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MIXED DEGREE NUMBER FIELD COMPUTATIONS

JOHN W. JONES AND DAVID P. ROBERTS

Abstract. We present a method for computing complete lists of number fields

in cases where the Galois group, as an abstract group, appears as a Galois

group in smaller degree. We apply this method to find the twenty-five octic
fields with Galois group PSL2(7) and smallest absolute discriminant. We carry

out a number of related computations, including determining the octic field

with Galois group 23: GL3(2) of smallest absolute discriminant.

1. Introduction

1.1. Overview. Number theorists have computed number fields with minimal ab-
solute discriminants for each of the thirty possible Galois groups in degrees at most
7. In degrees 8 and 9, the minimal fields are known for the seventy-five solvable
Galois groups. All these minimal fields are available, together with references to
sources, on the Klüners-Malle database [KM01]. The minimal fields are also avail-
able, typically as first elements on long complete lists, at the online databases
[JR14a, LMF18].

The Klüners-Malle paper [KM01] also gives smallest known absolute discrimi-
nants for the five nonsolvable octic groups and the four nonsolvable nonic groups.
Despite the many years that have passed since its publication, rigorous minima
have not been established for these nine groups. In this paper, we address two of
the nine cases, proving that the absolute discriminants 3878 and 57172 presented
in [KM01] for the octic groups PSL2(7) and 23: GL3(2) are indeed minimal. These
cases are related through the exceptional isomorphism PSL2(7) ∼= GL3(2).

One element of our approach for finding the PSL2(7) minimum was suggested
already in [KM01]: any octic PSL2(7) field K8 has the same Galois closure as two
septic GL3(2) fields K7a and K7b. As the discriminants satisfy D7a = D7b | D8, one
can in principle establish minimality of the octic discriminant 218 by conducting
a search of all septic fields with absolute discriminant ≤ 218. We combine this
with the method of targeted Hunter searches, which requires us to analyze, on a
prime-by-prime basis, how discriminants either stay the same or increase when one
passes from septic to octic fields. This targeting based on discriminants makes the
computation feasible. We add several smaller refinements to make the computation
run even faster.

Our title refers to the general method of carrying out a carefully targeted search
in one degree to obtain a complete list of fields in a larger degree. Section 2 gives
background and then Section 3 describes the general method, using our case where
the two degrees are 7 and 8 as an illustration. Section 4 presents our minimality
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2 JOHN W. JONES AND DAVID P. ROBERTS

result for PSL2(7), improved in Theorem 1 to the complete list of twenty-five octic
PSL2(7) fields with discriminant ≤ 308. This section also presents corollaries giving
minimal absolute discriminants for certain related groups in degrees 16, 24, and 32.

Section 5 gives a second illustration of the mixed degree method, now with
degrees 5 and 6. Here we use the exceptional isomorphisms A5

∼= PSL2(5) and
S5
∼= PGL2(5) and Theorem 2 considerably extends the known list of sextic PSL2(5)

and PGL2(5) fields. We also explain in this section potential connections with
asymptotic mass formulas and Artin representations.

Our final section returns to groups related to the septic group GL3(2). Theorem 3
finds all alternating septics with discriminant≤ 127. The long runtime of this search
makes clear the importance of targeting for Theorem 1. However just the bound
127 is sufficient for our last corollary, which confirms minimality of the 23: GL3(2)
field with discriminant 57172.

1.2. Notation and conventions. We denote the cyclic group of order n by Cn.
We use N :H to denote a semi-direct product with normal subgroup N and com-
plement H.

A number field is a finite extension of Q, which we consider up to isomorphism.
If K/Q is such an extension with degree n, then its normal closure, Kg, is Galois
over Q. Moreover, Gal(Kg/Q) comes with a natural embedding into Sn, which is
well-defined up to conjugation. We denote the image of such an embedding, which
is a transitive subgroup of Sn, by simply Gal(K).

Transitive subgroups of Sn, considered up to conjugation, have been classi-
fied and indexed for small n, and is available through Magma [BCP97] and Pari
[PAR15], as well as though the Galois groups section of the LMFDB web site
[LMF18], which provides information on each such conjugacy class of subgroups for
n < 24. Here, we denote the jth subgroup by nTj. In §4.2 we use the classification
of nearly 3 million transitive subgroups of S32 which was completed more recently
in [CH08].

When several non-isomorphic fields have the same splitting field, we refer to them
as siblings. For example, fields K7a, K7b, and K8 as in the overview are siblings.
If K1 and K2 are siblings, then Gal(K1) ∼= Gal(K2) as abstract groups, but as
described above, the two Galois groups typically come with different embeddings
into Sn, possibly even for different n. We aim to exploit this difference where
possible for the computations in this paper.

While the nTj notation specifies both the degree n of the stem field and the
conjugacy class of the subgroup in Sn, the numeric identifier conveys no information
on the structure of the group. We use group names in the spirit of [CHM98],
which assigns standard names for the groups nTj indicating their structures as
permutation groups for n < 16. For example, 7T5 = GL3(2) and 8T37 = PSL2(7)
have natural transitive actons on the projective spaces P2(F2) and P1(F7) of orders 7
and 8 respectively. The third group mentioned in the overview is the group of affine
transformations of F3

2. Our notation emphasizes its semidirect product structure:
8T48 = 23: GL3(2).

It is often enlightening to shift the focus from the absolute discriminant |D| of
a degree n number field K to the corresponding root discriminant rd(K) = δ =
|D|1/n. We generally try to indicate both, as in the numbers 218 and 308 of the
overview.
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2. Background

Our method of mixed degree targeted Hunter searches is built on well-established
methods of searching for number fields, which we now briefly explain.

2.1. Hunter searches. A Hunter search, named for J. Hunter, is a standard tech-
nique for computing all primitive number fields of a given degree with absolute
discriminant less than a given bound [Coh00]. Here a number field K is primitive
if it has exactly two subfields, itself and Q. When the degree n is prime, as in our
cases n = 7 and n = 5 here, the primitivity assumption is automatically satisfied.

The only two inputs for a standard Hunter search are the degree and the dis-
criminant bound. Some implementations optimize for a particular signature which
can then be thought of as a third input, but here we search all signatures simultane-
ously. The computation itself is an exhaustive search for polynomials with integer
coefficients bounded by various inequalities.

2.2. Targeted Hunter searches. Targeting, introduced in [JR99], and refined
in [JR03], allows one to search for fields with particular large discriminants. One
carries out a Hunter search, but only for fields which match a given combination of
local targets. The targets, described below, determine both the discriminant and
the local behavior of the field at ramifying primes p. This latter information forces a
defining polynomial to satisfy congruences modulo several prime powers, and these
congruences greatly reduce the number of polynomials one needs to inspect.

To describe the targets more precisely, let p be a prime number and let K be
a degree n number field. Then K ⊗ Qp

∼=
∏g

i=1Kp,i where each Kp,i is a finite
extension of Qp. At its most refined level, a local target may be a single p-adic
algebra, up to isomorphism. In a few situations, we do work at this level. However
typically, one wants to treat natural collections of p-adic algebras as a single target.

Let Qunr
p be the unramified closure of Qp. Then, similar to the decomposition

above we have

(1) K ⊗Qunr
p
∼=

t∏
j=1

Lp,j ,

where each Lp,j is a finite extension of Qunr
p . Let ej be the ramification index of

the field Lp,j , and (p)cj its discriminant ideal. We note that the ej give the sizes
of the orbits of the p-inertia subgroup acting on the roots of an irreducible defining
polynomial for K. A typical local target is then a pair ((e1, . . . , et),

∑t
j=1 cj) with

the list of ej weakly decreasing. The ramification indices (e1, . . . , et) give a partition
of [K : Q], and the discriminant of the local algebra, which equals the p-part of the

discriminant of K, is (p)
∑

j cj .
A local target at p determines a list of congruences modulo some fixed power of

p. For tamely ramified primes we work modulo p, while we use higher powers for
wildly ramified primes. When there is more than one ramifying prime, the lists of
congruences are simply combined via the Chinese remainder theorem.

3. Mixed degree targeted Hunter searches

In a mixed degree targeted search, one has a Galois group G and transitive
permutation representations of two different degrees n < m. Each degree n field
Kn with Galois group G ↪→ Sn determines a degree m field Km with Galois group
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G ↪→ Sm. Targets are triples ((e1, . . . , et), cn, cm) where cn is the local discriminant
exponent for the small degree fields searched, while cm is the local discriminant
exponent of the larger degree fields actually sought. One uses the values pcm to
decide which combinations of targets to search, and ((e1, . . . , et), cn) to carry out
the actual search in degree n. We describe how one deals with the two degrees
here, often by using our first case with n = 7 and m = 8 as an example. Once we
have the degree n polynomials in hand, we compute the corresponding degree m
polynomials as resolvents using Magma [BCP97].

3.1. Tame ramification. The behavior of tame ramification under degree changes
is straightforward. Let K be a degree n number field, G its Galois group, and p a
tamely ramified prime. The inertia subgroup I for a prime above p is cyclic; let τ
be a generator. Via the given inclusion G ⊆ Sn, we let e1, e2, . . . , et be the cycle
type of τ . These match the ej of the local target described above. The exponent
of p in the discriminant of K is then given by

(2) cn =

t∑
j=1

(ej − 1) = n− t.

When one is considering also a second degree m, one just runs through the above
procedure a second time. In our first case, G ∼= GL3(2) ∼= PSL2(7), each row of
Table 1 represents a candidate for τ . The row then gives the corresponding pair of
partitions (λ7, λ8) and pair of discriminant exponents (c7, c8). These discriminant
exponents are computed from the partitions via formula (2).

Table 1. Cycle types and discriminant exponents for GL3(2) ∼=
PSL2(7) in degrees 7 and 8.

λ7 λ8 c7 c8
7 7,1 6 6
4,2,1 4,4 4 6
3,3,1 3,3,1,1 4 4
2,2,1,1,1 2,2,2,2 2 4

Note that if a prime p is tamely ramified in our pair of fields (K7,K8), then its
minimal contribution to the discriminant of the octic is p4. Thus, when searching for
octic fields with absolute discriminant ≤ B, we need only consider primes p ≤ 4

√
B.

Our largest search used B = 308, so p ≤ 900.
The relation D7 | D8 mentioned in the introduction is due to the fact that we

always have c7 ≤ c8, and that this inequality also holds for wildly ramified primes.
In two of the tame cases, one has equality, but in the other two tame cases one has
strict inequality. Our method using targeted searches makes use of the strictness
of these latter inequalities.

3.2. Wild ramification. An explicit description of the behavior of wild p-adic
ramification under degree changes becomes rapidly more complicated as ordp(G)
increases. We describe just our case G ∼= GL3(2) ∼= PSL2(7) here, as this case
represents the basic nature of the general case well.
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Since |G| = 23 ·3·7, the only primes which can be wildly ramified in a G extension
are 2, 3, and 7. For a subgroup of G to be an inertia group for a wildly ramified
prime p, it must be an extension of a cyclic group of order prime to p by a non-
trivial p-group. The candidates for a G = PSL2(7) extension are given in Table 2.
They run over all of the non-trivial proper subgroups of PSL2(7) up to conjugation,

Table 2. Wild ramification data for PSL2(7).

p I D λ7 λ8 (c7, c8)

7 C7:C3 C7:C3 7 7,1 (8, 8), (10, 10)
C7 C7, C7:C3 7 7,1 (12, 12)

3 S3 S3 3,3,1 6,2 (6, 8), (10, 12)
C3 C3, S3 3,3,1 3,3,1,1 (8, 8)

2 A4 S4 4,3 6,1 4,4 (6, 8), (10, 16)
D4 D4 4,2,1 8 (12, 22), (14, 24)
C4 C4, D4 4,2,1 4,4 (14, 22)
V V,D4, A4 2,2,2,1 4,1,1,1 4,4 (6, 12), (8, 16)
C2 C2, V, C4 2,2,1,1,1 2,2,2,2 (4, 8), (6, 12)

with the exception of two conjugacy classes of subgroups isomorphic to S4.
Each subgroup in the table is a candidate for being the inertia group for a wild

prime for only one prime. The horizontal lines separate the subgroups according
to this prime. The second column gives the isomorphism type of the candidate for
inertia, and the third column gives corresponding candidates for the decomposition
group. Over other 2-adic ground fields, A4 = I = D is possible, but not over Q2

since there is no ramified C3 extension of Q2.
The columns labeled λ7 and λ8 show the orbit sizes of the actions of I in the

degree seven and eight representations respectively. There are two possibilities for
inertia group A4 and V in degree 7, so we give both. The orbit sizes are helpful in
determining the data c7 and c8 in each case, and λ7 is the partition of 7 needed for
carrying out the targeted Hunter search.

In most cases, it is clear from Galois theory how to interpret the orbit sizes. For
example, inside a Galois A4 field, there are unique subfields of degrees 3 and 4 up to
isomorphism. So the 4 in the first A4 entry is for the usual quartic representation,
and the 3 is its resolvent cubic. More detailed computations with the groups allow
us to resolve the two ambiguities, which are as follows.

• A Galois D4 field has three quadratic subfields and three quartic subfields
(up to isomorphism). In the degree 7 partition 4,2,1, the 4 represents a
quartic stem field, say defined by a polynomial f , and then the 2 represents
the field obtained from a root of x2 −Disc(f).
• A V field has three quadratic subfields. In the line for V , the 2,2,2,1

represents the product of these quadratic fields and Q2.

The last column gives a list of candidate pairs (c7, c8), coming by analyzing the
corresponding local extensions. Some cases can be done using just Galois theory
and general properties of extensions of local fields. A simple approach, however,
which applies to all cases is to make use of the complete lists of the relevant local
fields [JR06, LMF18].
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For example, suppose 2 is wildly ramified with inertia subgroup isomorphic to
A4. Then, the decomposition group is S4 and from the tables of degree 4 extensions
of Q2, we see that there are three possibilities for a Galois S4 field with A4 as its
inertia subgroup. As degree 4 fields, one S4 has discriminant 24 and the other two
have discriminant 28. Computing the resolvents of these fields in degrees 3, 4, and
6, we see that the quartic field with discriminant 24 gives (c7, c8) = (6, 8) and the
two quartic fields with discriminant 28 give (c7, c8) = (10, 16). We note that in
both cases, the values for c7 do not depend on the partition λ7, which is relevant
in §3.3.4.

The list of targets for each prime is fairly straightforward to read off Table 2. For
example, for p = 3 we have only ((3, 3, 1), 6, 8), ((3, 3, 1), 8, 8), and ((3, 3), 10, 12).
With p = 2, one has ((4, 2, 1), 14, 24) from I = D4 and ((4, 2, 1), 14, 22) from I = C4;
however, only the latter gets used since it has the same partition and c7 and a
smaller value of c8.

3.3. Further savings. Various techniques can reduce the number of polynomials
that it is necessary to search. Again we illustrate these reductions by our first
case with G ∼= GL3(2) ∼= PSL2(7). The first and fourth reductions below simply
eliminate some local targets ((e1, . . . , et), c7, c8) from consideration. The second
and third let us reduce the size of some of the local targets.

3.3.1. Savings from evenness at half the tame primes. Our first savings comes from
GL3(2) being an even subgroup of S7, i.e., from the inclusion GL3(2) ⊂ A7. To
obtain this savings, we make use of the following general lemma.

Lemma 1. Suppose n and p are distinct primes, K is a degree n number field
whose Galois group G is contained in An, and p is totally ramified in K. Then p
is a quadratic residue modulo n.

Proof. Let D be the decomposition group for a prime above p. Tame Galois groups
over Qp are 2-generated by σ and τ where στσ−1 = τp (see [Iwa55]). Here, τ
is a generator of the inertia subgroup and σ is a lift of Frobenius. Thus D is
isomorphic to (Z/n):(Z/f) where f is the order σ, and the action of σ on Z/n is
multiplication by p. The Galois group is a subgroup of An which forces σ to be an
even permutation, which in turn implies that p is a square modulo n. �

In our case of n = 7, the lemma says that if p 6= 7 is totally ramified, then p must
be congruent to 1, 2, or 4 modulo 7, eliminating “totally ramified” as a target for
approximately half of the primes.

3.3.2. Savings from evenness at p = 7. We can achieve a savings from the fact that
GL3(2) ⊂ A7 at p = 7 as well. It is evident from the complete lists of degree 7
extensions of Q7 in [JR06, LMF18] that having discriminant (7)c with c even is not
sufficient to ensure that the Galois group is even. In fact, for each even value of c,
only half of the fields, counted by mass, have even Galois group. We computed lists
of congruences for each 7-adic septic field with even Galois group and then merged
the lists of congruences.

To target a specific 7-adic field, we start with a defining polynomial such that
the power basis formed from a root α will generate the ring of integers over Z7. We
then consider a generic element β = a0 + a1α+ · · ·+ a6α

6 and compute its charac-
teristic polynomial in Z7[a0, . . . , a6][x]. Working modulo 72 we then enumerate all
possibilities for the polynomial.
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3.3.3. Savings from ord3(G) = 1 at p = 3. Cases when 3 is wildly ramified also offer
an opportunity to reduce the search time by more refined targeting. As can be seen
from the two relevant lines of Table 2, the decomposition subgroup is isomorphic to
C3 or S3. In either case, the orbit partition for the decomposition group is (3, 3, 1).
Thus, a defining polynomial factors as the product of two cubics times a linear
polynomial over Z3.

The savings comes from the fact that the two cubics have to define the same
3-adic field. So, the procedure here starts with computing possible polynomials for
each ramified cubic extension of Q3 modulo some 3r. We take all products of the
form (x+a)g1g2 where the gi come from the list for a given field and a runs through
all possibilities in Z/3r. In our actual search, we worked modulo 32.

The resulting local targets are considerably smaller. For example, a target
((3, 3, 1), 8) from our general method includes cases where the two cubic factors
define non-isomorphic fields with discriminant ideal (3)4 and also cases where the
cubics have discriminant ideals (3)3 and (3)5. All these possibilities are not searched
in our refinement.

3.3.4. Exploiting arithmetic equivalence at p = 2. The final refinement we use ex-
ploits the fact that for each octic field sought, we need to find just one of its two
siblings in degree 7. These pairs of septic fields are examples of arithmetically
equivalent fields. The two fields K7a and K7b have the same Dedekind zeta func-
tion, the same discriminant, and the same ramification partition at all odd primes.
However, at p = 2 one can have λ7a 6= λ7b.

In Table 2, there are two orbit partitions for the inertia group A4, and again two
orbit partitions for V . For each of these cases, if a septic GL3(2) field has inertia
subgroup I and one orbit partition, its sibling has the other orbit partition for I.
We save by targeting 4,3 and 4,1,1,1, but not their transforms 6,1 and 2,2,2,1.

3.3.5. Savings from global root numbers being 1. As we mentioned in §2.1, our code
does not distinguish signatures. If it did, there would be an opportunity for yet
further savings as follows. A separable algebra Kv over Qv has a local root number
ε(Kv) ∈ {1, i,−1,−i}. For v =∞, one has ε(RrCs) = (−i)s. For v a prime p, one
has ε(Kp) = 1 unless the inertia group Ip has even order. Further information about
local root numbers is at [JR06, §3.3], with many root numbers calculated on the
associated database. The savings comes from the reciprocity relation

∏
v ε(Kv) = 1,

so that the signature is restricted by the behavior at ramifying primes.
While we are not using local root numbers in our searches, we are using them in

our interpretation of the output of our first case. Interesting facts here include the
general formulas ε(K7a,v) = ε(K7b,v) and ε(K8,v) = 1. Also, from Tables 1 and 2,
one has equality of discriminant exponents c7 = c8 at a prime p if and only if |Ip|
is odd; so in this case the septic sign ε(K7a,p) = ε(K7b,p) is 1.

4. Results for PSL2(7) and related groups

4.1. A complete list of PSL2(7) octics. Our search for PSL2(7) fields with
rd(K) ≤ 21 took 41 CPU-hours and confirmed that the discriminant 218 given
in [KM01] is indeed the smallest. The extended search through rd(K) ≤ 30 took
approximately four CPU-months. In this extended search, we combined targets for
a given prime in a subsearch whenever the contribution to the octic field discrim-
inant is the same. In this sense, the computation consisted of 1471 subsearches of
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varying difficulty. The fastest 380 cases took at most 10 seconds each, the median
length case took 6.5 minutes, and the slowest ten cases took from 20 to 35 hours
each. The slowest cases all involved searches where c7 = c8 for every ramifying
prime. This larger search found twenty-five fields.

Theorem 1. There are exactly 25 octic fields with Galois group PSL2(7) and dis-
criminant ≤ 308, as given in Table 3. The smallest discriminant of such a field is
218.

The full list of fields is also available in a computer-readable format by searching
the websites [JR14a, LMF18]. The two septic siblings of the first octic PSL2(7)
field are given by x7−7x4−21x3 + 21x2 + 42x−9 and x7−7x+ 3, the latter being
the famous Trinks polynomial [Tri68].

# K8 δ8 δ7
1 x8 − 4x7 + 7x6 − 7x5 + 7x4 − 7x3 + 7x2 + 5x+ 1 21.00 23.70
2 x8 − x7 + 7x6 − x5 + 33x4 + x3 + 61x2 + 13x+ 58 21.21 23.97
3 x8 − 4x7 + 14x6 − 24x5 + 29x4 − 32x3 + 18x2 − 16x+ 17 21.54 18.44
4 x8 − 3x7 + 4x6 + 2x5 − 10x4 + 16x3 − 20x+ 28 22.37 25.48
5 x8 − 2x7 + 10x6 − 17x5 + 28x4 − 38x3 + 34x2 − 17x+ 10 22.45 25.58
6 x8 − 2x7 + 2x6 − 8x5 + 16x4 − 16x3 + 14x2 − 10x+ 4 23.16 26.50
7 x8 − 3x7 + 9x6 − 21x5 + 44x4 − 69x3 + 84x2 − 84x+ 73 23.39 26.81
8 x8 − 4x7 + 10x6 − 12x5 − 7x4 + 44x3 − 46x2 − 4x+ 95 24.16 21.02
9 x8 − 3x7 + x6 + 9x5 − 3x4 − 57x3 + 133x2 − 132x+ 76 24.23 27.91

10 x8 − 4x7 + 14x6 − 28x5 + 49x4 − 56x3 + 56x2 − 14x+ 7 24.25 22.92
11 x8 − x7 + 5x6 − 19x5 + 31x4 − 47x3 + 47x2 − 17x+ 4 25.14 29.11
12 x8 − x7 + 14x4 − 28x3 + 28x2 − 14x+ 14 26.32 26.52
13 x8 − 4x7 + 11x6 − 17x5 + 37x4 − 78x3 + 132x2 − 153x+ 72 26.78 31.29
14 x8 − x7 − 7x6 − 7x5 + 7x4 + 49x3 + 77x2 + 31x+ 4 26.84 31.37
15 x8 − x7 + x6 − 11x5 + 11x4 + 35x3 + 45x2 + 35x+ 10 26.97 27.26
16 x8 − 2x7 + 4x6 + 2x5 + 27x4 − 46x3 + 84x2 − 10x+ 59 27.01 22.41
17 x8 − 3x7 + 6x6 + 2x5 + 6x3 + 4x2 + 6x+ 6 27.17 31.82
18 x8 − 2x7 + 2x6 − 14x5 + 46x4 − 86x3 + 126x2 − 118x+ 49 27.35 18.14
19 x8 − 4x7 + 14x6 − 28x5 + 49x4 − 56x3 + 56x2 − 24x+ 5 28.00 20.41
20 x8 + 28x4 + 112x2 − 32x+ 84 28.00 24.88
21 x8 − 4x7 + 14x6 − 28x5 + 63x4 − 84x3 + 98x2 − 52x+ 19 28.00 24.88
22 x8 − 4x7 + 49x4 − 42x3 + 77x2 − 31x+ 19 28.86 20.77
23 x8 − 4x7 + 9x6 − 12x5 + 4x4 − 4x3 + 13x2 + 4x+ 1 29.05 31.64
24 x8 + 10x6 + 12x4 − 28x3 − 58x2 + 28x+ 51 29.22 27.14
25 x8 − x7 − 4x6 − 12x5 + 8x4 + 64x3 + 16x2 − 32x+ 24 29.94 9.39

Table 3. The 25 octic fields with Galois group PSL2(7) and root
discriminant ≤ 30, along with their root discriminants, and the
root discriminants of the corresponding septic siblings.

Figure 1 gives a visualization of how the ordering by discriminant of septic fields
and the ordering by discriminant of octic fields, all having the simple group of
order 168 as their Galois group, seem to have little to do with one another. The
25 PSL2(7) octics of Theorem 1 give the 24 points beneath the δ8 = 30 line, the
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drop of one coming from the fact that the point (δ7, δ8) ≈ (24.88, 28.00) comes from
two fields. Theorem 3 likewise says that there are only 23 points to the left of the
δ7 = 12 line. The rectangle where both δ7 ≤ 12 and δ8 ≤ 30 contains just the single
point coming from the last field on Table 3.

Another way of making clear how the ordered lists differ sharply is to consider
first fields. As noted above, the first octic field, highlighted in Theorem 1, is a
sibling of the Trinks field. Recall also that septic GL3(2) fields come in sibling
pairs with the same discriminant. In the list of septic GL3(2) fields ordered by
root discriminant at [JR14a, LMF18], the Trinks field is currently in the 1009th
pair, with root discriminant about 23.70. Conversely, the octic sibling of the first
septic GL3(2) pair currently ranks 66th in the corresponding list of octic fields at
[JR14a, LMF18].

0 12 35
δ70

30

80
δ8

Figure 1. Root discriminant pairs (δ7, δ8) associated to
GL3(2) ∼= PSL2(7), including all pairs with δ7 ≤ 12 from Theo-
rem 3 and all pairs with δ8 ≤ 30 from Theorem 1.

Figure 1 also gives some sense of the geography of sibling triples (K7a,K7b,K8).

The upper bound corresponds to the extreme case D8 = D2
7, graphed as δ8 = δ

7/4
7 .

The lower bound likewise corresponds to the extreme case D8 = D7, graphed as

δ8 = δ
7/8
7 .

As one example of the details visible in this geography, note that the figure shows
no point on the lower bound. This is because a necessary and sufficient condition
to be on the lower bound is that all inertia groups have odd size, by Tables 1 and 2.
As mentioned in §3.3.5, this condition forces the septic p-adic local signs to all be 1.
Reciprocity then forces the infinite local sign to be 1 as well, which forces the fields
to be totally real. We expect that the first instance of such a totally real sibling
triple is well outside the window of Figure 1. There is just one such sibling triple
currently on the Klüners-Malle database [KM01], with D7 = D8 = 241341314, and
thus (δ7, δ8) = (104.33, 58.36). On the other hand, the figure shows twelve points
seemingly on a curve just above the lower bound. These points are the ones with

D8/D7 = 9, and thus indeed lie on the curve δ8 = 31/4δ
7/8
7 . They come from the

twelve fields having the prime 3 in bold in Table 4.

4.2. Class groups and class fields. The class groups of all twenty-five fields in
Theorem 1 can be computed unconditionally by either Magma [BCP97] or Pari
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[PAR15]. They are all cyclic and Table 4 gives their orders. The fact that all but
three of these class groups are non-trivial is already remarkable. By way of contrast,
the first 620 S5 quintic fields ordered by absolute discriminant all have trivial class
group.

Using Theorem 1, one can get complete lists of fields with root discriminant
≤ 30 for many other Galois groups via class field theory. We restrict ourselves to
four Galois groups, chosen because they interact interestingly with the class groups
in Table 4. Each Galois group is even so absolute discriminants coincide with
discriminants. Fields in Corollaries 1, 2, 3, and 4 correspond to entries in columns
t, u, v, and w respectively in Table 4, these entries indicating ramification over
the octic base. Most entries are 1, indicating that these class fields correspond to
quotient groups of the class groups. However each column has entries larger than 1,
so that each complete list of fields also includes ramified extensions not seen from
class groups.

To get the first two Galois groups, consider the unramified tower K32/K16/K8

coming from the first field in Table 4, K8, and its cyclic class group of order four.
Defining equations can be computed using Magma [BCP97] or Pari’s [PAR15] class
field theory commands. Following the conventions of §1.2, let G16 = Gal(K16) and
G32 = Gal(K32) be the corresponding Galois groups. Then K16 and K32 are the
unique fields of degree 16 and 32 respectively with smallest discriminant for these
Galois groups. In fact, G16 is just the Cartesian product PSL2(7)× C2 = 16T714.
More interestingly, G32 = 32T34620 is a non-split double cover of G16, having
SL2(7) = 16T715 as a subgroup with quotient group C2.

One can carry out a similar analysis for all twenty-five base fields, allowing
ramified towers K32/K16/K8 as well, with discriminants denoted D32, D16, and
D8. Using Pari [PAR15], we first compute those extensions with root discriminant
≤ 30. There are 56 possible K16 in all and 163 such K32. As the corollaries indicate,
these numbers are reduced when we extract the fields with the Galois groups sought.
To use small numbers only to describe ramification, write D16 = D2

8t
2 and D32 =

D2
16u

4. This analysis gives the following two consequences of Theorem 1.

Corollary 1. There are exactly 25 number fields with Galois group PSL2(7)×C2 =
16T714 and discriminant ≤ 3016. Base octics and ramification invariants t are
given in Table 4. The smallest discriminant of such a field is 2116 and the field has
defining polynomial

x16 − 4x15 + 9x14 − 14x13 + 14x12 − 14x10 + 8x9 + 45x8 − 82x7

+ 49x6 + 63x5 − 112x4 + 49x3 + 99x2 − 130x+ 100.

Corollary 2. There are exactly 14 number fields of degree 32 with Galois group
32T34620 and discriminant ≤ 3032. Base octics and ramification invariants u are
given in Table 4. The smallest discriminant of such a field is 2132 and the field has
defining polynomial

x32 − x31 + 2x30 + x29 + 8x28 − 7x27 + 21x26 − 9x25 − 12x24 + 248x23

− 548x22 − 65x21 + 2653x20 − 4879x19 + 2564x18 + 4198x17 − 7780x16

+ 3593x15 + 4020x14 − 7014x13 + 4935x12 − 2042x11 + 929x10 − 787x9

+ 695x8 − 215x7 + 70x6 − 42x5 + 15x4 − 15x3 + 2x2 + x+ 1.
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# D8 D7 h = a ` c e t u v w
1 3878 3678 4 = 2 2 1, 7, 7 1, 7
2 2634534 2632534 4 = 2 2 1 1 2, 2, 3, 3
3 216294 210294 1 4
4 2634594 2632594 4 = 2 2 1 1
5 36974 34974 2 = 2 1
6 2636116 2634116 6 = 2 3 1 3 1
7 3454116 3254116 4 = 2 2 1 1
8 216116 210116 1 4 3 2
9 361134 341134 2 = 2 1 3

10 283478 263278 2 = 2 1 4
11 2636434 2634434 2 = 2 1 3
12 265478 265278 2 = 2 1
13 342394 322394 4 = 2 2 1 1
14 263678 263478 2 = 2 1
15 2656234 2654234 8 = 4 2 1
16 2854116 2652116 2 = 2 1
17 2638294 2636294 4 = 2 2 1 1
18 28114174 26112174 2 = 2 1
19 21678 2878 2 = 2 1
20 21678 21078 1
21 21678 21078 2 = 2 1
22 78174 78172 2 = 2 1
23 282114 242114 4 = 2 2 1 1
24 2474614 2472614 4 = 2 2 1 1
25 263174 263172 6 = 2 3 1 1

Table 4. Discriminants of the octic PSL2(7) fields of Theorem 1
and their septic siblings, the class number h of each octic, and
ramification invariants t, u, v, and w of abelian extensions. Field
numbers are the same as in Table 3. The boldface conventions
and the factorization h = a`ce are explained in the paragraph
containing equation (3).

The first line of Table 4 indicates two degree 32 fields. The one highlighted in Corol-
lary 2 has ramification invariants (t, u) = (1, 1) and the other one has ramification
invariants (t, u) = (1, 7).

To get a third Galois group, note that the sixth fieldK8 has class number divisible
by 3, yielding an extension K24/K8. Let G24 = Gal(K24). The Galois group G24

is in fact 24T284, which is PSL2(7) itself, but now in its action on cosets of C7.
So PSL2(7) octics are in bijection with 24T284 fields via an elementary resolvent
construction. In this case, we relate discriminants via D24 = D3

8v
4. Inspecting the

twenty-five 24T284 fields coming from the twenty-five octics says in particular that
the above class field K24 in fact has the minimal discriminant:

Corollary 3. There are exactly three number fields with Galois group 24T284 and
discriminant ≤ 3024. Base octics and ramification invariants are given in Table 4.
The smallest discriminant of such a field is (663/4)22 ≈ 23.1622 and the field has
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defining polynomial

x24 − 6x23 + 14x22 − 8x21 − 26x20 + 34x19 + 72x18 − 204x17 + 109x16

+ 162x15 − 148x14 − 260x13 + 496x12 − 248x11 + 18x10 − 216x9

+ 484x8 − 402x7 + 156x6 − 74x5 + 102x4 − 76x3 + 22x2 − 2x+ 1.

Our discussion so far is related to three well-defined factors of class numbers of
PSL2(7) octics K = K8. We call these the abelian, lifting, and cubic factors, and
they give three columns in Table 4:

a = [AK : K], ` ∈ {1, 2}, c ∈ {1, 3}.(3)

For the abelian factor, A is the largest cyclotomic field such that the composite
field AK is unramified over K. In the table, the primes for which A/Q is ramified
are put in bold in the D8 column of Table 4. To identify the lifting factor, we use
the septic local signs εv of §3.3.5. A prime p is put in bold in the D7 column exactly
when εp = −1. If, for every such odd p, the inertia group Ip has order divisible by

2ord2(p−1), and if also an analogous condition at 2 holds if 2 is in bold, then AK has

an unramified quadratic extension ÃK with ÃK/A having Galois group SL2(7).
The lifting factor is ` = 2 in this case and otherwise ` = 1. The cubic factor is
c = 3 if the canonical extension K24/K8 as above is unramified, and c = 1 if it is
ramified.

In the general analysis of PSL2(7) number fields K, let e denote the rest of the
class number h, meaning e = h/(a`c). In the table, e > 1 only once. In this case,
computation shows that the Hilbert class field K16 has defining polynomial

(4) x16 + 40x14 + 588x12 + 3808x10 + 12236x8 + 9856x6 + 3248x4 + 384x2 + 16.

Its Galois group Gal(K16) = 16T1506 has order 24 · |PSL2(7)|. However the result-
ing field, with discriminant 2816, is not minimal, as it is undercut by four ramified
extensions of the second octic in Table 4:

Corollary 4. There are exactly five number fields of degree 16 with Galois group
16T1506 and discriminant ≤ 3016. The smallest two discriminants 21638538 ≈
25.2216 and 212312538 ≈ 27.9116 each arise from two fields. These fields respectively
have have defining polynomials f(x2), f(−3x2), g(x2) and g(−3x2) where

f(x) = x8 + 8x7 + 32x6 + 44x5 + 382x4 + 496x3 + 656x2 − 20x+ 1,

g(x) = x8 + 21x7 + 177x6 + 585x5 + 1071x4 + 1215x3 + 27x2 − 1053x+ 324.

In this case, we write the discriminant of the degree sixteen field as D2
8w

4, so that
the invariants w are as in Table 4.

5. Results for PSL2(5) and PGL2(5)

5.1. Complete lists of PSL2(5) and PGL2(5) sextics. Our second illustration of
the method of mixed degree searches comes from the sextic groups PSL2(5) = 6T12
and PGL2(5) = 6T14. The fields with smallest root discriminant were obtained
by a direct sextic search in [FP92] and [FPDH98]. These root discriminants are
21671/3 ≈ 8.12 and 2131/371/2 ≈ 11.01.

In this second illustration, the smaller degree is 5, via the isomorphisms A5
∼=

PSL2(5) and S5
∼= PGL2(5). Table 5 gives an analysis of tame ramification, with the

bottom three lines being relevant to S5
∼= PGL2(5) only. As before, each partition
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Table 5. Tame ramification data for A5
∼= PSL2(5) and S5

∼=
PGL2(5) in degrees 5 and 6.

λ5 λ6 c5 c6
5 5,1 4 4
3,1,1 3,3 2 4
2,2,1 2,2,1,1 2 2
4,1 4,1,1 3 3
3,2 6 3 5
2,1,1,1 2,2,2 1 3

λn determines the corresponding discriminant exponent cn via formula (2). The
behavior of wild ramification in this 5-to-6 context is analogous to the case of
GL3(2) and PSL2(7) discussed earlier and so we omit the detailed analysis. From
[JR14b], one knows that the bounds suggested by the tame table hold in general:
D5 ≤ D6 ≤ D2

5 for A5
∼= PSL2(5) and |D5| ≤ |D6| ≤ |D5|3 for S5

∼= PGL2(5).
As pointed out in [JR14b], the first bound |D5| ≤ |D6| implies that a complete

table of quintic fields up through discriminant bound B determines the correspond-
ing complete table of sextic fields up through B. In contrast to the situation for
GL3(2) ∼= PSL2(7), this observation and existing tables of fields give non-empty
complete lists of fields in the larger degree. In fact, taking B = 12,000,000 from
our extension [JR14a] of [SPDyD94], one gets 78 PSL2(5) sextics and 34 PGL2(5)
sextics with root discriminant at most B1/6 ≈ 15.13.

In Table 5 there are three instances when c5 < c6. Accordingly, we can use
targeting to substantially reduce the quintic search space for the sextic fields sought.
The result for root discriminant δ6 ≤ 35 is as follows.

Theorem 2. Among sextic fields with absolute discriminant ≤ 356, exactly 2361
have Galois group PSL2(5) and 3454 have Galois group PGL2(5).

Lists of fields can be retrieved by searching the websites [JR14a, LMF18].
In parallel with the figure for our first case, Figure 2 illustrates our second case.

The regularity near the bottom boundary δ6 = δ
5/6
5 is easily explained, as follows.

For any pair (K5,K6), the ratio D6/D5 is always a perfect square r2. The pair

gives rise to a point on the curve δ6 = r1/3δ
5/6
5 . In the S5

∼= PGL2(5) case, the
curves corresponding to r = 1, 2, . . . , 14, 15 are all clearly visible. The first “missing
curve,” clearly visible as a gap, corresponds to r = 16 = 24. This curve is missing
because none of the 2-adic possibilities for (c5, c6) satisfy c6 − c5 = 8. In the
A5
∼= PSL2(5) case, there are fewer 2-adic possibilities and the first four visible

gaps correspond to r = 4, 8, 12, and 16.

5.2. Connections with expected mass formulas. Let NFn(G, x) denote the
set of isomorphism classes of degree n number fields K with Gal(K) = G ⊆ Sn and
root discriminant at most x. Here G is well-defined, as a subgroup of Sn, up to
conjugation. From the quintic search in [JR14a], one knows

|NF5(A5, 26)| = 539, |NF5(S5, 26)| = 726862.(5)
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0 26 70
δ50

35

70
δ6

0 26 70
δ50

35

70
δ6

Figure 2. Root discriminant pairs (δ5, δ6) associated to A5
∼=

PSL2(5) (left) and S5
∼= PGL2(5) (right), including all pairs in

the window with δ5 ≤ 26 from [JR14a, LMF18], and all pairs with
δ6 ≤ 35 from Theorem 2.

The ratio 539/726862 ≈ 0.00074 is an instance of the familiar informal principle
“Sn fields are common but An fields are rare.” In this light, the much larger ratio
2361/3454 ≈ 0.68356 from Theorem 2 is surprising.

However, the fact that NF6(PSL2(5), 35) and NF6(PGL2(5), 35) have such sim-
ilar sizes can be explained as follows. For g ∈ Sn with cycle type n1, n2, . . . , nk, let

εg =
∑k

j=1(nj − 1). For a transitive permutation group G ⊆ Sn and a conjugacy
class C ⊆ G, define εC to be εg for any g ∈ C. Define aG to be the reciprocal of the
minimum of the εC over non-identity conjugacy classes C, and define bG to be the
number of classes obtaining this minimum. Then Malle conjectured an asymptotic
growth rate

|NFn(G, x)| ∼ cGxnaG log(x)bG−1,

for some constant cG [Mal04]. Note that we are presenting Malle’s conjecture
in a renormalized form, since here x is a bound on root discriminant while in
[Mal04] it is a bound on absolute discriminant. While Klüners [Klü05] has found a
counterexample to the general statement of the conjecture, the problem is related
to the presence of roots of unity in subfields, and Malle’s conjecture is still expected
to hold in the cases considered here.

For An, the two minimizing classes have cycle types 22,1n−4 and 3,1n−3, while
for Sn the unique minimizing class is 2,1n−2. Thus, consistent with numerical data
like (5), one expects very different growth rates:

|NFn(An, x)| ∼ cAn
xn/2 log x, |NFn(Sn, x)| ∼ cSn

xn.(6)

For n ≤ 5, this growth rate is proved for Sn with identified constants, and it is
known that the growth for An is indeed slower; see [Bha10] for S5 and [BCT15] for
A5.
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But now, for G ∈ {PSL2(5),PGL2(5)}, the unique minimizing class is 2,2,1,1.
Thus, consistent with Theorem 2, these two groups should have the same asymp-
totics up to a constant, both having the form |NF6(G, x)| ∼ cGx3. There are similar
comparisons associated to our two other theorems. For the group of Theorem 1,
one should have |NF8(PSL2(7), x)| ∼ cPSL2(7)x

2 log x from 2,2,2,2 and 3,3,1,1.
This growth rate is substantially less than the expected |NF8(PGL2(7), x)| ∼
cPGL2(7)x

8/3 from 2,2,2,1,1. Indeed, there are twenty-six known PGL2(7) octics
with root discriminant ≤ 21 [JR14a, LMF18], and only one such PSL2(7) octic
from Theorem 1. For the groups of Theorem 3, |NF7(GL3(2), x)| ∼ cGL3(2)x

7/2

should grow more slowly than |NF7(A7, x)| ∼ cA7
x7/2 log x. The search underlying

Theorem 3 is complete through discriminant 127. It can be expected to be near-
complete for x substantially past 127, and these extra fields do indicate a general
increase in |NF7(A7, x)|/|NF7(GL3(2), x)|.

5.3. Complete lists of Artin representations. Theorems 1 and 2 can each be
viewed from a different perspective. Computing octic PSL2(7) fields is essentially
the same as computing Artin representations for the irreducible degree 7 character
of GL3(2); computing sextic PSL2(5) and PGL2(5) fields is equivalent to computing
Artin representations for certain irreducible degree 5 characters of A5 and S5. In
each case, discriminants match conductors.

In [JR17], we raised the problem of constructing lists of general Artin repre-
sentations which are complete out through some conductor cutoff. For example,
PSL2(7) and PSL2(5) each have two conjugate three-dimensional representations.
These representations are particularly interesting because of their low degree, which
means that the associated L-functions are relatively accessible to analytic computa-
tions. In Tables 8.3 and 8.1 of [JR17], we obtained the first pair of representations
for PSL2(7) and the first eighteen pairs for PSL2(5). The method of targeting im-
proves on our method in [JR17], and would allow one to substantially extend these
lists.

6. Results for GL3(2), A7, and related groups

6.1. Extending the known lists for GL3(2) and A7. The first pair of fields for
GL3(2) and first field for A7 were determined by Klüners and Malle in [KM01]. We
extend the complete lists of such fields by employing the same technique as [KM01]:
a standard Hunter search modified to select polynomials with Galois group con-
tained in A7. The latter condition comes into play as the first step when inspecting
a polynomial in the search to see if it is suitable. Testing if the polynomial discrim-
inant is a square can be done very quickly and filters out all the polynomials with
odd Galois group.

Theorem 3. Among septic fields with discriminant ≤ 127, exactly 46 have Galois
group GL3(2) and 17 have Galois group A7.

Carrying out the computation up to discriminant 127 took six and a half months
of CPU time and inspected roughly 1012 polynomials. As in other cases, defining
polynomials and other information for these fields can be obtained from the websites
[JR14a, LMF18].

The computation establishing Theorem 3 sheds light on the list of PSL2(7) fields
established by Theorem 1. The runtime of a Hunter search in degree n with dis-
criminant bound B is proportional to B(n+2)/4 [JR98]. Using this, our estimate
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for the runtime for confirming the first PSL2(7) octic field by computing septic
fields without targeting is approximately (218/127)9/46.5/12 ≈ 3 million CPU-
years. To get Theorem 1’s complete list through discriminant 308 would then take
(308/127)9/46.5/12 ≈ 2 billion CPU-years, as opposed to the four CPU-months
with mixed degree targeted searching.

6.2. The first 23: GL3(2) field. As observed in [KM01], a sufficiently long com-
plete list of septic GL3(2) fields can be used to determine the first octic 23: GL3(2)
field. The splitting field of a 23: GL3(2) polynomial contains (up to isomorphism),
two subfields K7a and K7b of degree 7, two subfields K14a and K14b of degree 14
and Galois group 14T34, and two subfields K8a and K8b of degree 8 and Galois
group 8T48. One of the septic fields is contained in both K14a and K14b, and the
other is contained in neither.

Since the septic fields are arithmetically equivalent, they have the same discrim-
inants, i.e., D7a = D7b. The other indices can be adjusted so that

(7) D7xD8x = D14x for x ∈ {a, b}.

This comes from a character relation on the relevant permutation characters. Be-
cause of the asymmetry in the field inclusions described above, the fact that GL3(2)
fields come in arithmetically equivalent pairs does not play a role in our computa-
tions, and so we have forty-six septic ground fields to consider separately. Accord-
ingly, we drop x from the notation, always taking the correct octic resolvent so that
(7) holds.

Of the forty-six septic GL3(2) fields with discriminant ≤ 127, only one has a
non-trivial narrow class group. This field has narrow class number two, and is
K7 = Q[x]/f(x) with

(8) f(x) = x7 − x6 − x5 − 2x4 − 7x3 − x2 + 3x+ 1.

The unramified quadratic extension turns out to be simply K14 = Q[x]/f(−x2),
which has Galois group 14T34. So K14 and K7 both have root discriminant
57172/7 ≈ 11.84. By (7), the sibling K8 of K14 has the even smaller root dis-
criminant 57171/4 ≈ 8.70.

In general, given all septic GL3(2) fields up to some discriminant bound B, one
can get all 14T34 fields up to the discriminant bound B2 via quadratic extensions. If
d is the relative discriminant of K14/K7, then D14 = D2

7NK7/Q(d), and so NK7/Q(d)

must be at most B2/D2
7. In the same way, the stronger bound NK7/Q(d) ≤ B/D7

is necessary and sufficient for the resolvent 8T48 field to have discriminant ≤ B.
Taking B = 127 now, the quotient B/D7 decreases from 127/(1321092) ≈ 17.85
for the first two ground fields K7 to 127/(267432) ≈ 1.01 for the last two ground
fields. For the first twenty-six ground fields, computation shows that there are
no 14T34 overfields satisfying NK7/Q(d) ≤ B2/D2

7. For the last twenty fields,

already B/D7 <
√

2 and so the lack of overfields, except for the unramified one
above, follows from the narrow class numbers being 1. Hence we have the following
corollary of Theorem 3.

Corollary 5. The field Q[x]/f(−x2) from (8) is the only degree fourteen field with
Galois group 14T34 and discriminant ≤ 1214. Its sibling, with defining polynomial

x8 − 4x7 + 8x6 − 9x5 + 7x4 − 4x3 + 2x2 + 1,
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is the only the octic field with Galois group 23: GL3(2) = 8T48 and discriminant
≤ 127. These two fields have discriminants 57174 ≈ 11.8414 and 57172 ≈ 8.708

respectively.
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