Provided by University of Minnesota, Morris (UMM): Digital Well

Scholarly Horizons: University of Minnesota, Morris
Undergraduate Journal

Volume 6 | Issue 1 Article 3

Requirements Practices in Software Startups

John D. Hoff
University of Minnesota - Morris

Follow this and additional works at: https://digitalcommons.morris.umn.edu/horizons

b Part of the Software Engineering Commons

Recommended Citation
Hoff, John D. () "Requirements Practices in Software Startups,” Scholarly Horizons: University of Minnesota, Morris Undergraduate

Journal: Vol. 6 : Iss. 1, Article 3.
Available at: https://digitalcommons.morris.umn.edu/horizons/vol6/iss1/3

This Article is brought to you for free and open access by the Journals at University of Minnesota Morris Digital Well. It has been accepted for inclusion
in Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal by an authorized editor of University of Minnesota Morris Digital Well.

For more information, please contact skulann@morris.umn.edu.

https://core.ac.uk/display/235257079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons/vol6?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons/vol6/iss1?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons/vol6/iss1/3?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons/vol6/iss1/3?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol6%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu

Hoff: Requirements Practices in Software Startups

Requirements Practices in Software Startups

John D. Hoff
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
hoffx247@morris.umn.edu

ABSTRACT

In a dynamic environment full of uncertainties in software
startups, software development practices must be carefully
approached. It is vital that startups determine the right
time to make advancements and evolve their company to the
next level. We will discuss the importance of requirements
practices in startups and their impact on company culture,
work environments, and product quality.

Keywords

Requirements, software, practices, evolution, startups

1. INTRODUCTION

Millions of people around the world are trying to launch
their own businesses, also known as startups, and about one-
third succeed in doing so [8]. Paul D. Reynolds, director of
the research institute at the Global Entrepreneurship Cen-
ter suggests that as many as 50 million startups are created
each year [8]. Software startups take advantage of modern
technologies that allow them to rapidly build and release
software products. These companies make use of agile and
lean methodologies, which are approaches that encourage
flexibility to reduce risks associated with software develop-
ment and requirements gathering. Because startups work in
an environment of extreme uncertainty, 75% will fail in the
first few years [6].

Startups can fail for many different reasons, including no
market, lack of funds, competition, bad management, or
poor teamwork [9]. Proper and timely evolution of soft-
ware development practices can lead to improved teamwork
and a better working environment. There are many studies
that talk about the evolution of startups as a whole, but
very little research about the evolution of software develop-
ment practices exists. This paper will talk about practices
that are most closely related to requirements gathering in
software startups.

In Section |3) we will summarize and discuss a case study
that uses Grounded Theory to evaluate requirements prac-
tices at different startups. The study shows how each startup
treats their requirements practices by categorizing each prac-
tice into one of three predefined phases of evolution [5]. In
Section [4] we will apply this theory to a software startup,

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, November 2018 Morris, MN.

Published by University of Minnesota Morris Digital Well,

AnswerDash, to determine which phase of evolution each of
their practices were at, as well as factors that caused tran-
sitions to the next phase. Andrew J. Ko, chief technology
officer at AnswerDash, documented daily observations from
his company over the span of three years with the goal of
understanding startup evolution and learning about devel-
opers’ behavior (7).

2. BACKGROUND
2.1 Software Startups

A software startup is started by a founder or co-founders
who are looking for a scalable business model that meets a
marketplace need [11]. Due to significant fluctuation in de-
mand, frequent and major product changes, and minimal re-
sources, startups work in highly uncertain environments [12].
The founder(s) begin by building a prototype for their prod-
uct to develop their business models. Then, they build their
product to release to the market. Although there is no uni-
versal definition for what a startup is, a general guideline
suggests that startups earn less than $50 million in revenue,
have less than 100 employees, and have a net worth under
$500 million [14]. In this paper, all observed startups are
less than 10 years old and have less than 60 employees.

2.2 Software Requirements

A software requirement for a product defines what it needs
to do, but not how [15]. For example, if a bank application
needs a “view balance” feature, that feature becomes a re-
quirement for the application. Several different stakeholders
contribute to the process of gathering requirements. These
stakeholders include the chief executive officer (CEQO), chief
technology officer (CTO), software developers, quality an-
alysts (QA), and clients. While there are numerous prac-
tices in software development, this paper follows Gralha
et. al [5] in focusing on 6 practices that affect require-
ments gathering: requirements artifacts, knowledge manage-
ment, requirements-related roles, planning, technical debt,
and product quality.

2.3 Requirements Practices

2.3.1 Requirements Artifacts

A requirement artifact is a task that says what needs to
be done, represented as “a piece of paper, texts in a text
processing system, a file in a file system, entries in a tool, or a
record in a database.” [4] A common template for an artifact
is: as a [whol, I want a [what], so that [why] [2]. For example,

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 6, Iss. 1 [], Art. 3

if a bank application needs a “view balance” feature, the
artifact could say: “As a bank user, I want a view balance
feature so that I can see how much money I have.” Artifacts
are supposed to be as short and simple as possible, covering
only one area of responsibility . Artifacts are comprised
of three components. The first is the task’s concepts, which
describe its elements and dependencies. Next is its syntax,
which explains what programming languages or tools are
required to perform the task. Finally, the method of a task
illustrates a sequence of steps needed to fulfill it .

2.3.2 Knowledge Management

Knowledge management is “a method that simplifies the
process of sharing, distributing, creating, capturing and un-
derstanding of a company’s knowledge.” Commonly re-
ferred to as documentation, this practice serves two primary
purposes in any software company. The first is to protect de-
velopers from forgetting processes, reasons, or logic behind
any part of their product’s design and development. The sec-
ond is to reduce on-boarding problems, such as recent hires
becoming overwhelmed and confused about their new com-
pany’s product(s). Since documentation can reach a consid-
erable size in software systems and requirements gathering,
it is “essential to adequately structure the set of artifacts
produced in the development process.” [4]

2.3.3 Requirements-Related Roles

There are three roles that typically participate in the re-
quirements gathering process: product managers, QA, and
software developers. All three roles contribute to task
creation, but only QA and developers are responsible for
completing them. Product managers prioritize tasks, devel-
opers select tasks to work on, and QA works with developers
to ensure that completed tasks meet its company’s quality
standards.

2.3.4 Planning

Planning is the practice of prioritizing artifacts and esti-
mating how difficult each artifact will be to complete. For
prioritization, engineering teams conduct meetings to dis-
cuss which artifacts are the most important. Using their
collective judgment, artifacts are organized into a list where
the most important ones are at the top. As part of their
meetings, engineering teams collectively estimate how diffi-
cult each artifact is. Once each artifact has been prioritized
and estimated, artifacts are assigned to software developers
starting at the top of the prioritization list. Keeping diffi-
culty estimates in mind, assigning artifacts is halted when
“enough work” has been handed out .

2.3.5 Technical Debt

Technical debt is a concept that “reflects the extra devel-
opment work that arises when code that is easy to implement
in the short run is used instead of applying the best overall
solution.” Like monetary debt, technical debt accumu-
lates “interest” over time. Technical debt management prac-
tices include assessment, communication, and implementa-
tion. As an engineering team assesses their technical debt,
they decide whether it is worth addressing or ignoring. Tech-
nical debt is communicated to the rest of the team via meet-
ings or by documentation. If some sources of debt are as-
sessed as high risk, teams will implement fixes to their code
that reduces their overall debt.

https://digitalcommons.morris.umn.edu/horizons/vole/iss1/3

ct Age/founded/ Role Data collection
#employees method (frequency)
CEO all-dtgy obstetrva:jt;ans (((;))
Cco1 4/2013/21-30 Product Manager meetings aftencance
1O focus groups (4)

interviews (3)

meetings attendance (3)

Director of Products focus groups (2)

coz 6/2011/ 41-50

CTo interviews (1)

Developer .

People P: erations meetings attendance (2)
Co3 4/2013/11-20 P focus grounp (1)

Customer Support . :

Developer interviews (1)

Business Analyst
[e(e]e]

Cos5 4/2013/11-20 CTO

Co4 3/2014/11-20 interviews (2)

interviews (1)

Director of Products
Co06 7/2010/51-60 Product Manager
Product Designer

CTO
co7 6/ 2011/ 21-30 coo

meetings attendance (2)
interviews (1)

interviews (1)

Co8 1/2016/1-10 CTO interviews (1)

co9 4/2013/21-30 CTO
C10 6/2011/21-30 CTO

interviews (1)

interviews (1)

meetings attendance (3)

Cc1 9/2008/11-20 CEO . .
interviews (1)

Developer focus group (1)
CTO interviews (2)

C13 10/2007/51-60 CEO
C14 5/2012/51-60 CEO

C12 10/2007/ 51-60

interviews (1)

C15 2/2015/1-10 CEO
Cl6 4/2013/21-30 CEO

interviews (1)

(
interviews (1)

(

(

interviews (1)

Table 1: Age, year founded, number of employees,
roles interviewed, and data collection methods for
16 startups .

2.3.6 Product Quality

Product quality is “conformance to explicitly stated func-
tional and performance requirements, explicitly documented
development standards, and implicit characteristics that are
expected of all professionally developed software.” At
the cost of additional time and effort in the short run, higher
levels of product quality can reduce negative feedback from
customers . QA is responsible for assessing product qual-
ity before anything is released.

3. THE EVOLUTION OF REQUIREMENTS
PRACTICES

The evolution of software development practices was stud-
ied at 16 software startups described in Table [I| by Catarina
Gralha et. al using Grounded Theory, which is the discovery
of emerging patterns in data . They define these startups
as “organizations in search of a scalable, repeatable, prof-
itable business model or a human institution designed to
create a new product or service under conditions of extreme
uncertainty.” After collecting data, the researchers de-
fined three phases of evolution for requirements practices.
The goal of that study was to classify every practice of each
software startup into one of three phases of evolution.

Hoff: Requirements Practices in Software Startups

fg # of clients |
o E # of remote workers| input from clients
E & # of employees | # of features|
@
¢ . - >
L lmplerpentatlon User oriented Richer, t_ra!:eahle
= oriented descriptions
.-) _
o # of remote workers | input from clients|
§ 5‘] #of employees| # of features|
s g >
g g Informal and Informal and Structured
E unstructured semi-structured
g E #input from clients]
gg # of clients | # of employees|
g o revenue | # of features|
' -
L]
g General Semi-specific Specific
e and multiple and multiple and single
revenue|
! #of clients # of employees |
input from clients’ # of features|
L}
= Non-existent Monthly and Strategic and
or minimal quarterly oriented aligned with vision

E - # of employees clients retention mLe_-i
E =2 # of features | negative feedback |
o T »
& Known and Tracked and Managed and
accepted recorded controlled
gp
_g = negative feedback clients retention rate|
a L]
=
=
e Somewhat -
Not a concern important Top priority

Figure 1: Turning points that cause transitions to
the next phase of evolution for each practice [5].

3.1 Research Methods

The data in Figure [1| was collected by conducting inter-
views, all-day observations, and attending project meetings
at 16 different software startups. Each startup was 1-10
years old and had 1-60 employees. To understand the evo-
lution of requirements practices, two questions were asked:
how do requirements practices change, and what factors and
turning points drive those changes? These questions were
used to learn about company growth, requirements gath-
ering, requirements prioritization, features and knowledge
management, and tools. The goal of that study was to de-
termine which of the three phases for the six practices listed
in Section each startup was at [5].

Gralha et. al characterize each practice by 3 phases of evo-
lution. Section [3:2] will explain the phases of evolution for
each practice in more detail. Generally, the first phase is the
beginning phase, where practices are unstructured or star-
tups may choose to ignore practices entirely. In the second
phase, practices are semi-structured, where startups start
using some software and web tools. In the third and final
phase, practices are formally structured, where startups set
down guidelines and rules for how a practice is carried out.
Every advance from one phase to the next is caused by at
least one of eight turning points as illustrated in Figure
number of clients, input from clients, negative feedback, re-
tention rate of clients, revenue, number of employees, num-
ber of remote workers or flexible work hours, and number of
features or products [5].

Published by University of Minnesota Morris Digital Well,

3.2 Phases of Evolution for each Requirements
Practice

3.2.1 Requirements Artifacts

In the first phase, startups begin with little or no user in-
put because their product is still in the process of entering
the market, making requirements artifacts implementation-
oriented. The founders’ backgrounds and company culture
determine what tasks need to be done. Tasks are infor-
mally documented, sometimes on sticky notes. The second
phase is user-oriented. Startups look at feedback and input
from their users to develop new tasks that are commonly
documented with project management tools such as Con-
fluence and Jira [5|. In the final phase, “requirements arti-
facts evolve into richer, traceable descriptions.” |5] Artifacts
are broken down into smaller, simpler tasks that are given
difficulty-based estimations for time of completion. These
still reside in the previously mentioned project management
tools. They are formally prioritized, assigned to developers,
and organized into products or releases.

3.2.2 Knowledge Management

Knowledge management is informal and unstructured in
its first phase. Founders and developers rely on each other to
complete tasks and manage the few features of their product.
As the number of tasks, features, and employees grow, star-
tups enter the second phase where knowledge management is
informal and semi-structured. Knowledge is shared through
regular team and company meetings. Online communication
tools, such as Slack, are used in place of ad hoc verbal com-
munication. When a startup grows to a size that separates
employees into different departments, knowledge manage-
ment is formally structured. Using tools such as Slack and
GitHub, communication and project management are often
intertwined. Startups introduce guidelines that explain how
these tools should be used.

3.2.3 Requirements-Related Roles

Startups begin with general and multiple requirements-
related roles where “everyone does everything.” [5] Once a
startup has clients, they typically move to the second phase
where roles are semi-specific. Clients receive more attention
and marketing staff are brought on, giving developers more
room to focus on product development. In the final phase,
roles are specific and single. Startups might decide to hire
product managers and quality assurance specialists.

3.2.4 Planning

Startups do not have any planning in the first phase. Most
time and resources are spent developing a working product
that looks attractive to the market. Once a startup under-
stands client needs, it moves to the second phase where plan-
ning is monthly and quarterly-oriented. Planning is based
on client requests without deadlines. In the third phase,
planning is strategic and aligned with vision. Companies
prioritize features for a broader market and decide what is
better for their clients.

3.2.5 Technical Debt

Technical debt is known and accepted in the earliest phase.
As products become more complex, startups track and record
technical debt in the second phase. Hiring additional devel-
opers provides more resources to address some, but not all of

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 6, Iss. 1 [], Art. 3

co1 Reg‘:tiirfeagz"ts M’:‘n‘;"‘éfiiit &Y E";?e";ems Planning Technical Debt Product Quality
coz
“ NN NN N AN
w | 3 3 3 3 — 3 3
C06
— INEATILA [N “—[A N
w2 FLIY 2 2 EEH 2 2 F |2
C11
=
—= NPT INTEANT ANT A
| 1 1 1 1 1
Cl16

Figure 2: Phases of evolution for each practice at all 16 companies, where each company is represented by a

colored line [5].

a startup’s technical debt. In the final phase, technical debt
is managed and controlled. Tasks are specifically created to
address this debt and prioritized with their associated fea-
tures.

3.2.6 Product Quality

In the first phase, “speed of release takes precedence over
quality.” [5] With minimal testing, there are higher rates
of negative feedback due to defective features. To avoid
negative feedback, startups move to the second phase where
product quality is somewhat important. User experience
and scalability become critical. Product quality eventually
becomes a top priority in the last phase due to its correlation
with company reputation.

3.3 Discussion

In a fast-paced and reactive environment, startups usually
ignore the long run in order to capture a market, acquire
clients, and release products more quickly [5]. Evolution of
the six practices are not necessary for success. Factors that
cause startups to die can be a combination of the market
of its product, human resources, culture, funding, processes,
and practices.

Figure 2] shows which phase of evolution of the six prac-
tices that each of the 16 companies in Figure 7?7 was at at
the time of the study. No startup reached the third phase
of requirements-related roles and all had left the first phase
of knowledge management. Company C06, a 10 year-old
startup is only at phase one or two in every practice. It was
reported that the work environment at C06 was stressful
and had long hours. C03, one of the furthest in evolution
for all practices, was a 4 year-old startup with 11-20 employ-

https://digitalcommons.morris.umn.edu/horizons/vole/iss1/3

ees. It was reported that C03 had formal processes for most
practices, employees understood the company’s vision and
felt confident going into product development, and techni-
cal debt was low [5]. These contrasting profiles indicate that
movement along the three phases of evolution is not always
dependent on company age and size.

4. PARTICIPANT OBSERVATIONS FROM
A SOFTWARE STARTUP CTO

Andrew J. Ko was a CTO at AnswerDash, a software
startup that he and CEO Jacob O. Wobbrock founded in
2012 in Seattle, WA. AnswerDash facilitates customer ser-
vice for e-commerce businesses by using machine learning
to create databases of support answers for websites, thus
reducing the need for human customer service. From 2012
to 2015, he documented everyday happenings at their com-
pany, where he amassed 15,000 emails, 9,000 hours of direct
experience, and a diary that he used to write down per-
sonal observations [7]. With this information, Ko’s goal was
to study software startup evolution and developers’ behav-
ior without bias by acting as a participant. He made sev-
eral claims about software developers and startup evolution,
most of which included requirements practices and hints of
evolution along the three phases. We will look at develop-
ers’ behavior towards each requirements practice and apply
the phases of evolution described in Section [3.2]to see where
AnswerDash started and which phases of evolution their re-
quirements practices were at the end of Ko’s study.

4.1 Requirements Artifacts

The CEO, whose primary job was marketing and strategy,
gathered customer feedback to create requirements artifacts

Hoff: Requirements Practices in Software Startups

for the engineering team. The CEO and CTO had talked
with customers before making their startup, so requirements
gathering was not implementation-oriented. Ko’s startup
skipped the initial phase of requirements artifacts, which
puts them in the second phase of evolution where require-
ments artifacts are user-oriented.

4.2 Knowledge Management

Ko’s startup began in the first phase where documenta-
tion was ignored. Ko describes design rationale debt, which
occurs when no one remembers why a component behaved
the way it did [7]. To deal with this, developers started doc-
umenting components upfront. For example, he recalled a
time when they added a feature a year earlier and “could
only vaguely remember why we thought it was so critical at
the time ... removing the feature risked breaking an undoc-
umented customer requirement.” [7] As more problems arose
from lack of documentation, the company practiced knowl-
edge management more frequently to be mindful of the long
run. By the end of the study, the company transitioned to
the second phase of evolution where knowledge management
was informal and semi-structured.

4.3 Requirements-Related Roles

Ko’s startup began with only two employees. Ko became
the CTO because of his technology experience. Wobbok,
whom he had met in college, was the CEO. Together, they
started in the first phase of evolution where each role was
responsible for doing everything. They made sales pitches,
gathered funds, and collaborated with potential customers.
Once they were able to release a product that collected rev-
enue, they hired a team of software developers, a team for
customer support, and account managers. Wobbok was able
to focus more on marketing and Ko could focus more on
their product’s technology. So, at the time that the study
was completed, they had moved on to the second phase of
evolution where roles were semi-specific.

4.4 Planning

When the startup began, Ko was the sole developer who
worked on releasing a functional product without planning,
which is the first phase of evolution. As their startup grew,
an engineering team was hired. This entered them into the
second phase of evolution where planning is based on cus-
tomer feedback without deadlines. During planning sessions,
however, developers found it unethical to accelerate feature
development and product releases at the cost of low quality,
low security software |7]. Also, developers “wanted work that
was technically interesting and would develop their skills,
but the business needed them to focus on increasing prod-
uct value, and these tasks were often straightforward and
boring.” [7] Ko describes planning debt, in which developers
maintain plans in their minds, handwritten notes, and par-
tially completed tasks, making it difficult to transfer tasks
between developers. Because of these issues, assigning tasks
to developers was a challenge.

4.5 Technical Debt

Technical debt was not a concern for Ko in the beginning.
His startup began in the first phase of evolution where tech-
nical debt was known and accepted. He said that “respond-
ing to client feature requests meant taking on more techni-
cal debt in service of more sales pitches, more fundraising

Published by University of Minnesota Morris Digital Well,

pitches, and better product customer fit.” 7| He felt that
taking on all of this debt would be “worth accruing if we
could close funding, so we could hire a larger engineering
team to build a better infrastructure.” [7] As they earned
more revenue and hired more developers, Ko’s startup moved
to the second phase of evolution where they could “fre-
quently refactor to pay down technical debt.” [7]

4.6 Product Quality

They began in the first phase of evolution where product
quality was not a concern. As the sole developer, Ko’s goal
was to release a product that worked and grabbed the atten-
tion of potential clients. Then, as they earned more revenue
and hired an engineering team, Ko’s startup moved into the
second phase of evolution where product quality was some-
what important. The CEO frequently talked to Ko and the
engineering team about the importance of product quality
while being able to meet deadlines at the same time. The
software developers “valued the pressure to ship as a moti-
vator, but also felt demoralized by having to compromise on
quality,” making it difficult for their company to find a good
balance between the two |7].

4.7 Wrap-up

In 2015, at the end of Ko’s three years of observations,
AnswerDash was in the second phase of evolution for every
practice. Excluding requirements artifacts, all of their prac-
tices evolved into the second phase due to one or several
turning points mentioned in Section [3:1] Revenue and num-
ber of employees accounted for the evolution of requirements-
related roles, planning, technical debt, and product quality.
Number of features moved knowledge management into the
second phase of evolution. Requirements artifacts began in
the second phase of evolution because AnswerDash already
knew their clients upfront. By the end of the study, Answer-
Dash had 12 employees and was earning steady revenue.

S. CONCLUSIONS

Categorizing requirements practices into one of the three
phases of evolution is useful for analyzing organizational
progress in software startups. It shows companies’ capabili-
ties to hire more employees, increase revenue, boost product
quality, and improve their work environment. In Section@
we showed that being an older startup with more employees
is not necessary for advancement along the phases of evo-
lution. Also, we found evidence that advancements gives
employees more confidence, trust, and reduced stress in the
workplace.

In Figure we noticed trends showing that companies
lean towards certain phases of evolution for different prac-
tices. For requirements artifacts, there is a mostly equal
distribution. 4 companies are in the first phase, 7 in the
second phase, and 5 in the third phase, indicating that the
practice of gathering requirements artifacts might not be too
vital. However, none of the 16 startups were still in the first
phase of knowledge management. Neglecting to document
processes and product details slows down development in
the long run, leads to accidentally removing important fea-
tures, and makes the onboarding process of new hirees more
difficult. Thus, having at least some level of knowledge man-
agement helps startups reduce risks associated with losing
knowledge. For requirements-related roles, no startup en-
tered the third phase of evolution. We believe that this is

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 6, Iss. 1 [], Art. 3

attributed to the fact that most software startups utilize
agile and lean methodologies, which means that no role is
responsible for one specific area of work. In the second phase
of evolution, each role is capable of performing the work of
other roles, which keeps companies flexible in the event that
an employee leaves.

Acknowledgments

I would like to express my deep gratitude to Professor Elena
Machkasova and Professor Nic McPhee, my research super-
visors, as well as UMM alumnus Scott Steffes for their pa-
tient guidance, enthusiastic encouragement and useful cri-
tiques of this research work.

6. REFERENCES

[1] R. Barrett. Why not all technical debt is created
equal, Jun 2018.
https://medium.com/@richb_/why-not-all-
technical-debt-is-created-equal-253d727302b1,
retrieved 30 Nov 2018.

[2] M. Berteig. User stories and story splitting, Mar 2014.
http://www.agileadvice.com/2014/03/06/
referenceinformation/user-stories-and-story-
splitting, retrieved 30 Nov 2018.

[3] T. H. Davenport and L. Prusak. Working Knowledge:
How Organizations Manage What They Know.
Harvard Business School Press, 2000.

[4] D. M. Fernandez, A. Vogeslang, J. Mund,

M. Kuhrmann, and T. Weyer. Artefacts in software
engineering: A fundamental positioning. International
Journal on Software and Systems Modeling, Sep 2018.

[5] C. Gralha, D. Damian, A. I. T. Wasserman,

M. Goulao, and J. A. Aradjo. The evolution of
requirements practices in software startups. In
Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 823-833, New
York, NY, USA, 2018. ACM.

[6] P. Henry. Why some startups succeed (and why most
fail), Feb 2017.
https://www.entrepreneur.com/article/288769,
retrieved 30 Nov 2018.

[7] A. J. Ko. A three-year participant observation of
software startup software evolution. In Proceedings of
the 39th International Conference on Software
Engineering: Software Engineering in Practice Track,
ICSE-SEIP ’17, pages 3—12, Piscataway, NJ, USA,
2017. IEEE Press.

[8] M. K. Mason. Worldwide business start-ups.
http://www.moyak.com/papers/business-startups-
entrepreneurs.html, retrieved 28 Nov 2018.

[9] E. McGowan. The 13 top reasons why startups fail,
Dec 2017. https://www.startups.co/articles/why-
do-startups-fail, retrieved 30 Nov 2018.

[10] R. S. Pressman. Software Engineering: A Practitioners
Approach: 6th Edition. McGraw-Hill, 2004.

[11] N. Robehmed. What is a startup?, May 2015.
https://www.forbes.com/sites/natalierobehmed/
2013/12/16/what-is-a-startup/#1030164a4044,
retrieved 30 Nov 2018.

[12] A. Schmitt, K. Rosing, S. X. Zhang, and
M. Leatherbee. A dynamic model of entrepreneurial

https://digitalcommons.morris.umn.edu/horizons/vole/iss1/3

(13]

(14]

(15]

uncertainty and business opportunity identification:
Exploration as a mediator and entrepreneurial
self-efficacy as a moderator. SAGE Journals, Sep 2017.
V. Tasheva. The importance of prioritizing and sizing
your backlog for agile planning, May 2018.
https://www.telerik.com/blogs/the-importance-
of-prioritizing-and-sizing-your-backlog-for-
agile-planning, retrieved 30 Nov 2018.

A. Wilhelm. What the hell is a startup anyway?, 2014.
https://techcrunch.com/2014/12/30/what-the-
hell-is-a-startup-anyway/, retrieved 30 Nov 2018.
S. Withall. Software Requirement Patterns. Microsoft
Press, Redmond, WA, USA, first edition, 2007.

https://medium.com/@richb_/why-not-all-technical-debt-is-created-equal-253d727302b1
https://medium.com/@richb_/why-not-all-technical-debt-is-created-equal-253d727302b1
http://www.agileadvice.com/2014/03/06/referenceinformation/user-stories-and-story-splitting
http://www.agileadvice.com/2014/03/06/referenceinformation/user-stories-and-story-splitting
http://www.agileadvice.com/2014/03/06/referenceinformation/user-stories-and-story-splitting
https://www.entrepreneur.com/article/288769
http://www.moyak.com/papers/business-startups-entrepreneurs.html
http://www.moyak.com/papers/business-startups-entrepreneurs.html
https://www.startups.co/articles/why-do-startups-fail
https://www.startups.co/articles/why-do-startups-fail
https://www.forbes.com/sites/natalierobehmed/2013/12/16/what-is-a-startup/#1030164a4044
https://www.forbes.com/sites/natalierobehmed/2013/12/16/what-is-a-startup/#1030164a4044
https://www.telerik.com/blogs/the-importance-of-prioritizing-and-sizing-your-backlog-for-agile-planning
https://www.telerik.com/blogs/the-importance-of-prioritizing-and-sizing-your-backlog-for-agile-planning
https://www.telerik.com/blogs/the-importance-of-prioritizing-and-sizing-your-backlog-for-agile-planning
https://techcrunch.com/2014/12/30/what-the-hell-is-a-startup-anyway/
https://techcrunch.com/2014/12/30/what-the-hell-is-a-startup-anyway/

	Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal
	Requirements Practices in Software Startups
	John D. Hoff
	Recommended Citation

	Introduction
	Background
	Software Startups
	Software Requirements
	Requirements Practices
	Requirements Artifacts
	Knowledge Management
	Requirements-Related Roles
	Planning
	Technical Debt
	Product Quality

	The Evolution of Requirements Practices
	Research Methods
	Phases of Evolution for each Requirements Practice
	Requirements Artifacts
	Knowledge Management
	Requirements-Related Roles
	Planning
	Technical Debt
	Product Quality

	Discussion

	Participant Observations from a Software Startup CTO
	Requirements Artifacts
	Knowledge Management
	Requirements-Related Roles
	Planning
	Technical Debt
	Product Quality
	Wrap-up

	Conclusions
	References

