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ABSTRACT 

This paper explores species richness of insects of the Order Orthoptera along spatial 

gradients defined using remotely sensed land cover data for an area of 5,600 km2 

centred on the city of London. The numbers of species within grid-squares of a 

national atlas, controlled for recording effort, declined along composite multivariate 

spatial gradients representing landscapes with increasing dominance of arable and 

urban land uses, yet was uncorrelated with the area of an individual land cover 

representing cultivated land and only weakly correlated with area of a second land 

cover representing urban development. Few orthopteran species reside directly within 

either arable crops or non-vegetated urban land covers. Thus, whilst the areas of the 

individual land covers are intuitively sensible (and simple) measures of agricultural 

and urban cover respectively, their areas do not capture ecologically relevant 

information about variation in the composition of the uncultivated and non-urban land 

cover matrices within which the species actually reside. The results illustrate the 

advantages of using multivariate data reduction techniques (such as the Principle 

Components Analysis applied here) to describe spatial gradients in the extent of 

agricultural and urban influence. Relatively few landscape scale studies have focussed 

on insects and the present study illustrates a) the potential for using the Orthoptera to 

explore and monitor impacts of land use via analysis of large scale spatial patterns 

from national species distribution atlases combined with remotely sensed land cover, 

and b) the importance of selecting appropriate measures of land use which incorporate 

information on the complex mix of land cover types utilised by the species under 

investigation. 
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1. Introduction 

Urbanisation and agricultural intensification are major drivers of land cover change, 

biodiversity loss and environmental degradation (Firbank et al., 2008; Luck et al., 

2004; Gaston, 2005). Despite these changes significant numbers of species are 

capable of surviving and indeed thriving in highly modified environments (Luck, 

2007; Niemala & Kotze, 2009; Goddard et al., 2009), and there is a growing 

recognition of the potential of ‘green infrastructure’ (comprising networks of habitat 

islands, stepping-stones and linear corridors) to maintain and enhance biodiversity and 

human well-being (Gordon et al., 2009; Jorgensen & Gobster, 2010). There is a 

parallel need to identify groups of species which can act as indicators of the impacts 

on biodiversity of land use at landscape and regional levels such that successes (and 

failures) in landscape management can be identified and monitored. A suitable 

candidate group of species would include widespread species that are sensitive to land 

use, yet include representatives that are able to persist in modified landscapes 

(McGeoch, 1998). In this respect, the Order Orthoptera, which includes grasshoppers, 

crickets and allied insects, is potentially a suitable group of species (Benton, 2012).  

Insects have been neglected in most large scale studies of biodiversity and 

land use, and particularly those focussing on urban areas (McDonnell & Hahs, 2008; 

Didham et al., 2010). However, a previous study of Orthoptera across a study area of 

almost 10,000 km2 in southern England demonstrated a negative impact of 

agricultural land cover on the numbers of species present (Cherrill, 2011). Effects of 

urban areas were not detected, probably because towns in the study area were 

relatively small (Cherrill, 2010), although there is also a need to identify measures 
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that adequately capture the complexity of land cover mosaics in cities (Hahs & 

McDonnell, 2006). The present study builds on this previous work by a) investigating 

spatial variation in numbers of Orthoptera in response to land cover for an area 

encompassing a major city, namely London, capital of the United Kingdom, and b) 

explores methods of describing spatial gradients in urban development and 

agricultural activity from remotely sensed land cover data.  

 

2. Methods 

2.1. Study area 

The study covered an area of 5,600 km2 including the City of London, Greater 

London, and parts of the counties of Hertfordshire, Essex, Kent, East and West 

Sussex, Surrey, Berkshire and Buckinghamshire (Figure 1). The area comprised 56 

grid-squares, each 10km by 10km, defined by the British national Ordnance Survey 

(OS) grid system. For brevity these grid-squares are henceforth referred to as 10km 

grid-squares (with reference to their linear dimensions). The grid-squares are arranged 

in a rectangular block measuring 80 km in longitude and 70 km in latitude. The co-

ordinate of the SW corner of the study area is 490 E 140 N on the British OS grid.  

2.2. Data sources 

2.2.1. Species data. Data on the presence of species in the Order Orthoptera within 

each of the 56 10km grid-squares were taken from the atlas for Britain and Ireland 

published in 1997 (Haes & Harding, 1997). Records therein are classified as pre-1970 

and 1970-onwards. A total of 578 species-by-square records from 1970-1997 were 

extracted and used to derive the number of species per grid-square, denoted S. These 

records are underpinned by numerous individual observations. For some species and 

grid-squares there were multiple observations over the 27 year period suggesting 
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variation in survey-intensity (or survey effort) between grid-squares. Number of 

observations per grid-square (obtained from the National Biodiversity Network 

www.nbn.org.uk) showed no relationship with areas of individual (or composite 

multivariate) land cover variables (described below) but was positively correlated 

with the number of species per grid-square. A curve was fitted to the relationship 

(using a log10 transformation of the number of observations to ensure conformity to 

model assumptions) and the residuals saved. A quadratic equation gave the best fit 

with number of observations explaining 36% of the variation in number of species 

recorded within individual grid-squares (R= 0.60, F=14.8, d.f.1=2, d.f.2=53, P<0.001). 

The residuals, representing the unexplained variation in number of species after the 

influence of survey-intensity had been removed, were saved as a new variable, 

denoted Sresidual. 

2.2.2. Land cover data. Remote sensed land cover data was obtained from the 

Countryside Information System (CIS) (Department of the Environment 1995) with a 

1990 baseline and pixel size of 25m. These data are derived from Landsat Thematic 

Mapper imagery from 1987 to 1990 (a three year window being necessary due to 

occasional cloud cover). Analyses within this paper assume that the CIS data 

represent the broad pattern of land cover across the 27 year period over which species 

data were obtained. Detailed descriptions of the 17 land cover types and their ground-

truthing with field survey are reported elsewhere (Cherrill et al., 1994, 1995; Fuller et 

al., 1998).  

 The study area contained fifteen of the 17 CIS land cover types. Unclassified 

land averaged 0.27% (SD=0.24), with a maximum of 1.43%, within any one grid-

square. Seven land covers were each found to represent less than 1% of the total study 

area. These covers were Bracken, Grass heath, Dense dwarf shrub heath, Saltmarsh, 

http://www.nbn.org.uk/
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Coastal bare ground, Sea/Estuary and Open inland water. The areas of the three heath 

land cover types (including Bracken) were closely correlated with each other (in 

pairwise correlations the minimum value of the coefficient rs = 0.50, P<0.001, N=56). 

These land cover types were combined into a single ‘Heathland’ cover type for 

analysis. The areas of the three coastal land cover types were also closely 

intercorrelated (with minimum pairwise rs = 0.99, P<0.001, N=56). These land cover 

types were combined into a single cover type called ‘Coastal habitat’.  

2.3. Statistical analyses.  

The dataset of eleven land cover types was subjected to Principal Components 

Analysis (PCA) to identify a reduced set of major axes of spatial variation through the 

complex landscapes within the study area. The principal components were described 

in terms of the areas of the original land cover types.  

Correlations with orthopteran species richness, both S and Sresidual, were 

determined for a) the areas of each of the individual land cover types, b) an aggregate 

land cover variable called ‘City’ produced by summing the areas of the Suburban and 

Urban land cover types, and c) the principal components derived from the land cover 

data.  

The data for species richness conformed to a normal distribution (Shapiro-

Wilk test, P=0.53), while that for areas of individual land cover types did not. In the 

majority of cases, application of transformations failed to convert these variables to 

normality. Unless otherwise stated correlation coefficients are Spearman’s (denoted 

rs) and use untransformed data. Plotting of relationships and curve estimation within 

SPSS was used to check for non-linear relationships but none were found. 
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3. Results 

3.1. Landscape composition and gradients 

Over 75% of the study area comprised Managed grassland, Suburban and Tilled land, 

but there was considerable variation between grid-squares (Table 1). Urban land cover 

centred on squares TQ 27, 28, 37, 38, and 48 in the City of London with percentage 

cover in the range 32% - 60%. Suburban land cover was also high in these and 

adjacent grid-squares (range 14% to 58%) (Figure 2). Outside of Greater London, 

Suburban land cover was typically <20% of individual grid-squares. Tilled land cover 

was the dominant land cover in parts of Essex in the north east of the study area 

(forming up to 66% of land cover), while other non-coastal habitats had greater cover 

in the south western parts of the study area. Coastal land cover types were found 

along the estuary of the River Thames which forms the border between Essex and 

Kent (in squares TQ47, 57, 67) (Figure 2).  

 Principal Component Analysis (PCA) identified three major composite axes 

through the land cover data explaining 73.8% of the total variation. Correlations 

between the principal components and the original land cover variables, from which 

they are derived, are shown in Table 2. The first axis explained 45.0% of the variation 

in land cover. Increasing urban land cover is a key feature of change along this axis. 

The axis represents a spatial gradient from landscapes dominated by semi-natural 

vegetation, including Tilled, but particularly Managed and Rough grassland and 

Deciduous woodland to landscapes dominated by Urban and Suburban land cover 

(Table 3). The second axis, explaining 15.6% of variation, represents a gradient of 

increasing cover of Tilled land (primarily arable cropping). Along this axis landscapes 

are characterised by increasing areas of Tilled land and declining areas of other land 

cover types including Woodland, Heathland and Open Water (Table 2). The third axis 
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explained 13.2% of the variation in land cover between grid squares and represents a 

gradient of coastal influence with increasing areas of Coastal habitat and Bare ground, 

while Rough grassland and Tilled land cover types show less marked increases (Table 

2).  

3.2. Orthopteran species richness.  

In total twenty species were recorded in the study area over the period 1970-1997 

(Figure 4). The five most widespread species were: Chorthippus brunneus, C. 

parallelus, Pholidoptera griseoaptera, Meconema thalassinum and Leptophyes 

punctatissima (Table 3). The mean number of species recorded per grid-square was 

10.3 (SD = 3.2).  

3.2.1. Species richness and areas of  individual land cover types. Species richness, S, 

was positively correlated with the areas of four relatively scarce land cover types; 

namely Rough Grassland, Deciduous Woodland, Coniferous Woodland and 

Heathland, while there was a barely non-significant positive correlation with Managed 

grassland (Table 4). The estimate of species richness corrected for survey-intensity, 

Sresidual, showed similar patterns but was also significantly negatively correlated with 

areas of both Suburban and City land covers (Table 4). 

3.2.2. Species richness and spatial gradients in landscape composition. Both 

measures of orthopteran species richness were negatively correlated with the first axis 

of spatial variation in landscape composition characterised by increasing areas of hard 

man-made surfaces land cover (Table 4). It is important to recognise that this spatial 

gradient is not simply one of increasing areas of Suburban and Urban land covers; 

other land cover types also increase while most decline (Table 2). The gradient is a 

composite multivariate mix of land covers that change from relatively rural grid-

squares to those in the centre of the City of London. The influence of land cover is 
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evident in the map of species-richness as the relatively low numbers of species (in the 

range 4 to 8) in grid-squares towards the centre of Greater London (Figure 3), whilst 

numbers are typically double elsewhere.  

 Species-richness was also negatively correlated with the second axis of spatial 

variation in landscape composition characterised primarily by increasing area of 

Tilled land cover (Table 4). Again it is important to recognise this axis as being a 

multivariate spatial gradient of interdependent land covers; albeit strongly correlated 

with the area of Tilled land (Table 2). Species richness appears to be responding to the 

overall mix of land covers rather than the area of Tilled alone. In a spatial context this 

gradient can be seen in terms of the low numbers of species in grid-squares in Essex 

and along the north and eastern fringes of the study area where Tilled land was most 

dominant. Here species richness was typically in the range 7 to twelve (Figure 3). The 

areas of both City and Tilled land covers are relatively low in the south eastern corner 

of the study area and here species-richness was greater than elsewhere (being in the 

range 12 to 17).   

 The third axis of spatial variation in landscape composition represented 

increasing coastal influence. Coastal land covers were limited in distribution and 

extent, but there was a significant positive correlation; with raised species richness in 

the grid-squares where the area of Coastal land cover was greatest (i.e. TQ 48, 57 and 

67) (Table 4, Figure 3).  

 Overall, the analysis reveals clear trends in the variation of orthopteran 

species-richness along three multivariate axes of spatial variation in land cover 

composition; a) decreasing species-richness with increasing areas of man-made land 

covers associated with urban and suburban land uses, b) decreasing species-richness 

with increased cultivation of the land, and c) increasing species-richness with 



10 

 

increasing areas of semi-natural vegetation in general, and a specific increase 

associated with coastal landscapes. 

 

4. Discussion 

A large number of studies have focussed on the relationship between species richness 

and land use intensity; the latter typically being inferred through indices capturing the 

areas of man-made surfaces (e.g. buildings) and/or land in agricultural production 

(e.g. arable cropping). The majority of studies, as here, have focussed on spatial 

patterns at a single point in time rather than examining temporal change (Luck, 2007). 

Negative, hump-backed, and positive relationships have been reported (Luck et al., 

2004). Scale of observation, as defined by area of sampling unit and extent of the 

study area, has proved to be an important factor in the design of studies (Pautasso, 

2007). Fine-grained studies of limited spatial extent, with sample-units up to 1km2 

within regions < 10,000 km2 in area, have tended to yield negative relationships 

between species richness and measures of urban and agricultural land use because few 

species reside in small sample-units dominated by artificial habitats such as hard 

surfaces and buildings; thus giving a clear contrast to more species-rich sample-units 

dominated by semi-natural vegetation (e.g. Clergeau et al., 2006; Niemala & Kotze, 

2009). Studies with coarse grain sizes (with sample-units > 1km2) and large spatial 

extents (> 10,000 km2) have sometimes yielded positive relationships probably 

because large human populations have historically tended to develop in regions which 

are both ecologically productive and species rich (Pautasso, 2007; Trammell et al., 

2011). Hump-backed patterns have sometimes also been found at these scales along 

rural to urban gradients (e.g. Evans et al., 2007). The reasons are not fully understood 
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but may reflect the observation that semi-natural habitats have been comprehensively 

lost in both the most intensively urbanised and farmed landscapes.  

Most previous studies of invertebrates have been both fine-grained and with 

limited geographical extent. Perhaps, not surprisingly, in view of the general trends 

outlined above, these studies have typically found negative relationships between 

intensity of human land use and species richness (e.g. Magura et al., 2008; Marini et 

al., 2008; Ahrne et al., 2009; Niemala & Kotze, 2009; Cherrill, 2010; Tothmeresz et 

al. 2011, Bennett & Gratton, 2012) including in a study of the impacts of urban land 

cover on Orthoptera in Paris (Penone et al., 2012). The present study was also of 

relatively limited spatial extent (5,600 km2) but extends the occurrence of negative 

relationships within the context of a coarse-gained study (using a sample-unit of 100 

km2) and, in doing so, also demonstrates the potential utility of data held within 

national insect distribution atlases typically recorded at the 10km grid-square level.  

A potential limitation in use of species atlas data is that recording effort (or 

intensity) often varies between grid-squares (Dennis & Thomas, 2000; Petrik et al., 

2010). However, as in the present study, where recording intensity can be estimated 

the effects can be statistically removed to reveal the remaining unexplained variation 

in species richness attributable to land use (and other factors). Here statistically 

significant negative relationships were found between both ‘raw’ and ‘corrected’ 

estimates of species richness and several multivariate gradients of land cover 

identified through Principle Components Analysis (Table 4). Species richness fell by 

up to 50% along spatial gradients which were characterised primarily by increasing 

areas of man-made surfaces and cultivated land. The observation which has the 

potential to be of interest to the widest audience is that these relationships were seen 
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most clearly when using multivariate spatial gradients, rather than individual land 

covers (Table 4).  

Simple measures of the intensity of human land use may not be adequate to 

capture species responses to their environment (Hahs & McDonnell, 2006; 

McDonnell & Hahs, 2008). Thus, as the area of ‘Urban’ land cover increases towards 

central London the areas of other land cover types also change. Critically the 

Orthoptera are most likely to be found in these ‘other non-urban’ land cover types, yet 

even in central London there are relatively large areas of vegetated surfaces. Indeed, 

urban areas often contain surprisingly large areas of vegetation (Gill et al., 2008; La 

Rosa & Privitera, 2013). The changing nature of these non-urban elements along land 

use gradients from rural to urban may therefore be central to determining the impacts 

on biodiversity. Understandably, in a range of studies, characterisation of urban areas 

has typically used variables quantifying the man-made element (i.e. where the species 

are not found), rather than elements describing the intervening habitat matrix (i.e. 

where the species are found) (McDonnell & Hahs, 2008). Similarly within agricultural 

landscapes, Orthoptera reside primarily outside of arable crops (Gardiner, 2007, 

2009a; Gardiner & Marshall, 2008) and so estimates of the area of cultivated land (i.e. 

Tilled land cover in this study) per se is not an adequate descriptor. In an earlier study 

(Cherrill, 2010, 2011) found a negative relationship between orthopteran richness and 

agricultural land use using the same methodology as reported here. An important 

conclusion of that study, which finds a direct parallel here, was that even where 

cultivated land cover was at its maximum there was ample uncultivated land available 

for Orthoptera (Figure 2). The key to understanding the impacts of urban and 

agricultural land uses therefore lies in unravelling the processes impacting on habitats 

and populations in the intervening matrices. In addition to degradation of habitat 
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remnants, it is likely that processes of population fragmentation and isolation are 

operating within both intensively managed rural and urban landscapes (Johannesen et 

al., 1999; With & Crist, 1995; Penone et al., 2012). Further research incorporating the 

temporal and spatial dynamics of ecological populations are required to interpret the 

broad spatial correlations identified by gradient analysis; a point recently emphasised 

by Ramalho & Hobbs (2012).  

 The present study argues strongly that data reduction techniques, such as PCA, 

applied to multivariate remotely sensed land cover data can be a useful tool for 

describing complex multivariate gradients in ecological studies. The method captures 

variation in the ‘non-urban’ and ‘non-arable’ elements of city and rural landscapes 

respectively that are crucial to understanding impacts on biodiversity. Simple 

measures, such the areas of ‘Urban’ and ‘Tilled’ land cover, fail to capture the 

complexity of the change along rural to urban gradients. The study also suggests that 

the Order Orthoptera may make a suitable group of species for investigating these 

processes. The Orthoptera have a number of potential advantages as ecological 

indicators. They are charismatic species which are attractive to the public, relatively 

large, conspicuous and easily identified and include both generalists and specialists 

(Marshall & Haes, 1988; Benton, 2012). The Orthoptera are sensitive to habitat 

modification (van Wingerden et al., 1992; Marini et al., 2008; Gardiner, 2009a), 

spatial configuration of habitat (Bazelet & Samways, 2011, Benedek et al., 2011), 

ecological succession (Fartmann et al., 2012), climate change (Gardiner, 2009b; 

Wissmann et al., 2009), and chemical pollutants (Yoshimura et al., 2005). They are 

often the dominant herbivores in grassland ecosystems in terms of biomass and are an 

important food source for a range of vertebrate and invertebrate species (Cherrill & 

Begon, 1989; Bock et al., 1992; Gangwere et al., 1997). Finally, in the British Isles 
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there is good distribution data collected via national recording schemes (Haes & 

Harding, 1997; Marshall, 2001, 2010). 

4.1. Conclusions  

Species richness of orthopterans declined along multivariate spatial gradients 

identified from Principle Components Analysis and defined primarily by increasing 

areas of urban and cultivated land covers. An advantage of using PCA is that variation 

in composition of the ‘non-urban’ and ‘non-arable’ matrix is taken into account in 

defining the gradients. Variation in the composition of the matrix appears to be 

fundamental in determining changes in species richness but is not adequately 

represented by simple univariate measures of land use intensity. The study also shows 

that relatively coarse presence/absence data collated at 10km resolution over several 

decades can be used to identify major drivers of spatial biodiversity patterns when 

combined with remotely sensed land cover data. Further research is now required to 

identify the specific characteristics of the landscape matrix which are important to the 

species investigated. This is likely to require a fine-scale focus on dynamic temporal 

and spatial ecological processes related to the history of land use intensification 

within the study area. Finally, it is concluded that insects of the Order Orthoptera 

represent a suitable group on which to base further studies. 
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Figure legends 

 

Figure 1. The study area a) 10km by 10km grid-squares of the British Ordnance 

Survey national grid (with grid lines for 500 km East and 200 km North in bold), and 

b) sketch map of administrative boundaries. The two unlabelled areas at the southern 

boundary of the study area lie within the counties of East Sussex and West Sussex. 

(Abbreviations: Berks = Berkshire; Bucks = Buckinghamshire). 

 

Figure 2. The per cent area of six remotely sensed land covers within each 10 grid-

square within the study area. 

 

Figure 3. The number of species of Orthoptera recorded from each 10 km grid-square 

within the study area. 
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Figure 2. 
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Figure 3.  
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Table legends 

 

Table 1. The areas (%) of remotely sensed land covers within 10km grid-squares 

(n=56) within the study area (SD = Standard Deviation). 

 

Table 2. Correlations between the Principal Components from PCA of land cover 

data and the area of individual land cover types (r = Pearson’s correlation coefficient 

derived from PCA; values in bold are statistically significant, P<0.05, n = 56 in all 

cases). 

 

Table 3. The per cent of 10km grid-squares (n = 56) occupied by each species in the 

study area. 

 

Table 4. Correlations between measures of the species (S and Sresidual) in each grid-

square and a) the area of each individual land cover type, and b) the Principal 

Components derived from PCA of land cover data (rs = Spearman’s correlation 

coefficient, n = 56 in all cases). 
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Table 1. 

 

Land cover Mean SD Minimum Maximum 

Urban 7.90 12.70 0.20 59.67 

Suburban 20.80 13.50 3.99 58.26 

City (Urban + Suburban) 28.74 23.29 4.25 85.97 

Tilled 19.20 14.00 0.00 66.38 

Managed grassland 35.30 13.10 7.04 64.00 

Rough grassland 2.70 1.00 0.47 4.90 

Deciduous woodland 9.50 5.80 0.76 22.08 

Coniferous woodland 1.10 1.75 0.01 8.95 

Heathland 0.86 0.95 0.03 6.08 

Bare ground 1.00 0.93 0.18 5.14 

Open water 1.00 0.93 0.00 9.53 

Coastal 0.58 2.37 0.00 13.39 
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Table 2. 

 

  Principal Components 

  I II III 

Urban 0.79 -0.29 -0.23 

Suburban 0.82 -0.17 -0.26 

Tilled -0.36 0.71 0.36 

Managed grassland -0.81 0.01 -0.08 

Rough grassland -0.87 -0.09 0.38 

Deciduous woodland -0.86 -0.24 -0.16 

Coniferous woodland -0.62 -0.59 0.00 

Heathland -0.56 -0.63 0.16 

Bare ground 0.65 -0.28 0.63 

Open water 0.43 -0.44 0.23 

Coastal 0.31 0.01 0.74 
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Table 3. 

 

Species % grid-squares 

Meconema thalassinum (Degeer) 83.9 

Tettigonia viridissima (L.) 12.5 

Pholidoptera griseoaptera (Degeer) 85.7 

Metrioptera brachyptera (L.) 19.6 

Metrioptera roeselii (Hagenbach) 80.4 

Conocephalus discolor (Thunberg) 41.1 

Conocephalus dorsalis (Latreille) 42.9 

Leptophyes punctatissima (Bosc) 82.1 

Acheta domesticus (L.) 33.9 

Gryllotalpa gryllotalpa (L.) 1.8 

Tetrix subulata (L.) 58.9 

Tetrix undulata Sowerby 58.9 

Omocestus rufipes Zett. 14.3 

Omocestus viridulus (L.) 76.8 

Myrmeleotetix maculatus (Thunberg) 28.6 

Gomphocerippus rufipes (L.) 16.1 

Chorthippus albomarginatus (Degeer) 67.9 

Chorthippus brunneus (Thunberg) 96.4 

Chorthippus parallelus (Zetterstedt) 96.4 

Stenobothrus lineatus (Panzer) 33.9 
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Table 4. 

 

 

Variables correlated with species richness S Sresidual 

 rs P rs P 

a) Land cover types     

Urban -0.07 0.59 -0.25 0.07 

Suburban -0.06 0.65 -0.27 0.05 

City (Urban + Suburban) -0.09 0.51 -0.30 0.02 

Tilled -0.10 0.47 0.01 0.94 

Managed grassland 0.25 0.07 0.25 0.07 

Rough grassland 0.36 <0.01 0.44 <0.001 

Deciduous woodland 0.32 <0.02 0.22 0.10 

Coniferous woodland 0.45 <0.001 0.41 <0.001 

Heathland 0.52 <0.001 0.47 <0.001 

Bare ground 0.03 0.84 -0.11 0.43 

Open water 0.13 0.34 -0.07 0.61 

Coastal 0.07 0.62 -0.11 0.44 

b) Principle Components     

PC I -0.27 0.04 -0.34 0.01 

PC II -0.41 <0.001 -0.27 0.05 

PC III 0.30 0.03 0.40 <0.001 

 

 

 

 

 

 

 

 

 

 


