics to describe source images
(such as color gradients) for compositing operations (cf. sections 1.2.2). Obvi-
ously, applying computable image processing operators to computable images
provides another way to represent an image.

Note that representation using one of the color models discussed in section
1.3.3 may be more convenient for this purpose than the XYZ color model defined
in section 1.1.2.1.

Rastered images as discussed in the following sections are an important spe-
cial case of computable image representations.

34 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

1.3.4.1 Rastered images

We assume a representation of an image that is sampled at node points of a
rectangular, regular grid:

Definition 11 A space-discretized image I is a quintuple (CI , wI , hI , cI , αI) where

• CI is a color model

• wI and hI are positive integers

• cI is a mapping {0, 1, 2, . . . , wI − 1} × {0, 1, 2, . . . , hI − 1} → R
3

• αI is a mapping {0, 1, 2, . . . , wI − 1} × {0, 1, 2, . . . , hI − 1} → [0; 1]

The definition is to be interpreted in a similar way as definition 4: The function
cI maps every grid point to a triplet of values, which must be interpreted using CI

as color model. Note that this definition uses the same grid for all components of
the color triplet and the alpha channel; in practice image formats with different
grids for each component are in use, we will however refrain from presenting the
(obvious) formalization of this concept.

Images that are both space-discretized and quantized will be referred to as
rastered images. Linear quantization in combination with a linear color model
is preferentially used for image processing, while storage and transmission of
image data almost always uses non-linear quantization20. Most notably – at the
time of this writing – display systems exhibit non-linear response with gamma
values typically in the range of 1.6 to 2.4.

1.3.4.2 Rastered image interpolation

Continuation of a space-discretized image I to a space-continuous image I ′ is
realized through:

cI′(x, y) = mapCI
(cI(⌊x⌋ , ⌊y⌋))

i.e. each color sample is continuated to a 1×1 square area. This interpolation
strategy models the behavior of physical display devices that use uniformly col-
ored cells as elementary "tiles" to compose images. The ideal pre-sampling filter
is given by convolution with the kernel function

χ[0;1)×[0;1)(x, y) =

{

1 iff 0 ≤ x < 1 and 0 ≤ y < 1
0 otherwise

This filter "averages" the color intensities of all points in a unit square. The
reader may wish to convince himself that the above interpolation and filtering
strategy leads to bilinear interpolation if resampling a rastered image using a

20or, equivalently, linear quantization with a non-linear color model

1.3. REPRESENTATION IN DIGITAL SYSTEMS 35

displaced or rotated grid. More generally, it leads to desirable results for any
resampling operation that uses a grid with equal or more coarse granularity
than the rastered source image. For magnification (i.e. using a more fine-grained
sampling grid) other filters may be desired for aesthetic reasons, e.g. to slightly
"blur" the image rather than showing large tiles.

1.3.4.3 Rastered image processing

Of the image processing operators discussed in section 1.2.2, point and com-
positing operators can be rephrased in terms of rastered images in a straight-
forward fashion: They affect all points of the image individually and uniformly,
so they can be applied to the interpolated image or to the sample values with
subsequent interpolation, with the same result. Formulation of convolution op-
erators must generally take into account the anti-aliasing filter required before
sampling – this can be accomplished by factoring anti-aliasing directly into the
convolution kernel.

Geometric processing operators on the other hand are more complex – es-
sentially geometric distortion can be interpreted as resampling the image using
a geometrically distorted grid. Proper filtering needs to be applied before sam-
pling the image, however construction of a computable filter becomes non-trivial
in the general case. In practical applications it is therefore customary to split
geometric processing operators into piecewise affine-linear transformations (for
affine-linear grids the filter kernel just becomes an affine-linear image of the
"unity square" ideal filter from the previous section).

The sampling filter discussed in the previous section also leads to a precise
definition for the rasterization of geometric shapes (where a point covered by the
shape is considered to have full opacity α = 1 and a point not covered is consid-
ered to be fully transparent α = 0): The α value of a sample point corresponds to
the coverage ratio of the corresponding rectangular area21. The image composit-
ing operators described in section 1.2.2 are defined to use the alpha channel
such that compositing of pre-rastered geometric figures with other images ap-
proximates the compositing of exact geometric figures.

Alpha values to represent pixel coverage for geometric shapes are rarely de-
termined using the "analytical" definition given above as the computation turns
out to be prohibitively expensive for complex shapes. Typical applications use
"super-sampling", i.e. the shape is sampled at a higher resolution with a sim-
ple inside/outside test for each sample point; sample points comprising a pixel
are then averaged to form an alpha value. This approach inherently leads to
quantized alpha values, with the number of super-samples limiting the num-
ber of possible quantization steps (non-uniform weighting of super-samples can
however considerably reduce the number of super-samples required, cf. [35]).

21Note that Porter, Duff [50] also use sub-pixel geometry in deriving the compositing operators.

36 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

1.3.5 Video representation

Video was introduced as time- and space-continuous. Out of the uncountable set
of possible video sequences only a computable subset can be represented in dig-
ital systems. "True" time-continuous video can be represented e.g. as keyframe
animation (cf. [59]): a continuously variable quantity that determines appear-
ance of objects is interpolated between keyframes. Most commonly however
time-discretized video representations are used.

1.3.5.1 Time-discretized video

We will define time-discretized video as a sequence of still images that are shown
for a fixed duration of time each:

Definition 12 A time-discretized video V ′ is tuple (TV ′ , IV ′) where

• TV ′ = {t0, t1, t2, . . . , tn} is a set of discrete points in time (we will assume tk−1 <
tk)

• IV ′ is a function mapping each point t ∈ TV ′ to an image IV ′(t)

Interpolation of a time-discretized video V ′ to a time-continuous video V is
achieved by:

IV (t) = IV ′(tn) for t ∈ [tn; tn+1)

The corresponding temporal anti-aliasing filter averages images over the tem-
poral interval where the corresponding still image is to be shown. Note that the
definition does not demand that the points tk are equidistant in time, i.e. the
definition allows for variable frame rates.

1.4 Compressed representations

This section describes what is commonly referred to as media data "compres-
sion", with the common meaning of space savings achieved relative to time- and
space-discretized, quantized representations using a fixed number of bits per
sample. In the sense of the terminology introduced in section 1.3, it is of course
just another kind of computable media representation. Note that in this broad
sense, almost any computable representation could be considered "compressed",
however we want the term to be understood in a more narrow sense, namely rep-
resentations that

• interpret quantized samples of time- and space-discretized media as "sym-
bols", possibly after performing decorrelation transformations

1.4. COMPRESSED REPRESENTATIONS 37

• encode these symbols into a bitstream, reducing redundancy between sym-
bols (e.g. entropy, dictionary or run-length encodings) to find a more space-
efficient encoding

We will frequently distinguish "lossless" and "lossy" representations: "Loss-
less" means that a given set of sample values can be reconstructed perfectly from
an encoding, while "lossy" means that the content may be "slightly" distorted with
respect to the original after reconstruction. Strictly speaking, lossless or lossy
encoding is a property of the algorithms used to transform media data into and
out of a compressed representation – but representationsmay not always be suit-
able for both faithful and lossy encoding as required transformations may not be
amenable to precise fixed-point realizations.

Compression techniques make use of the following types of redundancies
found in (sampled) media data:

• Spatial: Samples corresponding to different but close spatial locations are
correlated. For example, a point audio source sampled at two different
points in space will produce similar signals (differing only in filtering and
temporal shift). Similarly, close points of the same image are correlated as
they are likely to correspond to different spots of the same physical object.

• Temporal: Samples corresponding to different but close temporal locations
are correlated. For example, audio signals tend to be "smooth"22, thus tem-
porally close samples will likely have similar values. Similarly, temporally
close images of a video likely share elements (e.g. unchanging background,
objects moving in the scene over time).

• Spectral: Audio signals tend to be "repetitive" as they are physically the
result of oscillations. As a result, the spectrum tends to be slow-changing
and "sparse" (i.e. intensity spikes are concentrated in few narrow frequency
ranges).

1.4.1 Audio compression

Spatial redundancymeans that samples corresponding to different channels but
"close" points in time are likely similar. This can be exploited by "joint" encoding
of multiple channels, i.e. the signals for individual channels are encoded "as a
whole" (instead of coding each signal individually). Techniques to achieve this
are separate encoding of different audio sources with designated mix-down into
individual channels, or decorrelation by encoding e.g. sum and difference of two
signals (instead of the original audio signals).

Temporal redundancy implies that a sample value can be "estimated" with
good accuracy from the surrounding or preceding sample values. This is ex-
ploited in "time-domain" representations by predictive coding. Spectral redun-

22This is a direct side-effect of applying a low-pass filter before sampling.

38 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

Left: Two signals that cannot be joined smoothly at any single point in the overlap of their definition
ranges due to phase differences. Right: The two signals joined smoothly by tapering both functions
to zero towards the borders of their definition ranges. This is accomplished through multiplication
with window functions that decay to zero towards at the borders.

Figure 1.11: Smoothing transition between signals

dancy means that audio signals can usefully be represented as linear combina-
tion of periodic functions, with representation of the functions requiring fewer
values than the number of samples. (Note that temporal and spectral redun-
dancy are strongly correlated phenomena.)

Reduction of temporal and spectral redundancy is achieved by "joint" encod-
ing of samples corresponding to different points in time. This is usually achieved
by forming a "block" of a temporal range of samples, which then becomes the
smallest unit of data that can be processed individually. Increasing the block
size generally allows more efficient encoding, though at diminishing returns. At
the same time, larger blocks result in compression delay (which may be pro-
hibitive in real-time audio processing systems) as all samples comprising the
block need to be recorded before transformation can begin.

Since lossless audio compressors faithfully reproduce given sample data, it
is implicitly guaranteed that signals are joined smoothly at block boundaries.
These transitions pose a problem however for lossy audio compressors, as there
is no a priori guarantee that the reconstructed signal remains "smooth" at tran-
sitions. This problem is addressed by partial overlapping of adjacent blocks. The
samples in the overlapped region are coded in both blocks, and during decom-
pression the functions are "weighted" in the overlapping range (cf. figure 1.11).
Any compression schemes where individual samples cannot be reconstructed
from a single frame alone will be referred to as temporal compression.

1.4.1.1 ADPCM

ADPCM (Adaptive Differential Pulse Code Modulation) designates a class of time-
domain audio encodings that are based on the idea of a "stateful predictor". It
allows each sample to be encoded using a fixed number of bits that is however
significantly lower than the number of bits as would be required to represent the
full dynamic range of sample values.

1.4. COMPRESSED REPRESENTATIONS 39

In ADPCM the predictor produces an estimate of the value range for the next
sample. Based on this prediction, "quantization steps" are chosen accordingly.
To be useful, the quantization steps must be small in number (to be repre-
sentable by few bits), yet must cover the range of values sufficiently well (to
avoid heavy signal distortions that occur if the true value is outside of the range
chosen by the predictor). The sample value is then quantized and the predictor
state is updated to produce a new estimate for the next sample.

Knowledge of the predictor state is essential in interpreting an ADPCM data
bitstream. Thus, if random access to the audio data (or resilience againts data
loss) is required, the predictor state must periodically be saved or transmitted
as well. For the purposes of storage or transmission it is therefore customary to
form self-contained frames by first encoding the initial predictor state, followed
by a fixed number of coded samples.

Since ADPCM encoding operates on one sample at a time, it adds virtually
no latency to audio data processing and is therefore especially popular in appli-
cation areas with tight real-time bounds. Examples for this class of encodings
include ITU G.726 used in many IP-based telephony applications; G.726 spec-
ifies multiple alternative encodings using between 2 and 5 bits per sample, IP
telephony applications typically use 4 bits per sample.

1.4.1.2 FLAC

The FLAC (Free Lossless Audio Codec) format is a "time-domain" audio signal
representation with the explicit intent of allowing lossless compression of PCM
audio [19]. It supports joint encoding of multi-channel audio through decor-
relation transformations, after which each of the resulting signals are encoded
individually.

Each PCM audio signal is partitioned into blocks (usually in the range of
2048-6144 samples), and each block of samples is encoded individually. The
samples in each block are represented as residual errors relative to a model used
as predictor. FLAC supports several different models as predictor, these include

• "zero" predictor (referred to as "verbatim" mode in the FLAC specification):
Each sample is effectively predicted as "zero" by this model, the "residual"
error to be encoded thus equals the sample value.

• "linear" predictor: Each sample value is predicted as a linear combination
of n previous sample and residual values.

Several other models (including a FIR variant of the linear predictor that does
not use previous residuals) are supported, and more may be added in future
revisions. The residual errors are expected to be concentrated around zero, and
FLAC uses a variable length encoding (Rice codes23) for residual values, utilizing
this statistical property for data reduction.

23Also known as Golomb-Rice codes, see [21].

40 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

1.4.1.3 MPEG Audio

MPEG audio [28] is a lossy compressed representation for PCM audio data. The
basic ideas of the representation will be sketched out here, for a more thorough
introduction refer to e.g. [46].

The fundamental idea of representation in MPEG audio is to split the in-
put signal into multiple "subbands", and to treat each subband signal indi-
vidually afterwards. Consider a signal function s that is band-limited with
upper frequency 2n (i.e. its Fourier image has support [−2n; 2n]). Formally,
it can uniquely and equivalently be represented by n subband signal func-
tions sk (with k = 0, 1, . . . , n − 1), where the Fourier image of sk is contained in
[−2k − 2;−2k] ∪ [2k; 2k + 2]. Then

• s(t) =
∑n−1

k=0 sk(t)

• Each sk has band-width 2, thus the corresponding signal can be perfectly
reconstructed from samples taken at 1/2 intervals.

• s has band-width 2n, thus it can be perfectly reconstructed from samples
taken at 1/2n intervals.

Formally, each subband signal can be computed as an ideal band-pass filter
applied to the input, i.e.

sk(t) = s(t) ∗ fk(t)

where the impulse response of the kth (ideal) band-pass filter fk can be written
as:

fn(t) = sinc(t) · cos((2n + 1)tπ)

(Note that f0(t) = 1
2
sinc

(

1
2
t
)

.) sinc does not have finite support in the time
domain, so neither have the band-pass filters with impulse response fk. Numeri-
cally the computations can therefore not be performed in the form written above
– the ideal band-pass filters are approximated using the "windowing" method
mentioned in section 1.3.2.2, with coefficients for a windowed sinc approxima-
tion specified in the standard24.

MPEG audio statically partitions the frequency band into 32 equally sized
subbands, with each subband sampled at 1/32th of the critical sampling fre-
quency of the original signal. Figure 1.12 shows the first 3 subband filters.
Samples for all subbands are taken at the same point in time, thus they can be
interpreted as 32-tuple "vector" samples. These subband samples can be stored
in one of three possible formats (called layers), corresponding to increasing so-
phistication (and compression ratio):

24The standard does not specify the coefficients directly, but instead gives a method to incre-
mentally compute the subband samples. From this procedure the underlying 512 coefficients
can however be derived easily.

1.4. COMPRESSED REPRESENTATIONS 41

-288

-288

-288

-256

-256

-256

-224

-224

-224

-192

-192

-192

-160

-160

-160

-128

-128

-128

-96

-96

-96

-64

-64

-64

-32

-32

-32

32

32

32

64

64

64

96

96

96

128

128

128

160

160

160

192

192

192

224

224

224

256

256

256

288

288

288

The graphs above depict the analysis and synthesis filter kernels for the three lowest subbands
(with increasing frequency from bottom to top) used for MPEG audio coding. The filter kernels have
a support of 512 samples each, as a result each subband sample affects up to 256 samples of the
reconstructed signal before and after the temporal position the subband sample was taken.

Figure 1.12: MPEG audio analysis and synthesis filters

• Layer I takes 12 samples per subband to form a group. Each group of
subband samples is coded separately using a scale factor and coefficients
for the samples to adapt quantizing scale and dynamic range per subband.
A block containing coded 12× 32 samples for all 32 subbands forms a basic
audio frame.

• Layer II is a straightforward improvement of Layer I coding: Subband sam-
ples are coded in 3 groups of 12 samples each. Layer II encodes one to
three scale factors as well as the 36 coefficients per subband (thus already
saving space if all three groups can be coded using the same scale factor),
but using a more efficient (variable-length) representation than layer I. A
block containing coded 36 × 32 samples for all 32 subbands forms a basic
audio frame.

• Layer III does not directly store subband sample values. Instead, an MDCT
(modified discrete cosine transform) is applied to blocks of 36 or 12 samples
each, with 50% overlap between blocks. In principle this doubles the num-
ber of coefficients, however half of the coefficients can safely be discarded as
the samples in the overlapping area of two blocks can be reconstructed from
the remaining MDCT coefficients (through time-domain aliasing cancella-
tion [33]). MPEG layer III audio stores these MDCT coefficients, grouped
into blocks of 18 coefficients and coded using variable-length codes. A block
containing 18× 32 coded MDCT coefficients for all 32 subbands forms a ba-

42 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

reconstructed
signal

coded audio
frames

original
signal

samples

samples

0 1 2 3 4 5

encoder data
dependency

decoder data
dependency

0 256 512 768 1024 1280 1536 1792 2048

0 256 512 768 1024 1280 1536 1792 2048

This figure illustrates the data dependencies introduced by the analysis and synthesis filter ker-
nels of 512 samples width – each audio frame contains the temporal equivalent of 384 samples
of the coded signal, but due to the "spread" of the filters, frame 1 depends on the values of sam-
ples 128 through 1024. A similar situation occurs for reconstruction: Samples 1024 through 1280
depend on data contained in frames 2 and 3, while samples 1280 through 1408 additionally also
depend on frame 4.

Figure 1.13: MPEG audio layer I data dependency cones

sic audio frame. One peculiarity of the layer III format is the concept of a
"bit reservoir": The bits comprising the coefficients may be spread over mul-
tiple frames, with forward/backward pointers stored per frame to reference
the required data. This allows to "smooth out" bitrate variations between
frames25.

In all three layers the "partial" signals reconstructed from each block overlap
if transformed back into a signal sampled at the critical sampling frequency (cf.
figure 3.10 on page 106). Layer I and II frames are only "self-contained" in the
sense that they allows reconstruction of the corresponding subband samples.
Due to the "spread" of the filter kernels, reconstruction of a single sample may
require as much as three consecutive audio frames (cf. figure 1.13). Layer III
requires both the preceding as well as the following frame to undo the aliasing
introduced by the MDCT just to reconstruct the subband samples – this leads to
even wider data dependencies at the decoding stage (cf. figure 1.14).

MPEG audio achieves compression mainly by exploiting the spectral redun-
dancy (i.e. "sparsity" of the frequency spectrum occupied by typical acoustic sig-
nals). The decomposition into subbands allows psycho-acoustic models to be
applied that can identify signal components that may be suppressed because
they are masked by other signal components (and are thus inaudible, cf. sec-
tion 1.1.1.1). Note that the coding used in layers I and II potentially suffers
from "blocking" artifacts as there is no "a priori guarantee" that the subband sig-
nals are smooth across block boundaries (see the discussion surrounding figure

25Essentially, this provides a mechanism for short-term varying bitrate with long-term constant
average bitrate.

1.4. COMPRESSED REPRESENTATIONS 43

reconstructed
signal

coded audio
frames

original
signal

samples

samples

0 1 2 3

encoder data
dependency

decoder data
dependency

0 256 512 768 1024 1280 1536 1792 2048

0 256 512 768 1024 1280 1536 1792 2048

This figure illustrates the data dependencies introduced by the analysis and synthesis filter ker-
nels of 512 samples width as well as the overlapping for time domain aliasing cancellation after
inverse MDCT. Reconstruction of samples 1632 through 1696 can be performed using the data
from frames 2 and 3, but most of the samples depend on data from three adjacent audio frames
for reconstruction (like samples 1696 through 2208).

Figure 1.14: MPEG audio layer III data dependency cones

1.11), thus the signal must not be distorted too heavily to avoid discontinuities.
The partial overlapping of subband samples introduced through the MDCT in
layer III (and ensuing windowing) guarantees smooth transitions (individually in
each subband signal, and logically also in their composition) even in the pres-
ence of distortions and thus also contributes to reducing the required number of
bits for representation.

1.4.1.4 Ogg Vorbis

Development of Ogg Vorbis began in the late ’90s with the goal of producing a
high-quality, freely implementable audio coding system. This was partly moti-
vated by short-comings in the then-state-of-the-art MPEG Audio layer 3 com-
pression, partly by the (perceived) legal restrictions on mp3. Despite lacking
ratification by a recognized standards body it has found widespread support due
to free availability of the specification [68].

While MPEG audio layer III uses a two-stage approach for frequency analysis
of the input audio signal (subband transform followed by MDCT), Ogg Vorbis col-
lapses the frequency analysis into a single MDCT26. This approach avoids some
artifacts of the subband filter bank (signal aliasing in two subbands, difficulties
in correlating higher spectral modes of musical sounds) and allows better global
analysis of the signal spectrum.

Ogg vorbis groups MDCT coefficients obtained from one block transformation
together to form an audio frame (as in MPEG audio layer III, blocks must partially

26In practice, a FFT is computed first as this representation is more amenable to spectral
analysis. From the FFT coefficients the MDCT coefficients can be computed trivially.

44 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

overlap to perform time domain aliasing cancellation after inverse MDCT). The
coefficients themselves are coded using a variety of coding tools offered by the
format – first a rough approximation to the spectral curve (called the "floor"
curve) is calculated, and parameters for this interpolant are coded. The sparse
residual is then encoded through multi-pass vector quantization.

The Ogg Vorbis format allows considerable flexibility in representing the data
and allows many parameters to be chosen by the encoder, including MDCT block
sizes as well as codebooks for Huffman coding and vector quantization (in fact
multiple parameter sets may be created and chosen individually for each new
frame). These parameters are required for interpretation of frame data and must
be available to the decoder before any processing can be performed. It should
however be noted that each frame is self-contained and can be processed indi-
vidually otherwise.

Despite the flexibility offered by the format, the decoding process itself is in
fact not any more computationally expensive than MPEG audio layer III. The
uniform use of the MDCT for spectral analysis also results in a considerably less
complex data dependency chain for decoded samples: Each sample depends on
data contained in exactly two adjacent frames.

Summary

The above discussion illustrates the principles behind modern compressed audio
representations. While an exhaustive discussion would by far exceed the scope
of this work, the vast majority of formats can be classified as structurally similar
to one of the examples given above. For later purposes the following general
structure should be observed:

• The compressed representation consists of

– a bitstring D (the initialization data), possibly of zero length

– a sequence F0, F1, F2, . . . of bitstrings of "reasonably" limited upper
length (the coded frames).

• The nth sample can be recovered from some tuple (D, Fin, Fin+1, . . . , Fin+k−1)
with fixed and "small" k.27

• Sample numbers monotonically map to frame numbers: in ≤ in+1.

Definition 13 A (compressed) representation of a PCM audio signal is said to be

temporally local if it satisfies the above constraints.

It is easily verified that all example formats given in the preceding sections
satisfy this requirement. While representations that violate the above restrictions

27 The frame numbers in, in + 1, . . ., in + k − 1 can be said to be the decoding dependencies of
the nth sample.

1.4. COMPRESSED REPRESENTATIONS 45

can conceivably be constructed, the author believes these to be of little practical
relevance. In particular, he is unaware of any representation in actual use that
cannot be reduced to a combination of temporally local representations and the
operators given in section 1.2.1.

1.4.2 Image Compression

Typical images found in multimedia applications have considerable spatial re-

dundancy, i.e. samples corresponding to different but "close" points in an image
are correlated (highly likely even similar). The common cause is that close points
in the image are likely to correspond to different points on the same physical
object, thus they probably differ only slightly in brightness and color tone due to
different illumination and viewing angles.

The following sections will give a brief overview of common compressed image
representations.

1.4.2.1 GIF

GIF (short for Graphics Interchange Format) owes its popularity to Compuserve
which introduced the format as graphics format for its online service in 1987.
Its specification has subsequently been taken over by the World Wide Web con-
sortium [14].

The format stores rastered images in an (unspecified) RGB color model (in
absence of other information sRGB is usually assumed by most applications).
Every GIF image consists of one or more sub-images, and each sub-image covers
a rectangular area of the main GIF image. The sub-images are layered on top of
each other in order to produce the final image28. GIF stores one or more color

tables; each table may have up to 256 entries, and each entry is either an RGB
color with α = 1 (full opacity) or black with α = 0 (full transparency). Color tables
are stored uncompressed and require 3 bytes of storage space per entry: red,
green and blue channel are stored with 8 bits of precision.

Every sub-image is conceptually a rectangular array of integers in the range
0 through 255 (and references a color table to supply an interpretation of each
index value). These values are linearized in left-to-right and bottom-to-top order,
and the resulting sequence is compressed using LZW.

GIF utilizes both limited color range (through the use of lookup tables) and
spatial redundancy (the LZW compression represents recurring sequences of
symbols through shorter bitstrings). However, this simple approach is largely
ineffective in reducing redundancy if recurring patterns are merely "similar",
instead of exactly identical: smooth color transitions (as they occur in many nat-

28A never formally specified (but accepted as a de-facto standard) feature allows simple anima-
tions to be stored as GIF: sub-images are not shown immediately, but after a delay time stored
for every individual sub-image.

46 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

ural pictures) are particularly problematic, as 1) they require many color table
entries and 2) produce many similar though not identical patterns.

1.4.2.2 PNG

Development of PNG (short for portable network graphics) was incepted in 1994
and was subsequently recognized as a standard by several standards setting
bodies (1997 IETF, 2003 ISO and W3C [15]).

Like GIF, the format stores rastered images in an (unspecified) RGB color
model (with sRGB assumed usually). The image may either be stored in a color
index mode (similar to GIF sub-images), or explicit RGB values for every pixel.
Precision of color channels may vary from 1 to 16 bits; additionally an individual
α value may be stored for every pixel.

PNG features improved redundancy elimination with respect to GIF by allow-
ing to store not absolute but differential pixel values: the difference is taken
with respect to a "predictor value" derived from a combination of the adjacent
left, upper and upper-left pixel. The resulting values are then represented using
a deflate encoding.

For images that are well-suited for GIF, PNG achieves at least comparable
encoding, however due to predictive difference coding PNG is considerably more
efficient at handling gradients and similar (instead of merely identical) patterns.

1.4.2.3 JPEG

JPEG (Joint Picture Export Group) is an image format developed cooperatively
between ITU [31], IEC and ISO; it has received formal acceptance as a standard
by all three bodies.

The format stores rastered images with up to 3 color channels per pixel –
normally Y ′PbPr or similar color models are used to decorrelate luminance from
color tone, as in nature color tone is relatively uniform while luminance varies
more widely. JPEG allows the stored color channels to be of different resolution
– this to store reduced resolution versions of the less variant chroma channels.

The individual color channels are partitioned into blocks of 8 × 8 values, and
a DCT (discrete cosine transform) is applied to each block. This transformation
decorrelates the "average" value within a block (top left coefficient) as well as low
to high frequency variations within the block (all other coefficients). The blocks
are traversed from top to bottom and left to right. The top left coefficient of
each block is represented differentially with respect to the previous block (on the
assumption that adjacent blocks likely have similar average color), all coefficients
in the block are quantized, serialized and represented using variable length codes
(canonical Huffman codes). JPEG does not specify quantization and variable
length coding tables but allows them to be embedded into the encoded image
itself.

1.4. COMPRESSED REPRESENTATIONS 47

Compared to PNG and GIF, the JPEG format employs several transformations
that on the one hand provide considerably better decorrelation (and thus better
identify redundant information), but that on the other hand make the format un-
suitable for pixel-exact representation of given images. In particular, the DCT is
very effective in decorrelating smooth color transitions (i.e. it reduces the number
of values required to represent the block’s content to few non-zero values), but
its main purpose in JPEG is to identify and filter out non-visible detail informa-
tion that can safely be discarded. Therefore, the DCT is typically approximated
using fixed-point arithmetic, and the "pseudo DCT" implementations in practical
JPEG implementations are not invertible due to rounding errors (although DCT
is mathematically invertible).

1.4.3 Compressed video

Time- and space-discretized video can be interpreted as a sequence of individual
images, the individual images themselves can then be treated as described in
section 1.4.2. This approach has the advantage that each individual frame of
the video sequence can be stored and processed individually, thus it is used
most often where access patterns require easy retrieval of individual pictures (i.e.
video editing applications). As a disadvantage however this approach does not
exploit the temporal redundancy present in typical videos, i.e. that temporally
"close" pictures have similar features.

Several compressed video formats do therefore not represent each picture
individually, but instead reuse features that have been encoded once for mul-
tiple pictures. Pictures that are coded "independently" are referred to as intra

frames (I-frames), while pictures that reuse features from other images ("refer-
ence frames") are called non-intra or predicted frames. The most commonly taken
approach for non-intra frames is to encode only the difference between pictures
that contain the same or sufficiently similar features. Any compression schemes
where individual pixels cannot be reconstructed from a single frame alone will be
referred to as temporal compression. For later reference, the reader should take
note that particular issues are introduced by formats that may use both tempo-
rally preceding as well as temporally succeeding images as "reference frames":
Here, frames must be decoded in an order that differs from the temporal order in
which the images are to be displayed, hence these formats will often be referred
to as "out-of-order temporal compression". Two such examples will be given in
sections 1.4.3.2 and 1.4.3.3.

The following sections will present several compressed video representations
in widespread use, in order of increasing complexity.

1.4.3.1 Motion JPEG

The Motion JPEG format stores video as a sequence of images; each image is
individually stored using the JPEG format as discussed in 1.4.2.3. Rather than

48 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

a formally defined standard, it is a convention used for interchange by many
video tools. A description of the format can be found in [13].

Individual frames of the video sequence may either be stored as a single JPEG,
or two JPEGs of half the vertical resolution each, representing even/odd fields
of the video frame, respectively. This peculiar format is better suited for inter-
laced video data than a single JPEG image: the systematic difference between
even/odd scanlines (that are usually captured at different points in time) would
lead to vertical high frequency components in the corresponding DCT blocks:
These components are usually most heavily distorted through the quantization
process (leading to unpredictable "blurring" between scanlines), and at the same
time reduce the number of bits available for representing other image detail that
does not stem from recording artifacts.

Two variants, known as MJPEG-A and MJPEG-B, are commonly used. They
do not differ conceptually, but have slightly different bitstream representations:
while MJPEG-A retains the JPEG bitstream format (and thus embeds confor-
mant JPEG images), MJPEG-B stores a slightly modified bitstream that identifies
"sections" in the JPEG bitstream through an index table (instead of marker bits
in the stream, as ISO JPEG does). The difference is only syntactic and transfor-
mation between the two variants is trivially achieved by adding/removing appro-
priate marker bits.

Unlike many other video formats, Motion JPEG has not received normative
standardization; while "Apple QuickTime File Format" is widely regarded as au-
thoritative, several implementations deviate from the format described therein.
Nevertheless, the format has remained popular as support for Motion JPEG is
basically "free" if JPEG still image (de)compression is available already.

1.4.3.2 MPEG-1/MPEG-2 Video

MPEG-1 video [30] is a compressed video format developed in the late ’80s and
standardized in 1991. It represents time- and space-discretized video as a se-
quence of individual rastered images represented in the Y ′CrCb color model. It
employs a block discrete cosine transform for decorrelation similar to JPEG as
described in section 1.4.2.3 to for decorrelation29. The syntax of the MPEG-1
format is quite flexible and allows a wide range of image sizes30 and varying re-
production fidelity through the choice of quantization levels to be used for the
sequence of images.

Images may either be coded absolute (without reference to temporally sur-
rounding images) or relative (reusing features from temporally surrounding im-
ages), in particular MPEG-1 offers the following representation alternatives:

• I-frame ("Intra frame"): The image is encoded stand-alone.

29The similarity is however conceptual only: vast differences in the bitstream syntax, color
model and subsampling strategies make translation between the formats not quite trivial.
30Syntactically, MPEG-1 is limited to 1024 × 1024 pixels per image.

1.4. COMPRESSED REPRESENTATIONS 49

a)

I

1

B

2

B

3

P

4

B

5

B

6

I

7

b)

I

1

P

4

B

2

B

3

I

7

B

5

B

6

The figures depict images represented as I-, P- and B-frames. a) shows the images in temporal
display order, while b) shows the same frames reordered such that all decode-dependent images
follow their dependencies. The arrows depict the decoding dependencies of the sixth frame: It
is coded relative to the fourth and seventh frames, but due to the fourth being a P-frame also
recursively depends on frame number 1.

Figure 1.15: Frame ordering in MPEG-1/2 sequences

• P-frame ("Predicted frame"): The image is encoded relative to the temporally
preceding I- or P-frame.

• B-frame ("Bidirectionally predicted frame"): The image is encoded relative to
the temporally preceding I- or P-frame and the temporally succeeding I- or
P-frame.

P- and B-frames can reuse features from reference frames by only encoding
the difference of 16x16 blocks with respect to a selected 16x16 block of the
reference image(s): The selected reference block does not have to be at the same
spatial location; this is referred to as motion compensation and is achieved by
encoding a displacement vector. The difference to the reference block may of
course be zero, in which case parts of the reference image(s) are reused unaltered
(e.g. static background, unchanging but moving objects).

50 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

MPEG-1 video defines a bitstream format that contains a sequence of pic-
tures coded using the coding options above. B-frames reference one temporally
succeeding and one temporally preceding frame, so the temporal order in which
frames have to be decoded does not necessarily match the order in which frames
should be shown. The bitstream format stores frames in decoding order (cf.
figure 1.15).

MPEG-1 can make use of the temporal redundancy by coding significant por-
tions of a video as P- or B-frames31. Extensive use of non-intra frames introduces
however two other problems:

• random access limitations: Extracting a specific image from a video se-
quence requires that all reference images are extracted as well (cf. figure
1.15). This in turn requires the ability to identify the dependency chain of
an image.

• error propagation: P-frames may reuse parts of the previous P-frame with
slight alterations, as a result decoding errors may propagate and accumu-
late in long chains of P-frames. This is especially problematic for MPEG
as the transformations occuring during encoding and decoding (most no-
tably DCT and inverse DCT) can – due to their complexity – in practice not
be computed with infinite precision (and the standard does neither specify
rounding directions nor error bounds).

The first problem is addressed through the specific format of the bitstream it-
self: Marker bitstrings are used to signify the beginning of a frame; applications
can seek forwards and backwards from an arbitrary point in the bitstream look-
ing out for these markers. Given the position of the desired image, applications
can therefore simply "backtrack" to the preceding P- and I-frame(s). Additionally,
the bitstream should contain GOP (Group of Pictures) headers that carry informa-
tion about the point in time the current temporal position within the bitstream
corresponds to, however this information is unfortunately not particularly reli-
able in practice32.

In 1994 MPEG-2 (formally known as ISO/IEC 13818) was introduced as suc-
cessor and refinement of MPEG-1. The main area of improvement is better sup-
port for interlaced video through various measures:

• Where MPEG-1 treats images as a "whole" like JPEG, MPEG-2 can (op-
tionally) treat fields comprised of even/odd scanlines separately and thus

31The use of B-frames is however optional in the constrained parameters profile, and the use of
both B- and P-frames is entirely optional otherwise.
32Note that a GOP is a synchronization and not a decoding concept (since GOPs are typically
not closed and therefore may contain references to other images outside the GOP). Except for
random access, GOP headers contain no information that could not be obtained by keeping
counts of the number of frames processed already, decompressors can therefore safely disregard
GOP headers altogether. This in turn has led to many encoders that do not bother to fill in GOP
headers properly, so in practice a decoder must disregard GOP headers or otherwise be unable
to process many streams.

1.4. COMPRESSED REPRESENTATIONS 51

support interlaced video without the issues already explained in section
1.4.3.1.

• Vertical subsampling of chroma values is optional in MPEG-2 (mandatory in
MPEG-1). This means that even/odd scanlines can have different chroma
sample values and therefore mainly also improves interlaced video.

• MPEG-2 supports motion compensation modes that "snap" to even/odd
scanline boundaries of reference picture to make sure that even/odd fields
of an image reference even/odd fields of the reference frame

MPEG-2 uses slightly altered codebooks for entropy-coding of DCT coeffi-
cients, motion vectors and macroblock modes; while these changes mainly ac-
count for the fact that MPEG-2 was targeted at higher image quality than MPEG-
1 (resulting in altered ranges of DCT coefficients and thus different symbol statis-
tics), the difference is rather minuscule in practice – except for interlaced images
both formats are virtually identical in terms of coding efficiency. The most com-
plete MPEG video reference is given in [32].

1.4.3.3 H.264 (MPEG-4 AVC)

Development of H.264 was incepted to provide a coding standard that further
improves on MPEG-2 video in terms of coding efficiency, while still retaining a
relatively simple decoder model. The format was standardized as MPEG-4 Part
10 in 2003 [29] but is also described in secondary literature such as [53].

Like MPEG-1/MPEG-2, H.264 makes use of predictive coding to reduce re-
dundancy, but it features a number of novel ideas with respect to predecessor
standards. Most of the coding efficiency improvements result from aggressive
use of predictive coding at many levels. This includes:

• spatial prediction: While MPEG-1 and MPEG-2 only use the DC coefficient
of the previous block as predictor for the current, H.264 uses all pixels
adjacent to the current block.

• temporal prediction: Whereas MPEG-1 and MPEG-2 allow a frame to reuse
features from up to two temporally close frames, H.264 puts no upper limit
on the number of reference frames and their temporal distance. This is
achieved in the bitstream format by storing frames in decoding order – each
frame may contain a marker whether it must be retained for future refer-
ence by the decoder (possibly displacing a previously retained image) or can
be discarded after presentation.

Predictive coding is however very sensitive to foward error propagation which
must therefore be very tightly controlled. H.264 addresses this problem in a
very radical way in that the image that must be reconstructed from a given
compressed representation is unambiguously defined by the standard with no

52 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

leeway for rounding or other errors. This results in a number of very radical
changes of the algorithms used by decorrelation transformations – for example,
where MPEG-1 and MPEG-2 use an 8× 8 block discrete cosine transform, H.264
uses a much simpler 4 × 4 block transformation that are based on the matrices:

Hforward =









1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1









Hinverse =









1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2









that are applied on each row and column vector of the block. Unlike the DCT,
the matrices are orthogonal but not orthonormal, as a result Hinverse · Hforward

reproduces the orignal values only up to a constant factor which must be taken
into account for during encoding. The important property of this transformation
is that it can be realized using just bit shift operations and additions (unlike the
DCT which requires multiplication with irrational numbers) and is required to
be implemented bit-exact.

Other improvements are achieved by more precise identification of object con-
tours for motion compensation (up to single pixel precision, in contrast to 16×16
pixel precision offered by MPEG-1/MPEG-2). Additionally, H.264 also builds
longer chains of temporally predicted images as prediction errors cannot accu-
mulate.

Summary

The above discussion illustrates the principles of modern compressed video rep-
resentations. While an exhaustive discussion would by far exceed the scope of
this work, the vast majority of formats can be classified as conceptually similar
to one of the examples given above. For later purposes the following general
structure should be observed:

• The compressed representation consists of

– a bitstring D (the initialization data), possibly of zero length

– a sequence F0, F1, F2, . . . of bitstrings of "reasonably" limited upper
length (the coded frames).

• The nth In image can be recovered from some tuple (D, Fn, Iin,1
, Iin,2

, . . . , Iin,k
)

with some fixed and "small" k and in,k < n.33

• The kth image to be displayed is some image In with n < k + d for some fixed
and "small" d

Definition 14 A (compressed) representation of a time-discrete video is said to be

temporally local if it satisfies the above constraints.

33The frame numbers in,1, in,2, . . ., in,k can be said to be the decoding dependencies of image
number n.

1.4. COMPRESSED REPRESENTATIONS 53

It is easily verified that all examples given above satisfy this definition. While
representations that violate these restrictions can conceivably be constructed,
the author believes these to be of little practical relevance. In particular, he is
unaware of any representation in actual use that cannot be reduced to a com-
bination of temporally local representations and the operators given in section
1.2.2.

54 CHAPTER 1. MULTIMEDIA REPRESENTATION AND PROCESSING

Chapter 2

Related work

This chapter discusses existing media processing infrastructure work. The em-
phasis in the first half of this chapter is on "complete" media processing frame-
works and their architecture. They serve as "role models" for the architecture
developed in chapter 3, as well as setting the benchmark to compare this work
with. So as not to exceed the scope of this work, these frameworks will however
not be discussed in their entirety – instead the focus is on a select number of
key aspects that highlight crucial design decisions and their consequences and
thus prepares the reader to understand the design presented in chapter 3.

The second half will discuss the target environment of the media framework
in chapter 3. This includes existing system services for various low-level media
processing tasks such as video and audio capture and playback. It also includes
a discussion of existing toolkits that offer services for higher-level media pro-
cessing such as compression and editing.

2.1 Media processing frameworks

This section will investigate existing frameworks that facilitate processing of
time-based media. Other than this subject matter, the different frameworks have
few commonalities and mainly reflect their respective developers’ thinking of me-
dia processing. The purpose of this section is to highlight both commonalities
and differences in the approaches.

At the functional level, the different frameworks provide support for (at least
some of) the following services:

• Data representation: Representation of media data in multiple formats as
well as transformation between different representation alternatives (e.g.
transformation into a compressed representation before storage, decom-
pression before processing)

• Capture: Acquisition of media through physical devices (e.g. cameras, mi-
crophones) including the task of determining the timing relationship and/or
synchronization of the data capture devices involved

55

56 CHAPTER 2. RELATED WORK

• Playback: Reproduction of media through physical devices (e.g. displays,
speakers) including the task of determining the timing relationship and/or
synchronization of the playback devices involved

• Persistence: Storage and retrieval of media data (e.g. to the file system)
including the task of (de)multiplexing related media

• Compositing and Processing: Creating new media by compositing or other-
wise processing existing media (e.g. mixing, filtering)

However, a "mere collection" of these functional components alone does not
make a "framework": The term framework implies several architectural (in addi-
tion to the functional) characteristics:

• Abstraction: Different entities providing the same class of functional service
are accessible through a common interface. For example, ADC convert-
ers for audio capture may be connected to the host system through vari-
ous physical connectors (e.g. PCI bus or USB) and require different access
mechanisms at the driver software level – at the level of the media frame-
work they are expected to be accessible through the same interface1.

• Modularity: Different entities providing different classes of functional ser-
vices can be freely combined by applications to process media data as they
wish. For example, media captured through any of the acquisition devices
can be further processed through any means the framework offers, and
played back through any reproduction device2. While this requirement ap-
pears trivial at first, it can become technically challenging to meet when
considering this requirement against efficiency – "combined" processing of
several steps is generally more efficient than the modular composition of
the indivdual sub-steps.

• Extensibility: New entities providing a suitable abstract interface defined for
one of the functional services provided by the framework can be added, and
can be used transparently as if it were a built-in service of the media frame-
work. Examples include accessors to different media storage containers, or
different media (de)compressors.

This essentially suggests a component-based architecture, where the frame-
works defines the component interfaces as well as their interactions and pro-
vides methods for the management of component classes and instances. This
includes:

1Note that different layers in the software stack might provide the abstraction (e.g. at the driver
interface, operating-system provided wrapper libraries, or an abstraction layer within the media
framework) – thus this requirement captures only the user’s expectation and is not necessarily
an implementation requirement for the media framework writer.
2though possibly subject to technical restrictions such as communication channel capacities

and available processing power – the key point is however that no architectural restrictions re-
main – provided the technical restrictions could be overcome.

2.1. MEDIA PROCESSING FRAMEWORKS 57

• Registration: Keeping track of available components and allowing dynamic
registration for extensibility

• Lookup: Methods to select component classes according to various criteria;
this may include the capability to browse the set of elegible components
(e.g. to select a desired compressor)

• Instantiation: Creating instance objects of component classes to access the
functional service

These functional aspects can be found in all frameworks discussed below,
but the exact realizations in the respective architectures differ considerably. The
following will focus on illustrating these different design choices.

2.1.1 QuickTime

QuickTime is a media processing framework developed by Apple Computers.
Originally released in 1991 for Macintosh System 6 computers, it has been in
continuous development until present. Changes introduced over time extend
the framework with new capabilities (e.g. introduction of distinct decoding and
display order for images, QuickTime 7 in 2005), or have adapted the framework
to changes in the operating environment (e.g. deprecation of FSSpec for identi-
fication of files in favor of a more flexible URL-based approach, QuickTime 6 in
2002). Though core concepts have remained unchanged, the description given
here is always based on the latest available version at the time of this writing
(QuickTime 7) where behaviour deviates or interfaces have been deprecated with
respect to older versions.

Terminology. QuickTime reflects concepts of object-oriented programming
reasonably well3, however it predates modern software engineering terminology,
and most available QuickTime literature favors the "traditional" terminology. For
easier comparison with the other architectures presented in this chapter, mod-
ern terminology will be prefered.

2.1.1.1 Overview

QuickTime is conceived as a modular architecture with most of the functional
services provided by replaceable components and component instances. Each
component instance provides a specific interface defined by the QuickTime ar-
chitecture. Component instance classes that derive from the same abstract in-
terface can generally be used as substitutes for each other (component instance
classes are not necessarily direct ancestors of their respective interfaces but may
derive from intermediate component instance classes4).

3e.g. the opaque Movie data structure can be regarded as an object, with many QuickTime
API functions taking the role of methods on this object.
4 QuickTime provides a mechanism for component instances to "encapsulate" other compo-

nent instances and selectively use or override the functionality of the enclosed instance. This

58 CHAPTER 2. RELATED WORK

ComponentManager

+ CountComponents() : int
+ FindNextComponent(

start : component
filter : ComponentDescription)
: Component

+ OpenComponent(
component : Component)
: ComponentInstance

+ RegisterComponent(
description
: ComponentDescription, ...)

Component

- description :
ComponentDescription

- entryPoint : Function(...)

+ GetComponentInfo(...)

«ComponentInstance»

+ CallComponentCanDo()
: ComponentResult

+ CallComponentVersion()
: ComponentResult

+ ...

(type,subtype,vendor)

instantiates

«ImageDecompressor»

«ImageCompressor» «VideoDigitizer»MJPEGDecompressor

QuickTime defines abstract interfaces such as ImageDecompressor which are implemented by con-
crete classes such as MJPEGDecompressor. The singleton component manager provides methods
to register and lookup components and to instantiate the concrete classes (via delegation to the
underlying component) that provide e.g. mechanisms to decompress media data

Figure 2.1: QuickTime component manager

The components are organized by "type", "subtype" and "vendor" which each
consist of a fixed 4-character string. The "type" of a component specifies the
interface to be expected of the corresponding component instances (and thus
their purpose for which they can be used in the context of media processing), a
non-exhaustive list of different pre-defined component types is:

• imco (image compressors): Provides means to convert a rastered image (cf.
section 1.3.4.1) into a different (compressed) representation.

• imdc (image decompressors): Provides means to convert a compressed im-
age representation into a rastered image.

• aenc (audio compressors): Provides means to convert PCM audio samples
(cf. section 1.3.2.1) into a different (compressed) representation.

allows for the functional equivalent of implementation inheritance to be realized between Quick-
Time components, however it should be noted that the technical realization of the dispatching
mechanisms is very different from that commonly used in object-oriented languages. While de-
riving components from existing components is generally encouraged (e.g. [52] p. 11), it could
not be determined if the pre-made components generally shipped with QuickTime follow this
practice.

2.1. MEDIA PROCESSING FRAMEWORKS 59

• vdig (video digitizers): Can capture video data from an external source.

• eat (movie importers): Import foreign container formats as movies.

• spit (movie exporters): Export movie to foreign container formats.

A component’s "subtype" and "vendor" are used to distinguish different com-
ponents that provide functionally equivalent services through a common inter-
face. By convention, components with common "subtype" can process data of the
same underlying format (e.g. decompressors for different image formats) while
different "vendor" strings merely distinguish different implementations of pro-
cessors for the same format – however neither is this convention really relevant
for all types of components, nor is it followed rigorously in practice.

Applications as well as the rest of the QuickTime architecture use the compo-

nent manager to select and instantiate components. Conceptually, the compo-
nent manager’s role is to maintain the mapping from the namespace consisting
of triples of the form (type, subtype, vendor) to the respective component
classes, and thus supports the usual operations expected for the management
of namespaces (registration, lookup, browsing). The namespace operations sup-
ported by the component manager are closely tied to the desired interpretation
of the name tuples in the context used by QuickTime: generally components are
requested using only the (type, subtype) tuple part of the name, with vendor
left as "wild card" (configurable preferences can establish a "search order" among
all matching components).

QuickTime supports dynamic loading of components compiled as load-
able modules transparently – obviously, the components cannot be registered
through the run-time call RegisterComponent . The component manager there-
fore supports a secondary registry in persistent storage, which is realized simply
as a directory containing the dynamically loadable libraries and which is scanned
by the QuickTime library during initialization. To avoid actually loading all li-
braries (which would incur significant overhead as it requires processing by the
run-time linker for relocation and symbol resolution) each is accompanied by
a "resource file" providing information such as the (type, subtype, vendor)
and entry point into the loadable module.

2.1.1.2 Movies

The highest level of abstraction offered by QuickTime for time-based multimedia
data is that of a QuickTime movie, represented in the architecture through the
Movie interface. Conceptually, a QuickTime movie is an aggregation of multiple
time-based media elements (called Track s) with a defined temporal relationship
(cf. figure 2.2). The Track s in turn contain one Media object each, through which
the actual media data is accessible. The separation of the Track and Media con-
cepts reflects the separation between the temporal position within the movie and
the media data itself (as well as its logical position within the data store). Con-
ceptually, each track can contain arbitrary time-based media (the type of media

60 CHAPTER 2. RELATED WORK

Movie time line

Track 4 (other media)

Track 3 (video media)

Track 2 (audio media)

Track 1 (video media)

Figure 2.2: Conceptual view of a QuickTime movie

is identified through a four letter code as usual) – while video and audio are the
most commonly used types of media, others can be defined and processed by
creating appropriate data handler components.

QuickTime assumes that media is stored as a sequence of equidistant time-
discrete samples (cf. sections 1.3.2.1, 1.3.5.1) organized into frames that can
(largely) be processed individually. Each frame is assumed to be stored as an
opaque sequence of bytes that can be expanded into a single rastered image or
a fixed number of PCM audio samples using an appropriate interpretation of the
data (the mechanism QuickTime uses to determine this interpretation will be
discussed further below). Applications that so desire can directly access each
individual frame through the GetMediaSample /GetMediaSample2 calls on Media
objects.

QuickTime provides some support for random-access to Movie s using tempo-
ral prediction for video coding: Individual frames can be marked as key frames

to indicate that no following frame has a data dependency on previous frames.
This annotation is independent from the format the frames are coded in, so ap-
plications can obtain this information without understanding the format.

While the QuickTime API uses Movie to represent QuickTime movies, Movie
objects also carry a considerable amount of state information (e.g. brightness
adjustments for display, error states of previously executed operations, current
playback position) that is not actually reflected in the underlying media data
itself, but used for playback or other forms of access to the movie. The API thus
blurs the distinction between data and accessor objects to the data. Generally, all
accesses to the movie data must be multiplexed by the application through the
correspondingMovie object (with possibly conflicting state information saved and
restored) – QuickTime does not provide any mechanism to instantiate additional
Movie objects as accessors to the same underlying conceptual QuickTimemovie5.

Movie objects are generally instantiated in one of two ways: Either as pure
in-memory "scratch" movies, or from a file-based data store. While QuickTime

5Multiple Movie objects can be instantiated as accessors to a movie stored as a file, however
the behaviour is undefined if write access is performed through one of these Movie objects.

2.1. MEDIA PROCESSING FRAMEWORKS 61

can read and write movie data into a variety of different file-based container for-
mats, only the QuickTime file format is treated as "first-class citizen": Access to
data in other formats is achieved through MovieImport and MovieExport compo-
nents, however these component interfaces can only support either read-only or
write-only access to alien formats. Thus, all of the editing functionality normally
available through Movie objects is unavailable, so Movie objects provide a rather
leaky abstraction.

2.1.1.3 Compressed media data

While Movie objects allow to manage, store and retrieve media data from and
into container objects, they do not interpret the contained data. QuickTime does
not provide abstractions (in the sense of an abstract or interface class) for the
media elements it supports, such as images. This means that while the media
elements certainly exist as concepts, it is the application’s responsibility to asso-
ciate desired semantics with the data retrieved from Movie objects. QuickTime
only supplies a SampleDescription that carries meta-information (e.g. picture
width/height) as well as a four-letter code identifying the format. The sample
description may also contain further media-format-specific data (e.g. initializa-
tion data for decompressors) that is required to interpret the data.

The four letter code contained in the SampleDescription is interpreted by
QuickTime as the identifier to be used for looking up a required decompres-
sor component using the component manager6. For QuickTime movie files this
is the same code as stored in the on-disk representation of the movie. For other
container formats (e.g. AVI) the MovieImport component is expected to perform
the required translation between the code stored in file and the code expected by
QuickTime (thus every MovieImport component must know about every possible
translation for their respective format as QuickTime does not provide a registry
for this type of translations).

It is up to the consumer of the data received from a movie to utilize the appro-
priate decompressor components when reading data out of a Movie (or, vice versa
to instantiate the compressor components when writing). For image data, this
means instantiating an ImageDecompressor (imdc) component, for audio data an
AudioConverter (adec) component. These component types expect the data for
individual frames to be fed in correct order, and will decompress them in se-
quence. If decoding dependencies exist between frames, the components are
required to detect them and internally hold necessary state (e.g. old pictures
used as reference frames for future pictures) – this process is transparent for the
supplier of the compressed media data.

The decompressor API provides separate methods that initiate processing of
a frame (ImageCodecBeginBand) and methods that finally output the decoded
data (ImageCodecDrawBand) to a designated destination. Since QuickTime 7
6Normally, this code also identifies the compressor that can be used to compress the rastered

image or PCM audio data into this particular format, however this symmetry is not universal.

62 CHAPTER 2. RELATED WORK

this interface explicitly allows frames to be displayed in a different order than
decompression was initiated. The decompressor components are ignorant of
the temporal relationship of the frames processed, the correct point in time for
playback is part of the Movie/Track structures containing the data. Applications
processing media data must therefore feed data to the decompressors in the
order they are contained in the Media structure, but schedule playback or other
processing using the time information from the containing Track and Movie .
Compression of media data is performed in analogous fashion – rastered im-

age or audio sample data is fed to the compressor instance which transforms it
into a compressed representation. Image compressor components use flags to
advertise the capability of their underlying format to support frame sequences
that are temporally out-of-order, however in this it is case the compressor that
decides on the ordering of frames and passes this information back to the caller.
It is then the caller’s responsibility to store the data into a container with appro-
priate timestamps that allow reconstruction of the original temporal sequence.

2.1.1.4 Compositing and processing

QuickTime generally allows the applications direct and easy access to the media
data in its various forms of representations, i.e. compressed frames or uncom-
pressed rastered images and PCM sample data. Any further processing of the
data is largely out of the scope of QuickTime, and the application must generally
use other means such as the Quartz graphics API to manipulate images. This is
not necessarily to be seen as a conceptual "weakness" of QuickTime as it pro-
vides applications the flexibility to use othe tools of their choice to achieve the
desired effects.

But QuickTime also provides a form of "compositing" support for video media
through the concept of pluggable video effect components: These operate on one
or more input images to produce a single output image and are thus a generic
form of an image processing operator (cf. section 1.2.2). There are numerous
predefined effects that correspond to different types of scene transition effects;
many of these are realized as unary image processing that affect only of the
images (by e.g. applying desired transformations and adding an alpha channel)
which is then composited over the second image (see also section 2.2.2.1 for an
example of this technique).

The video effects may be parameterized, and the parameters may be varied
over time to provide desired temporal transition effects. Parameters may be
controlled directly by the application, but QuickTime also supports storing these
in a special track as part of a Movie data structure.
At a technical level, video effects are closely related to QuickTime decompres-

sor components: They provide the same component interface and thus may be
substituted wherever a decompressor would be valid. QuickTime also provides a
simple mechanism to automatically "chain" multiple filters, so the last chained
filter appears as a singular source of video data.

2.1. MEDIA PROCESSING FRAMEWORKS 63

2.1.1.5 High-level data handling

QuickTime provides further assistance in relieving application programmers
from the low-level tasks of handling media data. For images, the image com-

pression manager can take over most of the tasks described in the previous sec-
tions. Even one level higher, QuickTime provides the concept of MediaHandler
(mhlr) components – they completely encapsulate all tasks required to retrieve
data from a Movie, interpret it appropriately and further process it. MediaHan-
dler s are implemented for specific types of elementary media (e.g. video or audio
media), typical MediaHandler s know how to interact with the display and audio
systems to facilitate playback.

QuickTime provides even higher-level services, such as user interface el-
ements for the reproduction of video including VCR7-style playback controls
(movie player). These should arguably however not be considered integral parts
of the architecture as their role is to provide a "bridge" between two conceptually
very different frameworks (multimedia processing and graphical user interfaces).

2.1.1.6 Capture

Capturing of image sequences is performed using the VideoDigitizer (vdig) com-
ponent interface; for audio capture, QuickTime does not provide a component
interface but requires the application to access the audio device using the low-
level system APIs (e.g. CoreAudio).

The interface provides various methods to query the underlying driver’s ca-
pabilities and requires the application to setup several parameters before cap-
turing can start. Two sets of different API functions can then be used to obtain
the frame data, depending on whether the VideoDigitizer provides compressed or
uncompressd frame data.

For uncompressed data, the application may either use "continuous digitiza-
tion"; in this case it sets up a single buffer (VDSetPlayThruDestination) and starts
digitization (VDSetPlayThruOnOff) – it then becomes the application’s responsi-
bility to process the captured data in time before it gets overwritten. The second
option is to use asynchronous single frame grabs – in this case the applications
sets up (VDSetupBuffers) a number of buffers that can hold one frame each. It
can then issue multiple VDGrabOneFramAsync calls that instruct the digitizer to
start operation and fill the supplied buffers one by one. The application must
use the VDDone call to check if any asynchronous frame grabs issued previously
have completed. Afterwards the application may process the received data (and
reissue a new frame grab operation).

For compressed data, the VideoDigitizer component only provides an in-
terface equivalent to the asynchronous interface of uncompressed data cap-
ture: VDCompressOneFrameAsync issues a request to grab one compressed
frame, VDCompressDone checks whether any issued grab request has com-
pleted. However, in this case the VideoDigitizer component "owns" the memory
7video camera recorder

64 CHAPTER 2. RELATED WORK

allocated to hold the compressed frame data and must thus be returned through
VDReleaseCompressBuffer to the digitizer.

Interestingly the API does not provide a method that blocks the calling thread
until completion of an issued asynchronous operation (as would be common
architecture practice using the active object and future patterns) – the only op-
eration provided is to register a callback procedure (VDSetDigitizerUserInterrupt),
forcing the programmer to either adopt an event-driven programming model or
resort to periodic polling.

QuickTime also provides more high-level components such as the Sequence-
Grabber (grab) interface that automates most of the tasks involved above and
provides mechanisms to automatically transfer the data into a Movie data struc-
ture.

2.1.1.7 Discussion

The QuickTime architecture offers a set of building blocks that application de-
velopers can combine in flexible ways to realize media processing. The building
blocks are structured in a logical way, and – perhaps more importantly – are gen-
erally useful on their own. The API itself represents concepts of object-oriented
architectures reasonably well (due to its heritage it is however quite idiosyncratic
since it does not follow established syntactic and architectural conventions for
many common concepts). Nevertheless, the architecture exhibits some funda-
mental shortcomings that should be mentioned.

The individual component classes of the architecture are orthogonal at a func-
tional, but not at a technical level. Taking for example the task of decoding
a compressed image, one could realize the multiple steps typically required in
different ways. It might be desirable to perform entropy or other symbol decod-
ing on the host CPU while delegating computationally expensive transformations
(e.g. discrete cosine transform) to a dedicated processing unit located at the
graphics card. However, this delegation only makes sense if the resulting image
is intended to be displayed by the graphics hardware later – if the image is to
be further processed by the host CPU it is typically more efficient to have the
CPU perform all required transformations itself as the required data round-trips
across the system bus would by far exceed any potential performance gains.
This requirement poses a problem for the simple image decompressor model fea-
tured by QuickTime: From the perspective of clean separation of concepts in
the architecture it is undesirable that the decompressor has knowledge what the
application intends to do with the resulting decompressed image.

QuickTime provides a mechanism that allows decompressors to short-circuit
with the display system, thus breaking orthogonality of the components at the
technical level8. While this approach addresses the performance problem in a
special (albeit important) case, it immediately raises doubts about the approach

8Note that this is a direct result of the design of the exported component interfaces, it would
thus require an incompatible interface change to address this issue cleanly.

2.1. MEDIA PROCESSING FRAMEWORKS 65

taken in the architecture and begs the question if a different approach might
have addressed the problem in a cleaner and more general way. Similar (and
worse) but more subtle interactions can be found in the audio subsystem.

The data model offered by Movie objects is not completely convincing either.
Since modern video and audio coding techniques make extensive use of tem-
poral prediction (cf. section 1.4.3.3), it is inevitable to deal with the complex
issues brought forth by out-of-order decoding. However, QuickTime offers little
assistance to application programmers as they have to either use the (relatively
opaque) MediaHandler interface and divert their output, or deal with the full
complexity themselves. Moreover, the simplistic approach to annotate data de-
pendencies purely through the concept of key frames is problematic – in complex
scenarios a sequence of images may have no key frames at all, even though each
image has only finite and temporally close data references9.

The QuickTime low-level API is centered around the idea of frame-level ran-
dom access semantics – which is conceptually nice as it provides a great amount
of detailed control over the media processing – yet QuickTime fails to consistently
maintain this semantics as its level of abstraction is too low for this purpose.

2.1.2 DirectShow

DirectShow is a media processing framework developed by Microsoft. It was
originally released under this name in 1997, but is based on older frameworks
such as Video for Windows and ActiveMovie. Despite its origin as a pure media
playback architecture, it is quite capable of expressing complex media processing
and editing operations.

2.1.2.1 Component model

DirectShow relies on the generic COM+ component object model that is already
an integral part of the Windows run-time environment. As such, COM+ takes
over all tasks of managing, browsing, querying and instantiating components –
the "only" task left to DirectShow is to define the component interfaces accessible
through the usual COM+ mechanisms.

DirectShow implicitly uses many services provided by COM+, for example
applications can use the run-time type information facilities to query whether
a particular component provides a desired interface (e.g. IMediaSeeking provid-
ing mechanisms to perform random seeks to desired points in time). However,
discussion of COM+ is out of scope for this work, the reader is referred to the
relevant literature [54] instead.

DirectShow relies on the COM+ system registry to associate "names" (GUIDs)
to component classes. In most cases DirectShow does not perform name-based

9Consider an MPEG-2 video coded as IBIBIBI... in display order or IIBIBIB... in coding order
– each B frame can be decoded using the surrounding I frames as reference, yet none of the I
frames beside the first can actually be a key frame in the sense used by QuickTime. See also
figure 1.15 on page 49.

66 CHAPTER 2. RELATED WORK

Output Input

AVI Splittervideo.avi

in XForm outStream 01

Stream 00
Decompress

Output (rendered)

Renderer

Output (rendered)

Renderer

MJPEG Video

Audio

The above graph represents the playback of an AVI file: The left-mode node (video.avi) reads raw
octets from the underlying file, the AVI Splitter node is responsible for extracting desired tracks from
the stored media. The demultiplexed video track needs to be decompressed (using the motion JPEG
decompressor in this example), decompressed video and audio stream can finally be rendered. The
Audio Renderer also provides the reference clock for this presentation.

Figure 2.3: Example DirectShow filter graph

lookup, but uses more complex criteria such as input/output format constraints,
semantic annotations of connector pins and filters to find component classes.
For this, DirectShow maintains several other registries that map to the GUIDs
of component classes. In addition to the constraint-based lookup DirectShow
also relies on the system component enumeration mechanism where multiple
functionally equivalent components can fill in a desired role (e.g. selecting video
input devices).

2.1.2.2 Processing concepts

Media processing in DirectShow is centered on building a filter graph that de-
scribes the flow of data (edges) and processing steps to be applied to the data
(nodes, called filters). The filter graph itself is represented through an object that
implements IFilterGraph interface which contains methods for adding, removing
and locating filters (it is however recommended to use one of the derived inter-
faces like IGraphBuilder instead, see below). It is also responsible for synchro-
nizing all media processing operations to a reference clock (represented through
the IReferenceClock interface, usually one of the objects contained in the graph
itself will take over this role) and provides other interfaces such as IMediaControl
that allow to start, stop and pause processing. Figure 2.3 shows an example
filter graph.

DirectShow defines the interfaces IMediaSample as a generic container for
any data passed between two nodes in the filter graph. In addition to the actual
media data, each IMediaSample may also transfer additional meta-data such as
timestamps that help in interpreting the data. The timestamps also allow the

2.1. MEDIA PROCESSING FRAMEWORKS 67

filter graph object to schedule operations: Normally, the processing of the data
progresses in "lock-step", but IMediaSample objects that do not carry timestamps
are exempted from this rule.

The filter nodes themselves are represented through the IBaseFilter interface
and contain the actual processing logic. At the functional level the individual
filters can provide a variety of services in the context of media processing, for
example:

• Source filters have only output pins and supply "initial" data into the graph;
this can be synthesized data or any other data that needs to be inserted
into the media processing from the outer world (e.g. data read from a file).

• Sink filters have only input pins and receive the end results of the filter
chain. They may e.g. write compressed data into a file, or Renderer filters

in particular may be used to playback media.

• Mux/Demux filters either multiplex multiple data streams from multiple in-
put pins to one output pin, or vice versa.

• Format conversion filters transform given data into a different format. They
are usually only introduced as auxiliary filters to satisfy input/output con-
straints of filters that are to be connected when completing the graph.

The architecture allows arbitrary other types of filters that perform
application-specific transformations on the data.

Each filter possesses a number of input and output pins (implementing the
IPin interface). The pins express their filter’s input and output format constraints
(an output pin may be connected to an input pin only when the sets of supported
formats are not disjoint) as well as some semantic information for the filter graph
manager (see below). They are also responsible for negotiating the format actu-
ally (if multiple are elegible) as well as the method of data transfer to be used
between the connected nodes (e.g. push/pull using callbacks, or through inter-
thread communication).

While applications can build their own filter graphs from scratch, it is gen-
erally recommended to use the filter graph manager through the IGraphBuilder
or other more specialized interfaces – they provide high-level methods that build
a complete graph from given "graph fragments". The filter graph manager will
search the component registry for conversion and (de-)multiplexing filters such
that it can form a valid graph.

It should be noted that each of the objects (filter graph, filters and pins) typ-
ically supports other interfaces – for example data source and sink filters may
provide the IMediaSeeking interface and advertise their capability to jump to spe-
cific positions in time. The filter graph object in turn will be aware if the aggre-
gate of all filter nodes is capable of seeking and may also expose this capability
through the IMediaSeeking interface.

68 CHAPTER 2. RELATED WORK

2.1.2.3 Data representation

DirectShow uses AM_MEDIA_TYPE objects to identify different media formats,
both for matching of connectable IPins as well as attached to annotate each IMe-
diaSample . The architecture is not limited to a fixed set of different formats,
but can be dynamically extended as well. As to what constitutes a distinct "for-
mat" is generally up to the implementor of filters consuming and producing the
corresponding data. Typical examples are raw (unprocessed) byte-stream data,
demultiplexed audio or video data, individual frames of a specific compressed
format, or rastered images in a specific colour model.

Note that the data contained in an IMediaSample can usually not be inter-
preted outside of the context of the filter graph – while some formats may choose
to represent e.g. self-contained images in a single IMediaSample , this is pretty
much the implementor’s choice. In general, issues such as reference frames or
out-of-order decoding become an implementation detail of the filters which may
have to perform requisite buffering. The architecture is centered on the concept
of streaming media data through the filter graph that not too much semantics
should in general be put into individual IMediaSample objects.

2.1.2.4 Capture

Capture of media data (video and audio alike) is performed by instantiating cor-
responding filter nodes as "sources" for the whole graph: These nodes do not
have any input pins, but at least one output pin to represent the captured data.

The filter objects representing data capture are not instantiated through Di-
rectShow; instead the application must use the system device enumeration ser-
vice to locate available devices from which the application must choose. The
devices in turn provide a standardized interface for instantiation of data capture
filters that can be added to a filter graph.

2.1.2.5 Editing services

While the filter graph concept of DirectShow allows to express complex me-
dia processing operations, it is very inconvenient to manually construct such
a graph – in particular, the filter graph only represents the "static" (time-
independent) view of the processing chain: Effects that are to be activated at
specific points in time must be followed by delay or temporal multiplex filters –
the view of the graph thus shows all effect filters ever applied during the pro-
cessing, regardless of the point in time they are supposed to be active.

A more suitable representation for media editing is through time lines: these
provide a time-variant view of the individual media including the effects active
at any given point in time (cf. figure 2.4). DirectShow editing services consists
of several APIs that allow to manipulate time lines, serialize and deserialize time
lines to/from storage, and convert time lines into a filter graph representation

2.1. MEDIA PROCESSING FRAMEWORKS 69

Video A Video B

Video C

Transition

Video A B B/C C

The upper half shows a video consisting of two logical video time lines as well as a transition
between the two: The first scene consists of video A, the second scene starts with video B but
gets faded over smoothly using a transiation effect into the video C. The lower half shows the
composited video. A filter graph for realizing this composition is shown in figure 2.5

Figure 2.4: Time line view of a video editing operation

to actually perform the processing (cf. figure 2.5). The resulting filter graph can
then be used to render the resulting multimedia presentation to the display for
preview or into a file by instantiating corresponding render nodes to terminate
the graph.

2.1.2.6 Discussion

DirectShow provides a comprehensive framework to express media processing
through its very abstract and generic filter graph concept. The underlying COM+
model provides considerable flexibility in extending the architecture and adapt
it to the specific processing requirements, however it introduces tremendous
complexity for the component implementors.

The streaming media approach employed by DirectShow simplifies integra-
tion of modern coding techniques using both forward and backward prediction
of frames as the processing nodes can (and actually must) transparently buffer
and reorder frames (in contrast to QuickTime’s approach where the temporal
relationship is completely exposed). It should however be noted that it incurs
significant semantic loss compared to QuickTime as the structure of the under-
lying media data becomes completely opaque – basically, any correlation between
e.g. compressed input data and uncompressed output data of a decompressor
filter is lost, as the application simply cannot assume that the filter is stateless.
This also introduces new problems when frames must be dropped (e.g. due to
corrupt/lost data or due to system overload) – the stateful nature of the filter
nodes and lacking semantics of data flowing through the graph make resynchro-

70 CHAPTER 2. RELATED WORK

Transition
Renderer
Video

Video B

transparent

black

Video C

Video A

transparent

black

Mux1

Mux2

The above graph represents the compositing operation shown in figure 2.4 as a filter graph: The
nodes Mux1 and Mux2 perform a temporal multiplex of the input video scenes that correspond to
the upper and lower time line of figure 2.4, substituting a transparent black image when no video
has been defined for the corresponding point in the time line. The Transition node finally realizes
the compositing of the two time lines, blending the images from video C smoothly over the images
from video B at corresponding points in time.

Figure 2.5: DirectShow filter graph realizing a compositing operation

nization with an interrupted data flow extremely difficult and in some cases even
impossible.

DirectShow’s streaming approach also provides a clean mechanism to condi-
tionally delegate parts of the media processing operations to the graphics hard-
ware (cf. section 2.1.1.7): Media data residing in GPU memory can be distin-
guished from media data in system memory by "artificially" assigning different
formats ("artificial" because both may technically represented using the same bit
pattern) with conversion filters to transfer data back and forth. It then becomes
the filter graph manager’s responsibility to choose different filter nodes depend-
ing on the filter sink (or, alternatively of the pins to agree on either format during
format negotiation).

In a sense, the filter graph manager may perform a limited form of "global
optimization" when constructing the filter graph. the optimization is necessarily
static as the filter graph can not always be reconfigured at run-time since the
filter nodes may have built up considerable state information that cannot easily
be transferred to (or recovered by) newly added nodes. However, this optimization

2.1. MEDIA PROCESSING FRAMEWORKS 71

capability is indeed very limited as it must treat all nodes already introduced into
the graph (e.g. to realize video or audio effects) as "black boxes".

This can result in less than optimal processing behaviour if filters perform ac-
tions only "conditionally", i.e. sometimes passing the data through unmodified,
while transforming it at other times. This limitation becomes very visible when
considering the filter graph example shown in 2.5 – the filter graph executor can-
not know when video C fully occludes video B and thus inhibit further processing
of B. While the provided service to automatically generate filter graphs from the
intuitive timeline representation is certainly nice, it begs the question if a more
procedural interface to perform the editing operations might be preferable to
begin with.

2.1.3 Network Integrated Multimedia Middleware

Network Integrated Multimedia Middleware [40] (abbreviated as NMM) originates
from a research project initiated at University of Saarland in 2000. It is intended
to provide an architecture for distributed processing of multimedia data on mul-
tiple networked computers. It is neutral to the platform both the controlling
application as well as the participating media processing nodes run on, and also
supports a heterogenous mix of systems. While it operates on a significantly
higher level than the previous two frameworks, it is included in this discussion
as an example of an approach to distributed multimedia processing.

2.1.3.1 Distributed processing concepts

In contrast to the previous two multimedia frameworks which concentrate purely
on media processing performed on a single computer, NMM addresses the prob-
lem of distributing the processing to multiple nodes in the network. Like Direct-
Show, NMM takes a flow-graph based approach to multimedia processing – the
graph itself is constructed and maintained by the controlling applications, but
it consists entirely of proxy objects that control the "real" filter nodes which in
turn may be spread across the network.

While an existing distributed object framework like CORBA could have been
used to base this design on, the NMM creators elected not do so for a variety of
reasons (citing mainly efficiency aspects such as resource consumption, cf. [41]).
Instead the proxy objects are neutral to the middleware they use for communi-
cation with their counterpart (they may e.g. encapsulate CORBA stub objects, or
use a homegrown protocol).

The filter graph itself is composed of Node objects that represent a specific
multimedia data transformation (cf. 2.1.2). Each Node may feature several input
and output Jack s that represent the node’s communication endpoint with a peer
node. Both Nodes and Jack s are controlled by the master application through
corresponding proxy objects (cf. figure 2.6).

72 CHAPTER 2. RELATED WORK

Node
Jack

Node
JackVidSource Display

Proxy
VidSource Jack

Proxy

Controller application

Network

Computer #2Computer #1

Flow of control data Communication channel

Jack
Proxy

Display

Proxy

The figure illustrates the distributed processing model of NMM: The application manages a logical
filter graph consisting of proxy nodes, while the actual processing nodes may be spread across
the network. The proxy nodes are the means by which the application can exert control over the
processing nodes.

Figure 2.6: Distributed filter graphs in NMM

The controller application is responsible for instantiating nodes (on the local
system or on remote hosts), creating a filter graph and establishing the connec-
tion between Jack s that must exchange data. Instantiation of remote objects
uses discovery and brokerage mechanisms very similar to those found in other
distributed object systems, so it is not further discussed here. It should only be
noted that NMM is also middleware-neutral in this respect and may thus in fact
use several underlying mechanisms.

However, connection establishment between Jack s deserves further discus-
sion, as the architecture treats communication channels as first class objects in
the controller application: The controller chooses a means of communication to
be used for exchange of media data between the Jack s, and then configures the
Jack s accordingly (using the proxy object). In other words, the "negotiation" for
a suitable communication channel is not performed by the Jack s or the phys-
ical machines they are hosted on, but by jack proxy objects in the controller
application.

The ability of the controller to explicitly choose communication channels is
essential also for other services provided by NMM (e.g. transparent migration of

2.1. MEDIA PROCESSING FRAMEWORKS 73

nodes while the filter graph is active).

2.1.3.2 Processing nodes

NMM itself defines a number of data formats as well as node types that can
perform desired transformations and other media processing operations. Han-
dling of (de)multiplexing, (de)compression and format conversions is similar to
the strategy chosen in DirectShow.

NMM uses a unified component mechanism only for the proxy nodes con-
tained in the controlling application’s filter graph – the processing Nodes that
may be instantiated at remote on systems on the other hand do not have such a
defined architecture. Instead, NMM takes the middleware-neutral approach also
in this respect, and generally elects to implement processing Nodes as wrappers
around other existing media processing frameworks (like QuickTime or Direct-
Show).

2.1.3.3 Discussion

NMM provides a highly abstract multimedia processing framework featuring a
processing concept that is very similar to DirectShow. The architecture is consid-
erably less refined than DirectShow, which is however more owed to constraints
on developer resources than conceptual limitations.

Several of the comments given already in section 2.1.2.6 about filter graph
based approaches in general do therefore also apply here. Mainly the "black
box" nature of the filters can be a considerable cause of inefficiencies in that the
graphs constructed are less than optimal for the desired processing.

The crucial difference to DirectShow that makes NMM quite remarkable is the
separation of the logical and technical processing filter graphs: The logical filter
graph consists of nodes that represent the controlling application’s wishes, but
it consists entirely of proxy objects that cannot actually provide the service they
represent themselves. The technical filter graph consists of the nodes capable of
performing the desired operations.

While the architecture strives to be neutral with respect to underlying middle-
ware used for communication, this neutrality also has its downsides as it tends
to limit the semantics to the lowest common denominator. Several services of-
fered by sophisticated distributed object environments such as authentication
are not considered at all. Unfortunately, experience tells that grafting such fea-
tures later on a fully developed system tends to be rather difficult10.

Interestingly, NMM assumes all participating nodes to have synchronized
clocks (using e.g. NTP) despite its attempts to be independent from other mid-
dleware in general.

10e.g. authentication between remote nodes will require some form of credentials passing for
impersonation

74 CHAPTER 2. RELATED WORK

Summary

The presented media frameworks exhibit different approaches to representing
media data and media processing: From the relatively low abstraction level and
high degree of control offered by QuickTime to the relatively shielded and rigid
filter graph based models offered by DirectShow and NMM.

While the filter graph based approach can cope easily with very generic
"temporally local" compressed media representations (cf. sections 1.4.1.4 and
1.4.3.3), QuickTime cannot really offer a sensible interface here as too much
detail about the underlying media format is exposed and must be understood by
the application – the option of falling back to the more convenient MediaHandler
interface incurs the same semantic loss as the filter graph approaches.

It is also interesting to note that all presented systems are built on the as-
sumptions that media is always represented in a time- and space-discretized
format. While this limitation is not particularly severe today as this covers the
vast majority of existing media data, this assumption is slightly at odds with
trends towards "synthetic" representations (in the form of compositing or scene
description operations) for which discretization is neither required nor a partic-
ularly natural representation.

The important observation is that the identified weaknesses are in fact archi-
tectural and not quality of implementation problems.

2.2 Media processing in the Linux environment

This section gives a brief overview of media processing facilities usually found
in the Linux operating environment. For the most part these are small libraries
that are very focussed on a single aspect instead of fully integrated frameworks,
however two exceptions should be mentioned.

First, while NMM is not really targeted at fulfilling this purpose it could con-
ceivably be used as a network transparent multimedia framework in this envi-
ronment. However, NMM’s approach of trying to be independent from the under-
lying target platform through its abstraction layers results in rather poor integra-
tion with the rest of the desktop environment – since it tries to assume basically
nothing of the underlying platform in terms of services offered, it ends up du-
plicating a lot of infrastructure that is already in place. Additionally, lacking
features such as authentication and an impersonation model for code executed
on remote nodes makes it unsuitable for deployment in typical desktop scenarios
where the network and other computers must be considered untrusted.

Second, gstreamer provides a cross-platform streaming media solution that
is based on the same generic filter graph processing concept as DirectShow (it
is therefore not separately discussed above). It is based on the GObject model
developed as part of the Gnome desktop environment and retains close ties to
its origins. Like DirectShow, gstreamer does not distinguish between logical

2.2. MEDIA PROCESSING IN THE LINUX ENVIRONMENT 75

and technical filter graph (cf. section 2.1.2.6) and as a result does not offer any
support to delegate part of the media processing to remote nodes in the net-
work (unlike NMM). This is unfortunate as most desktop environments support
the network transparency offered by the underlying X Window System (see sec-
tion 2.2.1.3) rather well. All other general remarks about filter graph based
approaches apply here as well.

While gstreamer is widely deployed (and functionally compares quite favor-
ably with QuickTime and DirectShow – note that these do not offer any network
transparency either) this means that at the time of this writing none of the candi-
date multimedia frameworks can currently be considered suitable for the Linux
environment without compromising the network transparency.

2.2.1 Low-level data capture and playback

2.2.1.1 Video capture and overlays

Video for Linux (V4L) defines a kernel-provided interface that applications can
use to gain access to framegrabber-like devices capable of performing direct
memory access to the system memory. This includes basically all TV tuner cards
and all non-USB and non-Firewire (see below) video acquisition devices, as well
as a number of video overlay drivers. The original V4L interface is generally re-
ferred to as as V4L1 (Video for Linux version 1) while at the time of this writing
most device drivers have been updated to the revised V4L2 interface.

The interface is very low-level and generally exposes only capabilities directly
available in hardware – there is no software emulation of unsupported features
requested by applications. Accordingly, applications can expect the operations
to be very efficient but must on the other hand be prepared to be content with the
restricted set of capabilities offered by some device. Many applications therefore
do not use the kernel interface directly but make use of wrapper libraries that
abstract and emulate access if desired, however no single standard library has
emerged for this purpose (as the task of these libraries is in fact quite trivial).
The V4L2 interface abstracts only the image capturing or overlaying capabilities
of the underlying device – audio capture and playback is performed through the
ALSA interface instead (cf. section 2.2.1.2).

For V4L2 devices the kernel exports a device node through which a descriptor
to access the device can be instantiated. All further device access is channelled
through this single descriptor which applications use to query capabilities, con-
figure parameters and exchange data. The interface also provides synchonization
capabilities through the usual unix file descriptor notification mechanisms (e.g.
poll or asynchronous signals).

Devices can offer two types of interfaces for data exchange with the appli-
cation (though no device is required to support both interfaces): One interface
based on streaming reads (or writes for overlay interfaces), and one interface
based on a shared memory ring buffer. The streaming interfaces are easier to

76 CHAPTER 2. RELATED WORK

use, each single read/write operation transfers one frame (or field) worth of
data in the format negotiated between application and driver. While simple, this
interface is prone to undetectable loss of frames (and therefore synchronization
problems) as it does not support to exchange timestamps or other meta-data
associated with the frames or fields.

The ring buffer interface requires the application and the driver to agree on
a memory area that will hold multiple buffers for one frame or field each. The
driver then provides an interface that allows to hand over buffers between driver
and application – the producer will hand over the buffer after it is finished writing
data, while the consumer will return the buffer after it has finished processing
the data. Timestamps written by the data producer allow the partner to detect
over- or underruns, it is up to the application to configure a sufficiently large
number of buffers if it wishes to reduce the probability of this happening (at the
cost of higher memory usage).

USB and IEEE1394 ("Firewire") devices are generally controlled using direct
protocol access to the underlying bus exposed by the kernel, so the abstrac-
tion layer for these devices is not provided by the kernel itself but instead by
user-space libraries such as libavc1394. For this type of devices the V4L2 API
generally does not make much sense as these devices are technically incapable
of DMAing complete frames from/to user-specified memory without further soft-
ware assistance. Instead, interaction more resembles a network protocol ex-
change, thus the Linux designers elected to expose protocol-level access to these
devices and therefore move the abstraction layer out of the kernel11.

2.2.1.2 Audio capture and playback

The Adavanced Linux Sound Architecture (ALSA) [66] provides applications with
access to audio devices (most importantly PCM capture/playback and device
control) on Linux systems. It operates on the lowest, technical level of audio
playback and capture, allowing applications to transfer sample data to/from
audio devices and receive transfer notifications (that can also be used for syn-
chronization purposes). The architecture essentially consists of the following two
parts:

• Hardware drivers realized as kernel modules; the drivers provide a common
kernel/user-space interface that unifies access to different types of audio
hardware.

• the ALSA library that acts as a shim layer between application and (hard-
ware) drivers.

The ALSA library provides an interface that reflects the low-level hardware
driver interface, but virtualizes the access such that the technical mechanisms

11It should be noted that several older drivers do in fact emulate the V4L interface, but this is
gradually being deprecated in favor of more low-level access methods.

2.2. MEDIA PROCESSING IN THE LINUX ENVIRONMENT 77

of access to audio devices can be changed underneath. It provides several plug-
in interfaces – e.g. it allows "virtual" PCM devices to be created through the
"I/O plugin" mechanism (in fact, direct hardware access is realized through the
built-in "hw" component).

PCM samples for playback and capture are stored in buffers of configurable
size which are further subdivided into a configurable integral number of pe-

riods (buffer and period size are fixed before the playback or capture operation
starts and may not be modified until it is finished). Applications are expected
to fill/drain the buffer sufficiently frequently as to avoid under- and overruns.
ALSA supports notification of the application as playback/capture of the next
period starts, allowing the application to synchronize on the playback/capture
rate.

Typically, ALSA maps the memory buffers from/to which audio devices trans-
fer sample data using DMA into the application’s address space; this enables ap-
plications to modify any sample value just after/until it is physically transferred
from/to the audio device and thus allows good latency behaviour (essentially
only limited by the real-time characteristics of the operating system and the au-
dio hardware).

ALSA has emerged as the de-facto standard API for audio programming in
the Linux environment. Detailed information including an API reference can be
found in [1].

It should however be noted that other audio APIs exist that are less frequently
used and normally layered on top of ALSA12 as the abstraction layer offered
by ALSA is quite low. None of these higher-level APIs has however received
sufficiently wide spread adoption that they could yet be considered a standard
API, the only real contender is libsydney.

2.2.1.3 Display

Linux provides several means to interact with the display subsystem, the method
most prominent method is through the X Window System [55].

The X Window System distinguishes X clients – which are essentially the ap-
plications containing all processing logic – and the X server – which draws and
displays graphics on behalf of the clients and manages input devices. Clients
and server communicate through the X protocol which can be tunnelled through
several transport protocols such as unix domain sockets (classical inter-process
communication using bi-directional pipes) or TCP connections. The system is
thus network transparent and allows to interact with applications on remote
computers through a graphical user interface on the local terminal. Further-
more, it is extensible, allowing custom functionality to be added to the protocol
in an upward compatible fashion.

12One notable exception is JACK when used in conjunction with several IEEE1394-based audio
devices as prefered by many music professionals: The devices are generally accessed using direct
IEEE1394 protocol access by JACK and audio synthesizing applications, bypassing ALSA.

78 CHAPTER 2. RELATED WORK

At its core, the system provides mechanisms that allow clients to create, in-
teract, and receive event notifications from various classes of server-side objects
(in the terminology of X they are usually referred to as "resources"). The system
provides a standardized way to identify these objects through 32-Bit numbers
("XIDs") in the protocol. All functional services provided by the X server use
this infrastructure and provide objects with different capabilities, such as on-
screen windows, off-screen pixmaps, graphics contexts or fonts. Clients initiate
operations by sending a "request" containing desired parameters (including any
server-side objects to be used in the operation) to the server, which will execute
the command on behalf of the client.

X provides a hierarchical window model, with the whole screen represented
as the "root" window and child windows being rectangular slices out of their
respective ancestor window(s). Commonly, each application will create its own
window as "virtualized screen area" to present its graphical interface. The system
delegates most of the management tasks concerning the visual appearance and
behaviour of the screen to the client applications – it is up to the clients to
determine spatial positioning of the windows and determine what is drawn there.
It is customary to centralize the positional management of windows in a single
dedicated client application called the window manager.

Recent implementations of the X Window System provide two different draw-
ing models: The legacy "core" X drawing model offers a rich set of geometric
primitives (lines, polygons, ellipses) but is conceptually limited to drawing sharp-
edged figures. The newer model based on the RENDER extension [45] is limited to
relatively simple geometric shapes (triangles and trapezoids) and thus requires
applications to perform tesselation of more complex shapes – but it offers a rich
compositing algebra where geometric shapes typically serve as implicit masks
with smooth boundaries, such that RENDER offers vastly expanded drawing ca-
pabilities much better suited for typical use-cases (where complex shapes like
ellipse segments are indeed rather hard to find).

The newer rendering model is centered around the concept of a Picture, an ab-
stract rastered image (see section 1.3.4.1) that may potentially include an alpha
channel. The supported drawing operations combine a source picture clipped by
a mask with a target picture using a compositing operator such as OVER. The
mask may either be implicitly defined through a geometric shape, or explicitly
given by another Picture.

While the X Window System supports a powerful drawing model, it is some-
times inevitable that the applications must transmit pre-rendered content to the
X server. This is of course conceptually supported by the model, but the pro-
tocol does not support mechanisms to transmit compressed data – applications
operating on the same physical machine have the option of exchanging data us-
ing shared memory segments, but for networked operations they are essentially
restricted to "small" and/or infrequent image uploads if they want to maintain
good performance.

It should be noted that on typical installations the X Window System is not the

2.2. MEDIA PROCESSING IN THE LINUX ENVIRONMENT 79

only avenue applications have of interacting with the display system – especially
for games or very demanding graphics programs it is very common to require
direct hardware access. The X server also provides some support for this model:
It provides a mechanism to negotiate direct hardware access as well as means
for coordination.

2.2.2 Media processing tools

2.2.2.1 Cairo

cairo is an abstract vector graphics API that supports multiple backends to per-
form drawing operations [11], including the X Window System (using the RENDER
extension [45]), PostScript or Portable Document Format files, Apple Quartz,
Windows GDI+ or OpenGL (through Glitz [43]).

The exported interface provides surfaces (represented as cairo_surface_t) to
represent targets of drawing operations and contexts (represented as cairo_t) that
represent the current drawing state (contexts are always assigned to a specific
target surface). Additionally, it uses patterns as a generalized form of read-only
images (represented as pattern_t) that can be applied to a target during drawing.
Formally, each drawing command specifies an operation of the form

surfacen+1 = surfacen op (pattern INmask) (2.1)

where

• surface0 is a fully transparent image

• surfacen is the original image before execution of the nth compositing opera-
tion

• surfacen+1 is the image after execution of the nth compositing operation

• pattern is either a uniform color (possibly including transparency), a gradi-
ent, or an image itself (possibly modified by an affine transformation)

• mask is an opacity mask defined by a geometric shape; the shape may be
a stroked or filled path; the path is either a sequence of straight lines and
bezier splines, or the outline of a sequence of glyphs

• IN is the IN compositing operator and

• op is any of the compositing operators discussed in [50] such as IN, OVER

or OUT, cf. section 1.2.2. (In fact, cairo supports a proper superset of the
classical compositing operators).

80 CHAPTER 2. RELATED WORK

void diagonal_blend(cairo_t *target, cairo_pattern_t *src1,
cairo_pattern_t *src2, int width, int height, double t)

{
cairo_pattern_t *gradient;

/* create blend mask */
gradient=cairo_pattern_create_linear(0, 0, width, height);
if (t>0) cairo_pattern_add_color_stop_rgba(gradient,
0 /* stop */, 1 /* R */, 1 /* G */, 1 /* B */, 1 /* a */);

cairo_pattern_add_color_stop_rgba(gradient,
t /* stop */, t /* R */, t /* G */, t /* B */, t /* a */);

if (t<1) cairo_pattern_add_color_stop_rgba(gradient,
1 /* stop */, 0 /* R */, 0 /* G */, 0 /* B */, 0 /* a */);

cairo_set_source(target, gradient);
cairo_pattern_destroy(gradient);
cairo_set_operator(target, CAIRO_OPERATOR_SOURCE);
cairo_paint(target);

/* filter second image with mask */
cairo_set_source(target, src1);
cairo_set_operator(target, CAIRO_OPERATOR_IN);
cairo_paint(target);

/* blend masked second image over first image */
cairo_set_source(target, src2);
cairo_set_operator(target, CAIRO_OPERATOR_DEST_OVER);
cairo_paint(target);

}

The function takes a given drawing context target (which must previously have been instantiated
for a target cairo_surface_t and performs operations on this drawing context that blend the two
given images. The parameter t is used to indicate the "progress": t=0.0 results in the image src1
being visible, t=1.0 will yield the image src2. Intermediate values result in a smooth diagonal
blend of the two images. See figure 2.8 for an illustration of the effect.

Figure 2.7: Diagonal blend transition between two images

t = 0.2 t = 0.4 t = 0.6 t = 0.8

Diagonal blending of two images, using different values for the progression parameter t. See 2.7
for the code generating this effect.

Figure 2.8: Diagonal blend transition between two images

2.2. MEDIA PROCESSING IN THE LINUX ENVIRONMENT 81

Drawing contexts store all information contained on the right hand side of
equation 2.1, i.e. the pattern, the mask as well as the compositing operator.
cairo_t context objects are stateful to allow incremental construction of paths
that delineate a mask, and it supports affine-linear coordinate transformations
of patterns – the drawing model is in fact similar to PostScript in that it provides
methods to save and restore drawing states.

Figure 2.7 shows an example of using cairo to composite two given images:
The first block of calls creates an alpha mask that transitions from fully opaque
in the upper left to fully transparent in the lower left. The parameter t controls
the position and alpha value of an intermediate point on the connecting line;
varying the parater from 0 to 1 in time allows to realize a simple blend effect. The
further calls combine the mask with the second image and blend the result over
the first image. See figure 2.8 for an illustration

The drawing model supported by cairo maps well to the RENDER extension of
the X Window System – equation 2.1 essentially also describes the X rendering
model. However, X supports only rather primitive shapes and has no concept of a
drawing context, so cairo must support several additional services such as tesse-
lation, state management or caching of resources used for scratch intermediate
pictures that are used as patterns.

Cairo is poised to become the de-facto standard API for 2D graphics in the
Linux environment, however it also enjoys considerable popularity on other plat-
forms it supports, in particular for embedded systems. While cairo can concep-
tually support modular backends, the backend interface is at the time of this
writing not finalized yet and thus officially unsupported. For more information
refer to [10].

2.2.2.2 Codec libraries

The Linux operating environment usually includes several different libraries pro-
viding compressor and decompressor implementations for various compressed
media representation formats (in the sense of section 1.4). On the one hand
there are libraries concerned with individual formats, such as libjpeg and
libpng for images or libvorbis for audio. Usually, their purpose is to pro-
vide comprehensive support capabilities of the underlying format. They do not
provide a common API but instead prefer to expose all peculiarities of the format.
Due to their completeness they can usually be considered the de-facto standard
libraries for the specific media representation.

The second group of libraries are "codec collections" – their goal is to pro-
vide support for many different formats through a common API, and therefore
necessarily hide many of the individual format’s characteristics. Many of these
libraries have their origins in different "media player" projects, one particularly
popular example is the ubiquitous vlc media player (but interestingly none of
these projects has considered the issue of network-transparent playback). This

82 CHAPTER 2. RELATED WORK

heritage also means that most of these libraries follow a "streaming" processing
paradigm.

The libraries vary wildly with respect to format coverage. One particu-
larly comprehensive collection is provided by the ffmpeg project: It provides
a command-line tool for encoding and transcoding media [65]. It makes use of
two libraries, libavcodec and libavformat that form part of the distribution
– these provide audio and video codecs as well as support for several types of
container formats, respectively.

libavcodec provides a unified interface for video and audio codecs as well
as a plugin infrastructure for registration, lookup and instantiation of encoder
and decoder instances. The instances are functionally roughly equivalent to
DirectShow compression and decompression filters: They process data according
to the streaming paradigm, they are stateful and transparently perform internal
buffering and reordering to cope with out-of-order en- and decoding.

Chapter 3

Media processing framework
architecture

This chapter outlines the design of the media processing framework, and in par-
ticular the core media toolkit library – imaginatively dubbed libmedia – pro-
viding the interfaces and basic functionality. In the first part the "guiding ideas"
underlying the architecture will be introduced and motivated in front of the back-
ground of the findings in section 2.1. These ideas are realized in the architecture
described in the succeeding sections.

Section 3.2 introduces the core, media-type independent concepts. This in-
cludes the base classes that provide the time concept, modularization and the
programming interface concepts used for I/O of media data. Section 3.3 dis-
cusses how support for the most commonly used types of media (audio, images,
video) is realized on top of the core abstractions; in the architecture to be pre-
sented media processing is inseparably linked to media representation, so this
aspect is also covered here. Section 3.4 discusses capture and rendering of audio
and video media; the concept of "rendering" is of particular importance in this
architecture – it is both much more generic than "playback" and considerably
more complex than in other media architectures. Section 3.5 finally discusses
the "document" concept used to represent persistently stored media; typically
this is done in container files, but the document concept is more generic.

3.1 Design choices

The purpose of the multimedia framework as a whole is to assist application
programmers in realizing their application’s media processing requirements. The
key observation is that application writers generally wish to formulate media
processing intent in terms of steps to be performed on the media content (e.g.
"darken this image") without caring about the concrete technical representation

(e.g. color model) currently used for the media element. This naturally leads
to a number of abstractions that should be provided by any media processing

83

84 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

framework, such as images, video and audio sequences as well as multimedia
container documents (cf. QuickTime movie files, section 2.1.1.2.).

While these abstractions themselves are near-universal, the model provided
by the media processing framework for manipulating these data elements is not.
The following sections will motivate and present the design choices made for
libmedia.

3.1.1 Processing model

While filter graph based architectures like DirectShow provide an easily under-
standable mode of operation, they have several weaknesses (as pointed out in
section 2.1.2.6 already):

• The filter graph approach forces the application to adopt an event-driven
programming paradigm as the processing is controlled entirely by the filter
graph executor. While this may be an acceptable restriction for GUI-driven
interactive applications (that are generally structured for event-driven pro-
cessing anyways) this is highly undesirable for applications that are essen-
tially data-driven (such as batch processing) or can for other reasons not
tolerate the inversion of the control flow (which is a typical problem for
many network server applications).

• Since the modularization concept requires the filter nodes to be treated as
"black boxes" this can prevent interesting optimizations, e.g. if two chained
filters perform inverse operations: While it would be desirable to simplify
the graph by eliminating the two nodes, this would require knowledge of the
inner workings of the two nodes – which however is not available without
compromising on the modularization concept.

• The stateful nature of the filters makes it difficult or even impossible to
reconfigure the graph at run-time – unconditionally safe modifications can
only affect nodes that are known to be stateless.

• A second ill effect of the state implicitly held by filter nodes is that the con-
siderable loss of semantics as the graph represents only the "forward" pro-
cessing of the data: Data received by the "sink" nodes of the graph cannot
be correlated back with data pushed by the "source" nodes into the graph.

• For complex media processing operations, "time lines" editing provide a con-
siderably more intuitive representation. While transformation of the time
line editing into a filter graph representation is possible, the more obvious
realization would be to iterate through the time axis and perform required
transformations procedurally.

These weaknesses make an imperative programming paradigm as featured
by QuickTime appear preferable. Moreover, if media processing operations are

3.1. DESIGN CHOICES 85

realized as procedure calls, it is trivial to "wrap" these calls into filter node in-
stances and thus create a filter graph processing concept on top of the underlying
procedural interface – however the opposite is not true, so an imperative pro-
gramming paradigm is the more generic of the two approaches and has been
chosen for this architecture in favor of filter graph processing.

3.1.2 Data model

In the summary on page 74 of section 2.1 it was pointed out that the media pro-
cessing frameworks discussed there universally assumed temporally and spa-
tially discretized media representations. Considering the introduction given in
section 1.1 this limitation appears arbitrary and unnecessary: While discretized
representations play an important role in practical applications, they are bet-
ter regarded as imperfect approximizations of conceptually continuous time and
space domains. This becomes particularly obvious if the data must be "resam-
pled" either spatially or temporally: Lacking a canonical and theoretically sound
model how the discrete data is to be interpreted if interpolated, resampling is not
well defined.

Therefore, for this architecture media will be treated as time- and space
continuous (where applicable for the particular media type in question). More-
over, discretized media will be treated as special cases of continuous media
with canonical interpolations such as described in sections 1.3.2.1, 1.3.4.1 and
1.3.5.1 for the media types discussed there. In keeping with object oriented
design principles this means that the architecture must provide a base abstrac-
tion for the most generic (continuous) representation alternative, while the more
specialized discretized representations inherit from the generic one.

With the architecture providing these abstractions this also allows to address
an issue brought up in section 2.1.1.7: While QuickTime Movie objects allow
to retrieve media data for a given image, it requires the caller to resolve (recur-
sive) decoding dependencies itself. The provided abstractions should therefore
include any required meta-data (like implicit dependencies) for unambiguous in-
terpretation alongside the actual data.

3.1.3 Execution model

Section 2.1.1.7 pointed out that the "immediate" execution model featured by
QuickTime components leads to difficulties in delegating processing which is
however essential for this architecture as network transparency is one of the
main development incentives. A similar situation also exists in DirectShow (cf.
discussion in section 2.1.3.3) as the lacking separation of logical and technical
filter graph presents an obstacle for dynamic delegation (though it can still realize
static delegation at filter graph setup time using the format distinction explained
in 2.1.2.6).

86 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

NMM addresses the issue of delegation by introducing an additional abstrac-
tion layer through proxy objects for the filter nodes, i.e. for the processing ob-
jects. The same solution can however not be applied here: In case the operation
is delegated to a remote processing object, the imperative immediate execution
paradigm would just incur useless communication overhead as the data must
be transferred to the processing object and back eventually.

What the architecture therefore elects to do is to introduce an additional ab-
straction layer on the data objects instead, and to give up the immediate execu-
tion paradigm in favor of retained-mode processing: Instead of applying trans-
formations on media elements, a description of how the media elements should
appear is built up. A bridge towards the imperative programming model is pro-
vided by additionally introducing the concept of lazy evaluation: Any transfor-
mation that the application wishes to apply to any media data element is added
to the description of the media element (and thus queued up for execution at
a later point in time) – this allows to delegate the complete sequence of all re-
quired processing steps to be executed as a single entity, eliminating the need to
communicate intermediate results between the steps. As will be discussed later
in more detail (section 3.4.3), the retained-mode processing paradigm enables a
number of interesting optimizations by the media architecture.

3.1.4 Format transformations

The filter graph based approaches from section 2.1 feature a mechanism to auto-
matically complete a given, as of yet disconnected graph by introducing auxiliary
format conversion nodes to make the graph connectable. This service is conve-
nient for application programmers as conversion of media data of an abstract
type (e.g. an image) into an arbitrary representation of the same abstract type
(e.g. a rastered image in a specific color model) is automatic.

The same convenience can be provided in an imperative programming model
by making media elements weakly-typed with implicit conversion when a
transformation is applied that assumes a specific format. In conjunction with
the retained-mode processing paradigm explained in the previous section this of
course makes the auxiliary format conversions delegatable as well.

3.1.5 Component and object model

All of the architectures discussed previously draw their extensibility from an
underlying component mechanism – whether the component model is part of
the media framework itself (e.g. QuickTime, see section 2.1.1.1) or part of the
operating environment (e.g. DirectShow and COM+, see section 2.1.2.1) that is
just reused.

The component models underlying the systems discussed are provided as li-

brary functions and not as language features. For example, the QuickTime com-
ponent mechanism is not type-safe: As each component instance regardless of

3.1. DESIGN CHOICES 87

«Source»

+ listTracks(): MediaSource[]

«MediaSource»

+ onFragmentReady
: callback_chain<double>

+ getFragment(flags : int)
: Fragment

«Renderer»

+ listTracks(): MediaRenderer[]

«MediaRenderer»

+ onQueueDrain
: callback_chain<double>

+ render(frag : Fragment,
flags : int) : bool

«Fragment»

+ begin() : Time
+ end() : Time

«Data»

«Processor»

create consume

Figure 3.1: Classes providing basic media processing capabilities

type is represented as a ComponentInstance object, it is the caller’s responsibility
to only use methods that are indeed supported by the underlying implementa-
tion – the compiler has no mechanism to statically verify this as instances are
indistinguishable at the language level1. The COM+ component model on the
other hand requires "binding" through a particular interface using the QueryIn-
terface method prior to calling using it – afterwards all method calls are made
through a type-safe class interface.

This "library" approach to the component model leads to considerable func-
tional duplication of services already provided by most modern run-time envi-
ronments – Java and C++ for example provide language mechanisms to bind to
a specific interface implemented by an object at run-time through the type-cast
syntax (e.g. using dynamic_cast). In addition to being better known to program-
mers, these also offer the benefit of allowing better static checking through both
the compiler or other verification tools.

For this architecture it has therefore been decided to rely on the run-time
environment for component services (see section 3.2.1) – for all required ser-

1QuickTime supplies the ComponentCanDo function which may check at run-time if a given
operation is supported by a component instance in question.

88 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

vices existing features of the language (classes, inheritance and run-time type
information) or other parts of the run-time environment such as the link editor
(symbol resolution, dynamic loading) are to be reused.

3.2 Core architecture

libmedia distinguishes two abstract classes that are the base of most other
classes:

• Data: Designates objects that contain or represent any type of media data.
This includes multimedia documents, individual media or parts thereof,
byte-data that corresponds to a media element in a specific representation,
or encapsulated operating system objects that can contain or otherwise rep-
resent media data.

• Processor s: Designates objects that consume, produce, transform, or oth-
erwise manipulate Data objects, including accessors that store or retrieve
data to or from containers.

Both are mutually exclusive, i.e. classes may never derive from both. Data
objects generally encapsulate static system resources (see the implementation
notes in appendix A.1 for a more detailed description of the data model), while
Processor objects generally have no static resource usage (other than the mem-
ory used to represent the object structure itself). The framework provides an
automatic garbage collection mechanism for all objects that derive from these
base classes.

The library provides a number of pre-defined abstractions for commonly used
media elements. The most important one is the abstract Fragment concept used
for linearly time-dependent media: Each Fragment represents a short temporal
interval of media. Two timestamps denote the beginning and end of the interval,
instances of subclasses of Fragment will additionally contain the media snippet
corresponding to the interval. Fragment cannot represent any media by itself
and cannot be instantiated, derived subclasses represent fragments of specific
elementary media types (see section 3.3).

Objects providing the Fragment interface are usually obtained through the
MediaSource interface (getFragment) and are usually consumed by MediaRen-
derer (render), applications can however also synthesize or process fragments
themselves. Like Fragment , MediaSource and MediaRenderer are abstract and
cannot be instantiated, derived subclasses deal with specific media types.

MultipleMediaSource s can be aggregated through the Source interface, equiv-
alently multiple MediaRenderer s can be aggregated through the Renderer inter-
face (see figure 3.1 for the relationship of classes). Source s generally repre-
sent objects that are capable of producing multimedia data, such as capture
devices, receivers of network-transmitted media streams or read accessors into

3.2. CORE ARCHITECTURE 89

files, while MediaSource s represent the individual media delivered by the source
(e.g. individual "channels"). The aggregating Source acts as control instance for
all parameters that affect all subordinate MediaSource s collectively. This in-
cludes for example start/stop control or synchronization.

Equivalently, Renderer s generally represent objects that are capable of pro-
cessing multimedia data and transferring it to an entity external to the library
– such as presentation devices, transmission via network connections or files.
MediaRenderer s interpret given media fragments and transform the data into a
form suitable for the target they represent. This does not necessarily mean that
a MediaRenderer produces a perceptible representation of the media (e.g. a visi-
ble image) since MediaRenderers are also used to represent write accessors into
files.

No interpretation for the individual MediaSource s or MediaRenderer s grouped
by a Source or Renderer instance is mandated through the framework – the
application is free to treat them e.g. as "alternative" or "complementary" media
channels, the creator’s intention must be inferred from additional context.

The two "ends" of a media processing chain are not symmetric in this archi-
tecture (unlike filter-graph based architectures, cf. 2.1.2): Due to the retained-
mode processing paradigm (see section 3.1.3) it is in the MediaRenderer s that
all processing is performed. To reflect this asymmetry the consumers have been
named renderers instead of sinks to emphasize this difference.

Both Source s and Renderer s can indicate that they operate in real-time. For
Source s this means that fragments become ready for reading at some rate (and
the application must read them periodically to avoid overruns), for Renderer s
this means that they expect to periodically receive fragments (and applications
must provide them to avoid underruns).

3.2.1 Modularization and component model

Like the reference architectures presented in chapter 2, libmedia features a
modular approach to providing functional services. This is generally realized
as name-to-object in conjunction with the abstract factory pattern (e.g. [17] pp.
87ff): For example, the architecture defines the MIMEHandler interface (section
3.5.2) which provides as its main service the createDocumentFromFile method to
instantiate objects that can process a file of a specific MIME type. The registry
is then used to associate the name video/quicktime with a single object that
acts as factory to create accessor objects to QuickTime movie files through an
overridden createDocumentFromFile method.

The approach taken for libmedia however differs slightly from other compo-
nent models: QuickTime e.g. provides an abstract Component interface as base
class for the ComponentInstance factories; This means that applications utilizing
the component manager (fulfilling the role of the single registry) are responsible
for ensuring type safety for the instances themselves.

90 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

Instead, libmedia provides multiple, but type-safe registry lookup functions
– in the example above, the lookup function will always return objects of type
MIMEHandler (instead of some "component" supertype) which the application can
use with compile-time type checking.

The name registry is realized by mapping names to the identifier namespace
of the run-time environment2 and using the introspection capabilities for symbol
resolution (i.e. in the above example the name resolution process would look for a
global object instance by the name media::mimehandlers::video::quicktime). This
has the advantage that an application can either use run-time symbol resolution
through the lookup-function if the name of the required component is not known
at compile time, or it can directly reference the factory object if a specific com-
ponent is absolutely required in a specific place (which will consequently also
result in a compile- or link-time error in case the component is unavailable).

The individual registries are organized as sub-namespaces of the global iden-
tifier namespace. In particular, they are not declared in advance and individual
subsystems may introduce and use their own registries for internal purposes
(e.g. the QuickTime and AVI file handlers use themedia::quicktime::trackhandlers
and media::avi::trackhandlers namespaces as registries to assign compressed
media formats to the four-letter codes used in the file formats3). This also means
that registration of new components is done by simply declaring a global object
with appropriate name.

Provisions are in place to also handle dynamically loadable modules trans-
parently – symbols not found by introspection of the executable will simply be
looked for in the candidate loadable modules, with an optional symbol cache to
speed up lookup and browsing. A technical description of how this approach can
be realized in the target Linux/ELF environment is given in appendix A.4.

3.2.2 I/O model

Both MediaSource s and MediaRenderer s can operate in either blocking or non-

blocking mode. Applications may choose non-blocking mode of operation when
MediaSource s/MediaRenderer s are real-time and must choose blocking mode
otherwise.

In blocking mode a call to retrieve a Fragment from a MediaSource will block
until at least one Fragment is available; thus progress of the application will im-
plicitly be flow-controlled by the MediaSource . Equivalently, handing a Fragment
to a MediaRenderer may block while the Renderer is busy processing a backlog of
Fragment s4 and may thus exercise implicit flow control as well. Blocking mode of
operation is suitable if the application either wants to perform "bulk" processing

2In some cases this requires name-mangling as not all characters are allowed in identifiers.
3These distinct registries account for the fact that the four letter codes have different meanings

in the different container formats – e.g. motion jpeg is identified as ’mjpa’ in QuickTime files,
but as ’MJPG’ in AVI files.
4Note that non-blocking/blocking and asynchronous/synchronous processing are two orthogo-

nal concepts!

3.2. CORE ARCHITECTURE 91

queue
empty

queue
non-empty

next Fragment becomes available

onFragmentReady

getFragment returns one Fragment;

no more Fragments available

getFragment
returns no Fragment

next Fragment becomes

available

getFragment
returns one Fragment;

more Fragments available

The diagram depicts the state transitions initiated by non-blocking calls to getFragment or avail-
ability of new media Fragments, and illustrates when onFragmentReady callbacks are delivered

Figure 3.2: State transition diagram for non-blocking access to MediaSource s

of media data (and thus does not care about timing at all), or can for external rea-
sons be confident that blocking does not interfere with timing requirements (e.g.
the application may assume that reading media data from/writing media data
to disk can be performed significantly faster than real-time, or it may employ
multiple threads that may individually block waiting for data).

In non-blocking mode reading a Fragment from a MediaSource or writing a
Fragment to a MediaRenderer will never block, but may instead inform the ap-
plication that the operation cannot currently be executed (e.g. because no Frag-
ment is currently available from a MediaSource or a MediaRenderer ’s backlog
queue has reached its limit). Flow-control is in this case exercised explicitly
through two callback chains (MediaSource::onFragmentReady and MediaRen-
derer::onQueueDrain).

Registered callbacks are delivered to notify the application of state transitions
between "fragment queue is empty" and "fragment queue contains at least one
element" for MediaSource s (cf. figure 3.2), and "render queue is full" and "ren-
der queue has space for at least one fragment" for MediaRenderer s (cf. figure
3.3). Notification is "edge-triggered" to inform about transition between the two
respective state for performance reasons, as this mechanism is only intended to
provide an "on/off" flow-control mechanism to detect and avoid buffer over- or
underruns in exceptional situations (e.g. loss of synchronicity due to run-time
errors). Applications that want to perform real-time media processing are gen-
erally advised to employ the mechanisms outlined in the following sections for
proper synchronization.

Blocking and non-blocking modes of operation correspond exactly to the Posix
blocking and non-blocking I/O concepts. Non-blocking I/O is provided to acco-

92 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

queue
full

queue
non-full

Fragment is processed

onQueueDrain

render returns "true";

no more space in queue

render
returns "false"

Fragment is

processed

render
returns "true";

more space in queue

The diagram depicts the state transitions initiated by non-blocking calls to render or processing of
one fragment, and illustrates when onQueueDrain callbacks are delivered

Figure 3.3: State transition diagram for non-blocking access to MediaRenderer s

modate reactive (event-driven) applications.

3.2.3 Time model

As indicated in section 3.1.2, time is treated as a continuous scalar variable (in
contrast to other media systems where time is always discretized into "ticks").
This approach relieves the programmer of considerable work as events may be
associated to arbitrary points in time. However, this requires additional architec-
tural support for sources of time information that provide only infrequent timer
"ticks".

The architecture allows applications to process media by receiving media frag-
ments from sources, specifying transformations on the data, and finally hand-
ing the fragments over to renderers. This general order of operations is always
the same and independent from the actual implementations of the participating
components.

Both the sources of media fragments and the renderers may be subject to
real-time requirements: For media sources this typically means that they corre-
spond to data acquisition devices (such as video cameras, frame grabbers, audio
digitizers) or real-time media transmissions (such as live broadcasts). For media
renderers this typically means that they correspond to output devices (such as
displays or speakers).

Real-time sources and real-time renderers must autonomously execute ac-
tions at defined points in time to perform their functions. A media processing
chain as outlined above requires coordination between the different actors, and
this section will present the mechanisms that enable this coordination.

3.2. CORE ARCHITECTURE 93

«Processor»

«TimeSource»

+ getCurrentTime(): double
+ timer(callback : function(double),

when : double) : callback_link

«Clock»

+ onClockStart
: callback_chain<double>

+ onClockStop
: callback_chain<double>

+ start() : double
+ stop() : double

SystemClock

- rate : double

+ setRate(rate : double)
+ getRate() : double

«TickSource»

+ onTick
: callback_chain<double>

InterpolatedTimeSource

- tickHistory
: pair<double,double>[]

TimeMapper

+ convertFirst(t : Time)
: Time

+ convertSecond(t : Time)
: Time

+ getOffset(t : Time) : Time
+ getRate(t : Time) : double

remote
time src

reference time src

first time src,
second time src

Figure 3.4: Relationship of time-related classes

3.2.3.1 Time representation and time sources

The timestamps contained in media fragments are interpreted by (at least) two
different entities:

• Media data sources generate fragments and have to assign time stamps.
Data acquisition devices will usually use the (idealized) point in time the
data contained in the fragment was recorded.

• Media data renderers use the timestamps to decide on the temporal place-
ment of media data; for output devices this usually determines the point in
time the media element contained in the fragment is to be played back.

The different objects interpreting timestamps as points in physical time need a
mapping between their logical notion of time and physical time (which will be
referred to as wall-clock time subsequently). This mapping is provided through
the TimeSource interface which offers only two types of services:

94 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

• Applications can inquire the logical time represented by a TimeSource at
the current point in physical time

• Applications can schedule callbacks to be executed at a given logical point
in time5

These services allow applications to synchronize actions to individual inter-
nal time sources. Applications may only assume that the time represented by
a TimeSource is monotonic with respect to physical time. Generally, the pro-
gression of time represented by a TimeSource is not under the control of the
application (they may e.g. represent the oscillator of an audio device that cannot
physically be influenced at all). Derived classes represent time sources that pro-
vide additional guarantees or provide additional functionality that allows more
control by the application:

• Clock provides start/stop control in addition to the services provided by all
timer sources. Clock objects usually represent physical clocks with fixed
rate such as the clock signal used for audio DACs/ADCs ("fixed" rate in this
context means that the rate cannot be changed without stopping/starting
the clock, thus disrupting the flow of time).

• SystemClock represents a clock that relates to the system timer. In addition
to the start/stop control provided by Clock , its rate may be varied6.

Instances of SystemClock have a number of important properties. First, appli-
cations may assume that they can inquire the current time with very little and
– most importantly! – constant overhead. (This is not generally true for all time
sources as fetching the "current" time may e.g. involve network communication.
Stated differently, applications may assume SystemClock instances to be jitter-
free with respect to physical time).

Second, applications may assume that SystemClock s provide time informa-
tion with "virtually infinite" resolution7. In practical terms "virtually infinite" res-
olution means the following: Assume that the same clock is sequentially inquired
for the current time twice; assume further that both inquiries are separated by
an action that requires progression of physical time (e.g. waiting for an event
from a device); then the SystemClock will yield two different values8.
5It should be noted that any real-time guarantees about timely execution of scheduled call-

backs depend on factors external to the architecture description (such as the execution envi-
ronment). Concrete implementations will usually only provide statistical guarantees as this is
generally sufficient for multimedia applications.
6This does not imply that the system timer itself is reprogrammed at a different rate (although

such an implementation would be permissible). Instead, the time value provided by the system
clock may simply be transformed to match that of a virtual clock progressing at the desired rate.
7In practice, it is sufficient that the resolution be of the same order as the clock frequency of

the processor executing the code (any higher resolution is useless for practical purposes). Thus
the cycle counters of modern CPUs provide a suitable mechanism to implement SystemClock s.
8The prerequisite – that an action which takes a certain duration of physical time takes place

in between – is very important. This allows an implementation to correctly yield the same value

3.2. CORE ARCHITECTURE 95

Third, all instances of SystemClock share the same time base. This means
that the temporal relationship between two SystemClock instances is always pre-
cisely defined by their offset and relative rate of progression. Figure 3.4 summa-
rizes the relationship of all time-related classes.

3.2.3.2 Ticks and tick interpolation

Some sources of time can not be explicitly queried for the current time (or it
would be impractical to do so), instead they only provide infrequent "ticks" that
mark individual points in time. Examples include communication over packet
networks when each packet contains (or is implicitly associated with) a times-
tamp: Arrival of an individual packet marks a point in time (through the times-
tamp) but there is no well-defined "time value" in between the arrival of two
packets9.

These types of entities can therefore not directly usefully be represented as
TimeSource s. They are instead represented as TickSource s and provide only
one service: They can generate a callback for each individual tick. Each tick is
represented as a single scalar value (like points in time are) that is passed to the
callbacks. Ticks need not be equidistant, and neither need the tick callbacks be
temporally equidistant.

In practice, TickSource s often represent clocks to which the application does
not have direct access to, but that infrequently send "messages" informing about
the current value of the clock. Examples include clocks in other networked
computers (through packets received from a server that is sending data at a rate
determined by its own clock), or physical clocks attached to the local computer
that do not provide sufficient resolution to be adequately represented by the
Clock interface explained in the previous section. This type of clocks will be
referred to as remote clocks for the following discussion.

Let tk be the points in real-time (measured by an arbitrarily chosen reference

clock) that a tick event is delivered and τk be the value passed as argument to the
callback functions for each tick event. If the tick values correspond to "readings"
of a remote clock roughly progressing at real-time, and tick callbacks correspond
to "messages" communicating the tick values, then the following condition holds:

τk ∈ [αtk + δmin; αtk + δmax)

where α denotes the rate of progression relative to the reference clock, and de-
livery of tick callbacks may be delayed by an unpredictable amount of time within
the interval [δmin; δmax). An application may wish to synchronize operations to the

twice if no such action has taken place on the grounds that an "infinitely fast" computer could
have executed the instructions taking only an "infinitesimal" amount of time.
9If the underlying packet network supports isochronous transfers with hard real-time guar-

antees a useful time value in between two packets could in fact be derived. However, it would
in this case be more practical to implement a TimeSource derived from the clock signal of the
network interface adapter.

96 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

remote clock, and for this purpose the architecture provides a mechanism to con-
struct a local clock that is synchronized to the remote clock; the local clock can
then in turn be used to time operations accordingly. Ideally, the local synchro-
nized clock would be a clock progressing at rate α with an appropriate offset
with regards to the chosen reference clock, but given the data points (tk, τk), the
parameters α and δmax − δmin can only be determined statistically

10.

The class InterpolatedTimeSource provides such a clock that is synchronized
to a remote clock given only infrequent ticks provided through a TickSource . In
particularly it

• determines the required parameters through statistical analysis of the avail-
able data (tk, τk)

• interpolates the time represented by the remote clock between two points τk

and τk+1 (hence the name)

The problem addressed by InterpolatedTimeSource is known as "external clock
synchronization"; it has been covered extensively in the literature, and algo-
rithms developed for this problem can directly be applied to implement Interpo-
latedTimeSource s. In particular, Schmid and Schossmaier address the problem
of clocks with limited timer granularity in [56].

3.2.3.3 Relationship of multiple time sources

Applications may frequently communicate with multiple entities that use their
own time source to provide timing (e.g. real-time data acquisition and presenta-
tion devices); if the time sources represent distinct physical clocks the applica-
tion cannot assume that progression of time is the same for each11.

Applications nevertheless need to coordinate such entities, and for this pur-
pose the class TimeMapper provides a mechanism to determine the relationship
between different time sources. Conceptually, the class allows an application to
translate timestamps between two different time frames into each other. If both
time sources relate to the same physical clock the mapping can be determined
strictly arithmetically (this is e.g. the case for any pair of InterpolatedTimeSource s
that use the same reference clock). Otherwise it must be determined by observ-
ing both time sources (see figure 3.5); in this case the mapping is generally
subject to statistic errors.

Both strategies are encapsulated into TimeMapper , so that applications can
be unconcerned if two different TimeSource s are synchronized, but the media
processing framework will make best use of all information available to it. This

10In practice, the drift between two clocks may even be variable – this means that the requisite
paramters α and δmax − δmin need not even be constant, and the local synchronized clock must
adapt to changing parameters.
11Due to manufacturing inaccuracies oscillators with the same nominal frequency will never-
theless diverge slightly; thermal noise adds additional unpredictable synchronization error.

3.2. CORE ARCHITECTURE 97

control timesrc1
: TimeSource

timesrc2
: TimeSource

mapper
: TimeMapper

new(timesrc1, timesrc2)

timer(self.onTimer1, ...)

timer(self.onTimer2, ...)

onTimer1(current_time1)

getCurrentTime()

current_time2

The TimeMapper determines the relationship between two time sources by periodically reading the
current time of both sources. This is generally achieved using the callback mechanism offered by
TimeSource

Figure 3.5: Mapping of timestamps between two different sources

approach is consistent with the general architectural decision to let applications
express their "intent", while the media framework figures out the best mecha-
nism to satisfy the application’s requirements.

TimeMapper provides the following guarantees for the mapping of timestamps:

• Invertibility: convertFirst and convertSecond are mutually inverse.

• Continuity: The mapping is a continuous function.

• Repeatability: If conversion of a timestamp tfuture has been requested, then
the mapping for all timestamps ∈ [tnow; tfuture] is fixed.

The last guarantee is important as the TimeMapper continually collects data
from the two time sources and may detect drift that has to be corrected. This

98 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

correction may change the mapping of future timestamps, but repeatability guar-
antees that the mapping for timestamps that have been converted already is not
invalidated.

«Source»

+ listTracks(): MediaSource[]

«RealTimeSource»

+ getTimeSource()
: TimeSource

«MediaSource»

+ onFragmentReady
: callback_chain<double>

+ getFragment(flags : int)
: Fragment

«Renderer»

+ listTracks(): MediaRenderer[]

«RealTimeRenderer»

+ getTimeSource()
: TimeSource

«MediaRenderer»

+ onQueueDrain
: callback_chain<double>

+ render(frag : Fragment,
flags : int) : bool

«TimeSource»

+ getCurrentTime(): double
+ timer(callback : function(double),

when : double) : callback_link

«RTMediaSource»

queue : Fragment[]

enqueue(f : Fragment)
dequeue() : Fragment
onTimer(now : double) : bool

«RTMediaRenderer»

queue : Fragment[]

enqueue(f : Fragment)
dequeue() : Fragment
onTimer(now : double) : bool

*

1

*

1

timer callbacks timer callbacks

Figure 3.6: Real-time sources and renderers

3.2.3.4 Real-time sources and renderers

Source s that deliver media data at a fixed rate that asymptotically approximates
the timestamps of the media fragments are considered real-time sources. The

3.2. CORE ARCHITECTURE 99

con trol renderer
: RTMediaRenderer

timesrc
: TimeSource device

render(fragment) ➌
timer(self.onTimer, ➍

fragment.begin()-latency)

link

enqueue(fragment)

loop ➊

time signal ➎

onTimer(now)

dequeue()

fragment

transmit media data

fragment.end()-latency

loop ➋

In practice, loops ➊ and ➋ are executed asynchronously and in parallel. The application passes
fragments to the renderer ➌ which will schedule operations to process the fragment, taking into ac-
count any transfer latency ➍. The time signal ➎ of the target device is then used to drive processing
of the media fragments.

Figure 3.7: Interaction of time sources and real-time renderers

100 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

rate at which accessors to documents stored as files read media data is deter-
mined by the speed at which applications request media fragments, thus flow
control is implicitly exercised by simply fetching fragments slower or faster.

RealTimeSource s on the other hand expect the application to read data at
their rate – flow control cannot be exercised implicitly by requesting data slower
or faster. In fact, many real-time, sources (e.g. audio digitizers) cannot be flow-
controlled at all. For those real-time sources that do support flow-control appli-
cations must explicitly request to speed up or slow down the data rate through
secondary mechanisms.

Real-time sources provide a TimeSource to represent their flow of time. This
allows applications to synchronize operations on sources through the mecha-
nisms described in section 3.2.3.1. Additionally, TimeMapper allows applica-
tions to synchronize multiple sources or renderers by adapting timestamps of
fragments accordingly.

In analogy to real-time sources the architecture provides RealTimerRenderer s
that consume media data fragments in real time according to their timestamps.
Real-time renderers are always associated to a TimeSource which represents the
temporal progression of fragment processing (see figure 3.6), and applications
may use the information provided through the TimeSource to provide synchro-
nization with other media processing.

The MediaSource s or MediaRenderer s aggregated by a RealTimeSource or Re-
alTimeRenderer are always synchronized to each other and the TimeSource sup-
plied by the parent object; this is usually achieved by using the callback mecha-
nism of the time source to drive media processing (see figure 3.7).

Both real-time sources and renderers will usually be subject to buffering delay

– this does in practice mean that Fragment s delivered by a Source will carry
timestamps in the past, while the application has to make sure that Fragment s
delivered to a Renderer carry timestamps in the future (relative to the respective
TimeSource s). Both Source and Renderer interface allow applications to query
required delays12, but ultimately the application has to setup media processing
appropriately to incorporate the required delays. If both sources and renderers
are real-time this is generally achieved by "offsetting" the TimeSource used for
rendering appropriately from the source TimeSource . This delay is completely
under the application’s control, the media framework does never introduce any
processing delays into the media processing pipeline on its own.

3.2.3.5 Synchronized media processing

Real-time rendering is performed at a rate indicated by the TimeSource exposed
through the interface of RealTimeRenderer , but in actual implementations the
presentation may be driven in two different ways.

12For Source s the delay can be determined implicitly by querying the reference clock for every
fragment received by the application.

3.2. CORE ARCHITECTURE 101

con trol frag_master
: Fragment

mren der
: MediaRenderer

native_clk
: TimeSource

mapper
: TimeMapper

render(frag_master)

begin()
end()

t_begin_master
t_end_master ➊

convertFirst(t_begin_master)
convertFirst(t_end_master)

t_begin_native
t_end_native ➋

frag_native
: Fragment

new(t_begin_native, t_end_native)

enqueue(frag_native) ➌

timer(self.onTimer,
t_begin_native-latency)

The MediaRenderer converts the timestamps of frag_master that are relative to the application-
chosen master presentation time source ➊ to timestamps relative to the native time source ➋ and
creates a new Fragment with the translated timestamps ➌. All further processing of the media data
is performed using the converted fragments.

Figure 3.8: Synchronization of media processing by mapping time sources

102 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

First, the renderer may use the callback mechanism of TimeSource to execute
code on the host CPU to ensure that a fragment is presented during the correct
temporal interval. In this case any source of time information provided by the
architecture may be used exchangeably. Second, rendering may be driven by
a different entity than the host CPU with its own time source, independent of
the host CPU, e.g. a clocked audio DAC. In this case the time source used for
presentation cannot be replaced by a different one; this non-replaceable time
source will be referred to as "native time source" below.

Applications may need to synchronize media presentation with a given time
source (e.g. derived from input devices). In the first case above this can trivially
be achieved by exchanging the time source used to deliver callbacks to the ren-
derer driver. In the second case however there is no other way but to use the
TimeMapper service to map timestamps of the designated master presentation
time source to the native time source used by the renderer.

The architecture strives to make implementation differences between different
renderer drivers transparent to the application and thus allows to assign a mas-
ter presentation time source to all RealTimeRenderer drivers. Renderer drivers
must therefore support to transparently instantiate a TimeMapper and convert
timestamps, as needed (see figure 3.8).

3.3 Media type support

The core media processing library is agnostic with respect to media types such
as audio, video or images. It provides abstract support for time-dependent media
through the Fragment concept on which specific media types such as audio and
video can be built. It is explicitly designed in a way that makes definition of new
media types easy.

As explained in section 3.1.2, the base abstractions provided by the library
treat these media types as time- and space-continuous. These abstractions are
sufficiently generic to allow any computable image or audio representation con-
ceivable into the architecture.

All media elements support the concept of processor-private data: Any Pro-
cessor instance may attach additional data objects to any media element – the
attached data is however private to the Processor instance that attached the data
(i.e. it is inaccessible for all other Processor s) – the interpretation of the data is
up to each Processor itself. This provides a mechanism to "annotate" media ele-
ments with additional data, e.g. to cache results of computations performed by
a specific processor.

3.3.1 Audio

Audio support is based on specializing the Fragment , Source and Renderer con-
cept and the introduction of the AudioSignal interface (see figure 3.9).

3.3. MEDIA TYPE SUPPORT 103

AudioFragment

+ getSignal(index : int)
: AudioSignal

+ getChannelFormat()
: AudioChannelFmt

«AudioSignal»

+ getPreferredSamplingParams(
format : SampleFormat,
nsamples : int)

+ sample(
format : SampleFormat,
nsamples : int, flags : int,
begin : double, end : double)
: SampledAudioSignal

«AudioChannelFormat»

Processor

«Data»

Figure 3.9: Audio representation

AudioSignal represents an arbitrary (computable) function, mapping (a su-
perset of) the interval [0; 1) to R (cf. the definition 1 on page 14). It is an abstract
interface that defines the sample method which allows to sample the function it
represents at a set of equidistant points (which is why the underlying function
must be computable).

Each AudioFragment contains an AudioChannelFormat that describes the se-
mantics of all audio channels active during the temporal interval of this frag-
ment, as well as one AudioSignal for each channel. The intended semantic is
that the signal functions represent the pressure intensities at the spatial posi-
tions described by the channel format for the temporal interval represented by
the fragment.

3.3.1.1 Audio signals

The AudioSignal interface serves as the base class for many other possible rep-
resentation alternatives:

• ConstantAudioSignal : Represents a signal that evaluates to a constant.

• LinearAudioSignal : Represents a linear function.

104 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

• FunctionalAudioSignal : Represents a signal computed from a functional13.
(The purpose of this class is to act as a convenient wrapper to let program-
mers represent arbitrary computations as AudioSignal s.).

• SampledAudioSignal : Represents the canonical band-limited interpolation
of a time-discretized audio signal sampled at equidistant points (see sec-
tions 1.3.2.1 and 1.3.2.2).

• CompressedAudioSignal : An audio signal in a compressed representation
(see section 3.3.3).

In addition to the "non-algebraic" representations above, the following classes
allow to represent an audio signal as the function that would result from the
application of an algebraic operator on one or more other given audio signals:

• SumAudioSignal , ProductAudioSignal : Sum and product of (at least) two
audio signals.

• ConvolutedAudioSignal : An audio signal that results from the application of
a convolution filter to another audio signal.

• SlicedAudioSignal : Given a signal function s and 0 ≤ tbegin < tend ≤ 1, repre-
sents the signal function s′(t) = s((tend− tbegin) · t+ tbegin). (In other words, the
operator "slices" the interval [tbegin; tend) out of s and "stretches it to [0; 1).)

• ConcatAudioSignal : Given two signal functions s1, s2 and a constant t0,
represents the signal function

s(t) =

{

s1(t/t0) if t < t0
s2((t − t0)/(1 − t0)) if t ≥ t0

(In other words, the operator temporally "concatenates" the signals s1 and
s2.)

• TransferAudioSignal : Given a signal function s and a monotonic function f ,
represents s′(t) = f(s(t)).

Combining the above alternatives allows to construct syntax trees that rep-
resent audio signals as complex arithmetic terms14. Note that this includes the
operators discussed in section 1.2.1 as a subset.

13 The term functional here has the meaning of a class that can be called as a function, i.e.:
class SineFunctional {
public: double operator() (double x) {return sin(x);}
};
14The data structures will in reality actually be directed acyclic graphs since "sub-trees" can
be shared. This should be regarded as an "optimization" that a) saves storage space over a strict
tree representation and b) simplifies identification of common subexpressions.

3.3. MEDIA TYPE SUPPORT 105

3.3.1.2 Sampled audio signals

In practical applications audio is often represented as a sequence of temporally
equidistant sample values (cf. section 1.3.2.1). This feature is provided through
the SampledAudioSignal class. Each object of this class represents n sample
values taken at the points 0, 1/n, 2/n, ... (n − 1)/n. Longer sequences of sam-
pled audio can be represented as multiple audio fragments, each containing a
SampledAudioSignal .
While the definition of SampledAudioSignal is intuitive and appears innocent,

the actual interpretation as band-limited interpolation of the discrete sample
data (see section 1.3.2.2) has a number of interesting consequences.

Assume an audio signal given by the function f : R → R. Further assume that
the signal is band-limited by n (or, in other words the Fourier-transform F(f) is
supported by an interval of (at most) length n).

This audio signal will now be represented through a countable number of
sample values. Let fs be the function defined by

fs(t) =

{

f(t), t = k
n
, k ∈ Z

0, else

}

i.e. the function f sampled at points k/n. According to the Whittaker-Shannon
interpolation formula the function f can be represented as

f = (fs ∗ δ) ∗ (t 7→ sinc (n · t)) (3.1)

or equivalently:

f(t) =
∑

k

fs

(

k

n

)

sinc

(

n · t − k

n

)

(3.2)

Both f and fs are conceptually infinite signal functions which – for the pur-
pose of processing within the media framework – have to be split up into smaller
fragments. Let a fragment represent the temporal interval [0; 1). The audio sig-
nal during this interval is given by a function f ′ : [0; 1) → R, f ′(t) = f(t) but
a SampledAudioSignal object would instead store f ′

s : {0, 1/n, ...(n − 1)/n} → R,
f ′

s(t) = f ′(t) which is f ′ sampled at points 0, 1/n, 2/n, ... (n − 1)/n.

However, as equations (3.1) and (3.2) show, f ′ cannot be reconstructed from
f ′

s alone, instead this requires sample values from fs outside the interval [0; 1).
The signal represented by a SampledAudioSignal is thus given from the samples
by:

(f ′

s ∗ δ) ∗ (t 7→ sinc (n · t))
which can obviously be non-zero outside [0; 1). As a consequence adjacent frag-
ments can not simply be "concatenated" but must instead be summed with ap-
propriate temporal offset to reconstruct the original signal (see figure 3.10).

106 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

Definition interval
of first fragment

Definition interval
of second fragment

Continuated signal
of first fragment

b

b

b

b

Continuated signal
of second fragment

u

u

u

u

Superposition of both signals
(resulting signal)

b

b

b

b

u

u

u

u

Figure 3.10: Band-limited continuation of SampledAudioSignal s

Conceptually, each fragment contains only data corresponding to its own va-
lidity interval; it is also possible to reconstruct fs from these fragments, and each
fragment will only contribute data within its own interval. However, in order to
properly reconstruct f as a continuous function each fragment has to contribute
data outside its time interval. (Note that this interpretation results from the
assumption that f is properly band-limited.)

Note that SampledAudioSignal s can be assumed to be "cross-talk free" unless
the signal needs to be resampled – this is generally the case only when

• multiple audio signals with mismatched sampling rate are to be combined
(e.g. SumAudioSignal)

• a media processor (such as an output device) requires a specific sampling
rate different from the one the data currently is represented as

3.3. MEDIA TYPE SUPPORT 107

«VideoFragment»

+ getImage(t : Time)
: Image

VideoImageFragment

«Image»

width : int
height : int
pixel_aspect_ratio : double

+ copy(): Image
+ getPreferredPixelFormat(): PixelFormat
+ getPreferredColorSpace(): ColorSpace
+ convert(format : PixelFormat,

colorspace : ColorSpace)
: PixelImage

+ getCairoPattern(): cairo_pattern_t

Processor

«Data»

*

1

Figure 3.11: Video representation

3.3.1.3 Channel formats

The AudioChannelFormat object referenced by every fragment provides the in-
tended interpretation of all audio channels within a fragment. Generally, this
interpretation is given in the form of "positional information" for each channel.

The information provided by the AudioChannelFormat may be purely logical
"tags" for each channel (e.g. "left stereo channel", "right stereo channel", "low fre-
quency effects (LFE) channel"). Several predefined AudioChannelFormat s provide
support for common audio configurations such as mono, stereo or multi-channel
surround sound models (e.g. 5.1). But AudioChannelFormat s can also provide
considerably more complex interpretations for the channels such as a physical
acoustic model with spatial coordinates for every channel; in this case the pa-
rameters (including position) of each channel need not even be constant over the
duration of a fragment.

108 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

3.3.2 Still images and video

Video support is based on specializing the Fragment , Source and Renderer con-
cept and the introduction of the Image interface (see figure 3.11).
Each VideoFragment must for each point in its temporal interval be able to

supply an image that is supposed to be shown at the corresponding point in time
(thus video is conceptually time-continuous, see definition 5 in section 1.1.2.3).
It is a common special case that the same image is shown for the full duration
of the fragment (see definition 12 in section 1.3.5.1) – this is provided by the
specialized class VideoImageFragment .
Each Image in turn represents an arbitrary (computable) function that as-

signs a color (using one of the methods outlined in section 1.3.3 to identify colors
with value triplets) and an alpha value to each point of the rectangle [0; w)× [0; h)
(see definition 4 in section 1.1.2.2). It is an abstract interface that provides the
sample method which can sample the image using a selected pattern (see section
3.3.2.2 below).

3.3.2.1 Images

Each Image has an associated size that is given by its width and height ; these
are measured in pixel units which are assumed to be small rectangles with their
physical width-to-height ratio given by pixel_aspect_ratio . Note that this does
not necessarily imply that the image is composed from width · height rectangular
tiles – conceptually the image might be an infinitely scalable vector graphics, but
width and height may provide a "hint" as to how the image could be sampled ap-
propriately. An Image may supply additional hints for rasterization by providing
a prefered PixelFormat and ColorSpace (see 3.3.2.2). The indicated format pair
should provide a representation into which the image can be rasterized without
losing information due to rounding and/or subsampling.

The following representation alternatives are provided for images:

• PixelImage : A rastered image (see section 1.3.4.1)

• PaintedImage : An image defined through a chain of compositing operations
(see section 1.2.2).

• CompressedImage : An image given in a compressed representation, see
section 3.3.3

Calling the sample method will instantiate a PixelImage that represents the
result of sampling the image. Although convenient, this method has to create
the full rastered data at once which can be quite inefficient. For practical pur-
poses it is preferable to use the related getRows method instead, which returns
a RowIterator object that allows to access the sampled data one sample row at a
time (and may therefore be able to avoid creating a full PixelImage).

3.3. MEDIA TYPE SUPPORT 109

«Image»

width : int
height : int
pixel_aspect_ratio : double

+ copy(): Image
+ getPreferredPixelFormat(): PixelFormat
+ getPreferredColorSpace(): ColorSpace
+ convert(format : PixelFormat,

colorspace : ColorSpace)
: PixelImage

+ getCairoPattern(): cairo_pattern_t

PixelImage

data : bytes[]

+ putPixel(x : int, y : int
value : PixelValue)

+ getPixel(x : int, y : int)
: PixelValue

+ beginDrawing()
+ endDrawing()

PaintedImage

drawinglist :
cairo_surface_t

+ getCairoHandle() :
cairo_t

CompressedImage

ColorSpace PixelFormat

Figure 3.12: Image types

3.3.2.2 Pixelformats and color spaces

The PixelFormat and ColorSpace classes provide a description of how exactly a
rastered image is represented as a sequence of bits. ColorSpace defines how
triplets of values are to be interpreted as colors (see section 1.3.3). Internally,
this is done by representing the mapping relationship to CIE 1931 XYZ (section
1.1.2.1, page 16), however ColorSpace may also represent pseudo-colorspaces
such as "unknown RGB" for which no strictly defined mapping exists15.

PixelFormat defines how the color triplets (and the alpha value) assigned to
each pixel are stored in memory, and how many bits of precision are stored
for each value. The description supports packed and planar representations,
allows channels to be subsampled or omitted, and can also describe "interlaced"
images where the full image actually consists of two interleaved fields (see A.5
for a formal description of PixelFormat s).

15In case conversion into another color space is coerced, a simple gamma-corrected color model
with primaries matching that of the target color space is assumed.

110 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

3.3.2.3 Discretized Images

Space-discretized images are represented as PixelImage objects; conceptually,
they are a two-dimensional array of rectangular pixels and store an associated
color value for each pixel. PixelImage s serve two main purposes that enable data
exchange:

• They allow to introduce images into the architecture for which there is no
other representation available.

• They allow to coerce images into a format suitable for further processing
external to the media processing framework.

PixelImage s permit direct access to the underlying pixel data to support these
use cases without the overhead of creating data copies. Since Images are nor-
mally treated as immutable objects, the application is expected to modify images
only if it can be certain that is has exclusive access. To avoid excessive copy-
ing, all Images support the creation of shallow copies through the copy method,
while PixelImage s support "copy-on-write" by bracing modifications to the pixel
data with beginDrawing and endDrawing .

3.3.2.4 Painted images

The PaintedImage class allows to specify compositing operations to generate a de-
sired image. The model follows the "painter’s" algorithm: Starting with a blank
image, other image sources and patterns (such as uniform colors or gradients)
are combined layer by layer with the previous image contents. The source images
and patterns may be geometrically distorted, clipped by path-delimited masks
and composited with the lower layers using a variety of operators (see section
1.2.2). PaintedImage follows the retained-mode processing model: All operations
(including source images and patterns used) are recorded and can later be re-
played on a target image16. Conceptually, PaintedImage s are vector images and
are thus space-continuous.

The drawing facilities are exposed to applications through the cairo imaging
API (see 2.2.2.1) – this choice was made since it is a familiar and sufficiently
abstract API, even though the integration turned out to be technically difficult.
To provide the bindings to cairo, every PaintedImage exposes a cairo_t draw-
ing context through which operations can be issued. Additionally, every Image
exports a cairo_pattern_t handle to make it usable as a source pattern for
compositing.

PaintedImage s are therefore created incrementally by the application and can
recursively reuse other (painted) images. This puts several responsibilities to the
creator of a painted image: First, incremental painting must be finished before
the image is handed over to any other processing stage (as it is generally assumed

16The target image may in fact itself be a PaintedImage .

3.3. MEDIA TYPE SUPPORT 111

that the objects are immutable). Second, the application must not create any
dependency loops in the graph that represents the participating images on their
source patterns.

3.3.3 Compressed media

Section 1.4 introduced the concept of "compressed" representations for audio
signals and (sequences of) images. Specifically, definitions 13 (page 44) and 14
(page 52) introduced the concept of temporally local compressed representations.
libmedia supports all types of compressed audio signals and images that satisfy
the constraints17 set out in the definitions through the following set of classes:

• CompressedAudioSequence and CompressedImageSequence store all in-
formation common to a "sequence" of multiple compressed media elements;
usually these are common encoding parameters as well as a description of
the compression format to be used. This corresponds to the initialization

data from definitions 13 and 14.

• CompressedFrame acts as container for the storage of compressed media
data. Like AudioSignal s and Images it also supports the "processor-private
data" concept.

• CompressedAudioSignal references one or more CompressedFrame objects
as well as one CompressedAudioSequence object. It represents the audio
samples of one channel that can be generated from the compressed repre-
sentation.

• CompressedImage references one CompressedFrame object, one Com-
pressedImageSequence object and zero or more Image objects used as ref-
erence images. It represents the image that can be generated from the
compressed representation, using the given reference images.

Note that the above objects merely represent the data without being able to
actually process it – while CompressedAudioSignal and CompressedImage must
support the sample method, they delegate to a decompressor instance as dis-
cussed below.

Handling of compressed media data consists of several layers in this archi-
tecture that perform different levels of services and analysis of the data. This
is a significant deviation from other architectures (which mostly put all of the
functionality separated here into a single layer). It is however necessary in this
architecture to maintain the retained-mode processing semantics (i.e. no decom-
pression operation is performed until "late" in the processing stage) and main-
tain the logical independence of individual frames (providing the application with
random-access semantics).

17Note that the constraints are in fact not too severe, as already stated all formats in practical
use fit into these restrictions.

112 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

3.3.3.1 Parsers

The first layer responsible for handling of compressed data are Parsers. Their
role is to inspect the bitstream, partition it into indivdual frames, and extract
required meta-data into a generic form usable by the framework. Parsers do not
perform decompression – they only interpret the given data to the extent it is
necessary to understand its structure.

Parsers are inextricably linked to a specific compressed representation for-
mat, as such they are realized as replaceable components. The amount of pars-
ing required however largely depends on the container format the compressed
data is stored in (as the container may or may not already provide some of the
meta-data), thus the parsers are not generic components but sub-components
of file format handlers (see section 3.5.2). No interface is prescribed by the ar-
chitecture for the communication between parsers and file format handlers as it
is both difficult and needless – defining the interface is the responsibility of the
file format implementor. Parsers therefore only exist as concepts.

For audio, the parser’s role is to identify individual audio frames in a bit-
stream (unless the container format already separates frames), identify the num-
ber of samples represented within one frame as well as the relationship (e.g.
overlapping) to adjacent frames. The parser must also extract meta-data such as
number of channels and their meanings, whether this is given in a stream header
or each individual frame. It is then the parser’s responsibility to instantiate Com-
pressedAudioSequence , CompressedAudioSignal and CompressedFrame objects
that properly represent the meta-data to the rest of the framework.

The role of image and video parsers is quite similar. Features such as width,
height, aspect ratio, color model and pixel format (that describes the channel
subsampling) must be extracted from the compressed frame data. Video parsers
must additionally understand the coding types (intra or non-intra) and the tem-
poral coding relationships of the individual frames – sometimes the container
format allows to specify these explicitly (e.g. the QuickTime file format), some-
times they are implicitly given through the ordering of frames (cf. figure 1.15,
page 49). The parser is then responsible for instantiating CompressedImageSe-
quence , CompressedImage and CompressedFrame objects.

3.3.3.2 Decompressors

The decompressors provide the lowermost layer of media processing offered by
the framework and thus must finally break with the retained-mode processing
paradigm. The architecture provides the AudioDecompressor and ImageDecom-
pressor interfaces that represent decompressor instances that process frames
using a specific parameter set (that is normally stored in CompressedAudioSe-
quence and CompressedImageSequence sequence objects). They are instanti-
ated by AudioCodec s and ImageCodec s for which a name mapping registry is
provided to allow extensibility.

3.3. MEDIA TYPE SUPPORT 113

The decompressor instances rely on the work performed by the parsers to
decompose and extract meta-data: They are stateless, processing the same
data/meta-data must produce the same result. This is in stark contrast to
QuickTime or DirectShow, where e.g. image decompressors are stateful and re-
sponsible for identifying and preserving frames that are used as references in the
future.

Essentially, AudioDecompressor s and ImageDecompressor s perform the op-
erations described before defenition 13 (page 44) and 14 (page 52): They trans-
form the compressed data into a sequence of audio samples or a rastered image
representation. While AudioDecompressor s generate the sample data in a single
operation, ImageDecompressor s provide an iterator-based interface that allows
to incrementally process the image as it is being generated.

The AudioDecompressor interface is designed such that it takes possible
frame overlapping into account – as a consequence it may receive the same frame
multiple times as it forms part of a larger group. To avoid repeating computa-
tions already performed on the frame data, it may use the processor-private data
mechanism to attach generated data for future reference.

3.3.3.3 Compressors and sequence managers

Transformation of audio and image data into a compressed representation is
facilitated through the the AudioCompressor and ImageCompressor interfaces
(instances of which are created in the same way as decompressors). Normally,
applications will never explicitly instantiate and use these objects and rely on
renderer drivers to implicitly use the compressors if required, see section 3.4.3.

Instead, they are generally called by sequence managers that are the inverse
of parser objects: sub-components of container objects that are familiar with
both the structure of the container format as well as the compressed media rep-
resentation format. They are responsible for controlling encoding of frames and
enforcing restrictions (e.g. permissible coding types and their temporal relation-
ship) imposed by the combination of media and container format.

In principle, the compressor interface is a straight reversal of the decom-
pressor interface (i.e. ImageCompressor s turn a given image into a bitstream,
using specified reference images). One important difference however is that the
compressors may return objects that are not exactly coded as requested – Image-
Compressor may produce an intra-coded frame even though a predicted frame
was requested (because prediction turned out to be not useful), in a similar way
AudioCompressor s may code smaller frames than requested (if the format allows
variable-sized frames). This in turn requires the sequence managers to adapt a
"back-off and retry" approach to coding as the compressor’s decisions may from
time to time disrupt the planned sequence structure.

114 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

3.3.4 User-defined representation types

The architecture defines abstract interfaces Image and AudioSignal that serve as
representation for the respective media element types. Several pre-defined im-
plementations of these interfaces where presented in this chapter, one of those a
quite generic "compressed" representation. The architecture is of course exten-
sible: Any application or module may create "user-defined" representation types
by simply inheriting from these two interfaces.

Extensions may also define new media processing operations. In keeping
with the retained-mode processing concept, these operations should just create
new media elements from the given ones. Where the pre-defined representation
alternatives and operations encapsulated within are insufficient, newly defined
implementations of Image or AudioSignal may be used in this place: For example,
a function spectacular_effect for providing a particular effect on one (or more)
images would take one (or more) Image objects as input parameter and produce
a SpectacularEffectImage as output.

SpectacularEffectImage must at a minimum implement the sample operation
which computes the effect – it may in places be is used as a "safe fallback"
to convert the data into a format that the rest of the framework understands.
It is conceivable that the architecture provides more efficient special-case han-
dling for the "known" representations provided above – which may certainly be
desirable for performance improvements. While it would at first glance appear
that this would reduce user-defined types to "second class citizens", the renderer

concept – which will be discussed in section 3.4.3 – is sufficiently generic to be
extensible as well. An illustrative example for this extensibility will be given for
the X11VideoRenderer in section 4.3.3.

3.4 Processing

For the most part media processing using the framework consists of the following
steps:

• Obtaining fragments from Source s/MediaSource s

• Possibly applying some transformations on the media

• Handing the data over to Renderer s/MediaRenderer s for interpretation

Of course, applications have other options as they can "synthesize" the frag-
ments instead of using the Source s, or they can interpret the data itself without
the use of a Renderer driver.

3.4. PROCESSING 115

3.4.1 Compositing

Applications that wish to apply any transformations on media data must follow
one simple but important rule: All data elements (Fragment s, AudioSignal s and
Images) must be treated as immutable – the only exception is of course the creator
of the element who may modify it to bring it into its final state up to the point
where it is passed on.

This means that generally data elements may not actually be modified, but it
is permissible to construct new data elements using given data elements as in-
puts. This is acceptable as there is no data copying overhead due to the retained-
mode processing paradigm.

It should be obvious from the description in sections 3.3.1.1 and 3.3.2.4 how
new data elements can be composited from old ones. The library offers a few
convenience functions that wrap construction of the composited media elements.

For generic time-based media, fragments support creation of time-shifted
fragments of identical media content (essentially applying the prototype pattern).

For audio, helpers like sum , scale or mix just create new chains of AudioSig-
nal objects that represent the arithmetic operations required – these are trivial as
the temporal duration of the output equals the duration of the inputs. The situ-
ation is more complicated for FIR filters – while each fragment can be processed
individually, the convolution operation slightly "widens" the temporal duration
of the output (by the width of the kernel), leading to overlap. For this purpose, a
small (stateful!) helper can take care of distributing the overlap to the adjacent
fragments.

For images, applications need to create a PaintedImage and incrementally
apply drawing operations until it has the desired appearance. For video, a helper
function wraps extraction of images out of a VideoFragment and repacks the data
into fragments.

While applications can always use the sample methods to extract discretized
representations out of any media element, they should refrain from doing so
unless necessary as this obviously negates the benefits of retained-mode pro-
cessing.

3.4.2 Capture

Media data acquisition devices are represented through the CaptureDevice ab-
straction. It provides facilities to enumerate the different channels available
through this device (e.g. for video/audio capture) and exposes controls that al-
low applications to setup capture parameters to be used for a session. libmedia
does not provide device enumeration capabilities or any CaptureDevice imple-
mentations – these are system-specific services provided by separate modules.

The main purpose of CaptureDevice s is to instantiate specialized objects im-
plementing the Source , AudioSource and VideoSource interfaces. In addition to
the objects providing the media data, capture devices also supply TickSource

116 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

or TimeSource objects that allow applications to synchronize other process-
ing with the capture rate. The source objects produce correctly timestamped
fragments containing an AudioSignal or Image , using any of the representa-
tion alternatives discussed above that best fits the underlying device (typically
this will either be PCMAudioSignal /PixelImage objects or CompressedAudioSig-
nal/CompressedImage objects) – as usual, further applying processing opera-
tions may cause implicit conversions into a different format.

Capture sources are generally real-time capable (see section 3.2.3.4) and thus
applications have the option of using synchronous blocking I/O (e.g. if the appli-
cation prefers to spawn dedicated processing threads for each source) or asyn-
chronous non-blocking I/O in conjunction with readiness callbacks (e.g. if the
application prefers an event-driven model), refer to section 3.2.2.

3.4.3 Rendering concept

Since media processing is centered around the idea of retained-mode process-
ing, the media elements received by MediaRenderer s are normally just abstract
descriptions how the data element could be computed. Obviously these descrip-
tions must ultimately be interpreted and adapted to the specific target, be it a
playback device or storage into a file.

While renderer drivers are ultimately free to process the data as they please,
there are several tasks common to almost any driver, so that it makes sense to
provide architectural support for these tasks.

3.4.3.1 Channel format converter services

Audio renderers may receive audio fragments using a ChannelFormat that does
not match that of the render target. The renderer must thus be able to convert
to a desired channel layout. To avoid code duplication, the architecture pro-
vides the channel format converter service: It allows instantiation of converters
to transform audio from one format into another. The converters will receive
fragments in their designated input format and produce fragments in their des-
ignated output format.

The converters themselves have access to the full range of processing capabil-
ities (and may even use other auxiliary converters themselves). While they may
process the input data using any method and represent the output data in any
way they wish, they should stay within the architecture and express their opera-
tions using the abstract operations presented in section 3.3.1.1. This section will
show what kind of format conversions can be supported using these operations.

Let f1 through fn denote the signals associated with the n input channels
and g1 through gm denote the signals associated with the m output channels.
Through time-dilation of input signals as well as elementary arithmetic operation
the following transform can be specified using the mechanisms from section
3.3.1.1:

3.4. PROCESSING 117











g1 (t)
g2 (t)
...

gm (t)











=











a11(t) a12(t) . . . a1k(t)
a21(t) a22(t) . . . a2k(t)
...

...
. . .

...
am1(t) am2(t) . . . amk(t)





















fn1
(α1t + δ1)

fn2
(α2t + δ2)
...

fnk
(αkt + δk)











(3.3)

(We assume that the functions amk are independent from all functions fn. This
representation is already sufficient to cover the most common case of conversion
between different surround-sound formats, e.g. a downmix transformation from
5.1 to stereo can be achieved through:

(

gleft(t)
gright(t)

)

=
1

1 + clev + slev

(

clev 1 0 slev 0
clev 0 1 0 slev

)













fcenter(t)
fleft(t)
fright(t)
fleft_s(t)
fright_s(t)













with clev = 1/
√

2 and slev = 1, or determined by further downmixing hints in
the AudioChannelFormat description.

However, the transformation shown in equation (3.3) is also sufficient to ex-
press simple rendering of positional point audio sources in an empty space. To
illustrate this consider a set of point audio sources, each emitting audio signals
described by the functions f1(t) through fn(t), and each of which may be in mo-
tion relative to the observer. The goal is to simulate this acoustic environment
to an observer given a set of m static speakers – this means that the signals g1(t)
through gm(t) to be emitted by each speaker must be calculated.

The signals gj(t) can then according to Huygen’s principle be calculated as











g1 (t)
g2 (t)
...

gm (t)











=











a11 (t) a12 (t) . . . a1k (t)
a21 (t) a22 (t) . . . a2k (t)
...

...
. . .

...
am1 (t) am2 (t) . . . amk (t)





















fn1
(γ1 (t))

fn2
(γ2 (t))
...

fnk
(γk (t))











(3.4)

In this model the functions γj(t) represent the time-dilation due to wave prop-
agation latency while the coefficients aij(t) correspond to energy loss due to
propagation into space. (Finding a suitable transformation however is still a
non-trivial task).

Since the functions γj(t) represent the time dilation, their value depends
purely on the relative movement with respect to the observer. Assuming that
the motion is "slow" compared to the speed of propagation of sound, the func-
tions can very well be approximated with piecewise linear functions, with preci-
sion well below the human perception threshold. Thus (3.3) provides a suitable
approximation to (3.4).

118 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

It should be noted that (3.4) does in principle allow to incorporate environ-
mental effects such as reflections and reverberations – however, the representa-
tion is not particularly well-suited to actually calculate these effects18.

3.4.3.2 Optimization

A simplistic approach were to use the sample methods on audio and image ob-
jects to transform them into a representation that is relatively easy to understand
and process. However, this loses out on some of the more interesting opportuni-
ties offered by the conceptual approach taken in this architecture for optimiza-
tion: Essentially, the renderer drivers act as "compilers" that understand the
operations specified in the input data, analyze them, apply optimization trans-
formations, and translate them for the specific target.

While several standard optimization techniques (such as common subexpres-
sion elimination, dead code elimination) are immediately applicable, the inter-
esting twist is that optimization must often be performed with incomplete infor-

mation: The renderer’s look into the future is limited by the amount of media
data that the application supplies ahead of time (this has the most impact on
real-time rendering). This means that optimization is sometimes speculative,
based on heuristics, and that future data can invalidate these assumptions. The
renderer driver must be prepared for that.

The following sections will explore some of the possible optimizing transfor-
mations.

Scheduling

Real-time renderer drivers must ensure that all required transformations are
performed in a timely fashion – knowing the required total processing time of
each data element (typically from observation of the past, but sophisticated met-
rics can be realized here), the renderer driver can compensate for the processing
latency.

This also includes smoothing out processing spikes – in image sequences us-
ing bi-directional temporal prediction there are times when an image to be dis-
played is already fully decompressed (because it was used as a reference frame).
The renderer driver can anticipate the next image to be decompressed and sched-
ule this operation into the idle time.

The same mechanism can also be used to schedule frame drops in case the
processing load surpasses a set threshold – preferably compute-intensive frames
that are not referenced any further should be dropped, renderer drivers are
equipped with sufficient information to make an informed decision.

Inverse transformations

One of the most obvious optimizations is to cancel out chained inverse opera-
tions. While this is usually applied in the context of arithmetic transformations

18Reverberations can be interpreted as multiple echoes and calculated as sum of time-dilated
and attenuated copies of the original signal, however in practice this calculation is performed
using FIR filters.

3.4. PROCESSING 119

a)

Fragment and
frame structure

Operations per
time step

time

Fragment1 Fragment2 Fragment3 Fragment4

Frame1

Frame2 Frame2

Frame3 Frame3

Frame4 Frame4

Frame5

mix(Frame2[0:0.5])
mix(Frame1[0.5:1])

mix(Frame2[0.5:1])
mix(Frame3[0:0.5])

mix(Frame4[0:0.5])
mix(Frame3[0.5:1])

mix(Frame4[0.5:1])
mix(Frame5[0:0.5])

b)

Fragment and
frame structure

Operations per
time step

time

Fragment1 Fragment2 Fragment3 Fragment4

Frame1

Frame2

Frame3

Frame4

Frame5

mix(Frame2[0:1])
mix(Frame3[0:1])

mix(Frame4[0:1])

a) Structure auf AudioFragments as they are received by the renderer. Due to overlapping of audio
frames, the signal contained in each fragment is a mix of the signals obtained from two halves of
two audio frames. Executed naively, this would mix in two halves of two audio frames at each
time step.
b) Merging of audio frames split over multiple AudioFragments allows to process each frame as a
whole. Note that the fifth frame is not scheduled for mixing yet, as the renderer speculates that the
next fragment will contain the second half of the frame.

Figure 3.13: Compound temporal audio optimizations

to simplify expressions, the operations expressed through the different media
element representations are quite high-level.

In its simplest form, this optimization allows e.g. to remove pairs of subse-
quent compression/decompression operations using the same underlying for-
mat and same set of parameters. This optimization alone is already useful as it
is quite common in media processing that only a few frames are modified (e.g.
for scene transitions, addition of subtitles) while the majority of the frames is left
unaltered. More sophisticated options include e.g. reusing common features of
source and destination format to allow "partial" decompression and compression
(see section 6.3.1 for a discussion).

Compound temporal audio optimizations

Audio signals spanning a long temporal period require architecturally to be
split up into smaller AudioFragments for incremental processing. While it is con-
ceptually desirable to make these fragments "cross-talk free" (e.g. by structuring
fragments such that each fragment contains exactly the audio samples contained
in one compressed frame when the format is such that frames do not overlap), it

120 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

is not always possible to do so as related data may be split into multiple adjacent
frames.

The "naive" approach to sampling – to sample every fragment independently
– might therefore cause underlying signals to be sampled twice if they happen
to be split across frame boundaries, which however is inevitable to achieve over-
lapping. This can be mended by "fusing" frames split over multiple adjacent
fragments to process them as a whole (see figure 3.13)19.

This type of optimization requires speculation as the optimizer may have to
be sufficiently "patient" to receive enough fragments to perform the fusing oper-
ation, as well as common subexpression analysis of the syntax trees representing
the operations in each fragment.

JIT code generation

In some cases the renderer may resort to "just-in-time" code generation for
specific tasks: The architecture is fundamentally centered on formally annotat-
ing and describing the format a specific data element is represented in and less
in providing components that handle the formats. When converting between
two different representations, it is generally preferable to use a "direct" transfor-
mation that does not use one or more intermediate formats. This is beneficial
for both efficiency and accuracy as it helps minimize number of steps and e.g.
rounding errors. But since supporting n formats requires n × (n − 1) conversion
routines, this can quickly become infeasible.

If the formats are highly structured and quite regular, it is feasible to generate
code "just in time" to perform the required conversion. Currently this strategy
is utilized for transformations between different color models and pixel formats,
see appendix A.5.

State caching

The fragments processed by the renderer driver are conceptually independent
and contain enough information to be processed "stand-alone", so no explicit
state is carried over from processing one fragment to the other (unlike filter-
graph architectures where there is explicit hard state expressed in the processing
pipeline).

However, many of the transformation operations do certainly benefit from per-
sistent state (such as decompressor instances that can be reused), so renderer
drivers will generally want to cache certain state information (and thus create a
certain amount of soft state). Renderer-drivers can utilize the processor-private

data concept (see section 3.3) to retain state, e.g. to attach an ImageDecompres-
sor object to a CompressedImageSequence .
Specialized media element type handling

All the AudioSignal and Image media elements provide the sample method
to coerce conversion of the data into a sampled representation that is easily
understood. This is however far from optimal as the renderer may perform con-

19Note that this transformation essentially splits the loop iterating over the output samples
into two loops, so this optimization is comparable to loop fission in compiler technology.

3.5. DOCUMENTS 121

siderably better if it understands the specific more specialized representations
described in sections 3.3.1 and 3.3.2.

Renderer drivers can certainly hard-code handling of specific media type rep-
resentations, however this would reduce user-defined media types (see section
3.3.4) to second class citizens. Instead, renderers should preferably adopt a dy-
namic binding scheme using handler class instances for processing of individual
media representation types (see also the discussion in section 4.3.3). It is how-
ever not useful to define a unified component interface for these handlers as
their interface will be very much tied to the specific requirements of the renderer
class. Instead, each renderer driver is expected to define its own interfaces for
media element handlers as well as corresponding component registries.

This approach to media handler essentially requires a "double dispatch"
mechanism (which is generally is not supported as a first-class construct in
object-oriented languages): The concrete operation to be performed depends on
the types of two involved objects, instead of the usual one type in case of virtual
method calls [27] [4]. This architecture however takes the concept even one step
further in that the handlers need not be defined at compile time of any of the
participating objects but may be provided as dynamically loadable components.

Communication

Individual renderer drivers may delegate part or all of the processing to other
nodes, such as specialized hardware or remote display systems (cf. section 4.3).
The renderer must in this case transmit required data to the remote location. In
addition to the above optimizations that basically strive to minimize the compu-
tational effort required to perform a desired operation, the renderer driver must
also take the cost of communication into account.

The renderer may often face choices whether to minimize communication at
the expense of duplicated processing, or trade in reduced computational effort
for more communication. Consider for example temporally compressed images:
Reconstructing a sampled image representation in a remote location may require
to transmit the compressed data of the image in question plus any required refer-
ence images. Alternatively, the renderer may also decide to perform all required
steps locally and transmit the uncompressed image instead. Depending on the
driver’s knowledge of the characteristics of the underlying communication chan-
nel, it may in certain situations prefer either of the above two approaches. Note
that the meta-data provided by the media framework (in the form of dependency
chains between the media elements in compressed representation) is crucial for
the renderer to make an informed decision.

3.5 Documents

The architecture provides the Document interface as an abstraction for stored
media. Usually, the storage is random-accessible and may allow mixed
read/write access. Usually, the underlying storage is realized as a file using

122 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

«MediaSource» «Track»

+ description() : string

«MediaRenderer»

«Source»

«Document»

+ listTracks() : Tracks[]
+ openReader(tracks : Tracks[],

begin : Time, end : Time,
flags : int) : Source

+ openWriter(tracks : Tracks[],
begin : Time, end : Time,
flags : int) : Renderer

«Renderer»

«Data»

create create

1

*

1

*

1

*

1
1

1
1

Figure 3.14: Document and accessor objects

a specific container format for on-disk representation, but storages using mul-
tiple files or network services are permissible as well – they can also represent
pure in-memory "scratch" documents.

Conceptually, the Document interface is comparable to QuickTime Movie s
(see section 2.1.1.2). However, unlike QuickTime this architecture strictly dis-
tinguishes between the stateless document object itself, and stateful accessors

used to store and retrieve data. Figure 3.14 shows the relationship of the classes
involved.

A Document consists of multiple individual Track s of media data. Each track
must be of one elementary type of time-dependent media (e.g. "video" or "au-
dio", though other types of media can be defined as well). Document s provide
interfaces for managing (browsing, adding) multiple tracks. As with sources
and renderers no interpretation of the relationship of the individual tracks is en-
forced by the architecture. This must be inferred from additional context; objects
implementing the Document interface may or may not provide this additional in-
formation.

3.5.1 Accessors

Document objects can instantiate DocumentReader and DocumentWriter objects
(which inherit from Source and Renderer respectively) that act as accessor ob-
jects to the document. Multiple accessors may be instantiated concurrently,
however implementations can exclude read/write or multiple writer concurrency
if this is not feasible due to the underlying format. Depending on the underlying
storage some restrictions may however be imposed on Document implementa-

3.5. DOCUMENTS 123

tions – applications must therefore query the capabilities of given documents
and choose appropriate document types that provide the operations required for
their purpose.

Accessor objects are instantiated to start reading or writing a at specific point
on the Document ’s time scale – the mechanism thus allows random-access to the
data (though seeking may be imprecise depending on the underlying format). The
design assumption is that true frame-level random access is rarely required by
applications, as most use-cases involve reading at least short sequences before
switching to a new position in a document. The accessor concept is also bene-
ficial from a technical point of view, as extraction of meta-data for identification
of coding dependencies usually requires several frames of context information,
which the stateful accessors can provide. (Contrast this with QuickTime’s frame-
level random access concept, section 2.1.1.2).

3.5.2 Container file formats

The most prevalent type of multimedia storage is that of a container file. The core
architecture has no support for specific file types, but defines a registry for differ-
ent FileFormat components which an application may choose from. To simplify
automatic recognition of given file types, it relies on the operating environment’s
MIME-type facilities for identification, and provides the concept of MIMEHandler
components (with an assorted registry mapping the system-supplied type names
to components) that can instantiate the correct Document object class as handler
for the particular file format.

Individual file format implementations will normally supply several sub-
registries to map symbolic names to handler objects. Typical handler objects
are:

• Track handlers responsible for instantiation of Track information objects as
well as track accessor objects

• Parsers (see section 3.3.3.1) responsible for meta-data extraction from the
coded media data

• Sequence managers (see section 3.3.3.2) responsible for controlling genera-
tion of compressed media

No generic interfaces for these objects are defined by the architecture, it is
up to the Document implementor to define interfaces suitable for the underlying
container file format.

In addition to these "forward-mapping" registries, the file format handler may
also define "reverse-mapping" registries that can e.g. translate AudioCodec and
ImageCodec objects to handlers and the symbolic names used for identification
within the file.

124 CHAPTER 3. MEDIA PROCESSING FRAMEWORK ARCHITECTURE

Chapter 4

Cooperation with the X Window
System

The media framework presented in the preceding chapter treats input and output
"devices" as replaceable components and therefore is not tied to any particular
implementation. Instead, drivers are required (and could be written) for each
particular output.

The framework provides good support for "dumb" output devices that can
display/playback sampled image and audio data (i.e. a framebuffer-like device,
or a simple DAC) as it has built-in methods to convert media data into a sampled
representation. However, what sets it apart from other implementations is the
ability to support "intelligent" devices that can dynamically delegate processing
steps to these devices on a case-by-case basis.

This chapter introduces a particular intelligent output device – an extended
X Window System – and shows how its processing capabilities can be used. The
extensions honor the basic X design principles and logically extend the system
from a network graphic and window system to a network multimedia system. The
corresponding Renderer driver (also described in this chapter) allows application
program authors to easily write network-transparent multimedia applications.

Terminology and UML Notation. The terms client and server are always
used with the meaning they have in the X Window System (even if referring to
other networked windows systems, existing or purely hypothetical): The client is
the application containing all logic, while the server provides display and user
interaction capabilites and acts on behalf of the client.

The architecture of the X Window System is fairly object-centric. The terms
commonly used in the context of X ("resource", "resource type/class") map rea-
sonably well to the more commonly used terms of object-oriented architectures
("object", "class") and the latter terminology will be used throughout.

Moreover most X requests can fairly well be understood as "methods" of the
first class ("resource") involved in the request, and most UML diagrams in this
chapter must be read with this in mind. This means that

XDrawLine(display, window, ...)

125

126 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

becomes

window.DrawLine(...)

(with display implied). The mapping between X requests and class methods
resulting from this transformation should be self-explanatory by the name of the
method.

The X Window System is designed with asynchronous processing in mind.
Therefore, all messages exchanged between client and server (requests and
events) are shown as asynchronous messages in the UML diagrams between
client- and server-side objects. The message reception and dispatching logic
is always omitted from the diagrams as showing the full call chain would only
clutter these diagrams.

Actions performed by an object as reaction to a message are shown in the
diagrams as if the message had been a synchronous procedure call. In practice,
messages would of course be batched and processing delayed, this simplification
is made in the interest of readability.

Where a diagram involves both classes within the X client and the X server
(this will usually be sequence diagrams) they are visually separated by a thick
dashed line with labels on both sides indicating the execution context. Classes
corresponding to existing X infrastructure (as opposed to the new services intro-
duced in this chapter) will be drawn in diagrams using a light blue background
(as opposed to light gray) for easy optical disambiguation.

4.1 Media processing extensions

In its present form, the X Window System provides little support for multimedia
applications. With regards to multimedia applications it must be treated as a
"framebuffer-like" device that is just capable of copying an application-generated
pixmap to the visible area of the video memory. It does not support audio at all
which forces applications to use a secondary audio system.

Technically, these limitations do not pose much of a problem as long as the
multimedia application in question and the corresponding X display server reside
on the same physical machine. In this case, both can communicate using fast
inter-process communication mechanisms; they can be considered connected by
a communication channel with virtually zero communication latency and virtu-
ally infinite communication bandwidth1. This means that

• Intra-stream synchronization can (and must) be performed by the applica-
tion itself; for video it can be achieved by issuing requests to display images
to the X server at the correct points in time – the application can be reason-
ably confident that they will be executed in a timely fashion.

1Although communication latency and throughput limitations do of course exist they are prac-
tically irrelevant for multimedia applications because: 1. IPC latency including operating system
scheduling is far below the human perception threshold and 2. IPC throughput exceeds the data
rate required to transmit even uncompressed media by orders of magnitudes.

4.1. MEDIA PROCESSING EXTENSIONS 127

• Inter-stream synchronization can (and must) also be performed by the ap-
plication itself; assuming that the application can control and knows the
latency of any secondary system used (e.g. for audio) it can again trivially
achieve inter-stream synchronicity by timing its requests to the X Window
System appropriately.

• Data transfer is easy because it requires (at most) a few memory-to-memory
copies.

On the other hand these issues become problematic if the communication
channel does have non-neglegible latency and does have bandwidth limitations
of practical relevance, which is of course the case for most network-based com-
munication. Since the X Window System itself works well in networked scenar-
ios, the limitation of multimedia applications to non-networked scenarios be-
comes quite dissatisfactory.

A simplistic approach would be to construct a multimedia playback system in-
side (or alongside) the X Window System that autonomously receives, processes
and presents multimedia streams2. However, this "solution" violates almost ev-
ery software design principle (of the X Window System in particular) and results
in a system that is much more limited in usefulness and less versatile than the
approach taken here.

Putting aside for the moment the decision whether multimedia playback fa-
cilities properly belong inside or alongside the X Window System, the following
requirements are mandatory for any distributed multimedia presentation sys-
tem:

• For intra-stream synchronization the server(s) have to be able to perform
operations (e.g. display images) at precisely defined points in time; since
the communication channel must be assumed to have unknown (and un-
predictably varying) latency, reliance on timely delivery of commands for
individual images or audio samples must be avoided.

• For inter-stream synchronization the server(s) must support synchroniza-
tion between multiple media streams that form a single multimedia presen-
tation; again due to communication latency the system cannot rely on client
commands arriving at the server in a timely fashion to ensure synchronic-
ity.

• The system must support transfer of compressed media data because lim-
ited throughput (compared to IPC) is of concern for network communica-
tions.

Inter-stream synchronization turns out to be complicated (or even impossible) if
the client application has to coordinate separate services for multiple media types
(i.e. a separate audio and video server process). The server implementor has to

2like XMovie [36] which provides a pass-through interface for compressed video data

128 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

make sure that both services execute synchronously and has to provide a means
for the client to express the synchronicity requirements in the command set for
the individual servers. The client implementor has to communicate with two
separate services, possibly using different protocols. In short, from a systems
point of view there is no reason to separate the services to begin with.

This leaves the options of complementing the X Window server with a separate
media server, or integrating the required services into the X Window System. The
arguments against integration can roughly be grouped as follows:

• design purity issues: The extensions of the system required for multime-
dia introduce completely new concepts (time, audio) that are quite alien to
the original purpose of the system (graphics). However if the term "Window
System" is understood to encompass all forms of interaction between ap-
plications and user in a modern desktop system, the omission of "audio"
appears rather arbitrary and it can be argued that the original design is
incomplete insofar.

• code complexity issues: Since the X server mediates all interactions between
user and applications it is a very critical piece of infrastructure that must
not fail; therefore care must be taken that new functionality does not ad-
versely affect reliability and security, and it must be implemented in a way
that does not negatively affect software maintenance.

• implementation issues: The existing reference X server implementation is
not very well-suited for real-time processing at all; since multimedia in gen-
eral and audio in particular has inherent real-time constraints, this makes
it a less than ideal basis for implementation.

The arguments that are strongly in favor of integration are:

• Protocol closure. Since intra-stream synchronization requires a common
timebase for multiple distinct media (most notably video as well), the proto-
col(s) must be able to refer to this timebase. This is achieved most easily by
making the timebase a "first-class object" of the X Window System.

• Universality. The services provided by the extensions to the X Window Sys-
tem presented further down are useful outside the scope of multimedia
processing. For example, the ability to submit "post-dated" and precisely
timed drawing operations (see section 4.1.1) can also by used for simple
animation of graphical user interface elements.

• Optimization potential. Several operations required for processing of media
can benefit from delegation to specialized hardware. The X server already
interfaces with the graphics hardware in sophisticated ways, so it is useful
to reuse this infrastructure.

4.1. MEDIA PROCESSING EXTENSIONS 129

X Core

«Resource»

«Drawable»

WindowPixmap

MIT-SHM

ShmSeg

ShmPixmap

RENDER

Picture

TIME

«Clock»

SystemClock

Scheduler

AUDIO

PCMDevice

«PCMContext»

SampleBuffer

ShmSampleBuffer

COMPRESS

AudioDecompressor

ImageDecompressor

Figure 4.1: Relationship of TIME, AUDIO and COMPRESS extensions to core X
services and standardized extensions.

Therefore, the following extensions which complement existing X functionality
have been implemented:

• Timing services (TIME extension): add the concept of "time" to the X Window
System, introduce clocks into the X server and allow X client applications
to issue commands to the X server that are to be executed by the server at
a client-defined point in time.

• Audio services (AUDIO extension): allow to process audio in the X Window
System in a fashion analogous to the existing image processing infrastruc-
ture; cooperate with the timing services to allow audio/video synchroniza-
tion.

• Compressed media services (COMPRESS extension): introduce the concept
of compressed media representation, allow transmission of media data in
compressed form, provide an interface for algorithms that deal with com-
pressed media, and allow client-side control over data and algorithms.

130 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

Each of these extensions provides functionality that is orthogonal to the others
and is useful on its own. Although the extensions have some implementation in-
terdependencies, they are relatively weak. The following three sections describe
these extensions in detail. The resource types introduced by the new extensions
and their relationship among each other as well as the existing X infrastructure
is depicted in figure 4.1.

4.1.1 Timing and synchronization services

The basic idea to achieve precise presentation timing is to have the client submit
operations to the X server that are however not executed immediately but are
deferred to a later point in time. Both the operations themselves as well as the
point in time is completely controlled by the client. Timing and synchronization
of (multi)media presentation is thus split into two parts:

• The client has to determine the appropriate points in time for all operations
to be executed; inter- and intra-stream synchronization requirements must
be specified by submitting operations with appropriate timing information.

• The server will just perform the operations the client has requested, at the
time specified by the client; specifically the server does not have any explicit
knowledge that an operation is part of an ongoing (multi)media presenta-
tion, nor does it have explicit knowledge of multiple synchronized media.

This basic idea is the same as set out in [3] and all arguments apply without
modification; they will be briefly summarized here for the convenience of the
reader.

The timing requirements for (multi)media applications are far less strict than
e.g. process control systems. Especially failure to meet a deadline does not result
in catastrophic failure of the system but instead gradually degrades the user’s
experience of the system. Therefore, it is acceptable for multimedia applications
to treat the timing requirements as "soft" – i.e. it may "occasionally" fail to meet a
deadline.3 This leads to the following service guarantee for scheduled operations:

(1) Client applications may submit operations to be executed within a client-
specified validity interval. The server will begin execution of the operations
not before the start of the validity interval, and not after the end of the
validity interval. It should execute the operations as close as possible to the
beginning of the interval.

While from a conceptual perspective it is desirable to guarantee that execu-
tion of operations is finished (instead of begun) before the end of the interval,
this strong guarantee is in fact a) unnecessary and b) difficult to implement: a)

3In other words the system need not "unconditionally guarantee" real-time response; a "sta-
tistical" quality of service guarantee is sufficient.

4.1. MEDIA PROCESSING EXTENSIONS 131

«Clock»

+ getTime() : timestamp
+ issueGroup(group :

ScheduledRequestGroup)
+ removeGroup(group :

ScheduledRequestGroup)
+ replaceRequests(group :

ScheduledRequestGroup,
requests : Request[]
compute_cost : int)

SystemClock

rate : int

+ start()
+ stop()

Scheduler

+ issue(when : timestamp,
expires : timestamp,
id : int, notify : Notification,
requests : Request[])

+ cancel(id : int)
+ replace(

id : int,
requests : Request[])

+ clear()

ScheduledRequestGroup

- requests : Request[]
- when : timestamp
- expires : timestamp
- id : timestamp
- compute_cost : int

+ execute()
+ notifyDone(now : timestamp)
+ notifyDropped(now : timestamp)

idwhen
1

*

1

*

1 *

Figure 4.2: Timing and Synchronization services

because in practice execution time is significantly shorter than the validity in-
terval itself, and because b) would require precise knowledge of the duration of
the operations.

The operations submitted as a group for a specific validity interval are in-
tended to be used to generate the visible (or audible) output for a short period of
time. In this case there is no point in executing the operations only "partially":

(2) Groups of operations submitted by the client are executed with transac-

tional semantics – this means that either all of the operations are performed,
or none is. Furthermore, the group of operations is performed atomically
with respect to all other operations submitted to the same scheduler.

If multiple groups of operations have overlapping validity intervals, their rel-
ative execution order is naturally undefined. The strategy in most real-time sys-
tems is to execute pending operations "shortest deadline first"4. This conflicts
however with the intended semantics of the timing specifications as outlined in
(1), so it seems more natural to process groups of operations by their respective
begin of the validity interval instead. Experiments so far have failed to establish
a clear advantage of either strategy as failure to meet a deadline turned out to
be rare occurence, therefore this choice is somewhat arbitrary.

4The rationale is, of course: if there is any schedule at all that guarantees timely execution of
all operations, then "shortest deadline first" is guaranteed to provide such a schedule.

132 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

The implementation of this conceptual idea requires the introduction of the
concept of time into the X Window System. This concept is represented within
the server as a new class Clock which provides the abstract interface that is
implemented by all other classes that are able to provide time information. The
application-visible interface of this class allows nothing more than request the
current "time" from the clock. Other resources that require time information can
be "bound" to a clock.

A concrete implementation of this interface is provided in the form of the Real-
TimeClock class; it implements a clock whose notion of time corresponds to wall
clock time. It can be instantiated multiple times (so multiple concurrent appli-
cations can each have their own private Clock) and each instance can separately
be paused and continued.

Support for post-dated operations is provided by the Scheduler class. It acts
as a "buffer" for all operations that the client wishes to execute at a later point
in time, and it takes care of timely execution. It also provides feedback (through
X events) to the client whether a specific group of operations was executed, and
at what point in time. The relationship of the classes is shown in figure 4.2.

The progression of time represented by a server-side clock can not be influ-
enced by client applications in any way (except for coarse control allowed by
the operations of starting and stopping the clock). From the point of view of
clients they should be treated as "physical" time sources (in contrast to "logi-
cal" time sources which may be sped up or slowed down in relation to physical
time) which essentially means that server-side clocks cannot be synchronized to
a client’s clock (or any other clock, for that matter). Additionally, client applica-
tions must not assume that different clocks within the server are synchronous.

These limitations are deliberate to simplify the implementation of server-side
clock sources5 and provide deterministic behaviour. This means however that
additional work must performed by client applications, see section 4.2.3 for a
possible approach.

4.1.2 Audio services

Audio has traditionally never been a part of the X Window System. Several
networked audio systems have been devised to operate alongside the X server,
but despite their complexity most of them have been found lacking even for the
simple purposes of presenting synchronized video and audio streams on remote
displays. Instead, a comparatively simple and straight-forward extension to the
X Window System has been implemented that provides the required functional-
ity. It has been designed in a way to be useful beyond the scope of (multi)media
processing – section 5.1 will discuss how other audio APIs can be mapped to the
audio extension.
5It follows the general design principles of the X Window System: "Do not add new functionality

unless an implementor cannot complete a real application without it." (Bob Scheifler). See also
[55].

4.1. MEDIA PROCESSING EXTENSIONS 133

SampleBuffer

- samples : SampleValue[]
- window_base : uint
- window_size : uint

+ setBase(new_base : uint)
+ putSamples(pos : uint, count : uint,

samples : SampleValue[])
+ getSamples(pos : uint, count : uint)

: SampleValue[]
+ multiply(dst_offset : uint,

src1 : SampleBuffer, src1_offset : uint,
src2 : SampleBuffer, src2_offset : uint,
count : uint)
...

«PCMContext»

+ queryChannelLayoutRange()
: ChannelLayout[]

+ setChannelLayout(layout
: ChannelLayout)

+ querySampleRateRange()
: SampleRate[]

+ setSampleRate(rate
: SampleRate)

+ assignChannel(channel : uint,
buffer : SampleBuffer)

PCMDevice

+ createPCMContext()
: PCMContext

name

PropertyMap

+ set(name : string,
value : byte)

+ get(name : string) : byte
+ remove(name : string)
+ list() : string[]

Property

+ name : string
+ value : byte[]

«Clock»

*

create

channel

Figure 4.3: Architecture of the Audio extension

The extension presented here follows the general architectural guidelines of
the X Window System. It introduces a server-side storage for audio data (a Sam-
pleBuffer , analogous to a Pixmap), compositing operations for server-side audio
data (analogous to the core X drawing operations, or the RENDER operations) and
server-side objects that specify the interpretation of audio data (a PCMContext ,
analogous to a Visual though PCMContext s are also used for capture).
The SampleBuffer s act as pure "data storage" for samples and lack informa-

tion (such as sample rate) that would be required to interpret the data as "audio".
This information is instead held only in the PCMContext objects that require this
information to convert sample data to and from analog audio signals. This sep-
aration of concepts has a number of consequences: Since the same sample data
can be interpreted as audio in different ways (e.g. different sampling rates) the
application must ensure that only data with "matching" interpretation is com-
bined. If format conversions are required, the application must explicitly perform
these conversions; thus the application has complete control over the operations
performed on the data, it can e.g. balance computational complexity and quality
of the result to its specific needs. This also means that the server-side operations
are truly primitives, and they can be implemented very efficiently.

In the same spirit, SampleBuffer s contain only data for one channel of audio,

134 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 259 26

Sample index

0.0 0.0 0.0 0.0 0.4 0.6 0.7 0.6 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 259 26

Sample index

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Active window

Active window

shift window

samples "dropped out of"
window, values lost

subsequent reads yield zero

samples "shifted into"
window; values initialized to
zero, may be overwritten later

All samples outside the window of interest are implicitly assumed to be zero; sample values that
"drop out" of a window are lost, sample values "shifted in" are initialized to zero.

Figure 4.4: Shifting the "active window" of a SampleBuffer

so multi-channel audio must be decomposed into multiple buffers. Operations
that must be performed on multiple channels of audio must thus be applied to
the data of each channel separately, but the flexibility gained allows applications
to perform operations such as sophisticated cross-channel mixing.

Figure 4.3 illustrates the relationship of the classes providing audio services.

4.1.2.1 Audio data representation

Audio is represented within the X server as sampled audio (in the same sense
that the server only deals with sampled images). The resource class used to
represent samples within the server is a SampleBuffer : It stores a set of samples,
where each sample consists of an (index, value) pair. A SampleBuffer can only
represent samples with a contiguous range of indices, but the index need not
necessarily start at zero. The sample index is representable as an integer and
uniquely identifies each sample, the internal representation of the sample values
is left unspecified6.

Conceptually, a SampleBuffer represents a small window of fixed size out of
an infinite array of samples. The window can be shifted back and forth so that
the range of represented sample indices changes. Only values that lie within the
window currently represented by the SampleBuffer have meaningful values – any
access outside this window will yield 0 (if the sample values are read) or simply

6The current implementation uses floating-point values. For computer architectures lacking
a FPU it might be preferable to use a fixed-point representation and the concept explicitly allows
for alternate implementations.

4.1. MEDIA PROCESSING EXTENSIONS 135

discard the value (if the sample value is written). Shifting the window will also
modify the information about the samples: the values of all samples that "slip
out" of the window will be lost (and replaced by an implicit zero), and the values
of all samples that "slip in" to the window will be initialized with zero (though
they can be modified to a different value later). Within the window the samples
may be accessed randomly (see figure 4.4).

While this concept of a "sliding window" of samples may appear unusual at
first it has the important property that the index of any individual sample is
constant and unique. Sample buffers will be used to convey data between a
producer and a consumer, and this concept simplifies concurrent access to the
data as producer and consumer need only be "weakly" synchronized: This means
that producer and consumer can operate largely asynchronous and oblivious of
each other; it must only be ensured that a) the producer does not fall behind
the consumer and b) both operate within the window of a sample buffer. The
chosen data structure for SampleBuffer s is conceptually advantageous to other
data structures that could be used to implement p/c models:

• A simple array of sample values where the consumer "drains" data from the
front (fixed index 0) and the producer "appends" data to the end: random
access to the data is possible by both producer and consumer, but access to
the data must be strictly serialized; moreover detecting overflow/underflow
requires additional bookkeeping.

• A FIFO buffer decouples producer and consumer (although handling of
overflow/underflow still needs some work), but severely restricts the ac-
cess pattern to the data; if multiple operations must be performed on a
group of multiple samples, auxiliary buffers are required to represent the
intermediate values.

For the common case of client and server residing on the same physical ma-
chine, the AUDIO extension also allows placement of sample buffers in shared
memory segments (reusing the mechanism already available for pixmaps). For
this use case the sliding window concept realized for sample buffers provides
another advantage: It can be realized as a lock-free data structure (see appendix
B.2).

In practice, a SampleBuffer implementation will reuse sample index values as
well simply because representation and processing of arbitrarily sized integers
is too tedious to implement. But in contrast to a ring-buffer the values are
not taken modulo the size of the ring buffer, but instead modulo the number
of representable integers which will typically be 232. Assuming a sampling rate
of 96kHz, such an implementation would thus have to reuse index values after
12 hours, while the before/after relationship of indices becomes ambiguous due
to signed overflow for any two sample indices more than 6 hours apart. This

136 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

"limitation" is assumed to be completely irrelevant for all practical purposes and
therefore deemed acceptable7.

4.1.2.2 Sample data operations

The server can perform several elementary operations on sample data stored in
server-side SampleBuffer s. Neither do the available operations provide a com-
plete synthesis operator set, nor is this the intended goal. Instead, they are
designed to provide sufficient functionality to express common audio composit-

ing operations that are performed at the last step before the data is converted
into an analog signal; this includes

• up- or down-mixing of multiple audio sources or channels with source or
channel-specific weights

• up- or down-sampling

• panning

• simple filtering

Nevertheless, the operations can be (ab)used for very simple audio synthesis.
The available functions can be grouped as follows:

• sample up-/download: Enables a client operation to copy client-generated
sample data into the server memory or vice versa

• synthesis of simple functions: linear slope, constant, exponential at-
tack/decay, simple periodic functions

• clipping: limit value range to cut away peaks

• arithmetic operations: multiply sample values and accumulate them into a
SampleBuffer (or replace the old values)

• filtering: convolute two sets of sample values and accumulate them into a
SampleBuffer (or replace the old values)

The first three groups of operations require no further explanation. The arith-
metic operations operate on equally-sized slices of multiple sample buffers, with
arbitrary offsets into the individual buffers. The operations supported are:

• MultiplyConstant(dst, src, constant): multiplies each sample value
of src with constant and stores the resulting value into dst

7If producer and consumer manage to become out of sync by more than 6 hours there are
considerably worse problems to worry about!

4.1. MEDIA PROCESSING EXTENSIONS 137

• MultiplyAccumulateConstant(dst, src, constant): multiplies each
sample value of src with constant and adds the resulting value to the
previous value in dst

• Multiply(dst, src1, src2): multiplies each sample value of src1 with
its corresponding sample value from src2 and stores the resulting value
into dst

• MultiplyAccumulate(dst, src1, src2): multiplies each sample value
of src1 with its corresponding sample value from src2 and adds the re-
sulting value to the previous value in dst

More complicated operations can be expressed by a combination of arithmetic
and synthesis. For a example "fade-in" (multiplication of sample values with a
linear or exponential ramp) requires synthesizing the ramp into a temporary
buffer, and then multiplying the samples with these precomputed values.

The discrete convolution operator is usually defined as

outk =
∑

j

ink−jkernj

If in, out and kern are interpreted as "sampled" approximations to conceptually
continuous functions, then this definition requires that all three functions are
sampled with the same sampling rate. The convolution operator described here
generalizes the well-known discrete convolution operator to allow all three func-
tions to be sampled differently; it contains the above definition as a special case
if the sampling rate of all three functions is equal.

Assume that the signals are sampled at intervals tout, tin, tkern; let the contin-
uation functions of the discrete input and kernel be defined as

fin(t) =
∑

k

δ(t − ktin)ink

fkern(t) =
((k + 1)tkern − t)kernk + (t − ktkern)kernk+1

tkern
for ktkern ≤ t < (k + 1)tkern

In other words, kern is interpolated linearly between sample points, while in
is replaced with Dirac impulses at the sample points, scaled to the sample value
(see figure 4.5 for a graphical illustration). The output function fout can formally
be defined as the convolution of fin and fkern:

fout = fin ∗ fkern

The continuous function fout can then be sampled at intervals tout to produce the
discrete output signal. This generalized discrete convolution operator has the
following properties:

138 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

out′

kern′

in′

The discrete input signal in is extended to a function in′ defined on the continuous time domain
that equals scaled Dirac δ pulses at sample points and zero everywhere else (upper graph). The
convolution kernel kern is extended into a function kern′ defined on the continuous time domain
through linear interpolation between sample points (middle graph). The signal out′ is then defined
as the convolution of in′ and kern′ (lower graph); it is a function defined on the continuous time
domain, and it may be sampled at desired intervals to produce the discrete signal out.

Figure 4.5: Definiton of the generalized discrete convolution operator

• it is identical to the simple discrete convolution operator if tin = tout = tkern

• it is generally not commutative

• if in and kern are compact8 with nin and nkern non-zero samples, re-
spectively, then one output sample can be evaluated with at most 6 +
6 max(nkerntkern/tin, nintin/tkern) arithmetic operations (the simple discrete con-
volution operator requires at most 1 + max(nkerntkern/tin, nintin/tkern) opera-
tions)

Four variations of this convolution operation are provided, they all operate on
slices of three SampleBuffer s. Since the SampleBuffer s do not have an associated
sampling rate or interval, these are provided as parameters to the convolution
operation:

8i.e. non-zero only in a finite interval

4.1. MEDIA PROCESSING EXTENSIONS 139

• Convolute(out, in, kern): convolute in and kern and place sample val-
ues in out

• ConvoluteAccumulate(out, in, kern): convolute in and kern and add
sample values to out

• ConvoluteSymmetric(out, in, kern): convolute in and kern and place
sample values in out; kern is treated as symmetric with respect to zero (i.e.
kernn = kern−n)

• ConvoluteAccumulateSymmetric(out, in, kern): convolute in and
kern and add sample values to out; kern is treated as symmetric with
respect to zero (i.e. kernn = kern−n)

The "symmetric" variants allow to represent symmetric convolution kernels
with half the number of sample values and allow some arithmetic optimizations.
Note that the convolution operator is sufficiently generic to implement band-
limited resampling (see 1.3.2.2, 28).

4.1.2.3 Audio playback and recording

While SampleBuffer s act as pure containers of sample data, they provide no
means of playing back their contents or capturing from analog sources. This is
facilitated through separate PCMContext objects instead.

PCMContext s reference one or more SampleBuffer s that are to be used as data
storage for either capture or playback, and also include an index per buffer to be
used as the "current" playback or capture location. In addition to the data store,
they contain all parameters that are required to interpret the underlying sample
data as "audio", including sample rate9, assignment of buffers to channels and
intended channel semantics.

Additionally, applications may specify "latency" parameters for each PCMCon-
text – for playback this puts an upper limit on the "fetch"-latency that can be
tolerated by the application10, for capture this limits the time between capturing
a sample and the point in time that the application may read it. Latency must
be negotiated between application and X server, who may impose some technical
restrictions.

Once activated, the PCMContext s will start reading or writing samples with
consecutive indices from or to the respective SampleBuffer s. However, they will
not modify the position of the SampleBuffer s’ windows. This means that they can
possibly attempt to access data outside the current window of a SampleBuffer .
This will result in the behaviour explained in section 4.1.2.1 – output channels

9Usually, all channels will have the same sampling rate, but for LFE channels lower sampling
rates are customary and explicitly permitted by this model.
10 This latency denotes the maximum time that a sample may be fetched from a data store
before it is actually played back. This also denotes the minimum that an application must
supply samples ahead of time.

140 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

will go mute, and the data from input channels will be lost. It is therefore the
applications’ responsibility to shift the window of all SampleBuffer s in a timely
fashion.

Applications therefore need to synchronize with playback and recording to
some extent. To facilitate this, PCMContext s provide the Clock interface as ex-
plained in section 4.1.1. Applications can use this interface to query the current
playback or recording position or schedule operations accordingly.

4.1.2.4 Audio devices and compositing

PCMContext s are instantiated by applications from server-side PCMDevice s.
These may represent physical PCM capture or playback devices available to the
application. Like the screen, physical audio devices are limited resources to
which access by multiple parties must be multiplexed. Applications rarely re-
quire exclusive access to the full screen, instead the screen is virtualized as
multiple "windows" (and a utility application helps the user to manage the win-
dows); likewise applications rarely require exclusive access to the audio device,
and a mechanism to multiplex multiple audio is required as well.

Audio recording through a single digitization device is generally not multiplex-
able since filtering out the "relevant" audio information for a particular applica-
tion requires significant amount of signal processing and filtering. Therefore,
the only form of "multiplex" supported is to replicate the recorded sample data
for every application and let the applications filter the parts they are interested
in themselves. It may appear problematic that multiple – possibly unrelated –
processes are allowed access to the same data; however, since ability to record
audio data enables an application to "eavesdrop" on the user, access control re-
strictions for audio recording capability must be in place anyways. Therefore,
the problem of multiplexing access to the recording capability of an audio device
is generally best managed within a comprehensive security framework which is
out of scope for the present work. The rest of this section will only deal with
audio playback.

The model chosen for audio follows the architecture of the RENDER (described
by Keith Packard in [45]) and COMPOSITE: In this model, the server allows a "spe-
cial" client application to "redirect" other applications’ drawing operations into
off-screen areas; it is then responsible for compositing the on-screen view of all
application windows. The server further supports this model with a notification
mechanism about window content changes.

For audio this means a PCMContext may either be bound to a "physical" PCM
device (representing a true hardware device), or a "virtual" PCM device created
by another X client responsible for audio compositing. If another application
attempts to start playback through such a virtual PCMContext , the X server will
notify the audio compositing X client which then takes over responsibility for
processing of the audio data. It should use the audio compositing operations
from section 4.1.2.2 to mix the data from all clients that wish to output audio

4.1. MEDIA PROCESSING EXTENSIONS 141

into its own SampleBuffer (s). See section 5.2 for a discussion of this compositing
model.

4.1.3 Compressed media services

Timing, synchronization and audio services extend the X server’s functionality
by introducing completely new concepts; they allow to efficiently process media
data that is already inside the X server process space, but they do not solve
the problem of data transfer. As outlined in section 4.1 the amount of raw data
required to represent a sequence of images and an audio stream may exceed the
capacity of the communication channel. It is therefore desirable to transmit the
data in compressed form.

Two new resources are introduced to support compressed media within the
X server: ImageDecompressor and AudioDecompressor (cf. figure 4.6). They
receive, buffer and decompress media data. The concept of an "image sequence
decompressor" was already introduced in [3].

ImageDecompressor and AudioDecompressor objects are upon instantiation
connected to a specific compression format. This format essentially identifies the
"algorithm" used to convert compressed data into its uncompressed form (and
vice versa). "Minor" variations to the algorithm (such as differing parameter sets)
can be controlled via properties.

• they can manage compressed data stored in the resources (e.g. transmit
data)

• they can request conversion of data into uncompressed form

The server side decompressors do not act on unstructured streams of bytes,
instead the client has to scan the bytestream representing a video or audio track
and decompose it into individual frames (corresponding to one self-contained
decompression unit, typically a single image). These frames are then transmitted
to the server, and the client will generate a "handle" to the frame; this handle may
be used to refer to the data in later operations, most notably decompression.
This means that transmission to the X server and processing of compressed data
within the X server can be performed asynchronously11, in fact both operations
can be performed by different X clients12. The rationale for this design has also
been covered in [3], so the consequences will only be briefly summarized here:

• Individual frames may be "skipped" by simply not requesting their decom-
pression; no extra server-side processing (scanning of the bytestream) is

11to some degree: Obviously data must be submitted before it can be processed. To protect the
system from "runaway" clients that submit data which is never processed, there is also a limit on
how much data can be stored – therefore the data consumer must not lag behind the producer
"too much" and both need to find a way to synchronize.
12The client submitting the data will however need to find a way to make the handles known to
the client wishing to use the data.

142 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

Picture

ImageDecompressor

+ CreateFrame(id : int,
ref_frames : int[])

+ FrameData(id : int, data : byte[])
+ ReleaseFrame(id : int)
+ CreateTarget() : Picture
+ Decompress(id : int,

pattern : Picture)
+ SetProperty(name : string,

data : byte[])
+ GetProperty(name : string) : byte[]

SampleBuffer

AudioDecompressor

+ CreateFrame(id : int)
+ FrameData(id : int, data : byte[])
+ ReleaseFrame(id : int)
+ CreateTarget()

: SampleBuffer
+ Decompress(id : int[],

target : SampleBuffer[])
+ SetProperty(name : string,

data : byte[])
+ GetProperty(name : string) : byte[]

CompressedImageFrame

+ id : int
+ data : bytes[]
+ decompressed : bytes[]

CompressedAudioFrame

+ id : int
+ data : bytes[]
+ decompressed : bytes[]

output targets output targets

reference frames

Classes implementing compressed media services. AudioDecompressors and ImageDecompres-
sors are directly accessible as X resources. They have one or more associated output targets
which make the decompressed data available as read-only sources. Data is stored in frame ob-
jects that do not have an XID assigned, so they are accessible only through the decompressor object
they belong to.

Figure 4.6: Classes defined by the COMPRESS extension

necessary in this case. Decompression of frames may be requested "out-of-
order".

• The system can deal with "missing frames" gracefully and without synchro-
nization problems.

• Decoding dependencies for every single frame must be made explicit; since
decompression of frames may be requested out-of-order (with respect to the
ordering of frames within a bytestream), the decompressor cannot infer the
dependencies implicitly.

Decompressed images and audio samples are available as "source" images for
image compositing operations, or "source" sample buffers for audio compositing
operations; from the decompressors’ point of view these are considered "output
targets": every ImageDecompressor object has one or more attached Picture ob-
jects (correspondingly, AudioDecompressor objects have one or more attached

4.2. MEDIA PRESENTATION IN THE X WINDOW SYSTEM 143

SampleBuffer objects). These objects are usable as read-only resources for im-
age or audio compositing operations, allowing clients to "blit" image data into
other Picture s or composite the audio further.
The client may "decompress" audio and image frames through the decom-

press method. The client is expected to specify the output target handles that
are to be identified with the decompressed audio or image data. Despite its
name, the method does not necessarily immediately decompress the data – this
step may be delayed until the selected handles are actually used in compositing
operations.

4.2 Media presentation in the X Window System

The mechanisms outlined in section 4.1 provide the basic primitives that allow
media presentation in the X Window System in a network-efficient manner. This
section will show what operations a correct media presentation application (us-
ing these primitives) will have to perform. We will for the purposes of this section
assume that the media consists of one video stream and one audio stream, both
given in compressed representation.

The application has to perform the following basic tasks:

1. Acquire resources and initialize required server-side objects

2. Transmit some media data and schedule presentation of data

3. Start presentation as soon as "enough" data has been accumulated in
server-side buffers

4. Periodically transmit more media data and schedule presentation of data

5. Compensate for clock drift

This sequence of steps must be performed for each type of media, properly
interleaved. The steps will now be explained in more detail, but for the sake of
readability the discussion will only deal with one type of media at a time; it is left
to the imagination of the reader to properly interleave the conceptually parallel
steps.

4.2.1 Video presentation

Steps 1 through 3 are illustrated in figure 4.7. It is assumed that a window
where the video images should be shown has been created already, and a Pic-
ture has been associated with this window ➊. The application creates a ImageDe-
compressor object to receive and store compressed image data and manage de-
compression, specifying the compression format as well as dimensions of the

144 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

Client Server

app
: XClient

win dow
: Picture

➊

vseq
: ImageDecomp

create(format, w, h)

CreateTarget()

vout
: Picture

➋

vclock
: Clock

«create»

vsched
: Scheduler

create(vclock) ➌

register()

CreateFrame(frameid)

vframe
: CIFrame

«create»

FrameData()

schedule("vseq.Decompress(frameid);window.Composite(vout);")

loop ➍

Start() ➎

timer()

Decompress(frameid)

«retrieve data»

«write pixel_data»

Composite(vout)

«completion event» ➐

loop ➏

Note that the loops ➍ and ➏ are executed asynchronously and in parallel in practice.

Figure 4.7: Video presentation using the COMPRESS and TIME extensions

4.2. MEDIA PRESENTATION IN THE X WINDOW SYSTEM 145

pictures within the sequence. Some formats allow or require additional parame-
ters influencing (de)compression to be specified (such as non-standard quantizer
matrices for MPEG 1/2 video streams). The application needs to have this in-
formation extracted from the video source at this point in time. Furthermore,
the application creates a Picture handle that will later represent the currently
processed image ➋. This handle can then be used to specify a compressed image
as a source Picture for drawing operations. Finally, a Clock and a Scheduler are
created to provide playback timing, and the Scheduler is bound to the Clock ➌.
This concludes the preparatory step of creating required resources.

Before playback starts, the application submits both compressed data to the
image sequence object and timed commands to decompress and display individ-
ual images to the scheduler ➍. Submitting image data consists of informing the
X server about decoding dependencies (through createFrame) and transmission
of actual image data (FrameData). It is the application’s responsibility to extract
the required information from the video source and decompose it into individual
images.

Finally the application can start the presentation by starting the server-side
Clock ➎. The server will then autonomously execute the scheduled commands
on behalf of the client ➏ which will cause the images to be decompressed and
displayed one by one. The server will generate reports of command execution
➐ so that the client is informed about the progress of media presentation. The
client can detect drift between its own and the servers clock through the time-
stamps contained in each report – this will be used for synchronization described
in section 4.2.3 below.

Periodically the client needs to supply more compressed image data and
schedule new commands for display. Conceptually, the client will execute the
same commands as when submitting initial data before starting playback ➍, but
the loop has to be synchronized with presentation progress to avoid overflowing
or underflowing the server-side buffers.

4.2.2 Audio presentation

Transmission of compressed audio frames and decompression scheduling is per-
formed completely analogous to video presentation so only the differences to the
process outlined in figure 4.7 will be noted here.

Instead of a picture, the application has to create a PCMContext and bind one
sample buffer to the context for each audio channel as shown in figure 4.8. The
sample buffers will be used in the same way as the window resource in section
4.2.1. The application does not need to create a separate clock since the play-
back context already provides the Clock interface, consequently the Scheduler
is bound directly to the playback context. Compressed audio data is treated in
the same way as compressed video data except for the fact that multiple simul-
taneous channels must be processed. This means that multiple output sample
buffers are created for a single AudioDecompressor object (one for each channel),

146 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

Client Server

app
: XClient

dev
: PCMDevice

CreatePCMContext()

ctx
: PCMContext

SetChannelLayout(nchannels)

buffer
: SampleBuffer

create(size)

AssignChannel(n, buffer)

loop

sched
: Scheduler

create(ctx)

register()

Figure 4.8: Preparation for audio playback

and multiple audio compositing operations must be scheduled at each time step
to provide data for the individual channels (figure 4.7, ➋ and ➍).

4.2.3 Synchronization

Different clocks may be used for audio and video and they can (and in practice
will) drift apart so that the presentation will lose synchronicity. In addition to the
two clocks just mentioned, there generally is (at least) one more clock involved:
the clock used by the client application to determine when to send more audio
or video data to the server.

Since the server-side clocks cannot be influenced, the client has to modify
the scheduling of operations sent to the server. But even though the progression
of time within the server-side clock can not be influenced by the client, it can
be monitored by the client. Since the delivery of reports is subject to network-
induced delay and jitter, they have to be evaluated statistically to determine
systematic clock drift. Additionally, the client can also use this information to
determine round-trip delay and create a synchronized "copy" of every server-side
clock (see for example the TickSource concept described in section 3.2.3.2).

4.3. RENDERER DRIVER ARCHITECTURE 147

With these information available the client may adopt a variety of strategies
to synchronize the presentation. It may choose any clock it wishes as the master
clock for the presentation. Adapting video playback to this master clock can be
achieved by scheduling the display of images faster or slower than the nominal
frame rate, or by skipping/repeating images. Adapting audio playback can be
achieved by duplicating or omitting individual samples, or more sophisticated
resampling techniques. The extensions of the X Window System provided within
this chapter do not force users to choose a specific adaptation strategy but allow
applications decide on the best tradeoff between quality/complexity that suits
their needs best (see for example the TimeMapper service described in 3.2.3.3).

4.3 Renderer driver architecture

Services for media presentation are provided as components implementing the
Renderer interface of libmedia (see section 3.4.3 for a description of the context),
and a set of specific components use the X Window System as output target.
(These do technically not form part of the core library, but are contained in the
separate libmedia-x11 library). The X11Renderer and associated components
can generally operate in two different modes:

• "legacy" mode: must be used in the absence of the TIME, AUDIO and
COMPRESS extensions described above. In this mode the implementation
falls back to performing all decompression and compositing operations
within the client, sending uncompressed image data to the X server for
display and timing all operations within the client. Audio is played back
using a secondary audio subsystem. This mode suffers from all disadvan-
tages explained at the beginning of section 4.1 and is only useful if client
and server execute on the same physical machine.

• "media-extended" mode: is used whenever possible and TIME, AUDIO and
COMPRESS extensions are available. In this mode most of the processing is
delegated to the display server, data is transmitted in compressed form, and
the timing capabilities of the server are used. Additionally, audio is always
played back through the X server.

Since the "legacy" mode is only present as a fallback solution (to make the
framework useful with legacy X systems lacking the functionality developed in
this chapter), and since its functionality is quite self-evident it will not be dis-
cussed here any further. Instead, the discussion in the following sections will
be limited to the second mode of operation. Section 4.2 has already shown how
the extensions from section 4.1 can be used by media presentation applications.
This section will now discuss the Renderer and MediaRenderer components as
well as related classes that together provide a bridge between the framework
from chapter 3 and media presentation in the X Window System as is outlined
in section 4.2.

148 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

Client Server

«AudioRenderer»

«VideoRenderer»

«MediaRenderer»

X11AudioRenderer

X11VideoRenderer

X11MediaScheduler

InterpolatedTimeSource

«TickSource»

X11ClockTimeMapper

«TimeSource»X11Renderer

«Renderer» «X11ResourceCache» «Resource»

«Clock»

Scheduler

Picture

SampleBuffer

master
clock

Figure 4.9: General media rendering to an X display, overview class diagram

4.3.1 General media rendering and synchronization

The classes involved in general media rendering to an X display are shown in
figure 4.9. The central class responsible for coordination and management of
all other classes and resources involved is X11Renderer . Most importantly it
provides a master TimeSource which dictates the timing for presentations. All
timestamps used to describe media in the context of this renderer will be taken
as reference to this time source, consequently all time-dependent media pro-
cessing operations must be synchronized to it. Any TimeSource may serve as
master clock – the master time source may be identical to one of the other clocks
involved, like the X11 audio clock.

Actual image and audio rendering is performed through the
X11AudioRenderer and X11VideoRenderer classes. Both cooperate with the
utility X11MediaScheduler class which provides the basis for synchronized me-
dia presentation. Its main purpose is to provide timed execution of X operations
through the mechanism described in section 4.1.1 , but of course the server-side
clocks are not synchronized (both to each other and the master presentation

4.3. RENDERER DRIVER ARCHITECTURE 149

clock), so additional work is required to keep the presentation synchronous.

Synchronization is performed according to section 4.2.3 through coopera-
tion of the X11Clock , TimeMapper and X11MediaScheduler classes. The role of
X11Clock is to communicate with a server-side provider of the X Clock interface
to receive ticks and provide a client-side synchronized copy of the server-side
clock via InterpolatedTimeSource . The TimeMapper utility provides a mapping be-
tween the master presentation clock and the remote clock(s). X11MediaScheduler
uses this service to map timestamps from the master clock to the remote clocks
for execution, so operations can be scheduled for server-side execution accord-
ingly.

After a media fragment has been passed to a renderer, the X11Renderer will
determine the point in time that the data has to be rendered on the X server
(which will usually be the "begin" timestamp contained in the fragment, although
the renderer has the option of compensation for known latencies). Having de-
termined the render timestamp, it will then determine a preparation timestamp:
This is the point in time when all data pertaining to the fragment must be trans-
mitted to the server so that it is available in time for rendering.

If the preparation time has not yet arrived, the fragment can be enqueued
and the X11Renderer will request activation at a later point in time through the
master time source. Once the time for preparation has arrived, all data must be
submitted. This includes: Compressed or uncompressed audio or image data,
scheduled commands that perform required compositing or blits to the screen,
and possibly allocation of resources such as required "scratch" pixmaps and
sample buffers to hold intermediate data during compositing.

Irregardless of the representation type the data is in, rendering can always
follow the basic procedure outlined above: Rendering of sampled media requires
placing the media data into server-side resources during the preparation stage;
rendering of compressedmedia is explained in section 4.2 and requires allocation
of a decompressor and transmission of the media data; rendering of compressed
data must translate the compositing commands to X requests, potentially using
temporary resources to store intermediate results.

The X11Renderer must keep track of the server-side resources used to repre-
sent the media elements. This is done using two principal mechanisms: The first
is to statically assign server resources for representation of media elements. The
assignment is tracked through the processor-specific data mechanism provided
by libmedia. This strategy is useful for "long-lived" objects such as decompres-
sors (which are assigned to CompressedAudioSequence s and CompressedImage-
Sequence s) as well as objects that are "light-weight" in terms of server footprint
such as compressed audio/image frames (which are assigned to CompressedAu-
dioFrames and CompressedImage s respectively).
The second mechanism, dynamic assignment, is applied to all other media

elements: The renderer tries to reuse server-side resources for multiple objects.
This is accomplished with the help of the X11ResourceCache – its purpose is to
keep track of allocated but not statically assigned X server-side objects. This

150 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

includes scratch pixmaps, pictures and sample buffers used as intermediate
storage during complex audio or image compositing operations. While media
rendering could in principle be performed without this caching mechanism in
place, this would in practice lead to the creation and destruction of many server-
side objects in rapid succession. Apart from being inefficient in terms of server
processing load it would also quickly exhaust the XID space available to the
client.

4.3.2 Resource caching

Caching of server-side resources is a common necessity for toolkits interacting
with the X server in order to reduce processing load. Immediate-mode draw-
ing toolkits like cairo (section 2.2.2.1) can use a relatively simple approach to
caching: A resource is either currently in use, or it is not – any resource not
currently reserved can be acquired for temporary use, after the operation has
finished the resource is immediately returned to the pool for reuse.

Scheduled rendering as performed by the X11Renderer also requires resource
caching. However, due to the temporal planning-ahead, caching becomes a con-
siderably more intricate matter. Besides the target picture or sample buffer,
rendering of a fragment may require several additional resources, including:

a) Resources that contain media pre-computed by the application

b) Resources used for storage of intermediate compositing results

c) Resources used for storage of compositing results that may be referenced
by later fragments

These three classes of resources have different reservation life times during
which they cannot be used for other purposes:

a) These resources obtain their destined state at the point in time the renderer
"prepares" the fragment for playback. Obviously, the state must persist
until after the rendering operation has finished.

b) These resources are used only for the duration of the scheduled compositing
operation. They may be reused for other purposes at any time before or after
this operation. Since scheduled operations submitted to the same sched-
uler are guaranteed to be strictly ordered, this means that any schedule as
a temporary resource for another compositing operation is conflict-free.

c) These resources obtain their destined state during one compositing opera-
tion and must persist until after all referencing fragments have been ren-
dered.

4.3. RENDERER DRIVER ARCHITECTURE 151

The X11ResourceCache encapsulates the functionality required to keep track
of these reservations – which is in fact a surprisingly difficult task13:

1. Often multiple different candidates can fill in the role of a requested tempo-
rary resource – it is for example almost always permitted to use a Picture
resource that is larger than the one actually needed.

2. The problem is complicated by the fact that the schedule must be dynamic:
It is possible that resources of type b) above must be promoted to type c) as
the renderer discovers that intermediate data thought to be used only once
turns out to be required twice or more.

3. The schedule must be incremental as the renderer has only incomplete
information of the future.

4. The cache management must include decisions when to grow or shrink the
cache.

4.3.3 Handling of media elements

While the procedure outlined in section 4.3.1 covers the temporal aspect of me-
dia presentation – scheduling of operations and synchronization – as well as
resource management aspects, this section will describe the approach used by
the X11AudioRenderer and X11VideoRenderer to handle actual media elements.
As explained in section 3.4.3, the retained-mode processing model allows

some optimizations that can be performed on the media representations before
the abstract commands they represent are to be executed – these optimization
steps are of course also applied by the X rendering drivers. After any transforma-
tions are finished, the renderers must translate the media elements to operations
understood by the X server.

As a safe fallback, the renderer driver may always use the sample method to
obtain a rastered image or PCM audio signal which may then be uploaded into
the server14. For the various media representation types introduced in section
3.3 it should be quite obvious how they can conceptually be mapped to X oper-
ations – for example SumAudioSignals of ProductAudioSignals can be translated
into a single MultiplyAccumulate (or even MultiplyAccumulateConstant) operation
of the constituent signals.

Instead of hard-coding support for the pre-defined media representation types
discussed in section 3.3, both X11AudioRenderer and X11VideoRenderer take a
very generic approach: They define two interfaces X11AudioSignalHandler and
X11ImageHandler that provide methods for sending commands to the X server
13In fact, it is evidently equivalent to "graph coloring" and thus NP-complete, though this the-
oretical aspect matters little in practice as the number of constraints usually remains well-
bounded.
14This would quite obviously defeat the purpose of the whole retained-mode processing intro-
duced so far!

152 CHAPTER 4. COOPERATION WITH THE X WINDOW SYSTEM

to process one media element. Each handler class is implemented for a specific
media representation type: For example the handler for CompressedImage s is
responsible for creating server-side ImageDecompressor objects (or using cached
instances thereof), transmitting compressed frame data to the server, and for
generating commands to decompress and copy the image into its designated
destination.

The specific handlers are assigned to the media representation classes us-
ing the component and dynamic binding mechanisms outlined in section 3.2.1:
Factory objects placed in the namespace media::x11:mediahandlers must in-
stantiate the corresponding handler classes. The association is made by giv-
ing the factory classes the same public name (in this namespace) as the class
representing the media element – thus for a media element of type Spectac-
ularEffectImage the renderer would lookup a factory object by the name me-
dia::x11::mediahandlers::SpectacularEffectImage . The handlers for the built-in
media representation types are therefore in no way distinguished from user-
defined types (see section 3.3.4) – both are first-class citizens.

Chapter 5

System integration

The previous two chapters introduced two software components for media pro-
cessing and discussed their architecture in isolation1. This chapter will discuss
how these components integrate into the overall system architecture.

5.1 Bindings to audio programming interfaces

The AUDIO extension introduced in section 4.1.2 complements the drawing prim-
itives already provided by the X Window System with audio processing capabil-
ities. The application programming interface provided is in both cases not in-
tended to be device-independent and retargetable, but is specifically tailored to
the requirements of networked graphics and audio. While it is possible for appli-
cation programmers to use these interfaces directly, it is generally undesirable
from a software engineering point of view to do so as it couples application logic
tightly with the target execution environment.

5.1.1 ALSA

In the case of graphics, the drawing functionality (most notably RENDER [45]) of
the X Window System is accessible through interfaces as diverse as cairo [10], Qt
[16] or GDI/GDI+ (realized through Wine [2]) – which also serves to demonstrate
the conceptual completeness of the X drawing model. In the case of audio, ALSA
(see section 2.2.1.2) has emerged as the most prevalent low-level interface in use
(at the time of this writing). The ALSA plugin that has been created as part of
the software implementations for this project enables a broad range of existing
audio applications to make use of the X audio extension.

Applications that – in addition to audio processing – also display a graphical
user interface already have an established connection to the X server. In princi-
ple, it would be desirable to reuse the existing connection for audio, however in

1Chapter 4 also investigated their interaction.

153

154 CHAPTER 5. SYSTEM INTEGRATION

order for this to work, the application would have to pass the X connection con-
text to ALSA upon initialization of audio operations – which "legacy" operations
will not do simply because previously there has never been a reason to do so.
Some applications have been modified appropriately, and the modifications have
turned out to be simple (though not trivial).

"Unmodified" applications can also be supported by the plugin; this is suitable
for applications that do not have an established X connection (and would not
need it otherwise), or for "legacy" GUI applications that cannot be modified. In
this case, the plugin transparently establishes a (second) connection to the X
server that is used for audio exclusively.

The plugin translates ALSA calls to query and configure into functionally
equivalent operations on PCMContext s and creates server-side SampleBuffer s
into/from which sample data will be transferred in reaction to the appropri-
ate ALSA functions. Where possible, the plugin transparently attempts to use
shared memory instead of transferring the sample data through the X connec-
tion (section 4.1.2.1): This allows local desktop applications to achieve latency
comparable to direct hardware access (see section 6.2.2).

To recreate the synchronization concept of ALSA it is necessary to provide
notifications at the points in time when a sample "period" has passed; audio ap-
plications that require low latency typically choose a very low period size accord-
ingly. While the TIME extension provides the necessary mechanism to generate
notifications at precise sample times (section 4.1.1), these must be considered
unreliable at least in network scenarios as they are subject to jittered delay (as it
turned out the reliability is also insufficient in the case of local communication,
see section 6.2.2).

Instead, the plugin sets up an application-local timer that is synchronized
to the reference clock provided by the PCMContext . This timer is then used to
"simulate" notification of period transitions.

5.2 Desktop audio mixing

Like the physical display, physical audio devices are a resource that must gener-
ally be shared between applications that want to interact with a user in a desktop
system. The X display model uses the Window as an abstraction of "screen area"
and provides mechanisms for external entities to manage the "space-multiplex"
of windows onto the screen (window manager / compositing manager). Sim-
iliarly, the X audio extension discussed in 4.1.2 provides PCMContext s as ab-
stractions and mechanisms that allow a separate entity to multiplex access to
the physical audio devices.

The model chosen for the AUDIO extension keeps the established separation of
mechanisms (arithmetic operations on sample buffers to facilitate mixing) within
the X server and policy (decision how audio from different clients are attenu-
ated/muted/mixed) outside of the X server. Figure 5.1 illustrates the data flow

5.2. DESKTOP AUDIO MIXING 155

Audio ManagerAudio application #1 Audio application #2

X Server

primary
sample buffers

secondary
sample buffers

secondary
sample buffers

physical
PCM device

virtual
PCM device

virtual
PCM device

Flow of control (thin black arrows) and sample data (thick red arrows). Audio applications pro-
vide sample data in "secondary" buffers (owned by the respective applications) while playback is
performed from the "primary" buffers (owned by the audio manager). The audio manager controls
how the secondary buffers are mixed into the primary buffer, but mixing operations are performed
within the X server so that sample data is never transferred back to the audio manager.

Figure 5.1: Data flow of desktop audio compositing

in this model – one important aspect of this design is that it allows low-latency
audio compositing: All sample data is kept locally within the address space of
the X server, and all time-critical mixing operations are performed in its context.

Audio compositing follows the model of window compositing (as realized in the
COMPOSITE extension) – it is the compositing manager’s responsibility to issue X
requests that create the desired visual appearance of the screen: The composit-
ing manager may simply blit the application windows into the visible framebuffer
unmodified, but may also elect to apply arbitrary transformations on the graph-
ics beforehand. While the window system provides an "automatic" compositing
model (where the server simply draws the windows as rectangular areas on the
screen), audio compositing does not provide such an automatic fallback path for
compositing but requires a manager for even the most trivial mixing.

Unlike window compositing, audio compositing must explicitly take the tem-
poral aspect of mixing into consideration. As figure 5.2 illustrates, audio mixing
inevitably increases the total playback latency, so the impact has to be kept
low in order to meet the demands of applications with low-latency requirements.
The audio manager can for this purpose make use of the TIME extension intro-
duced in section 4.1.1; it allows the manager to submit requests that perform
the required mixing operations well ahead of time, but have them executed with
precise timing.

An audio compositing manager based on the infrastructure presented in

156 CHAPTER 5. SYSTEM INTEGRATION

Primary
sample buffer

Secondary
sample buffer

Sample currently played
back by audio device

Sample currently fetched
by audio device from RAM

Sample currently transferred
to primary buffer (mixer)

Sample currently generated
by audio application

sample time

total playback latency
∆tplayback

mixer latency
∆tmixer

Audio mixing introduces latencies as samples have to be transferred to the primary playback buffer
before the audio device fetches the corresponding samples for playback.

Figure 5.2: Audio mixing delay

chapter 4 was prepared by Ralf Müller [42], who also developed an extensible
concept for realizing different acoustic effects. The audio manager is structured
to allow both low latency mixing, but keep coupling of the X server and the
manager limited using the timing mechanisms above: The mixing commands
are scheduled speculatively for a considerable amount of time in the future, as-
suming that none of the mixing parameters will change over time. When any
change occurs (e.g. the volume of an audio stream is to be reduced), the pre-
viously scheduled commands are revoked and replaced with different mixing
operations.

5.3 GUI toolkit cooperation

Applications that wish to provide a graphical user interface will rely on an ap-
propriate toolkit for this purpose. Each toolkit provides numerous services, in-
cluding a library of graphical control elements ("widgets"). The different toolkits
are structured likewise in a number of ways:

(1) The toolkit requires the application to adopt an event-driven programming
model; the event dispatching loop is provided by the toolkit itself, applica-
tions must register any event sources (e.g. network connections) with the
toolkit to receive callbacks.

(2) The control elements ("widgets") are implemented as a hierarchy of classes,
derived from a toolkit-specific base class.

5.3. GUI TOOLKIT COOPERATION 157

Using any graphical user interface toolkit together with the media processing
toolkit described in chapter 3 and possibly the X rendering driver described in
chapter 4 in the same application requires some coordination:

(1) Many of the core or component classes are "active" in the sense that they
require execution control in reaction to external events. These are for ex-
ample Clock s, most real-time Source s such as those used for capture (see
section 3.4.2) or receiving network streams.

(2) The X11Renderer driver must share several resources with the toolkit as
well as coordinate processing of X events required for communication with
the X server extensions.

While (1) could be addressed by deferring the processing to a separate thread
of execution, this does not solve issue (2) and moreover forces a specific pro-
gramming model on the application developer. Instead, the choice has been
made to provide an abstract "bridge" to event registration services provided by
toolkits (which still leaves the option of using a secondary thread open to the
programmer).

Unfortunately, it is not possible to provide these coordination services in a
way that is completely independent from the GUI toolkit: The resulting glue code
would have link-time dependencies on all thinkable toolkit libraries, and make
conflicting event registrations to each of these. The architecture nevertheless
provides some assitance which at least minimizes the size of the adaptation layer
required for each toolkit. The following sections will give a short overview of the
general approach and two examples involving commonly used GUI toolkits.

5.3.1 Media framework provisions

The architectural support for toolkit cooperation is split in two parts:

• Generic operating system event service wrappers, provided by the core
libmedia library.

• X11 Window System event service wrappers, provided by the auxiliary
libmedia-x11 library that also contains the X11Renderer components.

The interfaces timer_service and ioready_service provide client objects with
the ability to register for notification at specified points in time, or on I/O readi-
ness detection on a descriptor (representing an operating system object), while
xevent_service allows notification of X events. Any object requiring activation
does not use the operating system or X services directly, but relies on the ab-
stract service interfaces. This also means that these interfaces must be passed
to the corresponding objects on instantiation.

158 CHAPTER 5. SYSTEM INTEGRATION

libmedia

V4LCaptureDeviceSystemClock

«ioready_service»«timer_service»

libmedia-x11

X11Renderer

«xevent_service»

libmedia-gtk

gtk_xevent_service

gtk_timer_service

gtk_ioready_service

libmedia-ace

ace_timer_service

ace_ioready_service

gtk

«glib/gtk services»

ACE

ACE_Event_Handler

provides provides providesprovides provides

uses uses uses

The diagram shows the relationship of the abstract event notification services introduced in
libmedia and libmedia-x11, as well as their relationship to implementations provided in glue
libraries (adaptor pattern). Besides the typical use-case of binding to user interface toolkit libraries
this also allows binding to other application frameworks such as ACE.

Figure 5.3: Event processing cooperation

The interfaces are implemented as adaptors by glue libraries external to the
core libmedia or the libmedia-x11 library which in turn delegate the requested
operations to services provided by other frameworks (see figure 5.3): This avoids
implementation or link-time dependencies on other frameworks. Note that this
is strictly speaking not tied to GUI toolkits at all – the library can be bound to
other application frameworks such as ACE [60] using the same approach.

Both X GUI toolkit and the media processing framework need to keep track
of resources allocated in the X server. No problem ensues as long as each of
the frameworks has "exclusive" ownership of the resource, however as soon as a
resource is shared suddenly both frameworks are keeping track of it. To avoid
inconsistencies, both must therefore be informed that there is another user of
the particular resource that is external to the framework itself. For all resources
that might be shared libmedia-x11 provides "tracking containers" to assist in
coordinating resource tracking: The containers act as "proxies" that signify usage
of a resource by one framework to the respective other. Note that they only assist
in tracking, but do not provide any indirection (i.e. wrap the resource): Any
access is direct and without overhead. Appendix A.1 provides more background
information on how this "tracker" concept is used throughout the architecture.

5.3. GUI TOOLKIT COOPERATION 159

5.3.2 Gtk+/Qt bridge libraries

Gtk+ provides a rich framework for the development of graphical user interfaces
([37], [23], [48]). While it is conceptually cross-platform and agnostic to the
undelying graphics system, it is most commonly used in the context of the X
Window System. It has close ties to the cairo graphics library (see section
2.2.2.1) that provides the underlying infrastructure for drawing of graphical user
interface elements.

The Qt toolkit fulfills a role that is very similar to Gtk+, and it is the second
popular framework in use for realization of graphical user interfaces in the X
Window System [5] [8]. While both libraries provide completely different object
models and APIs, they are structurally quite similar so that the approach taken
for implementation of bridge libraries is largely the same. It should be noted that
despite their similar role and structure, there are enough technical differences
that the two libraries cannot be used interchangeably.

Both GUI toolkits force the application to relinquish the main control flow to
the framework, the programmer must adopt an event-driven application model.
Qt and Gtk+ provide large collections of graphical control elements (called wid-

gets) organized in a hierarchy of classes. In addition to providing the visual
appearance and reactions to user input for an individual element, they must
also perform several administrative duties such as interfacing with the layout
manager and the event routing system.

A bridge library between libmedia, the libmedia-x11 renderer library and
the Gtk+ framework was implemented by J. Pfeiffer [49]. It provides mappings of
the event notification services as discussed in the preceding section, as well as a
convenient widget that can perform the role of a "viewing area" for video content.
A similar bridge library towards the Qt toolkit was also created independently by
the author of this work.

Mapping of the generic operating system notifications turns out to be rela-
tively straight-forward as the GUI libraries provides almost exact equivalents of
the required interfaces. For processing of X11 events on the other hand, both
generally assume that each event relates to a specific window (which for events
corresponding to the TIME and AUDIO extensions is not the case) and attempts
to route the event to the widget(s) contained in this window. Both toolkits pro-
vide a mechanism to install a global event filter2 that can intercept X11 events
before they are routed by the GUI toolkit. The bridge libraries use this facility
and create a secondary event routing system to deliver the required notification
to the libmedia consumer classes.

The Gtk+ and Qt bridges also provide a "widget" that interfaces with the
X11Renderer on the one hand and the Gtk+/Qt widget class system on the other
hand. Specifically, it allows to hand over X resources created and wrapped by

2Multiple filters may installed which get a chance to processes an event if none of the previous
filters has consumed it yet. Implemented properly, the different global filters will not conflict, but
a more fine-grained registration model allowing a consumer to register their interest in specific
events classified by "type" and "resource XID" would be preferable to detect potential conflicts.

160 CHAPTER 5. SYSTEM INTEGRATION

Gtk+/Qt to the X11VideoRenderer class, so that video images can be shown in
view ports created and managed by the respective GUI toolkit. In return, the
toolkit’s geometry manager is supplied with feedback as to appropriate propor-
tions suitable for the video view port, so that it can arrange the overall layout
of the window accordingly. Lastly, the implementation of the graphical control
elements also provides several high-level media control mechanisms: These ap-
plications to initiate, pause and resume autonomous playback of stored media
content using a single function call – all required event registration and trans-
port of media Fragment s from the media Source s is handled transparently by
this function. Essentially, this allows to implement a media player application in
just three calls: The first to instantiate the controller widget, the second to place
it within the rest of the user interface, and the third to initiate playback.

5.4 Cooperation with other media frameworks

The media processing architecture presented in chapter 3 has some functional
overlap with other media processing frameworks and singular libraries already
present for Linux operating environment. While none of the other libraries
provides such comprehensive service like the compositing facilities offered by
libmedia for audio and images, functional duplication exists at least in the
handling of compressed media data. Since the implementation of compressors
and decompressors is the most arduous (and at the same time conceptually most
uninteresting) part of the development, it is desirable to find means of reusing
the implementation work done in other projects.

The architecture model chosen in chapter 3 leads to a separation of com-
pressed media processing into two parts. For the processing of initially com-
pressed data, fhe first half is performed by the MediaSource instances (or their
helper classes): They scan the compressed representation to extract any required
meta-data such as temporal duration of a video image or a sequence of audio
samples, image dimensions, decoding dependencies and suitable sample for-
mats that can losslessly represent the media. The second half is fulfilled by
decompressor objects (see section 3.3.3.2): They perform the actual job of trans-
forming the data into a different representation, and they rely on the meta-data
extracted in the first step. For compression and storage there is a similar split
into the sequence managers and compressor instances (see section 3.3.3.3).

This concept of split processing is however quite alien to most of the existing
compressor and decompressor implementations which generally expect to pro-
cess both data and what libmedia would consider meta-data in a single pass.
While there are a few cases of libraries which export an interface that is suf-
ficiently fine-grained to support this two-part processing model (e.g. libjpeg
[64]), the majority of implementations is unfortunately not very amenable to this
approach.

The implementation of the meta-data extraction part of media processing is in
general a rather trivial exercise, so this alone would not be a significant obstacle

5.4. COOPERATION WITH OTHER MEDIA FRAMEWORKS 161

in reusing existing codec libraries. However, most compressors and decompres-
sors expose an interface that corresponds to the "streaming" data paradigm also
found in filter graph architectures: The codec instances hold implicit state to
resolve decoding dependencies, while the codec interface of libmedia requires
that compressor and decompressor instances operate with the explicitly provided
state information given by the caller.

This semantic mismatch between the codec interfaces makes wrapping ex-
isting compressor or decompressor implementations infeasible. Consider for ex-
ample a decompressor for MPEG-1 video (see section 1.4.3.2, and in particular
figure 1.15 on page 49). The stateless ImageDecompressor would then be used
in the following way:

1. The data for the first image (an I frame) is given to the decompressor in-
stance which returns a decompressed representation of the image. After-
wards this image will be displayed.

2. For the second image (a B frame), the Renderer driver would detect the
decoding dependency to the first and fourth frame (a P frame) from the
CompressedImage object. It will therefore resolve all unsatisfied decoding
dependencies by requesting decompression of the fourth frame (using the
already decoded first frame as reference image). The ImageDecompressor
will return a PixelImage containing the decoded image.

3. Afterwards, the renderer will request decompression of the second frame,
using the first and fourth as references. Afterwards this image will be dis-
played as well.

On the other hand, a decompressor that performs reordering of frames de-
coding to display order through implicit buffering would behave in the following
way:

a. The data for the first image (an I frame) is given to the decompressor in-
stance, but no image would be returned as output since the decompressor
cannot decide whether the image must be delayed since it does not yet know
if the subsequent image is a P- or B-frame (consider the ordering of frames
7 and 5!)

b. The fourth frame (a P frame) is given to the decompressor, the decompressor
would return the buffered I frame as decoded image and delay the fourth
frame.

c. The second frame (a B frame) is given to the decompressor. In this case,
the decoded second picture will be returned without any delay (while frame
number four is still kept and delayed).

162 CHAPTER 5. SYSTEM INTEGRATION

Wrapping the interface of the stateful, implicitly reordering decompressor in-
stance in a stateless libmedia ImageDecompressor object is therefore not pos-
sible – the operation already fails at step 1: The application may not have given
any of the subsequent fragments to the renderer – the data for the second and
fourth frames are unavailable. Consequently, the required first image remains
"stuck" inside the stateful decompressor as it will only the decoded image after
being fed a valid P frame as in step b. above.

It should be noted that providing wrapper interfaces the other way around
(i.e. to make the codec implementations conforming to the interface required
by libmedia usable by other frameworks) is rather trivial: It just amounts to
"hiding" the more fine-granular interface.

The various codecs provided as part of this implementation were therefore
either written from scratch (e.g. MPEG audio), could rely on individual libraries
providing a sufficiently fine-granular interface for specific formats (e.g. JPEG
and Motion JPEG), or are the result of heavy refactoring of individual codec
implementations (e.g. MPEG-1/MPEG-2 video). While the third approach may
appear to be an acceptable approach as it is conceivably easier to start with a
known-working implementation, the experience gained during the project is that
even this task is far from trivial (see section 6.1.1.2).

Chapter 6

Assessment

The various parts of the framework presented throughout the preceding chapters
have been implemented on a Linux/i386 system over the course of about 5 years
at TU Freiberg. During this period, it has been showcased multiple times in part
or in full for occasions as various as the Cebit tradeshow 2007, or open source
development meetings. It has been used as the basis for three bachelor’s theses,
several smaller student projects and course work assignments.

The implementation is stable and has reached the level of maturity where it
is usable for the development of practical multimedia applications. Many parts
of the implementation have already been published for download, the remaining
parts are expected to follow by the end of 2008. Considerable time has also
already been spent on optimizations where useful, mostly affecting decompressor
implementations critical for real-time playback: the implementations are en par
in terms of efficiency with other popular codec libraries such as ffmpeg and not
worse by more than about 15% than the fastest implementations known to the
author.

The implementation is split into a number of different libraries and in total
consists of roughly 80000 lines of code. These divide into:

• libmedia: The core media processing library realizing the concepts pre-
sented in chapter 3. It consists of roughly 32000 lines of C++ code.

• TIME and AUDIO extensions for the X Window System: Extension module
for the X.org reference X Server implementation as well as required client
library for the services described in sections 4.1.1 and 4.1.2. Altogether,
this consists of roughly 13000 lines of C code.

• COMPRESS extension for the X Window System: Extension module for the
X.org reference X Server implementation as well as required client library
for the services described in sections 4.1.3. The server extension module
also contains a shim layer to make compressors conforming to the interface
defined by libmedia accessible. The implementation is about 5000 lines of
mixed C/C++ code.

163

164 CHAPTER 6. ASSESSMENT

«codecs»

libmedia

libmedia-x11

libmedia-gtk gtk

«Application» XServer

«X11 core»

TIME/AUDIO/COMPRESS

«codecs»

libmedia

Figure 6.1: Organizational diagram of the different framework parts

• libmedia-x11: Renderer driver for the X Window System that can make
use of the above extensions (see section 4.3), implemented in about 4000
lines of C++ code.

• libmedia-gtk and libmedia-qt: Bridge libraries between the X render-
ing driver above and the respective user interface toolkits (see section 5.3).
Each library consists of around 1000 lines of code.

• Various compressor, decompressor, document handler and other compo-
nents providing functional services for the core library. These add up to
about 10000 lines of mixed C/C++ code, but about a quarter of the code was
not written from scratch but borrowed and refactored from other projects.
(The number does not include the source code of linked-in codec libraries
that turned out to be usable without modification).

• Various utilities, such as event dispatching helpers, callback and synchro-
nization management, just-in-time code generation, vectorized multimedia
processing kernels etc. totalling about 25000 lines of code.

Figure 6.1 gives an overview of the relationship between these framework
parts and other existing system components.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 165

This chapter will discuss the experience gained from the implementation. The
first section 6.1 will concentrate on the architecture model, the implementa-
tion and the resulting API: While the internal model is certainly more complex,
the external interface exported by libmedia is quite easy to use and notice-
ably more powerful than that of the frameworks discussed in section 2.1 and
allows programmers to achieve more with less code. The next section 6.2 fo-
cuses on (quantitative) performance aspects. In particular, it shows that the
overhead introduced by the considerable amount of bookkeeping required by the
retained-mode model is neglegible in comparison to the actual data transforma-
tions typically required in multimedia processing applications.

6.1 Architecture model and API assessment

The architecture introduces several concepts that are not found in previous ar-
chitectures:

• The concept of retained-mode processing used in this architecture is un-
usual in the field of time-based media and multimedia processing. Pre-
viously, it has already been applied in image processing applications that
require an explicit representation of processing steps to be applied for re-
peatability [63]. It has also been found useful in distributed rendering ap-
plications as it lends itself quite naturally to delegated processing [47].

• The distinction between processing and representation is much more rigor-
ous than in previous architectures. This is manifest in a strict separation
of objects that merely represent some media data (e.g. Document s, Images,
CompressedAudioSequence s) but provide no functionality to actually ma-
nipulate the data, and objects that modify or otherwise access the data
(e.g. DocumentReader s, RowIterator s, AudioDecompressor s). Variants of
this design pattern can be found in many other types of software (e.g. the
document/view or model/view/controller patterns found in most interac-
tive applications featuring a graphical user interface also strive to make
this separation), but at least the discussed existing multimedia frameworks
do not apply this principle rigorously.

• The combination of the above two concepts leads to the principle of lazy

evaluation that is widely known in functional and logic programming, but is
also novel to multimedia processing. Here, it is used as an utility to "wrap"
the generation of the retained-mode intermediate representation through
a more easily understood immediate-mode API. It also introduces an in-
teresting "double indirection" in providing modularity to media processing:
New processing operators are implemented in a filter graph architecture
by implementing a single component that both represents the operation as
part of the graph as well as knows how to compute the effect. In contrast,
libmedia separates these tasks into different components: One that serves

166 CHAPTER 6. ASSESSMENT

as "placeholder" for the operation to be performed in the retained-mode rep-
resentation of the processing chain, and multiple components that realize
these operations in the context of specific renderer drivers (one per renderer
driver).

These principles naturally introduce considerable complexity into the archi-
tecture, so the natural question is what improvements can be gained over other
approaches, and at what costs.

6.1.1 API field testing

Since the central goal of this work is to provide a multimedia framework suitable
for realization of practical applications, one of the most important criteria for
assessing whether the stated goals have been achieved is to create software that
uses the interfaces in a meaningful way. The framework is designed with the
explicit purpose of extensibility, consequently there are two types of interfaces
that must be considered:

• The external interfaces are used by applications that wish to perform media
processing operations. These are what most application programmers will
be exposed to, so convenience is a high priority.

• The internal interfaces are used by extension modules that expand the ca-
pabilities of the framework, for example by new functional processing com-
ponents such as codecs. These are not generally used by application devel-
opers, they are necessarily more tightly coupled to the overall architecture
and are therefore likely to be more complex.

Several example applications and extension modules were created by both the
author and other voluntary test subjects1 during this project, and the results of
these experiments will be summarized in this section.

6.1.1.1 External interfaces

To exercise the capabilities of the API and test their suitability for the develop-
ment of multimedia processing, several sample applications were created by the
author. These include:

• "Media player": A simple application that playes back multimedia content
stored in a container file, DVD or received as e.g. an http stream. The
application interfaces with the X Window System to provide both a graphical
user interface for control, as well as the target system to display the content
on. This application mainly exercises the Document abstraction to access
various forms of stored content as well as the X11Renderer mechanism for
network-transparent playback on a remote X display.

1a.k.a. "students"

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 167

• "Bulk video processing": A simple command-line tool that can non-
interactively read in stored media data, perform several simple processing
operations, and write the result back to a container file.

• "Video editing": A simple interactive video editing application that allows the
user to open several video clips, cut them, arrange them on a temporal scale
and write the result to a container file. Some simple scene transition and
other effects are built-in and hard-coded, but the underlying mechanism is
conceptually very powerful as it relies on the cairo graphics API – bindings
to a scripting interface could vastly enhance the capabilities of this simple
application. It provides a graphical user interface through the X Window
System and also uses the X11Renderer mechanism to allow interactive pre-
view of the edited clip (using the compressed data transmission mechanism
as well as the processing capabilities of the X Window System).

The applications themselves are surprisingly simple – except for the video ed-
itor they are realized in a few hundred lines of code. The video editor application
is slightly more complex due to the GUI interactions, but the media processing
core is very compact thanks to the abstract API provided by libmedia: In par-
ticular, the Renderer concept allows to keep a single code path for both "preview"
and "final" compositing of the media elements – while the X11Renderer delegates
all processing to the remote display, the DocumentWriter implementation per-
forms equivalent processing steps locally to store the resulting video clip into a
container file.

Field testing of the API by other developers was mainly done by students dur-
ing course work at TU Freiberg. Overall, the API was well-received and easily
understood, in particular the generic Document and Fragment concepts turned
out to be very intuitive. The processing and I/O model provided by the frame-
work allowed the students to quickly jump into programming – for example, the
following code sequence is all that is required to extract images out of a video
container file2:

/* open document stored as file in the file system */
ref<Document> doc=openDocument("sample.avi", O_RDONLY);
/* select first video track and open read accessor */
Document::TrackList tracklist(doc->select<VideoMedia>());
ref<DocumentReader> reader=doc->openReader(tracklist);
/* select video reader from opened read accessor */
ref<VideoSource> vreader=reader->select<VideoMedia>();

/* read media fragment and extract image */
ref<VideoFragment> fragment=vreader->getVideoFragment();
ref<Image> image=fragment->getImage();
2Here and in the following programming examples, ref designates a reference-counted smart

pointer. It is functionally equivalent to the intrusive_ptr provided by the boost library and is a
candidate for inclusion in the upcoming C++0x standard.

168 CHAPTER 6. ASSESSMENT

/* coerce conversion into specific representation */
ref<PixelImage> pimage=image->sample(pixelformats::ARGB32_native);

The above sample code compares quite favorably to the effort required for the
same effect using QuickTime or DirectShow – for example, in QuickTime the
equivalent of just the first line of above code would be:

/* convert string into representation required by QuickTime
file system utilities */
CFStringRef cfpath=CFStringCreateWithCString(NULL,
"./sample.avi", CFStringGetSystemEncoding());

Handle dataRef=0;
OSType dataRefType;
/* open data storage designated by file name */
OSErr err=QTNewDataReferenceFromFullPathCFString(cfpath,
kQTNativeDefaultPathStyle, 0, &dataRef, &dataRefType);

Movie movie;
short resource_id=0;
/* open Movie contained in data storage */
err=NewMovieFromDataRef(&movie, newMovieActive,
&resource_id, dataRef, dataRefType);

while the full example adds up to almost 100 lines of code3. While the core
processing concepts (lazy evaluation, retained-mode processing) also turned out
to be easily understood, the students surprisingly had considerable difficulties
with object lifetime tracking – while the automatic reference count tracking fa-
cilities provided by the ref template were easily understood, the manual tracking
required during creation of new media elements was not. Partly, this may be
owed to the students’ evident unfamiliarity with the concept of reference track-
ing (which caught the author somewhat by surprise during the trials).

Further comments were received from third party developers during confer-
ence meetings and presentations. While the model itself was generally easily
understood, it was not unanimously received without skepticism – several of
the commenters were concerned about the overhead incurred by the processing
model (see section 6.2.1), while others pointed out that it represents a funda-
mental shift especially with regards to video processing: All of the developers

3But it must be admitted that part of the brevity of the libmedia code example is owed to the
generous use of convenience functions – for example libmedia like QuickTime also provides an
indirection layer that decouples the Document from the methods used to access the underlying
byte storage, so the "full" call to instantiate a document without any convenience wrappers would
rather be:

ref<ByteSequence> bytes=File::open("sample.avi", O_RDONLY);
ref<Document> doc=openDocument(bytes, O_RDONLY, &mimeTypeClassifier);
In the author’s opinion, this is much more legible, still. Considerable coding overhead is in-
curred in QuickTime by the gratuitous unpacking and repacking of data into different structures
between calls to different QuickTime API functions.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 169

were used to the buffering and planning ahead required for audio processing,
adoption of a retained-mode processing model would be a rather minor change.
The same cannot be said about video as immediate processing of each image
just before it is shown or stored is the prevalent model. However, this was not
seen so much as a "limitation" of the approach taken by libmedia, but rather
an observation that a switch-over would often be architecturally invasive and
therefore not taken lightly.

6.1.1.2 Internal interfaces

The internal interface for registration of extension modules is rather straight-
forward: It requires the developer to

• Create the desired functional component by deriving from one of the many
available interfaces. For example, a component that allows embedding of
video in the "theora" format into AVI containers, a developer would derive a
new class from the AVIFrameHandler interface.

• Create a factory class and instantiate a single object as a global vari-
able with proper name so it can be found by its symbol name. In the
above example, a developer would declare a global variable by the name
avi::mediahandlers::vids::VP31 , as VP31 is the code used in AVI files to de-
note this format.

Several extension modules were also created by both the author and stu-
dents, mostly to provide support for new compressed media representation for-
mats. Generally, the internal interfaces were well-understood and the many
auxiliary concepts (such as the BufferWindow concept, see appendix A.3) were
deemed helpful [6]. In particular, the experience showed that students had little
trouble implementing for example the "front end" part of handling compressed
media representations (i.e. the scanning and extraction of required meta-data
into suitable libmedia data structures).

In multiple student sub-projects it was attempted to convert various existing
media codec implementations into decompressor and compressor components
for libmedia (cf. section 5.4). Except for two projects these attempts have gen-
erally been failures: In almost all cases the students were unable to develop a
sufficient understanding of the existing codec implementations – arguably, these
are generally complex pieces of code due to the many performance optimizations
applied. The successful students reported that understanding the respective me-
dia format and code base to work with was far more time-consuming than the
library-provided interfaces to be implemented.

Drawing conclusions from both the successful and the failed projects allows
to cautiously state that the internal component interfaces are useful and can be
understood quite well. However, these projects also illustrate that implementa-
tion of any complex media format (either from scratch or through refactoring)

170 CHAPTER 6. ASSESSMENT

is far beyond the capability of average students. This hints at a possible prob-
lem with the concepts introduced by the media processing framework that is
less of a technical but more of a "human resource" nature: The architecture
model prohibits simple reuse of an existing code base, but refactoring existing
implementations is a task that on the one hand requires high qualification, on
the other hand is conceptually "uninspiring" as there is next to no architectural
work.

6.1.2 Comparison to QuickTime

Both QuickTime and libmedia share an imperative programming model that
provides application programmers with a large amount of control: Since there is
no implicit "flow" of data, it is ultimately the application’s responsibility to specify
all individual processing and transformation operations. The implementor con-
trols how media elements are passed through the different functional services
provided by the framework.

This similarity means that applications performing comparable tasks are gen-
erally also similar in structure, but libmedia introduces several concepts that
QuickTime is lacking (see the short listing at the beginning of this chapter as
well as the introductory discussion in chapter 3). The following sections will
therefore provide prominent examples of how the new concepts positively affect
the API and to what extent this assists application programmers.

6.1.2.1 Data model and abstractions

The most fundamental difference can be found in the abstractions provided by
the respective media frameworks: While QuickTime features a rich set of inter-
faces that are implemented by various components to make their functional ser-
vices accessible to multimedia applications, it provides next to no abstractions
for the fundamental data elements itself – for example, there simply is no unified
abstraction for the concept of an "image" in QuickTime: In the various places
where an image is used, an API function may require it to be represented as an
"array of pixels" (for rastered images), a device image handle (for images passed
to the display subsystem) or an opaque sequence of bytes (e.g. for compressed
representations) depending on the context.

Even in cases where objects may superficially be regarded as data abstrac-
tions, these usually commingle both representation and processing concepts:
For example, a QuickTime Movie on the one hand represents a container of mul-
timedia data. On the other hand, it also serves as a context for playback as it
has an associated graphics context (to which the video contained in the Movie
will be drawn), set of activated tracks and a temporal position for playback. The
reader may wish to compare this to the distinction between the Document , Doc-
umentReader and DocumentWriter abstractions presented in section 3.5.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 171

The emphasis of libmedia is instead on providing abstractions for the data
elements themselves, while object instances that perform various transforma-
tion and processing tasks on media data play only secondary role. Additionally,
it strictly separates between the two types of objects. The benefit of this ap-
proach is that it allows the programmer to focus on the processing intent and
be wholly unconcerned with the technical realization of media processing behind
the scenes: For a video capturing application, the programmer’s intent is to move
images received from a camera to a data store; in this case, the technical real-

ization may involve receiving data frames that represent images in some format,
transformations to convert the data into a format suitable for storage, as well
as framing and writing the data to the storage. Take for example the simplest
possible code sequence that captures a video stream from a camera and writes
it into a container file:

/* choose a file format */
ref<const DocumentFormat> fmt=lookupDocumentFormat("mpegps");
/* create new document */
ref<Document> doc;
doc=openDocument("output.mpg", O_CREAT|O_WRONLY, docfmt);

/* create a video track inside the document, using default
parameters for size, frame rate, compression etc. */
ref<const VideoTrack> vtrack=doc->createTrack<VideoMedia>();
/* list of tracks containing just our single video track */
Document::TrackList tracklist(vtrack);

/* open write accessor into the file; start writing at
temporal position 0, open-ended */
ref<Renderer> render=doc->openWriter(tracklist, 0, INFINITY);
/* obtain handle to single opened track */
ref<VideoRenderer> vrender=render->select<VideoMedia>();

/* choose capture device by OS name */
ref<CaptureDevice> dev=V4LCaptureDevice::create("/dev/video0");
/* select video channel */
CaptureDevice::ChannelList chans(dev->select<VideoMediaType>());
/* open selected channels */
ref<Source> source=dev->openReader(chans);
/* obtain handle to single opened channel */
ref<VideoSource> vsource=source->select<VideoMedia>();

/* capture and store */
ref<VideoFragment> fragment;
do {
/* first read will trigger capture if not started yet */

172 CHAPTER 6. ASSESSMENT

fragment=vsource->getFragment();
if (!fragment) break; /* end of stream? */
vrenderer->render(fragment);

} while(fragment->end().t<60.0);

/* close renderer so pending images are flushed and the
sequence is finalized */
render->close();

Despite the simple look of the example, the above code truly handles all as-
pects of capture and storage: If the capture device is supplying data that is not
in a format suitable for writing into the designated file (e.g. image size mismatch,
color model mismatch), all required transformations are performed transpar-
ently. This may also include decompression/recompression of the data, addi-
tionally the file writer implementation is sufficiently smart to figure out when no
recompression is required – in this case, the compressed data as produced by
the camera may be written "verbatim" into the file.

It is important to understand the role the retained-mode processing paradigm
plays in this example – in an immediate-mode processing framework, the com-
mands in the inner capture loop:

fragment=vsource->getFragment();
vrenderer->render(fragment);

would first read an image from the source, transform it into a universally-
understood intermediate format (such as an uncompressed rastered image using
a specified RGB color model), and subsequently transform it again into the rep-
resentation required for storage. This would in almost all cases be inefficient
as several of the required transformations can be short-circuited: The retained-
mode processing model employed by libmedia can dynamically detect and use
these shortcuts.

Here as well it is illustrative to compare the terseness of the above code snip-
pet with QuickTime: Code samples provided by Apple that perform equivalent
services approach 1000 lines of code4. Most of these lines are "boilerplate" code
that manually interfaces with the QuickTime decompression and compression
services, individually applies any required transformations, and is concerned
with repacking data between the different types of structures expected by indi-
vidual QuickTime API calls. Also, unlike libmedia, QuickTime puts the burden
on the programmer to detect whether decompression/recompression is required
at all – if s/he wishes to avoid recompression if the data is already in the correct
format, s/he must implement an alternate short-circuit execution path for this
purpose.

4See the sample code provided at:
http://developer.apple.com/samplecode/CaptureAndCompressIPBMovie, fetched 2007-
08-24

http://developer.apple.com/samplecode/CaptureAndCompressIPBMovie

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 173

Essentially, the lack of data abstractions in QuickTime forces the applica-
tion writer to spell out and hard-code the technical aspects of media handling
that libmedia can figure out automatically, and for which optimized processing
paths are automatically provided through the Renderer concept. It might be ar-
gued that the explicit spelling out of each processing step in QuickTime provides
the programmer with a desirable more detailed level of control – this is however
doubtful as the processing steps to be taken are usually dictated by technical
constraints, leaving little for programmers to "choose". For the rare cases where
this assumption may not hold, the developer may always resort to supplying a
custom Renderer implementation.

6.1.2.2 Media types

QuickTime is firmly rooted on the assumption of time- and space-discrete rep-
resentations for audio and video media, (i.e. PCM audio and time-discrete video
sequences of rastered images, see sections 1.3.2.1 and 1.3.4.1). In contrast,
libmedia can architecturally support any computable representation of these
media types (cf. section 1.3), including true time- and space-continuous audio
representations, through the abstract base interfaces introduced in section 3.3;
discretized representations are merely considered an (important) special case.
This means that there are types of media that libmedia can consider e.g. "video"
while QuickTime cannot – one such example are flash animations which are not
necessarily time-discrete (and additionally also not space-discrete as flash uses
a vector graphics model).

QuickTime partially circumvents this problem through its modular support
for different media types (for example "flash" animations are a distinguished type
of media, with its own supporting infrastructure in the form of media handler
components and API functions). It is however worth noting that libmedia sub-
sumes several distinct QuickTime media types into a single unifying video media
concept.

6.1.2.3 Control flow model

The imperative programming model offered by both QuickTime and libmedia
generally allows the programmer to retain in control of the application’s con-
trol flow – control is passed from the application to the media framework only
when services are required, there is little "autonomous" processing. Several of
the real-time capturing and rendering components however need some service
processing asynchronous to the application’s control flow – the application must
therefore (infrequently) call into the library to "lend" control flow to the multime-
dia framework for this processing to happen.

In libmedia this need is addressed in a generic fashion through the abstract
callback registration interface discussed in section 5.3.1 – this interface is used
by all active objects, and the application is responsible for supplying an imple-
mentation of this interface. The application is thus effectively decoupled from the

174 CHAPTER 6. ASSESSMENT

internals of the media processing library: To the application, the kind of object
that registers for notification through these interfaces does not matter – servic-
ing of event notification callbacks through this interface will satisfy all needs of
the library.

Moreover, the interface is explicitly designed to be thread-friendly – the call-
backs to deliver notifications for which libmedia objects have registered an in-
terest may be provided by a secondary (or even multiple) threads of execution.
This provides even better decoupling as the control flow of the main application
thread does not need to be interrupted by periodic servicing of notifications. The
mechanism also allows delegation of time-critical operations to dedicated threads
to improve real-time behavior5.

In contrast, QuickTime addresses this need through a number of functions
such as MoviesTask , MCIdle or DataHTask that must be called "periodically" to
provide processing time to the respective QuickTime components6. The applica-
tion programmer is expected to globally track which objects need to be tasked:
For example, the programmer must generally issueMoviesTask calls to let Quick-
Time progress with playback of a particular movie (if it is not called, video and
audio presentation will stall7). However, if the programmer also instantiates
a movie controller object (providing more high-level control functions on movie
playback), the function MCIdle must be called instead.

The approach taken by QuickTime leaves much to be desired in comparison
to libmedia – effectively it introduces coupling of "local" uses of the media frame-
work to the "global" execution flow: If for example a sub-module of a larger pro-
gram makes use ofmovie controller objects, then this sub-module cannot be used
transparently by the application as the main execution flow must be modified to
include the MCIdle calls (or wrapper calls provided by the sub-module). It is also
not possible to decouple processing from the main execution flow by creating
separate threads in the corresponding sub-module: The QuickTime components
are not thread-safe.

5The registration interfaces for event notification discussed in section 5.3.1 do presently not
provide any support to let the requester communicate desired QoS (quality of service) require-
ments, so the architecture can currently not support any hard real-time guarantees. Neverthe-
less, future development into this direction was envisaged and taken into account during the
design of the interfaces.
6If the application uses high-level objects such as HIMovieView , these will schedule appropriate

timer callbacks with the user interface toolkit and handle the required tasking calls transparently
– however, these high-level objects are limited in usefulness to very specific application scenarios
such as simple media playback.
7The QuickTime documentation is vague about the call frequency and recommends "10 to 20

milliseconds", the API also provides further functions through which it can communicate the
suitable points in time when it would like to receive calls from the application. Experiments
revealed that QuickTime buffers up to half a second of audio to avoid drop-outs in case the
application is not servicing QuickTime in a timely fashion. Video playback requires at least one
call per image displayed.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 175

6.1.2.4 Delegation of processing

The immediate-mode processing model of QuickTime suffers from difficulties in
meaningfully delegating individual processing steps (see section 3.1.3). Consider
for example the following sequence of processing steps:

1. Decode two images from compressed representations

2. Create a new image by blending the two previous images

3a. Display the resulting image on the screen or

3b. Compress the resulting image and store it into a file

Processing should ideally be performed "close" to the final destination of the
complete image to avoid unnecessary communication: If step 3a is to be cho-
sen, then the prefered candidate for processing would be the display system – if
avenue 3b is taken then it is more desirable to keep processing in a system com-
ponent that has close ties to the storage subsystem. In both cases, it is the last

step of the processing pipeline that determines the ideal processing environment.

If the components providing the individual operations described in steps 1
through 3a/3b are however architecturally isolated, then the steps may only be
delegated individually: The component performing the first step cannot know
where the second operation is to be performed and must therefore uncondition-
ally make the result of the processing operation accessible to the calling applica-
tion (e.g. by communicating back the results).

While it is possible to extend an immediate processing API by providing 1a/1b
and 2a/2b variants of the above processing steps (that do not differ semanti-
cally but delegate the operation to different processing units in accordance with
3a/3b), this only increases the burden on the application programmer: S/he
must now decide from the very beginning where processing is to take place, and
provide two different code paths dealing with the different forms of delegation.

On the other hand, the retained-mode processing concept employed by
libmedia addresses this problem in an architecturally clean way: The full log-
ical processing chain is established before any operation is executed, any deci-
sion to delegate the operations can take all parts of the chain into account. The
concept is of course generic and allows delegation to many different processing
entities: This includes networked display systems (see chapter 4), any types of
co-processors (e.g. GPUs) or even distributed processing on more than one node.

6.1.3 Comparison to DirectShow

DirectShow as a prominent representative of filter graph media toolkits features
a processing model that is very distinct: The application must construct a filter
graph that represents the chain of processing steps to be executed for a stream

176 CHAPTER 6. ASSESSMENT

of time-based media. Execution of the graph is autonomous and asynchronous
to the rest of the application (it is automatically relegated to a different thread).
The media data itself is not directly available to the controlling thread – it is
only avaible to the nodes in the filter graph, therefore an application is forced to
create its own filter component that will at some point in time passively receive
the data.

The filter graph processing model is very popular in the field of multimedia
as it is easily understood and provides a straight-forward model to develop and
extend the architecture. In particular, the service of completing a graph through
automatic introduction of auxiliary format conversion nodes provides a signifi-
cant benefit over the simple and explicit model of QuickTime as it relieves the
programmer from manually constructing the full processing pipeline. This ben-
efit is however traded in for an execution model that forces the programmer to
relinquish control and is significantly more restrictive.

6.1.3.1 Data model

DirectShow and libmedia both allow to relieve the programmer from explicitly
constructing the full media processing pipeline. While both achieve this goal
through meta-data annotations of some sort, the level of abstraction provided for
the data elements is very different. From DirectShow’s point of view, the format
annotations (AM_MEDIA_TYPE) attached to each data element is merely a "label":
Its only purpose in the context of the architecture is to serve as a mechanism
for matching filter pins. In particular, two different formats may describe a data
element that can conceptually be understood as an "image" albeit in different
representation formats (e.g. a compressed and a rastered representation), but
the two labels identifying the different formats need not have any relationship
to each other. The most the architecture can "know" about any two different
formats is whether there is a filter capable of facilitating conversion between
the two formats. Furthermore, the media samples exchanged between two filter
nodes can usually not be interpreted out of the larger processing context: Each
filter node may hold some implicit state (such as initialization data that has been
passed through the graph during initialization, or previously decoded images
used as reference pictures) that is required to usefully process a sample.

In contrast, each media element in libmedia carries all information (e.g. ini-
tialization data, decoding dependencies) to allow a correct interpretation of the
contained data. Naturally, it would be wasteful to unconditionally discard any
acquired state during rendering and start over for each individual fragment –
Renderer implementations will keep some state in internal caches (see section
3.4.3.2). The distinction between the two approaches in practical terms is there-
fore that filter graphs implicitly hold hard and irrecoverable state required for
correctness, while the state information by libmedia Renderer drivers is soft, al-
ways recoverable and merely kept for efficiency. This allows a more flexible pro-
cessing model as the processing can safely be started, interrupted and resumed

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 177

at will. This additional flexibility can be put to good use in several application
scenarios.

6.1.3.2 Dynamic optimization

Consider an application that wishes to process a video stream: Most of the
stream is to be left unmodified, but a few images are to be modified, e.g. by
adding graphical elements. In a filter graph environment this processing would
be realized as a filter node that requires rastered images as input and produces
rastered images as output: the filter can selectively modify images or pass them
through unmodified.

The introduction of this filter into the processing graph has a number of con-
sequences: Due to its input and output format constraints, auxiliary conversion
filters may be introduced during graph building to coerce transformation of the
image into a format suitable for drawing. This means that conversion is forced
even if our drawing filter does not perform any operation at all.

Consider on the other hand the quite obvious realization using the libmedia
API:

while(true) {
/* retrieve image from source */
ref<VideoFragment> fragment=source->getFragment();
if (!fragment) break;

/* modify images covering temporal range [60..65] */
if (fragment.end()>=60.0 && fragment.begin()<=65.0) {

ref<Image> orig=fragment->getImage();
ref<PaintedImage> painted=PaintedImage::create(
orig->width(), orig->height(), orig->aspectRatio());

/* copy original image */
cairo_pattern_t *pattern=orig->getCairoPattern();
cairo_t *ctx=painted->getCairoContext();
cairo_set_source(ctx, pattern);
cairo_paint(ctx);
cairo_pattern_destroy(pattern);

/* draw black rectangle */
cairo_rectangle(ctx, 50, 50, 200, 50);
cairo_set_source_rgb(ctx, 0, 0, 0);
cairo_fill(ctx);

/* draw text in black rectangle */
cairo_move_to(ctx, 75, 75);
cairo_set_source_rgb(ctx, 1, 1, 1);

178 CHAPTER 6. ASSESSMENT

cairo_show_text(ctx, "CENSORED");
cairo_destroy(ctx);

/* pack image into new fragment, reusing the timestamps */
fragment=VideoImageFragment::create(
fragment->begin(), fragment->end(), painted);

}

/* pass fragment to renderer */
renderer->render(fragment);

}

In this case, most of the fragments are passed from the source to the ren-
derer unmodified – only images in the temporal interval [60; 65] are redrawn. This
in turn allows the renderer to dynamically optimize the processing required for
each fragment individually: When no drawing operation is to be performed, no
superfluous transformations are performed. In extreme cases, both source and
renderer expect the media elements to be in the same compressed represen-
tation format: This would result in decompression/recompression of only the
retouched images, while the surrounding images are passed through verbatim8.

Avoiding unnecessary transformations has two important consequences:
Most obviously, the required processing time can be saved and used for other
tasks. Additionally, this also reduces potential rounding or other numerical er-
rors that could be introduced by imperfect implementations of conceptually mu-
tually inverse operations. The impact of this optimization heavily depends on the
use-case: For example, video editing often uses long scenes of source material
with no or relatively minor modifications (such as color correction), while only a
small number of images have to be retouched to achieve e.g. scene transition ef-
fects (see figure 2.7 and page 80 for an example of a realization using the cairo
API).

Achieving the same benefits in DirectShow would require the programmer to
construct separate filter graphs to represent processing with and without the
additional drawing node – but the filter nodes also have the important role of
hiding the intricacies of temporal compression through internal buffering and
state management: Splitting processing into two graphs forces the programmer
to handle this himself. Such an implementation would therefore require a con-
siderable amount of fix-up code and requires a thorough understanding of the
underlying formats.

The important point is that the libmedia API provides this service essen-
tially for free: The most straight-forward way for the programmer to express the
processing intent already enables these optimizations.

8Some of the surrounding images may have to be recompressed as well, see the next section
for a discussion of temporal compression.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 179

6.1.3.3 Temporal compression

One of the explicit motivations for filter graph approaches is to accommodate the
requirements of temporal audio and video compression: Samples corresponding
to different points in time are not encoded independently but require varying
degrees of "context" (see also the definitions 13 and 14 on pages 44 and 52
respectively) which is provided by the implicit state held in the filter nodes.

While this works well during processing of a "complete" sequence of media
data (i.e. a sequence that does not have any references to outside frames), it just
pushes the real problem out of the processing architecture itself: If an applica-
tion does not want a complete sequence but just a small part of it (maybe down
to a single image), how many frames of context must be fed into the graph so
that the desired media elements can be extracted? The solution adopted by Di-
rectShow and most other filter graph approaches cheats around this problem by
providing a rather vague "best-effort" service guarantee: The decompressor filter
nodes must accept incomplete sequences of frames, but on the other hand may
not produce any output audio samples or images until they have accumulated
sufficient state9. While this approach may be suitable for real-time playback
of stored media (where the screen stays black or the audio remains silent for a
short duration of time after a random seek, until a resynchronization point is
reached), it is inacceptable for many other forms of media processing.

A similar but even more complicated problem arises during media composit-
ing: Revisiting the example from the previous section, it would be desirable to
only re-encode the minimum number of images – in the case of temporal com-
pression this would not only be the modified images, but also "a few" temporally
neighboring images that use the original images as reference. The filter graph
does not allow a precise identification of these images: The required information
is hidden inside the black box filter nodes.

The approach taken by libmedia does not suffer from any of these difficulties
as all dependence information is explicit in every fragment. In particular, it
supports both true random access to every point in time of stored media content
as well as minimal recompression in case of storing processed sequences in a
sufficiently similar format. Support for this service has been implemented for
the MPEG-1/MPEG-2 video representation formats as a common example for
complex temporal compression, but the realization is sufficiently generic that an
implementation for other formats (e.g. H.264) is possible as well.

It should be noted that the concept of minimal re-encoding for temporal video
compression techniques such as MPEG-2 is not particularly new, as many spe-
cialized applications can also perform this service – they are however stand-alone
and not integrated with the existing media processing frameworks due to their

9This is particularly problematic for compressed representations that require some initializa-
tion that is encoded only once at the beginning of the compressed data stream – in the best case,
the data source has sufficient understanding of the format that it can extract the initialization
data and (re-)inject it during processing startup even if playback does not start from the begin-
ning of the sequence. This of course severly bends the modularization concept of filter graph
architectures that strives to keep individual filter implementations independent!

180 CHAPTER 6. ASSESSMENT

limitations. The novelty is that libmedia provides a clean concept for inte-
grating such optimizations, while conveniently making these transparent to the
programmer.

6.1.3.4 Data transfer model

The implicit data flow model of DirectShow also results in other limitations in
situations where an application would conceptually like to reconfigure the pro-
cessing chain at run-time: A stored media container may contain multiple alter-
native video or audio tracks, representing e.g. different camera angles or different
language versions of the same content. An application may wish to provide the
capability to dynamically switch between the alternative tracks during playback.

This provides a difficult problem for DirectShow – the implementor may ei-
ther choose to interrupt the playback for reconfiguration of the graph, since the
architecture does not allow precise determination of suitable resynchronization
points the disruption may last considerably longer than a single frame. Or, the
implementor may create a graph that decodes all contained tracks speculatively,
using a multiplex filter on the decompressed image and audio data to select those
that should be presented. Both options are obviously not completely satisfying.

The same problem on the other hand is conceptually very easily solved us-
ing libmedia: The loop handing over data to the MediaRenderer just has to
read fragments from a different MediaSource representing a different track – any
decoding dependencies are transparently handled by the renderer, resulting in
instantaneous and disruption-free switch-over.

6.1.3.5 Document abstractions

The DirectShow architecture concentrates on the processing of media data se-
quences, providing the unified abstractions of "source" and "sink" filters that
read from or write to media container files – their role is quite well comparable
to the DocumentReader and DocumentWriter concepts of libmedia. However,
DirectShow lacks any abstraction equivalent to the Document concept, it only
provides accessors10.

This leads to problems in realizing applications such as time-shifted playback
and recording: An application would like to capture (multi)media content into a
container file while at the same time playing back data previously written into
the container. Ideally, playback could be paused and restarted at will without
affecting the capturing process.

The lack of a Document model in DirectShow however makes this scenario
problematic: Capture and playback must be placed into distinct filter graphs as
they would otherwise be executed in lock-step (thus, stopping playback would

10DirectShow certainly provides utility classes that allow to access the contents of e.g. an AVI
file, but but there is no unified media container file abstraction that is implemented by multiple
classes.

6.1. ARCHITECTURE MODEL AND API ASSESSMENT 181

also stop capture). Creating separate filter graphs – one for capture using a
writer into the file as sink, the other for playback using a reader into the file
as source – leads to coordination problems, as there is no instance that can
coordinate access into the same file. Supporting this scenario in DirectShow
therefore requires the application to provide its own customized source/sink
filters that coordinate their access into the same container – the built-in accessor
components are useless in this case.

Again, the solution offered by libmedia in this particular scenario borders
on the trivial: The separation of documents and accessor objects allows the
required concurrency of reading and writing. Both playback and capture can be
implemented independently in the usual way without any special consideration,
using either separate threads or an event-driven model.

6.1.4 Limitations

While the preceding sections demonstrated several of the considerable benefits,
it should not be neglected that there is one specific area where the model chosen
for the architecture is known to be problematic: Audio or video compression
schemes that allow decoding dependency chains of unbounded lengths (note
that definition 14 on page 52 does not exclude this possibility).

While the architecture of libmedia certainly allows processing and playback
of these type of video or audio sequences using all of the available mechanisms
(including delegation of processing to the X server), a strict interpretation of
the CompressedAudioSignal , CompressedImage (see section 3.3.3) and Fragment
concepts would consume unbounded amounts of memory: each Fragment must
be self-contained and allow reproduction of the contained media data element
from scratch, therefore the complete dependency chain would have to be pre-
served just for the last fragment.

On the other hand there are perfectly valid applications that use this kind of
media representation – one example is given in [51] where every image (except
for the initial one) is encoded relative to the directly preceding one: A simple
application that just wishes to display each image in sequence can operate with
bounded memory as the data to every image besides the previous one can safely
be discarded before processing the next image. However, libmedia cannot know
of this intended access pattern as there is no mechanism to inform the library
that parts of a sequence can be discarded (and it would be difficult to provide
such an interface without compromising the overall architecture).

This dilemma is resolved by providing a mechanism to "cut back" overly long
dependency chains with thresholds that can be chosen by the respective format
handlers – e.g. as soon as the dependency chain of the current fragment reaches
a threshold length (of, say, 30 images), an older image (say, the fifth-youngest) is
decompressed and the dependency chain shortened accordingly (in this example
resulting in 25 images that are not required any longer). This forced decompres-
sion obviously violates the "lazy evaluation" principle, although in a way that

182 CHAPTER 6. ASSESSMENT

does not disrupt the architecture – the architectural mechanisms provided for
caching of computed results have a similar result in practice. There is however
the matter that cutting back the dependency chain requires a CompressedImage
to be replaced by a PixelImage as reference frame for the fourth-youngest im-
age – this clashes with the principle of providing immutable data elements and
therefore requires a number of precautions.

While this solves the problem of unbounded memory, a naive implementa-
tion introduces a new inefficiency: Since the architecture allows delegation of
decompression operations, the image might be decoded twice – once by delega-
tion through a Renderer driver in a remote target device, later a second time by
forced evaluation inside the application to allow cutting back the dependency
chain. Therefore, a second mechanism exists that allows tracking of decom-
pressed representations of images in remote devices, as well as provisions for
fetching back in preference to duplicated processing. Note that this retrieval of
the decompressed image from a remote location can also benefit from the "lazy
evaluation" principle – i.e. the data is only fetched when the sampled represen-
tation is actually explicitly requested through the sample method.

The combination of the above two approaches manages to keep memory con-
sumption bounded without introducing additional processing, but they require
the existence of a bi-directional communication channel with the remote decom-
pressor – for the purposes of correctness it does not matter if the channel is
slow, but in the absence of such a channel, the library must duplicate process-
ing. Note that no actual communication is performed in the common use-case of
just decompressing the images for example on a remote display – here, libmedia
would merely perform the required tracking to be certain that the images could

be fetched back if needed.

In this scenario, an immediate-mode approach to media processing indeed
has the advantage of simplicity – if the application exactly knows that none of the
reference images will be reused in the future, it can safely discard them. While
the libmedia architecture manages to achieve the same processing efficiency, it
does so only through quite some trickery.

Summary

The media architecture processing architecture presented in chapter 3 compares
quite favorably with existing architectures such as QuickTime and DirectShow
on a conceptual level. It provides an easy-to-use API, allowing application pro-
grammers to express their media processing intent in a fairly clear and terse
fashion.

Compared to QuickTime, libmedia provides the advantage that the Renderer
concept relieves the programmer from the technical aspects of media processing;
where the QuickTime programmer would have to manually code most parts of
the processing pipeline, libmedia automates this task using the rich meta-data

6.2. EFFICIENCY EVALUATION 183

attached to each media element. Additionally, libmedia also provides better
support for delegation of processing.

Compared to DirectShow, libmedia provides the advantage of better dynamic
optimization capabilities, in particular the Fragment concept and precise track-
ing of coding dependencies provides a high degree of flexibility to the application
programmer that cannot be matched by the static processing model of Direct-
Show.

It should be noted that in all of the scenarios described in section 6.1.3,
QuickTime would basically show similar efficiency advantages over DirectShow
as libmedia does (but using considerably more lines of code).

6.2 Efficiency evaluation

The preceding sections pointed out the benefits of the dynamic optimization ca-
pabilities offered by the retained-mode execution model of libmedia from an
application programmer’s perspective. While several high-level optimizations en-
abled by this approach where already mentioned there, the discussion has so far
remained on the conceptual level without any quantitative analysis of the costs
and benefits – the purpose of this section will therefore be to provide the data to
back up the assertions made.

All empirical results were obtained on a dual CPU Opteron 244 system run-
ning Debian Linux 4.0.

6.2.1 Overhead

The performance characteristics of immediate-mode multimedia processing can
be understood fairly easily as each operation is executed synchronously to the
control flow of the controlling application. Moreover, very little management
overhead is incurred as the sequence of previously applied operations can be
"forgotten" as soon as they are finished. In contrast, the retained-mode process-
ing paradigm introduces overhead for bookkeeping as it needs to keep track of
all state information associated with a media data element until the time it is
needed. Further overhead is introduced by the renderer optimization framework
(cf. section 3.4.3.2).

The following results give insight into the overhead introduced by the
retained-mode model.

6.2.1.1 Compressed media handling

The first experiment compares two different implementations of a classic "media
player" application, once using the retained-mode API provided by libmedia,
and once using a customized pipeline using the immediate-mode approach fea-
tured by traditional media processing frameworks. The second application was

184 CHAPTER 6. ASSESSMENT

milliseconds
per picture

0

1

2

3

4

5

mpeg2-dvd
720x576

mpeg1
320x240

mjpeg-clip-1
320x240

mjpeg-clip-2
320x240

mjpeg-clip-3
640x480

mjpeg-clip-4
640x480

retained mode

immediate mode

Six different video clips were processed using either the retained-mode interface offered by
libmedia, or an immediate-mode processing pipeline customized for the particular task.

Figure 6.2: Comparison of retained- and immediate-mode processing of com-
pressed media files

specifically optimized for the task of playing back one specific type of media
data, using format-specific shortcuts where possible11. Both applications use the
same decompressor implementations: While the retained-mode player uses the
CompressedImage abstraction that sufficient meta-information to allow a Ren-
derer to automatically instantiate a decompressor, the immediate-mode player
bypasses the infrastructure provided by libmedia and calls directly into the
decompressor instances.

This is intended as a "worst-case" comparison for the scenario of a simple
media player, falling back to non-delegated software rendering inside the client
application: No actual transformation is applied to the media data, therefore
repacking of the data into CompressedImage and Fragment containers with se-
mantic annotations is just overhead.

For the retained-mode processing case, the media data is stored in an AVI
container and the ordinary Document and DocumentReader mechanisms are
used to read the media as individual Fragment s from the file. Each fragment
is then handed over to a custom Renderer implementation that just coerces all
images into a rastered representation by simply calling the sample method and
subsequently discards the data. For the immediate-mode processing, the data
is already partitioned into individual frames so that processing essentially only
consists of calls into the decompressor itself (the same decompressor implemen-
tation was used in both cases). As figure 6.2 shows, the experiment fails to

11For example, the custom pipeline merges reading from the data source and decompression
into a single step. The libmedia DocumentReader s will instead locate and retrieve complete
frames before they are returned to the caller who may pass it to a Renderer for decompression.
Other micro-optimizations include pre-allocating all required memory.

6.2. EFFICIENCY EVALUATION 185

milliseconds
per picture

0.0

0.1

0.2

0.3

0.4

0.5

number of
graphic objects

0 40 80 120 160 200

retained mode

immediate mode

The diagram shows the time taken to construct an image using different numbers of graphic ob-
jects (colored rectangles in this experiment). While the retained-mode model exhibits a measurable
overhead per object, the overhead is lower than the time taken to actually draw the object, and
also low compared to the base cost of touching every pixel of the drawn image at least once. For
low object counts the overhead is therefore vanishingly small.

Figure 6.3: Comparison of retained- and immediate-mode drawing

exhibit any significant overhead introduced through the various libmedia ab-
straction layers and its retained-mode processing model: Even though the mea-
surements show excellent repeatability with very little variation, the difference is
neglegible.

6.2.1.2 Compositing

While the previous experiment established that the bookkeeping overhead for
compressed media representations is neglegible in comparison to the computa-
tions required to transform the compressed into a rastered representation, the
next experiment will discuss compositing. Since compositing operations may
be computationally less demanding, it is expected that any overhead will more
easily show up in this scenario.

The second experiment is intended as a worst-case scenario for image draw-
ing: Compositing of a full image has to touch each pixel at least once, but the
numbers of pixels affected per each operation may vary. Figure 6.3 shows the
time required to create a 320 × 240 image, using either retained- or immediate-
mode processing. The image creation process involves filling the canvas using
a specified number of colored rectangles (the rectangles were chosen disjoint so
each pixel is painted exactly once). As the diagram shows, the relative overhead
induced by the construction of the PaintedImage intermediate representation
used for retained-mode rendering does indeed grow with the number of objects
drawn – the overhead is however low compared to the cost of the actual drawing

186 CHAPTER 6. ASSESSMENT

operation. Additionally, this must also be put into perspective to the number
of compositing operations required to achieve typical effects: For example, the
blend transition shown in figure 2.7 on page 80 can be expressed using only
three compositing operations.

The overhead should also be considered in relation to the timing results given
in the previous section (note the order of magnitude difference in the temporal
scale between figures 6.3 and 6.2): In the presence of media compression or
decompression operations (or other similarly expensive operations), the overhead
incurred for retained-mode compositing is still lost in the noise.

6.2.1.3 Media playback on remote X displays

For the next experiment, a video player application was started on a remote
system, with the graphical user interface redirected to the local system. The in-
teraction of the application with the display system used the X protocol through
an established TCP connection over a standard fast ethernet physical layer.

For illustration purposes, two different types of players were used:

• The ubiquitous vlc player, which does not have any support for the
COMPRESS extension and therefore must resort to transmitting uncom-
pressed images through the X protocol.

• The simple media player mentioned in section 6.1.1.1 that uses the X ex-
tensions from chapter 4 through the X11RendererDriver .

The content for playback was chosen to be a standard commercial DVD, con-
taining MPEG-2 encoded video at an average bitrate of about 4.8 MBit/s.

vlc fared poorly in this experiment, completely saturating the 100 Mbit/s
network link while playback was still jerky. The libmedia-based player on the
other hand was able to provide smooth playback transmitting about 5 Mbit/s
of data (audio was suppressed for easier comparison as vlc does not support
networked audio).

The X protocol interactions of both programs and the server were subse-
quently analyzed using tcpdump and a small improvised protocol decoding util-
ity. For vlc the analysis revealed that it uses the XVideo extension to upload
images in a Y ′CbY

′Cr format
12 to the server, thus would require 720× 576× 25× 16

bits per second (or about 158 Mbit/s) for the image data alone. For the libmedia
player, the following pattern of X protocol requests was generated for each image
to be displayed (see also figure 4.7 on page 144):

• CreateFrame, containing the XID of the server-side ImageDecompressor
object, the ID of the frame to be allocated as well as between zero and two
IDs for reference frames. The encoded request is 12, 16 or 20 bytes in size,
depending on the number of reference frames used.

12The format stores one Y ′ luma value per each pixel and one Cb and Cr value for each second
pixel (cf. section 1.3.3.2). The values are stored interleaved in the given order.

6.2. EFFICIENCY EVALUATION 187

• FrameData, containing the XID of the server-side ImageDecompressor ob-
ject, the ID of the frame for which data will be submitted, as well as the
frame data itself and a length specifier. The encoded request is 16 bytes in
size, plus the size of the compressed image.

• Schedule, to issue scheduled operations for later execution in the server:
Parameters to the request identify the scheduler, the points in time for ex-
ecution and expiry of the enclosed group of requests, as well as flags re-
questing notification about execution or expiry of the group. The request
contains the following "piggy-backed" requests:

– Decompress, containing the XID of the server-side ImageDecompressor
object, the ID of the frame to be decompressed as well as the XID of the
"picture" resource to be associated with the decompressed image. The
encoded request is 16 bytes in size.

– RenderChangePicture to set several parameters on the decompressed
picture structure identified through its XID (in particular, chooses bi-
linear interpolation mode for scaling). The encoded request is 20 bytes
in size.

– RenderSetPictureTransform to set up an image scaling matrix on the
decompressed image, so that it is horizontally stretched on subsequent
blit operations to correct for the aspect ratio assumed by the MPEG-2
video. The encoded request is 44 bytes in size.

– RenderComposite to transfer the decompressed image into a backing
pixmap for the window where the video is to be shown on screen. The
encoded request contains the XIDs of source and destination pictures
as well as various parameters to identify their relative position, clip
rectangles and the compositing operator to be used for the transfer
operation (in this case the OVER operator). It is 36 bytes in size.

– Another RenderComposite request to transfer the picture from the
backing pixmap to the visible frame buffer. The encoded request is
again 36 bytes in size13.

In total, this request is 176 bytes in size.

• (At a later point in time): ReleaseFrame, allowing the server to discard all
data associated with the given frame ID. The request is 12 bytes in size.

The server honors the request for notification (send in the Schedule) request
by generating a completion event for each group of scheduled requests (each X
event is encoded through 32 bytes). The overhead incurred by the X protocol

13The indirection through the backing pixmap is not strictly needed, the renderer driver could
blit directly to the visible frame buffer. However, copying the data into a backing store allows
the server to recreate the window’s content if needed without requiring a round-trip to the client
to request redrawing – this would pose great difficulties in the case scheduled drawing, as the
client cannot know with sufficient precision which image is supposed to be visible currently.

188 CHAPTER 6. ASSESSMENT

allocated memory
in MByte

0

1

2

3

4

5

picture number

0 20 40 80 80 100

retained mode

immediate mode

The graph above shows the total amount of allocated memory during processing of an MPEG-2
video sequence consisting of a mixture of I-, P- and B-frames. The memory usage snapshots were
taken at the time the numbered image corresponding to the x coordinate was displayed. Notice
that the allocated memory totals depicted in the graph also include the memory required to hold
the compressed data. In fact, the slightly largere compressed I frames are clearly visible as small
"bumps" in the dotted line.

Figure 6.4: Memory usage during processing of an MPEG-2 video sequence

interactions thus add up to about 224+32 bytes per frame, or 6.4 Kbyte/s. In
the scenario at hand this is about 1% of the nominal data rate required for the
compressed images.

6.2.1.4 Memory usage

The processing concept of libmedia requires that any media element is self-
contained and can at the very least be converted into a sampled representation.
This means that all data required for reconstruction of a media element must be
retained up to the point where the element is no longer reachable by any caller.
For media representation formats that use predictive coding this retention policy
transitively extends along the whole dependency chain.

At the same time the architecture makes extensive use of caching to avoid re-
peating transformations the result of which has already been computed. While
cached data could in principle be discarded under memory pressure, the imple-
mentation is by default very conservative and attempts to keep cached results
until they cannot be reached any longer.

The combination of the two concepts above means that considerable amounts
of memory could in theory be required (section 6.1.4 already discussed a patho-
logical case that might without further precautions lead to unbounded memory
usage) if the dependency chains grow sufficiently long. This is however rarely
the case in practice where the lengths of the chains are almost always bounded

6.2. EFFICIENCY EVALUATION 189

to relatively low values. Figure 6.4 illustrates the memory consumption of two
media player applications, both playing back an MPEG-2 video stream from a
commercial DVD [62]. The first employs an immediate-mode approach to pro-
cessing and uses just the bare minimum of memory to hold at most three images
concurrently. The retained-mode media player on the other hand was created
using the standard libmedia interfaces. The figure makes the dynamic behavior
of the retained-mode player clearly visible: Memory consumption due to cached
images grows as the length of the dependency chain grows, but collapses regu-
larly as soon as intra-coded images are encountered in the stream.

The behavior exhibited in this scenario is fairly typical for practical applica-
tions – libmedia has a higher memory footprint than immediate-mode process-
ing toolkits, though not to an extent that is dramatic or would severely restrict
the usefulness of the framework. Although there is some room for improvement,
the higher memory consumption is to some extent inevitable by the design as
the automatic tracking of resources must be conservative to ensure each reach-
able media element can be reconstructed at any point in time. The phenomenon
is comparable to the situation in many other frameworks using some form of
garbage collection (see e.g. [25]).

6.2.2 Audio latency and the X Window System

While the previous sections considered the characteristics of the libmedia
framework, the new X extensions introduced in chapter 4 are useful in their own
right, and merit some investigation outside the context of the larger multime-
dia framework. In particular, the AUDIO extension (see section 4.1.2) introduces
completely new concepts (for processing audio) which the X server originally has
not been designed for. The purpose of this section is to investigate how the X.org
reference implementation of the X server fares under these circumstances:

Many audio applications are latency-sensitive, and the design and implemen-
tation of this extension tries to take this into account through various measures.
In particular, the shared memory mechanism (see sections 4.1.2.1 and appendix
B.2) helps maintain low latency for applications running on the same physical
machine – since remote displays incur some additional penalty in terms of la-
tency due to the required network communication, they are per se unsuitable for
many highly latency-sensitive applications.

The implementation achieves this mostly through a good decoupling from the
computationally expensive graphics operations also performed by the X server
(see appendix B.1). It has however turned out that the X server implementation
used for this project (the X.org reference server) has several latency issues – these
are not limited to audio only, but are much more noticeable than with graphics.
Structurally, the server is single-threaded and uses an event-driven model to
dispatch client requests. As a result, any delay incurred by compute-intensive
graphics operations affects the processing of requests of all other clients, in sev-
eral scenarios a single client is able to completely monopolize the server’s pro-

190 CHAPTER 6. ASSESSMENT

probability

0

0.001

0.01

0.1

1

0.5

0 100 200 300 400 500
latency (ms)

probability

0

0.001

0.01

0.1

1

0.5

0 100 200 300 400 500
latency (ms)

probability

0

0.001

0.01

0.1

1

0.5

0 100 200 300 400 500
latency (ms)

idle system normal work load heavy graphics load

The above graphs illustrate the latency behavior of the X.org reference X server implementation in
different load scenarios. They show the probability that a timestamp was delayed by less than a
specified amount of time. The traces (from left to right) were collected over a period of ten minutes
while the system was idle, was used in a normal work pattern, or was used for intensive graphics
operations.

Figure 6.5: Latency characteristics of the X server

cessing resources. The issue becomes particularly visible (or maybe audible) for
relatively simple requests that affect large amounts of graphics state, such as
moving a window.

To illustrate the ensuing problem, a simple player application was created
that uses either shared memory or the X protocol as transport mechanism for
audio sample data. Both players need to synchronize the rate at which they sup-
ply data to the audio device’s clock. This is done by using the TIME extension
to request periodic "timestamp" events (cf. section 4.2.3) through the X protocol.
If the X server is busily performing any graphics operations, these timestamp
events may be delayed, as protocol processing is performed in the same thread14

– figure 6.5 illustrates that even relatively trivial operations can easily have dis-
ruptive effects on the worst-case latency.

The unpredictable latency poses a problem for audio as applications must
compensate with sufficient buffering to overcome latency spikes. This buffer-
ing however increases to the end-to-end latency between the application and the
audio device. This ill effect of buffering can be mitigated through speculation,
where the likely operation is scheduled way ahead of time but revoked in case of
unforeseen events (see section 5.2). As the graphs show however, the amount of
buffering and speculation required can quickly become ridiculous. Furthermore,
these mechanisms are designed to deal with infrequent latency spikes induced
by packet networks – while they may be used to cover up for architectural de-
ficiencies in the X server implementation, this is hardly a good idea. It would
therefore be highly desirable to improve the quite bad latency behavior of the
X.org reference server implementation (see section 6.3.2).

Note that the latencies shown in figure 6.5 only affect the X protocol itself, but
a player using shared memory can bypass the protocol entirely at least for data

14Of course, all other parts of the protocol processing such as request dispatching are affected
by this delay as well.

6.3. FUTURE WORK 191

transport. During all of the experiments, a player application running on the
same system as the X server was therefore capable of providing uninterrupted
playback using a relatively small buffer of less than 10 milliseconds (this also
shows that the latency problems are really with the X server’s architecture it-
self and not any of the other system components). But synchronizing with the
server’s playback rate becomes more difficult as the information provided by the
timestamps becomes heavily "distorted" through the delays.

6.3 Future work

Since the creation of a full-featured implementation is an enormous task, the
implementation provided in this project can – despite its conceptual merits – not
compete with other frameworks in terms of the number of functional compo-
nents e.g. for decompression. Consequently, there are several avenues for future
developments:

• Since the architecture is kept highly modular, the first and most obvious
direction for development is to provide new components that extend the
functional capabilities of the implementation. This may include support for
new input or output devices, storage or compressed representation formats
for existing types of media, or even entirely new types of media. Since
there is generally very little architectural work involved, this avenue may
not be particularly rewarding from a scientific point of view, but it is of high
importance for most practical purposes.

One related area would be to implement support for the import and export
of media formats like flash animations that are better described through the
"compositing" facilities than the compressed media representation mecha-
nisms (in the sense of section 3.3.3). It is expected that there are no major
technical obstacles as the cairo API is all by itself already sufficiently pow-
erful to express vector graphics15.

• The renderer concept essentially acts as a sort of retargetable "compiler"
that translates the given abstract media elements into a sequence of steps
suitable for execution by the "target system" represented by the renderer
driver. The concept also includes the possibility of optimizing the sequence
of steps with respect to various metrics, such as minimizing computational
effort or communication. The various optimizations implemented and dis-
cussed in section 3.4.3.2 are already sufficient to deliver the benefits illus-
trated in section 6.1, but the concept can of course be expanded further
than has been possible within the constraints of this work. Several of the
possibilities are outlined in more detail in the section 6.3.1 below.

15A "complete" implementation would however require a close investigation of how to map e.g.
some of the more esoteric compositing operators supported by flash to cairo, possibly extending
the set of supported operators.

192 CHAPTER 6. ASSESSMENT

• The implementation also uncovered several shortcomings in the existing in-
frastructure upon which the project was built. In particular, the X Window
System is used in a way that is novel and (quite likely) not envisaged by the
original designers. Furthermore, the X Window System was only used as an
"output" device for media data, however it may also be useful to provide e.g.
media capturing capabilities through the X protocol. There are currently
several architectural obstacles that need to be addressed before this can be
realized.

Section 6.3.2 will discuss some of the deficiencies and how they could be
addressed in future projects.

• The core media processing architecture is not very tightly coupled to the
Linux environment chosen as target for this project. In fact, there is only
one system-specific dependency for run-time listing and resolution of sym-
bols (see appendix A.4) required for the modularization model (see section
3.2.1). Equivalent services are also available on other platforms, so that
there are no obstacles to porting the framework to other targets. This also
requires implementations of Renderer drivers that interface with the respec-
tive graphics system. Thus the implementation could be developed into a
platform-independent media processing framework.

6.3.1 Future development of the "renderer" concept

Renderer drivers provide the interface used by libmedia to execute media pro-
cessing operations for passing media to a designated "target", be that an output
device or a storage container. The currently implemented renderer drivers al-
ready apply a number of optimization steps to reduce computational effort and
communication, but this could be expanded vastly.

The implemented optimizations are a collection of relatively schematic trans-
formations: They are unconditionally applied to given media elements whenever
a matching transformation rule is found, so they are essentially "just" peep-hole
optimizations. In typical applications this is sufficient as the representations of
media elements are rarely more complex than expressions of three or less "ir-
reducible" elements, so there are few (if any) optimization opportunities. The
irreducibility is however a consequence of the optimization framework’s inability
to further "look into" compressed representation formats.

The case can be made for making the compressed formats less opaque than
they presently are, as the current abstraction level precludes some potentially
useful optimizations: Consider for example when transformations between two
compressed media representations that store encoded DCT coefficients. The
current implementation forces a transformation of the given data into an inter-
mediate rastered image (thereby inverting the DCT to convert the coefficients into
pixel values), and generating a new representation in the target format from this
rastered image (thereby computing DCT coefficients from the pixel data again).

6.3. FUTURE WORK 193

It would be desirable to short-circuit this transformation by retrieving and en-
coding the DCT coefficients directly.

One possible avenue is to simply provide a "richer" interface to compressed
formats that allows to extract various more abstract representations (e.g. in
the example above, the interface could provide for a "block-DCT transformed
rastered image" format). This approach was also suggested by other researchers
[26], and some preliminary work towards this goal has already found its way
into the current implementation by structuring decompressors and compressors
accordingly. It is however unclear whether this leads to a generalizable concept.

A more radical approach would be to expand on the concept of JIT code gen-
eration already used for the specific sub-task of conversion between different
pixel formats and color models (see appendix A.5). In the extreme, this could
mean implementing media processing entirely in an abstract virtual machine
and attempting to apply global optimization on a processing chain thus repre-
sented – but the experiences hitherto with JIT generation of code from VM byte
code representations leave the author entirely unconvinced that this approach
is sustainable (since none of the JIT optimizers encountered by the author were
capable of matching the performance expectations). However, an approach using
more high-level building blocks (such as block DCT, parsing of variable length
codes from bitstreams) as equivalents of virtual machine "instructions" could
prove feasible.

This would also be in spirit with the general architectural focus on describing
the abstract representation a media element is coded in: Compressed media for-
mats would in this case be given as an abstract definition of how the individual
bits of the representation are to be interpreted as "media data". As a concrete
example, instead of wrapping up an implementation of a Huffman decompressor
and subsequent discrete cosine transformation into an opaque component, the
format would consist of "declarations" that describe the use of these two algo-
rithms and their relationship. The framework would then substitute suitable
implementations, possibly generated on the fly and optimized to the provided
parameters. This offers several new opportunities, especially with respect to del-
egation of media data transformations to co-processors: Code for the given target
execution platform could also be generated just in time without writing .

6.3.2 X server infrastructure

For this project, the X.org reference implementation of the X Window System was
used as most deployed implementations are based on it. The X.org architecture
is quite flexible, allowing the implementation of the extensions required for this
project without modifications to the core system. There are however a number
of general architectural issues with the current implementation of the X server
which the provided extensions happen to highlight.

As section 6.2.2 demonstrated, there are severe issues with respect to (pre-
dictable) latency behavior of the X server under load. The main reason for this

194 CHAPTER 6. ASSESSMENT

is that the server is single-threaded and uses an event-driven model to dispatch
individual client requests. As a consequence, long-running operations cannot be
preempted, leading to conceptually unbounded latency.

Future work should address this issue by providing a multi-threaded dis-
patching model, either as dedicated threads per client connection or using a
thread-pool approach. The required effort should however not be underesti-
mated as it requires refactoring a large existing code base firmly built on the
assumption of single threaded execution16.

A second issue with the current X server implementation is that messages
sent from the server to the client use a "semi-synchronous" interface: If the
message is sufficiently small that it can fit into a single atomic message of the
underlying transport protocol, then it will be sent asynchronously. If on the
other hand a single message or the total of multiple messages is too large, then
the server may block until the last part of the message has been transmitted to
the client. This design is based on the assumption that there is rarely a need to
transfer large amounts of data back to X clients. So far this has been justified:
Applications that need to transfer image data from the server to the client are
rare and thus do not provide a significant performance problem (and there is no
other type of data besides images that could usefully be transferred).

If the X protocol were to be used as a more bidirectional communicationmech-
anism, this would invalidate the underlying design assumption and thus provide
a significant performance problem (this has also been verified experimentally
– continuous transfer of bulk data through the X protocol even through local
IPC mechanisms lead to "jerky" behavior of the X server and basically make the
graphical interface unusable). As a prerequisite for providing capture of media
data through the X server this issue would have to be addressed by reworking
the I/O system of the X.org server implementation. In principle, this can be
done within the constraints of the single-threaded event-driven model currently
used by the server, but it is more useful to address this in the larger context of
switching the server to a multi-threaded dispatching model.

6.4 Conclusions

This work presents the architecture of a new media processing framework devel-
oped for the Linux operating system environment (chapter 3). The architecture is
complemented by the novel infrastructure introduced into the X Window System
for delegated processing of media data (see chapter 4). Additionally, the issue of
integrating the media framework as well as the X infrastructure with the rest of
the software stack was considered in chapter 5.

The architecture provides a full-fledged multimedia framework, including ca-
pabilities to handle compressed data, media container files, capture and play-

16The fact that existing projects such as [67] only address a small portion of the overall prob-
lem, but nevertheless face severe difficulties should be seen as indicative of the feat to be accom-
plished.

6.4. CONCLUSIONS 195

back devices as well as very powerful media processing primitives from which
complex video and audio effects like scene transitions or mixing can be con-
structed. The media architecture introduces several novel concepts that are not
found in previously existing media frameworks (see chapter 2), such as retained-

mode processing, lazy evaluation and weakly-typed media elements with implicit

format conversions. These lead to a processing model that provides both a high
degree of control, but at the same time enormous convenience: As section 6.1 il-
lustrates, the model improves in several ways over previous approaches, by both
providing an easy-to-use interface that relieves the programmer of many com-
mon and repetitive tasks, while at the same avoiding to force the programmer
into a specific processing model.

The architecture is centered on the idea of building up an internal inter-
mediate model, representing the image, audio signal, video sequence or other
media element that the application programmer wishes to create. This model
is retained, and can be interpreted by one of the various renderer drivers that
form the end of the processing chain: Their role is to translate the model into
a sequence of steps that can be executed on a specific target. The rich data
model of the framework provides the renderer drivers with sufficient information
to perform very powerful high-level optimizations that are basically inaccessible
to other multimedia framework. All of these services are automatic, allowing the
application developer to concentrate entirely on the the processing intent, while
the framework determines a suitable and well-optimized technical realization.

While building up the internal model requires considerably more bookkeeping
than more traditional immediate-mode processing architectures, the overhead is
neglegible and does not compromise efficiency (cf. section 6.2.1). In fact, weigh-
ing the sophisticated high-level optimization capabilities against the overhead
leaves a substantial net efficiency gain.

What sets this framework even further apart from all previous work is the
architecturally clean way in which it provides the capability for delegation of
processing. In particular, this project addresses the long-standing issue of net-
work transparency: While the X Window System provides a powerful networked
graphics system, none of the previous projects have even attempted to extend
this concept into the world of multimedia. In contrast, the framework presented
here allows to delegate multimedia processing to remote display systems, using
both network and processing resources sparingly. On top of that, the concept
is not at all limited to mere media playback: Previously unthinkable applica-
tions such as network-transparent interactive video editors are enabled by this
project.

The author therefore views these encouraging results as validation of the over-
all approach.

196 CHAPTER 6. ASSESSMENT

Appendix A

Implementation notes: Media
processing library

This appendix briefly documents some notes on the implementation of the
libmedia media processing library, the architecture of which was outlined in
chapter 3. The notes concentrate on rather technical aspects of the architecture
that are not dictated by functional requirements and that were largely discussed
in chapter 3. Instead, most of the concepts that will be briefly touched here
are dictated by performance requirements, interactions with the target run-time
environment, or internal state management issues. Thus they are not part of a
programming interface usable for writing media applications, but provide inter-
nal services usable for implementation of extension components.

The presentation is by no means complete and covers only few of the most
important concepts – at 35000 lines of code an exhaustive discussion would
easily exceed the scope of this entire work. The library has been implemented
in C++ for a Linux run-time environment. The platform-specific portions of the
implementation relate to the following areas:

• Operating system services (I/O events, threads, coordination and synchro-
nization)

• Processor-specific services (run-time code generation)

• Execution environment services (dynamic linking, introspection)

• Device driver services (audio/video input/output)

These parts are well isolated from the platform-independent parts (e.g. oper-
ating system services that are not universally available through the same inter-
face (like memory allocation, simple file and network I/O) are completely encap-
sulated in a separate auxiliary library that supports a wide range of targets), so
that a port of the implementation to other target platforms is straight-forward.

All library services have been implemented in the namespace media to avoid
naming collisions with other frameworks.

197

198 APPENDIX A. IMPLEMENTATION NOTES: MEDIA PROCESSING LIBRARY

A.1 Data model

The implementation is designed to use available resources sparingly and thus
tries to reuse any resources once they have been obtained. In particular, this
means that data is passed around by reference instead of copying it, file handles
are retained if they are required for future accesses, re-reading of data from
network connections and files is avoided through semantics-aware caching1 etc.

To support passing resources by reference the architecture generally uses two
layers of objects to represent a piece of data:

• The physical layer: a specific resource such as a memory area, a file de-
scriptor etc.

• The semantic layer: a media object such as an image, a media document
etc.

Objects that belong to the physical layer are assumed to have ownership of the
resource they represent – they act as tracker objects that keeps book of whether
the resource is in use. Objects of the semantic layer in turn reference objects
of the physical layer to hold the resources they require on their behalf. This
distinction allows to reinterpret resources multiple times over their lifetime –
for example, a MemoryArea object tracks a block of memory, which may pass
through the following stages:

• First, the memory is allocated to hold data read from a file. The block
of memory is then enqueued into a BufferWindow (see appendix A.3) for
processing as part of a larger logical stream.

• A stream demultiplexer (see appendix A.2) inspects the data and assigns it
to multiple streams. Our memory block may – as a whole or in part – be
assigned to one of these streams, let’s assume a video.

• Next, a parser (see section 3.3.3.1) may inspect the logical video stream and
partition it into individual frames. The block – as a whole or in part – may
be assigned to a CompressedFrame object.

• Alternatively, the block could also be assigned to a PixelImage object if the
underlying format stores uncompressed images.

All of the above passing of the data through different processing layers is
achieved without copying. The distinction of resource ownership and data in-
terpretation also provides a clean way for applications to hand over application-
managed resources to the library and cooperatively use them – this concept was
already briefly mentioned in section 5.3.1.

1While actual media data is not suitable for caching (as it is usually processed exactly once),
documents also contain meta-data (track information, indices) that are typically accessed quite
frequently during the lifetime of an accessor to the document. The implementation is aware of
this difference and treats the data accordingly.

A.2. STREAM DEMULTIPLEXING 199

While the effects are entirely beneficial in terms of resource consumption (and
thus performance) it results in complex object lifetime rules. As has become
clear during early development stages already, manual tracking of object lifetime
is too cumbersome and error-prone to be feasible. Instead, a garbage collection
mechanism has been implemented that automatically tracks the lifetime of all
objects within the library. Since the C++ standard does not provide garbage
collection as a language feature2, a simple reference-counted approach has been
taken. This scheme is viable for the case at hand because most data structures
occuring can be expressed as acyclic directed graphs (and in the few cases where
cycles are necessary for technical reasons, they have been realized using a "weak
pointer" concept).

A.2 Stream Demultiplexing

Many commonly used media formats (e.g. MPEG-1/MPEG-2 elementary, system
and program streams; see [32] and [69]) do not provide an index table to locate
individual elements of the coded stream (such as frames) to be looked up. In-
stead, the stream must be processed incrementally, locating the next element by
either marker bits or length tags on the previous element. While this approach is
complex, it has undeniable performance benefits and should therefore be pref-
ered even if an index table is available: It allows to communicate the sequential
data access pattern to the operating system which can then adapt and schedule
read-ahead/drop-behind. Accordingly, this strategy is used where applicable,
e.g. for properly interleaved AVI files.

Since the framework is designed to provide two different types of I/O seman-
tics (see section 3.2.2) this means that stream demultiplexers must also be able
to operate in two different modes:

• Blocking data reads and "pull" processing: One of the demultiplexed
streams is pulled for new data, which may in turn call the demultiplexer
for further data.

• Non-blocking data reads and "push" processing: The data source supplies
new data to the demultiplexer, which distributes it to the individual streams
who must then notify interested parties.

The state management for demultiplexing is further complicated by the fact
that data consumers may mix both models freely – in particular, it is very com-
mon to request data in blocking mode during intialization to fill up any buffers,
and switch to non-blocking mode afterwards. Furthermore, due to the refer-
encing rules explained in the previous section, the object instance representing
the stream demultiplexer and the object instance representing the demultiplexed
stream may not hold references to each other.

2But see proposals such as [24].

200 APPENDIX A. IMPLEMENTATION NOTES: MEDIA PROCESSING LIBRARY

It quickly turned out that a correct solution to this problem involves number
of corner cases and is quite non-trivial. Therefore, libmedia provides a base
StreamDemuxer class which provides the base for stream demultiplexer imple-
mentaions – it takes over all I/O operations and call processing for both the
"push" and "pull" data models, and calls into a customizable function for actual
stream parsing.

As a consequence there are a number of restrictions on how the stream parser
must be structured: The stream parser cannot block and request more data for
processing – instead, it must return to the calling StreamDemuxer indicating
whether the currently available data permitted any parsing progress (which may
or may not cause the StreamDemuxer to read new data and try again). The
parser must therefore support incremental processing and must be structured
as a state machine.

For many multiplex formats (such as MPEG-1/MPEG-2) the state machine
required for processing is rather small (it consists of merely two states) – in this
case the above limitations imposed by StreamDemuxer are not actually felt as
such. However, more complex formats (such as AVI) involve four major states
(not counting those required for error recovery) and moreover must support
restoring states to (re)start processing from arbitrary points in the file.

Despite the complexity involved in the design approach chosen has shown
its merit – in particular, it is to the author’s knowledge the only implementation
capable of supporting both "push" and "pull" processing for some of the more
complex stream multiplex formats.

A.3 BufferWindow concept

Since simplistic byte-level stream processing incurs considerable overhead, it is
preferable to process larger chunks of data with random-access semantics in-
stead. libmedia supports an efficient implementation of this common access
pattern through BufferWindow : This class represents a small window into a con-
ceptually infinitely large sequence of bytes. The window is delimited by "head"
and "tail" pointers, and the data in between these pointers is held in a number
of (not necessarily contiguous) buffers. Every byte within the window is ran-
domly accessible, and BufferWindow supports operations that narrow or widen
the window into both directions (note some conceptual similarities with the sam-
ple buffer concept introduced in 4.1.2.1).

A.4 Dynamic symbol lookup

The library uses sub-namespaces to group factory objects providing a com-
mon interface together (cf. section 3.4). For example, the namespace me-
dia::fileformats contains the members avi , quicktime and mpegps which sup-
port instantiation of document objects of their respective types. The set of

A.5. PIXEL FORMAT AND COLOR SPACE CONVERSION 201

sub-namespaces is not predefined, in fact components may provide new sub-
namespaces to facilitate dynamic registration (e.g. AVI file accessors use the
namespace media::avi::mediahandlers to locate media handlers by their corre-
sponding "fourcc" codes; any particular media handler provider may register an
entry in this namespace to advertise their capability of functioning as an AVI
media handler).

The library provides two mechanisms to access these namespaces:

• bind to a specific (named) symbol

• browse the list of all symbols in a sub-namespace

Generally, all symbols in the current executable (and all currently loaded li-
braries) are considered. In addition to these the library also considers a set of
shared object files as potential sources for requested symbols (browsing includes
their symbols and binding to a specific symbol causes the library to be demand-
loaded transparently)3.

Binding to symbols is achieved through the dlsym 4 call (possibly predated by
dlopen to demand-load a library). Thus binding honors the usual symbol prece-
dence rules (and e.g. allows an application to override functionality). Browsing
requires access to the symbol tables of the current executable, but there is un-
fortunately no standardized and portable interface to the link editor maintaining
these tables. On the Linux/ELF target used for this implementation the function
dl_iterate_phdr allows to access the ELF section headers of all objects loaded into
the current executable; the desired information can then be obtained from the
DYNAMIC section (see [38]).

A.5 Pixel format and color space conversion

Section 1.3.3 introduced several different color models, and section 1.3.4.1 intro-
duced the concept of rastered images. In practical applications there is further
variety as not all values of the color triplets are stored for every grid point – for
example, it is for Y ′CrCb color models customary to provide Cr and Cb sample val-
ues with only half or qarter the resolution of Y ′ samples (called subsampling; see
section 1.3.3.2 for an explanation of the rationale). Other examples are digital
cameras where it is not uncommon to sample "green" color values at double the
resolution of "red" and "blue". Furthermore, the individual values may be either
stored "planar" in separate two-dimensional arrays or "packed" together in a sin-
gle array, using different ordering and different numbers of bits per component.

3In practice, this is realized with the help of a cache file that contains all exported symbols of
a set of shared object files and indicates which file contains the symbol. Technically, this file is
not necessary as all required information could as well be obtained from the shared object files,
but its presence speeds up browsing and binding.
4POSIX.1-2001

202 APPENDIX A. IMPLEMENTATION NOTES: MEDIA PROCESSING LIBRARY

Such a definition as to where and how the sample values are stored is referred
to as a pixel format.

Overall, this results in about 20 different combinations of pixel formats and
color models that are used relatively frequently, and which practical applications
must be prepared to handle. The processing paradigm of libmedia demands
that an image using any of these formats must be convertible into any of the
other. Direct conversion between the formats would require 20 × 19 transforma-
tion routines, using chained transformations through intermediate formats can
reduce this number but may loose performance or precision or both.

The approach taken for this project uses just-in-time generation of code for
transformation between two arbitrary formats. Foremost, this requires repre-
senting pixel formats and color models as data structures. The pixel format
description partitions the image into elementary "macropixels" – these are the
smallest repeating unit, taking into account subsampling of the color chan-
nels. The format description then specifies how sample values contained in
one macropixel are represented as bitstrings, and how the bits are located in
the data planes. Color models are described through their mathematical rela-
tionship to CIE XYZ (see section 1.1.2.1); the description is currently restricted
to affine images of gamma-corrected color models (see section 1.3.3) which is
sufficiently generic to represent all of the "physical" and "decorrelation" models
used in multimedia (but cannot for example represent CIE L*a*b).

The code generation process starts out with an exact mathematical repre-
sentation of the conversion to be performed, and successively transforms this
representation towards executable code – by e.g. simplifying arithmetic terms,
converting real arithmetic to fixed point arithmetic, replacing chains of "expen-
sive" operations with look-up tables, and translating the bit packing required by
the formats into shift and logical operations. The intermediate representation
used for this optimization and code generation framework is somewhat unusual
in that a unified directed, acyclic graph is used for all stages, and the graph is
serialized into a sequence of instructions only after register allocation. (cf. [34]).
Early experiments indicated that this representation is particularly suitable as it
captures the "micro-parallelism" inherent to the problem very well.

Appendix B

Implementation notes: X Window
System Extensions

B.1 Real-time audio processing

The TIME extension allows clients to schedule execution of requests within the X
server. One particular type of requests issued in this way are AUDIO requests to
perform data transfer and transformation operations between different server-
side sample buffers (see section 4.1.2.1). These are commonly used to allow
mixing of multiple active audio streams into a single master playback buffer
(see section 5.2). The latency introduced through software mixing is essentially
determined by the worst-case execution latency of these mixing operations (see
figure 5.2 on page 156).

To meet these tight timing requirements, scheduled requests are generally
executed by a dedicated real-time thread within the X server. An accounting
mechanism ensures that processing time is allotted equally to all clients and
at the same time prevents the system from overload – usually it does not hurt
if the true cost is grossly over-estimated (as CPUs are typically sufficiently fast
to make computation cost for audio processing nearly neglegible). However, the
operations performed in the real-time thread on behalf of the client are quite
simple (multiplication, accumulation, convolution); during experiments it was
found that a trivial estimator that always assumes worst-case behavior (dataset
too large to fit in L2 cache) does not over-estimate the common case (dataset
already present in L1 cache) by a factor more than 2.

B.2 Lock-free sample buffers

Sample buffers may optinally be placed in shared memory segments (see section
4.1.2.1). The mechanism allows X clients and servers operating on the same
physical machine to exchange sample data without any X protocol interaction.
Both sample values and the "base index" of the current window are placed in

203

204APPENDIX B. IMPLEMENTATIONNOTES: X WINDOWSYSTEM EXTENSIONS

the same shared memory segment, thus the client can also perform operations
such as shifting the window to a new position and inquiring the current position
without generating X protocol requests. The semantics of the shared memory
buffers is close to that of pure server-side buffers, but not completely identical.
Both client and server must adhere to a strict protocol for access to the sample
buffer to achieve desired behavior.

The memory locations holding the sample values are organized as a ring buffer

of a fixed (power of two) size, and the size of the ring must be strictly larger than
the logical size of the window represented by the sample buffer. Sample indices
are mapped to ring indices in the usual way by taking their value modulo the
ring size.

While the server implementation guarantees that shifting the window pointer
to a new location is atomic with respect to concurrent access for all pure server-
side sample buffers (which in particular means that any newly visible sample
values are initialized to zero before they are accessible), it is for shared memory
buffers the responsibility of the writer to provide this guarantee. Depending on
whether the buffer is used for capture or playback, this role may be fulfilled by
either client or server. The window may only be shifted forward while there can
possibly be a concurrent reader, and the writer must adhere to the following
access protocol1:

int new_base_index=atomic_load_relaxed(base_index);
while (shift_count--)

ring_pointer[(window_size+new_base_index++) % ring_size]=0;
atomic_store_release(base_index, new_base_index);

while the reader must correspondingly execute:

sample_value_t samples[read_count];
int old_base_index=atomic_load_acquire(base_index), n;
for(n=0; n<read_count; n++)

samples[n]=ring_pointer[(read_base_index+n) 5 ring_size];
int new_base_index=atomic_load_ordered(base_index);

The above access protocol introduces a benign data race in that the base
index may be modified concurrently to the reader fetching sample data. In this
case, some or all of the values fetched may be invalid, and the reader must
retroactively discard them (i.e. set them to zero). To detect this, the reader must
use the saved old_base_index and new_base_index values: They determine
the base index of the window at some point before read access was started and
at some point after read access was finished, respectively. From this, the reader
can compute the intersection of the two windows and can therefore conclude
which of the read sample values are guaranteed to be valid.

1The code example assumes that the variables ring_pointer and base_index point to the
first element of the ring buffer and the storage location of base index of the sample buffer’s
window. The notation proposed in [7] is used for memory fences bound to shared variables.

Bibliography

[1] Alsa project web page. http://www.alsa-project.org/, fetched on 2008-08-
26.

[2] Bob Amstadt and Michael K. Johnson. Wine. Linux J., 4, August 1994.

[3] Helge Bahmann. A Streaming Multimedia Extension for the X Window Sys-
tem. Diplomarbeit, TU Freiberg, 2002.

[4] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Double dispatch in c++.
Softw. Pract. Exper., 36(6):581–613, 2006.

[5] Jasmin Blanchette and Mark Summerfield. C++ GUI programming with Qt

4. Prentice Hall, 2006.

[6] Toni Bochmann and Frank Winkler. Ogg Vorbis Audio Komponente. Tech-
nical report, TU Freiberg, 2006. Internal report.

[7] Hans J. Boehm and Lawrence Crowl. C++ Atomic Types and Operations,
2007. ISO/IEC JTC1 SC22 WG21 N2145 draft paper for the C++0X stan-
dard.

[8] Olaf Borkner-Delcarlo. GUI-Programmierung mit Qt. Hanser, 2002.

[9] J.K. Bowmaker and H.J. Dartnall. Visual pigments of rods and cones in a
human retina. The Journal of Physiology, 298:501–511, 1980.

[10] Cairo graphics web page. http://cairographics.org/, fetched on 2008-
08-26.

[11] Carl D. Worth and Keith Packard. Xr: Cross-device Rendering for Vector
Graphics. In Proceedings of the Ottawa Linux Symposium, 2003.

[12] Commission internationale de l’eclairage proceedings, 1932.

[13] Apple Computers. QuickTime File Format.

[14] W3 consortium. GIF specification. http://www.w3.org/Graphics/GIF/
spec-gif87.txt, fetched 2008-08-24.

205

206 BIBLIOGRAPHY

[15] W3 consortium. PNG specification. http://www.w3.org/TR/PNG/, fetched
2008-08-24.

[16] Eirik Eng. Qt gui toolkit: Porting graphics to multiple platforms using a gui
toolkit. Linux J., November 1996.

[17] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design

Patterns. Addison-Wesley, 2007.

[18] Yôiti Suzuki et al. Precise and full-range determination of two-dimensional
equal loudness contours. Technical report, Tohuku University, Japan,
2003.

[19] Flac format specification. http://flac.sourceforge.net/format.html,
fetched 2007-12-20.

[20] Fletcher and Munson. Loudness, its definition, measurement and calcula-
tion. J. Acoust. Soc, pages 82–108, 1933.

[21] S.W. Golomb. Run-length encodings. Trans Info Theory 12(3), page 399,
1966.

[22] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice
Hall, 2007.

[23] Gtk+ project web page. http://www.gtk.org/, fetched on 2008-08-26.

[24] Mike Spertus Hans J. Boehm and Clark Nelson. Minimal Support for
Garbage Collection and Reachability-Based Leak Detection, 2007. ISO/IEC
JTC1 SC22 WG21 N2670 draft paper for the C++0X standard.

[25] Matthew Hertz and Emery D. Berger. Quantifying the performance
of garbage collection vs. explicit memory management. SIGPLAN Not.,
40(10):313–326, 2005.

[26] Holger Bönisch and Konrad Froitzheim. Server Side ”Compresslets” for In-
ternet Multimedia Streams. icmcs, 02:82, 1999.

[27] Daniel H. H. Ingalls. A simple technique for handling multiple polymor-
phism. In OOPLSA ’86: Conference proceedings on Object-oriented program-

ming systems, languages and applications, pages 347–349, New York, NY,
USA, 1986. ACM.

[28] Coding of moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s – Part 3: Audio. ISO/IEC 11172-3:1993.

[29] Coding of audio-visual objects – Part 10: Advanced Video Coding. ISO/IEC
14496-10:2003.

BIBLIOGRAPHY 207

[30] Coding of moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s – Part 2: Video. ISO/IEC 11172-2:1993.

[31] ITU. Digital compression of continuous-tone still images.
http://www.w3.org/Graphics/JPEG/itu-t81.pdf, fetched 2008-08-
24.

[32] Chad E. Fogg Joan L. Mitchell, William B. Pennebaker and Didier J. LeGall.
MPEG Video Compression Standard. Kluwer Academic Publishers, 2000.

[33] Alan Bernard Bradley John P. Princen, A. W. Johnson. Subband/Transform
Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancel-
lation. Proc. of the ICASSP, pages 2161–2164, 1987.

[34] Neil Johnson and Alan Mycroft. Combined Code Motion and Register Alloca-
tion Using the Value State Dependence Graph. In Görel Hedin, editor, CC,
volume 2622 of Lecture Notes in Computer Science, pages 1–16. Springer,
2003.

[35] Kiia Kallio. Scanline Edge-flag Algorithm for Antialiasing . In Ik Soo Lim
and David Duce, editors, Theory and Practice of Computer Graphics, pages
81–88, Bangor, United Kingdom, 2007. Eurographics Association.

[36] Ralf Keller, Wolfgang Effelsberg, and Bernd Lamparter. Xmovie: architecture
and implementation of a distributed movie system. ACM Trans. Inf. Syst.,
13(4):471–499, 1995.

[37] Andrew Krause. Foundations of GTK+ Development. Apress, 2007.

[38] John R. Levine. Linkers & Loaders. Morgan Kaufmann, January 2000.

[39] Z.N. Li and M.S. Drew. Fundamentals of multimedia. Prentice Hall, 2004.

[40] Marco Lohse. Network-Integrated Multimedia Middleware, Services, and Ap-

plications. VDM Verlag, 2007.

[41] Marco Lohse and Philipp Slusallek. Middleware Support for Seamless Mul-
timedia Home Entertainment for Mobile Users and Heterogeneous Environ-
ments. In Proceedings of The 7th IASTED International Conference on Inter-

net and Multimedia Systems and Applications (IMSA), pages 217–222. ACTA
Press, 2003.

[42] Ralf Müller. Ein Audio Compositing Manager für das X Window System.
Bakkalaureusarbeit, TU Freiberg, 2008.

[43] Peter Nilsson and David Reveman. Glitz: hardware accelerated image com-
positing using opengl. In ATEC ’04: Proceedings of the annual conference

on USENIX Annual Technical Conference, pages 28–28, Berkeley, CA, USA,
2004. USENIX Association.

208 BIBLIOGRAPHY

[44] Bernd Oestereich. Analyse und Design mit UML 2.1. Oldenbourg Verlag
München Wien, 2006.

[45] Keith Packard. A new rendering model for x. In ATEC’00: Proceedings of the

Annual Technical Conference on 2000 USENIX Annual Technical Conference,
pages 53–53, Berkeley, CA, USA, 2000. USENIX Association.

[46] Davis Pan. A Tutorial on MPEG/Audio Compression. IEEE MultiMedia,
02(2):60–74, 1995.

[47] Haoyu Peng, Hua Xiong, and Jiaoying Shi. Parallel-sg: research of paral-
lel graphics rendering system on pc-cluster. In VRCIA ’06: Proceedings of

the 2006 ACM international conference on Virtual reality continuum and its

applications, pages 27–33, New York, NY, USA, 2006. ACM.

[48] Havoc Pennington. GTK+/Gnome Application Development. New Riders Pub-
lishing, Thousand Oaks, CA, USA, 1999. Foreword By-Miguel de Icaza.

[49] Johannes Pfeiffer. Integration eines X11-GUI-Toolkits und eines verteilten
Multimedia Systems. Bakkalaureusarbeit, TU Freiberg, 2006.

[50] Thomas Porter and Tom Duff. Compositing digital images. In SIGGRAPH

’84: Proceedings of the 11th annual conference on Computer graphics and in-

teractive techniques, pages 253–259, New York, NY, USA, 1984. ACM Press.

[51] Nico Pranke. Ein waveletbasierter Video-Codec – Algorithmen ud Implemen-
tierung. Diplomarbeit, TU Freiberg, 2008.

[52] Quicktime component creation guide. http://developer.apple.com/
documentation/QuickTime/RM/WritingQTComponents/MHCreating/
MHCreating.pdf, fetched on 2008-01-07.

[53] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression. Wiley & Sons,
2003.

[54] Dale Rogerson. Inside COM. Microsoft Press, 1997.

[55] Robert W. Scheifler and James Gettys. X Window System: Core and Exten-

sion Protocols: X Version 11, Releases 6 and 6.1. Butterworth-Heinemann,
February 1997.

[56] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchroniza-
tion. Real-Time Syst., 12(2):173–228, 1997.

[57] J. O. Smith. Physical modeling using digital waveguides. Computer Music

J., 16(4):74–91, 1992.

[58] Julius O. Smith. Digital Audio Resampling Home Page.
http://www-ccrma.stanford.edu/˜jos/resample/, January 28, 2002.

http://{www-ccrma}.stanford.edu/~{}jos/resample/

BIBLIOGRAPHY 209

[59] Scott N. Steketee and Norman I. Badler. Parametric keyframe interpola-
tion incorporating kinetic adjustment and phrasing control. In SIGGRAPH

’85: Proceedings of the 12th annual conference on Computer graphics and

interactive techniques, pages 255–262, New York, NY, USA, 1985. ACM.

[60] James CE Johnson Stephen D.H̃uston and Umar Syyid. The ACE program-

mer’s guide. Addison-Wesley, 2004.

[61] Maureen C. Stone, William B. Cowan, and John C. Beatty. Color gamut
mapping and the printing of digital color images. ACM Trans. Graph.,
7(4):249–292, 1988.

[62] Quentin Tarantino. Pulp fiction, 1994.

[63] Simon Thum. Ein nichtdestruktives Bildverarbeitungssystem. Diplomar-
beit, FH Gießen-Friedberg, 2006.

[64] Tom Lane. Independent JPEG Group. http://www.ijg.org, fetched on
2008-08-26.

[65] Suramya Tomar. Converting video formats with ffmpeg. Linux J.,
2006(146):10, 2006.

[66] Jeff Tranter. Introduction to sound programming with alsa. Linux J.,
2004(126):4, 2004.

[67] Tiago Vignatti. Moving all the input code into a separate thread. Google
Summer of Code 2008 project.

[68] Vorbis I specification. http://www.xiph.org/vorbis/doc/
Vorbis_I_spec.html, fetched 2008-08-25.

[69] John Watkinson. The MPEG Handbook. Focal Press, 2001.

Eidesstattliche Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung
des Manuskripts habe ich die Unterstützungsleistung von folgenden Personen
erhalten:

keine

Weitere Personen waren an der Abfassung der vorliegenden Arbeit nicht
beteiligt. Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genom-
men. Weitere Personen haben von mir keine geldwerten Leistungen für Arbeiten
erhalten, die nicht als solche kenntlich gemacht worden sind.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder
ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Danksagung

Ich möchte mich an dieser Stelle bei den vielen Menschen bedanken, die mir
jeweils auf Ihre eigene Art bei dieser Arbeit geholfen haben.

Zuallererst ist hier mein Betreuer Prof. Froitzheim zu nennen, dem ich mit
dieser interessanten Aufgabenstellung die wohl einmalige Gelegenheit verdanke,
in einem Gebiet habe forschen zu können, auf das sich sonst nur sehr wenige
Betreuer vorgewagt hätten. Während der gesamten Zeit habe ich große Frei-
heiten sowohl für diese Arbeit selbst, wie auch für zahlreiche Projekte abseits
des Weges genossen.

Als zweites gilt mein Dank auch Prof. Jung und Prof. Schulthess, die sich
freundlicherweise bereit erklärt haben für diese Arbeit als weitere Gutachter zur
Verfügung zu stehen.

Mein weiterer Dank geht an Nico Pranke und Nico Reissmann, die zahlreiche
Vorabversionen des Manuskripts geduldig gelesen und kommentiert haben.

Auch meinen Eltern und meiner Schwester möchte ich danken, die insbeson-
dere immer unterstützende Worte gefunden haben, wenn ich sie gebraucht habe.

Zuguterletzt und am allermeisten möchte ich meiner Freundin Silvia danken:
Während der gesamten Zeit hat sie geduldig alle Belastungen mit mir gemein-
sam getragen, mich immer wieder aufgebaut und angespornt, unglaublich viel
Verständnis bewiesen, wenn diese Arbeit viel Zeit, die wir hätten gemeinsam ver-
bringen können, gekostet hat, und zuguterletzt die Arbeit mehrfach Korrektur
gelesen und kommentiert hat.

	Introduction
	Typographic and diagram conventions

	Multimedia representation and processing
	Definition
	Audible media
	Visual media

	Compositing and processing
	Audio processing
	Still image processing

	Representation in digital systems
	Techniques
	Audio representation
	Color representation
	Image representation
	Video representation

	Compressed representations
	Audio compression
	Image Compression
	Compressed video

	Related work
	Media processing frameworks
	QuickTime
	DirectShow
	Network Integrated Multimedia Middleware

	Media processing in the Linux environment
	Low-level data capture and playback
	Media processing tools

	Media processing framework architecture
	Design choices
	Processing model
	Data model
	Execution model
	Format transformations
	Component and object model

	Core architecture
	Modularization and component model
	I/O model
	Time model

	Media type support
	Audio
	Still images and video
	Compressed media
	User-defined representation types

	Processing
	Compositing
	Capture
	Rendering concept

	Documents
	Accessors
	Container file formats

	Cooperation with the X Window System
	Media processing extensions
	Timing and synchronization services
	Audio services
	Compressed media services

	Media presentation in the X Window System
	Video presentation
	Audio presentation
	Synchronization

	Renderer driver architecture
	General media rendering and synchronization
	Resource caching
	Handling of media elements

	System integration
	Bindings to audio programming interfaces
	ALSA

	Desktop audio mixing
	GUI toolkit cooperation
	Media framework provisions
	Gtk+/Qt bridge libraries

	Cooperation with other media frameworks

	Assessment
	Architecture model and API assessment
	API field testing
	Comparison to QuickTime
	Comparison to DirectShow
	Limitations

	Efficiency evaluation
	Overhead
	Audio latency and the X Window System

	Future work
	Future development of the "renderer" concept
	X server infrastructure

	Conclusions

	Implementation notes: Media processing library
	Data model
	Stream Demultiplexing
	BufferWindow concept
	Dynamic symbol lookup
	Pixel format and color space conversion

	Implementation notes: X Window System Extensions
	Real-time audio processing
	Lock-free sample buffers

