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1 Introduction

Krylov subspace methods are a standard technique for solving linear equations. The
great majority of existing literature is devoted to the study of these methods for a
regular coe�cient matrix (cf. [22] and the references therein). The analysis of this
methods applied to a singular operator is not as well developed as for the nonsingular
case. On the other hand, there are applications where linear systems of equations with
a singular matrix arise, for example the discretization of partial di�erential equations
with Neumann boundary conditions or discrete inverse problems (cf. [33]). Another
important realm of applications is the study of Markov chains with large �nite state
space, which is also stressed in this thesis.
There are studies of the behavior of widespread used Krylov methods for singular

systems, such as [34] for the Conjugate Residual (CR) method, [35] for the General-
ized Conjugate Residual (GCR) method, [7, 64] for the Generalized Minimal Residual
(GMRES) method, and [29] for the Quasi-Minimal Residual (QMR) method. Other au-
thors have proposed modi�ed versions of established Krylov methods (cf. [61, 62, 63]).
Though, the analysis is often short-coming and lacks a consistent presentation of re-
sults. Recent advances in unifying the theory of Krylov methods use abstract orthog-
onal residual (OR) and minimal residual (MR) approximations to describe all kinds of
subspace correction methods in a concise manner (cf. [22, 25]). These advances are not
yet adopted for the singular case. The main objective of the present work is to close
this open issues.
In studying singular systems of linear equations there naturally arise generalizations

of the concept of an inverse operator. We shall widely use such generalized inverses.
Therefore we start with a short survey about this topic in Section 2. A less common
representative of the class of generalized inverses is the subspace inverse, which we
introduce in Section 3.2. This section is part of the exposition of abstract MR and OR
approximation methods.
Our presentation of the material in Section 3 is greatly inspired by Eiermann and

Ernst (cf. [22]). We solely augment their results to cover the singular operator case.
To this end, after some introductory remarks about operator equations and subspace
correction methods in Section 3.1, we study minimal residual approximations for the
solution of operator equations in Section 3.2. The standard implementation of this
methods using nested orthonormal bases is described in Section 3.3. The breakdown
behavior of the underlying Gram-Schmidt orthonormalization process is studied in in
Section 3.4. We show in Section 3.5, how most of the results in [22] about MR and
OR methods for solving regular systems may be preserved in the context of a singular
operator.
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1 Introduction 2

The Drazin inverse, another generalized inverse, plays a prominent role in Section 4
where we specialize the abstract setting to Krylov subspace methods. After the basic
de�nition we point out the polynomial structure of Krylov spaces in Section 4.1. Sec-
tion 4.2 provides tools to deal with the Drazin inverse and the minimal polynomials of
a matrix and a vector. They are used in Section 4.3, where the important connection
between Krylov subspaces and the Drazin inverse is established. In Section 4.4 we in-
vestigate the question, when a Krylov method yields least squares solution. This leads
to new identities involving the Drazin and the Moore-Penrose inverse. We close with
some remarks about the stability of Krylov methods and the modi�cations necessary
to obtain Drazin inverse solutions.
As a real world problem involving the solution of singular linear operator equations

we present the analysis of continuous-time Markov chains (CTMC) in Section 5. After
some preliminaries about the background in stochastics and tools from matrix theory
we investigate the transition function of a Markov chain in a purely analytical and
matrix algebraic context. The results of this analysis are then interpreted in terms of
the stochastic process and used to explain the usefulness of Krylov subspace methods
for the analysis of Markov chains.
We conclude with some �nal remarks on possible topics of further research.



2 Generalized Inverses

In this section we summarize some facts about generalizations of the inverse of a linear
operator. This is not only done for introducing the reader into this subject, but also
to emphasize common properties and di�erences between the proper inverse and its
various generalizations. To keep things simple we restrict ourselves to the case, when
A ∈ Cm×n is a matrix. Considerable introductions to this topic can be found in the
monographs of Campbell and Meyer [14] or Ben-Israel and Greville [4].
The inverse X = A−1 of a regular (and thus square) matrix A ful�lls the matrix

identities

AX = I and (2.1)

XA = I , (2.2)

where I is the identity matrix. Both equations characterize the inverse of A. A simple
consequence is that a regular matrix commutes with its inverse, i. e.,

AX = XA. (2.3)

Other obvious identities are

AXA = A, (2.4)

XAX = X , (2.5)

(AX )∗ = AX , (2.6)

(XA)∗ = XA and (2.7)

Ak+1X = Ak (2.8)

for every k ≥ 0. Here M ∗ denotes the adjoint of a matrix (or operator) M with respect
to given inner products (·, ·) on H1 = Cn and H2 = Cm. An obvious way to generalize
the term �inverse� is to require a subset of the above identities to be satis�ed.
Equations (2.4) to (2.7) are known as the Penrose conditions. Together, they de�ne

the Moore-Penrose generalized inverse or pseudoinverse A† of an arbitrary matrix A ∈
Cm×n. A generalization of A† for a linear operator A : H1 → H2 on arbitrary Hilbert
spaces Hj can be found in [32] (see also [4, Chapter 8]).
Note also, that each of the Penrose conditions (2.4) and (2.5) immediately implies,

that AX and XA are projections. This may be regarded as a generalization of equations
(2.1) and (2.2) where the identity matrix I is replaced by some other operator which

3



2 Generalized Inverses 4

is the identity on a certain subspace and null elsewhere. Further, the Penrose con-
ditions (2.6) and (2.7) yield that these projections are orthogonal ones. In fact, the
Moore-Penrose inverse can be characterized as the uniquely determined operator X for
which AX = PR(A) and XA = PR(A∗). Here PU denotes the orthogonal projection onto
the subspace U and R(M ) := {Mv : v ∈ H1} ⊆ H2 is the range of the operator (or
matrix) M : H1 → H2.
If it exists, the solution of equations (2.3), (2.4) and (2.5) is called the group inverse

A# of the (necessarily square) matrix A. It is called so, because it is the inverse element
of A in any multiplicative group of matrices.
Another well known generalized inverse is the Drazin inverse of a square matrix A,

which is the solution of equations (2.3), (2.5) and (2.8) for k ≥ index(A). The index
of a matrix A is related to the Jordan canonical form: It is simply the dimension of
the largest Jordan block corresponding to the eigenvalue 0 (and index(A) = 0 if A is
nonsingular). Note that the group inverse is just the Drazin inverse of a matrix A with
index(A) ≤ 1.
Beside its nice algebraic properties, the inverse of a linear operator is a powerful tool

in solving operator equations. Consider

Ax = b, (2.9)

where we are looking for solutions x ∈ Cn = H1 for a given right hand side b ∈
Cm = H2. If A is square and regular, the unique solution of this equation is given by
x = A−1b. It seems natural to generalize this term for singular or even rectangular
A. Such a generalization has to overcome two problems: First, (2.9) needs not to
be consistent, i. e., b 6∈ R(A), which means that the equation is not solvable in the
usual sense. Second, even if the system is solvable, the solution need not be unique.
More precisely, the solution of a consistent linear equation is unique if and only if
N(A) = {v : Av = 0 , v ∈ H1} is the trivial space which contains only the zero
vector.
A generalized inverse which supplies a solution of (2.9) if the equation is consistent is

called an equation solving generalized inverse. The class of all equation solving inverses
of A is usually denoted by A{1} and A¯ denotes an arbitrary element of it. A{1} is
characterized by equation (2.4). If X ∈ A{1} additionally satis�es (2.6) it is called a
least squares generalized inverse, since for every right hand side b there holds

‖b − AXb‖ = min
x∈H1

‖b − Ax‖

in this case. The norm ‖·‖ is induced by the inner product (·, ·). Similarly, the set of
all equation solving inverses, which satis�es

‖Xb‖ = min
x ,Ax=b

‖x‖ for all b ∈ R(A)

is characterized by equations (2.4) and (2.7) and any such X is called a minimal norm
generalized inverse of A. A least squares generalized inverse is said to have the minimal
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norm property if ‖Xb‖ < ‖w‖ for all least squares solutions w of (2.9). The Moore-
Penrose inverse A† is precisely the only least square generalized inverse with minimal
norm property (cf. [14, Theorem 2.1.1]).
All generalized inverses introduced so far coincide with A−1 if A is regular. But there

are useful generalizations which lack this property. An example is the constrained or
subspace generalized inverse, which satis�es the least squares and the minimal norm
condition above only on a certain subspace C ⊂ Cn (for details see Section 3.2 and
[14, Section 3.6]). Note that the Drazin inverse provides a solution of (2.9) if the right
hand side lies in a certain subspace of R(A) namely the range of Aindex(A). In general,
each of the above properties of A−1 may be restricted to a certain subset of vectors to
get a new class of generalized inverses. Again, the subspace inverse may illustrate this.
In Section 3.2 we will introduce it as the Moore-Penrose inverse of a certain operator.
Alternatively it could be de�ned as the solution of the following equations:

AXAv = Av for all v ∈ C ⊆ H1, (2.4')

XAX = X , (2.5 )

(AXy , z ) = (y ,AX z ) for all y , z ∈ H2, (2.6')

(XAv ,w) = (v ,XAw) for all v ,w ∈ C ⊆ H1, (2.7')

R(X ) ⊆ C.

Generalized inverses of this type are �rst studied by Minimade and Nakamura [50],
where the term restricted pseudoinverse is used. Ben-Israel and Greville also discuss
restricted generalized inverses in [4, Section 2.8].
In fact, almost every method for solving the linear equation (2.9) approximately can

be regarded as the action of a certain generalized inverse of A on the right hand side
(or the initial residual). In an iterative solution method each step is associated with a
speci�c generalized inverse and the whole iteration can be described by specifying this
sequence of operators. We illustrate this in short for the classical stationary iteration
methods: Given a splitting A = M − N with M nonsingular, the induced stationary
iteration is

x` = Tx`−1 + c, ` = 1, 2, . . .

with T = M−1N and c = M−1b. Using r0 = b − Ax0 this can be rewritten as

x` = x0 +
(
I + T + · · ·+ T `−1

)
M−1r0.

Thus, the `th iterate is obtained from the initial guess by adding a suitable correction.
This correction may be regarded as an approximate solution of the residual equation.
In formulas, setting

AX
` :=

(
I + T + · · ·+ T `−1

)
M−1 = M−1

`−1∑
j=0

(NM−1)j,
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the solution of Ac = r0 is approximated by AX
` r0, where AX

` is a generalized inverse of
A. For a nonsingular matrix A a reasonable iteration matrix T satis�es lim`→∞T ` = O .
Since AX

` satis�es the identity AX
` A = I−T ` we conclude that (2.1) holds asymptotically

for AX
` . In other words, AX

` converges to the proper inverse of A. That an iteration is
reasonable means of course, that the iterates converge to the solution of (2.9), which
is for nonsingular A equivalent to ρ(T ) < 1, that is, the spectral radius is less then 1.
If A is singular and b ∈ R(A), under certain conditions on T (namely that T is
semiconvergent, cf. De�nition 5.2.9), the stationary iteration converges to a solution
of the linear system which can be expressed in terms of the Drazin inverse of I − T
(cf. [5, Section 7.6]). Eiermann, Marek and Niethammer derive in [24] similar results
for general semiiterative methods.



3 Abstract MR and OR Approximations

In [22] Eiermann and Ernst suggested an abstract approach to iterative projection
methods for solving linear equations with an invertible operator. It turns out that
many results are independent of the linear operator and thus hold in the singular case
too. Other identities hold in a slightly modi�ed form.
Following Eiermann and Ernst, we consider abstract MR and OR approximation

problems in a Hilbert space H with inner product (·, ·) and induced norm ‖·‖. Given
a (�nite dimensional) subspace W ⊂ H and an element r ∈ H, the MR approximation
hMR is de�ned as the best approximation to r from W. Denoting by rMR the associated
approximation error there holds

hMR ∈ W, rMR := r − hMR ⊥ W.

The OR approximation hOR is obtained by imposing

hOR ∈ W, rOR := r − hOR ⊥ V,

where V is a suitable test space of the same dimension as W. We shall see later in this
section, how this approximations may be expressed in terms of orthogonal and oblique
projections onto W.
In what follows A : H → H is a bounded linear operator which is not necessarily

invertible. All results and conclusions in this section remain true for the more general
case where A : H1 → H2 is an operator between di�erent Hilbert spaces (e. g., a
rectangular matrix in �nite dimensions). We do without this distinction here both
for ease of notation and since the most relevant application of this theory in Krylov
subspace methods (cf. Section 4) is covered by our assumptions. We also assume that
H is separable and that the associated scalar �eld is algebraically closed, or, yet easier,
that the scalars are complex numbers.
Some further remarks about the notation: Let {u1, . . . ,uk} a �nite set of linear

independent vectors in H. For convenience we often identify the basis {u1, . . . ,uk}
with its representation as row vector Uk =

[
u1 . . . uk

]
and abbreviate the subspace

Uk = span{u1, . . . ,uk} by span{Uk}. Similarly, Ukg with g =
[
γ1 . . . γk

]> ∈ Ck

denotes the linear combination γ1u1+ · · ·+γkuk and the notation U∗
k is an abbreviation

of the mapping H → Ck : · 7→
[
(·,uj)

]k
j=1

. For a linear operator A on H we denote the
range by R(A) = {Av : v ∈ H} and the nullspace by N(A) = {v : Av = 0 , v ∈ H}.
The adjoint A∗ of A is the operator satisfying (Ax ,y) = (x ,A∗y) for all x ,y ∈ H.

7



3 Abstract MR and OR Approximations 8

3.1 Operator Equations and Approximation Problems

We consider the linear equation
Ax = b (3.1)

with given right hand side b ∈ H and the unknown vector x ∈ H. Given an initial
guess x0 with the corresponding initial residual 0 6= r0 = b − Ax0 and a sequence of
nested correction spaces

{0} = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cm ⊂ Cm+1 ⊂ · · · ⊂ H, dim Cm = m, (3.2)

we investigate iterates of the form xm = x0 + cm, cm ∈ Cm. That is, we correct the
initial approximation of the solution of (3.1) by a correction cm determined from Cm to
obtain a (hopefully better) approximate solution xm. Methods of this kind are known
as subspace correction methods and are widely used in applied mathematics.
Setting hm := Acm, the corresponding residual vector is

rm = b − Axm = r0 − Acm = r0 − hm.

Thus, hm can be regarded as a suitable approximation of r0 from the mth approximation
space

Wm := ACm. (3.3)

The residual rm is the approximation error of hm. This approximation problem does
not depend on the operator equation (3.1).
A simple but often used result is provided by

Lemma 3.1.1. If and only if r0 ∈ Wm there exists a correction cm ∈ Cm such that
xm = x0 + cm is a solution of (3.1). The linear system (3.1) then is necessarily
consistent.

Thus, if r0 ∈ Wm, there exists a cm ∈ Cm with Acm = r0 and a reasonable approxi-
mation process should return hm = r0 with the approximation error rm = 0 .
Given an approximation hm ∈ Wm to r0, any solution cm of the consistent linear

equation
A|Cmc = hm (3.4)

de�nes an iterate xm = x0 + cm with the same residual rm = r0 − hm. Two solutions
of (3.4) di�er only in directions of the subspace Cm ∩N(A). Thus, the correction cm is
uniquely determined if and only if

Cm ∩N(A) = {0}, (3.5)

i. e., if A is injective on the subspace Cm. Obviously, if A is regular, this holds true for
all m.
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By (3.2), the approximation spaces form a nested sequence

{0} = W0 ⊆ W1 ⊆ · · · ⊆ Wm−1 ⊆ Wm ⊆ · · · .

If we attempt to apply the results of Eiermann and Ernst to our setting, the main
di�culty arise from the fact that dim Wm = m is not guaranteed. That is, the subset
inclusions above must not be proper ones. Of course, if Wm−1 = Wm, the successive
approximation problems remain unchanged. If we are only interested in abstract MR
and OR methods without reference to any operator equation we may simply renumber
the sequence of approximation spaces. If, however, Wm is de�ned by (3.3) this is not
so easily possible. In Section 3.4 we shall introduce a look-ahead strategy to remedy
this de�ciency.

3.2 MR Corrections and the Subspace Inverse

A popular choice of the correction c from the correction space C is to require the
minimal residual (MR) condition

‖b − AxMR‖ = ‖r − AcMR‖ = min
c∈C

‖r − Ac‖, (3.6)

where r = b−Ax0 is the residual of the initial guess. The corresponding approximation
hMR = AcMR is characterized by the orthogonal projection PW : H → H onto W :=
AC:

hMR = PWr , rMR = r − hMR = (I − PW)r ⊥ W. (3.7)

The solutions of (3.6) can be described in terms of a special constrained generalized
inverse of A (cf. Section 2 and [14, Section 3.6]). Given a subspace C we call AC :=
(APC)† the subspace inverse of A with respect to C. The solution cMR of (3.6) with
minimal norm is

cMR
min = ACr

and all corrections which satisfy (3.6) are given by

cMR = ACr + z with z ∈
{

(I − ACA)u : u ∈ C
}

(3.8)

(cf. [14, Corollary 3.6.1]). We summarize some properties of this generalized inverse

Proposition 3.2.1. The subspace inverse AC = (APC)† of A with respect to C satis�es

(i) R(AC) = R(ACA) ⊆ C,

(ii) N(AC) = (AC)⊥ = W⊥,

(iii) ACAAC = AC,

(iv) AAC = PW,
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(v) ACA is a projection onto R(AC) and

(vi) N(ACA) = {z ∈ H : Az ⊥ AC}.

Proof. From the de�nition of the constrained inverse and known properties of the
Moore-Penrose inverse (cf. [14, Theorem 1.2.2]) we conclude

R(AC) = R((APC)†) = R((APC)∗) = R(PCA
∗)PCR(A∗) ⊆ C

and
N(AC) = N((APC)†) = R(APC)⊥ = (AC)⊥ = W⊥

which prove (ii) and the inclusion R(AC) ⊆ C in (i).
This inclusion implies PCA

C = AC and thus

ACAAC = ACAPCA
C = (APC)†(APC)(APC)† = (APC)† = AC.

Similarly, we get

AAC = APCA
C = (APC)(APC)† = PR(APC) = PW

since R(APC) = AC = W.
As earlier stated, the projection property (ACA)2 = ACA follows immediately from

the second Penrose condition (iii). So, demonstrating R(ACA) = R(AC) proves (v)
and the remaining part of (i). The inclusion R(ACA) ⊆ R(AC) is trivial. Now, let
v ∈ R(AC). Hence, there exists a vector u ∈ H such that v = ACu . Using ACAAC =
AC we compute ACAv = ACAACu = ACu = v , i. e., v ∈ R(ACA), which implies
R(AC) ⊆ R(ACA).
Assertion (vi) follows easily: A vector z ∈ H belongs to the null-space of ACA if and

only if Az ∈ N(AC) = W⊥ (note that this includes all z ∈ N(A)).

Corollary 3.2.2. The set of all solutions of (3.6) is{
cMR = ACr + z | z ∈ N(A) ∩ C

}
Proof. We have to show that{

(I − ACA)u : u ∈ C
}

= N(A) ∩ C.

Let z = (I − ACA)u with u ∈ C. Since R(AC) ⊆ C we have z ∈ C. A simple
computation gives Az = A(I −ACA)u = (I −AAC)Au = (I −PW)Au = 0 where the
last equation follows from Au ∈ W = AC.
Now let z ∈ N(A) ∩ C and set u = (I − AC)z . Then u ∈ C and (I − ACA)u =

(I −ACA)(I −AC)z = (I −ACA−AC + ACAAC)z = (I −ACA−AC + AC)z = z since
Az = 0 .
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Note that the proof of the �rst inclusion is a reformulation of (3.4) and the subsequent
considerations.
One may ask, when the inclusion in (i) of Proposition 3.2.1 is in fact an equality. It

turns out, that this is characterized by the assumption mentioned in (3.5) which also
simpli�es some other issues.

Proposition 3.2.3. With the notation used in this section the following statements
are equivalent

(i) the least squares problem (3.6) has a unique solution,

(ii) N(A) ∩ C = {0},

(iii) R(ACA) = C,

(iv) N(ACA) ∩ C = {0},

Proof. The equivalence of the �rst and second item follows form (3.8) and Corol-
lary 3.2.2.
Since ACA is a projection, each vector v ∈ H can be uniquely decomposed as v =

w + z with w ∈ R(ACA) and z ∈ N(ACA). Let c ∈ C and denote by c = d + z
this decomposition. That is d ∈ R(ACA) and, since c and d belong to C, we get
z = c − d ∈ N(ACA) ∩ C. Thus we have the direct decomposition

R(ACA) ⊕
[
N(ACA) ∩ C

]
= C.

This shows the equivalence of (iii) and (iv).
We �nish the proof by demonstrating the equivalence of (ii) and (iv). The direction

from left to right follows from equation (vi) in Proposition 3.2.1: Assume z ∈ N(ACA)∩
C and z 6= 0 . Then (ii) implies Az 6= 0 and since Az ∈ W we have a contradiction to
Az ⊥ W. To prove the other direction assume z ∈ C with Az = 0 . Then there holds
also ACAz = 0 which by (iv) implies that z is zero.

In the case characterized by Proposition 3.2.3, the subspace inverse coincides with
the generalized inverse A

(2)
T,S described in [5, Theorem 2.12]. It is characterized there

as the unique operator (if it exists) satisfying the second Penrose condition and having
prescribed range and nullspace.
For later use we state

Lemma 3.2.4. Let cMR denotes an arbitrary solution of (3.6). Assume an orthonor-
mal basis {z1, . . . , z`} of N(A) ∩ C is given and let Z =

[
z1 . . . z`

]
. Then the subspace

inverse solution (i. e., the solution of (3.6) which has minimal norm) is given by

cMR
min = cMR − Z (Z∗cMR).
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If N(A) ∩ C is one-dimensional and z ∈ N(A) ∩ C is an arbitrary nontrivial vector
contained in it, the subspace inverse solution satis�es

cMR
min = cMR −

(z , cMR
L−1)

(z , z )
z .

Proof. A simple consequence of Corollary 3.2.2 is that given an arbitrary solution cMR

the set of all solutions of (3.6) is{
cMR − z | z ∈ N(A) ∩ C

}
.

We are looking for cMR
min with

‖cMR
min‖ = min

z∈N(A)∩C
‖cMR − z‖.

Writing z = Zg with g ∈ C` this transforms into the least squares problem

min
g∈C`

‖cMR − Zg‖

which is solved by g = Z†cMR = Z∗cMR (cf. [14] and the subsequent remark). In
the one dimensional case the orthonormalization of the basis of N(A) ∩ C can be done
implicitly in the formula for cMR

min .

Remark 3.2.5. Regarding the original linear equation (3.1) and the corresponding least
squares problem (3.6) it is more appropriate to ask for a solution xMR

min with minimal
norm property. Fortunately, the answer can be easily derived from the results above.
Note that Z Z∗ = PZ is the orthogonal projection onto Z := C ∩ N(A). Thus, the

main result of Lemma 3.2.4 can be rewritten as

cMR
min = (I − PZ)cMR,

which suggests an alternative proof using Pythagoras' theorem. The squared norm of
an arbitrary least squares solution cMR − z with z ∈ Z can be rewritten as

‖cMR − z‖2 = ‖PZc
MR − z‖2 + ‖(I − PZ)cMR‖2

and thus is minimized for z = PZc
MR.

Since every solution of (3.6) is of the form x0 + cMR = x0 + ACr − z with z ∈ Z we
get

xMR
min = (I − PZ)(x0 + ACr) = (I − PZ)xMR, (3.9)

where xMR denotes an arbitrary solution of (3.6). The reformulation

xMR
min = (I − PZ)ACb + (I − PZ)(I − ACA)x0

shows that the MR solution with minimal norm is additively composed of one part only
dependent on the right hand side and another part determined by the initial guess.
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Finally, we investigate the question of when the MR solution supplies a least square
solution or even a pseudoinverse solution of (3.1). The proof of the two following
lemmata is straight forward.

Lemma 3.2.6. With the notation used in this section the following statements are
equivalent

(i) xMR is a least squares solution of (3.1),

(ii) xMR = A†b + z with z ∈ N(A),

(iii) cMR = A†r + z̃ with z̃ ∈ N(A),

(iv) hMR = PR(A)r ,

(v) rMR = PN(A∗)r = PN(A∗)b,

(vi) PR(A)r ∈ W.

Lemma 3.2.7. With the notation used in this section the following statements are
equivalent

(i) xMR
min is a least squares solution of (3.1) with minimal norm property,

(ii) xMR
min = A†b,

(iii) cMR = A†r − PN(A)x0,

(iv) A†b ∈ x0 + C.

3.3 Corrections from Nested Subspaces

The standard implementation to compute MR corrections from nested correction spaces
as introduced in (3.2) relies on nested orthonormal bases of the residual spaces

Vm+1 := span{r0}+ Wm. (3.10)

The basis of Vm+1 is generated inductively by orthonormalizing Acm against a (previ-
ously constructed) orthonormal basis {v1, . . . , vm} of Vm using the (modi�ed) Gram-
Schmidt algorithm. Here cm is an arbitrary vector from Cm \Cm−1. If PVm denotes the
orthogonal projection onto Vm, a compact presentation of this procedure reads

v1 = r0/β, where β := ‖r0‖,

vm+1 =
(I − PVm)Acm

‖(I − PVm)Acm‖
(m = 1, 2, . . . ).

(3.11)
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The algorithm terminates in step m if (and only if)

Acm ∈ Vm. (3.12)

If such an index m exists we de�ne

L := min{m : Acm ∈ Vm} (3.13)

and set L := ∞ otherwise. Note that in a �nite dimensional space H, which is the
most relevant case for practical applications, we always have L < ∞.
With Cm :=

[
c1 c2 . . . cm

]
and Vm+1 :=

[
v1 v2 . . . vm+1

]
, the �rst m orthonormal-

ization steps establish the following Arnoldi-type decomposition of A,

ACm = Vm+1H̃m = VmHm +
[
0 . . . 0 ηm+1,mvm+1

]
, (3.14)

where H̃m =
[
ηj,k

]m+1,m

j,k=1
∈ C(m+1)×m is an upper Hessenberg matrix and Hm :=[

Im 0
]
H̃m ∈ Cm×m is the square matrix obtained by deleting the last row of H̃m.

The nonzero entries of H̃m are given by ηj,k = (Ack, vj), 1 ≤ k ≤ j ≤ m, and
ηk+1,k = ‖(I − PVk

)Ack‖ ≥ 0, with equality holding if and only if k = L. In other
words, H̃m is an unreduced upper Hessenberg matrix (and thus of full rank m) as long
as m < L.
For notational convenience we set vL+1 = 0 , so (3.14) holds true for m = L. Note

also, that the Hessenberg matrix H̃L has a zero last row.
With respect to the orthonormal basis Vm+1 of Vm+1, the vector r0 = βv1 =

Vm+1βu
(m+1)
1 has the coordinates βu

(m+1)
1 (where u

(m+1)
1 denotes the �rst unit vec-

tor of Cm+1). Consequently, writing c ∈ Cm as c = Cmy with a coordinate vector
y ∈ Cm, the corresponding residual is given by

‖b − Ax‖ = ‖r0 − ACmy‖ = ‖Vm+1(βu
(m+1)
1 − H̃my)‖ = ‖βu

(m+1)
1 − H̃my‖2

(‖ · ‖2 denotes the Euclidean norm in Cm+1). For cMR
m = CmyMR

m , the least squares
problem (3.6) reduces therefore to

‖βu
(m+1)
1 − H̃myMR

m ‖2 = min
y∈Cm

‖βu
(m+1)
1 − H̃my‖2. (3.15)

This problem has a unique solution if and only if H̃m has full rank m, which is certainly
true as long as m < L. On the other hand we know from Proposition 3.2.3, that the
least squares problem has a unique solution if and only if C contains no directions in
the nullspace of A. Thus, for m < L, we have Cm ∩N(A) = {0} and

cMR
m = CmyMR

m = βCmH̃†
mu

(m+1)
1 = ACmr0 (3.16)

is the (uniquely determined) MR correction. We should mention here that, if H̃m has
full rank m, then the Moore-Penrose pseudoinverse is given by H̃†

m = (H̃H
mH̃m)

−1
H̃H

m

(cf. [14, Theorem 1.3.2]).
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Usually the solution of (3.15) is computed using an inductively generated QR de-
composition of H̃m. Assume we have already constructed

Qm−1H̃m−1 =

[
Rm−1

0>

]
,

with Qm−1 ∈ Cm×m unitary (QH
m−1Qm−1 = Im) and Rm−1 ∈ C(m−1)×(m−1) upper trian-

gular (and nonsingular since H̃m−1 has full rank), then

[
Qm−1 0
0> 1

]
H̃m =

[
Qm−1 0
0> 1

] [
H̃m−1 hm

0> ηm+1,m

]
=

Rm−1 t
0> τ
0> ηm+1,m

 . (3.17)

We de�ne a Givens rotation

Gm :=

Ik−1 0 0
0 cm sme−iφm

0 −smeiφm cm

 (cm, sm ≥ 0, c2
m + s2

m = 1, φm ∈ R) (3.18)

to accomplish

Gm

[
Qm−1 0
0 1

]
H̃m =

Rm−1 t
0> ρ
0> 0

 (3.19)

and set

Qm := Gm

[
Qm−1 0
0 1

]
and Rm :=

[
Rm−1 t
0> ρ

]
. (3.20)

We can verify by a simple calculation that the appropriate parameters of the Givens
rotation are

cm :=
|τ |√

|τ |2 + η2
m+1,m

, sm :=
ηm+1,m√

|τ |2 + η2
m+1,m

,

φm := arg(ηm+1,m)− arg(τ) = − arg(τ),

(3.21)

which results in
ρ :=

√
|τ |2 + η2

m+1,m e−iφm .

Inserting this approach recursively we conclude with

Qm = Gm

[
Gm−1 0
0 1

] [
Gm−2 O

O I2

]
· · ·
[
G1 O
O Im−1

]
,

and

QmH̃m =

[
Rm

0

]
. (3.22)
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Since ρ is nonzero as long as ηm+1,m 6= 0 the triangular matrix Rm is nonsingular if
m < L. Even if ηm+1,m = 0, i. e., m = L, we may obtain a nonsingular RL, namely
if and only if τ 6= 0 (cf. (3.28)). If ρ = 0, Equation (3.22) holds true for cm and sm

chosen arbitrarily subject to c2
m + s2

m = 1.
Using this QR decomposition we can rewrite (3.15) as

min
y∈Cm

‖βu
(m+1)
1 − H̃my‖2 = min

y∈Cm

∥∥∥∥QH
m

(
β Qmu

(m+1)
1 −

[
Rm

0

]
y

)∥∥∥∥
2

= min
y∈Cm

∥∥∥∥β Qmu
(m+1)
1 −

[
Rm

0

]
y

∥∥∥∥
2

= min
y∈Cm

∥∥∥∥[βqm −Rmy

β q
(m)
m+1,1

]∥∥∥∥
2

,

where [q>m, q
(m)
m+1,1]

> = Qmu
(m+1)
1 (qm ∈ Cm) denotes the �rst column of Qm. The unique

solution of the above least-squares problem is yMR
m = βR−1

m qm and the associated least-
squares error is given by ‖rMR

m ‖ = β|q(m)
m+1,1|.

More generally, (3.22) implies

H̃m = QH
m

[
Rm

0>

]
and H̃†

m =
[
R−1

m 0
]
Qm (3.23)

for m < L. As another consequence the Arnoldi-type decomposition (3.14) can be
rewritten as

ACm = Vm+1H̃m = Vm+1Q
H
m

[
Im

0

]
Rm =: V̂mRm (3.24)

for m < L (a similar relations hold true for m = L, cf. (3.28) and (3.32)). The basis
V̂m is often referred as Paige-Saunders basis (cf. [52]) and forms an orthonormal basis
of Wm.

3.4 The Breakdown Behavior

If the orthonormalization process (3.11) breaks down in step L, the Arnoldi-type de-
composition reduces to

ACL = VLHL (3.25)

and the least squares problem (3.6) is equivalent to

‖βu
(L)
1 −HLy

MR
L ‖2 = min

y∈Cm
‖βu

(L)
1 −HLy‖2, (3.26)

where yMR
L is the coordinate vector of the MR correction cMR

L = VLy
MR
L . We distinguish

two cases:
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De�nition 3.4.1. In the termination step L of (3.11) a regular breakdown1 occurs if
the linear system

HLy = βu
(L)
1

has a unique solution. Otherwise, the termination is called a singular breakdown2.

The situation in case of a regular breakdown is the same as if A is nonsingular:

Proposition 3.4.2. If the Gram-Schmidt procedure (3.11) breaks down regularly in
some step L, then the linear system (3.1) is necessarily consistent and the (uniquely
determined) MR correction

cMR
L = ACLr0 = βCLH−1

L u
(L)
1 (3.27)

leads to a solution xMR
L = x0 + cMR

L of (3.1), i. e., AxMR
L = b.

Proof. Obviously, if HL is regular, the solution of the least squares problem (3.26) is
yMR

L = βH−1
L u

(L)
1 . The correction cMR

L = CLy
MR
L satis�es r0 − AcMR

L = rMR
L = 0 , i. e.

AxMR
L = Ax0 + AcMR

L = Ax0 + r0 = b.

The coordinate vector yMR
L can also be expressed in terms of the implicitly computed

QR factorization of HL. Recall that

QL−1HL = QL−1

[
H̃L−1 hL

]
=

[
RL−1 t
0> τ

]
= RL (3.28)

where τ 6= 0. Since ηL+1,L = 0 we obtain cL = 1 and sL = 0 (cf. (3.21)). Thus we have
H−1

L = R−1
L QL−1 and

yMR
L = βR−1

L QL−1u
(L)
1 .

Note further, that our proof above shows r0 = AcMR
L ∈ WL (see also Lemma 3.1.1).

This characterizes the regular breakdown:

Proposition 3.4.3. The following statements are equivalent:

(i) (3.11) breaks down regularly in step m,

(ii) r0 ∈ Wm = span{Ac1, . . . ,Acm},

(iii) xMR
m is a solution of (3.1),

(iv) Wm = Vm,

1In the context of Krylov subspace methods (cf. Section 4) Brown and Walker use in [7] the terms
breakdown through degeneracy of the Krylov space and

2breakdown through rank de�ciency of the least-squares problem.
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Proof. We have already seen in Proposition 3.4.2, that (i) implies (ii) and (iii). In
fact, by Lemma 3.1.1, (ii) and (iii) are equivalent.
Suppose we have a regular breakdown in step m = L, that is ACL = VLHL where

HL is nonsingular. Then

WL = span{ACL} = span{VL} = VL,

which proves (i)⇒(iv).
By the de�nition Vm = span{r0}+Wm−1 we have, that Vm = Wm implies r0 ∈ Wm,

that is (iv)⇒(ii).
Now, suppose r0 ∈ Wm. Since Wm = ACm there exists an f ∈ Cm such that

r0 = ACmf . Using the Arnoldi-type decomposition (3.14) we get

r0 = ACmf = Vm+1H̃m+1f .

On the other hand we know that r0 = βVm+1u
(m+1)
1 . Thus we have

H̃m+1f = βu
(m+1)
1 . (3.29)

Due to the upper Hessenberg structure of H̃m+1 this is only possible if H̃m+1 is not
unreduced, that is ηm+1,m = 0 and m = L. Then (3.29) reduces to

HLf =
[
H̃L−1 hL

]
f = βuL

1 .

The existence of a vector f satisfying the above equation implies that uL
1 lies in the

column span of HL. Since H̃L−1 is an unreduced upper Hessenberg matrix, the �rst
L−1 columns of HL are linearly independent. Assuming that HL is singular is therefore
equivalent to stating hL ∈ span{H̃L−1}. But this would imply that uL

1 lies already in
the column span of H̃L−1, which is impossible since the columns of the triangular matrix[
uL

1 H̃L−1

]
forms a linear independent set of vectors in CL. Thus we conclude that

HL is regular and have now demonstrated (ii)⇒(i).
Taking all together we have (i)⇒(iv)⇒(ii)⇒(i) and (ii)⇔(iii).

We now turn to the singular breakdown.

Proposition 3.4.4. The following statements are equivalent:

(i) (3.11) breaks down singularly in step m;

(ii) the constrained least squares problem

‖r0 − AcMR‖ = min
c∈Cm

‖r − Ac‖ = min
y∈Cm

‖βu
(m+1)
1 − H̃my‖2 (3.30)

has no unique solution,
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(iii) rank(H̃m) < m,

(iv) H̃H
mH̃m is singular,3

(v) Rm is singular,

(vi) Cm ∩N(A) 6= {0},

(vii) Acm ∈ Wm−1,

(viii) Wm = Wm−1,

(ix) dim Wm < dim Cm = m,

Proof. We have already discussed, that the least squares problem in (ii) has a unique
solution if and only if H̃m has full rank m, that is (iii). It is easy to see, that (iii) is
also equivalent to (iv) and (v) (cf. (3.22)).
(iii)⇔(i): As previously noted, rank(H̃m) < m is only possible if ηm+1,m = 0 and

m = L. Therefore the Arnoldi-type decomposition reduces to (3.25) and rank(HL) =
rank(H̃L) shows, that HL is singular if and only if rank(H̃L) < L.
(i)⇒(vii): Let HL be singular. Since HL =

[
H̃L−1hL

]
and H̃L−1 has full rank L− 1

the last column of HL must be a linear combination of the columns of H̃L−1, i. e., there
exists a vector g ∈ CL−1 such that hL = H̃L−1g . The last column of (3.25) can be
rewritten as

AcL = VLhL = VLH̃L−1g = ACL−1g ∈ ACL−1 = WL−1.

(vii)⇒(vi): We have Acm ∈ span{Ac1, . . . ,Acm−1}. Thus, there exists γ1, . . . , γm−1

such that Acm = γ1Ac1 + · · ·+ γm−1Acm−1. Hence c̃ := γ1c1 + · · ·+ γm−1cm−1− cm ∈
Cm ∩N(A) and c̃ 6= 0 since by de�nition cm 6∈ Cm−1.
(vi)⇒(i): Suppose 0 6= z ∈ Cm ∩N(A), that is z = Cmf with a nonzero coordinate

vector f ∈ Cm. Using (3.14) we get

0 = Az = ACmf = Vm+1H̃mf .

So, either H̃mf = 0 , which implies (iii) and further (i), or the rows of Vm+1 are
linearly dependent, which by construction implies vm+1 = 0 and hm+1,m = 0. But then
m = L and the equation above reduces to 0 = VLHLf . Since the basis VL is linearly
independent, we conclude HLf = 0 , i. e., HL is singular.
Now, we �nish the proof by noting that (vii) is equivalent to each of the subse-

quent conditions: For (viii) this can be seen directly from the expanded formulation
span{Ac1, . . .Acm−1,Acm} = span{Ac1, . . .Acm−1}. Note further, that we have by
de�nition dim Cm = m. Together with the nested structure of the correction spaces
(cf. (3.2)) and Wm = ACm this yields the remaining equivalence.

3In context of Krylov subspace methods this condition is derived by Smoch in [64], who examines
the determinant of H̃H

mH̃m.
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Note that the equivalence of (ii) and (vi) could be also derived directly from Propo-
sition 3.2.3.
Note further, that the vector g above can be characterized as the unique solution

of H̃L−1y = hL. Any nontrivial vector in N(HL) can be expressed in terms of this
solution by

g̃ =

[
g
−1

]
=

[
H̃†

L−1hL

−1

]
. (3.31)

From the Hessenberg structure, there follows rank(HL) < L and rank
([

u
(L)
1 HL

])
=

L which shows that u
(L)
1 6∈ R(HL) and rank(HL) = L − 1. Thus, the nullspace of HL

(just as N(A) ∩ CL) is one-dimensional. We get N(HL) = span{g̃} and N(A) ∩ CL =
span{CLg̃}. Applying the previous Givens rotations to HL results in (cf. (3.17))

QL−1HL = QL−1

[
H̃L−1 hL

]
=

[
RL−1 t
0> τ

]
=

[
RL−1 t
0> 0

]
, (3.32)

where τ has to be zero since HL is singular. For this reason, cL and sL in (3.21) could
be chosen arbitrarily. This transforms the least squares problem (3.26) into

min
yL∈CL

‖βu
(L)
1 −HLyL‖2 = min

yL−1∈CL−1

γ∈C

∥∥∥∥β QL−1u
(L)
1 −

[
RL−1 t
0> 0

] [
yL−1

γ

]∥∥∥∥
2

=

min
yL−1∈CL−1

γ∈C

∥∥∥∥[βqL−1 −RL−1yL−1 − γt

β q
(L−1)
L,1

]∥∥∥∥
2

,

where
[
q>L−1 q

(L−1)
L,1

]>
= QL−1u

(L)
1 denotes the �rst column of QL−1. Since the upper

block can be forced to be zero by setting yL−1 := R−1
L−1(βqL−1 − γt) the minimum is

independent from γ. Note further, that R−1
L−1t = H̃†

L−1hL = g (cf. (3.23)) is the unique
solution of H̃L−1y = hL and βR−1

L−1qL−1 = yMR
L−1 is the coordinate vector of the previous

MR correction. In other words: All solutions of the above least-squares problem are in{[
yMR

L−1 − γg
γ

]
: γ ∈ C

}
=

{[
yMR

L−1

0

]
− γg̃ : γ ∈ C

}
(3.33)

and the associated least-squares error is given by ‖rMR
L ‖ = β|q(L−1)

L,1 | = ‖rMR
L−1‖.

We summarize the consequences of these observations.

Proposition 3.4.5. If the process (3.11) breaks down singularly in the Lth step, there
holds:
The linear system HLy = βu

(L)
1 is inconsistent and

cMR
L−1 = CL−1y

MR
L−1 ∈ ACLr0 + N(A) ∩ CL, (3.34)
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i. e., the (uniquely determined) (L − 1)th MR correction is a possible MR correction
in the terminating step. Thus, the MR approximation process makes no progress, i. e.
‖rMR

L ‖ = ‖rMR
L−1‖. All MR corrections are in the set{

cMR
L−1 − γ (CL−1g − cL) : γ ∈ C

}
(3.35)

and the correction with minimal norm (i. e., the subspace inverse correction) can be
computed as

ACLr0 = cMR
L−1 −

(z , cMR
L−1)

(z , z )
z with z = CL−1g − cL

and g = H̃†
L−1hL = R−1

L−1t

(3.36)

where RL−1 and t are de�ned as in (3.32).

Proof. Premultiplying (3.33) with CL together with N(A)∩CL = span{CLg̃} result in
equations (3.34) and (3.35). The remaining assertion follows using Lemma 3.2.4 with
z = CLg̃ = CL−1g − cL ∈ N(A) ∩ CL.

The equivalences in Proposition 3.4.4 are often formulated in its negated form, for
example: The constrained least squares problem (3.30) has a unique solution (or, equiv-
alently,

Cm ∩N(A) = {0}, or

rank(H̃m) = m, or

dim Wm = m, or

H̃>
mH̃m is regular, or Rm is regular) if and only if no singular breakdown occur in step

m. If A is nonsingular this conditions are always satis�ed, as we had already stated
regarding (3.5). Thus

Corollary 3.4.6. If A is nonsingular, no singular breakdown occurs.

In other words, a singular breakdown is only possible (but not necessary) for a
singular operator A. In practical computations with presence of round-o� errors it is
often a concern to detect near singularity. Brown and Walker suggest in [7] to monitor
the condition number of Rm. A similar approach is, to observe the last diagonal entry
of Rm, speci�cally, if ρ in (3.20) becomes close to zero (see also [64]).
The two following propositions provide several equivalent de�nitions for the break-

down index L. Each is a direct consequence of one of the breakdown characterizations
in Propositions 3.4.3 and 3.4.4.
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Proposition 3.4.7. If (3.11) breaks down regularly, then the breakdown index L can
be characterized as

L = min{m : Acm ∈ Vm}
= min{m : r0 ∈ Wm}
= min{m : Wm = Vm}
= min{m : AxMR

m = b}.

Proposition 3.4.8. If (3.11) breaks down singularly, then the breakdown index L can
be characterized as

L = min{m : Acm ∈ Vm}
= min{m : Acm ∈ Wm−1}
= min{m : Wm = Wm−1}
= min{m : dim Cm > dim Wm}
= min{m : dim Wm < m}
= min{m : Cm ∩N(A) 6= {0} }
= min{m : rank(H̃m) < m}
= min{m : det (H̃H

mH̃m) = 0}
= min{m : rm,m = 0},

where rm,m = ρ is the last diagonal entry of Rm (cf. (3.20)).

Remark 3.4.9. In a certain sense, singular breakdowns can be avoided � at least if we
consider the sequence of correction spaces (3.2) as properly chosen or explicitly given
a priori (in contrast to, e. g., the implicitly constructed Krylov spaces � cf. Section 4).
Suppose we have

C1 ⊂ · · · ⊂ CL−1 ⊂ CL ⊂ CL+1 ⊂ · · ·
W1 ⊂ · · · ⊂ WL−1 = WL ⊂ WL+1 = ACL+1 ⊂ · · · .

In the Lth step, the correction space is enlarged into an unwanted direction, namely
in a direction contained in the nullspace of A. But there are useful directions in the
subsequent correction spaces (or at least we hope so). So we want to throw away
the misleading direction cL ∈ CL \ CL−1 and continue the Gram-Schmidt process with
cL+1 ∈ CL+1 \ CL. The only interesting information, which should be saved, is the
direction of N(A) ∩ CL. This can be done by computing and storing z as described in
(3.36).
Throwing away cL actually means to substitute it by an arbitrary vector cL+1

from CL+1 \ CL. Since all relevant information on cL is stored in z we can cancel



3 Abstract MR and OR Approximations 23

it from all subsequent correction spaces, i. e., we replace Cm with m > L + 1 by
C′m′ = span{c1, . . . , cL−1, cL+1, . . . , cm} where m′ = m− 1. In other words, we choose
another sequence of correction spaces.
This strategy to avoid a singular breakdown can be applied more than once and by

orthonormalizing the vectors z we obtain a basis Z` =
[
z1 . . . z`

]
of the intersection of

N(A) and the original correction spaces. Using this basis, it is also possible to compute
the subspace inverse solutions with respect to the original correction spaces, i. e., to
minimize the norm of the correction by adding a suitable vector from span{z1, . . . , z`}
(cf. Remark 3.2.5). Example 3.4.10 illustrates this technique.
Of course, if H is �nite dimensional, the spaces Cm form a strictly ascending sequence

only up to a �nite index and will stagnate henceforth. It may happen that also the
termination at this index is a singular breakdown. Indeed, Proposition 3.4.2 implies
that if the linear system (3.1) is inconsistent, any termination is a singular breakdown.
Thus, the look-ahead strategy does not work in any situation.
Example 3.4.10. The sequence of correction spaces is de�ned by the nested bases

c1 =


1
0
0
...

 , c2 =


1
1
0
...

 , c3 =


1
1
1
...

 , . . . .

We restrict ourselves to three dimensions. Consider

A =

1 0 0
1 0 −1
0 0 0

 , b =

1
0
0

 and x0 =

0
0
0

 .

Thus we get v1 = r0 = b and orthonormalizing Ac1 =
[
1 1 0

]>
against v1 yields in

v2 =
[
0 1 0

]
. In the second step the Gram-Schmidt procedure breaks down singularly

with the Arnoldi-type decomposition

A

1 1
0 1
0 0

 =

1 0
0 1
0 0

[1 1
1 1

]
, which results in g =

[
1
]
and z =

0
1
0

.
At this point we cancel c2 and the last column of the Hessenberg matrix and continue
with orthonormalizing Ac3 against v1 and v2. This leads to the decomposition

A

1 1
0 1
0 1

 =

1 0
0 1
0 0

[1 1
1 0

]
,

i. e., we have a regular breakdown in this step. The corresponding correction

cMR =

1 1
0 1
0 1

[1 1
1 0

]† [
1
0

]
=

1 1
0 1
0 1

[0
1

]
=

1
1
1
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solves the system Ax = b. Since span{c1, c2, c3} = H, the solution in the correction
space, which has minimal norm, coincides with the pseudoinverse solution and can be
computed by solving the minimization problem

min
ζ∈C

∥∥cMR + ζz
∥∥ ,

which is given by

ζ = −(z , cMR)

(z , z )
= −1 and cMR + ζz =

1
0
1

 .

Regarding Remark 3.4.9 and the subsequent example we should give a reformulation
of the algorithm stated in (3.11). We assume a given correction space C̃, which covers
all possible correction spaces and may contain also directions in N(A). Algorithm 3.4.11
constructs a decomposition C̃m+` = Cm ⊕ Z` ⊆ C̃ with Cm ∩ N(A) = {0} and Z` ⊆
C̃ ∩N(A) and computes the corresponding subspace inverse solution

xMR
min = (I − PZ`

)(x0 + ACmr0) = (I − PZ`
)(ACmb + (I − ACmA)x0).

Moreover there holds dim Cm = m and dim Z` = `. All relevant quantities are de�ned
directly in the algorithm or by referencing to previous stated equations.
If we refer to Cm, Z` and derived quantities in the next section we assume, that

they are constructed by Algorithm 3.4.11. The breakdown index L denotes the next
breakdown, i. e., L ≥ m. Moreover there holds Cm ∩ N(A) = {0} for m < L and the
results of this section apply for m = L. After a singular breakdown we may proceed
with a look-ahead as long as there are unused directions in the global correction space.
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Algorithm 3.4.11. General MR method for a possibly singular operator and
an arbitrary correction space

1 Given: A, b,x0, C̃
2 m := 0, ` := 0, r0 := b − Ax0, β := ‖r0‖, v1 := r0/β, V1 :=

[
v1

]
3 Assume empty matrices Z0, C0, Q0 and H̃0

4 while dim C̃ > m + `
5 Cm = span{Cm}, Z` = span{Z`}, Vm+1 = span{Vm+1}
6 Choose c̃ ∈ C̃ \ Cm ⊕ Z`

7 h̃ :=
[
(Ac̃, vj)

]m+1

j=1

8 ṽ := (I − PVm+1)Ac̃, η̃ := ‖ṽ‖

9

[
t
τ

]
:= Qmh̃ (τ := (Ac̃, v1) for m = 0)

10 if η̃ 6= 0
11 m := m + 1
12 Update the Arnoldi-type decomposition:

13 Cm :=
[
Cm−1 c̃

]
, Vm+1 :=

[
Vm ṽ

]
, H̃m :=

[
H̃m−1 h̃
0> η̃

]
14 Compute Qm and Rm according to (3.20), (3.18) and (3.21).
15 Compute cMR

m using (3.16) and (3.23).
16 else

17 if τ = 0 (singular breakdown, try look-ahead)
18 g := Rm

−1t
19 z := Cmg − c̃ (z := c̃ for m = 0)
20 z̃ = (I − PZ`

)z/‖(I − PZ`
)z‖

21 Z`+1 :=
[
Z` z̃

]
22 ` := ` + 1
23 else (regular breakdown)
24 m := m + 1

25 Cm :=
[
Cm−1 c̃

]
, Hm :=

[
H̃m−1 h̃

]
, Rm :=

[
Rm−1 t
0> τ

]
26 cMR

m := βCmRm
−1Qm−1u

(m)
1

27 break

28 end

29 end

30 Compute the subspace inverse solution with respect to Cm ⊕ Z` by:
31 xMR

min := (I − PZ`
)(x0 + cMR

m ) where PZ`
= Z`Z

∗
`

32 end
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3.5 OR Corrections and the Connections with Angles

We recall the de�nitions and some facts about angles between two vectors, between
a vector and a subspace and canonical angles between subspaces. Proofs of the Lem-
mata 3.5.2 and 3.5.3 and Proposition 3.5.4 can be found in [71] and [22].

De�nition 3.5.1. Given two nonzero vectors x ,y ∈ H the angle ∠(x ,y) ∈ [0, π/2] is
de�ned by the relation

cos ∠(x ,y) :=
|(x ,y)|
‖x‖‖y‖

.

We de�ne the angle between a nonzero vector x ∈ H and a nontrivial subspace U ⊂ H

as
∠(x , U) := inf

0 6=u∈U
∠(x ,u), i. e., cos ∠(x , U) = sup

0 6=u∈U
cos ∠(x ,u).

Given two �nite dimensional subspaces V and W of H with m := min(dim V, dim W),
the canonical (or principal) angles {θj}m

j=1 between V and W are recursively de�ned by

cos θj := max
0 6=v∈V

max
0 6=w∈W

|(v ,w)|
‖v‖‖w‖

=:
|(vj,wj)|
‖vj‖‖wj‖

,

where v ⊥ v1, . . . vj−1 and w ⊥ w1, . . .wj−1. The angle between the spaces V and W

is de�ned as the largest canonical angle

∠(V, W) := θm

(cf. [30, Section 12.4.3] and [22, p. 259]).

Lemma 3.5.2. Let U be a �nite dimensional subspace of H and denote by PU the
orthogonal projector onto U. For each x ∈ H there holds

∠(x , U) = ∠(x ,PUx ) (3.37)

and, with sin ∠(x , U) :=
√

1− cos2 ∠(x , U),

‖PUx‖ = ‖x‖ cos ∠(x , U), (3.38)

‖(I − PU)x‖ = ‖x‖ sin ∠(x , U). (3.39)

Following [22], we de�ne the mth OR approximation by the Galerkin condition

hOR
m ∈ Wm, rOR

m := r0 − hOR
m ⊥ Vm, (3.40)

i. e., we require that the mth approximation error rOR
m ∈ Vm+1 is orthogonal to the

previous error space Vm (cf. (3.10)).
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We summarize existence and uniqueness of such an approximation:

Lemma 3.5.3. Let V, W be subspaces of the Hilbert space H and r ∈ H. There exists
h ∈ W such that r − h ⊥ V if and only if r ∈ W + V⊥. Such an h is uniquely
determined if and only if W ∩ V⊥ = {0}.
The following statements are equivalent:

(i) The oblique projection PV
W exists.

(ii) H = W⊕ V⊥.

(iii) dim V = dim W and ∠(V, W) < π/2.

(iv) A unique OR approximation exists and can be written as hOR = PV
Wr .

The situation, when the OR approximation fails to exist, is referred to as a Galerkin
breakdown in the literature on Krylov subspace methods.
As mentioned in Section 3.1, the abstract MR and OR approximation problems do

not depend on the operator equation (3.1). Therefore we can restate here many results
from [22, Sections 2 and 3] regardless of whether A is regular or not. Merely the
occurrence of a singular breakdown has to be considered with greater care.
At �rst we cite some results which are independent of the nested structure of the

approximation and residual spaces. Using the notation of Section 3.2 and Lemma 3.5.3
we get

Proposition 3.5.4. The error of the MR approximation can be expressed as

‖rMR‖ = ‖r − hMR‖ = ‖(I −W)r‖ = ‖r‖ sin ∠(r , W). (3.41)

If H = W⊕ V⊥, then there holds

PV
W = (PVPW)†, ‖I − PV

W‖ =
1

cos ∠(V, W)
and

‖rOR‖ = ‖r − hOR‖ = ‖(I − PV
W)r‖ ≤ ‖r‖

cos ∠(V, W)
.

Applying the notation and results of Section 3.3 (especially the Arnoldi-type decom-
position) yields in a representation of the OR correction cOR

m , with hOR
m = AcOR

m , in
the coordinate space:

Proposition 3.5.5. Let Hm ∈ Cm×m denote the square Hessenberg matrix obtained by
deleting the last row of H̃m as in (3.14). There exists a uniquely determined mth OR
approximation if and only if Hm is nonsingular. The correction cOR

m which corresponds
to the approximation hOR

m = AcOR
m satis�es

cOR
m = CmyOR

m with yOR
m = βH−1

m u
(m)
1 .
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The following corollary could be also derived noting that WL = VL, i. e., P
VL

WL
= PWL

,
respectively WL = WL−1 ⊂ VL (cf. Propositions 3.4.3 and 3.4.4).

Corollary 3.5.6. If a regular breakdown occurs, the OR approximation and its related
correction are uniquely determined and coincide with the corresponding MR quantities.
If a singular breakdown occurs the OR approximation does not exists. In any case there
holds ∠(VL, WL) = 0.

The close connection between MR and OR quantities is not restricted to the termi-
nation step as we will see in the remainder of this section.
For m ≤ L we de�ne w1, . . . ,wm such that {w1, . . . ,wm} is an orthonormal basis of

Wm and span{w1, . . . ,wm−1} = Wm−1. For notational convenience we set wL := 0 if
dim WL = L − 1 (i. e., if a singular breakdown occurs). In terms of these vectors, the
MR approximation can be expressed as a truncated Fourier expansion

hMR
m = PWmr0 =

m∑
j=1

(r0,wj)wj.

The norm of the approximation error, i e., the residual rMR
m = r0 − hMR

m is given by

‖rMR
m ‖2 = ‖(I − PWm)r0‖2 = ‖r0‖2 −

m∑
j=1

|(r0,wj)|2.

The mth MR approximation can also be computed by updating the previous approx-
imation:

hMR
m =

m∑
j=1

(r0,wj)wj

= hMR
m−1 + (r0,wm)wm = hMR

m−1 + PWmr0 − PWm−1r0

= hMR
m−1 + PWm(r0 − hMR

m−1) = hMR
m−1 + PWmrMR

m−1.

For the residuals it follows that

rMR
m = rMR

m−1 − PWmrMR
m−1 = (I − PWm)rMR

m−1 (3.42)

and, using (3.39),

‖rMR
m ‖ = ‖(I − PWm)rMR

m−1‖ = sin ∠(rMR
m−1, Wm)‖rMR

m−1‖. (3.43)

The angle which occurs in (3.43) is strongly connected with the QR decomposi-
tion (3.22), as the next proposition shows.
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Proposition 3.5.7. Suppose that no singular breakdown occurs in step m (m ≤ L)

and denote by Qm = [q
(m)
j,k ]m+1

j,k=1 the uniquely determined unitary matrix in the QR

decomposition (3.22) of the Hessenberg matrix H̃m =
[
ηj,k

]m+1,m

j,k=1
. Then there holds

sin ∠(r0, Wm) = |q(m)
m+1,1| (3.44)

sin ∠(rMR
m−1, Wm) =

|q(m)
m+1,1|

|q(m−1)
m,1 |

=
ηm+1,m√

|τ |2 + η2
m+1,m

, (3.45)

where τ is de�ned by

[
t
τ

]
= Qm−1hm and hm = [ηj,m]mj=1 is the last column of Hm.

Proof. With respect to the orthonormal basis {v1, . . . , vm+1} of Vm+1 the vector r0 =

βv1 possesses the coordinates βu
(m+1)
1 and Wm = ACm is represented by R(H̃m). This

implies
∠(r0, Wm) = ∠(v1, Wm) = ∠2(u

(m+1)
1 , R(H̃m)),

where the last angle is de�ned with respect to the Euclidean inner product on Cm+1,
which is indicated by the subscript 2.
Obviously, the columns of Vm+1Q

H
m form another orthonormal basis of Vm+1 (cf.

(3.24)). The coordinate vector of v1 with respect to this basis is Qmu
(m+1)
1 , the �rst

column of Qm, and Wm is represented by all vectors in Cm+1 with zero last component,
a subspace which we identify with Cm. The orthogonal projection of Cm+1 onto Cm is

given by
[
Im 0
0> 0

]
and since Qmu

(m+1)
1 has unit length we get from (3.39)

sin ∠(r0, Wm) = sin ∠2(Qmu
(m+1)
1 , Cm) = · · ·

· · · =

∥∥∥∥(Im+1 −
[
Im 0
0> 0

])
Qmu

(m+1)
1

∥∥∥∥
2∥∥∥Qmu

(m+1)
1

∥∥∥
2

= |q(m)
m+1,1|,

which proves (3.44).
Equations (3.43) and (3.41) can be combined to

sin ∠(rMR
m−1, Wm) =

‖rMR
m ‖

‖rMR
m−1‖

=
‖(I − PWm)r0‖
‖(I − PWm−1)r0‖

=
sin ∠(r0, Wm)

sin ∠(r0, Wm−1)
, (3.46)

where we assume that r0 6∈ Wm−1, i. e. no regular breakdown occurs before step m. If
a regular breakdown occurs in step m = L then ∠(r0, Wm) = 0, since r0 ∈ Wm and
rMR

L = 0 , i. e., the quantities in (3.44) and (3.45) become zero.
From (3.18) and (3.20) we conclude q

(m)
m+1,1 = −smeiφmq

(m−1)
m,1 , where sm and φm are

as de�ned in (3.21). Together this yields (3.45).
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Since rMR
m ⊥ PWmrMR

m−1 ∈ Wm we can invoke Pythagoras' theorem in (3.42):

‖rMR
m ‖2 = ‖rMR

m−1‖2 − ‖PWmrMR
m−1‖2 = ‖rMR

m−1‖2 − |(r0,wm)|2. (3.47)

This shows that the MR approximation is not improved whenever the direction, in
which Wm−1 is enlarged, is orthogonal to r0, or if Wm−1 is not enlarged at all because
of a singular breakdown in the mth step (remember the convention wm = 0 in this
case). Using (3.47) the cosines corresponding to (3.46) can be expressed as

cm =
√

1− s2
m =

√
1− ‖rMR

m ‖2

‖rMR
m−1‖

=
|(wm, r0)|
‖rMR

m−1‖
, (3.48)

which shows, that the MR approximation improves in the mth step if and only if
cm 6= 0.
Next, we further investigate the question of when the OR approximation is well-

de�ned, i. e., if cos ∠(Vm, Wm) 6= 0 and dim Wm = m. Noting that the set
{w1, . . . ,wm−1, ŵm} with ŵm := rMR

m−1/‖rMR
m−1‖ is an orthonormal basis of Vm we see,

that the cosines of the canonical angles between Vm and Wm are the singular values of
the matrix (cf. [30])4

|(w1,w1)| . . . |(wm−1,w1)| |(wm,w1)|
...

...
...

|(w1,wm−1)| . . . |(wm−1,wm−1)| |(wm,wm−1)|
|(w1, ŵm)| . . . |(wm−1, ŵm)| |(wm, ŵm)|

 =

[
I 0
0> |(wm, ŵm)|

]
.

The smallest singular value is

|(wm, ŵm)| =
|(wm, rMR

m−1)|
‖rMR

m−1‖
=
|(wm, r0 − PWm−1r0)|

‖rMR
m−1‖

=
|(wm, r0)|
‖rMR

m−1‖
= cm.

We summarize this considerations

Proposition 3.5.8. If no singular breakdown occurs in the mth step, we have

∠(Vm, Wm) = ∠(rMR
m−1, Wm).

In the exceptional case of a singular breakdown the angle between VL and WL hap-
pens to be zero whereas rMR

L−1 is orthogonal to WL = WL−1. As remarked earlier
regarding (3.32) we can arbitrarily de�ne the last Givens rotation GL in this case.
Taking the identity relates GL to the ∠(VL, WL) whereas

GL =

IL−1 0 0
0> 0 1
0> −1 0


4 Note, that we use a slightly di�erent de�nition for the canonical angles then in [30], since we take
the absolute value of the inner products.
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is the Givens rotation belonging to ∠(rMR
L−1, WL). But, in view of Corollary 3.5.6 and

Proposition 3.4.5, the following consequence of Proposition 3.5.8 holds also true for a
singular breakdown in step m = L.

Corollary 3.5.9. The OR approximation of r0 with respect to Vm and Wm exists and
is uniquely determined if and only if the corresponding MR approximation improves,
i. e., if and only if (wm, r0) 6= 0.

Remark 3.5.10. We can apply this corollary to the special case that the MR approx-
imation detects a least squares solution of (3.1), which is, in view of Lemma 3.2.6,
equivalent to PR(A)r0 ∈ Wm:
If (3.1) is consistent, i. e., PR(A)r0 = r0, we conclude from (ii), Proposition 3.4.3,

that a regular breakdown occurs in step m.
Suppose now, that r0 6∈ R(A), i. e., the linear equation (3.1) is inconsistent, and

PR(A)r0 ∈ Wm. Then a singular breakdown occurs in step m ≤ L. Since the MR
approximation becomes the global best approximation over H, it can not improve
in the subsequent steps m + 1, m + 2, . . . and the corresponding OR approximations
fail to exist. This holds true, even if we proceed the approximation process after the
singular breakdown using the look-ahead strategy described in Remark 3.4.9. Moreover,
equation (viii) in Proposition 3.4.4 guarantees PR(A)r0 ∈ WL−1, i. e., there is at least
one iteration with stagnation before the singular breakdown.

The question of when an MR method determines a least squares solution can be
further investigated. The next proposition generalizes a result which was stated by
Brown and Walker in [7] for Krylov spaces, and can be analogously proved for general
correction spaces.

Proposition 3.5.11. A MR method determines a least squares solution without sin-
gular breakdown in the mth step if and only if

dimA∗Vm+1 = dim Wm = m.

Proof. By (ix) of Proposition 3.4.4 we have dim Wm = m if and only if no singular
breakdown occurs in step m. A MR method determines a least square solution if and
only if there exists a correction c ∈ Cm such that x0 + c solves the normal equation
(see, e. g., [14, Theorem 2.1.2])

0 = A∗(b − A(x0 + c)) = A∗r0 − A∗Ac.

This holds true if and only if A∗r0 ∈ A∗Wm or, equivalently, if and only if A∗Vm+1 =
A∗r0 + A∗Wm = A∗Wm.
Finally, we show that dim Wm = dimA∗Wm: Clearly we have dimA∗Wm ≤ dim Wm.

Suppose dimA∗Wm < dim Wm, i. e., there exists c ∈ Cm such that 0 6= Ac ∈ Wm and
A∗Ac = 0 . Then 0 = (c,A∗Ac) = (Ac,Ac) = ‖Ac‖2, which is a contradiction.
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We close this section with a theorem which summarizes the connections between MR
and OR approximations and solutions.
If (wm, r0) 6= 0 we can de�ne w̃m = rMR

m−1/(wm, r0), which implies (w̃m,wm) = 1 and
(w̃m,wj) = 0 (j = 1, . . . ,m− 1). Using this de�nition we can express the oblique OR
projection by the expansion

PVm

Wm
=

m−1∑
j=1

(·,wj)wj + (·, w̃m)wm.

For the di�erence of the OR and MR approximations we derive

hOR
m − hMR

m = (PVm

Wm
− PWm)r0 =

[
(r0, r

MR
m−1)

(wm, r0)
− (r0,wm)

]
wm

=
‖rMR

m−1‖2 − |(r0,wm)|2

(wm, r0)
wm =

‖rMR
m ‖2

(wm, r0)
wm,

(3.49)

which is the key to prove the following relations:

Theorem 3.5.12. With the notation of Algorithm 3.4.11, sm = sin ∠(rMR
m−1, Wm) and

cm = cos ∠(rMR
m−1, Wm) the MR approximations satisfy

‖rMR
m ‖ = sm‖rMR

m−1‖ = s1s2 · · · sm‖r0‖, (3.50)

If the mth OR approximation exists, it satis�es

‖rMR
m ‖ = cm‖rOR

m ‖, (3.51)

‖rOR
m ‖ = s1s2 · · · sm‖r0‖/cm, (3.52)

xMR
m = s2

mxMR
m−1 + c2

mxOR
m + z , with z ∈ Z` (3.53)

hMR
m = s2

mhMR
m−1 + c2

mhOR
m (3.54)

rMR
m = s2

mrMR
m−1 + c2

mrOR
m . (3.55)

Moreover, if no breakdown occurs in the mth step, there holds

1

‖rMR
m ‖2

xMR
m =

m∑′

j=0

1

‖rOR
j ‖2

xOR
j + z , with z ∈ Z` (3.56)

1

‖rMR
m ‖2

hMR
m =

m∑′

j=0

1

‖rOR
j ‖2

hOR
j (3.57)

1

‖rMR
m ‖2

rMR
m =

m∑′

j=0

1

‖rOR
j ‖2

rOR
j , (3.58)
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1

‖rMR
m ‖2

=
1

‖rMR
m−1‖2

+
1

‖rOR
m ‖2

=

m∑′

j=0

1

‖rOR
j ‖2

, (3.59)

where the sums
∑′

denote a summation over all j for which cj 6= 0 (i. e., for which

the OR approximation exists).

Proof. The identity (3.50) follows from an obvious induction applied to (3.46).
From rMR

m − rOR
m = hOR

m − hMR
m and (3.49) there follows

rMR
m = rOR

m +
‖rMR

m ‖2

(wm, r0)
wm.

Since rMR
m ⊥ wm, the Pythagorean identity yields

‖rMR
m ‖2 =

(
1 +

‖rMR
m ‖2

(wm, r0)

)
‖rOR

m ‖2 =
‖rMR

m−1‖2

(wm, r0)
‖rOR

m ‖2,

where we used (3.47) for the last equality. In view of (3.48), this proves (3.51) and
(3.52).
Using hMR

m − hMR
m−1, (3.48), (3.46) and again (3.49) we obtain

hOR
m = hMR

m +
‖rMR

m ‖2

(wm, r0)

1

(r0,wm)
(hMR

m − hMR
m−1)

= hMR
m +

‖rMR
m ‖2

‖rMR
m−1‖2

‖rMR
m−1‖2

|(r0,wm)|2
(hMR

m − hMR
m−1)

= hMR
m +

s2
m

c2
m

(hMR
m − hMR

m−1),

which implies by s2
m + c2

m = 1the relationships (3.54) and (3.55).
Since hMR

m = hMR
m−1 if the mth OR approximation does not exist, i. e., if cm = 0, the

repeated application of (3.54) leads to

hMR
m =

m∑
j=0
cj 6=0

τ 2
m,jh

OR
j , (3.60)

where

τm,0 :=
m∏

`=0
c` 6=0

s` and τm,j := cj

m∏
`=j+1
c` 6=0

s` (1 ≤ j ≤ m and cj 6= 0).
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Using (3.46) and (3.51) the second term can be rewritten as

τm,j :=
‖rMR

j ‖
‖rOR

j ‖

m∏
`=j+1
c` 6=0

‖rMR
` ‖

‖rMR
`−1‖

=
‖rMR

m ‖
‖rMR

j ‖
,

which obviously holds true also for j = 0. As long as no (regular) breakdown occur, we
have rMR

m 6= 0 and can divide (3.60) by ‖rMR
m ‖2 to get (3.57). Similarly we can derive

(3.58) from (3.55).
The �rst equality in (3.59) is a reformulation of the Pythagoras identity

1 = s2
m + c2

m =
‖rMR

m ‖2

‖rMR
m−1‖2

+
‖rMR

m ‖2

‖rOR
m ‖2

(cf. (3.46) and (3.51)), and the second follows by induction if we take into account that
hMR

m = hMR
m−1 if cm = 0.

Any identity for the approximations hm implies an analogous result for the correc-
tions cm or iterates xm: Rewriting the identity as a homogeneous equation in A|Cm⊕Z`

(cf. (3.4) and Algorithm 3.4.11) shows that the corrections satis�es the identity up to
a di�erence z ∈ Z`. Adding x0 supplies the results (3.53) and (3.56).



4 Krylov Subspace Methods

The most common correction spaces for solving (regular) linear systems are Krylov
spaces (or Krylov subspaces) which are de�ned by

Km(A, r0) := span{r0,Ar0, . . . ,A
m−1r0}. (4.1)

The choice Cm = Km(A, r0) results in the residual space

Vm+1 = span{r0}+ ACm = span{r0}+ AKm(A, r0) = Km+1(A, r0),

and the decomposition (3.14) becomes a proper Arnoldi decomposition

AVm = Vm+1H̃m = VmHm + ηm+1,mvm+1u
>
m.

There are several reasons for the popularity of Krylov spaces. First, they can be
simply generated by subsequently multiplying a vector with A in each step. Since
the correction space coincides with the preceding residual space, we can use the same
basis for both in computations, which reduces the computing and storage requirements.
Moreover, if A is regular, a MR or OR method determines the exact solution whenever
the Krylov space becomes A-invariant (cf. [60] or [22]). We will see below, that this is
no longer true for singular A, that is, there exists combinations of right hand side b and
initial guess x0 for which the system Ax = b is solvable, i. e., r0 = b − Ax0 ∈ R(A),
but no Krylov space contains a correction c with Ac = r0.

4.1 The Polynomial Structure of Krylov Spaces

Krylov spaces are closely related to polynomials, as can be seen from the representation

Km(A, r0) = {q(A)r0 : q ∈ Pm−1} (m = 1, 2, . . . ),

where Pm denotes the space of all complex polynomials of degree at most m. The
polynomial Pm space is isomorphic to the mth Krylov space if and only if there exists
no nonzero polynomial q ∈ Pm−1 with q(A)r0 = 0 . If such a polynomial exists for
some m then there also exists a (unique) monic polynomial mr0,A of minimal degree
with mr0,A(A)r0 = 0 which is called the minimal polynomial of r0 with respect to A.
Since (3.12) can be rewritten as

Amr0 ∈ span{r0,Ar0, . . . ,A
m−1r0}, (4.2)

35
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the degree of the minimal polynomial equals the breakdown index L (cf. (3.13)), which
implies, that L is �nite. Conversely, if L < ∞, we conclude from (4.2) and the min-
imality property of L (cf. Propositions 3.4.7 and 3.4.8) that there exists a minimal
polynomial mr0,A of degree L. It is easy to see that this index also equals the smallest
integer m such that Km(A, r0) = Km+1(A, r0), e. g.

L = min{m ∈ N0 : Km(A, r0) = Km+1(A, r0)}
= min{deg q : q monic and q(A)r0 = 0}.

(4.3)

Clearly we have Km(A, r0) = KL(A, r0) for all m ≥ L and dim Km(A, r0) = m if and
only if m ≤ L.
This shows that a singular breakdown cannot occur as long as the sequence of Krylov

subspaces does not terminate, i. e., Km(A, r0) ∩ N(A) = {0} as long as m < L. Thus
it is not necessary to employ a look-ahead strategy as described in Remark 3.4.9.
A �rst consequence of the polynomial connection is a representation of the residuals

in terms of special polynomials: Since every vector xm ∈ x0 + Km(A, r0) is of the form
xm = x0 + cm = x0 + qm−1(A)r0 with some qm−1 ∈ Pm−1, the corresponding residual
rm = b − Axm = r0 − Acm can be written as

rm = r0 + Aqm−1(A)r0 = pm(A)r0, where pm(ξ) := 1− ξqm−1(ξ) ∈ Pm. (4.4)

The residual polynomial pm satis�es the normalization condition pm(0) = 1.

Remark 4.1.1. . For nonsingular A characterizations of the residual polynomials which
belong to the MR and OR iterates as well as their zeros can be found in the literature
(cf. [23] and the references therein). The results about the OR polynomials follow by
the usual line of argument, which did not care about if A is singular or not.
The zeros of the MR polynomials can be characterized as the orthogonal section of

A−1 onto Km(A−1,Amr0) if A is nonsingular. To obtain analogous results for singular
A, we have to substitute the inverse by a suitable generalized inverse.
The operator of choice is the subspace inverse with respect to the mth Krylov sub-

space, as long as no singular breakdown occur. This limitation is not a critical one
since a singular breakdown means, that the MR approximation makes no progress in
step m = L (cf. Proposition 3.4.5) and thus the MR residual polynomial remains the
same as in the previous step.
Using Propositions 3.2.3 and 3.4.4 we get that ACmA is a projection onto Cm =

Km(A, r0) if no singular breakdown occur. Noting Akr0 ∈ R(ACmA) for 0 ≤ k ≤ m− 1
this implies

Km(ACm ,Amr0) = AKm(A, r0) and Km+1(A
Cm ,Amr0) = Km+1(A, r0)

As a second tool we need an inverse version of the relation AVm = Vm+1H̃m = V̂mRm

(cf. (3.24)). If no singular breakdown occur in step m, this can be rewritten as

ACmV̂m = VmRm
−1
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since Rm is nonsingular (cf. Proposition 3.4.4, (v)) and ACmA is a projection onto
Cm = Km(A, r0) = span{Vm}. This relations are the essentials to realize that the
argumentation and results of [23, Section 3.3] remain valid if we replace the inverse of
A by the subspace inverse ACm .
The disadvantage of ACm is its dependence on the mth Krylov subspace (and thus

it depends on r0). The dependence on m is not signi�cant since we could just as well
choose AC where C is the largest Krylov subspace with Km(A, r0)∩N(A) = {0} (that
is KL−1(A, r0) or KL(A, r0) depending whether a singular breakdown occurs or not).
However, the dependence on r0 persists.
In Remark 4.3.6 we will see how to remedy this de�ciency under certain conditions

by using a more handy generalized inverse. A careful analysis of our arguments above
shows, that as long as no singular breakdown occurs in step m, every generalized inverse
AX is suitable, for which AXA is a projection (i. e., (AXA)2 = AXA) and Km(A, r0) ⊆
R(AXA).

4.2 Minimal Polynomial and Drazin Inverse

The minimal polynomial of a vector r with respect to A is a generalization of the
minimal polynomial mA of a n × n matrix A. We recall some known facts to exploit
this connection. Let

mA(ξ) = ξk0

∏̀
i=1

(ξ − λi)
ki , (4.5)

where λi (i = 1, . . . , `) are the distinct nonzero eigenvalues of A. The number d := k0 is
called the index of A. Setting λ0 = 0, the numbers ki are the dimensions of the largest
Jordan block associated with the eigenvalue λi in the Jordan canonical form of A.
For later use we state three lemmata

Lemma 4.2.1. The minimal polynomial of a matrix A ∈ Cn×n is invariant under
similarity transformations.

Lemma 4.2.2. If N ∈ Cn×n is a nilpotent matrix of index d (i. e., N d = O and
there is no smaller index m < d such that N m = O), then its minimal polynomial is
mN (ξ) = ξd.

Lemma 4.2.3. If A ∈ Cn×n and B ∈ Cm×m have disjoint spectra, the minimal poly-

nomial of

[
A O
O B

]
is the product mA(ξ)mB(ξ).

The Drazin inverse AD of a n × n matrix A can be characterized as the unique
solution of the following three equations (cf. Section 2):

ADAAD = AD,

ADA = AAD and

Ad+1AD = AdAD,

(4.6)
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where d = index(A) is the index of A (cf. [14, p. 122]). Given A in the canonical form

A = T

[
C O
O N

]
T−1, (4.7)

where T ∈ Cn×n and C ∈ Cr×r, r = rank(Ad), are nonsingular and N ∈ C(n−r)×(n−r)

is nilpotent of index d, the Drazin inverse of A can be written as

AD = T

[
C−1 O
O O

]
T−1 (4.8)

(cf. [14, Theorem 7.2.1.]). This implies AD = O if and only if A is nilpotent.
The Drazin inverse of A can represented as a polynomial in A. More precisely, there

holds

Proposition 4.2.4. Let A ∈ Cn×n with minimal polynomial as in (4.5). Let p denote
the (uniquely determined) Hermite interpolation polynomial of degree M = d+

∑`
i=1 ki−

1 = deg(mA)− 1 with

p(0) = p′(0) = · · · = p(d−1)(0) = 0

p(j)(λi) =
(−1)jj!

λj+1
i

(j = 0, 1, . . . , ki − 1 and i = 1, 2, . . . , `).
(4.9)

Then p is the unique polynomial of smallest degree, which satis�es

p(A) = AD. (4.10)

Proof. The transformation of A to Jordan canonical form is given by

A = T

[
J O
O N

]
T−1 (4.11)

where the diagonal blocks J and N are block diagonal, namely J = diag(J1, . . . , Jh) and
N = diag(N1, . . . ,Ng). Each Jk is a Jordan block associated with a non-zero eigenvalue
λi. The matrices Nj are the Jordan blocks associated with the zero eigenvalue which
implies Nj ∈ Cm×m with m ≤ d = k0. Moreover there is at least one d × d Jordan
block in N . Thus, N is nilpotent of index d, which shows, that the Jordan canonical
form is a special form of (4.7). Lemma 4.2.2 implies that mN (ξ) = ξd is the minimal
polynomial of N .

Let p be an arbitrary polynomial. Then there holds p(A) = T

[
p(J ) 0
0 p(N )

]
T−1,

and, observing (4.8) and the identities

J−1 = diag
(
J1
−1, . . . , Jh

−1
)
,

p(J ) = diag (p(J1), . . . , p(Jh)) ,
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we conclude, that equation (4.10) is equivalent to p(Jk) = Jk
−1 for k = 1, . . . , h and

p(N ) = O . Therefore p is divided by ξd, which can be rewritten as p(0) = p′(0) =
· · · = p(d−1) = 0. Given

Jk =


λi 1 0 . . . 0
0 λi 1 0
...

. . . . . .
0 0 λi 1
0 0 . . . 0 λi

 ∈ Cm×m

an easy computation shows that

p(Jk) =


p(λi)

p′(λi)
1!

p′′(λi)
2!

. . . p(m−1)(λi)
(m−1)!

0 p(λi)
p′(λi)

1!
. . . p(m−1)(λi)

(m−1)!
...

. . .
...

0 p(λi)
p′(λi)

1!

0 0 . . . 0 p(λi)

 and

Jk
−1 =



1
λi

−1
λ2

i

1
λ3

i
. . . (−1)m−1

λm
i

0 1
λi

−1
λ2

i

...
...

. . . . . .
...

0
. . . −1

λ2
i

0 0 . . . 0 1
λi


.

Since the Jordan blocks corresponding to λi have maximum dimension ki, and there
is a block with exactly this dimension, we obtain the ki equations p(j)(λi) = (−1)jj!

λj+1
i

(j = 0, 1, . . . , ki − 1) for every eigenvalue λi.
In summary, given the matrix A with the above Jordan decomposition, (4.10) is

equivalent to (4.9) for every polynomial p. Thus, the uniqueness of the Hermite inter-
polation polynomial shows our assertion.

Note that the degree of p can be smaller than M = deg(mA)− 1.

Example 4.2.5. Let A = [ 0 1
0 0 ] with mA(ξ) = ξ2. Then AD = O and the polynomial

p(ξ) = 0 of degree 0 satis�es (4.10).

But this example illustrates � in essence � the only case where p has a degree smaller
than M = deg(mA)− 1, a fact which is less often stated in the literature.

Proposition 4.2.6. Let A ∈ Cn×n, mA its minimal polynomial and d = index(A). If
A is not nilpotent the degree of a polynomial p with p(A) = AD can not be smaller than
M = deg(mA)− 1.
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Proof. If d = 0, the matrix A is regular. Suppose p(A) = AD = A−1 for some
polynomial p. By multiplying with A and rearranging this equation we see that s(ξ) :=
1− ξp(ξ) is divided by mA, i. e., deg p ≥ deg(mA)− 1
Now, let d > 0. The coe�cients of the Hermite interpolation polynomial which

satis�es (4.10) can be expressed by determinants.1 Consider∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p(ξ) 1 ξ ξ2 . . . ξd−1 ξd . . . ξM

0 1 0 0 . . . 0 0 . . . 0
0 0 1 0
0 0 0 2
...

...
. . .

...
...

...
0 0 0 . . . (d− 1)! 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(j)(λi)
d!

(d−j)!
λd−j

i
M !

(M−j)!
λM−j

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Each of the lower M + 1 rows corresponds to one of the interpolation conditions in
(4.9). The �rst column consists of the right hand sides of the interpolation conditions
and the subsequent columns contain the values/derivatives of the polynomials in the
�rst row evaluated at λi. It is easy to see that the Hermite interpolation polyno-
mial can be computed by expanding this determinant along the �rst row and isolating
p(ξ). The uniqueness of the Hermite interpolation guarantees that the lower right
sub-determinant (which is the coe�cient of p(ξ) in the expansion) is nonzero, i. e., its
columns are linearly independent. The coe�cient of ξM is zero if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0 0 . . . 0
0 0 1 0
0 0 0 2
...

...
. . .

...
...

...
0 0 0 . . . (d− 1)! 0 . . . 0

1
λ1

1 λ1 λ2
1 . . . λM−1

1

−1
λ2
1

0 1 2λ1 . . . (M − 1)λM−2
1

...
...

(−1)(k1−1) (k1−1)!

λ
k1
1

0 0 0 (M−1)!
(M−k1)!

λM−k1
1

1
λ2

1 λ2 λ2
2 . . . λM−1

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)jj!

λj+1
i

d!
(d−j)!

λd−j
i

(M−1)!
(M−1−j)!

λM−1−j
i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)(k`−1) (k`−1)!

λ
k`
`

0 0 (M−1)!
(M−k`)!

λM−k`
`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

1This idea was found in a Usenet article by David Petry in sci.math.research, Message-ID:
41qo7a$h3l@ixnews3.ix.netcom.com.
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Since we only ask if the determinant is zero or not, we can scale each row or column
by a suitable nonzero factor. Thus, in the �rst d− 1 rows the only nonzero entry can

be scaled to 1 and multiplying the rows, which start with (−1)jj!

λj+1
i

by λj+1
i

j!
6= 0 leads to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0 0 . . . 0
0 0 1 0
0 0 0 1
...

...
. . .

...
...

...
0 0 0 . . . 1 0 . . . 0

1 λ1 λ2
1 λ3

1 . . . λM
1

−1 0 λ2
1 2λ3

1 . . . (M − 1)λM
1

...
...

(−1)(k1−1) 0 0 0
(

M−1
k1−1

)
λM

1

1 λ2 λ2
2 λ3

2 . . . λM
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)j
(

d
j

)
λd+1

i

(
M−1

j

)
λM

i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)(k`−1) 0 0
(

M−1
k`−1

)
λM

`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

If the eigenvalues λi are sorted according to the size of the largest Jordan block, i. e.,
such that ki ≤ kj for i > j, we can rearrange the rows as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0
...

. . .
...

...
0 0 1 0 . . . 0

1 λ1 λ2
1 λ3

1 . . . . . . λM
1

...
...

1 λ` λ2
` λ3

` . . . . . . λM
`

−1 0 λ2
1 2λ3

1 . . . . . . (M − 1)λM
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)j 0 0 λj+1
1

(
d
j

)
λd+1

1

(
M−1

j

)
λM

1
...

...
(−1)j 0 0 λj+1

`j

(
d
j

)
λd+1

`j

(
M−1

j

)
λM

`j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)(k1−1) 0 0
(

M−1
k1−1

)
λM

1
...

...
(−1)(k1−1) 0 0

(
M−1
k1−1

)
λM

`k1−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where we denote by `j = max{i : 1 ≤ i ≤ `, ki > j. Each j, 0 ≤ j < k1, corresponds
to a row block in this determinant. Obviously, the rows in di�erent blocks are linearly
independent. On the other hand, the rows in each block are linearly independent,
since they are � up to suitable column scaling and additional zero columns � rows of
Vandermonde determinants. Thus, the determinant cannot be zero unless it reduces
to the upper left d× d block, which has an all zero last row.

A third equivalent de�nition of the Drazin inverse can be given in functional terms
(cf. [14, Section 7.2]): The index of A can be characterized as the smallest integer for
which R(Ad) = R(Ad+1) and N(Ad) = N(Ad+1). Moreover there holds

H = R(Ad)⊕N(Ad) (4.12)

and the restriction A|R(Ad) of A to the range of Ad is an invertible linear operator on
R(Ad). Given a vector x ∈ H, with the unique decomposition x = y + z , y ∈ R(Ad),
z ∈ N(Ad), the Drazin inverse is de�ned by ADx = (A|R(Ad))

−1y .

Remark 4.2.7. With regard to the canonical forms (4.7) and (4.8) we note that the
matrix C represents the operator A restricted to R(Ad) with respect to the basis T
(recall that the columns of T forms a basis of H = Cn if T is nonsingular). Similarly, N
describes the restriction of A to N(Ad) in terms of this basis. We retain the distinction
between H and the coordinate vectors and matrices even if H = Cn is assumed. Thus
we write, e. g., A∗ for the adjoint of an operator A while we use CH to denote the
conjugate transpose of the coordinate matrix C.

For the reader's convenience we state an important property of the Drazin inverse,
which can be found e. g. in [14].

Lemma 4.2.8. Let d denote the index of A. The (uniquely determined) projection
onto R(Ad) along N(Ad) is given by PR(Ad),N(Ad) = ADA and there holds

R(ADA) = N(I − ADA) = R(AD) = R(Ad) and

N(ADA) = R(I − ADA) = N(AD) = N(Ad).

For j ≤ d, an analogous decomposition to (4.12) can be given for R(Ad−j).

Lemma 4.2.9. Denote by d the index of A and let j ∈ N0, 0 ≤ j ≤ d. Then there
holds

R(Ad−j) = R(Ad)⊕N(Aj).

Proof. Let v ∈ R(Ad−j). This means there exists a vector w ∈ H with v = Ad−jw .
Using (4.12) this vector has the unique decomposition w = r + s with r ∈ R(Ad) and
s ∈ N(Ad). Applied to v this gives

v = Ad−jw = Ad−jr + Ad−js =: y + z ,
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where y = Ad−jr ∈ R(Ad) and z = Ad−js ∈ N(Ad) are the unique components of v .
One computes easily

Ajz = AjAd−js = Ads = 0 ,

which shows that v ∈ R(Ad)⊕N(Aj), i. e., R(Ad−j) ⊆ R(Ad)⊕N(Aj).
Let now v = y+z with y ∈ R(Ad) and z ∈ N(Aj) ⊆ N(Ad). Now, choose r ∈ R(Ad)

and s ∈ N(Ad) such that y = Ad−jr and z = Ad−js . Then v = y +z = Ad−j(r +s) ∈
R(Ad−j), which completes the proof.

A well-known property of the minimal polynomial of a matrix A is that mA divides
every nonzero polynomial p with p(A) = O. The following result is a generalization of
this fact to the minimal polynomial of a vector r with respect to A.

Proposition 4.2.10. The minimality polynomial mr ,A divides every nonzero polyno-
mial p which satis�es p(A)r = 0 .

Proof. The proof is an application of Euclid's algorithm. Clearly we have deg p ≥
deg mr ,A. We divide p by mr ,A to obtain

p(ξ) = s(ξ)mr ,A(ξ) + r(ξ),

with deg r < deg mr ,A. Since r(A)r = p(A)r − s(A)mr ,A(A)r = 0 , there is a contra-
diction to the minimal property of mr ,A unless r is identically zero.

In particular, this shows that the minimal polynomial mr ,A of any vector r divides
the minimal polynomial of A. Using (4.5) this leads to the representation

mr ,A(ξ) = ξq

k∏
i=1

(ξ − λi)
ni , (4.13)

where λi 6= 0, i = 1, . . . , k, are nonzero eigenvalues of A. The quantity q = index(r ,A)
is called the index of r with respect to A. It can be characterized independently of the
above representation.

Proposition 4.2.11. If q denotes the index of r with respect to A ∈ Cn×n then there
holds

q = min{j ∈ N0 : 0 ≤ j ≤ d and r ∈ R(Ad−j)}, (4.14)

where d = index(A). Moreover there holds

r ∈ R(Ad−j) = R(Ad)⊕N(Aj) ⇐⇒ q ≤ j ≤ d. (4.15)

Proof. Let A be given in the form (4.7). Then the decomposition (4.12) of r is given
by

r = T

[
y
0

]
+ T

[
0
z

]
.
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Denote the minimal polynomial of r with respect to A by mr ,A = ξqc(ξ) with c(0) 6= 0.
Then there holds

0 = mr ,A(A)r = T

[
mr ,A(C ) O

O mr ,A(N )

] [
y
0

]
+ T

[
mr ,A(C ) O

O mr ,A(N )

] [
0
z

]
= T

[
mr ,A(C )y

0

]
+ T

[
0

mr ,A(N )z

]
,

i. e., mr ,A(C )y = 0 and mr ,A(N )z = 0 . Hence the minimal polynomials my ,C

and mz ,N divide mr ,A. Since N is nilpotent, mz ,N (ξ) has to be of the form ξj

(cf. Lemma 4.2.2). The fact, that ξqc(ξ) is a multiple of mz ,N (ξ) = ξj implies j ≤ q.
Now the assumption j < q contradicts the minimality property of mr ,A � consider
p(ξ) := ξjc(ξ). Hence mz ,N (ξ) = ξq, which implies N qz = 0 and, using (4.7),

AqT

[
0
z

]
= T

[
0

N qz

]
= 0 , i. e., T

[
0
z

]
∈ N(Aq).

This proves r ∈ R(Ad) ⊕ N(Aq) = R(Ad−q), where the last equation follows from
Lemma 4.2.9. Moreover, since ξq is the minimal polynomial of z with respect to N ,

there can not exist a smaller index j < q, such that T

[
0
z

]
∈ N(Aj).

All assertions now follow from the obvious equivalence

R(Ad−q) ⊆ R(Ad−j) ⇐⇒ q ≤ j.

Corollary 4.2.12. If q denotes the index of r with respect to A and d = index(A),
then

Km(A, r) ⊆ R(Ad−q) for all m.

Remark 4.2.13. If H is not �nite dimensional, we can de�ne the Drazin inverse for
bounded linear operators which possess a decomposition like (4.12). We call the se-
quence of subspaces

H = R(A0) ⊇ R(A) ⊇ R(A2) ⊇ · · · ⊇ R(Ak) ⊇ · · ·

the range chain of A. If there exists an index k < ∞ for which equality holds, i. e.,
R(Ak) = R(Ak+1), we have R(Am) = R(Ak) for all m ≤ k. If such an index exists we
de�ne

a = min{n ∈ N0 : R(An) = R(An+1)}

and set a = ∞ otherwise.
Similarly we call

{0} = N(A0) ⊆ N(A) ⊆ N(A2) ⊆ · · · ⊆ N(Am) ⊆ · · ·
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the nullspace chain of A and de�ne as its length the smallest integer n with N(An) =
N(An+1).
If both chain lengths, a and n are �nite, they must coincide (cf. [38, Satz 72.3]) and

we de�ne the index of A by this integer, d := a = n. The existence of a �nite index d
is equivalent to the existence of the direct decomposition H = R(Ad)⊕N(Ad) (cf. [38,
Satz 72.4]) and the restriction A|R(Ad) of A to R(Ad) is invertible.
The Drazin inverse now may be de�ned in functional terms as ADv = A|R(Ad)

−1y ,
where v has the unique decomposition v = y + z with y ∈ R(Ad) and z ∈ N(Ad).
Equivalently, we can de�ne AD as the unique solution of (4.6). The index q of a vector
r with respect to A can be de�ned by (4.14).

4.3 Termination of Krylov Methods

Recall that the degree of mr ,A coincides with the termination index of the sequence of
Krylov spaces. In terms of the representation (4.13) this means

L = q +
k∑

i=1

ni.

Another characterization of L is, that it is the index of the �rst Krylov space which
contains ADr .

Proposition 4.3.1. Suppose that r 6∈ N(Ad), d = index(A). Then there holds

L = min{m : ADr ∈ Km(A, r)}. (4.16)

Proof. Denote by L the degree of the minimal polynomial of r with respect to A (or
equivalently let L as de�ned in (3.13)). We �rst show that the Krylov space KL(A, r)
always contains ADr . Since KL(A, r) = {p(A)r : p ∈ PL−1}, this is equivalent to the
existence of a polynomial of degree at most L − 1 which satis�es ADr = p(A)r . This
polynomial is given by the Hermite interpolation polynomial with

p(0) = p′(0) = · · · = p(q−1) = 0

p(j)(λi) =
(−1)jj!

λj+1
i

(j = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , `),

which can be seen using the Jordan canonical form of A as follows: There exists a
permutation P for the similarity transformation T in (4.11) such that A and r can be
written as

A = TP

 Ĵ O RJ

O N̂ RN

O O R̂

P∗T−1 and r = TP

yz
0

 ,
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where the Jordan blocks in the block diagonal matrix Ĵ corresponding to an eigenvalue
λi have maximal dimension ni and N̂ is nilpotent of index q. Using that we can proceed
as in the proof of Proposition 4.2.4.
By the same argument as in Proposition 4.2.6 we conclude that deg p = L − 1 if

L > q.

Remark 4.3.2. Consider a Krylov subspace method for solving (3.1) with initial residual
r0 = b − Ax0. If r0 ∈ N(Ad) = N(AD) we have ADr0 = 0 and Km(A, r0) ⊆ N(Ad) for
all m.
The index of r0 with respect to A is the smallest integer q for which r0 ∈ N(Aq)

(cf. (4.15)). If r0 6= 0 (and thus d 6= 0) we have q > 0. Since R(Ad) ∩ N(Ad) = {0}
there holds mr0,A(ξ) = ξq and the sequence of Krylov spaces terminates with L = q.
Using (4.4) we get rm = pm(A)r0 with pm(ξ) := 1−ξqm−1(ξ) ∈ Pm and qm−1(A)r0 = cm

for each correction cm ∈ Km(A, r0). Therefore the residual is nonzero if m < L and
rL = rq = 0 . Moreover, the breakdown in step L = q is singular since Aqr0 = 0
and WL = AKL(A, r0) = span{Ar0, . . . ,A

q−1r0,A
qr0} = span{Ar0, . . . ,A

q−1r0} =
AKL−1(A, r0) = WL−1 (cf. (viii) in Proposition 3.4.4).

The inclusion of ADr in the largest Krylov space KL(A, r) and the A-invariance of
this space yields that it is invariant under AD too (and it is not di�cult to see, that L
is the smallest index for which this invariance holds, provided that r 6∈ N(Ad)). This
leads to a decomposition of KL(A, r) into the components on range and nullspace of
Ad (cf. Lemmata 4.2.8 and 4.2.9 and Corollary 4.2.12).

Corollary 4.3.3. Denote by L the termination index of the sequence of Krylov sub-
spaces of r with respect to A and by q the index of r with respect to A. Let r = s + z
with s ∈ R(Ad), i. e., s = PR(Ad),N(Ad)r , and z = PN(Ad),R(Ad)r ∈ N(Ad). Then here
holds

KL(A, s) = ADAKL(A, r) = R(Ad) ∩KL(A, r) ⊆ KL(A, r), (4.17)

KL(A, z ) = N(Ad) ∩KL(A, r) = N(Aq) ∩KL(A, r) ⊆ KL(A, r) and

KL(A, s)⊕KL(A, z ) = KL(A, r). (4.18)

In the rightmost relation of (4.17) equality holds if and only if q = 0, which is equivalent
to z = 0 or N(Ad) ∩KL(A, r) = {0}.

The only relation in (4.17), which is not true in general (for m < L and q > 0)
is Km(A, PR(Ad),N(Ad)r) ⊆ Km(A, r). The decomposition (4.18) corresponds to that in
Lemma 4.2.9 restricted to KL(A, r).
As already noted, the largest Krylov space is invariant under the Drazin inverse,

more precisely, in view of Corollary 4.3.3, we have ADKL(A, r) = KL(A, s) =
ADAKL(A, r) = R(Ad)∩KL(A, r). In essence, we are able to express quantities related
with AD using the Drazin inverse of HL, the orthogonal section of A onto the invariant
Krylov subspace.
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Proposition 4.3.4. Suppose, for r ∈ H with q = index(r ,A), that we have established
the Arnoldi decomposition AVL = VLHL with span{VL} = KL(A, r). Then the index of
HL equals q and for all v ∈ KL(A, r) with v = VLy , y ∈ CL, there holds

PR(Ad),N(Ad)v = VLHD
L HLy ∈ R(Ad) ∩KL(A, r),

PN(Ad),R(Ad)v = VL(I −HD
L HL)y ∈ N(Aq) ∩KL(A, r) and

ADv = VLHD
L y .

Using the QR decomposition (3.32) of HL we can compute a basis of the nullspace
of Hq

L (and at the same time a basis of N(Aq) ∩KL(A, r)). Assume q > 0, i. e., HL is
singular. Recall from (3.31) and (3.36), that the nullspace of HL is spanned by

g (1) := g̃ =

[
g
−1

]
=

[
H̃†

L−1hL

−1

]
=

[
R−1

L−1t
−1

]
.

Thus, a vector g (2) for which H2
Lg

(2) = 0 but HLg
(2) 6= 0 must satisfy

HLg
(2) = ζg (1) (4.19)

for some ζ 6= 0. Such a vector exists if and only if index(HL) > 1, i. e., if and only if
q ≥ 2. Multiplying (4.19) by QL−1 and using (3.32) we get[

RL−1 t
0> 0

] [
s
σ

]
= ζ

[
f
ϕ

]
, where QL−1g̃ =

[
f
ϕ

]
and y =

[
s
σ

]
.

Thus, (4.19) is solvable if and only if ϕ, which is the last component of QL−1g̃ , happens
to be zero. If we choose the normalization ζ = 1 and σ = −1 we result in the solution

g (2) =

[
s
σ

]
=

[
R−1

L−1f + g
−1

]
=

[
R−1

L−1f
0

]
+ g (1)

and span{g (1), g (2)} = N(H2
L). An obvious induction shows, that we can compute a

basis {g (1), . . . , g (q)} of N(Hq
L) and the basis {VLg

(1), . . . , VLg
(q)} of N(Aq)∩KL(A, r) =

N(Ad) ∩KL(A, r) in this way.
The occurrence of a regular or singular breakdown only depends on the index q of

the initial residual with respect to A:

Theorem 4.3.5. Let A, b and x0 be given and apply an MR or OR method with
Cm = Km(A, r0), r0 = b − Ax0, to compute approximate solutions xMR

m or xOR
m of

(3.1). Then there holds:
A regular breakdown occurs if and only if q = index(r0,A) = 0, i. e., if r0 ∈ R(Ad).

In this case, the corresponding MR and OR iterates are given by

xMR
L = xOR

L = ADb + (I − ADA)x0 = x0 + ADr0.
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Proof. A regular breakdown occurs if and only if r0 ∈ Wm = AKm(A, r0) (cf. (ii)
in Proposition 3.4.3). Then there exists a polynomial p of degree m − 1 such that
r0 − A p(A)r0 = 0 . Thus, the polynomial r(ξ) := 1− ξp(ξ) is divided by the minimal
polynomial of r0 with respect to A (cf. Lemma 4.2.10), which shows that the latter has
a nonzero constant term, i. e., q = 0.
Suppose now, that q = 0 and denote the minimal polynomial by

mr0,A(ξ) = ξL + αL−1ξ
L−1 + · · ·+ α1ξ + α0,

where α0 6= 0. Consider

p(ξ) :=
1

α0

ξL−1 +
αL−2

α0

ξL−1 + · · ·+ α2

α0

ξ +
α1

α0

.

Obviously, r0 − A p(A)r0 = 0 and, since p(A)r0 ∈ KL(A, r0), we conclude that r0 ∈
AKL(A, r0). From the properties of the minimal polynomial it follows also that there
exists no smaller index m < L with r0 ∈ AKm(A, r0) = Wm.
Since ADr0 ∈ KL(A, r0) a suitable correction is cL = ADr0. We compute

rL = r0 − AcL = r0 − AADr0 = (I − AAD)r0 = 0 , (4.20)

where we made use of the fact, that r0 ∈ R(Ad) (cf. Lemma 4.2.11). This shows that
cL is the MR and OR correction which is uniquely determined (cf. Proposition 3.4.2
and Corollary 3.5.6).

Note that we have only made use of the fact that the largest Krylov space contains
ADr0. The minimality property (4.16) is not needed in general and in the regular case
q = 0 this property is a simple consequence of (4.20) and Proposition 3.4.7 (see also
Lemma 3.1.1).
Theorem 4.3.5 is a reformulation of a result by Ipsen and Meyer [44]: A Krylov space

contains a solution of (3.1) if and only if the right hand side b belongs to the range of
Ad and the initial guess x0 is chosen such that r0 = b − Ax0 ∈ R(Ad). For b 6= 0 this
can always be achieved by x0 = 0 .
In other words: If the linear equation (3.1) is consistent but b 6∈ R(Ad), then no

Krylov space can contain a solution, unless x0 is chosen such that Ax0 has the same
components as b in the direction of N(Ad), i. e., PN(Ad),R(Ad)b = PN(Ad),R(Ad)Ax0. But
in general, computing of the projection PN(Ad),R(Ad) = (I − AAD) is as di�cult as the
original problem of solving a linear equation.
Remark 4.3.6. If r0 ∈ R(Ad) the Drazin inverse is an equation solving inverse on
Km(A, r0) ⊆ R(Ad) and no Krylov subspace contains components in the nullspace
of A, i. e., N(A) ∩ Km(A, r0) = {0} for all m ≤ L. Thus it is not surprising that
all known results about Krylov subspace methods for a nonsingular operator (cf. [22]
and [23]) remain valid for a singular operator A and an initial residual r0 such that
q = index(r0,A) = 0, if we replace the proper inverse by the Drazin inverse. In partic-
ular, the MR residual polynomials can be characterized in terms of Drazin inverse AD

(instead of the subspace inverse) using the same line of argument as in Remark 4.1.1.
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4.4 Least Squares Solutions in Krylov Spaces

As we have seen so far, the Drazin inverse is closely connected with Krylov subspace
methods. In practice a least squares solution is often desired. Therefore we want to
investigate now under which conditions a Krylov subspace method leads to such a solu-
tion. We have already described this situation in Proposition 3.5.11 and Remark 3.5.10
for general correction spaces: If (3.1) is consistent, a (least squares) solution is gener-
ated by a Krylov method if and only if index(r0,A) = 0 (see also Proposition 3.4.2,
Theorem 4.3.5 and Corollary 3.5.6). If (3.1) is inconsistent and the mth Krylov space
contains a least squares solution, the MR method makes no progress in the subsequent
steps up to the singular breakdown in step L > m. An extremal example for this
behavior is provided by the backward shift operator with the �rst unit vector as right
hand side and the all zero vector as initial guess (cf. [7, Example 1.2]).
A natural question is, under which conditions the possible Krylov correction ADr0

in the Lth step represents a least squares solution and thus will be generated by an
MR method. We will answer this later in this section.
In [7] it is shown that GMRES yields in the least squares solution of (3.1) for all

right hand sides b and all initial vectors x if and only if N(A) = N(A∗). We cite from
Campbell and Meyer several characterizations of this situation (cf. [14, De�nition 4.3.1
and Theorems 4.3.1 and 7.3.4]).

Theorem 4.4.1. Suppose A ∈ Cn×n. Then the following statements are equivalent:

(i) A† = AD

(ii) A†A = AA†

(iii) R(A) = R(A∗)

(iv) R(A) ⊥ N(A) (and Cn = R(A)⊕N(A))

(v) There exists an unitary matrix U and an nonsingular matrix C ∈ Cr×r, where r
is the rank of A, such that

A = U

[
C O
O O

]
U∗

Remark 4.4.2. A matrix with the property (iii) is called range hermitian. It is easy to
see, that this is equivalent to the condition N(A) = N(A∗) of Brown and Walker. Note
also, that (iv) can be rewritten as

R(A)⊥ = N(A),

which is used by Hayami in [34].
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With regard to condition (iv) we note that R(A) ⊥ N(A) alone implies that
index(A) ≤ 1. This may be seen directly or one observes that the orthogonality implies
R(A) ∩ N(A) = {0} and uses Proposition 4.2.11 below. The direct decomposition is
then provided by (4.12).
From the condition index(A) ≤ 1 we further conclude that the Drazin and, by (i),

also the Moore-Penrose inverse coincide with the group inverse (cf. Section 2), i. e.,
A† = AD = A#.

Now, if (3.1) is consistent it follows immediately that r0 ∈ R(A) for every choice of
x0 and this means, by (4.15), that the index q of r0 with respect to A is zero. Applying
Theorem 4.3.5 shows that any Krylov method breaks down regularly with the solution

xMR
L = xOR

L = x0 + A#r0 = A#b + (I − A#A)x0 = A†b + PN(A)x0. (4.21)

If, on the other hand, the equation is inconsistent, we have q = 1 for every initial
guess x0 and an MR Krylov methods breaks down singularly in step L. Since A†r0 =
ADr0 ∈ KL(A, r0) = CL we have

AA†r0 = PR(A)r0 ∈ AKL(A, r0) = WL.

Moreover, as stated in Remark 3.5.10, there exists at least one index m < L for which
PR(A)r0 ∈ Wm = AKm(A, r0) and thus an MR subspace correction method yields a
least squares solution. By Lemma 3.2.6 the correction is of the form cMR

m = A†r0 + z̃
with z̃ ∈ N(A) and the corresponding least squares solution is

xMR
m = A†b + z with z ∈ N(A).

In the terminating step L we can freely choose the nullspace component z since N(A)∩
KL(A, r0) 6= {0}. Using (3.36) we may compute the subspace inverse solution. Setting
cMR

L = A#r0 = A†r0 leads to

xMR
L = A#b + (I − A#A)x0 = A†b + PN(A)x0,

which coincides with the MR solution for a consistent problem. For x0 ∈ R(A) ⊥ N(A)
we get the pseudoinverse solution A†b in both cases.
Note that our considerations prove one direction in the result of Brown and Walker:

If A is range hermitian, an MR Krylov method yields a (least squares) solution for
arbitrary vectors b and x0. The other implication is provided by a counterexample.

Example 4.4.3. Consider the matrix

A =

1 0 0
1 0 −1
0 0 1

 ∈ R3×3.
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Note �rst that A2 = A, in particular index(A) = 1, and A = AD = A#. Moreover,

A† =

2/3 1/3 1/3
0 0 0

1/3 −1/3 2/3


and N(A) = span

{[
0 1 0

]>}
. Obviously, the right hand side b =

[
1 1 1

]>
does

not lie in the range of A. We apply a Krylov method with the zero vector as initial guess.
In the second step the Arnoldi process breaks down singularly and cMR

2 = cMR
1 + z

with z ∈ K2(A, b) ∩ N(A) = N(A). The �rst MR correction is cMR
1 = α

[
1 1 1

]>
where α minimizes ∥∥∥∥∥∥

1
1
1

− A(α

1
1
1

)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
1

1
1

− α

1
0
1

∥∥∥∥∥∥ ,

i. e., α = 1 and the residual norm is 1. This is not a least squares solution since A†b =

A†r0 =
[
4/3 0 2/3

]>
has residual norm 1/

√
3. For the second MR approximation,

we can minimize the norm of

‖xMR
2 ‖ = ‖cMR

2 ‖ = ‖xMR
1 − γz‖

∥∥∥∥∥∥
1

1
1

− γ

0
1
0

∥∥∥∥∥∥ ,

which is done by γ = 1 and results in cMR
2 = AK2(A,b)b = ADb, i. e., the subspace

inverse solution coincide with the Drazin inverse solution.
But also this need not to be true in general as b̃ =

[
1 0 0

]> 6∈ R(A) shows. Again

we get a singular breakdown after two steps. Now cMR
1 =

[
1/2 0 0

]>
and this is

also the solution with minimal norm after the second step, but ADb̃ =
[
1 1 0

]>
and

A†b̃ =
[
2/3 0 1/3

]>
.

This example shows that, if A is not range hermitian, an (MR) Krylov method may
converge neither to a least squares solution nor to the Drazin inverse solution � even if
the index of the operator is one.
Though, the case index(A) = 1 deserves closer attention. Of course, the index is zero

if and only if A is nonsingular. Thus, stating index(A) = 1 is equivalent to demand
index(A) ≤ 1 for singular A.

Proposition 4.4.4. The following statements are equivalent:

(i) index(A) ≤ 1,

(ii) R(A)⊕N(A) = H,

(iii) R(A) ∩N(A) = {0},

(iv) A# exists.
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Proof. For the equivalence of (i) and (iv) we refer to [14, De�nition 7.2.4 and Theo-
rem 7.2.5].
If A is nonsingular, the assertion is trivial since N(A) = {0}, R(A) = H and

index(A) = 0. Therefore we assume A is singular or, equivalently, index(A) ≥ 1.
The implications (i)⇒(ii)⇒(iii) are direct consequences of (4.12).
Now, suppose (iii) and denote by d the index of A. From Lemma 4.2.9 we obtain

R(A) = R(Ad)⊕N(Ad−1).

The intersections of N(A) with each component of this direct decomposition are
assumed to be the trivial space containing only 0 . For R(Ad) this is evidently
true (regardless of d = 1 or greater). Thus, the only restriction for d arise from
N(Ad−1) ∩ N(A) = {0}. If d = 1, even this is evident. On the other hand, if d > 1
there holds N(A) ⊆ N(Ad−1) and we have a contradiction.

If A is not range hermitian but index(A) = 1, a similar result as in (4.21) is implied
along the same line of argument if we replace PN(A) by the oblique projection PN(A),R(A).

Proposition 4.4.5. If index(A) = 1 and b ∈ R(A), then no singular breakdown
occurs and there holds

xMR
L = xOR

L = x0 + A#r0 = A#b + (I − A#A)x0 = A#b + PN(A),R(A)x0,

which is a solution of (3.1), i. e., AxMR
L = AxOR

L = b.

This was �rst observed by Freund and Hochbruck in [29, Corollary 3] in the context
of the QMR method. Similar results, though without stating the representation of
the solution in terms of A#, are provided by Brown and Walker for GMRES (cf. [7,
Theorem 2.6]) and by Hayami for the conjugate residual (CR) method (cf. [34, Theo-
rem 3.21]) and GCR (cf. [35]).
Assume, a Krylov subspace method yields a solution of (3.1) for any initial guess

x0, then for some m there holds r0 ∈ Wm = AKm(A, r0) and the method breaks down
regularly (cf. Proposition 3.4.3). By Theorem 4.3.5 this is equivalent to r0 ∈ R(Ad),
where d = index(A) and r0 = b − Ax0. This must hold true for arbitrary x0. By
choosing x0 = 0 we conclude b ∈ R(Ad). Thus, for any x0 we have Ax0 ∈ R(Ad).
We decompose x0 = s + t subject to s ∈ R(Ad) and t ∈ N(Ad). Then Ax0 =

As + At = As , i. e., At = 0. This applies for any t ∈ N(Ad), which is only possible if
d = 1 or d = 0.
Thus we have proved: If an (MR or OR) Krylov method yields a solution of (3.1) for

any initial guess x0, then index(A) ≤ 1 and b ∈ R(A). Vice versa, if index(A) ≤ 1 and
b ∈ R(A), we already know from Proposition 4.4.5 that the Krylov method determines
a solution regardless of x0. Let us summarize:

Theorem 4.4.6. An MR or OR Krylov method yields a solution of (3.1) for any initial
guess x0, if and only if index(A) ≤ 1 and b ∈ R(A).
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Note the di�erence between our result and that in [7, Theorem 2.4]: We ask for
proper solutions, which requires consistency, while Brown and Walker seek for a least
squares solution.
Theorem 4.4.1 characterizes the matrices for which A† = AD, in other words, it

answers the question when there holds

A†r = ADr (4.22)

for any vector r . We now look for a characterization of the vectors for which, given
the matrix A, the relation (4.22) is satis�ed. We �rst assume r ∈ R(A), i. e., r = Ay
for some y ∈ Cn. Using (4.22) and AA†A = A we obtain

r = Ay = AA†Ay = AA†r = AADr ,

which shows that r ∈ R(Ad), where d = index(A). Similarly, for r ∈ R(A)⊥ = N(A∗) =
N(A†) we see from

(I − AAD)r = r − AADr = r − AA†r = r

that r ∈ N(Ad).

Proposition 4.4.7. Suppose r satis�es (4.22) and d = index(A). Then there holds

PR(A)r = PR(Ad),N(Ad)r (or equivalently PN(A∗)r = PN(Ad),R(Ad)r) (4.23)

Proof. As seen above we have s := PR(A)r ∈ R(Ad) and t := PN(A∗)r ∈ N(Ad).
Thus we have established a decomposition r = s + t into the components on R(Ad)
and N(Ad). Since R(Ad) ⊕ N(Ad) = Cn (cf. (4.12)) this decomposition is unique
and the components are given by the oblique projection PR(Ad),N(Ad) = AAD of r
onto R(Ad) along N(Ad) and its complementary projection I − AAD = PN(Ad),R(Ad)

(cf. Lemma 4.2.8).

Proposition 4.4.7 implies, that (4.22) is su�cient for ADr0 to be a least squares
solution of the residual equation, i. e., for x0 + ADr0 to be a least square solution of
(3.1).

Proposition 4.4.8. The correction cMR
L = ADr is a least squares solution of Ac = r

and is thus generated by a MR Krylov method in the termination step L if and only if

AADr = AA†r (or equivalently
(
AD − A†) r ∈ N(A)) (4.24)

Proof. Note that (4.24) is merely another formulation for (4.23). A vector cMR is a
least squares solution of Ac = r if and only if ‖PR(A)r − AcMR‖ = 0 or, equivalently,
if and only if PR(A)r = AA†r = AcMR. Using the last equation, we get: If cMR

L = ADr
is a least squares solution, then there holds (4.24) (and (4.23)).
If, on the other hand, AADr = AA†r holds true, we choose cMR = ADr , which

is possible in the termination step L. A simple calculation shows AcMR = AADr =
AA†r = PR(A)r , which implies that cMR is a least squares solution.
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Another way to generalize the results of Brown and Walker in [7] is to investigate
under which conditions a Krylov method constructs a least squares solution up to some
projection. The close connection of Krylov spaces and the Drazin inverse suggests the
projection PR(Ad),N(Ad) = ADA.

Proposition 4.4.9. Let H be �nite dimensional. If R(Ad) ⊥ N(Ad), there holds

AD = A†AAD = ADAA†. (4.25)

Remark 4.4.10. Note, that the identities in (4.25) can be rewritten in several ways using
PR(Ad),N(Ad) = ADA = AAD, PR(A) = AA† and PR(A∗) = A†A. In particular, (4.25) is
equivalent to AD = PR(Ad),N(Ad)A

† = A†PR(Ad),N(Ad), which means that the Drazin and
the Moore-Penrose inverse coincide up to the projection PR(Ad),N(Ad), which can be seen
as a generalization of (i) in Theorem 4.4.1.
Note further that the orthogonality assumption implies that PR(Ad),N(Ad) = ADA is

the orthogonal projection PR(Ad).

Proof. Let UC be an orthonormal basis of R(Ad) ⊆ R(A). We can extend UC to an
orthonormal basis W =

[
UC UW

]
of R(A). Since H = R(A) ⊕ N(A∗) and R(A) ⊥

N(A∗), we can further extend this to an orthonormal basis
[
UC UW Y

]
of H, where

Y is a basis of N(A∗). We set UY :=
[
UW Y

]
. Obviously, H = span{UC}⊕ span{UY }

is an orthogonal decomposition of H and, since UC is a basis of R(Ad), its orthogonal
complement N(Ad) is spanned by the basis UY .
Now, denote by Z an orthonormal basis of N(A) ⊆ N(Ad) and extend it to an

orthonormal basis UZ =
[
UV Z

]
of N(Ad). Since R(Ad) ⊥ N(Ad) we may join UC

with UZ to obtain another orthonormal basis
[
UC UZ

]
=
[
UC UV Z

]
of H. We set

V :=
[
UC UV

]
. Obviously, H = span{V } ⊕ span{Z} is an orthogonal decomposition

of H. But span{Z} is the nullspace of A and thus the orthogonal complement has to
coincide with R(A∗). In other words, V is an orthonormal basis of R(A∗).
The remainder of the proof will be done by observing, how the operators act on these

orthonormal bases. Note �rst, that

A
[
UC UY

]
=
[
UC UY

] [C O
O NY

]
A
[
UC UZ

]
=
[
UC UZ

] [C O
O NZ

] (4.26)

and

AD
[
UC UW Y

]
=
[
UC UW Y

] C−1 O O
O O O
O O O

 =
[
UCC−1 O O

]

AD
[
UC UV Z

]
=
[
UC UV Z

] C−1 O O
O O O
O O O

 =
[
UCC−1 O O

]
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Since AA† is the orthogonal projection onto R(A) it follows that

AA† [W Y
]

=
[
W O

]
=
[
UC UW Y

]  I O O
O I O
O O O

 ,

which leads to

ADAA† [UC UW Y
]

= AD
[
UC UW Y

]  I O O
O I O
O O O

 = · · ·

[
UCC−1 O O

]  I O O
O I O
O O O

 =
[
UCC−1 O O

]
= AD

[
UC UW Y

]
.

Similarly, A†A = PR(A∗) implies

A†A
[
V Z

]
=
[
UC UV O

]
and

A†AAD
[
UC UV Z

]
= A†A

[
UC UV Z

] C−1 O O
O O O
O O O

 = · · ·

[
UC UV O

] C−1 O O
O O O
O O O

 =
[
UCC−1 O O

]
= AD

[
UC UV Z

]
,

which completes the proof.

Using these orthonormal bases, A can be written as

A
[
UC UV Z

]
=
[
UC UW Y

] C O O
O M O
O O O

 , (4.27)

where C ∈ Cr×r and M ∈ Cs×s are nonsingular, r = rank(Ad) and s = rank(A)−r. The
zero blocks in the last column are a simple consequence of span{Z} = N(A). That the
last row is zero can be seen from the adjoint equation together with span{Y } = N(A∗).
Since R(Ad) is A-invariant, there holds AUC = UCC , which shows that the (2, 1) block
is zero. Similarly, the A-invariance of N(Ad) implies AUV = UWM +Y B and the (1, 2)
block has to be zero, since UW and Y are orthogonal to UC . The representation (4.27)
can be regarded as a generalization of (v) in Theorem 4.4.1.
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Proposition 4.4.9 provides the last equality in

Proposition 4.4.11. If R(Ad) ⊥ N(Ad), then for any right hand side b and any initial
guess x0 the Lth MR correction cMR

L with respect to KL(A, r0), r0 = b − Ax0 satis�es

PR(Ad)c
MR
L = ADAcMR

L = ADr0 = PR(Ad)A
†r0.

Proof. The Lth MR correction minimizes

‖r0 − Ac‖ = ‖PR(Ad)r0 − APR(Ad)c‖+ ‖PN(Ad)r0 − APN(Ad)c‖

over all c ∈ KL(A, r0). Due to the decomposition (4.18) and the orthogonality condi-
tion this can be done independently for the components in the range and nullspace of
Ad. But ‖PR(Ad)r0 − APR(Ad)c‖ = 0 for PR(Ad)c = ADr0 ∈ KL(A, r0) ∩ R(Ad).

The identities in (4.25) can be proved under much weaker conditions.

Proposition 4.4.12. There holds

(i) AD = A†AAD ⇔ R(Ad) ⊆ R(A∗),

(ii) AD = ADAA† ⇔ N(A∗) ⊆ N(Ad).

Proof. (i) is an immediate consequence of R(AD) = R(Ad) and A†A = PR(A∗). Sim-
ilarly, R(I − AA†) = N(A∗) ⊆ N(Ad) yields AD(I − AA†) = O and vice versa. The
latter is a reformulation of the left term in (ii).

Since R(AD) = R(Ad) ⊆ R(A) = R(AA†) and R(I−A†A) = N(A) ⊆ N(Ad) = N(AD)
for any A, there holds

AD = ADA†A = AA†AD.

Together with (i) of the above proposition, we conclude that R(Ad) ⊆ R(A∗) implies
AA†AD = A†AAD, i. e., A commutes with its pseudoinverse on R(Ad) (which is a
weakened version of (ii) in Theorem 4.4.1). Similarly, for any vector v ∈ H, the
di�erence AA†v − A†Av lies in N(Ad) if N(A∗) ⊆ N(Ad).
An example for a matrix A which satis�es both conditions in Proposition 4.4.12, i. e.,

R(Ad) ⊆ R(A∗) and N(A∗) ⊆ N(Ad), (4.28)

but violates the orthogonality assumption in Propositions 4.4.9 and 4.4.11,

R(Ad) ⊥ N(Ad), d = index(A), (4.29)

is not obvious. This is impossible in three dimensions, as may be veri�ed by a short
exercise (but see also below). We give here general construction guidelines and illustrate
them by a concrete example. Before we start some observations should be mentioned.
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First, (4.29) implies (4.28). This follows from a combination of Propositions 4.4.9
and 4.4.11 or may be seen from the bases constructed in the poof of Proposition 4.4.9.
Now, assume that (4.28) is satis�ed and that actually equality holds in one relation,

e. g. N(A∗) = N(Ad). Then dim N(Ad) = dim N(A∗) = dim N(A), and, since N(A) ⊆
N(Ad), this implies N(A) = N(Ad), which means that d = index(A) ≤ 1. But then
using the second inclusion we get

N(A∗)⊥ = R(A) ⊆ R(A∗) ⊥ N(A) = N(A∗),

which establishes (4.29) for d = 1. For R(Ad) = R(A∗) we conclude similarly d ≤ 1
and

R(A)⊥ = N(A∗) ⊆ N(A) ⊥ R(A∗) = R(A).

In either case the remaining inclusion must be an equality. In other words, if one of the
inclusions in (4.28) becomes an equality, then there holds equality in both relations,
index of A is one and (4.29) is satis�ed.

Remark 4.4.13. In view of (4.7), we start with the decomposition TA = T
[

C O
O N

]
,

where C ∈ Cr×r is nonsingular, r = rank(Ad), d = index(A), and N ∈ C(n−r)×(n−r)

is nilpotent of index d. We make no further initial assumption on C and N . At �rst
we choose the nullspace of A∗. Let Y =

[
y1 . . . yt

]
denote an orthonormal basis of

N(A∗). From its orthogonal complement R(A), we choose an orthonormal basis U
of an r-dimensional subspace which becomes the range of Ad. We want to construct
the basis T such that T =

[
U X Y

]
, where

[
X Y

]
forms a basis of N(Ad). This

construction ensures that the condition N(A∗) ⊂ N(Ad) is satis�ed (the inclusion has
to be proper, since otherwise (4.29) holds).
For later use, we note that, given Y and U as above, one can choose a basis V =[

v1 . . . vs

]
with s = n − r − t such that

[
U V

]
is an orthonormal basis of R(A) and

thus,
[
U V Y

]
is an orthonormal basis of H, i. e.

[
U V Y

]∗ [
U V Y

]
= I .

An arbitrary vector y ∈ N(A∗) is of the form y = Y g with g ∈ Ct. Using U∗Y = O
we obtain2

0 = T ∗A∗y = (AT )∗y =

[
CH O
O N H

]U∗

X∗

Y ∗

Y g =

[
CH O
O N H

] 0
X∗Y g
Y ∗Y g

 .

Since g is arbitrary, we conclude that the t columns of
[
X Y

]∗
Y lie in the nullspace of

N H. This null space must have the same dimension t as the nullspace of A∗. Therefore,

if S =

[
SX

SY

]
denotes a basis of N(N H), the freedom in the choice of N and Y is restricted

by the compatibility condition SY = Y ∗Y . Additionally, we get the ts equations
SX = X∗Y for the columns of X.
2With regard to the notation with ∗ and H, we recall our distinction between quantities belonging to
the general Hilbert space and their coordinates with respect to a speci�c basis, cf. Remark 4.2.7.
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Note that these restrictions in the choice of Y and N are not essential: If we
choose Y orthonormal as above, this condition reduces to SY = I . This implies that
the last t components of the vectors in N(NH) can vary arbitrarily. The Jordan canon-
ical form JN of N = TNJNTN

−1 must contain exactly t Jordan blocks, i. e., there are
exactly t columns and rows with all zero components. Thus it is possible to choose TN

as a permutation such that the last t rows of N are zero. In other words, the Jordan
structure of N (and A) can be chosen arbitrarily. This de�nes the number t, and now
we choose t orthonormal vectors, which form the columns of Y .
Since N(A) ⊂ N(Ad) = span{X, Y }, we can write any vector in the nullspace of A

as

z =
[
X Y

] [gX

gY

]
, where g =

[
gX

gY

]
is a zero eigenvector of N .

Let {g1, . . . , gt} denote a basis of N(N ), whereas

gj =

[
g

(j)
X

g
(j)
Y

]
for j = 1, . . . , t.

The condition R(Ad) ⊂ R(A∗) = N(A)⊥ implies that the vectors of the basis U are
orthogonal to any z ∈ N(A), i. e., 0 = U∗ [X Y

]
gj =

[
U∗X O

]
gj = U∗Xg

(j)
X for

j = 1, . . . , t. This yields another set of tr equations for X. If we write the vectors
g

(j)
X as columns in a matrix G ∈ Cs×t, a short representation of these equations is

U∗XG = O .
Altogether, we have a system of tr + ts linear equations for the s unknown vectors

in X =
[
x1 . . . xs

]
. Setting X = Y SH

X , we conclude that the system is solvable.
Obviously, this solution violates a third condition on the basis X, which arises from
R(Ad) 6⊥ N(Ad), namely U∗X 6= O . If there exists a matrix F ∈ Ct×s such that

GF = Is (4.30)

any solution X will violate this condition. We will see next, that also the reverse
implication holds true.
Note �rst that (4.30) implies that F is an equation solving generalized inverse of G

(since there holds GFG = F ). Further, by [4, Lemma 1.2], equation (4.30) is equivalent
to rankG = s.
Remember that

[
U V Y

]
is an orthonormal basis of H. We can express any

solution X in terms of this basis. Let X = Y SH
X + V + UM with M ∈ Cr×s. Then

SX = X∗Y is satis�ed and condition U∗X 6= O is equivalent to M 6= O . The matrix
equation U∗XG = O reduces to MG = O . The set of all solutions of the latter equation
is given by {

H (I −GG¯) | H ∈ Cr×s
}

.

(cf. [14, Corollary 6.3.2]). Thus, a nonzero solution of MG = O exists if and only
if GG¯ 6= I for all equation solving inverses of G or, equivalently, if and only if
rankG 6= s.
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In fact, this is another condition for N : It must be possible to choose a basis G̃ =[
g1 . . . gt

]
of N(N ) such that the s× t upper block of G̃ has a rank di�erent from s.

If s = 1, the matrix G degenerates to a row vector g and (4.30) holds if we set
F = g/(g , g)2. This can be done since g 6= 0 , which follows from the fact that N(A)
has to be a proper subset of N(Ad). Consequently, if s = 1, it is not possible to
construct a matrix A with the desired properties.
On the other hand, s > 1 means that dim N(Ad) ≥ dim N(A) + 2. In other words,

N must at least consist of a three-dimensional Jordan block or of two two-dimensional
Jordan blocks. This explains, why the smallest possible example is four-dimensional.
Evidently, if t < s, the rank of G ∈ Cs×t is always smaller than s. The example

given below is also of this type. It remains an open question whether there exists an
example with t ≥ s. The condition t < s can be formulated more comprehensibly
as follows: The nullspace of Ad has to be large in comparison with the nullspace of
A. More precisely, the dimension of N(Ad) has to exceed twice the dimension of the
nullspace of A.

Example 4.4.14. We now construct an example A ∈ R4×4 as described above. For the
nilpotent part of A we choose the 3× 3 Jordan block

N =

0 1 0
0 0 1
0 0 0

 .

The regular component is simply C =
[
1
]
. This implies index(A) = 3 and r =

rank(A3) = 1. Obviously, N(A∗) is spanned by the last unit vector, in particular; t = 1
and consequently s = n − r − t = 2. Thus we have SH

X =
[
0 0

]
and SY =

[
1
]
. The

latter means that we can choose any vector of unit norm as the basis Y . Let

Y =


1
0
0
0

 , U =


0
1
0
0

 and V =


0 0
0 0
1 0
0 1

 .

The nullspace of N is spanned by the �rst unit vector, which yields in G =

[
1
0

]
. A

nonzero M with MG = O is given by M =
[
0 1

]
and thus

X = Y SH
X + V + UM =


1
0
0
0

 [0 0
]
+


0 0
0 0
1 0
0 1

+


0
1
0
0

 [0 1
]

=


0 0
0 1
1 0
0 1

 .
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Putting all together, we obtain the matrix

A =


0 0 0 0
1 1 0 −1
0 0 0 1
1 0 0 0


which has the desired properties.

4.5 Stability and Continuity of the Krylov Solution

Consider the operator KMR : H → H, which assigns to an initial residual r its Lth
MR Krylov correction with respect to a �xed linear operator A:

KMRr = cMR
L = AKL(A,r)r .

For simplicity we assume that H is �nite dimensional. Thus KMR is well de�ned on
H. Since L, the degree of the minimal polynomial of r with respect to A, is not
continuous as function of r , we cannot expect that KMR is a continuous operator. On
the other hand, for regular A it is known that KMR = A−1 is linear. More generally,
from Theorem 4.3.5 we conclude that KMR = AD on R(Ad), i. e., KMR is continuous
on R(Aindex(A)).
Example 4.5.1. Consider the matrix

A =

0 1 0
0 0 1
0 0 0


and the initial residual r =

[
0 1 ε

]>
. For ε = 0 we have L = index(r ,A) = 2 and

H2 =

[
0 0
1 0

]
, K2(A, r) = span{

0
1
0

 ,

1
0
0

},
i. e., a singular breakdown in step 2. The previous correction is cMR

L−1 = cMR
1 = 0 , which

is also the subspace inverse solution, i. e., the MR approximation in the Krylov space
K2(A, r) with minimal norm, so that cMR

L = cMR
2 = 0 .

If ε 6= 0, in exact arithmetic we get L = index(r ,A) = 3 and K3(A, r) = H = R3.
Thus, the subspace inverse coincides with the Moore-Penrose inverse and yields

cMR
L = cMR

3 =

0 0 0
1 0 1
0 1 0

0
1
ε

 =

0
0
1


with residual norm |ε|. The previous Krylov approximation cMR

L−1 with the same residual

is cMR
2 =

[
−1/ε2 0 1

]>
. Note further that η3,2 = ‖(I − PV2)A

2r‖ = O(ε2).
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This shows, that KMR may be non-continuous in exact arithmetic and the computa-
tion may become unstable in presence of roundo� errors.
Due to the growing computational and storage requirement for larger correction

spaces in practice a restart strategy is often used: After a �xed number m of steps in
algorithm (3.14) the calculated basis of Vm is discarded and the procedure is restarted
with the current iterate xm as the initial guess (cf. [60]).
In terms of polynomials and Krylov subspaces this means, that we have formed

rm = b − Axm = r0 − Aqm−1(A)r0 = pm(A)r0 with respect to Km(A, r0) and then
continue the MR approximation process with Cj = Kj(A, rm), j = 1, 2, . . . . With
regard to our results about the role of the index one may ask, when index(rm,A) = 0
holds true. Unfortunately, this is only possible if index(r0,A) = 0 since the residual
polynomial satis�es the normalization condition pm(0) = 1 (cf. [64]). On the other
hand, if the restart index m is smaller then the termination index L (which is the
typical case in practice), we will never be annoyed with a singular breakdown. This
seems to be good news, but we can not expect that the residuals of the restarted method
converge to zero unless r0 ∈ R(Aindex(A)).
To add insult to injury, due to round-o� errors we may end up with a nonzero index

even if the initial residual satis�es r0 ∈ R(Aindex(A)) or, equivalently, index(r0,A) = 0.
This problems can be resolved if a projection on R(Aindex(A)) is known. For

index(A) = 1 this was also observed by Brown and Walker (cf. [7, p. 44]). An ap-
plication of this kind of stabilizing Krylov methods is given in Section 5 in context of
Markov chains.

4.6 Krylov Subspace Methods for Drazin Inverse Solutions

We have already seen in Section 4.3 that Krylov subspaces are closely related to the
Drazin inverse of A. Thus, an obvious idea is to use MR and OR methods with Krylov
subspaces to approximate the Drazin inverse solution of (3.1). The basic idea is to
force all computations into R(Ad). Corollary 4.2.12 shows that this can be done by
multiplying all relevant quantities by Aq, q = index(r0,A). Of course, this is only
possible if q itself or at least an upper bound for it, such as d = index(A), is explicitly
known.
The simplest case arises for d = 1 (for example, if A is symmetric or skew-symmetric),

then one additional multiplication with A su�ces. For b ∈ R(A) even this is not
necessary (cf. Proposition 4.4.5). If the linear system is symmetric (but inconsistent)
the analysis of the resulting method bene�ts additionally from the fact R(A) ⊥ N(A)
(cf. [26]).
Unfortunately, in general a simple bound for q is not available. Clearly, for operator

equations of �nite rank, namely for n × n matrices, an overall bound for q or d is
always given by the dimension n. But the use of this knowledge is limited by the
computational e�ort for large systems and since the method becomes ill-conditioned:
The condition number of Ak increases of one power per each multiplication with A.
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To describe the general approach in details, suppose we know an upper bound of q.
Since R(Ad) is A-invariant, without lost of generality we can base our considerations
on q itself. Instead of solving (3.1) directly we consider the system

AqAx = Aqb. (4.31)

Given an initial guess x0 the corresponding residual is now Aqb −AqAx0 = Aqr0. The
correction spaces have to be chosen such that Cm ⊆ R(Ad). This can be done by

Cm := span{Aqr0, . . . ,A
q+m−1r0} = Km(A,Aqr0).

The corresponding approximation and residual spaces are

Wm = Aq+1Cm = Km(A,A2q+1r0) and

Vm+1 = span{Aqr0}+ Wm = span{Aqr0,A
2q+1r0, . . . ,A

2q+mr0}
.

Since the index of Aqr0 with respect to A is zero, a singular breakdown can never
occur. In the same manner as (4.16) one can prove that

L− q = min{m : Km(A,Aqr0) = Km+1(A,Aqr0)}
= min{m : ADr0 ∈ Km(A,Aqr0)},

where L is the degree of the minimal polynomial of r0 with respect to A.
The Gram-Schmidt-Arnoldi algorithm supplies the decomposition

Aq+1Cm = Vm+1H̃m,

where Vm+1 =
[
v1 . . . vm

]
is an orthonormal basis of Vm with v1 = Aqr0/β (β :=

‖Aqr0‖). Since we solve (4.31) the MR correction cMR
m = CmyMR

m have to minimize

‖AqrMR
m ‖ = ‖Aqr0 − Aq+1cMR

m ‖ = · · ·
· · · = ‖Vm+1βu

(m+1)
1 − Aq+1CmyMR

m ‖ = ‖βu
(m+1)
1 − H̃myMR

m ‖,

which can be solved by the usual QR factorization. xMR
m = x0 +cMR

m and cMR
m ∈ R(Ad)

implies that

(I − AAD)xMR
m = (I − AAD)x0 and

(I − AAD)rMR
m = (I − AAD)r0 = (I − AAD)b − A(I − AAD)x0.

For m = L− q we know that cL−q = ADr0 is a suitable correction for which

rL−q = r0 − AcL−q = (I − AAD)r0

and hence AqrL−q = 0 . The corresponding iterate is

xL−q = x0 + ADr0 = ADb + (I − AAD)x0.

Methods of this type are proposed by Sidi, namely DGCR [61], DBi-CG [62] and
D-GMRES [63]. Here, the �D� in front of the abbreviated method name stands for
�Drazin�.
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The investigation of Markov chains with large �nite state space often requires the
solution of large sparse singular linear systems. Problems of this type arise, e. g., in the
analysis of telecommunication systems (cf. [31]) and computers and computer networks
(cf. [21]), or ranking of web pages in the search engine Google (cf. [42, 43]). Modeling
techniques for this problems include queuing networks (cf. [8]), stochastic Petri nets
(cf. [3, 2]), Markovian process algebras (cf. [10, 9]) and stochastic automata networks
(cf. [11]). There are several software tools for a computer-based speci�cation of Markov
models, for example [37, 36, 65, 48].
All kinds of iterative methods for solving linear systems has been proposed to com-

pute stationary probability distributions (see, e. g., [54, 67, 51, 12]). The multilevel-kind
aggregation/disaggregation methods (cf. [69, 49, 13]) and preconditioned MR Krylov
methods (cf. [58, 59, 29]) seem to be the most promising numerical algorithms. Pre-
conditioners can often bene�t from the special structure of the Markov model or the
underlying state space (cf. [15, 16, 17]). Krylov subspace methods are also suitable for
computing transient solutions of continuous-time Markov chains (cf. [55, 67]).
In this section we give a short introduction into Markov chains. We concentrate

ourselves on the continuous-time homogeneous Markov chains with �nite state space
and explain how the essential properties may be derived in a purely analytical and
matrix algebraic context.

5.1 De�nitions and Motivations from Stochastics

We regard a continuous-time stochastic process X(t) with �nite or countable state space
S. To be precise, {X(t) | t ∈ T} is a family of random variables on a probability space
(Ω, F, Pr {·}) with values in S. The sample space Ω is arbitrary, F is a sigma algebra
whose elements are subsets of Ω and sometimes called events. Pr {·} : F → [0, 1]
is a probability measure. For each �xed t ∈ T the mapping ω 7→ X(t, ω) = X(t)
is a measurable function, i. e., the pre-images {ω |X(t, ω) = i} = {X(t) = i} are
measurable sets for all i ∈ S. Thus, we can measure probabilities such as Pr {X(t) = i}
or Pr {X(s) = x(s)} (with a deterministic function x : T → S).
We denote the states by positive integers, S = {1, 2, . . . }. We will refer to the

parameter set T = [0,∞) as time, an element s ∈ T is a moment or time instant and
for the moments s, s + t ∈ T we refer to t as the period between them.
In other words, X(t) is a random function. For every �xed ω ∈ Ω the (deterministic)

function t 7→ X(t, ω) = X(t) is a realization of the stochastic process (also called
a sample path or trajectory). Under relatively weak regularity conditions one may

63
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conclude, that the sample paths of a stochastic process are piecewise constant functions
(step functions).1 For simplicity we will assume here all stochastic processes to be jump
processes, such that the realizations are right continuous step functions.
The jumps are often called events or transitions of the process. We say that an event

happens at time s ∈ T if the considered realization makes a jump at s. The event is
said to be the transition from state i to state j if X(s) = j and X(t) = i for t < s in
the neighborhood of s. The probability of being in state j at time s is Pr {X(s) = j}.
Similarly, Pr {X(t) = i, X(s) = j} is the joint probability that the process is in i at
time instant t and in j at s. Moreover, we will use conditional probabilities, de�ned
as usual by Pr {X(s) = j | X(t) = i} = Pr {X(t) = i, X(s) = j} / Pr {X(t) = i}. For
t < s this may be interpreted as the probability that the process stays in j after time
s given that it was in state i at the previous moment t.
As common in Markov chain literature, we use row vectors for distributions and

denote them by (bold) small Greek letters. The state space distribution or state distri-
bution of the process at time t is the vector

π(t) :=
[
Pr {X(t) = i}

]
i∈S

=:
[
πi(t)

]
i∈S

.

The ith entry πi(t) of π(t) is the probability, that the process is in state i at the time
t. For each �xed t ∈ T the vector π(t) forms a probability distribution over the state
space S. Thus it satis�es the normalization conditions

0 ≤ πi(t) ≤ 1 and
∑
i∈S

πi(t) = 1,

or, denoting by 1 :=
[
1 . . . 1

]>
the column vector of suitable dimension with all entries

equals 1,
π(t) ≥ 0> and π(t)1 = 1. (5.1)

Here and henceforth inequalities between vectors or matrices are interpreted as inequal-
ities in each component.
Comparing π(t) with the sample paths of a process, we should note the di�erent

view-points regarding a stochastic process: At each point of the time scale we have a
probability distribution on the state space which describes the stochastic behavior of
the process at this moment. If we take for each moment t ∈ T a realization of these
state distributions we get a deterministic function (or sequence) which is a realization
of the entire process.

Example 5.1.1 (Homogeneous Poisson process). The Poisson process with intensity λ >
0 is a stochastic process X(t) with state space S = {0, 1, 2, . . . } having stochastically

1 This is not true in general, even not for Markov processes. Many Markov chain books (cf. [19, 28,
27]) are in great parts devoted to the construction of such �pathological� examples. However, all
those example seems to require a countable in�nite state space.
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independent increments distributed as

Pr {X(t)−X(s) = n} =
[λ(t− s)]n

n!
e−λ(t−s)

for n = 0, 1, 2, . . . and s < t. Evidently we have X(s) ≤ X(t) for s ≤ t and a natural
normalization is the assumption that the process starts at X(0) = 0. The process is
called homogeneous or stationary since the distribution of the increments depends only
on the di�erence t− s.
The sample paths of X(t) are non-decreasing step functions and the heights of their

jumps are equal to 1 (which implies that the Poisson process is a so called simple point
process). For each state n let Tn denote a real valued random variable distributed as
Pr {X(t) = n}, i. e., Pr {Tn ≤ t} = Pr {X(t) = n}. These jump times form an increas-
ing sequence (Tn)n≥0 of random variables, i. e.,

T0 := 0 < T1 < T2 < · · · < Tn < . . . , lim
t→∞

Tn = +∞.

The times Yn = Tn+1 − Tn between subsequent jumps are independent, identically
distributed random variables with the exponential distribution

Pr {Yn ≤ t} = 1− e−λt.

If we consider a time interval [s, t] in which exactly one jump occurs at the moment
s + T then the random time T is uniformly distributed over this interval, i. e.,

Pr {T ≤ h|X(t) = n, X(s) = n− 1} =
h

t− s
.

Therefore, the Poisson process can be seen as the most random stochastic process. It
is in some sense the best model for an unordered and rather unpredictable sequence of
events in continuous time.

Example 5.1.2 (Discrete time homogeneous Markov chain). Let P̂ =
[
p̂i,j

]n
i,j=1

denote

an n× n row stochastic matrix, i. e., P̂ ≥ 0 and P̂1 = 1 (cf. De�nition 5.2.1).
We de�ne a discrete time stochastic process by the following recursive construction:

Under the condition, that the process is in state i in the `th step, the distribution in
the next step ` + 1 is given by the ith row of P̂ . In other words, p̂i,j is the conditioned
probability of reaching state j in the next step if the chain stays in state i, in formulas:

Pr {X`+1 = j | X` = i} = p̂i,j.

The entries p̂i,j are called transition probabilities and P̂ is the (one-step) transition
probability matrix. The process is homogeneous since the transition probabilities do
not depend on `.
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The probability, that the process is in state i after ` steps is given by the ith entry
of the vector

π` := π0P̂
`, ` ≥ 0,

where π0 denotes a given initial distribution vector. The entries of P̂ ` are the `-
step transition probabilities. The sequence of random variables (X`)`≥0, where X` has
the probability distribution π`, uniquely de�nes a stochastic process with state space
S = {1, 2, . . . , n}.
Both processes in the examples above are memoryless in the sense, that the state after

a jump depends only on the preceding state right before the jump. This is characteristic
for Markov processes.

De�nition 5.1.3 (Markov Property). Let X(t) be a (continuous-time) stochastic pro-
cess with �nite or countable state space S. The process is said to be Markovian if one
of the following equivalent conditions holds:

� For all s, t ≥ 0 and nonnegative integers i, j, x(u) there holds

Pr {X(s + t) = j | X(s) = i, X(u) = x(u), 0 ≤ u ≤ s}
= Pr {X(s + t) = j | X(s) = i} .

� For any combination of states i, j, i1, . . . , ik ∈ S and times 0 ≤ s1 < · · · < sk < s,
t > 0 there holds

Pr {X(s + t) = j | X(s) = i, X(s1) = i1, . . . , X(sk) = ik}
= Pr {X(s + t) = j | X(s) = i} . (5.2)

� For all s, t, h ∈ T with 0 ≤ s < t < h and i, j, k ∈ S there holds

Pr {X(s) = i, X(h) = k | X(t) = j}
= Pr {X(s) = i | X(t) = j}Pr {X(h) = k | X(t) = j} .

A stochastic process with �nite or countable state space satisfying one of these prop-
erties is called a Continuous-Time Markov Chain (CTMC).
The Markov chain is said to be homogeneous (time-stationary) if the right-hand side

Pr {X(s + t) = j | X(s) = i} of the equations above is independent of s.

The �rst two conditions express that the next possible event depends only on the
directly preceding state and is independent from all other previous states. The third
characterization may be paraphrased as: Given the present X(t), the past X(s) and
the future X(h) of the process are stochastically independent (cf. [6, Theorem 4.1]).
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For a homogeneous CTMC with �nite state space we collect the transition probabil-
ities

pi,j(t) := Pr {X(s + t) = j | X(s) = i} = Pr {X(t) = j | X(0) = i} , i, j ∈ S,

in a matrix
P(t) = [pi,j(t)]i,j∈S,

which is called the transition function of X(t). For each i ∈ S the row
[
pi,j(t)

]
j∈S

constitute a probability distribution over S (this follows from the Markov property and
the conservation law of probability). Thus it satis�es the normalization condition∑

j∈S

pi,j(t) = 1,

moreover, since the entries are probabilities, they lie between 0 and 1. In matrix form
we have

P(t) ≥ O , P(t)1 = 1 . (5.3)

This identi�es P(t) as a stochastic matrix (cf. De�nition 5.2.1). It is sometimes useful
to deal with transition functions, which do not satisfy this condition in full strength, for
example, if we derive a process from another process by excluding some states. Even
then the transition function satis�es P(t) ≥ O and P(t)1 ≤ 1 . The Markov chain (or
rather the transition function) is said to be honest if there holds (5.3) and is said to be
dishonest otherwise. Note that it is simply possible to make a dishonest Markov chain
honest by adding an auxiliary state (cf. [1, Proposition 1.1]).
An often useful fact is, that a CTMC is associated with a family of discrete time

Markov chains: For each �xed τ > 0 consider the stochastic matrix P(τ), which gener-
ates a discrete time Markov chain as described in Example 5.1.2. This chain is called
the τ -skeleton of X(t).
The initial distribution π(0) =

[
πi(0)

]
i∈S

, where πi(0) = Pr {X(0) = i}, together
with the transition function completely describes the stochastic behavior of a CTMC:
Using the law of total probability one easily deduces

π(t) = π(0)P(t). (5.4)

Thus, the state distribution of the process for any time t is determined by the matrix
function P(t) and the initial guess π(0). Note that (5.3) guarantees that the normal-
ization (5.1) is satis�ed for all t > 0 whenever it holds for t = 0.
An important subclass of Markov chains are irreducible CTMCs: The Markov chain

is called irreducible, if there is a positive probability to reach each state starting in any
other state. Equivalently, this can be expressed in terms of the transition probabilities
P(t) =

[
pi,j(t)

]
i,j∈S

: The Markov chain is irreducible if and only if for any states i, j,
i 6= j, there exists an t > 0 such that pi,j(t) > 0.
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If a (nontrivial) row vector π̃  0> is such that

π̃P(t) = π̃ for all t ∈ T, (5.5)

it is called invariant or stationary. A stationary distribution additionally satis�es the
normalization condition (5.1). If the state space is �nite, any given stationary vector
π̃ can be easily normalized by π̂ := π̃/(π̃1 ). The process X(t) exhibits time-constant
state distributions if the initial distribution is stationary, i. e., π(t) = π(0) = π̂. In
the analysis of a Markov chain the question of existence and uniqueness of a stationary
distribution naturally arise.
At �rst glance, the description of a CTMC as given in (5.4) appears not as satisfactory

as for discrete time Markov chains (cf. Example 5.1.2), where a constant matrix su�ces
to specify the process. Instead, we have to deal with a matrix of functions. A deeper
study of the transition function is therefore required.
As a consequence of the Markov property, the transition function satis�es the

Chapman-Kolmogorov equation

P(t + s) = P(t)P(s),

which shows that the functions forming P(t) are tightly coupled with each other.
In applications of Markov theory an urgent question is the long term behavior of the

process. The Markov chain is called ergodic if there exists a limit distribution

π := lim
t→∞

π(t) = π(0) lim
t→∞

P(t), (5.6)

which is independent from the initial distribution π(0) and, additionally, is strictly
positive, i. e., π > 0>. Since the limit in (5.6) is independent of π(0) we may substitute
the columns of the identity matrix one after the other for π(0) on the right hand side
and conclude that lim

t→∞
P(t) has all rows equal to π, i. e.,

lim
t→∞

P(t) = 1π =: Π .

A simple calculation using the Chapman-Kolmogorov equation shows, that the limit
distribution satis�es πP(t) = π for all t ∈ T. Thus, if the limit distribution exists, it
is stationary (cf. (5.5)).
Two other properties of the transition function not yet mentioned are

lim
t→0

P(t) = P(0) = I .

The rightmost equality means, that a transition cannot take place in zero time. The
continuity is justi�ed by our assumption, that the realizations are right continuous
functions. A Markov chain respectively the transition function is called standard if
P(t) is right continuous at zero.
The further study of Markov chains can be based on the properties of the transition

function only without any reference to the stochastic origin of the problem. Before we
continue with it, we recapitulate some background from matrix analysis.
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5.2 Stochastic Matrices and Singular M-Matrices

We summarize here some well known concepts from matrix analysis and quote the main
results in a form appropriate for our subsequent considerations.

De�nition 5.2.1. A real matrix is called substochastic if the entries are nonnegative
and each row sum is bounded by 1, in formulas:

A =
[
ai,j

]n
i,j=1

∈ Rn×n, 0 ≤ ai,j ≤ 1,
n∑

j=1

ai,j ≤ 1 for all i and j.

If equality holds in the last equation we call A (row) stochastic.

In matrix notation, the real matrix A is (sub)stochastic if and only if

A ≥ O and A1 = 1 (A1 ≤ 1 ). (5.7)

With regard to the notation we remind that inequalities between matrices are inter-
preted as inequalities in each component and 1 denotes the column vector of suitable
dimension containing 1 in each component. Moreover, we denote by ρ(A) the spectral
radius of A.
Stochastic and substochastic matrices have many algebraic properties, which often

stem from the fact that these matrices are in particular nonnegative and we can apply
the Perron-Frobenius theory. We start, however, with a very basic result concerning
the location of eigenvalues.

Proposition 5.2.2. If A ∈ Rn×n is substochastic there holds ρ(A) ≤ 1. Equality holds
if A is a stochastic matrix and then ρ(A) = 1 is an eigenvalue of A and, moreover,
there exists an nonnegative left eigenvector corresponding to 1.

Proof. If A1 = 1 , then obviously 1 is an eigenvalue of A. The main assertion now
follows from (5.7) and Ger²gorin's Theorem (cf. [39, Theorem 6.1.1]). The existence of
a nonnegative left eigenvector of a stochastic matrix follows from [39, Theorem 8.3.1]
applied to A>.

The main results of the Perron-Frobenius theory can be stated for irreducible matri-
ces.

De�nition 5.2.3. A matrix Q ∈ Cn×n, n > 1, is called reducible if there is some
permutation matrix T and some integer r, 0 < r < n, such that

T>QT =

[
A B
O C

]
with A ∈ Cr×r, B ∈ Cr×(n−r), C ∈ C(n−r)×(n−r) and a zero matrix O ∈ C(n−r)×r. The
matrix Q is called irreducible if it is not reducible (cf. [39, p. 360]).
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We shall need the following characterization of irreducibility.

Theorem 5.2.4. A matrix Q ∈ Cn×n is irreducible if and only if the following condition
is satis�ed:
For every pair of distinct indices i, j there is a sequence of distinct integers k1 =

i, k2, k3, . . . , km−1, km = j, such that all of the matrix entries qk1,k2 , qk2,k3 , . . . , qkm−1,km

are nonzero.

Proof. See [39, De�nition 6.2.7 and Theorem 6.2.24].

Directly from the de�nition we have the following corollaries.

Corollary 5.2.5. Let A,B ∈ Cn×n with A =
[
ai,j

]n
i,j=1

and B =
[
bi,j

]n
i,j=1

. If there

holds for all i and j, i 6= j, that

ai,j = 0 ⇐⇒ bi,j = 0,

then A is irreducible if and only if B is irreducible.

Corollary 5.2.6. Let A ∈ Cn×n. Then A is irreducible if and only if A> is irreducible.

The main result about irreducible stochastic matrices guarantees the existence and
uniqueness of a positive left eigenvector corresponding to the spectral radius.

Theorem 5.2.7. Suppose that P ∈ Rn×n is stochastic and irreducible. Then 1 is
an algebraically (and hence geometrically) simple eigenvalue of P and there exists a
positive left eigenvector π corresponding to the eigenvalue 1, i. e., πP = π, π > 0>.

Proof. Note that the spectral radius of a stochastic matrix equals 1 (see Proposi-
tion 5.2.2) and apply [39, Theorem 8.4.4, page 508] to P>.

If P is not irreducible, still the following holds:

Theorem 5.2.8. The stochastic matrix P possesses a positive left eigenvalue corre-
sponding to ρ(P) = 1 if and only if

TPT> =


P1,1 O . . . O
O P2,2 . . . O
...

. . .
...

O . . . O Pm,m

 , (5.8)

where T ∈ Rn×n is a permutation matrix and each diagonal block Pj,j is irreducible
with ρ(Pj,j) = 1 (i. e., the diagonal blocks are itself stochastic).

Proof. Noting the fact, that a row stochastic matrix has a positive right eigenvector
corresponding to its spectral radius (namely 1 ), the assertion follows from [5, Theo-
rem 2.3.14].
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We continue with some some de�nitions and results concerning M-matrices.

De�nition 5.2.9. A matrix T ∈ Rn×n is said to be semiconvergent whenever

lim
k→∞

T k exists.

Proposition 5.2.10. Assume that P =
[
pi,j

]n
i,j=1

is a stochastic matrix and consider

the conditions

(a) P is semiconvergent;

(b) P has only one eigenvalue of maximum modulus
(that is, 1 is the only eigenvalue with modulus 1);

(c) pi,i > 0 for all i = 1, . . . , n.

Then the following implication chain holds:

(c) =⇒ (b) =⇒ (a).

Proof. See, e. g., [41, Hauptsatz 3.10, p. 101].

De�nition 5.2.11. Any matrix A ∈ Rn×n of the form

A = σI − B , σ > 0, B ≥ O , (5.9)

for which σ ≥ ρ(B), is called an M-matrix. A is a singular M-matrix if σ = ρ(B).

De�nition 5.2.12. An M-matrix A is said to have �property c� if the splitting (5.9)
can be chosen such that the matrix B/σ is semiconvergent.

Proposition 5.2.13. An M-matrix A has �property c� if and only if index(A) ≤ 1.

Proof. See [5, Lemma 4.11, p. 153].

5.3 Semigroups of Stochastic Matrices

Let P(t) ∈ Rn×n, t ≥ 0 denote a family of matrices which satis�es

P(0) = I and (5.10)

P(s + t) = P(s)P(t) for all s, t ≥ 0. (5.11)
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Thus, {P(t) | t ≥ 0} is a semigroup with identity element I and it is a subsemigroup
of the multiplicative semigroup of real matrices. Equation (5.11) is sometimes referred
to as semigroup property. We will claim various additional properties on P(t), such as
non-negativity, (a special kind of) boundedness, or continuity:

P(t) ≥ O for all t ≥ 0, (5.12)

P(t)1 ≤ 1 for all t ≥ 0, (5.13)

lim
h→0

P(t + h) = P(t) for t, h ≥ 0.

It can be proved that a semigroup is continuous if and only if it is continuous at the
origin:

lim
h→0

P(h) = I . (5.14)

The conditions (5.12) and (5.13) clearly imply that P(t) is a substochastic matrix for
any t ≥ 0 (and thus the entries of P(t) are bounded by 1). The semigroup is said
to be stochastic if P(t)1 = 1 for all t ≥ 0 (i. e., if P(t) is a stochastic matrix) and
substochastic if at least (5.13) holds.2 In memory of their role in the Markov chain
realm, a semigroup satisfying (5.10)�(5.13) is called a transition semigroup. If it is
(right) continuous, P(t) is called a standard semigroup.
Semigroups of substochastic matrices have many interesting properties.

Proposition 5.3.1. Let P(t) =
[
pi,j(t)

]n
i,j=1

denote a transition semigroup. Then:

(i) the components of the vector P(t)1 are nonincreasing functions of t;

(ii) if P(t) is a stochastic matrix for some t > 0, it is stochastic for all t ≥ 0.

For any �xed i = 1, . . . , n there holds:

(iii) 0 ≤
n∑

j=1
j 6=i

pi,j(t) ≤ 1− pi,i(t) for all t ≥ 0;

(iv) limh→0 pi,i(h) = 1 implies (5.14).

If P(t) is standard we have additionally:

(v) pi,i(t) > 0 for all t ≥ 0;

(vi) if pi,i(t) = 1 for some t > 0, then pi,i(t) = 1 for all t ≥ 0
(moreover, by (iii), pi,j(t) = 0 for all j 6= i and t ≥ 0);

2Some authors call the semigroup �honest� or �dishonest� likewise the Markov chain.
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(vii) |pi,j(t + h)− pi,j(t)| ≤ 1− pi,i(|h|), for t ≥ 0 such that −h < t, that is the entry
functions of P(t) are uniformly continuous.

Proof. The above results can be found, e. g., in Anderson's book (cf. [1, Proposi-
tions 1.1.2 and 1.1.3]).

The main result is about di�erentiability of the semigroup, which follows from the
uniform continuity.

Theorem 5.3.2. The standard transition semigroup P(t) possesses a �nite derivative
on [0,∞), which satis�es

P ′(t) =
d

d t
P(t) = QP(t) = P(t)Q , (5.15)

where Q := P ′(0) is the derivative at the origin. The unique solution of this system of
di�erential equations with initial condition P(0) = I is given by:

P(t) = etQ =
∞∑

k=0

tk

k!
Qk. (5.16)

De�nition 5.3.3. The matrix Q = P ′(0) is called the in�nitesimal generator of the
semigroup P(t). The di�erential equations P ′(t) = P(t)Q and P ′(t) = QP(t) in (5.15)
are known as Kolmogorov forward and Kolmogorov backward equation, respectively.

Proof. Let S (τ) :=
∫ τ

0
P(t) d t, where the integral is de�ned for each scalar component.

Our �rst objective is to show that S(τ) is invertible for su�ciently small τ > 0. This
is certainly true if ‖I − τ−1S (τ)‖ < 1 in some matrix norm ‖·‖. One may accept the
claim that this holds for any matrix norm since P(t) is uniformly continuous (cf. (vii) in
Proposition 5.3.1). A more detailed and elementary proof is given here: Let c ∈ (1

2
, 1)

be �xed. Then we choose an τ > 0 su�ciently small so that pi,i(t) > c for all i and
0 < t < τ . This is possible since pi,i(0) = 1 and since pi,i(t) is uniformly continuous
with respect to t (and even so, with respect to i, however, this is trivial, since there
are only �nitely many i's). Take as ‖·‖ the maximum row sum norm. Then we have

‖I − τ−1S (τ)‖ =
n

max
i=1

n∑
j=1

∣∣∣∣δi,j −
1

τ

∫ τ

0

pi,j(t) d t

∣∣∣∣
=

n
max
i=1

(∣∣∣∣1− 1

τ

∫ τ

0

pi,i(t) d t

∣∣∣∣+ 1

τ

∑
j 6=i

∫ τ

0

pi,j(t) d t

)
,

where we may omit the absolute value in the left term, since 1
τ

∫ τ

0
pi,i(t) d t ≤ 1. The

term on the right can be estimated using (iii) of Proposition 5.3.1 as

1

τ

∫ τ

0

∑
j 6=i

pi,j(t) d t ≤ 1

τ

∫ τ

0

(1− pi,i(t)) d t = 1− 1

τ

∫ τ

0

pi,i(t) d t.
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Thus we get

‖I − τ−1S (τ)‖ ≤ n
max
i=1

2

(
1− 1

τ

∫ τ

0

pi,i(t) d t

)
≤ n

max
i=1

2 (1− c) < 1

The two rightmost inequalities follow from the choice of τ and c: On the one hand,
pi,i(t) > c for all t ∈ (0, τ) implies

∫ τ

0
pi,i(t) d t ≥ τc, on the other hand, 1− c < 1

2
since

c ∈ (1
2
, 1). Now, using (5.11), we write

1

h
(P(h)− I )

∫ τ

0

P(t) d t =
1

h

(∫ τ

0

P(t + h) d t−
∫ τ

0

P(t) d t

)
.

We manipulate the integrals, the �rst by substituting s = t+h, the second by splitting
at h, and then reorganize the sum to obtain integration intervals of length h. Due to
the invertibility of S (τ) we �nally get

1

h
(P(h)− I ) =

(
1

h

∫ τ+h

τ

P(t) d t− 1

h

∫ h

0

P(t) d t

)(∫ τ

0

P(t) d t

)−1

.

Letting h → 0 in each component shows that P ′(0) exists and all entries are �nite,
namely

Q :=
d

d t
P(t)

∣∣∣∣
t=0

= (P(τ)− I )

(∫ τ

0

P(t) d t

)−1

. (5.17)

Using (5.11) again, we write

P (t + h)− P (t)

h
= P (t)

P (h)− I

h
=

P (h)− I

h
P (t).

Taking (in each component) limits h → 0 yields the di�erential equations (5.15). Ex-
istence and uniqueness of the solution (5.16) are common result on systems of linear
di�erential equations (cf. [40, p. 432]).

Remark 5.3.4. Semigroups may be studied in a more abstract setting, where P(t) is
a family of bounded operators on a Banach space S. This is done, e. g., by Pazy in
[53], where the above proof of the existence and �niteness of the derivative Q = P ′(0)
was found (cf. [53, Theorem 1.1.2]). We restated it here mainly because it yields the
remarkable formula (5.17).
This formula provides an expression for Q in terms of a parameter τ , that has to

be chosen su�ciently small. In terms of the Markov process, �su�ciently small� means
that the probability of leaving the current state within any time interval smaller then
τ is exceeded by the probability of staying in the current state, regardless which one
the current state is. Roughly speaking, the process makes probably no jump within a
period of length τ .
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In Markov chain literature the results of Theorem 5.3.2 are commonly proved in a
setting which covers the case of countable many states too and allows in�nite values
for the derivatives (cf. [1, 6, 19, 28, 70]).
The usual proof can be sketched as follows: Show that qi := limt→0(1 − pi,i(t))/t

exists, but may be in�nite. Then show that qi,j := limt→0 pi,j(t))/t for i 6= j exists and
is always �nite. Assume that all qi are �nite (or justify this by an auxiliary argument
like ��nite state space�) and prove the remaining assertions.
The di�erentiability of pi,i(t) at 0 is proved by regarding the subadditive function

h(t) := − log(pi,i(t)), which satis�es limt→0 h(t) = 0. A common lemma on such
functions says that the limit qi = limt→0 h(t)/t exists and coincides with supt>0 h(t)/t,
but it may be +∞ (for details see [6, Theorem A.1.11 and Theorem 8.2.1] or [70,
Lemma 8.3.1 and Proposition 8.3.2]). This proof does not require that the matrices
P(t) are neither stochastic nor substochastic (cf. [1, Lemma 1.2.1 and Proposition
1.2.2]).
The existence and �niteness of the derivative p′i,j(0) for all i 6= j is usually proved

using a �stochastic argument�: One considers the discrete time Markov chain generated
by the matrix P(τ) with an appropriate chosen τ > 0 (the τ -skeleton). Details may
be found in [70, Proposition 8.3.3] or [6, Theorem 8.2.1]. Chung [19, Theorem II.2.6]
additionally remarks that the stochastic background is merely for sake of motivation.
Freedman [28] shows that the proof even holds for a substochastic semigroup by pre-
viously constructing a discrete time Markov chain from a substochastic matrix.
Comparing the proofs one also observes, that some details are apparently similar.

For example, the choice of an t such that pi,i(t) > c > 1
2
appears in the same manner

in the beginning of Todorovic's proof ([70, p. 208], see also [6, p. 334]).

Next, we state some properties of the derivative Q = P ′(0).

Corollary 5.3.5. Denote by Q =
[
qi,j

]n
i,j=1

the in�nitesimal generator of a standard

transition semigroup P(t). There holds

(i) Q1 ≤ 0 , where equality holds if P(t) is stochastic;

(ii) qi := −qi,i ≥
n∑

j=1
j 6=i

qi,j with equality holding if P(t) is stochastic;

(iii) qi,j ≥ 0 for all i 6= j and hence qi ≥ 0;

(iv) pi,i(t) ≥ e−qit ≥ 1− qit for all t ≥ 0;

(v) qi = 0 if and only if pi,i(t) = 1 for all t ≥ 0.

Proof. According to Proposition 5.3.1, (i), the components of P(t)1 are nonincreasing
functions of t. Thus, their derivatives are non-positive. Letting t = 0 we get by (5.15)

0 ≥ d

d t
P(t)1

∣∣∣∣
t=0

= P(0)Q1 = Q1 ≥ QP(t)1 =
d

d t
P(t)1 ,
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where we used (5.12) and again (5.15) for the rightmost relations. Therefrom we derive
(i) and (ii).
A closer look at the limits constituting the derivative P ′(0) = Q =

[
qi,j

]n
i,j=1

yields

qi,j = lim
t→0

(pi,j(t))/t ≥ 0 for i 6= j and (5.18)

qi,i = lim
t→0

(pi,i(t)− 1)/t ≤ 0, (5.19)

which proves (iii).
For a proof of the remaining parts we refer to [1, Proposition 1.2.2].

The special structure of Q is remarkable since it implies a representation in terms of
a (sub)stochastic matrix.

Proposition 5.3.6. The in�nitesimal generator Q of a continuous (sub)stochastic
semigroup P(t) can be written as

Q = λ(P̂ − I ) (5.20)

with a su�ciently large λ ≥ 0 and a (sub)stochastic matrix P̂ . The parameter λ may
be chosen such that the diagonal entries of P̂ are positive.

Proof. The sign structure of Q suggest to rescale it as 1
λ
Q such that the diagonal

entries are smaller (or equal) then one and then to de�ne

P̂ := I +
1

λ
Q (5.21)

to obtain a nonnegative matrix P̂ =
[
p̂i,j

]n
i,j=1

. Thus we have to chose λ ≥ λ̂ :=
n

max
i=1

qi

and by λ > λ̂ we achieve p̂i,i > 0. It remains to show that P̂ is (sub)stochastic. Using
Q1 ≤ 0 we compute

P̂1 = 1 +
1

λ
Q1 ≤ 1 ,

where equality holds if and only if the semigroup is stochastic (cf. (i) in Corollary 5.3.5).

In view of Proposition 5.2.2 and De�nition 5.2.11, a reformulation of Proposition 5.3.6
is the statement that Q is a negative M-matrix. If we restrict to stochastic semigroups,
we can state a little more.

Proposition 5.3.7. If Q ∈ Rn×n is the in�nitesimal generator of a stochastic semi-
group then −Q is a singular M-matrix with �property c�. In particular there holds

index(Q) = 1.
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Proof. With B = λP̂ we have −Q = λI − B and ρ(B) ≤ λ where equality holds if P̂
(and likewise the semigroup) is stochastic. Hence Q is a negative singular M-matrix.
In view of De�nition 5.2.12 and Proposition 5.2.13, it remains to show that B/λ = P̂
is semiconvergent. Since we can choose λ in (5.20) such that p̂i,i > 0 this follows from
Proposition 5.2.10.

It should be noted, that the properties of Q stated in Propositions 5.3.6 and 5.3.7
are only consequences of the sign structure and row sum feature established in Corol-
lary 5.3.5. We show next that these relatively minor conditions conversely imply that
Q is an in�nitesimal generator.

Proposition 5.3.8. Any matrix Q =
[
qi,j

]n
i,j=1

which satis�es

qi,j ≥ 0 for i 6= j, and − qi,i =
n∑

j=1
j 6=i

qi,j

is the derivative at 0 of some standard stochastic semigroup P(t).

Proof. We show that P(t) = etQ has the desired properties.
Obviously, P(0) = I . The semigroup property follows from the well-known fact

that the �exponential addition theorem� holds true for the matrix exponential if the
summands commute with each other (cf. [40, Theorem 6.2.38]).
That P(t) is stochastic can be seen from the Taylor series representation. We have

P(t)1 =
∞∑

k=0

tk

k!
Qk1 = I1 +

(
∞∑

k=1

tk

k!
Qk−1

)
Q1 = 1

since Q1 = 0 . For su�ciently small t, we have P(t) = I + tQ + · · · ≥ O . Then by the
semigroup property we have P(`t) = P(t)` ≥ O and thus P(t) ≥ O for all t ≥ 0.
It is well known, that the matrix exponential t 7→ etQ is a smooth map (see [40,

Theorem 6.2.34]). Thus, P(t) is continuous and satis�es P ′(0) = Q .

Noting that each M-matrix has nonpositive o�-diagonal entries, we may summarize
our results in the following form:

Theorem 5.3.9. P(t) is a continuous stochastic semigroup if and only if P(t) = e−tA

with an M-matrix A satisfying A1 = 0 .

In particular, the matrix exponential transforms every negative M-matrix with zero
row sum into a stochastic matrix, a notable fact on its own.

Corollary 5.3.10. If Q ∈ Rn has nonnegative o�-diagonal entries (e. g., if −Q is an
M-matrix) then eQ is nonnegative. If there holds additionally Q1 = 0 , then eQ is a
stochastic matrix.
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The next result justi�es the concordance in naming of irreducibility.

Proposition 5.3.11. The continuous transition semigroup P(t) = etQ is irreducible,
in formulas

∀ i, j ∈ S, i 6= j : ∃ t > 0 : pi,j(t) > 0, (5.22)

if and only if the in�nitesimal generator Q is irreducible.

Proof. Assume (5.22) but Q ∈ Rn×n is reducible. Given a permutation matrix T , we
have the identity T>P(t)T = etT>QT . Thus, we may assume without loss of generality
that

Q =

[
A B
O C

]
with A ∈ Rr×r, B ∈ Rr×(n−r) C ∈ R(n−r)×(n−r) and a zero matrix O ∈ R(n−r)×r for an
integer r, 0 < r < n (cf. De�nition 5.2.3). We rewrite P(t) = etQ as a power series

P(t) =
∞∑

k=0

tk

k!
Qk = I + tQ +

t2

2
Q2 + · · · .

A short calculation shows, that with Q also Q2,Q3, . . . has a (n − r) × r zero block
in the lower left corner. Thus, also P(t) possesses this zero block for all t ≥ 0, i. e.,
pi,j(t) = 0 for all t ≥ 0, r < i ≤ n and 1 ≤ j ≤ r, which contradicts the irreducibility
of P(t).
Assume now, that Q is irreducible but pi,j(t) = 0 for all t > 0 and some states i

and j. Using Theorem 5.2.4 there exists a sequence k1 = i, k2, k3, . . . , km−1, km = j,
such that qki,ki+1

6= 0, i = 1, . . . ,m − 1. Since pi,j(t) = 0 for all t > 0 we get from the
Kolmogorov backward equation

0 =
d

d t
pi,j(t) =

n∑
`=1

qi,`p`,j(t).

All terms in the sum on the right hand side are nonnegative and thus has to vanish
if the sum is zero. For ` = k2 we know that qi,` = qk1,k2 is nonzero, which implies
pk2,j(t) = 0 for all t > 0. Writing

0 =
d

d t
pk2,j(t) =

n∑
`=1

qk2,`p`,j(t).

we conclude by a similar argument that pk3,j(t) = 0 for all t > 0. By an obvious
induction we get

pk1,j(t) = 0, pk2,j(t) = 0, . . . , pkm−1,j(t) = 0, pkm,j(t) = 0

and, noting km = j, this yields in pj,j(t) = 0 for all t > 0. This contradicts to the
continuity assumption on P(t) since limt→0 pj,j(t) = 0 but pj,j(0) = 1.



5 Continuous-Time Markov Chains 79

Note that, the proof above does not use the fact that P(t) is stochastic or substochas-
tic. We only require P(t) ≥ 0, which is guaranteed if Q has nonnegative o�-diagonal
entries.
The �rst part of the proof shows: If Q is reducible, then P(t) is a reducible matrix

for every t ≥ 0. Conversely, if there exists an τ > 0 for which P(τ) is an irreducible
matrix, then Q is irreducible. On the other hand, if P(t) is a reducible matrix for
every t ≥ 0, then the semigroup P(t) is not irreducible, or, conversely, if the semigroup
P(t) is irreducible, then there exists an τ > 0 such that P(τ) is an irreducible matrix.
Taking all together, we have

Corollary 5.3.12. The following statements are equivalent:

(i) P(t) is an irreducible semigroup,

(ii) Q is irreducible,

(iii) there exists τ > 0 such that P(τ) is an irreducible matrix.

Actually, there holds a lot more then stated in (iii), namely that P(τ) is an irreducible
matrix for every τ > 0 if the semigroup (or its generator) is irreducible. Moreover, it
turns out that the matrices P(τ) are positive. To comprehend this further re�nement
we need Lévy's Dichotomy.

Lemma 5.3.13 (Lévy Dichotomy). For a standard transition semigroup, there holds:
Either pi,j(t) > 0 for all t > 0, or pi,j(t) = 0 for all t > 0.

Proof. Note that the entries pi,j(t) are analytic functions of t. In view of (v) in
Proposition 5.3.1 we have pi,i(t) > 0 for all t ≥ 0 and all i = 1, . . . , n. Thus, it remains
to prove the assertion for the o�-diagonal entries. Let i 6= j be �xed. Assume pi,j(t) = 0
for some t > 0. Using the semigroup property (5.11) we calculate

0 = pi,j(t) =
n∑

k=1

pi,k

(
t
m

)
pk,j

(
m−1

m
t
)
≥ pi,j

(
t
m

)
pj,j

(
m−1

m
t
)
.

Since the diagonal entries are positive, we conclude pi,j

(
t
m

)
= 0 for any integer m > 0.

That is, set set of zeros of pi,j(s) has a limit point (namely 0). Then, as an analytic
function, pi,j(s) has to be identical zero, i. e., pi,j(s) = 0 for all s > 0.

Remark 5.3.14. The idea for the proof above was found in [45, p. 263]. Chung
gives a proof of Lévy's Dichotomy for measurable transition functions (cf. [19, The-
orems II.1.5]).

Corollary 5.3.15. If the standard transition semigroup P(t) is irreducible, i. e., it
satis�es (5.22), then there holds P(t) > O for all t > 0.

We summarize our results in the next theorem.
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Theorem 5.3.16. Let P(t) = etQ denote a standard transition semigroup. The matri-
ces P(t) are positive for all t > 0 if and only if Q is irreducible.

The following lemma will be used later to establish the uniqueness of invariant (sta-
tionary) vectors. It states, that the nullspace of Q is one-dimensional if the semigroup
is irreducible. Since we know already, that index(Q) = 1, this is equivalent to say that
the rank of the generator is n− 1.

Lemma 5.3.17. If P(t) = etQ is an irreducible stochastic semigroup, then there holds
dim N(Q) = 1 and there exists a positive left eigenvector of the eigenvalue 0.

Proof. From Proposition 5.3.6 we have the representation of Q in terms of a stochastic
matrix P̂ = I + 1

λ
Q with some λ > 0. According to Corollary 5.2.5 there holds that P̂

is irreducible if and only if Q is irreducible. Moreover, ϑ is an eigenvalue of Q if and
only if 1 + ϑ/λ is an eigenvalue of P̂ with same multiplicity and corresponding to the
same eigenvector.
Theorem 5.2.7 implies that 1 is a simple eigenvalue of P̂ with a corresponding positive

left eigenvector π̃ > 0>. Therefore 0 is a simple eigenvalue of Q corresponding to the
eigenvector π̃. In other word, N(Q) is one-dimensional and spanned by π̃.

5.4 Invariant Vectors and Asymptotic Behavior

We now investigate existence and uniqueness of invariant vectors of a semigroup. Given
an initial guess π(0) a semigroup de�nes by

π(t) := π(0)P(t) (5.23)

a vector valued function. We denote by Rn
+ the set of vectors with nonnegative compo-

nents. For π(0) ∈ Rn
+ and a substochastic semigroup P(t) we have π(·) : [0,∞) → Rn

+.
Moreover, if the semigroup is standard, π(t) is a continuous function of t. We �rst state
the representation of π(t) in terms of the in�nitesimal generator, which follows imme-
diately from the Kolmogorov backward equation.

Proposition 5.4.1. The function π(t) de�ned in (5.24) is the uniquely determined
solution of the initial-value problem

d

d t
π(t) = π(t)Q , t ≥ 0, π(0) given. (5.24)

The solution is given by
π(t) = π(0) etQ , t ≥ 0. (5.25)

This solution is nonnegative, if the semigroup is substochastic and π(0) ∈ Rn
+.
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Equation (5.24) is called the balance equation.3 A nontrivial vector π̃ is invariant
with respect to the semigroup P(t), if π̃ = π̃P(t) for all t ≥ 0.

Proposition 5.4.2. π̃ ∈ Rn is invariant with respect to P(t) if and only if it satis�es
the homogeneous balance equation

π̃Q = 0>. (5.26)

If there holds π(t) = π̃ for some t ≥ 0, then it holds for all t, i. e., π(t) is constant.

Proof. Suppose, π̃ is invariant and set π(0) = π̃. Then, (5.23) reads as π(t) =
π(0)P(t) = π̃ for all t ≥ 0, which implies that the derivative of π(t) is zero. Using
(5.24) we get

0> =
d

d t
π(t) = π(t)Q = π̃Q .

Assume now, there holds π̃Q = 0> for some vector π̃. Then, using the Taylor series
representation of P(t), we conclude

π̃P(t) = π̃
∞∑

k=0

tk

k!
Qk = π̃I + π̃Q

(
∞∑

k=1

tk

k!
Qk−1

)
= π̃.

To prove the �nal remark in the assertion, let π(s) = π̃ be invariant for some s > 0.
Since etQ is invertible (cf. [40, Theorem 6.2.38]), the de�nition of an invariant vector
can be rewritten as π̃ = π̃e−tQ . Then for all t ≥ 0 we have

π(t) = π(0) etQ = π̃ e(t−s)Q = π̃.

Proposition 5.4.3. The continuous stochastic semigroup P(t) = etQ possesses a non-
negative invariant vector π̂ ∈ Rn

+.

Proof. We use the representation Q = λ(P̂ − I ) with λ > 0 and a stochastic matrix P̂
(cf. Proposition 5.3.6). By Proposition 5.2.2, there exists a nonnegative left eigenvector
π̂ of P̂ corresponding to the eigenvalue 1. Clearly, π̂ satis�es (5.26) and thus is an
invariant vector of P(t).

The next result is an application the Perron-Frobenius Theorem for irreducible ma-
trices.

Proposition 5.4.4. Let Q denote the in�nitesimal generator of an irreducible con-
tinuous stochastic semigroup P(t). Then there exists a uniquely determined invariant
vector π̂ subject to π̂1 = 1. Moreover this invariant vector is positive, that is π > 0>,
and satis�es the homogeneous balance equation π̂Q = 0>.

3In the realm of Brownian motion (5.24) is known as master equation.
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Proof. Proposition 5.4.2 states that π̂ is invariant if and only if it lies in the nullspace
of Q . By Lemma 5.3.17 this nullspace is one-dimensional and spanned by a positive
eigenvector vector π̃. Thus, setting π̂ := π̃/(π̃1 ) completes the prove.

We show next, that also the converse holds true, that is, the existence and unique-
ness of a positive invariant vector implies the irreducibility of the semigroup (or Q ,
respectively).

Proposition 5.4.5. If the stochastic semigroup P(t) = etQ possesses an invariant
vector π̂, which is positive, π̂ > 0>, and uniquely determined subject to π̂1 = 1, then
the semigroup (or rather Q) is irreducible.

Proof. The existence of an invariant π̂ > 0> implies that the stochastic matrix P̂ in
(5.20) has a positive left eigenvector corresponding to the eigenvalue ρ(P̂) = 1. Then,
by Theorem 5.2.8, P̂ has the block diagonal form (5.8) with irreducible diagonal blocks.
If π̂ is uniquely determined up to a scalar factor, there exists only one diagonal

block and thus P̂ is irreducible. Then, by Corollary 5.2.5, also Q is irreducible and
Proposition 5.3.11 provides that the semigroup P(t) is irreducible.

To �nish our investigation of stochastic semigroups we show, that the invariant vector
of an irreducible semigroup coincides with the limit lim

t→∞
π(t).

Theorem 5.4.6. If the transition semigroup P(t) = etQ is irreducible, then

lim
t→∞

P(t) = 1π,

where π is the (uniquely determined) solution of

πQ = 0>, π1 = 1.

Proof. Since the semigroup is irreducible, for any �xed τ > 0 we know that P(τ) is a
positive matrix. The Perron-Frobenius Theorem (cf. [39, Theorem 8.2.11]) guarantees
the existence of

lim
m→∞

P(mτ) = lim
m→∞

P(τ)m = 1πτ ,

where πτ is the uniquely determined left eigenvector of P(τ) subject to πτ1 = 1
(moreover there holds πτ > 0>). This is true for any τ > 0. The uniformly continuity
of P(t) then implies, that the limit is independent of τ and coincides with limit of P(t)
as t →∞. (see, e. g., [1, Lemma 5.1.2]). Writing π = πτ we have

πP(s + t) = πP(s)P(t).

Letting s →∞ and using π1 = 1 this shows that π is invariant with respect to P(t).
To �nish the proof we apply Proposition 5.4.2.
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Remark 5.4.7. It can be proved by similar arguments, that the limit of P(t) as t →∞
always exists, even if the semigroup is not irreducible (cf. [1, Theorem 5.1.3]). The
limit matrix then no longer has all rows identical, its structure is determined by the
communicating classes of P(τ) (cf. [5, De�nition 2.3.8]).

Corollary 5.4.8. Let P(t) = etQ denote an irreducible transition semigroup and π(0)
a given nonzero vector satisfying the normalization condition π(0)1 = 1. Then the
vector valued function π(t) = π(0)P(t) converges for t → ∞ to a limit independently
of π(0), namely

lim
t→∞

π(t) = π,

where π is uniquely determined by πQ = 0>, π1 = 1.

5.5 Stochastic Interpretation of the Results

We now apply the semigroup theory developed in the previous sections to continuous-
time Markov chains and give stochastic interpretations of the occurring quantities. The
statements in this section are purely informal, but proofs of them can be found in every
book on Markov chains mentioned in the references.

Remark 5.5.1 (Transition Rates and Classi�cation of States). The results in Section 5.3
show that the transition semigroup of a CTMC on a �nite state space is characterized
by the in�nitesimal generator Q . Since the semigroup in turn characterizes the Markov
chain (cf. [1, pp. 3�4]), we have a one-to-one correspondence between the in�nitesimal
generator and the Markov chain. The numbers forming the matrix Q have a meaningful
interpretation in terms of the stochastic process:
The o�-diagonal entries qi,j ≥ 0, i 6= j, are the rates with which the Markov chain

enters j as the next state when leaving the actual state i. The time Yi, for which the
process has stayed before in state i, is exponentially distributed with the parameter
qi = −qi,i. The negative diagonal entries qi of Q are called the jump rates associated
with state i. The reciprocal value 1/qi

is the mean time, that the process stays in state
i.
The state i is said to be stable if qi > 0, permanent or absorbing if qi = 0 and

instantaneous if qi = ∞ (impossible in our setting). Thus, for a permanent state we
have Pr {Yi ≤ t} = 1− e−qit = 0 for any t ∈ T, i. e., the probability of a �nite sojourn
time is zero. This corresponds to the following observation:
If i is a permanent state, then the entire ith row of Q is zero (cf. (ii) and (iii)

of Corollary 5.3.5). By (v) of Corollary 5.3.5 the corresponding diagonal entry of
P(t) is 1 and, moreover, all o�-diagonal entries in the ith row are zero (cf. (vi) in
Proposition 5.3.1). That is, the ith row of P(t) coincides with the ith unit vector and
is independent form t. This means, that the Markov chain will never leave state i after
entering it once.
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State i is said to be conservative if equality holds in (ii) of Corollary 5.3.5. The new
name is introduced, since for in�nitely many states this is not true in general, even not
if P(t) is stochastic. If all states are conservative, i. e., Q1 = 0 , then the in�nitesimal
generator Q is called conservative. The in�nitesimal generator of a CTMC with �nite
state space is conservative.

Remark 5.5.2 (Uniform Markov Chain). Every homogeneous CTMC on a �nite state
space is uniformizable. Consider the stochastic matrix P̂ de�ned in (5.20). As explained
in Example 5.1.2, the matrix P̂ speci�es a discrete time Markov chain X̂`. Using the
parameter λ > 0 from (5.20) we construct a homogeneous Poisson process N(t) with
intensity λ (cf. Example 5.1.1). Now, we de�ne by

X(t) := X̂N(t),

an homogeneous CTMC, which is called the uniform Markov chain with clock N(t)
and subordinated chain {X̂`}`≥0. Note that by de�nition we have X(t) = X̂` for
T` ≤ t < T`+1, where T`, ` ≥ 0, are the jump times of the Poisson process. Observe
also, that the continuous-time Markov chain may stay in the current state while the
Poisson process makes a jump. This happens precisely if X̂` = X̂`+1, which is possible
since the diagonal elements of P̂ can be nonzero.
The process constructed this way coincides with our original Markov chain, since it

has the same in�nitesimal generator, which is given by (5.20). The transition function
has the representation

P(t) =
∞∑

k=0

e−λt (λt)k

k!
P̂k,

as can be seen from etλ(P̂−I ) = e−tλetλP̂ .
Note further, that due to λ ≥ n

max
i=1

qi we could chose λ = 0 in (5.20) if and only if

qi = 0 for all i, which means that all states are permanent. In view of Corollary 5.3.5,
(v), this is equivalent to P(t) = I for all t ≥ 0. Thus, λ = 0 corresponds to an entirely
constant process, where never happens any transition.

Remark 5.5.3 (The Embedded Chain). We have seen so far two kinds of discrete-time
Markov chains connected with a continuous-time chain, namely the τ -skeleton with the
transition matrix P(τ) and the subordinated chain X̂` with the transition matrix P̂
corresponding to some equivalent uniform Markov chain.
A third discrete-time Markov chain linked with P(t), the embedded chain (Xk)k≥0.

Xk is de�ned as the kth state, which is visited by the continuous time Markov chain.
That is, we just ignore the time spent in each state and regard only the sequence of
states. The transition probabilities of the embedded chain are given by

pi,j := Pr {Xn+1 = j |Xn = i} =

{
qi,j/qi, i 6= j

0, i = j
.
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Note that these probabilities are well de�ned as long as qi 6= 0, i. e., if the Markov chain
has no permanent states. The matrix P =

[
pi,j

]
i,j∈S

can be written as

P = I − D−1Q , D = diag(Q).

Comparing the reformulation
Q = D(P − I )

with (5.20) explains the matrix algebra behind these the things: To de�ne P̂ we applied
a scaling factor λ to the whole matrix, while P results from an row-wise scaling.
With regard to the discrete time Markov chains de�ned by P̂ and P we remark,

that the di�erence between them is the following: The embedded chain corresponding
to P changes its state at each step since the diagonal entries of P are zero. On the
other hand, the uniform chain may stay in the same state in some step. This re�ects,
that the embedded chain regards the underlying CTMC at the random times when a
state change occurs, while the uniform chain consists on snap-shots of the CTMC at
equidistant time steps small enough not to miss a state change of the process.

Remark 5.5.4 (Irreducible Markov Chains). The in�nitesimal generator of an irre-
ducible Markov chain is irreducible.
Recall that a state i is permanent if the ith diagonal element of Q is zero. The sign

structure of Q implies then, that the entire row equals to zero, which means that Q is
reducible. Then, by Proposition 5.3.11, the Markov chain is not irreducible. Conversely,
there holds: An irreducible homogeneous Markov chain with �nite state space has no
permanent states.
Note that the stochastic matrices P̂ , P(τ) and P corresponding to an irreducible

Markov chain are primitive. For P̂ this holds only for λ large enough: Choose λ
in (5.21) such that the diagonal entries of P̂ are positive. Then we may apply [39,
Lemma 8.5.5].
Finally, a CTMC on a �nite state space is ergodic if and only if it is irreducible. This

can be seen as follows: Assume, the transition semigroup of an ergodic chain is not
irreducible, i. e., pi,j(t) = 0 for all t > 0 and some states i and j. Since by de�nition of
an ergodic chain the limit distribution π =

[
π1 . . . πn

]
exists and is independently of

the initial distribution, we get πj = limt→∞ pi,j(t) = 0, which contradicts the positivity
of the limit distribution. The converse implication follows from Corollary 5.4.8.

Remark 5.5.5 (State Distributions). According to Proposition 5.4.1, the state distribu-
tions of the Markov chain are given by π(t) = π(0) etQ .
A stationary distribution of the CTMC as introduced in (5.5) can be characterized

using Proposition 5.4.2 as a nonnegative solution of the homogeneous balance equation
π̂Q = 0 subject to π̂1 = 1. Moreover, Proposition 5.4.3 guarantees, that such an
stationary distribution exists.
An irreducible Markov chain has a uniquely determined stationary distribution,

which is positive and coincides with the limit distribution (cf. Corollary 5.4.8).
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5.6 Investigation of Markov Chains using Krylov Methods

Krylov subspace methods may be used to compute stationary distributions of a CTMC.
This requires the solution of the homogeneous linear equation system

πQ = 0>,

which may be rewritten using

A := −Q>, x := π>, b := 0 ,

such that the notation corresponds to that of Sections 3 and 4.
The treatment of this problem bene�ts from many characteristics of the generator

matrix, which we restate here in summarized form and give links to the relevant results
about Krylov subspace methods.

� A is a singular M-matrix with �property c�.

� All eigenvalues of A lie in the closed right complex half plain.

� 0 is the only eigenvalue with vanishing real part.

� If A is irreducible, then 0 is an (algebraically and geometrically) simple eigenvalue.

� The linear system (3.1) is consistent.

� The nontrivial solutions of (3.1) are nonnegative and can be normalized such that

1>x = 1. (5.27)

� There holds index(A) = 1 and b ∈ R(A).
Thus, A# exists and Theorem 4.4.6 applies. In particular, no singular breakdown
occurs. Since b = 0 , there holds

xMR
L = xOR

L = A#b + (I − A#A)x0 = (I − A#A)x0,

i. e., the Krylov solution in the termination step is the projection of x0 onto the
nullspace of A along R(A). This is a nontrivial solution of (3.1) if and only if
x0 6∈ R(A). Since 1 ∈ N(A∗) ⊥ R(A) we may choose x0 as a scalar multiple of 1
in order to get a nontrivial solution. The most popular choice is x0 = 1

n
1 ∈ Rn.

� If dim N(A) = 1 (su�ciently, if A irreducible), there exists a unique solution x of
(3.1) subject to the normalization (5.27). Moreover, since R(Aindex(A)) = R(A) =
N(A∗)⊥ = span{1}⊥, the operation v − 1

n
(1 , v)1 provides a cheap possibility to

project a vector v onto R(Aindex(A)). We may apply this projection to the gener-
ated orthonormal basis of the Krylov space to avoid stability problems. It is then
guaranteed, that the initial residual has index 0 after a restart (cf. Section 4.5).
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We may also use Krylov subspace methods to compute approximately transient so-
lutions, i. e., π(t) = π(0)etQ . As above let A = −Q> and set r = π(0)>. We look
for the MR approximation s for etAr = π(t)> from Km(A, r). The basic idea is to
approximate the matrix exponential by V ∗

metHmVm with Vm and Hm from the Arnoldi
decomposition. This can be seen as one step of a single-step solver for the ordinary
di�erential system (5.24). Note that the normalization (1 , s) = 1 implies that the
polynomial pm−1 corresponding to s is normalized according pm−1(0) = 1, i. e., it is a
residual polynomial. More details can be found in [67, Chapter 8] and the references
therein.



6 Concluding Remarks

We have not studied in detail MR implementations relying on an orthonormal basis Wm

of Wm, such as GCR. When Wm = Wm−1 in some step m due to Cm ∩ N(A) 6= {0}
we have a singular breakdown. During the orthonormalization process this results in
loss of orthogonality in the generated basis Wm. If we can detect this event, we may
employ a look-ahead strategy similar to that in Remark 3.4.9 and Algorithm 3.4.11 as
long as the sequence of correction spaces does not terminate. If, however, the correction
spaces are Krylov subspaces, our results ensure Cm ∩ N(A) = {0} as long as m < L.
In either case the di�culty is to detect a singular breakdown. This requires the stable
implementation of an orthogonal factorization for a matrix not having full column rank.
It is not clear if the results of Strako² et al. (cf. [57, 56]) apply for a singular A.
Krylov subspace methods can not be applied directly, if the matrix A ∈ Rm×n of the

linear system is not square. An obvious remedy is, to apply a standard iterative method
to the normal equation A>Ax = A>b. A more sophisticated idea is to introduce a n×m
matrix B in place of A> resulting in a (hopefully) better conditioning of the problem.
Another possibility is to consider ABz = b, Bz = x , which was �rst proposed by
Zhang and Oyanagi (cf. [72]). In view of the results in Section 4, the matrix B should
be determined such that the resulting square matrix is range hermitian. Methods of
this type are studied by Ito and Hayami (cf. [46, 47]).
Matrix identities similar to those in Propositions 4.4.9 and 4.4.12 are studied by

Cheng and Tian (cf. [18]). Their equations involve the Moore-Penrose and the group
inverse and the objective is to characterize range-hermitian and normal matrices. Our
conditions (4.28) and (4.29) and their investigation provide a �rst step toward gen-
eralizations of the concept of a range-hermitian matrix. More study is necessary to
anticipate the rami�cations of this idea.
The study of semigroups of stochastic matrices treated in Sections 5.3 and 5.4 can

be extended in several directions. In particular, a more complete theory should involve
generalized inverses, namely the group inverse of the in�nitesimal generator. For ex-
ample, there holds Q# =

∫∞
0

(Π −P(t)) d t (cf. [20]), which is connected with the mean
�rst passage times of the corresponding Markov chain.
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