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A DATABASE OF LOCAL FIELDS

JOHN W. JONES AND DAVID P. ROBERTS

Abstract. We describe our online database of finite extensions of Qp, and
how it can be used to facilitate local analysis of number fields.

1. Introduction

1.1. Overview. Given a number field K, one has for each prime p its associated
p-adic algebra,

K ⊗Qp
∼=

g∏
i=1

Kp,i .

Here the Kp,i are fields, each a finite extension of Qp. For investigating some prob-
lems about number fields, it suffices to know just basic invariants of the Kp,i, such
as ramification index and residual degree. For other investigations, it is essential
to have much more refined information, such as local Galois groups and slopes
measuring wildness of ramification.

To facilitate refined analysis of number fields, we have constructed a database
of p-adic fields, available at http://math.asu.edu/~jj/localfields. Let K(p, n)
be the set of isomorphism classes of degree n extensions of Qp. The sets K(p, n) are
finite, with general mass formulas which counting these fields with certain weights
being known [Se2, Kr, PR]. Our database presents some of the sets K(p, n) in a
complete and easy-to-use way. The philosophy behind the database is that the
intricate local considerations needed to construct it should be done once and then
recorded. Thereafter, a local result can be obtained by mechanical appeal to the
database whenever it is needed in a global situation.

1.2. Fields in the database. When n is not divisible by p, all fields in K(p, n) are
tame, and so K(p, n) is relatively easy to describe. Our database treats these fields
dynamically, with restrictions on p and n limited only by computational feasibility.
The first case involving wild fields is n = p. This case is also relatively easy to
describe in a way uniform in p; for example, |K(p, p)| = p2 + 1 for p odd. Again,
our database treats these fields essentially without restriction on p.

The backbone of our database consists of tables explicitly describing K(p, n) for
small p and n. The numbers |K(p, n)| for p < 30 and n < 10 are listed in Table 1.1.
The table for K(p, n) in the database has one line for each isomorphism class of
p-adic field of degree n and gives a defining polynomial for the field and many
invariants of the field. Our tables provide many illustrations of the relatively easy
cases discussed in the previous paragraph. However their main function is to cover
the five harder cases with n < 10, namely (p, n) = (2, 4), (2, 6), (3, 6), (2, 8), and
(3, 9). The case of 2-adic quartics has received detailed attention previously, for
example in [We] for the one A4 and the three S4 extensions and in [Na] for the
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2 JOHN W. JONES AND DAVID P. ROBERTS

Table 1.1. The number |K(p, n)| of isomorphism classes of p-adic
fields of degree n, for p < 30 and n < 10. The entries corresponding
to the five cases which we treat individually are underlined.

n 2 3 5 7 11 13 17 19 23 29
1 1 1 1 1 1 1 1 1 1 1
2 7 3 3 3 3 3 3 3 3 3
3 2 10 2 4 2 4 2 4 2 2
4 59 5 7 5 5 7 7 5 5 7
5 2 2 26 2 6 2 2 2 2 2
6 47 75 7 12 7 12 7 12 7 7
7 2 2 2 50 2 2 2 2 2 8
8 1823 8 11 8 8 11 15 8 8 11
9 3 795 3 7 3 7 3 13 3 3

thirty-six D4 extensions. Also the case of 2-adic octics with Galois group within
GL2(3) was previously treated in [BR].

1.3. Sections of this paper. Section 2 discusses how we found our lists of defining
polynomials. It treats first the tame and n = p cases systematically, and then
describes our ad hoc approach to the five harder cases. Section 3 discusses how
we computed the invariants for each field K in the database. The most difficult
invariants to compute in the five harder cases (p, n) are the local Galois groups G
and the size of all the subquotients Qs = Gs/Gs+ coming from the filtration of G
by its ramification subgroups. Our general approach is to compute G and the Qs

simultaneously, by working within K as much as possible and, when necessary, also
working inside suitable resolvents L.

Section 4 gives some details on the computation of G and the Qs, these details
naturally depending strongly on the field at hand. The cases (p, n) = (2, 4), (2, 6),
and (3, 6) are roughly equal in complexity, and we treat them all systematically
here, giving a table for each summarizing the much larger table on our database.
These low degree cases are too simple to provide good illustrations of our general
technique: very few resolvents are needed and all the “hidden” slopes s are easy to
find. So we give also one representative example each from (2, 8) and (3, 9). These
two cases are very much more intricate than the previous three, and we treat them
systematically in the companion papers [JR3] and [JR2].

Section 5 begins by describing the two interactive features of our database, what
we call the p-adic identifier and the Galois root discriminant calculator. These
are designed to maximize the utility of our database for applications. Section 5
concludes by briefly discussing three applications of the sort we have in mind,
[APSo], [APSi], and [JR4].

2. A complete irredundant list of defining polynomials

In this section, we describe how we chose the polynomials defining the fields in
the database. Sections 2.1–2.3 deal with unramified, tamely ramified, and degree p
extensions of Qp, respectively. Section 2.4 deals with the remaining cases — wildly
ramified extensions of composite degree.
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2.1. Unramified extensions. Unramified extensions of Qp are very simple, there
being a unique one for each degree n, up to isomorphism. The only task is to choose
a defining polynomial for each. In the sequel, we will usually drop qualifiers like
“up to isomorphism,” as they are always present and our meaning is clear.

Since the unramified extension of degree n of Qp corresponds to the unique degree
n extension of the residue field, one option is to use Conway polynomials [HL] for
these extensions since they are a standard choice for defining Fpn over Fp (e.g., they
are used in the computer systems magma and gap). However, Conway polynomials
can be expensive to compute, primarily because they are required to satisfy a
compatibility condition which is not used here. Instead, our selection of defining
polynomials described below is in the same spirit, but with fewer restrictions.

We pick the “first” polynomial over Fp which has roots which are primitive,
i.e., of multiplicative order pn − 1. Here we use the same lexicographic ordering
as for Conway polynomials. Namely, we write polynomials in the form f(x) =
xn− an−1x

n−1 + an−2x
n−2− · · · and g(x) = xn− bn−1x

n−1 + bn−2x
n−2− · · · with

ai and bi between 0 and p − 1 inclusive. Then we define f < g iff there exists k
with ai = bi for all i > k and ak < bk. This normalization also defines how we
will represent the polynomials in Z[x] ⊂ Qp[x]. To compute these polynomials,
we simply step through them in the given ordering until an irreducible primitive
polynomial is found. Note that for defining Qp itself, our choice leads to the “degree
one Conway polynomial” x− r, where r is the first primitive root modulo p.

2.2. Tame extensions. Our starting point is the following standard result on
totally ramified tame extensions, whose statement is based on [PR, Theorem 7.2].

Proposition 2.2.1. Let Ku be an unramified extension of Qp with degree f . Let
ζ ∈ Ku be a primitive (pf − 1)st root of unity. Let e be a positive integer with p - e.

(1) The totally ramified degree e extensions of Ku, are given by roots of poly-
nomials he,r(x) = xe − ζrp.

(2) Two such polynomials he,r and he,r′ yield Ku-isomorphic extensions iff
r ≡ r′ (mod gcd(e, pf − 1)).

(3) If a monic polynomial g satisfies g ≡ he,r (mod p2), then g defines the
same extension as he,r.

Proof: The first part is stated in [PR, Theorem 7.2]. Moreover, the backward
implication of Part (2) follows from the proof given there, and the forward direction
then follows from the statement in [PR] that the he,r give mutually non-isomorphic
fields for 0 ≤ r < g.

The final part follows from a standard Krasner’s Lemma argument, or from the
construction used in [PR, Theorem 7.1–7.2] to produce defining polynomials; the
coefficients are picked from a set which is only well-defined modulo p2. �

To apply the proposition, we take Ku = Qp[α]/h(α) where h is the degree f
polynomial chosen in the previous subsection. We consider xe − αrp, as the third
part of Proposition 2.2.1 lets us replace ζ by α.

To move from an irreducible polynomial k(x) over Ku to a polynomial over Qp,
we take norms, in the sense of the product of conjugates under Gal(Ku/Qp). The
norm of k(x) is irreducible over Qp iff the conjugates of k(x) are distinct. Since
Gal(Ku/Qp) is generated by Frobenius σ, with

σ(α) ≡ αp (mod p),
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the polynomials xe−αrp give conjugate extensions for r which differ multiplicatively
by a power of p. Thus, taking the norm of xe−αrp to Qp[x], we get an irreducible
polynomial iff the orbit of r in Z/(pf − 1)Z under multiplication by p has length f .

Our recipe for picking defining polynomials of tamely ramified extensions with
given e and f is as follows. Let g = gcd(e, pf − 1) and partition Z/gZ into orbits
under multiplication by p. These orbits correspond to the desired extensions of Qp.
For each orbit O ⊆ Z/gZ, we lift its elements to Z/(pf − 1)Z and consider them
under multiplication by p.

Now, there are two cases. If there is an orbit of length f , take the smallest r ≥ 0
contained in such an orbit. Then the norm of xe−αrp to Qp[x] will be irreducible.
Otherwise, if there are no lifts to an orbit of length f for our orbit O, we take
the smallest r ≥ 0 representing an element of the orbit and use the norm of the
polynomial k(x) = (x+α)e−αrp to Qp[x]. This fallback polynomial is guaranteed
to give a defining polynomial for our extension by the following proposition.

Proposition 2.2.2. Let Ku = Qp(α) be the unramified extension of Qp of degree
f , where α generates the multiplicative group modulo p. If r ∈ Z and e is a positive
integer, then the norm of k(x) = (x + α)e − αrp to Qp[x] is irreducible over Qp.

Proof: If the norm of k(x) is reducible, then two conjugates of k(x) would be equal.
Letting σ ∈ Gal(Ku/Qp) denote the Frobenius automorphism, we get equality
of the degree e − 1 terms of these conjugates: eσa(α)xe−1 = eσb(α)xe−1 with
1 ≤ a, b < f . But this implies αpa ≡ αpb

(mod p). Since α reduces modulo p to an
element of order pf − 1, this implies a = b. �

To illustrate the procedure, suppose we want to generate the sextic tame ex-
tensions of Q5 with residue degree 2. We first construct the unramified quadratic
extension of Q5 by the procedure described in §2.1, giving Ku = Q5[α]/(α2−α+2).
Here g = gcd(e, pf−1) = gcd(3, 52−1) = 3. Multiplication by 5 on Z/3Z has two or-
bits, {1, 2} and {0}, so there will be two extensions. In the first case, {1, 5} ⊂ Z/24Z
is the prescribed lift, so we take the norm of x3 − 5α to get x6 − 5x3 + 50. For the
other orbit, the first orbit modulo 24 of length f = 2 reducing to {0} is {3, 15}.
Thus, we take the norm of x3 − 5α3 to get x6 + 25x3 + 200.

As an example where the last phase of the procedure is necessary, consider degree
12 extensions of Q5 with e = 6 and f = 2 so that g = gcd(6, 24) = 6. The orbit
{0} ⊂ Z/6Z has only lifts of size 1 in Z/24Z. So, we take the norm of (x+α)6− 5,
which is the irreducible polynomial x12 + 6x11 + 27x10 + 80x9 + 195x8 + 366x7 +
571x6 + 702x5 + 1005x4 + 1140x3 + 357x2 − 138x + 44.

2.3. Degree p ramified extensions of Qp. The six ramified quadratic extensions
of Q2 are given by x2 −D for D = −4, 12, ±8, and ±24, with ord2(D) being the
discriminant exponent c. Each of these six extensions has two automorphisms.
The rest of this subsection treats the case of p odd, which is different as the generic
degree p extension of Qp has just the identity automorphism.

Most of the information we need can then be extracted from [Am]. These fields
come in three families as shown in Table 2.1, which gives our preferred defining
polynomials.

Proposition 2.3.1. If p is an odd prime, Table 2.1 gives exactly one polynomial
for each isomorphism class of ramified degree p extension of Qp, where the degree
p field K has ramification exponent c, and the Galois closure Kg has Galois groups
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Table 2.1. Degree p ramified extensions of Qp, for p odd.

Family Parameters c G I

xp + apxλ + p
1 ≤a≤ p− 1
1 ≤λ≤ p− 1

(λ, a)6=(p− 1, p− 1)
p + λ− 1 Cp : Cd2 Cp : Cd1

xp − pxp−1 + p(1 + ap) 0 ≤ a ≤ p− 1 2p− 2 Cp Cp

xp + p(1 + ap) 0 ≤ a ≤ p− 1 2p− 1 Cp : Cp−1 Cp : Cp−1

and inertia groups as shown. In Table 2.1, d1 = (p− 1)/g where g = gcd(p− 1, c).
Also d2 = (p− 1)/(gcd((p− 1)/m, g)) where m is the order of aλ in F∗p.

Proof: Theorems 6 and 7 of [Am] show that the families given in Table 2.1 give
each ramified degree p extension of Qp exactly once. Computing the value of c
from an Eisenstein polynomial is well-known (see e.g., [Se1, §III.6]). This leaves
the determination of the Galois and inertia groups.

Let π be a root of one of the polynomials in Table 2.1. Then Section 2 of [Am]
gives an explicit description of the Galois closure of Qp(π) as Kg = Qp(π, γ) where
γp−1 ∈ Qp. Since Qp contains a primitive (p − 1)st root of unity, Qp(γ)/Qp is
Galois with cyclic Galois group and Kg/Qp(γ) is Galois of degree p, hence also
cyclic. Since the orders of these cyclic groups are relatively prime, the Galois and
inertia groups are semi-direct products of the form Cp : Cd for some d. All that
remains is to determine d in each case. For our second (resp. third) family, [Am]
shows one can take γ to be 1 (resp. a primitive p-th root of unity). In both of these
cases, Kg/Qp is clearly totally ramified, and d = 1 (resp. p− 1) for the Galois and
inertia groups.

For the first family, let d2 = [Qp(γ) : Qp] and let d1 be the tame degree. We
need to show that these are given by the formulas stated in the theorem. Note
g = gcd(p − 1, c) = gcd(p − 1, λ + p − 1) = gcd(p − 1, λ). Then [Am] gives the
unramified subextension of Kg as Qp(θ) where θg = λa, and γ above satisfies
γ(p−1)/g = θpλ/g. Clearly, the tame degree d1 = [Qp(γ) : Qp(θ)] = (p− 1)/g. Since
λa is prime to p, modulo p is it a (p − 1)/m power of a generator of F∗p, hence
[Qp(θ) : Qp] = g/ gcd((p− 1)/m, g). Thus,

d2 = d1 · [Qp(θ) : Qp] =
p− 1

g

g

gcd((p− 1)/m, g)
=

p− 1
gcd((p− 1)/m, g)

. �

2.4. Wild extensions of composite degree. The complexity of the unramified,
tamely ramified, and degree p cases just treated suggests that analogous recipes for
the remaining cases would have to be quite complex indeed. So instead, we treat the
five cases (p, n) = (2, 4), (2, 6), (3, 6), (2, 8), and (3, 9) individually. The problem
then becomes simply to find a defining polynomial for each degree n extension of
Qp for the given (p, n).

Pauli and Roblot give a general algorithm for solving this problem. One key
ingredient is Panayi’s p-adic root finding algorithm [Pa], [PR, Section 8] which
lets one determine whether two degree n fields Qp[x]/f1(x) and Qp[x]/f2(x) are
isomorphic and similarly lets one compute the number of automorphisms of a given
field Qp[x]/f(x). Another key ingredient is the mass formula [PR, Theorem 6.1]
which lets one determine when all fields have been found.



6 JOHN W. JONES AND DAVID P. ROBERTS

We used Pauli and Roblot’s approach for generating polynomials as needed.
However, in some special cases, we generated the polynomials instead by utilizing
complete lists of lower degree fields. We did this in two situations, fields which
contain an index 2 subfield, and degree 6 fields.

When computing degree n fields K with n even, one can take each field E of de-
gree n/2 and find its quadratic extensions by taking square roots of representatives
of E∗ modulo squares. This approach was helpful in generating many, although
certainly not all, of the 2-adic octic fields.

For degree 6 fields, most extensions are old fields in the terminology of [JR1, §3.2],
and can be computed by sextic twinning from lower degree fields. This approach is
illustrated in [JR1] for certain extensions of Q. Computing old fields by twinning
produces all 2-adic sextics and most of the 3-adic sextics. For all remaining cases
we used [PR].

3. Invariants associated to a given p-adic field

Let f(x) ∈ Z[x] be a degree n polynomial on one of our p-adic tables. In this
section, we discuss the invariants the tables present for the corresponding field
K = Qp[x]/f(x). Table 3.1 serves as a guide to the discussion, with the top line
indicating the subsection in which the corresponding invariant is discussed.

Table 3.1. The first six lines of the 2-adic quartic table, corre-
sponding to the fields with c ≤ 4.

3.1 3.1 3.1 3.1 3.3 3.5 3.5 3.4, 3.6 3.7 3.2
Galois
Slope GMS Deg 2

c e f d ε Polynomial G I Content Subs
0 1 4 ∗ 1 x4 − x + 1 C4 〈e〉 [ ]4 0 ∗
4 2 2 1 −1 x4 + 8x2 + 4 V4 C2 [2]2 1 ∗,−1,−∗
4 2 2 ∗ −1 x4 − x2 + 5 C4 C2 [2]2 1 ∗
4 2 2 −1 −i x4 + 2x2 + 4x + 4 D4 V4 [2, 2]2 3/2 ∗
4 2 2 −∗ −i x4 − 5 D4 V4 [2, 2]2 3/2 ∗
4 4 1 ∗ 1 x4 + 2x + 2 S4 A4 [4/3, 4/3]23 7/6

It is important to note that our numbering system for slopes differs from the
standard reference [Se1] by a shift of 1, in the sense that our ramification group
Gs is Gs−1 in this reference. With our convention, slopes s arise literally as slopes
∆c/∆n, as we explain in §3.4. In our convention, 0 corresponds to no ramification,
1 to tame ramification, and slopes s > 1 to wild ramification, and this is a useful
normalization in global contexts. Note also that our computations require only a
small part of [Se1]. For example, we don’t use the lower numbering system at all,
and thus we have no need of the transition functions between the lower and upper
numbering systems.

3.1. Basic Data. The field discriminant of K as an ideal is (pc) ⊆ Zp. The
largest unramified subfield of Ku of K has degree the residual degree f = [Ku :
Qp]. The ramification index is e = n/f = [K : Ku]. The entry d in the fifth
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column is the field discriminant considered as an element of Q×
p /Q×2

p . Here and
elsewhere, ∗ ∈ Q×

p /Q×2
p stands for the class of elements a ∈ Q×

p such that Qp(
√

a)
is the unramified quadratic field extension of Qp. With this notational convention,
Q×

2 /Q×2
2 = {1, ∗,−1,−∗, 2, 2∗,−2,−2∗} and otherwise Q×

p /Q×2
p = {1, ∗, p, p∗}.

We use number field commands in the computer program gp [PARI2] to compute c,
e, and f . The discriminant class d is also easy to compute with gp from polynomial
or number field discriminants.

3.2. Subfields and automorphisms. Our database gives all subfields of K of
degrees 2, . . . , n − 1, with each subfield hyperlinked to its entry in the database.
Quadratic subfields are listed by the codes described in the previous subsection. An
unramified subfield of degree d > 2 is listed as simply Ud. All other subfields are
listed by their chosen defining polynomial. To determine if one field is a subfield of
another, we make use of Panayi’s p-adic root finding algorithm mentioned in §2.4,
and apply it to each candidate subfield from the database with compatible degree,
discriminant exponent, and residual degree.

Similarly, we use Panayi’s root finding algorithm to find the number of automor-
phisms of K. Note that the automorphism group Aut(K/Qp) has order dividing
n = [K : Qp]. Often, especially when p > 2, |Aut(K/Qp)| = 1. Then the Ga-
lois group Gal(Kg/Qp) introduced below tends to be large, having order at least
2n. At the other extreme, if |Aut(K/Qp)| = n then we can take Kg = K and so
Gal(Kg/Qp) = Aut(K/Qp).

3.3. Local root numbers. Our database gives the local root number ε(K) ∈
{1, i,−1,−i}. In this subsection, we sketch the context set up by the standard
reference [T] and then completely describe our method of calculation. In this sub-
section only, we allow p also to be ∞, writing Q∞ = R.

Local root numbers, ε(ρ) ∈ C×, are defined for representations ρ : Gal(Qp/Qp) →
GLn(C). They have absolute value 1, are multiplicative in the sense that ε(ρ1 ⊕
ρ2) = ε(ρ1)ε(ρ2), and for p 6= ∞, any unramified representation has root number
1. The root number for the trivial and sign characters of Gal(C/R) are 1 and −i
respectively [T, §1]. Finally, if ρ : Gal(Q/Q) → GLn(C) is a global representation
whose restrictions to decomposition groups are denoted by ρp, the global root num-
ber ε(ρ) equals the product of local root numbers

∏
ε(ρp), and ε(ρ) figures into the

functional equation of the Artin L-function L(ρ, s).
If K is an n-dimensional p-adic algebra then Gal(Qp/Qp) acts on the set of

its n embeddings into Qp. One thus has a representation ρK : Gal(Qp/Qp) →
Sn ⊂ GLn(C). For every field K on our database, we give the corresponding root
number ε(K) := ε(ρK). These particular root numbers play a central role in Galois
embedding problems; for statements and examples see e.g. [JR1], especially page
144. The ε(K) are simpler than general root numbers in several ways. First, as will
be clear from our method of computation, ε(K) is always in {1, i,−1,−i}. Second,
for K a number field, the global root number ε(K) =

∏
ε(Kp) is always 1 [T, §3

Cor. 1]. Finally, computing general local root numbers requires the evaluation of
Gauss sums over general p-adic fields. We avoid evaluating Gauss sums for our
particular local root numbers as follows.

Let (·, ·) be the Hilbert symbol on Q×
p /Q×2

p ×Q×
p /Q×2

p . By definition (d, a) is 1
if a is a norm from Qp(

√
d) and −1 otherwise. The pairing is bimultiplicative, and
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Table 3.2. Some Hilbert symbols (d, a) and local root numbers
ε(d). For d, a ∈ Q×/Q×2 with images dp, ap ∈ Q×

p /Q×2
p , one has

the standard facts
∏

(dp, ap) = 1 and
∏

ε(dp) = 1. These product
formulas let one deduce the p-adic tables from the p = ∞ table.

p = ∞ p = 2 p ≡ 3 (4) p ≡ 1 (4)
−1 ∗ −1 2 ∗ p ∗ p

−1 − ∗ + + − ∗ + − ∗ + −
−1 + − + p − − p − +
2 − + +

ε −i ε 1 i 1 ε 1 −i ε 1 1

so determined by the values given on the generators in Table 3.2. Also one knows
a priori that for all p, one has (∗, ∗) = 1.

Let ρd be the quadratic character ρd(a) = (d, a). Table 3.2 also gives some
quadratic root numbers ε(d) := ε(ρd). The remaining quadratic root numbers ε(d)
can then be computed by the general formula [T, §3 Cor. 2]

ε(d1)ε(d2) = (d1, d2)ε(d1d2).

The main ingredient in our calculation is the formula

(1) ε(K) = (2, d) HW(K) ε(d),

obtained by combining the main theorems of [D] and [Se3]. In this formula, d ∈
Q×

p /Q×2
p is the discriminant class of K. Also HW(K) is the p-adic Hasse-Witt

invariant of the quadratic form TraceK/Qp
(x2) on K.

For the cases (p, n) = (2, 4), (2, 6), (3, 6), and (2, 8) we compute HW(K) di-
rectly, by diagonalizing the quadratic form TraceK/Qp

(x2) and applying the for-
mula HW(

∑
ajx

2
j ) =

∏
j<k(aj , ak). For the remaining cases on our database, this

direct computation is unnecessary as there are general formulas for HW(K), giving
the following general formulas for ε(K).

Proposition 3.3.1. Let K/Qp be an extension with discriminant class d, ramifi-
cation index e, and inertial degree f . If K has odd degree and p is odd, then

(2) ε(K) = (2 (−1)(ef−1)/2, d)ε(d).

If K has odd degree and p = 2, then

(3) ε(K) = 1.

If K is tame and p is odd, then

(4) ε(K) =


1 if e is odd,
(2e, p)(−1)(p−1)(f+1+e)/4ε(d) if e is even but f is odd,
−(d, p)(−1)(p−1)f/4 if e and f are both even.
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Proof: The calculation establishing Formula (2) is

ε(K) = (2, d) HW(K)ε(d)

= (2, d) · ((−1)(ef−1)/2, d)cp(K) · ε(d)

= (2 (−1)(ef−1)/2, d)ε(d).

Here the second equality translates to the notation of [CP] and the third equality
applies Theorem II.6.4 of [CP] which says cp(K) = 1.

The remaining two cases are tame and so c = (e− 1)f . If p = 2, then c is even
and moreover d ∈ {1, ∗}. If p is odd, then c is odd exactly when e is even and f is
odd. In this case, d ∈ {p, ∗p} while otherwise d ∈ {1, ∗}. This partial knowledge of
d naturally simplifies many formulas; for example, if d ∈ {1, ∗} then ε(d) = 1.

For Formula (3), one has

ε(K) = (2, d) HW(K)ε(d)

= (2, d) · (d, (−1)(n−1)/2)(−1)(n
2−1)/8c2(K) · 1

= (d, 2 (−1)(n−1)/2)(−1)(n
2−1)/8(−1)(f

2−1)/8

= (d, 2)(−1)(e
2−1)/8

= ((−1)(e−1)/2e, 2)(−1)(e
2−1)/8

= 1.

The second equality is again a translation into the notation of [CP], although this
time requiring a factor not present in the case p odd. The third equality ap-
plies Corollary 1 of [E]. The fourth equality removes the sign (−1)(n−1)/2 because
(1,−2) = (1, 2) = 1 and (∗, 2) = (∗,−2) = −1. The fifth equality is explained in the
next paragraph. The last equality holds because both factors are 1 if e ≡ 1, 7 (8)
and −1 if e ≡ 3, 5 (8).

For the equality d = (−1)(e−1)/2e in Q×
2 /Q×2

2 , note that the odd degree 2-
adic field K can be presented as K = Ku[x]/(xe − a) for some a ∈ Ku. So its
discriminant class in Q×

2 /Q×2
2 is

d = NormKu/Qp
(disc(xe − a))d(Ku)

= NormKu/Qp
((−1)(e−1)/2eeae−1) · 1

= (−1)f(e−1)/2efeNormKu/Qp
(a)e−1

= (−1)(e−1)/2e.

Finally, Formula (4) is derived in a similar fashion, this time using Theorem II.6.5
of [CP] to evaluate HW(K), and then consolidating several cases. Note that Part
Ia of this theorem contains a misprint and should read cp〈F 〉 = −(p, dis〈F 〉)p. �

3.4. Slopes. For each subfield L of K, let (n(L), c(L)) be the corresponding point
in the n-c plane. Let U be the lower boundary of the convex hull of these points,
so that U runs from (1, 0) to (n(K), c(K)). Figure 3.1 presents both the points and
U in the case K = Q2(

√
−3,

√
−1,

√
2). In this case, the points at (2, 2) and (4, 6)

each come from two subfields while the points (2, 3) and (4, 8) each come from four
subfields. The remaining points, that is the points on U , each come from just one
subfield.
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1 2 3 4 5 6 7 8
n

0

4

8

12

16

c

Figure 3.1. Slopes as illustrated by K = Q2(
√
−3,

√
−1,

√
2).

The slopes of K are by definition the slopes of the segments forming U , so 0,
2, and 3 in the example. Suppose the segment with slope s goes from (n1, c1) to
(n2, c2). Then we define the additive multiplicity of s to be the horizontal length
as = n2 − n1 and the multiplicative multiplicity to be the quotient ms = n2/n1.
Trivially one has

1 +
∑

s

as =
∏
s

ms = n(K),∑
s

ass = c(K).

In our example, these equations are 1+(1+2+4) = 23 = 8 and 1 ·0+2 ·2+4 ·3 = 16
respectively.

Ramification theory says that in general the endpoints and turning points of U
each come from exactly one subfield, and we call these subfields distinguished. The
distinguished subfields will be described Galois-theoretically in §3.6 below, where
the uniqueness will be clear. From the Galois-theoretic description it is also clear
that the distinguished fields form a chain. In the example, the chain is

(5) K0
1 ⊂ K0

2 ⊂ K4
4 ⊂ K16

8 .

Here we are superscripting by c and subscripting by n, these invariants character-
izing the subfield among all subfields of K, as already mentioned above.

Another labeling scheme is also useful. For s ∈ [0,∞), let Ks be the largest
distinguished subfield with all slopes < s. Similarly, for s ∈ [0,∞) let Ks+ be
the largest distinguished subfield with all slopes ≤ s. It is natural to regard the
allowed upper indices as forming a single totally ordered set, by declaring that s+
is infinitesimally larger than s. In the above example, K0

1 , K0
2 , K4

4 , and K16
8 are

Kσ for any σ in {0}, [0+, 2], [2+, 3], and [3+,∞) respectively.
In general K0 = Qp, K0+ = K1 is the maximal unramified subfield, and K1+ is

the maximal tamely ramified subfield. Thus [K0+ : K0] = f and [K1+ : K1] = et,
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where et is the prime-to-p part of e. Besides 0 and 1, the only other s for which
[Ks+ : Ks] can be greater than 1 are rational numbers greater than 1. These s are
by definition the wild slopes of K and their multiplicative multiplicities [Ks+ : Ks]
have the form p`s for `s a positive integer.

To compactly indicate the slopes of K we write [· · · ]fet
where the brackets in-

clude the wild slopes in increasing order, each such s repeated `s times. We call
this symbol the slope content of K, writing SC(K). Here “content” is meant to
evoke “Jordan-Hölder content,” because in the Galois context of §3.6, each slope s
corresponds to an abelian subquotient Qs of the Galois group G. In writing slope
contents, we allow ourselves to omit 1’s as subscripts and superscripts. Thus the
slope content of our example field Q2(

√
−3,

√
−1,

√
2) is [2, 3]21 = [2, 3]2.

3.5. Galois and inertia groups. Let Kg be a splitting field over Qp of our given
polynomial f(x) and let G = Gal(Kg/Qp). Similarly, let I be the inertia group
Gal(Kg/Kg,u).

If K is tame with residual degree f and ramification index e, then G is an
extension of the cyclic group I = Ce by the cyclic group G/I = Cu. Here u is a
multiple of f computed by the following proposition.

Proposition 3.5.1. Let K = Qp(ζ, βe,r) be a tamely ramified extension, as in
Proposition 2.2.1, so that ζ is a primitive (pf − 1)st root of unity and βe,r is a
root of he,r(x) = xe − ζrp. Then, the Galois closure Kg of K is Qp(ζ, βe,r, ζe, ω)

where ζe is a primitive eth root of unity, and ω is a primitive
(pf − 1)e

gcd((p− 1)r, pf − 1)
root of unity. Moreover, Kg,u = Qp(ζ, ζe, ω) and the residue degree u of Kg is the
smallest positive integer which satisfies the three conditions: f | u, e | (pu− 1), and
e · (pf − 1) | (pu − 1) · gcd

(
(p− 1)r, pf − 1

)
.

Proof: The extension K/Qp(ζ) is obtained by taking an eth root, and so the split-
ting field of he,r(x) over Qp(ζ) is generated by βe,r and ζe. The field Kg is the
splitting field of he,r(x) and all of its conjugates with respect to Gal(Qp(ζ)/Qp).
Frobenius, as a generator of Gal(Qp(ζ)/Qp), takes he,r(x) to he,pr(x). Hence Kg

contains the ratios of roots of he,pr(x) by roots of he,r(x), which in turn are roots
of xe − ζr(p−1). Thus, Kg contains L = Qp(ζ, βe,r, ζe, ω). The field L contains
the roots of the conjugates he,pjr of he,r, since their roots are roots of he,r times
powers of ω. Thus, Kg = L and Kg,u, the unramified subfield of Kg, is then clearly
Qp(ζ, ζe, ω). Finally, the three divisibility conditions correspond in order to Kg,u

containing ζ, ζe and ω. �

If the degree of the given tame field K is more than 11, our database just gives
the general form Ce.Cu of the Galois group. For n ≤ 11, it completely identifies
the Galois group, as discussed in the next paragraph. If K is a ramified degree p
extensions of Qp, the Galois group G is always a semi-direct product Cp : Cu, with
u given in Proposition 2.3.1.

In degrees ≤ 11, our database always gives the isomorphism type of G as a
permutation group of the roots of f(x) in Kg. We give G as a transitive subgroup
of Sn, well-defined up to conjugation; this is exactly the sense in which permutation
groups are classified in the literature. Each tabulated G is actually a link which
gives information about the corresponding group. Generally, the database gives
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the inertia group I as well. However in some cases, such as when I is intransitive
without a standard name, the database just gives |I|.

It remains to explain how we compute G when K is wildly ramified of composite
degree. In this case, as is typical in computing Galois groups, we usually do not
compute Kg explicitly, but rather collect enough information to eliminate all but
one of the finite number of possibilities for G.

One source of information is the invariants described in §3.1-§3.4. Also we only
try to compute G when we have already identified the Galois group of each of
the proper subfields of K. When this information does not suffice, we introduce
resolvent fields L and work with them. So the L are fields built directly from K
and embeddable in Kg. To keep computations feasible, it is important to keep the
degree L small. Details for our five individually treated (p, n) are given in the next
section.

3.6. Galois slopes. The constructions of §3.4 applied now to Kg give distinguished
subfields Kg,σ for σ of the form s or s+. The database gives its slope content
SC(Kg). Usually we write GSC(K) instead of SC(Kg) and speak of the Galois
slope content of K.

In this Galois setting, slopes can be described group-theoretically as follows.
Define Gσ to be the subgroup of G fixing Kg,σ. The Gσ form a decreasing family
of normal subgroups with intersection the identity subgroup. Let L be a subfield of
Kg, and let H be subgroup of G fixing L. Then one has the formula Lσ = L∩Kg,σ.

Define Qs = Gs/Gs+. One has

(6) [Ls+ : Ls] =
|HGs|
|HGs+|

≤ |Gs|
|Gs+|

= |Qs|,

a group-theoretic interpretation of multiplicative slope multiplicity. A straightfor-
ward way of computing GSC(K) is to use enough resolvents so that for every s one
resolvent sees all of Qs.

One can often avoid using so many resolvents by using general ramification-
theoretic facts. Well known such facts include that Q0 is cyclic, Q1 is cyclic with
order prime to p, each wild Qs is of the form C`s

p , and all the Gσ are normal in G.
Also useful are structural facts about each Qs as a module for the tame quotient
G/G1+. For example, suppose δs is the prime-to-p part of the denominator of s.
Then the image Q

1
of Q1 in the endomorphism ring of Qs has order δs. Moreover,

the algebra of endomorphisms Fp[Q
1
] is a finite field with pms elements, where ms

is the smallest integer such that δs divides pms −1. Thus whenever one sees a slope
s arise, one knows right away that ms divides `s.

3.7. Galois mean slope. Besides giving all the Galois slopes of K, our tables
also give their weighted mean, where the weight of a Galois slope s is its additive
multiplicity. Thus suppose K has Galois slope content [s1, . . . , sm]ut , with the si,
as always, given in increasing order. Then the Galois mean slope of K is

(7) GMS(K) =
c(Kg)
n(Kg)

=

(
m∑

i=1

p− 1
pi

sm+1−i

)
+

1
pm

t− 1
t

.

It is reasonable to view GMS(K) as the single number best measuring ramification
in Kg.
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4. Some details in the cases (p, n) = (2, 4), (2, 6), (3, 6), (2, 8), and (3, 9)

The general procedure outlined in §3.4–3.6 for passing from a p-adic field K to its
Galois group Gal(Kg/Qp) and Galois slope content GSC(K) has many branches.
The branch taken by a particular K depends on its Galois-theoretic details. In §4.1
and §4.2, we describe all branches of the computation in the quartic and sextic cases
respectively, and give summarizing tables. In §4.3 and §4.4, we present a typical
branch in the octic and nonic cases respectively.

4.1. Quartic 2-adic fields. There are five transitive subgroups of S4 up to con-
jugation. They are distinguished by their parity and the order of their centralizer
in S4. So the Galois group G associated to a quartic 2-adic field K = Q2[x]/f4(x)
is determined by its discriminant class d ∈ Q×

2 /Q×2
2 and the order of Aut(K/Q2).

Table 4.1. Quartic transitive permutation groups

G C4 V4 D4 A4 S4

Parity (computed via d ∈ Q×
2 /Q×2

2 ) − + − + −
Centralizer order (computed as |Aut(K)|) 4 4 2 1 1

If G = C4 or G = V4, one of course has GSC(K) = SC(K). Similarly, if G = D4

one can construct the octic field Kg and use it to directly calculate GSC(K). If
G = A4 or G = S4, then the resolvent cubic is cyclic or non-cyclic respectively,
with Galois slope content [ ]3 or [ ]23. Here SC(K) already contains two wild slopes,
completing the computation of GSC(K).

Table 4.2. Summary of the main invariants of the 59 quartic 2-
adic fields. Wild slopes which are in SC(K) are in bold.

c f G GSC(K) #
0 4 C4 [ ]4 1
4 1 S4 [4/3,4/3]23 1
4 2 V [2]2 1
4 2 C4 [2]2 1
4 2 D4 [2,2]2 2
6 1 A4 [2,2]3 1
6 1 D4 [2,2]2 2
6 2 V [3]2 2
6 2 C4 [3]2 2
6 2 D4 [2,3]2 2

c f G GSC(K) #
8 1 V [2,3] 4
8 1 D4 [2,3]2 2
8 1 S4 [8/3,8/3]23 2
9 1 D4 [2, 3,7/2] 8
10 1 D4 [2,3,7/2] 8
11 1 D4 [3,4]2 4
11 1 C4 [3,4] 8
11 1 D4 [2,3,4] 8

4.2. Sextic 2-adic and 3-adic fields. There are 16 transitive subgroups of S6 up
to conjugation, 12 of which are solvable (see, e.g., [BM]). Parities and centralizer
orders do not suffice to distinguish the 12 candidates for G, unlike the case for
quartics.

However, one can use the non-trivial outer automorphism of S6 to look at the
twin group Gt, which is a perhaps non-transitive subgroup of S6 [Ro]. Then, the
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Table 4.3. Solvable sextic transitive permutation groups. T10 =
C2

3 : C4 and T13 = C2
3 : D4 are self-twin. Otherwise, the Gt are

all intransitive, with the corresponding partition of six being given
by the subscripts.

G T1 T2 T3 T4 T5 T6
Twin group Gt C3C2C1 S3C

3
1 S3C2C1 A4C

2
1 S3C3 A4C2

Parity − − − + − −

G T7 T8 T9 T10 T11 T13
Twin group Gt S+

4 C2 S4C
2
1 S3S3 T10 S4C2 T13

Parity + − − + − −

partition of six one obtains gives more than enough information to distinguish the
twelve G, as indicated by Table 4.3.

On the level of fields, given K we immediately compute the twin sextic algebra
Kt and factor it; this twin sextic algebra is given in the database as a special feature
for sextics. The two ambiguities are distinguished by the parities of the groups: T7
is even while T11 is odd, and T10 = C2

3 : C4 is even while T13 = C2
3 : D4 is odd.

To compute the Galois slope content GSC(K) we distinguish two cases, according
to whether Kt factors or not. If Kt factors then there are at most two factors
different from Qp. If there is just one such factor L, then GSC(K) = GSC(L) and we
are done. Suppose there are two factors L′ and L′′ with Galois slope contents [S′]u

′

t′

and [S′′]u
′′

t′′ . If S′ and S′′ are disjoint then GSC(K) is computed as [S′∪S′′]ulcm(t′,t′′).
Here lcm(u′, u′′) divides u which in turn divides lcm(u′, u′′) gcd(t′, t′′). Determining
the correct u is a simple matter not involving wild ramification. When S′ and S′′

are not disjoint then the correct wild slopes are those appearing in the degree 8 or
degree 9 field L′ ⊗ L′′. Finally, if Kt doesn’t factor one must have G = C2

3 : C4

or G = C2
3 : D4. This can occur only for p = 3 with C2

3 the wild ramification
subgroup. Since C4 and D4 each act irreducibly on C2

3 , the single visible Galois
slope must also coincide with the hidden Galois slope.

4.3. An octic 2-adic example. We illustrate our general procedure of computing
Galois groups and Galois slope content with the polynomial

f8(x) = x8 − 4x4 + 4x2 − 2.

Throughout, we subscript fields by their degree and superscript them by their dis-
criminant exponent as in (5), and so in particular we have K = K25

8 = Q2[x]/f8(x).
The element y = x2 of K25

8 generates a quartic subfield K8
4 = Q2[y]/f4(y) with

f4(y) = y4 − 4y2 + 4y − 2.

The complete list of subfields is

K0
1 ⊂ K8

4 ⊂ K25
8 ,

and so the slope content of K25
8 is [8/3, 8/3, 17/4].

Construct a resolvent field for K25
8 as follows. Let ±α, ±β, ±γ, ±δ be the

complex roots of f8(x). Form the monic octic polynomial g8(x) with complex roots
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Table 4.4. Summary of the main invariants of the 47 sextic 2-adic
fields and the 75 sextic 3-adic fields. Galois groups are described
in their twin form to emphasize that most of these fields can be
directly built from fields of lower degree. Wild slopes which are in
SC(K) are in bold.

Sextic 2-adic fields
c f Gt GSC(K) #
0 6 C3C2 [ ]6 1
4 2 S3 [ ]23 1
4 2 S3C3 [ ]63 1
6 1 S4 [4/3,4/3]23 1
6 3 C3C2 [2]2 2
6 3 S+

4 C2 [4/3,4/3]23 1
6 3 A4 [2,2]3 1
6 3 A4C2 [2,2]6 1
6 3 A4C2 [2, 2,2]3 2
8 1 S3C2 [2]23 2
8 1 S4C2 [4/3, 4/3,2]23 2
9 3 C3C2 [3]3 4
9 3 A4C2 [2, 2,3]3 4
10 1 S+

4 C2 [8/3,8/3]23 2
10 1 S4 [8/3,8/3]23 2
10 1 S4C2 [2, 8/3,8/3]23 4
11 1 S3C2 [3]23 4
11 1 S4C2 [4/3, 4/3,3]23 4
11 1 S4C2 [8/3, 8/3,3]23 8

Sextic 3-adic fields
c f Gt GSC(K) #
0 6 C3C2 [ ]6 1
3 3 C3C2 [ ]32 2
6 1 C2

3 : D4 [5/4,5/4]24 2
6 2 S3C2 [3/2]22 2
6 2 C2

3 : D4 [3/2,3/2]22 2
6 2 S2

3 [3/2,3/2]22 1
7 1 S3 [3/2]2 2
7 1 S3C2 [3/2]22 2
7 1 S3C3 [3/2]32 2
8 2 C3C2 [2]2 3
8 2 S3 [2]2 1
8 2 S3C3 [2]6 1
8 2 S3C3 [2,2]2 3
8 2 C2

3 : C4 [2,2]4 2
9 1 C3C2 [2]2 6
9 1 S3C2 [2]22 2
9 1 S3C3 [3/2,2]2 6
9 1 S3S3 [3/2,2]22 2
10 1 C2

3 : D4 [9/4,9/4]24 6
10 2 S3C2 [5/2]22 3
10 2 S2

3 [3/2,5/2]22 3
11 1 S3C2 [5/2]22 3
11 1 S3 [5/2]2 3
11 1 S3C3 [5/2]2 3
11 1 S3S3 [2,5/2]22 3
11 1 S3C3 [2,5/2]2 9

(α± β ± γ ± δ)2 /2. Then one has

g8(x) = x8 + 16x6 + 64x5 + 368x4 + 512x3 + 384x2 + 512x + 576.

The polynomial g8(x) is irreducible over Q2 defining a field L26
8 . The complete list

of subfields is
L0

1 ⊂ L3
2 ⊂ L26

8 ,

and so the slope content of L26
8 is [3, 23/6, 23/6].

Now the largest the Galois group G can be is the wreath product 2 oS4 = 24 : S4

and so one has |G| ≤ 27 · 3. The polynomial discriminant of f4(y) is −2811 giving
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the discriminant class ∗, as Q2(
√
−2811) is unramified over Q2. So 2 divides |Q0|.

Since 3 divides the denominator of a slope, 3 divides |Q1|. Since we have found six
wild slopes, our analysis concludes with

(8) Gal(Kg/Q2) = 24 : S4 = T44 and GSC(K) =
[
2
2
3
, 2

2
3
, 3, 3

5
6
, 3

5
6
, 4

1
4

]2
3

.

4.4. A nonic 3-adic example. When a slope occurs to high multiplicity, the
situation can be more subtle to analyze. Consider in general a nonic 3-adic field K9

with a 3-adic subfield K3. Applying the resolvent construction of [JR2, Eq. 10], one
gets a nonic 3-adic algebra K9x also containing K3. Applying the same resolvent
construction again, one gets a third nonic 3-adic algebra K9xx, also containing K3.
If K9xx is a field, then the orders of the corresponding Galois groups G, G9x, G9xx

are exactly divisible by 34, 33, and 32 respectively. At issue is to determine the four
slopes s1 ≤ s2 ≤ s3 ≤ s4 corresponding to the factors of 3 in |G|.

Let v1 ≤ v2 be the two slopes of K9xx. Let v3 be the largest slope of K9x and
let v4 be the largest slope of K9. If the vi are all distinct, then it is obvious that
they form the desired Galois slopes of K. Two explicit examples of this situation
can be extracted from Table 6.2 of [JR2].

Now consider the example K = K9
9 defined by

f9(x) = x9 − 2x6 + 2.

The element y = x3 generates the unramified cubic subfield K0
3 . The fields K9

9x

and K9
9xx are respectively defined by

f9x(x) = x9 − 9x7 − x6 + 27x5 + 6x4 − 28x3 − 9x2 + 3x− 1,

f9xx(x) = x9 − x6 + x3 + 1.

In this example, (v1, v2, v3, v4) are readily computed to be (0, 3/2, 3/2, 3/2). So the
question is whether the wild slope 3/2 actually has multiplicity three, or whether
there are some hidden wild slopes s strictly less than 3/2.

The answer given in [JR2] says that in fact always v2 ≤ v3 ≤ v4 and always
repetitions truly correspond to multiplicities. This is because G has just one normal
subgroup of order 3 and one normal subgroup of order 9, the kernels of G → G9x

and G → G9xx respectively. This uniqueness forces that it is always the largest
slope which disappears at each step of the resolvent construction.

Since K0
3 is unramified, one has Gal(K0

3/Q3) ∼= A3 and 3 divides |Q0|. Since 2
divides the denominator of a wild slope, we know 2 divides |Q1|. From Table 3.2
of [JR2], there is then only one possibility for the Galois group G = Gal(Kg/Q3).
Our analysis of K concludes with the identifications

(9) Gal(Kg/Q3) = [33 : 2]3 = T22 and GSC(K) =
[
1
1
2
, 1

1
2
, 1

1
2

]3
2

.

5. Interactive features of the database and global applications

Our database has two interactive features, the p-adic identifier and the GRD
calculator. We describe these in §5.1 and §5.2 respectively. In §5.3 we indicate
the role our database plays in three applications; [APSo] and [APSi] use the p-adic
identifier and [JR4] uses the GRD calculator.
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5.1. The p-adic identifier. The p-adic identifier lets one input a polynomial
f(x) ∈ Z[x] and a prime p. It uses gp to factor the polynomial over Qp to high
p-adic precision, and then uses Panayi’s root finding algorithm to identify each
factor. It returns the entries from the database corresponding to the factor fields
of Qp[x]/f(x). As simple examples, inputting (f8(x), 2) and (f9(x), 3) yields the
conclusions (8) of §4.3 and (9) of §4.4 respectively.

5.2. The GRD calculator. A single numerical measure of ramification in a poly-
nomial f(x) ∈ Z[x] is the root discriminant of its splitting field in C, what we call
its Galois root discriminant. The GRD calculator accepts a polynomial f(x) ∈ Z[x]
as input. When all factors of all completions of Q[x]/f(x) are in the database, it
returns lower and upper bounds on the Galois mean slope βp of each ramifying
prime p, and hence bounds on the Galois root discriminant

∏
pβp . In favorable

cases, certainly when the p-adic algebra has only one wild factor, the lower and
upper bounds on βp agree. In the remaining cases, it is typically easy to start
with the bounds and continue by hand to exactly determine βp. As simple exam-
ples, the polynomials f8(x) and f9(x) from §4.3 and §4.4 have global Galois groups
24 : S4 and T24 of order 384 and 324 respectively. The GRD calculator yields
2373/96111/2 ≈ 49.01 and 28/9379/54111/2 ≈ 30.64 for the respective Galois root
discriminants.

5.3. Sample global applications. The paper [APSo] searches in parametrized
families of SL3(2) number fields, extracting those number fields which meet certain
local conditions. Then it finds automorphic cohomology classes on GL3 which
numerically match these number fields, the weight of the matching class being
governed by the local behavior of 2 in the number field. The paper [APSi] finds
A6 fields which embed in 3.A6 fields and finds automorphic cohomology classes
on GL3 which numerically match the 3.A6 fields. Here the local behavior of the
prime 3 governs the more complicated obstructions to the embedding problem.
The paper [JR4] finds all Galois fields K with certain given Galois groups and root
discriminants less than certain bounds.

All three of these papers use our database repeatedly, but none of them enter
into the corresponding detailed local analyses. This is exactly in keeping with the
philosophy we put forth in §1.1: the goal of the database is to make as many local
issues as possible utterly routine, so that attention can be focused elsewhere.
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