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Number Fields Ramified at One Prime

John W. Jones1 and David P. Roberts2

1 Dept. of Mathematics and Statistics, Arizona State Univ., Tempe, AZ 85287
jj@asu.edu

2 Div. of Science and Mathematics, Univ. of Minnesota–Morris, Morris, MN 56267
roberts@morris.umn.edu

Abstract. For G a finite group and p a prime, a G-p field is a Galois
number field K with Gal(K/Q) ∼= G and disc(K) = ±pa for some a. We
study the existence of G-p fields for fixed G and varying p.

For G a finite group and p a prime, we define a G-p field to be a Galois
number field K ⊂ C satisfying Gal(K/Q) ∼= G and disc(K) = ±pa for some a.
Let KG,p denote the finite, and often empty, set of G-p fields.

The sets KG,p have been studied mainly from the point of view of fixing p
and varying G; see [Har94], for example. We take the opposite point of view,
as we fix G and let p vary. Given a finite group G, we let PG be the sequence
of primes where each prime p is listed |KG,p| times. We determine, for various
groups G, the first few primes in PG and their corresponding fields. Only the
primes p dividing |G| can be wildly ramified in a G-p field, and so the sequences
PG which are infinite are dominated by tamely ramified fields.

In Sections 1, 2, and 3, we consider the cases when G is solvable with length
1, 2, and ≥ 3 respectively, using mainly class field theory. Section 4 deals with
the much more difficult case of non-solvable groups, with results obtained by
complete computer searches for certain polynomials in degrees 5, 6, and 7.

In Section 5, we consider a remarkable PGL2(7)-53 field given by an octic
polynomial from the literature. We show that the generalized Riemann hypoth-
esis implies that in fact PPGL2(7) begins with 53. Sections 6 and 7 construct
fields for the first primes in PG for more groups G by considering extensions of
fields previously found. Finally in Section 8, we conjecture that PG always has
a density, and this density is positive if and only if Gab is cyclic.

As a matter of notation, we present G-p fields as splitting fields of polyno-
mials f(x) ∈ Z[x], with f(x) chosen to have minimal degree. When KG,p has
exactly one element, we denote this element by KG,p. To avoid a proliferation of
subscripts, we impose the convention that m represents a cyclic group of order
m. Finally, for odd primes p let p̂ = (−1)(p−1)/4p, so that K2,p is Q(

√
p̂).

One reason that number fields ramified only at one prime are interesting is
that general considerations simplify in this context. For example, the formalism
of quadratic lifting as in Section 7 becomes near-trivial. A more specific reason is
that algebraic automorphic forms ramified at no primes give rise to number fields
ramified at one prime via associated p-adic Galois representations. For example,
the fields KS3,23, KS3,31, KS̃4,59 and KSL±2 (11),11 here all arise in this way in the



context of classical modular forms of level one [SD73]. We expect that some of
the other fields presented in this paper will likewise arise in similar studies of
automorphic forms on larger groups.

Most of the computations carried out for this paper made use of pari/gp
[PAR06], in both library and command line modes.

1 Abelian groups

For n a positive integer, set ζn = e2πi/n, a primitive nth root of unity. The field
Q(ζn) is abelian over Q, with Galois group (Z/n)×, where g ∈ (Z/n)× sends ζ to
ζg. The Kronecker-Weber theorem says that any finite abelian extension F of Q
is contained in some Q(ζn) with n divisible by exactly the set of primes ramifying
in F/Q. These classical facts let one quickly determine KG,p for abelian G, and
we record the results for future reference.

Proposition 1.1 Let p be a prime and G a finite abelian group of order d =
pam, with gcd(p, m) = 1.

1. If p is odd, there exists a G-p field if and only if G is cyclic and m | p − 1.
In this case, |KG,p| = 1, and KG,p/Q is tamely ramified if and only if a = 0.

2. There exists a G-2 field if and only if for some j ≥ 1, G ∼= 2j or G ∼= 2j × 2.
One has |K2j×2,2| = 1, |K2,2| = 3, and, for j ≥ 2, |K2j ,2| = 2. All fields in
KG,2 are wildly ramified.

For odd p, a defining polynomial for Kd,p is given by the minimal polynomial
of the trace TrQ(ζpa+1 )/Kd,p

(ζpa+1). Explicitly,

fd,p(x) =
d∏

u=1

(x−
(p−1)/m∑

j=1

e2πigu+dj/pa+1
),

where g is a generator for the cyclic group (Z/pa+1)×. For example,

f7,7(x) = x7 − 21x5 − 21x4 + 91x3 + 112x2 − 84x− 97,

f7,29(x) = x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x + 1.

Irreducibility of fd,p(x) follows from the stronger fact that fd,p(x + (p − 1)/m)
is p-Eisenstein.

2 Length two solvable groups

The next case beyond abelian groups is solvable groups G of length two. This
case also essentially reduces to a classical chapter in the theory of cyclotomic
fields. Let K be a G-p field.

The case p = 2 needs to be treated separately; it doesn’t yield any fields for
the G considered explicitly below. We restrict to the case of odd p, in which
case Gab is necessarily cyclic and there is a unique field KGab,p = KG′ ⊆ K.
The cyclicity of Gab forces G to be a semidirect product G′:Gab. The following
is very similar to a statement discovered independently in [Hoe07].



Proposition 2.1 Let K be a G-p field with p 6= 2, so that G = G′:Gab as above.
Then if p does not divide |G′|, the extension K/KGab,p is unramified.

The proof considers the compositum KQ(ζpk) where KGab,p ⊆ Q(ζpk) and then
shows and uses that Q(ζpk) has no tame totally ramified extensions.

Proposition 2.1 says that when p is odd and |G′| is coprime to p the set KG,p

is indexed by Gab-stable quotients of Cl(KGab,p) which are Gab-equivariantly
isomorphic to G′. Defining polynomials for fields in KG,p can then often be
computed using explicit class field theory functions in gp.

The simplest case is this setting is dihedral groups D` = `:2 with ` and p dif-
ferent odd primes. The group 2 must act on Cl(K2,p) by negation. If the quotient
by multiples of `, Cl(K2,p)/`, is isomorphic to `r, then KD`,p has the structure of
an (r−1)-dimensional projective space over F` and thus |KD`,p| = (`r−1)/(`−1).
The general case is similar, but group-theoretically more complicated. In partic-
ular, one has to keep careful track of how Gab acts.

In the table below, we present some cases where G is a length two solvable
group with Gab acting faithfully and indecomposably on G′. In this setting, |Gab|
and |G′| are forced to be coprime. We list the first few primes p for which there
is a tame G-p extension. If there happens to be a wildly ramified G-p extension
as well, we record the prime in the column pw. A prime listed as p(j) signifies
that there are j different G-p fields.

G Gab pw Tame Primes
S3 2 3 23, 31, 59, 83, 107, 139, 199, 211, 229, 239, 257, 283, 307, 331, 367
D5 2 47, 79, 103, 127, 131, 179, 227, 239, 347, 401, 439, 443, 479, 523
D7 2 7 71, 151, 223, 251, 431, 463, 467, 487, 503, 577, 587, 743, 811, 827
D11 2 11 167, 271, 659, 839, 967, 1283, 1297, 1303, 1307, 1459, 1531, 1583
D13 2 191, 263, 607, 631, 727, 1019, 1439, 1451, 1499, 1667, 1907, 2131
A4 3 163, 277, 349, 397, 547, 607, 709, 853, 937, 1009, 1399, 1699, 1777
7:3 3 313, 877, 1129, 1567, 1831, 1987, 2437, 2557, 3217, 3571, 4219
F5 4 5(2) 101, 157, 173, 181, 197, 349, 373, 421, 457, 461, 613, 641, 653(2)

32:4 4 149, 293, 661, 733, 1373, 1381, 1613, 1621, 1733, 1973, 2861, 3109
F7 6 7 211, 463, 487, 619, 877, 907, 991, 1069, 1171, 1231, 1303, 1381

Sample defining polynomials are

f7:3,313(x) = x7 − x6 − 15x5 + 20x4 + 33x3 − 22x2 − 32x− 8,

f32:4,149(x) = x6 − 5x4 − 9x3 − 31x2 − 52x− 17.

Note that direct application of class field theory would give defining polynomials
of degree 21 and 12 respectively.

Suppose G is such that the action of Gab on G′ is faithful and decomposes
G′ as N1×N2. Suppose Gab acts on Ni through a faithful action of its quotient
Qi

∼= Gab/Hi. Put Gi = Ni:Qi. Then KG,p can be constructed directly from
KG1,p and KG2,p by taking composita. The simplest case is when |N1| and |N2|



are coprime. Then KG,p consists of the composita K1K2 as Ki runs over KGi,p.
In particular, |KG,p| = |KG1,p| · |KG2,p|. Similarly, if Gab acts on G′ through
a faithful action of its quotient Q, then KG,p is empty if KGab,p is empty, and
otherwise consists of KGab,pK with K running over KG′:Q,p. First primes for
some groups of these composed types are

G 32:2 22:6 3:4 (3× 22):6 3:8 7:4 33:2 34:2
1
2S2

3 A42 1
24S3 A4S3

1
2S38 1

2D74 1
4S3

3
1
8S4

3

p 3299 163 229 547 257 577 3,321,607 1,876,623,871

A sample defining polynomial is

f(3×22):6,547(x) = fA4,547(x)fS3,547(x) = (x4−21x2−3x+100)(x3−x2−3x−4).

On the table, the first description of G gives G′:Gab and the second emphasizes
the compositum structure. The case of 3r:2 = 1

2r−1 Sr
3 has been studied inten-

sively in the literature. With gp, it is easy to determine that p = 3,321,607 is
minimal for 33:2. The smallest p for 34:2 comes from [Bel04].

3 General solvable groups: the case G = S4

For a general solvable group G, one can in principle proceed inductively via the
quotients of G using p-ray class groups. For F a number field, let Clp(F ) be the
p-ray class group of F . This group is infinite, as e.g. Clp(Q) = Z×p . However,
for any positive integer m, the quotient Clp(F )/m is finite. Let F̃ be a maximal
abelian extension ramified only at p with Galois group killed by m. Then by
class field theory Gal(F̃ /F ) = Clp(F )/m.

To carry out the induction efficiently, one works with typically non-Galois
number fields F of degree as low as possible. As an example that we will return
to in Section 8, take G to be the length three solvable group S4. To compute
KS4,p, we start from a list of cubic polynomials fi(x) with splitting fields running
over KS3,p. We compute Cl2(Q[x]/fi(x))/2 ∼= 2r. For each of the 2r−1 order two
quotients of this group, we find a corresponding sextic polynomial gi,j(x). For
fixed i, there will be one polynomial with Galois group 6T2

∼= S3. The remaining
sextic polynomial are grouped in pairs, according to whether they have the same
splitting field in KS4,p. One member of each pair has Galois group 6T7

∼= S4 and
the other has Galois group 6T8

∼= S4. The first primes in PS4 are

λp\s 0 1 2
4 2713, 2777(2), 2857, 3137 59, 107, 139, 283(2), 307 229(2), 733, 1373, 1901

211 2777, 7537, 8069, 10273 283, 331, 491, 563, 643 229, 257, 761, 1129(2)

Here primes are sorted according to the quartic ramification partitions λp and
λ∞ = 2s14−2s, as explained in the next section. For a given cubic resolvent, let
m4 and m211 be the number of corresponding S4 fields with the indicated λp.
From the underlying group theory, the possibilities for (m4,m211) are (0, 2j − 1)



and (2j , 2j − 1) for any j ≥ 0. There are thirteen primes ≤ 307 on the S3

list, and the table illustrates the possibilities (0, 0), (1, 0), (2, 1), and (0, 1) by
{23, 31, 83, 199, 211, 239}, {59, 107, 139, 307}, {229, 283}, and {257} respectively.

4 Non-solvable groups

In [JR99,JR03] we describe how one can computationally determine all primitive
extensions of Q of a given degree n which are unramified outside a given finite
set of primes by means of a targeted Hunter search. Here we employ this method
to find the first several G-p fields with G = A5, S5, A6, S6, GL2(3), and S7. All
together, the results presented in this section represent several months of CPU
time. In each case, the first step is to quickly verify that there are are no wildly
ramified fields.

For a tamely ramified prime p, the ramification possibilities are indexed by
partitions of n, with λ = 11 · · · 11 indicating unramified and λ = n totally
ramified. If the partition has |λ| parts, then the degree n field Q[x]/f(x) has
discriminant p̂n−|λ|. For fixed n and varying λ, the search for all such fields has
run time roughly proportional to p−|λ|(n−2)/4. As usual, we say that λ is even
or odd according to the parity of its number of even parts, i.e. according to the
parity of n− |λ|.

For G = An we can naturally restrict attention to even λ. For G = Sn we can
restrict attention to odd λ, since the Galois fields sought contain the ramified
quadratic Q(

√
p̂). Similarly for the septic group GL3(2), we need only search

λ = 7, 421, 331, and 22111. Finally, the fields Q[x]/f(x) sought have local root
numbers ε∞ and εp with ε∞εp = 1; see e.g. [JR06]. One has ε∞ = (−i)s with
s the number of complex places. If all parts of λp are odd then εp = 1. Thus
whenever all parts of λp are odd, the fields we seek are totally real; this fact
reduces search times by a substantial factor in each degree.

We now describe our results in degrees 5, 6, and 7 in turn. For the purposes
of the next section, the last three columns of the tables give p-ray class group
information in terms of elementary divisors. For a field F , we let Cltp(F ) be the
tame part of its p-ray class group. Thus Cltp(Q) is cyclic of order p−1; in general,
Cltp(F ) is finite because of the tameness condition. To focus on the information
which turns out to be interesting, we define clp(F ) to be the product of the 2- and
3-primary parts of Cltp(F ) and abbreviate clp(Q) = clp. Further degree-specific
information is given below.

The four fields in our A5 table with λ = 221 are all in Table 1 of [BK94],
which lists all non-real A5 fields with discriminant ≤ 20832. The paper [DM06],
for the purposes of constructing even Galois representations of prime conductor,
focuses on totally real fields with λp = 5, 311, and 221 under the respective
assumptions that p ≡ 1 modulo 5, 3, and 4 respectively. It finds the first primes
in these three cases to be 1951, 10267, and 13613. Thus [DM06] skips over our
fields with primes 1039 and 4253 because of its congruence conditions.



Theorem 4.1. There are exactly five A5-p fields with p ≤ 1553 and five S5-p
fields with p ≤ 317 as listed below. Moreover, the minimal prime for an A5-p
field with λ = 311 is p = 4253.

p λ s fA5,p(x) clp(F5) clp(F6) clp
653 221 2 x5 + 3x3 − 6x2 + 2x− 1 4·3 8·2 4

1039 5 0 x5 − 2x4 − 414x3 + 4945x2 − 16574x + 5191 2·2·3·3 8·2·3 2·3
1061 221 2 x5 − x4 − 4x3 + 15x2 + 32x + 16 4·3 8·2 4
1381 221 2 x5 − 2x4 + 8x3 − 18x2 − x− 36 4·3·3 8·2·3 4·3
1553 221 2 x5 − x3 − 6x2 + 16x− 1 16·9 8·4 4

...
4253 311 0 x5 − 2x4 − 10x3 + 23x2 − 6x− 4 2·2·4·3 8·4 4

p λ s fS5,p(x) clp(F5) clp(F6) clp
101 32 2 x5 − x4 − 6x3 + x2 + 18x− 4 4·2 4·4 4
151 32 1 x5 − 2x4 − x3 + 7x2 − 13x + 7 2·3 8·3 2·3
269 41 2 x5 − x4 − 15x3 − 11x2 + 11x− 10 4 4·4 4
281 32 2 x5 − 2x4 + 17x3 − 25x2 + 38x− 13 8 16·2 8
317 41 2 x5 − 2x4 − 14x3 + 28x2 + 75x− 175 4 4·4·2 4

A Galois A5 or S5 field can be presented by either an irreducible quintic
or sextic polynomial, with corresponding fields F5 = Q[x]/f5(x) and F6 =
Q[x]/f6(x). One can pass back and forth between F5 and F6 through sextic
twinning, as explained with examples in e.g. [JR99]. In our cases, the maps
Cltp(Fn) → Cltp(Q) are isomorphisms on ` primary parts for ` 6= 2, 3.

Similarly, a Galois A6 and S6 field corresponds to a pair of non-isomorphic
sextic fields interchanged by sextic twinning. Below we give a defining polynomial
for one of these fields F6 but not its twin F t

6 . Exactly as in the quintic case,
the parts of Cltp(F ) and Cltp(F

t) not coming from Clp(Q) are entirely 2- and
3-primary.

A sextic A6 or S6 field and its twin will have the same ramification partition
λp with the exception of the interchanges 6 ↔ 321, 33 ↔ 3111, 222 ↔ 21111.
The interchanges help in conducting targeted Hunter searches since one needs
only search the second partition which is easier in each case.

Theorem 4.2. There are exactly two Galois A6-p fields with p ≤ 1677 and
seven Galois S6-p fields with p ≤ 1423 as listed below. Moreover, the minimal
prime for an A6-p field with λ = 2211 is p = 3929.

p λ s fA6,p(x) clp(F6) clp(F t
6) clp

1579 42 2 x6 − x5 + 41x4 − 349x3 + 12x2 + 3099x + 2851 2·3·3 2·2·3·3 2·3
1667 42 2 x6 − 2x5 − 39x4 + 60x3 + 380x2 + 1267x + 100 2·3 2·2·3 2

...
3929 2211 2 x6 − x5 − 3x4 + 9x3 − 8x2 + 2x− 1 8·8·3 8·2·3 8



p λ s fS6,p(x) clp(F6) clp(F t
6) clp

197 6 2 x6 + 788x− 197 4·2 4·2 4
593 321 2 x6 − 2x3 − x2 + 58x− 88 16·2 16·2 16
929 321 2 x6 − 3x5 − x4 + 4x3 + 56x− 32 32·2 32·2 32
977 6 2 x6 − 977x3 + 7816x2 − 20517x + 17586 16 16 16

1109 321 2 x6 − 10x3 − 61x2 − 41x− 218 4·4 4 4
1301 411 2 x6 − 2x5 + 5x4 − 36x3 − 24x2 + 32x− 57 4 4·2 4
1409 321 2 x6 − x5 − 7x4 − 30x3 − 41x2 − 177x + 191 128 256·2·2 128

In our septic cases we give the entire tame class groups because for the second
S7 field the prime 5 also behaves non-trivially.

Theorem 4.3. There is exactly one GL3(2)-p field with p ≤ 227 and exactly
two S7-p fields with p ≤ 191.

p λ s fGL3(2),p(x) Cltp(F7) Cltp(F
t
7) Cltp(Q)

227 421 3 x7 + 2x5 − 4x4 − 5x3 − 4x2 − 3x + 10 2·2·2·113 2·2·113 2·113

p λ s fS7,p(x) Cltp(F7) Cltp
163 52 3 x7 − 2x6 − 19x4 + 65x3 + 39x2 + 3x + 1 2·81 2·81
191 3211 3 x7 − 2x6 + x5 − x4 + 3x3 − 8x2 + 7x− 2 2·5·5·19 2·5·19

5 PGL2(7)

The Klüners-Malle website [KM01] contains the polynomial

f0(x) = x8 − x7 + 3x6 − 3x5 + 2x4 − 2x3 + 5x2 + 5x + 1

defining a PGL2(7)-53 field K0 with octic ramification partition 611. In com-
parison with our previous results on first elements of PG for nonsolvable G, the
prime 53 is remarkably small. In fact,

Proposition 5.1 Assuming the generalized Riemann hypothesis, K0 is the only
Galois PGL2(7)-p field with p ≤ 53.

Proof. Let f(x) ∈ Z[x] be an octic polynomial defining a PGL2(7)-p field with
p ≤ 53. We will use Odlyzko’s GRH bounds [Odl76] to prove that K = K0. To
start, since K has degree 336, its root discriminant is at least 24.838.

We first consider the case where p 6∈ {2, 3, 7} so that ramification is tame.
Let λp be the octic ramification partition of K, and let e be the least common
multiple of its parts. As λp must be odd and match a cycle type in PGL2(7), the
possibilities are λp = 22211, 611, or 8. The root discriminant of K is then p(e−1)/e

where e = 2, 6, or 8. Thus p ≥ 24.838e/(e−1) which works out to p > 616.926,



p > 47.221, and p > 39.302 in the three cases. Thus either e = 6 and p = 53 or
e = 8 and p ∈ {41, 43, 47, 53}.

Suppose for the next two paragraphs that e = 8. Then the p-adic field
Qp[x]/f(x) is a totally ramified octic extension of Qp whose associated Ga-
lois group Dp is a subgroup of PGL2(7). But, a totally ramified octic extension
of Qp has Dp = 8T1, 8T8, 8T7, or 8T6 depending on whether p ≡ 1, 3, 5, or 7
respectively modulo 8. Since 8T8 and 8T7 are not isomorphic to subgroups of
PGL2(7), one must have p ≡ ±1 (mod 8) when e = 8. Thus p ∈ {41, 47}.

If p were 41, then the compositum K4,41K would have degree (336·4)/2 = 672
and root discriminant 417/8 ≈ 25.8. But a degree 672 field has root discriminant
≥ 27.328, a contradiction proving p 6= 41. Similarly, if p were 47, then the com-
positum KD5,47K would have degree (336 · 10)/2 = 1680 and root discriminant
477/8 ≈ 29.05. But a degree 1680 field has root discriminant ≥ 29.992 by [Odl76],
a contradiction proving p 6= 47. Thus, in fact, e 6= 8.

Now suppose p ∈ {2, 3, 7}. For p = 2 and 3, there are a number of possi-
bilities for the decomposition group Dp. However the maximum possible root
discriminant for K would be 24 = 16 and 313/6 ≈ 10.81 respectively, each of
which is less than 24.838. For p = 7, the field K is not totally real because it
would contain Q(

√
−7). So Khare’s theorem [Kha06] applies, showing that there

would exist a modular form of level 1 over F7 associated to K. But by [Ser75],
representations associated to such modular forms are reducible.

Finally, suppose K were a PGL2(7)-53 extension different from K0. Then the
compositum K0K would have degree 3362/2 = 56448 and so root discriminant
at least 36.613 by Odlyzko’s bounds. However also K0K has root discriminant
535/6 ≈ 27.35, a contradiction proving that in fact K = K0. ut

6 Groups of the form 2r.G and 3.G for non-solvable G

In this section, we start from the groups G of Section 4. We use the fields there
and the corresponding class group information to construct G̃-p fields with G̃ of
the form 2r.G and 3.G.

Proposition 6.1 The polynomials displayed in this section define G̃-p fields,
with p as small as possible for the given G̃.

In each case except for G̃ = 3.A6, there is only one Galois field corresponding to
the minimal prime; for 3.A6 there are three, differing by cubic twists. The fields
in Section 4 often give rise to the next few primes in these PG̃ as well.

For the case G̃ = 2r.G, we considered all the fields F = Q[x]/f(x) for
each f(x) appearing in Theorems 4.1, 4.2, and 4.3. For each such field F , we
computed the quadratic extension corresponding to each order two character of
clp(F ). Among the defining polynomials found were

f34
24.A5,1039(x) = x10 − 149x8 − 15640x6 − 50311x4 − 36993x2 − 1369,

f37
24.S5,101(x) = x10 + 2px6 − 32px4 + p2x2 − p2,



f285
25.S6,197(x) = x12 + 4px8 − 4px6 + 3p2x2 + 4p2,

f33
23.GL3(2),227

(x) = x14 + 33x12 + px10 + 3px8 − 52px6 − 62px4 + p2x2 − p2.

Here and below, subscripts indicate G̃ and p. Superscripts give the T -number of
G̃ to remove ambiguities. Also we express coefficients by factoring out as many
p’s as possible. This makes the p-Newton polygon visible, and thus sometimes
gives information about p-adic ramification. For example, f37

24.S5,101(x) factors
over Q101 as a totally ramified sextic times a totally ramified quartic; thus the
discriminant of the given decic field is 1018.

Necessarily, to ensure minimality in the sextic and septic cases, we also
worked with the twin fields F t, likewise using clp(F t). Defining polynomials
appearing here were

f277
25.A6,1667(x) = x12 + 341x10 − 303x8 + 10158x6 − 2998x4 + 216x2 + 1,

f286
26.A6,1579(x) = x12 − 109x10 + 1100x8 + 2649x6 − 567637x4 + 661px2 − 4356p,

f287
25.S6,197(x) = x12 + 9x10 − 75x8 − 9x6 + 3px4 − 2px2 + p.

The two degree 25 extensions of KS6,197 are disjoint. The group 14T33 is the
non-split extension of GL3(2) by 23, to be distinguished from the semidirect
product 14T34

∼= 8T48.
The case G̃ = 3.G is attractive because one can quickly understand the 3-

ranks of all the class groups printed in Theorems 4.1, 4.2, and 4.3. First, if p ≡
1 (3), the extension K3,p contributes 1 to the 3-rank in all three columns. Second,
in the A5 cases, the abelian extension F15

∼= KV over F5
∼= KA4 contributes

an extra 1 to the the 3-rank of clp(F5). This accounts for the full 3-rank except
in the three A6 cases. The extra 3’s printed in the columns clp(F6) and clp(F t

6)
are all accounted for by fields with Galois group the exceptional cover 3.A6.
Specializing the lifting results of [Rob], an A6-p field with defining polynomial
f(x) embeds in a 3.A6-p field if and only if Qp[x]/f(x) is not the product of two
non-isomorphic cubic fields. This is the case for all three of our A6 fields, and a
defining polynomial for the smallest prime is

f3.A6,1579,a(x) = x18 − 6x17 − 23x16 + 211x15 − 283x14 − 115x13 − 2146x12+
6909x11 − 3119x10 + 9687x9 − 35475x8 − 3061x7 + 47135x6 + 14267x5

− 13368x4 − 19592x3 − 10421x2 − 4728x− 297.

When p ≡ 1 (3), each non-obstructed field in KA6,p gives three fields in K3.A6,p,
differing by cubic twists. When p ≡ 2 (3), each non-obstructed field in KA6,p

gives rise to just one field in K3.A6,p.
There is a similar but more complicated theory of lifting from S6 fields to

3.S6 fields [Rob]. The first step in our setting is to look at the 3-ranks of clp(F6⊗
Q(
√

p̂)) and clp(F t
6 ⊗Q(

√
p̂)). A necessary condition for the existence of a 3.S6

field is that both of these 3-ranks are at least 1. This occurs first for p = 593.
Indeed there is a unique lift, with defining polynomial

f3.S6,593(x) = x18−4x17−15x16+131x15+50x14−2686x13+1430x12+32366x11

− 37880x10− 282470x9 + 672468x8 + 2272632x7− 6021114x6− 15149054x5

+ 18548349x4 + 59752280x3 + 15265273x2 − 89821887x− 96674958.



7 Groups of the form 2.G

Let K be a G-p field. Let G̃ be a non-split double cover of G. The quadratic
embedding problem in our context asks whether K embeds in a G̃-p field K̃.
This section is similar in nature to the last; however, degrees here are forced to
be larger, and relevant class groups often cannot be computed. We replace the
class group considerations with a more theoretical treatment.

Let c ∈ G be complex conjugation, and let {c1, c2} be its preimage in G̃. An
obviously necessary condition for the existence of K̃ is that c1 and c2 both have
order ≤ 2; the other possibility is that they both have order 4. For general K,
there can be local obstructions not only at ∞, but also at any prime ramifying
in K with even ramification index. However, in general, by the known structure
of the 2-torsion in the Brauer group of Q, the set of obstructed places is even,
and there are no further global obstructions. In our one-prime context, p is
obstructed exactly when ∞ is obstructed. Thus the above necessary condition
is also sufficient for the existence of K̃.

When the embedding problem is known to be solvable, we compute defining
polynomials for the quadratic overfields as follows. As usual, for K, we have the
flexibility of considering defining polynomials corresponding to any subgroup H
of G such that the intersection of H with its conjugates is trivial. To be able to
pass to the desired overfields, we need to choose H so that the induced double
cover H̃ → H is split. Following e.g. Section 5.4.4 of [Coh00], we carefully choose
a degree [G : H] defining polynomial f(x) so that the splitting field for f(x2)
solves the embedding problem. If

√
p̂ ∈ K, then KG̃,p consists of one field, the

splitting field of f(x2). If
√

p̂ 6∈ K, then KG̃,p consists of two fields, the splitting
fields of f(x2) and f(p̂x2). If one field is real and the other is imaginary, we
distinguish the two by the subscripts r and i respectively; if both have the same
type, we use instead a and b. A particularly simple case is when the ramification
index at p is odd, i.e. when all parts of the ramification partition for f(x) are
odd. Then K automatically embeds into two different K̃.

A general construction lets one “cancel obstructions” by working in a two el-
ement group as follows. Consider two different embedding problems of our type,
(K1, G1, G̃1) and (K2, G2, G̃2), with zi the order two element in the kernel of
G̃i → Gi. Let F = K1 ∩K2 with Q = Gal(F/Q). Then the Galois group of the
compositum is a fiber product: Gal(K1K2/Q) = G1 ×Q G2. One has a product
embedding problem of our type (K1K2, G1 ×Q G2, G̃1 ∗Q G̃2), where G̃1 ∗Q G̃2

is the central product (G̃1 ×Q G̃2)/〈(z1, z2)〉. The product embedding problem
is obstructed if and only if exactly one of the factor embedding problems is ob-
structed. We will use this construction with (K1, G1, G̃1) an obstructed embed-
ding problem with non-abelian G1, and (K2, G2, G̃2) the obstructed embedding
problem (K2r,p, 2r, 2r+1) with r = ord2(p− 1).

In the rest of this section, we will combine the general theory just reviewed
with earlier results of this paper, in particular proving the following proposition.

Proposition 7.1 The polynomials displayed in the remaining portion of this
section define G̃-p fields, with p as small as possible for the given G̃.



In our discussion, we will also identify first primes for some other groups, without
producing defining polynomials.

In general, for n ≥ 4, the group An has a unique non-split double cover Ãn.
This double cover extends to two distinct double covers of Sn. These two double
covers are distinguished by the cycle types 2s1n−s of the splitting involutions:
s ≡ 0, 1 (4) for S̃n and s ≡ 0, 3 (4) for Ŝn. In the case of n = 6, the two double
covers are interchanged by sextic twinning, reflecting the involution in conjugacy
classes 222 ↔ 21111.

In the A4 case, the only possible ramification partition at p is 31, which yields
the odd ramification index 3. Thus any A4-p field is totally real and embeds into
two Ã4 fields. An S4 field embeds in an S̃4 field if and only if s ≤ 1 and in a
Ŝ4 field if and only if s = 0. So the first primes in these cases are 59 and 2713,
by the table in Section 3. Since all elements of order 2 in S4 lift to elements of
order 4 in Ŝ4, the largest H we can take is 3. Defining polynomials are

fÃ4,163,i(x) = x8 + 9x6 + 23x4 + 14x2 + 1,

fS̃4,59(x) = x8 + 7x6 + 58x4 − 52x2 − 283,

fŜ4,2713(x) = x16 + 1773179px14 + 748029721760px12 + 158386491521428px10

+464227394803676px8 +170883278708p2x6 +23421860p3x4 +739p4x2 +p4.

An alternative point of view on the first two fields just displayed comes from
Ã4

∼= SL2(3) and S̃4
∼= GL2(3).

The first A5 field in Theorem 4.1 yields the first two Ã5 ∗ 4̃ fields, twists
of one another at p = 653; the minimal degree is 48, beyond the reach of our
computations. The second A5 field and the first two S5 fields in Theorem 4.1
yield

fÃ5,1039,r(x) = x24 − 1378x22 + 530449x20 − 61379655x18 + 1188832770x16

− 9638857366x14 + 38717668417x12 − 76991153229x10 + 64169595698x8

− 10073672645x6 + 435756634x4 − 150625x2 + 1,

fS̃5∗24̃,101(x) = x24 + p(2x22 + 5183x20 + 5018386x18 + 1719346983x16

+ 31145667541x14 + 191170958302x12 + 470365101611x10

+ 19509244311x8 − 98676327x6 − 10345828x4 − 139569x2 + 121)

fS̃5,151(x) = x40−33x38−398x36+5788x34+180619x32−1960647x30−10306409x28

+ 85964700x26 + 499284483x24 − 3672894736x22 + 3925357724x20

+ 1667363482x18 + 5017492392x16 + 2279641280x14 + 1575477871x12

+ 714220278x10 − 48630589x8 − 48329892x6 − 11843px4 + 155px2 − p.
Here again, there is an alternative viewpoint: Ã5

∼= SL2(5), and S̃5∗24̃ ∼= GL2(5).
From Theorem 4.2, the first p for Ã6 ∗ 2̃, Ã6 ∗ 4̃, and S̃6

∼= Ŝ6 respectively are
1579, 3929, and 197. The minimal degree is 80 in each case, and corresponds to
an action on F2

9 − {(0, 0)} via Ã6 = SL2(9).
From Theorem 4.3, the first two primes for Ŝ7 are 163 and 191. Here H = 7:6.

and so the minimal degree is 120. The other lift S̃7 has H = 7:3, and so requires



the even larger degree 240; it also requires larger primes as both 163 and 191
are obstructed. The first prime for SL2(7) ∗ 2̃ is 227, with defining polynomial

fSL2(7)∗2̃,227(x) = x32 + 351px30 + 9952243px28 + 144266253px26

+45335657253px24−1671679993p2x22+2492032310p2x20+873353354p2x18

+ 37974755524p2x16 + 104438863p3x14 + 243444277p3x12 − 91558170p3x10

+ 19220043p3x8 + 15382p4x6 + 2530p4x4 + 64p4x2 + p4.

This polynomial was calculated in two quadratic steps, starting from an octic
polynomial.

For q a prime power congruent to 3 modulo 4, a non-split quadratic lift
of PGL2(q) is the group SL±2 (q) of matrices of determinant plus or minus one.
From Proposition 5.1, under GRH the group SL±2 (7)∗2 4̃ first appears for p = 53.
The minimal degree is 64. Finally, consider the PGL2(11)-11 field corresponding
to 11-torsion points on the first elliptic curve X0(11). This field is perhaps the
most classical example in the subject of number fields ramified at one prime;
a defining dodecic equation can be obtained by substituting J = −64/297 into
Equation 325a of a 1888 paper of Kiepert [Kie88]. We find that a remarkably
simple equation for the SL±2 (11) quadratic overfield is

fSL±2 (11),11(x) = x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.

8 A density conjecture

If Gab is non-cyclic, then KG,p can only be non-empty for p = 2. We close with a
conjecture which addresses the behavior of |KG,p| in the non-trivial case that Gab

is cyclic. Our conjecture is inspired by a conjecture of Malle [Mal02] which deals
with fields of general discriminant, not just prime power absolute discriminant.

Conjecture 1 Let G be a finite group with |G| > 1 and Gab cyclic. Then the
ratio

∑
p≤x |KG,p|/

∑
p≤x 1 tends to a positive limit δG as x →∞.

The conjecture is certainly true if G is the cyclic group m. In fact, Ptame
m is the

set of primes congruent to 1 modulo m ,and so δm = 1/φ(m).
Bhargava [Bha07] has a heuristic which, when transposed from general fields

to fields with prime power absolute discriminant, gives a formula for δSn . As-
sume n ≥ 3 and, for the moment, n 6= 6 so that Sn has no non-trivial outer
automorphisms. Then any Galois extension K of Q with Galois group Sn has a
well-defined involutory partition λ∞ = 2s1n−2s corresponding to complex con-
jugation. Similarly, if K is not wildly ramified at p then it has a well-defined
partition λp corresponding to the tame p-adic ramification. If K is ramified at p
only, then λp must be an odd partition. The density that Bhargava’s transposed
heuristic gives for Sn-p fields with the indicated invariants is

δSn,s,λp
=

1
(n− 2s)!s!2s+1

. (8.1)



Here 1/((n− 2s)!s!2s) is the fraction of elements in Sn with cycle type 2s1n−2s.
The extra factor of 2 in the denominator of (8.1) can be thought of as coming
from the global root number condition ε∞εp = 1. Note that the right side of
(8.1) is independent of λp.

Summing over the possible s and then multiplying by the number of possible
λp gives the conjectured value for δSn

. For n = 6, all these considerations would
go through without change if we were working with isomorphism classes of sextic
fields. However, we have placed the focus on Galois fields, and there is one Galois
field for each twin pair of sextic fields. Accordingly, we need to divide the right
side of (8.1) by 2. The final conjectured values in degrees ≤ 7 are then

n 3 4 5 6 7
δSn

0.3 0.416 0.325 0.13194 0.161

Bhargava’s heuristic can be recast more group-theoretically to give a conjectural
formula for δG for arbitrary G. For length two solvable groups G = `r:Gab, the
δG one obtains is the same as that given by the Cohen-Lenstra heuristics applied
to the ` part of class groups of fields of the form KGab,p. Thus we expect e.g.
δA4 = 1/8 and hence, by automatic lifting and twisting as described in the
previous section, δÃ4

= 1/4.
The computations in [tRW03] for S3-p fields for several billion primes are

strongly supportive of Cohen-Lenstra heuristics in this setting, and hence our
expectation δS3 = 1/3. We have carried out similar computations for S4-p fields
for the first 106 primes ≥ 5:

S3 S4

(s, λ) (0, 21) (1, 21) (0, 211) (1, 211) (2, 211) (0, 4) (1, 4) (2, 4)
102 .02 .21 0 .03 .02 0 .12 .02
103 .050 .193 .002 .056 .031 .013 .077 .034
104 .0634 .2080 .0080 .0698 .0399 .0161 .0965 .0462
105 .06911 .22714 .01047 .08589 .04567 .01676 .10525 .04837
106 .073965 .234667 .013471 .097131 .050874 .018186 .111884 .052834
∞ .083 .25 .02083 .125 .0625 .02083 .125 .0625

Our S4 data roughly tracks the slowly convergent S3 data. There are more
fields with λp = 4 than with λp = 211, corresponding to the asymmetry noted
in Section 3; we expect this discrepancy to go away in the limit. For each λp, the
dependence on s already agrees well with the expected limiting ratios 1 : 6 : 3.

For n = 5 through 7, our very small initial segments of PG all have smaller
density than our conjectured value of δSn . This is to be expected, given the
behavior for n = 3 and 4. However, our determination of first primes 59, 101,
197, 163 at least reflects our expectation δS4 > δS5 > δS6 < δS7 , including the
perhaps surprising inequality δS6 < δS7 .
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