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Nonic 3-adic Fields?

John W. Jones1 and David P. Roberts2

1 Department of Mathematics and Statistics, Arizona State University, Box 871804,
Tempe, AZ 85287

jj@asu.edu
2 Division of Science and Mathematics, University of Minnesota–Morris, Morris, MN

56267
roberts@mrs.umn.edu

Abstract. We compute all nonic extensions of Q3 and find that there
are 795 of them up to isomorphism. We describe how to compute the
associated Galois group of such a field, and also the slopes measuring wild
ramification. We present summarizing tables and a sample application
to number fields.

1 Introduction

This paper is one of three accompanying our online database of low degree p-
adic fields, located at http://math.la.asu.edu/~jj/localfields/. The first
paper, [10], describes the database in general. There are two cases enormously
more complicated than all the others in the range considered, octic 2-adic fields
and nonic 3-adic fields. The paper [9] describes the 1823 octic 2-adic fields and
this paper describes the 795 nonic 3-adic fields.

Our online database has an interactive feature which allows one to enter
an irreducible polynomial f(x) ∈ Z[x] and obtain a thorough analysis of the
ramification in the corresponding number field K = Q[x]/f(x). The inclusion
of octic 2-adic fields and nonic 3-adic fields in the database greatly extends the
number fields K that can be analyzed mechanically by our programs. Certainly,
the degree of K can be very much larger than 9.

Section 2 discusses standard resolvent constructions and then three more spe-♦
cialized resolvent constructions for nonic fields with a cubic subfield. Section 3
centers on the Galois theory of nonic fields over general ground fields, describ-
ing the 34 possibilities for the Galois group associated to a nonic field. Also
this section gives further information useful for our particular ground field Q3.
For example, 11 of the 34 possible Galois groups can be immediately ruled out
over Q3, because they don’t have appropriate filtration subgroups. Somewhat
coincidentally, the 23 groups that remain are exactly those with a normal Sylow
3-subgroup.
? In the published version, the T15-ε slot of Table 3.3 is mistakenly filled with a +

rather than a −. This error caused several other parts of the published version to
be in error. In this posted version, we have fixed this error and its consequences,
flagging altered paragraphs and table entries with the marginal symbol ♦.



The nonic 3-adic field section of our database would run to some twenty
printed pages, so here we give only summarizing tables. Section 4 centers on
Table 4.1 which sorts the 795 fields we find according to discriminant and Galois
group. All of the 23 eligible groups appear. Section 5 describes ramification in♦
nonic 3-adic fields in terms of slopes, with Tables 5.1 and 5.2 summarizing our
results. Finally, Section 6 gives an application to number fields.

2 Resolvent Polynomials

Resolvents play a major role in the computation of Galois groups over Q. Some
resolvents can be computed quickly using exact arithmetic with resultants. How-
ever more often one computes resolvents via approximations to complex roots,
knowing a priori that the resolvents in question have integer coefficients.

The fields studied here are represented by monic polynomials f ∈ Z[x]. The
computation of absolute resolvents can then follow standard methods. However,
most applications of resolvents to computing Galois groups in high degree utilize
relative resolvents. In the relative case, one somehow gives structure to the roots
of f to reflect the fact that Gal(f) is known to lie in some proper subgroup Gu

of Sn. One speaks of resolvents relative to the upper bound group Gu.
A complication for us is that for a given nonic polynomial f̃ ∈ Z[x], we

may have GalQp(f̃) ≤ Gu but GalQ(f̃) 6≤ Gu. In this case, the resolvent will
have coefficients which are p-adic integers, but generally not rational integers,
and so the method of computing via complex approximations does not work
directly. The method [6] of using p-adic approximations rather than complex
approximations does not help here. It involves choosing a prime p unramified for
the given extension of Q, whereas we are starting with p-adic extensions which
are highly ramified.

For our three relative resolvents, the upper bound group Gu is the wreath
product S3 o S3, which is the generic Galois group of nonic fields with a cubic
subfield. Given f̃ ∈ Z[x] which defines a nonic extension of Q3 with a unique
cubic subfield, we work around the problem described in the preceding paragraph
by computing f ∈ Z[x] which defines the same nonic extension of Q3, but where
f has a corresponding cubic subfield over Q. Then we use complex roots in the
resolvent construction applied to f . The computation of f from f̃ is described
further in the last paragraph of this section.

We now describe the five resolvent constructions which we will use system-♦
atically in the sequel. The first is a standard absolute resolvent. One starts with
a degree n polynomial f(x) with complex roots α1, . . . , αn. The resolvent cor-
responds to the subgroup S2 × Sn−2 of Sn and is given by

fdisc(x) =
∏
i<j

(x− (αi − αj)2) ∈ Z[x]. (1)

It can be computed quickly without approximations to roots via the formula

fdisc(x2) = Resultanty(f(y), f(x + y))/xn. (2)



In one case, we will also make use of the variant fDisc(x) = fdisc(x2), which
is itself an absolute resolvent for S1 × S1 × Sn−2 < Sn. In general, we will
systematically denote polynomial resolvent constructions by f 7→ f∗ for some
symbol ∗. We will use similar notation for the same resolvent constructions on
the level of fields starting in the next section.

In one case we use an absolute resolvent of degree 72 associated to (S2 ×♦
S7) ∩ A9, denoted here by f72 (in [7] it is denoted R6). Its roots correspond to
the orbit of

(α1 − α2)
∏

3≤i<j≤9

(αi − αj).

Factoring this resolvent over Q3 is the most difficult resolvent computation con-
sidered here.

For the remaining three resolvents, we start with an irreducible monic degree
nine polynomial f ∈ Z[x] such that Q[x]/f(x) has a unique cubic subfield. We
choose g(y) ∈ Z[y] so that Q[y]/g(y) is isomorphic to this subfield. Let

h(y, x) = x3 +
2∑

k=0

2∑
`=0

ck`y
kx` (3)

be a cubic factor of f(x) over Q[y]/g(y). Let β1, β2, β3 be the complex roots of
g(y). For i = 1, 2, 3, let αi,1, αi,2 and αi,3 be the complex roots of h(βi, x). Then
we can recover

f(x) =
3∏

i=1

3∏
j=1

(x− αi,j) . (4)

A formula bypassing the αi,j is

f(x) = Resultanty(g(y), h(y, x)). (5)

The three resolvents are

f18(x) =
3∏

i=1

∏
σ∈S3

x−
3∑

j=1

αi,jαi+1,σ(j)

 , (6)

f27(x) =
3∏

i=1

3∏
j=1

3∏
k=1

(x− (α1,i + α2,j + α3,k)) , (7)

f36(x) =
∏

σ∈S3

∏
τ∈S3

(
x−

3∑
i=1

α1,iα2,σ(i)α3,τ(i)

)
. (8)

Now we return to describing how we adjust a given polynomial f̃ to a bet-
ter one f . We first find a global model Q[y]/g(y) for the cubic subfield of the
extension Q3[x]/f̃(x) of Q3; this is easy using the database [10]. Then, we use
Algorithm 3.6.4 from [2] to reduce the factorization of f̃(x) over Q3[y]/g(y)
to a factorization problem over Q3. We loosely approximate a cubic factor



h̃(y, x) ∈ Zp[x] that we obtain by a polynomial h(y, x) ∈ Z[y, x], and use Equa-
tion (5) to compute a candidate for f . Finally, we test if our candidate f defines
the same nonic field over Q3 as f̃ by using Panayi’s p-adic root finding algorithm
[13]. If it doesn’t, we repeat with a better approximation to h̃(y, x). Since we
ultimately use complex roots in computing resolvents f18, f27, and f36, we aim
throughout to keep the coefficients of f relatively small.

3 Galois Theory of Nonics

We will set things up over a general base field F , and specialize when necessary to
our case of interest, F = Q3. We work in the context of abstract separable fields
of finite degree over F . We say a nonic field K is multiply imprimitive, uniquely
imprimitive, or primitive, iff it has ≥ 2, 1, or 0 cubic subfields respectively.

To bring in Galois theory, we imagine that a separable closure F of F is given.
The number of subfields of F isomorphic to a separable degree n extension K/F
is n/|Aut(K)|. We associate to K is the n-element set X of homomorphisms
σ : K → F . Let Kgal be the subfield of F generated by the images of these n
homomorphisms. Then we call G = Gal(Kgal/F ) the Galois group of K with
respect to the fixed separable closure of F . So G is a transitive subgroup of
the symmetric group SX and a quotient group of the absolute Galois group
Gal(F/F ). Occasionally we will use this notation when K is a separable algebra
which is only a product of fields. Then G is no longer a transitive subgroup of
SX as indeed its minimal orbits correspond to the factor fields of K.

In the case F = Q, one can take Q ⊂ C as a separable closure. However in
other cases, like our case F = Q3, there is no simple choice of F and in practice
one must work with objects which are independent of the choice of F . We will
therefore consider the Galois group of K to be a subgroup of Sn which is only
defined up to conjugation.

There are 34 transitive subgroups of S9 up to conjugation, 4 corresponding
to multiply primitive fields, 19 to uniquely imprimitive fields, and 11 to primitive
fields. So, given a nonic field K, one wants first to identify its Galois group among
the 34 possibilities. The literature contains several accounts of computing Galois
groups, with [8] being a recent survey. Some of these accounts pay particular
attention to nonics [7, 4]. The approach presented here is tailored to 3-adic
fields, where it is easier to compute subfields and automorphism groups than it
is to work with many different relative resolvents and/or large degree absolute
resolvents.

Twenty-three of the thirty-four groups have just one Sylow 3-subgroup, while
the remaining seven solvable groups have four Sylow 3-subgroups. The twenty-
three groups will be particularly important for us and a partial inclusion diagram
for just these groups is given in Figure 1. We use the T -notation of [1] to indicate
the possible Galois groups, with T standing for transitive. This T -notation will
be our main notation in the sequel as well. However in Tables 3.1, 3.2, and 3.3
we will also present a more descriptive notation based on [5].



In Figure 1, a line from Ti down to Tj means there are subgroups Gi, Gj ⊂ Sn

of type Ti, Tj respectively, with Gi ⊂ Gj and |Gi| = |Gj |/2. The text in Figure 1
briefly indicates how some of the phenomena presented in Tables 3.1, 3.2, and
3.3 relate to index two inclusions.
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Fig. 1. Nonic groups having a normal Sylow 3-subgroup and their index two inclusions

Over F = Q3, some of the groups can be easily ruled out. In general, let
F be a p-adic field, meaning a finite extension of either Qp of Fp((t)). Then a
Galois extension Kgal/F has a filtration by Galois subfields,

F ⊆ Kgal,u ⊆ Kgal,t ⊆ Kgal, (9)

with Kgal,u being the maximal unramified subextension and Kgal,t being the
maximal tamely ramified subextension. The group Gal(Kgal,u/F ) is necessarily



cyclic. Similarly, Gal(Kgal,t/Kgal,u) is cyclic; moreover, this subquotient has
order prime to p. Finally Gal(Kgal/Kgal,t) is a p-group. Eleven of the thirty-four
candidate Galois groups fail to have a corresponding chain of normal subgroups.
Five of these excluded groups are uniquely imprimitive and six are primitive.
They are presented with a dash in the last column in Table 3.2 and Table 3.3
respectively. The twenty-three groups which do have a corresponding chain are
exactly those in Figure 1.

There are different approaches for identifying Gal(Kgal/F ). We begin by
computing three quantities directly associated to K, the cubic subfields of K,
the automorphism group of K, and the parity of K. There can be one, two, or
four cubic subfields, and the possible Galois groups for a cubic subfield are C3

and S3. The automorphism group Aut(K) has nine elements exactly when K
is itself Galois, in which case Aut(K) ∼= Gal(Kgal/F ). Otherwise |Aut(K)| is 1
or 3 while |Gal(Kgal/F )| > 9. In our case of F = Q3, we used Panayi’s root
finding algorithm [13] for the computation of both subfields and automorphism
groups. Parities are easier. By definition K = Q[x]/f(x) has parity ε = + if
the polynomial discriminant of f is a square in F and ε = − otherwise. In the
former case Gal(Kgal/F ) is in A9 and in the latter case it is not.

Tables 3.1, 3.2, and 3.3 have columns corresponding to the objects just dis-
cussed. A blank for |Aut(K)| signifies that K has only the identity automor-
phism. Tables 3.2 and 3.3 also present information related to resolvents. A re-
solvent construction f 7→ f∗ on the level of polynomials induces a well-defined
resolvent construction K 7→ K∗ on the level of algebras, where K = F [x]/f(x)
and f(x) is chosen so that f∗(x) is separable, in which case K∗ = F [x]/f∗(x).
Finally, the column headed by # previews the next section by giving the number
of nonic 3-adic fields with the given Galois group. If the Galois group is ruled
out by the lack of an unramified/tame/wild filtration, we print a dash.♦

3.1 Multiply Imprimitive Fields

Suppose K is a nonic field with more than one cubic subfield. Then if K1 and
K2 are any two distinct cubic subfields, K = K1 ⊗K2. Table 3.1 gives the four
possible Galois groups. In two cases, there are two cubic subfields, and in two
cases there are four cubic subfields, as indicated. In this category, no resolvents
are necessary for distinguishing the Galois groups.

Table 3.1. Nonic groups corresponding to nonic fields with more than one cubic sub-
field

G Name |G| |A| Subs ε #

2 E(9) 32 9 CCCC + 1
4 S3 × 3 2132 3 SC − 24
5 32 : 2 2132 SSSS + 1
8 S3 × S3 2232 SS − 9



3.2 Uniquely Imprimitive Fields

Table 3.2. Nonic groups corresponding to nonic fields with exactly one cubic subfield.
The first fourteen groups have one Sylow 3-subgroup and the last five groups have four
Sylow 3-subgroups.

G Name |G| |A| Sub ε K9b K9x K27 K27b K9y m #

1 C(9) 32 9 C + T1 C3
3 T 3

1 T 3
1 C3

3 12
3 D(9) 2132 S + T3 S3

3 T 3
3 T 3

3 S3
3 5

6 1
3
[33]3 33 3 C + T6 T2 27+ 27+ T2 8

7 [32]3 33 3 C + T7 T2 T ′
7T

′′
7 T ′′′

7 27+ C′
3C

′′
3 C′′′

3 4 4
10 [32]S3;6 2133 S + T10 T4 27+ 27+ T4 49
11 E(9) : 6 2133 S + T11 T4 T1318− 27+ G6,18−C3 2∗ 20
12 [32]S3 2133 3 S − T12 T5 T ′

12T
′′
12T

′′′
12 27+ S′

3S
′′
3 S′′′

3 4 36
13 E(9) : D6 2133 C − T13 T4 T1118− 27+ G6,18−C3 2∗ 20
17 3 o 3 34 3 C + T ′

17 T7 27+ 27+ T7 3 36
18 E(9) : D12 2233 S − T18 T8 T ′

1818− 27+ G6,36−S3 2 48
20 3 o S3 2134 3 S − T ′

20 T11 27− 27+ T13 3 180
21 1

2
[32 : 2]S3 2134 S + T ′

21 T12 27+ 27+ T12 3 108
22 [33 : 2]3 2134 C − T ′

22 T13 27− 27+ T11 3 60
24 [33 : 2]S3 2234 S − T ′

24 T18 27− 27+ T18 3 144

G Name |G| |A| Sub ε K18 K27 K36 m #

25 [ 1
2
S3

3 ]3 2234 C + 18+ 27+ 36+ −
28 S3 o 3 2334 C − 18+ 27− 36+ −
29 [ 1

2
S3

3 ]S3 2334 S − 18− 27− 36− −
30 1

2
[S3

3 ]S3 2334 S + 18− 27+ 36− −
31 S3 o S3 2434 S − 18− 27− 36− −

It is here that we will use the three specialized resolvent constructions of
the previous section. They let us canonically construct algebras K18, K27, and
K36 of the indicated degree from a nonic field K with a unique cubic subfield.
Table 3.2 gives the nineteen possibilities for the Galois group of a nonic field
with a unique cubic subfield.

The resolvents K18, K27 and K36 are sometimes irreducible. In this case, the
corresponding slots on Table 3.2 contain 18+, 18−, 27+, 27−, 36+ or 36−. In
general, we indicate a field of degree > 9 by giving its degree and its parity. We
indicate a field of degree ≤ 9 by giving its Galois group.

When G has just one Sylow 3-subgroup there are unique factorizations

K18 = K9b ×K9x, (10)
K36 = K27b ×K9y, (11)



with factors having the indicated degree and the properties

Kgal
9b = Kgal

27b = Kgal,

Kgal
9x = Kgal

9y

3
⊂ Kgal.

(12)

Here the superscript 3 means that [Kgal : Kgal
9y ] = 3. Table 3.2 indicates the

structure of K9b, K9x, K27b, and K9y. In the K9y column, G6,18− and G6,36−
are sextic groups of order 18 and 36 respectively which are not contained in A6.

The m heading a column in Table 3.2 stands for multiplicity. In general, we
say that a k-tuplet of degree n is a complete list of non-isomorphic degree n fields
K1, . . . , Kk with Kgal

j all the same. One speaks of singletons, twins, triplets,
and quadruplets, for k = 1, 2, 3, and 4 respectively. The Ti row has a k in the
m column iff a nonic field K with Gal(Kgal/F ) = Ti belongs to a k-tuple. Here,
1 is indicated by a blank. In most cases, fields in a tuplet share the same Ti.
The one exception, indicated by a ∗ in Table 3.2, is twins consisting of a T11

nonic field and a T13 nonic field. In fact, the thirty-four Ti fall into thirty-three
isomorphism classes as abstract groups, the one coincidence being T11

∼= T13.
Our priming convention in the resolvent columns of Table 3.2 is to distinguish

different fields with the same Galois group. A Ti in the i row means a nonic
field isomorphic to the original one. Note that in the instances of twinning,
one can always pass from a field to its twin via K27. In the five instances of
triplets, it is K18 which lets one pass from a nonic field K = Ka to a second
triplet K9b. Applying this degree eighteen resolvent construction to K9b gives
the remaining triplet K9c. Finally, applying it to K9c returns K9a. Thus any
collection of nonic triplets comes with a natural cyclic order. Finally, in the two
instances of quadruplets, one can pass from a given field to the three others via
K27.

Table 3.2 makes clear how one can compute Galois groups of uniquely im-
primitive nonic fields. The cases of one versus four Sylow 3-subgroups are distin-
guished by the reducible versus reducibility of K18 or equally well K36. Within
the one Sylow 3-subgroup case, |A|, Sub, ε, and K9y suffice to distinguish groups.
Within the four Sylow 3-subgroup case, |A|, Sub, and ε alone distinguish groups,
except for T29 versus T31 for which the printed resolvent information doesn’t help.
In our setting of F = Q3, neither T29 or T31 arises, but one way to distinguish
them is by the discriminant resolvent. Recall fDisc(x) = fdisc(x2). In both cases,
KDisc factors as a degree 18 field times a degree 54 field. The degree 18 field has
even parity in the case T29 and odd parity in the case T31.

3.3 Primitive Fields

Neither subfields nor automorphisms can help with determining the Galois group
of a primitive nonic field. The parity ε remains helpful, as shown in Table 3.3.

Table 3.3 also gives the degrees and parities of the field factors of the degree
36 resolvent Kdisc and the resolvent K72. The information presented in Table 3.3♦
clearly suffices to identify Galois groups associated to nonic 3-adic fields, with



Table 3.3. Nonic groups corresponding to primitive nonic fields

G Name |G| ε Kdisc K72 #

9 E(9) : 4 2232 + 182
− 184

− 2
14 E(9) : Q8 2332 + 36+ 362

+ 4
15 E(9) : 8 2332 − 36− 362

− 4♦
16 E(9) : D8 2332 − 18− 18′− 362

+ 4
19 E(9) : 2D8 2432 − 36− 72+ 16
23 E(9) : 2A4 2333 + 36+ 362

+ −
26 E(9) : 2S4 2433 − 36− 72+ −
27 PSL(2, 8) 23327 + 36+ 362

+ −
32 PΣL(2, 8) 23337 + 36+ 362

+ −
33 A9 2635517 + 36+ 362

+ −
34 S9 2735517 − 36− 72+ −

the computationally expensive K72 needed only for distinguishing T15 from T19.
For general bases, more resolvents of higher degrees would be required ([4, 7]).

4 Nonic 3-adic Fields by Discriminant and Galois Group

In general, let K(p, n) be the set of isomorphism classes of degree n extension
fields of Qp. The paper [14] describes how one goes about finding polynomials
fi(x) ∈ Z[x] such that Qp[x]/fi(x) runs over K(p, n). One key ingredient is the
root finding algorithm of [13], mentioned already in both of the previous sections.
Here, it is used to ensure that Qp[x]/fi(x) and Qp[x]/fj(x) are not isomorphic
for i 6= j. The other key ingredient is the mass formula of [11, 15], as refined in
[14]. One knows that one has found enough polynomials to cover all of K(p, n)
by the use of this formula. In this section, we present Table 4.1 summarizing
the result of the calculation in the case (p, n) = (3, 9), and comment on several
features of the table.

Given a nonic 3-adic field K, let Ku be its maximal subfield unramified over
Q3. Let f = [Ku : Q3] and e = 9/f . The original mass formula of [11, 15] makes
it natural to divide nonic fields K into three classes according to e. The unique
field with e = 1 corresponds to the boldface entry with c = 0 in the row for
group T1 = C9. The 41 fields with e = 3 correspond to italicized entries, and the
remaining 753 are given in ordinary type.

The refined mass formula of [14] makes it natural to further divide nonic fields
K according to their discriminant exponent c. This exponent indexes columns
in Table 4.1. Mass formulae can be used to count the number of subfields of F
of a given type. Recall from Section 3 that if a field K has automorphism group
A, then this count will reflect the 9/|A| isomorphic copies of K in F . Collecting
these contributions to the mass formula and dividing by the degree 9 gives a
count of isomorphism classes of fields, each weighted by their mass 1/|A|. The
sums of these masses for a given (e, c) are given by the refined mass formula in



Table 4.1. Discriminants and Galois groups of nonic extensions of Q3. Fields with
e = 1, 3, 9 are respectively indicated by bold, italic, and regular type.

G |A| 0 9 10 12 13 15 16 18 19 20 21 22 23 24 25 26 #

2 9 1 1
4 3 2 1 6, 3 3 9 24
5 1 1
8 1 2 3 3 9
1 9 1 2 9 12
3 1 1 3 5
6 3 2 6 8
7 3 1 3 4
10 6 11 8 24 49
11 2 1 8 9 20
12 3 9 27 36
13 2 1 2 3 3 9 20
17 3 9 9 18 36
18 2 4 3 12 18 9 48
20 3 6 12 9 45 27 81 180
21 27 27 54 108
22 6 3 6 9 9 27 60
24 6 12 9 27 9 27 27 27 144
9 1 1 2
14 1 3 4
15 2 2 4♦
16 1 3 4
19 2 2 6 6 16♦
#1 1 1
M1 0.1
#3 10 20 11 41
M3 8 .6 8 .6 9
#9 2 2 6 10 30 22 66 96 54 72 96 54 54 108 81 753
M9 2 2 6 6 18 18 54 54 54 54 54 54 54 54 81

M9,3 4 4 12 12 36 36 54
M9,4 4 4 12 12 36 36 54
M9,5 6 6 18 18 54 54 81

[14], and are presented as Me(c) towards the bottom of Table 4.1. Of course, one
has #e(c) ≥ Me(c) with #e(c) the total number of fields for a given (e, c).

The lines corresponding to the four multiply imprimitive groups can be con-
structed directly by tensoring pairs of cubic fields. For example, as Kc runs over
the four C3 fields and Ks runs over the six S3 fields, Kc ⊗ Ks runs over the
twenty-four T4 = C3 × S3 fields. Similarly, the primitive groups T9 and T16 are
isomorphic to the sextic transitive groups C2

3 .C4 and C2
3 .D4 respectively. In each

of these two cases, one nonic field K comes from two sextic fields K6a, K6b with
Kgal = Kgal

6a = Kgal
6b . Otherwise the lines of Table 4.1 cannot be constructed

from the lower degree tables of [10].
Twins, triplets, and quadruplets are visible in varying degrees on Table 4.1.

In general, for a nonic 3-adic field K with discriminant 3c, one has c = 2su +6sv

with the slopes su ≤ sv discussed further in the next section. In a tuplet, sv is
always constant. For twins, su typically varies within a twin pair; however one
can at least see that the total number of fields for T11 and T13 is the same and the
total number for T18 is even. In a triplet, the cubic subfield is constant; if 3csub



is its discriminant then su = csub/2, so cu and hence c is constant. This explains
conceptually why all entries on rows 17, 20, 21, 22, and 24 are multiples of 3.
For quadruplets, the possible csub’s are (0, 4, 4, 4) in the case T7 and (3, 5, 5, 5)
in the case T12, explaining the structure of these rows.

The mass formulas mentioned already come from specializing mass formulas
for general p-adic base fields F to the case F is an unramified extension of Q3

of degree 9, 3, or 1. One can also specialize these formulas to the case that F is
a ramified cubic extension of Q3, and one gets the last three lines of Table 4.1.
The number in the M9,csub row and the c column is the total mass of isomor-
phism classes of nonic fields of discriminant 3c with a specified cubic subfield of
discriminant 3csub , where a pair Ksub ⊂ K is counted with mass 1/|A0| where
A0 is the group of automorphisms of K stabilizing Ksub. This is simplest in the
cases c ≥ 20 where all fields are uniquely primitive and thus |A| = |A0|.

5 Slopes in Nonic 3-adic Fields

The paper [10] provides background on slopes in general. Here we will keep the
discussion focused on nonic 3-adic fields K and their associated Galois fields
Kgal. The results of the calculations are summarized in Tables 5.1 and 5.2.

Table 5.1. Slopes in nonic 3-adic fields with discriminant exponent c ≤ 18. Visible
slopes are in boldface and hidden slopes in ordinary type.

c G Slopes # c G Slopes # c G Slopes #
0 1 0,0 1 13 18 1.5, 1.5,1.667 2 18 5 1.5,2.5 1
9 4 0,1.5 2 13 20 0,1.5, 1.5,1.667 6 18 8 1.5,2.5 3
9 13 0,1.5, 1.5 2 13 19 1.625,1.625 2 18 3 1.5,2.5 1
9 22 0,1.5, 1.5, 1.5 6 15 4 1.5,2 6 18 10 0,1.5,2.5 2
9 19 1.125,1.125 2 15 4 0,2.5 3 18 10 1.5, 2,2.5 9
10 14 1.25,1.25 1 15 8 1.5,2 2 18 11 0,1.5,2.5 2
10 16 1.25,1.25 1 15 13 0, 1.5,2.5 2 18 11 2, 2,2.333 3
12 2 0,2 1 15 18 1.5, 1.5,2 4 18 11 1.5, 2,2.5 3
12 4 0,2 1 15 20 0,1.5, 1.5,2 12 18 13 2, 2,2.333 3
12 8 1.5,1.5 1 15 22 0, 1.5, 1.5,2.5 6 18 17 0,2, 2,2.333 9
12 1 0,2 2 15 19 1.875,1.875 6 18 18 1.5, 2,2.5 3
12 6 0,2, 2 2 16 4 2,2 3 18 20 0,2, 2,2.333 9
12 7 0,2, 2 1 16 7 0,2,2 3 18 24 1.5, 1.5, 1.667,2.5 3
12 11 0,1.5,1.5 2 16 10 1.5, 2,2.167 6 18 24 1.5, 1.5, 2,2.5 9
12 13 0,2, 2 1 16 11 0,2,2 1 18 14 2.25,2.25 3
12 17 0,2, 2, 2 9 16 24 1.5, 1.5, 2,2.167 6 18 16 2.25,2.25 3
12 22 0,2, 2, 2 3 16 9 2,2 1
12 9 1.5,1.5 1 16 15 2,2 2♦
12 15 1.5,1.5 2♦



Table 5.2. Visible and hidden slopes in nonic 3-adic fields with discriminant exponent
c ≥ 19.

c G Slopes # c G Slopes #
19 4 2,2.5 9 22 1 2,3 9
19 8 2,2.5 3 22 3 2,3 1
19 12 1.5, 2.5,2.667 9 22 6 0,2,3 6
19 13 1.5,2,2.5 3 22 10 0,2,3 2
19 18 1.5,2,2.5 3 22 10 2, 2,3 6
19 18 1.5, 2.5,2.667 9 22 11 2,2.5,2.833 9
19 20 0,1.5, 2.5,2.667 18 22 17 0,2, 2,3 18
19 20 1.5, 2, 2.5,2.667 27 22 18 2,2.5,2.833 9
19 24 1.5, 2, 2.5,2.667 9 22 20 2, 2, 2.333,3 27
19 19 2.375,2.375 6 22 22 2, 2, 2.333,3 9
20 21 1.5, 2.5, 2.667,2.833 27 23 22 2, 2.5, 2.833,3.167 27
20 24 1.5, 2.5, 2.667,2.833 27 23 24 2, 2.5, 2.833,3.167 27
21 12 1.5,2.5,2.667 27 24 21 1.5,2.5, 2.667,3.167 27
21 13 2, 2.5,2.833 9 24 24 1.5,2.5, 2.667,3.167 27
21 18 1.5,2.5,2.667 9 25 20 2,2.5, 2.833,3.333 81
21 18 2, 2.5,2.833 9 25 24 2,2.5, 2.833,3.333 27
21 22 1.5,2, 2.5,2.833 9 26 3 2.5,3.5 3
21 24 1.5,2, 2.5,2.833 9 26 10 0,2.5,3.5 6

26 10 2,2.5,3.5 18
26 21 1.5,2.5, 2.667,3.5 54

Suppose Gal(Kgal/Q3) has order 2a3b, so that b ∈ {2, 3, 4}. Then there
are b slopes to compute, which we always index in weakly increasing order,
s1 ≤ s2 (≤ · · · ). Consider a chain of subfields

Q3

2a

⊆ Kgal,0 3
⊂ Kgal,1 3

⊂ Kgal,2

(
3
⊂ · · ·

)
, (13)

with, as indicated, Kgal,j having degree 2a3j over Q3. There is only one choice
for Kgal,0 as, in all 23 cases not excluded by (9), the group Ti has only one Sylow
3-subgroup. There may be several choices for some of the intermediate Kgal,j ,
and then of course Kgal,b = Kgal. We require that the intermediate fields be
chosen such that the discriminant exponents cj are the minimum possible for
Galois subfields of degree 2a3j ; the cj are then uniquely defined. The jth slope
is then given by the formula

sj =
cj − cj−1

2a3j − 2a3j−1
, (14)

an instance of Proposition 3.4 of [10]. Note that we are allowing 0 as a slope
here. Otherwise the slopes are > 1 and correspond to wild ramification.

Two of the b slopes just discussed are visible in K itself in the follow-
ing sense. Let 3c be the discriminant of K. If K has a cubic subfield, let



Ksub be a cubic subfield of minimum discriminant 3csub . Then from the tower
Q3 ⊂ Ksub ⊂ K, one has slopes su = csub/2 and sv = (c − csub)/6, another
instance of Proposition 3.4 of [10]. In this setting, su ≤ sv. If K is primitive,
then the visible slopes are su = sv = c/8. An important point is that the highest
slope is always visible, i.e. sv = sb.

We call the remaining b − 2 slopes hidden. A priori, one might have ex-
pected that to calculate them, one would have to compute field discriminants of
resolvents of relatively high degree, perhaps 27 say, and apply Proposition 3.4
of [10] yet again. However, as we explain next, in fact one needs to compute
discriminants only of associated nonics.

First, if K has ≥ 2 cubic subfields or 0 cubic subfields, then b = 2 and so there
are no hidden slopes to compute. Now consider the 14 possible Galois groups
of a uniquely imprimitive 3-adic nonic. From Table 3.2, T1 and T3 have b = 2,
while T6, T7, T10, T11, T12, T13 and T18 have b = 3, and finally T17, T20, T21,
T22, and T24 have b = 4.

In the two b = 2 cases, we are again done. For the seven b = 3 cases, we can
consider the nonic resolvent K9x. One has an exact sequence

C3 ↪→ Gal(Kgal/Q3) � Gal(Kgal
9x /Q3). (15)

Now the two nonic groups of order 27, namely T6 and T7, both have only one
normal subgroup of order 3. So the remaining groups presently under consider-
ation, T10, T11, T12, T13 and T18, also have only one normal subgroup of order
3. So it is necessarily the highest slope s3 of K which disappears upon pas-
sage from K to K9x. Only one of the remaining slopes s1 and s2 is visible in
K, but both are visible in K9x, allowing us to identify all three of s1, s2, and
s3. This computation would work equally well replacing K9x by K9y, as indeed
Kgal

9x = Kgal
9y .

Finally for the five b = 4 cases, we can use again the nonic resolvent K9x and
the exact sequence (15). The slopes of K are s1, s2, s3, and s4. The 3-group T17

has just one normal subgroup of order 3, and hence the normal overgroups T20,
T21, T22, and T24 also have just one normal subgroup of order 3. So the slopes of
K9x must be s1, s2, and s3, which are all identified by the previous paragraph.
The highest slope s4 is identified too, so all slopes of K have been identified.
Again this computation would work equally well with K9x replaced by K9y.

6 Global Applications

The last section of [10] concerns degree 13 fields with Galois group PSL3(3) and
illustrates how ramification can be analyzed completely, with the analysis at 2
requiring octic 2-adic fields and the analysis at 3 requiring nonic 3-adic fields.
We are presently pursuing other applications which similarly require a number of
group-theoretic preliminaries to describe globally. Here we will stay in a setting
where the only group-theory we need is what we have set up in previous sections.



Proposition 6.1 A. There are exactly thirteen isomorphism classes of solvable
nonic number fields with discriminant of the form ±3b, namely the fields K =
Q[x]/f(x) with f(x) =

∑
a9−ix

i as given in Table 6.2.

B. Assuming that Odlyzko’s GRH lower bounds on discriminants hold, there are
no non-solvable nonic number fields with discriminant of the form ±3b.

To establish Part A, we need to use the group theory set up in Sections 2 and
3, but not the specifically 3-adic information of Sections 4 and 5. First, one knows
that there are no quartic number fields with discriminant ±3b. This implies that
there are no primitive nonic solvable number fields of discriminant ±3b because
all seven solvable primitive groups have a quotient group of the form V4, C4, A4,
or S4, according to Table 3.3. For the same reason, an imprimitive group G can
only appear if its size has the form 3b or 213b.

Table 6.2. The thirteen nonic solvable number fields with discriminant of the form
±3b, sorted by increasing top slope

c G a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 s1 s2 s3 s4

19 4 1 0 0 −3 0 0 −6 0 0 −1 2 2.5

21 13 1 0 0 −3 0 0 0 0 0 1 2 2.5 2.833
22 11 1 0 0 −3 0 0 3 0 0 8 2 2.5 2.833

22 1 1 0 −9 0 27 0 −30 0 9 1 2 3

23 22 1 0 0 −6 0 0 9 0 0 −3 2 2.5 2.833 3.167
23 22 1 0 0 −3 0 0 0 0 0 3 2 2.5 2.833 3.167
23 22 1 0 0 −3 0 0 −9 0 0 3 2 2.5 2.833 3.167

25 20 1 0 −9 −6 27 36 −24 −54 −9 22 2 2.5 2.833 3.333
25 20 1 0 −9 −3 27 18 −24 −27 −9 23 2 2.5 2.833 3.333
25 20 1 0 −9 −3 27 18 −15 −27 −36 −4 2 2.5 2.833 3.333

26 3 1 0 0 −9 0 0 27 0 0 −3 2.5 3.5

26 10 1 0 0 0 0 0 0 0 0 −3 2 2.5 3.5

26 10 1 0 0 −9 0 0 27 0 0 −24 2 2.5 3.5

It is also known that there are exactly two cubic fields with discriminant
±3b, namely Q[x]/(x3 − 3x − 1) with Galois group C3 and Q[x]/(x3 − 3) with
Galois group S3. So we need look only at cubic extensions of these fields, using
the exhaustive method described in Chapter 5 of [3]. Since neither of the two
cubic fields contains cube roots of unity, the method requires us to adjoin cube
roots of unity to get sextic fields K6, and look within degree eighteen overfields
of these to get the desired nonic fields. The method requires that K18/K6 be
abelian, but abelianness is ensured by ord2(|G|) ≤ 1. These computations, which
of course we have only briefly sketched here, establish Part A.

Before moving on to establishing Part B, we will comment on some ways
that Table 6.2 illustrates our previous sections. The T11 field and the T13 field



form a twin pair. Similarly, the three T20 fields and the three T22 fields each
form a triplet. Triplets have a cyclic order and if we call the top-listed field in
each triplet Ka, then the next is Kb and the final one is Kc. Slopes are given in
the same format as Tables 5.1 and 5.2. The fact that the small visible slope can
change within twins but not triplets is illustrated.

Part B is similar to some other non-existence statements in the literature, for
example the statement in [16], which says in particular that there are no PSL2(8)
nonics with discriminant of the form ±2a. To establish Part B, we use the 3-adic
analysis of Sections 4 and 5, including the determination of hidden slopes. If K
is a nonic 3-adic field with slopes s1 ≤ · · · ≤ sb and [Kgal,t : Kgal,u] = t, then
the root discriminant of Kgal is 3β with

β =
2
3
sb + · · ·+ 2

3b
s1 +

1
3b

t− 1
t

. (16)

This type calculation is explained further in [10]. From Table 5.1, one sees that in
the cases b = 2, b = 3, and b = 4, the largest that β can be is respectively 53/18 =
2.94, 55/18 = 3.05, and 511/162 ≈ 3.15432, these bounds all being realized in
the largest discriminant case c = 26, always with t = 2. The corresponding 3β

are then approximately 25.40, 28.70, and 31.99. These numbers are thus upper
bounds for the root discriminant of a Galois number field with discriminant ±3b

and Galois group PSL(2, 8), PΣL(2, 8) and (A9 or S9) respectively. However
Odlyzko’s GRH bounds say that a field with root discriminant at most 25.40,
28.70, and 31.99 respectively must have degree at most 380, 1000, and 4400 [12].
These numbers are respectively less than |PSL(2, 8)| = 504, |PΣL(2, 8)| = 1512,
and |A9| = 9!/2, giving Part B.
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