Beiträge zur Silicium-Chalcogen-Chemie einschließlich analoger Germanium-, Zinn- und Bleiverbindungen

Von der Fakultät für Chemie und Physik der TU Bergakademie Freiberg angenommene

Habilitationsschrift

zur Erlangung des akademischen Grades

doctor rerum naturalium habilitatus (Dr. rer. nat. habil.)

vorgelegt

von

Dr. Uwe Herzog

geboren am: 18.04.1970

in Bad Salzungen

eingereicht am: 10.12.2002

Gutachter: Prof. Dr. Gerhard Roewer, Freiberg Prof. Dr. Uwe Klingebiel, Göttingen Prof. Dr. Peter Jutzi, Bielefeld

Tag der Verleihung: 10.06.2003

Inhaltsverzeichnis

1.	Einleitung	5
2.	Silicium-Chalcogen-Verbindungen mit der Sequenz $R_3Si-E-CR'_3$ (E = S, Se, Te)	
	sowie analoge Ge- und Sn-Verbindungen	8
2.1.	Thiolate	8
2.2.	Selen- und Tellurverbindungen	11
2.3.	1,2-Dithiolate	16
3.	Silylchalcogenole (R ₃ Si–EH) und Derivate	24
3.1.	Einfache Silanthiole	24
3.2.	Hypersilylchalcogenole ((Me ₃ Si) ₃ SiEH) und Metallderivate	27
4.	Chalcogenide mit der Sequenz Si–E–Si (E = S, Se, Te) sowie analoge Ge- und	
	Sn-Verbindungen	33
4.1.	Acyclische Chalcogenide $(R_3M)_2E$ (E = S, Se, Te, M = Si, Ge, Sn)	33
4.2.	Dimere und trimere Diorganoelementchalcogenide $(R_2ME)_x$ (M = Si, Ge, Sn, Pb)	36
4.2.1.	Siliciumverbindungen (R_2SiE) _x (E = S, Se, Te; x = 2, 3)	36
4.2.2.	Diorganogermanium-, -zinn- und -bleichalcogenide (R ₂ ME) _x	41
4.3.	Weitere monocyclische Chalcogenide	45
4.3.1.	Cyclen mit M–M Bindungen (M = Si, Sn)	45
4.3.2.	Cyclen mit E–E Bindungen	52
4.4.	Verbindungen mit M=E Doppelbindungen (M = Si, Ge, Sn)	54
4.5.	Chalcogenide ME ₂ und Chalcogenosilicat-, Germanat- und Stannationen	62
4.6.	Polycyclische Organosilicium-, Germanium- und Zinnchalcogenide	81
5.	Synthese funktionalisierter Oligosilane	91
5.1.	Methoden zur Knüpfung von Si-Si-Bindungen	91
5.2.	Funktionelle Gruppen an Oligosilanen	102
5.2.1.	Halogensilane	102
5.2.2.	Triflate	107
5.2.3.	Aminogruppen als Schutzgruppen	110
5.2.4.	Si–H als funktionelle Gruppe	112
6.	NMR Spektroskopie	119
6.1.	¹³ C, ²⁹ Si, ⁷³ Ge, ¹¹⁹ Sn und ²⁰⁷ Pb NMR Spektroskopie	119
6.2.	³³ S, ⁷⁷ Se und ¹²⁵ Te NMR Spektroskopie	122
6.3.	Chemische Verschiebungen	124
6.4.	Spin-Spin-Kopplungen	129

Habilitation Uwe Herzog

7.	Chalcogenobutylderivate von Silanen und Oligosilanen	135		
7.1.	Thiobutylsubstituierte Monosilane $R_{4-x}Si(SBu)_x$	135		
7.2.	Seleno- und Tellurobutylsubstituierte Monosilane $R_{4-x}Si(EBu)_x$ (E = Se, Te) 1			
7.3.	Thiobutyl- und Selenobutylsubstituierte Oligosilane	150		
8.	1,2-Dithiolat-Derivate des Siliciums	167		
8.1.	1,2-Dithiolat-Derivate von Monosilanen	167		
8.2.	Hypervalente Silicate mit einer SiS ₅ -Koordination	172		
8.3.	1,2-Dithiolat-Derivate von Disilanen	174		
9.	Acyclische Organosiliciumchalcogenide	180		
9.1.	Disilylchalcogenide, Oligosilanylchalcogenolate und -chalcogenole	180		
9.2.	Hypersilylchalcogenolate von Silicium, Germanium und Zinn	186		
9.3.	$Heptasilanylthiolate [(Me_{3}Si)_{3}Si-Si(SiMe_{3})_{2}-S]_{x}SiMe_{4-x}$	197		
10.	Cyclische Silicium-Chalcogen-Verbindungen und analoge Germanium- und			
	Zinnverbindungen	199		
10.1.	Dimere und Trimere Chalcogenide $(R_2ME)_x$ (R = Me, Ph, SiMe ₃ ; M = Si, Ge, Sn)	199		
10.1.1.	Methylverbindungen (Me ₂ ME) ₃	199		
10.1.2.	Phenylverbindungen (Ph ₂ ME) _x (x = 2, 3)	200		
10.1.3.	Trimethylsilylverbindungen [(Me ₃ Si) ₂ SiE] ₂	211		
10.2.	Sechsringe mit Disilaneinheiten E(Si ₂ Me ₄) ₂ E	213		
10.3.	Fünfringe $Me_4Si_2(E)_2MR_x$ ($MR_x = BPh$, $C(CH_2)_5$, $SiMe_2$, $SiPhMe$, $SiPh_2$, $GeMe_2$,			
	SnMe ₂ , SnPh ₂ , PbPh ₂ , SbPh)	217		
10.4.	Siliciumchalcogenide mit Bis-cyclopentyl Struktur			
	$(Me_4Si_2(E)_2SiMe-SiMe(E)_2Si_2Me_4)$	225		
10.5.	Sechsringe $Z(SiMe_2-E)_2MR_2$ ($Z = SiMe_2$, CH_2 , O ; $M = Si$, Ge , Sn ; $R = Me$, Ph)	228		
10.6.	Fünfringe $Z_2(SiMe_2)_2E$ (Z = SiMe ₂ , CH ₂ ; E = S, Se, Te) und Achtringe			
	$[Z-SiMe_2-E-SiMe_2]_2$	238		
10.7.	DFT-Berechnungen an cyclischen Silicium-Chalcogen-Verbindungen	246		
11.	Polycyclische Silicium-Chalcogen-Verbindungen	268		
11.1.	Norbornane (MeRSi–SiMe) ₂ E_3 (R = Me, Ph)	268		
11.2.	Bicyclo[3.3.1]nonane und Bicyclo[3.2.2]nonane (Me ₅ Si ₃) ₂ E_3 (E = S, Se)	275		
11.3.	Bicyclo[2.2.2]octane Z(SiMe ₂ –E) ₃ MR (Z = SiMe, CH; M = Si, Ge, Sn;			
	R = Me, Ph, Vi)	279		
11.4.	1,3,6,8-Tetrachalcogenaspiro[4.4]nonane Si(SiMe ₂ -E-MR ₂ -E) ₂	295		
11.5.	2,4,6,8-Tetrachalcogenabicyclo[3.3.0] octane $R_2M(E)_2Si_2Me_2(E)_2MR_2$	298		

11.6.	Adamantane, Noradamantane, Bisnoradamantane und Me ₆ Si ₆ S ₆	312
11.6.1.	Reaktionen von 1,2- $R_2Si_2Cl_4$ mit H_2S / NEt ₃ , Me ₆ Si ₆ S ₆ und ^t Bu ₄ Si ₄ S ₄	312
11.6.2.	Noradamantane $Me_2Si_2(E)_4(MR)_2E$	318
11.6.3.	Adamantane $Z_2(SiMe)_4E_4$ und Noradamantane $Z(SiMe)_4E_4$ (Z = SiMe ₂ , CH ₂)	324
11.7.	MAS NMR Spektroskopie cyclischer und polycyclischer Silthiane	336
11.7.1.	MAS NMR Spektren	336
11.7.2.	GIAO DFT Berechnungen ²⁹ Si NMR chemischer Verschiebungen	341
11.8.	Polycyclen mit größeren Oligosilaneinheiten	344
11.8.1.	3,7-Dichalcogenahexasilabicyclo[3.3.0]octane	344
11.8.2.	3,7,10-Trichalcogenaoctasila[3.3.3]propellane	348
12.	Experimentelles	357
12.1.	NMR Spektroskopie in Lösung	357
12.2.	²⁹ Si CP MAS NMR Spektroskopie	357
12.3.	GC/MS Messungen	358
12.4.	GPC Messungen	358
12.5.	Elementaranalysen	358
12.6.	DFT Berechnungen	358
12.7.	Kristallstrukturanalysen	359
12.8.	Synthese thiobutylsubstituierter Silane	371
12.9.	Synthese seleno- und tellurobutylsubstituierter Silane	373
12.10.	1,2-Dithiolat-Derivate	375
12.11.	Disilylchalcogenide, Oligosilanylchalcogenolate und -chalcogenole	377
12.12.	Hypersilylchalcogenolate von Si, Ge, Sn	
12.13.	$Si_2(SiMe_3)_6$ und Heptasilanylthiolate [(Me_3Si)_3SiSi(SiMe_3)_2S]_xSiMe_{4-x}	381
12.14.	$(R_2ME)_x$ (R = Me, Ph, SiMe ₃ ; M = Si, Ge, Sn; E = S, Se, Te; x = 2, 3)	381
12.15.	Sechsringe $E(SiMe_2SiMe_2)_2E$ (E = S, Se, Te, O)	384
12.16.	Fünfringe $Me_4Si_2(E)_2MR_x$ (E = S, Se, Te)	385
12.17.	$Me_4Si_2(E)_2SiMe-SiMe(E)_2Si_2Me_4$ (E = S, Se, Te)	388
12.18.	Sechsringe $Z(SiMe_2-E)_2MR_2$ (Z = SiMe ₂ , CH ₂ , O; E = S, Se, Te)	389
12.19.	Fünfringe $Z_2(SiMe_2)_2E$ und Achtringe $[Z-SiMe_2-E-SiMe_2]_2$ ($Z = SiMe_2$, CH_2)	391
12.20.	Norbornane (MeRSi–SiMe) ₂ E_3 (E = S, Se, Te; R = Me, Ph)	392
12.21.	Bicyclo[3.3.1]nonane und Bicyclo[3.2.2]nonane (Me ₅ Si ₃) ₂ E ₃ (E = S, Se)	394
12.22.	Bicyclo[2.2.2]octane Z(SiMe ₂ –E) ₃ MR (Z = SiMe, CH; M = Si, Ge, Sn)	395
12.23.	1,3,6,8-Tetrachalcogenaspiro[4.4]nonane Si(SiMe ₂ -E-MR ₂ -E) ₂	399

12.24.	2,4,6,8-Tetrachalcogenabicyclo[3.3.0] octane $R_2M(E)_2Si_2Me_2(E)_2MR_2$	400
12.25.	Me ₆ Si ₆ S ₆ und ^t Bu ₄ Si ₄ S ₄	402
12.26.	Noradamantane $Me_2Si_2(RM)_2E_5$ (E = S, Se; RM = MeSi, MeGe, PhSn)	402
12.27.	Adamantane $Z_2(SiMe)_4E_4$ und Noradamantane $Z(SiMe)_4E_4$ ($Z = SiMe_2$, CH_2)	403
12.28.	3,7-Dichalcogenahexasilabicyclo[3.3.0]octane	406
12.29.	Si ₂ (SiMe ₂ Cl) ₆ und 3,7,10-Trichalcogenaoctasila[3.3.3]propellane	408
13.	Zusammenfassung	410
	Danksagung	414
	Literaturverzeichnis	415

1. Einleitung

Silicium-Sauerstoffverbindungen gehören zu den wichtigsten Klassen chemischer Verbindungen, angefangen von den SiO₂-Modifikationen (Quarz [1,2], Tridymit [3], Cristobalit [4], Coesit (Hochdruckmodifikation) [5], Stishovit (Hochdruckmodifikation, kantenverknüpfte SiO₆-Oktaeder) [6] über die große Vielfalt natürlicher und synthetischer Silicate [7,8] (Inselsilicate, Cyclosilicate, Metasilicate, Schichtsilicate, etc., Zeolithe [9,10] und Alumosilicate [11], silicatische Gläser [12]) bis hin zu den ebenfalls technisch wichtigen Organosiloxanen (kettenförmige Diorganylpolysiloxane (R₂SiO)_n [13], Silsesquioxane (RSiO_{3/2})_n, speziell POSS (polyhedral <u>o</u>rganic <u>sils</u>esquioxanes), z. B. kubische R₈Si₈O₁₂ [14-16]).

Wesentlich weniger ist bekannt über Verbindungen des Siliciums mit den schwereren Chalcogenen S, Se, Te. Im Unterschied zum Sauerstoff, der in der Sequenz Si–O–Si aufgrund des partiellen Doppelbindungsanteils zu Bindungswinkeln tendiert, die wesentlich größer sind als der Tetraederwinkel von 109.5° – z. B. α -Quarz (\angle Si–O–Si: 144°) bis hin zur gestreckten Anordnung Si–O–Si (180°) im β -Tridymit neigen die schwereren Chalcogene zu kleineren Bindungswinkeln aufgrund der geringeren Neigung zur Hybridisierung, wodurch die Bindungsorbitale stärkeren p-Anteil erhalten (idealer Winkel zwischen zwei p-Orbitalen: 90°), was sich z. B. auch in den Wasserstoffverbindungen (H₂O: \angle HOH: 104.5°, H₂S: \angle HSH: 92°, H₂Se: \angle HSeH: 91°, H₂Te: \angle HTeH: 89° [17]) oder auch in den Strukturen der binären Verbindungen SiS₂ und SiSe₂ wiederspiegelt, die ähnlich wie das sogenannte faserige W-SiO₂ [18] (dargestellt durch Oxidation von polymerem SiO) aus unendlichen Ketten von kantenverknüpften SiE₄-Tetraedern bestehen, also Si₂E₂-Vierringe ausbilden [19].

Dieser Trend zu kleineren Bindungswinkeln findet sich analog auch beim Vergleich von Stickstoff- und Phosphorverbindungen wie NH₃ (\angle HNH: 106.6°) und PH₃ (\angle HPH: 93.8° [17]) oder N(SiMe₃)₃ (N: trigonal planar, \angle SiNSi: 120°) und P(SiMe₃)₃ (pyramidal, \angle SiPSi: 105° [20]). Diese kleineren Bindungswinkel an den Elementen der 3. und höheren Periode führen erstens generell zu einer verstärkten Neigung, cyclische Verbindungen zu bilden und zweitens in cyclischen Verbindungen zur Ausbildung kleinerer Ringgrößen. So bilden polyedrische Silsesquioxane bevorzugt Octamere R₈Si₈O₁₂ mit Si₄O₄-Achtringen, und es entstehen daneben auch noch größere Oligomere und Polymere [21,22].

Analoge Silsesquithiane (und selenane) dagegen bilden ausschließlich Tetramere $R_4Si_4E_6$ [23], bevorzugt mit Adamantanstrukturen, die aus Si_3E_3 -Sechsringen aufgebaut sind [24]. Diese Neigung, leicht cyclische und polycyclische Verbindungen zu bilden, nährt schließlich die Hoffnung, dass sich eine Vielzahl neuer Ringe und Ringsysteme aus Silicium (bzw. auch seinen schwereren Homologen Ge, Sn und Pb) und den Chalcogenen Schwefel, Selen und Tellur aufbauen lassen. Dabei sollen vor allem auch oligomere Siliciumbausteine d. h. Oligosilane mit Si–Si Bindungen oder Carbosilane mit Si–C–Si Einheiten eingesetzt werden, da sich dadurch eine wesentlich größere strukturelle Vielfalt der resultierenden Chalcogenderivate ergibt. In einigen Fällen sind dabei mehrere isomere Produkte denkbar, die sich z. B. durch die in ihnen auftretenden Ringgrößen unterscheiden. Die hier experimentell gefundenen Isomere (bzw. bei Produktgemischen die Anteile der einzelnen Isomere) lassen auf die relative Stabilität verschiedener Ringgrößen bzw. Ringsysteme schließen.

Die experimentellen Ergebnisse sollen anschließend mit den Resultaten von DFT Berechnungen der möglichen Reaktionsprodukte verglichen werden.

Ein wesentliches Ziel dieser Arbeit wird neben der Auslotung der synthetischen Möglichkeiten auch sein, ein Verständnis für die Ursachen der selektiven Bildung bestimmter Ringgrößen bzw. Ringsysteme zu erlangen.

Schließlich können auch Vergleiche zu verwandten Substanzklassen gezogen werden. So sind die adamantanartigen Chalcogenosilicationen $Si_4E_{10}^{4-}$ (E = S, Se) isoelektronisch zu den Phosphorchalcogeniden P_4S_{10} und P_4Se_{10} . Ein Schwefelatom kann als isolobal zur Einheit >PR (z. B. R = Ph) betrachtet werden, was Analogien zwischen Silicium-Schwefel- und entsprechenden Silicium-Phosphor-Verbindungen impliziert.

Neben der Charakterisierung durch Kristallstrukturanalysen ist die NMR-Spektroskopie die empfindlichste und aussagekräftigste analytische Methode, die resultierenden Strukturen zu identifizieren. Von Vorteil ist hierbei, dass außer Schwefel und Germanium alle hier untersuchten Elemente mindestens ein magnetisch aktives Isotop mit einer Kernspinquantenzahl von ¹/₂ besitzen (²⁹Si, ¹¹⁹Sn, ²⁰⁷Pb, ⁷⁷Se, ¹²⁵Te) [25]. Darüber hinaus erlauben die organischen Substituenten noch Untersuchungen mittels ¹H und ¹³C NMR Spektroskopie. Neben der Bestimmung der chemischen Verschiebungen wird in dieser Arbeit auch besonderer Wert auf die Analyse der Satelliten, hervorgerufen durch J-Kopplungen zwischen den Elementen der 14. und der 16. Gruppe, gelegt, da letztlich nur diese Kopplungssatelliten einen direkten Beweis für die Konnektivitäten innerhalb der Cyclen und Polycyclen liefern können. Aber auch die chemischen Verschiebungen verdienen besondere Beachtung, besonders die Auswirkungen der Ausbildung von Cyclen und Polycyclen verschiedener Ringgrößen auf die ²⁹Si chemische Verschiebung soll näher untersucht werden. Auch hier bieten sich Vergleiche experimentell ermittelter chemischer Verschiebungen mit den Ergebnissen von IGLO oder GIAO Berechnungen an. Diese Berechnungen könnten auch näheren Aufschluss über die Ursachen bestimmter Verschiebungseffekte z. B. aufgrund der Änderung der Ringgröße geben.

Schließlich soll noch darauf hingewiesen werden, dass cyclische und polycyclische Silicium-Schwefelverbindungen, die außerdem auch Si–Si Bindungen enthalten, als Modellverbindungen für Struktureinheiten in festem polymerem $(SiS)_x$ dienen können. SiS bildet sich analog zu SiO als molekulares SiS durch Reaktion von Si mit SiS₂ bei 850 °C im Vakuum, Abschrecken des Dampfes liefert rotes bis schwarzes glasiges $(SiS)_x$ bisher unbekannter Struktur.

Organozinn-Chalcogen-Verbindungen sind als CVD-Precursoren zur Abscheidung von SnE interessant, die Halbleitermaterialien mit Bandlücken von 1.2 eV (SnS), 0.9 eV (SnSe) und 0.2 eV (SnTe) [26] darstellen. Erste Untersuchungen mit (Ph₂SnS)₃ und (Ph₂SnSe)₃ [27] haben gezeigt, dass diese Verbindungen dafür prinzipiell geeignet sind.

Nach einer Zusammenfassung des bisherigen Standes der Forschung auf dem Gebiet der Chalcogenide der Elemente der 14. Gruppe (Kapitel 2. – 4.) sowie der Synthesewege zum Aufbau funktionalisierter Oligosilane (Kapitel 5.) werden die im Rahmen dieser Arbeit gewonnenen Ergebnisse in den Kapiteln 7. – 11. zusammengestellt. Dabei werden im Abschnitt 7. eine große Anzahl an chalcogenobutylsubstituierten Silanen und Oligosilanen beschrieben, die vor allem zur Gewinnung von Vergleichs-NMR-Daten acyclischer Silicium-Chalcogen-Verbindungen von Bedeutung sind. Diese ermöglichen beim Vergleich mit den in 10. und 11. untersuchten cyclischen und polycyclischen Chalcogenverbindungen eine Abschätzung der Auswirkungen des Ringsystems auf die ²⁹Si NMR chemischen Verschiebungen, wobei sich im Allgemeinen immer nur Atome mit der gleichen ersten Koordinationssphäre (direkte Nachbaratome) vergleichen lassen.

2. Silicium-Chalcogen-Verbindungen mit der Sequenz R₃Si-E-CR'₃ (E = S, Se, Te) sowie analoge Ge- und Sn-Verbindungen

2.1. Thiolate

Organomercaptosilane R_nSi(SR')_{4-n} sind auf verschiedenen Synthesewegen zugänglich. Ausgehend von Organochlorsilanen oder -stannanen liefert die Reaktion mit einem Thiol in Gegenwart einer LEWIS-Base wie Triethylamin oder Pyridin mercaptosubstituierte Silane [28] bzw. stannane [29].

Alternativ kann auch das Mercaptan vorher in sein Lithium- [30], Natrium- [31], Lithium-Aluminium- [32] oder Bleisalz überführt werden [33,34]:

$$\begin{array}{cccc}
Ph & Cl \\
Si & + & 3 & Ph-S & Na \\
Cl & Cl & & & & \\
Ph & S^{-Ph} \\
& & Si \\
Ph^{-S} & S^{-Ph} \\
\end{array}$$
(2.1.2)

$$\operatorname{Li} \begin{bmatrix} H & H \\ AI \\ H & H \end{bmatrix} + 4 \operatorname{Me-S-H} \xrightarrow{(\operatorname{Et_2O})} \operatorname{Li} \begin{bmatrix} \operatorname{Me-S} & S-\operatorname{Me} \\ AI \\ \operatorname{Me-S} & S-\operatorname{Me} \end{bmatrix} (2.1.3)$$

$$\operatorname{Li} \begin{bmatrix} \operatorname{Me-S} & \operatorname{S-Me} \\ & \operatorname{Al} \\ & \operatorname{Me-S} & \operatorname{S-Me} \end{bmatrix} + 4 \operatorname{Me-Si-Cl} \longrightarrow 4 \operatorname{Me-Si-S} \\ & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & (2.1.4) \\ & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & (2.1.4) \\ & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & (2.1.4) \\ & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & (2.1.4) \\ & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & \operatorname{Me} & (2.1.4) \\ & \operatorname{Me} & \operatorname$$

Ausgehend von Organohydrosilanen entstehen mercaptosubstituierte Silane durch Reaktion mit einem Thiol unter katalysierterer H2-Eliminierung z. B. in Gegenwart des WILKINSON-Katalysators [35,36,123]:

$$Et \xrightarrow[Et]{Et} H + Ph-S-H \xrightarrow[(Ph_3P)_3RhCl] = Et \xrightarrow[Et]{I} S \xrightarrow{Ph} (2.1.5)$$

Mit Diarylsilanen und Benzen-1,3-dithiol bzw. Benzen-1,4-dithiol wurden auf diesem Wege auch niedermolekulare Polymere erhalten [36], z. B.:

Für die analoge Bildung von mercaptosubstituierten Stannanen genügt ein Radikalbildner bzw. eine LEWIS-Säure [37]:

$$Ph_{3}Sn-H + R-SH \xrightarrow{-H_{2}} Ph_{3}Sn-S-R \qquad \begin{array}{c} R = Me: [AIBN], 3h, 160 \ ^{\circ}C \\ R = Ph: [BPh_{3}], 2h, 85 \ ^{\circ}C \end{array}$$
(2.1.7)

Ausgehend von aminosubstituierten Silanen können auch Dialkylaminosubstituenten durch Reaktion mit einem Mercaptan substituiert werden [38]:

$$Me NEt_{2} + Ph-S-H - Me NEt_{2} + HNEt_{2}$$

$$Me Si NEt_{2} + HNEt_{2}$$

$$Me S-Ph$$

$$(2.1.8)$$

Durch ständiges Abdestillieren des flüchtigen HNEt₂ wird das Gleichgewicht auf die rechte Seite verschoben.

Abb. 2.1.1. Molekülstruktur von PhSi(SC₆H₄CH₃)₃ [36]
 Si-C: 1.863 Å, Si-S: 2.126 – 2.132 Å, ∠Si-S-C: 102.6° (S1), 98.5° (S2), 106.4° (S3).
 Die drei recht verschiedenen Si-S-C Bindungswinkel zeigen deutlich, dass dieser Winkel am Schwefelatom recht flexibel ist.

In Ph₃SiSPh [39] beträgt der Bindungswinkel am Schwefelatom 99.5° und die Si–S Bindung ist mit 2.156 Å etwas länger als in PhSi(SC₆H₄CH₃)₃ (siehe Abb. 2.1.1.).

VAN DEN BERGHE und VAN DER KELEN [40] bestimmten die NMR-Parameter der Verbindungsserien $Me_{4-x}Si(EMe_z)_x$ (E = O, S mit z = 1 sowie E = N mit z = 2). Dabei ergibt sich mit steigendem x (wie auch in anderen Verbindungsreihen des Siliciums, siehe auch *6.3.*) ein nichtlinearer Verlauf der ²⁹Si NMR chemischen Verschiebung, siehe auch Abb. 2.1.2. und Tabelle 2.1.1.

Abb. 2.1.2. ²⁹Si NMR chemische Verschiebungen in den Verbindungsreihen $Me_{4-x}Si(EMe_z)_x$ (E = O, S mit z = 1sowie E = N mit z = 2).

Tabelle 2.1.1. NMR Daten (δ in ppm, J in Hz) der Verbindungen Me_{4-x}Si(SMe)_x [40]

Verbindung	δ (Si)	δ (H) SiMe	$^{2}J_{SiH}$	δ(H) SiSMe	³ J _{SiH}
Me ₄ Si	0.00	0.00	6.5	_	_
Me ₃ Si(SMe)	16.46	0.18	6.7	1.77	4.2
Me ₂ Si(SMe) ₂	28.14	0.35	7.0	1.84	4.8
MeSi(SMe) ₃	34.00	0.51	7.3	1.87	5.5
Si(SMe) ₄	38.59	_	_	1.94	6.4

Ein analoges Verhalten der ¹¹⁹Sn NMR chemischen Verschiebung zeigen die entsprechenden Zinnthiolate $Me_{4-x}Sn(SR)_x$ (R = Me, Et, ⁱPr, ^tBu, Ph) [29].

Mercaptosubstituierte Silane werden in der organischen Chemie zur Einführung von Mercaptosubstituenten eingesetzt, z. B. [41,42]:

$$\begin{array}{c} R \\ R \end{array} \longrightarrow O + 2 Me - Si - S Me \\ I \\ Me \end{array} \xrightarrow{(Me_3Si)_2O} R \\ R \\ S - Me \end{array}$$

$$\begin{array}{c} R \\ S - Me \\ S - Me \end{array}$$

$$\begin{array}{c} (2.1.9) \\ (2.1.9) \\ R \\ S - Me \end{array}$$

2.2. Selen- und Tellurverbindungen

Reaktionen mit Selenreagentien haben in der Organischen Chemie in den vergangenen Jahren einen enormen Aufschwung erlebt [43]. Verschiedene funktionelle Gruppen können selektiv und unter sehr milden Bedingungen in komplexe Moleküle eingeführt werden, wobei hierbei auch eine stereoselektive Synthese mittels Organoselenverbindungen möglich ist [44]. Auf der anderen Seite zeichnet sich die Tellurium-Chemie durch das häufige Auftreten ungewöhnlicher Strukturen aus [45]. Einige aktuellere Beispiele sind das würfelförmige Bi₄Te₄⁴⁺ Kation in [Bi₄Te₄][AlCl₄]₄ [46], neutrale Hexaorganyltellurverbindungen, TeR₆ mit R = Me [47], *p*-CF₃-C₆H₄ [48,49], C₆H₅ [48,49], oder die zu den Diaryltelluriden isomeren Triaryltelluroniumaryltellurolate [R₃Te]₂[TeR]₂ [50].

Im Gegensatz zu den Thiolen RSH sind entsprechende Selenole RSeH oder Tellurole RTeH kommerziell nicht erhältlich, was auch auf die geringere Stabilitäten der Se–H und vor allem Te–H Bindungen zurückzuführen ist. So konnte zwar Ph₃SiTeH bei –40 °C isoliert und auch röntgenographisch charakterisiert werden, allerdings wurde die Position des am Tellur gebundenen Wasserstoffatoms nicht lokalisert und damit konnte die Te–H Bindungslänge sowie der Si–Te–H Winkel nicht bestimmt werden [51]. Noch geringer ist die Stabilität der Wasserstoffverbindungen der Elemente der 6. Periode. So konnte erst kürzlich das erste Beispiel für eine strukturell charakterisierte Verbindung mit einer Element–Wasserstoff Bindung eines Elements der 6. Periode publiziert werden, in der auch die Position des Wasserstoffatoms bestimmt wurde, $(2,6-Mes_2C_6H_3)_2BiH$ (Bi–H: 1.94 Å, IR: v_{BiH} : 1759 cm⁻¹) [52].)

Selenole RSeH erhält man durch nucleophile Substitution von Alkylhalogeniden bzw. -sulfaten mit einer Lösung NaSeH oder auch durch Reduktion der Diselenide R₂Se₂ mit unterphosphoriger Säure [53]:

$$R \xrightarrow{Se}_{Se} R + H \xrightarrow{P}_{OH} + H_{2O} \longrightarrow 2 R \xrightarrow{Se}_{H} + H \xrightarrow{P}_{OH} (2.2.1)$$

R = Et, i-Pr, Bu, Ph

Habilitation Uwe Herzog

bzw. auch mit Tri-*n*-butylstannan, was auch Selenole mit empfindlichen Organylresten (Vinyl, Allyl, Progargyl, 3-Butinyl) zugänglich macht [54,55], z. B.:

Selenole und vor allem Tellurole bzw. auch deren Anionen werden durch Luftsauerstoff sehr schnell wieder zu Diseleniden R_2Se_2 bzw. Ditelluriden R_2Te_2 oxidiert [56].

Analog zu Gl. 2.1.1 liefert die Reaktion von Methanselenol mit Methylchlorsilanen entsprechende Methylselenoderivate des Siliciums [57]:

$$Me_{4-x}SiCl_x + x Me-Se-H \xrightarrow{x NEt_3} Me_{4-x}Si(SeMe)_x$$
 (2.2.3)

Auch die analogen Derivate des Germaniums und Zinns, $Me_{4-x}M(SeMe)_4$, wurden beschrieben [58]. In diesen Fällen kann man auch von den entsprechenden Dimethylaminoderivaten ausgehen und diese mit Methanselenol umsetzen [57], z. B.:

$$Me_{3}M(NMe_{2}) + Me-Se-H \xrightarrow{-HNMe_{2}} Me_{3}M(SeMe)$$
(2.2.4)
M=Ge, Sn

Statt mit den Selenolen selbst zu arbeiten, ist es oft günstiger, Alkalimetallsalze derselben zu verwenden. Lithiumselenolate erhält man leicht durch Insertion von Selen in die Kohlenstoff-Lithium-Bindung von Lithiumorganylen (R = Me [57], Bu [59]):

$$R-Li + Se \xrightarrow{(THF)} R-Se Li^+$$
 (2.2.5)

bzw. Magnesiumselenolate ausgehend von GRIGNARD-Verbindungen [60]:

$$Me \longrightarrow Mg - Br + Se \longrightarrow Me \longrightarrow Se - Mg - Br (2.2.6)$$

Analog wird auch Tellur in Metall–Kohlenstoff Bindungen eingeschoben [61]. So entsteht aus Ferrocendilithium glatt das Ditellurolat $Fe(\eta^5-C_5H_4-TeLi)_2$ [62].

Durch Reaktion von BuLi mit Se bzw. Te in Gegenwart von TMEDA konnten kristalline Addukte von BuELi (E = Se, Te) erhalten werden, siehe Abb. 2.2.1.:

Abb. 2.2.1. *Molekülstruktur von [BuSeLi·TMEDA]*₂ [59] Se-Li: 2.58 Å, Se-C: 1.98 Å, ∠C-Se-Li: 95.8°

[BuTeLi·TMEDA]₂ ist mit der Selenverbindung isotyp, Te-Li: 2.81 Å, Te-C: 2.23 Å, ∠C-Te-Li: 95.0°

Eine weitere Möglichkeit, Alkaliselenolate bzw. auch tellurolate zu erhalten, ist die reduktive Spaltung von Diorganodiseleniden oder Diorganoditelluriden mit Natrium in THF [63] oder besser mit Li[BEt₃H] [64,65]:

$$Se \xrightarrow{2 \operatorname{Na}(\mathrm{THF})} 2 \qquad (2.2.7)$$

Bei der Reduktion von Ph_2Te_2 mit NaBH₄ konnte kürzlich ein Intermediat, Na[(TePh)₃], isoliert werden, formal ein Additionsprodukt von NaTePh an Ph_2Te_2 [66].

 Abb. 2.2.2.
 Struktur des Ph₃Te₃⁻ Ions in [Ph₄P][Te₃Ph₃] [66]

 Te1-Te2: 2.948 Å, Te1-Te3: 3.035 Å, Te-C: 2.12-2.13 Å, ∠Te-Te-Te: 172.84°

Während die Reaktion von Organoselenolaten mit Halogensilanen in recht glatten Reaktionen die entsprechenden Selenoorganylsilane liefert [57,60,63,67-69] (wobei sich die meisten Mitteilungen auf die Darstellung von PhSeSiMe₃ beschränken):

$$R-Se-M^{I} + Cl-Si-Me \xrightarrow[]{i}{-M^{I}Cl} R-Se-Si-Me \xrightarrow[]{i}{Me} (2.2.8)$$

entstehen bei der Reaktion von Organotellurolaten mit Trimethylchlorsilan auch erhebliche Mengen an Nebenprodukten [60,70].

Eine genauere Untersuchung (²⁹Si und ¹²⁵Te NMR) der Reaktion von Me₃SiCl mit PhTeMgBr in THF zeigte, dass das gewünschte Phenyltellurotrimethylsilan nur zu etwa 40 % gebildet wird [71]:

Auch bei der Darstellung von BuTeSiMe₃ aus BuTeLi und Me₃SiCl in THF ließ sich die Bildung von Nebenprodukten nicht vermeiden [72]:

Bu Li + Te
$$\xrightarrow{(THF)}$$
 Bu-Te-Li $\xrightarrow{Me_3SiCl}$ Bu-Te-SiMe₃
+ Te(SiMe₃)₂ (2.2.10)
+ Bu-Te-Te-Bu

Schließlich kann in Analogie zu Gl. 2.1.5 auch Phenylselenotrimethylsilan durch katalytische Dehydrokupplung aus Phenylselenol und Trimethylsilan in Gegenwart des WILKINSON-Katalysators dargestellt werden, allerdings nur in mäßigen Ausbeuten (43 - 55 %) neben Diphenyldiselenid [68,73].

Phenylselenotrimethylsilan findet Anwendung in der Organischen Synthese. Es reagiert mit Aldehyden und Ketonen unter Bildung von phenylselenosubstituierter Silylether. α,β -ungesättigte Aldehyde liefern 1,4-Additionsprodukte. Mit Benzaldehyd konnte auch ein Diselenoacetal, PhCH(SePh)₂, erhalten werden [68]:

BuTeSiMe₃ diente zum Aufbau phosphanstabilisierter Kupfertelluridcluster, wie z. B. $Cu_{11}(TeBu)_9Te(PPh_3)_5$ oder $Cu_{18}(TeBu)_6Te_6(PPr_3)_8$, wobei BuTeSiMe₃ sowohl als Quelle für BuTe⁻ als auch Te²⁻ (unter Abspaltung der Butylgruppe) diente [72].

Die Salzeliminierungsreaktionen entsprechend Gl. 2.2.8. sind auch auf die Darstellung von Germanium(IV)thiolaten und -selenolaten sowie *Tris*(chalcogenophenyl)germanaten(II) übertragbar [74]:

Ge-S1: 2.321 Å, Ge-S2: 2.367 Å, Ge-S3: 2.375 Å, S1-Ge-S2: 87.6°, S1-Ge-S3: 92.8°, S2-Ge-S3: 102.2°, Ge-S1-C11: 99.3°, Ge-S2-C21: 102.7°, Ge-S3-C31: 104.1°

Ge-Se1: 2.477 Å, Ge-Se2: 2.501 Å, Ge-Se3: 2.481 Å, Se1-Ge-Se2: 89.3°, Se1-Ge-Se3: 89.8°, Se2-Ge-Se3: 100.0°, Ge-Se1-C11: 100.0°, Ge-Se2-C21: 98.3°, Ge-Se3-C31: 98.6°

Abb. 2.2.4a. Molekülstruktur von Ge(SC₆H₄Me)₄ [74]. Ge-S: 2.21-2.22 Å, S-Ge-S: 105.0-117.4°, Ge-S1-C11: 99.3°, Ge-S2-C21: 103.2°, Ge-S3-C31: 101.6°, Ge-S4-C41: 103.7°

Abb. 2.2.4b. Molekülstruktur von Ge(SeMes)₄ [74] Ge-Se: 2.37-2.39 Å, Se-Ge-Se: 103.6-115.4°, Ge-Se1-C11: 102.8°, Ge-Se2-C21: 100.2°,

Ge-Se3-C31: 99.4°, Ge-Se4-C41: 101.8°

Auffallend sind die deutlich längeren Ge–S bzw. Ge–Se Bindungen in den Ge(II)-chalcogenolaten im Vergleich zu den Ge(IV)-Derivaten in Abb. 2.2.4a–b. Aufgrund des n-Elektronenpaares am Ge(II) findet man für Ge(ER)₃⁻ eine verzerrt pyramidale Anordnung der drei Chalcogenatome um das Germanium. In den Ge(IV)chalcogenolaten weisen die E–Ge–E Winkel eine relativ große Streuung auf, vermutlich aufgrund von Wechselwirkungen der vier recht sperrigen Arylgruppen.

2.3. 1,2-Dithiolate

1,2-Dithiole sind, ähnlich wie Ethylenglykol oder Brenzcatechin (o-C₆H₄(OH)₂), potentiell zur Chelatbildung in der Lage. So ist bekannt, dass sich SiO₂ in alkalischen Lösungen von Ethylenglykol oder Brenzcatechin unter Bildung hyperkoordinierter Silicate löst [75-77]:

Habilitation Uwe Herzog

Dagegen ist es schwierig, die entsprechenden tetravalenten Spiroverbindungen zu erhalten. Für das Brenzcatechinderivat wurde aufgrund von Röntgenuntersuchungen ursprünglich eine quadratisch planare SiO₄-Koordination postuliert [78], die zu stets wiederkehrenden Diskussionen geführt hat [79,80]. Schließlich zeigte sich, dass $[o-C_6H_4(O)_2]_2$ Si eine polymere Struktur aufweist [81]:

Abb. 2.3.1a. Ausschnitt aus der Struktur von $\{[o-C_6H_4(O)_2]_2Si\}_x, [81], Si-O: 1.602 - 1.608 \text{ Å}, Si-O-C: 131.4 - 135.6^\circ, O-Si-O: 104.7 - 116.0^\circ$

Abb. 2.3.1b. Blick auf die Elementarzelle von { $[o-C_6H_4(O)_2]_2Si$ }_x, entlang [001]

Entsprechende 1,2-Dithiolatderivate des Siliciums und seiner höheren Homologen Germanium und Zinn entstehen dagegen glatt durch Reaktion eines Halogensilans mit einem 1,2-Dithiol in Gegenwart einer Base [82] oder durch Umsetzung mit einem Blei(II)dithiolat [83,84]:

$$\begin{array}{cccc}
\text{Me} & \text{Cl} & \text{HS} \\
\text{Si} & \text{HS} & \frac{2 \text{ NEt}_3}{-2 \text{ HNEt}_3 \text{Cl}} & \text{Me} & \text{Si} \\
\text{Me} & \text{Cl} & \text{HS} & \frac{2 \text{ NEt}_3}{-2 \text{ HNEt}_3 \text{Cl}} & \text{Me} & \text{Si} \\
\end{array}$$
(2.3.2)

$$\begin{array}{c} Ph & Cl \\ Sn & + Pb(-S-CH_2-CH_2-S-) \\ Ph & Cl \end{array} \qquad \begin{array}{c} Ph & S \\ \hline -PbCl_2 & Ph \\ Ph & S \end{array} \qquad (2.3.3)$$

Als Ausgangmaterialien können neben den Halogensilanen auch Aminosilane bzw. Silazane dienen, deren Reaktion mit Dithiolen ebenfalls zu Dithiolatderivaten des Siliciums führt [85]. Durch Umsetzung der Tetrahalogenide (im Falle des Bleis das Tetraacetat) mit Toluen-3,4dithiol in Gegenwart einer Base entstehen die entprechenden chiralen Spiroverbindungen, die Habilitation Uwe Herzog durch Chromatographie mit aktiviertem d-Quarz in die Enantiomeren getrennt werden konnten [86]:

Die Kristallstrukturanalyse des *Spiro-bis*(ethylendithia)silans ($C_2H_4S_2$)₂Si [87], dargestellt aus dem Dinatriumsalz des Ethan-1,2-dithiols und SiCl₄ in THF / C_6H_6 , liefert als bemerkenswertesten strukturellen Parameter einen deutlich abgeflachten SiS₄-Tetraeder. Dies äußert sich in einem Spirowinkel (Winkel zwischen den beiden Ebenen S₂Si der beiden Fünfringe) von nur 74.4°. Darüber hinaus zeigt die Spiroverbindung auch eine recht extreme Tieffeldverschiebung in der ²⁹Si NMR Spektroskopie von +57.5 ppm (in CDCl₃).

Der Blick von der Seite zeigt deutlich die Abflachung der SiS₄-Einheit.

EHT-Berechnungen an $(C_2H_4S_2)_2$ Si und Si(SH)₄ konnten zeigen, dass eine Veränderung des Spirowinkel nur mit einer geringen Änderung der Gesamtenergie verbunden ist, allerdings konnte der in der Struktur von $(C_2H_4S_2)_2$ Si beobachtete Spirowinkel mit diesen Berechnungen nicht bestätigt werden, es ergaben sich zwei Minima mit Spirowinkeln von 90° (S₄-Symmetrie) und 87° (D₂-Symmetrie) [88].

Bei der Reaktion von $GeCl_2 \cdot Dioxan mit dilithiierten Benzen-1,2-dithiolen entstehen glatt die entsprechenden schwefelhaltigen Germylene (1,3-Dithia-2-germa(II)indane) [89]:$

$$\int Ge \begin{pmatrix} Cl \\ + \end{pmatrix} \begin{pmatrix} S^{-}Li \\ S^{-}Li \end{pmatrix} \begin{pmatrix} (THF) \\ -2 LiCl \\ -Dioxan \end{pmatrix} Ge:$$
(2.3.5)

Habilitation Uwe Herzog

Beim Erhitzen disproportionieren diese Germanium(II)-Spezies teilweise unter Bildung von Ge(IV)-Spiroverbindungen, 2,2'-*Spiro-bis*(2-germaindan) konnte auch strukturell charakterisiert werden, Abb. 2.3.3. Auch hier tritt eine leichte Abflachung des GeS₄-Tetraeders (Spirowinkel: 83°) auf, wenn auch dies von den Autoren nicht erwähnt wird [89].

Abb. 2.3.3. Molekülstruktur von spiro-(o-C₆H₄S₂)₂Ge [89]
 C2/c (Z = 4); Ge-S1: 2.199 Å, Ge-S2: 2.195 Å, S1-Ge-S2: 98.5°, S1-Ge-S1a: 111.8°, S2-Ge-S1a: 119.0°, S2-Ge-S2a: 11.3°, Ge-S1-C1: 97.6°, Ge-S2-C6: 97.9°

Die analoge Selenverbindung konnte durch Umsetzung eines Diselenaphenylen-Zirconocens mit GeCl₄ erhalten werden [90]:

$$\sum_{zr} Se + \frac{1}{2} GeCl_4 \xrightarrow{-(t-BuC_5H_4)_2 ZrCl_2} \frac{1}{2} Occ Se Se Se Occ Se Occ$$

Die Selenverbindung ist mit der Germanium–Schwefelverbindung isotyp (Ge-Se1: 2.323 Å, Ge-Se2: 2.326 Å, Se-Ge-Se: 99.3 – 119.0°, Ge-Se1-C1: 95.9°, Ge-Se2-C2: 95.7°), δ_{Se} : 337 ppm [90]. Bei Verwendung von überschüssigem GeCl₄ konnte auch das partielle Substitutionsprodukt Cl₂Ge(Se₂C₆H₄) detektiert werden. Entsprechend lieferten Diorganodichlorgermane die 2-Germaindane R₂Ge(Se₂C₆H₄) (R = Me, Et, Pr, Bu, Ph, Me/Ph, Cl/Ph) [90].

Die Germanium- und Zinn-*spiro-bis*(dithiolate) $M(S_2C_6H_3CH_3)_2$ reagieren mit [Et₄N]F bzw. [Me₄N]Cl zu hypervalenten *spiro*-Germanaten [91] bzw. *spiro*-Stannaten [92]:

Habilitation Uwe Herzog

Während die Geometrie der analogen Sauerstoffverbindung $[(o-C_6H_4O_2)_2GeF][NEt_4]$ annähernd einer quadratischen Pyramide mit dem F-Substituenten an der Spitze entspricht, liegt die Geometrie der Schwefelverbindung (Abb. 2.3.4.) näher an einer trigonalen Bipyramide mit S1 und S1' in den axialen Positionen [93].

Abb. 2.3.4. Struktur des Anions in [MePPh₃]⁺ [(CH₃C₆H₃S₂)₂GeF]⁻ · MeCN [93]
Ge-F: 1.780 Å, Ge-S1: 2.330 Å, Ge-S1': 2.343 Å, Ge-S2: 2.251 Å, Ge-S2': 2.250 Å, S1-Ge-S2: 90.2°, S1'-Ge-S2': 89.9°, S1-Ge-S1': 171.1°, S2-Ge-S2': 136.22°, Ge-S-C: 100.4 – 102.9°

In der Zinnverbindung $[Me_4N]^+$ $[(CH_3C_6H_3S_2)_2SnCl]^-$ findet man dagegen eine Geometrie, die sich eher mit einer quadratischen Pyramide beschreiben lässt [92,94], Abb. 2.3.5. Auf der Basis der Diederwinkelmethode [95] ergibt sich hier eine Abweichung von 77 % von der trigonalen Bipyramide.

Abb. 2.3.5. Struktur von [Me₄N]⁺ [(CH₃C₆H₃S₂)₂SnCl]⁻ [94] Sn-Cl: 2.413 Å, Sn-S1: 2.463 Å, Sn-S1': 2.2.458 Å, Sn-S2: 2.437 Å, Sn-S2': 2.447 Å S1-Sn-S2: 87.9°, S1'-Ge-S2': 88.6°, Ge-S-C: 100.3 – 100.9°

Zu entsprechenden *spiro*-Germanaten mit einer Ge–C Bindung gelangt man durch Reaktion von RGeCl₃ mit NaSCH₂CH₂SNa (R = Ph) [96] bzw. Toluen-3,4-dithiol / NEt₃ (R = Me) [97]:

Abb. 2.3.6. Struktur des Anions in [Et₄N]⁺ [(CH₃C₆H₃S₂)₂GeMe]⁻ [97]
Ge-C 1.97 Å, Ge-S1: 2.413 Å, Ge-S1': 2.383 Å, Ge-S2: 2.278 Å, Ge-S2': 2.269 Å, S1-Ge-S2: 86.3°, S1'-Ge-S2': 88.7°, S1-Ge-S1': 165.2°, S2-Ge-S2': 130.4°, Ge-S-C: 94.5 – 103.0°

In beiden Strukturen sind die Ge–S Bindungen zu den Schwefelatomen in axialen Positionen (S1 und S1') deutlich länger als die anderen beiden Ge–S Bindungen. (Die mit ' markierten Atome in Abb. 2.3.4. – 2.3.6. sind nicht symmetrieäquivalent zu den Atomen ohne Index.) Auch hier zeigte sich, dass analoge Verbindungen mit einer GeCO₄-Koordination eher eine quadratisch pyramidale Koordination bevorzugen [96,97], während die Schwefelverbindungen am Germanium näherungsweise trigonal bipyramidal koordiniert sind.

Bei der Reaktion von GeBr₂ mit Dinatriumethan-1,2-dithiolat entsteht ein verbrücktes Ge(II)dithiolat, dass als Tetraphenylphosphoniumsalz kristallisiert werden konnte [74]. Die Germaniumatome sind hier aufgrund des *n*-Elektronenpaares pyramidal von drei Schwefelatomen koordiniert, siehe Abb. 2.3.7.

Abb. 2.3.7. Struktur des Anions in [Ph₄P]₂[Ge₂(SCH₂CH₂S)₃] [74] Ge-S1: 2.344 Å, Ge-S2: 2.323 Å, Ge-S3: 2.349 Å, S1-Ge-S2: 90.1°, S1-Ge-S3: 97.1°, S2-Ge-S3: 100.9°, Ge-S1-C1: 101.0°, Ge-S2-C2: 99.2°, Ge-S3-C3: 97.8°

Spirosilicate mit einer SiCS₄-Koordination sind in Form zwitterionischer Verbindungen ausgehend von einem aminofunktionalisierten Silan dargestellt worden [98]:

Beide zwitterionische Thiosilicate zeigen eine angenähert trigonal bipyramidale Koordination am Siliciumatom mit zwei Schwefelatomen in den axialen Positionen, Abb. 2.3.8. und 2.3.9. Aufgrund des geringeren Platzangebotes in den axialen Positionen sind die axialen Si–S Bindungen (S1, S3) 6 – 8 % länger als die equatorialen Si–S Bindungen. Die ²⁹Si NMR chemischen Verschiebungen der festen Substanzen liegen mit –53.0 ppm (Ethendithiolat) und –61.0 ppm (Benzendithiolat) im üblichen Bereich für pentakoordinierte Siliciumspecies.

Auf ähnlichem Wege sind auch zwitterionige Spirosilicate mit einer SiO₂S₂C-Koordination dargestellt worden. Auch hier tritt eine trigonal bipyramidale Koordination des Siliciums auf, mit den beiden Sauerstoffsubstituenten in den axialen Positionen [99].

Abb. 2.3.8. Molekülstruktur von [98] (SCH₂CH₂S)₂SiCH₂NH(CMe₂(CH₂)₃CMe₂) Si-S1: 2.337 Å, Si-S2: 2.163 Å, Si-S3: 2.292 Å, Si-S4: 2.168 Å, Si-C1: 1.939 Å, S1-Si-S2: 91.0°, S3-Si-S4: 92.1°, S1-Si-S3: 178.5°, S2-Si-S4: 121.5°

Abb. 2.3.9. Molekülstruktur von [98] (o-C₆H₄S₂)₂SiCH₂NH(CMe₂(CH₂)₃CMe₂) Si-S1: 2.328 Å, Si-S2: 2.159 Å, Si-S3: 2.287 Å, Si-S4: 2.159 Å, Si-C1: 1.929 Å, S1-Si-S2: 90.8°, S3-Si-S4: 92.0°, S1-Si-S3: 173.9°, S2-Si-S4: 124.9°

Abschließend sollte noch erwähnt werden, dass auch Thioether-Schwefel als Donoratom zur Bildung hypervalenter Siliciumspezies befähigt ist, wie das in achtgliedrigen Cyclen mit einer Thio-*bis*(*o*-phenylendioxy)-Einheit gezeigt werden konnte [100]:

In Abhängigkeit von den Substituenten R₂ (2 Me, cyclo-(CH₂)₄) und R' (Me, ^tBu) treten Si–S Abstände zwischen 2.98 und 3.29 Å auf, die für eine schwache Si–S Wechselwirkung sprechen, zumal der Ersatz des Schwefelatoms gegen eine Methylengruppe zu einem transannularen Si-C Abstand von 3.42 Å führt [100]. Auch in ähnlich aufgebauten Germaniumverbindungen konnten Donor-Akzeptor-Wechselwirkungen mit Schwefel [101,102] oder auch Selen [103] nachgewiesen werden.

3. Silylchalcogenole (R₃Si–EH) und Derivate

3.1. Einfache Silanthiole

Trihalogensilanthiole, X_3Si –SH, entstehen bei der Reaktion von Trihalogensilanen mit elementarem Schwefel[†] bei hohen Temperaturen [104]:

$$X \xrightarrow{X}_{i} H + S \xrightarrow{X}_{i} X \xrightarrow{X}_{i} S \xrightarrow{H} (3.1.1)$$

(X = F: 350 °C, X = Cl: 300 °C, X = Br: 250 °C, X = I: 85 °C, jeweils 48 h)

Bei einer analogen Reaktion von Dichlorsilan, H₂SiCl₂, konnten auch Chlor- und Dichlorsilanthiol, ClH₂Si(SH) und Cl₂HSi(SH) spektroskopisch nachgewiesen werden [105]. In Tabelle 3.1.1. sind die NMR-Daten der Halogensilanthiole zusammengefasst.

Verbindung	δ (Si)	${}^{1}J_{SiH}$	$^{2}J_{SiSH}$	δ (Η)
H ₃ Si(SH)	-54.15	223.6	6.6	-0.19 (SH)
				4.25 (SiH)
F ₃ Si(SH)	-64.75	_	10.3	0.58
		(¹ J _{SiF} : 274.8)		
Cl ₃ Si(SH)	-2.42	_	9.8	0.61
Br ₃ Si(SH)	-50.10	_	8.5	0.40
I ₃ Si(SH)	-210.73	_	5.4	
ClH ₂ Si(SH)	-12.30	269.8	7.3	
Cl ₂ HSi(SH)	1.94	332.0	8.5	0.68 (SH)
				5.70 (SiH)
Me ₃ Si(SH)	15.78	_	6.9	0.21 (SH)
				0.14 (CH ₃)

Tabelle 3.1.1.NMR Daten (ppm, Hz) der einfachen Silanthiole $X_3Si(SH)$ (X = H, F, Cl, Br, I, Me) [104,105]

Triorganosilanthiole entstehen durch Reaktion von Triorganochlorsilanen mit H_2S in Gegenwart einer Hilfsbase [106], wenn es sich um größere organische Reste handelt, andernfalls tritt leicht H_2S -Abspaltung unter Bildung von Disilthianen ein (siehe Abschnitt 4.1.):

[†] Zur Vereinfachung der Stöchiometrie wird in dieser Arbeit in Reaktionsgleichungen Schwefel immer als S geschrieben, auch wenn es sich um Cyclooctaschwefel, S₈, handelt.

$$R \xrightarrow{R}_{i} Cl + H_{2}S \xrightarrow{NEt_{3}}_{-HNEt_{3}Cl} R \xrightarrow{R}_{i} Si \xrightarrow{-Si}_{-H_{2}S} H \begin{bmatrix} 2 \times & R & R \\ 2 \times & -H_{2}S & R \\ -H_{2}S & R & -Si \\ R & R \end{bmatrix}$$

$$(3.1.2)$$

So liefern auch die Reaktionen von (${}^{1}PrO$)₃SiBr (dargestellt aus (${}^{1}PrO$)₃SiH und AllBr in Gegenwart von H₂PtCl₆) sowie (${}^{t}BuO$)₃SiBr mit H₂S / NEt₃ die entsprechenden Thiole (${}^{i}PrO$)₃SiSH [107] und (${}^{t}BuO$)₃SiSH [108], von denen eine Reihe von Übergangsmetall-thiolaten dargestellt und strukturell charakterisiert wurden [109-115].

Auf diesem Wege entstehen auch Heptamethyltrisilan-1-thiol und -2-thiol sowie *Tris*(trimethylsilyl)silanthiol durch Reaktion von 1- oder 2-Chlorheptamethyltrisilan [116] bzw. *Tris*(trimethylsilyl)chlorsilan [117] mit H_2S / Base. Alle drei lagern sich in Gegenwart eines Radikalbildners (AIBN) leicht unter Wanderung einer SiMe₃-Gruppe in ein Disilthian um [117,118], z. B.:

Diese Umlagerung erscheint analog zur KUMADA-Umlagerung von Si₂Me₆ in Pentamethyldisilylmethan, Me₃Si–CH₂–SiHMe₂ [119].

So kann Heptamethyltrisilan-2-thiol an Stelle von Trialkylzinnhydriden zur Reduktion organischer Halogenverbindungen eingesetzt werden. Das zunächst gebildete Thiylradikal lagert sich in ein Silylradikal um, das wiederum in der Lage ist, aus einem Alkylhalogenid ein Halogenatom zu abstrahieren [120].

Daneben bilden sich Triarylsilanthiole auch durch Insertion von Schwefel in Si–H Bindungen. Vor allem Ph₃SiSH ist auf diesem Wege dargestellt worden [121-123]:

Sterisch weniger abgeschirmte Triorganosilane (Ph₂MeSiH, PhEt₂SiH) liefern daneben auch Disilthiane durch anschließende H₂S-Abspaltung [123].

Silanthiole zeigen im Infrarotspektrum eine charakteristische Absorptionsbande bei $2570 - 2595 \text{ cm}^{-1}$. In Lösungen von Donorlösungsmitteln (THF, DMF) wird diese Bande durch schwache H-Brückenbildung um $40 - 150 \text{ cm}^{-1}$ verschoben. Diese Verschiebungen korrelieren mit den induktiven Effekten der Substituenten am Silicium und damit mit der Acidität der Silanthiole [124-126].

Triphenylsilanthiol reagiert mit N-Halogensuccinimiden unter Bildung von Triphenylsilylhalogensulfanen (X = Br, I) [127]:

Abb. 3.1.1. Molekülstruktur von Ph₃SH [127] (eines der beiden krist. unabhäng. Moleküle) Si-S: 2.151 und 2.150 Å, Si-C: 1.864 – 1.871 Å

Abb. 3.1.2. Molekülstrukt. von Ph₃SiSBr [127] Si-S: 2.166 Å, S-Br: 2.166 Å, Si-S-Br: 101.2° Si-C: 1.844 – 1.857 Å

Durch Reaktion mit Natrium oder Kalium in Benzol entstehen aus Triphenylsilanthiol die entsprechenden Alkalisalze Ph_3SiSM^I . Umsetzung derselben mit Ph_3SiCl liefert das Disilthian $(Ph_3Si)_2S$, Bromalkane reagieren zu Silanthiolaten Ph_3SiSR (R = Me, Et). Die Oxidation von Ph_3SiSNa mit I₂ schließlich liefert das Disilyldisulfid $Ph_3Si-S-S-SiPh_3$ [128].

Ausgehend von 1,2-Di-tert-butyl-1,2-diphenyldisilan-1,2-ditriflat entsteht durch Reaktion mit H₂S / NEt₃ das entsprechende Disilan-1,2-dithiol, das durch Umkristallisation aus Hexan auch diastereomerenrein gewonnen werden konnte. Nach Lithiierung mit LiBEt₃H liefert die Reaktion mit Cp₂TiCl₂ ein 2,5-Dithia-3,4-disilatitanacyclopentan [129]:

Die Umsetzung mit SCl₂ ergibt schließlich ein 1,2,3-Trithiadisilacyclopentanderivat, das ebenfalls strukturell charakterisiert werden konnte [129].

Abb. 3.1.3.

Molekülstruktur von ${}^{t}Bu_{2}Ph_{2}Si_{2}(S)_{2}TiCp_{2}$ [129] *Si1-Si2: 2.41 Å. Si1-S1: 2.13 Å. Si2-S2: 2.13 Å.* Ti-S1: 2.47 Å, Ti-S2: 2.39 Å, Ti-S1-Si1: 113.2°, Å, S1-S2: 2.06 Å, S2-S3: 2.06 Å, Si1-S3-S2: *Ti-S2-Si2: 109.7, S1-Ti-S2: 93.9*°

Abb. 3.1.4.

Molekülstruktur von ${}^{t}Bu_{2}Ph_{2}Si_{2}S_{3}$ [129] Si1-Si2: 2.41 Å. Si1-S3: 2.18. Si2-S1: 2.17 97.9°, Si2-S1-S2: 92.7°, S1-S2-S3: 103.3°

Auch ein 2,4-Dithia-3-silatitanacyclobutanderivat, (MeCp)₂Ti(S)₂SiMe₂, ist bekannt, es entsteht durch Reaktion von Me₂Si(SLi)₂ mit (MeCp)₂TiCl₂ in THF [130].

3.2. *Hypersilylchalcogenole ((Me₃Si)₃SiEH) und Metallderivate*

Ähnlich wie Chalcogene (S, Se, Te) in THF-Lösung in die Si–Li Bindung von Ph₃SiLi unter Bildung von Triphenylsilylchalcogenolaten, Ph₃SiELi, insertieren [51], gelingt diese Reaktion auch mit Hypersilyllithium, wobei vor allem die Reaktion mit Tellur intensiv untersucht wurde [131,132]:

$$Me_{3}Si - Si - Li(THF)_{n} + Te \longrightarrow Me_{3}Si - Si - Te \cdot Li(THF)_{n}$$
(3.1.7)
$$SiMe_{3}$$
$$SiMe_{3}$$
$$SiMe_{3}$$

Vom so gebildeten Lithiumhypersilyltellurolat existieren Kristallstrukturanalysen der Addukte mit 1 [133] und 2 [134] THF (Abbn. 3.1.5. und 3.1.6.) sowie mit DME [132]. In allen drei Strukturen liegt die Verbindung dimer unter Bildung eines planaren Li₂Te₂-Vierrings vor. Die Donormoleküle (THF, DME) vervollständigen die Koordinationssphäre des Lithiums (DME unter Bildung von C₂O₂Li-Fünfingen). Dagegen entsteht bei Zugabe von 12-Krone-4 ein Kronenetheraddukt, in dem die Ionen separiert vorliegen, [Li(12-*cr*-4)₂][TeSi(SiMe₃)₃] [134], siehe Abb. 3.1.7.

Abb. 3.1.6. Struktur des dimeren

 $[(Me_3Si)_3SiTeLi(THF)]_2 [133]$

Li-Te: 2.738 Å, Li-Te': 2.747 Å, Li-O: 1.882 Å, Te-Si: 2.504 Å, Li-Te-Li': 70.2°, Te-Li-Te': 109.8° Li1-Te1: 2.82 Å, Li1-Te1a: 2.88 Å, Li1-O1: 1.90 Å, Li1-O2: 1.99 Å, Te1-Si1: 2.480 Å, Li1-Te1-Li1a: 90.4°, Te1-Li1-Te1a: 89.6°

 $[(Me_{3}Si)_{3}SiTeLi(THF)_{2}]_{2}[134]$

Abb. 3.1.7. Struktur des ionischen [Li(12-cr-4)₂] [TeSi(SiMe₃)₃] [134], Si1-Te: 2.468 Å

Die anderen Lithiumhypersilylchalcogenolate entstehen aus dem Tellurolat durch Metathesereaktionen:

$$Me_{3}Si - Si - Si - Te \cdot Li(THF)_{n} + E \xrightarrow[-55 \circ C]{(THF)} Me_{3}Si - Si - E \cdot Li(THF)_{n} + Te$$

$$SiMe_{3} = S, Se \qquad SiMe_{3} \qquad (3.1.8)$$

Protonierung mit Trifluormethansulfonsäure liefert die entsprechenden Chalcogenole, die im Hochvakuum bei ca. 80 °C sublimiert werden können. In Methyl-isobutyl-keton (MIBK) wurden die pK_a -Werte zu 7.4 (HTeSi(SiMe_3)_3), 8.3 (HSeSi(SiMe_3)_3) und 10.7 (HSSi(SiMe_3)_3) bestimmt [133].

Die Oxidation des Tellurols an Luft oder durch CuCl liefert quantitativ das smaragdgrüne, luftstabile Ditellurid (Me₃Si)₃Si–Te–Te–Si(SiMe₃)₃. Durch Natrium- oder Kaliumamalgam kann dieses wieder gespalten werden unter Bildung von Natrium- oder Kalium-hypersilyltellurolat [134].

He(I)-Photoelektronenspektren der Hypersilylchalcogenole (E = O, S, Se, Te) ergaben vertikale Ionsierungsenergien A1 im Bereich 7.5 – 8.1 eV (siehe Tab. 3.1.2.). Parallel durchgeführte DFT-Berechnungen zeigten, dass das HOMO π -Symmetrie aufweist und für E = O im Wesentlichen zwischen den Siliciumatomen lokalisiert ist, während es sich bei den schwereren Chalcogenen überwiegend am Chalcogenatom befindet (siehe Abb. 3.1.8.) [135]. Tabelle 3.1.2.

Erste vertikale Ionisierungenergien (He(I)) und Orbitalenergien (DFT-Berechnungen) sow	vie
Si-E-H Bindungswinkel der Hypersilylchalcogenole (Me_3Si) ₃ SiEH, $E = O$, S, Se, Te [135]	

Verbindung	Vertikale 1. IE (eV)	Orbitalenergie HOMO (eV)	Orbitalenergie SOMO (eV)	Bindungswinkel Si-E-H (°)
(Me ₃ Si) ₃ SiOH	8.14	-6.8	-7.2	124.9
(Me ₃ Si) ₃ SiSH	7.91	-6.5	-7.7	97.1
(Me ₃ Si) ₃ SiSeH	7.79	-6.2	-7.7	93.8
(Me ₃ Si) ₃ SiTeH	7.54	-5.9	-7.7	91.0

(SOMO = second occupied MO; zweithöchstes besetztes Orbital)

Abb. 3.1.8. Lage der beiden höchsten besetzten Orbitale (HOMO, SOMO) in den Hypersilylchalcogenolen (Me_3Si)₃SiEH (E = O, S, Se, Te) [135].

Ausgehend von Hypersilyltellurol wurden von ARNOLD et al. eine große Palette von Hauptund Nebengruppenelementhypersilyltellurolaten dargestellt und in vielen Fällen auch strukturell charakterisiert, so mit Mg, Ca, Sr, Ba [136]; Al^{III}, Ga^{III}, In^I, Tl^I [137]; Sn^{II}, Pb^{II} [138]; Sb^{III}, Bi^{III} [137], Sm^{II}, Eu^{II}, Yb^{II} [139]; Ti^{IV}, Zr^{IV}, Hf^{IV} [140]; Cp₂Ti^{III}, Cp₂Ti^{IV}, Cp₂Zr^{IV}, Cp₂Hf^{IV} [141]; V^{IV}, Mo^{IV} [142]; Cr^{II}, Mn^{II}, Fe^{II}, Co^I [143] sowie Zn, Cd, Hg [144]. Teilweise wurden auch die analogen Hypersilylselenolate dargestellt, so z. B. auch von In^{III}, P^{III} und As^{III} [137]. In den meisten Fällen wurden dazu die entsprechenden Elementhalogenide mit (THF)₂LiTeSi(SiMe₃)₃ oder die Element-*bis*(trimethylsilyl)amide mit dem Hypersilyltellurol umgesetzt, zum Teil in Gegenwart eines Phosphanliganden oder auch TMEDA.

Exemplarisch sind in den Abbildungen 3.1.9 - 3.1.12. einige Strukturen von Hypersilylselenolaten und -tellurolaten wiedergegeben.

SiMe₃

Abb. 3.1.9. Molekülstruktur von

 $(THF)_2 \cdot Mg[TeSi(SiMe_3)_3]_2 [136]$

Mg-Te1: 2.720 Å, Mg-Te2: 2.714 Å, Te1-Mg-Te2: 135.48°, O-Mg-O: 94.8°

Die Mg-Te-Abstände entsprechen annähernd der Summe der Ionenradien von Mg²⁺ und Te²⁻, d. h. die Bindung ist als weitgehend ionisch anzusehen.

Abb. 3.1.10. Molekülstruktur von Zr[SeSi(SiMe₃)₃]₄ [140]

(C- und H-Atome sind weggelassen)

Einen analogen Aufbau zeigen auch die Strukturen von Hf[TeSi(SiMe₃)₃]₄ [140], $V[TeSi(SiMe_3)_3]_4$ und Mo[TeSi(SiMe_3)_3]_4 [142]. Aufgrund der d-Elektronen an V^{IV} und Mo^{IV} zeigen letztere allerdings einen etwas abgeflachten MTe₄-Tetraeder.

Abb. 3.1.11. Zwei Ansichten der Molekülstruktur des dimeren {Sn[TeSi(SiMe₃)₃]₂}₂ [138]
Die Struktur zeigt einen zentralen gewinkelten Sn₂Te₂-Ring mit zwei verbrückenden und zwei terminalen TeSi(SiMe₃)₃-Einheiten. Das s-Elektronenpaar am Sn^{II} verursacht die pyramidale Koordination durch drei Telluratome.
Sn-Te1: 2.956 Å, Sn-Te1': 2.946 Å, Sn-Te2: 2.800 Å, Te1-Si1: 2.540 Å, Te2-Si5: 2.521 Å, Te1-Sn-Te1': 78.71°, Sn-Te1-Sn': 91.65, Sn-Te2-Si5: 111.68°

Abb. 3.1.12. Molekülstruktur von

 $[TMEDA]_2 \cdot Yb[SeSi(SiMe_3)_3]_2 [139]$

Das Ytterbiumatom sitzt auf einem Inversionszentrum, daraus ergibt sich ein Se-Yb-Se Winkel von genau 180.0° Yb-Se: 2.870 Å, Se-Si1: 2.238 Å, Yb-N1: 2.586 Å, Yb-N2: 2.577 Å, Yb-Se-Si1: 163.7°

Die Pyrolyse (200 – 300 °C) der Hypersilyltellurolate und -selenolate liefert neben $E[Si(SiMe_3)_3]_2$ die entsprechenden Elementselenide bzw. -telluride als mikrokristalline Pulver (z. B. YbSe, YbTe [139]; SnTe, PbTe, PbSe [138], CdTe, HgTe [144]), was sie als mögliche *single-source*-Precursoren zur Abscheidung dieser Halbleitermaterialien interessant macht.

4. Chalcogenide mit der Sequenz Si–E–Si (E = S, Se, Te) sowie analoge Geund Sn-Verbindungen

4.1. Acyclische Chalcogenide $(R_3M)_2E$ (E = S, Se, Te, M = Si, Ge, Sn)

Disilylchalcogenide, $(R_3Si)_2E$ (E = S, Se, Te) entstehen durch Reaktion der entsprechenden Chlorsilane mit H₂E in Gegenwart einer Base (E = S, Se) oder auch durch Reaktion mit Alkalimetallchalcogeniden [145,146], z. B.:

$$2 R_{3}SiCl \xrightarrow{H_{2}S + 2 NEt_{3}}{-2 HNEt_{3}Cl} R_{3}Si-S-SiR_{3}$$
(4.1.1)
$$\underbrace{\frac{M_{2}^{I}S}{-2 M^{I}Cl}}$$

Diese Reaktionen lassen sich auch auf die Darstellung entsprechender Germanium- [147] und Zinnchalcogenide [148] übertragen, wobei in diesen Fällen auch z. T. in wässrigen Lösungen gearbeitet werden kann. Für die Reaktionen in nichtwässrigen Lösungen sind kommerziell erhältliche Chalcogenide weniger geeignet, da sie lange Reaktionszeiten erfordern bei nur mäßigen Ausbeuten. Die Alkalichalcogenide lassen sich besser frisch präparieren durch Reaktion der Elemente in flüssigem Ammoniak [147] oder auch in DME (Na₂Te [149]) bzw. THF (Na₂Se [150]) in Gegenwart geringer Mengen Naphthalin.

Alternativ können auch komplexe Thio- oder Selenoaluminate eingesetzt werden, die durch Reaktion von H_2E (E = S, Se) mit LiAl H_4 entstehen [151], z. B.:

$$\operatorname{Li} \begin{bmatrix} H & H \\ AI \\ H & H \end{bmatrix} \xrightarrow{4 \operatorname{H}_2 S} \operatorname{Li} \begin{bmatrix} H^{-S} & S^{-H} \\ AI \\ H^{-S} & S^{-H} \end{bmatrix}$$
(4.1.2)

In den letzten Jahren wurden zunehmend Lithiumchalcogenide eingesetzt, die durch Reaktion des elementaren Chalcogens mit Li[BEt₃H] in THF erhältlich sind [152]. Die so gewonnenen Lithiumchalcogenide sind zunächst in THF gelöst (vermutlich aufgrund der Koordination des BEt₃ mit dem Chalcogenidion) und damit wesentlich reaktiver als die auf anderem Wege dargestellten Alkalichalcogenide, die in THF unlöslich sind:

$$2 \operatorname{Li} \begin{bmatrix} H & Et \\ B & Et \end{bmatrix} + E \xrightarrow{(THF)} \operatorname{Li}_2 E \cdot BEt_3 + BEt_3 \qquad (4.1.3)$$

Für die Darstellung von $(Me_3Si)_2S$ ist auch eine Synthese beschrieben worden, die vom billigen Hexamethyldisilazan und H₂S ausgeht [153-155]:

$$\frac{\text{Me}_{3}\text{Si}}{\text{H}} + \text{H}_{2}\text{S} \xrightarrow{(1 \% \text{Imidazol})}{90 - 100 \text{°C}, 4 \text{ h}} \xrightarrow{\text{Me}_{3}\text{Si}} \text{S}^{\text{Si}\text{Me}_{3}} + \text{NH}_{3}$$

$$(4.1.4)$$

Auf diesem Wege sind auch größere Mengen des Disilthians leicht erhältlich. Durch Transsilylierungsreaktionen lassen sich durch Umsetzung mit anderen Chlorsilanen auch andere Disilthiane daraus gewinnen, z. B. [156]:

$$\frac{Me_{3}Si}{S} \xrightarrow{SiMe_{3}} + 2 PhSiH_{2}Cl \longrightarrow \frac{PhH_{2}Si}{S} \xrightarrow{SiH_{2}Ph} + 2 Me_{3}SiCl$$

$$(4.1.5)$$

Disilthiane entstehen auch durch längeres Erhitzen von Disilanen mit elementarem Schwefel unter Insertion in die Si–Si Bindung. Diese Reaktion ist auch auf Verbindungen mit Sn–Sn oder Pb–Pb Bindungen und die schwereren Chalcogene übertragbar. Statt der freien Chalcogene können auch Triorganylphosphanchalcogenide eingesetzt werden. Wenngleich auch R₃P=Te im Gleichgewicht mit R₃P und Te vorliegt, so katalysiert doch die Zugabe eines Phosphans erheblich die Reaktion von Tellur mit R₃SnSnR₃ bzw. R₃PbPbR₃ [157].

Abb. 4.1.1. Molekülstruktur von Hexabenzyldistannathian [(PhCH₂)₃Sn]₂S [158] Sn1-S: 2.411 Å, Sn2-S: 2.404 Å, Sn-C: 2.12 – 2.18 Å, Sn1-S-Sn2: 105.2°

Der Sn–S–Sn Winkel ist hier um 2.1° kleiner als in (Ph₃Sn)₂S [159]. Aufgrund der kürzeren Bindungslängen und damit steigender sterischer Hinderung steigt der M–S–M Winkel in (Ph₃M)₂S in der Reihe Sn (107.3° [159]) < Ge (111.6° [160]) < Si (112.0° [161]).

Habilitation Uwe Herzog

Die Donoreigenschaften der Chalcogenatome in den *Bis*(trimethylmetall)chalcogeniden zeigen sich in der Bildung von Übergangsmetallkomplexen aus Pentacarbonylchrom-, -molybdän- und -wolframfragmenten und (Me₃M)₂E (E = S [162], Se [163], Te [164]):

Ausgehend von Natriumtriphenylsilanthiolat lassen sich durch oxidative Kupplung bzw. Reaktion mit Chlorsulfanen auch Disilylsulfane mit zwei bis neun Schwefelatomen darstellen [165]:

$$2 \operatorname{Ph}-\underset{l}{\overset{\text{Si}}{\underset{Si}}{\underset{Si$$

Aufgrund der hohen Affinität des Siliciums zu Sauerstoff können Aldehyde und Ketone durch Reaktion mit (Me₃Si)₂S in entsprechende Thioaldehyde bzw. Thioketone überführt werden. Aufgrund der geringen Stabilität der Thioaldehyde konnten diese jedoch lediglich als [2+4]-Cycloadditionsprodukte abgefangen und nachgewiesen werden [166]:

$$R \xrightarrow{O}_{H} \xrightarrow{(Me_{3}Si)_{2}S}_{-(Me_{3}Si)_{2}O} \left[R \xrightarrow{S}_{H} \right] \xrightarrow{O}_{S} \xrightarrow{R} (4.1.9)$$

Sulfoxide werden durch (Me₃Si)₂S bei Raumtemperatur binnen weniger Minuten zu den entsprechenden Sulfiden reduziert, so auch DMSO zu Me₂S [167]:

$$R \xrightarrow{O}_{R} (Me_3Si)_2S \qquad R \xrightarrow{S}_{R} + S \qquad (4.1.10)$$
4.2. Dimere und trimere Diorganoelementchalcogenide $(R_2ME)_x$, x = 2, 3

4.2.1. Siliciumverbindungen $(R_2SiE)_x$ (E = S, Se, Te; x = 2, 3)

Die Reaktion von Diorganodichlorsilanen mit H_2S in Gegenwart eines Amins liefert Hexaorganocyclotrisilthiane (R = Me [168], Ph [169], R = Me/Ph [170], R = Me/Alkyl [171], R = Me/OR' [172], R = Me/Et und Me/Vi [173]):

$$3 \underset{R}{\overset{N}{\longrightarrow}} \underset{Cl}{\overset{Si}{\longrightarrow}} \underset{R_{3}N = Et_{3}N, py}{\overset{R}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{R}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{R}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{R}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{R}{\longrightarrow}} \underset{R}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\overset{Si}{\longrightarrow}} \underset{R}{\overset{Si}{\overset$$

Diese Reaktionen sind auch auf Organodichlorsilane (MeSiHCl₂, EtSiHCl₂) übertragbar, die auf diesem Wege (RHSiS)₃ (R = Me, Et) liefern, in ersterem Falle wird daneben aber auch in geringen Mengen (MeSi)₄S₆ gebildet [174]. Dagegen lässt sich der Grundkörper, (H₂SiS)₃, auf diesem Wege (oder auch durch Hydrierung von (Cl₂SiS)₂ mit LiAlH₄) nicht darstellen, da H₂SiCl₂ mit Aminen stabile Addukte bildet, die nicht mit H₂S reagieren. Die Reaktion von H₂SiI₂ mit HgS führte jedoch zu (H₂SiS)₃. Das flüssige cyclische Trimer wandelt sich bei Raumtemperatur langsam in ein gummiartiges polymeres Produkt um, dass durch Vakuumdestillation bei 210 °C wieder zu (H₂SiS)₃ depolymerisiert werden kann [175]. Diese Darstellungsmethode ließ sich auch auf die Synthese von (H₂SiSe)₃ aus H₂SiI₂ und HgSe in C₆H₆ in 33 % Ausbeute übertragen [176]. Die nadelförmigen Kristalle von (H₂SiSe)₃ wandeln sich bei Raumtemperatur ebenfalls allmählich in ein Oligomerengemisch um, das sich bei 140 °C wieder zu (H₂SiSe)₃ depolymerisieren lässt [176].

Ein anderer Zugang zu $(R_2SiS)_3$ besteht in der Reaktion eines Diorganosilans mit elementarem Schwefel bei höheren Temperaturen (R = Ph [177]):

$$3 \xrightarrow{R}_{R} \xrightarrow{H}_{H} \xrightarrow{3 \text{ S (Dekalin)}}_{15 \text{ h, Rückfluss}} \xrightarrow{R}_{R} \xrightarrow{S_i \xrightarrow{S_i}}_{R} \xrightarrow{R}_{R} (4.2.1.2)$$

Die Selenverbindungen (Me₂SiSe)₃ [178,179], (Et₂SiSe)₃ und (Ph₂SiSe)₃ [150] gewinnt man dagegen durch Reaktion von Me₂SiCl₂ mit Na₂Se (dargestellt aus den Elementen in flüssigem Ammoniak bzw. in THF in Gegenwart von Naphthalin).

Abb. 4.2.1.1. Molekülstruktur von trans-(PhMeSiS)₃ nach den Daten von [170]

Der zentrale Si₃S₃-Ring nimmt eine angenäherte twist-Boot-Konformation mit Si-S: 2.13 – 2.15 Å, S-Si-S: 112.2 – 112.6°, Si-S-Si: 104.7 – 108.0° ein. Die twist-Boot-Konformation wird auch in der Abfolge der Torsionswinkel im Si₃S₃-Ring deutlich: 27.8°, 41.3°, –68.2°, 20.1°, 43.1°, –72.3°, die angenähert der Folge $+\varphi_1$, $+\varphi_2$, $-(\varphi_1+\varphi_2)$, $+\varphi_1$, $+\varphi_2$, $-(\varphi_1+\varphi_2)$ entspricht. Für eine Sesselkonformation erwartet man $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$; für eine Bootkonformation $+\varphi_1$, $-\varphi_1$, 0, $+\varphi_1$, $-\varphi_1$, 0.

Dies ist die bisher einzige Kristallstrukturanalyse für einen $(R_2SiE)_3$ Cyclus (E = S, Se, Te).

Das ölige (Me₂SiSe)₃ wandelt sich beim Destillieren im Vakuum teilweise in kristallines dimeres (Me₂SiSe)₂ um, das sich aber bei Raumtemperatur schnell wieder ins Trimer zurückverwandelt [178]. Auch die Schwefelverbindung (Me₂SiS)₃ wandelt sich durch langsames Destillieren in das Dimer (Me₂SiS)₂ (F. 108 – 110 °C) um [180]. Die Gleichgewichtskonstante dieser Isomerisierung wurde bei verschiedenen Temperaturen und Konzentrationen bestimmt [181]. Dabei treten Silanthione bzw. Silanselenone (siehe auch Abschnitt 4.4.) als Intermediate auf, die durch Abfangreaktionen, z. B. mit D₃ nachgewiesen werden konnten [150]:

Auf einem analogen Mechanismus beruhen auch Austauschreaktionen zwischen $(Me_2SiS)_3$ und $(Me_2SiNR)_3$ (R = H, Me, Et, Pr), die bei 180 °C zu den gemischten Cyclen $(Me_2Si)_3S_x(NR)_{3-x}$ führen [182].

Auch andere Cyclotrisilthiane $(R_2SiS)_3$ wandeln sich beim Erhitzen in Cyclodisilthiane $(R_2SiS)_2$ um, so mit R = Ph [169], R = Me/Et und Me/Vi [173]. In den letzten beiden Fällen entstehen Gemische der *cis*- und *trans*-Isomeren.

Für (Me₂SiS)₂ wurde zunächst aus Elektronenbeugungsmessungen auf eine planare Struktur des Si₂S₂-Ringes mit einem Winkel Si–S–Si von 75° geschlossen [183], dieser weicht aber erheblich vom Si–S–Si Winkel in der Molekülstruktur des festen (Me₂SiS)₂ ab, siehe Abb. 4.2.1.2.

Abb. 4.2.1.2. Molekülstruktur von (Me₂SiS)₂ [184] mit Bindungslängen (Å) und Winkeln (°)
 Das Molekül hat ein kristallographisches Inversionszentrum in der Mitte des Vierrings, außerdem liegt der Vierring in einer Spiegelebene.
 Aufgrund des geringen Si-S-Si Winkels von 82.46° ergibt sich ein transannularer Si…Si Abstand von 2.837 Å.

Entsprechende Halogencyclodisilthiane $(X_2SiS)_2$ (X = F, Cl, Br) entstehen durch Reaktion der Tetrahalogenide SiX₄ mit H₂S bei höheren Temperaturen, (Cl₂SiS)₂ und (Br₂SiS)₂ konnten auch strukturell charakterisiert werden ((Cl₂SiS)₂: Si–S: 2.116 Å, Si–S–Si: 80.2°; (Br₂SiS)₂: Si–S: 2.112 Å, Si–S–Si: 81.1°) [185,186].

Sperrigere Organylsubstituenten am Silicium favorisieren die Bildung von Cyclodisilthianen bzw. die Bildung analoger Selen- oder Tellurderivate mit Si₂E₂-Vierringen. So entsteht bei der Reaktion von $(C_6F_5)_2$ SiH₂ mit S₈ bzw. von $(C_6F_5)_2$ SiBr₂ mit $(Me_3Si)_2$ S ausschließlich das Cyclodisilthian [187]:

$$2 \int_{F_5C_6}^{F_5C_6} Si \left\{ H - \frac{\frac{1}{2}S_8}{-2H_2S} + \frac{F_5C_6}{F_5C_6}Si \left\{ S - Si \right\} Si \left\{ S - \frac{2(Me_3Si)_2S}{-4Me_3SiBr} - 2 H_2Si \right\} - \frac{C_6F_5}{Br} \right\}$$
(4.2.1.6)

Entsprechend führt auch die Reaktion der stabilen Silylene $H_4C_6(NR)_2Si$: (R = *neo*-Pent) [188] und $H_2C_2(NR)_2Si$: (R = ^tBu) [189] mit den elementaren Chalcogenen zu 1,3-Dichalcogena-2,4-disiletanen:

Abb. 4.2.1.3. Molekülstruktur von $[H_2C_2(N^tBu)_2SiS]_2$ [190]

Si1-S1: 2.211 Å, Si1-S1': 2.119 Å, Si1-N1: 1.735 Å, Si1-N2: 1.738 Å, Si1'-S1-Si1: 84.9°, S1-Si1-S1': 95.1° (Inversionszentrum in der Mitte des Si₂S₂-Ringes) Analog ist auch die Selenverbindung aufgebaut mit Si1-Se1: 2.365 Å, Si1-Se1': 2.263 Å, Si1'-Se1-Si1: 84.8°, Se1-Si1-Se1': 95.2° [190]

Auch das von JUTZI et al. [192] synthetisierte Decamethylsilicocen (η^5 -C₅Me₅)₂Si: reagiert mit Schwefel bzw. mit Ph₃P=Se zu Verbindungen mit Si₂E₂-Vierringen [193]:

Von Cyclotrisilanen ist bekannt, dass sie photochemisch leicht in ein Disilen und ein Silylen gespalten werden. So konnten aus *cyclo*-^tBu₆Si₃ und Selenophen bzw. 2,5-Dimethyltellurophen als Chalcogendonor photochemisch Tetra-*tert*-butyl-1,3-diselena-2,4-disiletan und Tetra-*tert*-butyl-1,3-ditellura-2,4-disiletan dargestellt und strukturell charakterisiert werden [194]:

In den Kristallstrukturen der beiden 1,3-Dichalcogena-2,4-disiletane liegt im Zentrum der planaren Si₂E₂-Ringe jeweils ein kristallographisches Inversionszentrum. Auch hier sind die Winkel an den Chalcogenatomen mit Si–Se–Si': 83.3° und Si–Te–Si': 82.5° kleiner als die E–

Si–E' Winkel an den Siliciumatomen. Die Bindungslängen Si–Se: 2.30 Å und Si–Te: 2.53 Å führen zu transannularen Si…Si Abständen von 3.06 Å (E = Se) und 3.34 Å (E = Te) [194].

4.2.2. Diorganogermanium-, -zinn- und -bleichalcogenide $(R_2ME)_x$

Trimere Dimethylgermanium- und -zinnchalcogenide entstehen bei der Reaktion von Me₂MCl₂ mit Na₂S [195], H₂Se [196] NaHTe [197] oder Na₂Te [198] (aus Te und NaBH₄ in H₂O) in benzolischer oder auch wässriger Lösung. Die Verbindungen, vor allem die des Zinns, sind gegenüber Sauerstoff und Feuchtigkeit wesentlich stabiler als die entsprechenden Siliciumverbindungen. Kristallstrukturanalysen der Zinnverbindungen (Me₂SnS)₃ [199], (Me₂SnSe)₃ [200] und (Me₂SnTe)₃ (tetragonale Modifikation [201]) zeigten einen zentralen Sechsring Sn₃E₃ in *twist*-Boot-Konformation mit kristallographisch bedingter C₂-Symmetrie. Von (Me₂SnS)₃ und (Me₂SnTe)₃ existieren noch eine zweite, monokline Modifikation [202,201]. Hier liegt der Sn₃E₃ Ring ebenfalls in einer *twist*-Boot-Konformation in angenäherter, aber nicht kristallographisch bedingter C₂-Symmetrie vor.

Die Mittelwerte der Bindungswinkel an den Chalcogenatomen nehmen in (Me₂SnE)₃ vom Schwefel (monokline Mod. 103.0°, tetragonale Mod. 103.3°) über Selen (100.8°) zum Tellur (monokline Mod. 97.8°, tetragonale Mod. 97.1°) ab. Die mittleren Bindungslängen Sn–E liegen mit 2.42 Å (Sn–S, tetragonale Modifikation), 2.41 Å (Sn–S, monokline Modifikation), 2.53 Å (Sn–Se) und 2.73 Å (Sn–Te) im üblichen Bereich für Sn–E Einfachbindungen.

Abb. 4.2.2.1. Molekülstruktur der tetragonalen Modifikation von (Me₂SnS)₃ mit C₂-Symmetrie [199]

Abb. 4.2.2.2. Molekülstruktur der monoklinen Modifikation von (Me₂SnTe)₃ [201]

Bindungslängen in pm, Bindungswinkel (°)

Trimere Diorganozinnchalcogenide (R₂SnE)₃ sind für auch mit anderen Resten R bekannt, so für E = S mit R = Et [203], ⁱPr [203], *p*-Tolyl, *p*-MeOC₆H₄, *p*-FC₆H₄, α -Naphthyl, Mesityl [204], Benzyl (E = S, Se: [205], E = Te: [206]), Phenyl (E = S [207], E = S, Se: [27], E = Te: [198]) oder Me₃SiCH₂ (E = Te: [208]). Auch eine analoge Bleiverbindung, (Ph₂PbS)₃, ist bereits 1887 erstmals beschrieben worden [209]. In allen an diesen Verbindungen durchgeführten Kristallstrukturanalysen ([(Me₃SiCH₂)₂SnTe]₃ [208], ([(PhCH₂)₂SnTe]₃ [206], (Ph₂SnS)₃ [210,211], (Ph₂PbS)₃ [211], (o-Tol₂PbS)₃ und (p-Tol₂PbS)₃ [212]) zeigte sich, dass der zentrale Sechsring M₃E₃ eine *twist*-Boot-Konformation einnimmt.

Ph(21) S(2) Ph(10) Pb(3) Pb(2) Pb(1) S(1) S(3) Ph(20) Ph(31) Ph(11)

Ph(30)

Abb. 4.2.2.3. *Molekülstruktur von (Ph₂SnS)*₃ [211] mit näherungsweiser C₂-Symmetrie

Abb. 4.2.2.4. Molekülstruktur von (Ph₂PbS)₃ [211] mit näherungsweiser C₂-Symmetrie Sn-S: 2.39 – 2.42 Å, Sn-C: 2.12 – 2.14 Å, Sn- Pb-S: 2.49 – 2.50 Å, Pb-C: 2.16 – 2.20 Å, Pb-S-Sn: 103.7 – 106.0°, S-Sn-S: 109.6 – 112.4° S-Pb: 103.7 – 105.0°, S-Pb-S: 108.9 – 109.9°

Beim Mischen von (Ph₂SnS)₃ und (Ph₂PbS)₃ [211] bzw. entsprechender tolylsubstituierter Derivate [213] in CDCl₃ tritt sehr schnell ein Austausch von Ringfragmenten unter Bildung gemischter Zinn-Blei-Verbindungen auf, die ¹¹⁹Sn und ²⁰⁷Pb NMR spektroskopisch nachgewiesen werden konnten:

Ein direkter Beweis der Konnektivität Sn–S–Pb ergibt sich auch aus dem Auftreten von ²J_{SnPb} Kopplungssatelliten in beiden Spektren von ca. 217 Hz.

Bemerkenswert ist weiterhin die Reaktion von $(R_2ME)_3$ (R = Me, Ph; M = Ge, Sn; E = S, Se, Te) mit Platin(0)-Komplexen wie [(4,4'-^tBu₂-2,2'-bipy)PtMe₂], die zur Bildung von fünfgliedrigen Metallacyclen [198,214] führt:

Mit sterisch anspruchsvolleren Substituenten bilden sich auch mit Zinn dimere Diorganylzinnchalcogenide (R_2SnE)₂, so zum Beispiel mit R = Mes [204] oder ^tBu [215]:

oder den metallorganischen Substituenten $R = Cp(CO)_2Fe$ [216], $Cp(CO)_3Mo$ [217] und $(CO)_4Co$ [218], siehe auch Gl. 4.6.4. Auch die Reaktion von *Bis*[bis(trimethylsilyl)methyl]-stannylen mit Chalcogenen führt zu dimeren Diorganylzinnchalcogeniden [219]:

In den Strukturen werden, wie auch bei den analogen Siliciumverbindungen mit Si₂E₂-Ringen, planare Vierringe Sn₂E₂ gefunden mit Bindungswinkeln am Chalcogenatom von $< 90^{\circ}$ (82.5 – 87.6°).

Vor allem die Zinnverbindungen sind interessante *single-source*-Precursoren zur Darstellung der Zinnchalcogenide SnS, SnSe und SnTe. Wie bereits in *1*. erwähnt, sind die Zinn(II)chalcogenide Halbleitermaterialien mit Bandlücken von 1.2 eV (SnS), 0.9 eV (SnSe) und 0.2 eV (SnTe) [26]. Vor allem Zinn(II)sulfid hat einige Aufmerksamkeit gefunden, da seine Bandlücke zwischen der des Siliciums (1.12 eV) und der von Galliumarsenid (1.43 eV) liegt, womit es sich als Material für Photovoltaik-Anwendungen in Solarzellen eignet [220,221]. In anderen Arbeiten konnten mikrokristalline SnS-Schichten durch CVD Abscheidung aus SnCl₄ / H₂S (bei 300 – 545 °C) [222] bzw. SnBr₄ / H₂S (bei 250 – 600 °C) [223] auf Glassubstraten erzeugt werden. In Abhängigkeit von der Abscheidungstemperatur entsteht bei tieferen Temperaturen bevorzugt SnS₂, bei höheren Temperaturen SnS. In einem mittleren Temperaturbeich konnte auch die Abscheidung eines gemischtvalenten Sulfids Sn₂S₃ beobachtet werden.

Im Gegensatz dazu liefert die Pyrolyse von $(Ph_2SnE)_3$ (E = S, Se) bei 450 °C direkt reines mikrokristallines SnE in 33.5 % (SnS) bzw. 36.5 % (SnSe) keramischer Ausbeute [27]. SnTe konnte durch Pyrolyse von [(PhCH₂)₂SnTe]₃ bei 275 °C (10 h) bzw. 400 °C (5 h) erhalten werden [206]. Das Produkt enthielt < 1% Kohlenstoff und Wasserstoff.

Für CVD-Anwendungen sind Verbindungen mit höherer Flüchtigkeit erforderlich, so z. B. die dimeren Diorganylzinnchalcogenide $(R_2SnE)_2$. Aus {[(Me_3Si)_2CH]_2SnE}_2 ließen sich mittels CVD-Abscheidungen bei 0.5 – 40 mbar kristalline SnSe- und SnTe-Filme auf Metallsubstraten abscheiden [224,225]. Dagegen gelangen keinerlei Abscheidungen direkt auf nichtmetallischen Substraten wie Quarz.

Abb. 4.2.2.5. Die SEM-Aufnahmen von SnS, dargestellt durch Pyrolyse von (Ph₂SnS)₃
[27], zeigen rosettenartige Cluster aus SnS-Plättchen von ca. 1 μm Größe mit einer Dicke der Plättchen von 250 – 500 Å.

True for the second sec

Abb. 4.2.2.6. Die SEM-Aufnahmen von SnSe, dargestellt durch Pyrolyse von (Ph₂SnSe)₃
[27], zeigen Cluster von SnSe-Prismen, die etwa 0.2 – 0.4 μm × 0.05 μm groß sind.

Abbn. 4.2.2.7. und 4.2.2.8. SEM-Aufnahme und Röntgenpulverdiffraktogramm von SnTe, abgeschieden mittels CVD aus $\{[(Me_3Si)_2CH]_2SnTe\}_2$ auf einer 10 nm dicken Goldschicht auf einem Quarz-Substrat [224].

4.3. Weitere monocyclische Chalcogenide

4.3.1. Cyclen mit M-M-Bindungen (M = Si, Sn)

Die kleinsten Cyclen dieses Typs, Disilathiirane, -selenirane und tellurirane, entstehen durch Reaktion kinetisch stabilisierter Disilene mit elementaren Chalcogenen bei Raumtemperatur, E = S [226,227], E = Se, Te [228]:

Die Reaktionen von Disilenen mit zwei verschiedenen Organylresten an jedem Siliciumatom (RR'Si=SiRR', $R = {}^{t}Bu$, R' = Mesityl oder 2,4,6-Triisopropylphenyl) mit Schwefel bzw. Propylensulfid verlaufen selektiv in der Weise, dass aus dem E-Enantiomer auschließlich das *trans*-Disilathiiran gebildet wird und aus dem Z-Enantiomer selektiv das *cis*-Disilathiiran [227].

 $Molekülstruktur von trans-(Tip^tBuSi)_2S$ [227] $Molekülstruktur von (Mes_2Si)_2Se$ [228]

Während man die analoge Sauerstoffverbindung (aus Mes₂Si=SiMes₂ und N₂O) aufgrund des kurzen Si–Si Abstandes von 2.227 Å [229] besser als einen π -Komplex des Disilens auffassen sollte, handelt es sich bei den Schwefel-, Selen- und Tellurverbindungen aufgrund des längeren Si–Si Abstandes (2.29 – 2.34 Å) tatsächlich eher um einen Dreiring mit drei σ -Bindungen, siehe auch Tab. 4.3.1.1.:

Schema 4.3.1.1. Bindungsverhältnisse in Si₂E Dreiringen

Die Si–E Abstände liegen mit 2.16 Å (S) bis 2.52 Å (Te) im normalen Bereich für Si–E Einfachbindungen. Die Bindungswinkel am Chalcogenatom nehmen von 80.0° (O) auf 55.2° (Te) ab.

Auch die NMR Daten der Dreiringverbindungen sind bemerkenswert, siehe Tabelle 4.3.1.1. Die zunehmende Hochfeldverschiedung des Siliciumsignale korreliert mit der abnehmenden Elektronegativität der Chalcogene. Die ⁷⁷Se und ¹²⁵Te Verschiebungen entsprechen denen anderer Verbindungen mit einer Si–E–Si Sequenz, dagegen sind die Kopplungskonstanten ¹J_{SiE} verhältnismäßig klein.

Tabelle 4.3.1.1. NMR Daten und Bindungsparameter von $cyclo-(Mes_2Si)_2E$ (E = O, S, Se, Te) [228]

				-		-
Verbindung	δ_{Si} (ppm)	δ_{E} (ppm)	$^{1}J_{SiE}$ (Hz)	Si–Si (Å)	Si–E (Å)	Si–E–Si (°)
(Mes ₂ Si) ₂ O	-27.2	_	-	2.23	1.73	80.0
(Mes ₂ Si) ₂ S	-59.0	_	-	2.29	2.16	64.0
(Mes ₂ Si) ₂ Se	-64.8	-287	78	2.30	2.31	59.9
(Mes ₂ Si) ₂ Te	-90.3	-784	166	2.34	2.52	55.2

Chalcogenatrisiletane konnten durch Chalcogeninsertion (Schwefel, Selen) in Hexa-*tert*butylcyclotrisilan dargestellt werden [230]. Die analoge Tellurverbindung entsteht durch Reaktion des Cyclotrisilans mit $Et_3P=Te$ (bzw. $Et_3P + Te$) [231]:

Im Hexa-*tert*-butyltelluratrisiletan liegt ein planarer Si₃Te Ring vor mit Si–Te: 2.53 Å, Si–Si: 2.51 Å und Si–Te–Si: 88.2° [231].

Die Insertion von Chalcogenen in Si–Si Bindungen von Cyclosilanen ist aber nicht auf Cyclotrisilane mit ihrer hohen Ringspannung begrenzt, wenngleich mit abnehmender Ringspannung die Reaktivität von Cyclosilanen gegenüber den Chalcogenen sinkt.

Die Reaktion von *cyclo*-Si₄Me₈ mit Schwefel oder Selen bei 80 °C liefert binnen weniger Stunden praktisch quantitativ die Insertionsprodukte (Me₂Si)₄E (E = S, Se) [232]. Eine weitere Insertion eines zweiten Chalcogenatoms erfolgt bei 220 °C, allerdings nur in mäßigen Ausbeuten [233]:

Die Schwefelverbindung S(SiMe₂SiMe₂)₂S kann aber auch einfacher durch Reaktion von ClSiMe₂SiMe₂Cl mit H₂S + Pyridin erzeugt werden und bildet lange, farblose Kristallnadeln, F. 106 – 108 °C [234]:

$$2 \qquad Me - Si - Cl \qquad Me - Si - Me - Si - Me \qquad Me -$$

In ähnlicher Weise, wenn auch bei deutlich höheren Reaktionstemperaturen, reagiert auch *cyclo*-Si₄Et₈ mit Schwefel. Zunächst tritt nach 1 h bei 190 °C praktisch ausschließlich der Fünfring (Et₂Si)₄S auf, weitere Insertion von Schwefel führt zu einem Gemisch zweier Sechsringe mit Schwefel in 1,3- und 1,4-Position [235]:

Schließlich treten auch Produkte auf, die weniger als vier Siliciumatome im Ring enthalten, was auf einen intermolekularen Austausch von Ringfragmenten deutet.

cyclo-(SiMe₂)₅ und *cyclo*-(SiMe₂)₆ reagieren bei hohen Temperaturen (190 – 200 °C) ebenfalls mit Schwefel unter Ringerweiterung, erstes allerdings wesentlich schneller und selektiver zum Sechsring (SiMe₂)₅S [236]. Die Reaktion von (SiMe₂)₆ mit Schwefel ist selbst bei 200 °C noch sehr langsam und führt zu Produktgemischen [237]:

Der Fünfring Me₄Si₂(S)₂SiMe₂ entsteht mit 75 % Ausbeute auch beim Erhitzen eines Gemisches von S(SiMe₂SiMe₂)₂S und (Me₂SiS)₃ in Gegenwart von Pyridin auf 70 °C [238] oder auch direkt durch Reaktion eines Gemisches von ClSiMe₂–SiMe₂Cl und Me₂SiCl₂ mit H₂S und Pyridin [239].

Auf gezielterem Wege sind die Heterocyclen $(SiMe_2)_x E$ (x = 4, 5, 6; E = S, Se) durch Reaktion der α, ω -Dichloroligosilane mit Li₂E (aus LiBEt₃H und E in THF) zugänglich [240,241]:

$$\begin{bmatrix} Me_{2}Si - Cl \\ Me_{2}Si \end{bmatrix}_{z} + Li_{2}E \xrightarrow{(THF)} \begin{bmatrix} Me_{2}Si \\ Me_{2}Si \end{bmatrix}_{z} E$$
(4.3.1.7)
$$Me_{2}Si - Cl = Z_{2}, 3, 4$$

Dabei entstehen ausschließlich die gewünschten Cyclen, es werden keine polymeren Nebenprodukte beobachtet. Die entsprechenden Sauerstoffverbindungen (E = O) entstehen durch Hydrolyse und Kondensation der Dichlorsilane mit H₂O in Benzen [240].

Die hier beschriebenen Darstellungswege für Silicum-Chalcogen-Cyclen sind nicht zur Darstellung der wasserstoffsubstituierten Grundkörper geeignet, da Cyclosilane wie Si₅H₁₀ [242,243] oder Si₆H₁₂ [621] thermisch zu instabil sind und die Reaktion von Chlorsilanen wie ClH₂SiSiH₂Cl mit H₂S + tertiärem Amin zu Addukten der Chlorsilane mit den Aminen führt, die gegen H₂S stabil sind. Dagegen gelingt die Reaktion mit Disilathian bzw. -selenan [244]:

Die Thermolyse dieser Sechsringe bei 90 °C (1 h) liefert hauptsächlich die *Bis*(disilanyl)sulfan bzw. -selenan [244].

Auch Zinn-Chalcogenverbindungen mit einer Distannaneinheit sind bekannt. Diese fünfgliedrigen Cyclen entstehen zum Beispiel in Analogie zur Insertion von Chalcogenen in Si–Si Bindungen von Cyclosilanen durch Reaktion von Chalcogenen mit Cyclostannanen [245]:

$$3 \begin{array}{c} {}^{t}Bu {}^{t}Bu \\ | \\ 3 \\ {}^{t}Bu - Sn - Sn - {}^{t}Bu \\ Bu - Sn - Sn - {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Bu \\ {}^{t}Bu - Sn - Sn - {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Bu \\ {}^{t}Bu - Sn - Sn - {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Bu \\ {}^{t}Bu - Sn - Sn - {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Sn \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Sn \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu {}^{t}Sn \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \xrightarrow{(Toluen, 110 \circ C)}{4} \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \end{array} + 8 E \begin{array}{c} {}^{t}Bu \\ {}^{t}Bu \end{array} + 8 \begin{array}{c} {}^{t}Bu$$

Aber auch die Reduktion von (${}^{t}Bu_{2}SnE$)₂ (siehe Gl. 5.2.2.3, [215]) mit LiAlH₄ führt zu den Verbindungen (${}^{t}Bu_{2}Sn$)₃E₂, die im übrigen an der Luft stabil sind.

In den Kristallstrukturen finden sich für E = S, Se planare Fünfringe, dagegen ist der Fünfring bei der Tellurverbindung leicht gewellt. Die planare Struktur wird bei den leichteren Chalcogenen vermutlich durch den sterischen Anspruch der *tert*-Butyl-Gruppen erzwungen, was auch in den relativ langen Zinn–Zinn-Bindungen von 2.882 Å (E = S) bzw. 2.875 Å (E = Se) zum Ausdruck kommt. Dagegen beträgt der Sn–Sn Abstand in der Tellurverbindung nur 2.836 bzw. 2.843 Å (zwei unabhängige Moleküle in der Elementarzelle). Hier reduzieren die langen Sn–Te Bindungen (2.755 Å an Sn1 und Sn2, 2.738 Å an Sn3) die sterische Überladung durch die *tert*-Butyl-Substituenten.

Abb. 4.3.1.3. Molekülstruktur von ${}^{t}Bu_{4}Sn_{2}(S)_{2}Sn^{t}Bu_{2}$ (links) und Packung der Moleküle im Kristall (rechts), Projektion auf die a-b-Ebene mit $z = {}^{1}\!\!/_{4}$ (unschraffiert) und $z = {}^{3}\!\!/_{4}$ (schraffiert) [245]

Die methylsubstituierten Verbindungen sind ebenfalls auf dem oben dargestellten Wege zugänglich [246], lassen sich aber vorteilhafter durch Reaktion von Me₂SnH₂ mit der berechneten Menge an Chalcogen darstellen [247]:

$$3 \xrightarrow{Me}_{Me} H + 2 E \xrightarrow{(Et_2O / DMF, 24 h)}_{-3 H_2} \xrightarrow{Me}_{Me} Me \xrightarrow{Me}_{V} Me \xrightarrow{(A.3.1.10)}_{-3 H_2} Me \xrightarrow{Me}_{V} Me \xrightarrow{(A.3.1.10)}_{Me} Me$$

Im Gegensatz zu den Verbindungen mit den sterisch anspruchsvollen *tert*-Butyl-Substituenten findet man in der Kristallstruktur von Me₄Sn₂(Se)₂SnMe₂ [248] einen Sn₃Se₂-Ring in Briefumschlagkonformation mit den Zinnatomen der Dizinneinheit und den beiden Selenatomen in einer Ebene. In der Elementarzelle finden sich zwei unabhängige Moleküle, die untereinander durch schwache intermolekulare Zinn-Selen-Wechselwirkungen zu unendlichen Bändern parallel zur b-Achse verbunden sind.

Abb. 4.3.1.4. Molekülstruktur von Me₄Sn₂(Se)₂SnMe₂ (links) und Packung der beiden unabhängigen Moleküle in der Kristallstruktur unter Ausbildung intermolekularer Sn-Se-Kontakte im Bereich 3.76 – 3.98 Å [248]

Molekül 1: Sn12-Sn13:2.775 Å, Sn11-Se11: 2.552 Å, Sn11-Se12: 2.521 Å, Sn12-Se12: 2.567, Sn13-Se11: 2.573, Sn11-Se11-Sn13: 95.5°, Sn11-Se12-Sn12: 96.7° Molekül2: Sn22-Sn23:2.782 Å, Sn21-Se21: 2.539 Å, Sn21-Se22: 2.516 Å, Sn22-Se22: 2.560, Sn23-Se21: 2.583, Sn21-Se21-Sn23: 93.3°, Sn21-Se22-Sn22: 95.8°

Es fällt auf, dass in allen Strukturen R₄Sn₂(E)₂SnR₂ die Sn–E Bindungen zur Dizinneinheit länger sind als zur Monozinneinheit. Die Sn–Se–Sn Winkel sind aufgrund der geringeren Ringgröße in $Me_4Sn_2(Se)_2SnMe_2$ um ca. 6° kleiner als im Sechsring (Me_2SnSe)₃ (siehe Abschnitt 4.2.2. [200]).

Bemerkenswert ist auch ein Vergleich der ¹¹⁹Sn NMR Daten der Fünfringe $Me_4Sn_2(E)_2SnMe_2$ mit denen der entsprechenden Sechsringe (Me_2SnE)₃ [249], Tabelle 4.3.1.2.

Sit Third Dutch (ppm, 112) act r crothaungen the $_{0}$ Sit $_{X}$ ($D = 0, 5c, 1c, x = 2, 5$) [217]						
Verbindung	$\delta_{Sn} A$	$^{1}J_{Sn^{A}E} \\$	$\delta_{Sn^{B}}$	$^{1}J_{Sn^{B}E} \\$	$^{2}J_{SnSn}^{ a)}$	${}^{1}J_{SnSn}^{a)}$
$Me_4Sn^B_2(S)_2Sn^AMe_2$	176	—	44	_	125	4162
$(Me_2Sn^AS)_3$	131	_	—	—	195	_
$Me_4Sn^B_2(Se)_2Sn^AMe_2$	82	1263	21	992	150	3627
$(Me_2Sn^ASe)_3$	42	1228	_	_	237	_
$Me_4Sn^B_2(Te)_2Sn^AMe_2$	-164	3159	-38	2554	94	2766
$(Me_2Sn^ATe)_3$	-195	3098	_	_	250	_

¹¹⁹Sn NMR Daten (ppm, Hz) der Verbindungen $Me_6Sn_3E_x$ (E = S, Se, Te; x = 2, 3) [249]

a) berechnete Werte für die ¹¹⁹Sn¹¹⁹Sn Kopplung

Tabelle 4.3.1.2.

Für die Monozinneinheit (Sn^A) ergibt sich bei gleichem Chalcogen eine Tieffeldverschiebung von 31 (Te) bis 45 ppm (S) beim Vergleich des Sechsrings mit dem entsprechenden Fünfring. Leider ist kein entsprechender Vergleich für die Dizinneinheiten möglich, da keine ¹¹⁹Sn NMR-Daten für Dizinneinheiten in Sechsring-Heterocyclen vorliegen.

Bei den ${}^{1}J_{SnE}$ Kopplungskonstanten finden sich in den Fünfringen die größeren Werte bei Kopplungen mit Sn^A. Dies korreliert mit den kürzeren Sn–E Bindungen zur Monozinneinheit (Abb. 4.3.1.4). Entsprechend der sinkenden Elektronegativität der schwereren Chalcogene nimmt der Wert der ${}^{1}J_{SnSn}$ Kopplung in der Dizinneinheit zum Tellur hin ab. Mit einer Ausnahme steigt dagegen die ${}^{2}J_{SnSn}$ zu den schwereren Chalcogenen hin an, wobei aber in den Fünfringen deutlich kleinere Werte auftreten (zur Diskussion der Daten sie auch 6.4.).

Bei der Reaktion von ClMe₂Sn–SnMe₂Cl mit Na₂S in wässriger Lösung bei 0 °C lässt sich auch ein Sechsring mit zwei Dizinneinheiten isolieren, allerdings zersetzt sich dieser leicht unter Bildung des offensichtlich deutlich stabileren Fünfringes Me₄Sn₂(S)₂SnMe₂ [250]:

$$Me \underbrace{\stackrel{Me}{\stackrel{\circ}{}}_{Sn} Cl}_{Me} \underbrace{\stackrel{+2 \operatorname{Na}_{2}S(0 \circ C)}{\stackrel{-4 \operatorname{Na}Cl}{\operatorname{Me}}}_{Me} Me \underbrace{\stackrel{Me}{\stackrel{\circ}{}}_{Sn} S \underbrace{\stackrel{Me}{\stackrel{\circ}{}}_{Sn} Me}_{Me} Me$$

$$(4.3.1.11)$$

4.3.2. Cyclen mit E–E Bindungen

Schwefelreiche Cyclen MS_4 (M = Si, Ge, Sn) entstehen bei der Reaktion der Dihydride R_2MH_2 mit elementarem Schwefel. Dabei sind sehr große sperrige Substituenten erforderlich, um die entsprechenden Tetrathiametallolane kinetisch zu stabilisieren. In der Regel wurde dazu ein 2,4,6-*Tris*[*bis*(trimethylsilyl)methyl]phenyl- (kurz Tbt) und ein Mesitylrest (Mes) verwendet [251]:

Dabei erfordert die Bildung der Siliciumverbindung längeres Erhitzen mit Schwefel auf 230 °C (Ausbeute 7 %). Die Germaniumverbindung entsteht mit 57 % Ausbeute in 10 min bei 180 °C, während die Zinnverbindung bereits beim Kochen des Dihydrostannans mit Schwefel in THF nach 18 h zu 92 % gebildet wird und sich allmählich sogar in THF bei Raumtemperatur bildet.

Abb. 4.3.2.1.

*Molekülstruktur von Tbt(Mes)SiS*₄ [251]

Si1-S1: 2.224 Å, Si1-S4: 2.155 Å, S1-S2: 2.051 Å, S2-S3: 2.046 Å, S3-S4: 2.057 Å, S1-Si1-S4: 100.4°, Si1-S1-S2: 102.9°, Si1-S4-S3: 100.3°, S1-S2-S3: 99.6°, S2-S3-S4: 97.4°

Molekülstruktur von Tbt(Mes)GeS₄ [252]

Ge1-S1: 2.320 Å, Ge1-S4: 2.257 Å, S1-S2: 2.046 Å, S2-S3: 2.052 Å, S3-S4: 2.048 Å, S1-Ge1-S4: 98.4°, Ge1-S1-S2: 102.2°, Ge1-S4-S3: 99.7°, S1-S2-S3: 100.4°, S2-S3-S4: 98.3° In beiden Strukturen (Abb. 4.3.2.1. und 4.3.2.2.) sowie auch in der analogen Bleiverbindung Tbt(Tip)PbS₄ [253] nimmt der MS₄ Ring eine verdrehte Halbsesselkonformation ein mit zwei unterschiedlich langen M–S Bindungen. Dagegen sind die S–S Bindungen nahezu gleichlang. In keinem Falle wird die Bildung anderer Ringgrößen MS_x (x \neq 4) beobachtet.

Die Bleiverbindungen entstehen durch Reaktion entsprechender sterisch abgeschirmter Plumbylene mit Schwefel bei Raumtemperatur [253]:

Das sterisch weniger abgeschirmte Plumbylen Tip₂Pb: liefert bei der Reaktion mit Schwefel bei –78 °C drei Produkte mit Pb–S Bindungen [254], darunter auch Tip₂PbS₄:

Neben $(Tip_2PbS)_2$ entsteht hierbei auch ein fünfgliedriger Heterocyclus mit einer Monoschwefel- und einer Dischwefeleinheit. Ein analog aufgebauter Heterocyclus aus Silicium und Tellur bildet sich bei der Umsetzung von Silicocen mit Tributylphosphantellurid [193], während die Reaktionen mit Schwefel oder Bu₃P=Se ausschließlich die Vierringe [(Me₅C₅)₂SiE]₂ liefern, siehe auch Gl. 4.2.1.9:

Abb. 4.3.2.3. Molekülstruktur von [(Me₅C₅)₂Si]₂Te₃ [193] Si1-Te1: 2.529 Å, Si1-Te3: 2.529 Å, Te1-Te2: 2.681 Å, Te1-Si1-Te3: 104.3°, Si1-Te1-Te2: 99.4°, Si2-Te2-Te1: 97.8°, Si1-Te3-Si2: 106.8°

Die Notwendigkeit der sterisch anspruchsvollen Substituenten für die Stabilisierung chalcogenreicher Heterocyclen zeigt sich auch in der viel geringeren thermischen Stabilität der Verbindung Ph₂SiS₄, dargestellt nach Gl. 4.3.2.5, die bereits oberhalb –20 °C unter Schwefelabscheidung zerfällt [255], während Tbt(Mes)SiS₄ thermisch sehr stabil ist.

Das Vorhandensein von E–E Bindungen schließt die gleichzeitige Anwesenheit von Si–Si Bindungen nicht aus, wie die Darstellung eines Fünfring-Heterocyclus mit einer Disilaneinheit und einer Trisulfaneinheit belegen [129], siehe auch Abb. 3.1.4.:

4.4. Verbindungen mit M=E Doppelbindungen (M = Si, Ge, Sn)

Im Allgemeinen sind Siliciumverbindungen mit Si=X Mehrfachbindungen instabil. Die ersten kinetisch stabilisierten Derivate mit einer Si=C [256] bzw. einer Si=Si [257] Doppelbindung sind seit 1981 bekannt.

Auf der anderen Seite existieren unter extremen Reaktionsbedingungen (hohe Temperaturen, kleine Drücke) kleine Moleküle mit M=E Mehrfachbindungen, wie z. B. SiO oder GeO, die durch Matrixisolation bei tiefen Temperaturen abgefangen und mittels IR- und Raman-

Spektroskopie nachgewiesen werden können. Dabei treten zum Teil auch Oligomere (MO)_x (M = Si [258], Ge [259]; x = 1, 2, 3, 4) auf. Durch Reaktion mit angeregtem Sauerstoff in der Matrix konnten auch molekulares SiO₂ [260,261] und GeO₂ [262] bzw. auch das Dimer O=Si(O)₂Si=O [263] erzeugt und spektroskopisch nachgewiesen werden. Molekulares GeO₂ und SnO₂ entstehen auch bei der Cokondensation der Elemente mit O₂ in einer Argonmatrix [264,265].

Si=S Bindungen treten in den molekularen Spezies SiS, OSiS [266] und SiS₂ auf.

SiS entsteht beim Erhitzen von Silicium mit schwefelhaltigen Verbindungen (S [267], H₂S [268], CS₂ [269], FeS [270]) auf Temperaturen > 1000 °C. In der Gasphase liegt es als Molekül Si=S mit einem Si-S Abstand von 1.929 Å [271] vor. Beim Abkühlen entsteht ein festes polymeres (SiS)_x, das bei 940 – 980 °C / 20 – 30 Torr [267] sublimiert. Die Farbe des Produktes bei Raumtemperatur schwankt zwischen gelb [267], orange-rot [272], dunkelbraun [270] und schwarz [267], was wohl auf eine zunehmende Disproportionierung in Silicium und Siliciumdisulfid (siehe 4.5.1.) schließen lässt. Ähnliches gilt auch für das Siliciummonoselenid [273], welches bei etwa 800 °C aus den Elementen oder aus Silicium und SiSe₂ gebildet wird und bei Raumtemperatur als gelbbraunes Pulver [274], rotbraune Fasern oder braunschwarzes Glas [273] beschrieben wird.

Molekulares SiS oder auch GeS können aber aus der Gasphase durch Einbinden in Matrizes (Argon, Methan) bei tiefen Temperaturen abgefangen werden und durch ihr Ramanspektrum charakterisiert werden. Aufgrund der Matrixeffekte findet man aber für die M=S Valenzschwingung Werte, die etwas von denen in der Gasphase (28 Si 32 S: 749.6 cm⁻¹, 74 Ge 32 S: 575.8 cm⁻¹ [275]) abweichen (um 10 – 20 cm⁻¹ kleiner).

Durch Photolyse eines Cokondensats von M=S (M = Si, Ge) und COS in einer Argon- [276] oder Methanmatrix lassen sich auch molekulares SiS_2 (S=Si=S) und GeS₂ (S=Ge=S) erzeugen und in der Methanmatrix neben IR- auch ramanspektroskopisch charakterisieren [277,278], siehe auch Abb. 4.4.1. und 4.4.2.

Überraschend ist, dass laut MP2/TZVP-Berechnungen in den Disulfiden kürzere M=S Bindungen auftreten als in den Monosulfiden (im Gegensatz zu den Verbindungspaaren CO/CO₂ oder CS/CS₂, wo man für die zweiatomigen Spezies eine partielle Dreifachbindung diskutiert). Diese kürzeren Bindungen in MS₂ werden auch durch experimentell aus den Ramanspektren abgeleitete höhere Kraftkonstanten *f* der M=S Bindungen in den Disulfiden bestätigt [279], siehe auch Tabelle 4.4.1.

Abb. 4.4.1. Ramanspektrum von matrixisoliertem SiS und COS in festem CH_4 vor (links) und nach (rechts) Bestrahlung mit einer Hg-Mitteldrucklampe (λ : 514.5 nm) [279]

Abb. 4.4.2. Ramanspektrum von matrixisoliertem GeS und COS in festem CH_4 vor (links) und nach (rechts) Bestrahlung mit einer Hg-Mitteldrucklampe (λ : 514.5 nm) [279]

Tabelle 4.4.1. Bindungsparameter der molekularen Kohlenstoff-, Silicium- und Germaniumsulfide [277,278]

Molekül	d(M=S) (Å) ^{a)}	$f (mdyn/Å)^{b)}$	BE (M=S) (kJ/mol) ^{c)}
CS	1.542	8.49	709
CS_2	1.564	7.67	572
SiS	1.962	4.94	616
SiS ₂	1.952	5.07	458
GeS	2.026	4.22	547
GeS ₂	2.008	4.50	411

a) berechnete Werte (MP2/TZVP) b) aus experimentellen Werten abgeleitet c) experimentelle Werte [280,281]

Monomere Silanone R₂Si=O und Silanthione R₂Si=S sind ebenfalls kinetisch instabil aufgrund der fehlenden Stabilisierung durch sperrige Substituenten. Sie werden in einer Reihe von Reaktionen als Intermediate postuliert und können in einigen Fällen durch Trapping-Reaktionen indirekt nachgewiesen werden.

Dichlorsilanon und Difluorsilanon, $X_2Si=O$ (X = F, Cl), konnten durch Reaktion von SiO mit X_2 in einer Argonmatrix erzeugt und IR-spektroskopisch nachgewiesen werden [261,282].

Mittels der Matrixisolationstechnik konnte auch gezeigt werden, dass Cl₂Si=O als Intermediat bei der Reaktion von SiCl₄ mit O₂ auftritt [283].

Entsprechend bilden sich molekulares Difluorsilanthion [284] und Dichlorsilanthion [285] bzw. auch Dichlorgemanthion [286] durch photochemisch angeregte Reaktion von Cokon-

densiertem SiS (bzw. GeS) und X₂ (X = F, Cl) bzw. XeF₂ in einer Argonmatrix. F₂SiS entsteht auch bei der Vacuum Flash-Pyrolyse von (F₃Si)₂S bei \geq 500 °C und ist damit das erste direkt aus der Gasphase nachgewiesene Silanthion [284].

Schema 4.4.1. Quantenchemisch berechnete Geometrien (Å, °) der Halogensilanone und -thione sowie der entsprechenden Germaniumverbindungen [284-286]

Dirganosilanthione wie Me₂Si=S treten als Intermediate in der thermisch oder photochemisch induzierten Umwandlung von Cyclotrisilthianen in Cyclodisilthiane auf und konnten z. B. durch Abfangreaktionen mit D₃ (Me₂SiO)₃ nachgewiesen werden [287]:

Auf analogem Wege konnte auch das Diethylsilanselenon, Et₂Si=Se, bei der Photolyse von $(Et_2SiSe)_3$ nachgewiesen werden. In Abwesenheit von D₃ wird $(Et_2SiSe)_3$ durch Photolyse (λ : 254 nm) schließlich vollständig ins Dimer $(Et_2SiSe)_2$ umgewandelt [288].

Der direkte Nachweis von Me₂Si=S durch Matrixisolation in einer Argonmatrix bei 10 K aus den Produkten der Niederdruckpyrolyse von (Me₂SiS)₃ gelang nicht, auch bei der Pyrolyse von 3,3-Dimethyl-3-siletan (Me₂Si(CH₂)₂S) konnten mittels Matrixisolation nur Me₂Si=CH₂,

H₂C=S und $(Me_2SiS)_{2, 3}$ detektiert werden [289]. Dagegen ließ sich Dimethylgermanthion, Me₂Ge=S, aus den Vakuumpyrolyseprodukten der Zersetzung von $(Me_2GeS)_3$ bei 730 – 900 °C und $10^{-2} - 10^{-3}$ Torr mittels Matrixisolation IR-Spektroskopie nachweisen [290]. Erst vor wenigen Jahren gelang auch der direkte Nachweis von Dimethyl- und Diisopropylsilanthion bei der Pyrolyse von Propargylthiodialkylsilanen mittels Photoelektronenspektroskopie [291]:

$$\begin{array}{c|c} & S \\ & S \\ & R \\ & H \\ & Si \\ & R \\ &$$

Parallel dazu durchgeführte DFT-Berechnungen von Me₂Si=S mit dem Basissatz 6-31G(d) lieferten mit der Methode MP2 eine Bindungslänge Si=S von 1.958 Å (C–Si–C Winkel: 112.2°) und mit B3LYP eine Bindungslänge von 1.966 Å (C–Si–C Winkel: 112.4°) [291] also etwa 0.05 Å länger als in den Halogensilanthionen (*Schema 4.4.1.*)

Von Silaethenen und Disilaethenen ist bekannt, dass sich diese hochreaktiven Spezies durch intramolekulare Base-Koordination stabilisieren lassen. Dieses Konzept führte auch zur Synthese des ersten bei Raumtemperatur kinetisch stabilen Silanthions und Silanselenons [292]:

Statt CS₂ können auch elementarer Schwefel oder elementares Selen eingesetzt werden. Das ²⁹Si NMR-Spektrum des Silanselenons (δ_{Si} : 29.4 ppm) zeigt Si-Se Satelliten mit einer verhältnismäßig großen Kopplungskonstante ¹J_{SiSe}: 257 Hz, was die Doppelbindung Si=Se bestätigt.

Beim Ersatz des Phenylsubstituenten gegen eine α -Naphthylgruppe gelangt man zu einem Silanthion, das auch kristallographisch charakterisiert werden konnte, siehe Abb. 4.4.3.

Die Si=S Bindung in dieser Struktur ist mit 2.013 Å allerdings deutlich länger als die berechneten Bindungslängen in einfachen Silanthionen $R_2S=S$ (siehe oben). Somit scheint in diesen Verbindungen auch eine Betain-artige Resonanzstruktur eine Rolle zu spielen, zumal die Geometrie am Siliciumatom zwischen [3+1] und tetraedrisch koordiniert liegt:

Schema 4.4.2. Resonanzstrukturen in intramolekular basestabilisierten Silanthionen

Ein "echtes" Silanthion konnte schließlich durch Schwefelabspaltung aus einem Tetrathiasilolan (siehe Gl. 5.3.2.1) in Form gelber, thermisch bis 185 °C (Fp.) stabiler Kristalle gewonnen werden (NMR δ_{Si} : 166.6 ppm) [293] (Tip: 2,4,6-Triisopropylphenyl):

Abb. 4.4.3. *Molekülstruktur von* (α-Naph)(1,8-C₁₀H₆CH₂NMe₂)SiS [292] Si-S: 2.013 Å, Si-N: 1.964 Å, Si-C1: 1.885 Å, Si-C21: 1.876 Å

Abb. 4.4.4. Molekülstruktur von

Tbt(Tip)SiS [293]

Si1-S1: 1.948 Å, Si1-C1: 1.894 Å, Si1-C10: 1.867 Å, Winkelsumme am Si: 359.9°

Das analoge Germathion Tbt(Tip)Ge=S (orangegelb; Ge=S: 2.049 Å, Winkelsumme am Ge: 359.4°) [294] und Stannathion Tbt(Tip)Sn=S (gelb, nur in Lösung nachgewiesen) [295] sowie ein Germaselenon, Tbt(Tip)Ge=Se (rot, Ge=Se: 2.180 Å, Winkelsumme am Ge: 359.3°, NMR δ_{Se} : 941 ppm) [296] und die Germatellone, Tbt(Tip)Ge=Te (grün, Ge=Te: 2.398 Å, Winkelsumme am Ge: 359.5°, NMR δ_{Te} : 1143 ppm) und Tbt(Dis)Ge=Te (blaugrün, Ge=Te: 2.384 Å, Winkelsumme am Ge: 360.0°, NMR δ_{Te} : 1009 ppm; Dis: CH(SiMe₃)₂) [297] konnten auf diesem Wege ebenfalls erhalten werden (die Germatellone entstehen aus den Germylenen Tbt(R)Ge: (R = Tip, Dis) und Tellur, das Stannathion aus dem Stannylen Tbt(Tip)Sn: und Phenylthiiran).

Bereits der Austausch der Tip-Gruppe gegen den kleineren Mesitylsubstituenten führt dazu, dass die gebildeten Thione und Selenone nicht mehr stabil sind, sondern sofort dimerisieren und nur das Dimer mit einem M₂E₂-Vierring isoliert werden kann [296]. Die Germatellone sind die ersten eindeutig charakterisierten Analoga eines Telluraketons.

Neben diesen "echten" Thionen, Selenonen und Tellonen existieren vor allem vom Germanium weitere Beispiele für intramolekular basestabiliserte Systeme mit einer Ge=E Bindung:

Die Molekülstruktur dieses intramolekular basestabilisierten Germathions zeigt eine Ge=S Bindung, die mit 2.063 Å nur wenig länger ist als in Tbt(Tip)Ge=S (siehe oben). Bei der Oxidation des Germylens lässt sich kein Germanon isolieren, es entsteht sofort das Dimer mit einem Ge₂O₂-Vierring [298]. Trotz Basestabilisierung ist das Germathion recht reaktiv, so wird Methyliodid glatt an der Ge=S Bindung addiert unter Bildung eines Thiomethyliodgermans [299].

Weitere interessante Beispiele sind die Germachalcogenone, die durch Reaktionen des Germylens (η^4 -Me₈taa)Ge: (Me₈taa: Octamethyldibenzotetraaza[14]annulen) mit den Chalcogenen Schwefel, Selen und Tellur (in Gegenwart von PMe₃) entstehen [300]:

In den gebildeten Germachalcogenonen liegt das Germanium in Form einer tetragonalen Pyramide fünffach koordiniert vor. Aufgrund der Hyperkoordination sind die Ge=E Bindungen mit Ge=S: 2.110 Å, Ge=Se: 2.247 Å und Ge=Te: 2.466 Å etwas länger als für eine echte Doppelbindung berechnet [300].

Abb. 4.4.5. *Molekülstruktur von* (η^4 -Me₈taa)GeSe [300]

Ge-Se: 2.247 Å, Ge-N: 1.99 Å (Mittel), das Ge-Atom liegt 0.63 Å über der Ebene der vier N-Atome. Die Schwefelverbindung ist isostrukturell, dagegen nimmt in der Tellurverbindung der Ligand eine andere Konformation ein.

Eine quadratisch pyramidale Koordination weist das Germaniumatom auch in den Germachalcogenonen $[(o-C_5H_4N)C(SiMe_3)_2]_2Ge=E$ auf, die ebenfalls durch Rekation des entsprechenden Germylens mit Chalcogenen entstehen. Beim Erwärmen isomerisieren das Germathion und Germaselenon leicht unter Wanderung eines Trimethylsilylrestes [301]:

Abb. 4.4.5. Molekülstruktur von [(o-C₅H₄N)C(SiMe₃)₂]₂Ge=Se [301] Ge1-Se1: 2.247 Å, Ge1-C1: 2.055 Å, Ge1-C13: 2.051 Å, Ge1-N1: 2.177, Ge1-N2: 2.161 Å (Die Tellurverbindung ist isostrukturell mit Ge1-Te1: 2.479 Å)

4.5. Chalcogenide ME₂ und Chalcogenosilicat-, Germanat- und Stannationen

Siliciumsulfid, SiS₂ und Siliciumselenid, SiSe₂, entstehen durch Reaktion der Elemente bei hohen Temperaturen [302] oder auch aus SiO₂ und Al₂S₃ bei 1300 °C. In den Dichalcogeniden treten polymere Ketten kantenverknüpfter SiE₄-Tetraeder auf [303,304]. Die auf diese Weise gebildeten planaren Si₂S₂ bzw. Si₂Se₂ Vierringe weisen mit Winkeln von Si-S-Si: 81.2° und Si-Se-Si: 80.0° [305] eine ähnliche Geometrie auf, wie molekulare Cyclodisilthiane und -selenane (siehe 4.2.1.), Abb. 4.5.1.

In den sogenannten Hochtemperaturmodifikationen von GeS₂ (Ge-S (Mittel): 2.217 Å [306] und GeSe₂ (Ge-Se (Mittel): 2.355 Å) [307] liegen ebenfalls GeE₄-Tetraeder vor. Zwei der vier kristallographisch unabhängigen GeE₄-Tetraeder sind miteinander über eine gemeinsame Kante verknüpft (Ge-S-Ge: 82.1 und 82.3° bzw. Ge-Se-Ge: 80.2 und 80.6°), ansonsten erfolgt eine Verknüpfung über gemeinsame Ecken (Ge-S-Ge: 99.3 – 100.9° bzw. Ge-Se-Ge: 96.2 – 100.1°), so dass sich ein zweidimensionales Netz von Zweier-Einfachketten bildet, siehe auch Abb. 4.5.2. Unter hohem Druck (60 bzw. 30 kbar) bilden SiS₂ und GeS₂ auch eine tetragonale Modifikation mit ausschließlich eckenverknüpften MS₄ Tetraedern [308], die den Strukturen von BPO₄ bzw. BAsO₄ ähneln [309] (abgeleitet von der β -Cristobalitstruktur [4] beim Austausch von zwei Si gegen BP bzw. BAs), siehe auch Abb. 4.5.3.

Dagegen kristallisiert SiTe₂ (wie auch SnS₂ [310]) in der CdI₂ Schichtstruktur, d. h. jedes Silicumatom ist oktaedrisch von sechs Telluratomen umgeben mit Si-Te: 3.013 Å und Te-Te: 3.125 Å [311].

Des weiteren ist noch ein Siliciumtellurid der Zusammensetzung Si₂Te₃ bekannt, das gewöhnlich bei der Reaktion der Elemente entsteht. Hier liegen in einer Schichtstruktur Si₂ Hanteln

zwei Siliciumatome verknüpft (Si-Te: 2.55 Å, Si-Te-Si: 91.6 – 94.6°) [312,313].

Abb. 4.5.1. Ausschnitt aus der polymeren Struktur von SiSe₂ [305] Si-Se: 2.275 Å, Si-Si¹: 2.926 Å, Se-Se¹: 3.484 Å,Si-Se-Si¹: 80.0°, Se-Si-Se¹: 100.0° Isostrukturell ist SiS₂ mit Si-S: 2.133 Å, Si-Si¹: 2.776 Å, S-S¹: 3.239 Å, Si-S-Si¹: 81.2°, S-Si-S¹: 98.8°

Abb. 4.5.3. Struktur der Hochdruck-Modifikation SiS₂-II (Si-S: 2.13 Å, Si-S-Si: 109.4°) und GeS₂-II (Ge-S: 2.21 Å, Ge-S-Ge: 107.5°) [308]

Von den binären Chalcogeniden ME_2 leiten sich eine ganze Palette von Thio-, Seleno- und Tellurosilicaten, -germanaten und -stannaten ab.

Die einfachsten Vetreter dieser Klasse sind die Tetrachalcogenoorthosilicat-, germanat- und stannationen ME_4^{4-} .

 ME_4^{4-} Ionen treten z. B. in den einfachen Chalcogenosilicaten, -germanaten und -stannaten Li₄SiS₄ [314], Na₄GeS₄ [315], Na₄GeSe₄ (aus Na₂Se, Ge und Se bei 750 °C, Ge-Se: 2.33 – 2.36 Å) [316], Na₄SnS₄ [317], Na₄SnSe₄ und K₄SnSe₄ (aus M₂E, Sn und Se bei 580 °C, Sn-Se: 2.49 – 2.54 Å) [318], Na₄SnTe₄ (aus den Elementen bei 450 °C, Sn-Te: 2.74 – 2.76 Å) [319], Tl₄GeS₄ (aus Tl₂S und GeS₂ bei 500 °C, Ge-S: 2.216 Å) [320], Tl₄SnS₄ (aus Tl₂S und SnS₂ bei 500 °C, Sn-S. 2.40 Å) [321] auf.

Vor allem Lithiumthiosilicate sind aufgrund ihrer Lithiumionenleitfähigkeit für Feststoffelektrolyten in Batterien von Interesse [322]. Bei den Chalcogenometallaten zweiwertiger Elemente ($M_2^{II}[ME_4]$) treten je nach Größe des Metallions die Strukturtypen Olivin (bis zu einem r(M^{2+}) = 1.2 Å) oder β -K₂SO₄ (ab r(M^{2+}) = 1.65 Å) auf. Im Übergangsbereich (1.2 – 1.65 Å) ergibt sich die Sr₂GeS₄ Struktur [323], die auch in Sr₂SiS₄ [324], Ba₂SiSe₄ (Si-Se: 2.25 – 2.27 Å), Ba₂SiTe₄ (Si-Te: 2.49 – 2.51 Å) [325], Eu₂SiS₄ und Eu₂GeS₄ [326] sowie näherungsweise in Pb₂SiS₄ und Pb₂SiSe₄ [327] auftritt, während Ba₂SiS₄ (aus BaS, Si und S bei 1100 °C, Si-S: 2.101 Å) [328], Ba₂GeS₄, Ba₂SnS₄ und Pb₂GeS₄ [329] bereits im β -K₂SO₄-Typ kristallisieren.

Dagegen kristallisieren Mg₂SiS₄, Mg₂GeS₄, Mg₂SnS₄, Mg₂SiSe₄, Mg₂SnSe₄, Mn₂SiSe₄, Ca₂SiS₄, Ca₂GeS₄, Ca₂SnS₄ (dargestellt durch Reaktion der Zintl-Phasen A₂B, B = Si, Ge, Sn mit Schwefel oder Selen bei 450 – 650 °C) [330] sowie Fe₂SiS₄ (Si-S: 2.11 - 2.14 Å), Fe₂GeS₄ (Ge-S: 2.19 - 2.23 Å) [331] und Mn₂SiS₄ (Si-S: 2.10 - 2.14 Å) [332] in der Olivinstruktur.

In der Wurtzit- bzw. Zinkblendestruktur kristallisieren die ternären Thiometallate Cu₂M^{II}MS₄ (M^{II}: Zn, Cd, Hg, Mn, Fe, Co, Ni) [326,333-335].

 SiS_4^{4-} Einheiten liegen neben Sulfidionen auch in Cd₄SiS₆ (Si-S: 2.10 – 2.13 Å) [336] und Verbindungen mit Argyrodit-Struktur Ag₈ME₆ (siehe Abb. 4.5.4.) sowie neben Iodidionen in den Lanthanoidiodidthiosilicaten Ln₃I(SiS₄)₂ (Ln = Ce [337], Pr, Nd, Sm, Tb [338], Si-S: 2.10 – 2.12 Å) vor.

Orthothio- bzw. selenogermanate und -stannate sind auch durch Reaktion der Dichalcogenide mit wässrigen Alkalimetallchalcogenidlösungen erhältlich, aus denen die wasserhaltigen Verbindungen Na₄GeS₄ · 14 H₂O [339], Na₄GeSe₄ · 14 H₂O (Ge-Se: 2.342 – 2.348 Å)[340], Na₄SnS₄ · 14 H₂O [341] (siehe Abb. 4.5.5.) oder Na₄SnSe₄ · 16 H₂O (Sn-Se: 2.504 – 2.527 Å) [342] isoliert werden konnten.

Abb. 4.5.4. α - Ag_8SiS_6 mit Argyrodit-Struktur, aufgebaut aus Ag^+ , S^{2-} und SiS_4^{4-} Ionen [343] Si-S: 2.094 - 2.130 Å

Abb. 4.5.5. Struktur von $Na_4SnS_4 \cdot 14 H_2O$.

Die Na⁺ Ionen sind oktaedrisch von Wassermolekülen koordiniert, die schwache OH…S Wasserstoffbrücken zu den SnS₄⁴⁻ Ionen ausbilden [341]. Sn-S: 2.375 und 2.384 Å

Die Seleno- und Tellurostannationen SnSe_4^{4-} und SnTe_4^{4-} sowie die gemischten Anionen $\text{SnSe}_x\text{Te}_{4-x}^{4-}$ lassen sich auch in Lösung durch Extraktion der Legierungen NaSnE (E = Se, Te) in Gegenwart von 2,2,2-crypt mittels ¹¹⁹Sn, ⁷⁷Se und ¹²⁵Te NMR Spektroskopie nachweisen [344] (SnSe_4^{4-}: δ_{Sn} : -477 ppm, δ_{Se} : -62 ppm [¹J_{SnSe}: 1463 Hz]; SnTe_4^{4-}: δ_{Sn} : -1824 ppm, δ_{Te} : -203 ppm [¹J_{SnTe}: 2851 Hz]).

Der erste Schritt zur Oligomerisierung der Chalcogenoanionen ME_4^{4-} ist die Dimerisierung zu $M_2E_7^{6-}$.

Das Anion $Si_2S_7^{6-}$ wurde als Baueinheit erstmals im $Ag_{10}Si_3S_{11}$ (neben Ag_8SiS_6 bei der Reaktion von Ag_2S mit Silicium und Schwefel) beobachtet [345], siehe auch Abb. 4.5.6.

Analog aufgebaute Si₂Se₇^{6–}, Ge₂Sr₇^{6–}, Ge₂Se₇^{6–}, Sn₂Sr₇^{6–} und Sn₂Se₇^{6–} Ionen liegen im Silicat Na₆Si₂Se₇ [346], den Germanaten Na₆Ge₂Sr₇ [347] und Na₆Ge₂Se₇ [348] sowie den Stannaten Na₆Sn₂Sr₇ [349], Ba₃Sn₂Sr₇ [347], Na₆Sn₂Se₇ [350] und K₆Sn₂Se₇ [351] vor. In den schwefelhaltigen Ionen M₂Sr₇^{6–} verkleinert sich der Winkel am μ -S vom Silicium zum Zinn von 115.4° in Ag₁₀Si₃S₁₁ über 113.1° in Na₆Ge₂Sr₇ auf 108.1° in Na₆Sn₂Sr₇ und 103.2° in Ba₃Sn₂Sr₇.

In den Strukturen zeigt sich, dass die terminalen M–E Bindungen merklich kürzer als die Bindungen zu den verbrückenden Chalcogenatomen sind (Abbn. 4.5.6. und 4.5.7.) oder z. B. auch im Na₆Si₂Se₇: Si-Se_µ: 2.334 Å, Si-Se_t: 2.250 Å, Si-Se-Si: 114.4° [346] und Na₆Sn₂Se₇: Sn-Se_µ: 2.551 Å, Sn-Se_t: 2.496 Å, Sn-Se-Sn: 107.9° [350].

Abb. 4.5.7. Projektion der Struktur von $Na_6Sn_2S_7$ parallel [100], $Sn-S_{\mu}$: 2.424 Å, $Sn-S_t$: 2.352 – 2.381 Å, Sn-S-Sn: 108.1° [349] Im ähnlich aufgebauten $Na_6Ge_2S_7$ ergeben sich $Ge-S_{\mu}$: 2.262 Å, $Ge-S_t$: 2.191 Å, Ge-S-Ge: 113.1°

Die Anionen $M_2E_7^{6-}$ können als Intermediate der Kondensation von zwei ME_4^{4-} Tetraedern zu dimeren Einheiten $M_2E_6^{4-}$ angesehen werden, die wesentlich häufiger in Strukturen von Chalcogenometallaten des Siliciums, Germaniums und Zinns angetroffen werden.

So sind die Ionen $M_2E_6^{4-}$ (M = Ge, Sn, E = S, Se) in Form der hydratisierten Natriumsalze Na₄Ge₂S₆ · 14 H₂O [352], Na₄Ge₂Se₆ · 16 H₂O (Abb. 4.5.8a und b) [353], Na₄Sn₂S₆ · 14 H₂O [352] und Na₄Sn₂Se₆ · 13 H₂O [354] aus wässrigen Lösungen kristallin erhältlich. Dagegen kristallisieren die beiden Ammoniumtellurostannate (Me₄N)₄Sn₂Te₆ [355] und (Et₄N)₄Sn₂Te₆ [356] aus Methanol bzw. DMF solventsfrei.

Des weiteren sind die dimeren $M_2E_6^{4-}$ Ionen in den wasserfreien Thio- und Selenometallaten $Cs_4Si_2S_6$ [357], $Tl_4Ge_2S_6$ (aus Tl_2S und GeS_2 bei 500 °C) [358], $K_4Ge_2Se_6$ (aus den Elementen bei 700 °C) [359], $K_4Sn_2Se_6$ (aus den Elementen bei 700 °C) [360], $Rb_4Sn_2Se_6$ (aus Rb_2CO_3 , $SnCl_2$ und Se in Methanol bei 145 °C) [361], $Cs_4Sn_2Se_6$ (aus Cs_2CO_3 und $SnSe_2$ in Methanol bei 160 °C / 13 bar) [362] und (enH₂)₂Sn₂Se₆ (aus en, SnSe₂ und Selen in Methanol bei 160 °C / 13 bar) [363], $K(NMe_4)_3Sn_2Se_6$ [364], (enH)₂(2,2,2-crypt-K)_2Sn_2Se_6 [364] und $K_2(2,2,2-crypt-K)_2Sn_2Te_6$ [364] präsent.

Bemerkenswert ist, dass in allen Fällen die terminalen M–E Bindungen kürzer sind als die zu den verbrückenden Chalcogenatomen, was für einen partiellen Doppelbindungscharakter in den terminalen M–E Bindungen spricht, siehe auch Tabelle 4.5.1.

Abb. 4.5.8a. $Na_4Ge_2Se_6 \cdot 16 H_2O$, Projektion der Elementarzelle parallel [100] [353] Die Na^+ Ionen sind oktaedrisch von H_2O koordiniert, dazwischen liegen die isolierten $Ge_2Se_6^{4-}$ Ionen.

Abb. 4.5.8b. Geometrie des Ge₂Se₆⁴⁻ Ions in Na₄Ge₂Se₆ · 16 H₂O [353] (Bindungslängen in Å, Winkel in °)

Tabelle 4.5.1. Mittlere Bindungslängen und -winkel in Chalcogenagermanaten u	und
-stannaten mit dem $M_2 E_6^{4-}$ Ion (μ : verbrückend, t: terminal)	

Anion	Kationen	$M-E_{t}(\text{\AA})$	М– E_{μ} (Å)	М-Е-М (°)	E_{μ} – M – E_{μ} (°)	Lit.
${\rm Ge_2S_6}^{4-}$	Na ₄ (· 14 H ₂ O)	2.170	2.272	86.1	93.9	[352]
	Tl_{4}^{I}	2.164	2.274	85.0	95.0	[358]
Ge ₂ Se ₆ ⁴⁻	Na ₄ (· 16 H ₂ O)	2.306	2.416	84.6	95.4	[353]
	K_4	2.359	2.448	87.7	92.3	[359]
	$(NEt_4)_2(enH)_2$	2.332	2.458	85.5	94.5	[365]
${\rm Sn_2S_6}^{4-}$	Na ₄ (· 14 H ₂ O)	2.332	2.450	86.0	94.0	[352]
$\mathrm{Sn_2Se_6}^{4-}$	Na ₄ (· 13 H ₂ O)	2.470	2.586	86.1	93.9	[354]
	K_4	2.461	2.588	85.5	94.5	[360]
	Rb_4	2.462	2.594	85.4	94.6	[361]
	Cs_4	2.450	2.587	85.3	94.7	[362]
	$K(NMe_4)_3$	2.460	2.598	87.1	92.9	[364]
	$(enH_2)_2$	2.460	2.578	84.9	95.1	[363]
	$(enH)_2(2,2,2-crypt-K)_2$	2.460	2.570	87.1	92.9	[364]
$\mathrm{Sn_2Te_6}^{4-}$	$(Me_4N)_4$	2.694	2.799	85.0	95.0	[355]
	$(Et_4N)_4$	2.685	2.809	84.6	95.4	[356]
	K ₂ (2,2,2-crypt-K) ₂	2.669	2.817	86.6	93.4	[364]

Die Seleno- und Tellurostannationen ließen sich auch direkt in Lösung (in NH₃ bei -50 °C bzw. auch in Ethylendiamin bei 0 °C) NMR-spektroskopisch nachweisen (Sn₂Se₆^{4–}: δ_{Sn} : –492 ppm, δ_{Set} : 9 ppm [¹J_{SnSe}: 2005 Hz], $\delta_{Se\mu}$: 266 ppm [¹J_{SnSe}: 888 Hz]; Sn₂Te₆⁴⁻: δ_{Sn} : -1675 ppm, δ_{Tet} : -89 ppm [¹J_{SnTe}: 3998 Hz], δ_{Tet} : 458 ppm [¹J_{SnTe}: 1683 Hz]) [364].

Die verkürzten Bindungen zu den terminalen Chalcogenatomen spiegeln sich also auch in verhältnismäßig großen Kopplungskonstanten ${}^{1}J_{SnE}$ wider (siehe auch Abschnitt 6.).

Anstelle der dimeren Sn₂E₆⁴⁻ Ionen sollen in Lösung (Extraktion der Legierungen KSnSe₂ und KSnTe₂ mit en bzw. NH₃ in Gegenwart von 2,2,2,-crypt) auch monomere SnE₃²⁻ (E = Se, Te) auftreten, die aber nur NMR-spektroskopisch charakterisiert wurden (SnSe₃²⁻: δ_{Sn} : -264 ppm, δ_{Se} : -92 ppm [¹J_{SnSe}: 2051 Hz], SnTe₃²⁻: δ_{Sn} : -1170 ppm, δ_{Te} : -385 ppm [¹J_{SnTe}: 4535 Hz]) [344].

Dagegen treten in den Natriumsalzen Na2GeS3 [366], Na2GeSe3 [367], Na2SnSe3-I [368] und Na₂SnSe₃-II [369] sowie in K₂SnS₃ · 2 H₂O [370] die polymeren Anionen (ME₃^{2–})_{∞} auf, die in Na2GeS3, Na2GeSe3, Na2SnSe3-I und K2SnS3 · 2 H2O Zweier-Einfachketten ausbilden, in Na₂SnSe₃-II dagegen Sechser-Einfachketten, siehe auch Abb. 4.5.9.

Die nächste Stufe der Kondensation von ME4⁴⁻ Tetraedern über gemeinsame Kanten findet man im Anion des Selenostannates K₄Sn₃Se₈ [371]. Im Se₃Se₈^{4–} Ion sind drei SnSe₄ Tetraeder miteinander über gemeinsame Kanten verknüpft, was einem Ausschnitt aus der Struktur des SiSe₂ entspricht, siehe Abbn. 4.5.1. und 4.5.10.

Abb. 4.5.9. Kristallstruktur von Na₂GeSe₃ [367] Abb. 4.5.10. Struktur des Se₃Se₈⁴⁻ Ions in mit Zweier-Einfacketten des $(GeSe_3^{2-})_{\infty}$ Ions Ge-Se_t: 2.31 Å, Ge-Se_µ: 2.37 und 2.39 Å, *Ge-Se_u-Ge: 112.9*°

K₄Sn₃Se₈ [371], Sn1-Se_µ: 2.520 Å, Sn2-Se_u: 2.622 Å, Sn2-Se_t: 2.473 Å, Sn- Se_{μ} -Sn: 85.7°

Darüber hinaus gibt es eine ganze Palette weiterer Strukturen von Chalcogenometallationen des Siliciums, Germaniums und Zinns.

Vom Zinn leiten sich eine Reihe von Thio- und Selenoanionen ab, die Zinn in den Koordinationszahlen 5 und 6 enthalten.

So konnten kürzlich auf hydrothermalem Wege mit $(R_4N)_2[Sn(SH)_6]$ (R = Me, Et) zwei Verbindungen mit dem isolierten, oktaedrisch gebauten $[Sn(SH)_6]^{2-}$ Ion dargestellt und strukturell charakterisiert werden (Sn-S: 2.418 - 2.442 Å) [372].

Ansonsten tritt hypervalentes Zinn vor allem in hochpolymeren Thioanionen auf.

So sind allein von Verbindungen mit dem formalen Anion $[Sn_3E_7^{2-}]_{\infty}$ mehrere Strukturtypen bekannt. Während man im Cs₂Sn₃Se₇ [373] und im (enH₂)Sn₃Se₇ · ¹/₂ en [363] den in Abb. 4.5.11. dargestellten Strukturtyp eines Schichtanions mit trigonalen SnSe₅ Bipyramiden als Baueinheiten findet, liegen im kettenförmigen Anion $[Sn_3S_7^{2-}]_{\infty}$ von Rb₂Sn₃S₇ · 2 H₂O [361] SnS₄ Tetraeder neben SnS₆ Oktaedern vor, Abb. 4.5.12. Die Anordnung der SnS₆ Oktaeder entspricht einem Ausschnitt aus der Schichtstruktur von SnS₂ [374].

S(1b) S(1) S(3) S(1c) S(

Abb. 4.5.11. Eine Sn_3Se_{10} Baueinheit (oben) und die Projektion des Schichtanions $[Sn_3Se_7^{2-}]_{\infty}$ in $(enH_2)Sn_3Se_7 \cdot \frac{1}{2}$ en [363] mit mit SnSe₅ Koordination

Abb. 4.5.12. Baueinheit des Anions (oben) und Ausschnitt aus der Struktur des Kettenanions $[Sn_3S_7^{2-}]_{\infty}$ in $Rb_2Sn_3S_7 \cdot 2 H_2O$ [361] mit SnS_4 und SnS_6 Koordination

Schließlich treten in $(Pr_3NH)_2Sn_3Se_7$ [375] und $(Et_4N)_2Sn_3Se_7$ [376] kettenförmige Anionen mit vier- und fünffach koordinierten Zinnatomen auf und in $(Et_3NH)_2Sn_3Se_7 \cdot \frac{1}{4} H_2O$ [377] findet sich schließlich jenes kettenförmige Anion neben einem schichtförmigen Anion ähnlich dem in Cs₂Sn₃Se₇, die sich gegenseitig durchdringen.

Eine weitere Verknüpfung der Anionen zu einem dreidimensionalem Netzwerk findet man im $Tl_2Sn_2S_5$ [378] und den dazu isotypen Verbindungen Rb_2SnSe_5 [379], $K_2Sn_2S_5$ [380,381] und $K_2Sn_2Se_5$ [380], die trigonal bipyramidale SnE_5 Einheiten enthalten, Abb. 4.5.13. Dagegen bildet das Anion in $Na_2Ge_2Se_5$ eine zweidimensionale Schichtstruktur aus eckenverknüpften $GeSe_4$ Tetraedern [382].

Abb. 4.5.13. Projektion der Struktur von Tl₂Sn₂S₅ [378] auf die ac-Ebene.
Jedes Zinnatom ist trigonal bipyramidal von fünf Schwefelatomen umgeben. Vier der fünf Schwefelatome (S1 und S2) sind Bestandteil von Sn₂S₂ Vierringen, während das fünfte
Schwefelatom (S3) die so gebildeten Schichten dreidimensional verknüpft. Die Thalliumatome sitzen in den Kanälen des Anions parallel zur b-Achse.
Sn-S1: 2.41 Å, Sn-S1': 2.62 Å, Sn-S2: 2.45 Å, Sn-S2': 2.54 Å, Sn-S3: 2.46 Å,

Sn-S1-Sn: 91.7°, Sn-S2-Sn: 95.9°, Sn-S3-Sn': 117.6°

Eine weitere Gruppe von Anionenstrukturen bilden Chalcogenometallate mit E–E Bindungen im Anion. Diese können sowohl exocyclisch als auch endocyclisch auftreten und auch zur Verknüpfung zu Ketten- oder Schichtanionen dienen, siehe Schema 4.5.1.

Schema 4.5.1. Strukturtypen von Chalcogenometallaten des Si, Ge und Sn mit E-E Bindungen

Abb. 4.5.15. Struktur des Ge₂Se₈⁴⁻ Ions in Cs₄Ge₂Se₈ [388] Ge1-Se1: 2.270 Å, Ge1-Se2: 2.293 Å, Ge1-Se3: 2.407 Å, Se-Se: 2.351 Å

Abb. 4.5.16. *Kristallstruktur von Na*₆Si₂Se₈ [385] mit dem zum S₂O₈²⁻ [392] verwandten Ion Si₂Se₈⁶⁻ Si-Se_t: 2.22 – 2.25 Å, Si-Se_µ: 2.35 Å, Se-Se: 2.37 Å, Si-Se-Se: 100 °

Abb. 4.5.17 Struktur des SnS_{14}^{2-} Ions in Cs_2SnS_{14} mit oktaedrisch koordiniertem Zinn [391] Sn-S: 2.56 – 2.59 Å, S-S: 2.04 – 2.07 Å

Auch in den in Abbn. 4.5.14. – 4.5.17. dargestellten Strukturen wird deutlich, dass die M–E Bindungen zu terminalen Chalcogenatomen mit formaler negativer Ladung deutlich verkürzt sind. Dagegen sind die M–E Bindungslängen zu verbrückenden Chalcogenatomen oder E_n Einheiten sowie die E–E Bindungslängen im normalen Bereich für entsprechende Einfachbindungen.

Die cyclischen Chalcogenostannationen $Sn_2E_7^{4-}$ ließen sich auch in Lösung NMR spektroskopisch detektieren:

Sn₂Se₇⁴⁻: δ_{Sn} : -338 ppm, δ_{Se} : -58 ppm [Se_t, ¹J_{SnSe}: 2045 Hz], -30 ppm [Se_μ, ¹J_{SnSe}: 1306 Hz], 117 ppm [Se_{2μ}, ¹J_{SnSe}: 1130 Hz] [364];

 $Sn_2Te_7^{4-}$: δ_{Sn} : -1345 ppm, δ_{Te} : -385 ppm [Te_t, ¹J_{SnTe}: 4023 Hz], -95 ppm [Te_µ, ¹J_{SnTe}: 2902 Hz], -125 ppm [Te_{2µ}, ¹J_{SnTe}: 2319 Hz] [364].

Die Fähigkeit des Zinns, in Chalcogenostannaten auch fünf- und sechsfach koordiniert aufzutreten, kann auch zur Bildung von Anionen mit Schichtstrukturen führen, die durch Polychalcogeneinheiten zusammengehalten werden, siehe Schema 4.5.2:

Schema 4.5.2. Thiostannationen mit Schichtstrukturen mit S-S Bindungen

Auf der anderen Seite existieren eine Reihe von Chalcogenometallaten des Siliciums, Germaniums und Zinns, in denen diese Elemente formal die Oxidationszahl +3 aufweisen. In den hier auftretenden Anionen findet man, wie auch im Si₂Te₃ [312], M₂ Hanteln, die von sechs Chalcogenatomen umgegeben sind. In isolierter Form als $M_2E_6^{6-}$ treten sie z. B. in den Alkalisalzen Na₆Si₂Te₆ [393], K₆Si₂Te₆ [394,395], Na₆Ge₂Se₆ [396], K₆Ge₂Se₆, K₆Ge₂Se₆, Na₆Ge₂Te₆ [397], K₆Ge₂Te₆ [398] oder K₆Sn₂Te₆ [398] auf. Dabei liegen die M–M Abstände mit Si–Si: 2.34 – 2.40 Å, Ge–Ge: 2.43 – 2.49 Å und Sn–Sn: 2.814 Å im normalen Bereich der M–M Einfachbindungen.

In alkaliärmeren Chalcogenometallaten(III) treten diese M_2E_6 Einheiten zu $M_4E_{10}^{8-}$ Ionen zusammen, von denen es zwei strukturelle Isomere gibt, einmal unter Ausbildung von Fünfringen M_3E_2 und zum anderen unter Ausbildung von Sechsringen M_4E_2 . Beide Strukturen sind in den beiden Modifikationen des Na₈Ge₄Te₁₀ [399,400] realisiert, siehe Abbn. 4.5.19. und 4.5.20.

Eine noch weitere Kondensation führt schließlich zu den polymeren Kettenanionen $[Ge_2Te_5^{4-}]_{\infty}$ in Ba₂Ge₂Te₅ [401] (Abb. 4.5.21.) oder dem cyclolinearen Kettenanion $[GeTe_2^{-}]_{\infty}$ in LiGeTe₂ [402] (Abb. 4.5.22.).

 $K_6Ge_2S_6$: Ge-S: 2.22 A, Ge-Ge: 2.45 A, Ge-Ge-S: 109.0 und 109.3° $K_6Ge_2Se_6$: Ge-Se: 2.36 Å, Ge-Ge: 2.48 Å, Ge-Ge-Se: 109.1 und 109.3°

Abb. 4.5.19.

Kristallstruktur von Na₈Ge₄Te₁₀ (I) [399] mit Ge₃Te₂ Fünfringen in Briefumschlagkonformation. Ge-Ge: 2.45 – 2.46 Å, Ge-Te₁: 2.53 – 2.56 Å, Ge-Te_μ: 2.63 – 2.65, Ge3-Te9-Ge4: 99.3°, Ge3-Te10-Ge2: 94.2°

*Isotyp dazu sind Na*₈*Si*₄*Te*₁₀ [399] *und Na*₈*Ge*₄*Se*₁₀ (*I*) [367].

Abb. 4.5.20.

Kristallstruktur von Na₈Ge₄Te₁₀ (II) [400] mit Ge₄Te₂ Sechsringen in Sesselkonformation. Ge-Ge: 2.454 Å, Ge-Te_t: 2.55 – 2.56 Å, Ge-Te_u: 2.64 – 2.65, Ge-Te-Ge: 108.9°

Einen analogen Aufbau weist auch Na₈Ge₄Se₁₀ (II) auf [396]: Ge-Ge: 2.424 Å, Ge-Se₁: 2.32 Å, Ge-Se_µ: 2.44 – 2.45, Ge-Se-Ge: 108.49°

Abb. 4.5.21.

Struktur des Kettenanions $[Ge_2Te_5^{4-}]_{\infty}$ in $Ba_2Ge_2Te_5$ (Abstände in pm, Winkel in °) [401].

Abb. 4.5.22.

Struktur des cyclolinearen Anions [GeTe₂⁻]_{∞} in LiGeTe₂ (Abstände in pm, Winkel in °) [402].

Schließlich sind noch Chalcogenometallate zu erwähnen, in denen weder E–E noch M–M Bindungen auftreten und ME₄ Tetraeder miteinander lediglich eckenverknüpft sind, wie z. B. im bicyclischen Anion des Na₆Sn₄Se₁₁ · 22 H₂O [403] (Abb. 4.5.23.).

Abb. 4.5.23. Struktur des bicyclischen Anions $Sn_4Se_{11}^{6-}$ in $Na_6Sn_4Se_{11} \cdot 22 H_2O$ [403]

Vier SnSe₄ Tetraeder sind hier lediglich über gemeinsame Ecken verknüpft.

Abb. 4.5.24. Struktur des Anions $Sn_4Se_{11}^{6-}$ in $K_6Sn_4Se_{11} \cdot 8$ H_2O [376] Hier treten neben Ecken- auch Kantenverknüpfungen von $SnSe_4$ Tetraedern auf. Im $Cs_2Sn_2Se_5 \cdot H_2O$ treten diese eckenverknüpften Sn_2Se_6 Einheiten schließlich als polymere Kette auf [376]

Die wichtigste Klasse stellen hier die adamantanartigen Ionen $M_4E_{10}^{4-}$ dar, die auch insofern interessant sind, als sie strukturell den molekularen Sesquichalcogeniden $R_4M_4E_6$ (R = H, Halogen, Alkyl, Aryl) entsprechen (siehe 4.6.).

Wenngleich auch alle Spezies $M_4E_{10}^{4-}$ (M = Si, Ge, Sn; E = S, Se, Te) mit Ausnahme von $Sn_4S_{10}^{4-}$ bekannt und durch mindestens eine Kristallstrukturanalyse charakterisiert wurden, siehe Tabelle 4.5.2., so nehmen doch die Thio- und Selenogermanate $M_4Ge_4S_{10}$ und $M_4Ge_4Se_{10}$ eine zentrale Stellung ein, da diese am leichtesten darstellbar sind (z. B. sogar in wässriger Lösung aus GeE₂ und M_2^IE) und auch am häufigsten untersucht wurden. Die Darstellung der Siliciumverbindungen muss auf wasserfreiem Wege erfolgen, z. B. durch Reaktion der Elemente im stöchiometrischen Verhältnis bei hohen Temperaturen [367,404].

Die Zinnverbindungen wurden meist durch Extraktion einer Alkalimetall-Zinn-Chalcogen-Legierung mit Ethylendiamin bzw. flüssigem NH₃ in Gegenwart eines Komplexbildners dargestellt [365,405,406]. Salze des $Sn_4Se_{10}^{4-}$ Anions sind aber auch auf hydrothermalem Wege aus Zinn, Selen und einer wässrigen Aminlösung erhältlich [377], was ebenfalls für eine große Stabilität dieses Anions spricht.

In allen Fällen finden sich in den Kristallstrukturen isolierte M_4E_{10} -Einheiten, die strukturell dem adamantanartigen P_4O_{10} [407] bzw. P_4S_{10} [408] einerseits und den ebenfalls adamantanartigen Chalcogenoanionen der Elemente der 13. Gruppe (Ga₄S₁₀^{8–} [409,410], Ga₄Se₁₀^{8–} [411], In₄S₁₀^{8–} [410] bzw. In₄Se₁₀^{8–} [410]) analog sind, Abbn. 4.5.25. und 4.5.26.

Abb. 4.5.25. Kristallstruktur von Na₄Si₄Se₁₀ [367]

Abb. 4.5.26. *Struktur des Anions* $Ge_4Se_{10}^{4-}$ *in* $Cs_4Ge_4Se_{10} \cdot 2 CH_3OH$ [388]

Auch in den adamantanartigen Anionen $M_4E_{10}^{4-}$ sind die M–E Bindungen zu den terminalen Chalcogenatomen deutlich kürzer als zu den verbrückenden Chalcogenatomen, siehe auch Tabelle 4.5.2. Auch im Vergleich zu den terminalen M–E Bindungen in ME_4^{4-} oder $M_2E_6^{4-}$ sind die Bindungen in den adamantanartigen Anionen $M_4E_{10}^{4-}$ weiter verkürzt (für gleiches M und E). Dies deutet darauf hin, dass hier die in Schema 4.5.3. skizzierte mesomere Grenzstruktur mit M=E Doppelbindungen noch stärker am Gleichgewichtszustand beteiligt ist, was leicht verständlich ist, da hier auch die formale Ladung am M Atom niedriger ausfällt.

Anion	Verbindung	$M–E_{\mu}(\text{\AA})$	$M-E_t$ (Å)	rel. Diff. (%)	М-Е-М (°)	Literatur
Si ₄ S ₁₀ ⁴⁻	$Na_4Si_4S_{10}$	2.144	2.036	5.04	107.3	[412]
	$Rb_4Si_4S_{10}$	2.141	2.028	5.28	108.7	[413]
Si ₄ Se ₁₀ ⁴⁻	Na ₄ Si ₄ Se ₁₀	2.283	2.187	4.20	105.6	[367]
	$Rb_4Si_4Se_{10}$	2.288	2.172	5.09	107.7	[413]
Si ₄ Te ₁₀ ⁴⁻	$K_4Si_4Te_{10}$	2.525	2.440	3.37	104.1	[414]
${\rm Ge_4S_{10}}^{4-}$	$Na_4Ge_4S_{10}$	2.225	2.139	3.87	107.1	[412]
	$K_4Ge_4S_{10}$	2.234	2.114	5.35	108.4	[415]
	$Rb_4Ge_4S_{10}$	2.220	2.104	5.23	108.6	[415]
	$Cs_4Ge_4S_{10} \cdot 4 H_2O$	2.238	2.120	5.27	108.2	[416]
	$Cs_4Ge_4S_{10} \cdot 3 H_2O$	2.236	2.108	5.72	108.5	[417]
	$Tl_4Ge_4S_{10}$	2.233	2.141	4.12	106.9	[418]
	$Ba_2Ge_4S_{10}$	2.205	2.192	0.59	105.0	[412]
	$(Me_4N)_4Ge_4S_{10}$	2.232	2.177	2.46	109.0	[419]*
$\operatorname{Ge}_4\operatorname{Se}_{10}^{4-}$	Na ₄ Ge ₄ Se ₁₀	2.361	2.279	3.47	105.0	[420]
	$K_4Ge_4Se_{10}$	2.372	2.271	4.27	105.7	[421]
	$Rb_4Ge_4Se_{10}$	2.367	2.248	5.03	107.3	[415]
	$Cs_4Ge_4Se_{10}$	2.370	2.249	5.11	107.4	[415]
	$Tl_4Ge_4Se_{10}$	2.380	2.287	3.91	104.6	[422]
$\operatorname{Ge}_4\operatorname{Te}_{10}^{4-}$	$(Et_4N)_4Ge_4Te_{10}$	2.59	2.50	3.5	106.5	[423]
$\mathrm{Sn}_4\mathrm{Se_{10}}^{4-}$	(cryptK) ₄ Sn ₄ Se ₁₀	2.548	2.424	4.85	108.2	[405]
	$(Et_4N)_4Sn_4Se_{10}$	2.551	2.430	4.72	108.0	[365]
	$(18cr6K)_4Sn_4Se_{10}$ $\cdot 5 en$	2.550	2.425	4.89	108.3	[406]
$\operatorname{Sn_4Te_{10}}^{4-}$	$(18cr6K)_4Sn_4Se_{10}$ $\cdot 3 \text{ en } \cdot 2 \text{ THF}$	2.753	2.640	4.12	106.8	[406]
P ₄ O ₁₀	_	1.575	1.460	7.30	124.2	[407]
P ₄ S ₁₀	_	2.085	1.955	6.24	109.0	[408]

Tabelle 4.5.2. Geometrien der adamantanartigen Anionen $M_4E_{10}^{4-}$ und P_4E_{10} (Mittelwerte)

*: Struktur aus Pulverdaten gelöst (geringere Genauigkeit der Strukturbestimmung)

Schema 4.5.3.

Mesomere Grenzstrukturen der Bindungsverhältnisse in ME_4^{4-} , $M_2E_6^{4-}$ und $M_4E_{10}^{4-}$.

Mit der abnehmenden formalen negativen Ladung an den M-Atomen nimmt der Anteil der Grenzstrukturen mit M=E Doppelbindungen an den Gleichgewichtsstrukturen zu, womit die beobachteten Bindungslängen zu den terminalen Chalcogenatomen abnehmen.

In den adamantanartigen Anionen $M_4E_0^{4-}$ liegen die M– E_t Bindungslängen etwa in der Mitte zwischen einer Einfach- und einer Doppelbindung, wobei die relative Bindungsverkürzung von den Thioanionen über die Selenoanionen zu den Telluroanionen etwas abnimmt (geringerer Doppelbindungsanteil). Auch verringert sich der mittlere Bindungswinkel am verbrückenden Chalcogenatom vom Schwefel über Selen zum Tellur.

Die Seleno- und Tellurostannationen $Sn_4E_{10}^{4-}$ konnten auch in Lösung NMR spektroskopisch nachgewiesen werden:

 $Sn_4Se_{10}^{4-}$ (NH₃, -50 °C) δ_{Sn} : -350 ppm, δ_{Se} : 7 ppm [Se_µ, ¹J_{SnSe}: 1536 Hz], 30 ppm [Se_t, ¹J_{SnSe}: 2274 Hz], [405];

 $Sn_4Te_{10}^{4-}$ (NH₃, -70 °C) δ_{Sn} : -1267 ppm, δ_{Te} : -15 ppm [Te_µ, ¹J_{SnTe}: 3200 Hz] und 177 ppm [Te_t, ¹J_{SnTe}: 3800 Hz] [406].

Durch Diffusion einer wässrigen Lösung von $(Me_4N)_4Ge_4S_{10}$ in eine $Mn(CH_3COO)_2$ -Lösung entsteht gelbes, kristallines, luftstabiles $Mn(Me_4N)_2Ge_4S_{10}$, in dem die Ge_4S_{10} Einheiten durch verzerrt tetraedrisch koordinierte Mn^{2+} Ionen zu einem dreidimensionalen Netzwerk vernetzt sind [424].

Schließlich konnten mesostrukturierte Thiogermanate [425] durch hydrothermale Reaktion von (Me₄N)₄Ge₄S₁₀ mit einem Metallsalz (MnCl₂ [426], CoSO₄, Ni(NO₃)₂, ZnCl₂, CuCl

[427,428], Ga(NO₃)₃, In(NO₃)₃ [429]) in Gegenwart eines Amphiphils (z. B. Cetyltrimethylammoniumbromid) in Formamid dargestellt werden. Die Produkte enthalten etwa zwei M^{2+} pro Ge₄S₁₀ Einheit (bei Cu^I 4, Ga^{III} und In^{III} ca. 1.3) sowie zwei Ammoniumionen. Der Ladungsausgleich erfolgt möglicherweise durch zusätzliche S²⁻ Ionen (Ge/S-Verhältnis meist 4:11 – 4:12). In allen Fällen treten hexagonale Mesophasen mit a₀ = 33 – 42 Å auf, Abbn. 4.5.27. und 4.5.28. Im Falle der mesostrukturierten Phasen "CP₂M^{III}_{1.3}Ge₄S₁₁" (CP: Cetylpyridinium, M^{III}: Ga³⁺, In³⁺) konnte darüber hinaus eine intensive Photolumineszenz beobachtet werden (Anregung bei 370 nm, Emission bei 528 nm (Ga) bzw. 535 nm (In)). Die Photolumineszenz wird vermutlich vom Pyridiniumchromophor des kationischen Amphiphils verursacht, im Vergleich zum Cetylpyridiniumbromid (Emission bei 432 nm) tritt aber eine deutliche Rotverschiebung auf, die vermutlich durch Energietransfer auf das Chalcogenidgerüst des Mesophase verursacht wird [429].

(A) (B) 10mm

Abb. 4.5.27. Modell der hexagonal columnaren Mesophase in mesostrukturierten Thiogermanaten [427,428]

Abb. 4.5.28. Transmissionselektronenmikroskopische Aufnahmen von "CP₂In_{1.3}Ge₄S₁₁" parallel (A) und rechtwinklig (B) zu den hexagonalen Poren [429]

Unter Hydrothermalbedingungen konnten auch Kondensationsprodukte der adamantanoiden $\text{Ge}_4\text{S}_{10}^{4-}$ Anionen erhalten werden. Die erste Stufe ist die Kondensation zur dimeren Einheit $\text{Ge}_8\text{S}_{19}^{6-}$, wie sie im $\text{Cs}_6\text{Ge}_8\text{S}_{19} \cdot 12 \text{ H}_2\text{O}$ [186] auftritt (Abb. 4.5.29.). Eine Verknüpfung zu unendlichen Ketten [$\text{Ge}_4\text{S}_9^{2-}$]_{∞} wurde im (Pr_2NH_2)(EtPrNH₂)[Ge_4S_9] [430] nachgewiesen (Abb. 4.5.30.).

Schließlich gelingt durch Ansäuern einer wässrigen Lösung von $(Me_4N)_4Ge_4S_{10}$ mit HCl bei 50 °C bzw. unter Hydrothermalbedingungen die Isolierung einer weiteren Modifikation des GeS_2 (δ -GeS₂) die aus schwefelverbrückten adamantanartigen Ge₄S₆ Einheiten aufgebaut ist [431]. Die Verknüpfung durch Schwefelatome erfolgt hier so, dass zwei dreidimensionale, sich gegenseitig durchdringende Netzwerke aus Adamantaneinheiten entstehen (Abb. 4.5.31.).

Abb. 4.5.29.

Kristallstruktur von $Cs_6Ge_8S_{19} \cdot 12 H_2O$ mit dem bis-adamantoiden Anion $Ge_8S_{19}^{6-}$ [186]

Abb. 4.5.30. Struktur des polymeren Anions $[Ge_4S_9^{2-}]_{\infty}$ in $(Pr_2NH_2)(EtPrNH_2)[Ge_4S_9]$ [430]

Abb. 4.5.31. Rasterelektronenmikroskopische Aufnahme (links) [431] und Projektion der Struktur von δ -GeS₂ auf die ab-Ebene (rechts) nach den Daten von [431]. Die adamantanartigen Ge₄S₆ Struktureinheiten sind durch Ge₄ Tetraeder angedeutet. Es sind nur die Schwefelatome dargestellt, die zwei Ge₄S₆ Käfige miteinander verbinden.

4.6. Polycyclische Organosilicium-, Germanium- und Zinnchalcogenide

Unter den molekularen polycyclischen Silicum-, Germanium- und Zinn-Chalcogen-Verbindungen sind die tetrameren Sesquichalcogenide (RM)₄E₆ die bedeutendste Verbindungsklasse, die aufgrund ihres – in den meisten Fällen – adamantanartigen Aufbaus auch Parallelen zu den im vorangegangen Abschnitt besprochenen adamantanartigen Chalcogenometallaten $M_4E_{10}^{4-}$ zeigen. Über die Chemie anorganischer und metallorganischer Verbindungen mit adamantanartigen Strukturen ist vor einigen Jahren ein ausführlicher Review-Artikel erschienen [432].

Die Darstellung der Sesquichalcogenide erfolgt in der Regel durch Reaktion eines Trihalogenids RMX₃ (M = Si, Ge, Sn; X = Cl, Br) mit Alkalimetallchalcogeniden [433], (Me₃Si)₂S [434] oder mit H₂S und NEt₃ [23,435,436] bzw. Pyridin [437]:

Dabei kann im Falle der Zinnverbindungen auch in wässriger Lösung gearbeitet werden [204,438].

 $(MeSi)_4S_6$ und $(MeSi)_4Se_6$ entstehen aber auch bei der Reaktion von MeSiH₃ mit H₂S bzw. H₂Se bei 200 – 400 °C [439] und $(C_6F_5Ge)_4S_6$ aus $C_6F_5GeH_3$ und Schwefel bei 170 °C [440]. Für die Darstellung der unsubstituierten Silsesquichalcogenide $(HSi)_4S_6$ und $(HSi)_4Se_6$ erwies sich nur die Reaktion von HSiCl₃ mit $(H_3Si)_2E$ als zielführend [441]:

Dieser Weg wurde auch zur Darstellung von $(F_3CGe)_4E_6$ (E = S, Se) aus F_3CGeCl_3 genutzt [442].

Schließlich kennt man vom Silicium und Germanium auch halogensubstituierte Sesquichalcogenide. So entstehen $(XSi)_4S_6$ (X = Cl, Br) bei der Dismutation von $(X_2SiS)_2$ [186]:

Die Germaniumverbindungen (XSi)₄S₆ (X = Br, I) können bei der Reaktion der Tetrahalogenide GeX₄ mit H₂S als Zwischenprodukte der Reaktion zum GeS₂ isoliert werden [443]. Das übergangsmetallsubstituierte Zinnsesquiselenid [Cp(CO)₂Fe–Sn]₄Se₆ entsteht neben dem Vierring {[Cp(CO)₂Fe]₂SnSe}₂ bei der Reaktion von [Cp(CO)₂Fe]₂SnCl₂ mit (Me₃Si)₂Se in THF [216]:

Die ähnlich aufgebaute Tellurverbindung $[Cp(CO)_3Mo-Sn]_4Te_6$ (auf analogem Wege neben $\{[Cp(CO)_3Mo]_2SnTe\}_2$ aus $[Cp(CO)_3Mo]_2SnCl_2$ und $(Me_3Si)_2Te$ bzw. auch aus $Cp(CO)_3Mo-SnCl_3$) ist das bisher einzige Beispiel für ein molekulares Sesquitellurid $(RM)_4Te_6$ [217].

Abb. 4.6.1.

*Molekülstruktur von (BrGe)*₄ S_6 [455] (*mittl.Bindungslängen in Å, Winkel in* °)

Struktur des Moleküls 2 in der Kristallstruktur von (FpSn)₄Se₆ [216]

Auch entsprechende Kohlenstoff–Schwefel-Verbindungen mit Adamantanstruktur sind bekannt [444-446], so entsteht (MeC)₄S₆ durch Kondensation von Thioessigsäure mit wasserfreiem $ZnCl_2$ [447].

Beim Vergleich der Geometrien der Sesquichalcogenide (siehe Abbn. 4.6.1. und 4.6.2. sowie Tabelle 4.6.1.) mit den adamantanartigen Anionen $M_4E_{10}^{4-}$ (Tabelle 4.5.2.) fällt auf, dass in den Molekülen (RM)₄E₆ für gleiches M und E die mittleren Bindungslängen M–E_µ um etwa 0.02 Å kürzer sind. Auch die Bindungswinkel M–E_µ–M sind in den Sesquichalcogeniden (RM)₄E₆ deutlich kleiner als in den Anionen $M_4E_{10}^{4-}$ und sinken mit zunehmender Elektronegativität der Substituenten R sowie in der Reihe Schwefel > Selen > Tellur für vergleichbare R und gleiches M.

М	Е	R	М-Е (Å)	М-Е-М (°)	Е-М-Е (°)	Literatur
С	S	Me	1.821	103.1	112.4	[448]
C	S	Et	1.818	102.7	112.6	[449]
C	S	ⁿ Pr	1.824	102.7	112.6	[450]
C	S	CH ₂ Ph	1.821	102.6	112.7	[451]
C	S	CH ₂ Cl	1.828	101.8	113.0	[452]
Si	S	Н	2.136	102.5	112.7	[441]
Si	S	Me	2.129	104.6	111.8	[453]
Si	S	Br	2.125	101.3	113.3	[185]
Ge	S	Me	2.218	104.6	111.8	[454]
Ge	S	Br	2.214	100.5	113.6	[455]
Ge	S	Ι	2.221	101.0	113.3	[443]
Ge	S	CF ₃	2.210	99.9	113.8	[442]
Ge	Se	CF ₃	2.344	97.3	114.8	[442]
Sn	S	Me	2.393	105.6	111.3	[456]
Sn	S	C_6F_5	2.396	103.6	112.2	[204]
Sn	Se	Me	2.529	102.9	112.5	[438]
Sn	Se	CpFe(CO) ₂	2.538	107.2	110.7	[216]
Sn	Те	CpMo(CO) ₃	2.752	105.9	111.1	[217]

Tabelle 4.6.1. Geometrien der Sesquichalcogenide $(RM)_4E_6$ (M = C, Si, Ge, Sn; E = S, Se, Te) (Mittlere Bindungslängen und Winkel)

Vor dem kristallographischen Nachweis der Adamantanstrukturen für die Verbindungen $(RM)_4E_6$ ist des öfteren die Möglichkeit diskutiert worden, dass diese Verbindungen auch eine Doppeldeckerstruktur aufweisen könnten [24,172,435,457,458]. Es stellte sich schließlich heraus, dass in der Regel die Adamantanstruktur auftritt, dass aber bei sterisch anspruchsvolleren Substituenten R auch die Doppeldeckerstruktur erhalten werden kann, wie dies erstmals für ein Germaniumsesquisulfid gezeigt werden konnte [459]:

Später konnten noch eine Reihe von Germanium- und Siliciumsesquichalcogeniden mit der Doppeldeckerstruktur, (ThexM)₄E₆ (Thexyl = 1,1,2-Trimethylpropyl; M = Si, Ge; E = S, Se), durch Reaktion von ThexMCl₃ mit Li₂E in THF bei 20 °C dargestellt und auch kristallographisch charakterisiert werden [460]. Für die Germaniumverbindungen sowie für (ThexSi)₄S₆ ließ sich zeigen, dass diese Verbindungen beim Erhitzen in einem inerten Lösungsmittel in das offensichtlich stabilere Isomer mit Adamantanstruktur isomerisieren [460].

Abb. 4.6.3. Struktur von (⁴BuGe)₄S₆ mit Doppeldeckerstruktur [459] Ge-S1: 2.216 Å, Ge-S2: 2.243 Å Ge-S1-Ge^{**}: 108.5°, Ge-S2-Ge^{*}:83.2°

Abb. 4.6.4. Struktur von (ThexSi)₄Se₆ mit Doppeldeckerstruktur [460] (ThexSi)₄S₆, (ThexGe)₄S₆ und (ThexGe)₄Se₆ sind isomorph

Die Geometrien der planaren M_2E_2 Ringe sind mit M-E-M Winkeln von $82 - 84^{\circ}$ ähnlich jenen in den monocyclischen Verbindungen (R_2ME)₂ (siehe Abschnitt 4.2.).

Die leichte Isomerisierung der Doppeldeckerstruktur in die Adamantanstruktur findet man ebenfalls bei den isoelektronischen Phosphor-Stickstoff-Verbindungen, z. B. in $P_4(N^iPr)_6$ [461].

Auch ein übergangsmetallsubstituiertes Beispiel für $(RM)_4E_6$ mit Doppeldeckerstruktur ist bekannt, so liefert die Reaktion von MeCp(CO)₂FeSiCl₃ mit Na₂Se das Sesquiselenid [MeCp(CO)₂FeSi]₄Se₆ mit Doppeldeckerstruktur [462], während die sehr ähnlich aufgebaute Zinnverbindung [Cp(CO)₂FeSn]₄Se₆ einen Sn₄Se₆ Adamantankäfig aufweist (Abb. 4.6.2.).

Ausgehend von *Bis*(organodichlorostannyl)methanen liefert die Reaktion mit Na₂E oder auch (${}^{t}Bu_{2}SnE$)₂ (E = S, Se, Te) Tetrastannatetrachalcogenaadamantane, d. h. diese Adamantankäfige bestehen aus vier Zinnatomen, vier Chalcogenen und zwei Kohlenstoffatomen [463]:

Ausgehend von $MeCl_2Sn-CMe_2-SnCl_2Me$ lieferte die Reaktion mit Li₂Se in analoger Weise das Tetrastannaadamantan (MeSn)₄E₄(CMe₂)₂ [463].

Abb. 4.6.5.

Struktur von $(PhSn)_4S_4(CH_2)_2$ [463]

 $E = Te: \delta_{Sn}: -278.9 \text{ ppm} [^{1}J_{SnTe}: 3134 \text{ Hz}], \delta_{Te}: -323 \text{ ppm}$

Sn-S: 2.388 – 2.425 Å, Sn- C_{CH_2} : 2.130 – 2.139 Å Sn- C_{Ph} : 2.109 – 2.133 Å Sn-S-Sn: 102.2 – 104.0° Sn-C-Sn: 115.4 – 116.6°

Die recht unterschiedlichen Bindungslängen Sn–C und Sn–S bedingen die unterschiedlichen Bindungswinkel Sn–S–Sn und Sn–C– Sn und damit ein etwas verzerrtes Adamantangerüst. Vergleichbare Adamantangerüste gibt es unter den Elementen der 14. Gruppe nur noch vom Kohlenstoff. 2,4,6,8-Tetrathia- [464-466] und 2,4,6,8-Tetraselenaadamantane [467] entstehen bei der Reaktion von β -Diketonen (bzw. im Falle von Propandial dessen Tetraethylketal) mit H₂S oder H₂Se in sauren Medien (HCl, ZnCl₂ / HOAc):

Die Verengung des Adamantangerüsts um eine CH₂-Brücke führt zum Noradamantan, um zwei gegenüberliegende CH₂-Brücken zum Bisnoradamantan. Verbindungen mit diesen Ringsystemen konnten erstmals von ANDO et al. [468] durch Reaktion von 1,2-Di-*tert*-butyltetrachlordisilan bzw. -digerman mit Li₂S bzw. Li₂Se dargestellt werden:

Während im Falle des Digermans auch das erwartete Bisnoradamantan erhalten wird, entstehen bei den Reaktionen des Disilans lediglich Noradamantane, d. h. eine Si–Si Bindung wird unter Insertion eines Chalcogenatoms gespalten.

Das erste siliciumhaltige Bisnoradamantan konnte kürzlich durch Umsetzung eines Teraaminodisilans ($R = CH(SiMe_3)_2$) mit H₂S bei tiefer Temperatur isoliert werden [469]:

Die Bisnoradamantanstruktur tritt auch in den isoelektronischen Phosphor- und Arsensulfiden α -P₄S₄ [470-472], α - und β -As₄S₄ (Realgar) [473,474] sowie dem Selenid As₄Se₄ [475,476] auf. Dagegen sind in S₄N₄ [477,478] und Se₄N₄ [479] die Positionen des Chalcogens und Pnictids (Stickstoff) vertauscht. Diese inverse Geometrie lässt sich gut mit der Theorie der topologischen Ladungsstabilisierung verstehen, die besagt, dass elektropositivere Elemente bevorzugt die Positionen einnehmen, die in einem uniformen Referenzsystem eine positive Partialladung aufweisen [480].

Auch zu den Noradamantanen gibt es isoelektronische Phosphor- und Arsenchalcogenide, β -P₄S₅ [481] und As₄S₅ [482]; dagegen liegt im S₄N₅⁻ Ion [483] aufgrund der umgekehrten Polarität wieder eine inverse Besetzung der Positionen vor.

Abb. 4.6.6. Struktur des Noradamantans (^tBuSi)₄S₅ [468] Die Selenverbindung (^tBuSi)₄Se₅ [468] hat eine sehr ähnliche Geometrie.

 α -P₄S₅ [484] und P₄Se₅ [485] weisen dagegen eine andere Struktur mit einem exocyclischen Chalcogenatom auf.

Einen weiteren Typ polycyclischer Silicium-Chalcogen- und Germanium-Chalcogen-Verbindungen stellen die bicyclischen Verbindungen $(Me_3Si)_3C-M(E_x)(E_y)(E_z)M-C(SiMe_3)_3$ (M = Si, Ge; E = S, Se) dar. Sie entstehen beim Erhitzen von $(Me_3Si)_3C-MH_3$ mit Schwefel bzw. Selen auf 150 – 200 °C [486-489] (Tsi = $(Me_3Si)_3C$) :

2
$$Tsi - M_{H}$$
 H $(150 - 200 \circ C)$ $Tsi - M_{E_y}$ H_z M Tsi $(4.6.9)$

Dabei entstehen je nach Reaktionspartner und Reaktionsbedingungen unterschiedliche Ringsysteme (x, y, z = 1, 2 oder 3), die sich chromatographisch auftrennen lassen, siehe Tabelle 4.6.2. Einige Beispiele strukturell charakterisierter Spezies sind in Abbn. 4.6.10. – 4.6.12. wiedergegeben.

Tabelle 4.6.2.

Se

Ge

Ausbeuten für [x.y.z] Μ E Reaktionsbedingungen Literatur [3.2.1] [2.2.1] [2.1.1] [3.3.1] S Dekalin, 190 - 200 °C, 60 h Si 12 % 12 % 22 % [488] _ 8 % Si Se Dekalin, 160 °C (+ DBU), 35 h _ _ _ [486] S Ph₂O, 150 – 160 °C, 48 h Ge 9% 8 % 8 % 26 % [489]

27 %

_

12 %

19 %

[487]

Produkte der Reaktionen von Tsi MH_3 mit 30 Äquivalenten Schwefel bzw. 10 Äquivalenten Selen (x, y, z siehe Gl. 4.6.9)

DBU: 1,8-Diazabicyclo[5.4.0] undec-7-en

Dekalin, 160 °C (+ DBU), 48 h

Durch UV-Bestrahlung der Silicium-Selen-Verbindung mit einem Bicyclo[2.1.1]hexan-Gerüst [490] bzw. durch Entschwefelung der entsprechenden Schwefelverbindung [491] gelangt man schließlich zu Verbindungen mit einem Bicyclo[1.1.1]pentangerüst:

Aufgrund der drei Monochalcogenbrücken kommen sich die beiden Siliciumatome hier recht nahe, siehe auch Abb. 4.6.13. Der Si–Si Abstand (für E = S: 2.407 Å und für E = Se: 2.515 Å) liegt bereits im Bereich normaler Si–Si Bindungen, so dass man hier bereits von einem [1.1.1]-Propellan-Typ sprechen kann. Diese ungewöhnliche Bindungssituation äußert sich auch in den ²⁹Si und ⁷⁷Se NMR chemischen Verschiebungen dieser Verbindungen ((TsiSi)₂S₃: δ_{Si} : 5.8 ppm ; (TsiSi)₂Se₃: δ_{Si} : –59.0 ppm, δ_{Se} : +830 ppm; zum Vergleich (TsiSi)₂S₄: δ_{Si} : 25.7 ppm, (TsiSi)₂S₅: δ_{Si} : 37.3 ppm, (TsiSi)₂S₆: δ_{Si} : 46.4 ppm und (TsiSi)₂Se₄: δ_{Si} : –7.5 ppm, δ_{Se} : +321 und +273 ppm [488-491]).

Abb. 4.6.10. Struktur von (TsiGe)₂S₆ [489] (keine Angaben zu Bindungslängen und -winkeln)

Abb. 4.6.12. Struktur von (TsiSi)₂Se₄ [486]

- Si-Se1: 2.23 2.33 Å, Si-Se2-3: 2.29 und 2.32 Å, Si-Se-Si: 77.9° und 74.8°, Si-Se-Se: 95.7 und 95.9°, Si1...Si2: 2.820 Å
- In der analogen Schwefelverbindung [488]: Si1-S1: 2.16 Å, Si-S2-3: 2.17 – 2.18, S-S: 2.094 Å, Si-S-Si: 75.9°

Abb. 4.6.11. Struktur von (TsiSi)₂S₅ [488] Si-S1: 2.13 – 2.14 Å, Si-S2-5: 2.16 – 2.17 Å, S-S: 2.04 Å, Si1-S1-Si2: 89.2°, Si-S-S: 98.2 – 105.0°

Abb. 4.6.13. Struktur von (TsiSi)₂S₃ [491]

Si-S: 2.17 – 2.18 Å, Si-S-Si: 66.9 – 67.3°, S-Si-S: 91.8 – 92.9°, Si1...Si2: 2.407 Å

In der analogen Selenverbindung [490]: Si-Se: 2.32 – 2.33 Å, Si-Se-Si: 65.4 – 65.7°, Se-Si-Se: 93.6°, Si1...Si2: 2.515 Å Über polycyclische Silcium-Chalcogen-Verbindungen, die sich von größeren Oligosilanen ableiten, ist dagegen noch so gut wie nichts bekannt.

Ein Beispiel für eine derartige Verbindung ist das Decamethyl-7-thiahexasilanorbornan, das durch Reaktion von 1,4-Dichlordecamethylcyclohexasilan (siehe Gl. 5.2.1.18) mit H₂S und NEt₃ entsteht [492]:

Aufgrund des Norbornangerüsts ist der Bindungswinkel am Schwefel mit 94.9° relativ klein, dagegen sind alle Bindungslängen im normalen Bereich für Einfachbindungen.

5. Synthese funktionalisierter Oligosilane

Ein wesentliches Ziel dieser Arbeit ist die Synthese und Charakterisierung von Silicium-Chalcogen-Verbindungen mit Oligosilaneinheiten. Da funktionalisierte Oligosilane kommerziell nicht erhältlich sind, waren gezielte Synthesen funktionalisierter Di-, Tri-, ..., Octasilane erforderlich. Als funktionelle Gruppe wurden hierbei Chlorsubstituenten angestrebt. Dies bedeutet in den allermeisten Fällen zunächst den Aufbau eines entsprechenden Oligosilangerüsts und anschließend eine gezielte Funktionalisierung.

5.1. Methoden zur Knüpfung von Si-Si Bindungen

In der Literatur haben sich in den letzten Jahren verschiedene Methoden zur Knüpfung von Si–Si Bindungen etabliert. Zu den klassischen Synthesewegen gehören die Kopplungen von Organochlorsilanen mit Lithium [493] oder einer Natrium-Kalium-Legierung [494]. Auch Kaliumgraphit (KC₈) wurde erfolgreich eingesetzt [495], dagegen reagiert Natrium allein nur sehr langsam und in schlechten Ausbeuten [496].

Die erste Variante bietet den Vorteil, mit dem weniger gefährlichen Lithium zu arbeiten, in den meisten Fällen ist aber zum Erreichen akzeptabler Reaktionsgeschwindigkeiten die Verwendung des (teureren) Lithiumpulvers erforderlich. Schema 5.1.1. zeigt die prinzipiell synthetisierbaren Produkte aus Methylchlorsilanen und Lithium bzw. Na/K-Legierung [497-503]:

Schema 5.1.1.

Produkte der Reaktionen der Methylchlorsilane $Me_{4-x}SiCl_x$ (x = 1 - 4) mit Lithium in THF bzw. mit Na/K

Längerkettige lineare Permethylpolysilane (bis Si₂₄) erhält man selektiver durch Kondensation von Monochlorsilanen mit α, ω -Dichloroligosilanen, z. B. [504]:

2
$$Me_3Si-SiMe_2Cl + n ClMe_2Si-SiMe_2Cl \xrightarrow{2n+2Li(THF)} Me_3Si-(SiMe_2)_{2n+2}-SiMe_3 (5.1.1)$$

Analog zu den linearen und verzweigten Oligosilanen lassen sich entsprechende Carbosilane durch Reaktion von Halogenmethanen mit Me₃SiCl und Li in THF gewinnen [505]:

$$2 \text{ Me}_{3}\text{SiCl} + \text{CH}_{2}\text{Cl}_{2} \xrightarrow{4 \text{ Li}(\text{THF})} (\text{Me}_{3}\text{Si})_{2}\text{CH}_{2} \quad (64.5 \%)$$
(5.1.2)

$$3 \text{ Me}_3 \text{SiCl} + \text{CHCl}_3 \xrightarrow{6 \text{ Li}(\text{THF})} (\text{Me}_3 \text{Si})_3 \text{CH} \quad (66.7 \%)$$
 (5.1.3)

$$4 \text{ Me}_3 \text{SiCl} + \text{CCl}_4 \xrightarrow{8 \text{ Li}(\text{THF})} (\text{Me}_3 \text{Si})_4 \text{C}$$
 (66.5 %) (5.1.4)

Im Prinzip sind diese Reaktionen auch auf phenylsubstituierte Chlorsilane übertragbar, z. B. [506-508] (R = Me, Ph):

$$2 \operatorname{Me}_{3}\operatorname{SiCl} + \operatorname{Cl} \xrightarrow{\operatorname{Ph}}_{R} \operatorname{Cl} \xrightarrow{\operatorname{Na/K}}_{R} \operatorname{Me}_{3}\operatorname{Si} \xrightarrow{\operatorname{Si}}_{1} \operatorname{Si} \operatorname{Si}_{3} + \operatorname{Me}_{3}\operatorname{Si} \xrightarrow{\operatorname{Si}}_{1} \operatorname{Si} \xrightarrow{\operatorname{Si}}_{1} \operatorname{Si} \operatorname{Si}_{3} \operatorname{Si}_{1} \operatorname{Si$$

$$3 \operatorname{Me}_{3}\operatorname{SiCl} + \operatorname{Cl} \xrightarrow{\operatorname{Ph}}_{Cl} \xrightarrow{\operatorname{Li} \operatorname{oder}}_{\operatorname{Na/K}} \operatorname{Me}_{3}\operatorname{Si} \xrightarrow{\operatorname{Si}}_{Si} \operatorname{SiMe}_{3} + \operatorname{Me}_{3}\operatorname{Si} \xrightarrow{\operatorname{Si}}_{Si} \operatorname{Si} \operatorname{Si}_{si} \operatorname{Si}_$$

Die Bildung der Tetra- bzw. Hexasilane lässt sich durch den Einsatz eines Überschusses an Me₃SiCl weitgehend vermeiden, allerdings treten bei Reaktionen mit überschüssigem Me₃SiCl und Lithium unerwartete Nebenreaktionen auf, z. B. [509]:

$$Me \qquad Me \qquad Me \qquad Me \qquad I \qquad SiMe_3$$

$$Me_3Si - Si - SiMe_3 \qquad (5.1.7)$$

$$Me_3Si \qquad Me_3Si - Si - SiMe_3 \qquad (5.1.7)$$

So wird z. B. selbst Benzen durch Me₃SiCl / Li in THF zu einem Gemisch von 1,4-*Bis*-trimethylsilylbenzen [510,511] und *cis/trans*-1,4-*Bis*-trimethylsilylcyclohexa-2,5-dien [512] silyliert:

Inden reagiert glatt zu 1,2-Bis-trimethylsilylindan [512].

Triorganochlorsilane, die mindestens einen Arylsubstituenten (Phenyl, *p*-Tolyl, Anisyl, α -Naphthyl) tragen, werden durch Lithium in THF in Silyllithiumverbindungen überführt, z. B. [513,514]:

$$Ph \xrightarrow{Ph}_{\substack{i \\ Ph-Si-Cl}} Ph \xrightarrow{2 \text{Li} (THF)}_{-\text{LiCl}} Ph \xrightarrow{Ph}_{i} Li(THF)_{n}$$
(5.1.9)

Auch dialkylaminosubstituierte Monochlorsilane lassen sich in entsprechende Silyllithiumverbindungen überführen [515-517], z. B.:

$$Ph - Si - Cl \xrightarrow{li (THF)}_{-LiCl} Ph - Si - Li(THF)_{n}$$

$$NEt_{2}$$

$$(5.1.10)$$

Einige Silyllithiumspezies konnten auch in kristalliner Form erhalten werden:

Abb. 5.1.2. *Molekülstruktur von Ph(Et₂N)₂SiLi(THF)₃ [519], Si-Li: 2.627(4) Å*

Dagegen regiert Me(Et₂N)₂SiCl mit Lithiumpulver in THF nur unter Kopplung zum Disilan Me(Et₂N)₂Si–Si(NEt₂)₂Me [520].

Diese reaktiven Silyllithiumspezies können anschließend mit anderen Organochlorsilanen (oder chlorsubstituierten Oligosilanen) unter Si–Si Bindungsbildung gekoppelt werden. Auf diese Weise sind eine Vielzahl genau definierter phenylsubstituierter Oligosilangerüste aufgebaut worden, z. B.:

Zu oligomeren Silylalkalispezies gelangt man auch durch Reaktion von Oligosilanen mit starken Basen wie MeLi [525] oder KO^tBu [526]:

Ph

Me

Me Ph

Molekülstruktur von (Me₃Si)₃SiLi(THF)₃ [527], Si-Li: 2.644(12) Å, Si-Si: 2.330(2) Å

Bei der Reaktion mit MeLi sind Reaktionszeiten von mehr als 24 h erforderlich, um eine vollständige Spaltung von Si(SiMe₃)₄ zu erreichen [527]. Auf analogem Wege sind auch die entsprechenden Ge- und Sn-Verbindungen (Me₃Si)₃GeLi(THF)₃ [528] und (Me₃Si)₃Sn-Li(THF)₃ [529] synthetisiert und strukturell charakterisiert worden [530].

Dagegen ist die Spaltung von Si(SiMe₃)₄ mit KO^tBu in wenigen Stunden vollständig.

Aufgrund der größeren Reaktivität des Letzteren lassen sich auch weniger stark verzweigte Oligosilane damit in Silylkaliumspezies überführen, z. B. [526,531]:

$$Me_{3}Si - Si - SiMe_{3} \xrightarrow{KO^{t}Bu (THF)}_{-Me_{3}SiO^{t}Bu} Me_{3}Si - Si - K(THF)_{n}$$
(5.1.15)

$$Me_{(R = SiMe_{3}, Ph)} Me_{3}Si - Si - K(THF)_{n}$$
(5.1.15)

Ein weiterer Vorteil besteht darin, dass in größeren hochverzweigten Oligosilanen durch KO^tBu eine der peripheren Si–Si Bindungen gespalten wird, was weitere interessante Oligosilanylkaliumspezies [526,532] und sogar Oligosilanyldikaliumverbindungen [533] zugänglich macht:

$$\begin{array}{c} Me_{3}Si \\ Me_{$$

Abb. 5.1.4. Molekülstruktur vonAbb. 5.1.5. Molekülstruktur von $(Me_3Si)_3SiSi(SiMe_2)_2K \cdot Toluol [532]$ $Ph(Me_3Si)_2SiSi(SiMe_2)_2K(18-cr-6) \cdot C_6H_6 [532]$

Mit MeLi wird dagegen laut [526] z. B. in (Me₃Si)₃SiSi(SiMe₃)₃ bevorzugt die zentrale Si–Si Bindung gespalten unter Bildung von (Me₃Si)₃SiLi(THF)_n. Allerdings konnten Y. APELOIG et al. [534] im Gegensatz zu Untersuchungen von PANNELL et al. [535] auch mit MeLi selektiv periphere Si–Si Bindungen spalten:

Abb. 5.1.4. Molekülstruktur von (Me₃Si)₃Si–(SiMe₂)₂–Si(SiMe₃)₂Li(THF)₃ [534]

Solventfreies hexameres (Me₃SiLi)₆ [536], tetrameres (Me₅Si₂Li)₄ sowie die beiden isomeren Me₇Si₃Li sind aus den entsprechenden Si–H Silanen über Disilylquecksilberverbindungen erhalten worden [537]:

Abb. 5.1.5. Molekülstruktur von tetramerem $(Me_5Si_2Li)_4$ [537] Die vier Lithiumatome bilden ein Tetraeder mit Li-Li: 2.75 – 2.82 Å. Jede Seite des Tetraeders wird von einer Si₂Me₅-Einheit überbrückt.

Im hexameren (Me₃SiLi)₆ bilden die sechs Lithiumatome einen stark gefalteten Sechsring in Sesselkonformation, welcher auch als verzerrter Oktaeder aufgefasst werden kann. Die sechs Me₃Si-Einheiten befinden sich etwa über den Flächenmitten des verzerrten Li₆-Oktaeders [538,539]. Dagegen findet man im solventfreien Hypersilyllithium [540] (wie auch in den Hypersilaniden der schwereren Alkalimetalle Na [541], K, Rb, Cs [542]) nur eine Dimerisierung unter Ausbildung eines Li₂Si₂-Vierrings.

Auch permethylierte Cyclosilane lassen sich durch Reaktion mit KO^tBu in entsprechende Cyclosilanylkaliumverbindungen überführen [543]:

Dabei entsteht aus (SiMe₂)₆ zunächst der metallierte Fünfring, der nach 4 h Reaktionszeit zu maximal 35 % gebildet wird. Nach mehreren Tagen erhält man schließlich praktisch ausschließlich Undecamethylcyclohexasilanylkalium.

Auch Oligosilanylanionen eignen sich zum Aufbau größerer verzweigter Oligosilane, z. B.:

Auf diesem Wege konnten auch größere dendritische Oligosilane synthetisiert werden [546,547], z. B.:

$$Me_{3}Si - Si - SiMe_{3}$$

$$Me_{3}Si - SiMe_{3}Si - SiMe_{3}$$

$$Me_{3}Si - SiMe_{2}Cl + MeSi - SiMe_{2}Cl + MeSi - SiMe_{2} - SiMe_{3}$$

$$Me_{3}Si - SiMe_{2}Cl + MeSi - SiMe_{2}Cl + SiMe_{3}$$

$$Me_{3}Si - SiMe_{3}$$

$$Me_{3}$$

Das bisher größte dargestellte und durch Röntgenkristallstruktur gesicherte dendritische Oligosilan, MeSi{SiMe₂SiMe[SiMe₂SiMe(SiMe₃)₂]₂}₃, enthält 31 Siliciumatome [548].

Abb. 5.1.6. Molekülstruktur von HSi[SiMe₂Si(SiMe₃)₃]₃ [547]

Das Hypersilylanion, (Me₃Si)₃Si⁻, kann auch oxidativ zu einem Octasilan gekoppelt werden [549]:

Eine ganz andere Methode, die direkt zur Synthese von chlorfunktionalisierten Oligosilanen führt, ist die LEWIS-Base-katalysierte Disproportionierung von Methylchloroligosilanen, wie hier für 1,2-Dichlortetramethyldisilan, 1,1,2-Trichlortrimethyldisilan und 1,1,2,2-Tetrachlor-dimethyldisilan dargestellt [550]:

$$Cl-SiMe_2-SiMe_2-Cl \xrightarrow{NMI(150 \circ C)} Me_2SiCl_2 + Cl \underbrace{SiMe_2}_xCl \qquad (5.1.25)$$

Als Katalysatoren für diese Reaktionen eignen sich besonders gut N-Heterocyclen wie z. B. N-Methylimidazol (NMI), aber auch Pyrazole, Pyridin, Ammonium- und Phosphoniumhalogenide oder HMPT [551]. Neuere Untersuchungen mit dem elektronenreichen Olefin TDAE (Tetrakisdimethylaminoethen) als Katalysator der Disproportionierung eines Gemisches von 90 % Cl₂MeSi–SiMeCl₂ und 10 % Cl₃Si–SiMeCl₂ führten zur strukturellen Charakterisierung eines Intermediates der Disproportionierung, einem Chlorid-Addukt des Trisilans Cl₃Si–SiMeCl–SiMeCl₂, wobei das zusätzliche Chlorid-Ion am mittleren Si-Atom koordiniert ist [552].

Abb. 5.1.7. *Struktur des Trisilan-Chlorid Adduktes* [TDAE]⁺[Cl₃Si–SiMeCl₂–SiMeCl₂]⁻ [552]

Alle bisherigen Untersuchungen machen einen Mechanismus unter Beteiligung LEWIS-Basestabilisierter Silylene wahrscheinlich:

Dabei ist es noch unklar, ob bereits das Disilan mit dem LEWIS-Base-Katalysator in nennenswertem Umfange ein Addukt bildet oder nicht.

Einerseits ist ein kristallines Addukt $Me_2Si_2Cl_4 \cdot bipy$, bei dem der bipy-Ligand zweizähnig an einem der beiden Siliciumatome koordiniert ist, beschrieben worden [553]. Auch ³¹P NMR Untersuchungen einer Mischung von $Me_2Si_2Cl_4$ / OPPh₃ deuten auf eine Adduktbildung hin [554], DFT-Berechnungen von $Me_2Si_2Cl_4$ + OPH₃, PH₃ oder NH₃ konnten ein solches Addukt zwar nicht bestätigen, auf jeden Fall wird aber das gebildete Silylen durch den LEWIS-Donor wesentlich stabilisiert [555].

Aufgrund der Koordination durch den als Katalysator verwendeten Donor ist das intermediär gebildete Silylen hauptsächlich nucleophil und insertiert in eine Si–Cl Bindung eines weiteren Moleküls Cl₂MeSi–SiMeCl₂ (Gl. 5.1.29). In weiteren Reaktionen werden schließlich im Falle von Cl₂MeSi–SiMeCl₂ Oligosilane mit bis zu sieben Siliciumatomen gebildet (Gl. 5.1.27), die bis zum Hexasilan auch destillativ getrennt werden konnten [554].

Die Disproportionierung von ClMe₂Si–SiMe₂Cl (Gl. 5.1.25) stellt einen alternativen Zugang zu α, ω -Dichloroligosilanen mit bis zu fünf Siliciumatomen dar.

Neben Methylchlordisilanen lässt sich diese Reaktion auch auf analoge Methylfluordisilane [556] und Alkoxymethyldisilane [557,558] anwenden. Die Methylgruppen können auch gegen Phenyl- oder Vinylgruppen ersetzt werden [559].

5.2. Funktionelle Gruppen an Oligosilanen

5.2.1. Halogensilane

Halogensubstituierte Oligosilane sind die am häufigsten eingesetzten funktionalisierten Oligosilane. In der Regel handelt es sich dabei um Chlorsilane, seltener Bromsilane, während Fluor und Iod als funktionelle Gruppen an Oligosilanen kaum Verwendung finden.

Aus Halogensilanen lässt sich durch nucleophile Substitution leicht eine weite Palette anderer funktioneller Gruppen und organischer Substituenten in Silane und Oligosilane einführen.

Ausgehend von permethylierten Oligosilanen können Chlorsubstituenten durch Reaktion mit HCl-Gas oder Me₃SiCl [560] in Gegenwart katalytischer Mengen AlCl₃ eingeführt werden. Bei der Reaktion von Si₂Me₆ mit HCl ist dabei die Reaktionstemperatur für die gebildeten Produkte entscheidend [561]:

Reaktionen mit Me₃SiCl laufen recht langsam ab, durch Abdestillieren des als Nebenprodukt gebildeten leichtsiedenden SiMe₄ wird die Bildung chlorierter Oligosilane forciert [562,563]:

$$\underset{\text{SiMe}_{3}}{\overset{\text{SiMe}_{3}}{\text{MeSi}-\text{SiMe}_{3}}} \xrightarrow{3 \text{ Me}_{3}\text{SiCl [AlCl_{3}]}} \underset{\text{SiMe}_{4}}{\overset{\text{SiMe}_{2}\text{Cl}}{\text{SiMe}_{2}\text{Cl}}} \qquad (5.2.1.2)$$

Si₂Me₆ und Si₃Me₈ lassen sich auch durch Reaktion mit Schwefelsäure und Ammoniumhalogenid mono- bzw. difunktionalisieren [496,564]:

Bei diesen Reaktionen muss aber vor der Destillation der halogenierten Disilane unbedingt die Schwefelsäure-Phase entfernt werden, da andernfalls die Mischungen explodieren.

Aufgrund der Oxidationswirkung der Schwefelsäure werden auch Si–Si Bindungen angegriffen, so dass bei der Derivatisierung von Si₃Me₈ auch größere Mengen chlorsubstituierter Mono- und Disilane auftreten [496].

Gut steuerbar ist dagegen die Einführung von Halogensubstituenten (Cl, Br) durch Reaktion mit Acetylchlorid [565,566] bzw. Acetylbromid [567,568]. In diesen Fällen müssen äquimolare Mengen an AlX₃ verwendet werden, die mit dem als Nebenprodukt gebildeten Aceton ein Addukt bilden:

$$\begin{array}{cccccccccccccc} Me & Me & Me & Me & Me \\ Me & Si - Si - Me & \frac{CH_3COCl + AlCl_3}{-(CH_3)_2CO \cdot AlCl_3} & Me - \frac{Si - Si - Cl}{I & I} \\ Me & Me & Me & Me \end{array}$$
(5.2.1.4)

Im Gegensatz zum gasförmigen HCl sind die flüssigen Acetylhalogenide leicht dosierbar, darüber hinaus ist die Reaktionstemperatur für die gebildeten Produkte entscheidend. Allgemein gilt eine Abstufung der Reaktivität in der Reihe SiMe₃ > SiMe₂ > SiClMe₂ > SiMe, d. h. in größeren permethylierten Oligosilanen werden selektiv zuerst die terminalen SiMe₃-Gruppen funktionalisiert. Eine Zweitsubstitution zu –SiCl₂Me Einheiten tritt erst bei höheren Reaktionstemperaturen ein. Terminale –SiCl₃ oder mittelständige –SiCl₂– Einheiten werden auf diesem Wege nicht gebildet:

Wesentlich reaktiver als Methylgruppen sind Phenylsubstituenten. Man kann sich dies zunutze machen, um bestimmte Substitutionsmuster zu erzielen, die durch Chlorierung der permethylierten Oligosilane aufgrund der obigen Abstufung der Reaktivitäten nicht darstellbar sind, z. B.:

Ph Me
Ph Si-Si-Me
$$\xrightarrow{3 \text{ CH}_3\text{COCl} + \text{AlCl}_3}_{-3 \text{ PhCOCH}_3 \cdot \text{AlCl}_3}$$
 Cl Me
Ph Me $_0^{\circ}\text{C} \rightarrow \text{RT}$ Cl Me [570,508] (5.2.1.10)

Ph Me
Ph
$$-Si - Si - Me$$

 \downarrow \downarrow \downarrow -3 PhCOCH₃·AlX₃
Ph Me
 $X = Cl, Br$

$$X = Cl, Br$$

$$Ph - Si - Ph \qquad \begin{array}{c} SiMe_{3} \\ Ph - Si - Ph \\ I \\ SiMe_{3} \\ SiMe_{3} \\ X = Cl, Br \end{array} \qquad \begin{array}{c} SiMe_{3} \\ X - Si - X \\ I \\ SiMe_{3} \\ X = SiMe_{3} \end{array} \qquad [508] (5.2.1.12)$$

Ph Me Ph

$$| I | I |$$

 $Ph-Si-Si-Si-Si-Ph \xrightarrow{6 HX [AIX_3]} X \xrightarrow{K} Me X$
 $| I | I |$
 $Ph Me Ph X = Cl, Br, I$
 $X Me X X = Si-Si-X [571] (5.2.1.14)$

^tBu
$$\xrightarrow{\text{Ph}}_{i} \stackrel{\text{Ph}}{=} \stackrel{\text{Ph}}{$$

Bei der Substitution von Phenyl- gegen Chlorsubstituenten tritt Racemisierung ein. So entsteht bei der Chlorierung von *cyclo*-all-*trans*-(SiPhMe)₆ mit HCl und AlCl₃ ein Gemisch aller Stereoisomeren von *cyclo*-(SiClMe)₆ [573].

Noch reaktiver als Phenylsubstituenten sind *p*-Tolyl, Mesityl (2,4,6-Trimethylphenyl, Mes) [574] oder *p*-Anisyl. Auch dies kann zur selektiven Halogenfunktionalisierung genutzt werden [575]:

Halogenfunktionen können aber auch durch oxidative Spaltung von Si–Si Bindungen eingeführt werden. So werden aus Dodecamethylcyclohexasilan durch Spaltung mit Cl₂ bei tiefer Temperatur [576] bzw. mit PCl₅ bei 150 °C [577] (bei diesen Temperaturen beginnt die Spaltung von PCl₅ in PCl₃ + Cl₂) α, ω -Dichlorpermethyloligosilane mit 2, 3, 4 und 6 Siliciumatomen gewonnen:

(5.2.1.17)

1,5-Dichlordecamethylpentasilan wird hierbei nur in sehr kleiner Menge gebildet, eine Synthese desselben ausgehend vom 1,3-Dichlorhexamethyltrisilan ist in [578] beschrieben. Dagegen bleibt bei der Reaktion mit SbCl₅ der Cyclohexasilanring intakt und es können bis zu drei Chlorsubstituenten eingeführt werden [579]:

Die Isolierung der reinen 1,3- und 1,4-disubstituierten Cyclohexasilane gelingt über destillative Trennung der Hydrolyse- (und Kondensations-) Produkte Decamethyl-7-oxahexasilanorbornan und 1,3-Dihydroxydecamethylcyclohexasilan [580]:

Das auf diesem Wege nicht erhältliche 1,2-Dichlordecamethylcyclohexasilan kann durch eine mehrstufige Synthese aufgebaut werden [581].

5.2.2. Triflate

In den letzten zehn bis fünfzehn Jahren ist vor allem durch die Arbeiten von W. UHLIG Trifluormethansulfonsäure (Triflatsäure, CF₃SO₃H, abgekürzt: TfOH) als Reagenz zur Substitution von Arylsubstituenten an Siliciumverbindungen eingeführt worden [582]. TfOH ist eine einbasige, sehr starke Säure, die aber weniger oxidierend wirkt als konzentrierte Schwefelsäure. Die Protodesilylierung am Aromaten mit TfOH lässt sich, wie auch Reaktionen mit HCl / [AlCl₃] oder AcCl / AlCl₃ als eine Umkehrung der bekannten elektrophilen Substitution am Aromaten auffassen [583]:

Das gebildete Silylkation kombiniert sich anschließend sofort mit einem Triflation zum Silyltriflat (R₃Si–OTf).

Entsprechend dem Mechansimus steigt die Reaktivität der Aromaten in der Reihenfolge:

Phenyl
$$< p$$
-Tolyl $< \alpha$ -Naphthyl $< p$ -Anisyl

Noch reaktiver gegenüber Trifluormethansulfonsäure sind Allylsubstituenten, während Vinylsubstituenten weniger reaktiv sind als Arylgruppen. Si–H oder Si–Alkyl Bindungen werden unter diesen Bedingungen in der Regel nicht gespalten [584].

Enthält ein Oligosilan mehrere Phenylgruppen, so werden diese schrittweise gegen OTf substituiert. Dies gilt mit recht guter Selektivität auch dann, wenn die Phenylsubstituenten an verschiedenen Siliciumatomen gebunden sind, z. B. [585]:

$$\begin{array}{ccc} k_{1} & k_{2} \\ PhSiMe_{2}-SiMe_{2}Ph & \xrightarrow{HOTf} & TfOSiMe_{2}-SiMe_{2}Ph & \xrightarrow{HOTf} & TfOSiMe_{2}-SiMe_{2}OTf \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & &$$

In größeren Oligosilanen werden Phenylsubstituenten an den terminalen Siliciumatomen zuerst gegen Triflat substituiert, soll aber eine Funktionalisierung z. B. am mittelständigen Siliciumatom eines Trisilans erreichet werden, so kann man dies durch den Einbau der reaktiveren *p*-Tolylgruppe am mittelständigen Siliciumatom ermöglichen [586].
Durch Reaktion von Triphenylsilanen mit TfOH lassen sich bis zu drei Triflatsubstiuenten am gleichen Siliciumatom einführen, mittels einer etwas modifizierten Synthese konnte sogar das – allerdings wenig stabile – Si(OTf)₄ dargestellt werden [587]. Auch perphenylierte Cyclosilane lassen sich mit HOTf gezielt substituieren. So lässt sich *cyclo*-Si₅Ph₁₀ mit einem Äquivalent selektiv monofunktionalisieren [588]:

Die Reaktion von *cyclo*-Si₄Ph₈ mit 1 - 4 Äquivalenten HOTf liefert eine schrittweise Funktionalisierung des Cyclosilanes, ohne dass dabei der gespannte Vierring geöffnet wird [589]:

Dabei entstehen die Cyclotetrasilanyltriflate als Gemische aller Stereoisomeren.

Auf der anderen Seite ist die Triflatgruppe eine sehr gute Abgangsgruppe. Dies wird beim Vergleich der Reaktivitäten verschiedener Silylierungsreagenzien Me₃SiX deutlich [590]:

Tabelle 5.2.2.1.

Reaktivität verschiedener Silylierungsreagenzien Me₃SiX bei der Silylierung von Ketonen [590]

Х	k _{rel}	Х	k _{rel}	Х	k _{rel}
Cl	1	Me ₃ SiOSO ₃	270	Br	79000
CH ₃ SO ₃	40	p-Br-C ₆ H ₄ SO ₃	570	CF ₃ SO ₃	$6.7 \cdot 10^8$
C ₆ H ₅ SO ₃	160	CF ₃ CH ₂ SO ₃	14000	Ι	$7\cdot 10^9$

So kann die Triflatgruppe leicht gegen andere Substituenten ersetzt werden. Dabei führt die Zugabe von Lithiumhalogeniden (LiCl, LiF) zu den entsprechenden Halogensilanen, z. B. [571]:

$$\begin{array}{c|c} Ph_{3}Si-SiMe_{2}-SiPh_{3} \\ \hline & 2 \text{ HOTf} \\ \hline & -2 \text{ PhH} \\ TfOPh_{2}Si-SiMe_{2}-SiPh_{2}OTf \\ \hline & \frac{2 \text{ HOTf}}{-2 \text{ PhH}} \\ \hline & (TfO)_{2}PhSi-SiMe_{2}-SiPh(OTf)_{2} \\ \hline & 2 \text{ LiCl} \\ \hline & -2 \text{ LiOTf} \\ \hline & 4 \text{ LiCl} \\ \hline & -4 \text{ LiOTf} \\ \hline & Cl_{2}PhSi-SiMe_{2}-SiPhCl_{2} \\ \end{array}$$
(5.2.2.5)

Ähnlich wie Halogensilane können aber auch Silyltriflate mit LiAlH₄ zu den entsprechenden Si-H Derivaten hydriert werden [586], z. B. [591]:

• SiMe_{3-n}(OTf)_n
$$\xrightarrow{\text{LiAlH}_4}$$
 $\xrightarrow{\text{CiAlH}_4}$ $\xrightarrow{\text{SiMe}_{3-n}}$ $\xrightarrow{\text{SiMe}_{3-n}}$

Schließlich gelingt auch die Si–Si Bindungsbildung durch Reaktion von Silyllithiumspezies mit Silyltriflaten [583]:

$$\begin{array}{c|c} Ph_{3}Si-SiPh_{3} \\ 2 \text{ HOTf} & -2 \text{ PhH} \\ TfOPh_{2}Si-SiPh_{2}OTf & \underline{2 \text{ PhMe}_{2}SiLi} \\ \hline -2 \text{ LiOTf} & PhMe_{2}Si-SiPh_{2}-SiPh_{2}-SiMe_{2}Ph \end{array}$$
(5.2.2.7)

Das heißt, über Silyltriflate können auch größere Oligosilangerüste sehr gezielt aufgebaut werden. Aus den als Nebenprodukte gebildeten Triflatsalzen lässt sich die freie Säure wieder zurückgewinnen, was den hohen Preis für Trifluormethansulfonsäure (50 ml ca. 100 €) etwas relativiert. In den letzten Jahren wurden diese Reaktionen auch zum Aufbau und zur Funktionalisierung definierter Polysilane, Polysiline und Polycarbosilane weiterentwickelt [592].

5.2.3. Aminogruppen als Schutzgruppen

In Anlehnung an Schutzgruppenkonzepte in der Organischen Chemie können Dialkylaminosubstituenten als Schutzgruppen für Silicium-Halogen-Bindungen aufgefasst werden.

Chlorfunktionen an Silanen und Oligosilanen lassen sich leicht und z. T. auch selektiv durch Reaktion z. B. mit HNEt₂ gegen Diethylaminogruppen ersetzen, z. B.:

$$\begin{array}{c} Cl \\ Ph-\underset{l}{Si-Cl} & \underbrace{2 \text{ HNEt}_2}_{-H_2NEt_2Cl} & Ph-\underset{l}{Si-Cl} & \underbrace{2 \text{ HNEt}_2}_{-H_2NEt_2Cl} & Ph-\underset{l}{Si-Cl} & \underbrace{2 \text{ HNEt}_2}_{-H_2NEt_2Cl} & Ph-\underset{l}{Si-Cl} & I \\ Cl & Cl & NEt_2 \end{array}$$

$$Me - Si - Si - Me \xrightarrow{2 \text{ HNEt}_2} Me - Si - Si - Me \xrightarrow{1 \text{ I}} H_2 NEt_2 Cl \qquad Me - Si - Si - Me \xrightarrow{1 \text{ I}} I \\ Cl \ Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl \qquad [593] (5.2.3.2)$$

$$\begin{array}{c} \begin{array}{c} 2 \text{ HNEt}_2 \\ \hline -H_2 \text{NEt}_2 \text{Cl} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Et}_2 \text{N} & \text{NEt}_2 \\ 1 & \text{I} \\ \text{Me} - \text{Si} - \text{Si} - \text{Me} \end{array} \begin{array}{c} 2 \text{ HNEt}_2 \\ \hline -H_2 \text{NEt}_2 \text{Cl} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Et}_2 \text{N} & \text{NEt}_2 \\ 1 & \text{I} \\ \text{Me} - \text{Si} - \text{Si} - \text{Me} \end{array} \\ \begin{array}{c} \text{Me} - \text{Si} - \text{Si} - \text{Me} \end{array} \begin{array}{c} 1 \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{Cl} \end{array} \end{array}$$

Die partiell aminosubstituierten Produkte lassen sich durch Destillation im Vakuum reinigen, ohne dass dabei wieder Äquilibrierung eintritt. Bei der schrittweisen Reaktion von 1,1,2,3,3-Pentachlortrimethyltrisilan wird zunächst auch die Si–Cl Bindung am mittleren Siliciumatom substituiert, mit weiterem HNEt₂ tritt aber eine Resubstitution auf [594]:

Die verbleibenden Chlorsubstituenten können nun Reaktionen, z. B. Kopplungen oder Lithiierungen mit Lithiumpulver unterworfen werden, die Diethylaminofunktionen bleiben dabei intakt. Anschließend werden durch Reaktion mit HCl-Gas die Diethylaminogruppen wieder abgespalten, z. B.:

Auch Reaktionen mit Organolithium- oder GRIGNARD-Verbindungen sind möglich, so können auf diesem Wege selektiv 1-Vinyl-1,2-dimethyltrichlordisilan, 1,2-Divinyl-1,2-dimethyldichlordisilan oder 1,1,2-Trivinyl-1,2-dimethylchlordisilan dargestellt werden [596]:

Habilitation Uwe Herzog

Die direkte Reaktion von SiCl₂Me–SiCl₂Me mit ViMgCl führt dagegen zu Produktgemischen, die destillativ nicht auftrennbar sind.

5.2.4. Si–H als funktionelle Gruppe

Silicium-Halogen (F, Cl, Br, I) oder Silicium-Triflat-Bindungen können durch Reaktion mit LiAlH₄ in Ether leicht und quantitativ in Si–H Bindungen umgewandelt werden:

$$\frac{|}{|} = X \xrightarrow{\text{LiAlH}_4(\text{Et}_2\text{O})} \xrightarrow{|}{|} = Si - H \qquad (X = F, Cl, Br, I)$$
(5.2.4.1)

Aber auch die Reaktion von Silyllithium- oder Silylkaliumspezies mit verdünnter wässriger HCl liefert die entsprechenden Si–H Derivate, z. B.:

$$Me_{3}Si - Si - Li(THF)_{n} \xrightarrow{H_{3}O^{+}} Me_{3}Si - Si - H \qquad [498] (5.2.4.3)$$

$$I = SiMe_{3}$$

$$Me_{X} \qquad Me_{H} \qquad Me_{H} \qquad Me_{Y} \qquad Me_{Z} \qquad M$$

Die an sich wenig polaren Si–H Bindungen (entsprechend den Elektronegativitäten von Si und H: Si^{δ^+}–H^{δ^-}) sind aber einer Reihe von Reaktionen zugänglich, die in letzter Zeit vor allem im Hinblick auf alternative Synthesen für silazanartige Precursoren Bedeutung erlangt haben [597].

In früheren Arbeiten [598] wurden häufig halogensubstituierte Silane einer Ammonolyse unterzogen, dabei bilden sich neben den Silazanen aber auch größere Mengen an Ammoniumsalzen, die die Aufarbeitung und die weitere Verarbeitung der Polysilazane sehr erschweren. Einen Ausweg bildet hier die Reaktion von wasserstoffsubstituierten Silanen mit Ammoniak [599] oder anderen N–H haltigen Substanzen, z. B. Cyanamid, NC–NH₂ [600]:

$$2 - \frac{|i_{H}|^{2}}{|i_{H}|^{2}} + NH_{3} - \frac{(Kat.)}{-2H_{2}} - \frac{|i_{H}|^{2}}{|i_{H}|^{2}} - \frac{|i_{H}|^{2}}{|i_{H}|^{2}} - \frac{(5.2.4.5)}{(5.2.4.5)}$$

$$2 - \frac{|i_{H}|^{2}}{|i_{H}|^{2}} + N \equiv C - NH_{2} - \frac{(THF, 70 \circ C)}{-2H_{2}} - \frac{|i_{H}|^{2}}{|i_{H}|^{2}} - \frac{|i_{H}|^{2}}{$$

Oftmals müssen diese Reaktionen durch einen Übergangsmetallkatalysator (Pt) katalysiert werden oder laufen erst bei höheren Temperaturen ab.

Si-H Funktionen können aber auch zur Einführung organischer Substituenten oder zur Si-Si Bindungsknüpfung genutzt werden.

Im ersteren Falle werden in Hydrosilylierungsreaktionen Si–H Bindungen an C=C Mehrfachbindungen addiert, z. B.:

$$Cl \xrightarrow[Cl]{Cl} H + (I) \xrightarrow{[H_2PtCl_6/i-PrOH]} Cl \xrightarrow[Cl]{H} (5.2.4.7)$$

Diese Reaktionen werden in der Regel durch Zugabe von etwas H₂PtCl₆, gelöst in wenig Isopropanol, katalysiert. Die tatsächlich katalytisch aktive Spezies ist dabei kolloidales elementares Platin (Pt^{IV} wird durch Isopropanol zu Pt⁰ reduziert) [601]. Dabei spielen offensichtlich auch kleine Mengen Sauerstoff als Cokatalysator eine Rolle [602]. Aber auch andere späte Übergangsmetallverbindungen wie Rhodium-, Palladium- und Nickelkomplexe können als Katalysatoren verwendet werden.

Primäre Silane RSiH₃ können mit d⁰-Metallkomplexen wie Cp₂MMe₂ (M = Ti, Zr) unter H₂-Abspaltung zu Oligo- bzw. Polysilanen verknüpft werden [603,604]. Bisherige Untersuchungen konzentrierten sich meist auf PhSiH₃ und z. T. auch auf das gasförmige MeSiH₃. Dabei entstehen neben niedermolekularen Polymeren auch Cyclosilane:

n H
$$\stackrel{\text{Ph}}{\underset{H}{\text{Si}-\text{H}}}$$
 $\stackrel{[\text{Kat.}]}{\underset{H}{\text{-H}_{2}}}$ H $\stackrel{\text{Ph}}{\underset{H}{\text{Si}-\text{H}}}$ H + cyclo- $\begin{bmatrix} \text{Ph}\\ \text{l}\\ \text{Si}-\text{l}\\ \text{H} \end{bmatrix}_{n}$ (5.2.4.8)
~ 85 % ~ 15 %

Habilitation Uwe Herzog

Dabei wird ein " σ -bond metathesis"-Mechanismus unter intermediärer Bildung von Übergangsmetall-Silylen-Komplexen diskutiert [605-608].

Sekundäre Silane sind dieser Reaktion kaum zugänglich, sie bilden lediglich Dimere (Disilane) [609]. Tertiäre Silane R₃SiH schließlich reagieren mit Cp₂MMe₂ gar nicht.

1,2-Dimethyldisilan dagegen reagiert mit Cp_2TiMe_2 sehr heftig unter H₂-Abspaltung zu einem Polymer (MeSiH_x)_n [610]. Unter kontrollierten Reaktionsbedingungen lassen sich dabei auch Oligomere isolieren [611]:

+ drei isomere Hexasilane Me₆Si₆H₈

Auch Si-H funktionalisierte Cyclosilane sind solchen Dehydrokupplungsreaktionen zugänglich [612], z. B.:

2
$$\cdot \underbrace{\operatorname{SiH}_{3}}_{-\operatorname{H}_{2}}$$
 $\cdot \operatorname{SiH}_{3}$ $\cdot \operatorname{SiH}_{2}$ \cdot

Wesentlich reaktiver sind in dieser Hinsicht entsprechende Germane und vor allem Stannane. Bei letzteren genügt bereits die Zugabe einer LEWIS-Base (z. B. ein Amin), um eine Dehydrokupplung zu initiieren [613]. So können auf diesem Wege leicht Hexaorganodistannane aus R₃SnH und Cyclo- bzw. Polystannane aus R₂SnH₂ gewonnen werden:

$$2 Ph - Sn - H \xrightarrow{[py]} Ph - Sn - Sn - Ph + H_2 \qquad [614] (5.2.4.11)$$

$$Ph Ph Ph Ph$$

$$\begin{array}{c} x \quad H - \begin{array}{c} Bu \\ I \\ Sn - H \\ Bu \\ Bu \\ x = 5, 6 \end{array} \qquad \begin{array}{c} [py] \\ cyclo - \left[\begin{array}{c} Bu \\ I \\ Sn \\ Bu \end{array} \right]_{X} + x \quad H_{2} \\ \left[\begin{array}{c} 615 \end{bmatrix} (5.2.4.12) \\ \left[\begin{array}{c} 615 \end{bmatrix} (5.2.4.12) \\ Bu \end{array} \right]_{X} \end{array}$$

Me₂SnHCl, welches sich spontan beim Mischen von Me₂SnCl₂ und Me₂SnH₂ bildet, reagiert unter H₂-Abspaltung zu 1,2-Dichlortetramethyldistannan [616,617]:

Durch Erwärmen mit CCl₄, CBr₄ oder CHBr₃ bzw. CHI₃ über mehrere Stunden bis Tage lassen sich Si–H Bindungen in Si–Halogen Funktionen umwandeln. In der Regel werden dabei Si–Si Bindungen nicht angegriffen, z. B.:

$$Me_{3}Si - Si - H \xrightarrow{CCl_{4}} Me_{3}Si - Si - Cl \qquad [498] (5.2.4.14)$$

$$SiMe_{3} \xrightarrow{SiMe_{3}} SiMe_{3}$$

$$\frac{\text{HMe}_{2}\text{Si}}{\text{Me}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{H}}_{\text{Me}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{H}} \xrightarrow{\text{4 CHX}_{3}}_{-4 \text{CH}_{2}\text{X}_{2}} \xrightarrow{\text{XMe}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{Me}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{XMe}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{XMe}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{XMe}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{XMe}_{2}\text{Si}} \xrightarrow{\text{Si}\text{Me}_{2}\text{X}}_{\text{XMe}_{2}\text{Si}}$$

Im Falle des Iodoforms tritt aber bei höheren Temperaturen ein allmählicher Zerfall des CHI₃ unter Iodabspaltung ein, welches schließlich auch zur Si–Si Bindungsspaltung führen kann [554]:

Wie bereits in *3.1.* erwähnt, kann durch längeres Erhitzen mit elementarem Schwefel dieses Chalcogen in die Si–H Bindungen unter Bildung von Silanthiolen eingeschoben werden (R = Ph [123,127], R = F, Cl, Br [104,105]:

$$R \xrightarrow[R]{i}_{R} H + \frac{1}{8} S_{8} \xrightarrow{180 \circ C} R \xrightarrow[R]{i}_{R} S_{1} \xrightarrow{K} H \qquad (5.2.4.17)$$

In Gegenwart von Basen neigen Halogen/Wasserstoff-substituierte Silane zur Dismutation, so entsteht z. B. bei der Reaktion von HSiCl₃ mit Ethylendiaminderivaten neben SiCl₄ ein Base-Addukt des Dichlorsilans, H₂SiCl₂, [618]:

$$2 H - Si - Cl + \begin{pmatrix} Et & Et \\ N & & Cl \\ I \\ Cl & & N \\ Et & Et \end{pmatrix} - Cl + \begin{pmatrix} Cl & & V \\ I \\ N \\ Cl & & N \\ Et & Et \end{pmatrix} - Cl + \begin{pmatrix} Cl & & V \\ I \\ I \\ Cl & & N \\ Et & Et \end{pmatrix} - Cl + \begin{pmatrix} Cl & & V \\ I \\ I \\ I \\ I \\ Cl & & N \\ Et & Et \end{pmatrix} - Cl + (5.2.4.18)$$

Verwendet man als Base Pentamethyldiethylentriamin (pedeta), so bildet sich mit HSiCl₃ zunächst unter Dismutation ebenfalls ein Dichlorsilan-Addukt [619], wird dieses in CH_2Cl_2 48 h unter Rückfluss gekocht, so bildet sich daraus ein komplexes Salz mit einem Si₆Cl₁₄^{2–} Anion [620]. Letzteres leitet sich vom perchlorierten Cyclohexasilan Si₆Cl₁₂ ab, in dem zwei Chloridionen über und unter dem Mittelpunkt des planaren Cyclohexasilanringes koordiniert sind. Reaktion mit LiAlH₄ führt zu dem schon in [621] beschriebenen wasserstoffsubstituierten Cyclohexasilan Si₆H₁₂:

Abb. 5.2.4.1a. Struktur eines der beiden [pedeta \cdot H₂SiCl]⁺ Kationen in [pedeta \cdot H₂SiCl]₂Si₆Cl₁₄ [620].

Abb. 5.2.4.1b. Struktur des $Si_6Cl_{14}^{2-}$ Anions mit planarem Si_6 -Ring in [pedeta \cdot H₂SiCl]₂Si₆Cl₁₄ [620] (Si-Si: 2.31 – 2.32 Å, Si-Cl9: 3.00 Å).

Durch elektronegative Substituenten am Silicium, wie z. B. in HSiCl₃ kann die Polarität der Si–H Bindung umgepolt werden. Durch Zugabe einer Base zu Trichlorsilan wird das H-Atom als Proton abgespalten, zurück bleibt ein Chlorid-stabilisiertes Dichlorsilylen, welches anschließend in eine Element-Chlor-Bindung, z. B. von Me₃SnCl, Me₃GeCl oder Me₂GeCl₂ insertiert [622]:

117

Im reinen Zustande sind die gebildeten Trichlorsilylgermane bzw. -stannane stabil, in Gegenwart einer Base unterliegen sie jedoch leicht einer weiteren Dismutation, ähnlich der in *5.1.* beschrieben LEWIS-Base-katalysierten Disproportionierung von Methylchlordisilanen:

Zu den gleichen Produkten gelangt man auch, wenn man Si₂Cl₆ an Stelle des HSiCl₃ in Gegenwart von NEt₃ mit Me₃MCl bzw. mit R₂P–MMe₃ umsetzt [623,624], da auch Si₂Cl₆ in Gegenwart von LEWIS-Basen unter Eliminierung von SiCl₄ ein Base-stabilisiertes Dichlor-silylen bildet, welches sofort in M–Cl Bindungen insertiert. Si₂Cl₆ allein liefert dabei Si(SiCl₃)₄ (Einschub von :SiCl₂ in alle drei Si–Cl Bindungen einer SiCl₃ Einheit von Si₂Cl₆) und (Cl₃Si)₃Si–Si₂Cl₅ [625]. In Gegenwart von bipy lässt sich der Dichlorsilylenkomplex SiCl₂ · 2 bipy auch in Substanz isolieren [626].

6. NMR Spektroskopie

Neben der Kristallstrukturanalyse ist die NMR-Spektroskopie die am besten geeignete Methode zur Charakterisierung der zu synthetisierenden Verbindungen. Neben der ¹H und ¹³C NMR Spektroskopie bieten sich hier auch die ²⁹Si, ¹¹⁹Sn, ²⁰⁷Pb, ⁷⁷Se und ¹²⁵Te NMR Spektroskopie an, mit deren Hilfe man direkt die Atome untersucht, die das interessierende Bindungssystem aufbauen, was eine wesentlich größere Strukturempfindlichkeit bedeutet.

6.1. ¹³C, ²⁹Si, ⁷³Ge, ¹¹⁹Sn und ²⁰⁷Pb NMR Spektroskopie

Alle Elemente der 14. Gruppe enthalten mindestens ein Isotop, welches magnetisch aktiv ist, wenngleich in allen Fällen der größte Teil der Elemente aus Isotopen besteht (¹²C, ²⁸Si, ³⁰Si, ⁷⁰Ge, ⁷²Ge, ⁷⁴Ge, ¹¹⁸Sn, ¹²⁰Sn, ¹²²Sn, ²⁰⁶Pb, ²⁰⁸Pb), die eine Kernspinquantenzahl I = 0 aufweisen, also NMR-inaktiv sind. Die grundlegenden Kerneigenschaften der magnetisch aktiven Isotope der 14. Gruppe sind in Tabelle 6.1.1. zusammengefasst.

Nuklid	natürliche Häufigkeit (%)	gyromagnet. Verhältnis γ (rad s ⁻¹ T ⁻¹)	Resonanzfre- quenz (MHz) (¹ H: 400 MHz)	relative Empfind- lichkeit	Kernspin- quantenzahl I	Kernquadrupolmoment $Q(m^2)$
¹³ C	1.108	$6.7283\cdot 10^7$	100.580016	1.00	¹ / ₂	—
²⁹ Si	4.70	$-5.3190 \cdot 10^7$	79.468736	2.09	¹ / ₂	_
⁷³ Ge	7.76	$-0.9360 \cdot 10^{7}$	13.953260	0.62	⁹ / ₂	$-1.7 \cdot 10^{-29}$
¹¹⁵ Sn	0.35	$-8.8014 \cdot 10^{7}$	130.875120	0.07	¹ / ₂	_
¹¹⁷ Sn	7.61	$-9.5890 \cdot 10^{7}$	142.529180	19.5	¹ / ₂	_
¹¹⁹ Sn	8.58	$-10.0318 \cdot 10^{7}$	149.162660	25.2	¹ / ₂	_
²⁰⁷ Pb	22.6	$5.6264 \cdot 10^{7}$	83.682388	11.7	¹ / ₂	_

Tabelle 6.1.1. Für die NMR Spektroskopie relevante Eigenschaften der magnetisch aktivenIsotope der 14. Gruppe [627]

Von den drei magnetisch aktiven Zinnisotopen wird in der Regel ¹¹⁹Sn aufgrund seiner höchsten relativen Empfindlichkeit genutzt. Das Vorhandensein eines weiteren magnetisch aktiven Zinnisotops in relativ hoher natürlicher Häufigkeit (¹¹⁷Sn) ermöglicht die Bestimmung von Kopplungskonstanten ⁿJ_{SnSn} auch in symmetrischen Verbindungen, während ¹¹⁵Sn keinerlei Bedeutung erlangt hat. Lediglich ⁷³Ge hat eine Kernspinquantenzahl I von > $^{1}/_{2}$. Zusammen mit dem relativ großen Kernquadrupolmoment Q und dem geringen gyromagnetischen Verhältnis γ und damit schlechter Empfindlichkeit macht dies die Charakterisierung von Germaniumspezies mittels der ⁷³Ge NMR Spektoskopie aufgrund der durch die schnelle Quadrupolrelaxation verursachten Linienverbreiterung ($W_{1/2} = \pi^{-1} T_2^{-1}$) in den meisten Fällen unmöglich:

$$T_Q^{-1} = (e^2 q Q/h)^2 \frac{(1+\eta^2/3)(2I+3)}{I^2(2I-1)} \tau_c$$
(6.1.1)

Geschwindigkeitsgesetz für die Quadrupolrelaxation q: elektrischer Feldgradient, η (Asymmetrieparameter) = $(q_{xx} - q_{yy})/q_{zz}$, τ_c : Korrelationszeit

Nur in Verbindungen mit hoher Symmetrie wie GeX₄ (oder auch R_{4-x}GeR'_x mit R, R' = H, Alkyl, Aryl, Ethinyl, GeH₃, SnMe₃ [628-636]) wird der elektrische Feldgradient q am Germaniumkern klein, daraus folgt eine geringe Linienbreite, was die Beobachtung der ⁷³Ge NMR Signale erst ermöglicht (z. B. GeMe₄: W_{1/2}: 1 Hz; Me₃GeH: δ_{Ge} : –56.9 ppm, W_{1/2}: 4 Hz; Me₂GeH₂: δ_{Ge} : –127.6 ppm, W_{1/2}: 2 Hz; Ge₂H₆: –311.8 ppm, W_{1/2}: 13 Hz [637]). Bereits die Einführung von Chlorsubstituenten in die Methylgruppen von GeMe₄ erhöht die Linienbreite erheblich, z. B. Me₃Ge(CH₂Cl) δ_{Ge} : 6.9 ppm, W_{1/2}: 152 Hz und Me₂Ge(CH₂Cl)₂ δ_{Ge} : 17.5 ppm, W_{1/2}: 315 Hz [638].

 Abb. 6.1.1. $^{73}Ge \ NMR \ Spektrum \ von \ Ph_2GeH_2$ Abb. 6.1.2. $^{73}Ge \ NMR \ Spektrum \ von \ PhGeH_3$

 in C_6D_6 bei 20 °C [636]
 in C_6D_6 bei 20 °C [636]

 δ_{Ge} : -108.5 ppm ($^{1}J_{GeH}$: 94 Hz)
 δ_{Ge} : -190 ppm ($^{1}J_{GeH}$: 98 Hz)

$$I = I_0 \left(1 + \frac{T_1^{DD} \gamma_H}{2 T_1 \gamma_X} \right)$$
(6.1.2)

 T_1 : longitudinale Relaxationszeit der Magnetisierung in z-Richtung T_1^{DD} : Relaxation T_1 durch Dipol-Dipol-Wechselwirkungen, $T_1^{DD} \ge T_1$

Signalverstärkung durch den NOE (bei negativem γ_X kann dies zu einer geringeren oder negativen Signalintensität führen)

Dieses Problem kann durch die Anwendung spezieller Pulstechniken, wie Inverse Gated Decoupling (IGATED) umgangen werden, was auch gleichzeitig eine quantitative Auswertung der Spektren ermöglicht.

Ein weiteres praktisches Problem vor allem für die ²⁹Si NMR Spektroskopie ergibt sich aus den relativ langen Relaxationszeiten T₁ (Relaxation der Magnetisierung in z-Richtung) und T₂ (Relaxation der Magnetisierung in der xy-Ebene), was die Aufnahme von NMR Spektren sehr zeitaufwändig machen kann. Relaxationszeiten können durch Zugabe paramagnetischer Relaxationsreagenzien wie z. B. Cr(acac)₃ deutlich verkürzt werden, allerdings setzt dies voraus, dass keine chemischen Reaktionen zwischen den zu untersuchenden Silanen und dem Relaxationsreagenz auftreten. Auf der anderen Seite führt die Zugabe von Cr(acac)₃ zu einer Linienverbreiterung, so dass vor allem ¹H NMR Spektren nur in Abwesenheit von Cr(acac)₃ aufgenommen werden können, d. h. in einer zweiten NMR-Probe der Substanz.

Durch spezielle Pulstechniken wie INEPT (Insensitive Nuclei Enhancement by Polarisation Transfer) [639-642] oder DEPT (Distortionless Enhancement by Polarization Transfer) [643,644] kann die höhere Empfindlichkeit der ¹H Kerne auf die ²⁹Si Kerne übertragen werden. Zugleich wird für die Pulswiederholzeit die Relaxation der ¹H Atome entscheidend, was insgesamt mit einer erheblichen Zeitersparnis für die Aufnahme der Spektren verbunden ist. Allerdings sind derartige Spektren nur noch bedingt quantitativ auswertbar und Siliciumatome, die in ihrer Nähe keine Protonen haben, liefern in diesen Spektren keine Signale.

Voraussetzung für die optimale Justierung eines INEPT oder DEPT Experiments sind neben der Anzahl der mit dem Kern X koppelnden ¹H Atomkerne die Kenntnis deren Kopplungskonstanten J_{XH} . Oftmals können diese aber nur geschätzt werden und es zeigt sich, dass selbst mit nichtoptimalen Parametern hervorragende Intensitätsverbesserungen erzielt werden. ¹H: $90^{\circ}_{x} - \tau - 180^{\circ}_{x} - \tau - 90^{\circ}_{y} - \Delta/2 - 180^{\circ}_{x} - \Delta/2 - Entkopplung$ X: $180^{\circ}_{x} \quad 90^{\circ}_{x} \quad 180^{\circ}_{x}$ Aquisition mit $\tau = 1/(4 J)$ und $\Delta = \arcsin(n)^{-1/2}/(\pi J)$

Schema 6.1.1. Pulssequenz für ein INEPT Experiment [642]

¹H:
$$90^{\circ}_{y} - 2\tau - 180^{\circ}_{x} - 2\tau - 90^{\circ}_{y} - \theta^{\circ}_{x} - 2\tau - \text{Entkopplung}$$

X: 90°_{x} 180°_{x} Aquisition
mit $\tau = 1/(4 J)$ und $\theta^{\circ} = 180^{\circ} \cdot \arcsin(n)^{-1/2}/\pi$

Schema 6.1.2. Pulssequenz für ein DEPT Experiment [643]

Gekoppelte INEPT und DEPT Spektren erhält man einfach durch Eliminierung der Entkopplung während der Aquisition.

6.2. ³³S, ⁷⁷Se und ¹²⁵Te NMR Spektroskopie

Auch in der 16. Gruppe gibt es für jedes Element mindestens ein magnetisch aktives Isotop, das prinzipiell der NMR Spektroskopie zugänglich ist.

Trotz seiner schlechten Kerneigenschaften (sehr geringe natürliche Häufigkeit, Kernquadrupolmoment) hat die ¹⁷O NMR Spektroskopie aufgrund der immensen Bedeutung von Sauerstoff in vielen Verbindungsklassen eine große Bedeutung erlangt [645]. Etwas relativiert wird die auftretende Signalverbreiterung aufgrund der Quadrupolrelaxation durch den großen Verschiebungsbereich von ¹⁷O von über 1000 ppm.

Von den für diese Arbeit relevanten Elementen besitzt nur Schwefel lediglich ein Isotop mit einem Kernqadrupolmoment, d. h. einer Kernspinquantenzahl > $^{1}/_{2}$. Verbunden mit der geringen natürlichen Häufigkeit und dem kleinen gyromagnetischen Verhältnis macht dies die Aufnahme von ³³S NMR Spektren für die meisten Schwefelverbindungen unmöglich. Ähnlich wie im Falle von ⁷³Ge (Abschnitt *6.1.*) lassen sich vor allem hochsymmetrische Schwefelspezies wie SO₄²⁻ oder SF₆, aber auch CS₂ (δ_8 : -333 ppm, W_{1/2}: 350 Hz) [646,647] und eine Reihe von Sulfonen R₂SO₂ (Abb. 6.2.1.) [647] aufgrund geringerer Linienbreiten mittels der ³³S NMR Spektroskopie charakterisieren. Dagegen findet man gerade in Verbindungen mit sulfidischem Schwefel aufgrund der sehr unsymmetrischen Ladungsverteilung sehr große Linienbreiten, z. B. *cyclo*-(CH₂)₄S: δ_8 : -330 ppm (W_{1/2}: 5500 Hz) [648], Et₂S₂: δ_8 : -500 ppm (W_{1/2}: 5000 Hz) [649], MeSH: δ_{S} : -458 ppm [650], BuSH: δ_{S} : -415 ppm (W_{1/2}: 2100 Hz) [647] und H₂S: δ_{S} : -503 ppm [650].

Im Gegensatz zur ²⁹Si, ⁷³Ge, ¹¹⁹Sn, ²⁰⁷Pb, ⁷⁷Se und ¹²⁵Te NMR Spektroskopie, wo die entsprechenden Methylverbindungen Me₄M bzw. Me₂E als Standard der Verschiebungsskala dienen, hat sich aus praktischen Gründen für ³³S eine 2 M Lösung von Cs₂SO₄ als Standard etabliert (W_{1/2} für ³³S: 6.5 Hz).

 Tabelle 6.2.1. Für die NMR Spektroskopie relevante Eigenschaften der magnetisch aktiven Isotope der 16. Gruppe [627]

Nuklid	natürliche Häufigkeit (%)	gyromagnet. Verhältnis γ (rad s ⁻¹ T ⁻¹)	Resonanzfre- quenz (MHz) (¹ H: 400 MHz)	relative Empfind- lichkeit	Kernspin- quantenzahl I	Kernquadrupolmoment $Q(m^2)$
¹⁷ O	0.037	$-3.6280 \cdot 10^{7}$	54.257076	0.06	⁵ / ₂	$-2.6 \cdot 10^{-28}$
³³ S	0.76	$2.0557\cdot 10^7$	30.680492	0.10	³ / ₂	$-6.4 \cdot 10^{-30}$
⁷⁷ Se	7.58	$5.1214\cdot 10^7$	76.286092	3.02	¹ / ₂	—
¹²³ Te	0.87	$-7.0576 \cdot 10^{7}$	104.679092	0.91	¹ / ₂	_
¹²⁵ Te	6.99	$-8.5087\cdot10^7$	126.199208	12.8	¹ / ₂	_
²⁰⁹ Po	t _{1/2} : 102 J.	7.4 $\cdot 10^{7}$	112		¹ / ₂	_

 Abb. 6.2.1. ³³S NMR Spektrum einer äquimolaren Mischung (jeweils 0.4 M) von Butadiensulfon, Dimethylsulfon und Diphenylsulfon in Aceton-D₆ [647]
 E: 23.009 MHz, 18500 Scans, Pulswiederholzeit: 0.2 s

Von den zwei magnetisch aktiven Tellurisotopen wird aufgrund der höheren natürlichen Häufigkeit in der Regel ¹²⁵Te gewählt. Das zweite magnetisch aktive Tellurisotop ¹²³Te ermöglicht aber z. B. die Bestimmung von ¹J_{TeTe} in symmetrischen Ditelluriden RTeTeR. Die moderaten natürlichen Häufigkeiten und die relativ hohen gyromagnetischen Verhältnisse erlauben eine umfassende Anwendung der ⁷⁷Se und ¹²⁵Te NMR Spektroskopie zur Charakterisierung von Selen- und Tellurspezies. Trotz des negativen γ der Tellurisotope treten in entkoppelten Spektren kaum Probleme durch den NOE auf, da (abgesehen von Tellurolen RTeH) die Proton-Tellur-Abstände in der Regel zu groß sind, als dass die Dipol-Dipol-Wechselwirkung wesentlich zur Relaxation beiträgt (vgl. Gl. 6.1.2). Die Relaxationszeiten T₁ liegen in der Regel bei wenigen Sekunden (z. B. 0.7 s für H₂Se (δ_{se} : –288 ppm) in D₂O bei 34°C [651], 1.3 s für MeSeH (δ_{se} : –130 ppm) in Aceton-D₆ bei 40 °C [651], 7.5 s für Me₂Se bei 32 °C in CDCl₃ [651] oder 1 s für Me₂Te [652]). Für kleine Moleküle ist in der Regel die Relaxation über Spin-Rotation dominierend, für größere Moleküle und stärkere Magnetfelder wird die Relaxation über die Anisotropie der chemischen Verschiebung bedeutsam [653].

6.3. Chemische Verschiebungen

Die chemische Verschiebung δ ist definiert als die Differenz der Resonanzfrequenz eines magnetisch aktiven Atomkerns zur Resonanzfrequenz der Standardverbindung für dieses Isotop und wird in der Regel in ppm (10⁻⁶) angegeben:

$$\delta = (v - v_{\text{ref}}) / v_{\text{ref}} \tag{6.3.1}$$

Absolute chemische Verschiebungen beziehen sich auf die Resonanzfrequenz des nackten Atomkerns und sind vor allem beim Vergleich mit theoretisch berechneten Werten von Bedeutung. In der Physik hat sich statt der chemischen Verschiebung die Abschirmung σ eingebürgert mit dem Zusammenhang $\delta = -\sigma$. Die Abschirmung ist – wie die chemische Verschiebung – richtungsabhängig und kann mit einem Tensor der Art

$$\begin{array}{cccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{array}$$

beschrieben werden. In Lösung wird durch die schnelle Bewegung der Teilchen die Richtungsabhängigkeit ausgemittelt und man beobachtet nur den isotropen Mittelwert der chemischen Verschiebung δ_{iso} bzw. Abschirmung σ_{iso} :

$$\sigma_{\rm iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33}) / 3 \tag{6.3.2}$$

Dagegen ist diese Bewegung in festen Proben nicht möglich, so dass in der Festkörper-NMR Spektroskopie breite Resonanzen auftreten. Durch Rotation im magischen Winkel (MAS-Spektroskopie) kann auch hier diese Anisotropie der chemischen Verschiebung ausgemittelt werden und man erhält wieder schmale Linien, die dem isotropen Mittelwert entsprechen. Bei niedrigeren Resonanzfrequenzen (kleiner als die Anisotropie der chemischen Verschiebung in Hz) beobachtet man Rotationsseitenbanden im Abstand der Rotationsfrequenz vom Hauptsignal, aus deren Intensitätsverteilung die Hauptachsenwerte des Tensors (σ_{11} , σ_{22} , σ_{33}) sowie die Anisotropie $\Delta \sigma = \sigma_{zz} - (\sigma_{yy} + \sigma_{xx})/2$ und die Asymmetrie $\eta = (\sigma_{yy} - \sigma_{xx})/(\sigma_{zz} - \sigma_{iso})$ bestimmbar sind (letztere wird für axialsymmetrische Systeme gleich Null).

In ihrer physikalischen Beschreibung setzt sich die Abschirmung aus einem diamagnetischen und einem paramagnetischen Anteil zusammen:

$$\sigma = \sigma_{\rm d} + \sigma_{\rm p} \tag{6.3.3}$$

Die beiden Anteile sind wie folgt definiert [654]:

$$\sigma_{\rm d} = (\mu_0/4\pi)(e^2/2m_{\rm e}) \langle 0|\sum_k r_{kN}^{-3}(\mathbf{r}_k \cdot \mathbf{r}_{kN}\mathbf{1} - \mathbf{r}_k \mathbf{r}_{kN})|0\rangle$$
(6.3.4)

$$\sigma_{\rm p} = -(\mu_0/4\pi)(e^2/2m_{\rm e}^2) \sum_{n\neq 0} ({}^{1}\mathrm{E}_{\rm n} - \mathrm{E}_{\rm 0})^{-1} \{ \langle 0|\sum_{k} r_{kN} {}^{-3}\boldsymbol{l}_{kN}|n\rangle \langle n|\sum_{k} \boldsymbol{l}_{k}|0\rangle + \langle 0|\sum_{k} \boldsymbol{l}_{k}|n\rangle \langle n|\sum_{k} r_{kN} {}^{-3}\boldsymbol{l}_{kN}|0\rangle \} (6.3.5)$$

 r_k : Positionsvektor für Elektron k; l_k : Drehmomentoperator in Bezug zum gewählten Ursprung r_{kN} und l_{kN} : Positionsvektor und Drehmomentoperator in Bezug zum beobachteten Kern N

Für eine völlig sphärische Elektronenverteilung um den beobachteten Atomkern wird $\sigma_p = 0$ und die Abschirmung (bzw. chemische Verschiebung) wird vom diamagnetischen Term dominiert. Dies ist bei der ¹H NMR der Fall, da sich dort Elektronen nur im kugelsymmetrischen 1s Orbital aufhalten. Für alle anderen Elemente dominiert in der Regel der paramagnetische Anteil der Abschirmung. Mit der Atom-in-einem-Molekül-Näherung, die eine qualitative Diskussion genereller empirischer Trends ermöglicht, ergibt sich für den paramgnetischen Anteil der Abschirmung [654,655]:

$$\sigma_{\rm p} = -(\mu_0/4\pi) (4\mu_{\rm B}^2/\Delta E) [\langle r^{-3} \rangle_{\rm np} \mathbf{P}_{\rm i} + \langle r^{-3} \rangle_{\rm nd} \mathbf{D}_{\rm i}]$$
(6.3.6)

 μ_0 : Permeabilität des Vakuums; μ_B : Bohrsches Magneton; ΔE : mittl. Anregungsenergie $\langle r \rangle_{np}$: mittl. Radius der p-Orbitale der Valenzschale; P_i : Grad der Unsymmetrie der Valenzelektronen in den p-Orbitalen; $\langle r \rangle_{nd}$ und D_i : analog für die d-Elektronen

Abb. 6.3.1. Atomradien⁻³ der Valenz-p-Orbitale – mit (volle Kreise) [656] und ohne (leere Kreise) [657] Berücksichtigung relativistischer Effekte – in atomaren Einheiten (linke Skala, a₀ = 0.529 Å) und NMR-Verschiebungsbereiche (Balken, rechte Skala) der Hauptgruppenelemente als Funktion der Ordnungszahl im PSE [654].

Wie aus Abb. 6.3.1. zu entnehmen ist, korreliert die Größe der beobachteten Verschiebungsbereiche mit $\langle r^{-3} \rangle_{np}$, wobei für schwerere Elemente zur Bestimmung von $\langle r^{-3} \rangle_{np}$ relativistische Effekte berücksichtigt werden müssen. So erreicht für ein Einelektronenatom der Ordnungszahl 80 (Hg) die Elektronengeschwindigkeit im 1s-Orbital 58 % der Lichtgeschwindigkeit und die Elektronenmasse liegt damit um etwa 20 % über der Ruhemasse m₀. Dies führt zu einer relativistischen Kontraktion der s- und p-Orbitale und durch deren bessere Abschirmung der Kernladung zu einer Expansion der d- und f-Orbitale.

Die Kontraktion der s- und p-Orbitale verursacht auch eine deutlich erhöhte diamagnetische Abschirmung schwerer Atome, z. B. für Xenon (Z = 54) 7040 ppm [658] statt 5652 ppm [659] ohne Berücksichtigung relativistischer Effekte.

Die Korrelation zwischen dem Verhältnis der Größen $\langle r^{-3} \rangle_{np}$ und den NMR-Verschiebungsbereichen zeigt sich auch im Vergleich der ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen analoger Verbindungen. Hier ergibt sich eine lineare Korrelation mit $\delta_{Te} \approx 1.8 \cdot \delta_{Se}$ während $\langle r^{-3} \rangle_{np(Te)} / \langle r^{-3} \rangle_{np(Se)} = 1.56$ beträgt.

Ähnliches zeigt sich auch beim Vergleich der Verschiebungsskalen der ²⁹Si und ¹¹⁹Sn NMR bzw. ¹¹⁹Sn und ²⁰⁷Pb NMR analoger Verbindungen: $\delta_{Sn} \approx 8.5 \cdot \delta_{Sn}$ und $\delta_{Pb} \approx 3.0 \cdot \delta_{Sn}$ während $\langle r^{-3} \rangle_{np(Sn)} / \langle r^{-3} \rangle_{np(Sn)} = 3.7$ und $\langle r^{-3} \rangle_{np(Pb)} / \langle r^{-3} \rangle_{np(Sn)} = 1.84$ betragen.

Die verbleibenden Abweichungen lassen sich mit einer verstärkten Polarisierbarkeit der Valenzorbitale der schwereren Elemente sowie dem Effekt beschreiben, dass in Verbindungen auftretende Partialladungen $\langle r^{-3} \rangle_{np}$ beeinflussen. So steigt mit der positiven Ladung (z. B. in Carbeniumionen oder deren Homologen) $\langle r^{-3} \rangle_{np}$ – verbunden mit einer starken Entschirmung (Tieffeldverschiebung).

Die in Gl. 6.3.6 erkennbare Abhängigkeit des paramagnetischen Anteils der Abschirmung vom Grad der Unsymmetrie der Verteilung der Valenzelektronen spiegelt sich auch im Verhalten der ²⁹Si, ¹¹⁹Sn oder ²⁰⁷Pb NMR chemischen Verschiebungen in Verbindungsreihen MX_nY_{4-n} wider, die das typische U-förmige Verhalten in Abhängigkeit von n zeigen, wenn X und Y recht unterschiedliche elektronenziehende Eigenschaften haben (z. B. X = H, Alkyl, Aryl und Y = Halogen, OR, NR₂), siehe auch Abbn. 6.3.2. und 6.3.3.

Des weiteren ergeben sich starke Abhängigkeiten der chemischen Verschiebungen vom Oxidationszustand des Elements sowie von der Koordinationszahl, so dass oftmals aus der ²⁹Si oder ¹¹⁹Sn NMR chemischen Verschiebung direkt auf die Koordinationszahl geschlossen werden kann.

²⁹Si und ¹¹⁹Sn NMR chemische Verschiebungen in $Me_{4-n}MX_n$ mit der typischen U-förmigen Abhängigkeit der chemischen Verschiebung von n, nach Daten aus [660-663]

Mittlerweile sind mehrere tausend ²⁹Si und ¹¹⁹Sn NMR chemische Verschiebungen von Silanen und Stannanen bekannt. Die wichtigsten Daten sind in Übersichtsarbeiten, wie z. B. [660-664] zusammengefasst, darüber hinaus existiert eine elektronische Datenbank für ²⁹Si NMR chemische Verschiebungen [665] mit annähernd 10000 Einträgen.

Auch zur ⁷⁷Se und ¹²⁵Te NMR Spektroskopie sind mehrere Übersichten erschienen [666-668]. Einige, auch für diese Arbeit relevante Daten sind auch in Tabelle 6.3.1. zusammengestellt.

Verbindung	E = Se			E = Te		
	δ_{Se}	Bemerkung	Literatur	δ_{Te}	Bemerkung	Literatur
H ₂ E	-226	¹ J _{SeH} : 65.4 Hz	[669]		${}^{1}J_{TeH}$: 59 Hz	[670]
MeENa	-332	in H ₂ O	[671]			
MeEH	-116	¹ J _{SeH} : 44 Hz	[671]			
EtEH	36	—	[668]			
ⁱ PrEH	161	—	[668]			
^t BuEH	289	—	[668]			
PhEH	152	¹ J _{SeH} : 56 Hz	[671]			
Me ₂ E	0	Standard ² J _{SeH} : 10.5 Hz	[668]	0	Standard ${}^{2}J_{SeH}$: 20.7 Hz δ_{C} : -21.6 ${}^{1}J_{T}$ c: 155.2 Hz	[672] [673]
Et ₂ E	230	_	[668]	376	JTeC: 155.2 112	[668]
ⁱ Pr ₂ F	230 429	_	[668]	696	_	[668]
	614	_	[668]	999	_	[668]
ⁿ Bu ₂ E	161	_	[668]	232 249	a)	[668] [673]
Ph ₂ E	402	_	[674]	688	_	[675]
Me ₂ E ₂	270	_	[668]	49		[668]
Et_2E_2	336	_	[668]	166	_	[668]
ⁱ Pr ₂ E ₂	404	_	[668]	293	_	[668]
^t Bu ₂ E ₂	491	_	[668]	477	_	[668]
$^{n}Bu_{2}E_{2}$	346	_	[668]			
Ph_2E_2	460	_	[674]	422	_	[675]
(Me ₃ Si) ₂ E	-334	-	[676]	-858	δ_{Si} : -3.8 $^{1}J_{SiTe}$: 282 Hz	[71]
(Me ₃ Sn) ₂ E	-547	δ _{Sn} : 44.5 ¹ J _{SnTe} : 1060 Hz	[148]	-1214	δ_{Sn} : -66.8 $^{1}J_{SnTe}$: 2770 Hz	[148] [675]
Me ₃ Si(EPh)				-2	δ _{Si} : 1.8 ¹ J _{SiTe} : 272 Hz	[71]
Me ₃ Sn(EMe)	-277	δ_{Sn} : 45.6 ${}^{1}J_{SnSe}$: 1015 Hz	[58]			
Me ₂ Sn(EMe) ₂	-237	δ_{Sn} : 57.1 ${}^{1}J_{SnSe}$: 1190 Hz	[58]			
MeSn(EMe) ₃	-184	δ_{Sn} : 14.8 $^{1}J_{SnSe}$: 1340 Hz	[58]			
Sn(EMe) ₄	-127	δ_{Sn} : -80.5 $^{1}J_{SnSe}$: 1520 Hz	[58]			

⁷⁷Se und ¹²⁵Te NMR chemische Verschiebungen (ppm) ausgewählter Verbindungen

a) $\delta_C: 2.3 \ (^{1}J_{TeC}: 150.5 \text{ Hz})$, $25.1 \ (^{2}J_{TeC}: 11.4 \text{ Hz})$, $34.4 \ (^{3}J_{TeC}: 10.4 \text{ Hz})$ und 13.4 ppm

Habilitation Uwe Herzog

Tabelle 6.3.1.

Die Wechselwirkung zwischen Kernspins ist als die Summe der direkten Dipolkopplung **D** und einer indirekten Kopplung **J** über die Elektronen des Bindunssystems zu betrachten:

$$E_{NN'} = h \mathbf{I}_{N} \cdot (\mathbf{D} + \mathbf{J}) \cdot \mathbf{I}_{N'}$$

$$\mathbf{I}_{N} = Kernspindrehmoment \ des \ Atomkerns \ N$$
(6.4.1)

Beide Kopplungen **D** und **J** sind richtungsabhängig, stellen also Tensoren dar. In Flüssigkeiten mittelt sich durch die schnelle Bewegung der Moleküle die Richtungsabhängigkeit aus und man beobachtet nur den isotropen Mittelwert der Kopplung. Während sich die direkte Dipolkopplung **D** aus dem relativen Abstand der koppelnden Atomkerne ergibt und sich in isotropen Flüssigkeiten zu Null ausmittelt, hat die indirekte Kopplung **J** einen skalaren Teil $J_S \neq 0$, der auch bei Beobachtung in isotropen Flüssigkeiten erhalten bleibt. J setzt sich aus mehreren Beiträgen zusammen:

$$\mathbf{J} = \mathbf{J}^{\mathrm{FK}} + \mathbf{J}^{\mathrm{O}} + \mathbf{J}^{\mathrm{SD}} \tag{6.4.2}$$

Der Fermi-Kontakt-Term J^{FK} beschreibt die Wechselwirkung der s-Elektronen (nur diese haben am Kernort eine von 0 verschiedene Aufenthaltswahrscheinlichkeit) mit dem Kernspin. Bei einer ¹J Kopplung über eine σ -Bindung wie z. B. in HF führt ein bevorzugter Aufenthalt des Elektrons mit α -Spin z. B. am H-Atom automatisch zu einem bevorzugten Aufenthalt des Elektrons mit β -Spin am F-Atom und umgekehrt.

Der Orbital-Term J^O wird durch die Störung des Magnetfeldes aufgrund der Elektronenorbitalbewegung durch den Kernspin des Atoms A verursacht. Diese Störung wirkt sich auf den Atomkern B aus und umgekehrt.

Der Spin-Dipol-Term J^{SD} entsteht durch die direkte Wechselwirkung des magnetischen Dipols des Atomkerns A mit den Orbitalelektronen, die wiederum mit dem Atomkern B wechselwirken.

Für alle Beiträge gilt, dass sie proportional zum Produkt der gyromagnetischen Verhältnisse $\gamma_A \gamma_B$ der beiden miteinander koppelnden Kerne A und B sind, so dass zur besseren Vergleichbarkeit verschiedener Kerne die reduzierte Kopplungskonstante K_{AB} eingeführt wurde, die diese Effekte eliminiert [677]:

$$K_{AB} = 4\pi^2 J_{AB} / h \gamma_A \gamma_B$$
(6.4.3)

In der Regel wird der Fermi-Kontakt-Term als der dominierende Anteil angesehen.

Für die Größe des Fermi-Kontakt-Terms J^{FK} ist sowohl die s-Elektronendichte am Kernort $s^2(0)$ als auch ein Maß für die Bindungsordnung entscheidend, wie das aus verschiedenen Modellen zur Beschreibung des Fermi-Kontakt-Terms hervorgeht:

$$K_{NN'} = s_N^2(0) s_{N'}^2(0) P_{sNsN'}^2 / \Delta E$$
[678] (6.4.4)

mit der Bindungsordnung $P_{sNsN'} = 2 \sum_i c_{iN} c_{iN'}$

 c_{iN} : Koeffizient des Valenz-s-Orbitals am Atom N im i. besetzten Molekülorbital ΔE : mittlere Anregungsenergie (nicht näher definiert)

$$K_{NN'} = s_N^2(0) s_{N'}^2(0) \pi_{NN'}$$
[677] (6.4.5)

mit der gegenseitigen Polarisierbarbeit der Orbitale an N und N':

$$\pi_{\rm NN'} = -4 \sum_{i} \sum_{a} c_{iN} c_{aN'} c_{iN'} c_{aN'} / (\varepsilon_{\rm a} - \varepsilon_{\rm i})$$

mit i: besetzte Molekülorbitale, a: virtuelle Molekülorbitale und ɛ: Orbitalenergien

$$K_{NN'} = \varphi_N^{2}(0) \varphi_{N'}^{2}(0) 2 P_{NN'}^{PD} / \Delta E \qquad [679] (6.4.6)$$

mit $\varphi_N(0)$: Elektronendichte am Kern N und
 $P_{NN'}^{PD}$: Penney-Dirac Bindungsordnung zwischen N und N'

Spin-Dipol- und Orbital-Term werden für ¹J Kopplungen vor allem dann bedeutsam, wenn Mehrfachbindungen, also Bindungsorbitale mit hohem p (oder d) Anteil auftreten. Auch für Kopplungen zwischen schwereren Kernen scheinen die Spin-Dipol- und Orbital-Terme Be-

deutung zu erlangen. Der Größe s²(0) des Fermi-Kontakt-Terms entspricht $\langle r^{-3} \rangle_{np}$ in den Gleichungen zur Beschreibung der Nicht-Kontakt-Terme, die allerdings ein recht ähnliches periodisches Verhalten mit steigender Ordnungszahl zeigt (vergleiche Abb. 6.4.1. und Abb. 6.3.1.).

So findet man in der 14. Gruppe zumindest für Kohlenstoff, Silicium und Zinn eine recht gute Korrelation zwischen den Verhältnissen reduzierter Kopplungskonstanten ¹K und den s-Elektronendichten am Kernort: ¹K_{SiX} / ¹K_{CX} \approx 1.9 [680] und s²(0)_{Si} / s²(0)_C = 1.41 [684], ¹K_{SnX} / ¹K_{SiX} \approx 4.2 [680] und s²(0)_{Sn} / s²(0)_{Si} = 4.62 [684], ¹K_{PbX} / ¹K_{SnX} \approx 1.6 [681] und s²(0)_{Pb} / s²(0)_{Sn} = 3.37 [684].

Für die Elemente der 16. Gruppe findet sich ebenfalls eine recht gute Übereinstimmung zwischen ${}^{1}K_{TeX} / {}^{1}K_{SeX} \approx 1.5$ [667] und s²(0)_{Te} / s²(0)_{Se} = 1.21 [684].

Abb. 6.4.1.

Elektronendichte am Kernort (linke Skala) für Atome im Grundzustand [682] mit Korrektur der relativistischen Effekte [683] (\circ) und exaktere relativistische Werte nach PYYKKÖ (\Box) [684] sowie die reduzierten Kopplungskonstanten ¹K_{XF} der binären Fluoride (\bullet), rechte Skala; aus [685].

Die Berücksichtigung relativistischer Effekte verändert $|\psi_{ns}(0)|^2$ schwerer Elemente ganz erheblich, z. B. Xe: 39.644 (mit) statt 26.688 a. u. (ohne) oder Pb: 60.752 (mit) statt 20.53 a. u. (ohne), d. h. für die in dieser Arbeit relevanten Elemente ergeben sich dadurch Faktoren von 1.155 für Se, 1.426 für Sn, 1.439 für Te und 2.959 für Pb.

Generell liefert die Kopplung eines Kerns A mit n äquivalenten Kernen der Kernspinquantenzahl I ein Multiplett mit 2 n I + 1 Linien. Für I = 1/2 ergeben sich die Intensitäten des Multipletts aus den Koeffizienten der Binome (a + b)ⁿ bzw. aus dem Pascalschen Dreieck, wobei der Abstand zweier Linien der Kopplungskonstante J entspricht. Diese einfachen Regeln brechen zusammen, wenn der Frequenzunterschied der beiden koppelnden Kerne vergleichbar mit der Kopplungskonstante wird. Zunächst tritt der sogenannte Dacheffekt auf (die Intensitäten der inneren Linien steigen auf Kosten der äußeren Linien). Bei noch weiterer Annäherung treten komplizierte Multipletts auf, die man als Spektren höherer Ordnung bezeichnet.

Koppeln zwei Kerne mit I = 1/2 miteinander, die jeweils nur in geringer natürlicher Häufigkeit auftreten, z. B. ²⁹Si und ⁷⁷Se, so ergeben sich in beiden Spektren Singuletts, die von einem Satellitenpaar flankiert werden – einem Dublett, dessen relative Intensität zum Hauptsignal sich aus dem Anteil am magnetisch aktiven Isotop des jeweils anderen Elements ergibt, z. B. 2.4 % für jeden der beiden ²⁹Si Satelliten im ⁷⁷Se NMR Spektrum und 3.8 % für die ⁷⁷Se Satelliten im ²⁹Si NMR Spektrum. Treten Kopplungen zu mehreren äquivalenten Atomen auf, so werden die entsprechenden Satelliten größer im Vergleich zum Hauptsignal, z. B. 7.6 % für die ⁷⁷Se Satelliten im ²⁹Si NMR Spektrum von R₂Si(SeR')₂, 11.4 % in RSi(SeR')₃ und 15.2 % in Si(SeR')₄.

Aus der Vielzahl bekannter Daten für Kopplungskonstanten lassen sich empirisch eine Reihe von Regeln für deren Größe aufstellen. So findet man meist eine Abnahme der Größe der Kopplungskonstanten mit der Anzahl der Bindungen in der Reihe ${}^{1}J_{AB} \gg {}^{3}J_{AB} \ge {}^{2}J_{AB} > {}^{4}J_{AB}$, aber nicht immer gilt diese Reihenfolge.

Finden sich in cyclischen und polycyclischen Systemen mehrere Wege durch das Bindungssystem, die ein Kernpaar verbinden, so kann im Allgemeinen angenommen werden, dass die beobachtete Kopplung die algebraische Summe der Kopplungen über die einzelnen Bindungswege darstellt. Dabei muss berücksichtigt werden, dass Kopplungskonstanten Vorzeichen behaftet sind und in vielen Fällen das Vorzeichen von ⁿJ_{AB} mit n wechselt. So kann man zwischen zwei Atomen in 1,3-Positionen eines Fünfrings ungewöhnlich kleine Kopplungskonstanten "²J_{AB}" beobachten, da die resultierende Kopplungskonstante die Differenz |³J_{AB}| – |²J_{AB}| darstellt, siehe dazu auch die ²J_{SnSn} Kopplungskonstanten fünf- und sechsgliedriger Cyclen in Tabelle 4.3.1.2.

Auf der anderen Seite kann dies auch zu relativ großen Kopplungskonstanten führen, wenn mehrere äquivalente Wege für die Kopplung zur Verfügung stehen, wie das z. B. in 1-Me₃Sn-Adamantan (${}^{4}J_{SnC}$: 7.0 Hz) oder 1-Me₃Sn-Cuban (${}^{4}J_{SnC}$: 15.8 Hz) [686] erkennbar wird (zwei bzw. sechs äquivalente Wege durch das Bindungssystem).

Zum Vergleich der Vorzeichen von Kopplungskonstanten ist es sinnvoll, die Vorzeichen der reduzierten Kopplungskonstanten zu verwenden, da ein negatives gyromagnetisches Verhältnis auch zur Vorzeichenumkehr zwischen J und K führt. Es zeigt sich, dass alle ${}^{1}K_{AB}$ ein positives Vorzeichen haben, wenn keines der beiden koppelnden Atome n-Elektronenpaare besitzt. Kopplungen zwischen Elementen der 14. Gruppe und Elementen der 16. Gruppe (mit zwei freien Elektronenpaaren) hingegen scheinen ein negatives Vorzeichen für ${}^{1}K$ zu besitzen [148,687]. ${}^{1}K$ zwischen zwei Elementen der 14. Gruppe wird nur dann negativ, wenn eines der beiden Elemente in der Oxidationszahl +2 mit einem n-Elektronenpaar auftritt (z. B. Me₃Sn⁻ Li⁺ [688], (Me₃Sn)₃Sn⁻ Li⁺ [689]).

Die Größe der Kopplungskonstante ${}^{1}J_{AB}$ hängt signifikant von den Koordinationszahlen, Oxidationszahlen und den formalen Hybridisierungen der koppelnden Atome ab. So sinkt die Kopplungskonstante ${}^{1}J_{SiF}$ mit steigender Koordinationszahl: SiF₄: 170 Hz, SiF₅⁻: 140 Hz, SiF₆²⁻: 108 Hz [660]. Die Kopplungskonstanten ${}^{1}J_{CH}$ und ${}^{1}J_{CC}$ steigen mit abnehmender Hybridiserung der koppelnden Kohlenstoffatome in der Reihe sp³, sp², sp.

Unabhängig vom Vorzeichen steigen die Kopplungskonstanten ${}^{1}J_{AB}$ mit der Einführung elektronegativer Substituenten. Der Anstieg kann bis zum 2 – 3 fachen des ursprünglichen Wertes reichen, z. B.: Me₃SiH: ${}^{1}J_{SiH}$: 183 Hz, HSiCl₃: ${}^{1}J_{SiH}$: 370 Hz.

So ergibt sich näherungsweise eine lineare Korrelation zwischen der Summe der Elektronegativitäten der Substituenten und der Kopplungskonstante ${}^{1}J_{SiSi}$ in Disilanen [690], für eine größere Anzahl elektronegativer Substituenten ist die Korrelation allerdings nicht mehr linear [508,691].

Dieser Anstieg des Betrages der Kopplungskonstanten kann mit dem zunehmenden s-Charakter der Bindungsorbitale zwischen den koppelnden Kernen erklärt werden, da für die Bindungsorbitale zu den elektronegativeren Substituenten bevorzugt die p-Orbitale verwendet werden. So steigt z. B. in $H_{4-x}SiF_x$ neben ${}^{1}J_{SiH}$ anfangs auch ${}^{1}J_{SiF}$ mit zunehmender Anzahl an Fluorsubstituenten am Siliciumatom, da mit zunehmender Anzahl an Si–F Bindungen jedes dieser Bindungsorbitale einen steigenden s-Charakter aufweist, ein besonders hoher s-Charakter verbunden mit einem extrem großen Wert für ${}^{1}J_{SiH}$ kumuliert sich aber in den verbleibenden Si–H Bindungen: H_4Si : ${}^{1}J_{SiH}$: 202.5 Hz; H_3SiF : ${}^{1}J_{SiH}$: 233.6 Hz, ${}^{1}J_{SiF}$: 278.7 Hz; H_2SiF_2 : ${}^{1}J_{SiH}$: 288.2 Hz, ${}^{1}J_{SiF}$: 297.3 Hz; HSiF₃: ${}^{1}J_{SiH}$: 388 Hz, ${}^{1}J_{SiF}$: 275.7 Hz [692].

Kopplungen über zwei Bindungen zeigen ein ähnliches Verhalten. Auch sie hängen von den Oxidationszuständen, den Koordinationszahlen, formalen Hybridisierungen und den Elektronegativitäten der Substituenten an den koppelnden Atomen ab. So zeigen sich gute Korrelationen zwischen ¹K_{SnSn} und ²K_{SnSnH} [689] sowie ¹K_{SnC} und ²K_{SnCH} [688]. Darüber hinaus ergibt sich eine Abhängigkeit von ²K_{ABC} vom Bindungswinkel A–B–C. So findet man in oktaedrischen und quadratisch planaren Komplexen ²K_{ABC}*trans* > ²K_{ABC}cis [682].

Für ³J Kopplungen ergeben sich im Prinzip ähnliche Abhängigkeiten, allerdings sind hier bereits vier Atome daran beteiligt. Darüber hinaus zeigt sich eine signifikante Abhängigkeit vom eingeschlossenen Torsionswinkel φ , die zuerst für die Kopplung ³J_{HCCH} in Form der KARPLUS–Gleichung beschrieben wurde:

$${}^{3}K = C \cos 2\varphi + B \cos \varphi + A$$
 [693] (6.4.7)

Aus der Beobachtung von Kopplungssatelliten kann man auf die Konnektivitäten innerhalb eines Moleküls schließen. So haben die homonuklearen Kopplungen ¹J_{SiSi} bzw. ²J_{SiSi} große Bedeutung in der Strukturbestimmung von Oligosilangerüsten wie Polycyclen [694] oder Dendrimeren [695] bzw. komplexer Siloxane wie z. B. POSS erlangt. Prinzipiell lassen sich diese Kopplungskonstanten auch aus einfachen 1D-Experimenten entnehmen, durch die Anwendung der INADEQUATE Technik (Doppelquantenfilter) werden die starken Singulettsignale unterdrückt und nur die Satellitensignale z. B. durch die ²⁹Si–²⁹Si Kopplung werden beobachtet. Als 1D-Experiment ergibt sich für INADEQUATE die Pulsfolge:

²⁹Si:
$$90^{\circ}_{x} - \tau - 180^{\circ}_{\pm y} - \tau - 90^{\circ}_{x} - \Delta - 90^{\circ}_{\varphi}$$
 - Aquisition

Schema 6.4.1. Pulssequenz für ein 1D INADEQUATE Experiment [696]

In einem 2D-Experiment lassen sich durch das Auftreten so genannter Crosspeaks direkt die Konnektivitäten erkennen, hierbei wird in der Pulsfolge Δ durch die variable Zeit t₁ ersetzt [697,698].

Abb. 6.4.2. ²⁹Si 29 Si 2D INADEQUATE Spektrum von Si₈O₁₂(n-Pr)₆(3-Cl-Pr)₂ in CDCl₃, Ξ : 59.60 MHz, Parameter optimiert für ²J_{SiOSi} = 0.7 Hz, rechts ein Strukturmodell mit 1-8: Siliciumatome, leere Kreise: Propyl, volle Kreise: 3-Chlorpropyl [699]

Zur Verbesserung des Signal/Rausch-Verhältnisses kann die INADEQUATE Technik mit Pulssequenzen zum Polarisationstransfer wie INEPT oder DEPT gekoppelt werden [700,701]. Eine umfangreiche Zusammenstellung von Daten für ${}^{1}J_{SiSi}$ sowie ${}^{2}J_{SiSi}$ findet sich in [664].

7. Chalcogenobutylderivate von Silanen und Oligosilanen

Hauptziel der Darstellung und Charakterisierung chalcogenobutylsubstituierter Siliciumverbindungen war die Gewinnung von Vergleichs-NMR-Daten acyclischer schwefel-, selenoder tellursubstituierter Silane bzw. Oligosilane. Der *n*-Butylrest wurde gewählt, da für E = S*n*-Thiobutanol kommerziell erhältlich und gut handhabbar ist (Flüssigkeit mit einem Siedepunkt von 97 °C) und ausgehend von *n*-BuLi auch Seleno- und Tellurobutylsubstituenten leicht zugänglich sind. Des weiteren ist *n*-Butyl sterisch wenig anspruchsvoll, so dass sich auch hochsubstituierte Derivate wie Si(EBu)₄ problemlos darstellen lassen sollten.

7.1. Thiobutylsubstituierte Monosilane $R_{4-x}Si(SBu)_x$ [702]

Zur Darstellung thiobutylsubstituierter Silane wurde hauptsächlich die Reaktion von Chlorsilanen mit Thiobutanol und Triethylamin in einem inerten Lösungsmittel (*n*-Hexan) angewendet, z. B.:

$$R \xrightarrow{R}_{i} Cl + BuSH \xrightarrow{+ NEt_{3}} R \xrightarrow{R}_{i} SBu$$

$$R \xrightarrow{I}_{k} Sl = SBu$$

$$R \xrightarrow{I}_{k} Sh$$

$$R \xrightarrow{I}$$

Dabei bilden sich – je nach eingesetztem Molerhältnis – auch partiell thiobutylsubstituierte Silane, wie dies am Beispiel von SiCl₄ und PhSiCl₃ in Abbn. 7.1.1. und 7.1.2. dargestellt ist.

Abb. 7.1.1. Produktspektrum der Reaktion von SiCl₄ mit HSBu / NEt₃ in Abhängigkeit vom eingesetzten Molverhältnis

Abb. 7.1.2. Produktspektrum der Reaktion von PhSiCl₃ mit HSBu / NEt₃ in Abhängigkeit vom eingesetzten Molverhältnis

Ausgehend von Me₂SiCl₂ erhält man mit einem Äquivalent BuSH und NEt₃ hauptsächlich Me₂SiCl(SBu), welches destillativ im Vakuum (48 °C / 0.6 kPa) gereinigt werden kann, ohne dass es dabei zu Me₂SiCl₂ und Me₂Si(SBu)₂ dismutiert. Die anschließende Reaktion mit HNEt₂ führte zu reinem Me₂Si(SBu)(NEt₂):

$$Me_2Si(SBu)(NEt_2)$$
, NMR (Hz, ppm) δ_{Si} : 9.47 (${}^{1}J_{SiC}$: 63.4); δ_C : 0.54 (SiMe₂), 26.17, 35.09, 22.02 und 13.68 (SBu), 39.86 und 15.78 ppm (NEt₂):

Bei der Darstellung von Ph₂Si(SBu)₂ musste mit Lithiumthiobutanolat gearbeitet werden, da die Reaktion von Ph₂SiCl₂ mit BuSH und NEt₃ sehr langsam verläuft und auch nach einer Woche nur das monosubstituierte Produkt Ph₂SiCl(SBu) nachweisbar war:

Habilitation Uwe Herzog

Durch Reaktion von $HSiCl_3$ bzw. MeSiHCl_2 mit Thiobutanol und Triethylamin waren schließlich auch thiobutylsubstituierte Monosilane mit einem Si–H Substituenten zugänglich. Somit konnten alle Verbindungen der Serien Me_xPh_ySiCl_{4-x-y-z}(SBu)_z sowie Me_xHSiCl_{3-x-y}(SBu)_y (x = 0, 1) dargestellt und NMR-spektroskopisch charakterisiert werden, siehe Tabelle 7.1.1.

Um die Abhängigkeiten der NMR Parameter vom Substitutionsmuster zu verdeutlichen, wurden alle Parameter, die sich mit dem Substitutionsmuster signifikant ändern, mit der Anzahl an Chlor-, Thiobutyl- und Phenylsubstituenten korreliert, siehe Tabelle 7.1.2.

Wie zu erwarten war, ergeben sich für die ¹H und ¹³C NMR chemischen Verschiebungen sowie den Wert von ¹J_{SiC} lineare Abhängigkeiten. Die berechneten Substituenteneffekte von Cl, SBu und Ph für $\delta_{\rm H}$ (SiCH₃) sind in guter Übereinstimmung mit den in [703] angegebenen Werten von 0.38 ppm (Cl), 0.24 ppm (Ph) und 0.24 ppm (SMe).

Innerhalb der Thiobutylsubstituenten ergeben sich nur für δ_C von C^1 und C^2 signifikante Abhängigkeiten vom Substitutionsmuster (für C^1 größere als für C^2), allerdings in unterschiedliche Richtungen. Innerhalb der Phenylsubstituenten ändert sich δ_C von C^{meta} nur sehr wenig mit dem Substitutionsmuster (insgesamt ein Bereich von 0.7 ppm). δ_C von C^{ortho} hängt fast ausschließlich von der Anzahl an Thiobutyl- und weiteren Phenylsubstituenten ab, Chlorsubstituenten haben nur einen sehr schwachen Einfluss von –0.037 ppm. δ_C von C^{para} lässt sich von allen Parametern am besten mit einer multiplen linearen Regression fitten (Korrelationskoeffizient r = 0.999).

Erwartungsgemäß steigt der Betrag von ${}^{1}J_{SiC}$ mit der Anzahl an Chlor-, Thiobutyl und Phenylsubstituenten an (alle drei haben eine höhere Elektronegativität als CH₃, vgl. auch *6.4*.).

Chlorsubstituenten haben entsprechend der höchsten Elektronegativität auch den größten Effekt mit fast 10 Hz je Chlorsubstituent.

Wesentlich komplizierter gestaltet sich dagegen eine Korrelation zwischen den ²⁹Si NMR chemischen Verschiebungen der Monosilane Me_xPh_ySiCl_{4-x-y-z}(SBu)_z und dem Substitutionsmuster. Üblicherweise findet man eine U-förmige Abhängigkeit von δ_{Si} von x in Verbindungsserien R_xSiX_{4-x} (R = Alkyl, Aryl, H; X = Halogen, OR, NR₂ etc.) mit einem Maximum, wenn die Summe der Elektronegativitäten der vier Substituenten etwa 10.5 erreicht [660], siehe auch Abschnitt *6.3*. Überraschenderweise lassen sich die δ_{Si} aller Verbindungen Me_xSiCl_{4-x-y}(SBu)_y mit einer einzigen quadratischen Gleichung fitten, wenn man die Summe aus der Anzahl der Chlorsubstituenten + ¹/₂ Anzahl der Thiobutylsubstituenten verwendet. Analoge quadratische Regressionen sind für alle Verbindungen mit einem, zwei und drei Phenylsubstituenten möglich, siehe Tabelle 7.1.3. und Abb. 7.1.3.

Verbindung	δς	δ						a)		δ			a)	
C C	0.51	SiMe		SiPh				SBu		SiMe	SiPh		SBu	
			$^{1}J_{SiC}$	ipso	ortho	meta	para	C^1	C^2		0	m + p	$C^1 \underline{H}_2$	$C^2\underline{H}_2$
Me ₃ SiCl	29.8	3.2	57.7	_	_	_	_	_	_	0.35	_	-	_	_
Me ₃ SiSBu	14.7	1.0	53.5	_	_	_	_	25.8	35.3	0.26	_	_	2.45	1.54
Me ₂ SiCl ₂	32.0	6.6	64.7	_	_	_	_	_	_	0.71	_	-	_	_
Me ₂ SiClSBu	31.5	4.4	61.5	-	-	-	-	26.7	34.5	0.61	—	-	2.62	1.61
Me ₂ Si(SBu) ₂	24.8	1.9	58.3	-	-	-	-	26.9	34.7	0.46	—	-	2.55	1.58
MeSiCl ₃	12.7	9.7	80.0	-	-	-	-	—	-	1.05	—	-	_	_
MeSiCl ₂ SBu	23.6	8.0	75.1	-		-	-	28.0	33.8	0.96	—	-	2.76	1.66
MeSiCl(SBu) ₂	30.2	6.2	64.7	-	Ι	-	-	28.2	34.1	0.84	—	-	2.69	1.64
MeSi(SBu) ₃	29.5	3.7	61.5	-	_	_	-	27.9	34.4	0.72	_	-	2.64	1.62
SiCl ₃ (SBu)	-1.4	-	_	-	-	-	-	29.7	33.4	-	_	-	2.86	1.72
SiCl ₂ (SBu) ₂	14.1	_	—	-	Ι	_	-	29.7	33.6	Ι	—	-	2.79	1.69
SiCl(SBu) ₃	25.2	_	—	-	-	-	-	29.3	33.9	-	—	-	2.75	1.67
Si(SBu) ₄	31.2	_	—	-	Ι	_	-	28.8	34.15	Ι	—	-	2.72	1.64
Me ₂ PhSiCl	20.3	2.0	59.1	136.05	133.0	128.0	130.25	_	_	0.61	7.58	7.33	_	_
Me ₂ PhSiSBu	8.9	-0.4	56.0	136.95	133.7	127.85	129.55	26.4	34.75	0.51			2.35	1.46
MePh ₂ SiCl	10.3	0.85		134.25	134.0	128.05	130.45	_	_	0.87	7.60	7.32	-	_
MePh ₂ SiSBu	3.6	-1.45	56.7	135.2	134.6	127.9	129.8	26.8	34.6	0.76	7.63	7.21	2.37	1.43
Ph ₃ SiCl	1.2	-	_	132.7	135.1	128.1	130.7	-	_	_	7.64	p: 7.45, m: 7.40	-	-
Ph ₃ SiSBu	-1.9	_	_	133.45	135.6	127.95	130.0	27.2	34.3	_			2.45	1.44
MePhSiCl ₂	18.8	5.3	70.5	133.2	132.9	128.3	131.6	_	_	0.90	7.65	7.35	_	_
MePhSiClSBu	22.2	3.5	62.9	133.8	133.6	128.1	130.8	27.2	34.0	0.91	7.71	7.34	2.55	1.52
MePhSi(SBu) ₂	18.2	1.25		134.8	133.9	128.0	130.2	27.2	34.4	0.80	7.70	7.31	2.57	1.55
Ph ₂ SiCl ₂	6.0	-	_	131.8	133.95	128.25	131.65	_	_	_	7.70	p: 7.34, m: 7.29	-	-
Ph ₂ SiCl(SBu)	13.0	_	_	132.6	134.45	128.2	131.05	27.65	33.9	_	7.75	7.33	2.55	1.52
Ph ₂ Si(SBu) ₂	11.9	_	_	133.6	134.7	128.1	130.4	27.4	34.1	_	7.73	7.35	2.58	1.54
PhSiCl ₃	-0.6	-	_	131.4	133.1	128.5	132.7	-	_	_	7.76	p: 7.51, m: 7.43	-	-
PhSiCl ₂ SBu	12.2	_	_	132.1	133.6	128.4	132.1	28.5	33.65	_	7.76	7.31	2.72	1.55
PhSiCl(SBu) ₂	20.5	_	_	133.0	134.0	128.3	131.5	28.6	34.0	_	7.82	7.38	2.68	1.59
PhSi(SBu) ₃	22.7	_	_	133.6	134.4	128.2	130.8	28.2	34.2	_			2.62	
HSiCl ₃	-9.6	_	_	δ _{Si<u>H</u>:}	6.07	¹ J _{SiH} :	370.0	_	_	_	_	-	_	_
HSiCl ₂ SBu	2.4	_	—	δ _{SiH} :	6.04	¹ J _{SiH} :	322.0	27.7	33.9	-	_	-	2.80	1.69
HSiCl(SBu) ₂	10.2	_	_	δ _{SiH} :	5.91	¹ J _{SiH} :	288.0	28.2	34.2	_	_	-	2.74	1.68
HSi(SBu) ₃	12.6	—	—	δ _{Si<u>H</u>:}	5.71	¹ J _{SiH} :	258.8	28.2	34.4	_	—	-	2.70	1.67
MeHSiCl ₂	10.9	5.4	67.5	δ _{Si<u>H</u>:}	5.58	¹ J _{SiH} :	281.4	_	_	0.87	³ J _{HH} :	2.2	_	_
MeHSiClSBu	13.8	2.15		δ _{si<u>H</u>:}	5.47	¹ J _{SiH} :	253.5	27.8	34.3	0.74	³ J _{HH} :	3.0	2.71	1.66
MeHSi(SBu) ₂	8.3	-0.4		$\delta_{Si\underline{H}}$:	5.18	¹ J _{SiH} :	232.6	27.5	34.6	0.60	³ J _{HH} :	3.2	2.63	1.63

Tabelle 7.1.1. ¹H, ¹³C und ²⁹Si NMR Daten (Hz, ppm) thiobutylsubstituierter Monosilane

a) $S \sim C^{3}H_{2} - C^{4}H_{3}$ bleiben relativ konstant: δ_{C} : 21.5 – 21.8 (C³) und 13.4 – 13.6 (C⁴), δ_{H} : 1.25 – 1.44 (C³H₂) und 0.77 – 0.92 (C⁴H₃)

Tabelle 7.1.2. Ergebnisse der multiplen linearen Regressionen der ¹H und ¹³C NMR Parameter in $Me_xPh_ySiCl_{4-x-y-z}(SBu)_z$

Parameter = $A0 + A1 \cdot X_{Cl} + A2 \cdot X_S + A3 \cdot X_{Ph}$ $X_{Cl} = Anzahl an Chlorsubstituenten, X_S = Anzahl an Thiobutylsubstituenten$ $X_{Ph} = Anzahl an Phenylsubstituenten$

Parameter	A0 (ppm)	A1 (ppm)	A2 (ppm)	A3 (ppm)	r	sd (ppm)
$\delta_{\rm C}$ Si– <u>C</u> H ₃	-0.25	3.415	1.310	-1.201	0.998	0.235
$\delta_C S-\underline{C}H_2$	24.64	1.260	1.086	0.443	0.985	0.212
$\delta_{\rm C}$ S–CH ₂ – <u>C</u> H ₂	35.44	-0.593	-0.322	-0.422	0.972	0.126
$\delta_{\rm C}$ ipso (Ph)	139.68	-2.369	-1.565	-1.475	0.984	0.302
$\delta_{\rm C} ortho (\rm Ph)$	132.04	-0.037	0.452	1.049	0.994	0.116
$\delta_{\rm C}$ meta (Ph)	127.66	0.267	0.152	0.054	0.990	0.030
$\delta_{\rm C} para$ (Ph)	128.78	1.255	0.605	0.207	0.999	0.045
$\delta_{\rm H} \operatorname{Si-CH}_3$	0.013	0.3446	0.2346	0.2462	0.997	0.023
¹ J _{SiC} (SiMe)	48.5 Hz	9.77 Hz	4.33 Hz	1.79 Hz	0.979	1.86 Hz

Tabelle 7.1.3. Ergebnisse der Regression der ²⁹Si NMR chemischen Verschiebung in $Me_xPh_ySiCl_{4-x-y-z}(SBu)_z$

 $\delta_{Si} = A0 + A1 \cdot X + A2 \cdot X^2$; $X = Anzahl an Cl + \frac{1}{2}Anzahl an SBu Substituenten$

Anzahl an Phenylsubstituenten	A0 (ppm)	A1 (ppm)	A2 (ppm)	r	sd (ppm)
0	0.99	34.78	-10.051	0.9938	1.81
1	-5.14	35.10	-11.237	0.9968	0.89
2	-9.68	33.89	-12.923	0.9962	0.94
3	-11.90	26.81	-13.710	1 ^{a)}	0 ^{a)}

a) nur drei Datenpunkte möglich

Abb. 7.1.3. ²⁹Si NMR chemische Verschiebungen der Monosilane $Me_xPh_ySiCl_{4-x-y-z}(SBu)_z$ als Funktion der Summe der Anzahl an $Cl + \frac{1}{2}$ Anzahl an SBu Substituenten getrennt für Verbindungen mit 0 – 4 Phenylsubstituenten.

Der Grund für diese überraschend gute Korrelation mag sein, dass ein Thiobutylsubstituent etwa halb so stark elektronenziehend wirkt wie ein Chlorsubstituent (verglichen mit einer Methylgruppe). Die größte Abweichung von den Regressionen findet man für Me₃SiCl, die mittlere Abweichung zwischen Regression und gemessener Verschiebung für alle anderen Verbindungen ist < 1.5 ppm.

Die Einführung einer Phenyl- anstelle einer Methylgruppe ist für δ_{Si} mit einer Hochfeldverschiebung von etwa 5 ppm verbunden, wenn keine elektronegativen Substituenten vorhanden sind; mit steigender Anzahl an Chlor- oder Thiobutylsubstituenten steigt diese Hochfeldverschiebung auf über 10 ppm an.

7.2. Seleno- und Tellurobutylsubstituierte Monosilane $R_{4-x}Si(EBu)_x$ [704,705]

Im Gegensatz zu Thiobutanol sind Seleno- oder Tellurobutanol kommerziell nicht erhältlich, was in letzterem Falle auch auf die Instabilität einfacher Tellurole zurückzuführen ist. Die Lithiumsalze sind aber leicht durch Chalcogeninsertion in die C–Li Bindung von *n*-BuLi zugänglich [59] (siehe auch 2.2.):

$$Bu-Li + E \xrightarrow{(THF)} Bu-E^{-}Li^{+}$$
(7.2.1)

Wird die so gewonnene Lithiumselenobutylatlösung bei Raumtemperatur mit Me₃SiCl umgesetzt, so bilden sich unter Dismutation hauptsächlich Hexamethyldisilselenan und Dibutylselenid, die aufgrund fast gleicher Siedpunkte (53 - 54 °C / 1 kPa) destillativ nicht trennbar sind. Diese Dismutation lässt sich aber weitgehend verhindern, wenn die Umsetzungen mit Chlorsilanen bei Temperaturen unter 0 °C durchgeführt werden:

$$Me \xrightarrow{Me}_{l} Me \xrightarrow{Me}_{l} Me$$

So lassen sich durch Reaktion von $R_{4-x}SiCl_x$ (R = Me, Ph) mit x Äquivalenten BuSeLi die entsprechenden Selenobutylderivate $R_{4-x}Si(SeBu)_x$ darstellen. Auch bei Einsatz eines Überschusses des Chlorsilans (für x > 1) entstehen aber kaum partiell selenobutylsubstituierte Silane. Um diese in besserer Ausbeute analog zu Gl. 7.1.1 gewinnen zu können, war die Darstellung von BuSeH erforderlich.

Butylselenol konnte durch Methanolyse von Selenobutyltrimethylsilan (dargestellt nach Gl. 7.2.2) und anschließende fraktionierte Destillation (Kp. 113 °C) gewonnen werden:

$$Me \xrightarrow{I} Se - Bu + Me - OH \xrightarrow{I} Bu - Se - H + Me \xrightarrow{I} Me \xrightarrow{I} O - Me \xrightarrow{I} O -$$

$$\delta_{\text{H}:} -0.82 \text{ (Se-}\underline{\text{H}}, {}^{1}J_{\text{SeH}:} 43.3 \text{ Hz}, {}^{3}J_{\text{HH}:} 6.7 \text{ Hz}), 2.47 \text{ (Se-}C^{1}\underline{\text{H}}_{2}), 1.57 \text{ (Se-}C^{2}\underline{\text{H}}_{2}), 1.29 \text{ (Se-}C^{3}\underline{\text{H}}_{2}) \text{ und } 0.80 \text{ ppm (Se-}C^{4}\underline{\text{H}}_{3})$$

Ähnlich wie die Reaktionen von Thiobutanol lieferten die Reaktionen von Butylselenol mit den polychlorierten Silanen SiCl₄, RSiCl₃ und R₂SiCl₂ in Gegenwart von NEt₃ auch partiell substituierte Produkte (in Abhängigkeit vom eingesetzten Molverhältnis), siehe auch Abb. 7.2.1. (vgl. mit Abb. 7.1.2.)

Abb. 7.2.1. Produktspektrum der Reaktion von PhSiCl₃ mit HSeBu / NEt₃ in Abhängigkeit vom eingesetzten Molverhältnis

Im Gegensatz dazu war die Synthese von Butyltellurol nicht möglich und tellurobutylsubstituierte Silane konnten ausschließlich analog zu Gl. 7.2.2 durch Reaktion von BuTeLi mit Chlorsilanen dargestellt werden. Allerdings ließ sich auch durch Reaktionstemperaturen von ≤ -30 °C die Dismutation analog zu Gl. 7.2.2. nicht völlig unterdücken und darüber hinaus traten als Nebenprodukt auch größere Mengen Dibutylditellurid auf, z. B.:

Bu₂Te: δ_{Te} : 233 ppm, δ_C : 2.2, 34.4, 25.1 und 13.4 ppm Bu₂Te₂: δ_{Te} : 117 ppm, δ_C : 4.2, 35.7, 24.6 und 13.3 ppm

Habilitation Uwe Herzog

Insgesamt steigt der Anteil an Nebenprodukten mit der Anzahl an Chlorsubstituenten im eingesetzten Silan und ist für R = Ph kleiner als für R = Me bei gleicher Anzahl an Chlorsubstituenten. Auf diesem Wege konnten aber nur vollständig tellurobutylsubstituierte Silane $R_{4-x}Si(TeBu)_x$ dargestellt werden.

Die NMR Daten aller erhaltenen selenobutyl- und tellurobutylsubstituierten Monosilane sind in den Tabellen 7.2.1. und 7.2.2. zusammengestellt.

Wie für die thiobutylsubstituierten Monosilane konnten auch hier multiple lineare Regressionen zur Beschreibung der Abhängigkeiten der ¹H, ¹³C, ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen sowie der Kopplungskonstanten ¹J_{SiSe}, ¹J_{SiTe}, ¹J_{SiC} sowie ¹J_{TeC} vom Substitutionsmuster angewendet werden. Die Ergebnisse der Regressionen sind in Tabellen 7.2.3. und 7.2.4. zusammengefasst.

Wie zu erwarten, stimmen die Werte von A1 und A3, die den Einfluss von Chlor- und Phenylsubstituenten beschreiben, gut mit den Daten für thiobutylsubstituierte Silane in Tabelle 7.1.3. überein. Bei den Daten für tellurobutylsubstituierte Silane in Tabelle 7.2.4. muss berücksichtigt werden, dass die Anzahl der für die Regressionen verwendbaren Datensätze wesentlich geringer war, da keine Silane, die außerdem noch Chlorsubstituenten tragen, synthetisierbar waren. Dafür wurden noch die Verbindungen HSi(TeBu)₃ und MeHSi(TeBu)₂, die einen Si–H Substituenten tragen, in die Regression mit aufgenommen. Während die Effekte von SBu, SeBu und TeBu Substituenten auf die ¹³C NMR Verschiebungen der Phenylsubstituenten keinen einheitlichen Trend aufweisen und recht ähnlich sind, nehmen vom Schwefel über Selen zum Tellur die Effekte der Chalcogenobutylsubstituenten auf $\delta_{\rm H}$ und $\delta_{\rm C}$ der an Silicium gebundenen Methylgruppen deutlich zu: $\delta_{\rm H}$: 0.235 ppm (S), 0.354 ppm (Se), 0.554 ppm (Te) und $\delta_{\rm C}$: 1.31 ppm (S), 2.36 ppm (Se), 2.77 ppm (Te). Dies entspricht dem bekannten zunehmenden Effekt schwererer Halogene auf $\delta_{\rm H}$ und $\delta_{\rm C}$ von Si–CH₃ [662].

Vor allem für E = Se ergibt sich auch eine sehr gute Korrelation von δ_E und ${}^1J_{SiE}$ mit dem Substitutionsmuster (Regressionskoeffizient r = 0.992 bzw. 0.999), siehe auch Abbn. 7.2.2. und 7.2.3. Wie bei ${}^1J_{SiC}$ steigt auch der Betrag von ${}^1J_{SiE}$ mit der Anzahl an Chlor-, Chalco-genobutyl und Phenylsubstituenten an (abgestuft in dieser Reihenfolge entsprechend der Elektronegativitäten dieser Substituenten).

Insgesamt zeigt sich, dass die Werte von δ_{Se} selenobutylsubstituierter Silane mit denen von δ_{Te} analoger tellurobutylsubstituierter Silane parallel verlaufen, analoges gilt auch für ${}^{1}J_{SiSe}$ und ${}^{1}J_{SiTe}$, siehe Abbn. 7.2.4. und 7.2.5. Zur Interpretation dieser Korrelationen siehe Abschnitte 6.3. und 6.4.
Verbindung	$\delta_{\rm Si}$	$\delta_{\rm Se}$		$\delta_{\rm C}$	_							$\delta_{\rm H}$				
			$^{1}\mathrm{J}_{\mathrm{SiSe}}$	SiMe	$^{1}J_{SiC}$	SiPh		_		SeBu	2	SiMe	SiPh		SeBu	
					SiMe	ipso	ortho	meta	para	C^1	C^2		ortho	m + p	$C^1 \underline{H}_2$	$C^2 H_2$
Me ₃ Si(SeBu)	11.3	-108	110.8	1.8	52.1	I		I	I	18.2 ^{c)}	35.2	0.38	Ι	I	2.45	1.63
Me ₂ SiCl(SeBu)	28.7	-49	146.8	5.7			I	I	I	21.5	34.4	0.77	Ι	I	2.66	1.67
$Me_2Si(SeBu)_2$	18.1	-96	137.3	3.8	53.6	I	I	I	I	21.3	34.5	0.71	Ι	Ι	2.59	1.67
MeSiCl ₂ (SeBu)	18.4	5	183.2	9.9		I	Ι	Ι	I	23.9	33.9	1.11	Ι	I	2.81	1.74
MeSiCl(SeBu) ₂	20.3	-28	170.6	8.9		I	Ι	I	I	23.8	34.1	1.09	Ι	I	2.732/2.726*	1.73
MeSi(SeBu) ₃	13.5	-63	159.4	6.3		I	Ι	Ι	I	23.6	34.3	1.06	Ι	I	2.67	1.71
SiCl ₃ (SeBu)	-12.1	63	217.4	I	Ι	I	Ι	Ι	I			Ι	Ι	I	2.92	
SiCl ₂ (SeBu) ₂	-3.1	44	204.6	Ι	Ι	Ι	Ι	Ι	Ι	25.9	33.6	Ι	Ι	Ι	2.84	1.78
SiCl(SeBu) ₃	1.7	14	194.0	Ι	Ι	-	—	Ι	Ι	26.0	33.8	Ι	Ι	Ι	2.80	1.77
Si(SeBu) ₄	1.9	-30	180.2	Ι	Ι	Ι	—	Ι	Ι	25.7	33.8	Ι	Ι	Ι	2.76	1.74
Me ₂ PhSi(SeBu)	6.2	-116	113.7	0.4	$53.9^{a)}$	136.9	133.7	127.8	129.55	19.1	34.7	0.63	7.61	7.30	2.34	1.51
MePh ₂ Si(SeBu)	2.2	-134	118.6	-0.8	55.4 ^{b)}	135.1	134.6	127.9	129.8	19.9	34.5	0.89	7.64	7.29	2.35	1.49
Ph ₃ Si(SeBu)	-1.3	-145	122.5	I	Ι	133.5	135.7	127.9	129.9	20.6	34.2	Ι	7.71	7.27	2.39	1.45
MePhSiClSeBu	20.0	-60	151.6	4.8		134.3	133.4	128.1	130.8	22.0	34.0	0.92				
MePhSi(SeBu) ₂	13.0	-109	140.9	2.8		135.1	133.9	128.0	130.2	21.8	34.2	0.93	7.71	7.33	2.553/2.541*	1.60
Ph ₂ SiCl(SeBu)	12.4	-60	156.2	Ι	Ι	133.0	134.45	128.2	131.0	22.0	33.9	Ι			2.55	1.52
Ph ₂ Si(SeBu) ₂	10.1	-109	144.6	Ι	Ι	133.8	134.9	128.05	130.4	22.4	34.0	Ι			2.58	1.54
PhSiCl ₂ (SeBu)	8.1	-9	183.7	Ι	Ι	132.9	133.5	128.4	132.1	23.6	33.7	Ι			2.75	1.68
PhSiCl(SeBu) ₂	12.9	-38	175.9	Ι	Ι	133.7	133.9	128.2	131.4	24.2	33.8	Ι			2.69	1.66
PhSi(SeBu) ₃	11.3	-80	163.3	Ι	Ι	134.0	134.3	128.0	130.7	24.0	33.9	Ι	7.81	7.37	2.63	1.63
U ¹ J _{SiC (SiPh)} : 69.0	$Hz, b)^{I}$	Jsic (sip	h): 70.9	$H_{z, l}^{l} J_{z}$	ec: 53.51	Hz, *: dia	istereoto	pe Wasse	erstoffate	оте						
U JAIC (APh). UZ.U			h). / U. /	114. 01		12,	10101 0010	De rrasse	$v_1 v_1 v_1 v_1 v_1 v_1 v_1 v_1 v_1 v_1 $	THE						

Tabelle 7.2.1. ¹H, ¹³C, ²⁹Si und ⁷⁷Se NMR Daten (Hz, ppm) selenobutylsubstituierter Monosilane

SIC (SIFN) SIC (SIPN) - DeC ç

 $Se \sim C^{3}H_{2} - C^{4}H_{3}$ bleiben relativ konstant: δ_{C} : 22.6 - 22.9 (C³) und 13.3 - 13.6 (C⁴), δ_{H} : 1.22 - 1.44 (C³H₂) und 0.75 - 0.93 (C⁴H₃).

Verbindung	δ_{Te}		$\delta_{\rm Si}$		$\delta_{\rm C}$								$\delta_{\rm H}$					
		${}^{1}J_{\text{TeC}}$		$^{1}\mathbf{J}_{SiTe}$	SiMe	${}^{1}\mathbf{J}_{SiC}$	Ph				TeBu		SiMe	SiPh			TeBu	
						SiMe	ipso	ortho	meta	para	\mathbf{C}^1	C^2		or tho	meta	para	$C^1 \underline{H}_2$	$C^2 \underline{H}_2$
Me ₃ Si(TeBu)	-327	128.0	-4.3	281.8	3.26	50.5	Ι	I	Ι	I	-3.66	35.72	0.565	I	I	I	2.45	1.68
$Me_2Si(TeBu)_2$	-277	134.6	-24.6	363.0	5.94		I	I	I	I	3.35	35.19	1.092	I	I	I	2.53	1.71
MeSi(TeBu) ₃	-193	139.0	-70.0	421.8	8.33		Ι	Ι	Ι	Ι	8.27	34.69	1.677	Ι	Ι	Ι	2.59	1.78
Si(TeBu) ₄	-97	142.8	-139.6	454.9	Ι	Ι	Ι	Ι	Ι	Ι	12.94	34.27	Ι	Ι	Ι	Ι	2.66	1.84
PhMe ₂ Si(TeBu)	-327	127.0	-8.6	296.9	1.84	52.0	137.3	133.85	127.95	129.7	-1.90	35.74	0.82	7.63	7.35	7.40	2.40	1.54
Ph ₂ MeSi(TeBu)	-352		-8.9	315.9	0.76	53.0	$135.3^{a)}$	134.9	127.95	129.8	-0.74	35.36	1.075	7.64	7.32	4.34	2.30	1.46
Ph ₃ Si(TeBu)	-366	124.2	-8.6	331.5	Ι	Ι	133.8	136.0	127.95	129.9	0.55	35.12	Ι	7.67	7.33	7.31	2.26	1.36
PhMeSi(TeBu) ₂	-287		-25.6	377.1	4.62			134.4	128.0	130.1	4.12	35.04	1.355	7.72	7.35	7.38	2.46	1.64
$Ph_2Si(TeBu)_2$	-308	131.1	-20.2	390.7	Ι	Ι	133.4	135.45	128.0	130.2	5.25	34.6	Ι	7.74	7.31	7.37	2.43	1.55
PhSi(TeBu) ₃	-215	137.3	-62.0	433.1	Ι	Ι	132.7	135.15	128.1	130.5	9.18	34.55	Ι	7.82	7.35	7.38	2.55	1.69
HMeSi(TeBu) ₂	-327		-55.5				Ι	Ι	Ι	Ι	3.77	35.16	$1.18^{b)}$	Ι	Ι	Ι	2.60	1.72
HSi(TeBu) ₃	-252		-109.2		Ι	Ι	Ι	Ι	Ι	Ι	8.43	34.71	_ c)	Ι	Ι	Ι	2.64	1.78
a) ${}^{I}J_{SiC}$: 68.5	<i>b</i>)	Si- <u>H</u> : 5.	$15 (^{\beta}J_{HH})$: 3.7)		c) S	<i>i</i> - <u>H</u> : 5.1	7 ($^{l}J_{SiH}$: .	232, ${}^{2}J_{Te}$	_H : 33.0)	-							

Tabelle 7.2.2. ¹H, ¹³C, ²⁹Si und ¹²⁵Te NMR Daten (Hz, ppm) tellurobutylsubstituierter Monosilane

 $Te \sim C^{3}H_{2} - C^{4}H_{3}$ bleiben relativ konstant: δ_{C} : 24.9 – 25.2 (C³) und 13.2 – 13.6 (C⁴), δ_{H} : 1.17 – 1.40 (C³H₂) und 0.71 – 0.92 (C⁴H₃).

Tabelle 7.2.3. Ergebnisse der multiplen linearen Regression der ¹H und ¹³C NMR Parameter in $Me_xPh_ySiCl_{4-x-y-z}(SeBu)_z$

 $\begin{aligned} Parameter &= A0 + A1 \cdot X_{Cl} + A2 \cdot X_{Se} + A3 \cdot X_{Ph} \\ X_{Cl} &= Anzahl \ an \ Chlorsubstituenten, \ X_{Se} = Anzahl \ an \ Selenobutyl substituenten \\ X_{Ph} &= Anzahl \ an \ Phenyl substituenten \end{aligned}$

Parameter	A0 (ppm)	A1 (ppm)	A2 (ppm)	A3 (ppm)	r	sd (ppm)
δ_{Se}	-139.4	61.1	26.2	-10.4	0.992	7.8
δ _C Si– <u>C</u> H ₃	-0.40	3.62	2.36	-1.30	0.991	0.49
$\delta_{\rm C}$ Se– <u>C</u> H ₂	16.35	2.43	2.40	0.56	0.993	0.29
$\delta_{\rm C}$ Se–CH ₂ – <u>C</u> H ₂	35.40	-0.53	-0.39	-0.29	0.974	0.098
$\delta_{\rm C}$ ipso (Ph)	139.38	-2.18	-1.28	-1.44	0.974	0.35
$\delta_{\rm C}$ ortho (Ph)	132.05	-0.06	0.41	1.06	0.995	0.11
$\delta_{\rm C}$ meta (Ph)	127.69	0.26	0.11	0.05	0.963	0.04
δ _C para (Ph)	128.84	1.24	0.57	0.19	0.999	0.05
$\delta_{\rm H}$ Si–C <u>H</u> ₃	0.015	0.349	0.354	0.244	0.996	0.03
$\delta_{\rm H}$ Se–C $\underline{\rm H}_2$	2.346	0.160	0.106	-0.026	0.977	0.04
¹ J _{SiSe}	88.5 Hz	35.05 Hz	23.5 Hz	3.6 Hz	0.999	1.4 Hz
¹ J _{SiC (Me)}	48.4 Hz	9.72 Hz	3.00 Hz	1.94 Hz	0.985	2.0 Hz

Tabelle 7.2.4. Ergebnisse der multiplen linearen Regression der ¹H und ¹³C NMR Parameter in $Me_xPh_ySiH_{4-x-y-z}(TeBu)_z$

 $\begin{aligned} Parameter &= A0 + A2 \cdot X_{Te} + A3 \cdot X_{Ph} + A4 \cdot X_{H} \\ X_{Te} &= Anzahl \ an \ Tellurobutyl substituenten \\ X_{Ph} &= Anzahl \ an \ Phenyl substituenten, \ X_{H} = Anzahl \ an \ Wasserstoff substituenten \end{aligned}$

Parameter	A0 (ppm)	A2 (ppm)	A3 (ppm)	A4 (ppm)	r	sd (ppm)
δ_{Te}	-399.6	69.8	-14.9	-64.4	0.986	15.3
$\delta_{\rm C}$ Si– <u>C</u> H ₃	0.23	2.77	-1.13	-	0.998	0.22
$\delta_{\rm C}$ Te– <u>C</u> H ₂	-8.41	5.47	1.21	0.84	0.996	0.52
$\delta_{\rm C}$ Te–CH ₂ – <u>C</u> H ₂	36.31	-0.53	-0.23	-0.06	0.979	0.11
$\delta_{\rm C}$ ipso (Ph)	141.17	-2.22	-1.74	_	0.998	0.15
$\delta_{\rm C} ortho (\rm Ph)$	132.14	0.62	1.07	-	0.998	0.07
$\delta_{\rm C}$ meta (Ph)	127.88	0.06	0.01	-	0.956	0.02
$\delta_{\rm C} para$ (Ph)	129.14	0.42	0.11	-	0.999	0.02
$\delta_{\rm H}$ Si–C $\underline{\rm H}_3$	0.002	0.554	0.258	0.070	0.9998	0.014
$\delta_{\rm H}$ Te–C $\underline{\rm H}_2$	2.380	0.073	-0.062	0.059	0.993	0.018
¹ J _{SiTe}	227.6 Hz	61.7 Hz	15.7 Hz	_	0.985	11.8 Hz
¹ J _{TeC}	123.66 Hz	4.98 Hz	-1.42 Hz	_	0.996	0.68 Hz

Abb. 7.2.2. ⁷⁷Se NMR chemische Verschiebungen in $Me_xPh_ySiCl_{4-x-y-z}(SeBu)_z$ als Funktion der Anzahl an Chlor-, Selenobutyl und Phenylsubstituenten; Vergleich der experimentellen Werte mit den Ergebnissen der multiplen linearen Regression (Tabelle 7.2.3.)

Abb. 7.2.2. Betrag der Kopplungskonstante ${}^{1}J_{SiSe}$ in $Me_{x}Ph_{y}SiCl_{4-x-y-z}(SeBu)_{z}$ als Funktion der Anzahl an Chlor-, Selenobutyl und Phenylsubstituenten; Vergleich der experimentellen Werte mit den Ergebnissen der multiplen linearen Regression (Tabelle 7.2.3.)

Abb. 7.2.4. Korrelation von δ_{Se} und δ_{Te} in analogen chalcogenobutylsubstituierten Silanen $Me_xPh_ySi(EBu)_{4-x-y}$ (E = Se, Te)

Abb. 7.2.5. Korrelation von ${}^{l}J_{SiSe}$ und ${}^{l}J_{SiTe}$ in analogen chalcogenobutylsubstituierten Silanen $Me_{x}Ph_{y}Si(EBu)_{4-x-y}$ (E =Se, Te)

Dagegen lassen sich die ²⁹Si NMR chemischen Verschiebungen seleno- und tellurobutylsubstituierter Silane nicht mit einfachen Regressionen beschreiben. Auch eine Regression analog zu den thiobutylsubstituierten Silanen, wie in Tabelle 7.1.3. und Abb. 7.1.3. dargestellt, führt zu keinen Ergebnissen. In allen Verbindungsreihen Me_{4-x}Si(EBu)_x ergibt sich eine parabelförmige Abhängigkeit der ²⁹Si NMR chemischen Verschiebung von x, wie das auch für Me_{4-x}SiX_x mit X = Halogen bereits bekannt ist (siehe Abb. 6.3.2.):

Abb. 7.2.6. Vergleich der ²⁹Si NMR chemischen Verschiebungen von thiobutyl-, selenobutyl und tellurobutylsubstituierten Monosilanen $Me_{4-x}Si(EBu)_x$

Wie man aus Abb. 7.2.6. entnehmen kann, ergeben sich für alle x Hochfeldverschiebungen für δ_{Si} , wenn man von E = S zu den schwereren Chalcogenen Selen und – in weit größerem Ausmaße – Tellur geht.

7.3. Thiobutyl- und selenobutylsubstituierte Oligosilane [702,704]

Reaktionen entsprechend Gl. 7.1.1. lassen sich auch auf Verbindungen mit Si–Si Bindungen übertragen. So reagiert Chlorpentamethyldisilan mit Thiobutanol und NEt₃ glatt zu Thiobutylpentamethyldisilan.

Bei der Reaktion von 1,2-Dichlortetramethyldisilan mit je einem Äquivalent BuSH und NEt₃ entsteht das Monosubstitutionsprodukt ClSiMe₂–SiMe₂SBu zu einem Anteil von 68 % neben äquimolaren Mengen des Ausgangsdisilans und dem Disubstitutionsprodukt BuSSiMe₂–SiMe₂SBu, welches auch rein durch Reaktion mit zwei Äquivalenten BuSH und NEt₃ erhältlich ist.

Die Reaktionen von 1,1,2-Trichlortrimethyldisilan und 1,1,2,2-Tetrachlordimethyldisilan mit BuSH und NEt₃ wurden detaillierter untersucht. In Abhängigkeit vom eingesetzten Molverhältnis Disilan : BuSH und NEt₃ ergeben sich Produktgemische, wie in den Abbn. 7.3.1. und 7.3.2. dargestellt. Dabei ist zu erkennen, dass bei SiCl₂Me–SiClMe₂ die Erstsubstitution bevorzugt an der –SiCl₂Me Gruppe stattfindet, das heißt, SiCl₂Me–SiMe₂SBu wird nur in relativ geringer Menge (< 5 %) gebildet.

Abb. 7.3.1. Produktspektrum der Reaktion von SiCl₂Me–SiClMe₂ mit HSBu / NEt₃ in Abhängigkeit vom eingesetzten Molverhältnis

Bei der Reaktion von SiCl₂Me–SiCl₂Me mit zwei Äquivalenten BuSH und NEt₃ dominiert das symmetrische Disubstitutionsprodukt SiClMe(SBu)–SiClMe(SBu), von dem es zwei Diastereomere gibt, eine achirale Mesoform und ein Enantiomerenpaar. Die beiden Diastereomere entstehen dabei in fast gleichen Mengen (52:48).

Abb. 7.3.2. Produktspektrum der Reaktion von SiCl₂Me–SiCl₂Me mit HSBu / NEt₃ in Abhängigkeit vom eingesetzten Molverhältnis

Überraschend verlief dagegen die Reaktion von Si₂Cl₆ mit HSBu und NEt₃: Statt der erwarteten thiobutylsubstituierten Disilane Si₂Cl_{6-x}(SBu)_x entstanden die (bereits aus 7.1. bekannten) thiobutylsubstituierten Monosilane SiCl_{4-x}(SBu)_x und HSiCl_{3-x}(SBu)_x.

Aus vorangegangenen Untersuchungen [508] war bekannt, dass Disilane mit SiCl₃ Gruppen sehr empfindlich gegen Amine sind und dabei leicht in ein Monosilan und ein LEWIS-Base-stabilisiertes Silylen zerfallen (siehe dazu auch Gleichungen 5.1.25 - 5.1.29).

Das so gebildete Silylen insertiert leicht in eine Si-Cl Bindung eines weiteren Disilans unter Bildung höherer Oligosilane.

In diesem Falle scheint das Silylen :SiCl₂ in die S–H Bindung des Thiobutanols insertiert zu sein, was die Bildung von Monosilanen mit einer Si–H Bindung erklärt:

Weitere Substitutionsreaktionen mit BuSH / NEt₃ führen dann zum beobachteten Produktgemisch. Auch durch Anwendung niedriger Temperaturen und Variation der Molverhältnisse der Edukte ließ sich diese Si–Si Bindungsspaltung nicht zurückdrängen.

Bei der Darstellung der entsprechenden Selenverbindungen ergab die Reaktion von Chlorpentamethyldisilan mit BuSeLi bei 0 °C in glatter Reaktion Selenobutylpentamethyldisilan, während die Reaktion von 1,2-Dichlortetramethyldisilan mit einem Äquivalent BuSeLi das Monosubstitutionsprodukt SiClMe₂–SiMe₂(SeBu) zu 45 Mol-% neben SiClMe₂–SiClMe₂ und SiMe₂(SeBu)–SiMe₂(SeBu) lieferte. Die Produktzusammensetzungen der Reaktion von SiCl₂Me–SiCl₂Me mit BuSeLi in verschiedenen Molverhältnissen sind in Abb. 7.3.3. dargestellt.

Abb. 7.3.3. Produktspektrum der Reaktion von SiCl₂Me–SiCl₂Me mit BuSeLi in Abhängigkeit vom eingesetzten Molverhältnis

Zum Vergleich wurde SiCl₂Me–SiCl₂Me mit zwei Äquivalenten BuSeH und NEt₃ umgesetzt, was ein Produktgemisch aus 2 Mol-% SiCl₂Me–SiCl₂Me, 21 Mol-% SiClMe(SeBu)– SiCl₂Me, 29 Mol-% SiClMe(SeBu)–SiClMe(SeBu) (beide Diastereomere), 28 Mol-% SiMe(SeBu)₂–SiCl₂Me, 17 Mol-% SiMe(SeBu)₂–SiClMe(SeBu) und 4 Mol-% SiMe(SeBu)₂– SiMe(SeBu)₂ ergab. Das heißt, wie bei den Monosilanen, liefert auch hier die Reaktion mit BuSeH / NEt₃ größere Anteile an partiell substituierten Produkten als die Umsetzung mit BuSeLi, obwohl die Lösung von BuSeLi langsam und unter Rühren zur Lösung des Disilans getropft wurde.

Analoge Reaktionen von Methylchlordisilanen mit Lösungen von BuTeLi führten nur im Falle von SiClMe₂–SiClMe₂ zur Detektion eines tellurobutylsubstituierten Disilans, SiMe₂(TeBu)–SiMe₂(TeBu) (δ_{Te} : –352 ppm, δ_{Si} : –26.0 ppm, ¹J_{SiTe}: 307.6 Hz, ²J_{SiTe}: 33.0 Hz, $\delta_{C (SiMe_2)}$: –1.2 ppm) [705], allerdings neben weiteren, nicht identifizierbaren Produkten. In allen anderen Fällen trat ein komplexes Produktgemisch auf, das mittels NMR-Spektroskopie nicht charakterisierbar war.

Um die Auswirkungen sterisch anspruchsvollerer Alkylreste am Thiol auszutesten, wurden SiClMe₂–SiClMe₂ und SiCl₂Me–SiCl₂Me auch mit *tert*-Butylthiol und NEt₃ umgesetzt. Während in ersterem Falle lediglich längere Reaktionszeiten zur vollständigen Substitution nötig waren, gelang im zweiten Falle auch nach einem Tag Reaktionszeit mit vier Äquivalenten ^tBuSH und NEt₃ nur eine partielle Substitution zu einem Gemisch aus 71 Mol-% SiClMe(S^tBu)–SiClMe(S^tBu) (beide Diastereomere in einem Verhältnis von 56:44) neben 15 Mol-% SiCl₂Me–SiClMe(S^tBu) und 14 Mol-% SiMe(S^tBu)₂–SiClMe(S^tBu). Das vollständig substituierte Produkt SiMe(S^tBu)₂–SiMe(S^tBu)₂ konnte jedoch durch anschließende Reaktion des Produktgemisches mit LiS^tBu in THF erhalten werden.

Die NMR Daten aller synthetisierten Thiobutyl- und selenobutylsubstituierten Disilane sowie der Methylchlordisilane sind in den Tabellen 7.3.1. und 7.3.2. zusammengestellt.

Verbindung	$\delta_{\rm Si}$		$^{1}\mathbf{J}_{\mathbf{SiSi}}$	$^{1}J_{SiC}$		δ_{C}		$\delta_{\rm H}$	
	Si ^A	Si ^B	Si ^A Si ^B	Si ^A C	Si ^B C	Si ^A Me	Si ^B Me	Si ^A Me	Si ^B Me
SiMe ₃ -SiMe ₃	-19.8	-		43.3	-	-2.5	-	0.04	_
Si ^A Me ₂ Cl–Si ^B Me ₃	22.9	-18.2	94.0	44.8	46.1	2.0	-3.0	0.47	0.16
Si ^A Me ₂ (SBu)–Si ^B Me ₃	-1.0	-18.1	87.0	43.8	44.7	-1.2	-1.9	0.32	0.13
SiMe ₂ Cl–SiMe ₂ Cl	17.4	_		48.8	-	1.5	-	0.56	_
Si ^A Me ₂ (SBu)–Si ^B Me ₂ Cl	-2.7	20.2	99.6	46.7	46.7	-1.8	2.2	0.40	0.53
SiMe ₂ (SBu)–SiMe ₂ (SBu)	-1.6	-		46.0	-	-0.9	-	0.38	-
Si ^A Cl ₂ Me–Si ^B Me ₃	34.3	-13.9						0.81	0.28
Si ^A Cl ₂ Me–Si ^B ClMe ₂	24.7	15.0	127.0	54.0	52.0	5.8	0.8	0.93	0.66
Si ^A ClMe(SBu)–Si ^B ClMe ₂	20.1	16.7	116.6	51.5	50.5	2.5	1.8	0.77	0.61
Si ^A Me(SBu) ₂ –Si ^B ClMe ₂	8.3	18.6	105.5	49.0	49.1	-0.8	2.7	0.62	0.57
Si ^A Cl ₂ Me–Si ^B Me ₂ (SBu)	28.4	-1.4				6.7	-2.2	0.81	0.51
Si ^A ClMe(SBu)–Si ^B Me ₂ (SBu)	23.1	-1.2	105.0		47.2	3.3	-1.2	0.75	0.48
Si ^A Me(SBu) ₂ -Si ^B Me ₂ (SBu)	10.3	-0.8	99.5	48.1	47.1	-0.1	-0.4	0.60	0.45
SiCl ₂ Me–SiCl ₂ Me	17.6	_		57.5	_	5.1	_	0.98	_
Si ^A ClMe(SBu)–Si ^B Cl ₂ Me	15.8	20.8	141.5	55.0	55.9	2.1	6.4	0.84	0.94
Si ^A Me(SBu) ₂ –Si ^B Cl ₂ Me	6.9	24.1	125.9	51.1	53.5	-0.8	7.2	0.69	0.90
SiClMe(SBu)-SiClMe(SBu) A	17.8	-		52.7		3.2	I	0.82	-
SiClMe(SBu)–SiClMe(SBu) B	18.3	_		53.5	_	3.0	_	0.82	_
Si ^A Me(SBu) ₂ –Si ^B ClMe(SBu)	8.0	20.3	115.2	50.3	51.0	-0.1	3.8	0.66	0.78
SiMe(SBu) ₂ -SiMe(SBu) ₂	9.1	_		49.1	_	0.4	_	0.63	_
Si ^A Me ₂ (S ^t Bu)–Si ^B Me ₂ Cl	-8.1	21.5	100.4	47.1	47.5	0.2	2.1	0.53	0.53
SiMe ₂ (S ^t Bu)–SiMe ₂ (S ^t Bu)	-6.1	_		45.8	I	1.1	I	0.51	-
Si ^A ClMe(S ^t Bu)–Si ^B Cl ₂ Me	9.6	21.5	141.2	55.2	55.8	4.1	6.0	0.92	0.94
Si ^A Me(S ^t Bu) ₂ -Si ^B Cl ₂ Me	-4.3	24.9	124.4	51.5	53.9	2.2	7.0	0.84	0.90
SiClMe(S ^t Bu)–SiClMe(S ^t Bu) A	12.3	_		54.0	I	5.2	I	0.91	-
SiClMe(S ^t Bu)–SiClMe(S ^t Bu) B	12.7	_		55.2	-	5.0	-	0.91	_
Si ^A Me(S ^t Bu) ₂ -Si ^B ClMe(S ^t Bu)	-2.6	15.4				3.0	6.0	0.81	0.90
SiMe(S ^t Bu) ₂ -SiMe(S ^t Bu) ₂	0.1	_		49.1	-	4.0	-	0.80	_
$Si^{A}Cl_{3}-Si^{B}Me_{3}$ [508]	17.5	-7.2	115.7	_	49.2	_		_	0.40
Si ^A Cl ₃ –Si ^B ClMe ₂ [508]	7.8	15.7	150.6	_		_		_	0.76
Si ^A Cl ₃ –Si ^B Cl ₂ Me [508]	-0.2	14.0	245.6	—		_		_	1.10

Tabelle 7.3.1. ¹H, ¹³C und ²⁹Si NMR Daten (Hz, ppm) thiobutylsubstituierter Disilane und von Methylchlordisilanen (¹H und ¹³C NMR Daten der Thiobutylsubstituenten siehe in [702])

a) diastereotope SeBu Gruppen

	0.87	I	1.2	16.0	154.1	-106		45.2		I	-1.1	SiMe(SeBu)2-SiMe(SeBu)2
				12.0	153.6	B: -113.7/ -114.0 ^{a)}						
		0.6	4.5	17.7	168.1	A: -35			104.0	-2.1	15.3	${ m Si}^{ m A}{ m MeCl}({ m SeBu}){ m -}{ m Si}^{ m B}{ m Me}({ m SeBu})_2$
		-0.25	6.8	20.4	154.5	-123			118.1	-3.9	22.4	$Si^AMeCl_2 - Si^BMe(SeBu)_2$
Ι		Ι	3.8	14.1	166.7	-46.7	I			Ι	14.0	SiMeCl(SeBu)-SiMeCl(SeBu) B
Ι		Ι	3.7	14.6	168.1	-45.9	I			Ι	13.7	SiMeCl(SeBu)-SiMeCl(SeBu) A
		2.8	6.1		168.6	-60			135.6	11.7	20.4	Si ^A MeCl ₂ –Si ^B MeCl(SeBu)
0.02	0.27	0.7	V. I	14.1	150.6	B: -113			ر.ر	0.0	0.0	טו זערע(אראט) אורע
C8 U	0 22	7 0	∟0 1	1ና ና	174 9	$\Lambda \cdot -110$			r r0	8 0	- 6 U	SiAMer(SeRin)_SiBMe(SeRin)
0.84	0.60	-0.2	2.6	17.0	150.2	-122			100.6	-1.4	18.6	$Si^AMe_2Cl-Si^BMe(SeBu)_2$
Ι	0.51	Ι	-0.8	15.1	122.2	-125	Ι	44.7		I	-6.7	SiMe ₂ (SeBu)–SiMe ₂ (SeBu)
0.52	0.54	-1.8	1.2	16.0	121.5	-136	45.2	41.8	97.2	-8.3	20.0	$Si^AMe_2Cl-Si^BMe_2SeBu$
0.43	0.14	-1.1	-2.15	14.6	119.5	-128	42.8	45.2	86.1	-5.6	-17.5	$Si^AMe_3-Si^BMe_2SeBu$
0.47	0.16	2.0	-3.0	Ι	Ι	Ι	44.8	46.1	94.0	22.9	-18.2	Si ^A Me ₃ -Si ^B Me ₂ Cl
Si ^B Me	$\mathrm{Si}^{\mathrm{A}}\mathrm{Me}$	$\mathrm{Si}^{\mathrm{B}}\mathrm{Me}$	$\mathrm{Si}^{\mathrm{A}}\mathrm{Me}$				$\mathrm{Si}^{\mathrm{B}}\mathrm{Me}$	$\mathrm{Si}^\mathrm{A}\mathrm{Me}$	$Si^{A}Si^{B}$	Si^B	Si^{A}	
	$\delta_{\rm H}$		$\delta_{\rm C}$	$^{2}J_{\mathrm{SiSe}}$	$^{1}\mathbf{J}_{SiSe}$	δ_{Se}		$^{1}J_{SiC}$	${}^{1}\mathbf{J}_{SiSi}$		$\delta_{\rm Si}$	Verbindung

Tabelle 7.3.2. ¹H, ¹³C, ²⁹Si und ⁷⁷Se NMR Daten (Hz, ppm) selenobutylsubstituierter Disilane

Auch im Falle der Disilane wurde versucht, Korrelationen zwischen den NMR Parametern und dem Substitutionsmuster zu finden. So ergaben sich lineare Abhängigkeiten der ⁷⁷Se, ¹H und ¹³C NMR chemischen Verschiebungen sowie der Kopplungskonstanten ¹J_{SiC}, ¹J_{SiSe} und ²J_{SiSe} von der Anzahl an Chlor- und Chalcogenobutylsubstituenten, wobei man aber zwischen den Substituenten am gleichen (Si¹) und am benachbarten Siliciumatom (Si²) zu unterscheiden hat. Wie man aus den Tabellen 7.3.3. und 7.3.4. entnehmen kann, haben im Falle von $\delta_{\rm H}$ Si-C<u>H</u>₃ die Substituenten am Nachbar-Siliciumatom etwa ¹/₄ des Effektes der Substituenten am gleichen Siliciumatom.

Tabelle 7.3.3. Ergebnisse der multiplen linearen Regressionen von NMR-Parametern in thio-
butylsubstiuierten Disilanen Si2MexCl6-x-y(SBu)y

 $Parameter = A0 + A1 \cdot X_{Cl1} + A2 \cdot X_{Cl2} + A3 \cdot X_{S1} + A4 \cdot X_{S2}$

 $X_{Cl1} = Anzahl$ an Chlorsubstituenten an Si¹, $X_{Cl2} = Anzahl$ an Chlorsubstituenten an Si², $X_{S1} = Anzahl$ an Thiobutylsubstituenten an Si¹, $X_{S2} = Anzahl$ an Thiobutylsubstituenten an Si²

Parameter	A0 (ppm)	A1 (ppm)	A2 (ppm)	A3 (ppm)	A4 (ppm)	r	sd (ppm)
$\delta_{\rm H} Si$ -C $\underline{\rm H}_3$	0.090	0.357	0.094	0.220	0.059	0.996	0.024
$\delta_{\rm C}$ Si- <u>C</u> H ₃	-2.46	4.33	-0.42	1.09	0.45	0.999	0.14
¹ J _{SiC}	42.2 Hz	4.22 Hz	3.04 Hz	1.85 Hz	1.48 Hz	0.981	0.78 Hz

Tabelle 7.3.4. Ergebnisse der multiplen linearen Regressionen von NMR-Parametern in selenobutylsubstiuierten Disilanen Si₂Me_xCl_{6-x-y}(SeBu)_y

 $Parameter = A0 + A1 \cdot X_{Cl1} + A2 \cdot X_{Cl2} + A3 \cdot X_{Se1} + A4 \cdot X_{Se2}$

 $X_{Cl1} = Anzahl$ an Chlorsubstituenten an Si¹, $X_{Cl2} = Anzahl$ an Chlorsubstituenten an Si², $X_{S1} = Anzahl$ an Thiobutylsubstituenten an Si¹, $X_{S2} = Anzahl$ an Thiobutylsubstituenten an Si²

Parameter	A0 (ppm)	A1 (ppm)	A2 (ppm)	A3 (ppm)	A4 (ppm)	r	sd (ppm)
$\delta_{\rm H} \operatorname{Si-CH}_3$	0.081	0.371	0.095	0.334	0.073	0.998	0.021
$\delta_{\rm C} \operatorname{Si-}{\underline{C}}{\rm H}_3$	-2.71	4.36	-0.33	1.56	0.47	0.995	0.31
δ_{Se}	-143.9	81.8	-4.4	13.5	5.9	0.999	2.18
¹ J _{SiSe}	90.3 Hz	42.9 Hz	3.14 Hz	28.7 Hz	3.0 Hz	0.9997	0.56 Hz
² J _{SiSe}	13.15 Hz	2.20 Hz	-2.42 Hz	0.13 Hz	1.16 Hz	0.980	0.56 Hz

Erwartungsgemäß ergeben sich in beiden Tabellen etwa gleiche Koeffizienten für den Einfluss von Chlorsubstiuenten auf δ_H und δ_C der Si–Me Gruppen. Wie in den Monosilanen verursachen Selenobutylsubstituenten eine stärkere Tieffeldverschiebung von δ_H und δ_C der Si–Me Gruppen als Thiobutylsubstituenten.

Auch die Kopplungskonstante ${}^{1}J_{SiSi}$ steigt mit der Einführung von Chlorsubstituenten und – aufgrund der niedrigeren Elektronegativitäten in geringerem Maße – mit der Anzahl an Thiobutyl bzw. Selenobutylsubstituenten an. Allerdings ist dieser Anstieg für eine größere Anzahl elektronegativer Substituenten nicht mehr linear, so dass ein quadratisches Glied in die Regression mit einbezogen werden musste. Die besten Korrelationen für maximal vier Chlorsubstituenten ergaben sich mit den folgenden Ansätzen:

für thiobutylsubstituierte Disilane (r = 0.997, *sd* = 1.47 Hz):

$$^{1}J_{SiSi} / Hz = 83.32 + 5.58 \cdot X + 3.013 \cdot X^{2} \text{ mit } X = X_{Cl} + \frac{1}{2} X_{S}$$
 (7.3.3)

für selenobutylsubstituierte Disilane (r = 0.998, sd = 1.62 Hz):

$${}^{1}J_{SiSi} / Hz = 81.3 + 10.7 \cdot X_{Cl} + 1.73 \cdot X_{Cl}^{2} + 3.9 \cdot X_{Se}$$
 (7.3.4)

Dagegen konnte keine einfache Methode zur Korrelation der ²⁹Si chemischen Verschiebung mit dem Substitutionsmuster gefunden werden. Es kann nur qualitativ festgestellt werden, dass der Austausch eines Chlor- durch einen Thiobutyl- oder Selenobutylsubstituenten mit einer Hochfeldverschiebung des betroffenen Siliciumatoms von mehreren ppm verbunden ist und ein entgegengesetzter, aber kleinerer Effekt für das benachbarte Siliciumatom beobachtet wird (Ausnahme: SiMe₃ Gruppen).

Schließlich wurden auch von höheren Oligosilanen mit 3 bis 6 Siliciumatomen eine Reihe von thiobutylsubstituierten Derivaten durch Reaktion mit HSBu und NEt₃ dargestellt. In die Untersuchungen wurden auch einige Carbosilane (CH₂(SiMe₂Cl)₂, CH(SiMe₂Cl)₃) sowie das Chlorsiloxan O(SiMe₂Cl)₂ mit einbezogen, um auch hier Vergleichs-NMR-Daten acyclischer Verbindungen zu gewinnen, siehe Tabelle 7.3.5.

Bei der Reaktion von 1,2,3-Trichlorpentamethyltrisilan mit HSBu und NEt₃ bzw. HSeBu und NEt₃ besteht die Möglichkeit einer Erstsubstitution eines terminalen oder eines mittelständigen Chlorsubstituenten. Verschiedene Reaktionen dieses Trisilans haben schon unterschiedliche Ergebnisse geliefert, so erfolgt die Hydrierung mit Me₃SnH in Gegenwart einer LEWIS-Base selektiv zuerst am mittelständigen Chlorsubstituenten [569], während bei der Reaktion mit HNEt₂ die terminalen Siliciumatome zuerst aminiert werden [594], und in der Alkoxylierungsreaktion mit HC(OMe)₃ in Gegenwart von AlCl₃ wird der Chlorsubstituent am mittleren Siliciumatom überhaupt nicht angegeriffen [706].

Die NMR-Spektren der Reaktionsprodukte von SiClMe $(SiClMe_2)_2$ mit einem Äquivalent HEBu und NEt₃ (E = S, Se) zeigen eindeutig, dass zuerst der Chlorsubstituent am mittleren Siliciumatom durch eine Chalcogenobutylgruppe ersetzt wird:

Auch bei den Reaktionen einer Reihe weiterer Oligosilane mit Thiobutanol und Triethylamin wurden partielle Substitutionsprodukte charakterisiert (siehe Tab. 7.3.5 und 7.3.6.), z. B.:

Habilitation Uwe Herzog

Verbindung	δ_{Si}	$^{1}J_{SiSi}$	$\delta_{\rm C}{}^{a)}$	$^{1}J_{SiC}$	$\delta_{\rm H}{}^{a)}$
(Si ^A ClMe ₂) ₂ Si ^B Me ₂	A: 25.55 B: -43.84	81.0	3.00 -7.67	46.7 41.3	0.553 0.275
(Si ^A Me ₂ SBu) ₂ Si ^B Me ₂	A: 2.11 B: -44.49	75.8	-0.15 -6.16	43.6 40.1	0.406 0.235
(Si ^A ClMe ₂) ₂ Si ^B ClMe	A: 19.83 B: -0.58	89.3	1.88 / 2.55 ^{b)} -2.22		0.645 / 0.652 0.714
(Si ^A ClMe ₂) ₂ Si ^B MeSBu	A: 22.53 B: -26.99	84.4	3.15 / 3.40 ^{b)} -5.73		0.617 0.216
Si ^A ClMe ₂ –Si ^B MeSBu–Si ^C Me ₂ SBu	A: 23.20 B: -25.87 C: 0.92		3.34 / 3.59 ^{b)} -4.96 0.15 / 0.18 ^{b)}		0.611 / 0.618 0.216 0.480 / 0.484
(Si ^A Me ₂ SBu) ₂ Si ^B MeSBu	A: 1.31 B: -24.63	76.3	0.18 / 0.31 ^{b)} -4.15		0.478 0.204
(Si ^A Me ₃) ₂ Si ^B Cl ₂	A: -11.14 B: 34.59	75.3	-3.02	47.9 _	0.261
(Si ^A Me ₃) ₂ Si ^B ClSBu	A: -11.65 B: 17.73	75.3	-1.52	47.8 -	0.257
(Si ^A Me ₃) ₂ Si ^B (SBu) ₂	A: -12.62 B: -6.43	73.0	-0.34	46.1 -	0.236
(Si ^A Cl ₂ Me) ₂ Si ^B Me ₂	A: 32.74 B: -35.59	95.7	7.83 -7.77	52.1 41.4	0.955 0.450
[Si ^A Me(SBu) ₂] ₂ Si ^B Me ₂	A: 14.27 B: -38.98	80.0	0.80 4.72	41.4	0.657 0.355
CH ₂ (SiMe ₂ Cl) ₂	28.52	_	4.3 CH ₂ : 10.9	58.3 49.1	0.509 0.580
CH ₂ (SiMe ₂ SBu) ₂	14.76	_	2.05 CH ₂ : 6.10	53.7 46.8	0.371 0.332
O(SiClMe ₂) ₂	7.16	_	3.92	72.2	0.498
Si ^A ClMe ₂ –O–Si ^B Me ₂ SBu	A: 5.39 B: 10.25	71.5 66.4	4.08 2.07	_	0.476 0.406
O(SiMe ₂ SBu) ₂	8.13	_	2.29	_	0.381

Tabelle 7.3.5. ¹*H*, ¹³*C* und ²⁹*Si* NMR-Daten (Hz, ppm) thiobutylsubstituierter Oligosilane $(Si_3 - Si_6)$ und verwandter Verbindungen sowie der eingesetzten chlorsubstituierten Derivate

(Fortsetzung siehe nächste Seite)

Tabelle 7.3.5. (Fortsetzung)

Verbindung	δ_{Si}	$^{1}J_{SiSi}$	$\delta_{C}^{a)}$	$^{1}J_{SiC}$	$\delta_{\rm H}{}^{a)}$
HC(SiMe ₃) ₃	-0.40		3.53 CH: 4.17	50.6 37.5	0.266 -0.623
HC(SiClMe ₂) ₃	26.38		6.14 CH: 15.69	60.2 39.5	0.664 0.713
HC(Si ^A ClMe ₂) ₂ (Si ^B Me ₂ SBu)	A: 26.95 B: 12.70	_	6.62 / 6.54 ^{b)} 3.48		0.652 0.542
HC(Si ^A ClMe ₂)(Si ^B Me ₂ SBu) ₂	A: 27.66 B: 13.34	_	6.95 3.88 / 3.86 ^{b)}		0.642 0.531
HC(SiMe ₂ SBu) ₃	13.99	_	4.30	55.2	0.520
[-Si ^A Me ₂ -Si ^B ClMe ₂] ₂	A: -42.76 B: 26.98	78.7	-6.34 3.22	40.3 45.7	0.264 0.527
[-Si ^A Me ₂ -Si ^B Me ₂ SBu] ₂	A: -42.59 B: 2.83	74.0	-5.46 0.01	40.7 43.0	0.240 0.390
[-CH ₂ -SiClMe ₂] ₂	32.73	_	0.95 CH ₂ : 10.59	56.7 59.0	0.411 0.818
[-CH ₂ -SiMe ₂ SBu] ₂	18.61	_	-1.68 CH ₂ : 8.97	53.2 53.7	0.276 0.729
[-Si ^A Me(Si ^B Me ₃) ₂] ₂	A: -81.78 B: -11.69	63.1	-9.82 0.98	44.2	0.014 0.141
[-Si ^A Me(Si ^B ClMe ₂) ₂] ₂	A: -73.78 B: 28.31	68.6	-10.33 5.10	36.0 46.8	0.450 0.678
[-Si ^A Me(Si ^B Me ₂ SBu) ₂] ₂	A: -74.71 B: 5.70	64.6	-8.44 2.22	44.7	0.400 0.545

a) Auf die Wiedergabe der NMR Daten der Thiobutylsubstituenten wurde aus Platzgründen verzichtet.

b) diastereotope Methylgruppen

Die Reaktion von MeSi(SiClMe₂)₃ mit einem bzw. zwei Äquivalenten BuSH und NEt₃ entsprechend Gl. 7.3.7 lieferte das einfach bzw. zweifach thiobutylsubstituierte Isotetrasilan in etwa 57 % Anteil neben den anderen Substitutionsprodukten.

Verbindung	δ_{Si}	$^{1}J_{SiC}$	$^{1}J_{SiSi}$	$\delta_{C}^{a)}$	$\delta_{\rm H}{}^{a)}$
Si ^A Me(Si ^B Me ₃) ₃	A: -87.9 B: -12.8	43.7	_ 61.8	-13.6 0.3	0.05 0.14
Si ^A Me(Si ^B Me ₃) ₂ (Si ^C ClMe ₂)	A: -83.6 B: -12.7 C: 30.6		_	-13.5 0.1 5.0	0.15 0.19 0.54
Si ^A Me(Si ^B Me ₃)(Si ^C ClMe ₂) ₂	A: -79.8 B: -12.6 C: 28.7	47.5	- 54.0 66.8	-13.45 -0.1 4.75 / 4.80	0.25 0.24 0.59
Si ^A Me(Si ^B ClMe ₂) ₃	A: -76.2 B: 27.1	37.4 48.3	_ 68.8	-13.4 4.6	0.36 0.65
Si ^A Me(Si ^B Me ₃) ₂ (Si ^C Me ₂ SBu)	A: -85.0 B: -12.4 C: 5.5		_	-12.8 0.3 1.5	0.13 0.18 0.42
Si ^A Me(Si ^B Me ₃)(Si ^C ClMe ₂)(Si ^D Me ₂ SBu)	A: -80.9 B: -12.3 C: 29.9 D: 4.2		_	-12.8 0.1 5.04 / 5.07 1.33 / 1.36	0.24 0.23 0.59 0.46
Si ^A Me(Si ^B Me ₃)(Si ^C Me ₂ SBu) ₂	A: -82.1 B: -12.1 C: 5.1		_	-12.2 0.35 1.52 / 1.57	0.21 0.22 0.46
Si ^A Me(Si ^B ClMe ₂) ₂ (Si ^C Me ₂ SBu)	A: -77.3 B: 28.2 C: 3.4	48.8 44.1	- 65.7 65.1	-12.8 4.8 1.15	0.33 0.64 0.51
Si ^A Me(Si ^B ClMe ₂)(Si ^C Me ₂ SBu) ₂	A: -78.4 B: 29.2 C: 4.1	46.1	- 65.2 63.1	-12.1 5.0 1.35	0.31 0.64 0.51
Si ^A Me(Si ^B Me ₂ SBu) ₃	A: -79.4 B: 4.8	45.8	62.8	-11.5 1.55	0.29 0.50

Tabelle 7.3.6. NMR-Daten (Hz, ppm) der Isotetrasilane SiMe(SiXMe₂)₃, X = Me, Cl, SBu

a) Auf die Wiedergabe der NMR Daten der Thiobutylsubstituenten wurde aus Platzgründen verzichtet.

Die Reaktion des Isotetrasilans MeSi(SiCl₂Me)₃ führt auch mit einem Überschuss an HSBu und NEt₃ ausschließlich zum fünffach thiobutylsubstituierten Produkt SiMe(SiClMeSBu)[SiMe(SBu)₂]₂ mit einem verbliebenen Chlorsubstituenten. Das sechsfach thiobutylsubstituierte Produkt SiMe[SiMe(SBu)₂]₃ ist aber durch anschließende Reaktion mit einem Äquivalent BuSLi erhältlich:

Bei der Reaktion von MeSi(SiCl₂Me)₃ mit 1 – 4 Äquivalenten HSBu und NEt₃ entstehen komplexe Produktgemische, siehe auch Abb. 7.3.4., deren Charakterisierung durch NMR-Spektroskopie sich dadurch weiter verkompliziert, dass einige partiell substituierte Verbindungen als Gemisch von Diastereomeren auftreten bzw. diastereotope Silylgruppen besitzen, siehe Schema 7.3.1. Die NMR Daten dieser Verbindungen einschließlich der relativen Anteile der einzelnen Diastereomeren sind in Tabellen 7.3.7. und 7.3.8. wiedergegeben.

Abb. 7.3.4. Produktspektrum der Reaktion von SiMe(SiCl₂Me)₃ mit HSBu / NEt₃ in Abhänigkeit vom eingesetzten Molverhältnis

Die Reaktion von SiMe(SiCl₂Me)₃ mit dem sterisch anspruchsvolleren *tert*-Butylthiol (HS^tBu) und NEt₃ führte lediglich zum schrittweisen Ersatz eines Chlorsubstituenten in jeder SiCl₂Me Einheit, mit drei oder mehr Äquivalenten HS^tBu / NEt₃ erhält man ausschließlich MeSi(SiClMeS^tBu)₃ (als Gemisch der beiden Diastereomeren). Bei den Verbindungen MeSi(SiClMeSR)₃ (R = *n*-Bu, *t*-Bu) ist eine eindeutige Zuordnung der ²⁹Si NMR Signale der beiden Diastereomere leicht möglich, da eines der beiden C₃-symmetrisch ist und damit nur ein Signal für die drei terminalen Silylgruppen aufweist. Diese symmetrischen Isomere werden hier nur zu einem Anteil von 22 bzw. 23 % (bezogen auf den Gesamtgehalt an MeSi(SiClMeSR)₃, R = *n*-Bu, *t*-Bu) gebildet, siehe Tabelle 7.3.7.

Schema 7.3.1.

Übersicht über alle Stereoisomere der Isotetrasilane MeSi(Si X_2 Me)₃, X = Cl, SBu

Verbindung	i. a.	^t <u>Si</u> Me	<u>Si</u> Cl ₂ Me	<u>Si</u> ClMeSBu	SiMe(SBu) ₂
SiMe(SiCl ₂ Me) ₃	_	-63.52 ^{a)}	30.79 ^{b)}	_	_
SiMe(SiCl ₂ Me) ₂ (SiClMeSBu)	_	-64.78	32.13/32.09#	24.54	_
SiMe(SiCl ₂ Me) ₂ (SiMe(SBu) ₂)	-	-65.41	33.40	_	12.04
SiMe(SiCl ₂ Me)(SiClMeSBu) ₂ A	65 %	-66.15	33.44	25.78	_
SiMe(SiCl ₂ Me)(SiClMeSBu) ₂ B	35 %	-66.04	33.36	25.71	—
SiMe(SiCl ₂ Me)(SiClMeSBu) (SiMe(SBu) ₂) A	53 %	-66.75	34.67	26.93	12.98
SiMe(SiCl ₂ Me)(SiClMeSBu) (SiMe(SBu) ₂) B	47 %	-66.86	34.64	26.87	12.96
SiMe(SiClMeSBu) ₃ A	22 %	-67.58	_	26.97	_
SiMe(SiClMeSBu) ₃ B	78 %	-67.51	_	27.05/27.01 /26.98 [#]	_
SiMe(SiCl ₂ Me)(SiMe(SBu) ₂) ₂	_	-67.26	35.82	_	13.82
SiMe(SiClMeSBu) ₂ (SiMe(SBu) ₂) A	47 %	-68.27	_	28.13	13.92
SiMe(SiClMeSBu) ₂ (SiMe(SBu) ₂) B	29 %	-68.16	_	28.19	13.90
SiMe(SiClMeSBu) ₂ (SiMe(SBu) ₂) C	23 %	-68.27	_	28.09	13.90
SiMe(SiClMeSBu)(SiMe(SBu) ₂) ₂	_	-68.73	_	29.22	14.75
SiMe(SiMe(SBu) ₂) ₃	_	-69.00°	_	_	15.51 ^{d)}
SiMe(SiCl ₂ Me) ₂ (SiClMeS ^t Bu)	_	-64.35	32.44/32.32#	18.68	—
SiMe(SiCl ₂ Me)(SiClMeS ^t Bu) ₂ A	47 %	-65.28	33.89	20.27	_
SiMe(SiCl ₂ Me)(SiClMeS ^t Bu) ₂ B	28 %	-64.88	33.65	20.44	_
SiMe(SiCl ₂ Me)(SiClMeS ^t Bu) ₂ C	25 %	-65.19	34.08	20.13	_
SiMe(SiClMeS ^t Bu) ₃ A	23 %	-66.24	_	21.85	_
SiMe(SiClMeS ^t Bu) ₃ B	77 %	-65.78	-	22.04/21.87 /21.59 [#]	-

Tabelle 7.3.7. ²⁹Si NMR chem. Versch. der Isotetrasilane SiMe(SiX₂Me)₃, X = Cl, SBu, S^tBu

[#]: diastereotope Silylgruppen; i.a.: Anteil des jeweiligen Isomers (A, B, C)

Für SiMe(SiCl₂Me)(SiClMeSBu)₂ können nur zwei der drei theoretisch möglichen Isomere NMR-spektroskopisch unterschieden werden.

a) ${}^{1}J_{SiC}$: 40.1 Hz, ${}^{1}J_{SiSi}$: 86.4 Hz; b) ${}^{1}J_{SiC}$: 56.0 Hz; c) ${}^{1}J_{SiC}$: 37.3 Hz, ${}^{1}J_{SiSi}$: 68.2 Hz; d) ${}^{1}J_{SiC}$: 47.8 Hz

Verbindung	δ_{C}				$\delta_{\rm H}$			
	^t SiMe	SiCl ₂ Me	SiClMe SBu	SiMe (SBu) ₂	^t SiMe	SiCl ₂ Me	SiClMe SBu	SiMe (SBu) ₂
SiMe(SiCl ₂ Me) ₃	-12.35	9.22	_	_	0.603	1.163	_	_
SiMe(SiCl ₂ Me) ₂ (SiClMeSBu)	-11.84	9.44	5.57	-	0.579	1.157	1.054	_
SiMe(SiCl ₂ Me) ₂ (SiMe(SBu) ₂)	-11.12	9.67	_	1.92	0.551		_	0.894
SiMe(SiCl ₂ Me)(SiClMeSBu) ₂	-11.32	9.67	5.77	_	0.558	1.151		_
SiMe(SiCl ₂ Me)(SiClMeSBu) (SiMe(SBu) ₂)	A: -10.61 B: -10.67	9.91 9.89	5.94	2.07	0.533	1.145		0.879
SiMe(SiClMeSBu) ₃	-10.79	_	5.94	_	0.526	-	1.030	_
SiMe(SiCl ₂ Me)(SiMe(SBu) ₂) ₂	-9.93	10.14	_	2.18			_	
SiMe(SiClMeSBu) ₂ (SiMe(SBu) ₂)	A: -10.10 B: -10.07 C: -10.17	_	6.12	2.23	0.509	_		
SiMe(SiClMeSBu) (SiMe(SBu) ₂) ₂	-9.41	—	6.25	2.35	0.491	_	1.047	0.870
SiMe(SiMe(SBu) ₂) ₃	-8.75	-	-	2.40	0.468	-	-	0.878
SiMe(SiCl ₂ Me) ₂ (SiClMeS ^t Bu)	-11.92	9.60	7.99	_	0.547	1.157	1.206	1.558
SiMe(SiCl ₂ Me)(SiClMeS ^t Bu) ₂	A: -11.44 B: -11.52 C: -11.40	9.97	8.31	_	0.495	1.152	1.207	1.550
SiMe(SiClMeS ^t Bu) ₃	-11.04	_	9.07	_	0.444	1.208	1.542	_

Tabelle 7.3.8. ¹H und ¹³C NMR chemische Verschiebungen (ppm) der Isotetrasilane SiMe(SiX₂Me)₃, X = Cl, SBu, S'Bu

SBu in SiClMeSBu: δ_C : 27.73, 34.40, 21.77, 13.57; δ_H : 2.74, 1.64, 1.43, 0.92 SBu in SiMe(SBu)₂: δ_C : 27.82, 34.50, 21.90, 13.63; δ_H : 2.68, 1.64, 1.43, 0.92 S^tBu in SiClMeS^tBu: δ_C : 51 – 52 (S–<u>C</u>), 35.0 (<u>C</u>H₃); δ_H : 1.55 Auch die Reaktion mit BuSeLi wurde auf einige Methylchlortri- und -isotetrasilane angewendet. Die NMR Daten der auf diese Weise dargestellten selenobutylsubstituierten Oligosilane sind in Tabelle 7.3.9. aufgelistet.

Tabelle 7.3.9. ¹H, ¹³C, ²⁹Si und ⁷⁷Se NMR Daten (Hz, ppm) selenobutylsubstituierter Tri und Isotetrasilane (¹H und ¹³C NMR Daten der Selenobutylsubstituenten siehe in [704])

Verbindung	δ_{Si}	$^{1}J_{SiSi} \\$	$^{1}J_{SiC}$	δ_{Se}	J _{SiSe}	δ _C (SiMe)	$\delta_{\rm H}$ (SiMe)
Si ^A ClMe ₂ Si ^B Me ₂ - Si ^C Me ₂ SeBu	A: 26.3 B: -43.2 C: -3.8		53.0	-121	² J: 15.1 ¹ J: 121.5	3.2 6.8 0.1	0.54 0.26 0.52
(Si ^A Me ₂ SeBu) ₂ Si ^B Me ₂	A: -2.9 B: -43.2			-119	² J: 14.6 ¹ J: 122.0	0.1 -5.9	0.51 0.25
(Si ^A ClMe ₂) ₂ Si ^B MeSeBu	A: 22.5 B: -35.6	81.6	48.6 39.4	-176	² J: 11.7 ¹ J: 129.3	1.85/2.22 ^{a)} -2.25	0.63 0.66
(Si ^A Me ₂ SeBu) ₂ Si ^B MeSeBu	A: -4.5	70.5	44.7	-111	1 J: 125.4 2 J: 9.7	0.51/0.69 ^{a)}	0.58
	B: -32.7			-158	¹ J: 128.3 ² J: 15.5	-4.5	0.61
(Si ^A Me ₃) ₂ Si ^B Cl(SeBu)	A: -11.4 B: 11.2			-80	¹ J: 163.3	-0.1 -	0.25
(Si ^A Me ₃) ₂ Si ^B (SeBu) ₂	A: -11.4 B: -18.8	64.2	44.7	-145	¹ J: 152.1	-0.1 -	0.25
MeSi ^A (Si ^B Me ₃) ₂ (Si ^C Me ₂ SeBu)	A: -84.1 B: -12.2 C: -0.1			-99	² J: 15.1 ¹ J: 125.4	-12.7 0.4 1.7	0.18 0.52
MeSi ^A (Si ^B Me ₃) (Si ^C Me ₂ SeBu) ₂	A: -80.5 B: -11.9 C: -0.7			-100	² J: 16.5 ¹ J: 125.4	-11.7 0.4 1.75/1.80 ^{a)}	0.23 0.56
MeSi ^A (Si ^B ClMe ₂) ₂ (Si ^C Me ₂ SeBu)	A: -76.6 B: 28.1 C: -3.1			-104	² J: 18.0 ³ J: 15.0 ¹ J: 124.4	-12.5 4.9 1.3	0.34 0.64 0.62
MeSi ^A (Si ^B ClMe ₂) (Si ^C Me ₂ SeBu) ₂	A: -77.0 B: 29.1 C: -2.1			-102	² J: 17.0 ³ J: 17.0 ¹ J: 124.4	-11.6 5.2 1.54/1.60 ^{a)}	0.32 0.64 0.62
MeSi ^A (Si ^B Me ₂ SeBu) ₃	A: -77.3 B: -1.1			-100	² J: 17.0 ¹ J: 125.4	-10.8 1.9	0.30 0.61
MeSi ^A (Si ^B Me(SeBu) ₂) ₃	A: -66.1 B: 3.8		45.7	-87	² J: 12.6 ¹ J: 154.5	-7.4 3.3	0.46 1.01

a) diastereotope Methylgruppen

8. 1,2-Dithiolat-Derivate des Siliciums

Im Gegensatz zu Reaktionen von Methylchlorsilanen mit einfachen Mercaptanen ist im Falle der Reaktion mit 1,2-Dithiolen (Ethan-1,2-dithiol, Benzen-1,2-dithiol) auch die Bildung cyclischer Verbindungen möglich, wobei eine außerordentlich hohe Neigung zum Ringschluss besteht, so dass in diesen Fällen meist keine acyclischen Nebenprodukte beobachtet werden.

8.1. 1,2-Dithiolat-Derivate von Monosilanen [707]

Während die Reaktionen von Me₃SiCl mit Ethan-1,2-dithiol bzw. Benzen-1,2-dithiol lediglich zu den acyclischen *Bis*(trimethylsilyl)-Derivaten der 1,2-Dithiole führen:

$$2 \operatorname{Me_{3}SiCl} + \underbrace{SH}_{SH} \xrightarrow{2 \operatorname{NEt_{3}}}_{-2 \operatorname{HNEt_{3}Cl}} \underbrace{S-\operatorname{SiMe_{3}}}_{S-\operatorname{SiMe_{3}}} (8.1.1)$$

$$2 \operatorname{Me_{3}SiCl} + \underbrace{SH}_{SH} \xrightarrow{2 \operatorname{NEt_{3}}}_{-2 \operatorname{HNEt_{3}Cl}} \underbrace{S-\operatorname{SiMe_{3}}}_{S-\operatorname{SiMe_{3}}} (8.1.2)$$

bilden sich bei den Reaktionen von Me_2SiCl_2 mit den beiden Dithiolen cyclische Verbindungen mit einem SiS_2C_2 -Fünfring:

Das 2,2-Dimethyl-1,3-dithia-2-silaindan ist ein niedrigschmelzender Feststoff (F. 55 °C). Trotz seiner sehr guten Löslichkeit in allen organischen Lösungsmitteln konnten Einkristalle erhalten werden, die sich für eine Kristallstrukturanalyse eigneten. Das Ergebnis ist in Abb. 8.1.1. wiedergegeben. Der C₂S₂Si Ring ist hier nicht planar, der Winkel zwischen den Ebenen der Atome C1, C6, S1, S2 und S1, S2, Si1 beträgt 20.0(1)°.

Abb. 8.1.1. Molekülstruktur von 2,2-Dimethyl-1,3-dithia-2-silaindan, C₆H₄(S)₂SiMe₂ (1) Si1-S1: 2.1541(7) Å, Si1-S2: 2.1529(6) Å, Si1-C7: 1.836(2) Å, Si1-C8: 1.853(2) Å, S1-C1: 1.776(2) Å, S2-C6: 1.773(2) Å, S1-Si1-S2: 98.18(2)°, C1-S1-Si1: 97.44(5)°, C6-S2-Si1: 97.58(5)°

(Weitere Daten zur Strukturbestimmung: siehe 12.7.)

Etwas komplexer ist die Reaktion von MeSiCl₃ mit Ethan-1,2-dithiol. Ausgehend von einem Molverhältnis MeSiCl₃ : $HSCH_2CH_2SH$: $NEt_3 = 1 : 1 : 2$ erhält man drei Produkte:

Die Verbindung mit einem verbliebenen Chlorsubstituenten tritt nicht mehr auf, wenn das eingesetzte Molverhältnis auf 1 : $^{3}/_{2}$: 3 verändert wird.

Schließlich bilden sich bei der Reaktion von SiCl₄ mit Ethan- oder Benzen-1,2-dithiol Spiroverbindungen:

SiCl₄ + 2
$$SH \xrightarrow{4 \text{ NEt}_3}$$
 $Si Si$ (8.1.6)

Auch beim Einsatz eines Überschusses an SiCl₄ konnten keine partiell substituierten Produkte beobachtet werden, was die hohe Triebkraft zur Bildung der Spirosilane unterstreicht. Die NMR Daten aller 1,2-Dithiolat-Derivate von Methylchlormonosilanen sind in Tabelle 8.1.1. zusammengefasst.

Verbindung		$^{1}J_{SiC} \\$	δ _C	δ_{H}	
Me ₃ Si-S S-SiMe ₃	15.9	53.3	CH ₂ : 28.8 CH ₃ : 1.0	2.60 0.29	
SiMe ₂	41.7	56.2	CH ₂ : 36.8 CH ₃ : 4.7	3.08 0.62	
S Me Me S	45.8	63.1	<i>cyclo</i> -CH ₂ : 37.6 CH ₂ : 30.1 CH ₃ : 5.38	3.17 2.98 0.88	
Si Me	47.5		CH ₂ : 37.3 CH ₃ : 7.05	3.27 1.07	
S ^S S ^S Me	45.9		<i>cyclo</i> -CH ₂ : 37.6 CH ₂ : 32.4, 26.6 CH ₃ : 5.46	3.17 2.91, 2.82 0.88 SH: 1.70 (³ J _{HH} : 8.3)	
	57.3	_	CH ₂ : 37.6	3.18 (³ J _{SiH} : 6.8)	
$\beta \underbrace{\alpha}_{i} S - SiMe_{3}$ S - SiMe_{3}	18.0	54.6	Me: 1.2 i: 137.1 α: 135.7 β: 126.7	Me: 0.31 7.48 (2 H) 7.09 (2 H)	
SiMe ₂	40.6	56.9	Me: 4.7 i: 137.0 α/β: 125.1, 127.9	Me: 0.75 7.33 (2 H) 6.95 (2 H)	
Si Si Si	45.4	_	i: 134.8 α/β: 126.3, 127.0	7.36 (4 H) 7.08 (4 H)	

 Tabelle 8.1.1.
 NMR Daten (ppm, Hz) der Ethan- und Benzen-1,2-dithiol Derivate von Methylchlormonosilanen

Während die ²⁹Si NMR chemischen Verschiebungen der beiden acyclischen Dithiolate mit SiMe₃ Einheiten nur wenig vom Wert des Thiobutylderivats (Me₃SiSBu, δ_{Si} : 14.7 ppm, siehe Tab. 7.1.1.) abweichen, findet man für alle cyclischen Derivate eine deutliche Tieffeldverschiebung im Vergleich zu Me_{4-x}Si(SBu)_x bzw. auch MeSiCl(SBu)₂, siehe auch Abb. 8.1.2.

Abb. 8.1.2. Vergleich der ²⁹Si NMR chemischen Verschiebungen acyclischer thiobutylsubstituierter Silane mit 1,2-Dithiol-Derivaten des Siliciums

Abb. 8.1.3. Molekülstruktur von Spiro-bis(phenylendithia)silan, $[C_6H_4(S)_2]_2Si(2)$

Si1-S1: 2.1299(6) Å, Si1-S2: 2.1381(6) Å, S1-C1: 1.778(2) Å, S2-C6: 1.779(2) Å, S1-Si1-S2: 100.08(2)°, C1-S1-Si1: 98.46(6)°, C6-S2-Si1: 98.40(6)°, Spirowinkel am Si: 83.39° Die Verbindung kristallisiert in C2/c und ist isotyp zu den Germaniumverbindungen $[C_6H_4(E)_2]_2Ge, E = S, Se$ (siehe Abb. 2.3.3. und Gl. 2.3.6).

Habilitation Uwe Herzog

Während die δ_{Si} aller anderen Ethandithiolat- und Benzendithiolatderivate des Siliciums relativ ähnlich sind, findet man einen deutlicheren Unterschied für die beiden Spiroverbindungen $[C_2H_4(S)_2]_2Si$ und $[C_6H_4(S)_2]_2Si$. Die Ursache dafür ist möglicherweise im unterschiedlichen Spirowinkel der beiden Verbindungen zu suchen. Während die Struktur von $[C_2H_4(S)_2]_2Si$ bekannt war (Abb. 2.3.2.), konnte nun auch jene des Benzen-1,2-dithiolates $[C_6H_4(S)_2]_2Si$ bestimmt werden, Abb. 8.1.2.

Wie bei den analogen Germaniumverbindungen (Abb. 2.3.3.) findet man auch hier einen etwas "abgeplatteten" SiS₄-Tetraeder mit einem Spirowinkel von nur 83.4° (Tetraeder: 90°). Diese Verzerrung ist aber wesentlich kleiner als beim Ethan-1,2-dithiolat-Derivat $[C_2H_4(S)_2]_2$ Si mit einem Spirowinkel von 74.4° (Abb. 2.3.2.).

DFT-Berechnungen der beiden Spirosilane zeigten, dass im Falle des Ethan-1,2-dithiolat-Derivates eine Geometrie mit einem Spirowinkel von 77.2° das Minimum der Energiehyperfläche darstellt, was in guter Übereinstimmung mit den Ergebnissen der Kristallstrukturanalyse ist, siehe auch Abb. 8.1.4. Wird dieser Winkel auf 90° fixiert, resultiert eine Geometrie, die energetisch um 6.5 kJ/mol höher liegt. Dagegen zeigte die optimierte Struktur des Benzen-1,2-dithiolat-Derivates einen Spirowinkel von 90°. Wird dieser Winkel auf den in der Struktur gefundenen Wert von 83.4° fixiert, steigt die Gesamtenergie des Moleküls um 0.8 kJ/mol, siehe auch Tabelle 8.1.2.

Abb. 8.1.4.

Berechnete Struktur von spiro- $[C_2H_4(S)_2]_2Si$ (B3LYP/6-31G*) mit einem abgeflachten SiS₄ Tetraeder (Spirowinkel: 77.2°) (Die Wasserstoffatome wurden zur besseren Übersichtlichkeit weggelassen.)

Für $[C_6H_4(S)_2]_2Si$ konnten aus ²⁹Si MAS NMR Spektren bei relativ niedriger Rotationsfrequenz auch die Hauptachsenwerte der chemischen Verschiebung δ_{11} , δ_{22} und δ_{33} bestimmt werden. Trotz der ersten Koordinationssphäre aus vier Schwefelatomen ergibt sich – vermutlich aufgrund der verzerrt tetraedrischen Geometrie um das Siliciumatom – eine relativ große Spanne $\delta_{11} - \delta_{33}$ von etwa 82 ppm, siehe dazu auch Abschnitt *11.7*.

Verbindung	Bindungs- längen (Å)	Bindungs- winkel (°)	Spiro- winkel (°)	$\begin{array}{c} \angle C_2S_2 \\ / \operatorname{SiS}_2 \\ (^\circ)^{a)} \end{array}$	Gesamt- energie (H)	Gesamtenergie mit Nullpunkts- korrektur (H)
[C ₂ H ₄ (S) ₂] ₂ Si volloptimiert	Si-S: 2.157 S-C: 1.852 C-C: 1.525	SSiS: 100.5 CSSi: 96.2 CCS: 111.3	77.2	_	-2039.62241	-2039.49984
[C ₂ H ₄ (S) ₂] ₂ Si mit fixiertem Spirowinkel	Si-S: 2.161 S-C: 1.853 C-C: 1.525	SSiS: 100.6 CSSi: 96.2 CCS: 111.6	90.0	_	-2039.61975	-2039.49736
[C ₆ H ₄ (S) ₂] ₂ Si volloptimiert	Si-S: 2.153 S-C: 1.788	SSiS: 99.5 CSSi: 98.5	90.0	0	-2344.47273	-2344.30433
[C ₆ H ₄ (S) ₂] ₂ Si mit fixiertem Spirowinkel ^{b)}	Si-S: 2.153 S-C: 1.789	SSiS: 99.6 CSSi: 98.5	83.4	0	-2344.47244	-2344.30401
$[C_6H_4(S)_2]_2SiMe_2$	Si-S: 2.171 S-C: 1.793 Si-C: 1.882	SSiS: 98.9 CSSi: 97.6 CSiC:110.5	90.0	15.3	-1396.83449	-1396.67580

Tabelle 8.1.2. Ergebnisse der DFT Berechnungen (B3LYP/6-31G*) der Spirosilane $[C_2H_4(S)_2]_2Si$ und $[C_6H_4(S)_2]_2Si$ sowie von $C_6H_4(S)_2SiMe_2$

a) Winkel zwischen den Ebenen C₂S₂ und SiS₂ (nur für Benzendithiolate)

b) trotz des fixierten Spirowinkels ergeben sich 0 imaginäre Schwingungsfrequenzen, was den geringen Energieunterschied zur volloptimierten Struktur unterstreicht.

8.2. Hypervalente Silicate mit einer SiS₅-Koordination [708]

Die Geometrie der Spiroverbindungen $[C_2H_4(S)_2]_2Si$ bzw. $[C_6H_4(S)_2]_2Si$ mit einem "abgeplatteten" SiS₄-Tetraeder lassen vermuten, dass es möglich sein sollte, einen fünften Liganden an das Siliciumatom zu koordinieren. Nach Reaktion der beiden Spiroverbindungen mit einer Lösung von PhSLi (dargestellt durch Lithiierung von Thiophenol mit BuLi in THF) konnte NMR-spektroskopisch die Bildung von Thiosilicaten mit einer SiS₅-Koordination nachgewiesen werden:

In beiden Fällen verschwindet das ²⁹Si NMR Signal der Spiroverbindung bei Zugabe eines Äquivalents PhSLi völlig und ein neues Signal bei deutlich höherem Feld erscheint. Sowohl aus dem Verschiebungsbereich der ²⁹Si NMR Signale als auch aus der Integration der ¹³C NMR-Signale folgt, dass es sich um Spezies mit fünffach koordiniertem Silicium, das heißt 1:1 Addukte handeln muss, siehe auch Tabelle 8.2.1.

Auch die ¹³C und ¹H NMR Signale der Spiroverbindungen werden durch die Koordination des Thiophenolatliganden signifikant verschoben.

	1	1	
Verbindung	$\delta_{Si}/\Delta\delta$	δ_{C} / $\Delta\delta$	$\delta_{ m H}$ / $\Delta\delta$
s. s	-85.9 / -143.2	СН ₂ : 36.9 / -0.7	СН2: 2.86 / -0.32
Si I		Ph: i: 144.6 / -2.5	Ph:
		o: 132.6 / -0.2	o: 7.25 / -0.06
S S S		m: 127.3 /0.2	m: 6.84 /0.01
		p: 121.7 / +0.8	p: 6.72 / +0.02
\bigcirc			1
[_]	-63.0 / -108.4	C ₆ H ₄ : i: 142.2 / +7.4	C ₆ H ₄ :
S /S		124.8 / -2.2	7.10 / +0.02
Si ()		122.2 / -3.9	7.42 / +0.06
\sim 's $\frac{1}{s}$ s' \sim		Ph: i: 140.0 / -7.1	Ph:
		o: 135.3 / +2.5	o: 7.25 / -0.06
		m: 126.9 /0.6	m: 6.97 / +0.12
		p: 125.2 / +4.3	p: 6.77 / +0.07

Tabelle 8.2.1. ¹H, ¹³C und ²⁹Si NMR chem. Verschiebungen der Thiosilicate mit SiS₅-Koordination und Vergleich mit den eingestzten Spirosilanen bzw. PhSLi ($\Delta\delta$)

Zum Vergleich PhSLi inTHF: δ_C i: 147.1, o: 132.8, m: 127.5, p: 120.9; δ_H o: 7.31, m: 6.85, p: 6.70 ppm

Auf der anderen Seite beobachtet man auch Veränderungen der chemischen Verschiebungen des Thiophenolatliganden durch die Koordination an den beiden Spirosilanen, wobei die Effekte bei der Koordination am Benzendithiol-Derivat deutlich größer sind, was auf eine zusätzliche Beeinflussung der chemischen Verschiebungen des Thiophenolatliganden durch den Ringstrom in den beiden Benzenringen der Spiroverbindung schließen lässt.

Leider gelang es bisher nicht, kristalline Produkte aus diesen Lösungen zu isolieren, zum Teil kristallisierten aus den Lösungen wieder die eingesetzten Spiroverbindungen aus.

8.3. 1,2-Dithiolat-Derivate von Disilanen [707]

Die Reaktion von 1,2-Dichlortetramethyldisilan mit Ethan-1,2-dithiol führt in Gegenwart von Triethylamin zur Bildung eines Sechsrings Si₂S₂C₂ (NMR-Daten: Tabelle 8.3.1.):

Dagegen liefert die analoge Reaktion mit Benzen-1,2-dithiol kein einheitliches Produkt. Die NMR-Spektren des Reaktionsproduktes deuten eher auf die Bildung acyclischer Oligomerer hin. Bemerkenswert ist, dass die Bildung des Sechsringes entsprechend Gl. 8.3.1. mit einer signifikanten Hochfeldverschiebung des ²⁹Si NMR Signals im Vergleich zur acyclischen thiobutylsubstituierten Verbindung BuS–SiMe₂–SiMe₂–SBu (Tabelle 7.3.1., δ_{Si} : –1.6 ppm) verbunden ist. Auch die ¹H und ¹³C NMR Verschiebungen der Ethyleneinheit des Sechsringes unterscheiden sich deutlich von den Werten in fünfgliedrigen Cyclen (vgl. Tabellen 8.1.1. und 8.3.1.).

Die Reaktion von Tetrachlor-1,2-dimethyldisilan mit Ethan-1,2-dithiol könnte zur Bildung von Produkten mit Fünfringen oder Sechsringen führen:

Es wird in den NMR-Spektren die Bildung nur eines Produktes beobachtet, das zwar kristallin anfällt, von den gebildeten Kristallen ließ sich aber keine Kristallstrukturanalyse durchführen. Aus den NMR-Daten, siehe Tabelle 8.3.1. folgt aber eindeutig, dass es sich um das Isomer mit fünfgliedrigen Ringen handeln muss. So ist die ²⁹Si NMR chemische Verschiebung gegenüber der acyclischen thiobutylsubstituierten Verbindung (BuS)₂SiMe–SiMe(SBu)₂ (Tabelle 7.3.1., δ_{Si} : 9.1 ppm) um 14.7 ppm ins Tieffeld verschoben, und auch die ¹H und ¹³C NMR Daten der Ethyleneinheiten entsprechen denen von Monosilanderivaten mit fünfgliedrigen Ringen.

Verbindung	δ_{Si}	$^{1}J_{SiC}$	$\delta_{\rm C}$	δ_{H}
$Me \xrightarrow{Me}_{Si} Si$	-9.1	45.6	CH ₂ : 30.1 CH ₃ : -1.8	2.92 0.44
$ \begin{array}{c} S & Me & S \\ Si - Si \\ S & Me & S \end{array} $	23.8	46.5	CH ₂ : 37.5 CH ₃ : 2.4	3.13 0.74
$ \begin{array}{c} S & Cl \\ Si^{A} - Si^{B} - Me \\ S & Me & Cl \end{array} $	A: 23.2 B: 22.3	49.7 54.6	CH ₂ : 37.4 CH ₃ A: 1.1 B: 5.9	3.15 0.81 0.92
Si Me S Si Si Si Si Me S	20.8	47.6	C ₆ H ₄ : 137.1 (i) 125.5, 128.1 CH ₃ : 2.6	6.97, 7.34 0.87
$S \qquad Cl \\ S \qquad Si^{A} - Si^{B} - Me \\ S \qquad Me Cl$	A: 21.2 B: 20.1		CH ₃ A: 1.0 B: 5.8	0.89 0.97

 Tabelle 8.3.1. NMR Daten (ppm, Hz) der Ethan- und Benzen-1,2-dithiol Derivate von

 Methylchlordisilanen

Um dies weiter zu untermauern, wurden DFT Berechnungen der drei möglichen isomeren Produkte (*bis*-Cyclopentyl-Struktur, *cis*- und *trans*-Dekalin-Struktur) durchgeführt, die Abbildung 8.3.1. zeigt die berechneten Geometrien. Die Ergebnisse der Berechnungen sind in Tabelle 8.3.2. zusammengefasst und die relativen Energien der drei Isomere in Schema 8.3.1. illustriert. Es zeigt sich, dass das Isomer mit der *bis*-Cyclopentyl-Struktur mit Abstand das

energetisch günstigste Isomer darstellt, was in Übereinstimmung mit den experimentellen Ergebnissen ist.

Abb. 8.3.1. Berechnete Geometrien der drei Isomere von Me₂Si₂(SCH₂CH₂S)₂ (B3LYP/6-31G*)

Tabelle 8.3.2. Ergebnisse der DFT Berechnungen (B3LYP/6-31G*) der drei Isomere von $Me_2Si_2(SCH_2CH_2S)_2$

Isomer	Bindungslängen (Å)	Bindungswinkel (°)	Gesamtenergie (H)	Gesamtenergie mit Nullpunkts- korrektur (H)
Si-Si Si-Si S Me S	Si–Si: 2.363 Si–S: 2.177	S–Si–S: 99.7 C–S–Si: 96.2	-2408.97290	-2408.77482
$ \begin{array}{c} $	Si–Si: 2.319 Si–S: 2.177	S–Si–S: 113.0 C–S–Si: 102.0	-2408.94512	-2408.74697
$ \begin{array}{c} $	Si–Si: 2.348 Si–S: 2.169 / 2.175	S–Si–S: 105.0 C–S–Si: 102.1 / 105.8	-2408.95120	-2408.75302

Schema 8.3.1. Relative Energien der drei Isomere von Me₂Si₂(SCH₂CH₂S)₂ (Ergebnisse der DFT-Berechnungen, B3LYP/6-31G*)

Bei der Reaktion von SiCl₂Me–SiCl₂Me mit Ethan-1,2-dithiol und NEt₃ im Molverhältnis 1:1:2 entsteht nur ein partiell substituiertes Produkt mit einem Anteil von 56 % neben dem Ausgangsdisilan und der vollständig substituierten Verbindung (NMR-Daten: Tabelle 8.3.1.):

Der Versuch einer Abtrennung des partiell substituierten Produktes durch Destillation im Vakuum führte unter Äquilibrierung wieder zu einem Gemisch aus allen drei Verbindungen.

Dieser scharfe Kontrast zum relativ komplexen Produktgemisch bei der Reaktion von SiCl₂Me–SiCl₂Me mit weniger als vier Äquivalenten BuSH und NEt₃, siehe Abb. 7.3.1., zeigt einmal mehr die große Tendenz zur Bildung cyclischer Produkte.

Als recht ähnlich erwiesen sich die Ergebnisse der Reaktion von SiCl₂Me–SiCl₂Me mit Benzen-1,2-dithiol und Triethylamin. Auch hier entsteht nur ein Produkt bei der Reaktion im Molverhältnis 1 : 2 : 4:

Die Struktur dieser Verbindung konnte durch eine Kristallstrukturanalyse zweifelsfrei aufgeklärt werden. Danach handelt es sich ebenfalls um das Isomer mit einer *bis*-Cyclopentyl-Struktur, siehe auch Abb. 8.3.2. Die Kristallstruktur enthält zwei kristallographisch unabhängige Moleküle, beide mit einem kristallographischen Inversionszentrum in der Mitte der Si–Si Bindung. Die Geometrien der beiden Moleküle sind sehr ähnlich, so dass nur Molekül A hier wiedergegeben ist.

Abb. 8.3.2.

Molekülstruktur von bis(2-Methyl-1,3-dithia-2-silaindan-2-yl), $[C_6H_4(S)_2SiMe]_2$ (3), Molek. A

Molekül A: Si1-S1: 2.151(2) Å, Si1-S2: 2.150(2) Å, Si1-C7: 1.852(5) Å, Si1-Si1a: 2.336(3), S1-C1: 1.783(5) Å, S2-C6: 1.781(5) Å, S1-Si1-S2: 97.94(7)°, Si1-S1-C1: 93.4(2)°, Si1-S2-C6: 93.9(2)°

Molekül B: Si2-S3: 2.154(2) Å, Si2-S4: 2.153(2) Å, Si2-C14: 1.851(6) Å, Si2-Si2a: 2.337(3), S3-C8: 1.779(5) Å, S4-C13: 1.776(5) Å, S3-Si2-S4: 98.08(7)°, Si2-S3-C8: 93.9(2)°, Si2-S4-C13: 94.1(2)°

(Weitere Daten zur Strukturbestimmung: siehe 12.7.)

Auffallend ist, dass hier, wie auch in $C_6H_4(S)_2SiMe_2$, die C_2S_2Si Fünfringe gefaltet sind (Briefumschlagkonformationen), im Gegensatz zur Spiroverbindung $[C_6H_4(S)_2]_2Si$ mit völlig planaren Fünfringen. Möglicherweise ist die Ursache dafür in den unterschiedlichen elektronenziehenden Eigenschaften der weiteren Substituenten am Siliciumatom zu suchen (eine Habilitation Uwe Herzog

Silylgruppe $-SiMe(S)_2C_6H_4$ und eine Methylgruppe; zwei Methylgruppen bzw. ein weiterer Dithiolatrest), die zu unterschiedlichen Bindungswinkeln an den Schwefelatomen führen (93.4 – 94.1°; 97.4 und 97.6° in C₆H₄(S)₂SiMe₂ bzw. 98.4 und 98.5° in der Spiroverbindung), was wiederum einen Einfluss auf den Faltungswinkel des Fünfringes hat.

Wird SiCl₂Me–SiCl₂Me analog zu Gl. 8.3.3 nur mit einem Äquivalent Benzen-1,2-dithiol umgesetzt, so entsteht auch hier nur ein partiell substituiertes Disilan, C₆H₄(S)₂SiMe–SiCl₂Me (Anteil: 67 % neben Ausgangsdisilan und dem vollständig substituierten Produkt). Die NMR-Daten der Benzendithiolat-Derivate von SiCl₂Me–SiCl₂Me sind in Tabelle 8.3.1. wieder-gegeben. Die ²⁹Si NMR chemischen Verschiebungen sind denen der analogen Ethandithiolat-Derivate sehr ähnlich. Schließlich stimmen auch die ¹H und ¹³C NMR Verschiebungen des Benzendithiolat-Substituenten gut mit den Daten cyclischer Benzendithiolat-Derivate von Monosilanen (Tabelle 8.1.1.) überein.

Abschließend sei bemerkt, dass die Umsetzungen von SiCl₂Me–SiCl₂Me mit 1,2-Diaminoethanen bzw. *o*-Phenylendiaminen ebenfalls ausschließlich die Isomere mit einer *bis*-Cyclopentyl-Struktur liefern ($R = SiMe_3$ [709], R = Me, Ph [710]):

Im Falle von N,N'-*Bis*(trimethylsilyl)-*o*-phenylendiamin wird die teilweise Abspaltung von Trimethylsilylgruppen beobachtet [709]:

9. Acyclische Organosiliciumchalcogenide

9.1. Disilylchalcogenide, Oligosilanylchalcogenolate und -chalcogenole [711]

Bis(oligosilanyl)chalcogenide $[(Me_3Si)_xMe_{3-x}Si]_2E$ (x = 0 – 3, E = S, Se, Te) konnten durch Reaktionen der entsprechenden Chlorsilane (Me_3Si)_xMe_{3-x}SiCl mit Li_2E (dargestellt *in situ* aus Li[BEt_3H] und elementarem Chalcogen entsprechend Gl. 4.1.3) synthetisiert werden:

2
$$(Me_3Si)_xMe_{3-x}Si-Cl \xrightarrow{+Li_2E} [(Me_3Si)_xMe_{3-x}Si]_2E$$
 (9.1.1)

Im Falle der Schwefelverbindungen können alternativ die Chlorsilane auch mit H_2S in Gegenwart von NEt₃ umgesetzt werden. Dabei ergab sich für x = 0 Hexamethyldisilthian als einziges siliciumhaltiges Produkt, während für x = 1 ein 2 : 1 Gemisch aus *Bis*(pentamethyl-disilanyl)sulfid und Pentamethyldisilanthiol entstand und für x = 2 ausschließlich Heptamethyltrisilan-2-thiol resultierte:

Diese Ergebnisse zeigen sehr schön, wie durch die zunehmende sterische Abschirmung durch Trimethylsilylsubstiuenten die Reaktion des primär gebildeten Thiols mit einem weiteren Äquivalent des Chlorsilans unter Bildung eines Disilylsulfids behindert wird. Neben den Massenspektren ist das Auftreten eines ¹H NMR Signals für die SH Protonen (δ_{H} : 0 bis –1 ppm) der eindeutigste Beweis für das Vorhandensein der Thiole.

Zur Darstellung entsprechender Oligosilanylselenole und -tellurole wurde der Weg über die entsprechenden Chalcogenolate wählt, die durch Chalcogeninsertionsreaktionen in Oligosilanylalkaliverbindungen entstehen (siehe auch *3.2.*):

$$\underbrace{\overset{Me_{3}Si}{Si}}_{Me_{3}Si} \underbrace{\overset{SiMe_{3}}{Si}}_{SiMe_{3}} \underbrace{\overset{+KO^{t}Bu}{-Me_{3}SiO^{t}Bu}}_{Me_{3}Si} \underbrace{\overset{Me_{3}Si}{Si}}_{SiMe_{3}} \underbrace{\overset{K^{+}}{FE(THF)}}_{Me_{3}Si} \underbrace{\overset{Me_{3}Si}{Si}}_{SiMe_{3}} \underbrace{\overset{K^{+}}{SiMe_{3}}}_{Me_{3}Si} \underbrace{\overset{K^{+}}{SiMe_{3}}}_{(9.1.3)} \underbrace{\overset{Me_{3}Si}{Si}}_{(9.1.3)} \underbrace{\overset{K^{+}}{Si}}_{(9.1.3)} \underbrace{\overset{K^{+}}{Si}}_{(1.3.3)} \underbrace{\overset{K^{+}}$$

 $(Me_{3}Si^{A})_{3}Si^{B}K$, NMR (in THF, CDCl₃ + TMS extern; ppm, Hz): $\delta_{Si}A$: -4.95, B: -194.24 (${}^{l}J_{SiSi}$: 8.9); δ_{C} : 6.81; δ_{H} : 0.144

 $(Me_3Si^A)_2MeSi^BK$, NMR (in THF, CDCl₃ + TMS extern; ppm, Hz): $\delta_{Si}A$: -6.72, B: -129.56 ($^{l}J_{SiSi}$: 10.3); δ_CA : 3.20 ($^{l}J_{SiC}$: 33.7), B: -9.52; δ_HA : -0.069, B: -0.283

Diese Reaktionen ließen sich nicht auf die Darstellung von Pentamethyldisilanylchalcogenolaten übertragen, da Si₃Me₈ nicht mit KO^tBu reagierte:

THF-Lösungen der Pentamethyldisilanylchalcogenolate waren aber durch Reaktion von Chlorpentamethyldisilan mit einem Überschuss an Li₂E erhältlich:

$$\begin{array}{cccc} Me & Me & Me & Me \\ Me - Si - Si - Cl & \xrightarrow{+ Li_2 E (THF)} & Me - Si - Si - E^- Li(THF)_n^+ \\ & & & & & \\ Me & Me & Me & Me \end{array}$$
(9.1.6)

Habilitation Uwe Herzog

Die anschließende Protonierung der gebildeten Oligosilanylchalcogenolate (Me₃Si)₂SiMeEK und (Me₃Si)₃SiEK mit Essigsäure lieferte die entsprechenden Chalcogenole:

Die NMR Daten aller dargestellten Disilylchalcogenide, Oligosilanylchalcogenolate und -chalcogenole sind in den Tabellen 9.1.1 - 9.1.3. zusammengestellt.

Tabelle 9.1.1. NMR Daten (Hz, ppm) der Disilylchalcogenide $[(Me_3Si)_xMe_{3-x}Si]_2E$ (E = S, Se, Te; x = 0, 1, 2, 3)

Verbindung	$\delta_{\rm E}$	δ_{Si}	$^{n}J_{SiE} \\$	$^{1}J_{\mathrm{SiSi}}$	δ_{C}	$^{1}J_{SiC}$	$\delta_{\rm H}$
(Me ₃ Si) ₂ S	-	14.65	_	-	4.12	53.9	0.353
(Me ₃ Si ^A Si ^B Me ₂) ₂ S	_	A: -17.89 B: 0.22	_	88.4	-2.80 1.35	46.6 44.4	0.139 0.382
$[(Me_3Si^A)_2Si^BMe]_2S$	_	A: -14.86 B: -20.98	_	73.9	-1.55 -2.62	46.5 39.1	0.154 0.463
[(Me ₃ Si ^A) ₃ Si ^B] ₂ S	_	A: -10.65 B: -49.91	_	60.4	0.96 -	_	0.240
(Me ₃ Si) ₂ Se	-337	11.76	107.4	_	4.56	52.5	0.452
(Me ₃ Si ^A Si ^B Me ₂) ₂ Se	-405	A: -17.24 B: -3.26	21.9 129.3	87.8	-2.46 1.99	45.2 42.0	0.133 0.512
[(Me ₃ Si ^A) ₂ Si ^B Me] ₂ Se	-555	A: -15.01 B: -27.47	12.6 135.6	71.9	-1.27 -3.57	46.0	0.172 0.549
[(Me ₃ Si ^A) ₃ Si ^B] ₂ Se	-629	A: -10.96 B: -60.47	9.5 151.2	57.6	1.24	45.4 -	0.256
(Me ₃ Si) ₂ Te	-852	-4.71	274.6	_	5.58	51.0	0.604
(Me ₃ Si ^A Si ^B Me ₂) ₂ Te	-948	A: -16.48 B: -23.46	45.2 318.0	84.1	-2.42 1.51	40.8	0.143 0.664
$[(Me_3Si^A)_2Si^BMe]_2Te$	-1158	A: -14.73 B: -54.53	24.3 324.1	68.0	-0.97 -5.27	45.5 33.0	0.196 0.648
[(Me ₃ Si ^A) ₃ Si ^B] ₂ Te	-1240	A: -10.95 B: -97.11	18.0 347.2	54.9	1.79	_	0.284

Verbindung	$\delta_{\rm E}$	δ_{Si}	$^{1}J_{SiE} \\$	$^{1}J_{\mathrm{SiSi}}$	$\delta_{\rm C}$	$^{1}J_{SiC}$	$\delta_{\rm H}$
Me ₃ Si ^A Me ₂ Si ^B SLi	_	A: -21.29 B: -9.95	_	95.2	-1.81 5.37	41.3 42.3	-0.013 0.154
(Me ₃ Si ^A) ₂ MeSi ^B SK	_	A: -19.37 B: -31.85	_	80.3	-1.40 -1.02	39.8	0.016 0.207
(Me ₃ Si ^A) ₃ Si ^B SK	_	A: -16.30 B: -62.15	_	66.6	0.10	41.3	0.074
Me ₃ Si ^A Me ₂ Si ^B SeLi	-572	A: -21.87 B: -17.79	164.7	91.9	-2.26 4.79		-0.011 0.289
(Me ₃ Si ^A) ₂ MeSi ^B SeK	-641	A: -20.16 B: -41.95	172.6	77.5	-1.39 -1.4		0.030 0.349
(Me ₃ Si ^A) ₃ Si ^B SeK	-816	A: -18.20 B: -77.55	170.6	64.1	0.30	42.3	0.096
Me ₃ Si ^A Me ₂ Si ^B TeLi	-1338	A: -21.67 B: -46.43	429	87.5	-2.52 4.05		0.014 0.486
(Me ₃ Si ^A) ₂ MeSi ^B TeK	-1443	A: -20.11 B: -75.28	424	73.4	-1.25 -3.52	42.0	0.064 0.568
(Me ₃ Si ^A) ₃ Si ^B TeK	-1652	A: -18.68 B: -119.57	407	60.7	0.53	43.1	0.140

Tabelle 9.1.2. NMR Daten (Hz, ppm) der Lithium- und Kaliumoligosilanylchalcogenolate (Me_3Si)_x $Me_{3-x}Si$ - $E M^I$ (E = S, Se, Te; x = 1, 2, 3) in THF-Lösung

Tabelle 9.1.3. NMR Daten (Hz, ppm) der Oligosilanylchalcogenole $(Me_3Si)_xMe_{3-x}Si-EH$ (E = S, x = 1, 2, 3; E = Se, Te, x = 2, 3)

Verbindung	$\delta_{\rm E}$	δ_{Si}	$^{n}J_{SiE} \\$	$^{1}J_{SiSi}$	$\delta_{\rm C}$	¹ J _{SiC}	$\delta_{H\ CH_3}$	$\delta_{H \; EH}$	$^{1}J_{\rm EH}$
Me ₃ Si ^A Si ^B Me ₂ SH	_	A: -17.66 B: 0.73	-	90.9	-2.50 2.29	44.5 42.8	0.122 0.408	-0.28	-
(Me ₃ Si ^A) ₂ MeSi ^B SH	_	A: -14.49 B: -25.99	_	72.6	-1.96 -2.56	45.2 35.9	0.166 0.388	-0.46	-
(Me ₃ Si ^A) ₃ Si ^B SH	_	A: -11.25 B: -60.88	_	60.3	-0.27	45.2	0.213	-0.84	-
(Me ₃ Si ^A) ₂ MeSi ^B SeH	-379	A: -14.12 B: -31.71	7.9 94.5	70.8	-1.78 -3.37	45.4 34.5	0.178 0.501	-2.73	41.0
(Me ₃ Si ^A) ₃ Si ^B SeH	-476	A: -11.4 B: -69.9	< 7 87.1	57.8	-0.02	46.2	0.225	-3.22	36.8
(Me ₃ Si ^A) ₂ MeSi ^B TeH	-814	A: -13.19 B: -55.04	15.5 232.8	67.5	-1.43 -4.95	46.2 32.6	0.197 0.675	-8.24	62.1
(Me ₃ Si ^A) ₃ Si ^B TeH	-950	A: -11.20 B: -100.15	11.2 209.0	55.4	0.56	46.1	0.251	-8.96	74.3

Habilitation Uwe Herzog

Erwartungsgemäß werden die NMR Signale der zentralen Silciumatome (Si^B) sowie die ⁷⁷Se und ¹²⁵Te NMR Signale in allen drei Substanzklassen mit zunehmender Anzahl an Trimethylsilylgruppen (x) zu höherem Feld verschoben. Dabei steigen die Differenzen der ²⁹Si NMR chemischen Verschiebungen von Si^B zwischen den Chalcogenolen und der entsprechenden Disilylchalcogeniden (für gleiches E und gleiches x) mit steigender Anzahl an Trimethylsilylgruppen (x) an und sinken bei gleichem x in der Reihe E = S > Se >Te, so dass die Ursache wohl in der Verzerrung der Geometrien durch sterische Wechselwirkungen der Trimethylsilylgruppen zu suchen ist. Diese sollte mit x steigen und unter den Chalcogenen für E = S am größten sein.

Abb. 9.1.1. ²⁹Si NMR chemische Verschiebungen der zentralen Siliciumatome in $[(Me_3Si)_xMe_{3-x}Si]_2E$, $(Me_3Si)_xMe_{3-x}SiE^-$ und $(Me_3Si)_xMe_{3-x}SiEH$

Diese zunehmenden sterischen Wechselwirkungen äußern sich auch beim Vergleich der ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen der drei Verbindungsklassen, siehe Abb. 9.1.2. In allen Fällen ergibt sich keine lineare Abhängigkeit zwischen δ_{Se} und δ_{Te} analoger Verbindungen, wie das für viele andere Substanzklassen beobachtet wurde (siehe Abschnitt *6.3.* und die folgenden Kapitel). Die Abweichung von der Linearität scheint dabei für die Disilylchalcogenide am größten zu sein.

Abb. 9.1.2. Vergleich der ¹²⁵Te und ⁷⁷Se NMR chemischen Verschiebungen in $[(Me_3Si)_xMe_{3-x}Si]_2E$, $(Me_3Si)_xMe_{3-x}SiE^-$ und $(Me_3Si)_xMe_{3-x}SiEH$ (E = Se, Te). Die Anfangssteigung $\delta_{Te} / \delta_{Se}$ ist in allen drei Verbindungsklassen zwischen 2.7 und 3.1.

Beim Vergleich der Kopplungskonstanten ⁿJ_{SiE} fällt auf, dass für die Disilylchalcogenide ¹J_{SiE} mit x deutlich ansteigt, während ²J_{SiE} ebenso deutlich sinkt (von x = 1 bis 3 auf weniger als die Hälfte). In den Oligosilanylchalcogenolen sinken dagegen sowohl ¹J_{SiE} als auch ²J_{SiE} mit steigender Anzahl an SiMe₃ Substituenten (x).

In den Oligosilanylchalcogenolaten finden sich deutlich größere Werte für die ${}^{1}J_{SiE}$ Kopplungskonstanten als in den entsprechenden Chalcogenolen und Disilylchalcogeniden, was mit einem partiellen Doppelbindungscharakter der Si–E Bindungen in diesen ionischen Spezies erklärt werden kann (siehe sinngemäß auch die Schemata 4.4.2. und 4.5.3.):

Schema 9.1.1. Mesomere Grenzstrukturen in Silylchalcogenolaten (R = Me, SiMe₃)

Abschließend sei noch auf die ¹H NMR chemischen Verschiebungen der E–H Protonen hingewiesen, die vor allem für E = Te extrem ins Hochfeld verschoben sind (δ_{H} : -8 bis -9 ppm).

9.2. Hypersilylchalcogenolate von Silicium, Germanium und Zinn [712]

Die in *9.1.* beschriebenen Oligosilanylchalcogenolate, von denen die Hypersilylchalcogenolate die stabilsten sind, eröffnen die Möglichkeit, durch Reaktionen mit Methylchlorsilanen, -germanen bzw. -stannanen entsprechende hypersilylchalcogenosubstituierter Derivate zu synthetisieren:

Dabei traten vor allem bei Umsetzungen mit Organotrichlorsilanen, aber auch mit Diorganodichlorsilanen (bzw. den analogen Zinnverbindungen) Nebenreaktionen auf, die zur Bildung von Hypersilylchlorid und entsprechenden Organosiliciumchalcogeniden führten:

$$3 \underbrace{(Si)}_{Si} \underbrace{(Si)}_{Si} \underbrace{(Si)}_{-3/2} \underbrace{(Si)}_{-3/2} \underbrace{(Si)}_{-3/2} \underbrace{(Si)}_{-3/2} \underbrace{(Si)}_{-Si} \underbrace{(Si)}_{-$$

 $(Me_3Si^A)_3Si^BCl: NMR (Hz, ppm) \delta_{Si}A: -11.48 (^{l}J_{SiC}: 46.3), B: -11.68; \delta_C: -0.73; \delta_H: 0.227$

Durch die Wahl unpolarer Lösungsmittel bei niedrigen Reaktionstemperaturen (-40 °C) konnten diese Nebenreaktionen zurückgedrängt, aber nicht völlig eliminiert werden.

Überraschenderweise waren solche Halogenaustauschreaktionen bei Umsetzungen mit den Tetrachloriden des Siliciums, Germaniums oder Zinns nur in geringerem Maße zu beo-Habilitation Uwe Herzog bachten. Eine Ursache könnte sein, dass diese Edukte aufgrund des fehlenden Dipolmoments eine andere Reaktivität aufweisen (Zum Vergleich sei daran erinnert, dass alle Methylchlorstannane kristalline Festkörper mit verbrückenden Chlorsubstituenten darstellen, SnCl₄ dagegen ist eine Flüssigkeit mit isolierten tetraedrischen SnCl₄ Molekülen.)

Bei der Umsetzung von Kaliumhypersilyltellurolat mit Zinntetrachlorid trat eine Redoxreaktion unter Bildung von *Bis*(hypersilyl)ditellurid und Zinn(II)chlorid ein:

 $(Me_{3}Si^{A})_{3}Si^{B}TeTeSi(SiMe_{3})_{3} NMR (Hz, ppm) \ \delta_{Te}: -671; \\ \delta_{Si} A: -8.2 \ (^{2}J_{Si}{}^{A}_{Te}: 12.6), B: -96.6 \ (^{1}J_{Si}{}^{B}_{Te}: 283.3, {}^{2}J_{Si}{}^{B}_{Te}: 14.1); \ \delta_{C}: 1.66 \ (^{1}J_{SiC}: 46.2); \ \delta_{H}: 0.30$

Neben Monosilanen wurden auch Chlorpentamethyldisilan, 1,2-Dichlortetramethyldisilan und 1,1,2,2-Tetrachlordimethyldisilan mit Kaliumhypersilylthiolat bzw. -selenolat umgesetzt:

Die ²⁹Si, ⁷⁷Se und ¹²⁵Te NMR Daten aller so dargestellten hypersilylchalcogenosubstituierten Silane, Disilane, Germane und Stannane sind in den Tabellen 9.2.1. – 9.2.3. zusammengefasst.

Habilitation Uwe Herzog

Verbindung	δΕ	δSi ^A	$^{1}J_{Si}{}^{A}{}_{Si}{}^{B}$	δSi ^B	$^{1}J_{Si}{}^{B}{}_{E}$	δSi ^C	$^{1}J_{Si}{}^{C}{}_{E}$
(Me ₃ Si ^A) ₃ Si ^B SSi ^C Me ₃		-11.2	60.6	-58.0	—	15.6	_
(Me ₃ Si ^A) ₃ Si ^B SSi ^C Me ₂ Ph		-11.1	60.3	-58.4	—	8.1	_
(Me ₃ Si ^A) ₃ Si ^B SSi ^C MePh ₂		-10.8	59.3	-57.7	—	2.0	_
(Me ₃ Si ^A) ₃ Si ^B SSi ^C Ph ₃	_	-10.5	57.8	-54.5	_	-4.0	_
$[(Me_3Si^A)_3Si^BS]_2Si^CMe_2$	_	-10.4	58.8	-54.4	_	30.4	_
[(Me ₃ Si ^A) ₃ Si ^B S] ₂ Si ^C PhMe	_	-10.2	61.2	-53.0	_	20.0	_
$[(Me_3Si^A)_3Si^BS]_2Si^CPh_2$	_	-10.0	57.4	-51.9	_	9.9	_
[(Me ₃ Si ^A) ₃ Si ^B S] ₃ Si ^C Me	_	-10.0	61.2	-51.6	_	25.3	_
[(Me ₃ Si ^A) ₃ Si ^B S] ₃ Si ^C Ph	_	-9.9	58.8	-50.2	_	14.7	_
$[(Me_3Si^A)_3Si^BS]_4Si^C$	_	-9.5	55.2	-46.8	_	5.9	_
(Me ₃ Si ^A) ₃ Si ^B SeSi ^C Me ₃	-502	-11.6	58.8	-69.0	123.4	11.1	124.9
(Me ₃ Si ^A) ₃ Si ^B SeSi ^C Me ₂ Ph	-502	-11.6	58.3	-68.0	122.0	4.9	132.2
(Me ₃ Si ^A) ₃ Si ^B SeSi ^C MePh ₂	-508	-11.5	57.8	-67.4	121.5	-0.2	
$[(Me_3Si^A)_3Si^BSe]_2Si^CMe_2$	-412	-10.8	56.9	-61.8	114.6	25.7	164.3
[(Me ₃ Si ^A) ₃ Si ^B Se] ₂ Si ^C PhMe	-417	-10.6	55.9	-60.6	114.7	16.2	180.1
$[(Me_3Si^A)_3Si^BSe]_2Si^CPh_2$	-427	-10.5	55.8	-59.3	117.0	8.0	188.3
[(Me ₃ Si ^A) ₃ Si ^B Se] ₃ Si ^C Me	-310	-10.5	55.4	-58.0	117.1	8.6	193.4
[(Me ₃ Si ^A) ₃ Si ^B Se] ₃ Si ^C Ph	-302	-10.3		-56.6		-0.3	196.5
$[(Me_3Si^A)_3Si^BSe]_4Si^C$	-213	-9.8	54.4	-51.9	115.0	-21.2	235.0
(Me ₃ Si ^A) ₃ Si ^B TeSi ^C Me ₃	-1076	-11.9	56.4	-100.5	288.7	-7.6	318.8
(Me ₃ Si ^A) ₃ Si ^B TeSi ^C MePh ₂	-1060	-11.3	56.8	-98.3	285.7	-14.0	356.6
$[(Me_3Si^A)_3Si^BTe]_2Si^CMe_2$	-873	-11.4	54.4	-93.6	294.5	-44.7	404.3
$[(Me_3Si^A)_3Si^BTe]_2Si^CPhMe$	-853	-11.1	54.4	-91.8	295.9	-47.4	419.9
$[(Me_3Si^A)_3Si^BTe]_2Si^CPh_2$	-834	-10.8	53.9	-90.6		-41.6	
$[(Me_3Si^A)_3Si^BTe]_3Si^CMe$	-682	-10.6	53.0	-86.4	280.9	-86.6	
$[(Me_3Si^A)_3Si^BTe]_4Si^C$	-468	-9.9	52.0	-79.6	269.7	-112.5	

Tabelle 9.2.1. ²⁹Si, ⁷⁷Se und ¹²⁵Te NMR Daten (Hz, ppm) hypersilylchalcogenosubstituierter

Silane

In den ²⁹Si NMR Spektren der hypersilylchalcogenosubstituierten Zinnverbindungen treten zusätzlich zu den Satelliten durch die Kopplungen ${}^{1}J_{SiE}$, ${}^{1}J_{SiSi}$ und ${}^{1}J_{SiC}$ noch Kopplungssatelliten durch die ²J und ³J Kopplungen mit den magnetisch aktiven Zinnisotopen ¹¹⁷Sn und ¹¹⁹Sn auf, die einen weiteren Beweis für die Konnektivitäten liefern, siehe auch Abb. 9.2.1.

 Abb. 9.2.1. ²⁹Si NMR Spektrum (INEPT) von [(Me₃)₃SiSe]₃SnPh mit der Zuordnung der Satelliten zu den einzelnen Kopplungen. Die Probe enthielt außerdem noch kleine Mengen nichtumgesetztes Si(SiMe₃)₄ und (Me₃Si)₃SiCl (Nebenprodukt) Durch die verwendete Pulsfolge haben die ¹J_{SiSi} Satelliten umgekehrte Phase.

Verbindung	δSe	δSi ^A	$\delta S i^B$	$^{1}J_{Si}{}^{A}{}_{Si}{}^{B}$	$^{1}J_{Si}{}^{B}{}_{Se}$	δSi^{C}	$^{1}J_{Si}{}^{C}{}_{Se}$	$\delta S i^D$
(Me ₃ Si ^A) ₃ Si ^B -S-Si ^C Me ₂ Si ^D Me ₃	_	-11.3	-57.8	59.8	_	-0.8	_	-17.1
$[(Me_3Si^A)_3Si^B - S - Si^CMe_2 -]_2$	-	-11.2	-56.5	59.3	I	-0.8	_	_
$\{[(Me_3Si^A)_3Si^B-S]_2Si^CMe-\}_2$	-	-11.2	-58.0	60.7	I	15.6	_	_
(Me ₃ Si ^A) ₃ Si ^B –Se–Si ^C Me ₂ Si ^D Me ₃	-527	-11.8	-67.1	58.3	127.8	-5.7	143.8	-16.5
$[(Me_3Si^A)_3Si^B - Se - Si^CMe_2 -]_2$	-523	-11.7	-65.4	57.3	126.8	-6.1	144.3	_

 Tabelle 9.2.2.
 ²⁹Si und ⁷⁷Se NMR Daten (Hz, ppm) hypersilylchalcogenosubstituierter Disilane

 Tabelle 9.2.3. ²⁹Si, ⁷⁷Se ¹¹⁹Sn und ¹²⁵Te NMR Daten (Hz, ppm) hypersilylchalcogenosubstituierter Germane und Stannane

Verbindung	δSn	δΕ	$^{1}J_{SnE}$	δSi ^A	$^{3}J_{SiSn}$	$\delta S i^B$	$^{2}J_{SiSn} \\$	$^{1}J_{Si}{}^{A}{}_{Si}{}^{B}$	$^{1}J_{SiE} \\$
[(Me ₃ Si ^A) ₃ Si ^B S] ₂ SnMe ₃	91	_	_	-11.5	20.0	-55.0	35.8		_
[(Me ₃ Si ^A) ₃ Si ^B S]SnMe ₂	123	-	-	-11.0	25.7	-52.9	41.8		_
[(Me ₃ Si ^A) ₃ Si ^B S] ₂ SnPh ₂	11	-	_	-10.6	27.9	-50.6	45.4	58.1	_
[(Me ₃ Si ^A) ₃ Si ^B S] ₃ SnMe	115	-	_	-10.5	32.1	-49.6	49.6	58.3	_
[(Me ₃ Si ^A) ₃ Si ^B S] ₃ SnPh	61	-	_	-10.2	32.6	-47.6	51.4	58.8	_
$[(Me_3Si^A)_3Si^BS]_4Sn$	25	_	_	-9.4	49.1	-44.6	64.1	56.9	_
[(Me ₃ Si ^A) ₃ Si ^B Se]SnMe ₃	44	-436	1202	-11.9	18.2	-65.4	33.3	58.1	124.0
$[(Me_3Si^A)_3Si^BSe]_2SnMe_2$	41	-391	1303	-11.5		-62.3	38.8		124.8
[(Me ₃ Si ^A) ₃ Si ^B Se] ₂ SnPh ₂	-84	-504	1595	-10.9	26.6	-59.5	42.4	56.9	125.3
[(Me ₃ Si ^A) ₃ Si ^B Se] ₃ SnMe	-110	-364	1686	-10.8	29.2	-58.3	45.7	56.9	127.3
[(Me ₃ Si ^A) ₃ Si ^B Se] ₃ SnPh	-140	-384	1779	-10.5	29.6	-56.1	46.2	55.9	128.3
[(Me ₃ Si ^A) ₃ Si ^B Se] ₄ Sn	-356	-208	1955	-10.2	36.6	-52.5	55.8	55.2	132.5
$[(Me_3Si^A)_3Si^BS]_4Ge$	_	_	_	-9.6	_	-47.1	_	57.8	_
$[(Me_3Si^A)_3Si^BSe]_4Ge$	-	-28	-	-10.0	_	-51.8	—	54.4	123.9
$[(Me_3Si^A)_3Si^BTe]_4Ge$	_	-88	_	-9.0	_	-76.2	_	51.0	274.6

Beim Vergleich der Daten zeigen sich folgende Trends:

Mit steigender Anzahl an Hypersilylchalcogenosubstituenten (x) werden die ²⁹Si NMR Signale der zentralen Siliciumatome der Hypersilylgruppen zu tieferem Feld verschoben, siehe auch Abb. 9.2.2. Bei gleichem x ergibt sich beim Ersatz von Methylsubstituenten durch Phenylgruppen am zentralen Atom M (Si, Sn) eine deutliche Hochfeldverschiebung des NMR Signals des Zentralatoms M (je Substituent: 5 – 10 ppm für ²⁹Si, 30 – 50 ppm für ¹¹⁹Sn) sowie eine leichte Tieffeldverschiebung für die zentralen Siliciumatome der Hypersilylgruppen (Si^B).

Abb. 9.2.2. Die ²⁹Si NMR chemische Verschiebung der zentralen Atome der Hypersilylgruppen als Funktion der Anzahl an $ESi(SiMe_3)_3$ Gruppen (x) in $Me_{4-x}M[ESi(SiMe_3)_3]_x$

Auch die ⁷⁷Se bzw. ¹²⁵Te NMR Signale der Chalcogenatome erfahren mit steigendem x eine Tieffeldverschiebung, für ⁷⁷Se im Mittel um 96.9 ppm je SeSi(SiMe₃)₃ Substituent und für ¹²⁵Te um 201.9 ppm je TeSi(SiMe₃)₃ Substituent, siehe auch Abb. 9.2.3.

Abb. 9.2.3. ⁷⁷Se und ¹²⁵Te NMR chemische Verschiebungen als Funktion der Anzahl an $ESi(SiMe_3)_3$ Gruppen (x) in $Me_{4-x}Si[\underline{E}Si(SiMe_3)_3]_x$

Abb. 9.2.4. Vergleich der ²⁹Si NMR chemischen Verschiebungen hypersilylchalcogenosubstituierter und chalcogenobutylsubstituierter Silane

Abb. 9.2.5. Vergleich der ¹¹⁹Sn NMR chemischen Verschiebungen hypersilylchalcogenosubstituierter und chalcogenomethylsubstituierter Stannane

Die Kopplungskonstanten ${}^{1}J_{SiE}$ bzw. ${}^{1}J_{SnE}$ zwischen dem Zentralatom M (Si^C bzw. Sn) und den Chalcogenatomen steigen mit der Anzahl an Hypersilylchalcogenosubstituenten deutlich an. Diese Trends entsprechen sinngemäß den bereits für chalcogenobutylsubstituierte Silane gemachten und diskutierten Beobachtungen, vergleiche die Kapitel *7.1.* und *7.2.*

Interessant ist auch ein Vergleich der ²⁹Si NMR Verschiebungen der zentralen Siliciumatome der Verbindungen Me_{4-x}Si[ESi(SiMe₃)₃]_x mit den Werten für chalcogenobutylsubstituierte Silane Me_{4-x}Si(EBu)_x, die die gleiche erste Koordinationssphäre am Siliciumatom aufweisen, siehe Abb. 9.2.4. Während die Werte (bei gleichem Chalcogen) für x = 1 recht ähnlich sind und für x = 2 eine leichte Tieffeldverschiebung für die hypersilylchalcogenosubstituierten Silane beobachtet wird, zeigt sich ab x = 3 eine zunehmende Hochfeldverschiebung, was als Ergebnis der sterischen Überladung durch drei bzw. vier Hypersilylchalcogenosubstituenten gedeutet werden kann.

Ein ähnliches Bild zeigt sich auch beim Vergleich der ¹¹⁹Sn NMR chemischen Verschiebungen hypersilylchalcogenosubstituierter und chalcogenomethylsubstituierter Stannane, Abb. 9.2.5. Während für x = 1 die ¹¹⁹Sn NMR chem. Verschiebungen nahezu identisch sind, ergeben sich ab 2 Chalcogenosubstituenten zunehmende Hochfeldverschiebungen für die hypersilylchalcogenosubstituierten Derivate.

Von einem zweifach hypersilyltellurosubstituierten Silan sowie drei dreifach hypersilylchalcogenosubstituierten Stannanen konnten auch Kristallstrukturanalysen durchgeführt werden, siehe die Abbildungen 9.2.6. – 9.2.9. Die wichtigsten Bindungslängen und -winkel sind in den Tabellen 9.2.4. – 9.2.6. zusammengefasst.

Abb. 9.2.6. Molekülstruktur von Ph₂Si[TeSi(SiMe₃)₃]₂ (4, Ellipsoide für 30 % Wahrscheinlkt.)

Abb. 9.2.7. Molekülstruktur von PhSn[SeSi(SiMe₃)₃]₂ (5, Ellipsoide für 30 % Wahrscheinlkt.)

Abb. 9.2.8. Molekülstruktur von MeSn[SSi(SiMe₃)₃]₃ (6, Ellipsoide für 30 % Wahrscheinlkt.)

Abb. 9.2.9. Molekülstruktur von MeSn[SeSi(SiMe₃)₃]₃ (7, Ellipsoide für 30 % Wahrscheinlkt.)

Habilitation Uwe Herzog

Atome	Bindungslänge (Å)	Atome	Bindungswinkel (°)
Si1–Te1	2.501(2)	Te1–Si1–Te2	104.71(7)
Si1–Te2	2.501(2)	C1-Si1-C7	110.4(3)
Te1–Si2	2.555(2)	Si1–Te1–Si2	111.91(7)
Te2–Si3	2.538(2)	Si1–Te2–Si3	113.40(6)

Tabelle 9.2.4. Ausgewählte Bindungslängen und Bindungswinkel von Ph₂Si[TeSi(SiMe₃)₃]₂ (4)

Tabelle 9.2.5. Ausgewählte Bindungslängen und Bindungswinkel von PhSn[SeSi(SiMe₃)₃]₂ (5)

Atome	Bindungslänge (Å)	Atome	Bindungswinkel (°)
Sn1–Se1	2.514(1)	Se1–Sn1–Se2	107.41(3)
Sn1–Se2	2.515(1)	Se1–Sn1–Se3	113.30(3)
Sn1–Se3	2.508(1)	Se2–Sn1–Se3	103.98(3)
Se1–Si1	2.300(1)	Sn1–Se1–Si1	114.75(5)
Se2–Si5	2.318(2)	Sn1–Se2–Si5	116.98(5)
Se3–Si9	2.313(2)	Sn1–Se3–Si9	113.61(5)

Tabelle 9.2.6. Ausgewählte Bindungslängen und Bindungswinkel von MeSn[ESi(SiMe₃)₃]₃ (6, 7)

Atome	Bindungs	änge (Å)	Atome	Bindungswinkel (°)		
	$\mathbf{E} = \mathbf{S} \ (6)$	E = Se(7)		$\mathbf{E} = \mathbf{S} \ (6)$	$\mathbf{E} = \mathbf{Se}\left(7\right)$	
Sn1–E1	2.3980(7)	2.5208(5)	E1–Sn1–E2	113.44(3)	113.99(2)	
Sn1–E2	2.3975(7)	2.5249(4)	E1–Sn1–E3	106.12(3)	107.55(2)	
Sn1–E3	2.3927(7)	2.5189(5)	E2–Sn1–E3	106.21(3)	105.30(2)	
E1–Si1	2.185(1)	2.325(1)	Sn1–E1–Si1	116.19(4)	112.84(3)	
E2–Si5	2.176(1)	2.315(1)	Sn1-E2-Si5	118.58(4)	115.63(3)	
E3–Si9	2.180(1)	2.321(1)	Sn1–E3–Si9	116.89(4)	114.63(3)	

Die Verbindungen 6 und 7 kristallisieren in der gleichen Raumgruppe und sind isotyp.

Die recht unterschiedlichen Bindungswinkel E–Sn–E sowie die – im Vergleich zu anderen Verbindungen – relativ großen Bindungswinkel an den Chalcogenatomen spiegeln die sterische Überladung am zentralen Silicium- bzw. Zinnatom wider, die sich vor allem durch die Aufweitung der Winkel an den Chalcogenatomen abbauen lässt. Die Bindungslängen liegen alle im Bereich typischer Einfachbindungen, wenngleich in Ph₂Si[TeSi(SiMe₃)₃]₂ die

Si-Te Bindungen zum zentralen Si-Atom deutlich kürzer sind als zu den Si-Atomen der Hypersilyleinheiten (siehe dazu auch *11.3.* und Abbn. 11.3.11. – 11.3.12.).

9.3. Heptasilanylthiolate $[(Me_3Si)_3Si-Si(SiMe_3)_2-S]_xSiMe_{4-x}$

Wie bereits in Gl. 5.1.16 angedeutet, wird bei der Reaktion von *Hexakis*(trimethylsilyl)disilan mit Kalium-*tert*-butylat eine terminale Si–Si Bindung gespalten unter Bildung einer Heptasilanylkalium-Verbindung. Dies eröffnet die Möglichkeit, zu noch sperrigeren Oligosilanylchalcogenolat-Ionen zu gelangen. Allerdings zeigte sich, dass die Insertion von Chalcogen nur für E = Schwefel gelang, die Reaktionen der anderen Chalcogene sind wahrscheinlich aus sterischen Gründen nicht mehr möglich:

Die Umsetzungen mit Methylchlorsilanen führten zu heptasilanylthiosubstituierten Silanen:

Die NMR-Daten heptasilanylthiosubstituierter Silane und des eingesetzten Heptasilanylthiolations sind in Tabelle 9.3.1. zusammengefasst.

Verbindung	$\delta_{Si}{}^{\scriptscriptstyle A}$	$^{1}J_{Si}{}^{A}{}_{Si}{}^{B}$	$\delta_{Si}{}^{\rm B}$	$\delta_{Si}{}^{C}$	$^{1}J_{Si}{}^{C}{}_{Si}{}^{D}$	$\delta_{Si}{}^{\scriptscriptstyle D}$	$\delta_{Si}{}^{\rm E}$
$(Me_3Si^A)_3Si^B$ -Si ^C $(Si^DMe_3)_2K$	-11.1	48.7	-129.0	-190.6		-6.5	_
$(Me_3Si^A)_3Si^B$ -Si ^C $(Si^DMe_3)_2SK$	-9.8	50.1	-128.2	-53.7	71.2	-17.5	
$(Me_3Si^A)_3Si^B$ -Si ^C $(Si^DMe_3)_2SSi^EMe_3$	-9.1	51.6	-118.1	-44.5	58.8	-11.3	15.3
$[(Me_3Si^A)_3Si^B - Si^C(Si^DMe_3)_2S]_2Si^EMe_2$	-8.9	50.5	-117.6	-40.0	58.3	-10.1	28.6
$[(Me_3Si^A)_3Si^B-Si^C(Si^DMe_3)_2S]_3Si^EMe$	-8.8	50.1	-117.1	-34.5	55.4	-9.1	17.5

 Tabelle 9.3.1.
 ²⁹Si NMR Daten von Verbindungen mit der Heptasilanyleinheit

 (Me₃Si)₃Si–Si(SiMe₃)₂–

Ein Vergleich der ²⁹Si NMR chemischen Verschiebungen der zentralen Silciumatome der heptasilanylthiosubstituierten Silane (Si^E in Tabelle 9.3.1.) mit den chemischen Verschiebungen der entsprechenden hypersilylthiosubstituierten Silane (Tabelle 9.2.1., Si^C) offenbart ab x = 2 eine zunehmende Hochfeldverschiebung für die heptasilanylthiosubstituierten Silane, was mit der zusätzlichen sterischen Überladung in diesen Verbindungen zusammenhängen dürfte, siehe Abb. 9.3.1.

Abb. 9.3.1. Vergleich der ²⁹Si NMR chemischen Verschiebung von $Me_{4-x}Si(SR)_x$ in Abhängigkeit von x für $SR = SSi(SiMe_3)_3$ und $SSi(SiMe_2)_2Si(SiMe_3)_3$

10. Cyclische Silicium-Chalcogen-Verbindungen und analoge Germaniumund Zinnverbindungen

10.1. Dimere und trimere Chalcogenide $(R_2ME)_x$ (R = Me, Ph, $SiMe_3$; M = Si, Ge, Sn)

10.1.1. Methylverbindungen(Me₂ME)₃ [713]

Die Reaktionen von Dimethyldichlorsilan, -german und -stannan mit H_2S / NEt₃ bzw Lithiumchalcogeniden (*in situ* aus Li[BEt₃H] und Chalcogen entsprechend Gl. 4.1.3) führten ausschließlich zu den trimeren Dimethylsilicium-, -germanium- und -zinnchalcogeniden (Me₂ME)₃:

deren NMR-Daten teilweise bereits bekannt waren (Kapitel 4.2. und Tabelle 4.3.1.2.). Die vollständigen NMR-Daten aller neun Verbindungen dieser Reihe sind in Tabelle 10.1.1.1. zusammengestellt.

Im Vergleich zu den acyclischen chalcogenobutylsubstituierten Silanen Me₂Si(EBu)₂ mit dem gleichen Chalcogen [E = S δ_{Si} : 24.8 ppm (Tab. 7.1.1.), E = Se δ_{Si} : 18.1 ppm (Tab. 7.2.1.) und E = Te δ_{Si} : -24.6 ppm (Tab. 7.2.2.)] sind die ²⁹Si NMR chemischen Verschiebungen der Sechsringe (Me₂SiE)₃ um etwa 3 ppm zu höherem Feld verschoben.

Ein analoger Trend (Hochfeldverschiebung um jeweils 11 ppm) zeigt sich auch beim Vergleich der ¹¹⁹Sn chemischen Verschiebungen der Sechsringe (Me₂SnE)₃ mit den acyclischen chalcogenomethylsubstituierten Verbindungen Me₂Sn(SMe)₂ (δ_{Sn} : 144 ppm [29]) und Me₂Sn(SeBu)₂ (δ_{Sn} : 57 ppm [58]).

Verbindung	$\delta_{\rm E}$	δ_{M}	$^{2}J_{SnSn}^{a)}$	$^{1}J_{\text{ME}}$	$\delta_{\rm C}$	$^{1}J_{MC}$	δ_{H}
(Me ₂ SiS) ₃	_	21.1	_	_	7.95	59.6	0.69
(Me ₂ SiSe) ₃	Se: -244	15.2	_	130.7	8.7	55.4	0.91
(Me ₂ SiTe) ₃	Te: -618	-23.7	_	344.5	8.8	49.5 ² J _{TeC} : 18.4	1.26 ³ J _{TeH} : 8.8
(Me ₂ GeS) ₃	_	_	_	_	10.6	_	0.97
$(Me_2GeSe)_3$	Se: -182	-	_	_	11.1	_	1.15
(Me ₂ GeTe) ₃	Te: -476	_	_	_	10.3	$^{2}J_{TeC}$: 9.6	1.42 ³ J _{TeH} : 7.3
$(Me_2SnS)_3$	_	133	193	_	4.8	405.1	0.86
(Me ₂ SnSe) ₃	Se: -360	46	231	1217	4.4	363.5	0.99 ² J _{SnH} : 57.8
(Me ₂ SnTe) ₃	Te: -859	-192	239	3098	1.9	298.0	1.17 ² J _{SnH} : 52.0

Tabelle 10.1.1.1. ¹*H*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se*, ¹¹⁹*Sn* und ¹²⁵*Te NMR Daten der Verbindungen* (Me_2ME)₃ (M = Si, Ge, Sn; E = S, Se, Te)

a) Werte für die Kopplung ${}^{2}J_{119Sn^{117}Sn}$

Beim Vergleich der Daten fällt auf, dass die chemischen Verschiebungen (δ_{Se} , δ_{Te} , δ_C , δ_H) der Germaniumverbindungen nicht zwischen den Werten der entsprechenden Silicium- und Zinnverbindungen liegen, sondern in allen Fällen zu tieferem Feld verschoben sind. Dieser Trend findet sich auch in allen anderen untersuchten Verbindungsklassen und kann mit der im Vergleich zu Silicium und Zinn höheren Elektronegativität des Germaniums erklärt werden (Ge: 2.02, im Gegensatz zu Si: 1.74 und Sn: 1.72, Werte nach ALLRED und ROCHOW [714]).

10.1.2. Phenylverbindungen $(Ph_2ME)_x$ (x = 2, 3) [715]

Setzt man statt der Methylverbindungen entsprechend Gl. 10.1.1.2 die Phenylverbindungen Ph_2MCl_2 ein, so resultieren für M = Si und E = S bzw. Se Gemische aus den cyclischen Trimeren und Dimeren (ca. 3 : 1), während für E = Te nur das Trimer beobachtet werden konnte:

Die Verbindungen konnten NMR-spektroskopisch charakterisiert werden. Die NMR Daten der Schwefelverbindungen stimmten mit Literaturwerten [716] weitgehend überein, während die der Selen- und Tellurverbindungen noch unbekannt waren.

Verbindung	$\delta_{\rm E}$	$^{1}J_{SiE}$	δ_{Si}	$\delta_{\rm C}$			
				ipso	ortho	meta	para
(Ph ₂ SiS) ₃	_	-	4.48	135.02	134.66	127.68	130.11
(Ph ₂ SiS) ₂	_	-	-3.55				
(Ph ₂ SiSe) ₃	Se: -294	137.8	3.77	135.26	135.03	127.73	130.11
(Ph ₂ SiSe) ₂	Se: -211	99.1	-22.30				
(Ph ₂ SiTe) ₃	Te: -673	373.2	-19.56	133.33	135.66	127.82	130.18

Tabelle 10.1.2.1. ¹³C, ²⁹Si, ⁷⁷Se und ¹²⁵Te NMR Daten der Verbindungen (Ph₂SiE)_x (x = 2, 3; E = S, Se, Te)

Bemerkenswert sind die deutlichen Unterschiede in den ²⁹Si und ⁷⁷Se NMR chemischen Verschiebungen sowie der Kopplungskonstante ¹J_{SiSe} zwischen den trimeren und dimeren Diphenylsiliciumchalcogeniden, deren Ursache nur in den geometrischen Unterschieden aufgrund der unterschiedlichen Ringgrößen liegen kann.

Diphenyldichlorstannan reagiert dagegen mit Lithiumchalcogeniden ausschließlich zu den trimeren Diphenylzinnchalcogeniden, deren NMR-Daten in Tabelle 10.1.2.2. zusammengestellt sind.

Tabelle 10.1.2.2. ¹H, ¹³C, ⁷⁷Se, ¹²⁵Te und ¹¹⁹Sn NMR Daten der Verbindungen (Ph_2SnE)₃ (ppm, Hz; E = S, Se, Te)

Е	$\delta_{\rm E}$	δ_{Sn}	$^{1}J_{SnE}$	$^{2}J_{SnSn} \\$	$\delta_{\rm C}$								$\delta_{\rm H}$	
				a)	ipso	$^{1}J_{SnC} \\$	ortho	$^{2}J_{SnC} \\$	meta	$^{3}J_{SnC} \\$	para	$^{4}J_{SnC} \\$	0	m+p
S	_	18	_	215	140.6	632	135.4	53	128.7	71	129.8	15	7.51	7.26
Se	-436	-43	1324	238	140.0	580	135.5	53	128.6	67	129.7	14	7.48	7.28
Te	-991	-201	3369	252	137.5	486	135.6	51	128.5	62	129.4	15	7.46	7.15

a) Werte für die Kopplung ${}^{2}J_{119Sn^{117}Sn}$

Wie auch bei den Siliciumverbindungen, sind die ⁷⁷Se und ¹²⁵Te NMR Resonanzen im Vergleich zu den analogen Methylverbindungen (Tabelle 10.1.1.1.) um einige ppm zu höherem Feld verschoben, während die Kopplungskonstanten ${}^{1}J_{SnE}$ und ${}^{2}J_{SnSn}$ fast unverändert bleiben (Anstieg um 3 – 5 %).

Aufgrund des Übergangs von sp³-hybridisierten Kohlenstoffatomen in den Methylgruppen zu sp²-hybridisierten Kohlenstoffatomen und der damit verbundenen höheren s-Bindungsordnung in den Phenylgruppen steigen die Kopplungskonstanten ${}^{1}J_{SnC}$ (bei gleichem E) etwa um den Faktor 1.6 an.

Wie bei den Siliciumverbindungen δ_{Si} (außer für E = Te), so liegen auch für die Zinnverbindungen die δ_{Sn} Daten für die Phenylderivate bei höherem Feld, wobei aber die Differenz zu den Methylderivaten vom Schwefel zum Tellur fast auf 0 abnimmt, siehe auch Abbildung 10.1.2.1.

Abb. 10.1.2.1. Vergleich der ²⁹Si und ¹¹⁹Sn NMR chemischen Verschiebungen der Verbindungen (R_2ME)₃ für R = Me und Ph (M = Si, Sn, E = S, Se, Te)

Von allen drei Zinnverbindungen (Ph₂SnE)₃ (E = S, Se, Te, **8** – **10**) wurden Kristallstrukturanalysen durchgeführt. Alle drei Verbindungen kristallisieren in der Raumgruppe P2₁/n, doch während (Ph₂SnS)₃ und (Ph₂SnSe)₃ isomorph sind, tritt in der Struktur von (Ph₂SnTe)₃ eine andere Packung der Moleküle auf, verbunden mit deutlich verschiedenen Zellparametern. Die Struktur von (Ph₂SnS)₃ ist identisch mit den bereits in [210] und [211] beschriebenen Daten. Die Molekülstrukturen der Selen- und Tellurverbindung sind in den Abbildungen 10.1.2.2. und 10.1.2.3. wiedergegeben, die Schwefelverbindung ist der Selenverbindung nahezu analog. Die unterschiedliche Packung der Moleküle in der Elementarzelle ist in den Abbildungen 10.1.2.4. und 10.1.2.5. verdeutlicht. Auch hier ergibt sich für die Schwefelverbindung ein mit der Selenverbindung praktisch identisches Bild.

Die wichtigsten Bindungslängen und -winkel sind in Tabelle 10.1.2.3. zusammengefasst.

Abb. 10.1.2.2. Molekülstruktur von (Ph₂SnSe)₃ (9, Ellipsoide für 30 % Wahrscheinlichkeit)

Abb. 10.1.2.3. Molekülstruktur von (Ph₂SnTe)₃ (10, Ellipsoide für 30 % Wahrscheinlichkeit)

Abb. 10.1.2.4. (Ph₂SnSe)₃ (9) – Packung der Moleküle in der Elementarzelle -(die Phenylsubstituenten sind der Übersichtlichkeit halber weggelassen), eine analoge Packung der Moleküle zeigt (Ph₂SnS)₃

Abb. 10.1.2.5. (*Ph*₂*SnTe*)₃ (**10**) – *Packung der Moleküle in der Elementarzelle* (*Die Phenylsubstituenten sind der Übersichtlichkeit halber weggelassen.*)

Aufgrund der unterschiedlichen Packung der Moleküle sind einige der Phenylsubstituenten von (Ph₂SnTe)₃ anders orientiert.

Atome	$\mathbf{E} = \mathbf{S} \; (8)$	E = Se(9)	$\mathbf{E} = \mathrm{Te}\left(10\right)$
Sn1–E1	2.4025(8)	2.5201(9)	2.7249(10)
Sn1–E3	2.4081(9)	2.5377(9)	2.7341(12)
Sn2–E1	2.4008(8)	2.5206(8)	2.7383(11)
Sn2–E2	2.4248(9)	2.5456(10)	2.7396(10)
Sn3–E2	2.3995(10)	2.5206(9)	2.7203(11)
Sn3–E3	2.3986(9)	2.5214(9)	2.7303(12)
Sn1–C1	2.128(3)	2.132(5)	2.143(8)
Sn1–C7	2.130(3)	2.137(5)	2.118(7)
Sn2–C13	2.118(3)	2.121(5)	2.148(8)
Sn2–C19	2.131(3)	2.139(5)	2.127(8)
Sn3–C25	2.136(3)	2.133(5)	2.150(8)
Sn3–C31	2.134(3)	2.149(5)	2.146(8)
E1–Sn1–E3	109.67(3)	111.74(3)	115.93(3)
E1–Sn2–E2	111.90(3)	113.71(2)	115.48(3)
E2–Sn3–E3	111.91(3)	112.95(2)	113.14(3)
Sn1–E1–Sn2	103.56(3)	101.15(3)	98.69(3)
Sn2–E2–Sn3	105.69(3)	103.11(3)	97.74(4)
Sn1–E3–Sn3	104.96(3)	101.68(2)	95.82(3)

Tabelle 10.1.2.3. Bindungslängen (Å) und Bindungswinkel (°) der trimeren Diphenylzinnchalcogenide (Ph_2SnE)₃ (8 – 10)

Alle Sn–E Bindungslängen stehen in guter Übereinstimmung mit den Werten für die entsprechenden Methylverbindungen (siehe Abschnitt 4.2.2.) und sind nahe an den berechneten Bindungslängen von Sn–S: 2.39 Å, Sn–Se: 2.53 Å, Sn–Te: 2.73 Å für Sn–E Einfachbindungen [717]. Die Winkel an den Chalcogenatomen sind alle kleiner als der Tetraederwinkel und nehmen in der Reihe S > Se > Te ab (Mittelwerte von 104.74°, 101.98° und 97.42°) in Übereinstimmung mit dem steigenden p-Charakter der Bindungsorbitale an den schwereren Chalcogenatomen (siehe auch *10.7.*).

Alle drei Verbindungen zeigen einen zentralen Ring Sn₃E₃ in einer *twist*-Boot-Konformation mit angenäherter C₂-Symmetrie. Diese Konformation wird auch in der Abfolge der Torsions-

winkel (Tabelle 10.1.2.4.) deutlich, die angenähert der Sequenz $+\varphi_1$, $+\varphi_2$, $-(\varphi_1 + \varphi_2)$, $+\varphi_1$, $+\varphi_2$, $-(\varphi_1 + \varphi_2)$ folgt, während man für eine Sesselkonformation $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$, $-\varphi$ und für eine Bootkonformation $+\varphi$, $-\varphi$, 0, $+\varphi$, $-\varphi$, 0 erwarten würde.

Atome	E = S	E = Se	E = Te
Sn1–E1–Sn2–E2	36.99(4)	35.39(3)	34.88(4)
E1-Sn2-E2-Sn3	29.56(4)	30.35(3)	29.64(4)
Sn2–E2–Sn3–E3	-71.26(4)	-74.09(3)	-83.18(4)
E2–Sn3–E3–Sn1	33.73(4)	36.24(3)	48.06(3)
Sn3–E3–Sn1–E1	39.39(4)	40.48(4)	35.02(3)
E3–Sn1–E1–Sn2	-78.13(4)	-79.02(4)	-77.93(4)

Tabelle 10.1.2.4. Torsionswinkel der trimeren Diphenylzinnchalcogenide (Ph_2SnE)₃ (8 – 10)

Diese etwas ungewöhnliche Konformation der Sechsringe Sn₃E₃ ist eine Folge der sterischen Behinderung der Phenylsubstituenten, die in einer *twist*-Boot-Konformation minimal wird.

DFT-Berechnungen an (Ph₂SnS)₃ auf dem Niveau B3LYP/6-31G* konnten dies bestätigen. Wie erwartet, ergab sich als globales Minimum eine Geometrie mit dem zentralen Sechsring Sn₃S₃ in einer *twist*-Boot-Konformation, die der experimentell in der Kristallstruktur von (Ph₂SnS)₃ gefundenen Geometrie sehr ähnlich ist. Lediglich die Orientierungen der Phenylringe unterscheiden sich geringfügig davon aufgrund von Packungseffekten in der Kristallstruktur.

Daneben konnte noch eine Sesselkonformation von $(Ph_2SnS)_3$ lokalisiert werden. Allerdings ergab die Schwingungsanalyse eine negative Schwingungsfrequenz von -7.9 i cm⁻¹, die einer Rotation eines Phenylringes entspricht und wohl der begrenzten Genauigkeit der Berechnung auf diesem Level der Theorie geschuldet ist. Schließlich wurde noch eine – nur leicht verdrehte – Bootkonformation von $(Ph_2SnS)_3$ berechnet, die nur um 3.4 kJ/mol über dem globalen Minimum liegt. Dieser Konformation entspricht jedoch kein lokales Minimum auf der Energiehyperfläche, und eine weitere Optimierung der Geometrie führt schließlich zur *twist*-Boot-Konformation. Trotzdem vermittelt diese Konformation eine Vorstellung von der Geometrie und relativen Energie einer möglichen Boot-Konformation. Die Geometrien und relativen Gesamtenergien der drei berechneten Konformeren von $(Ph_2SnS)_3$ sind in Abb. 10.1.2.6. dargestellt; die Bindungslängen, Bindungswinkel und Torsionswinkel sind in Tabelle 10.1.2.5. zusammengestellt.

Abb. 10.1.2.6. Geometrien und relative Energien der drei berechneten Konformationen von $(Ph_2SnS)_3$

Konfomere von (F	$Ph_2SnS)_3$	
twist-Boot	Boot	Sessel
2.434	2.429	2.428
2.432	2.430	2.437
2.437	2.438	2.436
2.438	2.431	2.428
2.433	2.432	2.434
2.433	2.436	2.427
2.434	2.433	2.432
111.4	112.7	113.1

111.6

111.9

108.2

109.7

108.7

+9.0

-61.8

+51.8

Tabelle 10.1.2.5. Berechnete Bindungslängen, Bindungswinkel und Torsionswinkel der dreiKonfomere von (Ph2SnS)3

110.7

110.9

107.8

108.0

107.2

+33.8

+31.1

-71.5

S2-Sn3-S3-Sn1+36.0+7.7+50.3Sn3-S3-Sn1-S1+32.3-62.5-51.1S3-Sn1-S1-Sn2-70.8+52.9+52.7Die berechnete Geometrie der *twist*-Boot-Konformation von (Ph₂SnS)₃ stimmt recht gut mit

Die berechnete Geometrie der *twist*-Boot-Konformation von (Ph₂SnS)₃ stimmt recht gut mit den Daten der Kristallstrukturanalyse (Tabellen 10.1.2.3. und 10.1.2.4.) überein, die berechneten Bindungslängen Sn–S sind jedoch im Mittel um 0.028 Å länger und die Bindungswinkel Sn–S–Sn um 2 – 4° größer.

Auch von der Silicium-Tellurverbindung (Ph₂SiTe)₃ konnten Einkristalle erhalten werden, das Ergebnis der Kristallstrukturanalyse ist in Abb. 10.1.2.7. wiedergegeben.

Im Unterschied zur entsprechenden Zinnverbindung tritt hier zusätzlich eine schwache intermolekulare Te–Te Wechselwirkung (Te3–Te3a, Abb. 10.1.2.8.) auf, die vermutlich auch die Ursache dafür ist, dass der zentrale Sechsring Si₃Te₃ in einer nur leicht verdrehten Bootkonformation vorliegt.

Atome

 $\frac{\text{Sn1}-\text{S1}}{\text{Sn1}-\text{S3}}$

Sn2-S1

Sn2-S2

Sn3–S2

Sn3–S3 Mittelwert

S1–Sn1–S3

S1-Sn2-S2

S2-Sn3-S3

Sn1-S1-Sn2

Sn2–S2–Sn3

Sn1-S3-Sn3

Sn1-S1-Sn2-S2

S1-Sn2-S2-Sn3

Sn2-S2-Sn3-S3

112.6

113.6

111.5

111.8

112.0

-53.4

+52.5

-51.2

Abb. 10.1.2.7. Molekülstruktur von (Ph₂SiTe)₃ (11, Ellipsoide für 30 % Wahrscheinlichkeit)

Abb. 10.1.2.8. Molekülstruktur von (Ph₂SiTe)₃ (**11**) mit der intermolekularen Te–Te Wechselwirkung, die zu einer Dimersierung in der Kristallstruktur führt.

Solche intermolekularen Te-Te Kontakte sind bisher für Organosilicium-Tellur-Verbindungen nicht beschrieben worden.

Habilitation Uwe Herzog

Die wichtigsten Bindungslängen und-winkel von (Ph₂SiTe)₃ sind in Tabelle 10.1.2.6., die Torsionswinkel in Tabelle 10.1.2.7. zusammengestellt.

Atome	Bindungslänge (Å)	Atome	Bindungslänge (Å)
Si4–Te1	2.508(5)	Si4–C1	1.887(17)
Te1–Si5	2.490(5)	Si4–C7	1.898(16)
Si5–Te2	2.506(5)	Si5-C25	1.879(15)
Te2–Si6	2.496(5)	Si5-C31	1.886(16)
Si6–Te3	2.484(5)	Si6-C13	1.884(16)
Te3–Si4	2.481(5)	Si6–C19	1.887(17)
Atome	Bindungswinkel (°)	Atome	Bindungswinkel (°)
Te1–Si4–Te3	115.96(18)	Si4–Te1–Si5	100.61(15)
Te1-Si5-Te2	113.28(18)	Si5–Te2–Si6	102.39(15)
Te2–Si6–Te3	112.29(18)	Si6–Te3–Si4	101.68(16)

Tabelle 10.1.2.6. Bindungslängen und Bindungswinkel in (Ph₂SiTe)₃ (11)

Tabelle 10.1.2.7. Torsionswinkel in (Ph₂SiTe)₃ (11)

Atome	Torsionswinkel (°)	Atome	Torsionswinkel (°)		
Si4–Te1–Si5–Te2	-71.34	Te2-Si6-Te3-Si4	-72.30		
Te1-Si5-Te2-Si6	21.13	Si6–Te3–Si4–Te1	13.08		
Si5–Te2–Si6–Te3	53.80	Te3–Si4–Te1–Si5	50.40		

Die Bindungslängen Si–Te sind ähnlich jenen zwischen der zentralen Ph₂Si Einheit und den beiden Telluratomen in Ph₂Si[TeSi(SiMe₃)₃]₂ (siehe Tab. 9.2.4.), dagegen sind die Bindungswinkel an den Telluratomen in der cyclischen Verbindung (Ph₂SiTe)₃ um ca. 11° kleiner als in Ph₂Si[TeSi(SiMe₃)₃]₂. Unter den Torsionswinkeln im zentralen Ring Si₃Te₃ (Tab. 10.1.2.7.) sind zwei (Te1–Si5–Te2–Si6 und Si6–Te3–Si4–Te1) relativ klein, was eine nur wenig verdrehte Bootkonformation dieses Ringes bestätigt.

10.1.3. Trimethylsilylverbindungen [(Me₃Si)₂SiE]₂ [718]

Wird der sterische Anspruch der Substituenten am Siliciumatom weiter erhöht, so resultieren bei der Reaktion der Dihalogenide mit H₂S bzw. Lithiumchalcogeniden ausschließlich die Dimeren Vierringverbindungen (R₂SiE)₂, so zum Beispiel für R = SiMe₃ (E = S, Se):

Die NMR Daten der beiden persilylierten Vierringe sind in Tabelle 10.1.3.1. wiedergegeben.

Tabelle 10.1.3.1. ¹H, ¹³C, ²⁹Si und ⁷⁷Se NMR Daten (Hz, ppm) der Cyclodisilchalcogenane $[(Me_3Si)_2SiE]_2$ (E = S, Se)

Verbindung	δ_{Se}	$^{1}J_{SiSe}$	δ_{Si}	$^{1}J_{SiSi}$	δ_{C}	$^{1}J_{SiC}$	δ_{H}
Me ₃ Si ^A S SiMe ₃	_	_	A: -13.60	69.0	-2.00	46.2	0.271
Si ^b Si			B: 26.32				
Me_3S1 S $S1Me_3$							
Me ₃ Si ^A Se SiMe ₃	-476	87.5	A: -16.52	64.42	-2.10		0.292
Si ^B Si			B: -1.48				
Me_3S1 Se $SiMe_3$							

Gegenüber den beiden acyclischen chalcogenobutylsubstituierten Trisilanen $(Me_3Si^A)_2Si^B(EBu)_2$ (Tabellen 7.3.5. bzw. 7.3.9.) ergibt sich für δ_{Si}^B eine Tieffeldverschiebung um 32.75 ppm (E = S) bzw. 17.3 ppm (E = Se), während δ_{Si}^A eine Hochfeldverschiebung erfährt. Bemerkenswert ist weiterhin die relativ kleine Kopplungskonstante ${}^1J_{SiSe}$ der Selenverbindung [(Me_3Si)_2SiSe]_2, was auch der deutlichen Abnahme dieser Kopplungskonstante von (Ph_2SiSe)_3 zu (Ph_2SiSe)_2 (Tabelle 10.1.2.1.) entspricht.

Von der Schwefelverbindung [(Me₃Si)₂SiS]₂ gelang auch eine Kristallstrukturanalyse, deren Ergebnis in Abb. 10.1.3.1. dargestellt ist. Die Struktur zeigt einen symmetriebedingt exakt planaren Vierring Si₂S₂ mit einem S–Si–S Winkel von 83.3°. Dieser relativ kleine Bindungswinkel bedingt einen nichtbindenden transannularen Si…Si Abstand von 2.886 Å. Die – im Vergleich zu anderen Silicium-Schwefel-Verbindungen – relativ langen Si–S Abstände spiegeln die Verzerrung der Geometrie durch die Ausbildung des Vierringes wider und mögen für die Selenverbindungen auch die Ursache für die relativ kleinen Kopplungskonstanten ¹J_{SiSe} in den Vierringen sein.

 Abb. 10.1.3.1. Molekülstruktur von [(Me₃Si)₂SiS]₂ (12) (Ellipsoide für 30 % Wahrscheinlichkeit)
 Das Molekül besitzt ein kristallographisches Inversionszentrum in der Mitte des Si₂S₂-Ringes. Si1-Si2: 2.349(1) Å, Si1-Si3: 2.369(1) Å, Si1-S1: 2.178(1) Å, Si1-S1a: 2.164(1) Å,
 Si1...Si1a: 2.886(2) Å, S1-Si1-S1a: 96.68(4)°, Si1-S1-Si1a: 83.32(4)°, Si2-Si1-Si3: 113.51(4)°

Abb. 10.1.3.2. Packung der Moleküle von [(Me₃Si)₂SiS]₂ im Kristall, Blick entlang der kristallographischen a-Achse

10.2. Sechsringe mit Disilaneinheiten $E(Si_2Me_4)_2E$ [713]

Zu einem anderen Typ von Sechsringen gelangt man bei der Reaktion von 1,2-Dichlortetramethyldisilan mit H₂S und NEt₃ bzw. mit Li₂E:

Bei der Darstellung der Tellurverbindung muss die Reaktion bei –30 °C durchgeführt werden, andernfalls tritt Si–Si Bindungsspaltung unter ausschließlicher Bildung des Fünfringes Me₄Si₂(Te)₂SiMe₂ ein (siehe auch nächstes Kapitel).

Wird bei den Synthesen nicht auf absoluten Ausschluss von Feuchtigkeit bzw. Luftsauerstoff geachtet, so entstehen als Nebenprodukte die gemischten Cyclen O(SiMe₂–SiMe₂)₂E:

bzw. sogar das Cyclosiloxan O(SiMe₂–SiMe₂)₂O [719,720]. Diese Nebenprodukte konnten sowohl durch NMR als auch aufgrund ihrer Massenspektren charakterisiert wurden (siehe: Experimenteller Teil).

Schließlich sind die Cyclen E(SiMe₂–SiMe₂)₂E' (E, E' = S, Se, Te, E \neq E') im Gemisch neben den Verbindungen E(SiMe₂–SiMe₂)₂E und E'(SiMe₂–SiMe₂)₂E' nachweisbar, wenn ClSiMe₂– SiMe₂Cl mit einem 1 : 1 Gemisch von Li₂E und Li₂E' (*in situ* aus Li[BEt₃H] und zwei verschiedenen Chalcogenen) umgesetzt wird.

Die NMR Daten der so erhältlichen Sechsringe mit vier SiMe₂ Gruppen und zwei Chalcogenatomen in 1,4-Stellung sind in den Tabellen 10.2.1. und 10.2.2. zusammengestellt.

Verbindung	$\delta_{\rm E}$	δ_{Si}	${}^{1}J_{SiE}$	$\delta_{\rm C}$	$^{1}J_{SiC}$	δ_{H}
$O(Si_2Me_4)_2O$	—	3.7	—	2.28		0.21
S(Si ₂ Me ₄) ₂ S	_	-4.8	_	1.94	45.4	0.44
Se(Si ₂ Me ₄) ₂ Se	Se: -369	-9.1	109.8	1.40	44.1	0.55
Te(Si ₂ Me ₄) ₂ Te	Te: -885	-28.9	280.2	1.00	42.3	0.72
			$^{2}J_{SiTe}$: 13			

Tabelle 10.2.1. NMR Daten (Hz, ppm) der Sechsringverbindungen $E(SiMe_2-SiMe_2)_2E$ (E = O, S, Se, Te)

Tabelle 10.2.2. NMR Daten (Hz, ppm) der Sechsringverbindungen $E(SiMe_2-SiMe_2)_2E'$ (E, E' = O, S, Se, Te; $E \neq E'$)

Verbindung	δ_{E}	${}^{1}J_{SiE}$	² J _{SiTe}	δ_{Si}	${}^{1}J_{SiC}$	$^{1}J_{SiSi}$	$\delta_{\rm C}$	$\delta_{\rm H}$
O(Si ^A Me ₂ Si ^B Me ₂) ₂ S	_		_	A: 4.7 B: -8.4	58.3 43.7	100.1	2.31 1.88	0.26 0.38
O(Si ^A Me ₂ Si ^B Me ₂) ₂ Se	Se: -374	103.0	_	A: 4.1 B: -13.6	43.2	98.0	1.85 1.75	0.26 0.48
O(Si ^A Me ₂ Si ^B Me ₂) ₂ Te	Te: -902	255.1	10.2	A: 3.8 B: -35.6	40.8	95.7	1.48 1.12	0.26 0.64
S(Si ^A Me ₂ Si ^B Me ₂) ₂ Se	Se: -370	107.9	_	A: -3.9 B: -10.1	45.7 45.7	92.8	1.81 1.52	0.45 0.54
S(Si ^A Me ₂ Si ^B Me ₂) ₂ Te	Te: -916	267.2	8.3	A: -2.5 B: -32.8	43.7	89.4	1.73 0.97	0.47 0.70
Se(Si ^A Me ₂ Si ^B Me ₂) ₂ Te	Se: -366 Te: -890	112.2 273.1	8.7	A: -7.3 B: -31.5	44.5 41.8	88.0	1.37 0.93	0.57 0.71

(E, E = O, S, Se, Ie, E + E)

Im Vergleich zu den acyclischen chalcogenobutylsubstituierten Disilanen BuESiMe₂– SiMe₂EBu (E = S: δ_{Si} : -1.6 ppm, Tab. 7.3.1.; E = Se: δ_{Si} : -6.7 ppm, Tab. 7.3.2.; E = Te: δ_{Si} : -26.0 ppm, Abschnitt 7.3.) sind die ²⁹Si NMR Signale der Sechsringverbindungen E(Si₂Me₄)₂E um etwa 2 – 3 ppm zu höherem Feld verschoben, während die ¹³C NMR Signale der Methylgruppen um etwa den selben Betrag zu tieferem Feld verschoben sind und die Beträge der Kopplungskonstanten ¹J_{SiC} praktisch unverändert bleiben (jeweils für gleiches E).

In den Sechsringen mit zwei verschiedenen Chalcogenatomen werden die ²⁹Si NMR Signale der SiMe₂ Gruppen, die an das elektronegativere Chalcogen gebunden sind, zu tieferem Feld verschoben, die anderen ²⁹Si NMR Signale dagegen zu höherem Feld (im Vergleich zu den Verbindungen mit zwei gleichen Chalcogenatomen). Der Effekt steigt mit dem Unterschied

der Elektronegativitäten der beiden Chalcogenatome und kann auch für viele andere unsymmetrisch substituierte Disilane beobachtet werden.

In den Sechsringen mit zwei verschiedenen Chalcogenatomen konnten auch die Kopplungskonstanten ${}^{1}J_{SiSi}$ bestimmt werden. Erwartungsgemäß steigt der Wert von ${}^{1}J_{SiSi}$ mit den Elektronegativitäten der beiden Chalcogenatome.

Von den Sechsringen $E(Si_2Me_4)_2E$ mit E = S und Se, die in Form farbloser langer Kristallnadeln anfallen, konnten auch Kristallstrukturanalysen durchgeführt werden, siehe Abbildungen 10.2.1. und 10.2.2.

Die beiden Verbindungen sind isomorph. Im Gegensatz zu den Verbindungen (R_2ME)₃ (siehe Abschnitt *10.1.*) liegt hier in beiden Fällen der Sechsring in einer Sesselkonformation vor und weist ein kristallographisches Inversionszentrum im Zentrum des Sechsringes auf. Die wichtigsten Bindungslängen und Bindungswinkel der beiden Verbindungen sind in Tabelle 10.2.3. zusammengefasst.

Atome	Bindun	gslänge	Atome	Wi	nkel	
	$\mathbf{E} = \mathbf{S}$	E = Se		E = S	E = Se	
Si1–Si2	2.3373(4)	2.3306(10)	Si1–E1–Si2a	106.45(1)	105.14(3)	
Si1–E1	2.1562(4)	2.2908(8)	E1–Si1–Si2	111.90(2)	111.37(4)	
Si2a–E1	2.1545(4)	2.2883(8)	E1a–Si2–Si1	113.29(2)	112.27(3)	
Si1–C1	1.8713(11)	1.870(3)	C1–Si1–C2	109.21(6)	110.17(16)	
Si1–C2	1.8691(11)	1.863(8)	C3-Si2-C4	109.68(5)	110.65(15)	
Si2–C3	1.8666(11)	1.871(3)	E1-Si1-Si2-E1a	-59.65(2)	-62.40(4)	
Si2–C4	1.8709(11)	1.867(3)	Si2a–E1–Si1–Si2	55.74(2)	58.17(4)	

Tabelle 10.2.3. Bindungslängen (Å) und Winkel (°) der Sechsringe $E(Si_2Me_4)_2E$ E = S (13), Se (14)

Im Vergleich zu anderen Organosiliciumchalcogeniden sind die Si–S und Si–Se Bindungslängen in den beiden Sechsringen $E(Si_2Me_4)_2E$ relativ groß. Im Allgemeinen sinkt die Bindungslänge Si–E mit der Anzahl an Chalcogensubstituenten am Siliciumatom. In den beiden hier betrachteten Cyclen hat jedes Siliciumatom aber nur einen Chalcogensubstituenten. Auch die Bindungswinkel an den Chalcogenatomen sind zwar kleiner als der Tetraederwinkel, aber – im Vergleich mit anderen cyclischen und polycyclischen Organosiliciumchalcogeniden – verhältnismäßig groß.

Prinzipiell sind die Strukturen von $E(Si_2Me_4)_2E$ auch mit den Anionen von $Na_8Ge_4Se_{10}$ (II) und $Na_8Ge_4Te_{10}$ (II) (siehe Abb. 4.5.20) vergleichbar (ebenfalls ein Sechsring in Sesselkonformation mit Chalcogenatomen in 1,4-Positionen des Rings), wenn man die terminalen Chalcogenatome der Anionen gegen Methylgruppen ersetzt.

10.3. Fünfringe $Me_4Si_2(E)_2MR_x$ ($MR_x = BPh$, $C(CH_2)_5$, $SiMe_2$, SiPhMe, $SiPh_2$, $GeMe_2$, $SnMe_2$, $SnPh_2$, $PbPh_2$, SbPh) [713,721]

Lässt man Diorganodichlorsilane, -germane, -stannane oder -plumbane und 1,2-Dichlortetramethyldisilan nicht separat sondern im Gemisch mit H₂S und NEt₃ bzw. mit Li₂E reagieren, so entstehen nicht die in den vorangegangenen Kapiteln beschriebenen Sechsringe, sondern fünfgliedrige Ringverbindungen mit einer Disilaneinheit und einer MR₂ Gruppe, verbunden durch zwei Chalcogenatome (MR₂ = SiMe₂, SiPhMe, SiPh₂, GeMe₂, SnMe₂, SnPh₂, PbPh₂) :

Die Silicium-Tellur-Verbindung Me₄Si(Te)₂SiMe₂ bildet sich auch bei der Reaktion des Disilans ClSiMe₂–SiMe₂Cl mit Li₂Te bei Raumtemperatur unter teilweiser Spaltung von Si–Si Bindungen, siehe auch *10.2*.

Auch Kohlenstoff ließ sich durch Reaktion des Disilans mit einem 1,1-Dithiol in die Position von M einbauen.

Das dafür benötigte Cyclohexan-1,1-dithiol war durch Reaktion von Cyclohexanon mit H₂S in Gegenwart von Morpholin nach [722] zugänglich:

cyclo-(CH₂)₅C(SH)₂, NMR (ppm):

¹³C: 53.3 (<u>C</u>S₂), 45.7 (ortho), 23.6 (meta), 24.9 (para); ¹H: 2.53 (S<u>H</u>), 1.87 (ortho), 1.52 (meta), 1.32 (para)

Schließlich gelang durch Reaktionen mit PhBCl₂ bzw. PhSbCl₂ (durch Äquilibrierung aus SbCl₃ und SbPh₃) auch der Einbau von Bor bzw. Antimon in diese fünfgliedrigen Cyclen:

Ähnlich wie bei den zuvor besprochenen Sechsringen waren auch hier Fünfringe mit zwei verschiedenen Chalcogenatomen detektierbar, wenn man das Gemisch aus ClSiMe₂–SiMe₂Cl und Me₂SiCl₂ mit einem 1:1 Gemisch zweier verschiedener Lithiumchalcogenide umsetzt:

$$Me \xrightarrow{Me}_{Si} Cl \qquad Cl \qquad Me \xrightarrow{Li_2E + Li_2E' (THF)}_{Me} Me \xrightarrow{Si}_{E'} Cl \qquad Cl \qquad Me \xrightarrow{Li_2E' (THF)}_{He} Me \xrightarrow{Me}_{Si} E \xrightarrow{Me}_{I} Me \qquad (10.3.7)$$

$$Me \xrightarrow{Me}_{Me} E, E = S, Se, Te \qquad Me$$

Neben den Massenspektren (siehe Experimenteller Teil) wurden alle dargestellten Fünfringe NMR-spektroskopisch charakterisiert, siehe Tabellen 10.3.1. und 10.3.2.

Beim Vergleich mit den chalcogenobutylsubstituierten Silanen bzw. Disilanen sowie den entsprechenden Sechsringen der Kapitel *10.1.* und *10.2.* ergeben sich für die Siliciumatome in den Fünfringen starke Tieffeldverschiebungen der ²⁹Si NMR chemischen Verschiebungen (bei gleichem Chalcogen E). Eine genauere Betrachtung zeigt, dass diese Tieffeldverschiebung im Vergleich zu den gleichen Silylgruppen in sechsgliedrigen Ringen für die Disilaneinheiten von den Schwefel- zu den Tellurverbindungen stark ansteigt, während sie für die Monosilaneinheiten von den Schwefel- zu den Tellurverbindungen fast auf Null absinkt, siehe dazu auch Abbildung 10.3.1.

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{Si}	$^{1}J_{SiE}$	andere J	δ_{C} (Me)	$^{1}J_{SiC}$	$\delta_{\rm H}$
Masins	_	Si ₂ Me ₄	11.0	_	_	1.09	46.5	0.48
SiMe ₂		SiMe ₂	34.1	_	_	8.46	58.3	0.62
Me ₂ Si S								
S Me	_	Si ₂ Me ₄	11.4	_	_	0.84/	46.7	0.35/
						1.05**		0.51
Me_2Si_S Ph		SiPhMe	25.5	_	_	1.91 ^{a)}	60.3	0.84^{a}
Ma Si S	_	Si ₂ Me ₄	11.1	_	_	0.88	46.7	0.40
SiPh ₂		SiPh ₂	17.8	_	_	b)		b)
Me ₂ Si S								
Se	Se: -302	Si ₂ Me ₄	14.0	105.5	$^{2}J_{SeC}$: 6.0	0.7	45.2	0.58
Me_2S_1 SiMe ₂		SiMe ₂	24.8	128.3	_	9.8	54.0	0.85
Me ₂ Si Se								
Te	Te: -774	Si ₂ Me ₄	10.2	279.9	² J _{SiTe} : 28.7	0.3	42.8	0.71
Me_2Si SiMe ₂					² J _{TeC} : 19.8			
Me ₂ Si Te		SiMe ₂	-22.8	334.3	² J _{TeC} : 17.1	11.0	47.6	1.20
Masi	Se: -312	SSiMe ₂	14.5	_	_	0.9	45.6	0.49
SiMe ₂		SeSiMe ₂	10.3	104.0	_	0.8	44.7	0.58
Me ₂ S1 Se		E ₂ SiMe ₂	29.9	125.4	_	9.2	56.4	0.73
No. Si S	Te: -827	SSiMe ₂	21.2	_	² J _{SiTe} : 24.4	0.5	45.2	0.49
SiMe ₂		TeSiMe ₂	-2.1	268.2	¹ J _{SiSi} : 84.6	0.5	43.7	0.71
Me ₂ Si Te		E ₂ SiMe ₂	10.5	329.0	$^{2}J_{TeC}$: 16.0	10.5	53.5	0.89
Se Se	Se: -288	SeSiMe ₂	21.1	109.3	$^{2}J_{SiTe}$: 25.8	0.5	44.7	0.58
Me_2S_1 SiMe ₂		TeSiMe ₂	2.0	272.7	${}^{1}J_{SiSi}: 84.0$	0.4	42.8	0.71
Me ₂ Si Te	Te: -806	E_2SiMe_2	3.1	Se: 129.3	_	10.8	50.0	1.01
				Te: 334.3				

Tabelle 10.3.1. ¹*H*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se und* ¹²⁵*Te NMR Daten (Hz, ppm) der fünfgliedrigen Cyclen* $Me_4Si_2(E)_2SiR_2 (E = S, Se, Te; R = Me, Ph)$

a) Ph: ${}^{13}C$: 138.5 (ipso, ${}^{1}J_{SiC}$: 76.8), 133.6 (ortho), 127.7 (meta), 129.9 (para), ${}^{1}H$: 7.73 (ortho), 7.36 (meta + para)

- *b) Ph*: ¹³*C*: 136.6 (ipso), 134.7 (ortho), 127.7 (meta), 130.1 (para), ¹*H*: 7.72 (ortho), 7.35 (meta + para)
- #: diastereotope Methylgruppen

Tabelle 10.3.2. ¹*H*, ¹¹*B*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se*, ¹¹⁹*Sn*, ¹²⁵*Te und* ²⁰⁷*Pb NMR Daten (Hz, ppm) der fünf*gliedrigen Cyclen $Me_4Si_2(E)_2MR_x$ (E = S, *Se*, *Te*; $MR_x = GeMe_2$, $SnMe_2$, $SnPh_2$, $PbPh_2$, $C(CH_2)_5$, *BPh*, *SbPh*)

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{M}	${}^{1}J_{ME}$	andere J	δ_{C} (Me)	$^{1}J_{MC}$	$\delta_{\rm H}$
No. S: S	_	Si ₂ Me ₄	12.2	_	_	1.1	46.2	0.46
GeMe ₂		GeMe ₂	-	_	_	10.6	_	0.90
Me ₂ S1								
Ma Si Se	Se: -294	Si ₂ Me ₄	14.8	111.3	${}^{2}J_{SiSe}$: 6.3	0.6	44.7	0.55
GeMe ₂		GeMe ₂	_	_	_	11.8	_	1.09
Me ₂ S1 Se								
Me Si Te	Te: -740	Si ₂ Me ₄	10.8	292.5	² J _{SiTe} : 28.7	0.3	42.3	0.67
GeMe ₂				_	$^{2}J_{TeC}$: 17.6			
Te		GeMe ₂	-		_	12.2	_	1.40
Masi	_	Si ₂ Me ₄	10.6	_	$^{2}J_{SiSn}$: 10.2	1.6		0.42
SnMe ₂		SnMe ₂	183		_	3.5		0.80
Me ₂ S1 S								
Me Si S	_	Si ₂ Me ₄	11.7	_	$^{2}J_{SiSn}$: 10.2	1.5		0.42
SnPh ₂					${}^{3}J_{SnC}$: 16.8			
Me ₂ S1 S		SnPh ₂	68		_	a)		a)
Ma Si Se	Se: -439	Si ₂ Me ₄	12.2	112.6	${}^{2}J_{SiSe}$: 7.2	1.1		0.52
SnMe ₂					³ J _{SnC} : 14.4			
Me ₂ S ₁ Se		SnMe ₂	98	1170	$^{2}J_{SiSn}$: 13.0	3.3	349	0.89
Me Si Se	Se:467	Si ₂ Me ₄	13.2	110.3	${}^{2}J_{SiSe}$: 8.3	1.1		0.53
SnPh ₂					$^{3}J_{SnC}$: 15.6	b)		b)
Me ₂ Si Se		SnPh ₂	10	1266	² J _{SiSn} : 12.4			
Te	Te: -1018	Si ₂ Me ₄	6.7	291.5	$^{2}J_{SiTe}: 31.1$	0.9		0.67
SnMe ₂								
Me_2S_1 Te		SnMe ₂	-139	2966	_	7.7		1.1

a) $Ph^{13}C$: 140.0 (ipso, ${}^{1}J_{SnC}$: 620.0), 135.2 (ortho, ${}^{2}J_{SnC}$: 51.9), 128.7 (meta, ${}^{3}J_{SnC}$: 67.1), 129.9 (para, ${}^{4}J_{SnC}$: 13.6); ${}^{1}H$: 7.63 (ortho) 7.32 (meta + para)

b) $Ph^{13}C$: 140.0 (ipso, ${}^{1}J_{SnC}$: 557.5), 135.4 (ortho, ${}^{2}J_{SnC}$: 53.2), 128.7 (meta, ${}^{3}J_{SnC}$: 66.5), 129.8 (para, ${}^{4}J_{SnC}$: 16.4); ${}^{1}H$: 7.65 (ortho) 7.36 (meta + para)

(Fortsetzung nächste Seite)

Tabelle 10.3.2. Fortsetzung

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{M}	${}^{1}J_{ME}$	andere J	δ_{C} (Me)	$^{1}J_{MC}$	$\delta_{\rm H}$
Ma Si S	_	Si ₂ Me ₄	11.5	_	² J _{SiPb} : 7.3	2.6	45.7	0.37
PbPh ₂					³ J _{PbC} : 25.3			
Me_2Si_S		PbPh ₂	268	_	_	c)		c)
Me _a Si Se	Se: -390	Si ₂ Me ₄	13.0	116.3	${}^{2}J_{SiPb}$: 9.2	2.3		0.49
PbPh ₂					³ J _{PbC} : 24.5			
Me ₂ Si Se		PbPh ₂	25	1544	_	d)		d)
Ma Si S	-	Si ₂ Me ₄	10.5	—	_	-0.1	47.1	0.49
		<u>C</u> (CH ₂) ₅	70.7			e)		e)
Me ₂ Si S	\diamond							
S	_	Si ₂ Me ₄	17.0	_	_	-0.4	46.6	0.54
Me ₂ Si BPh		BPh	64.1			f)		f)
Me ₂ Si S								
No Si Se	Se: +33	Si ₂ Me ₄	18.1	97.2	_	-0.5	45.2	0.65
BPh		BPh	70.0			g)		g)
Me ₂ Si Se								
S S	_	Si ₂ Me ₄	22.1		_	2.24/	46.9	0.12/
Me ₂ Si SbPh						3.04#		0.40
Me ₂ Si S		SbPh	—			h)		
Me-Si Se	Se: -239	Si ₂ Me ₄	24.0	121.5	${}^{2}J_{SiSe}$: 8.3	1.90/		0.20/
SbPh						3.18#		0.48
Me_2S_1 Se		SbPh	—			1)		

- c) $Ph^{13}C$: 157.3 (ipso, ${}^{1}J_{PbC}$: 581), 135.2 (ortho, ${}^{2}J_{PbC}$: 97.4), 130.2 (meta, ${}^{3}J_{PbC}$: 115.8), 129.8 (para, ${}^{4}J_{PbC}$: 26.8); ${}^{1}H$: 7.66 (ortho) 7.43 (meta), 7.30 (para)
- d) $Ph^{13}C$: 155.6 (ipso), 135.3 (ortho, ${}^{2}J_{PbC}$: 93.6), 129.9 (meta, ${}^{3}J_{PbC}$: 105.8), 129.5 (para, ${}^{4}J_{PbC}$: 23.0); ${}^{1}H$: 7.65 (ortho) 7.41 (meta), 7.30 (para)
- e) Cyclohexanring ${}^{13}C$: 46.65 (ortho), 24.2 (meta), 25.0 (para); ${}^{1}H$: 2.02 (ortho, ${}^{3}J_{HH}$: 5.7), 1.68 (meta), 1.41 (para, ${}^{3}J_{HH}$: 6.6)

- f) Ph¹³C: 134.1 (ortho), 127.6 (meta), 131.7 (para); ¹H: 8.04 (ortho), m: 7.35 (meta), 7.43 (para)
- g) Ph¹³C: 133.9 (ortho), 127.7 (meta), 131.7 (para); ¹H: 8.24 (ortho, ³J_{HH}: 6.6) 7.34 (meta), 7.45 (para, ³J_{HH}: 7.3)
- h) Ph¹³C: 145.1 (ipso), 134.2 (ortho), 128.6 (meta), 129.3 (para); ¹*H*: 7.75 (ortho) 7.38 (meta + para)
- i) Ph¹³C: 139.8 (ipso), 135.0 (ortho), 128.5 (meta), 129.0 (para); ¹*H*: 7.81 (ortho) 7.32 (meta + para)
- *#: diastereotope Methylgruppen*

Abb. 10.3.1. Differenz der ²⁹Si NMR chemischen Verschiebungen von Monosilanyl- und Disilanyl-Einheiten in fünfgliedrigen Ringen $Me_4Si_2(E)_2SiMe_2$ und sechsgliedrigen Ringen $(Me_2SiE)_3$ bzw. $E(Si_2Me_4)_2E$ ($\Delta\delta_{Si}$) in Abhängigkeit vom Chalcogen E (S, Se oder Te)

Prinzipiell sind diese Tieffeldverschiebungen in den fünfgliedrigen Ringen auch für die ¹¹⁹Sn und ²⁰⁷Pb NMR chemischen Verschiebungen zu beobachten, wenn man die Daten aus Tabelle 10.3.2. mit den ¹¹⁹Sn bzw. ²⁰⁷Pb NMR chemischen Verschiebungen von (Me₂SnS)₃, (Me₂SnSe)₃, (Me₂SnSe)₃, (Ph₂SnS)₃, (Ph₂SnSe)₃ (siehe Kapitel *10.1.*) und (Ph₂PbS)₃ (δ_{Pb} : 173.4 [211]) vergleicht, siehe auch Abb. 10.3.2. Allerdings beträgt der Unterschied der ¹¹⁹Sn NMR chemischen Verschiebungen unabhängig vom Chalcogen etwa 50 ppm. Im Falle von ²⁰⁷Pb sind es 95 ppm für E = S, für andere Chalcogene sind die Sechsringe (Ph₂PbE)₃ bisher noch nicht bekannt.

Versucht man den Einfluss der Ringgröße auf die ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen abzuschätzen, so ergibt sich das in Abbildung 10.3.3. dargestellte Bild. Die chemischen Verschiebungen der Fünfringe Me₄Si₂(E)₂SiMe₂ liegen ziemlich exakt in der Mitte zwischen den chemischen Verschiebungen der beiden Sechsringe (Me₂SiE)₃ und E(Si₂Me₄)₂E, wobei in den Fünfringen jedes Chalcogenatom zwischen einer Monosilan- und einer Disilaneinheit sitzt, während es sich in den Sechsringen entweder zwischen zwei Monosilaneinheiten oder zwischen zwei Disilaneinheiten befindet. Das heißt, die Ringgröße hat keinen signifikanten Einfluss auf die ⁷⁷Se und ¹²⁵Te NMR chemische Verschiebung, wohl aber die zweite Koordinationssphäre (d. h. die übernächsten Nachbarn; Monosilanyleinheit und ein weiteres Chalcogenatom oder Disilanyleinheit).

Abb. 10.3.2. ¹¹⁹Sn und ²⁰⁷Pb NMR chemische Verschiebungen der Einheiten $MR_2 = SnMe_2$, SnPh₂ und PbPh₂ in den Fünfringen $Me_4Si_2(E)_2MR_2$ und den Sechsringen $(R_2ME)_3$

Abb. 10.3.3. Vergleich der ⁷⁷Se bzw. ¹²⁵Te NMR chemischen Verschiebungen der Fünfringe $Me_4Si_2(E)_2SiMe_2$ mit den Sechsringen $E(Si_2Me_4)_2E$ und $(Me_2SiE)_3$ (E = Se, Te)

Während die anderen Fünfringe fast ausschließlich ölige Flüssigkeiten darstellen, konnte von der kristallinen Bleiverbindung $Me_4Si_2(S)_2PbPh_2$ eine Kristallstrukturanalyse durchgeführt werden, siehe Abb. 10.3.4.

Abb. 10.3.4. $Molek \ddot{u}lstruktur von Me_4Si_2(S)_2PbPh_2$ (15)

Der fünfgliedrige Ring Si₂S₂Pb nimmt in dieser Verbindung annähernd eine Briefumschlagkonformation ein, bei der sich die Disilaneinheit, S2 und Pb1 in einer Ebene befinden. Das Schwefelatom S1 liegt 1.032(1) Å außerhalb dieser Ebene.

Der Winkel zwischen den beiden Ebenen Si1-Si2-S2-Pb1 und Si1-S1-Pb1 beträgt 41.65(3)°. Bemerkenswert sind ferner die beiden Bindungswinkel an den Schwefelatomen, die sich um fast 5° unterscheiden.

Die Bindungslängen Pb–S und Pb–C sind vergleichbar mit den Werten, die für (Ph₂PbS)₃ gefunden wurden (siehe Abb. 4.2.2.4.). Aufgrund der kleineren Ringgröße sind aber die Bindungswinkel S–Pb–S und die Winkel an den Schwefelatomen kleiner als in (Ph₂PbS)₃.

Habilitation Uwe Herzog

Atome	Bingungs- länge (Å)	Atome	Bindungs- winkel (°)	Atome	Torsions- winkel (°)
Pb1–S1	2.499(1)	S1-Pb1-S2	103.96(4)	Si1–Si2–S2–Pb1	-3.28(8)
Pb1–S2	2.492(1)	Pb1–S1–Si1	95.73(5)	Si2–S2–Pb1–S1	27.73(6)
Si1–S1	2.151(2)	Pb1-S2-Si2	100.48(5)	S2–Pb1–S1–Si1	-42.39(5)
Si2–S2	2.140(2)	S1–Si1–Si2	108.63(6)	Pb1-S1-Si1-Si2	41.00(6)
Si1–Si2	2.356(2)	Si1–Si2–S2	111.17(6)	S1-Si1-Si2-S2	-27.16(9)
Pb1–C1	2.197(3)	C1–Pb1–C7	120.5(1)		
Pb1–C7	2.204(4)	C13-Si1-C14	110.2(2)		
Si–C	1.86 - 1.88	C15–Si2–C16	109.7(3)		

Tabelle 10.3.3. Bindungslängen, Bindungswinkel und Torsionswinkel von Me₄Si₂(S)₂PbPh₂ (15)

10.4. Siliciumchalcogenide mit Bis-cyclopentyl Struktur (Me₄Si₂(E)₂SiMe–SiMe(E)₂Si₂Me₄) [713]

Lässt man ein Gemisch von ClSiMe₂–SiMe₂Cl und Cl₂SiMe–SiMeCl₂ (2:1) mit H₂S / NEt₃ reagieren, sind (analog zu den Betrachtungen in *8.3*. über 1,2-Dithiolatderivate von Cl₂SiMe–SiMeCl₂) Reaktionsprodukte mit einer *cis*- bzw. *trans*-Dekalin-Struktur oder einer *Bis*-cyclopentyl-Struktur denkbar:

Auch hier entsteht nur ein Reaktionsprodukt, das Isomer mit der *Bis*-cyclopentyl-Struktur. Neben den im Vergleich zu BuSMe₂Si–SiMe₂SBu und (BuS)₂MeSi–SiMe(SBu)₂ deutlich zu tieferem Feld verschobenen ²⁹Si NMR Signalen konnte dies auch zweifelsfrei durch eine Kristallstrukturanalyse bestätigt werden, siehe Abbildung 10.4.1.

Die selektive Bildung dieses Isomers belegt einmal mehr die große Neigung in diesen Systemen, fünfgliedrige Cyclen zu bilden.

Abb. 10.4.1. Molekülstruktur von Me₄Si₂(S)₂SiMe–SiMe(S)₂Si₂Me₄ (16)
 Das Molekül besitzt ein kristallographisches Inversionszentrum in der Mitte der Bindung Si1–Si1a.

Die beiden Molekülhälften zeigen jeweils einen fünfgliedrigen Ring in einer *twist*-Konformation – im Gegensatz zur Geometrie der strukturell charakterisierten Bleiverbindung im vorangegangenen Abschnitt.

Atome	Bindungs- länge (Å)	Atome	Bindungs- winkel (°)	Atome	Torsions- winkel (°)
Si1–Si1a	2.323(2)	Si1–S1–Si2	104.38(5)	Si1-S1-Si2-Si3	-27.42(6)
Si1–S1	2.146(1)	Si1–S2–Si3	103.85(5)	S1-Si2-Si3-S2	35.87(6)
Si1–S2	2.141(1)	S1-Si1-S2	112.65(5)	Si2–Si3–S2–Si1	-28.83(6)
Si2–S1	2.155(1)	S1–Si2–Si3	103.05(5)	Si3-S2-Si1-S1	12.73(6)
Si3–S2	2.154(1)	S2–Si3–Si2	103.65(5)	S2-Si1-S1-Si2	10.55(7)
Si2–Si3	2.331(1)	Sila–Sil–Cl	111.22(14)		
Si1–C1	1.853(4)	C2-Si2-C3	110.5(2)		
Si2–C2	1.848(4)	C4–Si3–C5	109.1(2)		
Si2–C3	1.860(4)				
Si3–C4	1.865(4)				
Si3–C5	1.874(4)				

Tabelle 10.4.1. Bindungslängen, Bindungs- und Torsionswinkel von [Me₄Si₂(S)₂SiMe]₂ (16)

Die hier beobachtete Geometrie inklusive der Bindungslängen und -winkel stellt auch ein gutes Modell für die Struktur des einfachen Fünfringes Me₄Si₂(S)₂SiMe₂ dar, wie die DFT-Berechnungen dieser Ringverbindung zeigen (siehe *10.7.*).

Auch die entsprechenden Selen- und Tellurverbindungen waren durch Reaktion eines Gemisches der beiden Methylchlordisilane mit Li₂E zugänglich:

Die NMR-Daten der drei Silicum-Chalcogen-Verbindungen mit *Bis*-cyclopentyl-Struktur sind in Tabelle 10.4.2 zusammengefasst.

Tabelle 10.4.2.	$^{1}H, ^{13}C, ^{29}Si, ^{77}$	Se und $125T$	e NMR Daten	(Hz, ppm)	der Verbindungen
	$Me_4Si_2($	E) ₂ SiMe–S	SiMe(E) ₂ Si ₂ Me	A; E = S, S	e, Te

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{Si}	$^{1}J_{SiE}$	² J _{SiE}	$\delta_{\rm C}$	¹ J _{SiC}	δ_{H}
Me ₂ Si S	_	SiMe	20.25	_	_	7.17	48.6	0.73
$Me_2Si \searrow S \searrow$		SiMe ₂	12.55	_	_	0.90/	46.2	0.49/
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$						1.41"		0.50*
Me-Si Se	-347	SiMe	8.42	144.3	19.9	6.93		0.96
$\begin{array}{c} \operatorname{Me}_{2}\operatorname{Si} \\ \operatorname{Me}_{2}\operatorname{Si} \\ \operatorname{Se} \\ \operatorname{Se} \\ \operatorname{Me}_{2}\operatorname{Si} \\ \operatorname{Si} \\ Si$		SiMe ₂	15.91	107.4	6.3	0.59/ 1.02 [#]	43.2	0.57/ 0.58 [#]
SiMe ₂								
Ma Si Te	-856	SiMe	-42.80	356.7	34.0	5.35		1.30
$\begin{array}{c} \operatorname{Me}_{2}\operatorname{Si} & \operatorname{SiMe}_{1} \\ \operatorname{Me}_{2}\operatorname{Si} & \operatorname{Te}_{1} \\ \operatorname{Te}_{1} & \operatorname{Te}_{2} \\ \operatorname{Te}_{2} & \operatorname{SiMe}_{2} \end{array}$		SiMe ₂	11.97	251.7	29.6	0.52/ 0.88 [#]		0.67/ 0.71 [#]
Te SiMe ₂								

#: diastereotope Methylgruppen

Im Vergleich zu den einfachen Fünfringen Me₄Si₂(E)₂SiMe₂ zeigen die ²⁹Si NMR chemischen Verschiebungen der Si₂Me₄ Einheiten nur geringe zusätzliche Tieffeldverschiebungen von 1.5 – 2 ppm.

Aufgrund der Symmetrie der Moleküle sind die Methylgruppen jeder SiMe₂ Einheit in $Me_4Si_2(E)_2SiMe_-SiMe(E)_2Si_2Me_4$ diastereotop mit zwei verschiedenen ¹H und ¹³C NMR chemischen Verschiebungen. Die Mittelwerte entsprechen aber relativ genau den Daten der einfachen Fünfringe $Me_4Si_2(E)_2SiMe_2$.

Für die ²⁹Si NMR chemischen Verschiebungen der SiMe Einheiten bieten sich Vergleiche zu den Thiobutyl- bzw. Selenobutylderivaten SiMe(EBu)₂–SiMe(EBu)₂ (7.3.) bzw. zu den 1,2-Dithiolat Derivaten C₂H₄(S)₂SiMe–SiMe(S)₂C₂H₄ und C₆H₄(S)₂SiMe–SiMe(S)₂C₆H₄ (8.3.) an. Ähnlich wie bei den 1,2-Dithiolat Derivaten ergeben sich im Vergleich zu den acyclischen Chalcogenobutylderivaten deutliche Tieffeldverschiebungen von 11.1 ppm (E = S) und 14.4 ppm (E = Se).

Abschließend sei bemerkt, dass die ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen recht nahe bei den Daten für die Sechsringe E(SiMe₂SiMe₂)₂E liegen. In beiden Fällen befinden sich die Chalcogenatome zwischen zwei Disilan-Einheiten. Die Kopplungskonstanten ¹J_{SiE} sind zur zentralen Si₂Me₂ Einheit deutlich größer als zu den peripheren Si₂Me₄ Einheiten. Dies spiegelt den bereits für die chalcogenobutylsubstituierten Silane und Oligosilane diskutierten Trend wider, dass die Kopplungskonstanten mit der Anzahl an Chalcogensubstituenten am Siliciumatom ansteigen und ist analog auch in den einfachen Fünfringen Me₄Si₂(E)₂SiMe₂ zu beobachten.

10.5. Sechsringe $Z(SiMe_2-E)_2MR_2$ (Z = SiMe₂, CH₂, O; M = Si, Ge, Sn; R = Me, Ph) [723]

Ähnlich, wie sich die Fünfringe $Me_4Si_2(E)_2MR_2$ bei der Reaktion eines Gemisches von $ClSiMe_2$ –Si Me_2Cl und Cl_2MR_2 mit H_2S / NEt₃ bzw. Li₂E bilden, sind durch Reaktion eines Gemisches aus dem Trisilan $ClSiMe_2$ –Si Me_2 –Si Me_2Cl und Cl_2MR_2 mit Li₂E (E = S, Se, Te) Sechsringe der Struktur $Me_2Si(SiMe_2-E)_2MR_2$ zugänglich:

Habilitation Uwe Herzog

Das dazu benötigte 1,3-Dichlorhexamethyltrisilan konnte neben ClSiMe₂–(SiMe₂)₂–SiMe₂Cl und ClSiMe₂–(SiMe₂)₄–SiMe₂Cl durch Spaltung von *cyclo*-Si₆Me₁₂ mit PCl₅ entsprechend Gl. 5.2.1.17 und anschließende fraktionierte Destillation gewonnen werden. Die NMR-Daten der so dargestellten Sechsring-Verbindungen mit zwei Chalcogenatomen in 1,3-Stellung sind in den Tabellen 10.5.1. und 10.5.2. wiedergegeben.

In diesen Reaktionen konnten statt dem Trisilan auch das chlorfunktionalisierte Disilylmethan ClSiMe₂–CH₂–SiMe₂Cl sowie das Siloxan ClSiMe₂–O–SiMe₂Cl eingesetzt werden, was zu Sechsringen mit einer Disilylmethan- bzw. einer Siloxaneinheit führte, siehe auch die Tabellen 10.5.3. bis 10.5.5.:

Schließlich gelang auch die Detektion von Sechsringen mit zwei verschiedenen Chalcogenen, wenn die Reaktionen entsprechend Gl. 10.5.1 - 10.5.3 mit Gemischen zwei verschiedener Lithiumchalcogenide durchgeführt wurden (Z = SiMe₂, CH₂, O):

So entstand durch Reaktion des Chlorsiloxans (Z = O) mit einem Gemisch von Li₂S und Li₂Se der Sechsring O(SiMe₂)₂(S,Se)₂SiMe₂, in dem drei SiMe₂ Einheiten durch drei verschiedene Elemente der 16. Gruppe des Periodensystems verbunden sind, siehe Tabelle 10.5.6., letzte Zeile. Wie die meisten anderen dieser Cyclen, konnte dieser Sechsring neben der NMR-Spektroskopie auch durch sein Massenspektrum charakterisiert werden.

Verbindung	$\delta_{\rm E}$	$\delta_{Si} \ / \ \delta_{Sn}$	${}^{n}J_{SiE}$ / ${}^{1}J_{SnE}$	$^{1}J_{SiSi}$	$\delta_{\rm C}$	${}^1J_{SiC} / \\ {}^1J_{SnC}$	δ_{H}
$si^{B}Me_{2}-S$		A: -47.00	—	81.4	-7.16	38.8	0.237
Me_2Si^{A} $Si^{C}Me_2$		B: 3.75	_		2.00	45.7	0.486
$Si^{B}Me_{2}-S'$		C: 19.55	—		9.07	56.9	0.604
Si ^B Me ₂ -Se	Se:	A: -48.66		80.7	-7.37	38.4	0.253
Me_2Si^A Si^CMe_2	-321	B: 0.56	${}^{1}J_{SiSe}$: 103.0		1.52	43.3	0.587
Si ^b Me ₂ -Se		C: 9.57	${}^{1}J_{SiSe}$: 133.6		10.05	54.4	0.806
Si ^B Me ₂ – Te	Te:	A: -54.03	$^{2}J_{SiTe}$: 4.4	77.7	-7.88	38.4	0.300
Me_2Si^A Si^CMe_2	-776	B: -18.35	¹ J _{SiTe} : 259.0		0.83 ^{a)}	41.4	0.742 ^{c)}
$Si^{B}Me_{2}$ – Te		C: -40.11	¹ J _{SiTe} : 345.5		10.94 ^{b)}	48.5	1.172 ^{d)}
$\sqrt{\mathrm{Si}^{\mathrm{B}}\mathrm{Me}_{2}-\mathrm{S}}$	_	A: -47.90	_	81.6	-7.23	39.3	0.226
Me_2Si^A Ge^CMe_2		B: 3.94	_		2.22	46.2	0.478
$Si^{B}Me_{2}-S'$		C: –	_		11.07	_	0.872
Si ^B Me ₂ -Se	Se:	A: -49.78		80.2	-7.49	38.9	0.250
Me_2Si^{A} $Ge^{C}Me_2$	-293	B: 0.18	${}^{1}J_{SiSe}$: 106.9		1.74	43.2	0.586
$Si^{B}Me_{2}-Se$		C: –	_		11.93	_	1.052
Si ^B Me ₂ – Te	Te:	A: -55.48		77.3	-8.05	37.8	0.309
Me_2Si^A Ge^CMe_2	-710	B: -19.50	¹ J _{SiTe} : 265.8		1.09 ^{e)}	41.2	0.750
$Si^{B}Me_{2}$ – Te		C: –	_		12.03 ^{f)}	_	1.356
$Si^{B}Me_{2}-S$	_	A: -46.01 ^{g)}	_	81.0	-7.10		0.216
Me_2Si^A Sn^CMe_2		B: 4.79 ^{h)}	_		3.24 ⁱ⁾	43.7	0.485
Si ^B Me ₂ -S		C: 114.8	_		3.53	406.4	0.765 ^{j)}
Si ^B Me ₂ -Se	Se:	A: -47.74 ^{k)}		80.2	-7.35	38.9	0.241
Me_2Si^{A} $Sn^{C}Me_2$	-405	B: 0.10 ^{l)}	¹ J _{SiSe} : 108.9		2.76 ^{m)}	42.8	0.602
Si ^B Me ₂ -Se		C: 22.2	¹ J _{SiSe} : 1220		3.22	362.0	0.876 ⁿ⁾
$si^{B}Me_{2}$ -Te	Te:	A: -53.01°)		76.9	-7.83	38.0	0.296
Me_2Si^{A} $Sn^{C}Me_2$	-942	B: -21.00 ^{p)}	¹ J _{SiTe} : 265.8		2.11 ^{q)}	41.3	0.776
`Si ^B Me ₂ -Te		C: -237.3	¹ J _{SnTe} : 3056		1.18 ^{r)}	286.8	1.097

c) ³*J*_{TeH}: 12.1 Hz

g) ${}^{3}J_{SiSn}$: 19.8 Hz

k) ${}^{3}J_{SiSn}$: 18.8 Hz

o) ${}^{3}J_{SiSn}$: 14.9 Hz

Tabelle 10.5.1. ¹*H*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se*, ¹¹⁹*Sn* und ¹²⁵*Te NMR Daten der sechsgliedrigen Ringe* $Me_2Si(SiMe_2-E)_2MMe_2$ (E = S, *Se*, *Te*; M = Si, *Ge*, *Sn*)

Habilitation Uwe Herzog

a) $^{2}J_{TeC}$:19.2 Hz

e) ²*J*_{*TeC*}:19.2 *Hz*

i) ${}^{3}J_{SnC}$: 12.6 Hz

m) ${}^{3}J_{SnC}$: 13.0 Hz

q) ${}^{3}J_{SnC}$: 12.3 Hz

b) ²*J*_{*TeC*}:19.9 *Hz*

f): ${}^{2}J_{TeC}$: 12.3 Hz

j) ${}^{2}J_{SnH}$: 61.5 Hz

n) ${}^{2}J_{SnH}$: 59.3 Hz

r) ${}^{2}J_{TeC}$: 9.2 Hz

d) ³J_{TeH}: 10.2 Hz h) ²J_{SiSn}: 21.3 Hz l) ²J_{SiSn}: 23.3 Hz p) ²J_{SiSn}: 20.8 Hz

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a) Ergebnisse von Simulationen der	$\begin{array}{c} Me_2Si^{A}Si^{B}Me_2-Se\\Si^{B}Me_2-Se \end{array} Sn^{C}Ph_2$	$\frac{\text{Me}_2\text{Si}^{\text{B}}\text{Me}_2-\text{S}}{\text{Si}^{\text{B}}\text{Me}_2-\text{S}} \frac{\text{Sn}^{\text{C}}\text{Ph}_2}{\text{Si}^{\text{B}}\text{Me}_2-\text{S}}$	$\begin{array}{c} Me_2Si^{A}Si^{B}Me_2-Se\\Si^{B}Me_2-Se \end{array}Si^{C}Ph_2 \end{array}$	$\frac{Me_2Si^{A}Si^{B}Me_2-S}{Si^{B}Me_2-S}Si^{C}Ph_2$	Me_2Si^A $Si^BMe_2 - Te$ Si^CPhMe $Si^BMe_2 - Te$	Me ₂ Si ^A Si ^B Me ₂ -Se Si ^B Me ₂ -Se	$Me_2Si^{A}Si^{B}Me_2-S$ Si ^C PhMe	Verbindung
A: -46.30 - 81.6 -////.1/2.6 34.7 0.3271/0.524 o: 138.94 7.7 B: 4.37 - 80.7 -/.32/7.42 9.25 44.7 0.3271/0.524 o: 138.94 7.7 A: -48.42 $^{1}J_{stsc}$: 103.0 1.18 / 1.66 2.8 0.475 / 0.524 o: 138.94 7.7 B: 1.01 $^{1}J_{stsc}$: 138.5 80.7 -/.32 / 7.42 0.3271/0.524 o: 138.94 7.7 C: 4.03 $^{1}J_{stsc}$: 138.5 80.7 -/.32 / 7.42 0.203 / 0.269 i: 138.47 7.73 A: -46.48 - - 81.2 -/7.23 -7.23 38.9 0.267 / 0.322 i: 137.13 - B: -127 $^{1}J_{stsc}$: 103.0 79.7 -7.23 38.9 0.0.177 i: 138.00 m: 127.73 7.327 C: -40.22 $^{1}J_{stsc}$: 101.0 79.7 -7.46 39.0 0.0.177 i: 138.00 m: 127.63 7.294 C: -3.18 - - - - - - - - - - - - - - - - <th< td=""><td>IMN H</td><td>Se: -436</td><td>I</td><td>Se: -344</td><td>I</td><td>Te: -785</td><td>Se: -338</td><td>I</td><td>$\delta_{\rm E}$</td></th<>	IMN H	Se: -436	I	Se: -344	I	Te: -785	Se: -338	I	$\delta_{\rm E}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R Spektren	A: -47.95 B: 0.78 C: -62.4	A: -46.32 B: 5.75 C: 1.5	A: -48.80 B: 1.27 C: -0.80	A: -46.48 B: 4.88 C: 3.18	A: -54.08 B: -17.99 C: -40.22	A: -48.42 B: 1.01 C: 4.03	A: -46.50 B: 4.37 C: 11.34	$\delta_{\rm Si}/\delta_{\rm Sn}$
81.6 -/.11/-/.26 39.3 0.17/2/0.250 i: 138.94 - 80.7 -7.32/-7.42 0.237/0.524 0: 133.54 7.75 9.25 0.139/0.529 ii: 138.94 - 7.35 -7.32/-7.42 0.203/0.269 ii: 138.47 7.338 9.25 0.445 0.6622 oi: 133.54 7.338 10.09 ^{bb} 42.8 0.203/0.220 ii: 138.47 7.348 10.09 ^{bb} 42.8 0.267/0.322 ii: 137.13 7.327 77.3 -7.87/-7.96 38.9 0.267/0.322 ii: 137.13 7.320 10.56 41.8 1.386 ^{ob} ii: 137.13 7.320 10.56 41.8 1.386 ^{ob} ii: 138.00 7.332 11.38 44.7 0.380 ii: 137.44 7.294 11.38 43.3 0.478 ii: 137.44 7.286 79.7 -7.01 38.9 0.194 ii: 141.13 632.6 7.286 79.2 -7.26 38.9 0.219 <ti< td=""><td>b) ${}^{2}J_{SeC}$: 10.7</td><td>³J_{SiSn}: 19.8 ¹J_{SiSe}: 106.9 ¹J_{SnSe}: 1323 ²J_{SiSn}: 22.7</td><td>³J_{SiSn}: 21.3 ²J_{SiSn}: 20.8</td><td>- ¹J_{SiSe}: 103.0 ¹J_{SiSe}: 141.6</td><td>1 1 1</td><td>- ¹J_{SiTe}: 258.0 ¹J_{SiTe}: 360.6</td><td>- ¹J_{SiSe}: 103.0 ¹J_{SiSe}: 138.5</td><td>1 1 1</td><td>${}^{1}J_{SiE} / {}^{1}J_{SnSe}$${}^{n}J_{SiSn}$</td></ti<>	b) ${}^{2}J_{SeC}$: 10.7	³ J _{SiSn} : 19.8 ¹ J _{SiSe} : 106.9 ¹ J _{SnSe} : 1323 ² J _{SiSn} : 22.7	³ J _{SiSn} : 21.3 ² J _{SiSn} : 20.8	- ¹ J _{SiSe} : 103.0 ¹ J _{SiSe} : 141.6	1 1 1	- ¹ J _{SiTe} : 258.0 ¹ J _{SiTe} : 360.6	- ¹ J _{SiSe} : 103.0 ¹ J _{SiSe} : 138.5	1 1 1	${}^{1}J_{SiE} / {}^{1}J_{SnSe}$ ${}^{n}J_{SiSn}$
$ \begin{array}{c}$	$c) {}^{3}J_{1}$	79.2	79.7	79.7	81.2	77.3	80.7	81.6	${}^{1}J_{\mathrm{SiSi}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r_{eH} : 9.1 d) ${}^{3}J_{Sn}$	-7.26 2.73 ^{e)}	-7.01 3.23 ^{d)}	-7.46 1.38	-7.23 1.83	-7.87 / -7.96 0.63 / 1.02 10.56	-7.32/-7.42 1.18/1.66 10.09 ^{b)}	-7.11 / -7.26 1.59 / 2.15 9.25	δ _c (SiMe)
0.172/0.250 i: 138.94 $ 0.327/0.524$ o: 133.54 7.778 $0.203/0.269$ i: 138.47 7.338 $0.203/0.269$ i: 138.47 7.348 $0.203/0.269$ i: 138.47 7.348 $0.203/0.269$ i: 138.47 7.348 $0.203/0.322$ i: 137.13 7.348 $0.267/0.322$ i: 137.13 7.327 $0.267/0.322$ i: 137.13 7.327 $0.267/0.322$ i: 137.13 7.338 $p:$ 129.76 7.327 7.338 0.177 i: 138.00 7.328 0.177 i: 134.28 7.294 0.177 i: 137.48 7.780 0.177 i: 137.43 7.294 0.204 i: 137.44 7.775 0.1427 o: 135.33 52.4 7.658 <	_C : 14.9	38.9 43.2	38.9 45.7	39.0 43.3	38.9 44.7	38.9 41.8	42.8	39.3 44.7	$^{1}J_{\text{SiC}}$
1: 138.94 7.779 0: 133.54 7.779 1: 138.47 7.338 p: 129.71 7.348 i: 138.47 7.792 0: 133.79 7.330 p: 129.74 7.330 p: 129.74 7.330 p: 129.74 7.330 p: 129.76 7.330 p: 129.76 7.330 p: 129.76 7.327 i: 134.20 7.330 p: 129.76 7.327 i: 134.28 7.338 p: 129.76 7.328 p: 129.80 7.294 i: 134.67 7.775 m: 127.63 7.286 p: 129.83 52.4 7.286 p: 129.89 14.1 7.354 m: 128.76 68.1 7.374 p: 129.89 14.1 7.354 p: 129.60 12.5 7.305	e) ³ J _{SnC} : 14.6	0.219 0.535	0.194 0.427	0.204 0.478	0.177 0.380	0.267/0.322 0.648/0.774 1.386°)	0.203 / 0.269 0.445 / 0.622 0.973	0.172/0.250 0.327/0.524 0.759	δ _H (SiMe)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i: 140.62 o: 135.33 m: 128.58 p: 129.60	i: 141.13 o: 135.33 m: 128.76 p: 129.89	i: 137.44 o: 134.67 m: 127.63 p: 129.83	i: 138.00 o: 134.28 m: 127.63 p: 129.80	i: 137.13 o: 134.20 m: 127.73 p: 129.76	i: 138.47 o: 133.79 m: 127.63 p: 129.74	i: 138.94 o: 133.54 m: 127.60 p: 129.71	$\delta_{\rm C}$ (Ph)
$\begin{array}{c ccccc} & & & - & & - & & \\ & & & & 7.338 \\ & & & 7.338 \\ & & & 7.338 \\ & & & 7.330 \\ & & & 7.330 \\ & & & 7.338 \\ & & & 7.338 \\ & & & 7.294 \\ & & & 7.338 \\ & & & 7.338 \\ & & & 7.286 \\ & & & 7.286 \\ & & & 7.286 \\ & & & 7.286 \\ & & & 7.294 \\ & & & 7.339 \\ & & & 7.339 \\ & & & 7.339 \end{array}$		565.25 2.2 65.6 12.5	632.6 52.4 68.1 14.1						$^{n}J_{MC}$
		- 7.645 7.339 7.305	- 7.658 7.374 7.354	- 7.775 7.288 7.286	– 7.778 7.296 7.286	- 7.780 7.338 7.294	- 7.792 7.330 7.327	- 7.779 7.338 7.348	${\delta_{\rm H}}^{a)}$ (Ph)

Tabelle 10.5.2. NMR Daten der sechsgliedrigen Ringe $Me_2Si(SiMe_2-E)_2MR_2$ (E = S, Se, Te; $MR_2 = SiPhMe$, $SiPh_2$, $SnPh_2$)

Verbindung	$\delta_{\rm E}$	$\delta_{Si} \: / \: \delta_{Sn}$	${^1J_{SiE}}/{^1J_{SnE}}$	$\delta_{\rm C}$	$^{1}J_{SiC}/^{1}J_{SnC}$	δ_{H}
Si ^A Me ₂ -S	_	A: 14.89	_	5.12	55.9	0.440
H ₂ C Si ^B Me ₂		B: 19.21	_	8.83	59.3	0.625
Si ^A Me ₂ -S				CH ₂ : 6.02	48.1	0.284
Si ^A Me ₂ -Se	Se: -314	A: 13.91	${}^{1}J_{SiSe}$: 102.5	5.43	53.9	0.536
H_2C Si^BMe_2		B: 9.12	${}^{1}J_{SiSe}$: 130.7	9.83	54.9	0.837
Si ^A Me ₂ -Se				CH ₂ : 5.45	45.7	0.410
$Si^{A}Me_{2}$ – Te	Te: -763	A: 1.72	¹ J _{SiTe} : 267.8	6.16 ^{a)}	52.0	0.682
H_2C Si^BMe_2		B: -41.38	¹ J _{SiTe} : 336.8	10.75 ^{b)}	48.6	1.206
Si^AMe_2 – Te				CH ₂ : 3.32	45.2	0.513
$\sqrt{\mathrm{Si}^{\mathrm{A}}\mathrm{Me}_{2}}$	_	A: 14.82	_	5.36	55.4	0.434
H_2C Ge^BMe_2		B: –		10.68	_	0.900
Si ^A Me ₂ -S				CH ₂ : 6.41	48.1	0.257
Si ^A Me ₂ -Se	Se: -289	A: 13.56	${}^{1}J_{SiSe}$: 106.9	5.67	53.9	0.534
H_2C Ge^BMe_2		B: –		11.53	_	1.084
Si ^A Me ₂ -Se				CH ₂ : 5.72	46.1	0.397
$Si^{A}Me_{2}$ – Te	Te: -702	A: 0.98	¹ J _{SiTe} : 275.5	6.41	52.1	0.686
H_2C Ge^BMe_2		B: –		11.65	_	1.398
Si^AMe_2 – Te						0.528
$si^{A}Me_{2}-S$	_	A: 15.26	_	6.16	54.9	0.437
H_2C Sn^BMe_2		B: 113.8	_	3.09	407.7	0.806
Si ^A Me ₂ -S		² J _{SnH} : 61.9	² J _{SiSn} : 19.8	CH ₂ : 8.87	48.1	0.281
Si ^A Me ₂ -Se	Se: -403	A: 13.27	${}^{1}J_{SiSe}$: 108.9	6.51 ^{c)}	53.6	0.547
H_2C Sn^BMe_2		B: 25.2	${}^{1}J_{SnSe}$: 1191	2.74	359.8	0.917
Si ^A Me ₂ -Se			$^{2}J_{SiSn}$: 22.8	CH ₂ : 8.09	47.1	0.449
$Si^{A}Me_{2}$ -Te	Te: -943	A: -0.67	1 J _{SiTe} : 277.5	7.27	52.0	0.704
H_2C Sn^BMe_2		B: -231.8	¹ J _{SnTe} : 2978	0.67		1.134
$Si^AMe_2 - Te$			$^{2}J_{SiSn}$: 23.3	CH ₂ : 5.54		0.613

Tabelle 10.5.3. ¹*H*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se*, ¹¹⁹*Sn und* ¹²⁵*Te NMR Daten der sechsgliedrigen Ringe* $H_2C(SiMe_2-E)_2MMe_2$ (E = S, Se, Te; M = Si, Ge, Sn)

a) ${}^{2}J_{TeC}$: 24.5 Hz b) ${}^{2}J_{TeC}$: 17.6 Hz c) ${}^{2}J_{SeC}$: 9.2 Hz

Si ^A Me ₂ -Se	H_2C , Si Pn_2		.Si ^A Me ₂ – Se	$Si^{*}Me_2 - S$			Si ^A Me ₂ -S	Si ^{AA} Me ₂ – Se		HC C; ^B DhMa	_Si ^A Me ₂ – Se	$Si^{A}Me_2 - S$		H C C;BphMa	Si ^A Me ₂ -S		Verbindung
			-331				I				-326				I		δ_{Se}
	В: 0.24		A: 14.08			R· 3 80	A: 15.62		U.	R· 4.25	A: 14.07		D . 11.71	R· 11 41	A: 15.31		$\delta_{\rm Si}$
	J _{SiSe} : 139.0	11 . 170 0	${}^{1}J_{SiSe}$: 101.6			I	I		SISE. TOO.T	¹ Iշ։շչ՝ 135 1	$^{1}J_{SiSe}$: 102.0			I	I	"J _{SiSn}	${}^{1}J_{SiSe}/{}^{1}J_{SnSe}$
CH ₂ : 5.39	I		5.27 ^{e)}	CH ₂ : 5.97			5.03	CH ₂ : 5.38	7.10	و 1 ح ^{d)}	5.21 / 5.40	CH ₂ : 6.00	0.27	008	4.93 / 5.14	(Me, CH_2)	$\delta_{\rm C}$
46.6	Ι		53.5	48.1		I	55.2	46.7			53.9	47.6	00.1	60 7	55.5		${}^{1}\mathbf{J}_{SiC}$
0.272	I		0.412	0.190		I	0.341	$0.328 / 0.338^{c}$	1.001	1 001	0.369 / 0.548	$0.212 / 0.232^{\rm c}$	0.170	0 7 00	0.271 / 0.463	(Me, CH ₂)	$\delta_{\rm H}$
p: 129.95	m: 127.69	0: 134.78	i: 136.71 ^{f)}	p: 130.00	m: 127.76	o: 134.48	i: 137.30	p: 129.83	m: 127.71	o: 133.90	i: 138.17	p: 129.86	m: 127.75	0: 133.73	i: 138.76 ^{b)}	(Ph)	$\delta_{\rm C}$
7.320	7.314	7.771	I	7.337	7.331	7.763	I	7.344	7.352	7.806	I	7.378	7.366	7.790		(Ph)	$\delta_{H}{}^{a)}$

a) Ergebnisse von Simulationen der ¹H NMR Spektren b) ${}^{1}J_{SiC}$: 78.2 c) ${}^{2}J_{HH}$: 13 d) ${}^{2}J_{seC}$: 12.3 e) ${}^{2}J_{SeC}$: 11.5 f) ${}^{1}J_{SiC}$: 75.6

Tabelle 10.5.4. NMR Daten der sechsgliedrigen Ringe $Me_2Si(SiMe_2-E)_2SiR_2$ (E = S, Se; $MR_2 = SiPhMe$, $SiPh_2$)

Verbindung	$\delta_{\rm E}$	$\delta_{Si} / \delta_{Sn}$	$^{1}J_{SiE}$ / $^{1}J_{SnSe}$ $^{2}J_{SiSn}$	$\delta_{\rm C}$	² J _{SeC}	${}^{1}J_{SiC}$ / ${}^{1}J_{SnC}$	δ_{H}
Si ^A Me ₂ -S		A: 10.38	_	5.59		67.1	0.474
Si ^A Me ₂ -S		B: 19.49	_	8.41	_	59.3	0.680
Si ^A Me ₂ -Se	Se:	A: 9.18	${}^{1}J_{SiSe}$: 115.6	6.68	11.5	65.6	0.570
O $Si^{B}Me_{2}$	-259	B: 9.83	${}^{1}J_{SiSe}$: 129.3	9.64	9.2	54.4	0.883
Si ⁻ Me ₂ -Se							
$Si^{A}Me_{2}$ -Te	Te:	A: -0.84	$^{1}J_{SiTe}$: 305.7	8.69	—	61.7	0.726
O $Si^{B}Me_{2}$	-697	B: -39.57	¹ J _{SiTe} : 334.3	13.90	_	49.2	1.191
S1 Me_2 – 1e							
Si ^A Me ₂ -S	_	A: 10.36	-	5.78	—	67.1	0.469
O Ge ^B Me ₂		B: –	_	10.39	_	_	0.958
$Si^{A}Me_{2}-S$							
Si ^A Me ₂ -Se	Se:	A: 8.86	${}^{1}J_{SiSe}$: 120.0	6.84		65.3	0.567
O $Ge^{B}Me_{2}$	-233	B: –	_	11.42		_	1.130
Si ^A Me ₂ -Se							
Si ^A Me ₂ -S	_	A: 10.61	_	6.31	_	66.6	0.464
O $Sn^{B}Me_{2}$		B: 109.6	${}^{2}J_{SiSn}$: 15.8		-	411.0	0.853
S1 ⁻ Me ₂ -S							
Si ^A Me ₂ -Se	Te:	A: 8.42	${}^{1}J_{SiSe}$: 122.5	7.45	10.0	65.1	0.568
O $Sn^{B}Me_{2}$	-344	B: 23.2	${}^{1}J_{SnSe}$: 1172	2.79		366.5	0.959
Si ^A Me ₂ -Se			$^{2}J_{SiSn}$: 20.2				

Tabelle 10.5.5. ¹H, ¹³C, ²⁹Si, ⁷⁷Se, ¹¹⁹Sn und ¹²⁵Te NMR Daten der sechsgliedrigen Ringe $O(SiMe_2-E)_2MMe_2$ (E = S, Se, Te; M = Si, Ge, Sn)

Verbindung	$\delta_{\rm E}$	δ_{Si}	$^{1}J_{SiE}$	$^{1}J_{SiSi}$	δ_{C}	$^{1}J_{SiC}$	$\delta_{\rm H}$
Me Me		A: -47.75	_		-7.26	38.7	0.245
$Me Si^B - S Me$	Se: -329	B: 4.83	_	AB: 82.5	2.05	44.7	0.492
$Me Si^{C} Se Me$		C: -0.62	${}^{1}J_{SiSe}$: 102.0	AC: 80.7	1.44	43.7	0.582
Me Me		D: 14.95	¹ J _{SiSe} : 130.7	_	9.63	56.5	0.700
Me Me		A: -50.00	_		-7.38	38.4	0.268
$Me Si^B - S Me$	Te: -831	B: 6.50	_		2.26		0.503
Me^{S1} Si^{C} Te^{S1} Me^{S1}		C: -21.43	${}^{1}J_{SiTe}$: 251.2		0.64		0.729
Me Me		D: -5.39	¹ J _{SiTe} : 338.7		10.81	52.9	0.864
Me Me		A: -51.14	_		-7.55	38.4	0.277
Me Si ^B -Se Me	Se: -306	B: 2.24	${}^{1}J_{SiSe}$: 105.0	AB: 81.2	1.72	43.2	0.599
Me Si^{C} Te Me	Te: -811	C: -20.13	¹ J _{SiTe} : 253.7	AC: 77.6	0.68	42.3	0.733
Me Me		D: -12.94	¹ J _{SiSe} : 135.1		10.85	51.5	0.981
			¹ J _{SiTe} : 344.5				
Me Me		A: 16.03	_		5.12	55.9	0.441
Si ^A -S Me	Se: -323	B: 12.64	${}^{1}J_{SiSe}$: 102.0	—	5.43	53.6	0.535
$\operatorname{Si}^{\mathrm{H}_{2}\mathrm{C}}$ $\operatorname{Si}^{\mathrm{SI}}$ Me		C: 14.61	${}^{1}J_{SiSe}$: 127.8		9.42		0.731
Me Me					CH ₂ : 5.80		0.374
Me Me		A: 17.71	_		5.25	55.4	0.439
Si ^A -S Me	Te: -820	B: -2.27	¹ J _{SiTe} : 260.5	—	6.28		0.680
H_2C Si Me		C: -5.95	${}^{1}J_{SiTe}$: 330.0		10.62		0.898
Me Me					CH ₂ : 4.89		0.455
Me Me		A: 15.77	${}^{1}J_{SiSe}$: 104.5		5.51	54.4	0.538
Si ^A -Se Me	Se: -299	B: -0.62	¹ J _{SiTe} : 262.4	—	6.19	52.2	0.682
H_{2} Si^{B} Te^{SI} Me^{SI}	Te: -798	C: -13.61	¹ J _{SiSe} : 131.7		10.65	51.5	1.017
Me Me			¹ J _{SiTe} : 336.3		CH ₂ : 4.56		0.491
Me Me		A: 10.73	_		5.56	67.1	0.470
Si ^A -S Me	Se: -267	B: 8.65	${}^{1}J_{SiSe}$: 115.2	_	6.72	65.2	0.570
Si ^B -Se Me		C: 15.02	¹ J _{SiSe} : 127.3		9.10	57.3	0.776
Me Me							

Tabelle 10.5.6. ¹*H*, ¹³*C*, ²⁹*Si*, ⁷⁷*Se und* ¹²⁵*Te NMR Daten der sechsgliedrigen Ringe* $Z(SiMe_2-E)_2MMe_2$ ($Z = SiMe_2$, CH_2 , O, E = S, Se, Te) mit zwei verschiedenen Chalcogenen E

Vergleicht man die ²⁹Si NMR chemischen Verschiebungen der Trisilaneinheit der Sechsringe in der Tabelle 10.5.1. mit den Daten für die beiden chalcogenobutylsubstituierten Trisilane BuSSi^BMe₂–Si^AMe₂–Si^BMe₂SBu (δ_{Si} A: –44.5, B: 2.1 ppm, Tab. 7.3.5.) und BuSeSi^BMe₂–Si^AMe₂–Si^BMe₂SeBu (δ_{Si} A: –43.2, B: –2.9 ppm, Tab. 7.3.9.), so beobachtet man für das mittlere Siliciumatom (Si^A) eine Hochfeldverschiebung in den Sechsringen Me₂Si(SiMe₂E)₂MMe₂, die für E = Se wesentlich größer ist als für E = S. Für E = Te sind die ²⁹Si NMR Signale für Si^A noch deutlich weiter ins Hochfeld verschoben, hier ist aber der Vergleich mit einem acyclischen tellurobutylsubstituierten Trisilan nicht möglich.

Für verschiedene Atome M ist die Hochfeldverschiebung der Signale für Si^A bei M = Ge maximal, was eher auf elektronische, denn auf sterische Ursachen schließen lässt. (Das Germaniumatom liegt in seiner Größe zwischen Silicium und Zinn, hat aber, wie bereits erwähnt, eine höhere Elektronegativität als Silicium und Zinn.)

Die terminalen Siliciumatome der Trisilaneinheit (Si^B) sind in den Sechsringen gegenüber den Trisilanen BuESi^BMe₂–Si^AMe₂–Si^BMe₂EBu um bis zu 3 ppm ins Tieffeld verschoben, wobei aber die Trends recht uneinheitlich sind. Weitere geringe Tieffeldverschiebungen ergeben sich beim Ersatz von Methyl gegen Phenylsubstituenten an Si^C bzw. Sn (vergleiche Tabelle 10.5.2.). Ähnliches beobachtet man auch in den Sechsringen O(SiMe₂S)₂MMe₂. Hier sind im Vergleich zu O(SiMe₂SBu)₂ (δ_{Si} : 8.13 ppm, Tab. 7.3.5.) die ²⁹Si NMR Signale der Siloxaneinheit um gut 2 ppm zu tieferem Feld verschoben.

Dagegen beobachtet man in den Sechsringen $H_2C(SiMe_2S)_2MMe_2$ nur marginale Unterschiede der ²⁹Si NMR chemischen Verschiebungen der Disilylmethaneinheit zum thiobutylsubstituierten Derivat $H_2C(SiMe_2SBu)_2$ (δ_{Si} : 14.76 ppm, Tab. 7.3.5.).

Schließlich sind die ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen der Sechsringe $Z(SiMe_2E)_2MMe_2$ bei gleichem Atom M für Z = SiMe_2 und CH₂ sehr ähnlich und liegen für M = Si nahe bei den Werten für die entsprechenden Fünfringe (d. h. Z = nichts), dagegen treten für Z = O deutlichere Verschiebungen zu tieferem Feld auf, siehe auch Abb. 10.5.1. Zum Vergleich sind auch die Verschiebungen der Sechsringe (Me₂ME)₃ in die Abbildung mit aufgenommen, die aber fast ausschließlich bei deutlich tieferem Feld liegen.

Die ²⁹Si bzw. ¹¹⁹Sn NMR chemischen Verschiebungen der Monosilyl bzw. Stannyleinheiten der Sechsringe $Z(SiMe_2E)_2MMe_2$ sind für $Z = SiMe_2$ und $Z = CH_2$ fast identisch, lediglich für Z = O treten größere Abweichungen auf. Ein Vergleich der chemischen Verschiebungen mit denen der entsprechenden Fünfringe (d. h. Z = nichts) ergibt eine relativ konstante Hochfeldverschiebung von 15 – 18 ppm für M = Si sowie von 70 – 100 ppm für M = Sn (E = S, Se und Te, Abb. 10.5.2.).

Abb. 10.5.1. ⁷⁷Se und ¹²⁵Te NMR chemische Verschiebungen in den Sechsringen $Z(SiMe_2E)_2MMe_2$, den Fünfringen $(SiMe_2E)_2MMe_2$ sowie in $(Me_2ME)_3$ $(Z = SiMe_2, CH_2, O; M = Si, Ge, Sn; E = Se, Te)$

Abb. 10.5.2. ²⁹Si und ¹¹⁹Sn NMR chemische Verschiebungen von M in den Sechsringen $Z(SiMe_2E)_2\underline{M}Me_2$, den Fünfringen $(SiMe_2E)_2\underline{M}Me_2$ sowie in $(RE)_2\underline{M}Me_2$ $(Z = SiMe_2, CH_2, O; M = Si, Sn; E = S, Se, Te; R = Bu für M = Si und Me für M = Sn)$

Dagegen bewegen sich die ²⁹Si NMR chemischen Verschiebungen der acyclischen Verbindungen Me₂Si(EBu)₂ mit steigender Ordnungszahl des Chalcogenatoms von den Daten der Sechsringe hin zu den Verschiebungen der Fünfringe. Analoges kann auch für δ_{Sn} der entsprechenden Zinnverbindungen beobachtet werden, siehe auch Abb. 10.5.2.

Beim Ersatz von Methylsubstituenten durch Phenylgruppen ergibt sich je ausgetauschtem Substituenten bei E = S im Mittel eine Hochfeldverschiebung von δ_{Si} (Si^C) um etwa 8 ppm. Diese sinkt über 4 – 5 ppm für E = Se auf praktisch 0 ppm für E = Te ab. Analoge Hochfeldverschiebungen zeigen sich auch beim Vergleich der ¹¹⁹Sn NMR Verschiebungen von Me₂Si(SiMe₂E)₂SnMe₂ und Me₂Si(SiMe₂E)₂SnPh₂ ($\Delta\delta_{Sn}$: –113.5 ppm für E = S und –84.6 ppm für E = Se).

Beim Vergleich der Kopplungskonstanten ${}^{1}J_{SiE}$ bzw. ${}^{1}J_{SnE}$ der Sechsringe Z(SiMe₂E)₂MMe₂ sowie der Fünfringe (SiMe₂E)₂MMe₂ ergeben sich nur geringe Unterschiede. So sind die ${}^{1}J_{ME}$ in den Sechsringen für Z = SiMe₂ um 2 – 3 % größer und für Z = O etwa 1 % kleiner als für Z = CH₂.

Die ${}^{1}J_{SiE}$ Kopplungskonstanten der Z(SiMe₂E)₂ Einheiten steigen in der Reihe Z = SiMe₂ \leq CH₂ < Fünfring (Z = nichts) < O an, was (bis auf die Fünfringe) mit dem Anstieg der Elektronegativität der an das koppelnde Siliciumatom gebundenen Atomgruppe Z erklärbar ist.

10.6. Fünfringe $Z_2(SiMe_2)_2E$ und Achtringe $(SiMe_2-Z-SiMe_2-E)_2$ $(Z = SiMe_2, CH_2)$ [723]

Setzt man 1,3-Dichlorhexamethyltrisilan bzw. das Disilylmethan ClMe₂Si–CH₂–SiMe₂Cl in Abwesenheit von R₂MCl₂ mit Li₂S oder Li₂Se um, so erhält man ölige Produktgemische, die hauptsächlich aus den Achtringen (SiMe₂–Z–SiMe₂–E)₂ bestehen, aber auch erhebliche Anteile an offenkettigen Oligomeren (–SiMe₂–Z–SiMe₂–E–)_x enthalten:

$$2 Z X SiMe_2 - Cl \xrightarrow{2 Li_2E} -4 LiCl Me_2Si \xrightarrow{E} SiMe_2 + acyclische \\SiMe_2 - Cl \xrightarrow{Z = SiMe_2, CH_2} Ke_2 SiMe_2 + Oligomere$$
(10.6.1)

Die Achtringe konnten auch durch ihre Massenspektren nachgewiesen werden.

In den GPC-Spektren der Produkte mit E = Schwefel lassen sich neben den Achtringen auch die acyclischen Oligomere (SiMe₂—Z–SiMe₂–E–)_x mit x = 2 bis ca. 10 detektieren, siehe auch Abb. 10.6.1.

Abb. 10.6.1. GPC-Spektren von $(SiMe_2-Z-SiMe_2-S)_x$ mit $Z = CH_2$ (oben) und $SiMe_2$ (unten) (Brechungsindex-Detektor, Eichung der Molmassen mit Polystyrenstandards)

Wie man den GPC-Spektren entnehmen kann, entstehen für $Z = SiMe_2$ wesentlich größere Anteile an höhermolekularen Oligomeren als für $Z = CH_2$.

In den UV-VIS Spektren der Produkte mit $Z = SiMe_2$ liegt das längstwellige Absorbtionsmaximum bei 220 nm mit einer Schulter bei etwa 240 nm (E = S) bzw. zwei Schultern bei etwa 240 und 265 nm (E = Se), siehe auch Abb. 10.6.2. Dies deutet darauf hin, dass in diesen (niedermolekularen) Polymeren eine deutlich geringere σ -Elektronendelokalisierung auftritt als in Polysilanen. Das Absorptionsmaximum bei 220 nm entspricht in etwa denen von Si₃Me₈ (λ_{max} : 216.3 nm) und 1-Si₃Me₇SH (λ_{max} : 219.0 nm) [724], d. h. die Chalcogenatome unterbrechen die σ -Elektronendelokalisierung weitgehend.

Abb. 10.6.2. UV-VIS-Spektren der Produkte $(SiMe_2-Z-SiMe_2-E)_n$ (Z = SiMe₂, CH₂; E = S, Se; n = 2 (Achtringe) sowie x (acyclische Oligomere))

In den NMR-Spektren sind nur für $Z = CH_2$ die Signale der Achtring-Verbindungen von denen der acyclischen Oligomere zu unterscheiden. Letztere zeichnen sich durch eine etwas größere Linienbreite aus. Die Daten sind in Tabelle 10.6.1. zusammengefasst.

Im Vergleich zu den Trisilaneinheiten bzw. Disilylmethaneinheiten in den Sechsringen Z(SiMe₂E)₂SiMe₂ sind vor allem die ²⁹Si bzw. ¹³C NMR Signale der Z-Einheit (SiMe₂ bzw. CH₂) sowohl in den Achtringen als auch in den acyclischen Oligomeren deutlich zu tieferem Feld verschoben, was aufgrund der unveränderten ersten und zweiten Koordinationssphäre ausschließlich auf die Beeinflussung der Geometrie durch die Ringbildung zurückzuführen sein kann.

Verbindung	δ_{Se}	δ_{Si}	δ _C	δ_{H}
[Si ^A Me ₂ Si ^B Me ₂ Si ^A Me ₂ -S] ₂	_	A: 4.29 B: -42.12	3.60 -6.66	0.487 0.210
[Si ^A Me ₂ Si ^B Me ₂ Si ^A Me ₂ -Se] ₂	-380	A: 0.18 B: -41.53	3.41 -6.20	0.602 0.231
[SiMe ₂ -CH ₂ -SiMe ₂ -S] ₂	_	12.63	5.41 (¹ J _{SiC} : 55.4) CH ₂ : 9.54	0.397 0.181
[SiMe ₂ -CH ₂ -SiMe ₂ -S] _n	_	13.72	5.47 CH ₂ : 12.56	0.438 0.212
[SiMe ₂ -CH ₂ -SiMe ₂ -Se] ₂	-293 ¹ J _{SiSe} : 109.8	9.77	5.88 CH ₂ : 9.31	0.493
[SiMe ₂ -CH ₂ -SiMe ₂ -Se] _n	-291	10.87	5.93 CH ₂ : 13.14	0.546

Tabelle 10.6.1. NMR Daten der Achtringe $(SiMe_2-Z-SiMe_2-E)_2$ sowie der acyclischen Oligomere $(SiMe_2-Z-SiMe_2-E)_x$ (Z = SiMe₂, CH₂; E = S, Se)

Wird die Oligosilankette des Trisilans $Cl(SiMe_2)_3Cl$ um eine weitere SiMe_2 Einheit verlängert, so entstehen bei der Reaktion von $Cl(SiMe_2)_4Cl$ mit Li_2E (bzw. auch mit H_2S / NEt_3) die Fünfringe (Me_2Si)_4E, wie das für E = S und Se bereits in [240,241] (siehe auch Gl. 4.3.1.7) beschrieben wurde:

$$\begin{array}{c} SiMe_2-Cl \\ Me_2Si \\ Me_2Si \\ SiMe_2-Cl \\ SiMe_2-Cl \\ E=S, Se, Te \end{array} \xrightarrow{\begin{array}{c} Li_2E \\ Me_2Si \\ SiMe_2 \\ SiMe_2 \\ E=S, Se, Te \end{array}} \xrightarrow{\begin{array}{c} SiMe_2 \\ Me_2Si \\ SiMe_2 \\ SiMe_2 \\ SiMe_2 \end{array}} (10.6.2)$$

In analoger Weise reagiert auch das 1,2-Disilylethan mit Li₂E zu Produkten mit einem C₂Si₂E Fünfring:

$$\begin{array}{c} \text{SiMe}_2 - \text{Cl} \\ \text{H}_2\text{C} \\ \text{H}_2\text{C} \\ \text{SiMe}_2 - \text{Cl} \\ \text{SiMe}_2 - \text{Cl} \\ \text{E} = \text{S, Se, Te} \end{array} \xrightarrow{\begin{array}{c} \text{Li}_2\text{E} \\ \text{H}_2\text{C} \\ \text{SiMe}_2 \end{array} \xrightarrow{\begin{array}{c} \text{Li}_2\text{E} \\ \text{H}_2\text{C} \\ \text{SiMe}_2 \end{array}} \xrightarrow{\begin{array}{c} \text{Li}_2\text{E} \\ \text{H}_2\text{C} \\ \text{SiMe}_2 \end{array}} (10.6.3)$$

Die Schwefelverbindung (H₂CSiMe₂)₂S ist bereits einmal, ausgehend vom Dimethylaminoderivat (H₂CSiMe₂–NMe₂)₂, durch Reaktion mit H₂S in Gegenwart von Zinkiodid (130 °C, 1h, 75 % isolierte Ausbeute) dargestellt und als weniger geruchsintensives Schwefeltransferreagens vorgeschlagen worden [725].

Verbindung	$\delta_{\rm E}$	δ_{Si}	$\delta_{\rm C}$	$^{1}J_{SiC}$	$^{2}J_{EC}$	δ_{H}
Me		A: -44.20	-7.02	40.2	_	0.224
$Me \qquad \qquad \\ \qquad $	_	B: 9.55	2.43	44.1	_	0.391
$Me - Si^A \land$		1				
$Me = Si^{A}$		$^{1}J_{SiSi}$: 75.5				
Me /		² J _{SiSi} : 13.6				
Me	G 240	41.40	6.01	20.0		0.000
Me Me	Se: -340	A: -41.40	-6.91	39.9	—	0.220
$\int_{M_0-Si^A} Si^B - Me$		B: 5.92	2.10	42.9	10.0	0.496
I Se	1 Jsise: 103.0	¹ Jsisi: 73.7				
Me^{-S_1} Si^B-Me	2 Jsisa: 49	2 Jsisi 13.6				
Me / Me	• 5150.	• 3131. 10.0				
Me	Te: -854	A: -36.40	-6.89	39.3	_	0.212
$Me \land Si^B - Me$		B: -13.49	1.68	41.3	19.9	0.655
$Me - Si^A \land$						
$Me = Si^A / Si^B = Me$	¹ J _{SiTe} : 257.6	¹ J _{SiSi} : 70.5				³ J _{TeH} : 11.0
Me /	$^{2}J_{SiTe}$: 18.5	² J _{SiSi} : 13.6				
Me						
MeMe						
	_	34.15	Me: 2.49	52.1	_	0.353
			CH ₂ : 13.12	54.4	—	0.959
Me ^{Si} -Me						
Me						
Sinthe	Se: -428	33.95	Me: 2.90	51.4		0.455
Se	1		CH ₂ : 14.68	52.9		1.016
Si-Me	${}^{1}J_{SiSe}$: 101.6					
Me						
Me						
Me Si-Me	Te: -1047	23.28	Me: 3.80	49.7	15.3	0.606
Me Si Me	Te: -1047	23.28	Me: 3.80 CH ₂ : 17.49	49.7 50.6	15.3 19.2	0.606 1.075
Me Si-Me	Te: -1047 ¹ J _{SiTe} : 263.4	23.28	Me: 3.80 CH ₂ : 17.49	49.7 50.6	15.3 19.2	0.606 1.075

Tabelle 10.6.2.NMR Daten der fünfgliedrigen Ringe $(Z-SiMe_2)_2E$ $(Z = SiMe_2, CH_2; E = S, Se, Te)$

Im Vergleich zum acyclischen thiobutylsubstituierten Tetrasilan BuS(SiMe₂)₄SBu (δ_{Si} : 2.83 (terminale Si), -42.59 ppm (mittlere Si), siehe auch Tab. 7.3.5.) ergibt sich für die terminalen Siliciumatome der Tetrasilaneinheit von *cyclo*-(SiMe₂)₄S (Si^B in Tab. 10.6.2.) eine Tieffeldverschiebung von etwa 6.7 ppm, dagegen eine Hochfeldverschiebung von 1.6 ppm für die mittleren Siliciumatome (Si^A) der Tetrasilaneinheit. Im Falle des cyclischen Disilylethanderivates (CH₂SiMe₂)₂S sind sowohl δ_{Si} als auch δ_C der Ethyleneinheit gegenüber BuSSiMe₂(CH₂)₂SiMe₂SBu (Tab. 7.3.5.) signifikant zu tieferem Feld verschoben ($\Delta\delta$: 15.5 ppm (Si) bzw. 4.5 ppm (C).

Auch die ¹³C NMR chemischen Verschiebungen der Methylgruppen ändern sich deutlich beim Übergang zu den cyclischen Verbindungen. Dagegen bleiben die Kopplungskonstanten ¹J_{SiSi} und ¹J_{SiC} praktisch unverändert.

Wenn man abschließend die Strukturen der Reaktionsprodukte der Dichlorsilane $Cl(SiMe_2)_xCl$ (x = 1, 2, 3 und 4) mit Lithiumchalcogeniden zusammenfasst, siehe Schema 10.6.1., so zeigen sich Parallelen zu entsprechenden Silicium-Phosphor-Verbindungen. So ist S isolobal zur Einheit PR (R = H, Ph, ...) und die Reaktionen der Dichlorsilane $Cl(SiMe_2)_xCl$ mit Dilithiumphenylphosphid (Li₂PPh) ergeben ganz analoge Reaktionsprodukte [726], siehe auch Schema 10.6.2. Für x = 3 konnte allerdings die Bildung eines Achtringes nicht nachgewiesen werden, vielmehr entstand ein unlösliches Polymer [(SiMe₂)₃PPh]_x. Die Struktur des Sechsringes PhP(Si₂Me₄)₂PPh mit zwei Disilaneinheiten und PPh in 1,4-Stellung konnte aufgeklärt werden. Wie bei $E(Si_2Me_4)_2E$ (E = S, Se; Abbn. 10.2.1. und 10.2.2.) nimmt der Sechsring eine Sesselkonformation ein und die beiden Phenylsubstituenten befinden sich in äquatorialen Positionen [727].

Die ²⁹Si und ³¹P NMR-Daten der Silicium-Phosphorcyclen $(Me_2Si)_x(PPh)_y$ sind zum Vergleich mit den entsprechenden Schwefelverbindungen in Tabelle 10.6.3. zusammengestellt.

Eine Parallele zu den ${}^{1}J_{SiSe}$ Kopplungskonstanten von Vier- und Sechsringen (siehe Tab. 10.1.2.1. und Kapitel *10.1.3.*) zeigt sich bei den Kopplungskonstanten ${}^{1}J_{SiP}$ der ersten beiden in Tabelle 10.6.3. aufgeführten Verbindungen, die sich nur durch die Ringgröße unterscheiden. Auch hier ist die ${}^{1}J$ Kopplung im Vierring deutlich kleiner als im Sechsring (und allen weiteren in Tabelle 10.6.3. aufgeführten Verbindungen).

Schließlich findet man auch hier eine Tieffeldverschiebung der ²⁹Si NMR Signale der an Phosphor gebundenen Siliciumatome im Fünfring *cyclo*-(Me₂Si)₄PPh (-11.91 ppm) im Vergleich zum ähnlich aufgebauten Sechsring *cyclo*-(Me₂Si)₅PPh ($\delta_{Si (SiP)}$: -17.48 ppm) bzw. auch zu den Sechsringen mit Disilaneinheiten.

Schema 10.6.1. *Strukturen der Reaktionsprodukte von Cl*(SiMe₂)_xCl mit Li₂E (x = 1 - 4)

Schema 10.6.2. *Strukturen der Reaktionsprodukte von Cl*($SiMe_2$)_xCl mit Li₂PPh (x = 1 - 4)

Habilitation Uwe Herzog

Verbindung	δ_{P}	ⁿ J _{SiP}	δ_{Si}
$Ph-P \xrightarrow{Si}_{Si} P-Ph$	-123.3	¹ J _{SiP} : 26.7	-1.07
$\begin{array}{c} Me_2 \\ Si - P \\ Ph - P \\ Si - P \\ Me_2 \\ Ph \end{array}$	-135.3	¹ J _{SiP} : 40.0 ³ J _{SiP} : 1.9	-0.14
$\begin{array}{c c} & Me_2 & Me_2 \\ & Si - Si \\ Ph - P & P - Ph \\ & Si - Si \\ & Me_2 & Me_2 \end{array}$	-139.4	¹ J _{SiP} : 46.4 ² J _{SiP} : 24.6	-18.99
$ \begin{array}{c} $	-140.0	¹ J _{SiP} : 43.4 ² J _{SiP} : 27.1	-16.7 (SiP) -3.9 (SiS)
$ \begin{array}{c} $	-132.8	¹ J _{SiP} : 39.3 ² J _{SiP} : 12.0	–11.91 (SiP) –42.60
$ \begin{array}{c} Me_2 Me_2 \\ Si - Si \\ Me_2 Si \\ Si - Si \\ Me_2 Me_2 \end{array} P - Ph $	-138.0	${}^{1}J_{SiP}$: 48.0 ${}^{2}J_{SiP}$: 27.5 ${}^{3}J_{SiP}$: 3.5	-17.48 (SiP) -43.01 -42.41

Tabelle 10.6.3.²⁹Si und ³¹P NMR-Daten (Hz, ppm) der Silicium-Phosphorcyclen
(Me₂Si)_x(PPh)_y sowie von S(Si₂Me₄)₂PPh [726,728]

10.7. DFT Berechnungen an cyclischen Silcium-Chalcogen-Verbindungen

Um sowohl die selektive Bildung der fünfgliedrigen Cyclen $Me_4Si(E)_2MR_2$ (Kapitel 10.3.) als auch die signifikanten Tieffeldverschiebungen der ²⁹Si NMR chemischen Verschiebungen dieser Fünfringe im Vergleich zu denselben Silyleinheiten in den Sechsringen (Me₂SiE)₃ bzw. $E(Si_2Me_4)_2E$ besser zu verstehen, wurden eine Reihe von DFT-Berechnungen an diesen Verbindungen durchgeführt.

So wurden auf dem Niveau B3LYP/6-31G^{*} vollständige Geometrieoptimierungen sowie NBO-Analysen der Verbindungen (Me₂SiE)₃, Me₄Si₂(E)₂SiMe₂ und E(Si₂Me₄)₂E (E = S, Se) vorgenommen. Die Schwingungsanalysen zeigten jeweils 0 imaginäre Frequenzen, so dass es sich in allen Fällen um wahre Minima handelte.

Für (Me₂SiE)₃ wurden zwei Geometrien gefunden, die Sesselkonformationen mit annähernder C_{3v} -Symmetrie liegen für E = S um 7.92 kJ/mol und für E = Se um 6.65 kJ/mol energetisch höher als die *twist*-Boot-Konformationen mit einer exakten C₂-Symmetrie, die damit (wie auch bei den analogen Zinnverbindungen, siehe *4.2.2.* und *10.1.2.*), die stabilsten Konformationen dieses Typs von Sechsringen darstellen. Diese etwas ungewöhnliche Konformation ist auf die sterische Wechselwirkung der axialen Substituenten an den Siliciumatomen zurückzuführen und äußert sich vor allem in vergrößerten Si–E–Si und E–Si–E Bindungswinkeln in den Sesselkonformationen. In der Selenverbindung ist die sterische Behinderung aufgrund der längeren Si–Se Bindungen etwas geringer, was den energetischen Abstand zur Sesselkonformation etwas herabsetzt.

Die Fünfringe $Me_4Si_2(E)_2SiMe_2$ zeigen im Gegensatz zur entsprechenden Zinnverbindung $Me_4Sn_2(Se)_2SnMe_2$ (Abb. 4.3.1.4.) eine verdrehte Halbsessel-Konformation (mit annähernder C₂-Symmetrie), wie sie auch mittels Kristallstrukturanalyse in [Me_4Si_2(S)_2SiMe]_2 (siehe Abb. 10.4.1.) experimentell gefunden wurde. (Hier sind formal zwei dieser Fünfringe durch eine Si–Si Bindung miteinander verknüpft.)

Dagegen ergab sich für die Sechsringe $E(Si_2Me_4)_2E$ (E = S, Se) eine Sesselkonformation des Rings in Übereinstimmung mit den Ergebnissen der Kristallstrukturanalysen (siehe Abbn. 10.2.1. und 10.2.2.).

Die berechneten Geometrien und die Atomnummerierung sind in Abb. 10.7.1. dargestellt. Die Geometrien der Selenverbindungen unterscheiden sich davon nur geringfügig, siehe dazu auch die Tabellen 10.7.1. - 10.7.3.

Interessant ist zunächst ein Vergleich der Gesamtenergien der energetisch günstigsten Konformationen der drei Ringtypen, wenn man die Ringsegmentaustauschreaktion entsprechend Gl. 10.7.1 betrachtet:

Laut [238] lässt sich für E = S diese Ringsegmentaustauschreaktion beim Erwärmen einer Mischung der Sechsringe mit Pyridin auch experimentell beobachten.

Die DFT-Berechnungen ergeben für E = S einen Energiegewinn bei der Bildung des Fünfrings von 20.2 kJ/mol. Dieser Wert verringert sich etwas auf 18.8 kJ/mol für E = Se. Dazu kommt aber noch ein hier nicht berücksichtigter entropischer Effekt, da sich aus fünf Molekülen der Sechsringe sechs Moleküle des Fünfrings bilden.

Dies kann die mit hoher Selektivität erfolgende Bildung der Fünfringe bei der Reaktion eines Gemisches von $ClSiMe_2-SiMe_2Cl$ und R_2MCl_2 (M = Si, Ge, Sn, Pb; R = Me, Ph) entsprechend den Gln. 10.3.1 und 10.3.2 erklären.

Abb. 10.7.1. Berechnete Geometrien von (Me₂SiS)₃ (Sessel, oben links; twist-Boot, oben rechts), Me₄Si₂(S)₂SiMe₂ (unten links) und S(Si₂Me₄)₂S (unten rechts)

Atome	$\mathbf{E} = \mathbf{S}$		E = Se	
	Sessel	twist-Boot	Sessel	twist-Boot
E1–Si5	2.172	2.175	2.336	2.340
E1–Si6	2.172	2.177	2.336	2.342
E2–Si4	2.172	2.176	2.336	2.341
E2–Si6	2.172	2.176	2.336	2.341
E3–Si4	2.173	2.177	2.337	2.342
E3–Si5	2.172	2.175	2.336	2.340
Si4C9	1.881	1.881	1.882	1.882
Si4C10	1.887	1.883	1.888	1.884
Si5-C11	1.881	1.883	1.882	1.885
Si5–C7	1.888	1.883	1.889	1.885
Si6–C8	1.881	1.881	1.882	1.882
Si–C12	1.888	1.883	1.888	1.884
Si6-E1-Si5	108.78	106.79	106.68	105.07
Si4–E2–Si6	109.04	105.87	106.84	104.26
Si4–E3–Si5	108.78	106.79	106.83	105.07
E2–Si4–E3	113.40	112.45	114.44	112.64
E1-Si5-E3	113.28	112.44	114.25	113.17
E1-Si6-E3	113.32	112.45	114.31	112.64

Tabelle 10.7.1. Bindungslängen (Å) und -winkel (°) der beiden Isomere von $(Me_2SiE)_3$

Tabelle 10.7.2. Bindungslängen (Å) und -winkel (°) der Fünfringe Me₄Si₂(E)₂SiMe₂

Atome	Bindungslänge		Atome	Bindungswir	ıkel
	$\mathbf{E} = \mathbf{S}$	E = Se		$\mathbf{E} = \mathbf{S}$	E = Se
Si1–E	2.179 (2.144)	2.345	Si1–E–Si	103.77 (104.12)	101.37
Si3-E2 / Si4-E5	2.185 (2.154)	2.345	E2–Si1–E5	111.62 (112.65)	111.31
Si3–Si4	2.358 (2.323)	2.360	E-Si-Si	102.15 (103.35)	103.52
Sil-C	1.885 (1.853)	1.886			
Si3–C _{ax} / Si4–C _{ax}	1.894 (1.861)	1.894			
Si3–C _{eq} / Si4–C _{eq}	1.895 (1.862)	1.896			

Die Zahlen in Klammern sind die entsprechenden (z. T. gemittelten) Werte aus der Kristallstrukturanalyse von $Me_4Si_2(S)_2SiMe-SiMe(S)_2Si_2Me_4$ (siehe 10.4.)

Atome	$\mathbf{E} = \mathbf{S}$		E = Se	
	berechnet	Kristallstruktur	berechnet	Kristallstruktur
Si-E	2.187	2.154 / 2.156	2.354	2.291 / 2.288
Si–Si	2.365	2.337	2.362	2.331
Si–C _{eq}	1.898	1.871 / 1.871	1.899	1.870 / 1.867
Si–C _{ax}	1.896	1.869 / 1.867	1.895	1.863 / 1.871
Si–E–Si	109.25	106.45	107.06	105.14
E-Si-Si	110.48	111.90 / 113.29	110.04	111.37 / 112.27

Tabelle 10.7.3. Bindungslängen (Å) und -winkel (°) der Sechsringe E(Si₂Me₄)₂E

Im Allgemeinen ergibt sich eine gute Übereinstimmung zwischen den berechneten und den aus Kristallstrukturdaten abgeleiteten Geometrien.

Die etwas größeren Bindungslängen (ca. 0.03 Å bei Si–S und Si–Si, 0.06 Å bei Si–Se) sowie die Differenzen bei den Bindungswinkeln sind ein Resultat der begrenzten Genauigkeit der Berechnungen durch den Basissatz STO 6-31G^{*}.

Um mögliche Ursachen für die signifikanten Tieffeldverschiebungen der ²⁹Si NMR Signale sowohl der Monosilanyl- als auch der Disilanyleinheit in den Fünfringen zu finden, wurden NBO-Analysen der Verbindungen durchgeführt. Die Ergebnisse sind in den folgenden Tabellen wiedergegeben. Dabei ergeben sich weder bei den Elektronenkonfigurationen noch bei den NBO- oder Mulliken-Ladungen erkennbare Unterschiede aufgrund der unterschiedlichen Ringgröße. Wie zu erwarten war, sind die Siliciumatome in den Schwefelverbindungen wesentlich stärker positiv (und die Schwefelatome deutlich stärker negativ) geladen als in den entsprechenden Selenverbindungen.

Im Gegensatz zur ¹³C, ²⁹Si und ⁷⁷Se NMR Spektroskopie dominiert in der ¹H NMR der diamagnetische Anteil die Abschirmung (bzw. auch die chemische Verschiebung), da Elektronendichte bei Wasserstoffatomen nur im kugelsymmetrischen 1s Orbital vorhanden ist. Damit sollte die chemische Verschiebung mit der Ladung der H Atome korrelieren, was auch der Fall ist, wenn man die Mulliken-Ladungen verwendet, siehe Abb. 10.7.2. Zur Vereinfachung wurde die Gesamtladung der entsprechenden CH₃ Gruppen für die Darstellung verwendet.

Dagegen ergeben sich für die ¹³C oder ²⁹Si NMR chemischen Verschiebungen keinerlei Korrelationen mit der Ladung (siehe Abbn. 10.7.2. und 10.7.3.), da in diesen Fällen der paramagnetische Anteil die chemische Verschiebung dominiert und hier die Symmetrie der Elektronenverteilung um den Atomkern entscheidend ist.

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ladung (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si4	+1.51042	+0.551953	(Ne) $3s^{0.87} 3p^{1.56} 3d^{0.04} 4p^{0.02}$
Si5	+1.51006	+0.552918	(Ne) $3s^{0.87} 3p^{1.56} 3d^{0.04} 4p^{0.02}$
Si6	+1.51013	+0.553389	(Ne) $3s^{0.87} 3p^{1.56} 3d^{0.04} 4p^{0.02}$
S1	-0.64989	-0.327145	(Ne) $3s^{1.72} 3p^{4.91} 3d^{0.01}$
S2	-0.65053	-0.327593	(Ne) $3s^{1.72} 3p^{4.91} 3d^{0.01}$
S3	-0.65061	-0.327164	(Ne) $3s^{1.72} 3p^{4.91} 3d^{0.01}$
C7 (ax)	-1.21376 (-0.44122)	-0.643333 (-0.118768)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C8 (eq)	-1.21159 (-0.41860)	-0.654837 (-0.106882)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C9 (eq)	-1.21143 (-0.41859)	-0.654581 (-0.106799)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C10 (ax)	-1.21430 (-0.44140)	-0.642418 (-0.118092)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C11 (eq)	-1.21151 (-0.41850)	$\begin{array}{c} -0.654808 \\ (-0.106800) \end{array}$	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C12 (ax)	-1.21386 (-0.44132)	-0.643576 (-0.119017)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$

Tabelle 10.7.4.Atomladungen und Elektronenkonfigurationen in

(Me₂SiS)₃-Sesselkonformation

Tabelle 10.7.5.	Atomladungen und Elektronenkonfigurationen in
	(Me ₂ SiS) ₃ -Twist-Boot-Konformation (C ₂ -symmetrisch)

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ladung (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si4 / Si6	+1.52535	+0.555897	(Ne) $3s^{0.87} 3p^{1.54} 3d^{0.04} 4p^{0.02}$
Si5	+1.51514	+0.580282	(Ne) $3s^{0.87} 3p^{1.55} 3d^{0.04} 4p^{0.02}$
S1 / S3	-0.65754	-0.356740	(Ne) $3s^{1.73} 3p^{4.91} 3d^{0.02}$
S2	-0.66072	-0.326849	(Ne) $3s^{1.73} 3p^{4.92} 3d^{0.01}$
C7 / C11	-1.21738 (-0.43246)	-0.645444 (-0.112333)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C8 / C9 (eq)	-1.21561 (-0.42510)	-0.652037 (-0.109607)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C10 / C12 (ax)	-1.22553 (-0.43746)	-0.650252 (-0.103934)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ladung (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si4 / Si6	+1.32678	+0.453422	(Ne) $3s^{0.95} 3p^{1.66} 3d^{0.04} 4p^{0.02}$
Si5	+1.31399	+0.456556	(Ne) $3s^{0.95} 3p^{1.67} 3d^{0.04} 4p^{0.02}$
Se1 / Se3	-0.47759	-0.274524	$(Ar) 4s^{1.74} 4p^{4.73}$
Se2	-0.48111	-0.253718	$(Ar) 4s^{1.74} 4p^{4.74}$
C7 / C11	-1.20966 (-0.42304)	-0.636282 (-0.097201)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$
C8 / C9 (eq)	-1.20871 (-0.41511)	-0.647955 (-0.098036)	(He) $2s^{1.22} 2p^{3.97} 3p^{0.01}$
C10 / C12 (ax)	-1.21857 (-0.42746)	-0.639958 (-0.085081)	(He) $2s^{1.23} 2p^{3.98} 3p^{0.01}$

Tabelle 10.7.6.Atomladungen und Elektronenkonfigurationen in
(Me2SiSe)3-Twist-Boot-Konformation (C2-symmetrisch)

Tabelle 10.7.7. Atomladungen und Elektronenkonfigurationen in Me₄Si₂(S)₂SiMe₂

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ladung (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si1	+1.51926	+0.602800	(Ne) $3s^{0.88} 3p^{1.54} 3d^{0.04} 4p^{0.02}$
Si3	+1.18497	+0.473678	(Ne) $3s^{0.96} 3p^{1.81} 3d^{0.03} 4p^{0.01}$
Si4	+1.18529	+0.474061	(Ne) $3s^{0.96} 3p^{1.81} 3d^{0.03} 4p^{0.01}$
S2	-0.65619	-0.387418	(Ne) $3s^{1.73} 3p^{4.91} 3d^{0.01}$
S5	-0.65666	-0.387800	(Ne) $3s^{1.73} 3p^{4.91} 3d^{0.01}$
C6	-1.21719 (-0.43848)	-0.638880 (-0.116045)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C7	-1.21727 (-0.43888)	-0.638751 (-0.116390)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C8 (eq)	-1.19205 (-0.42028)	-0.651011 (-0.135283)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C9 (ax)	-1.19896 (-0.42943)	-0.650996 (-0.136115)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C10 (ax)	-1.19895 (-0.42948)	-0.651309 (-0.136382)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C11 (eq)	-1.19198 (-0.42009)	-0.651080 (-0.135107)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ladung (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
----------	--------------------------------	-------------------------------------	--
Si1	+1.31782	+0.456655	(Ne) $3s^{0.95} 3p^{1.67} 3d^{0.04} 4p^{0.02}$
Si3	+1.09787	+0.409813	(Ne) $3s^{0.99} 3p^{1.86} 3d^{0.03} 4p^{0.01}$
Si4	+1.09787	+0.409809	(Ne) $3s^{0.99} 3p^{1.86} 3d^{0.03} 4p^{0.01}$
Se2	-0.48845	-0.288821	$(Ar) 4s^{1.75} 4p^{4.74}$
Se5	-0.48844	-0.288818	$(Ar) 4s^{1.75} 4p^{4.74}$
C6	-1.21057 (-0.42919)	-0.630455 (-0.100226)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C7	-1.21057 (-0.42919)	-0.630457 (-0.100226)	(He) $2s^{1.23} 2p^{3.97} 3p^{0.01}$
C8 (eq)	-1.18902 (-0.41530)	-0.649318 (-0.127422)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C9 (ax)	-1.19576 (-0.42384)	-0.643154 (-0.121672)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C10 (eq)	-1.19576 (-0.42384)	-0.643153 (-0.121670)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C11 (ax)	-1.18902 (-0.41530)	-0.649318 (-0.127422)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$

Tabelle 10.7.8. Atomladungen und Elektronenkonfigurationen in Me₄Si₂(Se)₂SiMe₂

Tabelle 10.7.9. Atomladungen und Elektronenkonfigurationen in $S(Si_2Me_4)_2S$

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ldg. (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si	+1.18351	+0.489830	(Ne) $3s^{0.96} 3p^{1.81} 3d^{0.03} 4p^{0.01}$
S	-0.65919	-0.391433	(Ne) $3s^{1.72} 3p^{4.92} 3d^{0.01} 4p^{0.01}$
C7, 9, 12, 14 (ax)	-1.19606 (-0.43098)	-0.660223 (-0.133815)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C8, 10, 11, 13 (eq)	-1.19029 (-0.42293)	-0.655485 (-0.140060)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$

Tabelle 10.7.10. Atomladungen und Elektronenkonfigurationen in $Se(Si_2Me_4)_2Se$

Atom	NBO-Ladung (inkl. H-Subst.)	Mulliken-Ldg. (inkl. H-Subst.)	Natürliche Elektronenkonfiguration
Si	+1.09392	+0.419255	(Ne) $3s^{0.99} 3p^{1.87} 3d^{0.03} 4p^{0.01}$
Se	-0.49991	-0.290760	$(Ar) 4s^{1.75} 4p^{4.75}$
C7, 9, 12, 14 (ax)	-1.19263 (-0.42534)	-0.652872 (-0.133815)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$
C8, 10, 11, 13 (eq)	-1.18696 (-0.41863)	-0.653317 (-0.140060)	(He) $2s^{1.22} 2p^{3.96} 3p^{0.01}$

Abb. 10.7.1. Korrelation zwischen den ¹H NMR chemischen Verschiebungen der Verbindungen (Me₂SiE)₃ (twist-Boot), Me₄Si₂(E)₂SiMe₂ und E(Si₂Me₄)₂E (E = S, Se) und den berechneten Mulliken-Ladungen der CH₃ Gruppen. Für CH₃ Gruppen, die in den NMR Spektren ein gemeinsames NMR Signal liefern, wurde der Mittelwert der Mulliken-Ladungen verwendet.

Abb. 10.7.2. Korrelation zwischen den ¹³C NMR (links) bzw. den ²⁹Si NMR (rechts) chemischen Verschiebungen der Verbindungen (Me₂SiE)₃ (twist-Boot), Me₄Si₂(E)₂SiMe₂ und E(Si₂Me₄)₂E (E = S, Se) und den berechneten Mulliken-Ladungen der C bzw. Si Atome. Für Atome, die in den NMR Spektren ein gemeinsames NMR Signal liefern, wurde der Mittelwert der Mulliken-Ladungen verwendet.

Schließlich ergeben sich einige interessante Schlussfolgerungen aus der Analyse der Bindungsorbitale der fünf- und sechsgliedrigen Cyclen, siehe Tabellen 10.7.11. - 10.7.17. Zunächst findet man sowohl für Schwefel als auch für Selen zwei sehr verschiedene *lone-pair*-Orbitale. Das energetisch tiefer liegende Orbital (erkennbar an der deutlich höheren Besetzung mit Elektronen) ist ein sp-Hybridorbital mit einem sehr hohen s-Anteil. Dieser steigt von Schwefel (ca. 57 - 58 %) zu Selen (ca. 65 %) deutlich weiter an. Dies entspricht der bekannten Tatsache, dass bei den schwereren Hauptgruppenelementen das s-Orbital immer weniger an der Hybridisierung beteiligt wird und auch die Abgabe der Elektronen aus diesem Orbital zur Erreichung der maximalen Gruppenwertigkeit mit steigender Ordnungszahl immer schwieriger wird.

Das zweite lone-pair-Orbital dagegen hat reinen p-Charakter.

Atome	Besetzung		Atom 1			Atom 2	
	(Elektro- nen)	Anteil (%)	Hybridisie- rung	s-Anteil (%)	Anteil (%)	Hybridisie- rung	s-Anteil (%)
Si6-S1	1.95957	Si: 28.95	sp ^{3.49} d ^{0.07}	21.91	S: 71.05	sp ^{3.76} d ^{0.02}	20.93
Si6-S2	1.95960	Si: 28.94	sp ^{3.50} d ^{0.07}	21.90	S: 71.06	sp ^{3.76} d ^{0.02}	20.95
Si4–S2	1.95966	Si: 28.94	sp ^{3.50} d ^{0.07}	21.90	S: 71.06	sp ^{3.75} d ^{0.02}	20.97
Si4–S3	1.95957	Si: 28.94	sp ^{3.50} d ^{0.07}	21.90	S: 71.06	sp ^{3.76} d ^{0.02}	20.94
Si5–S3	1.95969	Si: 28.93	sp ^{3.50} d ^{0.07}	21.90	S: 71.07	sp ^{3.75} d ^{0.02}	20.99
Si5-S1	1.95950	Si: 28.95	sp ^{3.50} d ^{0.07}	21.91	S: 71.05	sp ^{3.77} d ^{0.02}	20.90
Si4–C9	1.97375	Si: 27.69	$sp^{2.60}d^{0.04}$	27.46	C: 72.31	sp ^{2.36}	29.76
Si4-C10	1.97258	Si: 27.11	$sp^{2.45}d^{0.04}$	28.69	C: 72.89	sp ^{2.41}	29.34
Si5–C7	1.97256	Si: 27.13	$sp^{2.45}d^{0.04}$	28.68	C: 72.87	sp ^{2.41}	29.33
Si5-C11	1.97377	Si: 27.69	sp ^{2.60} d ^{0.04}	27.48	C: 72.31	sp ^{2.36}	29.76
Si6–C8	1.97376	Si: 27.69	$sp^{2.60}d^{0.04}$	27.47	C: 72.31	sp ^{2.36}	29.77
Si6-C12	1.97257	Si: 27.12	$sp^{2.45}d^{0.04}$	28.68	C: 72.88	sp ^{2.41}	29.33
S1 LP1	1.94152	100	sp ^{0.75}	57.27	—	-	_
S1 LP2	1.87027	100	р	0.85	_	-	_
S2 LP1	1.94127	100	sp ^{0.75}	57.21	—	-	_
S2 LP2	1.87046	100	р	0.83	_	-	_
S3 LP1	1.94121	100	sp ^{0.75}	57.21	_	_	_
S3 LP2	1.87049	100	р	0.81	_	_	_

 Tabelle 10.7.11. Bindungsorbitale und n-Elektronenpaare in (SiMe₂S)₃ Sesselkonformation

 (Natural bond orbital analysis)

Atome	Besetzung		Atom 1			Atom 2	
	(Elektro-	Anteil	Hybridisie-	s-Anteil	Anteil	Hybridisie-	s-Anteil
	nen)	(%)	rung	(%)	(%)	rung	(%)
Si6-S1	1.95903	Si: 28.40	sp ^{3.57} d ^{0.07}	21.54	S: 71.60	sp ^{3.63} d ^{0.02}	21.50
Si4–S3							
Si6-S2	1.95867	Si: 28.78	$sp^{3.51}d^{0.07}$	21.85	S: 71.22	$sp^{3.72}d^{0.02}$	21.11
Si4–S2							
Si5-S3	1.95959	Si: 28.88	$sp^{3.52}d^{0.07}$	21.78	S: 71.12	$sp^{3.72}d^{0.02}$	21.12
Si5–S1							
Si4–C9	1.97313	Si: 27.39	$sp^{2.60}d^{0.04}$	27.52	C: 72.61	sp ^{2.34}	29.95
Si6–C8							
Si4-C10	1.97207	Si: 27.23	$sp^{2.40}d^{0.04}$	29.06	C: 72.77	sp ^{2.42}	29.21
Si6-C12							
Si5-C7	1.97333	Si: 27.31	$sp^{2.51}d^{0.04}$	28.20	C: 72.69	sp ^{2.35}	29.81
Si5-C11							
S1 LP1	1.94594	100	$\mathrm{sp}^{0.76}$	56.85	_	—	-
S3 LP1							
S1 LP2	1.86554	100	р	0.47	_	—	-
S3 LP2							
S2 LP1	1.94160	100	$sp^{0.73}$	57.73	_	_	_
S2 LP2	1.87434	100	р	0.00	_	_	_

Tabelle 10.7.12. Bindungsorbitale und n-Elektronenpaare in (SiMe₂S)₃ twist-Boot-Konformation (Natural bond orbital analysis)

Tabelle 10.7.13. Bindungsorbitale und n-Elektronenpaare in (SiMe₂Se)₃ twist-Boot-Konform.

Atome	Besetzung		Atom 1			Atom 2	
	(Elektro-	Anteil	Hybridi-	s-Anteil	Anteil	Hybridi-	s-Anteil
	nen)	(%)	sierung	(%)	(%)	sierung	(%)
Si6–Se1	1.95262	Si: 32.82	$sp^{3.80}d^{0.06}$	20.56	Se: 67.18	sp ^{4.72}	17.48
S14–Se3							
Si6–Se2	1.95158	Si: 33.28	$sp^{3.71}d^{0.06}$	20.93	Se: 66.72	sp ^{4.84}	17.13
Si4–Se2							
Si5–Se3	1.95338	Si: 33.42	$sp^{3.73}d^{0.06}$	20.87	Se: 66.58	sp ^{4.85}	17.09
Si5–Se1							
Si4–C9	1.97385	Si: 27.93	$sp^{2.46}d^{0.03}$	28.65	C: 72.07	sp ^{2.34}	29.96
Si6–C8							
Si4-C10	1.97171	Si: 27.80	$sp^{2.30}d^{0.03}$	29.99	C: 72.20	sp ^{2.42}	29.20
Si6-C12							
Si5–C7	1.97342	Si: 27.85	$sp^{2.39}d^{0.03}$	29.21	C: 72.15	sp ^{2.35}	29.81
Si5-C11							
Se1 LP1	1.94552	100	sp ^{0.55}	64.62	_	_	_
Se3 LP1							
Se1 LP2	1.86163	100	р	0.80	_	_	_
Se3 LP2							
Se2 LP1	1.94067	100	sp ^{0.52}	65.73	_	_	_
Se2 LP2	1.87121	100	р	0.00	_	_	_

Atome	Besetzung		Atom 1			Atom 2	
	(Elektro-	Anteil	Hybridisie-	s-Anteil	Anteil	Hybridisie-	s-Anteil
	nen)	(%)	rung	(%)	(%)	rung	(%)
Si1–S2	1.95981	Si: 28.99	sp ^{3.49} d ^{0.07}	21.92	S: 71.01	sp ^{3.80} d ^{0.02}	20.77
Si1–S5	1.95985	Si: 28.98	sp ^{3.49} d ^{0.07}	21.91	S: 71.02	sp ^{3.79} d ^{0.02}	20.78
Si3–S2	1.96254	Si: 28.65	sp ^{4.01} d ^{0.07}	19.68	S: 71.35	sp ^{3.65} d ^{0.02}	21.42
Si4–S5	1.96259	Si: 28.65	sp ^{4.01} d ^{0.07}	19.68	S: 71.35	sp ^{3.65} d ^{0.02}	21.45
Si3–Si4	1.92800	Si: 50.01	$sp^{2.82}d^{0.03}$	26.00	Si: 49.99	$sp^{2.82}d^{0.03}$	25.99
Si1–C6	1.97291	Si: 27.10	$sp^{2.52}d^{0.04}$	28.07	C: 72.90	sp ^{2.36}	29.77
Si1–C7	1.97290	Si: 27.09	$sp^{2.52}d^{0.04}$	28.07	C: 72.91	sp ^{2.36}	29.77
Si3-C10	1.97760	Si: 27.87	$sp^{2.63}d^{0.03}$	27.31	C: 72.13	sp ^{2.34}	29.88
Si3-C11	1.97655	Si: 28.05	sp ^{2.66} d ^{0.03}	27.04	C: 71.95	sp ^{2.34}	29.92
Si4–C8	1.97652	Si: 28.05	$sp^{2.66}d^{0.03}$	27.04	C: 71.95	sp ^{2.34}	29.92
Si4–C9	1.97758	Si: 27.87	$sp^{2.63}d^{0.03}$	27.31	C: 72.13	sp ^{2.34}	29.88
S2 LP1	1.95246	100	sp ^{0.73}	57.76	-	—	—
S2 LP2	1.87186	100	р	0.01	-	—	—
S5 LP1	1.95247	100	sp ^{0.73}	57.72	_	_	_
S5 LP2	1.87198	100	р	0.01	_	_	_

Tabelle 10.7.14. Bindungsorbitale und n-Elektronenpaare in Me₂Si(S)₂Si₂Me₄

Tabelle 10.7.15. Bindungsorbitale und n-Elektronenpaare in Me₂Si(Se)₂Si₂Me₄

Atome	Besetzung	Atom 1			Atom 2		
	(Elektro-	Anteil	Hybridisier	s-Anteil	Anteil	Hybridi-	s-Anteil
	nen)	(%)	ung	(%)	(%)	sierung	(%)
Si1–Se2	1.95375	Si: 33.49	$sp^{3.72}d^{0.06}$	20.93	Se: 66.51	sp ^{4.91}	16.91
Sil-Se5	1.95375	Si: 33.49	sp ^{3.72} d ^{0.06}	20.93	Se: 66.51	sp ^{4.91}	16.91
Si3–Se2	1.95575	Si: 32.51	sp ^{4.39} d ^{0.07}	18.33	Se: 67.49	sp ^{4.74}	17.43
Si4–Se5	1.95575	Si: 32.51	sp ^{4.39} d ^{0.07}	18.33	Se: 67.49	sp ^{4.74}	17.43
Si3–Si4	1.92948	Si: 50.00	$sp^{2.74}d^{0.02}$	26.53	Si: 50.00	$sp^{2.74}d^{0.02}$	26.53
Si1–C6	1.97308	Si: 27.63	$sp^{2.40}d^{0.03}$	29.15	C: 72.37	sp ^{2.35}	29.83
Si1–C7	1.97308	Si: 27.63	$sp^{2.40}d^{0.03}$	29.15	C: 72.37	sp ^{2.35}	29.83
Si3-C10	1.97739	Si: 28.13	$sp^{2.57}d^{0.03}$	27.74	C: 71.87	sp ^{2.34}	29.93
Si3-C11	1.97626	Si: 28.29	$sp^{2.61}d^{0.03}$	27.46	C: 71.71	sp ^{2.33}	30.00
Si4–C8	1.97626	Si: 28.29	$sp^{2.61}d^{0.03}$	27.46	C: 71.71	sp ^{2.33}	30.00
Si4–C9	1.97739	Si: 28.13	$sp^{2.57}d^{0.03}$	27.74	C: 71.87	sp ^{2.34}	29.93
Se2 LP1	1.95289	100	sp ^{0.52}	65.65	_		—
Se2 LP2	1.87173	100	р	0.00	_	_	_
Se5 LP1	1.95289	100	sp ^{0.52}	65.65	_	_	_
Se5 LP2	1.87173	100	р	0.00	_	_	_

Habilitation Uwe Herzog

Atome	Besetzung		Atom 1			Atom 2		
	(Elektro- nen)	Anteil (%)	Hybridisie- rung	s-Anteil (%)	Anteil (%)	Hybridisie- rung	s-Anteil (%)	
Si–S	1.96541	Si: 29.08	sp ^{3.84} d ^{0.07}	20.40	S: 70.92	$sp^{3.62}d^{0.02}$	21.59	
Si-Si	1.92712	Si: 50.00	$sp^{2.76}d^{0.03}$	26.41	Si: 50.00	$sp^{2.76}d^{0.03}$	26.41	
Si1–C _{ax}	1.97754	Si: 27.76	$sp^{2.64}d^{0.03}$	27.20	C: 72.24	sp ^{2.34}	29.89	
Si1-C _{eq}	1.97576	Si: 27.89	$sp^{2.81}d^{0.03}$	26.00	C: 72.11	sp ^{2.32}	30.10	
S LP1	1.95224	100	sp ^{0.76}	56.71	_	_		
S LP2	1.88406	100	р	0.06	_	_	_	

Tabelle 10.7.16. Bindungsorbitale und n-Elektronenpaare in $S(Si_2Me_4)_2S$

Tabelle 10.7.17. Bindungsorbitale und n-Elektronenpaare in Se(Si₂Me₄)₂Se

Atome	Besetzung		Atom 1			Atom 2		
	(Elektro- nen)	Anteil (%)	Hybridisie- rung	s-Anteil (%)	Anteil (%)	Hybridisie- rung	s-Anteil (%)	
Si–Se	1.95903	Si: 32.98	sp ^{4.24} d ^{0.06}	18.86	Se: 67.02	sp ^{4.65}	17.71	
Si–Si	1.92924	Si: 50.00	$sp^{2.68}d^{0.02}$	26.97	Si: 50.00	$sp^{2.68}d^{0.02}$	26.97	
Si1–C _{ax}	1.97744	Si: 28.04	$sp^{2.59}d^{0.03}$	27.65	C: 71.96	sp ^{2.34}	29.93	
Sil-C _{eq}	1.97584	Si: 28.15	$sp^{2.73}d^{0.03}$	26.59	C: 71.85	sp ^{2.32}	30.15	
Se LP1	1.95408	100	sp ^{0.55}	64.57	—	—		
Se LP2	1.88370	100	р	0.00	_	_	_	

Aus den Gleichungen zur Beschreibung von Kopplungskonstanten (siehe 6.4.) ergibt sich, dass für deren Größe vor allem die Bindungsordnung und die s-Elektronendichte am Kernort entscheidend sind. Damit sollte mit steigendem s-Anteil des Bindungsorbitals an den beiden miteinander koppelnden Atomkernen die Kopplungskonstante ansteigen. In den Abbildungen 10.7.3. und 10.7.4. sind die Zusammenhänge zwischen den experimentell beobachteten Kopplungskonstanten ¹J_{SiSe} und ¹J_{SiC} und der Summe der s-Anteile der Bindungsorbitale an den beiden koppelnden Atomen dargestellt. Dabei muss allerdings berücksichtigt werden, dass ein weiterer wesentlicher Parameter die Bindungsordnung (erkennbar auch an der Bindungslänge) darstellt und diese weitgehend parallel zu steigenden s-Anteilen des Bindungsorbitals zunimmt, d. h. die Bindungslänge abnimmt (vgl. Tabellen 10.7.1. – 10.7.3.). Beim Vergleich der Bindungsorbitale der Sechsringe mit denen der Fünfringe ergeben sich aber keine Unterschiede, die sich auf die unterschiedlichen Ringgrößen zurückführen lassen könnten.

Abb. 10.7.3. Zusammenhang zwischen der Summe der s-Anteile des Bindungsorbitals σ_{SiC} an Si und C (Mittelwerte) und den experimentellen Kopplungskonstanten ${}^{1}J_{SiC}$ in (Me₂SiE)₃, Me₄Si₂(E)₂SiMe₂ und E(Si₂Me₄)₂E (E = S, Se). Für die Schwefel- und Selenverbindungen ergeben sich zwei verschiedene Kurvenverläufe.

Abb. 10.7.4. Zusammenhang zwischen der Summe der s-Anteile des Bindungsorbitals σ_{SiSe} an Si und Se (Mittelwerte) und den experimentellen Kopplungskonstanten ${}^{1}J_{SiSe}$ in (Me₂SiSe)₃, Me₄Si₂(Se)₂SiMe₂ und Se(Si₂Me₄)₂Se.

Schließlich wurden die aus der Second Order Perturbation Theory ableitbaren Donor-Akzeptor-Wechselwirkungen zwischen verschiedenen Bindungsorbitalen bzw. *lone-pair*-Orbitalen und leeren antibindenen Orbitalen analysiert.

Die Ergebnisse sind in den Tabellen 10.7.18. – 10.7.21. zusammengestellt. Dabei muss zwischen Si-C Bindungsorbitalen zu axialen und equatorialen Methylgruppen unterschieden werden. Sowohl für die Monosilanyleinheiten Me₂Si(E–)₂ als auch für die Disilanyleinheiten (-Si)Me₂Si(E-) zeigt sich, dass die größten Donor-Akzeptor-Wechselwirkungen mit dem lone-pair-Orbital LP2 mit reinem p-Charakter als Donororbital auftreten. Die größten Differenzen zwischen Fünf- und Sechsring ergeben bei den Monosilanyleinheiten für die We chselwirkungen LP2(E) $\rightarrow \sigma^*(SiE)$ und LP2(E) $\rightarrow \sigma^*(SiC_{ed})$ sowie bei den Disilanylein-We chselwirkungen LP2(E) $\rightarrow \sigma^*(SiSi)$, LP2(E) $\rightarrow \sigma^*(SiC_{eq})$ die heiten für und $LP2(E) \rightarrow \sigma^*(SiC_{ax})$. Die wesentlich geringere Donor-Akzeptor-Wechselwirkung zwischen dem lone-pair LP2 am Chalcogenatom und dem antibindenden Orbital der Si-E bzw. Si-Si Bindung folgt aus dem in den Fünfringen geringeren Bindungswinkel und der räumlichen Orientierung der Bindungsorbitale. Diese veränderten Donor-Akzeptor-Wechselwirkungen führen zu Unterschieden in der Symmetrie der Elektronenverteilung um die Siliciumatome, was wiederum einen entscheidenden Einfluss auf die ²⁹Si NMR chemische Verschiebung hat. Wie man aber aus den Daten der Tabellen 10.7.18. - 10.7.21. erkennt, ist der beobachtete Gesamteffekt eine Summe vieler kleinerer Beiträge, so dass es schwierig ist, die beobachteten Tieffeldverschiebungen in den Fünfringen einem bestimmten Parameter zuzuordnen.

Tabelle 10.7.18. Donor-Akzeptor Wechselwirkungen (kcal mol^{-1}) nach der Second OrderPerturbation Theory

Vergleich in der Einheit S–SiMe₂–S

Donor	Akzeptor		WW im S	echsring		WW im Fünfring		Diff.
	-	Sesselkont	formation	twist-Bo	ot-Konf.	twist-Konform.		Sechsr.
			Ø		Ø		Ø	Fünfr.
σ (Si–S)	σ* (Si–S)	1.75 1.74	1.74	1.98 2.03	1.86	2.03	2.02	-0.16
		1.74		1.56		2.02		
		2.69		2.08		2 97		
σ(Si–S)	σ^* (Si–C _{ax})	2.68	2.69	2.51	2.48	2.97	2.98	-0.50
		2.69		2.85		2.70		
(7. 7)		2.85		3.26				
σ (S1–S)	σ^* (S1–C _{eq})	2.87	2.86	2.79	2.97	2.29	2.29	-0.68
		2.87		2.85				
		2.62	• • •	2.07		1.96	1.0.6	
σ (S1–C _{ax})	σ* (S1–S)	bis	2.63	2.75	2.39	1.97	1.96	0.43
		2.63		2.35				
		1.51		1.94	1.00	2 05		
σ (Si–C _{eq})	σ^* (Si–S)	bis	1.52	1.66	1.80	2 07	2.06	-0.26
		1.52		1.81		,		
				2.17				
σ (Si–C _{ax})	σ^* (Si–C _{eq})	1.91	1.91	2.07	2.10	2.46	2.46	-0.36
				2.07				
σ (Si–C _{eq})	σ^* (Si–C _{ax})	2.11	2.11	2.30	2.30	2.46	2.46	-0.16
		1.66		0.86		2.24		
LP1 (S)	σ* (Si–S)	bis	1.69	2.54	2.20	2.24	3.25	-1.25
		1.72		3.21		5.27		
		1.18		< 0.5				
LP1 (S)	σ^* (Si–C _{ax})	bis	1.22	0.58	0.91	< 0.5	< 0.5	0.51
		1.24		1.76				
		1.17		0.62				
LP1 (S)	σ^* (Si–C _{eq})	bis	1.18	0.90	0.81	< 0.5	< 0.5	0.41
	_	1.20		0.92				
		6.84		2.82		0.55		
LP2 (S)	σ* (Si–S)	bis	6.90	3.54	4.96	0.55	0.60	4.36
		6.97		8.52		0.04		
		5.99		4.17		6.01		
LP2 (S)	σ^* (Si–C _{ax})	bis	6.04	6.97	6.23	0.91	6.95	-0.72
		6.08		7.55		7.00		
				0.52		2 20		
LP2 (S)	σ^* (Si–C _{ea})	< 0.5	< 0.5	1.14	1.11	2.58	3.45	-2.34
				1.68		3.32		

Die letzte Spalte bezieht sich auf den Sechsring in twist-Boot-Konformation. Tabelle 10.7.19. *Donor-Akzeptor Wechselwirkungen (kcal mol⁻¹) nach der Second Order*

Perturbation Theory

Vergleich in der Einheit Si–SiMe₂–S

Donor	Akzeptor	WW im Sechsring	WW im	Fünfring	Diff.
		Seensing		Ø	Secnsring - Fünfring
σ (Si Si)	-* (S; S)	200	2 12 / 2 12	2.42	0.54
$\frac{0(SI-SI)}{\sigma(Si-Si)}$	-*(S; C)	2.00	2 79 / 2 79	2.42	-0.34
0 (31–31)	$O^{+}(SI-C_{ax})$	5.15	2.7872.78	2.78	0.33
σ (Si–Si)	σ^* (Si–C _{eq})	2.33	2.27 / 2.28	2.28	0.05
σ (Si–S)	σ* (Si–Si)	< 0.5	< 0.5 / < 0.5	< 0.5	_
σ (Si–S)	σ^* (Si–C _{ax})	2.02	1.92 / 1.93	1.92	0.10
σ (Si–S)	σ^* (Si–C _{eq})	2.89	2.58 / 2.58	2.58	0.31
σ (Si–C _{ax})	σ* (Si–Si)	0.52	0.50 / 0.50	0.50	0.02
σ (Si–C _{ax})	σ* (Si–S)	2.31	2.13 / 2.13	2.13	0.18
σ (Si–C _{ax})	σ^* (Si–C _{eq})	1.95	2.25 / 2.25	2.25	-0.30
σ (Si–C _{eq})	σ* (Si–Si)	< 0.5	< 0.5 / < 0.5	< 0.5	—
σ (Si–C _{eq})	σ* (Si–S)	1.65	1.83 / 1.83	1.83	-0.18
σ (Si–C _{eq})	σ^* (Si–C _{ax})	2.11	2.33 / 2.33	2.33	-0.22
LP1 (S)	σ* (Si–Si)	1.75	1.56 / 1.58	1.57	0.18
LP1 (S)	σ^* (Si–C _{ax})	0.73	< 0.5 / < 0.5	< 0.5	0.33
LP1 (S)	σ^* (Si–C _{eq})	1.39	0.68 / 0.69	0.68	0.71
LP2 (S)	σ* (Si–Si)	3.31	1.43 / 1.43	1.43	1.88
LP2 (S)	σ^* (Si–C _{ax})	6.71	7.59 / 7.59	7.59	-0.88
LP2 (S)	σ^* (Si–C _{eq})	< 0.5	1.33 / 1.39	1.36	-0.96

Werte < 0.5 wurden in den Tabellen 10.7.18 – 10.7.21 bei Mittelwerten bzw. Differenzen mit 0.4 kcal mol⁻¹ berücksichtigt.

Tabelle 10.7.20. Donor-Akzeptor Wechselwirkungen (kcal mol^{-1}) nach der Second OrderPerturbation Theory

Vergleich in der Einheit Se–SiMe₂–Se

(Nur die Daten für Wechselwirkungen mit den lone-pair-Orbitalen als Donororbitale, da diese die größten Beiträge liefern)

Donor	Akzeptor	WW im Sechsring (twist-Boot-Konf.)	Ø	WW im Fünfring	Differenz Sechsring - Fünfring
LP1 (Se)	σ^* (Si–Se)	0.81/2.56/3.15	2.17	3 28	-1 01
LP1 (Se)	σ^* (Si-C _{ax})	< 0.5 / 1.50 / < 0.5	0.77	< 0.5	0.37
LP1 (Se)	σ^* (Si–C _{eq})	0.78 / 0.74 / 0.55	0.69	< 0.5	0.29
LP2 (Se)	σ^* (Si–Se)	3.84 / 9.20 / 3.14	5.39	0.66	4.73
LP2 (Se)	σ^* (Si–C _{ax})	6.26 / 3.69 / 7.00	5.65	6.27	-0.62
LP2 (Se)	σ^* (Si–C _{eq})	< 0.5 / 0.96 / 1.43	0.93	3.02	-2.09

Tabelle 10.7.21. Donor-Akzeptor Wechselwirkungen (kcal mol^{-1}) nach der Second OrderPerturbation TheoryCH. (ax)

Vergleich in der Einheit Si–SiMe₂–Se

Donor	Akzeptor	WW im Sechsring	WW im Fünfring	Diff. Sechsring - Fünfring
LP1 (Se)	σ* (Si–Si)	1.36	1.29	0.07
LP1 (Se)	σ^* (Si–C _{ax})	0.67	< 0.5	0.27
LP1 (Se)	σ^* (Si–C _{eq})	1.08	0.56	0.52
LP2 (Se)	σ* (Si–Si)	3.05	1.39	1.66
LP2 (Se)	σ^* (Si–C _{ax})	5.66	6.65	-0.99
LP2 (Se)	σ^* (Si–C _{eq})	0.54	1.02	-0.48

Die in Kapitel 10.5. beschriebenen Sechsringe Z(SiMe2–E)₂MR₂ stellen für Z = MR₂ = SiMe₂ Isomere zu den Sechsringen E(Si₂Me₄)₂E dar. DFT Berechnungen für Me₂Si(SiMe–S)₂SiMe₂ lieferten auf dem Niveau B3LYP/6-31G^{*} eine Gesamtenergie inklusive Nullpunkts-Schwingungskorrektur, die um 4.87 kJ/mol tiefer liegt als für das Isomer S(Si₂Me₄)₂S:

Schema 10.7.1.

Relative Energien von Octamethyl-1,4-dithia- und -1,3-dithiatetrasilacyclohexan

Interessant war weiterhin die Frage nach der Konformation des Sechsrings Me₂Si(SiMe–S)₂SiMe₂, da er zur einen Hälfte dem *cyclo*-Si₆Me₁₂ entspricht, welches in der Kristallstruktur eine Sesselkonformation aufweist [729], zur anderen Hälfte aber dem *cyclo*-(Me₂SiS)₃, welches – wie oben gezeigt – in einer *twist*-Boot Konformation vorliegt.

Die Geometrieoptimierungen für $Z(SiMe_2-S)_2SiMe_2$ (Z = SiMe_2, CH_2) ergaben in beiden Fällen, dass die Sesselkonformation das Energieminimum darstellt, siehe auch Abbn. 10.7.5. und 10.7.6.

Abb. 10.7.5. Geometrieoptimierte Struktur (DFT, B3LYP/6-31G^{*}) von Octamethyl-1,3dithiatetrasilacyclohexan
Die Verbindung ist exakt C_s-symmetrisch mit: Si1-S1: 2.173 Å, S1-Si2: 2.191 Å, Si2-Si3: 2.366 Å, S1-Si1-S2: 115.15°, Si1-S1-Si2: 110.08°, S1-Si2-Si3: 109.81°, Si2-Si3-Si4: 110.17°.

Abb. 10.7.6. Geometrieoptimierte Struktur (DFT, B3LYP/6-31G^{*}) von Hexamethyl-1,3dithia-2,4,6-trisilacyclohexan
Die Verb. ist fast exakt C_s-symmetrisch mit: Si1-S1: 2.170 Å, S1-Si2: 2.180 Å, Si2-C1: 1.892 Å, S1-Si1-S2: 113.67°, Si1-S1-Si2: 107.88°, S1-Si2-C1: 111.02, Si2-C1-Si3: 122.27°.

Einen direkten Vergleich zwischen einer acyclischen Verbindung, einem fünf- und einem sechsgliedrigen Ring unter Wahrung der gleichen ersten und zweiten Koordinationssphäre kann man auch zwischen dem Methanthiolat, dem Ethan-1,2-dithiolat und dem Propan-1,3- dithiolat der Me₂Si Einheit herstellen. Von allen drei Verbindungen sind die experimentellen ²⁹Si NMR chemischen Verschiebungen bekannt, nicht aber die Kristallstrukturen, da es sich durchweg um Flüssigkeiten handelt.

So wurden zunächst die Geometrien der drei Verbindungen auf dem Niveau B3LYP/6-31G^{*} optimiert. Dabei ergaben sich für Me₂Si(SMe)₂ und *cyclo*-Me₂Si(S)₂C₂H₄ C₂-symmetrische Konformationen als Minima während für *cyclo*-Me₂Si(S)₂C₃H₆ in Analogie zu den oben diskutierten Sechsringen (Me₂SiS)₃, Me₂Si(SiMe₂–S)₂SiMe₂ und H₂C(SiMe₂–S)₂SiMe₂ eine C₂-symmetrische *twist*-Boot und eine C_s-symmetrische Sesselkonformation in Frage kommen, wobei hier letztere um 1.7 kJ/mol energetisch günstiger ist. Die berechneten Geometrien sind in Abb. 10.7.7. dargestellt und die wesentlichen Bindungsparameter in Tab. 10.7.22. wiedergegeben. Dabei zeigen sich bei den Bindungswinkeln S–Si–S und S–Si–C die deutlichsten Unterschiede zwischen der Geometrie des Fünfringes und denen der acyclischen Verbindung bzw. des Sechsringes.

Tabelle 10.7.22. Berechnete (DFT, $B3LYP/6-31G^*$) geometrische Parameter von $Me_2Si(SMe)_2$, $Me_2Si(S)_2C_2H_4$ und $Me_2Si(S)_2C_3H_6$ (Sessel und twist-Boot Konformation)

Verbindung	Bindung	slängen (Å)	Bindungswinkel			
	Si–S	Si–C	S-Si-S	C-Si-C	S–Si–C	
Me S-Me Me S-Me	2.167	1.886	111.8	111.8	104.5, 112.2	
Me S	2.175	1.885	100.1	109.8	109.3, 114.1	
Me S Me Si S	2.163	1.881, 1.889	107.9	111.4	107.9, 110.4	
Me Me $Si \leq S$	2.170	1.885	105.6	110.3	107.0, 113.5	

Abb. 10.7.7. Berechnete Geometrien von Me₂Si(SMe)₂ (oben links), Me₂Si(S)₂C₂H₄ (unten links) sowie der Sessel- und der twist-Boot-Konformationen von Me₂Si(S)₂C₃H₆ (rechts) (DFT, B3LYP/6-31G^{*})

Die ²⁹Si NMR chemischen Verschiebungen wurden sowohl mit dem GIAO- als auch mit dem IGLO-Verfahren berechnet, wobei sich die experimentell beobachtete starke Tieffeldverschiebung in der Fünfringverbindung Me₂Si(S)₂C₂H₄ in jedem Falle in den berechneten Werten widerspiegelt, siehe Tabelle 10.7.23. Die mittels GIAO-HF/A//B3LYP/6-31G^{*} berechneten chemischen Verschiebungen liegen dabei mit Abstand am dichtesten an den experimentellen Werten (Abweichung: 0.6 - 2.7 ppm). Der Vorteil der IGLO Methode liegt sicher darin, dass es hier möglich ist, den Beitrag einzelner Elektronenpaare an der Abschirmung zu bestimmen, siehe Tabelle 10.7.24. Erstaunlicherweise zeigt sich hier, dass beim Übergang von der acyclischen Verbindung zum Fünfring der Beitrag der Si–S Bindungselektronen zum paramagnetischen Anteil der Abschirmung konstant bleibt und die Unterschiede lediglich von den

Si–C Bindungselektronen herrühren, obwohl sich die Geometrie der Me₂Si Einheit nicht merklich verändert, siehe Tabelle 10.7.22. Vergleicht man die acyclische Verbindung Me₂Si(SMe)₂ mit dem Sechsring Me₂Si(S)₂C₃H₆ so ändern sich sowohl die Beiträge der Si–S als auch der Si–C Bindungselektronen, wobei der erste Effekt überwiegt.

Tabelle 10.7.23. Experimentelle und berechnete ²⁹Si NMR chemische Verschiebungen (ppm) von Me₂Si(SMe)₂, cyclo-Me₂Si(S)₂C₂H₄ und cyclo-Me₂Si(S)₂C₃H₆

	Me S-Me Me S-Me	Me Si Me S	Me Si Si Si
$\delta_{Si} \exp$.	28.1 [40]	41.7 ^{a)}	22.5 [730]
GIAO-HF/A	30.8	43.7	23.1
GIAO-B3LYP/A	41.9	59.8	30.6
GIAO-MPW1PW91/A	39.1	57.1	28.0
SOS-DFPT/IGLO-III	38.2	56.1	25.6

a) aus Tabelle 8.1.1.

Tabelle 10.7.24. Ergebnisse der IGLO-Berechnungen (SOS-DFPT/IGLO-III//B3LYP/6-31G^{*}) von Me₂Si(SMe)₂, cyclo-Me₂Si(S)₂C₂H₄ und cyclo-Me₂Si(S)₂C₃H₆

	Me S-Me Me S-Me	Me S Me S	Me S Me Si S
δ_{Si} ber. (ppm)	38.2	56.1	25.6
σ^{dia} (ppm)	konstant	konstant	konstant
σ ^{para} (ppm)	-470	-484	-462
Beitrag Si–S zu σ^{para} (ppm)	2 × (-108)	2 × (-108)	2 × (-102)
Beitrag Si–C zu σ ^{para} (ppm)	2 × (-127)	2 × (-134)	2 × (-129)

In den parallel dazu durchgeführten NBO-Analysen zeigen sich bei den Donor-Akzeptor-Wechselwirkungen für die Fünfringverbindung deutlich größere Werte für alle Wechselwirkungen, die die bindenden bzw. antibindenden Orbitale der Si–C Bindungen beinhalten., sowie auch für die Wechselwirkung $\sigma_{SiS} \rightarrow \sigma^*_{SiS'}$, siehe Tabelle 10.7.25.

Der größte Unterschied sowohl zur acyclischen Verbindung als auch zum Sechsring tritt bei der Wechselwirkung $\sigma_{SiC} \rightarrow \sigma^*_{SiC'}$ auf (20 kcal/mol statt 1 kcal/mol).

Dagegen finden sich kaum signifikante Unterschiede zwischen der acyclischen und der Sechsringverbindung. Die größten Differenzen treten bei den Wechselwirkungen mit dem *lone-pair* LP2 der Schwefelatome auf (Differenz: 2 bzw. 3 kcal/mol bei Berücksichtigung der energetisch stabileren Sesselkonformation des Sechsrings).

Tabelle 10.7.25. Donor-Akzeptor-Wechselwirkungen (kcal mol⁻¹) nach der Second Order Perturbation Theory in $Me_2Si(SMe)_2$, cyclo- $Me_2Si(S)_2C_2H_4$ und cyclo- $Me_2Si(S)_2C_3H_6$

Donor	Akzeptor	Me S-Me Me S-Me	Me S Me S	Me Si S	Me Me $Si \leq S$ S
LP2 (S)	σ*(Si–S)	11	1	8	4
LP2 (S)	σ*(Si−C)	8	6	10	11
σ(Si–S)	$\sigma^*(Si-S)$	2	11	3	3
σ(Si–S)	$\sigma^*(Si-C)$	5	13	5	5
σ(Si–C)	$\sigma^*(Si-S)$	5	15	4	4
σ(Si–C)	σ*(Si–C)	1	20	1	2

Zusammenfassend lässt sich feststellen, dass die Ursachen der Tieffeldverschiebungen in Silicium-Schwefel-Fünfringen (bzw. die Hochfeldverschiebungen in entsprechenden Sechsringen) im Vergleich zu acyclischen Verbindungen mit der gleichen Koordination am Siliciumatom komplex sind und neben den Si–S Bindungen bzw. den Wechselwirkungen mit den p-Typ *lone-pair* Orbitalen der Schwefelatome auch die Elektronen der Si–C Bindungen berücksichtigt werden müssen.

Somit sind die beobachteten Veränderungen der ²⁹Si NMR chemischen Verschiebung oft die Summe vieler kleinerer Effekte und entziehen sich damit einer einfachen Erklärung.

11. Polycyclische Silicium-Chalcogen-Verbindungen

11.1. Norbornane (MeRSi–SiMe)₂ E_3 (R = Me, Ph; E = S, Se, Te) [731]

Die Untersuchungen an monocyclischen Silicium-Chalcogen-Verbindungen (Kapitel 10.) haben gezeigt, dass in diesen Systemen fünfgliedrige Ringe Si_3E_2 die bevorzugte Ringgröße darstellen.

Ausgehend von einem 1,1,2-Trichlordisilan sollte man durch Reaktion mit H_2S / NEt₃ bzw. Li₂E die Bildung von Norbornanen, in denen zwei Disilaneinheiten unter Ausbildung von zwei Fünfringen Si₃E₂ durch drei Chalcogenatome verbunden sind, erwarten, z. B.:

Die Reaktionen von Cl₂MeSi–SiMe₂Cl mit H₂S / NEt₃ bzw. Li₂Se liefern jeweils nur eine Silicium-Chalcogen-Verbindung, bei denen es sich um die erwarteten Norbornane handelt, wie die Auswertung der GC/MS und NMR-Spektren belegte.

Da beide Verbindungen flüssig sind, wurde durch Einbau von Phenylsubstituenten versucht, zu kristallinen Norbornan-Derivaten zu gelangen. Durch Reaktion von Cl₂MeSi–SiMeCl₂ mit einem Äquivalent Phenyl-GRIGNARD-Reagenz, konnte Cl₂MeSi–SiPhMeCl erhalten werden:

$$Cl \bigvee_{Si}^{Me} Cl \xrightarrow{Ph}_{Si}^{Me} Cl$$

$$\downarrow \xrightarrow{+ PhMgBr (Et_2O)}_{-MgBrCl} \xrightarrow{Ph}_{Si}^{I} Cl$$

$$(11.1.2)$$

$$Cl \bigvee_{Me}^{Si} Cl \xrightarrow{Cl}_{Me}^{I} Cl$$

Das erhaltene Produkt enthielt laut NMR-Analyse jeweils etwa 10 % der Monobromdichlorverbindungen BrClMeSi–SiPhMeCl und Cl₂MeSi–SiPhMeBr, was aber für die weiteren Umsetzungen keine Bedeutung hatte. Die Reaktionen mit H_2S / NEt₃ bzw. Li₂E (E = Se, Te) lieferten in allen drei Fällen ausschließlich die gewünschten Norbornane, allerdings entstehen die Produkte als Gemische dreier Stereoisomere, die sich durch die räumliche Orientierung der Phenylsubstituenten unterscheiden, siehe auch Schema 11.1.1. Darüber hinaus ist jedes Isomer chiral, liegt also als Gemisch der beiden Enantiomeren vor.

Schema 11.1.1.

Berechnete Geometrien (B3LYP/6-31G^{*}) und relative Gesamtenergien (mit Nullpunktskorrektur) der drei Isomeren von (PhMeSi–SiMe)₂S₃ (Bindungslängen und –winkel: [731])

Die DFT-Berechnungen der drei isomeren Schwefelverbindungen zeigen, dass das Isomer, in welchem beide Phenylsubstituenten axiale Positionen einnehmen, das thermodynamisch stabilste Isomer ist, gefolgt von dem Isomer mit den Phenylsubstituenten in axialer und äquatorialer Position. Aus den NMR Spektren der Produkte lässt sich entnehmen, dass für E = S ein Isomer (bei dem es sich um das laut Berechnungen stabilste Isomer handelt) zu einem Anteil von 53 % gebildet wird. Das Isomer mit einem Phenylsubstituenten in axialer und einem in equatorialer Position lässt sich leicht dadurch identifizieren, dass es aufgrund der geringeren Symmetrie die doppelte Anzahl an NMR-Signalen zeigt (für E = S 39 % Anteil im Produkt). Im Isomer mit beiden Phenylsubstituenten in equatorialer Position schwert in equatorialer Positionen behindern sich die Phenylsubstituenten gegenseitig, es wird für E = S nur zu einem Anteil von 8 % gebildet.

Habilitation Uwe Herzog

Der Anteil steigt aufgrund der längeren Si–E Bindungen (und damit verbunden einem größeren Abstand der Phenylringe) für E = Se und Te auf 10 bzw. 11.5 % an.

Durch fraktionierte Kristallisation aus einer Hexan–CDCl₃ Lösung konnte das Isomer von (PhMeSi–SiMe)₂S₃, in dem beide Phenylsubstituenten axiale Positionen einnehmen, in Form von Einkristallen isoliert werden. Abbildung 11.1.1. zeigt das Ergebnis der Kristallstrukturanalyse. Die asymmetrische Einheit enthält zwei kristallographisch unabhängige Moleküle, die aufgrund der Symmetrie der Elementarzelle in Form beider Enantiomere im Kristall vorhanden sind. Die beiden Moleküle zeigen fast identische Bindungslängen und -winkel, lediglich die Orientierungen der Phenylringe, die durch die Torsionswinkel C–C–Si–Si beschrieben werden können, unterscheiden sich deutlich. Während die Torsionswinkel C22–C17–Si5–Si6 und C30–C25–Si7–Si8 von Molekül B relativ ähnlich sind (+63.42 und +76.74°) und auch nahe an den Werten von +68.0 und +74.6° der berechneten Struktur (Schema 11.1.1.) liegen, sind die entsprechenden Winkel C2–C1–Si1–Si2 und C10–C9–Si3–Si4 in Molekül A recht unterschiedlich (–71.07 und +73.39°), was wohl auf Packungseffekte in der Kristallstruktur zurückzuführen ist. Die wichtigsten Bindungslängen und -winkel sind in Tabelle 11.1.1. zusammengestellt.

Abb. 11.1.1. Molekülstruktur von (PhMeSi–SiMe)₂S₃ (17) mit zwei kristallographisch unabhängigen Molekülen in der asymmetrischen Einheit.

Mole	ekül A	Mole	ekül B	Molek	ül A	Moleki	ül B
Atome	Bindungs- länge (Å)	Atome	Bindungs- länge (Å)	Atome	Bindungs- winkel (°)	Atome	Bindungs- winkel (°)
Si1–Si2	2.351(3)	Si5–Si6	2.353(3)	Si1-S1-Si4	98.1(1)	Si5-S4-Si8	99.0(1)
Si3–Si4	2.352(3)	Si7–Si8	2.337(3)	Si3-S2-Si2	98.3(1)	Si7-S5-Si6	98.7(1)
Si1–S1	2.164(3)	Si5–S4	2.164(3)	Si2-S3-Si4	88.6(1)	Si6-S6-Si8	88.5(1)
Si3–S2	2.166(3)	Si7–S5	2.162(3)	Si1-Si2-S2	109.2(1)	Si5-Si6-S5	107.1(1)
Si2–S2	2.152(3)	Si6-S5	2.148(3)	Si3-Si4-S1	108.4(1)	Si7–Si8–S4	108.7(1)
Si4–S1	2.141(3)	Si8–S4	2.147(3)	Si2-Si1-S1	103.1(1)	Si6-Si5-S4	102.4(1)
Si2–S3	2.148(3)	Si6–S6	2.155(2)	Si4–Si3–S2	102.8(1)	Si8–Si7–S5	102.9(1)
Si4–S3	2.155(3)	Si8–S6	2.163(3)	Si1-Si2-S3	101.4(1)	Si5-Si6-S6	102.0(1)
Si1–C1	1.867(8)	Si5-C17	1.861(8)	Si3–Si4–S3	102.3(1)	Si7–Si8–S6	101.8(1)
Si3–C9	1.853(7)	Si7-C25	1.868(7)	S1-Si4-S3	109.2(1)	S4-Si8-S6	109.0(1)
Sil-C7	1.841(7)	Si5–C23	1.852(7)	S2-Si2-S3	109.0(1)	S5-Si6-S6	109.9(1)
Si3-C15	1.872(8)	Si7-C31	1.843(8)	C1–Si1–C7	111.6(3)	C17–Si5–C23	109.8(3)
Si2–C8	1.853(8)	Si6–C24	1.870(7)	C9–Si3–C15	110.1(3)	C25–Si7–C31	111.6(3)
Si4–C16	1.863(6)	Si8–C32	1.852(6)				

Tabelle 11.1.1. Ausgewählte Bindungslängen und -winkel von (PhMeSi–SiMe)₂S₃ (17)

Der bemerkenswerteste Parameter der Struktur sind die Bindungswinkel an den Schwefelbrücken (S3 und S6), die mit 88.6 bzw. 88.5° ca. 4.6° kleiner sind als der Winkel von 93.1° an der Methylenbrücke in der Stammverbindung Norbornan (C₇H₁₂) [732]. Aus diesen kleinen Bindungswinkeln an S3 und S6 resultieren auch kurze Si–Si Abstände (Si2–Si4 und Si6–Si8), die mit 3.01 Å nur 28 % länger sind als eine normale Si–Si Einfachbindung [733]. Die Bindungswinkel an den anderen Schwefelatomen (S1, S2, S4 und S5) sind mit 98 – 99° dagegen im normalen Bereich für fünfgliedrige Ringe Si₃S₂ in polycyclischen Silthianen.

In den berechneten Geometrien von $(Me_2Si-SiMe)_2S_3$ sowie der drei Isomere von (PhMeSi-SiMe)_2S_3 betragen die Bindungswinkel an den Schwefelbrücken 89° und an den anderen beiden Schwefelatomen 99 – 100°, was in sehr guter Übereinstimmung mit der Kristallstrukturanalyse ist.

Die NMR-Daten aller dargestellten Norbornane (Me₂Si–SiMe)₂E₃ (E = S, Se) und (PhMeSi–SiMe)₂S₃ (E = S, Se, Te; jeweils drei Isomere) sind in den Tabellen 11.1.2. und 11.1.3. zusammengestellt.

Verbindung	δ_{Se}	${}^{1}J_{SiSe}$	δ_{Si}	$\delta_{\rm C}$ (Me)	$\delta_{\rm H} ({\rm Me})$
$\begin{array}{c} S & Me & Me \\ S + Si^{A} - Si^{B} \\ Me & Si^{B} - Si^{A} - S' & Me \\ & & Me & Me \end{array}$	_	_	A: 21.3 B: 10.5 ¹ J _{SiSi} : 100.6	2.4 (¹ J _{SiC} : 48.6) 0.1 / 0.3	0.91 0.40 / 0.58
$\begin{array}{c} S & Me \\ Ph & S + Si^{A} - Si^{B} \\ Si^{B} - Si^{A} - S' Me \\ Me & Me \end{array}$	_	_	A: 21.64 B: 0.71 ¹ J _{SiSi} : 101.1	-2.07 0.14 ^{a)}	0.92 0.83 ^{a)}
$\begin{array}{c} S & Me & Me \\ S + Si^B - Si^D \\ Ph & Si^C - Si^A - S' \\ Si^C - Si^A - S' \\ Me & Me \end{array}$	_	_	$\begin{array}{c} A:\ 22.45\\ B:\ 19.59\\ C:\ \ 1.16\\ D:\ \ 3.12\\ {}^{1}J_{Si^{A}Si^{C}}:\ 102.0\\ {}^{1}J_{Si^{B}Si^{D}}:\ 101.6 \end{array}$	-2.39 1.71 C/D: 0.40 / 0.46 ^{b)}	0.92 1.01 0.82 0.67
$ \begin{array}{c} S & Me \\ Me \\ S + Si^{A} - Si^{B} \\ Si^{B} - Si^{A} - S'^{A} \\ Ph \\ Me \end{array} $	_	_	A: 20.74 B: 3.73	1.77 0.67 ^{c)}	0.99 0.64
$\begin{array}{c c} & Se^{A} & Me & Me \\ & Se^{B} - Si^{A} - Si^{B} \\ Me & Si^{B} - Si^{A} - Se^{B^{1}} \\ Si^{B} - Si^{A} - Se^{B^{1}} \\ & Me & Me \end{array}$	A: -219.5 B: -319.1	Si ^A Se ^A : 125.4 Si ^A Se ^B : 135.1 Si ^B Se ^B : 103.0	A: 15.11 B: 14.33	1.97 -0.04 / 0.14	1.11 0.48 / 0.70
$\begin{array}{c} Se^{A} Me \\ Ph \\ Se^{B} - Si^{A} - Si^{B} \\ Si^{B} - Si^{A} - Se^{B} \\ Me \\ Me \\ Me \\ Me \end{array} Ph$	A: -185.9 B: -297.1	Si ^A Se ^A : 127.3 Si ^A Se ^B : 133.6 Si ^B Se ^B : 108.8	A: 15.56 B: 3.83 ${}^{1}J_{SiSi}$: 91.1	-2.18 -0.08 ^{d)}	1.03 0.97
$\begin{array}{c} & Se^{A} Me \\ & Me \\ Ph \\ & Se^{B} \\ & Si^{C} \\ & Si^{C} \\ & Si^{C} \\ & Me \\ Me \\ \end{array} Me \\ Me \\ \end{array} Me$	A: -199.7 B: -303.4 C: -335.2	$\begin{array}{c} Si^{A}Se^{A}: 127.3\\ Si^{A}Se^{C}: 134.1\\ Si^{B}Se^{A}: 124.4\\ Si^{B}Se^{B}: 138.0\\ Si^{C}Se^{B}: 109.8\\ Si^{D}Se^{C}: 107.9 \end{array}$	$\begin{array}{c} A: 16.62 \\ B: 12.65 \\ C: \ 4.49 \\ D: \ 7.11 \\ {}^{1}J_{Si^BSi^D}: 92.3 \end{array}$	-2.48 0.67 C/D: 0.06 / 0.09 e)	1.02 1.11 0.97 0.76
$ \begin{array}{c c} & Se^{A} & Me & Me \\ & Se^{B} - Si^{A} - Si^{B} \\ Me & Si^{B} - Si^{A} - Se^{B} \\ & Si^{B} - Si^{A} - Se^{B} \\ & Ph & Me \end{array} $	A: -207.9 B: -335.8	Si ^A Se ^A : 124.4 Si ^A Se ^B : 138.0 Si ^B Se ^B : 107.9	A: 13.93 B: 7.65	0.75 0.27 ^{f)}	1.11 0.74

Tabelle 11.1.2. NMR Daten (Hz, ppm) der Norbornane (RMeSi–SiMe)₂ E_3 (E = S, Se; R = Me, Ph)

Verbindung	δ_{Te}	ⁿ J _{SiTe}	δ_{Si}	$\delta_{\rm C}$ (Me)	$\delta_{\rm H} \left({\rm Me} ight)$
$\begin{array}{c} Te^{A} Me \\ Me \\ Ph \\ Si^{B} - Si^{A} - Si^{B} \\ Si^{B} - Si^{A} - Te^{B} \\ Me \\ Me \\ Me \end{array} Ph$	A: -593 B: -741	${}^{1}J_{Si^{A}Te^{A}}: 337.1 \\ {}^{1}J_{Si^{A}Te^{B}}: 331.9 \\ {}^{2}J_{Si^{A}Te^{B}}: 31.6 \\ {}^{1}J_{Si^{B}Te^{B}}: 302.7 \\ {}^{2}J_{Si^{B}Te}: 20.4 \\$	A: -22.44 B: 3.55	-2.65 -1.22 ^{g)}	1.09 0.99
$\begin{array}{c} Te^{A} Me Me \\ Me \\ Ph Te^{B} Si^{B} Si^{D} Si^{D} \\ Si^{C} Si^{A} Te^{C} \\ Me \\ Me \end{array}$	A: -627 B: -749 C: -807	${}^{1}J_{Si}{}^{A}{}^{Te}{}^{A}{}^{:}335.5$ ${}^{1}J_{Si}{}^{A}{}^{Te}{}^{C}{}^{:}326.3$ ${}^{2}J_{Si}{}^{A}{}^{Te}{}^{B}{}^{:}32.6$ ${}^{1}J_{Si}{}^{B}{}^{Te}{}^{A}{}^{:}326.3$ ${}^{1}J_{Si}{}^{B}{}^{Te}{}^{B}{}^{:}319.4$ ${}^{2}J_{Si}{}^{B}{}^{Te}{}^{C}{}^{:}29.6$ ${}^{1}J_{Si}{}^{C}{}^{Te}{}^{B}{}^{:}299.7$ ${}^{2}J_{Si}{}^{C}{}^{Te}{}^{:}19.4$ ${}^{1}J_{Si}{}^{D}{}^{Te}{}^{C}{}^{:}295.5$ ${}^{2}J_{Si}{}^{D}{}^{Te}{}^{:}17.5$	A: -20.70 B: -26.75 C: 4.48 D: 8.69	-2.83 -1.73 -1.31 / -1.33 ^h)	1.07 1.11 1.01 0.80
$\begin{array}{c} Te^{A} Me Me \\ Te^{B} - Si^{A} - Si^{B} \\ Me Si^{B} - Si^{A} - Te^{B} \\ Si^{B} - Si^{A} - Te^{B} \\ Ph Me \end{array}$	A: -654 B: -809	${}^{1}J_{Si^{A}Te^{A}}: 318.8$ ${}^{1}J_{Si^{A}Te^{B}}: 308.1$ ${}^{1}J_{Si^{B}Te^{B}}: 295.5$	A: -24.86 B: 9.21	-1.90 -1.26 ⁱ⁾	

Tabelle 11.1.3. NMR Daten (Hz, ppm) der Norbornane (PhMeSi–SiMe)₂Te₃

- a) Ph, ¹³C: i: 135.60, o: 134.10, m: 128.02, p: 129.75; ¹H: o: 7.61, m: 7.35, p: 7.39
- b) Ph, ¹³C: C i: 134.28, o: 134.06, m: 128.0, p: 129.70; D i: 135.74, o: 134.49, m: 128.0, p: 129.96
- c) Ph, ¹³C: i: 133.81, o: 134.64, m: 128.0, p: 129.83
- d) Ph, ¹³C: i: 135.15, o: 134.17, m: 127.92, p: 129.59
- e) Ph, ¹³C: C i: 135.18, o: 134.2, m: 127.9, p: 129.60; D i: 133.64, o: 134.68, m: 127.9, p: 129.87
- f) Ph, ¹³C: i: 133.57, o: 135.03, m: 127.9, p: 129.83
- g) Ph, ¹³C: i: 134.66, o: 134.54, m: 127.89, p: 129.39
- h) Ph, ¹³C: C o: 134.60, m: 127.9, p: 129.40; D o: 135.25, m: 127.9, p: 129.80
- *i)* Ph, ¹³C: o: 135.22, m: 127.9, p: 129.79

Abb. 11.1.2. ²⁹Si NMR Spektrum (oben) und ⁷⁷Se NMR Spektrum (unten) der drei Isomere von (PhMeSi–SiMe)₂Se₃ (eqeq: beide Phenylsubstituenten in equatorialen Positionen, axeq: Phenylsubst. axial und equatorial, axax: beide Phenylsubstituenten in axialen Positionen). Beschriftet sind auch alle Satelliten, die durch Kopplungen ¹J_{SiSe} hervorgerufen werden.

Beim Vergleich der ²⁹Si NMR chemischen Verschiebungen der Norbornane (Me₂Si–SiMe)₂E₃ (E = S, Se) mit denen der acyclischen chalcogenobutylsubstituierten Disilane BuESiMe₂–SiMe(EBu)₂ (E = S: Tab. 7.3.1., E = Se: Tab. 7.3.2.) ergeben sich für die Norbornane bei gleicher erster Koordinationssphäre der Siliciumatome Tieffeldverschiebungen von 11 ppm (E = S) bzw. 14 und 20 ppm (E = Se). Dies entspricht den bereits oben gemachten Feststellungen für monocyclische Systeme, dass in fünfgliedrigen Cyclen die ²⁹Si NMR Signale zu tieferem Feld verschoben werden und dieser Effekt für Disilaneinheiten von E = S über Se zu Te ansteigt (siehe auch Abb. 10.3.1.). Andererseits bleiben die Beträge der Kopplungskonstanten ¹J_{SiSi} für gleiches E fast unverändert. Für E = Se konnten alle auftretenden Kopplungskonstanten ¹J_{SiSe} und für E = Te darüber hinaus noch eine Reihe von Kopplungskonstanten ²J_{SiTe} aus den Spektren ermittelt werden, siehe auch Abb. 11.1.2. Die ungewöhnliche Bindungssituation der Chalcogenatome in Brückenposition äußert sich auch in ⁷⁷Se bzw. ¹²⁵Te NMR chemischen Verschiebungen, die relativ weit zu tieferem Feld verschoben sind.

11.2. Bicyclo[3.3.1]nonane und Bicyclo[3.2.2]nonane (Me₅Si₃)₂E₃ [734]

Werden die drei Chlorfunktionen von $Cl_2MeSi-SiMe_2Cl$ (siehe Gl. 11.1.1) auf drei Siliciumatome verteilt – das entspricht dem Trisilan $ClMe_2Si-SiClMe-SiMe_2Cl$ (dargestellt aus Si_3Me_8 bzw. 2-PhSi_3Me_7 entsprechend Gl. 5.2.1.9) – so kann man ebenfalls durch Reaktion mit H₂S / NEt₃ bzw. Li₂E die Bildung von bicyclischen Produkten mit zwei Oligosilaneinheiten erwarten. Allerdings sind in diesem Falle zwei isomere Produkte, zum einen mit einem Bicyclo[3.3.1]nonangerüst, zum anderen mit einem Bicyclo[3.2.2.]nonangerüst, denkbar:

Die GC/MS- sowie die NMR-Spektren zeigen, dass beide Isomere gebildet werden, wobei das Produkt mit Bicyclo[3.3.1]nonanstruktur mit etwa 65 % Anteil dominiert. Die Zuordnung der NMR-Signale zu den beiden Isomeren ist leicht möglich, da aufgrund der unterschiedlichen Symmetrien im Isomer mit Bicyclo[3.3.1]nonanstruktur alle vier SiMe₂ Einheiten äquivalent sind und nur ein ²⁹Si NMR Signal liefern, während es im Isomer mit Bicyclo[3.2.2]-Habilitation Uwe Herzog

nonanstruktur zwei verschiedene Arten von SiMe₂ Einheiten gibt, die auch zwei verschiedene ²⁹Si NMR Signale liefern.

Setzt man ClMe₂Si–SiClMe–SiMe₂Cl mit Li₂Se um, so erhält man dagegen nur eine Verbindung, bei der es sich um das Isomer mit Bicyclo[3.3.1]nonanstruktur handelt:

Die NMR Daten der drei Verbindungen sind in Tabelle 11.2.1. zusammengefasst.

Tabelle 11.2.1. NMR Daten	(Hz, ppm) der	Verbindungen	$(Me_5Si_3)_2E_3$ (1	E = S, Se
---------------------------	---------------	--------------	----------------------	-----------

Verbindung	δ_{Se}	¹ J _{SiSe}	δ_{Si}	$^{1}J_{SiSi}$	δ_{C}	δ_{H}
$\begin{array}{c c} S & Me \\ Me & Me \\ S & Si^{B} & Si^{A} & I \\ S & Si^{B} & Si^{A} & Si^{B} \\ Me & Si^{B} & I \\ Me & Me & Me \\ Me & Me & Me \end{array}$	_	_	A: -27.50 B: -3.27	78.0	-2.01 2.39 / 2.87 ¹ J _{SiC} : 46.1	0.415 0.466/0.580
$Me Me Me$ $Si^{C} Me$ $Si^{A} Me$ $Si^{A} Si^{B} S$ $Me Si^{C} Si^{A} Si^{B} Me$ $Me Me$ $Me Me$	_	_	A: -21.14 B: -1.33 C: 3.88	76.0 a) ² J: 12.2	-1.35 1.78 / 2.12 3.20 / 3.37	0.47 0.485/0.488 0.523/0.545
$\begin{array}{c c} Se^{A} Me & Me \\ Me & Ae \\ Se^{B} & Si^{B} & Si^{A} & Si^{B} \\ Me & Si^{B} & Si^{A} & Si^{B} & Se^{B} \\ Me & Me & Me \\ Me & Me & Me \end{array}$	A: -494 B: -310	103.1 113.3	A: -37.20 B: -10.31	74.6	-2.83 2.16 / 2.54	0.487 0.569/0.704

a) Die Zuordnung der ¹H, ¹³C und ²⁹Si NMR Signale zu Si^BMe₂ bzw. Si^CMe₂ ist nicht sicher.

In Übereinstimmung mit den auftretenden Ringgrößen (Sechsringe bzw. größere Ringe) resultieren im Vergleich mit den ²⁹Si NMR chemischen Verschiebungen der acyclischen chalcogenobutylsubstituierten Trisilane BuESiMe₂–SiMe(EBu)–SiMe₂EBu (E = S: Tab. 7.3.5., E = Se: Tab. 7.3.9.) sowohl für die zentralen SiMe als auch für die terminalen SiMe₂ Einheiten Hochfeldverschiebungen um mehrere ppm. Lediglich für das Isomer mit Bicyclo-[3.2.2]nonanstruktur ergeben sich für Si^A und Si^C Tieffeldverschiebungen, allerdings nur um 3.5 bzw. 2.5 ppm.

Von der Selenverbindung gelang auch eine Kristallstrukturanalyse, deren Ergebnis in Abbildung 11.2.1. dargestellt ist, die wichtigsten Bindungslängen und -winkel sind in Tabelle 11.2.2. wiedergegeben.

Abb. 11.2.1. *Molekülstruktur von (Me*₅Si₃)₂Se₃ (18)

Bemerkenswert ist, dass einer der beiden Sechsringe eine Sesselkonformation einnimmt, während der andere in einer Bootkonformation vorliegt, was sich auch in der Abfolge der Torsionswinkel widerspiegelt (vgl. Tab. 11.2.3.; Sessel: $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$, $+\varphi$, $-\varphi$; Boot: $+\varphi$, $-\varphi$, 0, $+\varphi$, $-\varphi$, 0). Alle Bindungslängen sind im üblichen Bereich für entsprechende Einfachbindungen. Während die Bindungswinkel an den Selenatomen 1 und 3 fast gleich sind, ist der Si–Se–Si Winkel an Se2 um fast 3 ° kleiner, obwohl auch dieser nur Bestandteil von Sechs-

ringen ist. Dies entspricht aber dem allgemeinen Trend zu kleineren Bindungswinkeln beim Übergang von einfachen Ringen zu polycyclischen Systemen.

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si2	2.355(2)	Si1-Si2-Si3	114.03(9)
Si2–Si3	2.336(2)	Si4–Si5–Si6	113.95(8)
Si4–Si5	2.335(2)	Si1–Se1–Si6	104.44(7)
Si5–Si6	2.363(2)	Si2–Se2–Si5	101.76(6)
Si1–Se1	2.276(2)	Si3–Se3–Si4	104.77(6)
Si2–Se2	2.299(2)	Se1–Si1–Si2	111.32(8)
Si3–Se3	2.292(2)	Se2–Si2–Si1	112.56(7)
Si4–Se3	2.295(2)	Se2–Si2–Si3	109.22(7)
Si5–Se2	2.299(1)	Se3–Si3–Si2	110.43(7)
Si6–Se1	2.293(2)	Se3–Si4–Si5	110.49(7)
Si1–C1	1.894(7)	Se2–Si5–Si4	108.32(7)
Si1–C2	1.842(8)	Se2–Si5–Si6	112.42(7)
Si2–C3	1.878(6)	Se1–Si6–Si5	111.08(7)
Si3–C4	1.868(7)		
Si3–C5	1.866(7)		
Si4–C6	1.867(7)		
Si4–C7	1.863(6)		
Si5–C8	1.883(6)		
Si6–C9	1.887(7)		
Si6-C10	1.861(7)		

Tabelle 11.2.1. *Bindungslängen und -winkel in (Me₅Si₃)₂Se₃ (18)*

Tabelle 11.2.2. Torsionswinkel in den beiden Sechsringen von (Me₅Si₃)₂Se₃ (18)

Atome	Torsionswinkel in °	Atome	Torsionswinkel in °		
Si2-Si1-Se1-Si6	-58.41	Si2–Si3–Se3–Si4	-58.89		
Si1–Se1–Si6–Si5	59.34	Si3–Se3–Si4–Si5	59.88		
Se1-Si6-Si5-Se2	0.83	Se3–Si4–Si5–Se2	-67.85		
Si6–Si5–Se2–Si2	-59.85	Si4–Si5–Se2–Si2	66.97		
Si5–Se2–Si2–Si1	61.07	Si5–Se2–Si2–Si3	-66.64		
Se2-Si2-Si1-Se1	-2.50	Se2-Si2-Si3-Se3	66.44		

11.3. Bicyclo[2.2.2] octane $Z(SiMe_2-E)_3MR$ (Z = SiMe, CH; M = Si, Ge, Sn; R = Me, Ph, Vi) [735,736]

Bicyclo[2.2.2]octane sind aufgrund ihrer Symmetrie ein interessantes bicyclisches System. Heterobicyclo[2.2.2]octane mit Oligosilaneinheiten und Phosphor bzw. Arsen in Brückenkopfpositionen sind bereits von HASSLER [737,738] und DRIESS [739] beschrieben worden:

GADE et al. konnten ausgehend vom Isotetrasilan MeSi(SiMe₂Cl)₃ bzw. Trisilylmethan $HC(SiMe_2Br)_3$ Aminosilane darstellen [740-746], deren Lithiierung und anschließende Reaktion mit Halogeniden von Elementen der 4. und 13. – 15. Gruppe schließlich Heterobicyclo-[2.2.2]octane mit einer Isotetrasilan- bzw. Trisilylmethaneinheit lieferte [747-761], z. B.:

Habilitation Uwe Herzog

Im Gegensatz zu diesem schrittweisen Aufbau der Bicyclo[2.2.2]octangerüste zeigte sich, dass die verwandten chalcogenhaltigen Bicyclo[2.2.2]octane $Z(SiMe_2-E)_3MR$ (Z = MeSi, HC; E = S, Se, Te; MR = SiMe, SiPh, SiVi, GeMe, GePh, SnMe, SnPh) in hoher Selektivität in einem Schritt durch Reaktion von äquimolaren Gemischen aus $Z(SiMe_2Cl)_3$ und Cl₃MR mit drei Äquivalenten Lithiumchalcogenid zugänglich sind:

Die dazu erforderlichen Verbindungen $Z(SiMe_2Cl)_3$ (Z = MeSi, CH) wurden nach Methoden, wie in Abschnitt 5. beschrieben, dargestellt:

Dabei ist es wichtig festzustellen, dass im Falle von Z = CH bei der Chlorierung mit Acetylchlorid und Aluminiumchlorid offensichtlich selektiv nur Si–C Bindungen innerhalb der SiMe₃ Einheiten gespalten werden.

Habilitation Uwe Herzog

Lediglich im Falle der Tellurverbindungen entstanden für Z = SiMe neben den gewünschten Bicyclen auch größere Mengen (bis 50 %) nicht weiter indentifizierter Nebenprodukte. Trotz allem ist aber die Bildung der tellurhaltigen Bicyclo[2.2.2]octane bemerkenswert, da sie die ersten Verbindungen mit der Baueinheit RM(Te–)₃ (M: Si, Ge, Sn) darstellen. Für Z = CH konnten keine tellurhaltigen Bicyclo[2.2.2]octane synthetisiert werden.

Die NMR Daten aller synthetisierten Bicyclo[2.2.2]octane sind in den Tabellen 11.3.1. – 11.3.3. zusammengestellt.

Е	М	R	$\delta_{\rm E}$	δ_{M}	$^{1}J_{ME}$	δ_{Si^A}	$\delta_{\rm Si^B}$	$^{1}J_{SiSi}$	$^{1}J_{Si^{B}E} \\$	$^{3}J_{MSi^{A}}$
S	Si	Me	_	Si: 11.44	_	-89.60	-0.80	65.8	_	17.3
S	Si	Ph	_	Si: 2.92	_	-88.35	-0.50	65.8	-	14.9
S	Ge	Me	_	_	_	-92.83	0.86	66.1	-	-
S	Ge	Ph	_	_	_	-91.17	1.11	65.6	—	I
S	Sn	Me	_	Sn: 66.3	-	-86.85	3.26 ^{a)}	65.8	—	133.6
S	Sn	Ph	_	Sn: 3.4	—	-85.57	3.54 ^{b)}	65.8	—	129.5
Se	Si	Me	Se: -101	Si: -20.00	155.0	-94.43	-5.47	65.6	99.5	17.2
Se	Si	Ph	Se: -107	Si: -24.83	157.3	-93.04	-5.30	65.1	99.7	16.3
Se	Ge	Me	Se: -29	—	—	-98.49	-4.62	65.7	103.1	_
Se	Ge	Ph	Se: -41	_	-	-96.63	-4.60	65.1	103.0	I
Se	Sn	Me	Se: -188	Sn: -150.9	1362	-91.38	-3.59 ^{c)}	65.1	104.4	142.4
Se	Sn	Ph	Se: -198	Sn: -200.0	1387	-89.78	-3.59 ^{d)}	65.1	103.8	138.3
Te	Si	Me	Te: -287	Si: -146.5	378.4	-108.05	-27.01^{e}	63.1	262.4	
Te	Si	Ph	Te: -305			-105.66	-26.85			
Te	Ge	Ph	Te: -119	_	—	-111.31	-27.40			Ι
Te	Sn	Ph	Te: -501	Sn: -725.0		-103.14	-28.86 ^{f)}	62.4	267.8	132.2
a) $^{2}J_{S}$	sisn: 2	4.4	b) 2	SiSn: 23.7	<i>c)</i>	${}^{2}J_{SiSn}: 27.8$	3 d) $^{2}J_{SiSn}$:	27.1	
$e)^2 J_S$	iTe: 1	0.9	f) $^{2}J_{2}$	_{sisn} : 26.2 und	$^{2}J_{SiTe}$:	13.0				

Table 11.3.1. ²⁹Si, ¹¹⁹Sn, ⁷⁷Se und ¹²⁵Te NMR Daten (Hz, ppm) der Bicyclo[2.2.2] octane MeSi^A(Si^BMe₂-E)₃MR (M = Si, Ge, Sn; R = Me, Ph; E = S, Se, Te)

Е	М	R			δ_{C}				δ_{H}			
			Si ^A Me	$^{1}J_{SiAC}$	Si ^B Me ₂	$^{1}J_{SiBC} \\$	R	$^{1}J_{MC}$	Si ^A Me	Si ^B Me ₂	R	
S	Si	Me	-15.33	35.3	3.39	46.8	10.57	66.0	0.31	0.59	0.83	
S	Si	Ph	-15.20		3.43		i: 137.52 o: 128.86 m: 128.06 p: 133.40		0.32	0.62	o: 7.86 m+p: 7.40	
S	Ge	Me	-15.51	35.9	3.88	46.3	13.28	_	0.29	0.59	1.14	
S	Ge	Ph	-15.24		3.98	47.1	o: 131.91 m: 128.38 p: 130.0	_	0.32	0.64	o: 7.79 m+p: 7.39	
S	Sn	Me	-13.84 ⁴ J _{SnC} : 21	33.2	4.90	46.1	4.52	576	0.25	0.60	0.99	
S	Sn	Ph	-13.54 ⁴ J _{SnC} : 19	32.7	3.43 ³ J _{SnC} : 8	46.1	i: 139.90 o: 134.51 m: 128.92 p: 130.51	730 a)	0.28	0.64	o: 7.60 m+p: 7.39	
Se	Si	Me	-16.66		2.75	45.1	12.03	57.0	0.37	0.68	1.15	
Se	Si	Ph	-16.51	33.2	2.78	45.1	i: 137.53 o: 128.88 m: 128.09 p: 133.19		0.34	0.70	o: 7.86 m+p: 7.3	
Se	Ge	Me	-16.98		3.17	44.1	14.49		0.36	0.69	1.43	
Se	Ge	Ph	-16.64	32.6	3.25	44.7	i: 139.18 o: 131.52 m: 128.19 p: 130.20	_	0.39	0.72	o: 7.78 m+p: 7.37	
Se	Sn	Me	$^{-14.93}_{^{4}J_{SnC}: 25}$		4.11	44.1	4.87		0.32	0.69	1.17	
Se	Sn	Ph	-14.54 ⁴ J _{SnC} : 24	31.9	4.18 ³ J _{SnC} : 8	44.1	i: 139.22 o: 134.45 m: 128.70 p: 130.24	b)	0.49	0.86	o: 7.57 m+p: 7.36	
Te	Si	Me	-21.31		1.36		13.82		0.47	0.79		
Те	Si	Ph	-21.13		1.40						o: 7.7 m+p: 7.3	
Te	Ge	Ph						_				
Te	Sn	Ph	-18.47		2.74		o: 134.75 m: 128.36 p: 129.79		0.49	0.86	o: 7.57 m+p: 7.36	

¹³C und ¹H NMR Daten (Hz, ppm) der Bicyclo[2.2.2]octane Table 11.3.2. $MeSi^{A}(Si^{B}Me_{2}-E)_{3}MR$ (M = Si, Ge, Sn; R = Me, Ph; E = S, Se, Te)

a) ${}^{2}J_{SnC}$: 58.3, ${}^{3}J_{SnC}$: 81.5, ${}^{4}J_{SnC}$: 16.8 b) ${}^{2}J_{SnC}$: 58.3, ${}^{3}J_{SnC}$: 74.3, ${}^{4}J_{SnC}$: 16.0

Habilitation Uwe Herzog

М	R	E	δ_{Se}	$\delta_{\rm M}$		δ_{Si}		δ _C				$\delta_{\rm H}$		
				(Si/Sn)	¹ J _{MSe}	SiMe ₂	$^{1}J_{SiSe}$	R	SiMe ₂	$^{1}J_{SiC} \\$	СН	R	SiMe ₂	СН
Si	Me	S	_	19.37	_	12.70	_	8.71	6.93	57.0	1.32	0.91	0.56	0.06
Si	Me	Se	-180	-5.72	149.5	11.76	98.7	9.93 ¹ J _{SiC} : 57.0	7.23	55.2	1.96	1.23	0.66	-0.05
Si	Ph	S	_	11.28	_	12.98	_	i: 135.88 o: 133.41 m: 128.00 p: 130.80	7.04	56.4	5.83	a)	0.60	0.14
Si	Ph	Se	-187	-10.80		11.91	99.1		7.29	53.5			0.69	
Si	Vi	S	_	7.89	_	12.82	_	CH: 135.32 CH ₂ : 135.46	7.00	56.0	5.86	b)	0.57	0.13
Si	Vi	Se	-193	-15.25	149.7	11.79	98.8	CH: 135.23 CH ₂ : 135.29	7.27	53.8	2.52	c)	0.67	0.02
Ge	Me	S	-	_	_	13.89	_	11.37	7.52	55.9	1.45	1.24	0.56	0.05
Ge	Me	Se	-130	_	_	12.44	103.5	12.28	7.72	53.5	2.61	1.51	0.66	-0.06
Sn	Me	S	-	105	_	15.09	_	9.32	8.45	55.2	3.57	1.14	0.57	0.10
Sn	Me	Se	-283	-68	1320	12.75	106.4	7.73	8.71		1.87	1.29	0.67	

Table 11.3.3. ¹*H*, ¹³*C*, ²⁹*Si*, ¹¹⁹*Sn und* ⁷⁷*Se NMR Daten (Hz, ppm) der Bicyclo*[2.2.2]*octane* $HC(SiMe_2E)_3MR (M = Si, Ge, Sn; R = Me, Ph, Vi; E = S, Se)$

a) Phenyl, o: 7.83, m+p: 7.39

b) Vinyl, CH: 6.32 (¹J_{CH}: 145.4), CH₂: (¹J_{CH}: 146.6) 6.10 (³J_{HH}: 19, ²J_{HH}: 2) / 6.15 (³J_{HH}: 15) c) Vinyl, CH: 6.44, CH₂: 6.07 (³J_{HH}: 19, ²J_{HH}: 2) / 6.08 (³J_{HH}: 12)

Ein Vergleich der ²⁹Si NMR chemischen Verschiebungen der Isotetrasilaneinheit in MeSi^A(Si^BMe₂E)₃MR mit den acyclischen Verbindungen MeSi^A(Si^BMe₂SBu)₃ (δ_A : -79.4, δ_B : 4.8 ppm, siehe Tab. 7.3.6.) und MeSi^A(Si^BMe₂SeBu)₃ (δ_A : -77.3, δ_B : -1.1 ppm, siehe Tab. 7.3.9.) zeigt deutliche Hochfeldverschiebungen für Si^A (ca. 6 – 21 ppm) und in geringerem Maße auch für Si^B (ca. 1 – 6 ppm). In den Bicyclo[2.2.2]octanen mit einer Trisilylmethaneinheit (HC(SiMe₂E)₃MR) tritt in Analogie dazu das ¹³C NMR Signal bei verhältnismäßig hohem Feld auf (zum Vergleich HC(SiMe₂Cl)₃ $\delta_{C (HC)}$: 15.7 ppm und HC(SiMe₃)₃ $\delta_{C (HC)}$: 3.9 ppm, siehe Tab. 7.3.5.). Dagegen finden sich nur geringe Hochfeldverschiebungen der ²⁹Si NMR Signale der SiMe₂ Gruppen in HC(SiMe₂E)₃MR im Vergleich zu HC(SiMe₂SBu)₃ (δ_{Si} : 14.0 ppm, siehe Tabelle 7.3.5.). Diese Beobachtungen bestätigen den allgemeinen Trend, dass in sechsgliedrigen Ringen (im Vergleich zu acyclischen Verbindungen) Hochfeldverschiebungen die zu das in sechsgliedrigen Ringen (im Vergleich zu acyclischen Verbindungen) Hochfeldverschiebungen beobachtet werden und speziell ähneln die Feststellungen hier jenen über die

monocyclischen Verbindungen $Me_2Si(SiMe_2E)_2MR_2$ bzw. $H_2C(SiMe_2E)_2MR_2$ in Kapitel 10.5. Die Hochfeldverschiebungen für die Brückenkopfatome (Si^A bzw. H<u>C</u> und M) fallen hier aber deutlicher aus, da diese Atome an mehreren Sechsringen beteiligt sind.

Die Abhängigkeiten der ²⁹Si bzw. ¹¹⁹Sn NMR chemischen Verschiebungen der MeM(E–)₃ Einheit in Abhängigkeit vom Ringsystem ist in Abb. 11.3.1. dargestellt.

Abb. 11.3.1. Abhängigkeit der ²⁹Si bzw. ¹¹⁹Sn NMR chemischen Verschiebungen der $Me\underline{M}(E-)_3$ Einheiten in Abhängigkeit vom Chalcogen E sowie von der Art des Ringsystems $(R = Bu \ f \ddot{u} r \ M = Si \ und \ R = Me \ f \ddot{u} r \ M = Sn; \ *: \delta_{Sn} \ von \ PhSn(Te-SiMe_2)_3SiMe)$

Man erkennt, dass in den Bicyclo[2.2.2]octanen mit einer Isotetrasilaneinheit deutlich größere Hochfeldverschiebungen auftreten (in Bezug zu MeM(ER)₃) und dass diese Hochfeldverschiebungen für E = Se und vor allem E = Te gegenüber E = S stark ansteigen.

Während die Beträge der Kopplungskonstanten ${}^{1}J_{SiSi}$, ${}^{1}J_{SiSe}$, ${}^{1}J_{SiTe}$, ${}^{1}J_{SnSe}$ und ${}^{1}J_{SiC}$ in den üblichen Bereichen für diese Kopplungskonstanten liegen, sind die ${}^{3}J$ Kopplungskonstanten zwischen den Brückenkopfatomen bemerkenswert groß. So betragen in MeSi(SiMe₂–E)₃MR die Kopplungskonstanten ${}^{3}J_{SiSi} \approx 15 - 17$ Hz (M = Si) und ${}^{3}J_{SiSn} \approx 130 - 145$ Hz (M = Sn). Letztere sind etwa 5 mal größer als die Kopplungskonstanten ${}^{2}J_{SiSn}$ zu den SiMe₂ Einheiten.

Die Ursache dafür ist in der Struktur des bicyclischen Systems zu suchen, für die ³J Kopplungen zwischen den Brückenkopfatomen gibt es drei äquivalente Wege durch das Bindungssystem, die in der Regel additiv zum Betrag der beobachteten Kopplungskonstante beitragen (siehe Kapitel *6.4.*). Darüber hinaus sind ³J Kopplungen vom eingeschlossenen

Diederwinkel abhängig und in den Bicyclo[2.2.2]octanen wird dieser auf einen bestimmten Wert (von ca. 30°, siehe weiter unten) fixiert.

Von einer Reihe der dargestellten Bicyclo[2.2.2]octane konnten auch Kristallstrukturanalysen durchgeführt werden. Die Strukturen sind in den Abbildungen 11.3.2. – 11.3.9. dargestellt.

Die wesentlichen Bindungslängen und -winkel der strukturell charakterisierten Bicyclo-[2.2.2]octane sind in den Tabellen 11.3.4. – 11.3.11. wiedergegeben. In allen Verbindungen mit M = Si kann man gut erkennen, dass die Bindungen von den Chalcogenatomen zum Brückenkopf-Siliciumatom im Mittel um 0.04 – 0.05 Å kürzer sind als zu den Siliciumatomen der SiMe₂ Gruppen. Dies entspricht dem allgemeinen Trend, dass die Bindungslängen M–E (M = Si, Ge, Sn) mit zunehmender Anzahl an Chalcogensubstituenten am Atom M abnehmen. Wie die Berechnungen (vgl. Tabellen 10.7.4. – 10.7.10.) gezeigt haben, nimmt die positive Ladung am Siliciumatom mit der Anzahl an Chalcogensubstituenten zu, und mit zunehmender Polarität der Bindung bedingt die attraktive Coulomb-Wechselwirkung kürzere Bindungslängen. Damit einher geht auch ein Anstieg der Kopplungskonstanten ¹J_{ME}, wie das in den Abbildungen 11.3.11. und 11.3.12. für die Kopplungskonstanten ¹J_{SiSe} und ¹J_{SnSe} dargestellt ist.

Aufgrund des Bindungssystems ist in allen strukturell charakterisierten Verbindungen die RME₃ Kappe gegenüber der Isotetrasilaneinheit um rund 20 ° bzw. gegenüber der Trisilylmethaneinheit um 18 – 19° verdreht, was zu Torsionswinkeln M–E–Si–Si von 30° – 33° bzw. M–E–Si–C von 26 – 29° führt. Diese gegenseitige Verdrehung verursacht eine Chiralität der Bicyclo[2.2.2]octane.

Die Verbindung HC(SiMe₂S)₃SiMe kristallisiert im Gegensatz zu allen anderen in dieser Arbeit röntgenographisch untersuchten Verbindungen in der nichtzentrosymmetrischen Raumgruppe P2₁. Aus Abb. 11.3.10 kann man entnehmen, wie sich alle Moleküle so anordnen, dass die S₃SiMe Einheiten in Richtung der kristallographischen b-Achse orientiert sind. Aufgrund der fehlenden Zentrosymmetrie haben hier alle Moleküle die gleiche Chiralität, d. h. man erhält ein Konglomerat enantiomerenreiner Kristalle. Wie man aber aus den NMR Spektren entnehmen kann, erfolgt in Lösung eine schnelle Inversion, andernfalls müsste man zwei verschiedene ¹H und ¹³C NMR Signale für die Methylgruppen der SiMe₂ Einheiten beobachten.

Abb. 11.3.2. Molekülstruktur von MeSi(SiMe₂Se)₃SiMe (19)

Abb. 11.3.3. Molekülstruktur von MeSi(SiMe₂Se)₃SnMe (20)

Abb. 11.3.4. *Molekülstruktur von MeSi(SiMe₂S)₃GeMe (21)*

Abb. 11.3.5. Molekülstruktur von MeSi(SiMe₂Se)₃GeMe (22)

Abb. 11.3.8. Molekülstruktur von HC(SiMe₂Se)₃GeMe (25)

Abb. 11.3.9 Strukturen der beiden kristallographisch unabhängigen Moleküle in der Kristallstruktur von HC(SiMe₂Se)₃SiVi (**26**, B: Ellipsoide für 30 % Wahrscheinlichkeit). Im Molekül B ist die Trisilylmethaneinheit fehlgeordnet mit Besetzungsfaktoren von 44 % (Si6a – Si8a) und 56 % (Si6b – Si8b).

Abb. 11.3.10. *Kristallstruktur von HC(SiMe₂S)*₃*SiMe (23)*, *Blick entlang der krist. a-Achse* Habilitation Uwe Herzog

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–Se1	2.2722(7)	Se1–Si1–Se2	112.89(3)
Si1–Se2	2.2794(7)	Se1-Si1-Se3	111.00(3)
Si1–Se3	2.2770(7)	Se2-Si1-Se3	113.46(3)
Si2–Se1	2.3054(7)	Si1–Se1–Si2	103.30(3)
Si3–Se2	2.3011(7)	Si1-Se2-Si3	100.96(2)
Si4–Se3	2.2996(7)	Si1–Se3–Si4	100.63(2)
Si2–Si5	2.3271(9)	Se1–Si2–Si5	106.23(3)
Si3–Si5	2.3232(10)	Se2–Si3–Si5	108.63(3)
Si4–Si5	2.3345(8)	Se3–Si4–Si5	108.22(3)
Si1–C1	1.852(3)	Si2–Si5–Si3	108.09(4)
Si2–C2	1.866(3)	Si2–Si5–Si4	107.28(3)
Si2–C3	1.875(3)	Si3–Si5–Si4	106.19(3)
Si3–C4	1.865(3)		
Si3–C5	1.871(3)	Si1–Se1–Si2–Si5	30.71(3)
Si4–C6	1.874(3)	Si1-Se2-Si3-Si5	30.92(4)
Si4–C7	1.873(3)	Si1–Se3–Si4–Si5	32.86(4)
Si5–C8	1.888(3)		

Tabelle 11.3.4. *Bindungslängen und -winkel in MeSi(SiMe₂Se)*₃*SiMe (19)*

Tabelle 11.3.5. Bindungslängen und -winkel in MeSi(SiMe₂Se)₃SnMe (20)

Atome	Bindungslänge in Å	Atome	Winkel in °
Sn1–Se1	2.5269(6)	Se1–Sn1–Se2	111.63(2)
Sn1–Se2	2.5296(5)	Se1–Sn1–Se3	107.14(2)
Sn1–Se3	2.5230(5)	Se2–Sn1–Se3	112.40(2)
Si2–Se1	2.3055(11)	Sn1–Se1–Si2	102.63(3)
Si3–Se2	2.3055(12)	Sn1–Se2–Si3	99.40(3)
Si4–Se3	2.3041(12)	Sn1–Se3–Si4	98.20(3)
Si1–Si2	2.3386(15)	Se1–Si2–Si1	108.27(5)
Si1–Si3	2.3403(14)	Se2–Si3–Si1	110.60(5)
Si1–Si4	2.3429(17)	Se3–Si4–Si1	111.61(5)
Sn1–C1	2.128(4)	Si2–Si1–Si3	110.00(5)
Si1–C2	1.890(4)	Si2–Si1–Si4	108.62(6)
Si2–C3	1.863(5)	Si3–Si1–Si4	109.34(6)
Si2–C4	1.871(6)		
Si3–C5	1.864(5)	Sn1-Se1-Si2-Si1	27.21(6)
Si3–C6	1.869(5)	Sn1-Se2-Si3-Si1	30.68(5)
Si4–C7	1.873(5)	Sn1-Se3-Si4-Si1	31.77(5)
Si4–C8	1.881(4)		

Atome	Bindungslänge in Å	Atome	Winkel in °
Ge1–S1	2.2277(6)	S1–Ge1–S2	111.77(2)
Ge1–S2	2.2288(6)	S1–Ge1–S3	112.46(2)
Ge1–S3	2.2285(6)	S2-Ge1-S3	110.03(2)
Si2–S1	2.1685(7)	Ge1–S1–Si2	103.11(2)
Si3–S2	2.1751(7)	Ge1–S2–Si3	104.72(2)
Si4–S3	2.1690(7)	Ge1–S3–Si4	103.14(3)
Si1–Si2	2.3284(7)	S1–Si2–Si1	108.36(3)
Si1–Si3	2.3311(7)	S2–Si3–Si1	106.28(3)
Si1–Si4	2.3395(7)	S3–Si4–Si1	107.21(3)
Ge1–C1	1.930(2)	Si2–Si1–Si3	107.05(3)
Si1–C2	1.892(2)	Si2–Si1–Si4	104.99(2)
Si2–C3	1.878(2)	Si3–Si1–Si4	106.11(3)
Si2–C4	1.867(2)		
Si3–C5	1.874(2)	Ge1-S1-Si2-Si1	31.43(3)
Si3–C6	1.873(2)	Ge1-S2-Si3-Si1	32.24(3)
Si4–C7	1.876(2)	Ge1-S3-Si4-Si1	34.16(3)
Si4–C8	1.871(2)		

Tabelle 11.3.6. *Bindungslängen und -winkel in MeSi(SiMe₂S)*₃*GeMe (21)*

Tabelle 11.3.7. Bindungslängen und -winkel in MeSi(SiMe₂Se)₃GeMe (22)

Atome	Bindungslänge in Å	Atome	Winkel in °
Ge1–Se1	2.3546(5)	Se1–Ge1–Se2	113.27(1)
Ge1–Se2	2.3540(5)	Se1–Ge1–Se3	109.96(2)
Ge1–Se3	2.3524(5)	Se2–Ge1–Se3	112.45(2)
Si2–Se1	2.2991(8)	Ge1–Se1–Si2	99.82(2)
Si3–Se2	2.3021(8)	Ge1-Se2-Si3	100.40(2)
Si4–Se3	2.3052(8)	Ge1–Se3–Si4	102.91(2)
Si1–Si2	2.3398(9)	Se1-Si2-Si1	109.11(3)
Si1–Si3	2.3268(10)	Se2–Si3–Si1	109.17(3)
Si1–Si4	2.3310(9)	Se3–Si4–Si1	106.79(3)
Ge1–C1	1.935(3)	Si2–Si1–Si3	107.28(3)
Si1–C2	1.890(3)	Si2–Si1–Si4	107.77(3)
Si2–C3	1.878(3)	Si3–Si1–Si4	108.71(4)
Si2–C4	1.873(3)		
Si3–C5	1.870(3)	Ge1-Se1-Si2-Si1	32.58(3)
Si3–C6	1.863(3)	Ge1-Se2-Si3-Si1	30.87(3)
Si4–C7	1.868(2)	Ge1-Se3-Si4-Si1	29.89(3)
Si4–C8	1.866(3)		

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–S1	2.133(2)	S1-Si1-S2	110.41(8)
Si1–S2	2.129(2)	S1-Si1-S3	110.57(8)
Si1–S3	2.138(2)	S2-Si1-S3	111.14(7)
Si2–S1	2.172(2)	Si1–S1–Si2	99.41(6)
Si3–S2	2.165(2)	Si1–S2–Si3	99.90(7)
Si4–S3	2.168(2)	Si1–S3–Si4	99.68(8)
Si2–C1	1.898(4)	S1-Si2-C1	107.8(2)
Si3–C1	1.891(5)	S2-Si3-C1	107.6(2)
Si4–C1	1.885(5)	S3-Si4-C1	107.9(2)
Si1–C2	1.860(6)	Si2-C1-Si3	112.5(2)
Si2–C3	1.861(6)	Si2–C1–Si4	113.3(2)
Si2–C4	1.855(5)	Si3-C1-Si4	113.1(3)
Si3–C5	1.852(6)		
Si3–C6	1.868(5)	Si1-S1-Si2-C1	27.6(2)
Si4–C7	1.862(5)	Si1-S2-Si3-C1	27.5(2)
Si4–C8	1.864(5)	Si1-S3-Si4-C1	26.7(2)

Tabelle 11.3.8. *Bindungslängen und -winkel in HC(SiMe₂S)*₃*SiMe* (23)

Tabelle 11.3.9. *Bindungslängen und -winkel in HC(SiMe₂S)₃SiPh (24)*

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–S1	2.1358(8)	S1-Si1-S2	111.44(3)
Si1–S2	2.1263(8)	S1-Si1-S3	109.49(3)
Si1–S3	2.1372(8)	S2-Si1-S3	111.57(3)
Si2–S1	2.1765(8)	Si1–S1–Si2	98.93(3)
Si3–S2	2.1737(8)	Si1–S2–Si3	99.20(3)
Si4–S3	2.1717(8)	Si1–S3–Si4	99.36(3)
Si2–C1	1.886(2)	S1-Si2-C1	107.10(7)
Si3–C1	1.882(2)	S2-Si3-C1	107.41(7)
Si4–C1	1.884(2)	S3-Si4-C1	107.35(7)
Si1–C2	1.867(2)	Si2–C1–Si3	113.02(10)
Si2–C8	1.864(2)	Si2-C1-Si4	113.01(10)
Si2–C9	1.856(2)	Si3-C1-Si4	113.64(11)
Si3-C10	1.859(2)		
Si3-C11	1.867(3)	Si1-S1-Si2-C1	29.07(7)
Si4-C12	1.862(2)	Si1-S2-Si3-C1	27.91(8)
Si4C13	1.863(3)	Si1-S3-Si4-C1	27.30(7)

Atome	Bindungslänge in Å	Atome	Winkel in °
Ge1–Se1	2.3426(6)	Se1–Ge1–Se2	110.88(3)
Ge1–Se2	2.3490(6)	Se1–Ge1–Se3	110.49(2)
Ge1–Se3	2.3450(7)	Se2–Ge1–Se3	108.18(2)
Si1–Se1	2.3030(11)	Ge1–Se1–Si1	96.29(3)
Si2–Se2	2.2970(11)	Ge1–Se2–Si2	96.87(3)
Si3–Se3	2.3047(13)	Ge1–Se3–Si3	95.71(4)
Si1–C1	1.892(4)	Se1-Si1-C1	108.85(14)
Si2–C1	1.887(4)	Se2–Si2–C1	109.08(13)
Si3–C1	1.882(4)	Se3–Si3–C1	109.41(13)
Ge1–C2	1.935(4)	Si1–C1–Si2	114.6(2)
Si1–C3	1.864(4)	Si1–C1–Si3	115.0(2)
Si1–C4	1.857(5)	Si2–C1–Si3	114.8(2)
Si2–C5	1.859(5)		
Si2–C6	1.858(5)	Ge1-Se1-Si1-C1	28.8(2)
Si3–C7	1.872(5)	Ge1-Se2-Si2-C1	26.3(2)
Si3–C8	1.860(4)	Ge1-Se3-Si3-C1	29.2(2)

Tabelle 11.3.10. Bindungslängen und -winkel in HC(SiMe₂Se)₃GeMe (25)

Tabelle 11.3.11. Bindungslängen und -winkel in HC(SiMe₂Se)₃SiVi (26), Molekül A

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–Se1	2.274(5)	Se1–Si1–Se2	111.9(2)
Si1–Se2	2.253(5)	Se1-Si1-Se3	110.4(2)
Si1–Se3	2.265(5)	Se2-Si1-Se3	111.4(2)
Si2–Se1	2.298(5)	Si1–Se1–Si2	97.4(2)
Si3–Se2	2.316(7)	Si1–Se2–Si3	95.7(2)
Si4–Se3	2.303(6)	Si1–Se3–Si4	96.9(2)
Si2–C1	1.88(2)	Se1-Si2-C1	108.3(5)
Si3–C1	1.89(2)	Se2–Si3–C1	109.9(6)
Si4–C1	1.90(2)	Se3–Si4–C1	108.7(6)
Si1–C2	1.87(2)	Si2–C1–Si3	115.0(9)
Si2–C4	1.89(2)	Si2–C1–Si4	113.6(9)
Si2–C5	1.91(3)	Si3-C1-Si4	113.8(10)
Si3–C6	1.86(3)	Si1-C2-C3	126.0(16)
Si3–C7	1.85(3)		
Si4–C8	1.86(2)	Si1-Se1-Si2-C1	26.8(6)
Si4–C9	1.88(2)	Si1-Se2-Si3-C1	26.6(7)
C2–C3	1.29(3)	Si1-S3-Si4-C1	26.3(6)

Abb. 11.3.11. Zusammenhang zwischen den aus Kristallstrukturdaten bestimmten Bindungslängen Si–Se (alle Daten dieser Arbeit) und den Kopplungskonstanten ${}^{1}J_{SiSe}$ in Lösung. Lediglich RSn[SeSi(SiMe₃)₃]₃ (R = Ph, Me) fallen aus dieser Korrelation heraus.

Abb. 11.3.11. Zusammenhang zwischen den aus Kristallstrukturdaten bestimmten Bindungslängen Sn–Se (alle Daten dieser Arbeit) und den Kopplungskonstanten ${}^{1}J_{SnSe}$ in Lösung.

Die Reaktion von ClSiMe₂–SiCl₂–SiClMe₂, dargestellt durch Chlorierung von (Me₃Si)₂SiPh₂ mit vier Äquivalenten Acetylchlorid und Aluminiumchlorid:

mit H_2S / NEt₃ bzw. Li₂E liefert keine isolierbaren Produkte. Setzt man es jedoch in Gegenwart von R_2MCl_2 (M = Si, Ge, Sn) ein, so erhält man 1,3,6,8-Tetrachalcogenaspiro[4.4]nonane, meist jedoch in Gegenwart von etwas (R_2ME)₃:

$$\begin{array}{c} Cl \\ Me-Si-Me \\ Cl-Si-Cl \\ Me-Si-Me \\ Cl \\ \end{array} \begin{array}{c} Cl \\ R \\ \\ Cl \\ \end{array} \begin{array}{c} Cl \\ R \\ \\ Cl \\ \end{array} \begin{array}{c} \frac{4 H_2 S+8 \, \text{NEt}_3}{-8 \, \text{HNEt}_3 Cl} \\ \frac{4 H_2 S+8 \, \text{NEt}_3}{-8 \, \text{HNEt}_3 Cl} \\ \frac{4 H_2 S+8 \, \text{NEt}_3}{-8 \, \text{HNEt}_3 Cl} \\ \frac{1}{-8 \, \text{HNEt}_3 Cl} \\ \frac{1}{-8 \, \text{HNEt}_3 Cl} \\ \frac{1}{-8 \, \text{Li} Cl$$

Die NMR Daten aller auf diesem Wege synthetisierten Spiro[4.4]nonane sind in Tabelle 11.4.1. zusammengestellt.

Ähnlich wie in den einfachen Fünfringen Me₄Si₂(E)₂MR₂ (Kapitel *10.3.*) treten auch hier signifikante Tieffeldverschiebungen der ²⁹Si NMR Signale auf. So z. B., wenn man Si^A (für E = S: 6 - 9 ppm, für E = Se: 5 - 9 ppm) mit den acyclischen Verbindungen (Me₃Si)₂Si(EBu)₂ (E = S: -6.4 ppm, Tab. 7.3.5.; E = Se: -18.8 ppm, Tab. 7.3.9.) vergleicht oder auch für Si^B (E = S: 16 - 19 ppm, E = Se: 18 - 20 ppm) beim Vergleich mit den Trisilanen Me₂Si(SiMe₂EBu)₂ (E = S: 2.1 ppm, Tab. 7.3.5.; E = Se: -2.9 ppm, Tab. 7.3.9.) und (BuE)MeSi(SiMe₂EBu)₂ (E = S: 1.3 ppm, Tab. 7.3.5.; E = Se: -4.5 ppm, Tab. 7.3.9.).

Ähnliches gilt auch für M (Si, Sn). Aufgrund des Einbaus der MR₂ Einheiten in das bicyclische System ist für M = Si in allen Fällen δ_{Si} um etwa 5 ppm gegenüber den einfachen Fünfringen Me₄Si₂(E)₂MR₂ (bei gleichem R und E) weiter zu tieferem Feld verschoben (vgl. Tab. 10.3.1.). Für M = Sn tritt eine weitere Tieffeldverschiebung von δ_{Sn} gegenüber Me₄Si₂(E)₂MR₂ von etwa 20 ppm auf.

Verbindung	$\delta_E \: / \: \delta_{Sn}$	δ_{Si}	${}^{1}J_{SiE}$	$^{1}J_{SiSi} \\$	δ_{C}	$^{1}J_{SiC}$	$\delta_{\rm H}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	A: 6.15 B: 16.75 C: 39.48	_	78.2		- 50.6 47.6 57.5 59.1	- 0.660 0.549 0.679 0.695
$\begin{array}{c ccccc} Ph & Me & Me \\ Ph & Si^{C}S & Si^{B}S \\ & Si^{C}Si^{A}Si^{C}Ph \\ & Si^{S}Si^{B}S & Si^{C}Ph \\ & Me & Me & Ph \end{array}$	_	A: 6.98 B: 16.54 C: 20.73	_		- 1.94 / 2.08 a)	—	- 0.474 / 0.416 a)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se ^A : -267 Se ^B : -280	A: 6.82 B: 18.14 C: 30.49	145.8 113.2 ¹ J _{SiSe} A: 129.2 ¹ J _{SiSe} B: 129.9	70.0	- 1.96 / 2.45 8.87 / 10.04	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Te ^A : -719 Te ^B : -731	A: -38.51 B: 9.01 C: -15.71	346.0 396.0 ² J _{SiBTe} A: 30.6 321.2		- 1.71 / 3.55 10.86 / 11.42	_	- 0.919 / 0.830 1.427 / 1.431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	A: 8.61 B: 18.52	_	77.8		- 49.5 47.5	- 0.646 / 0.503 0.964 / 0.980
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se ^A : -255 Se ^B : -269	A: 8.75 B: 20.10	118.6	72.4		_	- 0.761 / 0.615 0.957 / 0.974
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn: 205.5	A: 7.35 B: 17.79	² J _{SiSn} : 22.3 ² J _{SiSn} : 46.5 ³ J _{SiSn} : 10.9	78.0	2.32 / 3.31 3.34 / 4.91	— b) c)	0.613 / 0.443 0.823 / 0.867
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{Se^{A}}$: -388 Se^{B} : -406 Sn: 122.0	A: 4.80 B: 18.62	$\begin{array}{c} \hline 150.2 \\ 120.0 \\ {}^2J_{Si}A_{Se}B: 9.7 \\ \\ d) \end{array}$		2.64 / 2.73 3.57 / 4.58	_	0.732 / 0.580 0.99

Tabelle 11.4.1. NMR Daten (Hz, ppm) der Spiro[4.4]nonane Si(SiMe₂-E-MR₂-E)₂

a) Ph: ¹³C: i: 135.45 / 135.75, o: 134.53 / 135.01, m: 127.75 / 127.87, p: 130.41 / 130.44; ¹H: m+p: 7.35, o: 7.67 / 7.74

b) ${}^{1}J_{SnC}$: 381.1 c) ${}^{1}J_{SnC}$: 401.8 d) ${}^{1}J_{SnSe}$: 1156.8, ${}^{1}J_{SnSe}$: 1181.3, ${}^{2}J_{SnSi}$: 21.3, ${}^{2}J_{SnSi}$: 41.6, ${}^{3}J_{SnSi}$: 12.9

Auch die ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen sind gegenüber den einfachen Fünfringen $Me_4Si_2(E)_2MR_2$ bei gleicher MR_2 Einheit um einige ppm zu tieferem Feld verschoben.

Aufgrund der Symmetrie der Bicyclo[4.4]nonane sind die Methylgruppen an Si^B wie auch die Substituenten R (Me, Ph) an M jeweils diastereotop und liefern zwei verschiedene ¹H und ¹³C NMR Signale. Für MR₂ = SiMe₂ und E = S wurde die relative Zuordnung der ¹H zu den ¹³C NMR Signalen zweifelsfrei durch ein heterokorreliertes 2D NMR Experiment bestimmt, siehe Abb. 11.4.1. Für die anderen Verbindungen wurden die Signale in Tabelle 11.4.1. in Analogie dazu zugeordnet.

Abb. 11.4.1. ¹H - ¹³C korreliertes 2 D NMR Experiment von spiro-Si(SiMe₂-S-SiM₂-S)₂.
 Die Probe enthielt außerdem noch etwa 15 Mol-% (Me₂SiS)₃, welches das jeweils etwas kleinere Signal in beiden Spektren verursacht.

11.5. 2,4,6,8-Tetrachalcogenabicyclo[3.3.0]octane $R_2M(E)_2Si_2Me_2(E)_2MR_2$ [762]

Wird statt eines 1,2,2,3-Tetrachlortrisilans (siehe vorangegangenes Kapitel) ein 1,1,2,2-Tetrachlordisilan im Gemisch mit zwei Äquivalenten R_2MCl_2 mit H_2S / NEt₃ bzw. Li₂E umgesetzt, so entsteht ebenfalls ein bicyclisches System mit zwei Fünfringen, in diesem Falle jedoch ein Bicyclo[3.3.0]octan:

Ähnlich wie bei den einfachen Fünfringen konnte durch Wahl verschiedener Dichlorverbindungen des Siliciums, Germaniums, Zinns und Bleis eine größere Palette von Verbindungen dieses bicyclischen Systems dargestellt werden, siehe auch Tabelle 11.5.1. Durch Reaktion mit Cyclohexan-1,1-dithiol gelang auch der Einbau von Kohlenstoff in die Position von M, so dass damit Derivate mit allen Elementen der 14. Gruppe bekannt sind:

Aufgrund der Symmetrie des bicyclischen Systems sind die beiden Substituenten R an den Atomen M diastereotop. Die ¹³C, ²⁹Si, ¹¹⁹Sn bzw. ²⁰⁷Pb NMR chemischen Verschiebungen von M ähneln denen der einfachen Fünfringe Me₄Si₂(E)₂MR₂ (Abschnitt *10.3.*), zeigen also ähnliche Tieffeldverschiebungen im Vergleich zu acyclischen Verbindungen R₂M(ER')₂. Dagegen sind die ⁷⁷Se bzw. ¹²⁵Te NMR Signale gegenüber denen der analogen einfachen Fünfringe deutlich zu tieferem Feld verschoben (δ_{Se} : 50 – 100 ppm, δ_{Te} : 90 – 125 ppm).

Е	М	R	$\delta_{\rm E}$	Gruppe	$\delta_{Si/Sn/Pb}$	$^2J_{SiM} \\$	$^{1}J_{ME/SiE} \\$	$^{2}J_{SiE} \\$	δ_{C}	$^{1}J_{MC/SiC} \\$	δ_{H}
S	С	(CH ₂) ₅	_	Si ₂ Me ₂	33.1		_	_	1.2 ^{a)}		0.92 ^{a)}
S	Si	Me	_	Si ₂ Me ₂ SiMe ₂	29.8 35.3		_	_	5.2 7.5 / 8.2	52.2 58.7	0.91 0.66 / 0.73
S	Si	Ph	_	Si ₂ Me ₂ SiPh ₂	28.7 17.3		_	_	4.7		0.69
S	Ge	Me	_	Si ₂ Me ₂ GeMe ₂	33.2	_	_	_	5.6 10.4 / 10.5	51.5 -	0.87 0.95 / 1.03
S	Sn	Me	_	Si ₂ Me ₂ SnMe ₂	29.8 181	10.2	_	_	6.4 3.5 / 4.8		0.94 0.79 / 0.87
S	Sn	Ph	_	Si ₂ Me ₂ SnPh ₂	31.4 56	8.8	_	_	6.2 ${}^{3}J_{SnC}$: 16.8 ^{b)}	49.8	0.83 7.32 - 7.60
S	Pb	Ph	_	Si ₂ Me ₂ PbPh ₂	32.9 247	4.4	_	_	8.8 ³ J _{PbC} : 22.2 ^{c)}	48.3	0.70 c)
Se	Si	Me	-208	Si ₂ Me ₂ SiMe ₂	32.6 28.7		138.5 128.3	10.2	6.0 7.7 / 9.3	53.9	1.07 0.88 / 0.95
Se	Ge	Me	-217	Si ₂ Me ₂ GeMe ₂	35.8	-	144.3	9.7	5.9 11.53 / 11.58		1.02 1.15 / 1.21
Se	Sn	Me	-378	Si ₂ Me ₂ SnMe ₂	31.1 114	14.1	143.2 1149	10.0	6.3 3.6 / 4.7	336.4 362.8	1.04 0.94 / 0.96
Se	Sn	Ph	-410	Si ₂ Me ₂ SnPh ₂	32.4 16	12.6	142.9 1248		6.0 $^{3}J_{SnC}$: 15.7 ^{d)}		1.00 7.25 – 7.62
Se	Pb	Ph	-346	SiMe PbPh ₂	33.6 66	7.8	156.2 1477		8.7 ³ J _{PbC} : 19.9 ^{e)}		0.89 e)
Те	Si	Me	-650	Si ₂ Me ₂ SiMe ₂	11.9 -23.7		369.8 345.0	40.3	5.1 9.5 / 10.8		1.30 1.22
Te	Ge	Me	-645	Si ₂ Me ₂ GeMe ₂	14.9	_	380.5	40.8	5.0 11.5 / 12.5	_	1.22 1.47 / 1.50
Te	Sn	Me	-913	Si ₂ Me ₂ SnMe ₂	7.8 -72	8.7	372.7 2927	43.2	5.5 2.22 / 2.66		1.23 1.19

Tabelle 11.5.1. NMR Daten (Hz, ppm) der Bicyclo[3.3.0] octane R₂M(E)₂Si₂Me₂(E)₂MR₂

a) Cyclohexanring: ¹³C: *i*: 74.4, *o*: 44.2 / 47.7, *m*: 23.9 / 24.1, *p*: 24.9; ¹H: *o*: 2.03 / 2.26, *m*: 1.65 / 1.70, *p*: 1.42

b) Ph: ¹³C: i: 139.2 (${}^{1}J_{SnC}$: 644.8) / 139.5 (${}^{1}J_{SnC}$: 612.0), o: 135.15 (${}^{2}J_{SnC}$: 51.9) / 135.5 (${}^{2}J_{SnC}$: 55.9), m: 128.6 (${}^{3}J_{SnC}$: 71.9) / 128.9 (${}^{3}J_{SnC}$: 67.1), p: 130.0 (${}^{4}J_{SnC}$: 15.2) / 130.2 (${}^{4}J_{SnC}$: 14.3)

c) Ph: ${}^{13}C$: i: 157.7 / 157.9, o: 135.3 (${}^{2}J_{PbC}$: 97.4) / 135.6 (${}^{2}J_{PbC}$: 88.9), m: 130.1 (${}^{3}J_{PbC}$: 124.2) / 130.4 (${}^{3}J_{PbC}$: 115.0), p: 129.9 / 130.0; ${}^{1}H$: o: 7.65 / 7.67, m: 7.48 / 7.50, p: 7.36

- d) Ph: ¹³C: i: 139.3 / 140.0, o: 135.46 (${}^{2}J_{SnC}$: 53.2) / 135.7 (${}^{2}J_{SnC}$: 45.4), m: 128.7 (${}^{3}J_{SnC}$: 68.8) / 128.9 (${}^{3}J_{SnC}$: 67.3), p: 130.0 / 130.1
- e) Ph: ${}^{13}C$: i: 156.3 / 157.0, o: 135.4 (${}^{2}J_{PbC}$: 93.6) / 135.5 (${}^{2}J_{PbC}$: 98.2), m: 129.8 (${}^{3}J_{PbC}$: 114.3) / 130.1 (${}^{3}J_{PbC}$: 105.8), p: 129.6 / 129.7; ${}^{1}H$: o: 7.65 / 7.67, m: 7.38 / 7.46, p: 7.33

Bei der Umsetzung eines Gemisches von $Cl_2MeSi-SiMeCl_2$ und PhMeSiCl_2 mit H_2S / NEt_3 entstehen drei Produkte, die sich in der räumlichen Orientierung der Phenylringe unterscheiden. Die drei Isomere entstehen im Verhältnis 49 : 42 : 9, wobei das Isomer, welches zu 49 % gebildet wird, unzweifelhaft jenes ist, bei dem ein Phenylring in axialer und einer in equatorialer Position ist, da in diesem Falle ein doppelter Satz an NMR Signalen für die SiPhMe Einheiten auftritt. Bei dem nur in geringer Menge gebildeten Isomer handelt es sich vermutlich um das mit beiden Phenylsubstituenten in axialen Positionen (Tabelle 11.5.2., siehe auch entsprechende phenylsubstituierte Norbornane, Kapitel 11.1.).

Isomer	Anteil	Gruppe	δ_{Si}	δ_{C} (Me)	$\delta_{\rm H}$ (Me)
$ \begin{array}{c} \overbrace{Si-S}{Si-S}, S \\ \overbrace{Me} S \\ \overbrace{Si-S}{Si-S}, S \\ \overbrace{Me} Me \\ Me \end{array} $	9 %	Si ₂ Me ₂ SiPhMe	30.6 26.1	5.6 7.5	
Me $Si - S$ $S - Si$ Me Me Me	49 %	Si ₂ Me ₂ SiPhMe	30.3 25.6 / 26.8	5.1 7.7 / 6.1	
$Me \qquad Me \\ Si \qquad S \qquad Si \qquad Si \qquad Si \\ S \qquad Si \qquad Si \qquad$	42 %	Si ₂ Me ₂ SiPhMe	29.2 26.0	4.5 6.4	0.98 0.67

Tabelle 11.5.2. NMR Daten (ppm) der drei Steroisomere von PhMeSi(S)₂Si₂Me₂(S)₂SiPhMe

Wie bereits in Abb. 7.2.4. für chalcogenobutylsubstituierte Silane dargestellt, ergibt sich auch für alle cyclischen und polycyclischen Chalcogenverbindungen eine lineare Korrelation zwischen δ_{Se} der Selenverbindungen und δ_{Te} der analogen Tellurverbindungen, siehe Abb. 11.5.1. Der Anstieg ist mit 2.48 ähnlich dem in Abb. 7.2.4., allerdings deutlich größer als der mit 1.8 in der Literatur [667] angegebene Wert und auch größer als das Verhältnis der Atomradien der np Orbitale ($\langle r^{-3} \rangle_{np(Te)} / \langle r^{-3} \rangle_{np(Se)} = 1.56$), siehe auch Abschnitt 6.3., so dass hier offensichtlich noch weitere Effekte einen Einfluss auf die ⁷⁷Se und ¹²⁵Te NMR chemischen Verschiebungen haben.

Ähnliche Korrelationen ergeben sich auch beim Vergleich von δ_{Si} und δ_{Sn} (Abb. 11.5.2.) bzw. δ_{Sn} und δ_{Pb} (Abb.11.5.3.) analoger Silicium- und Zinn- bzw. Zinn- und Bleiverbindungen.

Auch hier sind die Anstiege aber größer als die Verhältnisse der Atomradien der np Orbitale $(\langle r^{-3} \rangle_{np(Sn)} / \langle r^{-3} \rangle_{np(Si)} = 3.7 \text{ und } \langle r^{-3} \rangle_{np(Pb)} / \langle r^{-3} \rangle_{np(Sn)} = 1.84).$

Abb. 11.5.1. Korrelation zwischen δ_{Se} und δ_{Te} aller in dieser Arbeit synthetisierten cyclischen und polycyclischen Chalcogenverbindungen (M = Si, Ge, Sn; E = Se, Te; R = Me, Ph)

Abb. 11.5.2. Korrelation zwischen δ_{Si} und δ_{Sn} aller in dieser Arbeit synthetisierten cyclischen und polycyclischen Chalcogenverbindungen (M = Si, Sn; E = S, Se, Te; R = Me, Ph)

Abb. 11.5.3. Korrelation zwischen δ_{Sn} und δ_{Pb} aller in dieser Arbeit synthetisierten cyclischen und polycyclischen Chalcogenverbindungen (M = Sn, Pb; E = S, Se)

Von je einer Verbindung mit M = C, Si, Ge und Sn konnten Kristallstrukturanalysen durchgeführt werden, siehe Abbildungen 11.5.4. - 11.5.7.

Abb. 11.5.4. $Molekülstruktur von (CH_2)_5 C(S)_2 Si_2 Me_2(S)_2 C(CH_2)_5 (27)$

Abb. 11.5.5. $Molek \ddot{u}lstruktur von Me_2Si(S)_2Si_2Me_2(S)_2SiMe_2$ (28)

Abb. 11.5.6. $Molek \ddot{u}lstruktur von Me_2Ge(S)_2Si_2Me_2(S)_2GeMe_2$ (29)

Abb. 11.5.7. $Molekülstruktur von Me_2Sn(Se)_2Si_2Me_2(Se)_2SnMe_2$ (30)

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °	
Si1–Si2	2.3275(7)	S1-Si2-S4	112.89(3)	
S1–Si2	2.1330(7)	S2-Si1-S3	113.57(3)	
S2–Si1	2.1378(7) Si1–Si2–S1		100.58(3)	
S3–Si1	2.1463(7)	Si1–Si2–S4	100.32(3)	
S4–Si2	2.1486(7)	Si2–Si1–S2	100.17(3)	
S1C1	1.863(2)	Si2–Si1–S3	100.26(3)	
S2–C1	1.865(2)	Si1-S2-C1	103.11(6)	
S3–C7	1.864(2)	Si2-S1-C1	103.59(6)	
S4–C7	1.864(2)	Si1-S3-C7	100.46(6)	
Si1–C13	1.863(2)	Si2-S4-C7	100.79(6)	
Si2C14	1.863(2)	S1C1S2	112.37(10)	
		S3-C7-S4	112.25(10)	

Tabelle 11.5.3. Bindungslängen und -winkel in $(CH_2)_5C(S)_2Si_2Me_2(S)_2C(CH_2)_5$ (27)

Tabelle 11.5.4. Bindungslängen und -winkel in Me₂Si(S)₂Si₂Me₂(S)₂SiMe₂ (28)

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si1a	2.3600(12)	Si1–S1–Si2	99.28(3)
S1–Si1	2.1343(7)	Si1–S2–Si3	98.96(3)
S1–Si2	2.1563(7)	S1-Si1-S2	109.76(3)
S2–Si1	2.1460(7)	S1–Si1–Si1a	104.92(2)
S2–Si3	2.1475(7)	S2–Si1–Si1a	105.40(2)
Si1–C1	1.855(2)	S1–Si2–S1a	106.67(4)
Si2–C2	1.851(3)	S2–Si3–S2a	109.15(4)
Si2–C3	1.852(3)	C2-Si2-C3	112.42(16)
Si3–C4	1.846(3)	C4–Si3–C5	112.86(19)
Si3–C5	1.846(4)		

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si1a	2.3672(9)	S1-Si1-S2	109.80(2)
S1–Si1	2.1422(6)	S1–Si1–Si1a	106.58(2)
S2–Si1	2.1317(6)	S2–Si1–Si1a	105.89(2)
S1–Ge1	2.2360(5)	Si1–S1–Ge1	98.87(2)
S2–Ge2	2.2457(4)	Si1–S2–Ge2	98.58(2)
Si1–C3	1.859(2)	S1–Ge1–S1a	106.77(2)
Ge1–C1	1.928(3)	S2–Ge2–S2a	103.79(2)
Ge1–C2	1.931(3)	C1–Ge1–C2	115.91(14)
Ge2–C4	1.933(2)	C4–Ge2–C5	115.31(11)
Ge2–C5	1.929(2)		

Tabelle 11.5.5. Bindungslängen und -winkel in $Me_2Ge(S)_2Si_2Me_2(S)_2GeMe_2$ (29)

Tabelle 11.5.6. Bindungslängen und -winkel in Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ (30)

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si1a	2.333(2)	Se1–Si1–Se2a	109.51(4)
Si1–Se1	2.2802(10)	Sila–Sil–Sel	105.84(4)
Si1–Se2a	2.2751(10)	Si1–Si1a–Se2	106.88(6)
Sn1–Se1	2.5546(5)	Si1–Se1–Sn1	98.61(3)
Sn1–Se2	2.5566(4)	Sila–Se2–Snl	96.39(3)
Si1–C3	1.861(4)	Se1–Sn1–Se2	107.79(1)
Sn1–C1	2.119(4)	C1–Sn1–C2	120.3(2)
Sn1–C2	2.126(4)		

Während die Bicyclo[3.3.0]octane mit $MR_2 = C(CH_2)_5$, SiMe₂ und GeMe₂ eine *bis*-Briefumschlagkonformation mit einer MR_2 Einheit in *exo* und einer in *endo* Position einnehmen, findet man in Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ *twist*-Konformationen der beiden (kristallographisch äquivalenten) Fünfringe. Die Ursache dafür sind vermutlich die längeren Bindungen Sn–Se und Si–Se, während die zentrale Si–Si Bindung annähernd gleich bleibt. So wächst die Länge der Si–Si Bindung von M = C (2.33 Å) über M = Si (2.36 Å) bis M = Ge (2.37 Å), in Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ liegt sie dagegen wieder bei 2.33 Å. Entsprechend sinkt der mittlere Bindungswinkel am Schwefel von 101.99° für M = C über 99.12° für M = Si auf 98.72° für M = Ge. Bei der Zinn-Selen-Verbindung $Me_2Sn(Se)_2Si_2Me_2(Se)_2SnMe_2$ treten in der Kristallstruktur noch schwache intermolekulare Wechselwirkungen zwischen Zinn und Selen auf, wie sie bereits für $Me_4Sn_2(Se)_2SnMe_2$ beschrieben wurden (siehe Abb. 4.3.1.4.).

Berücksichtigt man diese intermolekularen Wechselwirkungen, die mit 4.005 und 4.083 Å nur knapp unter der Summe der VAN DER WAALS Radien von 4.2 Å liegen, so steigt die Koordinationszahl der Selenatome auf 3 mit Winkelsummen von 322.6° an Se1 und 318.5° an Se2 und die Koordinationszahl am Zinnatom erreicht 6. Die Koordinationssphäre am Zinnatom kann als ein zweifach überkapptes Tetraeder beschrieben werden mit den Winkeln Se1–Sn1–Se1b: 175.0° und Se2–Sn1–Se2c: 166.8°, siehe auch Abb. 11.5.8.

Abb. 11.5.8. Intermolekulare Wechselwirkungen in Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ (30)

Um die Ursachen für das Auftreten der beiden Konformationen besser zu verstehen, wurden DFT Rechnungen beider Konformationen der Verbindungen $Me_2M(S)_2Si_2Me_2(S)_2MMe_2$ (M = C (als Modell für $(CH_2)_5C(S)_2Si_2Me_2(S)_2C(CH_2)_5$, Si, Ge, Sn) sowie für $Me_2Sn(Se)_2Si_2Me_2(Se)_2SnMe_2$ durchgeführt. Im Falle der Zinnverbindungen konnte jeweils nur ein Energieinimum mit der *twist*-Konformation gefunden werden.

Die wichtigsten Ergebnisse der Berechnungen sind in Tabelle 11.5.7. zusammengefasst. Man erkennt, dass in allen Fällen in der *bis*-Briefumschlagkonformation die Si–Si Bindung länger ist als in der *twist*-Konformation.

Die relativen Energien der beiden Konformationen sind in Abbildung 11.5.9. veranschaulicht.

Abb. 11.5.9. Relative Energien der bis-Briefumschlag- und der twist-Konformationen von $Me_2M(S)_2Si_2Me_2(S)_2MMe_2 (M = C, Si, Ge, Sn)$ DFT Berechnungen auf dem Niveau B3LYP/6-31G^{*}

Während für M = C die *bis*-Briefumschlagkonformation eindeutig auch die stabilere Konformation ist (-7.4 kJ/mol), sind beide Konformationen für M = Si energetisch praktisch gleich. Für M = Ge besteht ein Widerspruch zwischen den Ergenissen der Berechnungen und der experimentell in der Kristallstruktur gefundenen Konformation. Hier können wohl nur

Tabelle 11.5.7. Ergebnisse der DFT Berechnungen von $Me_2M(S)_2Si_2Me_2(S)_2MMe_2$ (M = C, Si, Ge, Sn) und $Me_2Sn(Se)_2Si_2Me_2(Se)_2SnMe_2$

Chalcogen		•		01		•	S	Se
М	0			Si	0	Ċ	Sn	Sn
Konformation	bis-Brief- umschlag	twist	bis-Brief- umschlag	twist	bis-Brief- umschlag	twist	twist	twist
Gesamtenergie / H	-2487.59397	-2487.59096	-2990.56098	-2990.56125	-2419.04330	-2419.04480	-2418.25497	-862.39606
Gesamtenergie mit Nullpunktskorr. / H	-2487.34091	-2487.33809	-2990.32305	-2990.32320	-2418.80780	-2418.80919	-2418.02269	-862.16696
Si-Si (Å)	2.352	2.326	2.381	2.353	2.393	2.360	2.365	2.371
Si-E (Å)	2.175	2.160	2.178	2.180	2.178	2.180	2.165	2.333
	2.158	2.174	2.165	2.166	2.163	2.165	2.185	2.353
M-E (Å)	1.884	1.875	2.184	2.189	2.282	2.297	2.445	2.631
	1.884	1.900	2.178	2.179	2.289	2.284	2.455	2.639
Si-E-M (°)	101.6	107.1	100.3	105.0	100.3	104.4	103.5	100.8
	102.8	103.7	101.0	101.2	101.8	100.1	99.1	96.7

B3LYP/6-31G*

Packungseffekte im Kristallgitter für das Auftreten der *bis*-Briefumschlagkonformation verantwortlich sein. Auf der anderen Seite ist die Kristallstruktur der Zinn-Selen-Verbindung Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ wieder in Übereinstimmung mit den Ergebnissen der DFT-Berechnungen.

Der geringe Energieunterschied von nur 0.4 kJ/mol der beiden Konformationen für M = Si lässt die Vermutung zu, dass in Lösung beide Konformationen nebeneinander vorliegen.

So zeigt ein ²⁹Si CP MAS NMR Spektrum der Verbindung drei Signale: eines bei 27.0 ppm für die zentrale Si₂Me₂ Einheit und zwei Signale bei 31.7 und 36.4 ppm für die beiden kristallographisch verschiedenen SiMe₂ Einheiten, siehe Abb. 11.5.10. Auch wenn man den Mittelwert der Signale der beiden in Lösung äquivalenten SiMe₂ Einheiten (34.05 ppm) ansetzt, zeigt sich ein deutlicher Unterschied zu den Verschiebungen in Lösung bei Raumtemperatur (29.8 ppm und 35.3 ppm, Tabelle 11.5.1.). Eine genauere Untersuchung der Lösungs-NMR offenbart, dass die ²⁹Si, wie auch die ¹H NMR Signale deutlich temperaturabhängiges Gleichgewicht zwischen den beiden Konformationen.

Abb. 11.5.10. ²⁹Si CP MAS NMR Spektrum von Me₂Si(S)₂Si₂Me₂(S)₂SiMe₂
 Die beiden kristallographisch unterschiedlichen SiMe₂ Einheiten verursachen die beiden kleineren Signale. Die mit einem Stern markierten Signale sind Rotationsseitenbanden.
 (Rotationsfrequenz: 3 kHz)

Abb. 11.5.11. ²⁹Si NMR chemische Verschiebungen von Me₂Si(S)₂Si₂Me₂(S)₂SiMe₂ als Funktion der Temperatur (-80 ...+60 °C, bei jeder Temperatur intern auf TMS geeicht) Bei tiefen Temperaturen nähern sich die Verschiebungen denen für das bis-Briefumschlag-Konformer (27.0 und 34.05 ppm).

Abb. 11.5.12. ¹*H* NMR chemische Verschiebungen von Me₂Si(S)₂Si₂Me₂(S)₂SiMe₂ als Funktion der Temperatur (-80 ...+60 °C, bei jeder Temperatur intern auf TMS geeicht)

11.6. Adamantane, Noradamantane, Bisnoradamantane und $Me_6Si_6S_6$

11.6.1. Reaktionen von 1,2- $R_2Si_2Cl_4$ mit H_2S / NEt_3 , $Me_6Si_6S_6$ und tBu_4Si_4S_4 [763]

Bei der Reaktion von Cl₂MeSi–SiMeCl₂ mit H₂S und NEt₃ ist die Bildung einer Verbindung Me₄Si₄S₄ mit zwei Disilaneinheiten in Form eines Bisnoradamantans oder einer Bisnordoppeldeckerstruktur bzw. einer Verbindung Me₆Si₆S₆ mit drei Disilaneinheiten denkbar:

bis-Noradamantan *bis*-Nordoppeldecker Tetracyclo[5.5.0.0^{3,11}.0^{5,9}]dodecan

Schema 11.6.1.1. Mögliche Strukturen der Verbindungen Me₄Si₄S₄ und Me₆Si₆S₆

Die Reaktion lieferte ein kristallines Produkt, das in Hexan völlig unlöslich und auch in Toluen und Chloroform nur mäßig löslich ist. Die ¹H, ¹³C und ²⁹Si NMR Spektren (Tabelle 11.6.1.1.) zeigen jeweils zwei Signale im Intensitätsverhältnis 2 : 1, so dass die Verbindung mindestens aus drei Disilaneinheiten aufgebaut sein muss. Die Kristallstrukturanalyse beweist schließlich, dass es sich tatsächlich um eine Verbindung Me₆Si₆S₆ mit einem Tetracyclo-[5.5.0.0^{3,11}.0^{5,9}]dodecan-Gerüst handelt, siehe auch Abb. 11.6.1.1:

Die Ursache für die geringe Löslichkeit könnte in der guten Packung der Moleküle in der Elementarzelle liegen (allerdings ohne intermolekulare Si–S Kontakte < Summe der VAN DER WAALS Radien), siehe Abb. 11.6.1.2. Dies kommt auch in der im Vergleich zu anderen Silicium-Schwefelverbindungen $Me_xSi_yS_z$ relativ hohen kristallographischen Dichte von 1.492 g/cm³ zum Ausdruck.

Abb. 11.6.1.1. *Molekülstruktur von* $Me_6Si_6S_6$ (1,3,5,7,9,11-*Hexamethyl*-1,3,5,7,9,11-*hexasila-hexathiatetracyclo*[5.5.0.0^{3,11},0^{5,9}] dodecan, **31**)

Abb. 11.6.1.2. Kristallstruktur von $Me_6Si_6S_6$ (31), Blick entlang der kristallograph. b-Achse. Die c-Achse ist mit 24.270 Å wesentlich länger als die a- und b-Achse (10.395 und 8.108 Å).

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
S1–Si1	2.1404(10)	Si1–S1–Si4	105.06(4)
S1–Si4	2.1499(10)	Si1-S2-Si2	100.14(4)
S2–Si1	2.1469(10)	Si3–S3–Si4	100.27(4)
S2–Si2	2.1515(10)	Si5–S4–Si6	104.95(4)
S3–Si3	2.1438(10)	Si5–S5–Si2	100.59(4)
S3–Si4	2.1444(10)	Si6–S6–Si3	100.47(4)
S4–Si5	2.1286(10)	S1-Si1-S2	114.49(4)
S4–Si6	2.1340(11)	S1–Si1–Si5	113.58(4)
S5–Si5	2.1386(10)	S2–Si1–Si5	105.96(4)
S5–Si2	2.1498(10)	S5-Si2-S2	109.31(4)
S6–Si6	2.1387(10)	S5–Si2–Si3	110.32(4)
S6–Si3	2.1448(9)	S2–Si2–Si3	110.20(4)
Si1–Si5	2.3481(11)	S3-Si3-S6	110.33(4)
Si2–Si3	2.3642(11)	S3–Si3–Si2	110.40(4)
Si4–Si6	2.3578(10)	S6–Si3–Si2	110.12(4)
Si1–C1	1.863(3)	S3-Si4-S1	112.95(4)
Si2–C2	1.857(3)	S3–Si4–Si6	105.87(4)
Si3–C3	1.859(3)	S1–Si4–Si6	114.13(4)
Si4–C4	1.850(3)	S4-Si5-S5	114.27(5)
Si5–C5	1.862(3)	S4–Si5–Si1	114.86(4)
Si6–C6	1.862(3)	S5–Si5–Si1	105.46(4)
		S4-Si6-S6	114.14(5)
		S4–Si6–Si4	113.84(4)
		S6–Si6–Si4	105.61(4)

Tabelle 11.6.1.1. Bindungslängen und -winkel in Me₆Si₆S₆ (31)

Alle Bindungslängen von $Me_6Si_6S_6$ sind im normalen Bereich für Einfachbindungen. Bei den Bindungswinkeln Si–S–Si sind die Winkel an S1 und S4, die nur Teil eines Sechsringes und eines Siebenringes sind, um etwa 5° größer als die Winkel an den anderen Schwefelatomen, die auch Teil eines Fünfringes sind.

Bemerkenswert ist der deutliche Unterschied der ²⁹Si NMR chemischen Verschiebungen der beiden nichtäquivalenten Arten Siliciumatome, obwohl die erste Koordinationssphäre gleich ist (siehe Tab. 11.6.1.3.). In beiden Fällen tritt aber eine deutliche Tieffeldverschiebung

gegenüber dem acyclischen thiobutylsubstituierten Disilan $(BuS)_2SiMe-SiMe(SBu)_2$ (δ_{Si} : 9.1 ppm, Tabelle 7.3.1.) auf.

Alle Siliciumatome sind Teil eines Fünfringes, die mit weniger stark zu tieferem Feld verschobenen NMR-Signalen sind aber auch an einem Sechsring beteiligt, was in der Regel zu einer Hochfeldverschiebung der NMR-Signale führt.

Um die Bildung des tetracyclischen $Me_6Si_6S_6$ anstelle der tricyclischen Verbindungen $Me_4Si_4S_4$ besser zu verstehen, wurden von allen drei Verbindungen DFT-Berechnungen durchgeführt. Die wichtigsten Bindungsparamater sowie die Gesamtenergien sind in Tabelle 11.6.1.2. zusammengestellt.

Tabelle 11.6.1.2. Ergebnisse der DFT Berechnungen $(B3LYP/6-31G^*)$ von $Me_4Si_4S_4$ (Bisnoradamantan- und Bisnordoppeldeckerstruktur) sowie von $Me_6Si_6S_6$

Verbindung	Me ₄	Si ₄ S ₄	Me ₆ Si ₆ S ₆
	Bisnoradamantan	Bisnordoppeldecker	
Gesamenergie (H)	-2910.69797	-2910.66369	-4366.07013
Gesamenergie mit Nullpunktskorrektur (H)	-2910.53392	-2910.50071	-4365.82337
Si–Si (Å)	2.440	2.422	2.384, 2.394 ^{a)}
Si–S (Å)	2.180	2.190	2.174, 2.177 ^{b)}
Si–S–Si (°)	86.7	76.4	99.9, 107.3 ^{c)}
S-Si-S (°)	103.5	94.8	114.1, 109.2 ^{d)}

a) Si2–Si3 b) Si2–S und Si3–S c) S1 und S4 d) Si2 und Si3

Wie man aus den Daten erkennt, treten vor allem in der Bisnordoppeldecker- aber auch in der Bisnoradamantanstruktur relativ kleine Bindungswinkel an den Schwefelatomen auf, die neben den verhältnismäßig langen Si–Si und Si–S Bindungen auf die starken Ringspannungen in diesen Molekülen hindeuten.

Die Bindungslängen und -winkel für $Me_6Si_6S_6$ sind in guter Übereinstimmung mit den Daten aus der Kristallstrukturanalyse, wobei die berechneten Bindungslängen Si–Si und Si–S – wie auch für alle anderen berechneten Moleküle – um etwa 0.03 Å zu lang sind.

Ein Vergleich der Gesamtenergien der drei Verbindungen zeigt deutlich, dass das experimentell gefundene $Me_6Si_6S_6$ das energetisch günstigste Reaktionsprodukt der Reaktion von $Cl_2MeSi-SiMeCl_2$ mit H_2S / NEt_3 darstellt, Schema 11.6.1.2.

Schema 11.6.1.2. *Relative Gesamtenergien (B3LYP/6-31G^{*}, mit Nullpunktskorrektur) der* beiden Isomere von Me₄Si₄S₄ sowie von Me₆Si₆S₆.

Da damit die Reaktionsprodukte der Reaktionen von $Cl_2MeSi-SiMeCl_2$ und Me_2SiCl_2 mit H_2S / NEt₃ bekannt sind, kann auch berechnet werden, in wieweit die im vorangegangenen Kapitel beschriebenen Tetrachalcogenabicyclo[3.3.0]octane energetisch bevorzugt sind:

Ein Vergleich der Gesamtenergien (mit Nullpunktskorrektur) ergibt einen Energiegewinn von 15.2 kJ/mol bei der Bildung des Bicyclo[3.3.0]octans.

Um ein Bisnoradamantan $R_4Si_4S_4$ zu synthetisieren, müssen offensichtlich sperrigere Substituenten R als Methyl verwendet werden.

Um dies zu erreichen, wurde ^tBuCl₂Si–SiCl₂^tBu (dargestellt nach [572] aus ^tBuPh₂SiCl über ^tBuPh₂Si–SiPh₂^tBu) mit H₂S / NEt₃ umgesetzt. Hierbei bildete sich eine kristalline Verbindung, die im ²⁹Si und ¹H NMR Spektrum jeweils nur ein Signal lieferte und ein Massenspektrum mit der für ^tBu₄Si₄S₄ erwarteten Molmasse von 468 g/mol zeigte, so dass es sich hier offenbar tatsächlich um ein Bisnoradamantan handelt:

Dieses Bisnoradamantan ergänzt die bereist von ANDO et al. [468] beschriebene Serie von *tert*-butyl-substituierten Noradamantanen und Bisnoradamantanen (${}^{t}Bu_{4}Si_{4}S_{5}$, ${}^{t}Bu_{4}Ge_{4}S_{4}$ und ${}^{t}Bu_{4}Ge_{4}S_{5}$, siehe auch Tabelle 11.6.1.3.).

Die ²⁹Si NMR chemische Verschiebung von ^tBu₄Si₄S₄ ist in guter Übereinstimmung mit der des kürzlich auch strukturell charakterisierten Bisnoradamantans R₄Si₄S₄, R = CH(SiMe₃)₂ (δ_{Si} (SiS): 19.6 ppm) [469], siehe auch Abb. 4.6.8.

Verbindung	δ_{Si}	δ _C	δ_{H}
$\begin{array}{c c} Me & Si^B & Me \\ Me & Si^B & Si^B & Me \\ S & Si^B & Si^B & Me \\ S & Si^B & Si^B & Me \\ S & Si^B & Si^A & Me \\ Me & Me & Me \end{array}$	A: 28.5 B: 14.1 (in C ₆ D ₆)	4.14 4.88 (in C ₆ D ₆)	0.71 0.78 (in C ₆ D ₆)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5 ¹ J _{SiC} : 53.4 analoge Ge- Verbindung: [468]	SiC: 23.50 CH ₃ : 27.76 GeC: 35.7 CH ₃ : 29.1	1.196 <i>1.36</i>
$\begin{array}{c c} & \overset{^{t}Bu}{\searrow} S & \overset{^{t}Bu}{\searrow} S \\ S & \overset{^{S}i^{B}}{\searrow} S \\ S & \overset{^{S}i^{B}}{\searrow} S \\ S & \overset{^{I}Si^{A}}{\longrightarrow} S \\ S & \overset{^{I}Su^{A}}{\longrightarrow} S \\ S &$	[468] analoge Ge- Verbindung: [468]	SiC: 24.0 und 25.1 CH ₃ : 25.4 und 28.2 GeC: 36.6 und 37.5 CH ₃ : 26.6 und 28.9	1.215 und 1.219 1.34 und 1.42

Tabelle 11.6.1.3. ¹*H*, ¹³*C* und ²⁹*Si* NMR Daten (*Hz*, *ppm*) von $Me_6Si_6S_6$ sowie ^t $Bu_4M_4S_4$ und ^t $Bu_4M_4S_5$ (M = Si, Ge)

(Literaturdaten kursiv)

11.6.2. Noradamantane Me₂Si₂(E)₄(MR)₂E [764,765]

Die Reaktion von Cl₂MeSi–SiMeCl₂ mit Li₂Se führt nicht zu einer dem Me₆Si₆S₆ analogen Verbindung (siehe Gl. 11.6.1.1), sondern unter Spaltung einer Si–Si Bindung entsteht selektiv das Noradamantan Me₄Si₄Se₅:

Die analoge Schwefelverbindung bildet sich bei der Reaktion eines Gemisches aus Cl₂MeSi–SiMeCl₂ und MeSiCl₃ mit H₂S und NEt₃:

Auf diesem Wege konnte auch ein gemischtes Silicium-Germanium-Noradamantan erhalten werden:

Schließlich gelang auch die Synthese eines Silicium-Zinn-Noradamantans durch Reaktion eines Gemisches von Cl₂MeSi–SiMeCl₂ und PhSnCl₃ mit Li₂Se:

Dagegen konnten durch Umsetzungen mit Li2Te keine Produkte isoliert werden.

Die NMR Daten der so dargestellten Noradamantane sind zusammen mit denen der beiden Silsesquichalcogenide (MeSi)₄E₆ (E = S, Se) mit Adamantanstruktur, die bei der Reaktion von MeSiCl₃ mit H₂S / NEt₃ bzw. Li₂E entstehen (siehe 4.6.), in Tabelle 11.6.2.1. wiedergegeben. In den ⁷⁷Se NMR Spektren der selenhaltigen Noradamantane werden zwei Signale im Intensitätsverhältnis von 4 : 1 beobachtet. Weiterhin beweist das Auftreten von ¹J_{SiSe} und ²J_{SiSe} Satelliten am ²⁹Si NMR Signal der Disilaneinheit sowie von zwei verschiedenen ¹J_{SiSe} Satelliten im Verhältnis 2 : 1 an Si^A in Me₄Si₄Se₅ bzw. am ¹¹⁹Sn Signal in Me₂Si₂(PhSn)₂Se₅ das Vorliegen einer Noradamantanstruktur, siehe auch Abbildungen 11.6.2.1. – 11.6.2.3. Verbunden mit dem Vorliegen von Fünfringen finden sich für δ_{Si} deutliche Tieffeldverschiebungen beim Vergleich mit (BuE)₂MeSi–SiMe(EBu)₂ bzw. MeSi(EBu)₃ (E = S, Se) oder auch den entsprechenden Adamantanen (MeSi)₄E₆ (E = S, Se), die nur aus Sechsringen aufgebaut sind.

Abb. 11.6.2.1. ⁷⁷Se NMR Spektrum von $Me_2Si_2(PhSn)_2Se_5$ mit den zwei Signalen für Se und Se* im Intensitätsverhältnis 4 : 1 sowie den Satelliten, hervorgerufen durch die Kopplungen ${}^{1}J_{SiSe}$ und ${}^{1}J_{SnSe}$

Abb. 11.6.2.2. ²⁹Si NMR Spektrum von $Me_2Si_2(PhSn)_2Se_5$ mit den Satelliten ^{1,2} J_{SiSe} und ² J_{SiSn}

Abb. 11.6.2.3. ¹¹⁹Sn NMR Spektrum von $Me_2Si_2(PhSn)_2Se_5$ mit den Satelliten ¹ J_{SnSe} und ² J_{SiSn}

320

Verbindung	δ_{Se}	$\delta_{Si} \ / \ \delta_{Sn}$	ⁿ J _{SiSe}	δ _C	$^{1}J_{SiC}$	δ_{H}
Me Si Si Si Si Si Si Si Me Me	_	17.2	_	10.9		1.05
$Me Me$ $Si^{B}-Si^{B}$ $SSSS$ $Si^{A}-Si^{A}$ $Me Me$	_	MeSi ^A : 27.7 MeSi ^B : 23.9	_	8.8 1.8	65.6 53.0	1.05, 1.06 (1:1)
Me Me Si Se Se Se Se Se Se Si Si Me Se Me	-89	-0.2	¹ J _{SiSe} : 157.5	11.9		1.37 ³ J _{SeH} : 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Se: -53 Se [*] : -12	MeSi ^A : 3.5 MeSi ^B : 28.9	${}^{1}J_{SiSe}$: 147.7 ${}^{1}J_{SiSe}$: 156.5 ${}^{1}J_{SiSe}$: 134.1 ${}^{2}J_{SiSe}$: 0.2	10.4 2.6		1.34 1.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MeSi: 29.9 MeGe: –	J _{SiSe} . 9.2	2.95 12.96	52.2	1.04 1.39
$\begin{array}{c cccc} Me & Me \\ Si^{A}-Si^{A} \\ Se & Se & Se \\ Sn & Sn \\ Ph & Se^{*} & Ph \end{array}$	Se: -101 Se [*] : -148	MeSi: 27.7 PhSn: -90.8 ² J _{SiSn} : 22.1 ² J _{SnSn} : 213	${}^{1}J_{SiSe}$: 143.1 ${}^{2}J_{SiSe}$: 10.9 ${}^{1}J_{SnSe}$: 1300 ${}^{1}J_{SnSe}$ *: 1432	7.03 i: 139.07 o: 134.23 m: 129.46 p: 131.26		1.20 o: 7.62 m+p: 7.47

Tabelle 11.6.2.1. NMR Daten (Hz, ppm) der Adamantane $Me_4Si_4E_6$ sowie der Noradamantane $Me_4Si_4E_5$ und $Me_2Si_2(RM)_2E_5$ (E = S, Se; RM = MeGe, PhSn)

Die beiden Noradamantane $Me_4Si_4S_5$ und $Me_2Si_2(MeGe)_2S_5$ konnten auch durch Kristallstrukturanalysen charakterisiert werden, siehe die Abbildungen 11.6.2.4. und 11.6.2.5. Die wesentlichen Bindungsparameter sind in den Tabellen 11.6.2.2. – 11.6.2.4. wiedergegeben.

Abb. 11.6.2.5.Molekülstruktur von Me2Si2(MeGe)2S5 (33)Das Molekül besitzt kristallographische C2 Symmetrie.

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si2–Si3	2.373(1)	Si1-S1-Si2	94.12(5)
S1–Si1	2.145(2)	Si1–S2–Si3	94.41(5)
S1–Si2	2.150(1)	Si1–S3–Si4	106.65(6)
S2–Si1	2.150(1)	Si4–S4–Si3	94.74(5)
S2–Si3	2.158(1)	Si4–S5–Si2	94.74(5)
S3–Si1	2.152(1)	S1-Si1-S2	108.75(6)
S3–Si4	2.163(1)	S1-Si1-S3	110.46(6)
S4–Si3	2.155(1)	S2-Si1-S3	112.01(6)
S4–Si4	2.148(1)	S1-Si2-S5	109.51(6)
S5–Si4	2.154(2)	S1–Si2–Si3	105.88(6)
S5–Si2	2.161(1)	S5–Si2–Si3	105.18(6)
Si1–C1	1.855(4)	S4-Si3-S2	110.15(6)
Si2–C2	1.851(5)	S4–Si3–Si2	104.93(5)
Si3–C3	1.857(4)	S2–Si3–Si2	104.21(5)
Si4–C4	1.845(5)	S4-Si4-S5	108.61(6)
		S4-Si4-S3	110.53(6)
		S5–Si4–S3	111.57(6)

Tabelle 11.6.2.2. Bindungslängen und -winkel von Me₄Si₄S₅ (32), Molekül A

Tabelle 11.6.2.3. Bindungslängen und -winkel von Me₄Si₄S₅ (32), Molekül B

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si5–Si5a	2.381(2)	Si5–S6–Si6	94.66(6)
S6–Si5	2.155(1)	Si5–S7–Si6a	94.44(5)
S6–Si6	2.144(1)	Si6–S8–Si6a	106.49(7)
S7–Si5	2.165(1)	S6-Si5-S7	109.50(5)
S7–Si6a	2.147(1)	S6–Si5–Si5a	105.16(6)
S8–Si6	2.159(1)	S7–Si5–Si5a	104.54(7)
Si5–C5	1.853(4)	S6–Si6–S7a	108.81(5)
Si6–C6	1.854(4)	S6-Si6-S8	110.78(5)
		S7a–Si6–S8	111.54(6)
Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
----------	--------------------	-------------	---------------------
Si1–Si1a	2.3648(12)	Ge1–S1–Ge1a	105.10(4)
S1–Ge1	2.2333(7)	Si1–S2–Ge1	94.77(3)
S2–Ge1	2.2236(7)	Sil-S3-Gela	95.14(3)
S2–Si1	2.1464(8)	S2–Ge1–S1	110.44(2)
S3–Ge1a	2.2201(7)	S3a–Ge1–S1	111.54(2)
S3–Si1	2.1489(8)	S2–Ge1–S3a	106.34(3)
Ge1–C1	1.930(2)	S2-Si1-S3	109.69(4)
Sil-C2	1.849(3)	S2-Si1-Si1a	106.89(4)
		S3–Si1–Si1a	105.33(4)

Tabelle 11.6.2.4. Bindungslängen und -winkel von $Me_2Si_2(MeGe)_2S_5$ (33)

Die Bindungslängen Si–Si sind in beiden Verbindungen mit 2.365 – 2.381 Å relativ groß, was wohl eine Folge des Noradamantan-Ringsystems ist. Die Bindungswinkel an den Schwefelatomen, die nur Teil von Sechsringen sind (S3 und S8 in $Me_4Si_4S_5$ sowie S1 in $Me_2Si_2(MeGe)_2S_5$) sind um 10 – 12° größer als die an den anderen Schwefelatomen, die auch in Fünfringe involviert sind. Insgesamt kann man die Positionen der fünf Schwefelatome in guter Näherung mit einer quadratischen Pyramide beschreiben.

11.6.3. Adamantane $Z_2(SiMe)_4E_4$ und Noradamantane $Z(SiMe)_4E_4$ ($Z = SiMe_2$, CH_2) [764,766] Die Reaktion des Trisilans Cl₂MeSi–SiMe₂–SiMeCl₂ mit Li₂E (E = S, Se) führt zur Bildung von Adamantanen, in denen zwei Trisilaneinheiten durch vier Chalcogenatome verbunden sind:

Setzt man das Trisilan im Gemisch mit Cl₂MeSi–SiCl₂Me ein, so bildet sich bei der Reaktion mit Li₂S ein Noradamantan mit einer Disilan- und einer Trisilaneinheit:

Das für diese Synthesen erforderliche Methylchlortrisilan konnte in drei Stufen aus Ph₂MeSiCl und Me₂SiCl₂ nach Methoden wie in 5. beschrieben aufgebaut werden:

$$Ph - Si - Cl + 2 Li \xrightarrow{(THF)} Ph - Si - Li$$

$$Me \qquad Me \qquad Me$$

$$(11.6.3.3)$$

Die zentrale SiMe₂ Einheit des Trisilans lässt sich auch durch eine Methyleneinheit ersetzen. Das entsprechende Disilylmethan Cl₂MeSi–CH₂–SiMeCl₂ lässt sich durch Chlorierung von CH₂(SiMe₃)₂ mit vier Äquivalenten Acetylchlorid und Aluminiumchlorid bei 120 °C erhalten, während die Reaktion mit zwei Äquivalenten bei Raumtemperatur selektiv zum zweifach chlorsubstituierten Disilylmethan ClMe₂Si–CH₂–SiClMe₂ führt:

$$Me_{3}Si-CH_{2}-SiMe_{3} \xrightarrow{+2 \operatorname{AcCl}+2 \operatorname{AlCl}_{3}, 20 \circ C} ClMe_{2}Si-CH_{2}-SiMe_{2}Cl$$

$$(11.6.3.5)$$

$$+4 \operatorname{AcCl}+4 \operatorname{AlCl}_{3}, 120 \circ C Cl_{2}MeSi-CH_{2}-SiMeCl_{2}$$

Das so dargestellte Disilylmethan $Cl_2MeSi-CH_2-SiMeCl_2$ liefert bei den Reaktionen mit H_2S und NEt₃ bzw. Li₂E (E = Se, Te) in guten Ausbeuten Adamantane, in denen zwei Disilylmethaneinheiten durch vier Chalcogenatome verbunden sind:

Bei der Reaktion im Gemisch mit Cl₂MeSi–SiMeCl₂ konnten Noradamantane mit einer Disilylmethaneinheit und einer Disilaneinheit isoliert werden:

Schließlich lieferte die Reaktion einer Mischung aus dem Disilylmethan und MeSiCl₃ mit H₂S und NEt₃ ein Adamantan mit einer Disilylmethaneinheit und zwei Monosilaneinheiten, die durch fünf Schwefelatome verknüpft sind:

Die NMR Daten aller auf diesen Wegen synthetisierter Adamantane und Noradamantane sind in den Tabellen 11.6.3.1. und 11.6.3.2. zusammengestellt.

Vergleicht man die ²⁹Si NMR chemischen Verschiebungen des Adamantans $(Me_2Si^B)_2(Si^AMe)_4S_4$ mit denen des thiobutylsubstituierten Trisilans $Me_2Si^B[Si^AMe(SBu)_2]_2$ (δ_A : 14.3, δ_B : –39.0 ppm, siehe Tabelle 7.3.5.), so erkennt man auch hier deutliche Hochfeldverschiebungen (vor allem für Si^B) in Übereinstimmung mit der Tatsache, dass das Adamantangerüst ausschließlich aus Sechsringen aufgebaut ist.

Habilitation Uwe Herzog

Verbindung	$\delta_{\rm E}$	δ_{Si}	${}^{1}J_{SiE}$	$\delta_{\rm C}$	$^{1}J_{SiC}$	δ_{H}
$Me Me Me Me Me Si^{A}Si^{B}Si^{A}Me Si^{A}Me Si^{A}Si^{A}Me Me M$	_	A: 13.2 B: -56.2 ${}^{1}J_{SiSi}$: 86.5	_	5.36 8.34	43.2	0.71 0.41
$Me Me Me$ $Me Si^{A} Si^{B} Si^{A} Me$ $Se Se Se Se Se$ $Me Si^{A} Si^{B} Me$ $Me Me$	Se: -161	A: -1.4 B: -61.3 $^{1}J_{SiSi}$: 81.4	137.0	5.03 -9.33		0.88 0.42
$ \begin{array}{c} H \\ Me \\ Si \\ Si \\ Si \\ Si \\ Me \\ H \\ H \end{array} $ $ \begin{array}{c} H \\ Me \\ H \\ Me \\ H \end{array} $ $ \begin{array}{c} H \\ Me \\ Me \\ H \end{array} $ $ \begin{array}{c} H \\ Me \\ Me \\ H \end{array} $	_	19.7	_	8.4 CH ₂ : 13.1	62.3 51.9	0.74 0.82
$\begin{array}{c} H & H \\ Me & Si \\ Se \\ Se \\ Me \\ Me \\ H \\ C \\ H \end{array}$	Se: –198	9.9	128.3	9.5 ² J _{SeC} : 16.8 CH ₂ : 12.1	57.3	0.91 0.92
$\begin{array}{c} H \\ Me \\ Si \\ Te \\ Te \\ Me \\ Si \\ C \\ Me \\ H \\ H \\ H \end{array} \begin{array}{c} H \\ Me \\ Me \\ H \\ $	Te:493	-39.8	329.5	10.9 ² J _{TeC} : 36.8 CH ₂ : 4.6	50.5 43.3	1.24 ³ J _{TeH} : 15 0.87
$\begin{array}{c} H & H \\ Me & Si^{A} & C \\ S & S \\ S & S \\ Me & Si^{B} \\ Me \\ S & Si^{B} \\ Me \\ \end{array} $	_	A: 20.0 B: 17.5	_	8.8 10.6 CH ₂ : 11.8		0.80 1.00 0.90

Tabelle 11.6.3.1. NMR Daten (Hz, ppm) der Adamantane $Z_2(SiMe)_4E_4$ und $CH_2(SiMe)_4S_5$ (Z = SiMe₂, CH₂, E = S, Se, Te)

Verbindung	δ_{Se}	δ_{Si}	${}^{1}J_{SiSe}$	δ_{C}	$^{1}J_{SiC}$	$\delta_{\rm H}$
Me Me			1			
$S_1^{\circ} - S_1^{\circ}$	—	A: 26.2	${}^{1}J_{SiSi}: 85.0$	3.3	45.2	0.80
S S×S S		B: -49.4		-8.1	41.8	0.33
$Me^{Si^{A}}Si^{B}$		C: 25.6		2.2	51.0	0.95
Me Me						
Me Me						
$Si^{B} - Si^{B}$	-	A: 28.6	_	6.6	59.9	0.80
S S S		B: 23.1		1.3	51.9	1.00
Me ^{-Si^A} C ^{Si^A} Me				CH ₂ : 15.3	51.9	0.67
НН						
Me Me		A: 17.8	123.4	8.2	55.4	0.97
$Si^{B} - Si^{B}$				$^{2}J_{SeC}$: 12.8		
Se Se Se Se	-124	B: 23.0	131.5	1.9	46.4	1.17
Me ^{-Si^A} Si ^A Me			J_{SiSe} . 0.0	JSec. 12.0	40.1	0.05
				CH ₂ : 13.9	49.1	0.95

Tabelle 11.6.3.2. NMR Daten (Hz, ppm) der Noradamantane $Z(SiMe)_4E_4$ (Z = SiMe₂, CH₂, E = S, Se)

Dagegen zeigt das Noradamantan (Me₂Si^B)(Si^AMe)₂(S)₄Si^C₂Me₂ ²⁹Si NMR Signale, die deutlich zu tieferem Feld verschoben sind, am wenigsten jedoch für Si^B. Dieses ist auch das einzige Gerüstatom, das nicht in einen Fünfring involviert ist.

Ähnliche Effekte finden sich auch beim Vergleich der Adamantane und Noradamantane mit Disilylmethaneinheiten. Auch hier erfahren die ²⁹Si NMR Signale der Disilylmethaneinheiten deutliche Tieffeldverschiebungen beim Übergang vom Adamantan zum Noradamantan, während sich δ_C der Methylengruppe nur wenig zu tieferem Feld verschiebt.

Die ²⁹Si NMR Signale der Disilaneinheit sind ähnlich jenen der Noradamantane $Me_4Si_4E_5$, sind also ebenfalls gegenüber jenen von $(BuE)_2MeSi-SiMe(EBu)_2$ (E = S, Se) deutlich zu tieferem Feld verschoben.

Molekülstrukturen von Adamantanen $Z_2(SiMe)_4E_4$ (Z = SiMe₂, CH₂, E = S, Se, Te)

Abb. 11.6.3.4. *Molekülstruktur von* (H₂C)₂(SiMe)₄Te₄ (**37**)

Die Tellurverbindung $(H_2C)_2(SiMe)_4Te_4$ (**37**) enthält ein Molekül CDCl₃ in der Kristallstruktur. Das CDCl₃ befindet sich in der Struktur in Kanälen parallel zur kristallographischen a-Achse, siehe Abb. 11.6.3.5.

Abb. 11.6.3.5.Kristallstruktur von $(H_2C)_2(SiMe)_4Te_4 \cdot CDCl_3$ (37)Blick entlang der kristallographischen a-Achse.

Die wesentlichen Bindungsparameter von $(Me_2Si)_2(SiMe)_4S_4$ und $(H_2C)_2(SiMe)_4E_4$ sind in den Tabellen 11.6.3.4. und 11.6.3.5. zusammengestellt. Die Bindungslängen Si–Si, Si–C und Si–E sind im typischen Bereich für Einfachbindungen. In allen vier Verbindungen bilden die vier Chalcogenatome ein fast ideales Quadrat mit Kantenlängen von S–S: 3.60 – 3.64 Å (Z = SiMe₂), 3.51 – 3.53 Å (Z = CH₂); Se–Se: 3.73 – 3.77 Å (Z = CH₂) bzw. Te–Te: 4.07 – 4.11 Å (Z = CH₂). Wie aus Tabelle 11.6.3.3. zu entnehmen ist, liegt im (Me₂Si)₂(SiMe)₄S₄ aufgrund der nahezu gleichlangen Bindungen Si–Si und Si–S ein fast unverzerrtes Adamantangerüst vor, dass heißt, die Diagonale Si2–Si5 ist fast gleich den Diagonalen S1–S4 und S2–S3, auch die Bindungswinkel Si–Si–Si und Si–S–Si sind etwa identisch. Dagegen wird aufgrund der unterschiedlichen Bindungslängen in den Adamantanstrukturen mit Z = CH₂ das Adamantangerüst zunehmend verzerrt, was sich in steigenden Quotienten E–E (Diagonale) / C1–C2 und Si–C–Si / Si–E–Si äußert. So ist für E = Te das Adamantan um den Faktor 1.30 gestaucht.

Parameter	$E = S$ $Z = SiMe_2$	$E = S$ $Z = CH_2$	$E = Se$ $Z = CH_2$	$E = Te$ $Z = CH_2$
Si2–Si5 bzw. C1–C2 (Å)	5.16	4.31	4.35	4.43
E–E Diagonale (Å)	5.09, 5.16	4.97	5.30	5.77, 5.79
E–E Diagonale / Si2–Si5 bzw. C1–C2	0.99	1.15	1.22	1.30
Si–Si–Si / Si–E–Si bzw. Si–C–Si / Si–E–Si	0.97	1.17	1.25	1.36

Tabelle 11.6.3.3.Vergleich einiger geometrischer Parameter in
 $(Me_2Si)_2(SiMe)_4S_4$ (34) und $(H_2C)_2(SiMe)_4E_4$ (E = S, Se, Te; 35 – 37)

Tabelle 11.6.3.4. Bindungslängen und -winkel von (Me₂Si)₂(SiMe)₄S₄ (34)

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si2	2.316(2)	Si1–Si2–Si3	103.81(6)
Si2–Si3	2.317(2)	Si4–Si5–Si6	104.09(6)
Si4–Si5	2.326(2)	Si1–S1–Si4	106.93(6)
Si5–Si6	2.321(2)	Si1–S2–Si6	108.10(6)
Si1–S1	2.144(2)	Si3–S3–Si4	107.85(6)
Si1–S2	2.145(2)	Si3–S4–Si6	106.94(6)
Si3–S3	2.145(2)	S1-Si1-S2	115.69(7)
Si3–S4	2.150(2)	S3-Si3-S4	114.93(7)
Si4–S1	2.145(2)	S1-Si4-S3	116.06(7)
Si4–S3	2.151(2)	S2-Si6-S4	113.90(7)
Si6–S2	2.148(2)	S1–Si1–Si2	108.06(6)
Si6–S4	2.143(2)	S2–Si1–Si2	109.47(6)
Si1–C1	1.866(5)	S3–Si3–Si2	108.34(6)
Si2–C2	1.888(5)	S4–Si3–Si2	110.03(7)
Si2–C3	1.884(5)	S1–Si4–Si5	109.19(7)
Si3–C4	1.861(5)	S3–Si4–Si5	107.48(7)
Si4–C5	1.864(5)	S2–Si6–Si5	108.29(6)
Si5–C6	1.882(5)	S4–Si6–Si5	110.50(7)
Si5–C7	1.882(5)	C2–Si2–C3	111.7(3)
Si6–C8	1.865(5)	C6–Si5–C7	112.1(3)

Atome	$(H_2C)_2(SiMe)_4S_4$	(H ₂ C) ₂ (SiMe) ₄ Se ₄	$(H_2C)_2(SiMe)_4Te_4 \cdot CDCl_3$
	(35)	(36)	(37) ^{a)}
E1–Si1	2.145(1)	2.278(2)	2.511(2)
E1–Si3	2.148(1)	2.276(2)	2.507(2)
E2–Si1	2.146(1)	2.277(2)	2.491(2)
E2–Si2	2.148(1)	2.278(2)	2.496(2)
E3–Si2	2.132(1)	2.283(2)	2.503(2)
E3–Si4	2.144(1)	2.281(2)	2.501(2)
E4–Si3	2.140(1)	2.285(2)	2.499(2)
E4–Si4	2.141(1)	2.280(2)	2.497(2)
Si1–C2	1.866(3)	1.870(5)	1.854(10)
Si1–C3	1.860(4)	1.855(5)	1.863(8)
Si2–C1	1.845(4)	1.866(6)	1.881(8)
Si2–C4	1.880(4)	1.859(5)	1.825(16)
Si3–C1	1.850(4)	1.869(6)	1.847(13)
Si3–C5	1.873(4)	1.864(6)	1.863(7)
Si4–C2	1.856(3)	1.863(5)	1.879(8)
Si4–C6	1.853(4)	1.865(6)	1.861(12)
Si1–E1–Si3	101.11(5)	98.41(6)	93.83(7)
Si1–E2–Si2	101.20(5)	98.39(5)	94.20(9)
Si2–E3–Si4	101.62(6)	98.08(6)	93.57(10)
Si3–E4–Si4	101.40(5)	98.26(6)	93.86(8)
E1–Si1–E2	109.78(5)	111.71(7)	109.77(10)
E3–Si2–E2	110.47(6)	110.88(7)	109.41(9)
E4-Si3-E1	110.75(5)	109.64(7)	110.60(11)
E4–Si4–E3	110.32(5)	109.71(7)	108.86(9)
Si2–C1–Si3	118.4(2)	122.4(3)	127.2(6)
Si4–C2–Si1	119.4(2)	122.7(3)	128.0(5)

Tabelle 11.6.3.5. Bindungslängen (Å) und -winkel (°) von $(H_2C)_2(SiMe)_4E_4$ (E = S, Se, Te; 35 - 37)

a) Geometrie des CDCl₃: C7-Cl1: 1.750(9), C7-Cl2: 1.735(12), C7-Cl3: 1.777(16) Å, Cl1-C7-Cl2: 111.5(7), Cl1-C7-Cl3: 109.3(9), Cl2-C7-Cl3: 109.7(6)°

Erwartungsgemäß sinken die Bindungswinkel an den Chalcogenatomen in (H₂C)₂(SiMe)₄E₄ von E = S über Se zu Te deutlich (im Mittel von 101.33 über 98.28 auf 93.86°), während die Si-C-Si Winkel an den Methylen-Kohlenstoffatomen ansteigen (für E = Te im Mittel auf 127.6°).

(H₂C)₂(SiMe)₄Te₄ ist die erste bekannte Organosilicium-Tellurverbindung mit einer Adamantanstruktur.

Auch von zwei Noradamantanen $Z(SiMe)_4S_4$ (Z = SiMe₂, CH₂) konnten Kristallstrukturanalysen durchgeführt werden, siehe Abbildungen 11.6.3.6. und 11.6.3.7.

In beiden Fällen enthält die asymmetrische Einheit zwei kristallographisch unabhängige Moleküle Z(SiMe)₄S₄ sehr ähnlicher Geometrie.

Ein Vergleich der beiden Abbildungen zeigt bereits sehr deutlich, dass aufgrund der längeren Bindungen Si1–Si2–Si3 (Abb. 11.6.3.6.) als Si1–C5–Si4 (Abb. 11.6.3.7.) der Bindungswinkel Si1-Si2-Si3 (105.1°, bzw. auch Si6-Si7-Si8: 104.5°) in Me₂Si(SiMe)₄S₄ deutlich kleiner ist, als der Winkel Si1-C5-Si4 (121.7°, bzw. auch Si5-C10-Si8: 121.6°) in H₂C(SiMe)₄S₄, vergleiche auch die Tabellen 11.6.3.6. und 11.6.3.7.

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si1–Si2	2.345(2)	Si1-Si2-Si3	105.11(7)
Si2–Si3	2.338(2)	Si1–S1–Si4	95.85(7)
Si1–S1	2.160(2)	Si1–S2–Si5	96.09(7)
Si1–S2	2.145(2)	Si3-S3-Si4	95.70(7)
Si3–S3	2.158(2)	Si3–S4–Si5	95.91(8)
Si3–S4	2.149(2)	S1-Si1-S2	107.89(8)
Si4–S1	2.136(2)	S3-Si3-S4	108.55(8)
Si4–S3	2.134(2)	S1-Si4-S3	112.61(9)
Si5–S2	2.145(2)	S2-Si5-S4	112.49(8)
Si5–S4	2.143(2)	S1-Si1-Si2	108.70(7)
Si4–Si5	2.359(2)	S2–Si1–Si2	109.56(8)
Si1–C1	1.855(5)	S3–Si3–Si2	108.89(8)
Si2–C2	1.860(5)	S4–Si3–Si2	109.07(7)
Si2–C3	1.881(5)	S1–Si4–Si5	105.44(7)
Si3–C4	1.848(5)	S3–Si4–Si5	105.60(7)
Si4–C5	1.844(4)	S2–Si5–Si4	104.93(8)
Si5–C6	1.841(5)	S4–Si5–Si4	105.24(7)
		C2-Si2-C3	111.6(2)
Si6–Si7	2.343(2)	Si6–Si7–Si8	104.52(7)
Si7–Si8	2.344(2)	Si6-S5-Si9	96.32(7)
Si6–S5	2.144(2)	Si6-S6-Si10	96.31(8)
Si6–S6	2.152(2)	Si8–S7–Si9	95.90(8)
Si8–S7	2.146(2)	Si8-S8-Si10	95.88(7)
Si8–S8	2.150(2)	S5-Si6-S6	108.51(8)
Si9–S5	2.140(2)	S7–Si8–S8	108.56(8)
Si9–S7	2.145(2)	S5–Si9–S7	111.89(8)
Si10–S6	2.141(2)	S6-Si10-S8	111.39(9)
Si5–S4	2.143(2)	S5–Si6–Si7	108.20(8)
Si9–Si10	2.358(2)	S6–Si6–Si7	109.54(7)
Si6–C7	1.857(5)	S7–Si8–Si7	108.85(8)
Si7–C8	1.879(6)	S8–Si8–Si7	109.70(8)
Si7–C9	1.877(5)	S5–Si9–Si10	105.43(8)
Si8–C10	1.859(5)	S7–Si9–Si10	105.03(7)
Si9-C11	1.855(5)	S6–Si10–Si9	105.15(7)
Si10–C12	1.852(5)	S8–Si10–Si9	105.55(8)
		C8–Si7–C9	110.9(3)

Tabelle 11.6.3.6. Bindungslängen und -winkel im Noradamantan Me₂Si(SiMe)₄S₄ (38)

Atome	Bindungslänge in Å	Atome	Bindungswinkel in °
Si2_Si3	2 3769(8)	Si1_S1_Si2	92.96(3)
\$12-515 \$1_\$j1	2.5709(8)	Si1 S2 Si2	03 17(3)
<u>S1 Si2</u>	2.1353(7) 2.1364(7)	Si2 S2 Si4	93.17(3)
S1-512	2.1304(7) 2.1462(7)	$S_{12} = S_{3} = S_{14}$	92.74(3)
<u> </u>	2.1403(7)	515-54-514	92.71(3)
<u> </u>	2.1387(7)	<u>S1-511-52</u>	107.00(3)
<u>53–512</u>	2.1452(7)	<u>\$1-512-53</u>	109.89(3)
<u>83–814</u>	2.1531(8)	S2-S13-S4	110.16(3)
S4–S13	2.1493(8)	S3-S14-S4	107.03(3)
S4–Si4	2.1542(8)	Si1–C5–Si4	121.71(11)
Sil-Cl	1.846(2)	S1–Si2–Si3	104.73(3)
Si2–C2	1.859(2)	S3–Si2–Si3	105.02(3)
Si3–C3	1.855(2)	S2-Si3-Si2	104.91(3)
Si4–C4	1.853(2)	S4–Si3–Si2	104.27(3)
Si1–C5	1.870(2)	S1–Si1–C5	110.41(7)
Si4–C5	1.864(2)	S2–Si1–C5	108.46(7)
		S3–Si4–C5	110.97(7)
		S4-Si4-C5	109.87(7)
Si6–Si7	2.3726(8)	Si5-S5-Si6	93.06(3)
S5–Si5	2.1506(7)	Si5-S6-Si7	92.82(3)
S5–Si6	2.1446(7)	Si6-S7-Si8	92.64(3)
S6–Si5	2.1533(8)	Si7–S8–Si8	92.84(3)
S6–Si7	2.1490(7)	S5-Si5-S6	107.78(3)
S7–Si6	2.1449(7)	S5-Si6-S7	109.08(3)
S7–Si8	2.1538(7)	S6-Si7-S8	110.03(3)
S8–Si7	2.1465(7)	S7–Si8–S8	107.54(3)
S8–Si8	2.1468(8)	Si5-C10-Si8	121.62(11)
Si5–C6	1.856(2)	S5–Si6–Si7	105.34(3)
Si6–C7	1.856(2)	S7–Si6–Si7	104.66(3)
Si7–C8	1.848(2)	S6–Si7–Si6	104.46(3)
Si8–C9	1.849(2)	S8–Si7–Si6	104.94(3)
Si5-C10	1.865(2)	S5-Si5-C10	109.41(7)
Si8–C10	1.869(2)	S6-Si5-C10	109.56(7)
		S7–Si8–C10	111.08(7)
		S8-Si8-C10	108.59(7)

Tabelle 11.6.3.7. Bindungslängen und -winkel im Noradamantan $H_2C(SiMe)_4S_4$ (39)

Die Winkel an den Schwefelatomen sind aufgrund der Einbindung in Fünfringe in den Noradamantanen Z(SiMe)₄S₄ um etwa 10° kleiner als in den entsprechenden Adamantanen Z₂(SiMe)₄S₄ (Z = SiMe₂ bzw. CH₂). Auch in den Noradamantanen bilden die vier Schwefelatome ein fast perfektes Quadrat mit S–S Abständen von 3.48 – 3.56 Å (Z = SiMe₂) bzw. 3.46 – 3.52 Å (Z = CH₂) und Winkeln S–S–S zwischen 89.6 und 90.3°.

11.7. MAS NMR Spektroskopie cyclischer und polycyclischer Silthiane

Neben NMR Untersuchungen in Lösung bieten sich für einige Silicium-Schwefel-Verbindungen auch Festkörper ²⁹Si MAS NMR Messungen an, da aus diesen Untersuchungen neben dem isotropen Mittelwert der chemischen Verschiebung δ_{iso} auch die Hauptachsenwerte des Tensors der chemischen Verschiebung (bzw. Abschirmung) und daraus die Anisotropie und die Axialität bestimmbar sind. Auf der anderen Seite ist es möglich, mittels GIAO-Berechnungen ebenfalls diese NMR-Parameter zu berechnen. Ziel dieser Untersuchungen war es, herauszufinden, ob sich der Einbau der Siliciumatome in verschiedene Ringsysteme auch in einer Veränderung dieser Parameter niederschlägt.

11.7.1. MAS NMR Spektren

Durch die Rotation der Festkörperprobe um den magischen Winkel mit einer Frequenz > Anisotropie der chemischen Verschiebung (in Hz) kann die Signalverbreiterung durch die Anisotropie ausgemittelt werden, und man erhält schmale Signale an der Position des isotropen Mittelwertes, bei niedrigerer Rotationsfrequenz dagegen ein Spektrum mit Rotationsseitenbanden im Abstand der Rotationsfrequenz. Aus der Intensitätsverteilung der Rotationsseitenbanden lassen sich die drei Hauptachsenwerte der chemischen Verschiebung bestimmen. Für ein auswertbares Spektrum ist es aber Voraussetzung, dass die Anzahl der Signale nicht zu groß wird und keine Überlagerungen auftreten. So sind kristalline Substanzen mit mehreren kristallographisch unabhängigen Molekülen weniger geeignet, da sie zu sehr linienreichen Spektren führen. Auch sehr leicht schmelzende Feststoffe sind ungeeignet, da sich diese Substanzen bei der Messung teilweise wie Flüssigkeiten verhalten und nur Signale für den isotropen Mittelwert von δ_{Si} liefern.

Trotz dieser Einschränkungen konnten von einer Reihe von Substanzen, von denen die Kristallstrukturen analysiert wurden, die Hauptachsenwerte der Tensoren der ²⁹Si NMR chemischen Verschiebung bestimmt werden. Die ermittelten Daten sind in Tabelle 11.7.1.1. zusammengestellt, in Abbildungen 11.7.1.1. – 11.7.1.3. sind einige Spektren beispielhaft wiedergegeben.

In Übereinstimmung mit der Kristallstruktur (Abb. 10.2.1.) gibt es zwei nichtäquivalente Arten Siliciumatome, die auch in den MAS NMR Spektren unterschieden werden können.

Darunter die Simulationen der Rotationsseitenbandspektren der drei kristallographisch verschiedenen Siliciumatome (Kristallstruktur, siehe Abb. 11.5.5., ²⁹Si CP MAS NMR Spektrum mit 3 kHz Rotationsfrequenz: siehe Abb. 11.5.10.)

Verbindung		$\delta_{sol}{}^{a)}$	δ_{iso}	δ11	δ ₂₂	δ ₃₃	$\Omega^{b)}$	κ ^{b)}	$\Delta\sigma^{c)}$	η^{c}
		57.3	53.8	d)	d)	d)	_	_	_	_
Si Si Si	Ć	45.4	44.9	85.7	45.2	3.6	82.1	0.01	-61.8	0.98
$Me_2 Me_2$ Si-Si Si Si	SiMe ₂ :	-4.8	-4.8 -4.5	27.9	-15.4	-27.0	54.9 55.2	-0.58	49.1 49.0	0.35
Si-Si Me ₂ Me ₂	Shire ₂ .		7.5	20.1	14.0	27.1	55.2	0.55	47.0	0.50
S Me S	SiMe :	29.8	27.0	57.0	16.8	7.2	49.8	-0.61	45.0	0.32
Me_2Si I Si	Me ₂ SiMe ₂ :	25.2	36.4	46.6	33.9	28.6	18.0	-0.42	15.4	0.52
s Me s	SiMe ₂ :	55.5	31.8	41.3	34.0	20.0	21.3	0.10	-17.6	0.61
	SiMe :	20.2	22.6	62.4	6.9	-1.7	64.1	-0.73	59.8	0.21
SiMe-	SiMe ₂ :	12.5	15.6	36.1	27.6	-16.8	52.9	0.68	-48.6	0.26
$\begin{bmatrix} Me_2Si \\ S \end{bmatrix}_2$	SiMe ₂ :	12.3	14.4	36.2	20.0	-13.1	49.3	0.34	-41.2	0.59

Tabelle 11.7.1.1.²⁹Si MAS NMR Daten einiger Silicium-Schwefel-Verbindungen

- a) chemische Verschiebung in Lösung
- b) Herzfeld-Berger-Konvention [767]: Anisotropie (Spanne): $\Omega = \delta_{11} - \delta_{33}$ und Schräge: $\kappa = 3(\delta_{22} - \delta_{iso}) / \Omega$
- c) Haeberlen-Konvention [768]: Anisotropie: $\Delta \sigma = \delta_{zz} - (\delta_{xx} + \delta_{yy})/2$, Asymmetrie: $\eta = (\delta_{yy} - \delta_{xx})/(\delta_{zz} - \delta_{iso})$ mit $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$
- d) aufgrund des niedrigen Schmelzpunktes auch im Festkörper nur ein relativ schmales Signal

Bemerkenswert ist die Tatsache, dass *spiro*-($C_6H_4S_2$)₂Si unter allen untersuchten Verbindungen die größte Anisotropie (Ω sowie $\Delta \sigma$) aufweist, obwohl die erste Koordinationssphäre um das Siliciumatom aus vier Schwefelatomen besteht und man deshalb zunächst eine eher kleine Anisotropie vermuten sollte. Die Ursache ist hier wohl in der starken Abweichung der Geometrie der SiS₄ Koordination von der eines idealen Tetraeders zu suchen. So sind die S– Si–S Winkel innerhalb eines Dithiolatliganden deutlich kleiner als zwischen zwei Dithiolatliganden. Weiterhin geht aus der Kristallstrukturanalyse hervor, dass mit einem Spirowinkel am Siliciumatom von 83.39° der Koordinationstetraeder um das Siliciumatom partiell planarisiert ist, siehe auch Abb. 8.1.3. Weiterhin bietet sich ein Vergleich der NMR Parameter der SiMe₂ Einheiten in S(Si₂Me₄)₂S und [Me₄Si₂(S)₂SiMe]₂ an, da in beiden Verbindungen diese Siliciumatome die gleiche erste Koordinationssphäre haben (SiSC₂), einmal jedoch als Teil eines Sechsringes und einmal als Teil eines Fünfringes. Neben der bereits aus den NMR Messungen in Lösung bekannten deutlichen Tieffeldverschiebung von δ_{iso} für den Fünfring kann man aus diesen Daten erkennen, dass die Spanne Ω , also der Abstand $\delta_{11} - \delta_{33}$, fast unverändert bleibt, sich aber die relative Lage von δ_{22} deutlich verändert, was zu signifikanten Änderungen der Schräge κ führt.

Vergleicht man dagegen die ²⁹Si NMR Parameter der SiMe Einheiten in $Me_2Si(S)_2Si_2Me_2(S)_2SiMe_2$ und $[Me_4Si(S)_2SiMe]_2$, so sind zwar die isotropen Mittelwerte der chemischen Verschiebung im Festkörper um 4.4 ppm verschieden, die Parameter Ω , κ bzw. $\Delta\sigma$ und η sind aber relativ ähnlich. In beiden Fällen sind die SiMe Einheiten in Fünfringe involviert, nur die Art des Einbaus ist unterschiedlich.

11.7.2. GIAO Berechnungen ²⁹Si NMR chemischer Verschiebungen

Parallel zu den ²⁹Si CP MAS NMR Messungen wurden GIAO Berechnungen der NMR Parameter durchgeführt. Dazu wurden in der Regel die Geometrien aus den Kristallstrukturanalysen zugrunde gelegt.

Die Ergebnisse dieser Berechnungen sind in Tabelle 11.7.2.1. zusammengestellt.

Insgesamt zeigen die Daten eine gute Übereinstimmung zwischen den experimentellen und den berechneten NMR Parametern.

Interessant ist der Vergleich der berechneten NMR Parameter für die verschiedenen Geometrien von *spiro*-(C₂H₄S₂)₂Si (siehe auch 8.1.), die sich vor allem im Spirowinkel am Siliciumatom unterscheiden. Offensichtlich hat dies vor allem einen großen Einfluss auf δ_{33} (bzw. δ_{zz}), siehe dazu auch die Abbildungen 11.7.2.1. – 11.7.2.3. Dagegen verändert sich die chemische Verschiebung in Längsrichtung des Moleküls (δ_{xx}) praktisch nicht (Tabelle 11.7.2.2.). In einer Geometrie mit einem auf 90° fixierten Spirowinkel sinkt die Anisotropie Ω auf nur 27.8 ppm (bzw. $\Delta \sigma$ auf 23.0 ppm), was zeigt, dass die großen Werte für die Anisotropie in den beiden Spiroverbindungen (C₂H₄S₂)₂Si und (C₆H₄S₂)₂Si hauptsächlich auf die partielle Planarisierung des SiS₄ Tetraeders zurückzuführen sind.

Tabelle 11.7.2.1. GIAO Berechnungen (HF/6-311+G(2d,p)) der Tensoren der ²⁹Si NMRchemischen Verschiebungen einiger Silicium-Schwefel-Verbindungen unter Verwendung derGeometrien der Kristallstrukturanalysen.

Verbindur	ng	δ_{iso}	δ_{11}	δ ₂₂	δ ₃₃	Ω	к	Δσ	η
Kristallstruktur ^a):			106.7	79.4	5.0	101.7	0.46	-88.1	0.47
vollo	ptim. Strukt. b):	66.7	106.4	81.5	12.3	94.1	0.47	-81.7	0.46
$\int_{S} \int_{S} fix. S$	Spirow. (90°) ^{c)} :	69.8	82.3	72.6	54.5	27.8	0.30	-23.0	0.63
ex	xp. MAS NMR:	53.8	d)	d)	d)	_	_	_	_
Si Si			90.9 85.7	60.0 <i>45.2</i>	13.6 <i>3.6</i>	77.3 82.1	0.20 0.01	-61.9 -61.8	0.75 <i>0.98</i>
$Me_2 Me_2$ Si-Si	SiMe ₂ :	-3.9	20.1	-11.0	-20.9	41.0	-0.67	36.0	0.41
$S \begin{bmatrix} S_{1} & S_{1} \\ S_{1} & $	SiMe ₂ :	-4.8 -2.4 -4.5	27.9 23.1 28.1	-13.4 -13.3 -14.6	-27.0 -17.1 -27.1	54.9 40.2 55.2	-0.58 -0.81 -0.55	49.1 38.3 49.0	0.35 0.15 0.38
S Me_S	SiMe :	27.4 27.0	53.3 57.0	15.9 16.8	13.1 7.2	40.2 49.8	-0.86 -0.61	38.8 45.0	0.11 0.32
$Me_2Si \qquad \begin{vmatrix} Si \\ I \\ Si \end{vmatrix}$	Me ₂ SiMe ₂ :	39.0 <i>36.4</i>	40.5 <i>46.6</i>	39.2 33.9	37.3 28.6	3.2 18.0	0.19 -0.42	2.6 15.4	0.72 0.52
S Me S	SiMe ₂ :	35.4 31.8	42.6 <i>41.3</i>	39.5 <i>34.0</i>	24.0 20.0	18.6 21.3	0.66 <i>0.10</i>	-17.0 -17.6	0.27 <i>0.61</i>
[و]	SiMe :	23.7 22.6	38.7 <i>62.4</i>	25.6 6.9	6.8 -1.7	31.9 <i>64.1</i>	0.18 -0.73	-25.4 59.8	0.78 <i>0.21</i>
Me ₂ Si SiMe	SiMe ₂ :	14.2 15.6	33.5 <i>36.1</i>	21.7 27.6	-12.5 -16.8	46.0 52.9	0.49 <i>0.68</i>	-40.1 -48.6	0.44 0.26
	\int_{2} SiMe ₂ :	11.5 <i>14.4</i>	30.7 <i>36.2</i>	16.4 20.0	-12.7 -13.1	43.4 <i>49.3</i>	0.34 0.34	-36.2 -41.2	0.59 0.59

Zum Vergleich sind die experimentellen Daten (Tabelle 11.7.1.1.) kursiv darunter angegeben.

Alle chemischen Verschiebungen sind auf TMS ($\sigma_{iso, absolut}$: 385.83 ppm) geeicht.

a) Geometrie der Kristallstruktur mit einem Spirowinkel von 74.4°, vgl. Abb. 2.3.2.

b) volloptimierte Struktur (B3LYP/6-31G*), Spirowinkel: 77.2°, vgl. Abb. 8.1.4.

c) berechnete Struktur (B3LYP/6-31G*) mit einem Spirowinkel fixiert auf 90°, vgl. Tab. 8.1.2.

d) experimentell nicht bestimmbar (*siehe* 11.7.1.)

Abb. 11.7.2.1. Berechneter Tensor (violett) der ²⁹Si NMR chemischen Verschiebung in spiro- $[C_2H_4(S)_2]_2$ Si (Geometrie der Kristallstruktur mit Spirowinkel: 74.4°)

Abb. 11.7.2.2. Berechneter Tensor (violett) der ²⁹Si NMR chemischen Verschiebung in spiro- $[C_2H_4(S)_2]_2Si$ (Geometrie mit auf 90 ° fixiertem Spirowinkel)

Abb. 11.7.2.3. Berechneter Tensor (violett) der ²⁹Si NMR chemischen Verschiebung in spiro-[C₆H₄(S)₂]₂Si (Geometrie der Kristallstruktur mit Spirowinkel: 83.4°)

Tabelle 11.7.2.2.	Lage der mittels	GIAO berechneten	Tensorhauptwerte
-------------------	------------------	------------------	------------------

(δ11,	δ ₂₂ , δ ₃	3 als δ	δ _{xx} , δ _{yy} ,	δ_{zz}	in den	Spirosilanen	$[R(S)_2]_2Si, R$	$R = C_2 H_4,$	C_6H_4
-------	----------------------------------	---------	-------------------------------------	---------------	--------	--------------	-------------------	----------------	----------

Verbindung, Geometrie	δ_{xx} (ppm)	δ _{yy} (ppm)	δ_{zz} (ppm)
$[C_2H_4(S)_2]_2$ Si Röntgenstruktur (Spirowinkel: 74.4°)	79.4	106.7	5.0
Volloptimiert (Spirowinkel: 77.2°)	81.5	106.4	12.3
Spirowinkel auf 90° fixiert	82.3	72.6	54.5
[C ₆ H ₄ (S) ₂] ₂ Si Röntgenstruktur (Spirowinkel: 83.4°)	90.9	60.0	13.6

11.8. Polycyclen mit größeren Oligosilaneinheiten

Ausgehend von den einfachen Cyclen $(SiMe_2)_4E$ (E = S, Se, Te, Kapitel 10.6.) sind bicyclische und tricyclische Organosilicium-Chalcogen-Verbindungen denkbar, in denen zwei bzw. drei dieser Ringe miteinander kondensiert sind:

Chalcogena-	3,7-Dichalcogena-	3,7,10-Trichalcogena-
tetrasilacyclopentan	hexasilabicyclo[3.3.0]octan	octasila[3.3.3]propellan

Schema 11.8.1.

Cyclische und polycyclische Silicium-Chalcogen-Verbindungen mit Si₄E Ringen

Die entsprechenden Bicyclen mit einem Bicyclo[3.3.0]octan-Gerüst enthalten eine Hexasilaneinheit, die Tricyclen mit einem [3.3.3]-Propellangerüst eine Octasilaneinheit.

11.8.1. 3,7-Dichalcogenahexasilabicyclo[3.3.0]octane [762]

Das zum Aufbau von 3,7-Dichalcogenahexasilabicyclo[3.3.0]octanen benötigte vierfach chlorfunktionalisierte und zweifach verzweigte Hexasilan konnte in zwei Stufen aus Cl₂MeSi–SiMeCl₂ und Me₃SiCl aufgebaut werden:

Habilitation Uwe Herzog

Die NMR Daten der drei so dargestellten 3,7-Dichalcogenahexasilabicyclo[3.3.0]octane sind in Tabelle 11.8.1.1. zusammengestellt, Abb. 11.8.1.1. zeigt das ²⁹Si NMR Spektrum der Tellurverbindung.

Abb. 11.8.1.1. ²⁹Si NMR Spektrum von $Te(Si^BMe_2)_2Si^A_2Me_2(Si^BMe_2)_2Te$ mit den Satelliten hervorgerufen durch die Kopplungen ${}^{1}J_{SiC}$, ${}^{1}J_{SiSi}$, ${}^{1}J_{SiTe}$ und ${}^{2}J_{SiTe}$.

Selbst die Satelliten ${}^{1}J_{SiTe}$ mit dem zweiten magnetisch aktiven Tellurisotop ${}^{123}Te$ (0.87 % natürliche Häufigkeit) sind gerade noch zu erkennen.

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{Si}	$^{1}J_{SiSi} \\$	$\mathbf{J}_{\mathrm{SiE}}$	δ _C	$^{1}J_{SiC}$	δ_{H}
$Me_{2}Si \xrightarrow{Me}_{Si}SiMe_{2}$ $S \xrightarrow{I}Si$ $Me_{2}Si \xrightarrow{Si}_{Me}SiMe_{2}$	_	SiMe SiMe ₂	-71.3 16.4	64.1	_	-12.05 3.78 / 4.36	45.2	0.28 0.49 / 0.54
$\begin{array}{c c} Me \\ Me_2Si & SiMe_2 \\ Se & Se \\ Me_2Si & Si \\ Me_2Si & Me \\ Me \end{array}$	-278	SiMe SiMe ₂	-63.7 12.4	64.4	² J: 5.4 ¹ J: 107.9	-11.28 3.81 / 3.95	33.9 43.0	0.26 0.59 / 0.65
$\begin{array}{c c} Me \\ Me_2Si & SiMe_2 \\ \hline Si & Te \\ Te & Te \\ Me_2Si & Si \\ Me \\ Me \\ \end{array}$	-736	SiMe SiMe ₂	-49.8 -7.6	58.8	² J: 21.4 ¹ J: 270.2	-10.34 3.42 / 3.91	42.5	0.87 1.24

Tabelle 11.8.1.1. NMR Daten der 3,7-Dichalcogenahexasilabicyclo[3.3.0] octane

Bemerkenswert sind die erheblichen Veränderungen der ²⁹Si NMR chemischen Verschiebung der zentralen SiMe Einheiten mit der Art des Chalcogens, obwohl die erste Koordinationssphäre dieser Siliciumatome unverändert bleibt. Im Falle von E = S zeigt der direkte Vergleich mit dem thiobutylsubstituierten Hexasilan (BuSSi^BMe₂)₂Si^AMe–Si^AMe(Si^BMe₂SBu)₂ (δ_{Si} : A: –74.7, B: 5.7 ppm, Tab. 7.3.5.), dass die Bildung des Bicyclus mit zwei Fünfringen Si₄S mit einer deutlichen Tieffeldverschiebung der ²⁹Si NMR Signale verbunden ist, siehe auch Abb. 11.8.2.3.

Von der Schwefelverbindung S(SiMe₂)₂Si₂Me₂(SiMe₂)₂S konnte auch eine Kristallstrukturanalyse durchgeführt werden, deren Ergebnis in Abb. 11.8.1.2. dargestellt ist. Die wesentlichen Bindungslängen und -winkel sind in Tabelle 11.8.1.2. zusammengestellt.

Man erkennt deutlich, dass beide Fünfringe eine Briefumschlagkonformation einnehmen, wobei die vier Siliciumatome annähernd in einer Ebene liegen, was auch in den Torsionswinkeln Si6–Si1–Si4–Si5 und Si2–Si1–Si4–Si3 zum Ausdruck kommt.

Beide Schwefelatome sind so orientiert, dass sie zur selben Seite des Moleküls zeigen. Die Winkel an den Schwefelatomen sind im üblichen Bereich für Winkel Si–S–Si in Fünfringen.

Abb. 11.8.1.2. *Molekülstruktur von S(SiMe₂)*₂*Si*₂*Me*₂(*SiMe*₂)₂*S* (40)

Atome	Bindungslänge in Å	Atome	Winkel in °
S1–Si2	2.1573(8)	Si2-S1-Si3	102.11(3)
S1–Si3	2.1541(8)	Si5–S2–Si6	101.31(3)
S2–Si5	2.1509(8)	Si2–Si1–Si6	114.36(3)
S2–Si6	2.1515(8)	Si2–Si1–Si4	102.45(3)
Si1–Si2	2.3443(8)	Si6-Si1-Si4	102.02(3)
Si1–Si4	2.3512(8)	S1–Si2–Si1	106.56(3)
Si1–Si6	2.3471(8)	S1–Si3–Si4	106.87(3)
Si3–Si4	2.3417(7)	Si5–Si4–Si3	115.26(3)
Si4–Si5	2.3371(8)	Si5–Si4–Si1	102.02(3)
Si1–C1	1.890(2)	Si3–Si4–Si1	102.24(3)
Si2–C2	1.868(3)	S2–Si5–Si4	106.38(3)
Si2–C3	1.867(3)	S2–Si6–Si1	106.41(3)
Si3–C4	1.864(2)		
Si3–C5	1.867(3)		
Si4–C6	1.888(2)	Si2-Si1-Si4-Si3	0.15(4)
Si5–C7	1.871(3)	Si6-Si1-Si4-Si5	1.05(3)
Si5–C8	1.865(3)	C1-Si1-Si4-C6	0.11(13)
Si6–C9	1.869(3)		
Si6-C10	1.871(3)		

Tabelle 11.8.1.2. Bindungslängen und -winkel von S(SiMe₂)₂Si₂Me₂(SiMe₂)₂S (40)

11.8.2. 3,7,10-Trichalcogenaoctasila[3.3.3]propellane [769]

Das zur Synthese dieser tricyclischen Verbindungen benötigte sechsfach chlorsubstituierte Octasilan konnte ausgehend von *Tetrakis*(trimethylsilyl)silan über eine oxidative Dimerisierung des daraus erhältlichen Hypersilylkaliums nach [526] und eine anschließende Chlorierung mit Acetylchlorid und Aluminiumchlorid erhalten werden:

$$\begin{array}{c}
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{Si}\operatorname{Me}_{3} \\
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{Si}\operatorname{Me}_{3} \\
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{Si}\operatorname{Me}_{3} \\
\end{array} \xrightarrow{} \begin{array}{c}
+ \operatorname{KO}^{t}\operatorname{Bu} (\operatorname{THF}) \\
- \operatorname{Me}_{3}\operatorname{SiO}^{t}\operatorname{Bu} \\
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{Si}\operatorname{Me}_{3} \\
\end{array}} \xrightarrow{} \begin{array}{c}
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{K}^{+} \\
\operatorname{Me}_{3}\operatorname{Si} & \operatorname{Si}\operatorname{Me}_{3} \\
\end{array} (11.8.2.1)$$

$$2 \underbrace{\operatorname{Me_{3}Si}}_{\operatorname{Me_{3}Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{K}^{+}} \underbrace{\operatorname{H_{4}Br_{2}(-78 \ °C)}}_{-2 \operatorname{KBr} - C_{2}\operatorname{H_{4}}} \operatorname{Me_{3}Si}_{\operatorname{Me_{3}Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}} \operatorname{Si}_{\operatorname{Si}}^{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si}_{\operatorname{Si}} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si}} \operatorname{Si} \operatorname{Si} \operatorname{Si}} \operatorname{S$$

Dabei ist im letzten Schritt die Einhaltung der Reaktionstemperatur entscheidend, andernfalls erhält man auch mehr oder weniger stark chlorierte Octasilane.

Die Kristallstrukturanalyse des chlorfunktionalisierten Octasilans, siehe Abbildungen 11.8.2.1. und 11.8.2.2., ist ein seltenes Beispiel für ein strukturell charakterisiertes Methylchloroligosilan, da die meisten Verbindungen dieser Substanzklasse Flüssigkeiten sind oder niedrigschmelzende Feststoffe, die in allen organischen Lösungsmitteln sehr gut löslich sind. Das Molekül Si₂(SiMe₂Cl)₆ besitzt in der Kristallstruktur näherungsweise C₂-Symmetrie,

wobei die C_2 -Achse in beiden Abbildungen senkrecht in der Bildebene verläuft.

Die zentrale Si–Si Bindung (Si1–Si5) ist aufgrund der sechs SiMe₂Cl Substituenten auf 2.386 Å verlängert, sie ist aber etwas kürzer als die 2.40 Å in der Kristallstruktur von Si₂(SiMe₃)₆ [770,771]. Dies, sowie die Tatsache, dass sich vier Chlorsubstituenten in equatorialen Positionen und nur zwei Chlorsubstituenten in axialen Positionen (in Bezug zur zentralen Si–Si Bindung) befinden, belegen, dass der sterische Anspruch von Chlorsubstituenten etwas kleiner ist als der von Methylgruppen.

Eine genauere Betrachtung zeigt, dass es in jeder Si(SiMe₂Cl)₃ Einheit drei verschiedene SiMe₂Cl Gruppen gibt, die sich durch den Torsionswinkel Cl–Si–Si unterscheiden.

Abb. 11.8.2.1. Molekülstruktur von Si₂(SiMe₂Cl)₆ (41)

Abb. 11.8.2.2.Molekülstruktur von Si2(SiMe2Cl)6 (41)Blick entlang der zentralen Si-Si Bindung (Si1-Si5)

Habilitation Uwe Herzog

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–Si2	2.3754(11)	Si2–Si1–Si3	104.64(4)
Si1–Si3	2.3597(12)	Si2–Si1–Si4	104.27(4)
Si1–Si4	2.3597(10)	Si3–Si1–Si4	105.31(4)
Si1–Si5	2.3865(11)	Si2–Si1–Si5	117.20(4)
Si5–Si6	2.3658(10)	Si3–Si1–Si5	110.48(4)
Si5–Si7	2.3676(11)	Si4–Si1–Si5	113.88(4)
Si5–Si8	2.3617(12)	Si6–Si5–Si1	116.16(4)
Si2–Cl1	2.0621(12)	Si7–Si5–Si1	112.14(4)
Si3–Cl2	2.0911(11)	Si8–Si5–Si1	112.50(4)
Si4–Cl3	2.0865(11)	Si6–Si5–Si7	105.57(4)
Si6–Cl4	2.1002(12)	Si6–Si5–Si8	104.09(4)
Si7–Cl5	2.0778(11)	Si7–Si5–Si8	105.45(4)
Si8–Cl6	2.0764(12)	Si1–Si2–Cl1	109.18(5)
Si2–C1	1.883(3)	Si1–Si3–Cl2	104.78(5)
Si2–C2	1.879(3)	Si1–Si4–Cl3	103.21(4)
Si3–C3	1.857(4)	Si5-Si6-Cl4	102.97(5)
Si3–C4	1.854(4)	Si5–Si7–Cl5	106.98(5)
Si4–C5	1.849(4)	Si5–Si8–Cl6	106.97(5)
Si4–C6	1.885(3)	Si4–Si1–Si5–Si6	-157.81(5)
Si6–C7	1.849(4)	Si3–Si1–Si5–Si7	81.97(5)
Si6–C8	1.867(4)	Si2–Si1–Si5–Si8	-39.67(5)
Si7–C9	1.856(4)	Si5–Si1–Si2–Cl1	-31.78(6)
Si7-C10	1.882(3)	Si5–Si1–Si3–Cl2	68.92(5)
Si8-C11	1.870(3)	Si5–Si1–Si4–Cl3	-174.49(5)
Si8-C12	1.861(3)	Si1–Si5–Si8–Cl6	-33.29(6)
		Si1–Si5–Si7–Cl5	68.48(6)
		Si1-Si5-Si6-Cl4	-167.52(5)

Tabelle 11.8.2.1. Bindungslängen und -winkel von Si₂(SiMe₂Cl)₆ (41)

Ein Vergleich der beiden Molekülhälften offenbart, dass die Silylgruppen mit Si2 und Si8 eine ähnliche Orientierung aufweisen, entsprechendes gilt für Si3 und Si7 sowie Si4 und Si6. Ein Vergleich der Bindungswinkel Si–Si–Si ergibt, dass alle Winkel Si–Si1–Si5 und Si–Si5– Si1 größer sind als der Tetraederwinkel von 109.5°, während alle Si–Si–Si Winkel innerhalb einer Si(SiMe₂Cl)₃ Einheit kleiner sind als 109.5°. Dies ist ebenfalls ein Ergebnis der gegenseitigen Abstoßung der beiden durch die zentrale Si–Si Bindung verbundenen Si(SiMe₂Cl)₃ Einheiten.

Beim Vergleich der Winkel C–Si–C (107.93 – 112.18°, Mittelwert: 109.68°) und C–Si–Si (112.18 – 117.41°, Mittelwert: 114.30°) mit den Winkeln C–Si–Cl (104.94 – 107.03°, Mittelwert: 106.00°) und Cl–Si–Si (102.97 – 109.18°, Mittelwert: 105.68°) wird ebenfalls deutlich, dass eine Methylgruppe mehr Platz beansprucht als ein Chlorsubstituent.

Die Umsetzungen des Chlorsilans $Si_2(SiMe_2Cl)_6$ mit H_2S und NEt₃ bzw. mit Li₂E (E = Se, Te) lieferte tatsächlich selektiv die gewünschten Dodecamethyl-3,7,10-trichalcogenaoctasila-[3.3.3]propellane:

$$CIMe_{2}Si \xrightarrow{Si}_{Si} SiMe_{2}Cl \xrightarrow{+3 H_{2}S + 6 NEt_{3}}{-6 HNEt_{3}Cl}}_{CIMe_{2}Si \xrightarrow{Si}_{Si} SiMe_{2}Cl} \xrightarrow{+3 Li_{2}E (THF)}{-6 LiCl} \xrightarrow{Me_{2}}{Si}_{Si} \xrightarrow{Si}_{Si} SiMe_{2}$$

$$E \xrightarrow{I}_{Si} E \xrightarrow{E}_{Si} E \xrightarrow{(11.8.2.4)}{Si}_{Si} \xrightarrow{Me_{2}}{Si}_{Si} \xrightarrow{Si}_{Si} \xrightarrow{Si$$

Die NMR Daten der drei Propellane sind zusammen mit denen der Octasilane Si₂(SiMe₃)₆ und Si₂(SiMe₂Cl)₆ in Tabelle 11.8.2.2. zusammengefasst.

Während die ²⁹Si NMR Signale der SiMe₂ Einheiten ähnlich jenen der entsprechenden SiMe₂ Einheiten der mono- und bicyclischen Verbindungen (SiMe₂)₄E und E(SiMe₂)₂Si₂Me₂(SiMe)₂E sind, zeigen die zentralen Siliciumatome im Vergleich zu anderen Verbindungen mit <u>Si</u>(Si)₄ Einheiten, wie z. B. <u>Si</u>(SiMe₃)₄ (δ_{Si} : -135.5 ppm) oder <u>Si</u>₂(SiMe₃)₆ oder sogar den chlorsubstituierten Derivaten <u>Si</u>(SiMe₂Cl)₄ (δ_{Si} : -113.9 ppm [595]) und <u>Si</u>₂(SiMe₂Cl)₆ erhebliche Verschiebungen zu tieferem Feld, vor allem für die schwereren Chalcogene Se und Te. Die Abhängigkeit der ²⁹Si NMR chemischen Verschiebungen von der Anzahl der Si₄E Ringe sowie der Art des Chalcogens ist in Abbildung 11.8.2.3. wiedergegeben und macht deutlich, wie mit steigender Anzahl an Fünfringen (x) und schwererem Chalcogen δ_{Si} der zentralen SiMe_{3-x} Einheiten im Vergleich zu den permethylierten Oligosilanen Me_{6-2x}Si₂(SiMe₃)_{2x} immer stärker zu tieferem Feld verschoben wird.

Habilitation Uwe Herzog

Verbindung	$\delta_{\rm E}$	Gruppe	δ_{Si}	$\delta_{\rm C}$	$\delta_{\rm H}$
$ \begin{array}{c} \operatorname{SiMe}_{3} \\ \operatorname{Me}_{3}\operatorname{Si} \\ \operatorname{Si} \\$	_	Si SiMe ₂	-130.13 -9.55	4.38	0.274
$Me_{3}Si \xrightarrow{SI} SiMe_{3}$ SiMe_{3}			J_{SiSi} . 35.0	J _{SiC} . 42.5	
$\begin{array}{c} \text{SiMe}_2\text{Cl}\\ \text{ClMe}_2\text{Si} - \text{SiMe}_2\text{Cl}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	_	Si SiMe ₂	-111.62 29.06	8.05	0.845
$CIMe_2Si^2 = SiMe_2Cl$ SiMe_2Cl			03131. 00.9	0310. 10.7	
$\begin{array}{c c} & Me_2 \\ Me_2 & Si & Me_2 \\ Si & Si & Si \\ S & Si & Si \\ Si & Si &$	_	Si SiMe ₂	84.52 19.78 ¹ J _{SiSi} : 54.2	6.11 ¹ J _{SiC} : 47.5	0.61
$\begin{array}{c c} & Me_2 \\ Me_2 & Si & Me_2 \\ Si & Si & Si \\ Se & Si & Se \\ Si & Si & Se \\ Si & Si & Me_2 \\ Me_2 & Si & Me_2 \\ Me_2 & Me_2 \end{array}$	Se: -189 ${}^{1}J_{SiSe}$: 110.8 ${}^{2}J_{SiSe}$: 24.8 ${}^{3}J_{SiSe}$: 13.6	Si SiMe ₂	-73.22 14.96 ¹ J _{SiSi} : 48.6	5.89	0.72
$\begin{array}{ c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	Te: -622 ¹ J _{SiTe} : 284.3	Si SiMe ₂	-52.36 -5.26 ${}^{1}J_{SiSi}$: 45.3	5.64	0.99

Tabelle 11.8.2.2. NMR Daten der Octasilane $Si_2(SiMe_2X)_6$ (X = Me, Cl) sowie der [3.3.3]-Propellane $Si_2(SiMe_2)_6E_3$ (E = S, Se, Te)

Auch die ⁷⁷Se und ¹²⁵Te NMR Signale werden in den Verbindungen $(Me_{3-x}Si)_2[(SiMe_2)_2E]_x$ mit steigendem x deutlich zu tieferem Feld verschoben, obwohl hier sowohl die erste als auch die zweite Koordinationssphäre unverändert bleiben, siehe Abbildung 11.8.2.4.

Abb. 11.8.2.3. ²⁹Si NMR chemische Verschiebungen in Verbindungen mit Fünfringen Si₄E, Vergleich mit den permethylierten Oligosilanen (Me_3Si)_x $Me_{3-x}Si$ – $SiMe_{3-x}(SiMe_3)_x$

Abb. 11.8.2.4. ⁷⁷Se und ¹²⁵Te NMR chemische Verschiebungen in Verbindungen mit Fünfringen Si₄E

Von der Schwefelverbindung $Si_2(SiMe_2)_6S_3$ konnte auch eine Kristallstrukturanalyse durchgeführt werden, deren Ergbnis in den Abbildungen 11.8.2.5. und 11.8.2.6. wiedergegeben ist.

Abb. 11.8.2.5. Molekülstruktur von Dodecamethyl-3,7,10-trithiaoctasila[3.3.3]propellan (42)

Abb. 11.8.2.6.Das [3.3.3]-Propellangerüst von Si2(SiMe2)6S3 (42)Blick entlang der zentralen Si-Si Bindung (Si1-Si5)Die Methylgruppen sind der Übersichtlichkeit halber weggelassen.

Habilitation Uwe Herzog

Atome	Bindungslänge in Å	Atome	Winkel in °
Si1–Si2	2.356(2)	Si2-S1-Si6	102.40(7)
Si1–Si3	2.354(1)	Si3-S2-Si7	101.53(6)
Si1–Si4	2.362(2)	Si4–S3–Si8	101.65(7)
Si1–Si5	2.349(2)	Si2–Si1–Si3	115.41(7)
Si5–Si6	2.342(2)	Si2-Si1-Si4	116.39(7)
Si5–Si7	2.342(2)	Si3–Si1–Si4	115.24(6)
Si5–Si8	2.340(2)	Si2–Si1–Si5	101.89(6)
Si2–S1	2.150(2)	Si3–Si1–Si5	102.60(6)
Si3–S2	2.154(2)	Si4–Si1–Si5	102.02(6)
Si4–S3	2.149(2)	Si6–Si5–Si1	102.58(6)
Si6–S1	2.148(2)	Si7–Si5–Si1	101.55(6)
Si7–S2	2.154(1)	Si8–Si5–Si1	101.80(6)
Si8–S3	2.140(2)	Si6–Si5–Si7	115.15(6)
Si2–C1	1.871(5)	Si6–Si5–Si8	116.37(6)
Si2–C2	1.854(5)	Si7–Si5–Si8	115.91(6)
Si3–C3	1.856(5)	Si1–Si2–S1	106.34(7)
Si3–C4	1.868(4)	Si1–Si3–S2	105.49(6)
Si4–C5	1.864(4)	Si1–Si4–S3	106.15(7)
Si4–C6	1.861(5)	Si5–Si6–S1	104.89(6)
Si6–C7	1.855(4)	Si5–Si7–S2	104.80(6)
Si6–C8	1.868(5)	Si5–Si8–S3	105.50(7)
Si7–C9	1.860(4)		
Si7–C10	1.865(4)	Si4–Si1–Si5–Si8	4.95(7)
Si8-C11	1.867(4)	Si3–Si1–Si5–Si7	5.21(8)
Si8-C12	1.868(4)	Si2–Si1–Si5–Si8	4.79(7)

Tabelle 11.8.2.3. Bindungslängen und -winkel von $Si_2(SiMe_2)_6S_3$ (42)

Im Unterschied zum chlorsubstituierten Octasilan $Si_2(SiMe_2Cl)_6$ ist im [3.3.3]-Propellan $Si_2(SiMe_2)_6S_3$ die zentrale Si–Si Bindung (Si1–Si5) mit 2.349 Å im normalen Bereich für Si–Si Bindungen.

Alle drei Fünfringe liegen – ähnlich wie in der bicyclischen Verbindung $S(SiMe_2)_2Si_2Me_2(SiMe_2)_2S$ (Abb. 11.8.1.2.) – annähernd in einer Briefumschlagkonformation vor, wobei die Diederwinkel Si–Si1–Si5–Si allerdings etwas größer sind. Diese Abweichung von einer idealen Briefumschlagkonformation ist in Abbildung 11.8.2.6. gut zu erkennen.

Im Gegensatz zu S(SiMe₂)₂Si₂Me₂(SiMe₂)₂S sind aber alle Fünfringe so gefaltet, dass die Schwefelatome im gleichen Drehsinn aus der Ebene der Siliciumatome herausragen. Die

Bindungswinkel an den Schwefelatomen sind mit $101.5 - 102.4^{\circ}$ ähnlich denen in $S(SiMe_2)_2Si_2Me_2(SiMe_2)_2S$ (101.3 und 102.1°). Entsprechendes gilt auch für die Bindungslängen Si–Si und Si–S.

Aufgrund der Bildung der fünfgliedrigen Ringe sind alle Si–Si–Si Winkel innerhalb eines Fünfringes mit 101.5 – 102.6° kleiner als der Tetraederwinkel, während alle anderen Si–Si–Si Winkel mit 115.1 – 116.4° deutlich größer sind.

Abschließend soll darauf hingewiesen werden, dass auch eine Reihe von [3.3.3]-Propellanen, deren Gerüst vollständig aus Kohlenstoffatomen aufgebaut ist, bekannt sind [772,773]. Darunter ist mit Modhephen [774,775] auch ein in der Natur vorkommendes Sesquiterpen, siehe Schema 11.8.2.1. Kristallstrukturanalysen sind für Modhephendiol (2,3-Dihydroxy-2,4,4,8-tetramethyl[3.3.3]propellan) [774] und [3.3.3]-Propellan-2,8,9-trion [776] bekannt. In beiden Fällen nehmen die Fünfringe ebenfalls näherungsweise Briefumschlagkonformationen ein, wobei die C-Atome 3, 7 und 10 auch hier jeweils im gleichen Drehsinn aus der Ebene der anderen C-Atome des jeweiligen Fünfringes herausragen, siehe auch Abbildungen. 11.8.2.7. und 11.8.2.8.

Modhephendiol

Schema 11.8.2.1. [3.3.3]-Propellane, deren Gerüst nur aus Kohlenstoffatomen aufgebaut ist

Abb. 11.8.2.7. Molekülstruktur von Modhephendiol [774]

12. Experimentelles

12.1. NMR Spektroskopie in Lösung

Alle NMR Spektren in Lösung wurden an einem BRUKER DPX 400 aufgenommen. Wenn nicht anders vermerkt, wurden die Proben in CDCl₃ gelöst, welches etwas Tetramethylsilan (TMS) enthielt, das als interner Standard für ¹H, ¹³C und ²⁹Si NMR Spektren diente. Für ¹¹B, ¹¹⁹Sn, ²⁰⁷Pb, ⁷⁷Se und ¹²⁵Te dienten Lösungen von BF₃ · OEt₂, SnMe₄, PbPh₄ (δ_{Pb} : –178 ppm [777]), Ph₂Se₂ (δ_{Se} : 460 ppm [674]) bzw. Ph₂Te₂ (δ_{Te} : 422 ppm [675]) in CDCl₃ als externe Standards.

Die Proben wurden in Glasröhrchen mit 7 mm Außendurchmesser abgeschmolzen und diese in 10 mm NMR Röhrchen vermessen.

¹³C NMR Spektren (Resonanzfrequenz: 100.62 MHz) wurden mit ¹H Breitbandentkopplung aufgenommen. Zur besseren Zuordnung der Signale von Phenylringen, Vinylgruppen oder Methylengruppen wurden auch ¹³C APT Spektren gemessen.

²⁹Si NMR Spektren (Resonanzfrequenz: 79.494 MHz) wurden mittels einer IGATED Pulsfolge erhalten. Zur Aufnahme von Spektren mit besserem Signal-Rausch-Verhältnis (Bestimmung von Kopplungskonstanten) wurde in vielen Fällen auch ein INEPT Pulsprogramm verwendet.

¹H entkoppelte ¹¹⁹Sn (149.211 MHz), ²⁰⁷Pb (83.715 MHz), ⁷⁷Se (76.296 MHz) und ¹²⁵Te (126.16 MHz) NMR Spektren wurden mittels IGATED Pulsfolgen erhalten.

Als Pulswiederholzeiten (D1) erwiesen sich 5 s (13 C), 30 s (29 Si, IGATED), 5 s (29 Si INEPT), 15 s (119 Sn), 15 s (207 Pb), 8 s (77 Se) und 7 s (125 Te) als optimal.

Temperaturabhängige ¹H und ²⁹Si NMR Spektren von $Me_2Si(S)_2Si_2Me_2(S)_2SiMe_2$ wurden in einer Lösung von 60 Vol-% THF und 40 Vol-% CDCl₃ und TMS als internem Standard in einem Temperaturbereich von -80 bis +60 °C in Schritten von 10 K aufgenommen.

12.2. ²⁹Si CP MAS NMR Spektroskopie

²⁹Si CP MAS NMR Spektren wurden an einem BRUKER MSL 300 (Resonanzfrequenz ²⁹Si: 59.62 MHz) unter Verwendung eines CPCYCL Pulsprogramms aufgenommen, Kontaktzeit: 5 ms. Die Proben wurden unter Argon in Inserts aus PTFE gefüllt, die anschließend in Rotoren mit 7 mm Außendurchmesser gesteckt wurden.

Die Eichung erfolgte extern mit einer Probe von Q8M8.

Zunächst wurden Messungen bei einer Rotationsfrequenz von 3 kHz durchgeführt. Diese lieferten Spektren weitgehend ohne Rotationsseitenbanden. Anschließend wurde eine niedri-

gere Rotationsfrequenz so gewählt, dass möglichst keine Überlagerungen von Signalen auftraten.

Die Auswertung der Rotationsseitenbandspektren erfolgte mit dem Programm HBMAS [778].

12.3. GC/MS Messungen

GC/MS Messungen wurden an einem HEWLETT–PACKARD 5971 (Ionisationsenergie: 70 eV, Säule: 30 m × 0.25 mm × 0.25 μ m, gefüllt mit Phenylmethylpolysiloxan, Säulentemperatur: 80 °C (3 min) / 20 K min⁻¹, Trägergas: Helium 0.5 ml / min) durchgeführt.

Die angegebenen Massenzahlen und relativen Intensitäten in den Massenspektren für ein Fragment bzw. M⁺ beziehen sich immer auf die Isotopenkombinationen mit der größten Intensität, dass heißt, wenn nicht anders angegeben: ¹H, ¹²C, ²⁸Si, ³²S, ³⁵Cl, ⁷⁴Ge, ⁸⁰Se, ¹²⁰Sn, ¹²¹Sb und ¹³⁰Te. In der Regel wurden nur Fragmente mit einer Massenzahl \geq 73 (SiMe₃) bei der Auswertung berücksichtigt.

12.4. GPC Messungen

Die verwendete GPC Anlage bestand aus einem Injektor RHEODYME 7125 (20 µl Probeschleife), einer Pumpe PERKIN-ELMER LC 250, sowie einem Brechungsindex-Detektor PERKIN-ELMER LC 30 RJ. Es wurden drei Trennsäulen verwendet: 1. und 2. Säule PSS Gel SDV 5 µm (Porengröße: 1000 Å), 8 × 300 mm sowie 3. Säule PSS Gel SDV 5 µm (Porengröße: 100 Å), 8 × 300 mm. Als Eluent diente getrocknetes THF, Flussrate: 1 ml/min. Zur Kalibrierung wurden kommerzielle Polystyrenstandards verwendet.

12.5. Elementaranalysen

Elementaranalysen wurden an einem VOSS-HERAEUS CHN-O Rapid durchgeführt. Auf eine Wiedergabe der Elementaranalyseergebnisse wurde in dieser Arbeit verzichtet, da sie keine zusätzlichen Erkenntnisse lieferten.

12.6. DFT Berechnungen

Molekülorbitalberechnungen wurden mit dem Programmpaket GAUSSIAN 98 [779] durchgeführt. Die Geometrien wurden – wenn nicht anders angegeben – auf DFT Niveau voll optimiert unter Verwendung von BECKE's drei Parameter Hybrid-Austausch-Funktional [780] und dem Korrelationsfunktional von LEE, YANG und PARR (B3LYP) [781,782]. Geometrieoptimierungen, harmonische Frequenzen und Nullpunktsschwingungsenergien wurden mit dem Basissatz 6-31G* für C, H und Si [783,784] und mit effektiven Kernpotentialen für Ge, Sn und Se [785] berechnet. Alle Strukturen wurden, wenn nicht anders angegeben, als lokale Minima auf der Potentialenergiehyperfläche durch ihre HESSE-Matrizen identifiziert.

GIAO Berechnungen der ²⁹Si Abschirmungsparameter erfolgten, wenn nicht anders angegeben, ausgehend von der Geometrie der Kristallstruktur auf dem Niveau HF/6-311+G(2d,p). Zur Umrechnung auf die Skala der ²⁹Si NMR chemischen Verschiebungen wurde die absolute Abschirmung von Tetramethylsilan σ_{Si} (absolut) = 385.83 ppm (berechnet auf dem gleichen Niveau) zugrunde gelegt.

12.7. Kristallstrukturanalysen

Die Kristallstrukturanalysen von 1 - 3, 8 - 10, 13 - 17, 19 - 24, 26 - 32, 35 - 37 und 39 - 42 erfolgten an einem BRUKER Smart CCD mit monochromatisierter Mo K_a Strahlung. Die Dimensionen der Elementarzellen wurden mit dem Programm SMART [786] bestimmt. Zur Datenintegration und Verfeinerung der Parameter der Elementarzelle diente das Programm SAINT [786]. Die Raumgruppen wurden mit Hilfe der Programme XPREP [786] bzw. ABSEN [787] bestimmt. Für alle Daten wurde eine Absorptionskorrektur mit SADABS [788] durch-geführt. Alle Strukturen wurden mit direkten Methoden gelöst (SHELX-97 [789] bzw. SIR-97 [790]), verfeinert nach der Methode der kleinsten Fehlerquadrate (SHELX-97) und mit DIAMOND 2.1 [791] gezeichnet.

Wenn nicht anders angegeben, sind die Ellipsoide an den Nichtwasserstoffatomen auf dem 50 % Wahrscheinlichkeits-Niveau.

Die Kristallstrukturanalysen von 4 – 7, 11,12, 18, 25, 33, 34 und 38 wurden an einem RIGAKU AFC7 mit Mercury CCD ausgeführt. Für die Datensammlung, Verfeinerung der Elementarzellen sowie die Datenreduktion wurde das Programmpaket CRYSTAL CLEAR [792] verwendet.

Weitere Details zu den Kristallstrukturanalysen von 1 - 42 sind in den Tabellen 12.7.1. – 12.7.11. zusammengestellt.

Soweit die Strukturen bereits publiziert wurden, sind die Daten beim Cambridge Crystallographic Data Centre hinterlegt worden. Die entsprechenden CCDC Nummern sind in den Tabellen mit angegeben.
	1	2	3	4
empirische Formel	$C_8H_{10}S_2Si$	$C_{12}H_8S_4Si$	$C_{14}H_{14}S_4Si_2$	$C_{30}H_{64}Si_9Te_2$
molare Masse	198.37	308.51	366.67	932.82
Kristallform	Block	Stab	trikliner Stab	Block
Messtemperatur (K)	173(2)	173(2)	173(2)	295(2)
Kristallfarbe	farblos	farblos	farblos	gelb
Kristallgröße (mm ³)	$1.0\times0.6\times0.6$	$0.71 \times 0.32 \times 0.18$	$0.35 \times 0.08 \times 0.06$	$0.19 \times 0.15 \times 0.12$
Kristallsystem	orthorhombisch	monoklin	triklin	triklin
Raumgruppe	$Pna2_1$	C2/c	P-1	P-1
Dimensionen der Elementarzelle (Å; °)	a: 10.1583(1) b: 9.8387(2) c: 9.9861(1)	a: 14.7059(3) b: 11.0980(3) c: 8.0920(3) β: 102.322(1)	a: 8.1987(3) b: 10.6739(3) c: 10.9473(3) α: 112.606(1) β: 106.157(2) γ: 91.006(1)	a: 10.0818(5) b: 15.4719(8) c: 17.5220(12) α: 75.217(13) β: 72.003(13) γ: 72.821(13)
Volumen (Å ³); Z	998.06(2); 4	1290.24(6); 4	841.07(5); 2	2442.7;2
Dichte (kristallogr., g/cm ³)	1.320	1.588	1.448	1.268
lin. Absorptionskoeff. (mm ⁻¹)	0.590	0.800	0.694	1.432
Scanmethode	ω Scans	ω Scans	ω Scans	φ Scans
Absorptionskorrektur	empirisch	empirisch	empirisch	numerisch
max./min. Transmission	0.709 / 0.554	0.786 / 0.482	0.918 / 0.639	
gemessene Reflexe	7417	4345	6490	28511
unabhängige Reflexe	2592	1708	4318	6676
beobachtete Reflexe	2430	1380	2126	5575
R(int)	0.0306	0.0535	0.0573	0.0665
θ Bereich (°)	2.88 - 30.54	2.32 - 30.13	2.09 - 30.14	2.20 - 23.00
Index Bereiche	$-13 \le h \le 14$ $-14 \le k \le 13$ $-14 \le l \le 12$	$-19 \le h \le 17$ $-14 \le k \le 12$ $-5 \le l \le 11$	$-11 \le h \le 8$ $-14 \le k \le 11$ $-13 \le l \le 15$	$-11 \le h \le 11$ $-17 \le k \le 17$ $-19 \le l \le 19$
Vollständigkeit bis θ_{max} (%)	94.0	89.2	86.9	98.4
Anzahl verfein. Parameter	140	95	237	370
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0242 / 0.0620	0.0305 / 0.0803	0.0617 / 0.1025	0.0719 / 0.1169
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0271 / 0.0638	0.0466 / 0.0873	0.1588 / 0.1345	0.0915 / 0.1218
goodness-of-fit (S) $^{b)}$ von F^2	1.036	1.084	0.959	1.360
H-Lokalisierung u. Verfein.	difmap / refall	difmap / refall	difmap / refall	geom. / mixed
max. / min. Restelektronen- dichte (e/Å ³)	0.266 / -0.185	0.706 / -0.653	0.613 / -0.469	0.749 / -0.508
CCDC Nummer	145927	145928	145929	

Tabelle 12.7.1. Kristalldaten sowie Angaben zur Strukturlösung von 1-4

a) $R_1 = \Sigma(||Fo|-|Fc||)/\Sigma|Fo|$, $wR^2 = [\Sigma(w(Fo^2-Fc^2)^2)/\Sigma(wFo^2)]^{1/2})$, $w = 1/[\sigma^2(Fo^2)+(aP)^2+bP]$ mit $P = (Fo^2+2Fc^2)/3$ b) $S = [\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	5	6	7	8
empirische Formel	$C_{33}H_{86}Se_3Si_{12}Sn$	$C_{28}H_{84}S_3Si_{12}Sn$	$C_{28}H_{84}Se_3Si_{12}Sn$	$C_{36}H_{30}S_{3}Sn_{3}$
molare Masse	1034.98	972.91	1113.59	914.85
Kristallform	Block	Block	Block	Block
Messtemperatur (K)	295(2)	295(2)	295(2)	173(2)
Kristallfarbe	farblos	farblos	gelb	farblos
Kristallgröße (mm ³)		$0.89 \times 0.29 \times 0.25$	$0.41 \times 0.39 \times 0.29$	$0.40 \times 0.30 \times 0.20$
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/n$	$P2_1/n$	$P2_1/n$
Dimensionen der Elementarzelle (Å; °)	a: 14.4250 b: 36.4373 c: 13.2702 β: 115.068	a: 13.5590(5) b: 17.7502(8) c: 24.3564(9) β: 91.581(2)	a: 13.7468(4) b: 17.7159(4) c: 24.5401(7) β: 91.225(1)	a: 12.104(3) b: 21.611(4) c: 13.542(3) β: 94.940(5)
Volumen (Å ³); Z	6317.9	5859.7(4); 4	5975.1(3); 4	3529.3(12); 4
Dichte (kristallogr., g/cm ³)	1.088	1.103	1.238	1.722
lin. Absorptionskoeff. (mm ⁻¹)		0.806	2.513	2.307
Scanmethode	φ Scans	φ Scans	φ Scans	ω Scans
Absorptionskorrektur	numerisch	numerisch	numerisch	empirisch
max./min. Transmission				0.655 / 0.459
gemessene Reflexe		81132	63457	17549
unabhängige Reflexe	10896	15525	15199	8917
beobachtete Reflexe	8615	13542	12090	7014
R(int)		0.0345	0.0323	0.0257
θ Bereich (°)		2.08 - 29.00	2.06 - 29.00	1.78 - 30.92
Index Bereiche		$-18 \le h \le 18$ $-24 \le k \le 16$ $-33 \le 1 \le 33$	$-18 \le h \le 18$ $-24 \le k \le 22$ $-33 \le 1 \le 32$	$-12 \le h \le 17$ $-14 \le k \le 30$ $-18 \le 1 \le 15$
Vollständigkeit bis θ_{max} (%)		99.6	95.7	79.7
Anzahl verfein. Parameter	442	425	425	379
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0729	0.0469 / 0.1123	0.0503 / 0.1091	0.0297 / 0.0610
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0987	0.0564 / 0.1177	0.0689 / 0.1166	0.0443 / 0.0652
goodness-of-fit (S) $^{b)}$ von F^2		1.119	1.071	0.977
H-Lokalisierung u. Verfein.	10896	geom. / constr.	geom. / constr.	geom. / constr.
max. / min. Restelektronen- dichte (e/Å ³)	1.118 / -0.851	1.134 / -0.445	0.880 / -0.470	0.438 / -0.783
CCDC Nummer				185227

Tabelle 12.7.2. Kristalldaten sowie Angaben zur Strukturlösung von 5 – 8

b) $S = [\Sigma w(Fo^2 - Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	9	10	11	12
empirische Formel	$C_{36}H_{30}Se_{3}Sn_{3}$	$C_{36}H_{30}Te_{3}Sn_{3}$	$C_{36}H_{30}Te_3Si_3$	$C_{12}H_{36}S_2Si_6$
molare Masse	1055.55	1201.47	929.67	413.06
Kristallform	Block	flacher Stab	Stab	Block
Messtemperatur (K)	173(2)	173(2)	295(2)	295(2)
Kristallfarbe	farblos	gelb	gelb	farblos
Kristallgröße (mm ³)	$0.40 \times 0.30 \times 0.20$	$0.30\times0.08\times0.04$	$0.29 \times 0.11 \times 0.11$	$0.23 \times 0.19 \times 0.12$
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
Dimensionen der Elementarzelle (Å; °)	a: 12.133(4) b: 22.066(7) c: 13.649(4) β: 95.63(1)	a: 10.182(4) b: 16.423(6) c: 21.939(8) β: 93.819(8)	a: 9.684(1) b: 20.828(2) c: 18.031(2) β: 101.704(5)	a: 6.506(1) b: 17.518(4) c: 11.279(3) β: 98.08(1)
Volumen (Å ³); Z	3637(2); 4	3660(2); 4	3561.2(6); 4	1272.8(5); 2
Dichte (kristallogr., g/cm ³)	1.928	2.180	1.734	1.078
lin. Absorptionskoeff. (mm ⁻¹)	5.070	4.398	2.566	0.485
Scanmethode	ω Scans	ω Scans	φ Scans	φ Scans
Absorptionskorrektur	empirisch	empirisch	numerisch	numerisch
max./min. Transmission	0.430 / 0.236	0.844 / 0.352		
gemessene Reflexe	18012	18164	20236	17796
unabhängige Reflexe	8342	10352	4925	2458
beobachtete Reflexe	5463	5631	4148	2157
R(int)	0.0492	0.0575	0.0751	0.0478
θ Bereich (°)	1.76 - 31.02	1.55 - 30.93	1.96 - 23.00	2.96 - 27.00
Index Bereiche	$-15 \le h \le 16$ $-5 \le k \le 31$ $-15 \le l \le 13$	$-4 \le h \le 14$ $-10 \le k \le 23$ $-31 \le 1 \le 31$	$-9 \le h \le 10$ $-17 \le k \le 22$ $-19 \le 1 \le 19$	$-7 \le h \le 6$ $-20 \le k \le 20$ $-13 \le l \le 12$
Vollständigkeit bis θ_{max} (%)	71.8	89.3	99.4	88.3
Anzahl verfein. Parameter	379	379	380	97
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0381 / 0.0669	0.0469 / 0.0873	0.1042 / 0.1820	0.0584 / 0.0992
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0777 / 0.0764	0.1187 / 0.1065	0.1242 / 0.1890	0.0721 / 0.1029
goodness-of-fit (S) $^{b)}$ von F^2	0.936	0.919	1.289	1.272
H-Lokalisierung u. Verfein.	geom. / constr.	geom. / constr.	geom. / constr.	difmap / mixed
max. / min. Restelektronen- dichte (e/Å ³)	0.656 / -0.600	1.243 / -1.136	0.741 / -0.728	0.156 / -0.216
CCDC Nummer	185228	185229		205537

Tabelle 12.7.3. Kristalldaten sowie Angaben zur Strukturlösung von 9 – 12

b) $S = [\Sigma w(Fo^2 - Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	13	14	15	16
empirische Formel	$C_8H_{24}S_2Si_4$	$C_8H_{24}Se_2Si_4$	$C_{16}H_{22}PbS_2Si_2$	$C_{10}H_{30}S_4Si_6$
molare Masse	296.75	390.55	541.83	447.12
Kristallform	rechteckiger Block	Block	Plättchen	Stab
Messtemperatur (K)	173(2)	173(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.68 \times 0.40 \times 0.30$	$0.36 \times 0.20 \times 0.12$	$0.44 \times 0.12 \times 0.08$	$0.20\times0.06\times0.06$
Kristallsystem	monoklin	monoklin	triklin	monoklin
Raumgruppe	$P2_1/n$	$P2_1/n$	P-1	$P2_1/n$
Dimensionen der Elementarzelle (Å; °)	a: 6.8132(5) b: 12.1869(9) c: 10.1091(8) β: 91.006(2)	a: 6.867(1) b: 12.299(2) c: 10.209(2) β: 91.852(3)	a: 8.709(2) b: 11.260(2) c: 11.607(2) α: 80.754(3) β: 72.789(3) γ: 70.474(3)	a: 6.6431(5) b: 12.4055(11) c: 14.7678(12) β: 96.962(2)
Volumen (Å ³); Z	839.25(11); 2	861.8(2); 2	1022.3(3); 2	1208.1(2); 2
Dichte (kristallogr., g/cm ³)	1.174	1.505	1.760	1.229
lin. Absorptionskoeff. (mm ⁻¹)	0.575	4.541	8.565	0.682
Scanmethode	ω Scans	ω Scans	ω Scans	ω Scans
Absorptionskorrektur	empirisch	empirisch	empirisch	empirisch
max./min. Transmission	0.847 / 0.696	0.612 / 0.292	0.547 / 0.117	0.960 / 0.876
gemessene Reflexe	5581	4267	11974	5306
unabhängige Reflexe	2404	2033	5769	2619
beobachtete Reflexe	2078	1628	4700	1520
R(int)	0.0192	0.0254	0.0356	0.0547
θ Bereich (°)	2.62 - 30.74	2.59 - 31.16	1.84 - 30.88	2.15 - 29.55
Index Bereiche	$-9 \le h \le 8$ $-16 \le k \le 7$ $-13 \le l \le 14$	$-2 \le h \le 9$ $-14 \le k \le 12$ $-11 \le l \le 14$	$-11 \le h \le 11$ $-15 \le k \le 15$ $-16 \le l \le 16$	$-8 \le h \le 5$ $-13 \le k \le 16$ $-12 \le 1 \le 19$
Vollständigkeit bis θ_{max} (%)	92.0	73.2	89.3	77.3
Anzahl verfein. Parameter	112	112	194	151
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0215 / 0.0578	0.0292 / 0.0677	0.0296 / 0.0576	0.0410 / 0.0724
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0263 / 0.0596	0.0422 / 0.0726	0.0435 / 0.0610	0.0989 / 0.0853
goodness-of-fit (S) b) von F ²	1.028	1.000	0.960	0.908
H-Lokalisierung u. Verfein.	difmap / refall	difmap / refall	geom. / constr.	difmap / refall
max. / min. Restelektronen- dichte (e/Å ³)	0.258 / -0.261	0.558 / -0.715	1.108 / -1.148	0.354 / -0.298
CCDC Nummer	154132	154133	172656	154134

Tabelle 12.7.4. Kristalldaten sowie Angaben zur Strukturlösung von 13 – 16

a) $R_1 = \Sigma(||Fo|-|Fc||)/\Sigma|Fo|$, $wR^2 = [\Sigma(w(Fo^2-Fc^2)^2)/\Sigma(wFo^2)]^{1/2})$, $w = 1/[\sigma^2(Fo^2)+(aP)^2+bP]$ mit $P = (Fo^2+2Fc^2)/3$ b) $S = [\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	17	18	19	20
empirische Formel	$C_{16}H_{22}S_3Si_4$	$C_{10}H_{30}Se_3Si_6$	$C_8H_{24}Se_3Si_5$	C ₈ H ₂₄ Se ₃ Si ₄ Sn
molare Masse	422.88	555.76	497.60	588.20
Kristallform	Stab	Plättchen	Block	Stab
Messtemperatur (K)	173(2)	295(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.30 \times 0.08 \times 0.08$	$0.18 \times 0.17 \times 0.07$	$0.60 \times 0.42 \times 0.35$	$0.80 \times 0.30 \times 0.20$
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$	$P2_1/c$	<i>P2</i> ₁ / <i>c</i>
Dimensionen der Elementarzelle (Å; °)	a: 16.483(2) b: 33.464(5) c: 8.036(1) β: 100.078(3)	a: 16.026(2) b: 12.130(2) c: 12.669(2) β: 93.144(7)	a: 10.2283(6) b: 11.6430(7) c: 16.8521(9) β: 93.386(2)	a: 10.329(1) b: 11.708(2) c: 17.066(2) β: 95.253(2)
Volumen (Å ³); Z	4364.2(11); 8	2459.1(6); 4	2003.4(2); 4	2055.2(5); 4
Dichte (kristallogr., g/cm ³)	1.287	1.501	1.650	1.901
lin. Absorptionskoeff. (mm ⁻¹)	0.556	4.770	5.788	6.771
Scanmethode	ω Scans	φ Scans	ω Scans	ω Scans
Absorptionskorrektur	empirisch	numerisch	empirisch	empirisch
max./min. Transmission	0.957 / 0.851		0.237 / 0.129	0.345 / 0.074
gemessene Reflexe	21353	18068	8657	8972
unabhängige Reflexe	10306	5887	4530	4446
beobachtete Reflexe	3525	4403	3801	3222
R(int)	0.1608	0.0410	0.0201	0.0319
θ Bereich (°)	1.25 - 30.65	2.11 - 28.00	1.99 – 29.44	1.98 - 29.41
Index Bereiche	$-22 \le h \le 10$ $-46 \le k \le 33$ $-11 \le 1 \le 10$	$-19 \le h \le 21$ $-15 \le k \le 15$ $-15 \le l \le 16$	$-11 \le h \le 13$ $-10 \le k \le 15$ $-22 \le l \le 12$	$-13 \le h \le 9$ $-10 \le k \le 15$ $-19 \le l \le 21$
Vollständigkeit bis θ_{max} (%)	76.3	99.1	81.6	78.3
Anzahl verfein. Parameter	423	182	235	241
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0724 / 0.1444	0.0680 / 0.1529	0.0257 / 0.0638	0.0296 / 0.0566
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.2645 / 0.2054	0.0963 / 0.1642	0.0332 / 0.0661	0.0536 / 0.0629
goodness-of-fit (S) $^{b)}$ von F^2	0.926	1.124	0.997	0.955
H-Lokalisierung u. Verfein.	geom. / constr.	difmap / constr.	difmap /refall	difmap / refall
max. / min. Restelektronen- dichte (e/Å ³)	0.476 / -0.522	1.275 / -1.167	0.380 / -0.542	0.512 / -0.710
CCDC Nummer	156569		196489	196487

Tabelle 12.7.5. Kristalldaten sowie Angaben zur Strukturlösung von 17 – 20

b) S = $[\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	21	22	23	24
empirische Formel	C ₈ H ₂₄ GeS ₃ Si ₄	C ₈ H ₂₄ GeSe ₃ Si ₄	$C_8H_{22}S_3Si_4$	$C_{13}H_{24}S_3Si_4$
molare Masse	401.40	542.10	326.80	388.860
Kristallform	Plättchen	Block	Block	dreieckige Platte
Messtemperatur (K)	173(2)	173(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.70 \times 0.50 \times 0.12$	$0.60 \times 0.50 \times 0.40$	$0.30 \times 0.10 \times 0.06$	$0.48 \times 0.25 \times 0.10$
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$	$P2_1$	$P2_1/n$
Dimensionen der Elementarzelle (Å; °)	a: 10.218(1) b: 11.639(2) c: 16.638(3) β: 93.396(3)	a: 10.238(2) b: 11.668(2) c: 16.914(3) β: 93.775(3)	a: 8.8430(10) b: 10.2740(10) c: 9.3890(10) β: 7.792(3)	a: 8.719(1) b: 22.136(3) c: 11.934(2) β: 107.124(3)
Volumen (Å ³); Z	1975.3(5); 4	2016.1(6); 4	845.1(2); 2	2035.0(5); 4
Dichte (kristallogr., g/cm ³)	1.350	1.786	1.284	1.269
lin. Absorptionskoeff. (mm ⁻¹)	2.090	7.154	0.696	0.590
Scanmethode	ω Scans	ω Scans	ω Scans	ω Scans
Absorptionskorrektur	keine	empirisch	empirisch	empirisch
max./min. Transmission	0.788 / 0.322	0.1620 / 0.0993	0.959 / 0.818	0.943 / 0.765
gemessene Reflexe	15886	16133	4230	16856
unabhängige Reflexe	5666	5779	3367	5886
beobachtete Reflexe	4398	4516	2541	3815
R(int)	0.0298	0.0330	0.0312	0.0437
θ Bereich (°)	2.00 - 30.82	1.99 – 30.88	2.19 - 30.85	1.84 - 30.91
Index Bereiche	$-14 \le h \le 14$ $-14 \le k \le 16$ $-23 \le 1 \le 18$	$-13 \le h \le 12$ $-16 \le k \le 9$ $-23 \le 1 \le 23$	$-10 \le h \le 12$ $-9 \le k \le 14$ $-7 \le 1 \le 13$	$-12 \le h \le 12$ $-30 \le k \le 31$ $-15 \le 1 \le 13$
Vollständigkeit bis θ_{max} (%)	91.3	90.9	80.5	91.4
Anzahl verfein. Parameter	153	153	143	277
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0274 / 0.0649	0.0269 / 0.0577	0.0470 / 0.1031	0.0380 / 0.0789
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0435 / 0.0707	0.0430 / 0.0620	0.0728 / 0.1139	0.0804 / 0.0917
goodness-of-fit (S) $^{b)}$ von F^2	1.008	1.027	0.986	0.993
H-Lokalisierung u. Verfein.	geom. / constr.	geom. / constr.	geom. / constr.	difmap / refall
max. / min. Restelektronen- dichte (e/Å ³)	0.577 / -0.363	0.423 / -0.794	0.499 / -0.475	0.383 / -0.324
CCDC Nummer	196488	196486	179838	179839

Tabelle 12.7.6. Kristalldaten sowie Angaben zur Strukturlösung von 21 – 24

b) S = $[\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	25	26	27	28
empirische Formel	C ₈ H ₂₂ GeSe ₃ Si ₃	$C_9H_{22}Se_3Si_4$	$C_{14}H_{26}S_4Si_2$	$C_6H_{18}S_4Si_4$
molare Masse	512.01	479.51	378.77	330.80
Kristallform	Block	Stab	trikliner Stab	Stab
Messtemperatur (K)	295(2)	173(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.30 \times 0.25 \times 0.10$	$0.40 \times 0.20 \times 0.20$	$0.35 \times 0.22 \times 0.10$	$0.40 \times 0.20 \times 0.10$
Kristallsystem	monoklin	triklin	triklin	orthorhombisch
Raumgruppe	$P2_1/c$	P-1	P-1	Pnma
Dimensionen der Elementarzelle (Å; °)	 a: 9.7295(8) b: 10.3208(5) c: 18.3213(16) β: 98.897(4) 	a: 9.631(10) b: 13.908(12) c: 14.986(10) α: 105.81(2) β: 91.40(1) γ: 105.20(2)	 a: 6.9239(1) b: 9.4610(2) c: 15.6112(3) α: 78.053(1) β: 85.929(1) γ: 71.005(1) 	a: 12.1879(4) b: 10.1585(4) c: 13.5404(5)
Volumen (Å ³); Z	1817.6(2); 4	1854(3); 4	946.01(3); 2	1676.4(1); 4
Dichte (kristallogr., g/cm ³)	1.871	1.718	1.330	1.311
lin. Absorptionskoeff. (mm ⁻¹)	7.866	6.190	0.618	0.823
Scanmethode	φ Scans	ω Scans	ω Scans	ω Scans
Absorptionskorrektur	numerisch	empirisch	empirisch	empirisch
max./min. Transmission	0.693 / 0.311	0.371 / 0.191	0.902 / 0.693	0.868 / 0.738
gemessene Reflexe	20268	15074	7668	7891
unabhängige Reflexe	3062	10121	5143	2369
beobachtete Reflexe	4237	4671	3792	1748
R(int)	0.0387	0.0620	0.0253	0.0435
θ Bereich (°)	2.25 - 28.00	1.42 - 30.60	1.33 - 30.67	2.25 - 30.43
Index Bereiche	$-12 \le h \le 10$ $-13 \le k \le 13$ $-24 \le 1 \le 19$	$-13 \le h \le 13$ $-19 \le k \le 14$ $-21 \le 1 \le 21$	$-9 \le h \le 8$ $-13 \le k \le 13$ $-21 \le 1 \le 22$	$-17 \le h \le 11$ $-8 \le k \le 12$ $-10 \le 1 \le 19$
Vollständigkeit bis θ_{max} (%)	96.6	88.7	88.0	88.6
Anzahl verfein. Parameter	147	379 ^{c)}	285	113
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0392 / 0.0905	0.1092 / 0.3397	0.0349 / 0.0737	0.0347 / 0.0664
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0637 / 0.0972	0.1970 / 0.3722	0.0591 / 0.0868	0.0610 / 0.0757
goodness-of-fit (S) $^{b)}$ von F^2	0.984	1.063	1.007	1.025
H-Lokalisierung u. Verfein.	difmap / refall	geom. / constr.	difmap / refall	difmap / refall
max. / min. Restelektronen- dichte (e/Å ³)	0.857 / -0.554	2.255 / -1.173	0.381 / -0.273	0.345 / -0.359
CCDC Nummer	186693	179840	163664	141106

Tabelle 12.7.7. Kristalldaten sowie Angaben zur Strukturlösung von 25 – 28

b) S = $[\Sigma w(Fo^2 - Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

c) 12 Restraints

	29	30	31	32
empirische Formel	$C_6H_{18}Ge_2S_4Si_2$	$C_6H_{18}Se_4Si_2Sn_2$	$C_6H_{18}S_6Si_6$	$C_4H_{12}S_5Si_4$
molare Masse	419.80	699.60	451.10	332.80
Kristallform	Block	Polyeder	flacher Stab	Stab
Messtemperatur (K)	173(2)	173(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.20 \times 0.20 \times 0.18$	$0.40 \times 0.30 \times 0.30$	$0.60 \times 0.18 \times 0.05$	$0.20\times0.12\times0.10$
Kristallsystem	orthorhombisch	orthorhombisch	monoklin	monoklin
Raumgruppe	Pnma	Pbcn	$P2_1/n$	C2/c
Dimensionen der Elementarzelle (Å; °)	a: 12.2673(9) b: 9.9225(8) c: 13.7735(10)	a: 9.8156(1) b: 14.2553(2) c: 13.1109(2)	a: 10.3954(4) b: 8.1079(3) c: 24.2696(9) β: 100.973(1)	a: 16.2544(3) b: 21.2202(1) c: 13.9934(3) β: 111.495(1)
Volumen (Å ³); Z	1676.5(2); 4	1834.53(4); 4	2008.2(1); 4	4490.9(1); 12
Dichte (kristallogr., g/cm ³)	1.663	2.533	1.492	1.477
lin. Absorptionskoeff. (mm ⁻¹)	4.196	10.762	1.022	1.056
Scanmethode	ω Scans	ω Scans	ω Scans	ω Scans
Absorptionskorrektur	empirisch	empirisch	empirisch	empirisch
max./min. Transmission	0.519 / 0.487	0.119 / 0.052	0.812 / 0.581	0.902 / 0.816
gemessene Reflexe	6286	13047	8945	10948
unabhängige Reflexe	2517	2715	5386	5358
beobachtete Reflexe	2171	2170	3747	3015
R(int)	0.0206	0.0516	0.0336	0.0659
θ Bereich (°)	2.22 - 30.69	2.52 - 30.84	1.71 - 30.29	1.65 - 30.82
Index Bereiche	$-17 \le h \le 16$ $-13 \le k \le 7$ $-14 \le 1 \le 19$	$-14 \le h \le 10$ $-20 \le k \le 18$ $-18 \le 1 \le 13$	$-14 \le h \le 14$ $-11 \le k \le 4$ $-12 \le 1 \le 33$	$-23 \le h \le 15$ $-17 \le k \le 29$ $-18 \le 1 \le 17$
Vollständigkeit bis θ_{max} (%)	91.9	93.9	89.3	75.8
Anzahl verfein. Parameter	96	68	235	249
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0216 / 0.0534	0.0278 / 0.0667	0.0392 / 0.0755	0.0470 / 0.0602
endg. R_1 / wR^{2a} (alle Daten)	0.0270 / 0.0548	0.0405 / 0.0704	0.0712 / 0.0861	0.1191 / 0.0752
goodness-of-fit (S) b) von F ²	1.046	1.081	0.977	0.927
H-Lokalisierung u. Verfein.	difmap / mixed	difmap / refall	difmap / refall	difmap / refall
max. / min. Restelektronen- dichte (e/Å ³)	0.436 / -0.899	0.961 / -1.079	0.613 / -0.557	0.394 / -0.433
CCDC Nummer	163663	163665	141105	154127

Tabelle 12.7.8. Kristalldaten sowie Angaben zur Strukturlösung von 29 – 32

b) S = $[\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	33	34	35	36
empirische Formel	$C_4H_{12}Ge_2S_5Si_2$	$C_8H_{24}S_4Si_6$	$C_6H_{16}S_4Si_4$	C ₆ H ₁₆ Se ₄ Si ₄
molare Masse	421.86	417.05	328.79	516.39
Kristallform	Block	Block	trikliner Block	triklines Plättchen
Messtemperatur (K)	295(2)	295(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.40 \times 0.08 \times 0.05$	$0.37 \times 0.25 \times 0.16$	$0.32 \times 0.20 \times 0.10$	$0.35 \times 0.25 \times 0.08$
Kristallsystem	orthorhombisch	monoklin	triklin	triklin
Raumgruppe	Pbcn	$P2_1/n$	P-1	P-1
Dimensionen der Elementarzelle (Å; °)	a: 11.597(1) b: 12.021(1) c: 10.786(1)	a: 12.827(2) b: 10.897(1) c: 16.449(2) β: 96.187(7)	 a: 9.5560(7) b: 9.9653(7) c: 10.2440(7) α: 101.578(2) β: 108.065(2) γ: 114.490(1) 	 a: 9.1902(6) b: 9.5191(6) c: 10.0359(7) α: 93.439(1) β: 108.781(1) γ: 99.924(1)
Volumen (Å ³); Z	1503.6(2); 4	2285.8(5); 4	780.5(1); 2	812.49(9); 2
Dichte (kristallogr., g/cm ³)	1.863	1.212	1.399	2.111
lin. Absorptionskoeff. (mm ⁻¹)	4.813	0.717	0.883	9.295
Scanmethode	φ Scans	φ Scans	ω Scans	ω Scans
Absorptionskorrektur	numerisch	numerisch	empirisch	empirisch
max./min. Transmission			0.874 / 0.695	0.947 / 0.562
gemessene Reflexe	10993	19502	6529	6389
unabhängige Reflexe	1779	3987	4259	4324
beobachtete Reflexe	1412	3270	2840	2788
R(int)	0.0316	0.0549	0.0250	0.0325
θ Bereich (°)	2.44 - 28.00	1.92 - 25.00	2.43 - 30.77	2.16 - 30.58
Index Bereiche	$-15 \le h \le 15$ $-14 \le k \le 15$ $-13 \le 1 \le 12$	$-15 \le h \le 12$ $-12 \le k \le 12$ $-18 \le 1 \le 19$	$-12 \le h \le 13$ $-13 \le k \le 13$ $-9 \le 1 \le 14$	$-11 \le h \le 12$ $-13 \le k \le 10$ $-11 \le 1 \le 13$
Vollständigkeit bis θ_{max} (%)	97.9	99.2	87.2	86.4
Anzahl verfein. Parameter	62	171	191	131
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0268 / 0.0600	0.0632 / 0.1572	0.0497 / 0.1052	0.0436 / 0.0842
endg. $R_1 / wR^{2 a}$ (alle Daten)	0.0431 / 0.0633	0.0786 / 0.1668	0.0872 / 0.1232	0.0839 / 0.0988
goodness-of-fit (S) $^{b)}$ von F^2	1.031	1.098	1.018	0.955
H-Lokalisierung u. Verfein.	difmap / mixed	geom. / mixed	difmap / refall	difmap / constr.
max. / min. Restelektronen- dichte ($e/Å^3$)	0.665 / -0.267	0.492 / -0.342	1.249 / -0.781	0.982 / -1.019
CCDC Nummer	201354	199979	154128	154129

Tabelle 12.7.9. Kristalldaten sowie Angaben zur Strukturlösung von 33 – 36

a) $R_1 = \Sigma(||Fo|-|Fc||)/\Sigma|Fo|$, $wR^2 = [\Sigma(w(Fo^2-Fc^2)^2)/\Sigma(wFo^2)]^{1/2})$, $w = 1/[\sigma^2(Fo^2)+(aP)^2+bP]$ mit $P = (Fo^2+2Fc^2)/3$ b) $S = [\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	37	38	39
empirische Formel	C ₇ H ₁₆ DCl ₃ Si ₄ Te ₄	$C_6H_{18}S_4Si_5$	$C_5H_{14}S_4Si_4$
molare Masse	831.32	358.89	314.76
Kristallform	Polyeder	Block	langes Plättchen
Messtemperatur (K)	173(2)	293(2)	173(2)
Kristallfarbe	farblos	farblos	farblos
Kristallgröße (mm ³)	$0.80 \times 0.40 \times 0.04$	$0.17 \times 0.11 \times 0.07$	$0.80 \times 0.20 \times 0.08$
Kristallsystem	triklin	monoklin	triklin
Raumgruppe	P-1	$P2_1/c$	P-1
Dimensionen der Elementarzelle (Å; °)	a: 9.071(1) b: 10.838(2) c: 12.568(2) α: 72.891(3) β: 73.074(3) γ: 87.304(3)	a: 8.2255(5) b: 15.820(1) c: 27.722(2) β: 90.502(4)	a: 9.423(1) b: 10.268(1) c: 15.283(2) α: 90.048(3) β: 91.896(3) γ: 100.346(2)
Volumen (Å ³); Z	1128.6(3); 2	3607.3(4); 8	1453.8(3); 4
Dichte (kristallogr., g/cm ³)	2.446	1.322	1.438
lin. Absorptionskoeff. (mm ⁻¹)	5.671	0.833	0.945
Scanmethode	ω Scans	φ Scans	ω Scans
Absorptionskorrektur	empirisch	numerisch	empirisch
max./min. Transmission	0.805 / 0.093		0.928 / 0.519
gemessene Reflexe	2224	21471	11951
unabhängige Reflexe	2224	5628	7956
beobachtete Reflexe	1768	3481	5669
R(int)	0.0000	0.0808	0.0220
θ Bereich (°)	2.35 - 30.86	1.95 - 24.00	1.33 - 30.88
Index Bereiche	$0 \le h \le 12$ $-14 \le k \le 4$ $-9 \le 1 \le 13$	$-9 \le h \le 8$ $-18 \le k \le 18$ $-31 \le 1 \le 18$	$-13 \le h \le 13$ $-14 \le k \le 14$ $-21 \le 1 \le 19$
Vollständigkeit bis θ_{max} (%)	31.3	99.3	87.2
Anzahl verfein. Parameter	170	283	347
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0320 / 0.1008	0.0521 / 0.0909	0.0300 / 0.0658
endg. R_1 / wR^{2a} (alle Daten)	0.0417 / 0.1065	0.1195 / 0.1046	0.0532 / 0.0729
goodness-of-fit (S) $^{b)}$ von F^2	1.101	0.994	0.959
H-Lokalisierung u. Verfein.	geom. / constr.	geom. / mixed	difmap / refall
max. / min. Restelektronen- dichte ($e/Å^3$)	0.598/-0.721	0.268 / -0.333	0.372 / -0.299
CCDC Nummer	154130	199980	154131

Tabelle 12.7.10. Kristalldaten sowie Angaben zur Strukturlösung von 37-39

a) $R_1 = \Sigma(||Fo|-|Fc||)/\Sigma|Fo|$, $wR^2 = [\Sigma(w(Fo^2-Fc^2)^2)/\Sigma(wFo^2)]^{1/2})$, $w = 1/[\sigma^2(Fo^2)+(aP)^2+bP]$ mit $P = (Fo^2+2Fc^2)/3$ b) $S = [\Sigma w(Fo^2-Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

	40	41	42
empirische Formel	$C_{10}H_{30}S_2Si_6$	$C_{12}H_{36}Cl_6Si_8$	$C_{12}H_{36}S_{3}Si_{8}$
molare Masse	383.00	617.83	501.31
Kristallform	langes Plättchen	Plättchen	Block
Messtemperatur (K)	173(2)	173(2)	173(2)
Kristallfarbe	farblos	farblos	farblos
Kristallgröße (mm ³)	$1.40\times0.45\times0.10$	$0.50 \times 0.20 \times 0.10$	$0.35 \times 0.25 \times 0.15$
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/n$	$P2_1/n$	C2/c
Dimensionen der Elementarzelle (Å; °)	a: 9.9221(2) b: 12.5947(1) c: 18.0410(3) β: 104.747(1)	a: 10.982(1) b: 17.012(1) c: 17.278(1) β: 100.401(2)	a: 14.697(2) b: 12.017(1) c: 31.930(4) β: 100.812(2)
Volumen (Å ³); Z	2180.24(6); 4	3175.0(3); 4	5539(1); 8
Dichte (kristallogr., g/cm ³)	1.167	1.292	1.202
lin. Absorptionskoeff. (mm ⁻¹)	0.561	0.845	0.612
Scanmethode	ω Scans	ω Scans	ω Scans
Absorptionskorrektur	empirisch	empirisch	empirisch
max./min. Transmission	0.766 / 0.377	0.920 / 0.677	0.914 / 0.814
gemessene Reflexe	10008	14079	12037
unabhängige Reflexe	5408	6291	6510
beobachtete Reflexe	4073	4435	3151
R(int)	0.0339	0.0341	0.0713
θ Bereich (°)	1.99 - 30.35	1.69 – 29.36	1.30 - 29.47
Index Bereiche	$-5 \le h \le 13$ $-17 \le k \le 10$ $-21 \le 1 \le 23$	$-13 \le h \le 12$ $-23 \le k \le 4$ $-22 \le 1 \le 22$	$-19 \le h \le 19$ $-16 \le k \le 8$ $-15 \le l \le 42$
Vollständigkeit bis θ_{max} (%)	82.5	72.1	84.6
Anzahl verfein. Parameter	283	379	220
endg. R_1 / wR^{2a} (I > 2 σ (I))	0.0393 / 0.0875	0.0368 / 0.0900	0.0532 / 0.1030
endg. R_1 / wR^{2a} (alle Daten)	0.0610 / 0.0972	0.0643 / 0.1008	0.1493 / 0.1297
goodness-of-fit (S) ^{b)} von F ²	0.988	1.000	0.904
H-Lokalisierung u. Verfein.	difmap / refall	difmap / refall	geom. / constr.
max. / min. Restelektronen- dichte (e/Å ³)	0.368 / -0.718	0.472 / -0.410	0.545 / -0.421
CCDC Nummer	141107	164379	164380

Tabelle 12.7.11. Kristalldaten sowie Angaben zur Strukturlösung von 40 – 42

b) $S = [\Sigma w(Fo^2 - Fc^2)^2]/(n-p)^{1/2}$, n= verwendete Reflexe, p = verwendete Parameter

12.8. Synthese thiobutylsubstituierter Silane

Beim Arbeiten mit diesen Substanzen sollte sehr vorsichtig und überlegt hantiert werden, da sowohl die eingesetzten Mercaptane als auch die Reaktionsprodukte einen sehr unangenehmen Geruch verbreiten, der im Gegensatz zum flüchtigen Schwefelwasserstoff sehr langlebig sein kann. Es hat sich als günstig erwiesen, alle mit den Reaktionslösungen in Berührung gekommenen Glasgeräte sofort im Abzug mit konzentrierter HNO₃ zu behandeln, wodurch jegliche Mercaptanreste schnell restlos oxidiert werden. Dies gilt sinngemäß auch für alle Umsetzungen mit Ethan-1,2-dithiol (dessen Geruch noch unangenehmer und langlebiger ist) sowie entsprechende Selen- und Tellurverbindungen.

a) Darstellung aus dem entsprechenden Chlorsilan mit Thiobutanol und NEt₃

In Abhängigkeit von der molaren Masse und der Menge an verfügbarem Chlorsilan wurden 2 - 10 mmol des Chlorsilans in 20 - 40 ml getrocknetem *n*-Hexan gelöst und zunächst die berechnete Menge Thiobutanol, dann unter Rühren eine äquimolare Menge Triethylamin bei Raumtemperatur zugegeben. Der Reaktionsverlauf kann leicht durch die allmähliche Ausfällung von Triethylammoniumchlorid verfolgt werden. Im Allgemeinen steigt die Reaktionsfähigkeit des Silans mit der Anzahl an Chlorsubstituenten und nimmt mit der Anzahl an Phenylsubstituenten ab. So reagierten SiCl₄ oder Cl₂MeSi–SiMeCl₂ fast augenblicklich, während die Reaktionsmitchung vom ausgefallenen Ammoniumsalz filtriert und das Lösungsmittel im Vakuum entfernt, wobei die thiobutylsubstituierten Mono- bzw. Oligosilane als farblose ölige Rückstände anfielen. *Tert*-butylthiosubstituierte Silane wurden nach der gleichen allgemeinen Arbeitsvorschrift dargestellt, wobei die Reaktionen des gleichen Chlorsilans mit *tert*-Butanthiol deutlich langsamer abliefen als mit *n*-Thiobutanol.

b) Darstellung von Me₂SiCl(SBu) (größerer Ansatz) und Me₂Si(SBu)(NEt₂)

10 g (77 mmol) Me₂SiCl₂ wurden in 100 ml *n*-Hexan gelöst und 7.14 ml (66 mmol) Thiobutanol sowie 9.6 ml (69 mmol) Triethylamin unter Rühren zugetropft. Nach Rühren über Nacht wurde das ausgefallene Triethylammoniumchlorid abfiltriert. Das Lösungsmittel sowie überschüssiges Me₂SiCl₂ wurden im Vakuum entfernt. Die anschließende Destillation ergab 5 g (27 mmol, 35 %) Me₂SiCl(SBu), Siedepunkt: 48 °C / 0.6 kPa sowie 2.5 g Destillationsrückstand, bei dem es sich um Me₂Si(SBu)₂ handelte.

Me₂SiCl(SBu): GC/MS (m/e, rel. Int.): 182 (M⁺, 17), 167 (M⁺–Me, 4), 153 (M⁺–Et, 7), 139 (M⁺–Pr, 7), 111 (29), 93 (Me₂SiCl, 69), 56 (100).

0.18 g (1.0 mmol) Me₂SiCl(SBu) wurden in 10 ml *n*-Hexan gelöst und 0.21 ml (2.0 mmol) Diethylamin wurden zugegeben. Nach Rühren über Nacht wurde vom ausgefallenen Diethylammoniumchlorid abfiltriert und anschließend das Lösungsmittel im Vakuum entfernt. Das entstandene Me₂Si(SBu)(NEt₂) fiel als farbloses Öl in fast quantitativer Ausbeute an.

Bei einem Versuch, auf ähnliche Weise durch Reaktion von 11.4 g (50 mmol) Cl₂MeSi– SiMeCl₂ in 100 ml *n*-Hexan mit 5.4 ml (50 mmol) Thiobutanol und 6.9 ml (50 mmol) Triethylamin durch fraktionierte Destillation zu reinem 1-Thiobutyl-1,2,2-trichloro-1,2-dimethyldisilan zu gelangen, führte bei der Destillation zu 2.5 g einer Fraktion bei 92 – 93 °C / 0.6 kPa und 1.5 g einer zweiten Fraktion bei 120 – 130 °C / 0.2 kPa neben 2 g Rückstand.

Die ²⁹Si NMR Spektren der beiden Fraktionen zeigten aber, dass es sich jeweils um Produktgemische handelte: 1. Fraktion: Cl₂MeSi–SiMeCl₂ (19 %), BuSClMeSi–SiMeCl₂ (57 %), (BuS)₂MeSi–SiMeCl₂ (10 %), BuSClMeSi–SiMeClSBu (14 %) und 2. Fraktion: Cl₂MeSi–SiMeCl₂ (4 %), BuSClMeSi–SiMeCl₂ (36 %), (BuS)₂MeSi–SiMeCl₂ (18 %), BuSClMeSi–SiMeClSBu (36 %), (BuS)₂MeSi–SiMeClSBu (6 %);

BuSClMeSi–SiMeCl₂: GC/MS (m/e, rel. Int.): 280/282 (M⁺, 1), 265/267 (M⁺–Me, 1), 245 (M⁺–Cl, 2), 223/225 (M⁺–Bu, 73), 167 (MeSiClSBu, 29), 111 (CHSiCl₂, 100), 93 (Me₂SiCl, 41).

 $Si_2Me_2Cl_2(SBu)_2$: GC/MS: 299 (M⁺–Cl, 1), 277 (M⁺–Bu, 15), 221 (Me_2Si_2Cl_2S_2H, 27), 205 (MeSi_2Cl_2S_2, 2), 185 (Me_2Si_2Cl_2, 18), 111 (CHSiCl_2, 15), 57 (Bu, 100).

c) Darstellung von Tris(methyldithiobutylsilyl)methylsilan, MeSi[SiMe(SBu)₂]₃

0.34 g (0.52 mmol) MeSi[SiMe(SBu)₂]₂(SiClMeSBu), dargestellt nach der Vorschrift *a*) aus MeSi(SiCl₂Me)₃ [550] mit 5 Äquivalenten BuSH und NEt₃, wurden in 2 ml getrocknetem THF gelöst und eine Mischung aus 0.056 ml (0.52 mmol) BuSH und 0.325 ml 1.6 M BuLi (0.52 mmol) in Hexan in 3 ml THF (entspricht 0.52 mmol BuSLi in THF) mit einer Spritze langsam zugegeben. Die Reaktionsmischung wurde 2 h bei Raumtemperatur gerührt, bevor das Lösungsmittel im Vakuum entfernt und durch 10 ml *n*-Hexan ersetzt wurde. Vom dabei ausgefallenen LiCl wurde filtriert und anschließend das Hexan im Vakuum wieder entfernt. Das zurückbleibende farblose Öl erwies sich laut ¹H, ¹³C und ²⁹Si NMR als reines

MeSi[SiMe(SBu)₂]₃.

d) Darstellung von Tetra-tert-butylthiodimethyldisilan, (${}^{t}BuS$)₂MeSi–SiMe(S ${}^{t}Bu$)₂

1.12 ml (10 mmol) *tert*-Butylthiol und 1.40 ml (10 mmol) Triethylamin wurden zu einer Lösung von 1.14 g (5.0 mmol) Cl₂MeSi–SiMeCl₂, gelöst in 40 ml *n*-Hexan zugegeben. Nach

zwei Tagen wurde vom ausgefallenen Triethylammoniumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt. Das zurückbleibende Öl bestand laut NMR Charakterisierung hauptsächlich aus dem symmetrisch zweifach *tert*-butylthiosubstituierten Disilan ^tBuSClMeSi–SiMeClS^tBu und wurde in 5 ml THF gelöst. Eine Mischung aus 1.12 ml (10 mmol) HS^tBu und 6.25 ml 1.6 M *n*-BuLi (10 mmol) in 10 ml THF wurde über eine Spritze langsam zugetropft. Nach drei Tagen Rühren bei Raumtemperatur wurde das Lösungsmittel abgezogen und gegen 20 ml *n*-Hexan ersetzt. Filtration vom ausgefallenen LiCl und Entfernen des Lösungsmittels im Vakuum lieferte schließlich 1.5 g (67 %) (^tBuS)₂MeSi–SiMe(S^tBu)₂ als hellgelben Feststoff.

12.9. Synthese seleno- und tellurobutylsubstituierter Silane

a) Darstellung von BuELi Lösungen (E = Se, Te) und Reaktionen mit Chlorsilanen

10 ml einer 1.6 M *n*-BuLi Lösung in Hexan wurden unter Rühren zu einer Suspension von 1.3 g (16.5 mmol) Selenpulver bzw. 2.1 g (16.5 mmol) Tellurpulver in 30 ml trockenem THF im Eisbad zugetropft.

Das Selen löste sich dabei schnell auf unter Bildung einer anfangs tieforangen Lösung, die sich nach Zugabe der gesamten Menge BuLi fast völlig entfärbte.

Das Tellurpulver ist nach etwa einer Stunde vollständig aufgelöst unter Bildung einer tieforangenen BuTeLi Lösung.

Die so dargestellten, etwa 0.4 M Lösungen von BuSeLi bzw. BuTeLi in THF / Hexan wurden sofort für die Reaktionen mit Chlorsilanen weiterverwendet.

Das entsprechende Chlorsilan (meist 1 - 2 mmol) wurde in 20 ml *n*-Hexan vorgelegt, und die berechnete Menge der 0.4 M BuSeLi Lösung im Eisbad (!) mit einer Spritze zugetropft. Nach Rühren über Nacht wurde vom ausgefallenen LiCl abfiltriert und die Lösung eingeengt. Die selenobutylsubstituierten Silane bzw. Oligosilane fallen dabei als hellgelbe Öle mit unangenehmem Geruch an.

Im Falle der tellurobutylsubstituierten Silane wurden die Umsetzungen mit Chlorsilanen – auch aufgrund der hohen Luftempfindlichkeit von BuTeLi Lösungen – umgekehrt durchgeführt: zu der auf etwa –30 °C abgekühlten BuTeLi Lösung wurde die berechnete Menge des Chlorsilans unter Rühren zugetropft. Nach 20 min wurde bei etwa 0 °C das Lösungsmittel im Vakuum abgezogen und gegen 10 ml Hexan ersetzt. Vom ausgefallenen LiCl wurde abfiltriert bzw. dekantiert und das Lösungsmittel im Vakuum abgezogen. Dabei bleiben die tellurobutylsubstituierten Silane als gelbe Öle zurück, die einen charakteristischen unangenehmen Geruch besitzen und gegen Luft und Feuchtigkeit extrem empfindlich sind. Von einigen selenobutylsubstituierten Monosilanen mit nur einem Selenobutylrest konnten auch Massenspektren aufgenommen werden:

Me₃SiSeBu: GC/MS (m/e, rel. Int.): 210 (M⁺, 8), 195 (Me₂SiSeBu, 5), 139 (Me₂SiSeH, 12), 123 (MeSiSe, 5), 73 (Me₃Si, 100).

Me₂SiCl(SeBu): GC/MS: 230 (M⁺, 18), 174 (Me₂SiClSeH, 29), 159 (MeSiClSeH, 9), 123 (MeSiSe, 4), 93 (Me₂SiCl, 100), 57 (Bu, 24).

MeSiCl₂(SeBu): GC/MS: 250 (M⁺, 8), 194 (MeSiCl₂SeH, 13), 138 (BuSeH, 12), 113 (MeSiCl₂, 22), 57 (Bu, 100).

*Me*₂*PhSi*(*SeBu*): GC/MS: 272 (M⁺, 8), 257 (MePhSiSeBu, 1), 135 (Me₂PhSi, 100), 105 (PhSi, 6).

MePh₂Si(SeBu): GC/MS: 334 (M⁺, 10), 197 (MePh₂Si, 100), 105 (PhSi, 9).

*Ph*₂*SiCl*(*SeBu*): GC/MS: 354 (M⁺, 18), 217 (Ph₂SiCl, 100), 181 (12).

Im Falle von Verbindungen mit mehr als einem Selenobutylrest konnte im GC/MS nur das Massenspektrum des Zersetzungsproduktes Bu₂Se₂ beobachtet werden:

Bu₂Se₂: GC/MS: 274 (M⁺, 32), 218 (BuSe₂H, 32), 162 (Se₂H₂, 13), 135 (9), 57 (Bu, 100).

Wird die Umsetzung der BuSeLi Lösung mit Me₃SiCl bei Raumtemperatur (statt bei 0 °C) durchgeführt, so besteht das Produkt laut NMR hauptsächlich aus einem äquimolaren Gemisch von Bu₂Se und (Me₃Si)₂Se, die (neben Me₃SiSeBu) auch mittels GC/MS detektiert werden konnten:

*Bu*₂*Se*: NMR (ppm) δ_{Se} : +158; δ_{C} : 23.4, 32.8, 23.0, 13.6; δ_{H} : 2.53, 1.63, 1.41, 0.91;

GC/MS: 194 (M⁺, 21), 165 (BuSe(CH₂)₂, 4), 138 (BuSeH, 40), 109 (16), 57 (Bu, 100).

 $(Me_3Si)_2Se:$ GC/MS: 226 (M⁺, 6), 211 (M⁺–Me, 14), 73 (Me_3Si, 100); NMR: Tab. 9.1.1.

Im Falle der Tellurverbindungen konnten mittels GC/MS nur die Neben- bzw. Zersetzungsprodukte Bu₂Te und Bu₂Te₂ nachgewiesen werden:

Bu₂Te: GC/MS: 244 (M⁺ (Bu₂¹³⁰Te), 13), 186 (¹³⁰Te(CH₂)₄, 9), 145 (¹³⁰TeMe, 2), 130 (Te, 3), 57 (Bu, 100).

*Bu*₂*Te*₂: GC/MS: 370 (M⁺ (Bu₂¹²⁸Te₂ und Bu₂¹²⁶Te¹³⁰Te), 22), 314 (BuTe₂H, 17), 258 (H₂Te₂, 26), 187 (BuTe, 2), 145 (TeMe, 2), 130 (Te, 3), 57 (Bu, 100).

b) Darstellung von Butylselenol (n-BuSeH) und Reaktionen mit Chlorsilanen

3.8 g (35 mmol) Me₃SiCl wurden bei 0 °C langsam zu 80 ml einer nach *a*) dargestellten 0.4 M BuSeLi Lösung (32 mmol) zugetropft. Nach Rühren über Nacht wurde das Lösungsmittel im Vakuum abgezogen und 5 ml *n*-Hexan zugegeben. Nach Filtration vom ausgefallenen LiCl wurde das gebildete Me₃SiSeBu durch Zugabe von 1.12 g (35 mmol) Methanol in Me₃SiOMe und BuSeH gespalten. Eine fraktionierte Destillation des Gemisches im Vakuum ergab 2.9 g (66 %) BuSeH als farblose Flüssigkeit (Kp: 113 °C, d: 1.22 g cm⁻³ [53]).

In Analogie zur Vorschrift in 12.8.a) wurden 1 – 2 mmol des entsprechenden Chlorsilans in 20 ml *n*-Hexan gelöst und dann die berechneten äquimolaren Mengen BuSeH und NEt₃ unter Rühren bei Raumtemperatur zugetropft. Nach 1 – 2 Tagen wurde vom ausgefallenen Triethylammoniumsalz abfiltriert und das Lösungsmittel im Vakuum abgezogen, wobei die selenobutylsubstituierten Silane als hellgelbe Öle zurückblieben.

12.10. 1,2-Dithiolat-Derivate

a) Ethan-1,2-dithiolate

Zu 1.1 g (1.0 mmol) Me₃SiCl, gelöst in 40 ml *n*-Hexan, wurden 0.38 g (4.0 mmol) Ethan-1,2dithiol und 1.1 ml (8.0 mmol) Triethylamin unter Rühren zugetropft. Nach Rühren über Nacht wurde vom ausgefallenen Ammoniumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt. Zurück blieben 0.68 g (2.9 mmol) 1,2-*Bis*(trimethylsilylthio)ethan als öliger Rückstand.

 $Me_3SiS(CH_2)_2SSiMe_3$: GC/MS (m/e, rel. Int.): 238 (M⁺, 13), 223 (M⁺–Me, 18), 135 (MeSiSCH_2CH_2S, 14), 133 (Me_3SiSCH_2CH_2, 13), 73 (Me_3Si, 100).

Nach der gleichen Vorschrift wurde aus 0.52 g (4.0 mmol) Me₂SiCl₂, 0.38 g (4.0 mmol) HS(CH₂)₂SH und 1.1 ml (8.0 mmol) NEt₃ farbloses, öliges *cyclo*-C₂H₄(S)₂SiMe₂ erhalten.

*cyclo-Me*₂*Si*(*S*)₂*C*₂*H*₄: GC/MS: 150 (M⁺, 52), 135 (M⁺–Me, 100), 109 (17), 107 (MeSiS₂, 20), 101 (12), 75 (SSiMe, 29).

Aus 0.34 g (2.0 mmol) SiCl₄, 0.38 g (4.0 mmol) $HS(CH_2)_2SH$ und 1.1 ml (8.0 mmol) NEt₃ entstanden analog 0.32 g (1.5 mmol) farbloses kristallines *spiro*-[C₂H₄(S)₂]₂Si.

Die Reaktion von 0.30 g (2.0 mmol) MeSiCl₃ mit 0.19 g (2.0 mmol) HS(CH₂)₂SH und 0.55 ml (4.0 mmol) NEt₃ ergab ein Gemisch aus 64 % $C_2H_4(S)_2SiMe-SC_2H_4S-SiMe(S)_2C_2H_4$ neben 18 % $C_2H_4(S)_2SiMeCl$ und 18 % $C_2H_4(S)_2SiMe-SC_2H_4SH$. Die Wiederholung dieser Reaktion mit 0.30 g (2.0 mmol) MeSiCl₃, 0.28 g (3.0 mmol) HS(CH₂)₂SH und 0.83 ml (6.0 mmol) NEt₃ (Molverhältnis: 1:1.5:3) lieferte eine Mischung aus 80 % $C_2H_4(S)_2SiMe-SC_2H_4SH$.

 $C_2H_4(S)_2SiMeCl:$ GC/MS: 170 (M⁺, 75), 155 (M⁺–Me, 100), 142 (S₂SiClMe, 10), 129 (13), 111 (HSSiClMe, 30), 63 (SiCl, 39).

Der Sechsring $C_2H_4(S)_2Si_2Me_4$ bildete sich als farbloses Öl bei der Reaktion von 0.37 g (2.0 mmol) ClMe₂Si–SiMe₂Cl mit 0.19 g (2.0 mmol) HS(CH₂)₂SH und 0.55 ml (4.0 mmol) NEt₃.

 $C_2H_4(S)_2Si_2Me_4$: GC/MS: 208 (M⁺, 7), 180 (S₂Si₂Me₄, 5), 165 (Me₃SiSC₂H₄S, 100), 135 (MeSiSC₂H₄S, 5), 90 (Me₂SiS, 7), 75 (MeSiS, 22), 73 (Me₃Si, 42).

Die Reaktion von 0.23 g (1.0 mmol) $Cl_2MeSi-SiMeCl_2$ mit 0.19 g (2.0 mmol) $HS(CH_2)_2SH$ und 0.55 ml (4.0 mmol) NEt₃ ergab die bicyclische Verbindung $C_2H_4(S)_2SiMe-SiMe(S)_2C_2H_4$ in Form farbloser Kristalle, F. 99 °C, die aber auch nach Umkristallisation aus Hexan für eine Kristallstrukturanalyse nicht geeignet waren.

Wird die Reaktion mit der doppelten Menge des Disilans durchgeführt, so entsteht ein Gemisch aus 56 % $C_2H_4(S)_2SiMe-SiMeCl_2$ neben $Cl_2MeSi-SiMeCl_2$ und $C_2H_4(S)_2SiMe-SiMe(S)_2C_2H_4$.

Der Versuch einer fraktionierten Destillation eines größeren Ansatzes (aus 12.5 g Cl₂MeSi–SiMeCl₂, 4.7 g HS(CH₂)₂SH und 13.8 ml NEt₃) ergab nach Aufarbeitung bei der Destillation 2.6 g einer Fraktion Kp: 120 – 130 °C / 0.6 kPa. Ein ²⁹Si NMR Spektrum des Produkts zeigte aber, dass es wieder zu einem Gemisch aus etwa 63 % C₂H₄(S)₂SiMe–SiMeCl₂ neben 13 % Cl₂MeSi–SiMeCl₂ und 18 % C₂H₄(S)₂SiMe–SiMe(S)₂C₂H₄ äquilibriert war. Neben diesen Disilanen fanden sich noch 5 % C₂H₄(S)₂SiMeCl und 1 % *spiro*-[C₂H₄(S)₂]₂Si als während der Destillation gebildete Zersetzungsprodukte.

b) Benzen-1,2-dithiolate

0.22 g (2.0 mmol) Me₃SiCl wurden in 40 ml *n*-Hexan gelöst und 0.12 g (0.85 mmol) o-C₆H₄(SH)₂ sowie 0.28 ml (2.0 mmol) NEt₃ unter Rühren zugegeben. Nach Reaktion über Nacht wurde vom ausgefallenen HNEt₃Cl abfiltriert und das Hexan im Vakuum entfernt, wobei 0.49 g (1.7 mmol) o-C₆H₄(SSiMe₃)₂ als farblose ölige Flüssigkeit zurückblieben.

Die analoge Reaktion von 0.13 g (1.0 mmol) Me₂SiCl₂ mit 0.12 g (0.85 mmol) o-C₆H₄(SH)₂ und 0.28 ml (2.0 mmol) NEt₃ ergab 0.17 g (0.86 mmol) festes kristallines C₆H₄(S)₂SiMe₂, F: 55 °C.

Entsprechend führte die Reaktion von 0.191 g (1.125 mmol) SiCl₄ mit 0.32 g (2.25 mmol) *o*- $C_6H_4(SH)_2$ und 0.63 ml (4.5 mmol) NEt₃ in 20 ml Toluen als Lösungsmittel nach Filtration und Entfernung des Lösungsmittels im Vakuum zu 0.30 g (0.97 mmol) *spiro*- $[C_6H_4(S)_2]_2$ Si, F: > 190 °C, welches in Hexan nur wenig löslich ist.

Die Umsetzung von 0.17 g (0.75 mmol) $Cl_2MeSi-SiMeCl_2$, gelöst in 20 ml Toluen, mit 0.21 g (1.5 mmol) $o-C_6H_4(SH)_2$ und 0.42 ml (3.0 mmol) NEt₃ ergab 0.24 g (0.67 mmol) $C_6H_4(S)_2SiMe-SiMe(S)_2C_6H_4$, F: 115 °C. Die entsprechende Reaktion mit der doppelten Menge $Cl_2MeSi-SiMeCl_2$ lieferte ein flüssiges Produktgemisch aus 67 % $C_6H_4(S)_2SiMe-SiMeCl_2$ neben $C_6H_4(S)_2SiMe-SiMe(S)_2C_6H_4$ und $Cl_2MeSi-SiMeCl_2$.

c) Reaktionen der Spirosilane $[C_2H_4(S)_2]_2$ Si und $[C_6H_4(S)_2]_2$ Si mit PhSLi

0.11 g (1.0 mmol) Thiophenol wurden in 3 ml THF gelöst und 0.625 ml (1.0 mmol) 1.6 M *n*-BuLi Lösung wurden langsam zugetropft. Die so erhaltene PhSLi Lösung wurde zu 1.0 mmol $[C_2H_4(S)_2]_2Si$ bzw. $[C_6H_4(S)_2]_2Si$, gelöst in 5 ml THF, zugetropft und ein Teil des Lösungsmittels im Vakuum entfernt (auf etwa 2 ml Lösung). Die erhaltenen Lösungen von $[C_2H_4(S)_2]_2SiSPh^-Li^+$ bzw. $[C_6H_4(S)_2]_2SiSPh^-Li^+$ wurden NMR spektroskopisch untersucht.

12.11.Disilylchalcogenide, Oligosilanylchalcogenolate und -chalcogenole

 Si_2Me_5Cl [116], $(Me_3Si)_2SiClMe$ [793], $(Me_3Si)_3SiCl$ [794], $(Me_3Si)_3SiMe$ [563] und $(Me_3Si)_4Si$ [501] wurden nach Literaturvorschriften dargestellt.

a) Reaktionen der Chlorsilane $(Me_3Si)_xMe_{3-x}SiCl (x = 0, 1, 2)$ mit H_2S / NEt_3

2.0 mmol des Chlorsilans (Me₃Si)_xMe_{3-x}SiCl (x = 0, 1, 2) wurden in 10 ml Hexan gelöst und ein Gasstrom getrockneten Schwefelwasserstoffs wurde unter Rühren durch die Lösung geleitet, während 0.28 ml (2.0 mmol) NEt₃ langsam über eine Spritze zugetropft wurden. Nach 30 min wurden die ausgefallenen Ammoniumsalze abfiltriert und das Lösungsmittel im Vakuum entfernt. Zurück blieben reines (Me₃Si)₂S, eine Mischung aus Me₅Si₂SH und (Me₅Si₂)₂S (35:65) bzw. (Me₃Si)₂SiMeSH als ölige Rückstände.

 Me_5Si_2SH : GC/MS (m/e, rel. Int.): 164 (M⁺, 2), 149 (M⁺–Me, 55), 133 (Me₃Si₂S, 2), 131 (Me₅Si₂, 2), 91 (Me₂SiSH, 8), 73 (Me₃Si, 100).

 $(Me_5Si_2)_2S$: GC/MS: 294 (M⁺, 1), 279 (M⁺–Me, 3), 221 (Me₇Si₃S, 20), 191 (Me₅Si₃S, 4), 163 (Me₅Si₂S, 4), 131 (Me₅Si₂, 15), 116 (Me₄Si₂, 30), 73 (Me₃Si, 100).

Me₇Si₃SH: GC/MS: 222 (M⁺, 11), 207 (M⁺–Me, 5), 191 (Me₅Si₃S, 3), 148 (Me₄Si₂S, 23), 133 (Me₃Si₂S, 51), 119 (Me₂Si₂SH, 5), 73 (Me₃Si, 100).

b) Darstellung von Li_2E Lösungen in THF (E = S, Se, Te)

1.0 mmol des Chalcogens (Schwefel, graues Selenpulver bzw. Tellurpulver) wurden in 2 ml THF suspendiert und unter Rühren wurden 2.0 ml einer 1.0 M Lösung von Li[BEt₃H] in THF (Super-Hydrid[®]) zugetropft. Schwefel und Selen lösen sich dabei schnell auf, wobei die Lösungen zunächst gelb bzw. tiefbraun sind (Polysulfid bzw. -selenid), sich aber nach voll-ständiger Zugabe des Li[BEt₃H] fast vollständig entfärben. Im Falle von Te dauert es etwa 1 h, bis sich das gesamte Tellurpulver unter Bildung einer rotvioletten Lösung aufgelöst hat.

c) Reaktionen der Chlorsilane $(Me_3Si)_xMe_{3-x}SiCl (x = 0, 1, 2, 3)$ mit $Li_2E (E = S, Se, Te)$

Zu den nach 12.11.b) dargestellten Li₂E Lösungen wurden bei 0 °C unter Rühren 2.0 mmol des Chlorsilans (Me₃Si)_xMe_{3-x}SiCl (x = 0, 1, 2, 3) zugetropft.

Nach 30 min wurde das THF im Vakuum abgezogen und 10 ml Hexan zugegeben. Die Mischungen wurden filtriert und das Lösungsmittel wieder im Vakuum entfernt, wobei die *Bis*(oligosilanyl)chalcogenide [(Me₃Si)_xMe_{3-x}Si]₂E als ölige Rückstände erhalten wurden.

 $(Me_7Si_3)_2S$: GC/MS: 410 (M⁺, 4), 395 (M⁺–Me, 5), 337 (Me₁₁Si₅S, 39), 249 (Me₇Si₄S, 34), 232 (Me₈Si₄, 54), 221 (Me₇Si₃S, 9), 191 (Me₅Si₃S, 13), 189 (Me₇Si₃, 10), 131 (Me₅Si₂, 40), 73 (Me₃Si, 100).

 $(Me_9Si_4)_2S$: GC/MS: 526 (M⁺, 3), 511 (M⁺–Me, 2), 453 (Me₁₅Si₇S, 2), 438 (Me₁₄Si₇S, 1), 365 (Me₁₁Si₆S, 3), 348 (Me₁₂Si₆, 56), 279 (Me₉Si₄S, 9), 249 (Me₇Si₄S, 7), 247 (Me₉Si₄, 5), 232 (Me₈Si₄, 5), 191 (Me₅Si₃S, 26), 173 (28), 131 (Me₅Si₂, 31), 73 (Me₃Si, 100).

 $(Me_5Si_2)_2Se:$ GC/MS: 342 (M⁺, 2), 327 (M⁺–Me, 1), 269 (Me₇Si₃Se, 11), 239 (Me₅Si₃Se, 2), 181 (Me₃Si₂Se, 3), 131 (Me₅Si₂, 14), 116 (Me₄Si₂, 16), 73 (Me₃Si, 100).

 $(Me_9Si_4)_2Se:$ GC/MS: 574 (M⁺, 1), 559 (M⁺–Me, 1), 501 (Me_{15}Si_7Se, 1), 413 (Me_{11}Si_6Se, 2), 348 (Me_{12}Si_6, 43), 327 (Me_9Si_4Se, 4), 297 (Me_7Si_4Se, 3), 247 (Me_9Si_4, 3), 239 (Me_5Si_3Se, 14), 189 (Me_7Si_3, 4), 173 (24), 131 (Me_5Si_2, 25), 73 (Me_3Si, 100).

d) Darstellung von Oligosilanylkaliumspezies und Reaktionen mit Chalcogenen

1.0 g (3.8 mmol) MeSi(SiMe₃)₃ wurden in 4 ml THF gelöst und 0.50 g (4.4 mmol) KO^tBu zugegeben. Nach Rühren über Nacht belegten die NMR Spektren der Reaktionsmischung eine vollständige Spaltung des Isotetrasilans in Me₃SiO^tBu [NMR (Hz, ppm) δ_{Si} : 6.7 (¹J_{SiC}: 58.8); δ_C : 31.7 (C<u>Me₃</u>), 2.11 (Si<u>Me₃</u>); δ_H : 1.21 (CMe₃), 0.06 (SiMe₃)] und (Me₃Si)₂SiMe K(THF)_n [NMR: Gl. 9.1.4].

Die anschließende Zugabe von 3.8 mmol Schwefel, Selen- bzw. Tellurpulver bei etwa –30 °C führten zu THF Lösungen der Kaliumheptamethyltrisilan-2-ylchalcogenolate.

Auf analoge Weise wurden für die Darstellung von Kaliumhypersilylchalcogenolaten 1.0 g $(3.1 \text{ mmol}) \text{Si}(\text{SiMe}_3)_4$ in 4 mL THF gelöst und 0.40 g $(3.6 \text{ mmol}) \text{KO}^t\text{Bu}$ wurden zugesetzt, was über Nacht zur Bildung einer THF Lösung von Hypersilylkalium, $(\text{Me}_3\text{Si})_3\text{SiK}(\text{THF})_n$, neben Me₃SiO^tBu führte.

Die anschließende Zugabe von 3.1 mmol Schwefel-, Selen- bzw. Tellurpulver ergaben THF Lösungen von (Me₃Si)₃SiE K(THF)_n.

e) Bildung von Oligosilanylselenolen und -tellurolen

1.0 mmol eines nach *d*) dargestellten Oligosilanylchalcogenolates (als THF Lösung) wurde im Eisbad mit 0.060 g (1.0 mmol) wasserfreier Essigsäure umgesetzt. Das Lösungsmittel wurde im Vakuum entfernt und gegen 10 ml Hexan ersetzt. Nach Filtration von ausgefallenem Kaliumacetat wurde das Lösungsmittel wieder im Vakuum entfernt. Zurück blieben die Oligosilanylselenole bzw. -tellurole (Me₃Si)₂MeSiEH und (Me₃Si)₃SiEH (E = Se, Te) als gelbe ölige Produkte.

f) Lithiumpentamethyldisilanylchalcogenolate

NMR Spektren der Reaktionsmischungen von Si₃Me₈ mit KO^tBu in THF zeigten auch nach 3 Tagen nur die Ausgangsmaterialien, das heißt, dass das Pentamethyldisilanylanion auf diesem Wege nicht generiert werden kann.

Aus diesem Grunde wurden 0.17 g (1.0 mmol) Me₅Si₂Cl zu einer Lösung von 1.2 mmol Li₂E in THF (dargestellt nach *b*) aus 2.4 ml 1.0 M LiBEt₃H und 1.2 mmol E) getropft. Die entstandenen Reaktionsmischungen wurden im Vakuum konzentriert, um das als Nebenprodukt gebildete BEt₃ weitgehend zu entfernen. Anschließend wurde wieder THF zugegeben, so dass sich etwa 1 ml Lösung ergab. NMR Spektren dieser Lösungen zeigten die Bildung der Lithiumpentamethyldisilanylchalcogenolate Me₅Si₂E⁻ Li(THF)_n⁺.

12.12. Hypersilylchalcogenolate von Si, Ge, Sn

Zur Darstellung von Silicium-, Germanium- oder Zinnhypersilylchalcogenolaten wurden zu den nach *12.11.d*) dargestellten Lösungen von $(Me_3Si)_3SiE^- K(THF)_n^+$ die berechneten Mengen der entsprechenden Organochlorsilane, -germane bzw. -stannane, gelöst in 1 – 2 ml Hexan (bzw. im Falle der Stannane in Toluen) unter Rühren zugetropft. Nach Reaktion über Nacht wurde das Lösungsmittel im Vakuum entfernt, gegen 10 ml Hexan ersetzt, filtriert und das Hexan im Vakuum wieder entfernt.

Vor allem bei Reaktionen mit Di- und Trichlorsilanen und -stannanen bildeten sich aber auch größere Mengen Hypersilylchlorid, $(Me_3Si)_3SiCl$, und die entsprechenden Chalcogenide $(R_2ME)_3$ bzw. $(RM)_4E_6$. Um dies zurückzudrängen, wurden die nach *12.11.d*) dargestellten Lösungen von $(Me_3Si)_3SiE^- K(THF)_n^+$ im Vakuum eingeengt und der Rückstand in 5 – 8 ml Hexan suspendiert. Das Chlorsilan bzw. -stannan wurde als Hexan- bzw. Toluenlösung zu der auf etwa –30 °C abgekühlten Suspension zugetropft. Nach Reaktion über Nacht wurde filtriert und das Lösungsmittel im Vakuum entfernt.

Von einer ganzen Reihe Verbindungen mit einem Hypersilylrest gelang auch die Aufnahme von Massenspektren:

 $(Me_3Si)_3SiSSiMe_3$: GC/MS (m/e, rel. Int.): 352 (M⁺, 32), 337 (M⁺–Me, 8), 279 (Me_9Si_4S, 15), 264 (Me_8Si_4S, 3), 249 (Me_7Si_4S, 8), 191 (Me_5Si_3S, 42), 174 (Me_6Si_3, 19), 159 (Me_5Si_3, 10), 131 (Me_5Si_2, 23), 73 (Me_3Si, 100).

 $(Me_3Si)_3SiSSiMe_2Ph:$ GC/MS: 414 (M⁺, 31), 399 (M⁺–Me, 8), 341 (PhMe_8Si_4S, 9), 264 (Me_8Si_4S, 10), 253 (PhMe_4Si_3S, 10), 249 (Me_7Si_4S, 11), 236 (PhMe_5Si_3, 40), 221 (PhMe_4Si_3, 23), 193 (PhMe_4Si_2, 20), 191 (Me_5Si_3S, 65), 177 (29), 162 (33), 135 (PhMe_2Si, 100), 131 (Me_5Si_2, 30), 73 (Me_3Si, 95).

 $(Me_3Si)_3SiSSiMePh_2$: GC/MS: 476 (M⁺, 16), 461 (M⁺–Me, 5), 403 (Ph₂Me₇Si₄S, 5), 326 (PhMe₇Si₄S, 5), 298 (Ph₂Me₄Si₃, 38), 283 (Ph₂Me₃Si₃, 8), 253 (PhMe₄Si₃S, 40), 239 (46), 238 (PhMe₃Si₃S, 33), 197 (Ph₂MeSi, 100), 191 (Me₅Si₃S, 36), 135 (PhMe₂Si, 77), 131 (Me₅Si₂, 31), 105 (PhSi, 18), 73 (Me₃Si, 86).

 $(Me_3Si)_3SiSSiMe_2Cl:$ GC/MS: 372 (M⁺, 21), 357 (M⁺–Me, 4), 337 (M⁺–Cl, 1), 299 (Me_8Si_4SCl, 1), 279 (Me_9Si_4S, 2), 264 (Me_8Si_4S, 22), 249 (Me_7Si_4S, 16), 191 (Me_5Si_3S, 43), 176 (Me_4Si_3S, 11), 174 (Me_6Si_3, 9), 163 (Me_5Si_2S, 17), 159 (Me_5Si_3, 10), 131 (Me_5Si_2, 25), 73 (Me_3Si, 100).

 $(Me_3Si)_3SiSSiMePhCl:$ GC/MS: 434 (M⁺, 13), 419 (M⁺–Me, 2), 399 (M⁺–Cl, 1), 361 (PhMe₇Si₄SCl, 1), 348 (PhMe₈Si₃SCl, 3), 326 (PhMe₇Si₄S, 5), 256 (Me₇Si₃SCl, 19), 253 (PhMe₄Si₃S, 24), 249 (Me₇Si₄S, 11), 225 (PhMe₄Si₂S, 44), 209 (14), 193 (PhMe₄Si₂, 19), 191 (Me₅Si₃S, 29), 176 (Me₄S₃S, 34), 135 (PhMe₂Si, 90), 131 (Me₅Si₂, 34), 73 (Me₃Si, 100).

 $(Me_3Si)_3SiSeSiMe_3$: GC/MS: 400 (M⁺, 19), 375 (M⁺–Me, 4), 327 (Me_9Si_4Se, 9), 312 (Me_8Si_4Se, 2), 297 (Me_7Si_4Se, 5), 239 (Me_5Si_3Se, 30), 174 (Me_6Si_3, 12), 159 (Me_5Si_3, 6), 131 (Me_5Si_2, 23), 73 (Me_3Si, 100).

(*Me*₃*Si*)₃*SiSeSiMe*₂*Ph*: GC/MS: 462 (M⁺, 9), 447 (M⁺–Me, 1), 389 (PhMe₈Si₄Se, 3), 312 (Me₈Si₄Se, 1), 301 (PhMe₄Si₃Se, 5), 297 (Me₇Si₄Se, 5), 239 (Me₅Si₃Se, 27), 236 (PhMe₅Si₃, 40), 221 (PhMe₄Si₃, 10), 193 (PhMe₄Si₂, 8), 162 (19), 135 (PhMe₂Si, 100), 131 (Me₅Si₂, 32), 73 (Me₃Si, 99).

(*Me*₃*Si*)₃*SiSSnMe*₃: GC/MS: 444 (M⁺, 1), 429 (M⁺–Me, 8), 339 (Me₉Si₃Sn, 1), 279 (Me₉Si₄S, 6), 249 (Me₇Si₄S, 5), 221 (Me₇Si₃S, 2), 191 (Me₅Si₃S, 22), 165 (Me₃Sn, 8), 131 (Me₅Si₂, 37), 73 (Me₃Si, 100).

 $(Me_3Si)_3SiSeSnMe_3$: GC/MS: 492 (M⁺, 1), 477 (M⁺–Me, 6), 339 (Me_9Si_3Sn, 1), 327 (Me_9Si_4Se, 1), 297 (Me_7Si_4Se, 1), 269 (Me_7Si_3Se, 1), 251 (Me_5Si_2Sn, 3), 239 (Me_5Si_3Se, 10), 189 (Me_7Si_3, 8), 165 (Me_3Sn, 6), 131 (Me_5Si_2, 47), 73 (Me_3Si, 100).

12.13. $Si_2(SiMe_3)_6$ und Heptasilanylthiolate $[(Me_3Si)_3SiSi(SiMe_3)_2S]_xSiMe_{4-x}$

Hexakis(trimethylsilyl)disilan wurde nach [526] durch oxidative Kupplung von Hypersilylkalium mit Dibromethan erhalten.

0.50 g (1.0 mmol) Si₂(SiMe₃)₆ wurden in 4 ml THF gelöst und 0.12 g (1.05 mmol) KO^tBu hinzugefügt. Nach Rühren über Nacht zeigte sich im ²⁹Si NMR Spektrum eine vollständige Spaltung des Octasilans in $(Me_3Si)_3SiSi(SiMe_3)_2^- K(THF)_n^+$ und Me₃SiO^tBu. Nach Abkühlung der Reaktionslösung auf –30 °C wurden 32 mg (1.0 mmol) Schwefel zugegeben, was zur Bildung von $(Me_3Si)_3SiSi(SiMe_3)_2S^- K(THF)_n^+$ führte, wie aus den NMR Spektren der Lösung zu entnehmen war.

Für die Darstellung der Heptasilanylthiolate $[(Me_3Si)_3SiSi(SiMe_3)_2S]_xSiMe_{4-x}$ wurde die Lösung von $(Me_3Si)_3SiSi(SiMe_3)_2S^- K(THF)_n^+$, wie in *12.12.d*) beschrieben, mit 0.11 g (1.0 mmol) Me_3SiCl, 64 mg (0.50 mmol) Me_2SiCl_2 bzw. 48 mg (0.33 mmol) MeSiCl_3 umgesetzt und aufgearbeitet.

 $(Me_3Si)_3SiSi(SiMe_3)_2SSiMe_3$: GC/MS (m/e, rel. Int.): 526 (M⁺, 2), 511 (M⁺–Me, 3), 453 (Me_15Si_7S, 1), 348 (Me_12Si_6, 50), 275 (Me_9Si_5, 6), 191 (Me_5Si_3S, 8), 163 (Me_5Si_2S, 6), 131 (Me_5Si_2, 11), 73 (Me_3Si, 100).

12.14. $(R_2ME)_x$ (R = Me, Ph, $SiMe_3$; M = Si, Ge, Sn; E = S, Se, Te; x = 2, 3)

a) Trimere Methylverbindungen (Me₂ME)₃

Für die Darstellung der Schwefelverbindungen wurden 2.0 mmol Me₂MCl₂ (M = Si, Ge, Sn) in 20 ml Hexan gelöst und H₂S durch die Lösung geleitet, während 0.55 ml (4.0 mmol) NEt₃ langsam mit einer Spritze zugetropft wurden. Nach der Filtration von ausgefallenem Triethylammoniumchlorid wurde das Lösungsmittel im Vakuum entfernt, wobei die Verbindungen (Me₂MS)₃ als farblose Öle (M = Si, Ge) bzw. als kristalliner Rückstand (M = Sn) in etwa 60 % Ausbeute erhalten wurden.

 $(Me_2SiS)_3$: GC/MS: 270 (M⁺, 21), 255 (M⁺-Me, 100), 165 (Me_3Si_2S_2), 73 (Me_3Si, 35).

 $(Me_2GeS)_3$: GC/MS: 404 (Me₆⁷²Ge₂⁷⁴GeS₃ (M⁺), 13), 389 (Me₅⁷²Ge₂⁷⁴GeS₃ (M⁺–Me), 92), 255 (Me₃⁷²Ge⁷⁴GeS₂, 100), 225 (Me⁷²Ge⁷⁴GeS₂, 12), 151 (Me₃⁷⁴GeS, 5), 119 (Me₃⁷⁴Ge, 48), 89 (Me⁷⁴Ge, 14).

 $(Me_2SnS)_3$: GC/MS: 527 (Me₅¹¹⁸Sn¹²⁰Sn₂S₃ (M⁺–Me), 16), 497 (Me₃¹¹⁸Sn¹²⁰Sn₂S₃, 4), 362 (Me₄¹¹⁸Sn¹²⁰SnS₂, 20), 347 (Me₃¹¹⁸Sn¹²⁰SnS₂, 100), 317 (Me¹¹⁸Sn¹²⁰SnS₂, 63), 302 (¹¹⁸Sn¹²⁰SnS₂, 19), 270 (¹¹⁸Sn¹²⁰SnS, 10), 197 (Me₃¹²⁰SnS, 35), 165 (Me₃¹²⁰Sn, 31), 135 (Me¹²⁰Sn, 19), 120 (¹²⁰Sn, 15).

Die Darstellung der Selen- und Tellurverbindungen erfolgte durch Reaktion der Dichloride mit THF Lösungen von Li₂E, dargestellt aus dem Chalcogen und Li[BEt₃H] nach *12.11.b*).

2.0 mmol Me₂MCl₂ (M = Si, Ge, Sn), gelöst in 1 ml THF, wurden 2.0 mmol einer frisch präparierten Li₂E Lösung zugegeben. Nach 30 min wurde das THF im Vakuum abkondensiert und durch 10 ml Hexan ersetzt. Nach Abfiltrieren vom ausgefallenen LiCl wurde das Hexan im Vakuum entfernt, wobei die Selen- bzw. Tellurverbindungen (Me₂ME)₃ als weiße bzw. hellgelbe Öle bzw. Feststoffe (M = Sn) zurückblieben (Ausbeuten: 40 – 50 %).

b) Phenylverbindungen $(Ph_2ME)_x$, M = Si (x = 2, 3), Sn (x = 3)

0.51 g (2.0 mmol) Ph_2SiCl_2 wurden zu 2.0 mmol einer frisch präparierten Lösung von Li_2E in THF (*12.11.b*) zugetropft, nach 1 h das THF im Vakuum entfernt und gegen 30 ml Hexan ersetzt. Nach dem Abziehen des Hexans im Vakuum blieben farblose bis hellgelbe (E = Te) kristalline Produkte von (Ph_2SiE)_x, (x = 2, 3) zurück.

Auf diesem Wege wurden auch die Zinnverbindungen $(Ph_2SnE)_3$ synthetisiert. 0.69 g (2.0 mmol) Ph_2SnCl_2 wurden in 1 ml Toluen gelöst und zu 2.0 mmol einer frisch präparierten Lösung von Li₂E in THF (*12.11.b*) zugetropft. Nach Rühren über Nacht wurden die Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Toluen gelöst. Nach Filtration von ausgefallenen Lithiumsalzen wurde das Lösungsmittel im Vakuum entfernt. Zurück blieben $(Ph_2SnE)_3$ als farblose bzw. gelbe (E = Te) kristalline Produkte in etwa 70 % Ausbeute, die aus Toluen/Hexan-Gemischen umkristallisiert werden konnten.

c) Trimethylsilylverbindungen [$(Me_3Si)_2SiE$]₂, E = S, Se

- 2,2-Diphenylhexamethyltrisilan und *Tris*(trimethylsilyl)phenylsilan:

Eine Mischung aus 65 g (0.60 mol) Me₃SiCl und 51 g (0.20 mol) Ph₂SiCl₂ wurden im Laufe von 3 h zu einer gerührten Suspension von 5.6 g (0.80 mol) Lithiumpulver in 200 ml THF zugetropft. Dabei erwärmte sich die Reaktionsmischung auf 50 – 60 °C. Nach 12 h wurden im Vakuum das Lösungsmittel sowie verbliebenes Me₃SiCl entfernt und 100 ml Hexan zugesetzt. Nach Filtration vom ausgefallenen Lithiumchlorid wurde das Hexan im Vakuum abkondensiert. Der verbleibende Rückstand (60 g) bestand laut NMR aus Ph₂Si(SiMe₃)₂ neben PhSi(SiMe₃)₃ und nichtumgesetztem Ph₂SiCl₂. Eine Vakuumdestillation lieferte 45 g einer Fraktion bei 130 – 140°C / 0.02 kPa, die sich zu etwa gleichen Teilen aus Ph₂Si(SiMe₃)₂, PhSi(SiMe₃)₃ und Ph₂SiCl₂ zusammensetzte. $Ph_2Si^A(Si^BMe_3)_2$: NMR (Hz, ppm), δ_{Si} A: -39.01 (¹J_{SiC}: 52.5), B: -16.04 (¹J_{SiC}: 45.2, ¹J_{SiSi}: 71.9); δ_C Me: -0.52, Ph: 135.77 (i), 135.81 (o), 127.78 (m), 128.11 (p); δ_H Me: 0.198, Ph: 7.2 - 7.5.

PhSi^{*A*}(*Si*^{*B*}*Me*₃)₃: NMR (Hz, ppm), δ_{Si} A: -76.75 (¹J_{SiC}: 47.6), B: -12.74 (¹J_{SiC}: 44.7, ¹J_{SiSi}: 61.2); δ_{C} Me: 1.17, Ph: 135.19 (i), 136.40 (o), 127.66 (m), 127.31 (p); δ_{H} Me: 0.243, Ph: 7.2 – 7.5. (Destillativ ist dieses Gemisch kaum trennbar, da die Siedepunkte dieser drei Verbindungen dicht beieinanderliegen.)

- 2,2-Dichlorhexamethyltrisilan und Tris(trimethylsilyl)chlorsilan (Hypersilylchlorid):

Das oben dargestellte Gemisch aus Ph₂Si(SiMe₃)₂, PhSi(SiMe₃)₃ und Ph₂SiCl₂ (45 g) wurde im Eisbad mit 50 ml *n*-Hexan, 47 g (0.35 mol) AlCl₃ und 23.6 g (0.30 mol) Acetylchlorid umgesetzt, wobei letzteres im Verlauf von 3 h langsam zugetropft wurde. Nach einer weiteren Stunde Rühren im Eisbad wurde die obere Phase abgetrennt und der Rückstand noch zweimal mit 20 ml Hexan extrahiert. Die vereinigten Hexanlösungen wurden im Vakuum eingeengt und fraktioniert destilliert. Dabei konnten 11 g einer Fraktion bei 50 – 60 °C / 0.004 kPa isoliert werden, bei der es sich um reines 2,2-Dichlorhexamethyltrisilan handelte. Eine weitere Fraktion bei 67 – 75 °C / 0.003 kPa (6.7 g) enthielt das daneben gebildete *Tris*(trimethylsilyl)chlorsilan.

 $(Me_3Si)_2SiCl_2$: GC/MS: 244 (M⁺, 4), 229 (M⁺–Me, 3), 209 (M⁺–Cl, 1), 151 (Me_4Si_2Cl, 3), 136 (Me_3Si_2Cl, 26), 131 (Me_5Si_2, 7), 93 (Me_2SiCl, 7), 73 (Me_3Si, 100); NMR: Tab. 7.3.5.

 $(Me_3Si)_3SiCl:$ GC/MS: 282 (M⁺, 5), 267 (M⁺–Me, 13), 209 (Me_6Si_3Cl, 3), 174 (Me_6Si_3, 100), 159 (Me_5Si_3, 53), 131 (Me_5Si_2, 26), 129 (Me_3Si_3, 27), 73 (Me_3Si, 76); NMR: Gl. 9.2.2.

- *Tetrakis*(trimethylsilyl)cyclodisilthian [(Me₃Si)₂SiS]₂:

0.49 g (2.0 mmol) (Me₃Si)₂SiCl₂ wurden in 20 ml Hexan gelöst und H₂S durch die Lösung geleitet, während 0.55 ml (4.0 mmol) Triethylamin langsam zugetropft wurden. Nach 1 h wurde vom ausgefallenen HNEt₃Cl filtriert und das Hexan im Vakuum entfernt, wobei sich [(Me₃Si)₂SiS]₂ in langen farblosen Kristallnadeln abschied.

[$(Me_3Si)_2SiSJ_2$: GC/MS: 412 (M⁺, 28), 397 (M⁺–Me, 5), 339 (Me_9Si_5S_2, 67), 309 (Me_7Si_5S_2, 5), 251 (Me_5Si_4S_2, 35), 249 (Me_7Si_4S, 31), 234 (Me_6Si_4S, 55), 219 (Me_5Si_4S, 7), 191 (Me_5Si_3S, 28), 174 (Me_6Si_3, 13), 131 (Me_5Si_2, 32), 73 (Me_3Si, 100); F: 110 °C.

- *Tetrakis*(trimethylsilyl)cyclodisilselenan [(Me₃Si)₂SiSe]₂:

0.49 g (2.0 mmol) (Me₃Si)₂SiCl₂, gelöst in 1 ml Hexan, wurden zu einer frisch bereiteten Lösung von 2.0 mmol Li₂Se (*12.11.b*) zugetropft. Nach dem Abziehen des Lösungsmittels wurde der Rückstand in 10 ml Hexan gelöst, filtriert und das Hexan im Vakuum entfernt, wobei [(Me₃Si)₂SiSe]₂ in Form farbloser Kristalle zurückblieb.

12.15. Sechsringe $E(SiMe_2SiMe_2)_2E$ (E = S, Se, Te, O)

a) S(SiMe₂SiMe₂)₂S sowie O(SiMe₂SiMe₂)₂S und O(SiMe₂SiMe₂)₂O

2.5 g (13.3 mmol) ClMe₂Si–SiMe₂Cl wurden in 100 ml Hexan gelöst und 3.7 ml (26.6 mol) NEt₃ wurden langsam zugetropft, während getrocknetes H₂S durch die gerührte Lösung geleitet wurde. Nach einer Stunde wurde vom ausgefallenen HNEt₃Cl filtriert und das Lösungsmittel im Vakuum entfernt, wobei 1.6 g (81 %) S(SiMe₂SiMe₂)₂S in Form langer farbloser Kristallnadeln zurückblieben.

Wird die Reaktion mit H₂S Gas (N25 der Firma Air Liquide) ohne Trocknung des Gasstromes mit gekörntem CaCl₂ durchgeführt, so finden sich im Produkt neben S(SiMe₂SiMe₂)₂S auch die Mono- und Disauerstoffverbindungen O(SiMe₂SiMe₂)₂S und O(SiMe₂SiMe₂)₂O.

 $S(SiMe_2SiMe_2)_2S$: GC/MS: 296 (M⁺, 23), 281 (M⁺-Me, 13), 237 (Me₅Si₃S₂CH₂, 11), 116 (Me₄Si₂, 100), 73 (Me₃Si, 92).

 $O(SiMe_2SiMe_2)_2S:$ GC/MS: 280 (M⁺, 22), 265 (M⁺-Me, 16), 221 (Me₇Si₃S, 14), 205 (Me₇Si₃O, 13), 147 (Me₅Si₂O, 24), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 7), 73 (Me₃Si, 57).

 $O(SiMe_2SiMe_2)_2O:$ GC/MS: 264 (M⁺, 32), 249 (M⁺–Me, 41), 221 (Me₇Si₃O₂, 7), 205 (Me₇Si₃O, 97), 191 (Me₅Si₃O₂, 57), 175 (Me₅Si₃O, 15), 147 (Me₅Si₂O, 27), 131 (Me₅Si₂, 12), 117 (Me₃Si₂O, 18), 91 (35), 73 (Me₃Si, 100).

b) Se(SiMe₂SiMe₂)₂Se und O(SiMe₂SiMe₂)₂Se

0.374 g (2.0 mmol) ClMe₂Si–SiMe₂Cl wurden bei Raumtemperatur zu 2.0 mmol einer Li₂Se Lösung in THF (*12.11.b*) zugetropft. Nach einer Stunde wurde das Lösungsmittel im Vakuum entfernt und 10 ml Hexan zugegeben. Nach Abtrennung des ausgefallenen LiCl wurde das Hexan im Vakuum abkondensiert, wobei Se(SiMe₂SiMe₂)₂Se in Form farbloser Kristallnadeln zurückblieb (0.25 g, 64 %).

Wenn das als Lösungsmittel verwendete THF nicht völlig trocken ist, so findet sich im Produkt auch die Monosauerstoffverbindung O(SiMe₂SiMe₂)₂Se.

 $Se(SiMe_2SiMe_2)_2Se:$ GC/MS: 392 (M⁺, 2), 377 (M⁺–Me, 1), 333 (Me₅Si₃Se₂CH₂, 2), 319 (Me₅Si₃Se₂, 0.5), 239 (Me₅Si₃Se, 3), 211 (Me₅Si₂Se, 2), 195 (Me₃Si₂SeCH₂, 5), 131 (Me₅Si₂, 8), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 8), 73 (Me₃Si, 74).

 $O(SiMe_2SiMe_2)_2Se:$ GC/MS: 328 (M⁺, 3), 313 (M⁺-Me, 1), 269 (Me₇Si₃Se, 4), 255 (Me₅Si₃OSe, 2), 205 (Me₇Si₃O, 7), 189 (Me₇Si₃, 2), 175 (Me₅Si₃O, 3), 147 (Me₅Si₂O, 32), 131 (Me₅Si₂, 12), 116 (Me₄Si₂, 91), 101 (Si₂Me₃, 9), 73 (Me₃Si, 100).

c) Te(*SiMe*₂*SiMe*₂)₂*Te*

Die Tellurverbindung wurde auf dem selben Wege wie die Selenverbindung (*b*) dargestellt, allerdings ist es entscheidend, dass bei der Zugabe des Disilans zur Li₂Te Lösung diese auf -40 bis -30 °C abgekühlt wird. Die weitere Aufarbeitung erfolgte im Eisbad bei etwa 0 °C. Nach Abziehen des Lösungsmittels fällt Te(SiMe₂SiMe₂)₂Te in Form farbloser, sehr dünner Kristallnadeln an, die sich oberhalb 40 °C schnell zersetzen, bei Raumtemperatur aber mehrere Tage stabil sind. Auch hier enthält das Produkt die Monosauerstoffverbindung O(SiMe₂SiMe₂)₂Te, wenn während der Darstellung nicht auf absoluten Ausschluss von Luft und Feuchtigkeit geachtet wird.

Wird die Synthese bei Raumtemperatur durchgeführt, so erhält man reines Me₄Si₂(Te)₂SiMe₂ in Form eines Öls.

d) $E(SiMe_2SiMe_2)_2E'$ (E = S, Se; E' = Se, Te; $E \neq E'$)

Diese Verbindungen mit zwei verschiedenen Chalcogenatomen entstehen zu einem Anteil von etwa 50 % bei der Reaktion von 0.37 g (2.0 mmol) $ClMe_2Si-SiMe_2Cl$ mit einer THF Lösung eines Gemisches zweier verschiedener Lithiumchalcogenide (aus 1.0 mmol E und 1.0 mmol E' mit 4.0 ml 1.0 M Li[BEt₃H] in 5 ml THF), Aufarbeitung wie unter *b*) bzw. *c*) beschrieben.

 $S(SiMe_2SiMe_2)_2Se:$ GC/MS: 344 (M⁺, 2), 329 (M⁺–Me, 1), 285 (Me₅Si₃SSeCH₂, 2), 239 (Me₅Si₃Se, 2), 211 (Me₅Si₂Se, 1), 191 (Me₅Si₃S, 3), 147 (Me₃Si₂SCH₂, 6), 131 (Me₅Si₂, 9), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 8), 73 (Me₃Si, 66).

12.16. Fünfringe $Me_4Si_2(E)_2MR_x$ (E = S, Se, Te)

a) Schwefelverbindungen $Me_4Si_2(S)_2MR_2$ (M = Si, Ge, Sn, Pb) und $Me_4Si_2(S)_2MPh$ (M = B, Sb) 0.28 g (1.5 mmol) CIMe₂Si–SiMe₂Cl und 1.5 mmol R₂MCl₂ (M = Si, Ge, Sn, Pb; R = Me, Ph) bzw. PhMCl₂ (M = B, Sb) wurden in etwa 40 ml Hexan (bzw. 25 ml Toluen im Falle der Zinn-, Blei- und Antimonverbindungen) gelöst und 0.83 ml (6 mmol) Triethylamin wurden langsam zugetropft, während getrocknetes H₂S durch die Lösung geleitet wurde. Nach einer Stunde wurde vom ausgefallenen Ammoniumsalz filtriert und das Lösungsmittel im Vakuum entfernt, wobei die Fünfringe Me₄Si₂(S)₂MR₂ in 55 – 75 % Ausbeute als ölige Rückstände zurückblieben. Lediglich die Bor- und die Bleiverbindung fielen in Form farbloser Kristalle an. Teilweise enthielten die Produkte noch bis zu 20 % der Sechsringe S(Si₂Me₄)₂S und (R₂MS)₃ (M = Si, Ge, Sn; NMR spektroskopische Analyse). PhSbCl₂ wurde durch Komproportionierung von 4.56 g (20 mmol) SbCl₃ und 3.53 g (10 mmol) SbPh₃ durch dreistündiges Erhitzen auf 100 °C als öliges Produkt erhalten. Ein ¹³C NMR Spektrum bestätigte die Bildung von PhSbCl₂ neben kleinen Mengen an Ph₂SbCl:

*PhSbCl*₂: ¹³C NMR (ppm): 151.87 (i), 132.77 (o), 129.43 (m), 131.43 (p); ¹H NMR (ppm): 7.75 (o), 7.47 (m), 7.40 (p).

*Ph*₂*SbCl*: ¹³C NMR (ppm): 144.47 (i), 134.39 (o), 129.17 (m), 130.06 (p); ¹H NMR (ppm): 7.58 (o), 7.37 (m), 7.40 (p).

Ph₂PbCl₂ wurde nach [795] durch zweistündige Reaktion einer Suspension von 3.0 g (5.8 mmol) PbPh₄ in 20 ml CHCl₃ mit einem trockenen HCl-Gasstrom dargestellt. Da Ph₂PbCl₂ aufgrund seiner polymeren Struktur in allen üblichen organischen Lösungsmitteln unlöslich ist, wurde eine Suspension in Toluen eingesetzt. Als Nebenprodukt der Reaktion mit H₂S entstand neben HNEt₃Cl etwas schwarzes PbS.

 $Me_4Si_2(S)_2SiMe_2$: GC/MS: 238 (M⁺, 50), 223 (M⁺-Me, 65), 165 (Me_3Si_2S_2, 34), 163 (Me_5Si_2S, 30), 73 (Me_3Si, 100).

*Me*₄*Si*₂(*S*)₂*SiPhMe*: GC/MS: 300 (M⁺, 36), 285 (M⁺–Me, 22), 227 (PhMe₂Si₂S₂, 9), 209 (9), 195 (PhMe₂Si₂S, 5), 165 (Me₃Si₂S₂, 12), 135 (PhMe₂Si, 100), 105 (PhSi, 6), 73 (Me₃Si, 20).

*Me*₄*Si*₂(*S*)₂*SiPh*₂: GC/MS: 362 (M⁺, 53), 347 (M⁺–Me, 9), 289 (Ph₂MeSi₂S₂, 5), 284 (15), 271 (12), 269 (7), 227 (PhMe₂Si₂S₂, 73), 209 (7), 197 (PhSi₂S₂, 38), 135 (PhMe₂Si, 100), 105 (PhSi, 13), 77 (Ph, 8), 73 (Me₃Si, 14).

 $Me_4Si_2(S)_2GeMe_2$: GC/MS: 284 (M⁺, 7), 269 (M⁺–Me, 12), 209 (Me₅GeSiS, 1), 181 (MeGeSiS₂, 2), 163 (Me₅Si₂S, 10), 119 (Me₃Ge, 4), 89 (MeGe, 5), 73 (Me₃Si, 100).

 $Me_4Si_2(S)_2SnMe_2$: GC/MS: 330 (M⁺, 2), 315 (M⁺–Me, 25), 227 (MeSiSnS₂, 14), 195 (MeSiSnS, 2), 165 (Me₃Sn, 3), 135 (MeSn, 13), 73 (Me₃Si, 100).

*Me*₄*Si*₂(*S*)₂*SbPh*: GC/MS: 378 (M⁺, 3), 363 (M⁺–Me, 1), 301 (M⁺–Ph, 1), 290 (PhSiSbS₂, 2), 258 (PhSiSbS, 1), 228 (MeSiSbS₂, 4), 198 (PhSb, 9), 165 (Me₃Si₂S₂, 10), 135 (PhMe₂Si, 100), 121 (Sb, 2), 73 (Me₃Si, 22).

b) Darstellung von Me₄Si₂(S)₂C(CH₂)₅

- Cyclohexan-1,1-dithiol:

Nach der Vorschrift in [722] wurden 10.2 g (0.104 mol) Cyclohexanon und 0.86 g (10.0 mmol) Morpholin in 40 ml Methanol gelöst und H₂S wurde für 3 h durch die Lösung geleitet. Das entstandene Produktgemisch wurde mit verdünnter Schwefelsäure versetzt, bis sich zwei Phasen bildeten. Die ölige organische Phase wurde abgetrennt, das Lösungsmittel im Vakuum bei Raumtemperatur entfernt und das Produkt über CaCl₂ getrocknet. ¹H und ¹³C

NMR Spektren zeigten, dass es sich um reines Cyclohexan-1,1-dithiol handelte, Ausbeute: 6.3 g (0.043 mol, 41 %).

- Me₄Si₂(S)₂C(CH₂)₅:

0.22 g (1.5 mmol) Cyclohexan-1,1-dithiol und 0.28 g (1.5 mmol) ClMe₂Si–SiMe₂Cl wurden in 25 ml Hexan gelöst und 0.42 ml (3 mmol) NEt₃ wurden langsam unter Rühren zugegeben. Nach Filtration von ausgefallenem HEt₃NCl und Entfernen des Lösungsmittels blieben 0.29 g (74 %) reines Me₄Si₂(S)₂C(CH₂)₅ als öliges Produkt zurück.

 $Me_4Si_2(S)_2C(CH_2)_5$: GC/MS: 262 (M⁺, 3), 247 (M⁺–Me, 2), 181 (Me_4Si_2S_2H, 10), 180 (Me_4Si_2S_2, 11), 165 (Me_3Si_2S_2, 100), 149 (Me_4Si_2SH, 17), 133 (Me_3Si_2S, 10), 73 (Me_3Si, 23).

c) Selenverbindungen $Me_4Si_2(Se)_2MR_2$ (M = Si, Ge, Sn, Pb) und $Me_4Si_2(Se)_2MPh$ (M = B, Sb) 0.19 g (1.0 mmol) ClMe₂Si–SiMe₂Cl und 1.0 mmol R₂MCl₂ (M = Si, Ge, Sn, Pb; R = Me, Ph) bzw. PhMCl₂ (M = B, Sb) wurden in etwa 2 ml THF gelöst und zu 2.0 mmol einer frisch präparierten Li₂Se Lösung in THF (*12.11.b*) gegeben. Nach 30 min wurde das Lösungsmittel entfernt und 10 ml Hexan wurden zugegeben. Nach Filtration vom ausgefallenen LiCl wurde das Hexan wieder entfernt, wobei die Selenverbindungen Me₄Si₂(Se)₂MR_x in 50 – 70 % Ausbeute als Öle zurückblieben.

Werden die Reaktionen nicht unter vollständigem Ausschluss von Feuchtigkeit durchgeführt, so enthalten die Produkte auch den sauerstoffhaltigen Sechsring O(SiMe₂SiMe₂)₂Se (siehe auch *12.15.b*).

 $Me_4Si_2(Se)_2SiMe_2$: GC/MS: 334 (M⁺, 6), 319 (M⁺–Me, 8), 261 (Me_3Si_2Se_2, 3), 246 (Me_2Si_2Se_2, 1), 211 (Me_5Si_2Se, 17), 195 (Me_3Si_2SeCH_2, 7), 181 (Si_2Me_3Se, 5), 123 (MeSiSe, 7), 73 (Me_3Si, 100).

d) Tellurverbindungen $Me_4Si_2(Te)_2MMe_2$ (M = Si, Ge, Sn)

Analog zur Darstellung der Selenverbindungen in *c*) wurden 0.19 g (1.0 mmol) ClMe₂Si–SiMe₂Cl und 1.0 mmol einer Dichlorverbindung Me₂MCl₂ (M = Si, Ge, Sn) in etwa 2 ml THF gelöst und bei 0 °C zu 2 mmol einer frisch präparierten Li₂Te Lösung in THF (*12.11.b*) gegeben. Aufarbeitung wie oben führte zu den extrem luftempfindlichen Tellurverbindungen Me₄Si₂(Te)₂MMe₂ in Form hellgelber Öle. An der Luft zersetzten sich diese binnen Sekunden unter Abscheidung von schwarzem Tellur. Werden während der Synthese Luft- oder Feuchtigkeitsspuren eingeschleppt, so findet sich im Produkt auch der sauerstoffhaltige Sechsring O(SiMe₂SiMe₂)₂Te (siehe auch *12.15.c*).

Reines $Me_4Si_2(Te)_2SiMe_2$ entsteht auch bei der Reaktion von $ClMe_2Si-SiMe_2Cl$ mit Li_2Te bei Raumtemperatur (ohne Zugabe von Me_2SiCl_2), siehe *12.15.c*).

e) Fünfringe mit zwei verschiedenen Chalcogenen Me₄Si₂(E)(E')SiMe₂

Eine Mischung aus 0.19 g (1.0 mmol) ClMe₂Si–SiMe₂Cl und 1.0 mmol (0.13 g) Me₂SiCl₂ wurde in 2 ml THF gelöst und wie in *12.15.d*) zu einem Gemisch zweier verschiedener Lithiumchalcogenide (aus 1.0 mmol E und 1.0 mmol E' mit 4 ml 1.0 M Li[BEt₃H] in 5 ml THF) zugegeben. Aufarbeitung wie oben führte zu öligen Produkten, die die Fünfringe mit zwei verschiedenen Chalcogenen in 45 – 50 % Anteil neben Me₄Si₂(E)₂SiMe₂ und Me₄Si₂(E')₂SiMe₂ enthielten.

 $Me_4Si_2(S)(Se)SiMe_2$: GC/MS: 286 (M⁺, 11), 271 (M⁺–Me, 16), 213 (Me_3Si_2SSe, 10), 211 (Me_5Si_2Se, 9), 181 (Me_3Si_2Se, 2), 163 (Me_5Si_2S, 18), 147 (Me_3Si_2SCH_2, 8), 133 (Me_3Si_2S, 6), 123 (MeSiSe, 4), 73 (Me_3Se, 100).

12.17. $Me_4Si_2(E)_2SiMe-SiMe(E)_2Si_2Me_4$ (E = S, Se, Te)

Für die Darstellung der Schwefelverbindung wurden 0.37 g (2.0 mmol) ClMe₂Si–SiMe₂Cl und 0.46 g (2.0 mmol) Cl₂MeSi–SiMeCl₂ in 50 ml Hexan gelöst und H₂S durch die Lösung geleitet, während 1.66 ml (12 mmol) Triethylamin langsam zugetropft wurden. Nach einer Stunde wurde die Lösung filtriert und das Lösungsmittel im Vakuum abgezogen. Zurück blieb ein kristallines Produkt aus 75 % Me₄Si₂(S)₂SiMe–SiMe(S)₂Si₂Me₄ neben 25 % S(SiMe₂SiMe₂)₂S. Durch fraktionierte Kristallisation aus Hexan konnten Einkristalle von $Me_4Si_2(S)_2SiMe$ –SiMe(S)₂Si₂Me₄ erhalten werden.

Die Selen- und Tellurverbindungen wurden durch Reaktion einer Mischung aus 0.19 g (1.0 mmol) ClMe₂Si–SiMe₂Cl und 0.11 g (0.5 mmol) Cl₂MeSi–SiMeCl₂, gelöst in 1 ml THF mit einer frisch dargestellten Lösung von 2.0 mmol Li₂Se bzw. Li₂Te in THF (siehe *12.11.b*) bei Raumtemperatur (E = Se) bzw. –20 °C (E = Te) erhalten. Nach 30 min wurde das Lösungsmittel entfernt und 10 ml Hexan zugesetzt. Nach Filtration vom ausgefallenen Lithiumsalz und Abkondensieren des Lösungsmittels blieben Me₄Si₂(Se)₂SiMe–SiMe(Se)₂Si₂Me₄ als farbloser kristalliner Rückstand bzw. Me₄Si₂(Te)₂SiMe–SiMe(Te)₂Si₂Me₄, das noch etwas Te(SiMe₂SiMe₂)₂Te und Me₄Si₂(Te)₂SiMe₂ enthielt, als hellgelbes Öl zurück.

12.18. Sechsringe $Z(SiMe_2-E)_2MR_2$ ($Z = SiMe_2$, CH_2 , O; E = S, Se, Te)

a) $Me_2Si(SiMe_2Cl)_2$ und $H_2C(SiMe_2Cl)_2$

Das Trisilan ClMe₂Si–SiMe₂–SiMe₂Cl wurde neben dem Tetrasilan ClMe₂Si–(SiMe₂)₂– SiMe₂Cl und dem Hexasilan ClMe₂Si–(SiMe₂)₄–SiMe₂Cl durch Spaltung von *cyclo*-(SiMe₂)₆ mit PCl₅ in Cl₂HC–CHCl₂ bei 150 °C nach [577] und anschließende fraktionierte Destillation erhalten.

*Me*₂*Si*(*SiMe*₂*Cl*)₂: Kp: 100 – 106 °C / 3 kPa, NMR: Tab. 7.3.5.

*ClMe*₂*Si*(*SiMe*₂)₂*SiMe*₂*Cl*: Kp: 137 – 150 °C / 3 kPa, NMR: Tab. 7.3.5.

Zur Darstellung des Disilylmethans ClMe₂Si–CH₂–SiMe₂Cl wurden 4.0 g (25 mmol) Me₃SiCH₂SiMe₃ in 20 ml Hexan gelöst, 6.7 g (50 mmol) wasserfreies Aluminiumchlorid zugesetzt und im Wasserbad bei Raumtemperatur allmählich 3.6 ml (50 mmol) Acetylchlorid zugegeben. Nach Rühren über Nacht wurde die Hexanphase abgetrennt, der Rückstand zwei Mal mit 10 ml Hexan extrahiert und von den vereinigten Hexanlösungen das Lösungsmittel im Vakuum entfernt. Der flüssige Rückstand ist reines ClMe₂Si–CH₂–SiMe₂Cl, Kp. 180 °C, Ausbeute: 2.0 g (10 mmol, 40 %).

*CH*₂(*SiMe*₂*Cl*)₂: GC/MS: 185 (M⁺–Me, 100), 165 (M⁺–Cl, 15), 149 (ClMeSi(CH₂)₂SiMe, 10), 93 (Me₂SiCl, 18), 73 (Me₃Si, 9), 72 (Me₂SiCH₂, 12), 63 (SiCl, 9); NMR: Tab. 7.3.5.

b) $Z(SiMe_2-E)_2MR_2$ (Z = SiMe_2, CH₂, O)

In einem typischen Reaktionsansatz wurden 1.0 mmol $Z(SiMe_2Cl)_2$ (Z = SiMe₂, CH₂, O) und 1.0 mmol R₂MCl₂ (M = Si, Ge, Sn, R = Me, Ph), gelöst in etwa 1 ml THF, zu einer nach 12.11.b) dargestellten Lösung von 2.0 mmol Li₂S, Li₂Se bzw. Li₂Te in THF bei 0 °C (E = S, Se) bzw. -30 °C (E = Te) zugetropft. Nach 30 min wurde das Lösungsmittel entfernt und 10 ml Hexan zugesetzt. Nach Filtration vom ausgefallenen Lithiumsalz und Abkondensieren des Lösungsmittels blieben die Sechsringe $Z(SiMe_2-E)_2MR_2$ als farblose bzw. hellgelbe (E = Te) Öle zurück.

Für die Darstellung von Sechsringen mit zwei verschiedenen Chalcogenen wurde ein Gemisch aus 1.0 mmol Li₂E und 1.0 mmol Li₂E' in THF verwendet, wobei die gemischten Sechsringe zu einem Anteil von 40 – 50 % neben den Sechsringen $Z(SiMe_2-E)_2MR_2$ und $Z(SiMe_2-E')_2MR_2$ entstanden.

 $Me_2Si(SiMe_2S)_2SiMe_2$: GC/MS: 296 (M⁺, 10), 281 (M⁺-Me, 5), 237 (Me_5Si_3S_2CH_2, 5), 221 (Me_7Si_3S, 2), 191 (Me_5Si_3S, 3), 131 (Me_5Si_2, 8), 116 (Me_4Si_2, 100), 73 (Me_3Si, 74).

*Me*₂*Si*(*SiMe*₂*S*)₂*SiPhMe*: GC/MS: 358 (M⁺, 16), 343 (M⁺–Me, 3), 223 (Me₅Si₃S₂, 21), 178 (Me₆Si₂S, 23), 163 (Me₅Si₂S, 14), 135 (PhMe₂Si, 66), 116 (Me₄Si₂, 73), 73 (Me₃Si, 100).

 $Me_2Si(SiMe_2S)_2GeMe_2$: GC/MS: 342 (M⁺, 2), 327 (M⁺-Me, 5), 237 (Me_5Si_2GeS, 2), 221 (Me_7Si_3S, 9), 162 (Me_4SiGe, 18), 131 (Me_5Si_2, 10), 116 (Me_4Si_2, 9), 73 (Me_3Si, 100).

 $Me_2Si(SiMe_2S)_2SnMe_2$: GC/MS: 388 (M⁺, 1), 373 (M⁺–Me, 23), 315 (Me_5Si_2SnS_2, 1), 285 (Me_3Si_2SnS_2, 4), 225 (Me_3SiSnS, 6), 223 (Me_5SiSn, 5), 221 (Me_7Si_3S, 4), 131 (Me_5Si_2, 17), 73 (Me_3Si, 100).

 $Me_2Si(SiMe_2Se)_2SiMe_2$: GC/MS: 392 (M⁺, 5), 377 (M⁺–Me, 2), 333 (Me_5Si_3Se_2CH_2, 3), 239 (Me_5Si_3Se, 5), 211 (Me_5Si_2Se, 2), 131 (Me_5Si_2, 9), 116 (Me_4Si_2, 100), 73 (Me_3Si, 82).

 $Me_2Si(SiMe_2Se)_2GeMe_2$: GC/MS: 436 (M⁺, 2), 421 (M⁺–Me, 4), 269 (Me_7Si_3Se, 4), 239 (Me_5Si_3Se, 1), 211 (Me_5Si_2Se, 3), 181 (Me_3Si_2Se, 3), 162 (Me_4SiGe, 10), 131 (Me_5Si_2, 14), 116 (Me_4Si_2, 7), 73 (Me_3Si, 100).

 $Me_2Si(SiMe_2)_2(S)(Se)SiMe_2$: GC/MS: 344 (M⁺, 7), 329 (M⁺–Me, 3), 285 (Me_5Si_3SSeCH₂, 4), 239 (Me_5Si_3Se, 3), 211 (Me_5Si_2Se, 2), 131 (Me_5Si_2, 10), 116 (Me_4Si_2, 100), 73 (Me_3Si, 77).

 $H_2C(SiMe_2S)_2SiMe_2$: GC/MS: 252 (M⁺, 12), 237 (M⁺–Me, 100), 221 (Me₃Si₃S₂(CH₂)₂, 8), 147 (Me₃Si₂SCH₂, 63), 131 (Me₅Si₂, 10), 73 (Me₃Si, 39), 59 (Me₂SiH, 25).

*H*₂*C*(*SiMe*₂*S*)₂*SiPhMe:* GC/MS: 314 (M⁺, 14), 299 (M⁺–Me, 100), 283 (PhMe₂Si₃S₂(CH₂)₂, 25), 209 (PhMe₂Si₂SCH₂, 42), 175 (Me₃Si₃SCH₂, 10), 147 (Me₃Si₂SCH₂, 27), 135 (PhMe₂Si, 20), 131 (Me₅Si₂, 10), 73 (Me₃Si, 11), 59 (Me₂SiH, 9).

*H*₂*C*(*SiMe*₂*S*)₂*GeMe*₂: GC/MS: 298 (M⁺, 10), 283 (M⁺–Me, 100), 193 (Me₃SiGeSCH₂, 24), 147 (Me₃Si₂SCH₂, 31), 131 (Me₅Si₂, 8), 73 (Me₃Si, 39), 59 (Me₂SiH, 27).

*H*₂*C*(*SiMe*₂*S*)₂*SnMe*₂: GC/MS: 344 (M⁺, 6), 329 (M⁺–Me, 100), 299 (Me₃Si₂SnS₂CH₂, 7), 239 (Me₃SiSnSCH₂, 21), 227 (MeSiSnS₂, 4), 209 (MeSiSnSCH₂, 5), 147 (Me₃Si₂SCH₂, 41), 133 (Me₃Si₂S, 11), 131 (Me₅Si₂, 12), 73 (Me₃Si, 40), 59 (Me₂SiH, 25).

*H*₂*C*(*SiMe*₂*Se*)₂*SiMe*₂: GC/MS: 348 (M⁺, 31), 333 (M⁺–Me, 77), 195 (Me₃Si₂SeCH₂, 100), 85 (MeSi₂CH₂, 18), 73 (Me₃Si, 95), 59 (Me₂SiH, 47).

*H*₂*C*(*SiMe*₂*Se*)₂*GeMe*₂: GC/MS: 392 (M⁺, 20), 377 (M⁺–Me, 69), 239 (Me₃SiGeSeCH₂, 35), 195 (Me₃Si₂SeCH₂, 59), 85 (MeSi₂CH₂, 20), 73 (Me₃Si, 100), 59 (Me₂SiH, 54).

 $H_2C(SiMe_2)_2(S)(Se)SiMe_2$: GC/MS: 300 (M⁺, 25), 285 (M⁺–Me, 100), 195 (Me_3Si_2SeCH_2, 30), 147 (Me_3Si_2SCH_2, 66), 85 (MeSi_2CH_2, 11), 73 (Me_3Si, 53), 59 (Me_2SiH, 28).

O(SiMe₂S)₂SiMe₂: GC/MS: 254 (M⁺, 12), 239 (M⁺–Me, 100), 223 (Me₃Si₃OS₂CH₂, 17), 149 Me₃Si₂OS, 33), 73 (Me₃Si, 23).

O(SiMe₂Se)₂SiMe₂: GC/MS: 350 (M⁺, 42), 335 (M⁺–Me, 89), 319 (Me₃Si₃OSe₂CH₂, 12), 197 (Me₃Si₂OSe, 78), 73 (Me₃Si, 100), 59 (Me₂SiH, 19).

O(*SiMe*₂)₂(*S*)(*Se*)*SiMe*₂: GC/MS: 302 (M⁺, 25), 287 (M⁺–Me, 100), 271 (Me₃Si₃OSSeCH₂, 15), 197 (Me₃Si₂OSe, 26), 149 Me₃Si₂OS, 51), 73 (Me₃Si, 52), 59 (Me₂SiH, 8).

a) Fünfringe $Z_2(SiMe_2)_2E$ ($Z = SiMe_2$, CH_2)

0.30 g (1.0 mmol) ClMe₂Si(SiMe₂)₂SiMe₂Cl (Darstellung: siehe *12.18.a*) bzw. 0.22 g (1.0 mmol) ClMe₂Si(CH₂)₂SiMe₂Cl wurden zu einer frisch präparierten THF Lösung von 1.0 mmol Li₂E (E = S, Se oder Te, siehe *12.11.b*) gegeben (im Falle der Tellurverbindungen bei –30 °C). Nach 30 min wurde das Lösungsmittel im Vakuum abkondensiert und der Rückstand in 10 ml Hexan gelöst. Nach Filtration vom ausgefallenen Lithiumsalz und Abkondensieren des Lösungsmittels blieben die Fünfringe $Z_2(SiMe_2)_2E$ als farblose bzw. hellgelbe (E = Te) Öle zurück.

*cyclo-(SiMe₂)*₄*S*: GC/MS: 264 (M^+ , 34), 249 (M^+ –Me, 21), 205 (Me₅Si₃SCH₂, 18), 191 (Me₅Si₃S, 27), 189 (Me₇Si₃, 6), 159 (Me₅Si₃, 5), 131 (Me₅Si₂, 30), 116 (Me₄Si₂, 26), 73 (Me₃Si, 100), 59 (Me₂SiH, 16).

 $cyclo-(SiMe_2)_4Se:$ GC/MS: 312 (M⁺, 14), 297 (M⁺–Me, 14), 253 (Me₅Si₃SeCH₂, 11), 239 (Me₅Si₃Se, 10), 189 (Me₇Si₃, 6), 159 (Me₅Si₃, 5), 131 (Me₅Si₂, 30), 116 (Me₄Si₂, 25), 73 (Me₃Si, 100), 59 (Me₂SiH, 15).

cyclo-(CH₂)₂(SiMe₂)₂S: GC/MS: 176 (M⁺, 17), 161 (M⁺–Me, 100), 133 (Me₃SiS(CH₂)₂, 29), 73 (Me₃Si, 62), 59 (Me₂SiH, 18).

cyclo-(CH₂)₂(SiMe₂)₂Se: GC/MS: 224 (M⁺, 20), 209 (M⁺–Me, 67), 181 (Me₃SiSe(CH₂)₂, 25), 73 (Me₃Si, 100), 59 (Me₂SiH, 30).

b) Achtringe $[ZSiMe_2ESiMe_2]_2$ (Z = SiMe₂, CH₂)

Analog zu *a*) wurden 0.25 g (1.0 mmol) ClMe₂Si–SiMe₂–SiMe₂Cl (siehe *12.18.a*) bzw. 0.20 g (1.0 mmol) ClMe₂Si–CH₂–SiMe₂Cl (siehe *12.18.a*) zu einer frisch präparierten THF Lösung von 1.0 mmol Li₂E (E = S oder Se, siehe *12.11.b*) gegeben. Nach 30 min wurde das Lösungsmittel im Vakuum abkondensiert und der Rückstand in 10 ml Hexan gelöst. Nach Filtration vom ausgefallenen Lithiumsalz und Abkondensieren des Lösungsmittels blieben farblose zähe ölige Rückstände zurück, die laut GPC-Analyse neben den Achtringen [ZSiMe₂ESiMe₂]₂ auch acyclische Oligomere [ZSiMe₂ESiMe₂]_x unterschiedlicher Kettenlängen enthielten. Für $Z = CH_2$ und E = S konnte der Achtring auch durch sein Massenspektrum nachgewiesen werden:

 $cyclo-[CH_2SiMe_2SiMe_2]_2$: 324 (M⁺, 11), 309 (M⁺–Me, 53), 277 (Me₇Si₄S(CH₂)₂, 6), 219 (Me₅Si₃S(CH₂)₂, 22), 162 (Me₄Si₂SCH₂, 12), 147 (Me₃Si₂SCH₂, 100), 131 (Me₅Si₂, 9), 73 (Me₃Si, 37), 59 (Me₂SiH, 17).

12.20. Norbornane (MeRSi–SiMe)₂ E_3 (E = S, Se, Te; R = Me, Ph)

a) Methylverbindungen ($Me_2Si-SiMe$)₂ E_3

0.52 g (2.5 mmol) Cl₂MeSi–SiClMe₂ wurden in 20 ml *n*–Hexan gelöst und H₂S durch die Lösung geleitet, während 1.04 ml (7.5 mmol) NEt₃ langsam zugetropft wurden. Nach Filtration vom ausgefallenen HNEt₃Cl wurde das Lösungsmittel im Vakuum entfernt. Zurück blieb ein farbloses Öl von reinem (Me₂Si–SiMe)₂S₃, Ausbeute: 0.62 g (2.1 mmol, 84 %), welches sich im Vakuum bei 80 °C / 0.004 kPa destillieren ließ.

 $(Me_2Si - SiMe)_2S_3$: GC/MS (m/e, rel. Int.): 298 (M⁺, 47), 283 (M⁺-Me, 40), 239 (Me_3Si_3S_3CH_2, 24), 223 (Me_5Si_3S_2, 22), 165 (Me_3Si_2S_2, 27), 73 (Me_3Si, 100).

Die analoge Selenverbindung entstand bei der Reaktion von 0.42 g (2.0 mmol) $Cl_2MeSi-SiClMe_2$ mit einer Lösung von 3.0 mmol Li₂Se in THF (siehe *12.11.b*). Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Nach Filtration vom ausgefallenen LiCl wurde das Lösungsmittel entfernt, wobei reines (Me₂Si-SiMe)₂Se₃ als öliger Rückstand zurückblieb, Ausbeute: 0.53 g (1.2 mmol, 60 %).

 $(Me_2Si - SiMe)_2Se_3$: GC/MS: 440 (Me₆Si₄⁷⁸Se⁸⁰Se₂ (M⁺), 18), 425 (M⁺-Me, 14), 381 (Me₃Si₃⁷⁸Se⁸⁰Se₂CH₂, 4), 365 (Me₃Si₃⁷⁸Se⁸⁰Se₂, 1), 319 (Me₅⁸⁰Se₂Si₃, 10), 303 (Me₃Se₂Si₃CH₂, 3), 289 (Me₃Se₂Si₃, 2), 261 (Me₃Se₂Si₂, 9), 231 (MeSe₂Si₂, 2), 211 (Me₅SeSi₂, 8), 195 (Me₃SeSi₂CH₂, 9), 281 (Me₃SeSi₂, 8), 123 (MeSeSi, 7), 73 (Me₃Si, 100).

b) Darstellung von 1-Phenyl-1,2-dimethyltrichlordisilan (ClPhMeSi–SiMeCl₂)

Eine Lösung von 0.10 mol Phenylmagnesiumbromid in 100 ml Diethylether (dargestellt aus 16 g (0.10 mol) PhBr und 2.5 g (0.11 mol) Mg) wurde langsam unter Rühren zu einer Lösung von 27.4 g (0.12 mol) $Cl_2MeSi-SiMeCl_2$ in 50 ml Diethylether getropft. Nach einer Stunde wurde das Lösungsmittel im Vakuum abgezogen und durch 100 ml Hexan ersetzt. Die Mischung wurde von den ausgefallenen Magnesiumsalzen filtriert und im Vakuum destilliert. Dabei wurden 16.55 g (0.061 mol) einer Fraktion bei 110 °C / 0.13 kPa isoliert, bei der es sich um PhMeClSi-SiCl_2Me handelte.

PhMeClSi^{*A*}–*Si*^{*B*}*Cl*₂*Me*: NMR (Hz, ppm), δ_{Si} A: 3.80, B: 23.53 (¹J_{SiSi}: 127.8); δ_{C} Si^AMe: –0.61 (¹J_{SiC}: 53.7), Si^BMe: 5.81 ppm (¹J_{SiC}: 54.4), Si^BPh: 131.49 (i), 133.68 (o), 128.44 ppm (m), 131.07 (p); δ_{H} Si^AMe: 0.86, Si^BMe: 0.89, Si^BPh: 7.65 ppm (o), 7.41 (m+p);

GC/MS: 268/270 (M⁺, 4), 253/255 (M⁺–Me, 1), 233 (M⁺–Cl, 1), 175 (PhSiCl₂, 1), 155 (PhMeSiCl, 100), 135 (PhMe₂Si, 2), 120 (PhMeSi, 3), 105 (PhSi, 5), 77 (Ph, 3).

Aufgrund der Tatsache, dass mit Phenylmagnesiumbromid gearbeitet wurde, enthielt das Produkt jeweils etwa 10 % der beiden Dichlormonobromverbindungen 1-Phenyl-1,2dimethyl-1-bromdichlordisilan PhMeBrSi^A–Si^BCl₂Me (δ_{SiA} : –1.5 ppm, δ_{SiB} : 22.3 ppm) und 1-Phenyl-1,2-dimethyl-2-bromdichlordisilan PhMeClSi^A–Si^BClBrMe (δ_{SiA} : 3.68/3.64 ppm, δ_{SiB} : 18.25/18.05 ppm, zwei Diastereomere in gleichen Mengen).

Der Destillationsrückstand (1.5 g) bestand aus PhMeXSi–SiXMePh (X = Cl, Br): PhMeClSi–SiClMePh (40 %, δ_{Si} : 6.47/6.25 ppm, zwei Diastereomere in gleichen Mengen), PhMeClSi^A–Si^BBrMePh (40 %, δ_{SiA} : 5.86/5.59 ppm, δ_{SiB} : 1.48/1.17 ppm, zwei Diastereomere in gleichen Mengen) und PhMeBrSi–SiBrMePh (20 %, δ_{Si} : 0.83/0.43 ppm, zwei Diastereomere in gleichen Mengen).

PhMeClSi–SiClMePh: GC/MS: 310 (M⁺, 2), 275 (M⁺–Cl, 1), 217 (Ph₂SiCl, 1), 197 (Ph₂MeSi, 100), 155 (PhMeSiCl, 43), 120 (PhMeSi, 25), 105 (PhSi, 22) [zwei GC Peaks mit identischem MS aufgrund der zwei Diastereomeren].

c) $(MePhSi-SiMe)_2E_3$ (E = S, Se, Te)

Zur Darstellung der Schwefelverbindung wurden 0.54 g (2.0 mmol) PhMeClSi–SiCl₂Me in 40 ml Hexan gelöst und getrocknetes H₂S durch die Lösung geleitet, während 0.83 ml (6.0 mmol) NEt₃ langsam mit einer Spritze zugetropft wurden. Nach 1 h wurde vom ausgefallenen HNEt₃Cl filtriert und das Lösungsmittel im Vakuum entfernt. Dabei blieb (MePhSi–SiMe)₂S₃ als kristalliner Rückstand (Gemisch der drei Stereoisomere) zurück. Laut einem ²⁹Si NMR Spektrum bestand das Produkt zu 53 % aus dem Isomer mit beiden Phenylsubstituenten in äquatorialen Positionen (eqeq) neben 39 % des Isomers mit einer Phenylgruppe in axialer Position (axeq) und 8 % des Isomers mit beiden Phenylgruppen in axialen Positionen (axax). Durch fraktionierte Kristallisation aus einer Hexan / CDCl₃ Lösung konnten Einkristalle des als Hauptprodukt auftretenden Isomers (eqeq) gewonnen werden.

Zur Darstellung der Selen- bzw. Tellurverbindung wurden 0.54 g (2.0 mmol) PhMeClSi– SiCl₂Me zu einer Lösung von 3.0 mmol Li₂E (E = Se or Te, siehe *12.11.b*) addiert. Im Falle der Tellurverbindung wurde bei –30 °C gearbeitet, um Si–Si Bindungsspaltung zu vermeiden. Nach 20 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Toluen gelöst. Nach Filtration wurde das Toluen im Vakuum abkondensiert, wobei die Norbornane (MePhSi–SiMe)₂E₃ (E = Se, Te) als mikrokristalline Produkte zurückblieben. ²⁹Si NMR Spektren der Produkte zeigten eine Zusammensetzung bezüglich der drei Stereoisomere von 50 % eqeq, 40 % axeq und 10 % axax für E = Se bzw. 44.5 % eqeq, 44 % axeq und 11.5 % axax für E = Te.

12.21. Bicyclo[3.3.1] nonane und Bicyclo[3.2.2] nonane (Me_5Si_3)₂ E_3 (E = S, Se)

a) 1,2,3-Trichlorpentamethyltrisilan

8.0 g (30 mmol) 2-Phenylheptamethyltrisilan (dargestellt aus PhMeSiCl₂, Me₃SiCl und Lithiumpulver analog zur Vorschrift in *12.14.c)*, Kp: 55 °C / 0.001 kPa, Ausbeute: 47 % bezogen auf PhMeSiCl₂ und Li) wurden in 30 ml Hexan gelöst und 16 g (120 mmol) wasserfreies Aluminiumchlorid zugegeben. Unter Rühren im Eisbad wurden anschließend 8.5 ml (120 mmol) Acetylchlorid im Laufe von 2 h Stunden zu getropft und die Reaktionsmischung über Nacht weiter gerührt, wobei sie sich allmählich auf Raumtemperatur erwärmte. Danach wurde die Hexanphase abgetrennt, der Rückstand noch 2× mit Hexan extrahiert und das Rohprodukt im Vakuum destilliert. Ausbeute: 4.8 g (18 mmol, 60 %) reines ClMe₂Si–SiMeCl–SiMe₂Cl, Kp: 75 °C / 0.7 kPa.

 $(Me_3Si^A)_2Si^BPhMe:$ NMR (Hz, ppm) δ_{Si} A: -15.48 (¹J_{SiC}: 44.2), B: -45.91 (¹J_{SiC (Me)}: 38.4, ¹J_{SiC (Ph)}: 51.0, ¹J_{SiSi}: 72.2); δ_C Si^AMe₃: -0.84, Si^BMe: -8.82, Si^BPh: 137.34 (i), 134.48 (o), 127.87 (m), 127.91 (p); δ_H Si^AMe₃: 0.145, Si^BMe: 0.412, Si^BPh: 7.40 (o), 7.22 (m+p);

GC/MS (m/e, rel. Int.): 266 (M⁺, 24), 251 (M⁺, 10), 193 (PhMe₄Si₂, 100), 178 (PhMe₃Si₂, 17), 177 (17), 163 (PhMe₂Si₂, 19), 135 (PhMe₂Si, 87), 116 (Me₄Si₂, 35), 105 (PhSi, 12), 73 (Me₃Si, 46).

 $(ClMe_2Si^A)_2Si^BMeCl:$ GC/MS: 264/266 (M⁺, 1), 249/251 (M⁺–Me, 1), 229 (M⁺–Cl, 5), 171 (Me_3Si_2Cl_2, 3), 151 (Me_4Si_2Cl, 18), 136 (Me_3Si_2Cl, 49), 93 (Me_2SiCl, 36), 73 (Me_3Si, 100); NMR: Tab. 7.3.5.

b) Decamethyl-3.7.9-trithiahexasilabicyclo[3.3.1]nonan und Decamethyl-3.6.8-trithiahexasilabicyclo[3.2.2]nonan, (Me₅Si₃)₂S₃

Durch eine Lösung von 0.27 g (1.0 mmol) (ClMe₂Si)₂SiMeCl in 30 ml Hexan wurde bei Raumtemperatur ein getrockneter H₂S Strom geleitet, während 0.48 ml (3.5 mmol) NEt₃ langsam zugetropft wurden. Nach einer Stunde wurde vom ausgefallenen HNEt₃Cl abfiltriert und das Hexan im Vakuum entfernt. Zurück blieben farblose Kristalle, die aus einem Gemisch der beiden Isomere mit Bicyclo[3.3.1]- und Bicyclo[3.2.2]nonan-Gerüst im Verhältnis 65 : 35 (laut ²⁹Si NMR) bestanden.

 $(Me_5Si_3)_2S_3$: GC/MS: 414 (M⁺, 28), 399 (M⁺–Me, 11), 355 (Me_7Si_5S_3CH₂, 6), 341 (Me_7Si_5S₃, 9), 309 (Me_7Si_5S₂, 8), 281 (Me_7Si_4S₂, 5), 249 (Me_7Si_4S, 38), 234 (Me_6Si_4S, 50), 191 (Me_5Si_3S, 21), 131 (Me_5Si_2, 32), 116 (Me_4Si_2, 22), 73 (Me_3Si, 100) [zwei GC Peaks mit identischem MS für die beiden isomeren Verbindungen].

c) Decamethyl-3.7.9-triselenahexasilabicyclo[3.3.1]nonan, (Me₅Si₃)₂Se₃

0.27 g (1.0 mmol) (ClMe₂Si)₂SiMeCl in 1 ml THF wurden zu einer nach *12.11.b*) frisch präparierten Lösung von 1.5 mmol Li₂Se bei 0 °C zugetropft. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Beim Einengen kristallisierte (Me₅Si₃)₂Se₃ in Form farbloser Plättchen aus.

12.22. Bicyclo[2.2.2] octane $Z(SiMe_2-E)_3MR$ (Z = SiMe, CH; M = Si, Ge, Sn)

a) Darstellung von MeSi(SiMe₂Cl)₃

- MeSi(SiMe₃)₃ und (Me₃Si)₂SiMe–SiMe(SiMe₃)₂:

Zu einer Suspension von 3.6 g (0.5 mol) Lithiumpulver in 200 ml THF wurden 68 g (0.63 mol) Me₃SiCl zugegeben und dann langsam 10.3 g (69 mmol) MeSiCl₃, gelöst in 50 ml THF, zugetropft, wobei sich die Mischung bis zum Sieden erhitzte. Nach vollständiger Zugabe wurde über Nacht gerührt, vom ausgefallenen Lithiumchlorid abfiltriert und das Lösungsmittel sowie verbliebenes Me₃SiCl im Vakuum abkondensiert. Nach Zugabe von 100 ml Hexan wurde nochmals filtriert (restliches LiCl) und das Hexan im Vakuum wieder entfernt.

Eine Vakuumdestillation des Rückstandes lieferte 6.5 g (25 mmol, 36 %) MeSi(SiMe₃)₃, Kp: 105 °C / 0.9 kPa (erstarrt bei Raumtemperatur) sowie 2.2 g (5.8 mmol, 17 %) (Me₃Si)₂SiMe–SiMe(SiMe₃)₂, Kp: 150 °C / 0.2 kPa.

 $MeSi(SiMe_3)_3$: GC/MS: 262 (M⁺, 19), 247 (M⁺–Me, 7), 189 (Me₇Si₃, 13), 187 (Me₅Si₄, 9), 174 (Me₆Si₃, 19), 159 (Me₅Si₃, 10), 131 (Me₅Si₂, 15), 73 (Me₃Si, 100); NMR: Tab. 7.3.6. (Me₃Si)₂SiMe–SiMe(SiMe₃)₂: GC/MS: 378 (M⁺, 35), 363 (M⁺–Me, 8), 305 (Me₁₁Si₅, 53), 290

(Me₁₀Si₅, 13), 231 (33), 215 (Me₅Si₅, 10), 189 (Me₇Si₃, 13), 174 (Me₆Si₃, 19), 157 (20), 131 (Me₅Si₂, 15), 129 (Me₃Si₃, 11), 73 (Me₃Si, 100); NMR: Tab. 7.3.5.

- MeSi(SiMe₂Cl)₃:

5.7 g (22 mmol) MeSi(SiMe₃)₃ wurden in 15 ml Hexan gelöst und 14.5 g (109 mmol) wasserfreies AlCl₃ zugegeben. Im Eisbad wurden unter Rühren langsam 6.2 ml (89 mmol) Acetylchlorid zugetropft. Nach Rühren über Nacht bei Raumtemperatur wurde die Hexanphase abgetrennt, der Rückstand 2× mit Hexan extrahiert und von den vereinigten Hexanlösungen das Lösungsmittel entfernt, wobei laut NMR reines MeSi(SiClMe₂)₃ zurückblieb (5.9 g, 18 mmol, 82 %), welches sich im Vakuum bei 110 °C / 0.6 kPa destillieren lässt. Bei Raumtemperatur erstarrt es zu einem farblosen Kristallbrei.

MeSi(SiMe₂Cl)₃: GC/MS: 322/324 (M⁺, 0.5), 307/309 (M⁺–Me, 2), 287 (M⁺–Cl, 6), 229 (Me₅Si₃Cl₂, 78), 209 (Me₆Si₃Cl, 12), 194 (Me₅Si₃Cl, 39), 151 (Me₄Si₂Cl, 26), 131 (Me₅Si₂, 58), 116 (Me₄Si₂, 26), 93 (Me₂SiCl, 26), 73 (Me₃Si, 100); NMR: Tab. 7.3.6.
- HC(SiMe₃)₃ und C(SiMe₃)₄:

Zu einer Suspension von 3.6 g (0.5 mol) Lithiumpulver in 200 ml THF wurden 68 g (0.63 mol) Me₃SiCl zugegeben und dann langsam 10.3 g (86 mmol) HCCl₃, gelöst in 50 ml THF, zugetropft, wobei sich die Mischung bis zum Sieden erhitzte. Nach vollständiger Zugabe wurde über Nacht gerührt, vom ausgefallenen Lithiumchlorid abfiltriert und das Lösungsmittel sowie verbliebenes Me₃SiCl im Vakuum abkondensiert. Nach Zugabe von 100 ml Hexan wurde nochmals filtriert (restliches LiCl) und das Hexan im Vakuum wieder entfernt.

Eine Vakuumdestillation des Rohprodukts lieferte 3.8 g (16 mmol, 19 %) HC(SiMe₃)₃, Kp: 107 °C / 1.5 kPa sowie etwa 2.5 g eines halbfesten Rückstandes, bei dem es sich laut NMR und GC/MS um C(SiMe₃)₄ neben etwas weiterem HC(SiMe₃)₃ handelte.

HC(SiMe₃)₃: GC/MS: 217 (M⁺–Me, 100), 129 (Me₄Si₂CH, 22), 73 (Me₃Si, 28); NMR: Tab. 7.3.5.

 $C(SiMe_3)_4$: GC/MS: 289 (M⁺–Me, 100), 201 (Me₇Si₃C, 30), 73 (Me₃Si, 48); NMR (Hz, ppm) δ_{Si} : -1.52; δ_C : 5.58 (¹J_{SiC}: 51.0), δ_H : 0.298.

- HC(SiMe₂Cl)₃:

7.7 g (33 mmol) HC(SiMe₃)₃ wurden in 10 ml Hexan gelöst und 14.0 g (105 mmol) wasserfreies AlCl₃ zugegeben. Im Eisbad wurden unter Rühren langsam 7.5 ml (105 mmol) Acetylchlorid zugetropft. Nach Rühren über Nacht bei Raumtemperatur wurde die Hexanphase abgetrennt, der Rückstand 2× mit Hexan extrahiert und von den vereinigten Hexanlösungen das Lösungsmittel entfernt, wobei laut NMR reines HC(SiClMe₂)₃ zurückblieb (7.9 g, 27 mmol, 81 %), welches sich im Vakuum bei 95 °C / 0.6 kPa destillieren lässt.

HC(SiMe₂Cl)₃: GC/MS: 277/279 (M⁺–Me, 100), 257 (M⁺–Cl, 8), 169 (Me₂Si₂Cl₂CH, 26), 149 (Me₃Si₂ClCH, 34), 93 (Me₂SiCl, 21); NMR: Tab. 7.3.5.

Bei unvollständiger Chlorierung enthält das Produkt noch das zweifach chlorsubstituierte Trisilylmethan HC(SiMe₂Cl)₂(SiMe₃).

 $HC(Si^{4}Me_{2}Cl)_{2}(Si^{B}Me_{3})$: NMR (Hz, ppm) δ_{Si} A: 27.49, B: -0.45; δ_{C} Si^AMe₂: 6.35/6.41 (diasterotope Methylgruppen, ¹J_{SiC}: 58.8), Si^BMe₃: 2.74 (¹J_{SiC}: 52.5), HC: 11.98; δ_{H} Si^AMe₂: 0.578, Si^BMe₃: 0.241, HC: 0.503.

c) Bicyclo[2.2.2] octane $MeSi(SiMe_2E)_3MR$ (E = S, Se, Te; M = Si, Ge, Sn, R = Me, Ph)

In einem typischen Ansatz wurden 0.33 g (1.0 mmol) $MeSi(SiMe_2Cl)_3$ und 1.0 mmol der entsprechenden Organotrichlorverbindung RMCl₃ (M = Si, Ge, Sn; R = Me, Ph) in 1 ml THF gelöst und diese Lösung zu 3.0 mmol einer nach *12.11.b*) frisch präparierten Li₂E (E = S, Se, Te) Lösung in THF bei 0 °C (bzw. -30 °C im Falle der Tellurverbindungen) zugegeben. Nach 20 min Rühren wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml *n*-Hexan gelöst. Nach Filtration von ausgefallenem Lithiumchlorid wurde das Lösungsmittel im Vakuum entfernt, wobei die Bicyclo[2.2.2]octane als farblose kristalline Produkte in 50 – 70 % Ausbeute anfielen (mit Ausnahme von MeSi(SiMe₂S)₃SiMe, welches ein farbloses Öl darstellte). Einkristalle wurden durch langsame Kristallisation aus Hexan erhalten.

Im Falle der Tellurverbindungen wurden gelbe, extrem luft- und feuchtigkeitsempfindliche Öle erhalten, die neben den Bicyclo[2.2.2]octanen noch bis zu 50 % nicht identifizierte Nebenprodukte enthielten.

 $MeSi(SiMe_2S)_3SiMe: GC/MS (m/e, rel. Int.): 356 (M^+, 31), 341 (M^+-Me, 20), 297 (Me_5Si_4S_3CH_2, 12), 283 (Me_5Si_4S_3, 11), 251 (Me_5Si_4S_2, 3), 223 (Me_5Si_3S_2, 5), 191 (Me_5Si_3S, 14), 176 (Me_4Si_3S, 14), 131 (Me_5Si_2, 17), 116 (Me_4Si_2, 16), 73 (Me_3Si, 100).$

 $MeSi(SiMe_2S)_3SiPh: GC/MS: 402 (M^+, 5), 387 (M^+-Me, 20), 313 (Me_7Si_4S_3, 10), 281 (Me_7Si_4S_2, 45), 223 (Me_5Si_3S_2, 13), 191 (Me_5Si_3S, 23), 163 (Me_5Si_2S, 11), 131 (Me_5Si_2, 30), 116 (Me_4Si_2, 14), 73 (Me_3Si, 100); F: 182 °C.$

 $MeSi(SiMe_2S)_3GePh: GC/MS: 464 (M^+, 11), 449 (M^+-Me, 1), 387 (M-Ph, 2), 329 (Me_5Si_3GeS_3, 9), 313 (Me_7Si_4S_3, 15), 281 (Me_7Si_4S_2, 15), 223 (Me_5Si_3S_2, 41), 209 (22), 178 (PhMe_3Si_2, 14), 163 (PhMe_2Si_2, 32), 135 (PhMe_2Si, 100), 73 (Me_3Si, 78).$

*MeSi(SiMe₂S)*₃*SnMe:* GC/MS: 433 (M⁺–Me, 24), 375 (Me₅Si₃SnS₃, 2), 343 (Me₅Si₃SnS₂, 10), 313 (Me₇Si₄S₃, 18), 281 (Me₇Si₄S₂, 11), 223 (Me₅Si₃S₂, 4), 191 (Me₅Si₃S, 37), 163 (Me₅Si₂S, 6), 131 (Me₅Si₂, 29), 73 (Me₃Si, 100).

 $MeSi(SiMe_2S)_3SnPh:$ GC/MS: 510 (M⁺, 3), 495 (M⁺–Me, 0.5), 433 (M⁺–Ph, 40), 375 (Me₅Si₃SnS₃, 35), 343 (Me₅Si₃SnS₂, 11), 313 (Me₇Si₄S₃, 19), 281 (Me₇Si₄S₂, 19), 223 (Me₅Si₃S₂, 23), 191 (Me₅Si₃S, 44), 153 (22), 135 (PhMe₂Si, 75), 131 (Me₅Si₂, 27), 73 (Me₃Si, 100).

 $\begin{aligned} &\textit{MeSi}(SiMe_2Se)_3SiMe: \ \text{GC/MS:} \ 498 \ (\text{Me}_8\text{Si}_5^{78}\text{Se}^{80}\text{Se}_2 \ (\text{M}^+), \ 6), \ 483 \ (\text{M}^+-\text{Me}, \ 4), \ 439 \\ &(\text{Me}_5\text{Si}_4^{78}\text{Se}^{80}\text{Se}_2\text{CH}_2, \ 2), \ 425 \ (\text{Me}_5\text{Si}_4^{78}\text{Se}^{80}\text{Se}_2, \ 1), \ 377 \ (\text{Me}_7\text{Si}_4^{80}\text{Se}_2, \ 1), \ 347 \ (\text{Me}_5\text{Si}_4^{80}\text{Se}_2, \ 3), \ 319 \ (\text{Me}_5\text{Si}_3^{80}\text{Se}_2, \ 2), \ 239 \ (\text{Me}_5\text{Si}_3\text{Se}, \ 11), \ 224 \ (\text{Me}_4\text{Si}_3\text{Se}, \ 7), \ 195 \ (\text{Me}_3\text{Si}_2\text{SeCH}_2, \ 4), \ 131 \\ &(\text{Me}_5\text{Si}_2, \ 19), \ 116 \ (\text{Me}_4\text{Si}_2, \ 14), \ 73 \ (\text{Me}_3\text{Si}, \ 100); \ \text{F:} \ 202 \ ^{\circ}\text{C}. \end{aligned}$

 $MeSi(SiMe_2Se)_3SiPh: GC/MS: 560 (PhMe_7Si_5^{78}Se^{80}Se_2 (M^+), 18), 545 (M^+-Me, 4), 501 (PhMe_4Si_4^{78}Se^{80}Se_2CH_2, 2), 487 (PhMe_4Si_4^{78}Se^{80}Se_2, 4), 423 (2), 365 (4), 319 (Me_5Si_3^{80}Se_2, 5), 301 (10), 286 (18), 257 (12), 224 (Me_4Si_3Se, 8), 193 (PhMe_4Si_2, 15), 178 (PhMe_3Si_2, 20), 135 (PhMe_2Si, 100), 131 (Me_4Si_2, 14), 105 (PhSi, 12), 73 (Me_3Si, 56).$

 $MeSi(SiMe_2Se)_3GeMe: GC/MS: 544 (Me_8Si_4^{74}Ge^{78}Se^{80}Se_2 (M^+), 2), 529 (M^+-Me, 6), 377 (Me_7Si_4^{80}Se_2, 13), 319 (Me_5Si_3^{80}Se_2, 3), 239 (Me_5Si_3Se, 17), 211 (Me_5Si_2Se, 5), 195 (Me_3Si_2SeCH_2, 4), 131 (Me_5Si_2, 22), 116 (Me_4Si_2, 8), 73 (Me_3Si, 100).$

 $MeSi(SiMe_2Se)_3GePh: GC/MS: 606 (PhMe_7Si_4^{74}Ge^{78}Se^{80}Se_2 (M^+), 5), 471 (Me_5Si_3^{74}Ge^{78}Se^{80}Se_2, 9), 467 (9), 377 (Me_7Si_4^{80}Se_2, 8), 330 (11), 317 (17), 281 (12), 207 (35), 178 (PhMe_3Si_2, 14), 135 (PhMe_2Si, 82), 73 (Me_3Si, 100).$

*MeSi(SiMe₂Se)*₃*SnMe*: F: 160 °C (Zersetzung unter Schwarzfärbung).

d) Bicyclo[2.2.2] octane $HC(SiMe_2E)_3MR$ (E = S, Se; M = Si, Ge, Sn, R = Me, Ph, Vi)

In Analogie zur Vorschrift in *c*) wurden in einem typischen Ansatz 0.29 g (1.0 mmol) $HC(SiMe_2Cl)_3$ und 1.0 mmol der entsprechenden Organotrichlorverbindung RMCl₃ (MR = SiMe, SiPh, SiVi, GeMe, SnMe) in 1 ml *n*-Hexan bzw. THF gelöst und diese Lösung zu 3.0 mmol einer nach *12.11.b*) frisch präparierten Li₂E (E = S, Se) Lösung in THF bei 0 °C zugegeben. Nach 20 min Rühren wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml *n*-Hexan gelöst. Nach Filtration von ausgefallenem Lithiumchlorid wurde das Lösungsmittel im Vakuum entfernt, wobei die Bicyclo[2.2.2]octane als farblose kristalline Produkte in 45 – 70 % Ausbeute anfielen. Einkristalle wurden durch langsame Kristallisation aus Hexan erhalten. Die Darstellung entsprechender Tellurverbindungen durch Reaktion mit Li₂Te gelang nicht.

HC(SiMe₂S)₃SiMe: GC/MS: 326 (M⁺, 26), 311 (M⁺–Me, 100), 221 (Me₄Si₃S₂CH, 22), 131 (Me₅Si₂, 20), 73 (Me₃Si, 82); F: 163 °C.

HC(SiMe₂S)₃SiPh: GC/MS: 388 (M⁺, 32), 373 (M⁺–Me, 100), 283 (PhMe₃Si₃S₂CH, 18), 221 (Me₄Si₃S₂CH, 7), 135 (PhMe₂Si, 56), 73 (Me₃Si, 22); F: 149 °C.

HC(*SiMe*₂*S*)₃*SiVi*: GC/MS: 338 (M⁺, 24), 323 (M⁺–Me, 100), 233 (ViMe₃Si₃S₂CH, 19), 221 (Me₄Si₃S₂CH, 10), 131 (Me₅Si₂, 15), 85 (ViMe₂Si, 35), 73 (Me₃Si, 33); F: 116 °C.

HC(*SiMe*₂*S*)₃*GeMe*: GC/MS: 372 (M⁺, 22), 357 (M⁺–Me, 100), 267 (Me₄Si₂GeS₂CH, 8), 221 (Me₄Si₃S₂CH, 15), 129 (Me₄Si₂CH, 23), 119 (Me₃Ge, 42), 73 (Me₃Si, 56).

 $HC(SiMe_2S)_3SnMe:$ GC/MS: 418 (M⁺, 16), 403 (M⁺–Me, 100), 313 (Me₄Si₂SnS₂CH, 3), 283 (Me₂Si₂SnS₂CH, 2), 251 (Me₆Si₃S₂CH, 6), 221 (Me₄Si₃S₂CH, 20), 161 (Me₄Si₂SCH, 62), 131 (Me₅Si₂, 21), 73 (Me₃Si, 38).

 $HC(SiMe_2Se)_3SiMe:$ GC/MS: 468 (Me₇Si₄⁷⁸Se⁸⁰Se₂CH (M⁺), 49), 453 (M⁺–Me, 52), 317 (Me₄Si₃⁸⁰Se₂CH, 25), 207 (5), 193 (8), 129 (Me₄Si₂CH, 27), 73 (Me₃Si, 100).

HC(SiMe₂Se)₃SiPh: GC/MS: 530 (PhMe₆Si₄⁷⁸Se⁸⁰Se₂CH (M⁺), 49), 515 (M⁺–Me, 36), 379 (PhMe₃Si₃⁸⁰Se₂CH, 17), 317 (Me₄Si₃⁸⁰Se₂CH, 10), 207 (24), 135 (PhMe₂Si, 100), 129 (Me₄Si₂CH, 37), 73 (Me₃Si, 66).

HC(SiMe₂Se)₃SiVi: GC/MS: 480 (ViMe₆Si₄⁷⁸Se⁸⁰Se₂CH (M⁺), 79), 465 (M⁺–Me, 65), 329 (ViMe₃Si₃⁸⁰Se₂CH, 16), 317 (Me₄Si₃⁸⁰Se₂CH, 15), 267 (Me₆Si₃SeCH, 9), 179 (Me₂Si₂SeCH, 27), 129 (Me₄Si₂CH, 47), 85 (ViMe₂Si, 100), 73 (Me₃Si, 97).

 $HC(SiMe_2Se)_3GeMe:$ GC/MS: 512 (Me₇Si₃⁷⁴Ge⁷⁸Se₂⁸⁰SeCH (M⁺), 46), 497 (M⁺–Me, 50), 361 (Me₄Si₂⁷⁴Ge⁷⁸Se⁸⁰SeCH, 7), 347 (Me₆Si₃⁸⁰Se₂CH, 26), 317 (Me₄Si₃⁸⁰Se₂CH, 12), 267 (Me₆Si₃SeCH, 15), 209 (Me₄Si₂SeCH, 33), 179 (Me₂Si₂SeCH, 19), 129 (Me₄Si₂CH, 60), 73 (Me₃Si, 100).

12.23. 1,3,6,8-Tetrachalcogenaspiro[4.4]nonane Si(SiMe₂-E-MR₂-E)₂

a) 1,2,2,3-Tetrachlortetramethyltrisilan, Cl₂Si(SiMe₂Cl)₂

8.2 g (33.5 mmol) 2,2-Dichlorhexamethyltrisilan (Darstellung aus $Ph_2Si(SiMe_3)_2$ siehe *12.14.c*) wurden in 20 ml Hexan gelöst und 9.5 g (71 mmol) wasserfreies Aluminiumchlorid zugegeben. Unter Rühren bei Raumtemperatur wurden anschließend 5.0 ml (70 mmol) Ace-tylchlorid im Laufe einer Stunde zugetropft und die Reaktionsmischung über Nacht weiter gerührt. Zum Ende wurde die Reaktionsmischung für 1 h im Wasserbad auf 45 °C erwärmt. Danach wurde die Hexanphase abgetrennt, der Rückstand noch 2× mit Hexan extrahiert und das Rohprodukt im Vakuum destilliert. Ausbeute: 7.6 g (26.5 mmol, 78 %) reines SiCl₂(SiClMe₂)₂.

 Cl_2Si^4 (Si^BMe_2Cl)₂: NMR (Hz, ppm) δ_{Si} A: 13.40 (${}^1J_{SiSi}$: 98.6), B: 17.68 (${}^1J_{SiC}$: 52.2), δ_C : 1.30, δ_H : 0.71; Kp: 80 °C / 0.9 kPa.

Man erhält dieses Trisilan auch direkt ausgehend von Ph₂Si(SiMe₃)₂ durch Reaktion mit vier Äquivalenten Aluminiumchlorid und Acetylchlorid.

Ist die Reaktion unvollständig, so enthält das Produkt noch 1,2,2-Trichlorpentamethyltrisilan, ClMe₂Si–SiCl₂–SiMe₃.

 $ClMe_2Si^A - Si^BCl_2 - Si^CMe_3$: NMR (Hz, ppm) δ_{Si} A: 17.86, B: 23.58, C: -9.46 (¹J_{SiC}: 48.1, ¹J_{SiSi}: 78.7, ²J_{SiSi}: 12.9); δ_C Si^AMe₂: 1.15, Si^CMe₃: -3.03, δ_H Si^AMe₂: 0.66, Si^CMe₃: 0.32.

b) $Si(SiMe_2-E-MR_2-E)_2$ (E = S, Se, Te; $MR_2 = SiMe_2$, $SiPh_2$, $GeMe_2$, $SnMe_2$)

Für die Darstellung der Schwefelverbindungen wurden 0.285 g (1.0 mmol) Cl₂Si(SiMe₂Cl)₂ und 2.0 mmol der entsprechenden Diorganodichlorverbindung (Me₂SiCl₂, Ph₂SiCl₂, Me₂GeCl₂ oder Me₂SnCl₂) in 20 ml Hexan (bzw. 15 ml Toluen im Falle der Zinnverbindung) gelöst und H₂S durch die Lösung geleitet, während 1.1 ml (8 mmol) NEt₃ allmählich zugetropft wurden. Nach Filtration von ausgefallenem Triethylammoniumchlorid wurde im Vakuum eingeengt, wobei die Spiroverbindungen teilweise aus dem Produkt auskristallisieren.

In allen Fällen enthielt das Produkt aber auch noch 15 - 30 % der Sechsringe (R₂MS)₃. Deren Bildung kann durch Verwendung eines leichten Unterschusses an R₂MCl₂ etwas zurück-gedrängt werden.

 $Si(SiMe_2SSiMe_2S)_2$: GC/MS: 388 (M⁺, 14), 373 (M⁺–Me, 1), 283 (Me₅Si₄S₃, 2), 223 (Me₅Si₃S₂, 5), 208 (Me₄Si₃S₂, 62), 193 (Me₃Si₃S₂, 11), 165 (Me₃Si₂S₂, 21), 148 (Me₄Si₂S, 18), 133 (Me₃Si₂S, 21), 116 (Me₄Si₂, 5), 73 (Me₃Si, 100).

 $Si(SiMe_2SGeMe_2S)_2$: GC/MS: 478 (Me_8Si_2⁷²Ge⁷⁴GeS₄ (M⁺), 1), 463 (M⁺–Me, 1), 373 (Me_5Si_2⁷²Ge⁷⁴GeS_3, 0.5), 359 (Me_4Si_2⁷²Ge⁷⁴GeS_3H, 1), 313 (Me_5Si⁷²Ge⁷⁴GeS_2, 2), 283 (Me_3Si⁷²Ge⁷⁴GeS_2, 1), 269 (Me_2Si⁷²Ge⁷⁴GeS_2H, 2), 255 (Me_5Si_3S_3, 6), 206 (Me_4⁷²Ge⁷⁴Ge, 21), 165 (Me_3Si_2S_2, 20), 119 (Me_3Ge, 21), 73 (Me_3Si, 100).

Si(SiMe₂SSnMe₂S)₂: GC/MS: 555 (Me₈Si₂¹²⁰Sn¹¹⁸Sn (M⁺–Me), 20), 407 (Me₅Si₃SnS₄, 10), 317 (Me₃Si₂SnS₃, 8), 257 (Me₃SiSnS₂, 11), 227 (MeSiSnS₂, 18), 165 (Me₃Si₂S₂ + Me₃Sn, 45), 73 (Me₃Si, 100).

Für die Darstellung der Selen- und Tellurverbindungen wurden 0.285 g (1.0 mmol) $Cl_2Si(SiMe_2Cl)_2$ und 2.0 mmol der entsprechenden Dimethyldichlorverbindung (Me_2SiCl_2, Me_2GeCl_2 oder Me_2SnCl_2) in 1 ml THF gelöst und bei 0 °C (bzw. –30 °C im Falle der Tellurverbindung) zu 4.0 mmol einer nach *12.11.b*) frisch präparierten Lösung von Li_2Se bzw. Li_2Te zugegeben. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt, der Rückstand in 10 ml Hexan gelöst, vom ausgefallenen LiCl filtriert und das Hexan im Vakuum entfernt. Die verbleibenden Öle enthielten neben den Spiroverbindungen auch noch die Sechsringverbindungen (Me_2ME)_3.

12.24. 2,4,6,8-Tetrachalcogenabicyclo[3.3.0] octane $R_2M(E)_2Si_2Me_2(E)_2MR_2$

a) Schwefelverbindungen $R_2M(S)_2Si_2Me_2(S)_2MR_2$ (M = Si, Ge, Sn, Pb, R = Me, Ph)

In einem typischen Experiment wurden 2.0 mmol der entsprechenden Diorganodichlorverbindung R_2MCl_2 in 40 ml Hexan (oder Toluen im Falle der Zinn- und Bleiverbindungen) gelöst (Ph₂PbCl₂ bildete lediglich eine Suspension) und 0.46 g (2.0 mmol) Cl₂MeSi–SiMeCl₂ hinzugefügt. Unter Rühren wurde H₂S durch die Mischung geleitet, während 1.66 ml (12 mmol) Triethylamin langsam mit einer Spritze zugetropft wurden. Nach einer Stunde wurde vom ausgefallenen Triethylammoniumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt, wobei die Bicyclo[3.3.0]octane als weiße kristalline Rückstände in 50 – 70 % Ausbeute (bezogen auf R_2MCl_2) anfielen. Einkristalle wurden durch langsame Kristallisation aus heiß gesättigten Lösungen in *n*-Hexan erhalten. Das überschüssige $Cl_2MeSi-SiMeCl_2$ bildet unter den Reaktionsbedingungen Me₆Si₆S₆ (siehe *12.25.*), welches in Hexan unlöslich und auch in Toluen nur wenig löslich ist.

 $Me_2Si(S)_2Si_2Me_2(S)_2SiMe_2$: GC/MS (m/e, rel. Int.): 330 (M⁺, 36), 315 (M⁺-Me, 26), 165 (Me_3Si_2S_2, 100), 73 (Me_3Si, 20); F: 75 - 77 °C.

 $\begin{aligned} Me_2Ge(S)_2Si_2Me_2(S)_2GeMe_2: \ \text{GC/MS: 420} \ (\text{Me}_6\text{Si}_2^{74}\text{Ge}^{72}\text{GeS}_4 \ (\text{M}^+), \ 1.5), \ 405 \ (\text{M}^+-\text{Me}, \ 73), \\ 301 \ (\text{Me}_5\text{Si}_2^{74}\text{GeS}_3, \ 30), \ 211 \ (\text{Me}_3\text{SiGeS}_2, \ 100), \ 181 \ (\text{Me}\text{SiGeS}_2, \ 21), \ 165 \ (\text{Me}_3\text{Si}_2\text{S}_2, \ 51), \ 135 \\ (\text{Me}\text{Si}_2\text{S}_2, \ 10), \ 119 \ (\text{Me}_3\text{Ge}, \ 36), \ 105 \ (\text{Me}_3\text{SiS}, \ 24), \ 89 \ (\text{MeGe}, \ 16), \ 73 \ (\text{Me}_3\text{Si}, \ 74); \ \text{F: } 127 \ ^{\circ}\text{C}. \\ Me_2Sn(S)_2Si_2Me_2(S)_2SnMe_2: \ \text{F: } 184 - 187 \ ^{\circ}\text{C}. \ Ph_2Sn(S)_2Si_2Me_2(S)_2SnPh_2: \ \text{F: } 130 \ ^{\circ}\text{C}. \end{aligned}$

b) $(CH_2)_5C(S)_2Si_2Me_2(S)_2C(CH_2)_5$

0.23 g (1.0 mmol) Cl₂MeSi–SiMeCl₂ und 0.30 g (2 mmol) Cyclohexan-1,1-dithiol (siehe *12.16.b*) wurden in 40 ml Hexan gelöst und 0.55 ml (4.0 mmol) NEt₃ unter Rühren hinzugefügt. Nach einer Stunde wurde vom ausgefallenen HNEt₃Cl abfiltriert und das Lösungsmittel im Vakuum entfernt, wobei reines $(CH_2)_5C(S)_2Si_2Me_2(S)_2C(CH_2)_5$ in Form farbloser Kristalle, F: 130 °C, zurückblieb.

c) Selenverbindungen $R_2M(Se)_2Si_2Me_2(Se)_2MR_2$ (M = Si, Ge, Sn, Pb, R = Me, Ph)

In einem typischen Experiment wurden 0.11 g (0.5 mmol) Cl₂MeSi–SiMeCl₂ und 1.0 mmol der entsprechenden Diroganodichlorverbindung R₂MCl₂ in einigen ml Hexan (bzw. Toluen im Falle der Zinn- und Bleiverbindungen) gelöst und diese Mischung zu 2.0 mmol einer nach *12.11.b)* frisch präparierten Li₂Se Lösung in THF zugetropft. Nach 30 min Rühren bei Raumtemperatur wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Nach Filtration vom ausgefallenen LiCl und Entfernen des Lösungsmittels im Vakuum blieben die Bicyclo[3.3.0]octane als farblose kristalline Produkte zurück. Einkristalle von Me₂Sn(Se)₂Si₂Me₂(Se)₂SnMe₂ konnten durch Kristallisation aus Toluen erhalten werden.

d) Tellurverbindungen $Me_2M(Te)_2Si_2Me_2(Te)_2MMe_2$ (M = Si, Ge, Sn)

In Analogie zur Vorschrift in *c*) wurde eine Lösung von 0.11 g (0.5 mmol) $Cl_2MeSi-SiMeCl_2$ und 1.0 mmol Me₂MCl₂ zu 2.0 mmol einer nach *12.11.b*) frisch präparierten Li₂Te Lösung bei -20 °C zugetropft. Nach Aufarbeitung wie in *c*) beschrieben, fielen die Tellurverbindungen als hellgelbe, kristalline und extrem luft- und feuchtigkeitsempfindliche Produkte an. Unter Argon sind sie aber bei Raumtemperatur über Wochen stabil.

a) Reaktion von $Cl_2MeSi-SiMeCl_2$ mit H_2S / NEt_3

0.68 g (3.0 mmol) Cl₂MeSi–SiMeCl₂ wurden in 40 ml Toluen gelöst und H₂S durch die Lösung geleitet, während 1.77 ml (12.8 mmol) NEt₃ mit einer Spritze zugetropft wurden. Nach 2 h wurde vom ausgefallenen Triethylammoniumchlorid filtriert und das Lösungsmittel bis auf 1 ml im Vakuum abkondensiert, wobei farblose Kristalle von Me₆Si₆S₆ (0.23 g, 51 %, F: > 190 °C) erhalten wurden. Da die Verbindung in CDCl₃ fast unlöslich ist, wurden die NMR Spektren in C₆D₆ aufgenommen. Einkristalle konnten durch langsames Abkühlen einer heiß gesättigten Lösung von Me₆Si₆S₆ in C₆D₆ gewonnen werden.

b) Reaktion von $Cl_2^{t}BuSi-Si^{t}BuCl_2$ mit H_2S / NEt_3

In Analogie zur Vorschrift in *a*) wurden 0.31 g (1.0 mmol) $Cl_2^tBuSi-Si^tBuCl_2$ (dargestellt nach [572] aus ^tBuPh₂SiCl über ^tBuPh₂Si-SiPh₂^tBu) in 40 ml Toluen gelöst und H₂S durch die Lösung geleitet, während 0.55 ml (4.0 mmol) NEt₃ zugetropft wurden. Nach Filtration vom ausgefallenen Ammoniumsalz und Einengen der Lösung schied sich ^tBu₄Si₄S₄ in Form farbloser, mikroskopischer Kriställchen ab.

 ${}^{t}Bu_{4}Si_{4}S_{4}$: GC/MS: 468 (M⁺, 59), 411 (M⁺–Bu, 100), 351 (${}^{t}Bu_{3}Si_{3}S_{3}$, 44), 267 (${}^{t}Bu_{2}Si_{2}S_{3}H$, 39), 177 (${}^{t}BuSi_{2}S_{2}$, 25), 135 (41), 57 (${}^{t}Bu$, 38).

12.26. Noradamantane $Me_2Si_2(RM)_2E_5$ (E = S, Se; RM = MeSi, MeGe, PhSn)

*a) Me*₄*Si*₄*Se*₅

0.285 g (1.25 mmol) Cl₂MeSi–SiMeCl₂ wurden bei 0 °C zu 2.5 mmol einer nach *12.11.b*) frisch präparierten Li₂Se Lösung in THF zugetropft. Nach 20 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 5 ml Toluen gelöst. Nach Filtration von ausgefallenem LiCl wurde das Lösungsmittel im Vakuum entfernt, wobei 0.18 g (0.32 mol, 51 %) Me₄Si₄Se₅ in Form farbloser dünner Kristallnadeln zurückblieben.

b) $Me_4Si_4S_5$ und $Me_2Si_2(MeGe)_2S_5$

0.23 g (1.0 mmol) Cl₂MeSi–SiMeCl₂ und 0.30 g (2.0 mmol) MeSiCl₃ bzw. 0.39 g (2.0 mmol) MeGeCl₃ wurden in 30 ml Hexan gelöst und 1.4 ml (10 mmol) NEt₃ zugetropft, während H₂S durch die Lösung geleitet wurde. Nach 30 min wurde vom ausgefallenen HNEt₃Cl filtriert und das Lösungsmittel im Vakuum entfernt, wobei die Noradamantane in Form farbloser Kristalle auskristallisierten.

*Me*₄*Si*₄*S*₅: GC/MS: 332 (M⁺, 75), 317 (M⁺–Me, 2), 257 (Me₃*Si*₃*S*₄, 100), 227 (MeSi₃*S*₄, 3), 165 (Me₃*Si*₂*S*₂, 14), 135 (MeSi₂*S*₂, 9), 75 (MeSi*S*, 12), 73 (Me₃*Si*, 9). *Me*₂*Si*₂(*MeGe*)₂*S*₅: GC/MS: 422 (Me₄*Si*₂⁷²Ge⁷⁴GeS₅ (M⁺), 7), 407 (M⁺–Me, 2), 347 (Me₃*Si*⁷²Ge⁷⁴GeS₄, 1), 303 (Me₃*Si*₂⁷⁴GeS₄, 100), 288 (Me₂*Si*₂GeS₄, 5), 273 (MeSi₂GeS₄, 2), 182 (Me₂*Si*₂*S*₃, 21), 167 (MeSi₂*S*₃, 13), 75 (MeSi*S*, 31), 73 (Me₃*Si*, 12), F: 176 °C.

c) Me₂Si₂(PhSn)₂Se₅

0.14 g (0.6 mmol) Cl₂MeSi–SiMeCl₂ und 0.37 g (1.2 mmol) PhSnCl₃ wurden in 1 ml THF gelöst und zu einer frisch präparierten Lösung von 3.0 mmol Li₂Se in THF (nach der Vorschrift in *12.11.b*) bei 0 °C zugetropft. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Tolen gelöst. Nach Filtration vom ausgefallenen LiCl wurde das Toluen im Vakuum abkondensiert, wobei Me₂Si₂(PhSn)₂Se₅ in Form eines gelben Pulvers zurückblieb (unlöslich in Hexan, löslich in CDCl₃, Toluen).

12.27. Adamantane $Z_2(SiMe)_4E_4$ und Noradamantane $Z(SiMe)_4E_4$ ($Z = SiMe_2, CH_2$)

a) Darstellung von Me₂Si(SiMeCl₂)₂

- Me₂Si(SiMePh₂)₂:

7.7 g (33 mmol) Ph₂MeSiCl wurden in 30 ml THF gelöst und 0.78 g (0.11 mol) Lithiumpulver zugegeben. Bereits nach wenigen Minuten begann sich die Mischung tiefgrün zu färben. Nach Reaktion über Nacht wurde die entstandene tiefgrüne Ph₂MeSiLi Lösung durch eine Kanüle in eine auf –80 °C abgekühlte Lösung von 2.12 g (16.5 mmol) Me₂SiCl₂ in 20 ml THF langsam unter Rühren eingetropft. Nach vollständiger Zugabe wurde auf Raumtemperatur erwärmt und das THF im Vakuum weitgehend entfernt. Nach Zugabe von 50 ml Hexan wurde vom ausgefallenen LiCl filtriert und das Lösungsmittel im Vakuum entfernt. Zurück blieben 6.4 g (14 mmol, 85 %) reines Me₂Si(SiMePh₂)₂ in Form eines viskosen Öls. $Me_2Si^4(Si^BMePh_2)_2$: NMR (Hz, ppm) δ_{Si} A: -47.23, B: -19.05 (¹J_{SiSi}: 72.6); δ_C Si^AMe₂: -5.03 (¹J_{SiC}: 38.6), Si^BMe: -4.24, Si^BPh₂: 137.01 (i), 134.82 (o), 127.75 (m), 128.68 (p); δ_H Si^AMe₂: 0.276, Si^BMe: 0.441, Si^BPh₂: 7.36 (o), 7.22 (m+p).

- Me₂Si(SiMeCl₂)₂:

6.25 g (13.8 mmol) Me₂Si(SiMePh₂)₂ wurden in 20 ml Hexan gelöst und 8.3 g (62 mmol) AlCl₃ zugegeben. Unter Rühren wurden bei Raumtemperatur 4.4 ml (62 ml) Acetylchlorid langsam zugetropft. Nach Reaktion über Nacht wurde die Hexanphase abgetrennt und der Rückstand noch 2× mit Hexan extrahiert. Von den vereinigten Hexanlösungen wurde das

Lösungsmittel bei Raumtemperatur im Vakuum abkondensiert. Zurück blieben 2.9 g (10 mmol) laut NMR reines Me₂Si(SiMeCl₂)₂.

 $Me_2Si^A(Si^BMeCl_2)_2$: GC/MS: 286 (Me_4Si_3^{35}Cl_3^{37}Cl (M⁺), 1), 271 (M⁺–Me, 1), 249/251 (M⁺–Cl, 2), 171 (Me_3Si_2Cl_2, 18), 156 (Me_2Si_2Cl_2, 17), 113 (MeSiCl_2, 6), 93 (Me_2SiCl, 29), 73 (Me_3Si, 100); NMR: Tab. 7.3.5.

b) Darstellung von H₂C(SiMeCl₂)₂

4.0 g (25 mmol) $H_2C(SiMe_3)_2$ wurden mit 16 g (120 mmol) wasserfreiem AlCl₃ gemischt und unter Rühren langsam 8.6 ml (120 mmol) Acetylchlorid zugegeben. Die Mischung wurde 4 h auf 120 °C erhitzt und nach Abkühlung auf Raumtemperatur 2× mit 15 ml Hexan extrahiert. Nach Abkondensieren des Hexans im Vakuum blieben 2.5 g (10 mmol, 40 %) reines $H_2C(SiMeCl_2)_2$ zurück, Kp: 180 °C.

 $H_2C(SiMeCl_2)_2$: GC/MS: 227 (MeSi₂³⁵Cl₃³⁷ClCH₂ (M⁺–Me, 100), 205/207 (M⁺–Cl, 9), 189/191 (Si₂Cl₃(CH₂)₂, 10), 113 (MeSiCl₂, 19), 92 (MeSiClCH₂, 27), 63 (SiCl, 25).

c) Adamantane $(Me_2Si)_2(SiMe)_4E_4$ (E = S, Se)

0.29 g (1.0 mmol) Me₂Si(SiMeCl₂)₂ wurden bei 0 °C zu einer nach *12.11.b*) frisch präparierten Lösung von 2.0 mmol Li₂E (E = S, Se) zugetropft. Nach 20 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand mit 10 ml Hexan extrahiert. Abkondensieren des Lösungsmittels führte zu den Adamantanen (Me₂Si)₂(SiMe)₄E₄ (E = S, Se) in Form farbloser Kristalle.

Die Schwefelverbindung lässt sich auch durch Reaktion von Me₂Si(SiMeCl₂)₂ (0.29 g, 1.0 mmol) mit H₂S und NEt₃ (0.55 ml, 4.0 mmol) in Hexan (30 min Reaktionszeit, anschließend Filtration vom ausgefallenen HNEt₃Cl, Abkondensieren des Lösungsmittels) gewinnen.

 $(Me_2Si)_2(SiMe)_4S_4$: GC/MS: 416 (M⁺, 68), 401 (M⁺–Me, 100), 357 (Me_5Si_5S_4CH₂, 20), 343 (Me_5Si_5S_4, 17), 311 (Me_5Si_5S_3, 24), 283 (Me_5Si_4S_3, 18), 266 (Me_6Si_4S_2, 10), 251 (Me_5Si_4S_2, 35), 223 (Me_5Si_3S_2, 9), 191 (Me_5Si_3S, 21), 176 (Me_4Si_3S, 9), 165 (Me_3Si_2S_2, 11), 163 (Me_5Si_2S, 8), 131 (Me_5Si_2, 24), 116 (Me_4Si_2, 18), 73 (Me_3Si, 94); F: 174 °C.

d) Noradamantan (Me_2Si)(SiMe)₄ S_4

0.29 g (1.0 mmol) Me₂Si(SiMeCl₂)₂ und 0.46 g (2.0 mmol) Cl₂MeSi–SiMeCl₂ wurden in 40 ml Hexan gelöst und H₂S durch die Lösung geleitet, während 1.7 ml (12 mmol) NEt₃ langsam zugetropft wurden. Nach 1 h wurde vom ausgefallenen HNEt₃Cl filtriert und das Lösungsmittel im Vakuum abkondensiert, wobei das Noradamantan (Me₂Si)(SiMe)₄S₄ in Form

farbloser Kristalle zurückblieb. Einkristalle konnten durch langsame Kristallisation aus einer Lösung in Hexan gewonnen werden.

 $(Me_2Si)(SiMe)_4S_4$: GC/MS: 358 (M⁺, 43), 343 (M⁺–Me, 41), 283 (Me₅Si₄S₃, 20), 239 (Me₆Si₃S₂H, 4), 225 (Me₃Si₃S₃, 7), 223 (Me₅Si₃S₂, 9), 208 (Me₄Si₃S₂, 14), 193 (Me₃Si₃S₂, 5), 165 (Me₃Si₂S₂, 26), 133 (Me₃Si₂S, 12), 73 (Me₃Si, 100); F: 169 °C.

e) Adamantane $(H_2C)_2(SiMe)_4E_4$ (E = S, Se, Te)

Für die Darstellung der Schwefelverbindung wurden 0.36 g (1.5 mmol) $H_2C(SiMeCl_2)_2$ in 20 ml Toluen gelöst und 0.83 ml (6.0 mmol) NEt₃ wurden langsam zugetropft, während H_2S durch die Lösung geleitet wurde. Nach 30 min wurde vom ausgefallenen HNEt₃Cl filtriert und das Toluen im Vakuum abkondensiert. Zurück blieben 0.29 g (0.9 mmol, 59 %) $(H_2C)_2(SiMe)_4S_4$ in Form farbloser Kristalle. Einkristalle wurden durch langsame Kristallisation aus *n*-Hexan gewonnen.

 $(H_2C)_2(SiMe)_4S_4$: GC/MS: 328 (M⁺, 100), 313 (M⁺–Me, 93), 295 (10), 239 (Me₃Si₃S₃CH₂, 16), 221 (Me₃Si₃S₂(CH₂)₂, 19), 147 (Me₃Si₂SCH₂, 6), 131 (Me₅Si₂, 7), 75 (MeSiS, 4), 73 (Me₃Si, 5); F: 267 °C.

Die Selen- und Tellurverbindungen wurden durch Reaktion mit Li₂E dargestellt:

0.30 g (1.25 mmol) H₂C(SiMeCl₂)₂ wurden bei 0 °C zu frisch präparierten Lösungen von 2.5 mmol Li₂Se bzw. Li₂Te in THF zugetropft. Nach 20 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Nach Filtration und Abkondensieren des Lösungsmittels blieben die Adamantane (H₂C)₂(SiMe)₄E₄ (E = Se, Te) in kristalliner Form zurück. Einkristalle der Selenverbindung wurden aus einer Toluenlösung gewonnen, während die Tellurverbindung aus einer Hexan/CDCl₃ Lösung umkristallisiert wurde.

f) Noradamantane $(H_2C)(SiMe)_4E_4$ (E = S, Se)

Die Schwefelverbindung wurde durch Reaktion einer Lösung von 0.24 g (1.0 mmol) $H_2C(SiMeCl_2)_2$ und 0.23 g (1.0 mmol) $Cl_2MeSi-SiMeCl_2$ in 30 ml Toluen mit H_2S und 1.1 ml (8.0 mmol) NEt₃ dargestellt. Nach 30 min wurde vom ausgefallenen HNEt₃Cl filtriert und das Lösungsmittel im Vakuum abkondensiert. Das erhaltene kristalline Produkt war ein Gemisch aus dem Noradamantan $(H_2C)(SiMe)_4S_4$ und dem entsprechenden Adamantan $(H_2C)_2(SiMe)_4S_4$ (siehe unter *e*). Durch fraktionierte Kristallisation aus *n*-Hexan konnte der größte Teil des in Hexan deutlich schlechter löslichen Adamantans abgetrennt werden. So wurde der Anteil am Noradamantan im Produkt laut NMR auf 85 % erhöht. Schließlich konnten Einkristalle des Noradamantans aus einer Hexanlösung gewonnen werden.

 $(H_2C)(SiMe)_4S_4$: GC/MS: 314 (M⁺, 93), 299 (M⁺–Me, 12), 239 (Me₃Si₃S₃CH₂, 100), 147 (Me₃Si₂SCH₂, 8), 131 (Me₅Si₂, 5), 75 (MeSiS, 7), 73 (Me₃Si, 4).

Zur Darstellung der Selenverbindung wurden 0.24 g (1.0 mmol) $H_2C(SiMeCl_2)_2$ und 0.23 g (1.0 mmol) $Cl_2MeSi-SiMeCl_2$ in 1 ml THF gelöst und zu einer nach der Vorschrift in *12.11.b)* frisch präparierten Lösung von Li₂Se in THF zugegeben. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 5 ml Toluen gelöst. Nach Filtration von ausgefallenem LiCl wurde das Toluen im Vakuum entfernt. Zurück blieb ein kristallines Produkt, das laut NMR Spektren zu 80 % aus dem Noradamantan (H₂C)(SiMe)₄Se₄ neben 15 % (H₂C)₂(SiMe)₄Se₄ (siehe *12.27.e*) und 5 % Me₄Si₄Se₅ (siehe *12.26.a*) bestand.

g) Adamantan $CH_2(SiMe)_4S_5$

Zu einer Mischung aus 0.24 g (1.0 mmol) $H_2C(SiMeCl_2)_2$ und 0.30 g (2.0 mmol) MeSiCl_3, gelöst in 40 ml Hexan, wurden langsam 1.4 ml (10 mmol) NEt_3 zugetropft, während H_2S durch die Lösung geleitet wurde. Nach 30 min wurde vom ausgefallenen HNEt_3Cl filtriert und das Lösungsmittel im Vakuum entfernt. Zurück blieb ein farbloses kristallines Produkt aus $CH_2(SiMe)_4S_5$ neben $(CH_2)_2(SiMe)_4S_4$ (siehe unter *e*) und wenig (MeSi)_4S_6.

 $CH_2(SiMe)_4S_5$: GC/MS: 346 (M⁺, 100), 331 (M⁺–Me, 42), 313 (Me₄Si₄S₄CH, 8), 257 (Me₃Si₃S₄, 10), 239 (Me₃Si₃S₃CH₂, 50), 165 (Me₃Si₂S₂, 8), 147 (Me₃Si₂SCH₂, 10), 135 (MeSi₂S₂, 10), 131 (Me₅Si₂, 7), 75 (MeSiS, 13), 73 (Me₃Si, 10).

12.28. 3,7-Dichalcogenahexasilabicyclo[3.3.0]octane

a) 1,1,2,2-Tetrakis(chlordimethylsilyl)dimethyldisilan, (ClMe₂Si)₂MeSi–SiMe(SiMe₂Cl)₂

4.0 g (10.6 mmol) (Me₃Si)₂MeSi–SiMe(SiMe₃)₂ (siehe *12.22.a*) wurden in 20 ml Hexan gelöst und im Eisbad 7.0 g (52 mmol) AlCl₃ zugegeben. Unter Rühren im Eisbad wurden schließlich 3.7 ml (52 mmol) Acetylchlorid langsam zugetropft. Anschließend wurde noch über Nacht gerührt, wobei sich die Mischung allmählich auf Raumtemperatur erwärmte. Danach wurde die Hexanphase abgetrennt und der Rückstand noch $2\times$ mit 10 ml Hexan extrahiert. Die vereinigten Hexanlösungen wurden im Vakuum eingeengt, wobei 4.1 g (8.9 mmol, 84 %) reines (ClMe₂Si)₂MeSi–SiMe(SiMe₂Cl)₂ als viskoses Öl zurückblieben.

(*ClMe*₂*Si*)₂*MeSi*–*SiMe*(*SiMe*₂*Cl*)₂: GC/MS: 445 (Me₉Si₆³⁵Cl₃³⁷Cl (M⁺–Me), 2), 423/425 (M⁺– Cl), 365/367 (Me₈Si₅Cl₃, 100), 345 (Me₉Si₅Cl₂, 1), 330 (Me₈Si₅Cl₂, 2), 287 (Me₇Si₄Cl₂, 22), 267 (Me₈Si₄Cl, 11), 229 (Me₅Si₃Cl₂, 6), 209 (Me₆Si₃Cl, 15), 194 (Me₅Si₃Cl, 33), 159 (Me₅Si₃, 10), 131 (Me₅Si₂, 29), 93 (Me₂SiCl, 23), 73 (Me₃Si, 75); NMR: Tab. 7.3.5. Wird die Chlorierung anfangs nicht im Eisbad, sondern bei etwa 40 - 50 °C durchgeführt, so reultiert unter Umlagerung des Silangerüsts 1,1,1-Tris(chlorodimethylsilyl)-2,3-dichlor-trimethyltrisilan.

 $(ClMe_2Si^A)_3Si^B$ - Si^CMeCl - Si^DMe_2Cl : NMR (ppm) δ_{Si} A: 27.60, B: -109.92, C: 10.60, D: 20.82; δ_H Si^AMe₂: 0.69, Si^CMe: 0.65, Si^DMe₂: 0.57/0.60 (diastereotope Methylgruppen); GC/MS: 445 (Me₉Si₆³⁵Cl₃³⁷Cl (M⁺-Cl), 2), 365/367 (Me₈Si₅Cl₃, 100), 345 (Me₉Si₅Cl₂, 13), 287 (Me₇Si₄Cl₂, 11), 272 (Me₆Si₄Cl₂, 14), 267 (Me₈Si₄Cl, 8), 209 (Me₆Si₃Cl, 13), 174 (Me₆Si₃, 10), 159 (Me₅Si₃, 7), 131 (Me₅Si₂, 12), 93 (Me₂SiCl, 22), 73 (Me₃Si, 46).

b) $E(Me_2Si)_2Si_2Me_2(SiMe_2)_2E$ (E = S, Se, Te)

Zur Darstellung der Schwefelverbindung wurden 0.35 g (0.76 mmol) (ClMe₂Si)₂MeSi–SiMe(SiMe₂Cl)₂ in 25 ml Hexan gelöst und H₂S durch die Lösung geleitet, während 0.43 ml (3.1 mmol) NEt₃ langsam zugetropft wurden. Nach Filtration vom ausgefallenen HNEt₃Cl und Abkondensieren des Lösungsmittels im Vakuum blieben 0.25 g eines farblosen viskosen Öls zurück, dass sich im Hochvakuum bei 120 °C / 0.004 kPa destillieren ließ. Die so gewonnenen 0.2 g Produkt erstarrten nach einigen Minuten zu kristallinen Plättchen.

S(*Me*₂*Si*)₂*Si*₂*Me*₂(*SiMe*₂)₂*S*: GC/MS: 382 (M⁺, 73), 367 (M⁺–Me, 38), 323 (Me₇Si₅S₂CH₂, 32), 309 (Me₇Si₅S₂, 61), 277 (Me₇Si₅S, 13), 249 (Me₇Si₄S, 19), 131 (Me₅Si₂, 16), 73 (Me₃Si, 100), 59 (Me₂SiH, 15); F: 75 °C.

Zur Darstellung der Selen- bzw. der Tellurverbindung wurden 0.23 g (0.5 mmol) $(CIMe_2Si)_2MeSi-SiMe(SiMe_2Cl)_2$ zu 1.0 mmol einer nach der Vorschrift in *12.11.b*) frisch präparierten Li₂Se bzw. Li₂Te Lösung in THF bei 0 °C (E = Se) bzw. -30 °C (E = Te) zugegeben. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Nach Filtration von ausgefallenem LiCl wurde das Hexan im Vakuum entfernt. Zurück blieben die 3,7-Chalcogenahexasilabicyclo[3.3.0]octane, wobei die Selenverbindung nach einiger Zeit ebenfalls zu farblosen Plättchen erstarrte, während die Tellurverbindung ein hellgelbes sehr luftempfindliches Öl darstellte.

Se(*Me*₂*Si*)₂*Si*₂*Me*₂(*SiMe*₂)₂*Se*: GC/MS: 478 (M⁺, 19), 463 (M⁺–Me, 15), 419 (Me₇Si₅Se₂CH₂, 9), 405 (Me₇Si₅Se₂CH₂, 13), 325 (Me₇Si₅Se, 14), 297 (Me₇Si₄Se, 11), 267 (Me₅Si₄Se, 6), 239 (Me₅Si₃Se, 7), 159 (Me₅Si₃, 11), 131 (Me₅Si₂, 23), 73 (Me₃Si, 100), 59 (Me₂SiH, 12); F: 60 °C.

12.29. Si₂(SiMe₂Cl)₆ und 3,7,10-Trichalcogenaoctasila[3.3.3]propellane

a) Hexakis(chlordimethylsilyl)disilan, Si₂(SiMe₂Cl)₆

1.36 g (2.75 mmol) $Si_2(SiMe_3)_6$ (siehe 12.13.) wurden in 20 ml Hexan gelöst und 3.0 g (22.5 mmol) wasserfreies AlCl₃ zugegeben. 1.5 ml (20 mmol) Acetylchlorid wurden langsam unter Rühren zugetropft. Nach Reaktion über Nacht wurde die Reaktionsmischung für eine Stunde auf 40 °C erwärmt und anschließend die Hexanphase abgetrennt. Nach Entfernung des Lösungsmittels blieben 0.70 g (1.13 mmol, 41 %) reines kristallines $Si_2(SiMe_2Cl)_6$ zurück.

 $Si_2(SiMe_2Cl)_6$: GC/MS: 601 (Me₁₁Si₈³⁵Cl₅³⁷Cl (M⁺–Me), 2), 581 (M⁺–Cl, 1), 523 (Me₁₀Si₇³⁵Cl₄³⁷Cl, 44), 488 (Me₁₀Si₇³⁵Cl₃³⁷Cl, 21), 393/395 (Me₈Si₆Cl₃, 9), 378/380 (Me₇Si₆Cl₃, 15), 307/309 (Me₆Si₄Cl₃, 13), 272 (Me₆Si₄Cl₂, 42), 209 (Me₆Si₃Cl, 18), 174 (Me₆Si₃, 13), 131 (Me₅Si₂, 26), 93 (Me₂SiCl, 37), 73 (Me₃Si, 100); F: 257 °C; NMR: Tab. 11.8.2.2.

Wird die Reaktionsmischung zum Schluss statt auf 40 °C für eine Stunde auf 70 °C erwärmt, so resultierte ein Produktgemisch, das neben 52 % $Si_2(SiMe_2Cl)_6$ auch 43 % eines Octasilans mit sieben Chlorsubstituenten sowie 5 % eines Octasilans mit acht Chlorsubstituenten enthielt.

 $(ClMe_2Si^C)_3Si^A - Si^B(Si^DClMe_2)_2(Si^ECl_2Me)$: NMR (ppm) δ_{Si} A: -111.23, B: -104.08, C: 28.88, D: 27.85, E: 36.98; δ_C Si^CMe₂: 8.03, Si^DMe₂: 7.69 ppm, Si^EMe: 13.02 ppm;

GC/MS: 623 (M⁺–Me, 2), 543 (Me₉Si₇Cl₆, 27), 508 (Me₉Si₇Cl₅, 28), 415 (Me₇Si₆Cl₄, 10), 400 (Me₆Si₆Cl₄, 24), 309 (Me₆Si₄Cl₃, 31), 272 (Me₆Si₄Cl₂, 13), 209 (Me₆Si₃Cl, 19), 159 (Me₅Si₃, 22), 131 (Me₅Si₂, 29), 93 (Me₂SiCl, 61), 73 (Me₃Si, 100).

 $(Cl_2MeSi^C)(ClMe_2Si^B)_2Si^A$ - $Si^A(Si^BClMe_2)_2(Si^CCl_2Me)$: NMR (ppm) δ_{Si} A: -111.23, B: 27.75, C: 36.21.

b) Dodecamethyl-3,7,10-trithiaoctasila[3.3.3] propellan, Si₂(SiMe₂)₆S₃

0.23 g (0.37 mmol) Si₂(SiMe₂Cl)₆ wurden in 30 ml Hexan gelöst und 0.35 ml (2.5 mmol) NEt₃ zugetropft, während für 30 min H₂S durch die Lösung geleitet wurde. Nach Rühren über Nacht wurde vom ausgefallenen Ammoniumsalz abfiltriert und das Lösungsmittel im Vakuum entfernt, wobei 0.14 g (0.28 mmol, 76 %) reines Si₂(SiMe₂)₆S₃ als farbloses kristallines Produkt zurückblieben. Einkristalle konnten durch langsame Kristallisation aus Hexan gewonnen werden.

Si₂(SiMe₂)₆S₃: GC/MS: 500 (M⁺, 25), 485 (M⁺–Me, 6), 441 (Me₉Si₇S₃CH₂, 8), 427 (Me₉Si₇S₃, 29), 395 (Me₉Si₇S₂, 3), 351 (Me₇Si₆S₂CH₂, 6), 337 (Me₇Si₆S₂, 7), 293 (Me₅Si₅S₂CH₂, 6), 277 (Me₇Si₅S, 10), 262 (Me₆Si₅S, 8), 247 (Me₅Si₅S, 15), 233 (Me₅Si₄SCH₂, 11), 189 (Me₇Si₃, 11), 131 (Me₅Si₂, 13), 73 (Me₃Si, 100); F: 225 °C (Zers.).

Eine Lösung von 0.31 g (0.50 mmol) Si₂(SiMe₂Cl)₆ in 1 ml THF wurde zu frisch präparierten Lösungen von 1.5 mmol Li₂Se bzw. Li₂Te in THF (siehe *12.11.b*) bei 0 °C (bzw. –30 °C im Falle der Tellurverbindung) zugetropft. Nach 30 min wurde das Lösungsmittel im Vakuum entfernt und der Rückstand in 10 ml Hexan gelöst. Filtration vom ausgefallenen LiCl und Entfernung des Lösungsmittels im Vakuum lieferte die [3.3.3]-Propellane in 62 (E = Se) bzw. 25 % (E = Te) Ausbeute.

13. Zusammenfassung

- Hauptziel dieser Arbeit war die Synthese und Charakterisierung neuer Silicium-Chalcogen-Verbindungen (Chalcogen: Schwefel, Selen, Tellur), sowohl mit acyclischen, als auch mono- und polycyclischen Strukturen.

Dabei konnten in vielen Fällen auch isostrukturelle Verbindungen mit Germanium- oder Zinnatomen anstelle von Silicium aufgebaut werden.

- Als Synthesewege bewährten sich sowohl Reaktionen der entsprechenden Chlorderivate mit Schwefelwasserstoff in Gegenwart von Triethylamin, als auch Umsetzungen mit Lithiumchalcogeniden, welche in besonders reaktiver Form aus dem elementaren Chalcogen und Li[BEt₃H] zugänglich waren.
- Ausgehend von chlorfunktionalisierten oligomeren Siliciumbausteinen (Oligosilane mit 2 –
 8 Siliciumatomen, Disilylmethane und Trisilylmethane) war eine ganze Palette neuer Ringsysteme darstellbar. Schema 13.1. zeigt eine Übersicht über die wesentlichen Strukturtypen.
- Dabei offenbart sich, dass fünfgliedrige Ringe in diesen Systemen bevorzugt sind: ist die Bildung mehrerer isomerer Verbindungen denkbar, so wird selektiv die Verbindung gebildet, die aus Fünfringen aufgebaut ist.
- Dieser Trend ließ sich auch durch DFT Berechnungen bestätigen, die zeigten, dass bei der Umwandlung von Verbindungen, die aus Sechsringen aufgebaut sind, in Verbindungen mit Fünfringen die Gesamtenergie abnimmt.
- Insgesamt konnten 42 der dargestellten Verbindungen auch durch Röntgenkristallstrukturanalysen charakterisiert werden. In cyclischen und polycyclischen Verbindungen war es damit auch möglich, die auftretenden Konformationen der Ringe- bzw. Ringsysteme zu bestimmen und die Resultate mit den Ergebnissen der DFT-Berechnungen zu vergleichen.
- Die NMR-Spektroskopie war parallel zu Kristallstrukturanalysen und GC/MS Messungen die Methode der Wahl zur Charakterisierung der dargestellten Verbindungen. Dabei boten sich neben der ¹H und ¹³C NMR auch die ²⁹Si, ¹¹⁹Sn, ²⁰⁷Pb, ⁷⁷Se, und ¹²⁵Te NMR Spektroskopie an, da man direkt die Elemente analysiert, die die Ringsysteme aufbauen, was zu einer weit höheren Strukturempfindlichkeit führt.
- Vor allem beim Vergleich von ⁷⁷Se und ¹²⁵Te NMR Daten analoger Selen- und Tellurverbindungen ergaben sich lineare Korrelationen sowohl der chemischen Verschiebungen als auch der Kopplungskonstanten ¹J_{SiE} bzw. ¹J_{SnE} mit Faktoren von ca. 2.5. Ähnliche Korrelationen konnten auch zwischen ²⁹Si und ¹¹⁹Sn bzw. ¹¹⁹Sn und ²⁰⁷Pb NMR chemischen Verschiebungen gezogen werden.

- Bei der Auswertung der Spektren wurde auch großer Wert auf die Bestimmung von Kopplungskonstanten gelegt, da letztlich nur das Auftreten entsprechender Kopplungssatelliten einen direkten Beweis der Konnektivitäten liefern kann. Beim Vergleich mit den Daten aus den Kristallstrukturuntersuchungen zeigten sich Zusammenhänge zwischen den Kopplungskonstanten ¹J_{SiSe} bzw. ¹J_{SnSe} und den ermittelten Bindungslängen Si–Se bzw. Sn–Se.
- Um die Einflüsse der Bildung verschiedener Ringsysteme auf die chemischen Verschiebungen einschätzen zu können, wurde eine große Palette chalcogenobutylsubstiuierter Silane und Oligosilane dargestellt. Zur Synthese dienten im Falle der thio- und selenobutylsubstituierten Derivate sowohl die Reaktionen der entsprechenden Chlorsilane mit BuEH in Gegenwart von NEt₃ als auch Umsetzungen mit BuELi, während für tellurobutylsubstituierte Verbindungen nur letztgenannter Weg möglich war.
- Zusammenfassend lässt sich feststellen, dass für Schwefelverbindungen bei der Bildung von fünfgliedrigen Cyclen bei allen beteiligten Siliciumatomen Tieffeldverschiebungen, meist um etwa 15 ppm auftreten, während sich die Bildung von Sechsringen in Hochfeldverschiebungen äußert, die aber mit etwa 0 5 ppm deutlich kleiner ausfallen. Hierbei kann man immer nur Siliciumatome mit der gleichen ersten Koordinationssphäre (das heißt gleiche direkte Nachbarn) vergleichen. Ist ein Siliciumatom an mehreren Ringen beteiligt, so scheinen sich die Effekte teilweise zu addieren. Handelt es sich statt Schwefel um die schwereren Chalcogene Selen oder Tellur, so wird das Bild etwas komplizierter. Beim Einbau in Fünfringe treten für Monosilaneinheiten nur kleine (E = Se) bzw. praktisch gar keine (E = Te) Tieffeldverschiebungen auf, während in Oligosilaneinheiten die beobachteten Tieffeldverschiebungen für E = Te auf etwa 40 ppm ansteigen.
- Von einigen Verbindungen konnten durch ²⁹Si MAS NMR Spektroskopie auch die Tensorhauptwerte der chemischen Verschiebung ermittelt werden.
- Parallel dazu wurden mittels GIAO und IGLO Verfahren die ²⁹Si NMR chemischen Verschiebungen ausgehend von den aus den Kristallstrukturanalysen zugänglichen Geometrien berechnet, wobei sowohl die isotropen Mittelwerte als auch die Ansiotropien der chemischen Verschiebung recht gut mit den experimentellen Werten übereinstimmen.
- Obwohl auch die beobachteten Tieffeldverschiebungen der ²⁹Si NMR Signale f
 ür f
 ünfgliedrige Ringverbindungen in den Berechnungen gut reproduziert wurden, ist es schwierig,
 diesen Effekt einem bestimmten Bindungsparameter zuzuordnen. Offensichtlich spielen
 neben den Elektronen der Si–S Bindungen sowie den n-Elektronenpaaren am Schwefel auch
 die der Si–C Bindungen eine wesentliche Rolle.

- Neben cyclischen Verbindungen konnten unter Verwendung des sperrigen Hypersilylrestes auch eine Reihe acyclischer Verbindungen mit der Sequenz Si–E–Si bzw. Si–E–Sn dargestellt werden. Hierbei ergaben sich vor allem im Falle von 3 und 4 Hypersilylchalcogenosubstituenten deutliche Hochfeldverschiebungen der ²⁹Si bzw. ¹¹⁹Sn NMR Signale der zentralen Silicium- bzw. Zinnatome beim Vergleich mit den entsprechenden chalcogenobutylsubstituierten Silanen bzw. chalcogenomethylsubstituierten Stannanen.
- Eine weitere bemerkenswerte Verbindungsklasse stellen die 1,2-Dithiolat-Derivate des Siliciums dar. Auch hier offenbart sich eine starke Neigung zur Bildung fünfgliedriger Cyclen, deren Bildung ebenfalls mit deutlichen Tieffeldverschiebungen der ²⁹Si NMR chemischen Verschiebungen verbunden ist.
- Aus den Geometrien der beiden Spiroverbindungen [C₂H₄(S)₂]₂Si und [C₆H₄(S)₂]₂Si mit einem partiell planarisierten SiS₄ Tetraeder resultieren unerwartet große Anisotropien der ²⁹Si NMR chemischen Verschiebungen.

Durch Reaktionen der Spiroverbindungen mit Lithiumthiophenolat gelang es erstmalig, hypervalente Silicate mit einer SiS₅ Koordination zu generieren.

Schema 13.1. Ubersicht über die Strukturtypen der dargestellten cyclischen und polyclischen Silicium-Chalcogen-Verbindungen.

Danksagung

Mein Dank gilt zunächst allen Mitarbeitern der Arbeitsgruppe Siliciumchemie im Institut für Anorganische Chemie der TU Bergakademie in Freiberg, im Besonderen jedoch Herrn Prof. Dr. Gerhard Roewer für seine allzeit gewährte Unterstützung und die gute Zusammenarbeit.

Frau DC Heike Lange danke ich für ihre engagierte Arbeit auf dem Gebiet hypersilylchalcogenosubstituierter Derivate von Elementen der 14. Gruppe.

Herrn Dr. Uwe Böhme danke ich für die Durchführung des größten Teils der in diese Arbeit eingeflossenen DFT Berechnungen sowie Frau DI Beate Kutzner für die Unterstützung bei der Aufnahme der unzähligen und oft recht zeitaufwändigen NMR Spektren.

Frau Dr. Erica Brendler vom Institut für Analytische Chemie gilt mein Dank für die Aufnahme und Auswertung der ²⁹Si CP MAS NMR Spektren und Frau C. Pöschmann sowie Frau E. Knoll vom Institut für Organische Chemie für die Durchführung zahlreicher GC/MS Messungen.

Herrn Dr. Gerd Rheinwald, damals in der Arbeitsgruppe von Herrn. Prof. H. Lang an der TU Chemnitz, sowie Herrn. Dr. H. Borrmann, Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden danke ich für die Messung und Auswertung der in dieser Arbeit enthaltenen Kristallstrukturanalysen und möchte mich zugleich für die mit den Substanzen verbundene Geruchsbelästigung entschuldigen.

Herrn Dr. Thomas Müller und Herrn DC G. Tsantes aus der Arbeitsgruppe von Herrn Prof. Dr. N. Auner an der Universität Frankfurt/M. danke ich für die Durchführung von GIAO und IGLO Berechnungen an verschiedenen Silicium-Schwefelverbindungen sowie für die Zusammenarbeit bei der Interpretation der Ergebnisse.

Nicht zuletzt möchte ich mich auch bei den Mitarbeitern aus dem Labor 107, Frau DC Claudia Knopf, Herrn DC Thomas Lange, Herrn Dr. Norbert Schulze (jetzt in Schwäbisch Gmünd) sowie bei Herrn Dr. Lars Lorey (jetzt bei Kosa in Bad Hersfeld) und Frau Dr. Kristin Trommer für das gute Arbeitsklima und die gegenseitige Unterstützung bedanken, ohne die manche präparative Arbeit nicht möglich gewesen wäre.

Literaturverzeichnis

- [1] Y. LePage, G. Donnay, Acta Crystallogr. B 32 (1976) 2456.
- [2] A. F. Wright, M. S. Lehmann, J. Solid State Chem. 36 (1981) 371.
- [3] H. W. Baur, Acta Crystallogr. B 33 (1977) 2615.
- [4] D. R. Peacor, Z. Kristallogr. 138 (1973) 274.
- [5] G. V. Gibbs, C. T. Prewitt, K. J. Baldwin, Z. Kristallogr. 145 (1977) 108.
- [6] R. J. Hill, M. D. Newton, G. V. Gibbs, J. Solid State Chem. 47 (1983) 185.
- [7] Übersicht über die Strukturtypen in: N. N. Greenwood, A. Earnshaw: "Chemie der Elemente", VCH-Verlag Weinheim (1988) 436-461.
- [8] F. Liebau: "Structural Chemistry of Silicates", Springer-Verlag Berlin (1985).
- [9] L. Puppe, Chemie in unserer Zeit 30 (1986) 117.
- [10] W. Höldrich, M. Hesse, F. Naumann, Angew. Chem. 100 (1988) 232.
- [11] D. T. Griffen: "Silicate Crystal Chemistry", Oxford University Press (1992).
- [12] H. Scholze "Glas, Natur, Struktur, Eigenschaften", Springer-Verlag Berlin (1977).
- [13] J. E. Mark, H. R. Allcock, R. West: "Inorganic Polymers", Prentice Hall (1992).
- [14] R. Murugavel, A. Voigt, M. G. Walawalkar, H. W. Roesky, Chem. Rev. 96 (1996) 2205.
- [15] F. J. Feher, Gelest-ABCR Catalogue (2000) 43.
- [16] J. Choi, J. Harcup, A. F. Yee, Q. Zhu, R. M. Laine, J. Am. Chem. Soc. 123 (2001) 11420.
- [17] A. F. Wells: "Structural inorganic chemistry", Oxford University Press (1984).
- [18] A. Weiss, A. Weiss, Z. anorg. allg. Chem. 276 (1954) 95.
- [19] E. Zintl, K. Loosen, Z. Kristallogr. A 35 (1933) 37.
- [20] G. A. Forsyth, D. W. H. Rankin, H. R. Robertson, J. Mol. Struct. 239 (1990) 209.
- [21] F. J. Feher, T. A. Budzichowski, J. Organomet. Chem. 373 (1989) 153.
- [22] E. Rikowski, H. C. Marsmann, Polyhedron 16 (1997) 3357.
- [23] M. Y. Etienne, Bull. Soc. Chim. France (1953) 791.
- [24] J. C. J. Bart, J. J. Daly, J. Chem. Soc. Chem. Commun. (1968) 1207.
- [25] J. Mason "Multinuclear NMR", Plenum Press New York, London (1989).
- [26] Gmelin Handbuch der Anorg. Chem., Zinn, Volume C2, Springer-Verlag Heidelberg, 8. Edition (1975).
- [27] S. R. Bahr, P. Boudjouk, G. J. McCarthy, Chem. Mater. 4 (1992) 383.
- [28] D. Brandes, J. Organomet. Chem. 136 (1977) 25.
- [29] J. D. Kennedy, W. McFarlane, J. Chem. Soc. Perkin II (1974) 146.
- [30] S. J. Harris, D. R. M. Walton, J. Organomet. Chem. 127 (1977) C1.
- [31] F. Uhlig, B. Stadelmann, A. Zechmann, P. Lassacher, H. Stüger, E. Hengge, Phosphorus, Sulfur, and Silicon 90 (1994) 29.
- [32] J. W. Anderson, J. E. Drake, Inorg. Nucl. Chem. Lett. 7 (1971) 1007.
- [33] E. W. Abel, J. Chem. Soc. (1960) 4406.
- [34] H. Sakurai, M. Kira, M. Kumada, J. Chem. Soc. Chem. Commun. (1967) 889.
- [35] I. Ojima, M. Nihonyanagi, Y. Nagai, J. Organomet. Chem. 50 (1973) C26.
- [36] J. B. Baruah, K. Okasada, T. Yamamoto, Organometallics 15 (1996) 456.
- [37] M. Pang, E. J. Becker, J. Org. Chem. 29 (1964) 1948.
- [38] R. S. Glass, J. Organomet. Chem. 61 (1973) 83.
- [39] C. R. Lucas, M. J. Newlands, E. J. Gabe, F. L. Lee, Can. J. Chem. 65 (1987) 898.
- [40] E. V. Van den Berghe, G. P. Van der Kelen, J. Organomet. Chem. 122 (1976) 329.
- [41] D. A. Evans, K. G. Grimm, L. K. Truesdale, J. Am. Chem. Soc. 97 (1975) 3229.
- [42] D. A. Evans, L. K. Truesdale, K. G. Grimm, S. L. Nesbitt, J. Am. Chem. Soc. 99 (1977) 5009.
- [43] T. G. Back: "Organoselenium Chemistry", Oxford University Press, Oxford (1999).
- [44] T. Wirth, Angew. Chem. 112 (2000) 3891.

- [45] T. Chivers, J. Chem. Soc. Dalton Trans. (1996) 1185.
- [46] J. Beck, M. Dolg, S. Schlüter, Angew. Chem. 113 (2001) 2347.
- [47] A. Haaland, H. P. Verne, H. V. Volden, J. A. Morrison, J. Am. Chem. Soc. 117 (1995) 7554.
- [48] M. Minoura, T. Sagami, K. Akiba, C. Modrakowski, A. Sudau, K. Seppelt, S. Wallenhauer, Angew. Chem. 108 (1996) 2827.
- [49] M. Minoura, T. Sagami, M. Miyasato, K. Akiba, Tetrahedron 53 (1997) 12195.
- [50] J. Jeske, W.-W. du Mont, P. G. Jones, Angew. Chem. 108 (1996) 2822.
- [51] D. E. Gindelberger, J. Arnold, Organometallics 13 (1994) 4462.
- [52] N. J. Hardman, B. Twamley, P. P. Power, Angew. Chem. 112 (2000) 2884.
- [53] M. Schmidt, H. D. Block, Chem. Ber. 103 (1970) 3348.
- [54] J.-C. Guillemin, A. Bouayad, D. Vijaykumar, Chem. Commun. (2000) 1163.
- [55] E. H. Riague, J.-C. Guillemin, Organometallics 21 (2002) 68.
- [56] W.-W. du Mont, S. Kubiniok, L. Lange, S. Pohl, W. Saak, I. Wagner, Chem. Ber. 124 (1991) 1315.
- [57] J. W. Anderson, G. K. Barker, J. E. Drake, M. Rodger, J. Chem. Soc. Dalton Trans. (1973) 1716.
- [58] J. D. Kennedy, W. McFarlane, J. Chem. Soc. Dalton Trans. (1973) 2134.
- [59] W. Clegg, R. P. Davies, R. Snaith, A. E. H. Wheatley, Eur. J. Inorg. Chem. (2001) 1411.
- [60] K. Praefcke, C. Weichsel, Synthesis (1980) 216.
- [61] J. E. Drake, R. T. Hemmings, Inorg. Chem. 19 (1980) 1879.
- [62] M. Herberhold, P. Leitner, J. Organomet. Chem. 411 (1991) 233.
- [63] N. Miyoshi, H. Ishii, K. Kondo, S. Murai, N. Sonoda, Synthesis (1979) 300.
- [64] J. A. Gladysz, V. K. Wong, B. S. Jick, J. Chem. Soc. Chem. Commun. (1978) 838.
- [65] T. B. Rauchfuß, T. D. Weatherhill, Inorg. Chem. 21 (1982) 827.
- [66] D. Witthaut, K. Kirschbaum, O. Conrad, D. M. Giolando, Organometallics 19 (2000) 5238.
- [67] J. E. Drake, R. T. Hemmings, J. Chem. Soc. Dalton Trans. (1976) 1730.
- [68] M. R. Detty, M. D. Seidler, J. Org. Chem. 46 (1981) 1283.
- [69] D. Liotta, P. B. Paty, J. Johnston, G. Zima, Tetrahedron Lett. 51 (1978) 5091.
- [70] K. A. Hooton, A. L. Allred, Inorg. Chem. 4 (1965) 671.
- [71] C. H. W. Jones, R. D. Sharma, J. Organomet. Chem. 268 (1984) 113.
- [72] J. F. Corrigan, S. Balter, D. Fenske, J. Chem. Soc. Dalton Trans. (1996) 729.
- [73] E. W. Abel, D. A. Armitage, D. B. Brady, J. Organomet. Chem. 5 (1966) 130.
- [74] B. Kersting, B. Krebs, Inorg. Chem. 33 (1994) 3886.
- [75] A. Rosenheim, B. Raibmann, G. Schendel, Z. anorg. allg. Chem. 196 (1931) 160.
- [76] A. Boudin, G. Cerveau, C. Chuit, R. J. P. Corriu, C. Reyé, Organometallics 7 (1988) 1165.
- [77] R. M. Laine, K. Y. Blohowiak, T. R. Robinson, M. L. Hoppe, P. Nardi, J. Kampf, J. Uhm, Nature 353 (1991) 642.
- [78] H. Meyer, G. Nagorsen, Angew. Chem. 91 (1979) 587.
- [79] J. D. Dunitz, Angew. Chem. 92 (1980) 1070.
- [80] H. Meyer, G. Nagorsen, Angew. Chem. 92 (1980) 1071.
- [81] W. Hönle, U. Dettlaff-Weglikowska, L. Walz, H. G. v. Schnering, Angew. Chem. 101 (1989) 615.
- [82] M. Wieber, M. Schmidt, Z. Naturforsch. 18b (1963) 846.
- [83] E. W. Abel, D. A. Armitage, R. P. Bush, J. Chem. Soc. (1965) 3045.
- [84] R. H. Cragg, A. Taylor, J. Organomet. Chem. 99 (1975) 391.
- [85] E. W. Abel, D. A. Armitage, R. P. Bush, J. Chem. Soc. (1965) 7098.
- [86] F. H. Fink, J. A. Turner, D. A. Payner Jr., J. Am. Chem. Soc. 88 (1966) 1571.
- [87] W. Wojnowski, K. Peters, M. C. Böhm, H. G. v. Schnering, Z. anorg. allg. Chem. 523 (1985) 169.
- [88] A. Herman, Z. Pawelec, W. Wojnowski, H. G. v. Schnering, Struct. Chem. 3 (1992) 155.
- [89] J. Pfeiffer, N. Noltemeyer, A. Meller, Z. anorg. allg. Chem. 572 (1989) 145.
- [90] P. Tavarès, P. Meunier, M. M. Kubicki, B. Gautheron, Heteroatom Chem. 4 (1993) 383.

- [91] A. C. Sau, R. R. Holmes, Inorg. Chem. 20 (1981) 4129.
- [92] A. C. Sau, R. O. Day, R. R. Holmes, J. Am. Chem. Soc. 103 (1981) 1264.
- [93] R. O. Day, J. M. Holmes, A. C. Sau, R. R. Holmes, Inorg. Chem. 21 (1982) 281.
- [94] A. C. Sau, R. O. Day, R. R. Holmes, Inorg. Chem. 20 (1981) 3076.
- [95] R. R. Holmes, J. A. Deiters, J. Am. Chem. Soc. 99 (1977) 3318.
- [96] R. R. Holmes, R. O. Day, A. C. Sau, C. A. Poutasse, J. M. Holmes, Inorg. Chem. 25 (1986) 607.
- [97] R. R. Holmes, R. O. Day, A. C. Sau, J. M. Holmes, Inorg. Chem. 25 (1986) 600.
- [98] R. Tacke, M. Mallak, R. Willeke, Angew. Chem. 113 (2001) 2401.
- [99] R. Willeke, R. Tacke, Z. anorg. allg. Chem. 627 (2001) 1537.
- [100] T. K. Prakasha, S. Srinivasan, A. Chandrasekaran, R. O. Day, R. R. Holmes, J. Am. Chem. Soc. 117 (1995) 10003.
- [101] S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H.-F. Hsu, Inorg. Chem. 36 (1997) 5966.
- [102] M. Dräger, Chem. Ber. 108 (1975) 1723.
- [103] T. Thompson, S. D. Pastor, G. Rihs, Inorg. Chem. 38 (1999) 4163.
- [104] H.-G. Horn, M. Hemeke, Chemiker-Ztg. 109 (1985) 1.
- [105] H.-G. Horn, B. Töpfer, M. Hemeke, Chemiker-Ztg. 115 (1991) 15.
- [106] F. Fehér, H. Goller, Z. Naturforsch. 22b (1967) 1223.
- [107] J. Pikies, W. Wojnowski, J. Organomet. Chem. 378 (1989) 317.
- [108] R. Piękoś, W. Wojnowski, Z. anorg. allg. Chem. 318 (1962) 212.
- [109] F. Preuss, M. Steidel, R. Exner, Z. Naturforsch. 45b (1990) 1618.
- [110] W. Wojnowski, B. Becker, J. Saßmannshausen, K. Peters, E.-M. Peters, H. G. von Schnering, Z. anorg. allg. Chem. 620 (1994) 1417.
- [111] B. Becker, K. Radacki, A. Konitz, W. Wojnowski, Z. anorg. allg. Chem. 621 (1995) 904.
- [112] B. Becker, W. Wojnowski, K. Peters, E.-M. Peters, H. G. von Schnering, Polyhedron 9 (1990) 1659.
- [113] W. Wojnowski, K. Peters, E.-M. Peters, H. G. v. Schnering, Z. anorg. allg. Chem. 531 (1985) 147.
- [114] W. Wojnowski, M. Wojnowski, H. G. v. Schnering, Z. anorg. allg. Chem. 531 (1985) 153.
- [115] W. Wojnowski, M. Wojnowski, K. Peters, E.-M. Peters, H. G. von Schnering, Z. anorg. allg. Chem. 530 (1985) 79.
- [116] H. Sakurai, K. Tominaga, T. Watanabe, M. Kumada, Tetrahedron Lett. (1966) 5493.
- [117] M. Ballestri, C. Chatgilialoglu, G. Seconi, J. Organomet. Chem. 408 (1991) C1.
- [118] C. G. Pitt, M. S. Fowler, J. Am. Chem. Soc. 90 (1968) 1928.
- [119] K. Shiina, M. Kumada, J. Org. Chem. 23 (1958) 139.
- [120] J. Daroszewski, J. Lusztyk, M. Degueil, C. Navarro, B. Maillard, J. Chem. Soc. Chem. Commun. (1991) 587.
- [121] R. Calas, N. Duffaut, B. Martel, C. Paris, Bull. Soc. Chim. France (1961) 886.
- [122] М. Н. Бохкарев, Л. П. Санина, Н. С. Выазанкин, Журнал Общей Химии 39 (1969) 135.
- [123] B. Becker, W. Wojnowski, Synth. react. inorg. met.-org. Chem. 12 (1982) 565.
- [124] R. M. Salinger, R. West, J. Organomet. Chem. 11 (1968) 631.
- [125] G. Schott, E. Popowski, B. Becker, W. Wojnowski, Z. anorg. allg. Chem. 430 (1977) 271.
- [126] B. Becker, E. W. Felcyn, A. Herman, J. Pikies, W. Wojnowski, Z. anorg. allg. Chem. 488 (1982) 229.
- [127] R. Minkwitz, A. Kornath, H. Preut, Z. anorg. allg. Chem. 619 (1993) 877.
- [128] L. Birkhofer, A. Ritter, H. Goller, Chem. Ber. 96 (1963) 3289.
- [129] N. Choi, S. Sugi, W. Ando, Chem. Lett. (1994) 1395.
- [130] D. M. Giolando, T. B. Rauchfuss, G. M. Clark, Inorg. Chem. 26 (1987) 3080.
- [131] B. O. Dabbousi, P. J. Bonasia, J. Arnold, J. Am. Chem. Soc. 113 (1991) 3186.
- [132] G. Becker, K. W. Klinkhammer, S. Lartiges, P. Böttcher, W. Poll, Z. anorg. allg. Chem. 613 (1992) 7.
- [133] P. J. Bonasia, V. Christou, J. Arnold, J. Am. Chem. Soc. 115 (1993) 6777.
- [134] P. J. Bonasia, D. E. Gindelberger, B. O. Dabbousi, J. Arnold, J. Am. Chem. Soc. 114 (1992) 5209.

- [136] D. A. Gindelberger, J. Arnold, J. Am. Chem. Soc. 114 (1992) 6242.
- [137] S. P. Wuller, A. L. Seligson, G. P. Mitchell, J. Arnold, Inorg. Chem. 34 (1995) 4854.
- [138] A. L. Seligson, J. Arnold, J. Am. Chem. Soc. 115 (1993) 8214.
- [139] D. R. Cary, J. Arnold, Inorg. Chem. 33 (1994) 1791.
- [140] C. P. Gerlach, V. Christou, J. Arnold, Inorg. Chem. 35 (1996) 2758.
- [141] V. Christou, S. P. Wuller, J. Arnold, J. Am. Chem. Soc. 115 (1993) 10545.
- [142] C. P. Gerlach, S. P. Wuller, J. Arnold, J. Chem. Soc. Chem. Commun. (1996) 2565.
- [143] D. E. Gindelberger, J. Arnold, Inorg. Chem. 32 (1993) 5813.
- [144] P. J. Bonasia, J. Arnold, Inorg. Chem. 31 (1992) 2508.
- [145] J. E. Drake, B. M. Glavinčevski, R. Humphries, A. Majid, Can. J. Chem. 57 (1979) 3253.
- [146] N. W. Mitzel, A. Schier, H. Beruda, H. Schmidbaur, Chem. Ber. 125 (1992) 1053.
- [147] J. E. Drake, B. M. Glavinčevski, H. E. Henderson, R. T. Hemmings, Can. J. Chem. 56 (1978) 465.
- [148] J. D. Kennedy, W. McFarlane, J. Organomet. Chem. 94 (1975) 7.
- [149] K.-H. Thiele, A. Steinicke, U. Dümichen, B. Neumüller, Z. anorg. allg. Chem. 622 (1996) 231.
- [150] P. Boudjouk, S. R. Bahr, D. P. Thompson, Organometallics 10 (1991) 778.
- [151] J. E. Drake, B. M. Glavinčevski, R. T. Hemmings, Can. J. Chem. 58 (1980) 2161.
- [152] M. R. Detty, M. D. Seidler, J. Org. Chem. 47 (1982) 1354.
- [153] Е. П. Лебедев, Д. В. Фридланд, В. О. Рейхсфельд, Е. Н. Король, Журнал Общей Химии 46 (1976) 315.
- [154] D. N. Harpp, K. Steliou, Synthesis (1976) 721.
- [155] J.-H. So, P. Boudjouk, Synthesis (1989) 306.
- [156] H.-G. Horn, M. Hemeke, Chemiker-Ztg. 109 (1985) 145.
- [157] L.-B. Han, F. Mirzaei, M. Tanaka, Organometallics 19 (2000) 722.
- [158] S. Kerschl, B. Wrackmeyer, D. Männig, H. Nöth, R. Staudigl, Z. Naturforsch. 42b (1987) 387.
- [159] C. Glidewell, D. C. Lilies, J. Organomet. Chem. 224 (1981) 237.
- [160] B. Krebs, H. J. Korte, J. Organomet. Chem. 179 (1979) 13.
- [161] W. Wojnowsi, K. Peters, E.-M. Peters, H. G. v. Schnering, Z. anorg. allg. Chem. 525 (1985) 121.
- [162] H. Schumann, O. Stelzer, R. Weis, R. Mohtachemi, R. Fischer, Chem. Ber. 106 (1973) 48.
- [163] H. Schumann, R. Weis, Angew. Chem. 82 (1970) 256.
- [164] H. Schumann, R. Mohtachemi, H.-J. Kroth, U. Frank, Chem. Ber. 106 (1973) 2049.
- [165] F. Fehér, H. Goller, Z. Naturforsch. 22b (1967) 1224.
- [166] A. Capperucci, A. Degl'Innocenti, A. Ricci, A. Mordini, G. Reginato, J. Org. Chem. 56 (1991) 7323.
- [167] H. S. D. Soysa, W. P. Weber, Tetrahedron Lett. 3 (1978) 235.
- [168] T. Nomura, N. Yokoi, K. Yamasaki, Proc. Japan Acad. 29 (1954) 342.
- [169] D. L. Mayfield, R. A. Flath, L. R. Best, J. Org. Chem. 29 (1964) 2444.
- [170] L. Pazdernik, F. Brisse, R. Rivest, Acta Cryst. B 33 (1977) 1780.
- [171] В. О. Рейхсфельд, Е. П. Лебедев, Журнал Общей Химии 40 (1970) 615.
- [172] Е. П. Лебедев, Д. В. Фридланд, В. О. Рейхсфельд, Журнал Общей Химии 45 (1975) 2641.
- [173] M. M. Millard, L. J. Pazdernik, W. F. Haddon, R. F. Lundin, J. Organomet. Chem. 52 (1973) 283.
- [174] В. О. Рейхсфельд, Е. П. Лебедев, Журнал Общей Химии 37 (1967) 1412.
- [175] A. Haas, M. Vongehr, Z. anorg. allg. Chem. 447 (1978) 119.
- [176] A. Haas, R. Hitze, Z. Naturforsch. 36b (1981) 1069.
- [177] F. Fehér, R. Lüpschen, Z. Naturforsch. 26b (1971) 1191.
- [178] M. Schmidt, H. Ruf, Z. anorg. allg. Chem. 321 (1963) 270.
- [179] M. Schmidt, H. Ruf, Angew. Chem. 73 (1964) 64.
- [180] H. Kriegsmann, H. Clauss, Z. anorg. allg. Chem. 300 (1959) 210.
- [181] K. Moedritzer, J. Organomet. Chem. 21 (1970) 315.

- [182] A. D. M. Hailey, G. Nickless, J. inorg. nucl. Chem. 33 (1971) 657.
- [183] M. Yokoi, T. Nomura, K. Yamasakai, J. Am. Chem. Soc. 77 (1955) 4484.
- [184] W. E. Schklower, Yu. T. Strutschkow, L. E. Guselnikow, W. W. Wolkowa, W. A. Awakyan, Z. anorg. allg. Chem. 501 (1983) 153.
- [185] J. Peters, J. Mandt, M. Meyring, B. Brebs, Z. Kristallogr. 156 (1981) 90.
- [186] B. Krebs, Angew. Chem. 95 (1983) 113.
- [187] H.-G. Horn, M. Probst, Monatsh. Chem. 126 (1995) 1169.
- [188] B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc. Chem. Commun. (1995) 1931.
- [189] M. Denk, R. Lennon, R. Hayshi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 116 (1994) 2691.
- [190] M. Haaf, A. Schmiddel, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 120 (1998) 12714.
- [191] B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 521 (1996) 211.
- [192] P. Jutzi, U. Holtmann, D. Kanne, C. Krüger, R. Blom, R. Gleiter, I. Hyla-Krypsin, Chem. Ber. 122 (1989) 1629.
- [193] P. Jutzi, A. Möhrke, A. Müller, H. Bögge, Angew. Chem. 101 (1989) 1527.
- [194] M. Weidenbruch, L. Kirmaier, E. Kroke, W. Saak, Z. anorg. allg. Chem. 623 (1997) 1277.
- [195] B. Menzebach, P. Bleckmann, J. Organomet. Chem. 91 (1975) 291.
- [196] H. Kriegsmann, H. Hoffmann, Z. Chem. 3 (1963) 268.
- [197] A. Blecher, M. Dräger, Angew. Chem. 91 (1979) 740.
- [198] M. C. Janzen, H. A. Jenkins, L. M. Rendina, J. J. Vittal, R. J. Puddephatt, Inorg. Chem. 38 (1999) 2123.
- [199] E. R. T. Tiekink, Main Group Metal Chem. 16 (1993) 65.
- [200] M. Dräger, A. Blecher, H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 161 (1978) 319.
- [201] R. J. Batchelor, F. W. B. Einstein, C. H. W. Jones, Acta Cryst. C 45 (1989) 1813.
- [202] H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 136 (1977) 333.
- [203] A. Blecher, B. Mathiasch, T. Mitchell, J. Organomet. Chem. 184 (1980) 175.
- [204] H. Berwe, A. Haas, Chem. Ber. 120 (1987) 1175.
- [205] P. Boudjouk, D. J. Seidler, D. Grier, G. J. McCarthy, Chem. Mater. 8 (1996) 1189.
- [206] P. Boudjouk, M. P. Remington Jr., D. G. Grier, W. Triebold, B. R. Jarabek, Organometallics 18 (1999) 4534.
- [207] H. Schumann, Z. anorg. allg. Chem. 354 (1967) 192.
- [208] F. W. B. Einstein, I. D. Gay, C. H. W. Jones, A. Riesen, R. D. Sharma, Acta Cryst. C 49 (1993) 470.
- [209] A. Polis, Ber. deutsch. Chem. Ges. 20 (1887) 3331.
- [210] A. J. Edwards, B. F. Hoskins, Acta Cryst. C46 (1990) 1397.
- [211] B. M. Schmidt, M. Dräger, J. Organomet. Chem. 399 (1990) 63.
- [212] H. Stenger, B. M. Schmidt, M. Dräger, Organometallics 14 (1995) 4374.
- [213] O. R. Flöck, M. Dräger, Organometallics 12 (1993) 4623.
- [214] L. M. Rendina, J. J. Vittal, R. J. Puddephatt, Organometallics 15 (1996) 1749.
- [215] H. Puff, R. Gattermayer, R. Hundt, R. Zimmer, Angew. Chem. 89 (1977) 556.
- [216] K. Merzweiler, L. Weisse, Z. Naturforsch. 45b (1990) 971.
- [217] K. Merzweiler, H. Kraus, Z. Naturforsch. 49b (1994) 621.
- [218] K. Merzweiler, H. Kraus, L. Weisse, Z. Naturforsch. 48b (1993) 287.
- [219] J. J. Schneider, J. Hagen, O. Heinemann, J. Bruckmann, C. Krüger, Thin Solid Films 304 (1997) 144.
- [220] J. P. Singh, R. K. Bedi, Thin Solid Films 199 (1991) 9.
- [221] A. Ortiz, J. C. Alonso, M. Garcia, J. Toriz, J. Semicond. Sci. Technol. 11 (1996) 243.
- [222] L. S. Price, I. P. Parkin, A. M. E. Hardy, R. J. H. Clark, Chem. Mater. 11 (1999) 1792.
- [223] I. P. Parkin, L. S. Price, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert, K. C. Molloy, J. Phys. IV France 9

Habilitation Uwe Herzog

(1999) 403.

- [224] I. S. Chuprakov, K. H. Dahmen, J. J. Schneider, J. Hagen, Chem. Mater. 10 (1998) 3467.
- [225] I. S. Chuprakov, K. H. Dahmen, J. Phys. IV France 9 (1999) 313.
- [226] R. West, D. J. De Young, K. J. Haller, J. Am. Chem. Soc. 107 (1985) 4942.
- [227] J. E. Mangette, D. R. Powell, R. West, Organometallics 14 (1995) 3551.
- [228] R. Peng-Koon Tan, G. R. Gillette, D. R. Powell, R. West, Organometallics 10 (1991) 546.
- [229] H. B. Yokelson, A. J. Millevolte, G. R. Gillette, R. West, J. Am. Chem. Soc. 109 (1987) 6865.
- [230] M. Weidenbruch, A. Schäfer, J. Organomet. Chem. 269 (1984) 231.
- [231] M. Weidenbruch, A. Grybat, W. Saak, E.-M. Peters, K. Peters, Monatsh. Chem. 130 (1999) 157.
- [232] E. Hengge, H. G. Schuster, J. Organomet. Chem. 231 (1982) C17.
- [233] E. Hengge, H. G. Schuster, J. Organomet. Chem. 240 (1982) C65.
- [234] U. Wannagat, O. Brandstätter, Monatsh. Chem. 94 (1963) 1090.
- [235] C. W. Carlson, R. West, Organometallics 2 (1983) 1798.
- [236] M. Wojnowska, W. Wojnowski, R. West, J. Organomet. Chem. 199 (1980) C1.
- [237] B. Becker, W. Wojnowski, J. Organomet. Chem. 346 (1988) 287.
- [238] H. Nöth, H. Fußstetter, H. Pommerening, T. Taeger, Chem. Ber. 113 (1980) 342.
- [239] H. S. D. Soysa, I. N. Jung, W. P. Weber, J. Organomet. Chem. 171 (1979) 177.
- [240] H. Stüger, M. Eibl, E. Hengge, J. Organomet. Chem. 431 (1992) 1.
- [241] H. Stüger, M. Eibl, I. Kovacs, Phosphorus, Sulfur, and Silicon 65 (1992) 29.
- [242] E. Hengge, G. Bauer, Monatsh. Chemie 106 (1975) 503.
- [243] Z. Smith, H. M. Seip, E. Hengge, B. Bauer, Acta Chem. Scand. A30 (1976) 697.
- [244] A. Haas, R. Süllentrup, C. Krüger, Z. anorg. allg. Chem. 619 (1993) 819.
- [245] H. Puff, B. Breuer, W. Schuh, R. Sievers, R. Zimmer, J. Organomet. Chem. 332 (1987) 279.
- [246] B. Mathiasch, J. Organomet. Chem. 122 (1976) 345.
- [247] B. Mathiasch, Z. anorg. allg. Chem. 432 (1977) 269.
- [248] M. Dräger, B. Mathiasch, Z. anorg. allg. Chem. 470 (1980) 45.
- [249] A. Blecher, B. Mathiasch, T. N. Mitchell, J. Organomet. Chem. 184 (1980) 175.
- [250] B. Mathiasch, Syn. react. inorg. metal-org. Chem. 7 (1977) 227.
- [251] N. Tokitoh, H. Suzuki, T. Matsumoto, Y. Matsuhashi, R. Okazaki, J. Am. Chem. Soc. 113 (1991) 7047.
- [252] T. Matsumoto, N. Tokitoh, R. Okazaki, Organometallics 14 (1995) 1008.
- [253] N. Tokitoh, N. Kano, K. Shibata, R. Okazaki, Organometallics 14 (1995) 3121.
- [254] N. Kano, K. Shibata, N. Tokitoh, R. Okazaki, Organometallics 18 (1999) 2999.
- [255] J. Albertsen, R. Steudel, J. Organomet. Chem. 424 (1992) 153.
- [256] A. G. Brooks, F. Abdesaken, B. Gutekunst, G. Gutekunst, R. K. Kalbury, J. Chem. Soc. Chem. Commun. (1981) 191.
- [257] R. West, M. J. Fink, J. Michl, Science 214 (1981) 1343.
- [258] M. Friesen, M. Junker, A. Zumbusch, H. Schnöckel, J. Chem. Phys. 111 (1999) 7881.
- [259] A. Zumbusch, H. Schnoeckel, J. Chem. Phys. 108 (1998) 8092.
- [260] H. Schnöckel, Angew. Chem. 90 (1978) 638.
- [261] H. Schnöckel, Z. anorg. allg. Chem. 460 (1980) 37.
- [262] M. Friesen, M. Junker, H. Schnöckel, J. Chem. Phys. 112 (2000) 1782.
- [263] T. Mehner, H. J. Göcke, S. Schunk, H. Schnöckel, Z. anorg. allg. Chem. 580 (1990) 121.
- [264] A. Bos, J. S. Ogden, L. Orgee, J. Phys. Chem. 78 (1974) 1763.
- [265] A. Bos, J. S. Ogden, J. Phys. Chem. 77 (1973) 1513.
- [266] H. Schnöckel, Angew. Chem. 92 (1980) 310.
- [267] L. Cambi, Atti Accad. naz. Lincei, Cl. Sci. fisiche, mat. natur. Sez. 19 II (1910) 294.
- [268] E. Tiede, M. Thimann, Ber. deutsch. Chem. Ges. 59 (1926) 1703.
- [269] R. F. Barrow, W. Jevons, Proc. Roy. Soc. (London) A 169 (1939) 45.

- [270] F. Wüst, A. Schüller, Stahl und Eisen 23 (1909) 1128.
- [271] E. Tiemann, H. Arnst, W. U. Stieda, T. Törring, J. Hoeft, Chem. Phys. 67 (1982) 133.
- [272] W. C. Schumb, H. J. Bernard, J. Am. Chem. Soc. 77 (1955) 904.
- [273] H.-H. Emons, L. Theisen, Z. anorg. allg. Chem. 361 (1968) 321.
- [274] A. Weiss, A. Weiss, Z. Naturforsch. 8b (1953) 104.
- [275] K. P. Huber, G. Herzberg: "Molecular Spectra and Molecular Structure" Vol. IV: "Constants of Diatomic Molecules", Van Nostrand Reinhold (New York) (1979).
- [276] H. Schnöckel, R. Köppe, J. Am. Chem. Soc. 111 (1989) 4583.
- [277] M. Friesen, H. Schnöckel, Z. anorg. allg. Chem. 625 (1999) 1097.
- [278] M. Friesen, M. Junker, H. Schnoeckel, Heteroatom Chem. 10 (1999) 658.
- [279] M. Friesen, H. Schnöckel in "Organosilicon Chemistry IV" (Hrsg.: N. Auner, J. Weis), VCH-Wiley (2000) 59.
- [280] K. C. Mills: "Thermodynamic Data for Inorganic Sulfides, Selenides and Tellruides" Butterworths (London) 1974.
- [281] P. A. O'Hare, L. A. Curtis, J. Thermodynamics 27 (1995) 643.
- [282] H. Schnöckel, J. Mol. Struct. 65 (1980) 115.
- [283] M. Junker, A. Wilkening, M. Binnewies, H. Schnöckel, Eur. J. Inorg. Chem. (1999) 1531.
- [284] H. Beckers, J. Breidung, H. Bürger, R. Köppe, C. Kötting, W. Sander, H. Schnöckel, W. Thiel, Eur. J. Inorg. Chem. (1999) 2013.
- [285] H. Schnöckel, H. J. Göcke, R. Köppe, Z. anorg. allg. Chem. 578 (1989) 159.
- [286] R. Köppe, H. Schnöckel, Z. anorg. allg. Chem. 592 (1991) 179.
- [287] H. S. D. Soysa, W. P. Weber, J. Organomet. Chem. 165 (1979) C1.
- [288] D. P. Thompson, P. Boudjouk, J. Chem. Soc. Chem. Commun. (1987) 1466.
- [289] L. E. Gusel'nikov, V. V. Volkova, V. G. Avakyan, N. S. Nametkin, M. G. Voronkov, S. V. Kirpichenko, E. N. Suslova, J. Organomet. Chem. 254 (1983) 173.
- [290] V. N. Khabashesku, S. E. Boganov, P. S. Zuev, O. M. Nefedov, J. Tamás, A. Gömöry, I. Besenyei, J. Organomet. Chem. 402 (1991) 161.
- [291] A. Chrostowska, S. Joantéguy, G. Pfister-Guillouzo, V. Lefèvre, J.-L. Ripoll, Organometallics 18 (1999) 4795.
- [292] P. Arya, J. Boyer, F. Carré, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot, C. Priou, Angew. Chem. 101 (1989) 1069.
- [293] H. Suzuki, N. Tokitoh, S. Nagase, R. Okazaki, J. Am. Chem. Soc. 116 (1994) 11578.
- [294] N. Tokitoh, T. Matsumoto, K. Manmaru, R. Okazaki, J. Am. Chem. Soc. 115 (1993) 8855.
- [295] N. Tokitoh, M. Saito, R. Okazaki, J. Am. Chem. Soc. 115 (1993) 2065.
- [296] T. Matsumoto, N. Tokitoh, R. Okazaki, Angew. Chem. 106 (1994) 2418.
- [297] N. Tokitoh, T. Matsumoto, R. Okazaki, J. Am. Chem. Soc. 119 (1997) 2337.
- [298] M. Veith, S. Becker, V. Huch, Angew. Chem. 101 (1989) 1287.
- [299] M. Veith, A. Detemple, V. Huch, Chem. Ber. 124 (1991) 1135.
- [300] M. C. Kucta, G. Parkin, J. Chem. Soc. Chem. Commun. (1994) 1351.
- [301] G. Ossig, A. Meller, C. Brönneke, O. Müller, M. Schäfer, R. Herbst-Irmer, Organometallics 16 (1997) 2116.
- [302] H. Gabriel, C. Alvarez-Tostado, J. Am. Chem. Soc. 74 (1952) 262.
- [303] A. Zintl, K. Loosen, Z. Phys. Chem. A174 (1935) 301.
- [304] A. Weiss, A. Weiss, Z. Naturforsch. 7b (1952) 483.
- [305] J. Peters, B. Krebs, Acta Cryst B 38 (1982) 1270.
- [306] G. Dittmar, H. Schäfer, Acta Cryst. B 31 (1975) 2060.
- [307] G. Dittmar, H. Schäfer, Acta Cryst. B 32 (1976) 2726.
- [308] C. T. Prewitt, H. S. Young, Science 149 (1965) 535.

- [310] I. Oftedal, Z. Phys. Chem. A 134 (1928) 301.
- [311] K. Taketoshi, F. Andoh, Jpn. J. Appl. Phys. Part 1 34 (1995) 3192.
- [312] K. Ploog, G. Heger, Z. Kristallogr. 146 (1977) 106.
- [313] K. Ploog, W. Stetter, A. Nowitzki, E. Schönherr, Mat. Res. Bull. 11 (1976) 1147.
- [314] A. Weiss, G. Rocktäschel, Z. anorg. allg. Chem. 307 (1960) 1.
- [315] J. Olivier-Fourcade, M. Ribes, E. Philippot, M. Maurin, C. R. Acad. Sci. C 272 (1971) 1964.
- [316] K. O. Klepp, Z. Naturforsch. 40b (1985) 878.
- [317] J. C. Jumas, F. Vermont-Gaud-Daniel, E. Philippot, Cryst. Struct. Comm. 2 (1973) 157.
- [318] K. O. Klepp, Z. Naturforsch. 47b (1992) 411.
- [319] B. Eisenmann, H. Schäfer, H. Schrod, Z. Naturforsch 38b (1983) 921.
- [320] G. Eulenberger, Z. Kristallogr. 145 (1977) 427.
- [321] K. O. Klepp, G. Eulenberger, Z. Naturforsch. 39b (1984) 705.
- [322] B. T. Ahn, R. A. Huggins, Mater. Res. Bull. 24 (1989) 889.
- [323] E. Philippot, M. Ribes, M. Maurin, Rev. Chim. Miner. 8 (1971) 99.
- [324] R. Dumail, M. Ribes, E. Philippot, C. R. Acad. Sci. C 271 (1970) 1456.
- [325] C. Brinkmann, B. Eisenmann, H. Schäfer, Z. anorg. allg. Chem. 524 (1985) 83.
- [326] J. Olivier-Fourcade, J.C. Jumas, M. Ribes, E. Philippot, M. Maurin, J. Solid state Chem. 23 (1978) 155.
- [327] J. E. Iglesias, H. Steinfink, J. Solid state Chem. 6 (1973) 93.
- [328] J. T. Lemley, Acta Cryst. B 30 (1974) 549.
- [329] K. Susa, H. Steinfink, J. Solid state Chem. 3 (1971) 75.
- [330] G. Rocktäschel, W. Ritter, A. Weiss, Z. Naturforsch 19b (1964) 958.
- [331] H. Vincent, E. F. Bertraut, Acta Cryst. B 32 (1976) 1749.
- [332] J. Fuhrmann, J. Pickardt, Acta Cryst. C 45 (1989) 1808.
- [333] W. Schäfer, R. Nitsche, Mater. Res. Bull. 9 (1974) 645.
- [334] R. Nitsche, D. F. Sargent, D. Wild, J. Cryst. Growth 1 (1967) 52.
- [335] G. Chapuis, A. Niggli, Acta Cryst. B 28 (1972) 1626.
- [336] B. Krebs, J. Mandt, Z. anorg. allg. Chem. 388 (1972) 193.
- [337] G. Gauthier, S. Kawasaki, S. Jobic, P. Macaudière, R. Brec, J. Rouxel, J. Alloys Compd. 275-277 (1998) 46.
- [338] S. T. Hatscher, W. Urland, Z. anorg. allg. Chem. 627 (2001) 2198.
- [339] S. Pohl, W. Schiwy, N. Weinstock, B. Krebs, Z. Naturforsch. 28b (1973) 565.
- [340] B. Krebs, H.-J. Jacobsen, Z. anorg. allg. Chem. 421 (1976) 97.
- [341] W. Schiwy, S. Pohl, B. Krebs, Z. anorg. allg. Chem. 402 (1973) 77.
- [342] B. Krebs, H.-U. Hürter, Z. anorg. allg. Chem. 462 (1980) 143.
- [343] B. Krebs, J. Mandt, Z. Naturforsch. B 32 (1977) 373.
- [344] R. C. Burns, L. A. Devereux, P. Granger, G. J. Schrobilgen, Inorg. Chem. 24 (1985) 2615.
- [345] J. Mandt, B. Krebs, Z. anorg. allg. Chem. 420 (1976) 31.
- [346] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 295.
- [347] J. C. Cumas, J. Olivier-Fourcade, F. Vermont-Gaud-Daniel, F. Ribes, M. Philippot, M. Maurin, Rev. Chim. Minér. 11(1974) 13.
- [348] B. Eisenmann, J. Hansa, H. Schäfer, Rev. Chim. Minér. 23 (1986) 8.
- [349] B. Krebs, W. Schiwy, Z. anorg. allg. Chem. 398 (1973) 63.
- [350] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 297.
- [351] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 303.
- [352] B. Krebs, S. Pohl, W. Schiwy, Z. anorg. allg. Chem. 393 (1972) 241.
- [353] B. Krebs, H. Müller, Z. anorg. allg. Chem. 496 (1983) 47.
- [354] B. Krebs, H. Uhlen, Z. anorg. allg. Chem. 549 (1987) 35.

- [355] J. C. Huffman, J. P. Haushalter, A. M. Umarji, G. K. Shenoy, R. C. Haushalter, Inorg. Chem. 23 (1984) 2312.
- [356] M. A. Ansari, J. C. Bollinger, J. A. Ibers, Inorg. Chem. 32 (1993) 231.
- [357] C. Feldmann, H. G. von Schnering, Y. Grin, Z. Kristallogr. 213 (1998) 454.
- [358] G. Eulenberger, Acta Cryst. B 34 (1978) 2614.
- [359] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 301.
- [360] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 299.
- [361] W. S. Sheldrick, B. Schaaf, Z. anorg. allg. Chem. 620 (1994) 1041.
- [362] W. S. Sheldrick, H. G. Braunbeck, Z. Naturforsch. 44b (1989) 851.
- [363] W. S. Sheldrick, H. G. Braunbeck, Z. anorg. allg. Chem. 619 (1993) 1300.
- [364] J. Campbell, L. A. Devereux, M. Gerken, H. P. A. Mercier, A. M. Pirani, G. J. Schrobilgen, Inorg. Chem. 35 (1996) 2945.
- [365] C.-W. Park, M. A. Pell, J. A. Ibers, Inorg. Chem. 35 (1996) 4555.
- [366] J. Olivier-Fourcade, E. Philippot, M. Ribes, M. Maurin, Rev. Chim. Minér. 9 (1972) 757.
- [367] B. Eisenmann, J. Hansa, H. Schäfer, Z. Naturforsch. 40b (1985) 450.
- [368] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 291.
- [369] B. Eisenmann, J. Hansa, Z. Kristallogr. 203 (1993) 293.
- [370] W. Schiwy, C. Blutau, D. Gäthje, B. Krebs, Z. anorg. allg. Chem. 412 (1975) 1.
- [371] W. S. Sheldrick, Z. Naturforsch. 43b (1988) 249.
- [372] J.-C. Dai, L.-M. Wu, C.-P. Cui, Z.-Y. Fu, S.-M. Hu, W.-X. Du, W.-J. Zhang, X.-T. Wu, Inorg. Chem. Commun. 4 (2001) 643.
- [373] W. S. Sheldrick, H.-G. Braunbeck, Z. Naturforsch. 45b (1990) 1643.
- [374] H. P. B. Rimmington, A. A. Balchin, Phys. Status Solidi (1971) K47.
- [375] A. Fehlker, R. Blachnik, Z. anorg. allg. Chem. 627 (2001) 411.
- [376] A. Loose, W. S. Sheldrick, Z. anorg. allg. Chem. 625 (1999) 233.
- [377] A. Fehlker, R. Blachnik, Z. anorg. allg. Chem. 627 (2001) 1128.
- [378] G. Eulenberger, Z. Naturforsch. 36b (1981) 687.
- [379] W. S. Sheldrick, H.-G. Braunbeck, Z. Naturforsch. 47b (1992) 151.
- [380] K. O. Klepp, Z. Naturforsch. 47b (1992) 197.
- [381] J.-H. Liao, C. Varotsis, M. G. Kanatzidis, Inorg. Chem. 32 (1993) 2453.
- [382] B. Eisenmann, J. Hansa, H. Schäfer, Rev. Chim. Minér. 21 (1984) 817.
- [383] C. R. Evenson, P. K. Dorhout, Inorg. Chem. 40 (2001) 2409.
- [384] C. Brinkmann, B. Eisenmann, H. Schäfer, Mater. Res. Bull. 20 (1985) 1207.
- [385] B. Eisenmann, J. Hansa, H. Schäfer, Z. anorg. allg. Chem. 526 (1985) 55.
- [386] C. Brinkmann, B. Eisenmann, H. Schäfer, Mater. Res. Bull. 20 (1985) 299.
- [387] C. Brinkmann, B. Eisenmann, H. Schäfer, Mater. Res. Bull. 20 (1985) 1285.
- [388] W. S. Sheldrick, B. Schaaf, Z. Naturforsch. 49b (1994) 655.
- [389] B. Eisenmann, H. Schrod, H. Schäfer, Mater. Res. Bull. 19 (1984) 293.
- [390] S.-P. Huang, S. Dhingra, M. G. Kanatzidis, Polyhedron 9 (1990) 1389.
- [391] J.-H. Liao, C. Varotsis, M. G. Kanatzidis, Inorg. Chem. 32 (1993) 2453.
- [392] B. K. Sivertsen, H. Sørum, Z. Kristallogr. 130 (1969) 449.
- [393] B. Eisenmann, H. Schwerer, H. Schäfer, Z. Naturforsch. 36b (1981) 1538.
- [394] G. Dittmar, Acta Cryst. B 34 (1978) 2390.
- [395] G. Dittmar, Angew. Chem. 89 (1977) 566.
- [396] B. Eisenmann, J. Hansa, H. Schäfer, Mater. Res. Bull. 20 (1985) 1339.
- [397] B. Eisenmann, E. Kieselbach, H. Schäfer, H. Schrod, Z. anorg. allg. Chem. 516 (1984) 49.
- [398] G. Dittmar, Z. Anorg. Allg. Chem. 453 (1978) 68.
- [399] B. Eisenmann, H. Schwerer, H. Schäfer, Rev. Chim. Minér. 20 (1983) 78.

- [401] C. Brinkmann, B. Eisenmann, H. Schäfer, Z. anorg. allg. Chem. 517 (1984) 143.
- [402] B. Eisenmann, H. Schwerer, H. Schäfer, Mater. Res. Bull. 18 (1983) 1189.
- [403] A. Loose, W. S. Sheldrick, Z. anorg. allg. Chem. 627 (2001) 2051.
- [404] B. Eisenmann, H. Schäfer, Z. anorg. allg. Chem. 491 (1982) 67.
- [405] J. Campbell, D. P. DiCiommo, H. P. A. Mercier, A. M. Pirani, G. J. Schrobilgen, M. Willuhn, Inorg. Chem. 34 (1995) 6265.
- [406] A. M. Pirani, H. P. A. Mercier, D. A. Dixon, H. Borrmann, G. J. Schrobilgen, Inorg. Chem. 40 (2001) 4823.
- [407] D. W. J. Cruickshank, Acta Cryst. 17 (1964) 677.
- [408] A. Vos, E. H. Wiebenga, Acta Cryst. 8 (1955) 217.
- [409] B. Eisenmann, M. Jakowski, H. Schäfer, Z. Naturforsch. 38b (1983) 1581.
- [410] B. Krebs, D. Voelker, K. O. Stiller, Inorg. Chim. Acta 65 (1982) L101.
- [411] D. Müller, H. Hahn, Z. anorg. allg. Chem. 438 (1978) 258.
- [412] M. Ribes, J. Olivier-Fourcade, E. Philippot, M. Maurin, J. Solid State Chem. 8 (1973) 195.
- [413] C. Köster, A. Lindemann, J. Kuchinke, C. Mück-Lichtenfeld, B. Krebs, Solid State Sciences 4 (2002) 641.
- [414] B. Eisenmann, H. Schäfer, Z. anorg. allg. Chem. 491 (1982) 67.
- [415] K. O. Klepp, F. Fabian, Z. Naturforsch. 54b (1999) 1499.
- [416] B. Krebs, S. Pohl, Z. Naturforsch. 26b (1971) 853.
- [417] S. Pohl, B. Krebs, Z. anorg. allg. Chem. 424 (1976) 265.
- [418] G. Eulenberger, Acta Cryst. B 32 (1976) 3059.
- [419] J. Y. Pivan, O. Achak, M. Louër, D. Louër, Chem. Mater. 6 (1994) 827.
- [420] B. Eisenmann, J. Hansa, Z. Kristallogr. 205 (1993) 325.
- [421] B. Eisenmann, J. Hansa, Z. Kristallogr. 206 (1993) 101.
- [422] G. Eulenberger, Z. Naturforsch. 36b (1981) 521.
- [423] S. S. Dhingra, R. C. Haushalter, Polyhedron 13 (1994) 2775.
- [424] O. M. Yaghi, Z. Sun, D. A. Richardson, T. L. Groy, J. Am. Chem. Soc. 116 (1994) 807.
- [425] M. Fröba, N. Oberender, J. Chem Soc. Chem. Commun. (1997) 1729.
- [426] K. K. Rangan, S. J. L. Billinge, V. Petkov, J. Heising, M. G. Kanatzidis, Chem. Mater. 11 (1999) 2629.
- [427] M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature 397 (1999) 681.
- [428] M. J. MacLachlan, N. Coombs, R. L. Bedard, S. White, L. K. Thompson, G. A. Ozin, J. Am. Chem. Soc. 121 (1999) 12005.
- [429] K. K. Rangan, P. N. Trikalitis, M. G. Kanatzidis, J. Am. Chem. Soc. 122 (2000) 10230.
- [430] D. M. Nellis, Y. Ko, K. Tan, S. Koch, J. Parise, J. Chem. Soc. Chem. Commun. (1995) 541.
- [431] M. J. MacLachlan, S. Petrov, R. L. Bedard, I. Manners, G. A. Ozin, Angew. Chem. 110 (1998) 2186.
- [432] J. J. Vittal, Polyhedron 15 (1996) 1585.
- [433] S. R. Bahr, P. Boudjouk, Inorg. Chem. 31 (1992) 712.
- [434] Е. П. Лебедев, М. М. Френкель, Е. Н. Король, Журнал Общей Химии 47 (1977) 1387.
- [435] K. Moedritzer, Inorg. Chem. 6 (1967) 1248.
- [436] C. J. Bart, J. J. Daly, J. Chem. Soc. Dalton Trans. (1975) 2063.
- [437] A. Müller, P. Christophliemk, H. P. Ritter, Z. Naturforsch. 28b (1973) 519.
- [438] A. Blecher, M. Dräger, B. Mathiasch, Z. Naturforsch. 36b (1981) 1361.
- [439] J. A. Forstner, L. Muetterties, Inorg. Chem. 5 (1966) 552.
- [440] M. N. Bochkarev, L. P. Maiorova, N. S. Vyazankin, G. A. Razuvaev, J. Organomet. Chem. 82 (1974) 65.
- [441] A. Haas, R. Hitze, C. Krüger, K. Angermund, Z. Naturforsch. 39b (1984) 890.
- [442] A. Haas, H.-J. Kutsch, C. Krüger, Chem. Ber. 120 (1987) 1045.
- [443] S. Pohl, U. Seyer, B. Krebs, Z. Naturforsch. 36b (1981) 1432.
- [444] E. K. Andersen, I. Lindquist, Arkiv Kemi 9 (1956) 169.

- [445] K. Olsson, H. Baeckstrøm, R. Engwall, Arkiv Kemi 26 (1966) 219.
- [446] A. Fredga, S. Abrahamsson, Chem. Scr. 16 (1980) 154.
- [447] J. Bongartz, Ber. Deutsch. Chem. Ges. 19 (1886) 2182.
- [448] J. Pickardt, N. Rautenberg, Z. Naturforsch. 41b (1986) 409.
- [449] A. Mahjoub, H. Zantour, Z. Kristallogr. NCS 215 (2000) 577.
- [450] A. Mahjoub, H. Zantour, Z. Kristallogr. NCS 216 (2001) 271.
- [451] A. Mahjoub, H. Zantour, S. Masson, Z. Kristallogr. NCS 216 (2001) 589.
- [452] S. Aleby, Acta Cryst. B 30 (1974) 2877
- [453] J. C. J. Bart, J. J. Daly, J. Chem. Soc. Dalton Trans. (1975) 2063.
- [454] R. H. Benno, C. J. Fritchie, J. Chem. Soc. Dalton Trans. (1973) 543.
- [455] S. Pohl, Angew. Chem. 88 (1976) 162.
- [456] D. Kobelt, E. F. Paulus, H. Scherer, Acta Cryst. B 28 (1972) 2323.
- [457] M. Y. Etienne, Angew. Chem. 67 (1955) 753.
- [458] Е. П. Лебедев, М. М. Френкель, В. О. Рейхсфельд, Д. В. Фридланд, Журнал Общей Химии 47 (1977) 1305.
- [459] W. Ando, T. Kadowaki, Y. Kabe, M. Ishii, Angew. Chem. 104 (1992) 84.
- [460] M. Unno, Y. Kawai, H. Shioyama, H. Matsumoto, Organometallics 16 (1997) 4428.
- [461] O. J. Scherer, K. Andres, C. Krüger, Y.-H. Tsay, G. Wolmershäuser, Angew. Chem. 92 (1980) 563.
- [462] K. Merzweiler, U. Linder in "Organosilicon Chem. II" (Hrsg.: N. Auner, J. Weis) VCH-Verlag (1996) 531.
- [463] D. Dakternieks, K. Jurkschat, H. Wu, E. R. T. Tiekink, Organometallics 12 (1993) 2788.
- [464] K. Olsson, Arkiv Kemi 26 (1967) 435.
- [465] K. Olsson, Arkiv Kemi 26 (1967) 465.
- [466] J. E. Barnes, J. A. W. Dalziel, S. D. Ross, Spectrochim. Acta A 27 (1971) 1247.
- [467] K. Olsson, S.-O. Almqvist, Acta Chem. Scand. 23 (1969) 3271.
- [468] W. Ando, T. Kadowaki, A. Watanabe, N. Choi, Y. Kabe, T. Erata, M. Ishii, Nippon Kagaku Kaishi (1994) 214.
- [469] C. Ackerhans, H. W. Roesky, M. Noltemeyer, Organometallics 20 (2001) 1282.
- [470] P. C. Minshall, G. M. Sheldrick, Acta Cryst. B 34 (1978) 1326.
- [471] A. M. Griffin, P. C. Minshall, G. M. Sheldrick, J. Chem. Soc. Dalton Trans. (1976) 809.
- [472] C.-C. Chang, R. C. Haltiwanger, A. D. Norman, Inorg. Chem. 17 (1978) 2056.
- [473] T. Ito, N. Morimoto, R. Sadanaga, Acta Cryst. 5 (1952) 775.
- [474] E. J. Porter, G. M. Sheldrick, J. Chem. Soc. Dalton Trans. (1972) 1347.
- [475] T. J. Bastrow, H. J. Whitfield, J. Chem. Soc. Dalton Trans. (1973) 1739.
- [476] P. Goldstein, A. Paton, Acta Cryst. B 30 (1974) 915.
- [477] B. D. Sharma, J. Donohue, Acta Cryst. 16 (1963) 891.
- [478] M. L. DeLucia, P. Coppens, Inorg. Chem. 17 (1978) 2336.
- [479] H. Bärnighausen, T. v. Volkmannn, J. Jander, Acta Cryst. 21 (1966) 571.
- [480] B. M. Gimarc, J. J. Ott, J. Am. Chem. Soc. 108 (1986) 4298.
- [481] A. M. Griffin, G. M. Sheldrick, Acta Cryst. B 31 (1975) 2738.
- [482] H. J. Whitfield, J. Chem. Soc. Dalton Trans. (1973) 1740.
- [483] W. Flues, O. J. Scherer, J. Weiß, G. Wolmershäuser, Angew. Chem. 88 (1976) 411.
- [484] S. van Houten, E. H. Wiebenga, Acta Cryst. 10 (1957) 156.
- [485] G. J. Penney, G. M. Sheldrick, J. Chem. Soc. A (1971) 245.
- [486] H. Yoshida, Y. Kabe, W. Ando, Organometallics 10 (1991) 27.
- [487] W. Ando, S. Watanabe, N. Choi, J. Chem. Soc. Chem. Commun. (1995) 1683.
- [488] N. Choi, K. Asano, N. Sato, W. Ando, J. Organomet. Chem. 516 (1996) 155.
- [489] N. Choi, K. Asano, S. Watanabe, W. Ando, Tetrahedron 53 (1997) 12215.
- [490] H. Yoshida, Y. Takahara, T. Erata, W. Ando, J. Am. Chem. Soc. 114 (1992) 1098.

- [491] N. Choi, K. Asano, W. Ando, Organometallics 14 (1995) 3146.
- [492] W. Wojnowski, B. Dręczewski, A. Herman, K. Peters, E.-M. Peters, H. G. v. Schnering, Angew. Chem. 97 (1985) 978.
- [493] H. Gilman, C. L. Smith, J. Am. Chem. Soc. 86 (1964) 1454.
- [494] U. Stolberg, Angew. Chem. 74 (1962) 696.
- [495] A. Fürstner, H. Weidmann, J. Organomet. Chem. 354 (1988) 15.
- [496] M. Kumada, M. Ishikawa, J. Organomet. Chem. 1 (1963) 153.
- [497] U. Stolberg, Angew. Chem. 75 (1963) 206.
- [498] H. Gilman, R. L. Harrell, J. Organomet. Chem. 5 (1966) 199.
- [499] E. Carberry, R. West, J. Organomet. Chem. 6 (1966) 583.
- [500] E. Carberry, R. West, J. Am. Chem. Soc. 91 (1969) 5440.
- [501] H. Gilman, C. L. Smith, J. Organomet. Chem. 8 (1967) 245.
- [502] P. K. Jenkner, E. Hengge, R. Czaputa, C. Kratky, J. Organomet. Chem. 446 (1993) 83.
- [503] E. Hengge, R. Janoschek, Chem. Rev. 95 (1995) 1495.
- [504] M. Kumada, M. Ishikawa, S. Maeda, J. Organomet. Chem. 5 (1966) 120.
- [505] R. L. Merker, M. J. Scott, J. Organomet. Chem. 4 (1965) 98.
- [506] N. Duffaut, J. Dunoguès, R. Callas, C. R. Acad. Sci. Paris 987 (1969) C268.
- [507] U. Baumeister, K. Schenzel, R. Zink, K. Hassler, J. Organomet. Chem. 543 (1997) 117.
- [508] U. Herzog, G. Roewer, J. Organomet. Chem. 544 (1997) 217.
- [509] D. Reyx, J. M. Martins, I. Campistron, F. Huet, Bull. Soc. Chim. France 131 (1994) 1007.
- [510] M. Laguerre, J. Dunoguès, R. Calas, N. Duffaut, J. Organomet. Chem. 112 (1976), 49.
- [511] T. Brennan, H. Gilman, J. Organometal. Chem. 12 (1968) 291.
- [512] eigene unveröffentliche Untersuchungen (1997).
- [513] H. Gilman, G. D. Lichtenwalder, J. Am. Chem. Soc. 80 (1958) 608.
- [514] G. Fritz, B. Grunert, Z. anorg. allg. Chem. 473 (1981) 59.
- [515] K. Tamao, A. Kawachi, Y. Ito, J. Am. Chem. Soc. 114 (1992) 3989.
- [516] K. Trommer, U. Herzog, U. Georgi, G. Roewer, J. prakt. Chem. 340 (1998) 557.
- [517] A. Kawachi, K. Tamao, J. Am. Chem. Soc. 122 (2000) 1919.
- [518] H. V. R. Dias, M. M. Olmstead, K. Ruhlandt-Senge, P. P. Power, J. Organomet. Chem. 462 (1993) 1.
- [519] C. Strohmann, O. Ulbrich, D. Auer, Eur. J. Inorg. Chem. (2001) 1013.
- [520] K. Tamao, A. Kawachi, Y. Ito, Organometallics 12 (1983) 580.
- [521] K. Schenzel, K. Hassler, Spectrochimica Acta 50A (1994) 127.
- [522] K. Hassler, G. Bauer, Spectrochimica Acta 43A (1987) 1325.
- [523] K. Hassler, R. Neuböck, Spectrochimica Acta 49A (1993) 95.
- [524] L. Párkányi, E. Hengge, J. Organomet. Chem. 235 (1982) 273.
- [525] H. Gilman, C. L. Smith, J. Organomet. Chem. 14 (1968) 91.
- [526] C. Marschner, Eur. J. Inorg. Chem. (1998) 221.
- [527] A. Heine, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, Inorg. Chem. 32 (1993) 2694.
- [528] S. Freitag, R. Herbst-Irmer, L. Lameyer, D. Stalke, Organometallics 15 (1996) 2839.
- [529] F. Preuss, T. Wieland, J. Perner, G. Heckmann, Z. Naturforsch. 47b (1992) 1355.
- [530] C. J. Cardin, D. J. Cardin, W. Clegg, S. J. Coles, S. P. Constantine, J. R. Rowe, S. J. Teat, J. Organomet. Chem. 573 (1999) 96.
- [531] C. Kayser, C. Marschner, Monatsh. Chem. 130 (1999) 203.
- [532] C. Kayser, R. Fischer, J. Baumgärtner, C. Marschner, Organometallics 21 (2002) 1023.
- [533] C. Kayser, G. Kickelbick, C. Marschner, Angew. Chem. 114 (2002) 1031.
- [534] Y. Apeloig, G. Korogodsky, D. Bravo-Zhivotovskii, D. Bläser, R. Boese, Eur. J. Inorg. Chem. (2000) 1091.
- [535] S. Whittaker, M. Brun, F. Cervantes-Lee, K. Pannell, J. Organomet. Chem. 499 (1995) 247.

- [536] T. F. Schaaf, J. P. Oliver, J. Am. Chem. Soc. 91 (1969) 4327.
- [537] A. Sekiguchi, M. Nanjo, C. Kabuto, H. Sakurai, Organometallics 14 (1995) 2630.
- [538] T. F. Schaaf, W. Butler, M. D. Glick, J. P. Oliver, J. Am. Chem. Soc. 96 (1974) 7593.
- [539] W. H. Ilsley, T. F. Schaaf, M. D. Glick, J. P. Oliver, J. Am. Chem. Soc. 102 (1980) 3769.
- [540] K. W. Klinkhammer, G. Becker, W. Schwarz, in "Organosilicon Chem. II" (Hrsg.: N. Auner, J. Weis) VCH-Verlag (1996) 493.
- [541] K. W. Klinkhammer, Chem.-Eur. J. 3 (1997) 1418.
- [542] K. W. Klinkhammer, W. Schwarz; Z. anorg. allg. Chem. 619 (1993) 1777.
- [543] F. Uhlig, P. Gspaltl, M. Trabi, E. Hengge, J. Organomet. Chem. 493 (1995) 33.
- [544] F. K. Mitter, G. Pollhammer, E. Hengge, J. Organomet. Chem. 314 (1986) 1.
- [545] F. K. Mitter, G. Pollhammer, E. Hengge, J. Organomet. Chem. 332 (1987) 47.
- [546] J. B. Lambert, J. L. Pflug, C. Stern, Angew. Chem. 107 (1995) 106.
- [547] J. B. Lambert, J. L. Pflug, J. M. Denari, Organometallics 15 (1996) 615.
- [548] A. Sekiguchi, M. Nanjo, C. Kabuto, H. Sakurai, J. Am. Chem. Soc. 117 (1995) 4195.
- [549] H. Gilman, R. L. Harrell, J. Organomet. Chem. 9 (1967) 67.
- [550] U. Herzog, R. Richter, E. Brendler, G. Roewer, J. Organomet. Chem. 507 (1996) 221.
- [551] R. Richter, N. Schulze, G. Roewer, J. Albrecht, J. prakt. Chem. 339 (1997) 145.
- [552] C. Knopf, U. Herzog, G. Roewer, E. Brendler, G. Rheinwald, H. Lang, J. Organomet. Chem. 662 (2002) 14.
- [553] G. Sawitzki, H.-G. v. Schnering, Chem. Ber. 109 (1976) 3728.
- [554] U. Herzog, Dissertation, Freiberg (1997).
- [555] H. Hildebrandt, B. Engels, Z. anorg. allg. Chem. 626 (2000) 400.
- [556] U. Herzog, N. Schulze, K. Trommer, G. Roewer, Main Group Metal Chem. 22 (1999) 19.
- [557] W. H. Atwell, D. R. Weyenberg, J. Organomet. Chem. 5 (1966) 594.
- [558] W. Kalchauer, B. Pachaly, G. Geisberger, L. Rösch, Z. anorg. allg. Chem. 618 (1992) 148.
- [559] K. Trommer, U. Herzog, N. Schulze, G. Roewer, Main Group Metal Chem. 24 (2001) 425.
- [560] M. Ishikawa, M. Kumada, H. Sakurai, J. Organomet. Chem. 23 (1970) 63.
- [561] H. Sakurai, K. Tominaga, T. Watanabe, M. Kumada, Tetrahedron Lett. 45 (1966) 5493.
- [562] K. Hassler, Monatsh. Chem. 117 (1986) 613.
- [563] G. Kollegger, K. Hassler, J. Organomet. Chem. 485 (1995) 233.
- [564] M. Kumada, M. Yamaguchi, Y. Yamamoto, J. Nakajima, K. Shiina, J. Org. Chem. 21 (1956) 1264.
- [565] H. Sakurai, T. Watanabe, M. Kumada, J. Organomet. Chem. 7 (1967) P15.
- [566] R. Lehnert, M. Höppner, H. Kelling, Z. anorg. allg. Chem. 591 (1990) 209.
- [567] W. Malisch, J. Organomet. Chem. 82 (1974) 185.
- [568] U. Herzog, G. Roewer, J. Organomet. Chem. 527 (1997) 117.
- [569] U. Herzog, E. Brendler, G. Roewer, J. Organomet. Chem. 511 (1996) 85.
- [570] Y. Matsumoto, T. Hayashi, Tetrahedron 50 (1994) 335.
- [571] U. Baumeister, K. Schenzel, K. Hassler, J. Organomet. Chem. 503 (1995) 93.
- [572] B. Reiter, K. Hassler, J. Organomet. Chem. 467 (1994) 21.
- [573] E. Hengge, W. Kalchauer, F. Schrank, Monatsh. Chem. 117 (1986) 1399.
- [574] E. Hengge, H. Eberhardt, Monatsh. Chem. 110 (1979) 39.
- [575] H. Stüger, J. Organomet. Chem. 458 (1993) 1.
- [576] P. K. Sen, D. Ballard, H. Gilman, J. Organomet. Chem. 15 (1968) 237.
- [577] H. Gilman, S. Inoue, J. Org. Chem. 29 (1964) 3418.
- [578] E. Hengge, M. Eibl, B. Stadelmann, Monatsh. Chem. 124 (1993) 523.
- [579] M. Eibl, U. Katzenbeisser, E. Hengge, J. Organomet. Chem. 444 (1993) 29.
- [580] A. Spielberger, P. Gspaltl, H. Siegl, E. Hengge, K. Gruber, J. Organomet. Chem. 499 (1995) 241.
- [581] W. Uhlig, J. Organomet. Chem. 452 (1993) C6.

- [582] W. Uhlig, Trends Organomet. Chem. 2 (1997) 1.
- [583] W. Uhlig, J. Organomet. Chem. 421 (1991) 189.
- [584] W. Uhlig, C. Tretner, J. Organomet. Chem. 467 (1994) 31.
- [585] K. E. Ruehl, K. Matyjaszewski, J. Organomet. Chem. 410 (1991) 1.
- [586] K. Hassler, W. Köll, J. Organomet. Chem. 526 (1996) 157.
- [587] W. Uhlig, Chem. Ber. 125 (1992) 47.
- [588] W. Uhlig, C. Tretner, J. Organomet. Chem. 436 (1992) C1.
- [589] J. Chrusciel, M. Cypryk, E. Fossum, K. Matyjaszewski, Organometallics 11 (1992) 3257.
- [590] H. H. Hergott, G. Simchen, Liebigs Ann. Chem. (1980) 1718.
- [591] E. Hengge, P. Gspaltl, E. Pinter, J. Organomet. Chem. 521 (1996) 145.
- [592] W. Uhlig, Prog. Polym. Sci. 27 (2002) 255.
- [593] K. Trommer, G. Roewer, E. Brendler, J. prakt. Chem. 339 (1997) 82.
- [594] U. Herzog, K. Trommer, G. Roewer, J. Organomet. Chem. 552 (1998) 99.
- [595] K. Trommer, U. Herzog, G. Roewer, J. prakt. Chem. 339 (1997) 637.
- [596] K. Trommer, U. Herzog, G. Roewer, J. Organomet. Chem. 540 (1997) 119.
- [597] H.-P. Baldus, M. Jansen, Angew. Chem. 109 (1997) 338.
- [598] D. Seyferth, G. H. Wisemann, C. Prudhommes, J. Am. Ceram. Soc. 66 (1983) C13.
- [599] M. Weinmann, S. Nast, F. Berger, M. Müller, F. Aldinger, Appl. Organomet. Chem. 15 (2001) 867.
- [600] M. Weinmann, M. Hörz, F. Berger, A. Müller, K. Müller, F. Aldinger, J. Organomet. Chem. 659 (2002) 29.
- [601] L. N. Lewis, N. Lewis, J. Am. Chem. Soc. 108 (1986) 7228.
- [602] L. N. Lewis, J. Am. Chem. Soc. 112 (1990) 5998.
- [603] J. F. Harrod, S. S. Yun, Organometallics 6 (1987) 1381.
- [604] J. Y. Corey, X.-H. Zhu, J. Organomet. Chem. 439 (1992) 1.
- [605] J. F. Harrod, ACS Symp. Ser. 360 (1988) 89.
- [606] J. F. Harrod, NATO ASI Ser. E 141 (1988) 103.
- [607] E. Hengge, M. Weinberger, J. Organomet. Chem. 443 (1993) 167.
- [608] T. Ziegler, E. Folga, J. Organomet. Chem. 478 (1994) 57.
- [609] J. Y. Corey, X. H. Zhu, T. C. Bedard, L. D. Lange, Organometallics 10 (1991) 924.
- [610] E. Hengge, M. Weinberger, C. Jammegg, J. Organomet. Chem. 410 (1991) C1.
- [611] E. Hengge, M. Weinberger, J. Organomet. Chem. 433 (1992) 21.
- [612] E. Hengge, P. Gspaltl, E. Pinter, J. Organomet. Chem. 521 (1996) 145.
- [613] A. Davies, D. K. Osei-Kissi, J. Organomet. Chem. 474 (1994) C8.
- [614] A. Stern, E. J. Becker, J. Org. Chem. 27 (1962) 4052.
- [615] W. P. Neumann, J. Pedain, R. Sommer, Liebigs Ann. Chem. 694 (1966) 9.
- [616] B. Mathiasch, Inorg. Nucl. Chem. Lett. 13 (1977) 13.
- [617] A. A. Dräger, B. Mathiasch, Z. anorg. allg. Chem. 532 (1986) 81.
- [618] P. Boudjouk, S. D. Kloos, B.-K. Kim, M. Page, D. Thweatt, J. Chem. Soc. Dalton Trans. (1998) 877.
- [619] B. K. Kim, S.-B. Choi, S. D. Kloos, P. Boudjouk, Inorg. Chem. 39 (2000) 728.
- [620] S.-B. Choi, B.-K. Kim, P. Boudjouk, D. G. Grier, J. Am. Chem. Soc. 123 (2001) 8117.
- [621] E. Hengge, D. Kovar, Angew. Chem. 89 (1977) 417.
- [622] L. Müller, W.-W. du Mont, F. Ruthe, P. G. Jones, H. C. Marsmann, J. Organomet. Chem. 579 (1999) 156.
- [623] R. Martens, W.-W. du Mont, Chem. Ber. 126 (1993) 1115.
- [624] W.-W. du Mont, L. Müller, R. Martens, P. M. Papathomas, B. A. Smart, H. E. Robertson, D. W. H. Rankin, Eur. J. Inorg. Chem. (1999) 1381.
- [625] G. Urry, Acc. Chem. Res. 3 (1970) 306.
- [626] D. Kummer, H. Köster, Angew. Chem. 81 (1969) 897.
- [627] J. Mason, "Multinuclear NMR", Plenum Press New York, London (1987).

- [629] P. J. Watkinson, K. M. MacKay, J. Organomet. Chem. 275 (1984) 39.
- [630] E. Liepiņš, E. Lukevics, I. Zicmane, J. Organomet. Chem. 341 (1988) 315.
- [631] H. Schmidbaur, J. Rott, Z. Naturforsch. 45b (1990) 961.
- [632] E. Liepiņš, M. V. Petrova, E. T. Bogoradovsky, V. S. Zavgorodny, J. Organomet. Chem. 410 (1991) 287.
- [633] Y. Takenchi, H. Yamamoto, K. Tanaka, K. Ogawa, J. Harada, T. Iwamoto, H. Yuge, Tetrahedron 54 (1998) 9811.
- [634] M. Charisse, A. Zickgraf, H. Stenger, E. Bräu, C. Desmarquet, M. Dräger, Polyhedron 17 (1998) 4497.
- [635] B. Wrackmeyer, P. Bernatowicz, J. Organomet. Chem. 579 (1999) 133.
- [636] F. Riedmiller, G. L. Wegner, A. Jockisch, H. Schmidbaur, Organometallics 18 (1999) 4317.
- [637] A. L. Wilkins, P. J. Watkinson, K. M. Mackay, J. Chem. Soc. Dalton Trans. (1987) 2365.
- [638] И. Зикмане, Е. Липинс, Е. Лукевич, Т. К. Гар, Журнал Общей Химии 52 (1982) 896.
- [639] G. A. Morris, R. Freeman, J. Am. Chem. Soc. 101 (1979) 760.
- [640] D. M. Doddrell, D. T. Pegg, J. Am. Chem. Soc. 102 (1980) 6388.
- [641] D. T. Burum, R. R. Ernst, J. Magn. Reson. 39 (1980) 163.
- [642] P. H. Bolton, J. Magn. Reson. 41 (1980) 287.
- [643] D. M. Doddrell, D. T. Pegg, M. R. Bendall, J. Magn. Reson. 48 (1982) 323.
- [644] D. T. Pegg, D. M. Doddrell, M. R. Bendall, J. Chem. Phys. 77 (1982) 2745.
- [645] J. P. Kintzinger "¹⁷O NMR Spectroscopy" in P. Diehl, E. Fluck, R. Kosfeld (Hrsg.) "NMR Basic Principles and Progress, Vol. 17" Springer Verlag Heidelberg, Berlin (1981) 1.
- [646] H. L. Retcofsky, R. A. Friedel, J. Am. Chem. Soc. 94 (1972) 6579.
- [647] P. S. Belton, I. J. Cox, R. K. Harris, J. Chem. Soc. Faraday Trans. 2 81 (1985) 63.
- [648] R. Annunziata, G. Barbarella, Org. Magn. Reson. 22 (1984) 250.
- [649] H. L. Retcofsky, R. A. Friedel, J. Am. Chem. Soc. 94 (1972) 6579.
- [650] R. E. Wasylishen, C. Connor, J. O. Friedrich, Can. J. Chem. 62 (1984) 981.
- [651] J. D. Odom, W. H. Dawson, P. D. Ellis, J. Am. Chem. Soc. 101 (1979) 5815.
- [652] S. Chapelle, P. Granger, Mol. Phys. 44 (1981) 459.
- [653] E. W. Abel, K. G. Orrell, A. W. G. Platt, Org. Magn. Reson. 21 (1983) 196.
- [654] C. J. Jameson, J. Mason "Chapter 3, The Chemical Shift" in J. Mason (Hrsg.) "Multinuclear NMR", Plenum Press New York, London (1987) 51.
- [655] C. J. Jameson, H. S. Gutowsky, J. Chem. Phys. 40 (1964) 1714.
- [656] T. A. Carlson, C. C. Lu, T. C. Tucker, C. W. Nestor, F. B. Malik "Eigenvalues, Radial Expectation Values, and Potentials for Free Atoms from Z = 2 to 126 as calculated from Relativistic Hartree-Fock-Slater Atomic Wave Functions", Oak Ridge National Laboratory (1970) 1.
- [657] C. E. Moore "Atomic Energy Levels", National Bureau of Standards Circular No. 467, Vols. 1-3 (1971).
- [658] D. Kolb, W. R. Johnson, P. Shorer, Phys. Rev. A 26 (1982) 19.
- [659] G. Malli, C. Froese, Int. J. Quantum Chem. Suppl. 1 (1967) 95.
- [660] H. C. Marsmann, "²⁹Si NMR Spectroscopy" in P. Diehl, E. Fluck, R. Kosfeld (Hrsg.) "NMR Basic Principles and Progress, Vol. 17" Springer Verlag Heidelberg, Berlin (1981) 65.
- [661] J. D. Kennedy, W. McFarlane "Chapter 11, Silicon, Germanium, Tin, and Lead" in J. Mason (Hrsg.)"Multinuclear NMR", Plenum Press New York, London (1987) 305.
- [662] E. A. Williams, "Chapter 8, NMR spectroscopy of organosilicon compounds" in S. Patai, Z. Rappoport (Hrsg.) "The Chemistry of Organic Silicon Compounds", John Wiley & Sons Ltd. (1989) 511.
- [663] A. G. Dawies, "Organotin Chemistry", VCH-Verlag Weinheim (1997) 18.
- [664] J. Schraml, "Chapter 3, ²⁹Si NMR experiments in solutions of organosilicon compounds" in Z. Rappoport, Y. Apeloig (Hrsg.) "The Chemistry of organic silicon compounds, Vol. 3", John Wiley & Sons Ltd. (2001) 223.
- [665] F. Uhlig, U. Herrmann, H. Marsmann, "29Si NMR Database System", http://platon.chemie.uni-

dortmund.de/acii/fuhlig (2000).

- [666] H. C. E. McFarlane, W. McFarlane, "Chapter 10, Selenium-77 and Tellurium-125" in "NMR of Newly Accessible Nuclei" 2 (1983) 275.
- [667] H. C. E. McFarlane, W. McFarlane, "Chapter 15, Sulfur, Selenium, and Tellurium" in J. Mason (Hrsg.)"Multinuclear NMR", Plenum Press New York, London (1987) 417.
- [668] N. P. Luthra, A. M. Boccanfuso, R. B. Dunlap, J. D. Odom, J. Organomet. Chem. 354 (1988) 51.
- [669] T. Birchall, R. J. Gillespie, S. L. Vekris, Can. J. Chem. 43 (1965) 1672.
- [670] C. Glidewell, D. W. A. Rankin, G. M. Sheldrick, J. Chem. Soc. Faraday Trans. 65 (1969) 1409.
- [671] W. McFarlane, R. J. Wood, J. Chem. Soc. Dalton Trans. (1972) 1397.
- [672] W. McFarlane, Mol. Phys. 12 (1967) 243.
- [673] K. Karaghiosoff, T. M. Klapötke, B. Krumm, O. P. Ruscitti, J. Organomet. Chem. 577 (1999) 69.
- [674] M. Lardon, J. Am. Chem. Soc. 92 (1970) 5063.
- [675] H. C. E. McFarlane, W. McFarlane, J. Chem. Soc. Dalton Trans. (1973) 2416.
- [676] D. T. T. Tran, J. F. Corrigan, Organometallics 19 (2000) 5202.
- [677] J. A. Pople, D. P. Santry, Mol. Phys. 8 (1964) 1.
- [678] H. M. McConnell, J. Chem. Phys. 24 (1956) 460.
- [679] M. Barfield, M. Karplus, J. Am. Chem. Soc. 91 (1969) 1.
- [680] B. Wrackmeyer, W. Biffar, Z. Naturforsch. 34b (1979) 1270.
- [681] J. D. Kennedy, W. McFarlane, B. Wrackmeyer, Inorg. Chem. 15 (1976) 1299.
- [682] P. S. Pregosin, R. W. Kunz, in "NMR Basic Principles and Progress, Vol. 16" Springer Verlag Heidelberg, Berlin (1979) 1.
- [683] P. Pyykkö, E. Pajanne, M. Inokuti, Int. J. Quantum Chem. 7 (1973) 785.
- [684] P.Pyykkö, L. Wiesenfeld, Mol. Phys. 43 (1981) 557.
- [685] C. J. Jameson "Chapter 4, Spin-Spin-Coupling" in J. Mason (Hrsg.) "Multinuclear NMR", Plenum Press New York, London (1987) 89.
- [686] E. W. Della, H. K. Patney, Aust. J. Chem. 32 (1979) 2243.
- [687] G. Pfisterer, H. Dreeskamp, Ber. Bunsenges. Phys. Chem. 73 (1969) 654.
- [688] J. D. Kennedy, W. McFarlane, J. Chem. Soc. Chem. Commun. (1974) 983.
- [689] J. D. Kennedy, W. McFarlane, J. Chem. Soc. Dalton Trans. (1976) 1219
- [690] K. G. Sharp, P. A. Sutor, E. A. Williams, J. D. Cargioli, T. C. Farrar, K. Ishibitsu, J. Am. Chem. Soc. 98 (1976) 1977.
- [691] H. Söllradl, E. Hengge, J. Organomet. Chem. 243 (1983) 257.
- [692] M. Vongehr, H. C. Marsmann, Z. Naturforsch 31b (1976) 1423.
- [693] M. Karplus, J. Chem. Phys. 30 (1959) 11.
- [694] M. Kuroda, Y. Kabe, M. Hashimoto, S. Masamune, Angew. Chem. 100 (1988) 1795.
- [695] J. B. Lambert, H. Wu, Magn. Reson. Chem. 38 (2000) 388.
- [696] A. Bax, R. Freemann, S. P. Kempsell, J. Am. Chem. Soc. 102 (1980) 4849.
- [697] A. Bax, R. Freemann, T. A. Frenkiel, J. Am. Chem. Soc. 103 (1981) 2102.
- [698] T. H. Mareci, R. Freeman, J. Magn. Reson. 48 (1982) 158.
- [699] B. J. Hendan, H. C. Marsmann, J. Organomet. Chem. 483 (1994) 33.
- [700] O. W. Sørensen, R. Freeman, T. Frenkiel, T. H. Mareci, R. Schuck, J. Magn. Reson. 46 (1982) 180.
- [701] I. S. Podkorytov, J. Magn. Reson. 89 (1990) 129.
- [702] U. Herzog, G. Roewer, Main Group Metal Chem. 22 (1999) 579.
- [703] D. E. Williams, Chapter 11, in A. L. Smith (Hrsg.) "Analysis of Silicones" John Wiley & Sons Ltd. New York (1974) 287.
- [704] U. Herzog, J. Prakt. Chem. 342 (2000) 379.
- [705] U. Herzog, Main Group Metal Chem. 24 (2001) 31.
- [706] U. Herzog, N. Schulze, K. Trommer, G. Roewer, J. Organomet. Chem. 547 (1997) 133.

- [707] U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 612 (2000) 133.
- [708] U. Herzog, Main Group Metal Chem. 24 (2001) 757.
- [709] N. Choi, K. Asano, W. Ando, Heterocycles 44 (1997) 177.
- [710] C. Knopf, G. Roewer, H. Borrmann, Publikation in Vorbereitung.
- [711] H. Lange, U. Herzog, J. Organomet. Chem. 660 (2002) 36.
- [712] H. Lange, U. Herzog in N. Auner (Hrsg.) "Organosilicon Chemistry V", Wiley-VCH (2003) [im Druck].
- [713] U. Herzog, G. Rheinwald, J. Organomet. Chem. 627 (2001) 23.
- [714] A. L. Allred, E. G. Rochow, J. Inorg. Nucl. Chem. 5 (1958) 261.
- [715] H. Lange, U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 660 (2002) 43.
- [716] H. G. Horn, M. Hemeke, Chemiker-Ztg. 106 (1982) 263.
- [717] M. O'Keeffe, N. E. Brese, J. Am. Chem. Soc. 113 (1991) 3226.
- [718] U. Herzog, H. Borrmann, Inorg. Chem. Commun. 6 (2003) 718.
- [719] M. Kumada, M. Yamaguchi, Y. Yamamoto, J. Nakajima, K. Shiina, J. Org. Chem. 26 (1956) 1264.
- [720] G. Engelhardt, R. Radeglia, H. Kelling, R. Steudel, J. Organomet. Chem. 212 (1981) 51.
- [721] U. Herzog, G. Rheinwald, J. Organomet. Chem. 648 (2002) 220.
- [722] J. Jentzsch, J. Fabian, R. Mayer, Chem. Ber. (1962) 1764.
- [723] U. Herzog, U. Böhme, Applied Organomet. Chem. [eingereicht].
- [724] C. G. Pitt, J. Am. Chem. Soc. 91 (1969) 6613.
- [725] T. L. Guggenheim, Tetrahedron Letters 28 (1987) 6139.
- [726] R. T. Oakley, D. A. Stanislawski, R. West, J. Organomet. Chem. 157 (1978) 389.
- [727] A. W. Cordes, P. F. Schubert, R. Oakley, Can. J. Chem. 57 (1979) 174.
- [728] W. Uhlig, Z. anorg. allg. Chem. 588 (1990) 133.
- [729] H. L. Carrell, J. Donohue, Acta Cryst. B 28 (1972) 1566.
- [730] W. Wojnowski, J. Pikies, Z. anorg. allg. Chem. 508 (1984) 201.
- [731] U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 627 (2001) 144.
- [732] A. N. Fitch, H. Jobic, J. Chem. Soc. Chem. Commun. (1993) 1516.
- [733] E. Lukevics, O. Pudova, Main Group Metal Chem. 21 (1998) 123.
- [734] U. Herzog, H. Borrmann, J. Organomet. Chem. [eingereicht].
- [735] U. Herzog, G. Rheinwald, Organometallics 20 (2001) 5369.
- [736] U. Herzog, G. Rheinwald, H. Borrmann, J. Organomet. Chem. 660 (2002) 27.
- [737] G. M. Kollegger, U. Katzenbeisser, K. Hassler, C. Krüger, D. Brauer, R. Gielen, J. Organomet. Chem. 543 (1997) 103.
- [738] K. Hassler, G. M. Kollegger, H. Siegl, G. Klintschar, J. Organomet. Chem. 533 (1997) 51.
- [739] U. Winkler, M. Schieck, H. Pritzkow, M. Driess, I. Hyla-Kryspin, H. Lange, R. Gleiter, Chem. Eur. J. 3 (1997) 874.
- [740] M. Schubart, B. Findeis, L. H. Gade, W.-S. Li, M. McPartlin, Chem. Ber. 128 (1995) 329.
- [741] B. Findeis, M. Schubart, L. H. Gade, F. Möller, I. Scowen, M. McPartlin, J. Chem. Soc. Dalton Trans. (1996) 125.
- [742] L. H. Gade, C. Becker, J. W. Lauher, Inorg. Chem. 32 (1993) 2308.
- [743] H. Memmler, L. H. Gade, J. W. Lauher, Inorg. Chem. 33 (1994) 3071.
- [744] H. Memmler, K. Walsh, L. H. Gade, J. W. Lauher, Inorg. Chem. 34 (1995) 4062.
- [745] P. Renner, C. H. Galka, L. H. Gade, M. McPartlin, Inorg. Chem. Commun. 4 (2001) 191.
- [746] P. Renner, C. H. Galka, L. H. Gade, S. Radojevic, M. McPartlin, Eur. J. Inorg. Chem. (2001) 1425.
- [747] S. Friedrich, H. Memmler, L. H. Gade, W.-S. Li, M. McPartlin, Angew. Chem. 106 (1994) 705.
- [748] K. W. Hellmann, L. H. Gade, O. Gevert, P. Steinert, J. W. Lauher, Inorg. Chem. 34 (1995) 4069.
- [749] K. W. Hellmann, S. Friedrich, L. H. Gade, W.-S. Li, M. McPartlin, Chem. Ber. 128 (1995) 29.
- [750] B. Findeis, M. Schubart, C. Platzek, L. H. Gade, I. Scowen, M. McPartlin, J. Chem. Soc. Chem. Commun. (1996) 219.
- [751] M. Contel, K. W. Hellmann, L. H. Gade, I. Scowen, M. McPartlin, M. Laguna, Inorg. Chem. 35 (1996) 3713.
- [752] K. W. Hellmann, L. H. Gade, A. Steiner, D. Stalke, F. Möller, Angew. Chem. 109 (1997) 99.
- [753] G. Hillebrand, A. Spannenberg, P. Arndt, R. Kempe, Organometallics 16 (1997) 5585.
- [754] M. Schubart, G. Mitchell, L. H. Gade, T. Kottke, I. J. Scowen, M. McPartlin, J. Chem. Soc. Chem. Commun. (1999) 233.
- [755] L. H. Gade, M. Schubart, B. Findeis, S. Fabre, I. Bezougli, M. Lutz, I. J. Scowen, M. McPartlin, Inorg. Chem. 38 (1999) 5282.
- [756] P. Renner, C. Galka, H. Memmler, U. Kauper, L. H. Gade, J. Organomet. Chem. 591 (1999) 71.
- [757] L. H. Gade, B. Findeis, O. Gevert, H. Werner, Z. anorg. allg. Chem. 626 (2000) 1030.
- [758] M. R. Mason, S. S. Phulpagar, M. S. Mashuta, J. F. Richardson, Inorg. Chem. 39 (2000) 3931.
- [759] C. H. Galka, L. H. Gade, J. Chem. Soc. Chem. Commun. (2001) 899.
- [760] M. Lutz, B. Findeis, M. Haukka, T. A. Pakkanen, L. H. Gade, Eur. J. Inorg. Chem. (2001) 3155.
- [761] L. H. Gade, Eur. J. Inorg. Chem. (2002) 1257.
- [762] U. Herzog, U. Böhme, E. Brendler, G. Rheinwald, J. Organomet. Chem. 630 (2001) 139.
- [763] U. Herzog, U. Böhme, G. Roewer, G. Rheinwald, H. Lang, J. Organomet. Chem. 602 (2000) 193.
- [764] U. Herzog, G. Rheinwald, J. Organomet. Chem. 628 (2001) 133.
- [765] U. Herzog, H. Borrmann, J. Organomet. Chem. 675 (2003) 42.
- [766] U. Herzog, H. Borrmann, J. Organomet. Chem. [im Druck].
- [767] J. Herzfeld, A. E. Berger, J. Chem. Phys. 73 (1980) 6021.
- [768] U. Haeberlen in J. S. Waugh (Hrsg.) "Advances in Magnetic Resonance, Suppl. 1", Academic Press New York (1976).
- [769] U. Herzog, G. Rheinwald, Eur. J. Inorg. Chem. (2001) 3107.
- [770] H. Bock, J. Meuret, K. Ruppert, Angew. Chem. 105 (1993) 413.
- [771] F. R. Fronczek, P. D. Lickiss, Acta Cryst. C 49 (1993) 331.
- [772] L. Fitjer, A. Kanschik, M. Majewski, Tetrahedron Lett. 26 (1985) 5277.
- [773] L. Fitjer, A. Kanschik, M. Majewski, Tetrahedron 50 (1994) 10867.
- [774] L. H. Zalkow, R. N. Harris III, D. van Derveer, J. Chem. Soc. Chem. Commun. (1978) 420.
- [775] L.Fitjer, A. Kanschik, M. Majewski, Tetrahedron Lett. 29 (1988) 5525.
- [776] T. Prange, J. Chem. Soc. Chem. Commun. (1977) 430.
- [777] D. C. van Beelen, H. O. van der Kooi, H. Wolters, J. Organomet. Chem. 179(1979) 37.
- [778] HBMAS, M. Braun, Friedrich-Schiller-Universität Jena.
- [779] GAUSSIAN 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian Inc., Pittsburgh, PA, USA (1998).
- [780] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [781] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.
- [782] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 98 (1994) 11623.
- [783] P. C. Hariharan, J.A. Pople, Theoret. Chimica Acta, 28 (1973) 213.
- [784] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 77 (1982) 3654.
- [785] W. R. Wadt, P. J. Hay, J. Chem. Phys. 82 (1985) 284.

- [786] BRUKER AXS Inc., Madison, WI, USA (1998).
- [787] P. McArdle, J. Appl. Cryst. 29 (1996) 306.
- [788] SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc., Madison, WI, USA (1996).
- [789] SHELX97 [einschließlich SHELXS97, SHELXL97, CIFTAB] G. M. Sheldrick. SHELX97. Programme für die Kristallstrukturanalyse (Release 97-2), Universität Göttingen (1997).
- [790] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 32 (1999) 115.
- [791] DIAMOND 2.1: M. Berndt, K. Brandenburg, H. Putz, Crystal Impact GbR, www.crystalimpact.de, Bonn (1999).
- [792] CRYSTAL CLEAR: Rigaku Corp. (2000).
- [793] K. Schenzel, K. Hassler, in "Organosilicon Chem. II" (Hrsg.: N. Auner, J. Weis) VCH-Verlag (1996), 95.
- [794] H. Bürger, W. Kilian, K. Burczyk, J. Organomet. Chem. 21 (1970) 291.
- [795] H. Gilman, D. S. Melstrom, J. Am. Chem. Soc. 72 (1950) 2953.