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RESEARCH ARTICLE Open Access

Transcription through the eye of a needle:
daily and annual cyclic gene expression
variation in Douglas-fir needles
Richard Cronn1* , Peter C. Dolan2, Sanjuro Jogdeo3, Jill L. Wegrzyn4, David B. Neale5, J. Bradley St. Clair1

and Dee R. Denver3

Abstract

Background: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that
induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and
seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal
cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA
accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA
sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference
that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples
that capture daily and annual variation.

Results: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes
from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual
transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of
maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with
approximately half of transcripts reaching maximum expression +/− 2 h from sunrise and sunset, and +/− 20 days
from winter and summer solstices. Comparisons with published studies from other conifers shows congruent
behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression
patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative
orthologs from spruce (Picea) during the transition from fall to winter.

Conclusions: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in
conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7%
show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter
dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse
needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses
concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic
transcriptome components in other conifer species.
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Background
The sensing of daily, seasonal, and annual environmental
variation in land plants is accomplished using a diverse
array of organs, transcriptional regulators that drive oscil-
latory functions, and pathways that refine, optimize, and
entrain metabolic cycles to cyclic environmental stimuli.
Circadian patterns are ubiquitous in photosynthetic [1–4]
and non-photosynthetic [5, 6] organisms, and they are
essential for coordinating external signals for optimally
timing transcriptional activity to match the demands of
growth and phenology with resource availability. The
genetic basis for diurnal responses in model plants have
been intensively studied using mutant screens [4, 7, 8] and
global transcription [7], and these studies have identified
components of the central oscillator (“core clock”) and
genes that are targets of cyclic activation and repression.
Variability in core clock genes alters the timing of the
clock and clock-dependent pathways, so subtle changes in
genes controlling clock cycles may contribute to local
adaptation on a short time scale, and evolutionary diver-
gence on a longer time scale [1, 9].
In temperate zone trees, circadian cycles are superim-

posed on longer annual cycles involving transitions between
active growth – the time when light energy is captured and
converted into growth – and dormancy, the time when
growth potential is arrested to protect cells from seasonal
stresses of cold temperatures, freezing and desiccation
[10–12]. Accurately timed transitions between growth and
dormancy are essential for adapting to variable environments
[13] and they depend on: (1) reliable environmental cues that
forecast future change; (2) diverse sensory organs; and (3)
competing biochemical networks that integrate sensory sig-
nals and shift responses from one state (growth; dormancy;
senescence) to the next. Photoperiod and light quality are
known to be important cues for initiating seasonal growth
rhythms and establishing the onset of dormancy for many
trees [11, 12, 14, 15], so pathways involved in light capture
and photoperception are expected to show annual rhythmic
variation. As dormancy is established, trees also sense and re-
spond to cold temperatures (chilling units) by increasing cold
hardiness and increasing resistance to desiccation. After
chilling thresholds are met, trees respond to warming tem-
peratures (forcing units) by releasing tissues from dormancy,
remaining in a ‘stand-by’ state until requirements for initiat-
ing growth (heat, water availability, light quality [10, 14, 16])
are met. Genes implicated in dormancy and resumption of
spring growth should also show annual cyclic variation, and
these include components of the circadian clock and
photoperiod-responsive genes [11, 14, 15, 17], and pathways
involved in temperature and water perception [15, 18, 19],
hormone regulation and cell growth [10, 20], and glucan
hydrolysis [20].
The organs responsible for sensing and integrating exter-

nal stimuli – leaves, shoots, and roots – are common to

perennial plants, but signal perception and integration
during the dormant season is likely accomplished by differ-
ent means in conifer trees with perennial leaves (“needles”),
versus trees with deciduous leaves. Perennial needles confer
advantages by preserving annual investments in carbon
fixation, conducting photosynthesis earlier and later in
spring and fall in cold climates (e.g., northern latitudes; high
altitudes) [21], or even year-round in the case of milder
maritime climates [22, 23]. They offer alternative mecha-
nisms for preventing winter embolisms [24], and providing
an environmentally-responsive sensor that adds to bud-
and stem-associated signals during dormancy. Perennial
needles come with fitness trade-offs because they can be
damaged by cold during entry into dormancy and during
de-acclimation in spring [23, 25], and by photosystem
excitation that can lead to the formation of reactive oxygen
species during dormancy [23, 26]. Mature perennial needles
can be difficult to compare at the molecular level to annual
angiosperm leaves because gene expression in annual leaves
changes primarily as a function of developmental state of
the leaf (e.g., emergent; expanding; mature; senescent; [27]).
In contrast, when conifer leaves are mature but have not
started to senesce, gene expression – in theory – is only
needed (1) when the protein composition of the leaf should
be changed due to changes in environmental conditions, or
(2) to replace proteins that have been degraded [27]. Given
the complexity involved in orchestrating growth and stasis
over annual cycles, annual gene expression variation in
conifer needles should show high complexity and a strong
relationship to changing environmental conditions, espe-
cially as compared with the annual leaves characteristic of
model trees (Populus L.) and herbs (Arabidopsis Heynh. in
Holl & Heynh).
To date, patterns of cyclic gene expression in conifer

needles have been examined from a limited number of
species. The behavior of select ‘core clock’ genes has been
characterized in Norway spruce (Picea abies L. Karst.)
under a variety of short- and long-day light regimes
[28–30], and Japanese cedar (Cryptomeria japonica (L.f.)
D.Don; [31]) under summer and winter field conditions. In
these studies, most well-studied circadian genes behave in a
manner similar to that described for homologs in angio-
sperm models, although there are notable exceptions with
homologs of flowering locus T (FT) [14, 28] and late
elongated hypocotyl (LHY) [30]. The most striking charac-
teristic of gymnosperms core clock genes is that circadian
cycling activity is arrested when conifers are moved to con-
stant light or dark [29, 32]; circadian rhythms may also
cease during the winter dormant period [31]. At a larger
temporal scale, several studies have focused on transcrip-
tional changes over one to several months. For example,
Hess et al. [33] recently examined transcript accumulation
in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) using
RNA-seq, with the goal of identifying transcripts responsive
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to sample date and environmental factors (photoperiod;
maximum temperature; soil available water) during the
summer growing season. Their study found that ~80% of
predicted protein encoding transcripts showed significant
variation by sample date. In contrast, Holliday et al. [34] ex-
amined transcript accumulation in Sitka spruce (Picea
sitchensis (Bong.) Carr.) by microarrays, with the goal of
identifying genes that were differentially expressed in the
autumn months leading to winter dormancy (August – De-
cember). Their study found that a small proportion of puta-
tive genes (2224, or ~10% of those assayed) showed
significant variation by sample date during the transition
from fall to winter dormancy. At present, the larger annual
(“circannual”) pattern of transcription has yet to be defined
for any conifer.
To provide a finer-resolution understanding of the

complexity of circadian and circannual cycles of gene ex-
pression in conifers, we examined gene expression in
needles from Douglas-fir for cyclic expression patterns
that show daily and annual periods. Douglas-fir is related
to model conifers like Norway spruce and Loblolly pine
(Pinus taeda L.) through divergence in the Early Cret-
aceous ~130 MYA [35], and to angiosperms like Populus
and Arabidopsis through a more ancient divergence
~300 MYA. Douglas-fir has an expansive native range in
North America [36], and it is noteworthy among coni-
fers for its significant population variation in needle cold
hardiness, phenology, and growth traits [37, 38]. Some
of the strongest associations between provenance source
and quantitative traits in conifers are exhibited by
Douglas-fir needle traits related to annual cycles of
freeze-avoidance, such as spring and fall needle cold
hardiness, and cyclic cues that define the onset of winter
like the first winter freeze and variability in the frost free
period [25, 39, 40].
In this study, we use next-generation mRNA sequen-

cing to produce individual de novo needle transcrip-
tomes from 19 Douglas-fir trees, and use the resulting
“pan-transcriptome” as a reference for mapping RNA-
seq reads from experiments evaluating diurnal variation
over two daily cycles and circannual variation over one
annual cycle. We specifically searched for transcripts
exhibiting cyclic expression [41, 42] to define the timing
of maximum expression (“phase”) and the amplitude.
Our results provide a detailed characterization of daily
and year-round transcriptome activity in leaves from a
long-lived perennial tree, and they identify a core set of
transcripts that show evidence for significant cycling on
daily and annual scales. Our results show congruence
with other microarray- and RNA-seq-based studies of
diurnal and seasonal gene expression in conifers [31, 33, 34],
and they underscore the potential for using gene ex-
pression information from Douglas-fir as a baseline for
examining cyclic transcriptome responses, and gene

expression patterns responding to different environ-
mental cues in temperate-zone conifers.

Methods
Plant materials and sample information
Trees used for annual analysis are from a larger reciprocal
translocation study [19, 43] that includes multiple sources
of Pseudotsuga menziesii var. menziesii from the Pacific
Northwest of North America. Trees were chosen to
maximize differences in source climatic and phenology
[38]; included are families from regions that derive from
cold/wet sources (47.3° N, −121.6° W, 950 m elevation),
cool/wet sources (47.2° N, −123.9° W, 111 m elevation),
and warm/dry sources (43.3° N, −123.1° W, 429 m eleva-
tion; Additional file 1). Two-year old trees were planted in
a warm/dry region (Central Point, Oregon, USA; 42.3° N,
−122.9° W, 390 m elevation) in November, 2009, and
sampling of the 2010 cohort of needles was initiated on
October 27, 2010 at ~ three week intervals until
November, 2011 (16 samples points). Needles were
collected between 11 am and 1 pm (zeitgeber time
[ZT] = 05:00 to 07:00) from 13 individual trees. Environ-
mental data (sunrise; sunset; day length; cumulative
weekly precipitation; minimum and maximum daily
temperature) was collected over the duration of this ex-
periment (Additional file 2). Sampling intervals and RNA-
seq sample sizes for the annual study are summarized in
Additional file 1.
Trees used for diurnal analysis derive from the warm/

dry region (43.3° N, −123.1° W, 429 m elevation) and
were grown in Corvallis, Oregon, USA (42.3° N, −122.9°
W, 74 m elevation; Additional file 1). Needles were col-
lected from 6 individual three-year old trees three half-
sib families, two sibs per family). Needles were collected
at 4 h intervals, starting at 2 AM, for a total of 48 h in
early fall (September 7, 8). For this experiment, sunrise
(ZT0) occurred at 6:44 AM, and sunset occurred at
19:34 PM, giving a 12:50 photoperiod. Sampling inter-
vals and RNA-seq sample sizes for the diurnal study are
summarized in Additional file 1.

Needle collection, RNA isolation and RNA sequencing
For annual analysis, needles (8–12 total) were collected
2.5–5 cm basipetal of apical buds from four branches (2–3
needles each) representing the four cardinal directions of
a single tree. Subsequent samples continued sampling
branches from the same cohort of mature needles, instead
of new growth. For diurnal analysis, mature needles from
the previous season’s growth were similarly collected 2.5–
5 cm basipetal of the bud scar, from four branches (2–3
needles/branch). All needles were flash-frozen in liquid
N2, and ground at dry ice temperatures (FastPrep-24 mill;
MP Biomedical, Solon, OH, USA). Ice-cold extraction
buffer (1.5 mL of 3 M LiCl/8 M urea; 1% PVP K-60; 0.1 M
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DTT; [44] was added to ground tissue, homogenized, then
centrifuged at 200 g × 10 min., 4 °C. The supernatant was
incubated overnight at 4 °C, and crude RNA was pelleted
(20,000 g × 30 min., 4 °C) and cleaned using the ZR Plant
RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) and
DNase treatment (Turbo DNase; New England Biolabs,
Ipswich, MA, USA). RNA concentration was estimated
using a Qubit fluorometer (Invitrogen, Carlsbad, CA,
USA), and RNA quality was checked using an Agilent
BioAnalyzer (Agilent, Santa Clara, CA, USA).
Illumina RNA-seq libraries used 2 μg total RNA and

TruSeq chemistry with single indexing adapters (Illumina
Inc., San Diego, CA, USA), modified for strand-specific
sampling [45]. In this protocol, first-strand synthesis prod-
ucts were desalted to remove unincorporated dNTPs
(Sephadex G-25; Sigma-Aldrich, St. Louis, MO, USA), and
reconstituted in dNTP-free second-strand synthesis buffer
with second strand enzyme mix (New England Biolabs) and
a dUTP/dNTP mixture (ThermoScientific, Waltham, MA,
USA) to incorporate dUTP into the second strand. All
other steps follow Illumina protocols, except that uracil-
containing strands were degraded using a uracil-specific
excision reagent mixture (37 °C for 15 min; New England
Biolabs) prior to PCR. Amplified libraries were quantified
and pooled at equimolar 6-plex representation at 10 nM.
Single-end 101 bp sequencing was performed at Oregon
State University’s Center for Genome Research and
Biocomputing (Corvallis, OR, USA) using a HiSeq 2000
(Illumina Inc.) with version 3.0 chemistry and demultiplex-
ing performed using Casava v1.8 (Illumina Inc.). The ex-
periment included 179 libraries sequenced on 34 lanes
from 10 different flow cells (GenBank Short Read Archive
SRP018395; GEO Accession GSE44058; Additional file 1).

Transcriptome assemblies and annotation.
Single-end reads from individual trees were combined
over all time periods to create 19 single-tree source files.
Reads were quality trimmed using Trimmomatic v.0.30
[46] (using options –phred33 LEADING:20 TRAILING:20
SLIDINGWINDOW:5:20), and 19 individual transcrip-
tome assemblies were de novo assembled using Trinity
v.r2013_08_14 [47] using a minimum size of 200 bp. To
create a pan-transcriptome reference, the longest tran-
scripts from each Trinity component in single-tree de
novo assemblies were identified and combined into a sin-
gle file, and transcripts smaller than 300 bp were removed.
This combined file was sorted by sequence length and
then clustered using USEARCH v.7.0.1001 [48]. The
usearch64 -cluster_smallmem command was used with a
sequence identity threshold of 90% (−id 0.9 flag) and with
the -strand both flag to combine forward and reverse
transcripts into the same clusters. A table of the number
of input bases from each library, transcripts assembled for
each individual, and the combined clustered reference

assembly is provided in Additional file 1. Individual as-
semblies and the pan-transcriptome reference are avail-
able for download at the TreeGenes Forest Tree Genome
database web site under the link “Pseudotsuga menziesii
Transcriptome” [49].
To annotate plant-derived transcripts, we used BLASTX

and TBLASTX [50] to identify transcript matches from
the NCBI NR database (minimum identity; expect <1e−10),
and BLASTX to identify matches to the Mercator plant
metabolic function database [51–53]. We used LASTZ
[54] to identify chloroplast and mitochondrial transcripts
using the Pseudotsuga sinensis chloroplast (NC_016064.1)
and Loblolly Pine draft mitochondrial [55] genomes as ref-
erences. We used BLAT [56] to search for conservation
between Douglas-fir transcripts and conifer genome refer-
ences, the Loblolly pine reference genome [57] (Pinus
taeda version 1.0), and a pre-publication draft for the
Douglas-fir genome [58] (version 0.5). LASTZ and BLAT
searches used a match criterion of ≥80% identity with
contiguous hits ≥50 bp. Annotations are available at the
TreeGenes Forest Tree Genome database web site under
the link “Pseudotsuga menziesii Transcriptome” [49].

Detecting diurnal and annual cyclic transcriptome
variation
RNA-seq reads from individual tree samples were aligned
using BowTie 2.2.3 [59] with the following call: bowtie2
–end-to-end -D 15 -R 2 -L 22 -i S,1,1.15. This allowed 15
consecutive seed extension attempts before the aligner
moved on (−D 15), a maximum of 2 attempts to re-seed
reads with repetitive seeds (−R 2), and a 22 bp seed (−L 22)
with zero allowed mismatches in this seed. The function to
determine the interval between seed substrings during
multi-seed alignment was set to f(x) = 1 + 1.15*sqrt(x),
where x is read length (−i S,1,1.15); based on 101 bp read
lengths, this resulted in an interval of 13 bp. For this experi-
ment, transcripts showing a median ≤ 5 counts were
considered background noise and were excluded from sub-
sequent analyses.
For transcripts exceeding the detection threshold, the

72 diurnal samples (six individuals; 12 time points) were
collected into one table and transcript counts were nor-
malized using DESeq [60–62]. Annual samples were
similarly tabulated, median filtered, and DESeq normal-
ized. After normalization, we computed family means by
averaging reads from half-siblings (trees 44 and 90 = fam-
ily A; trees 43, 46, and 49 = family B). For the annual
study, counts were linearly interpolated to emulate
equally-spaced sample intervals. The two processed
count tables (diurnal, annual) were passed through JTK-
Cycle [41] to identify statistically significant cyclic tran-
scription (p ≤ 0.05). The nonparametric test used in
JTK-Cycle can identify transcripts as significantly cyclic
even if they show minute amplitudes, such as those that
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might result from circadian fluctuations in total RNA
levels [63, 64]. Since the magnitude of daily RNA fluctu-
ation is unknown for conifer needles, we adopted a more
stringent false-discovery rate of 1% (q ≤ 0.01) [65] to
identify “high-confidence” cyclic patterns. We used JTK-
Cycle to identify the phase (time point at which the
underlying curve reaches its maximum value) for each
transcript, with phases measured in hours after
12:00 AM for the diurnal study, or Julian days (days after
January 1) for the annual study. Summaries of cyclic
properties (phase; amplitude; period) are provided in
Additional file 3.

Defining relationship between transcriptional phases and
solar and weather factors, and enrichment/depletion tests
by season
To evaluate the relationship between the timing of max-
imum annual gene expression (phase) and environmen-
tal variables, annual transcriptional phases were sorted
into two week bins, starting on the first sample date (27-
October-2010), and continuing until the last sample
date. Counts of transcripts reaching maximum expres-
sion within two week bins were tallied and evaluated for
their association with three environmental variables
using ordinary least squares and multiple regression. For
this test, the following environmental variables were
used as predictors for the timing of maximum transcript
accumulation: the mean biweekly high temperature (°C),
the sum of biweekly precipitation (in mm), and the
mean biweekly photoperiod (in minutes), with photo-
period modeled using a polynomial fit (degree = 2). To
reduce correlation among polynomial terms, predictors
were mean-centered prior to analysis. Dependent vari-
ables were also log2 transformed to meet assumptions of
normality. The R library gvlma was used to test model
assumptions, and the vif function from the R package
car was used to estimate variance inflation factors to test
for multicollinearity among predictors.
To evaluate Mercator metabolic terms for enrichment

or depletion, we binned significantly cyclic transcripts
(e.g., q ≤ 0.01 from JTK-Cycle) from diurnal and annual
experiments into four temporal “phase bins” of equal time
duration. For the diurnal experiment, phase bins were six
hours in length, and approximately centered on sunrise,
solar noon, and sunset: these include “sunrise” (4:01 am –
10:00 am), “midday” (10:01 am – 16:00 pm), “sunset”
(16:01 pm – 22:00 pm), and “midnight” (22:01 pm –
04:00 am). Annual bins were 91 or 92 days in length, and
approximately centered on the annual solstices and equi-
noxes; these include “short photoperiod” (5-Nov to 4-
Feb), “spring photoperiod” (5-Feb to 5-May), “long photo-
period” (6-May to 5-Aug), and “fall photoperiod” (6-Aug
to 4-Nov). Enrichment tests for Mercator pathway terms
were performed using term lists for transcripts identified

as significantly cyclic and identified to a function (all
Mercator bins except 35.2, which is “not assigned.un-
known undefined”). Enrichment/depletion tests were per-
formed using a one-tailed Fisher’s exact test and the
program Mefisto [66]; adjustments for two-tailed tests
were made by multiplying P-values by 2, as recommended
by Rivals et al. [67] and a false-discovery rate correction of
1% (q ≤ 0.01; [65]) was applied using the p.adjust function
in the R library stats.

Comparing annual transcriptome expression variation to
other conifers
We compared our annual RNA-seq expression data with
results from two previously-published studies examining
seasonal transcript variation in conifers. First, Hess and col-
leagues [33] recently evaluated transcript accumulation in
Douglas-fir over a 4 month period (May – September) that
corresponds to our “long photoperiod” season. These
authors identified six categories of transcripts that show
different responses to environmental factors - transcripts
that are down-regulated when day length is long (‘day
length-down’) and up-regulated when day length is
long (‘day length-up’); transcripts down-regulated when
temperature is high (‘temperature-down’) and up-regulated
when temperature is high (‘temperature-up’); and tran-
scripts down-regulated when total available water is high
(‘precipitation-down’) and up-regulated when total available
water is high (‘precipitation -up’). Putative orthologous
transcripts for these environmentally-responsive transcripts
were identified in our pan-transcriptome reference using
BLASTN matches. The timing of maximum annual expres-
sion (phase) for these genes was determined from our
analysis, and counts of transcripts reaching phase in the
four annual photoperiod (seasonal) bins defined in this
study were tallied into contingency tables. The distribution
of counts for all transcripts in common to the two studies
were treated as a reference (null) distribution for comparing
distributions for each environmentally-responsive category
of transcripts. Comparisons and X2 tests were performed
using the CrossTable function in the R library gmodels.
Second, Holliday and colleagues [34] used a microarray-

based approach to examine fall needle gene expression in
Sitka spruce (Picea sitchensis) from British Columbia,
Canada over a six week period (August 30 – October 18)
that corresponds to our “fall photoperiod” season. Putative
orthologues of Douglas-fir and Sitka spruce transcripts
were identified using reciprocal best BLASTN matches
between the Douglas-fir pan-transcriptome reference and
18,237 clone sequences used in the spruce 21.8 k micro-
array [34]. We evaluated the direction and magnitude of
expression patterns between studies by computing the
ratio of fall:summer gene expression using transcripts
showing significant expression differences (q ≤ 0.05) in
microarray data [34]
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ratiomicroarray ¼ x− intensity 18−October

x− intensity 30−August

 !

and transcripts showing significant circannual rhythm
(q ≤ 0.01. from JTK-cycle) in RNA-seq data.

ratioRNA−seq ¼ x− counts 7−October
x− counts 17−August

� �
.

For the 760 transcripts meeting these criteria, expres-
sion ratios were ranked from high-to-low and ranks
were compared by Kendall’s tau (τ) with the cor.test
function in R. In this comparison, τ is bounded by +1
and −1, with the bounds representing perfect preserva-
tion of ranked gene expression ratios in the same (+1) or
opposite (−1) direction, and 0 representing random or-
dering of gene expression ratios between experiments.

Results
Defining the needle ‘pan-transcriptome’ of Douglas-fir–
In this study, needle tissue was sampled by mRNA-Seq
to evaluate diurnal and circannual variation in global
transcription (Fig. 1a, b; Additional file 1). Needles were
sampled for RNA at different time intervals to evaluate
two transcriptome responses: (1) diurnal responses,
using a sampling interval of four hours across two days
(12 time points); and (2) circannual responses, using a
sampling interval of approximately 3–4 weeks across a
complete year (16 time points). This sampling scheme
resulted in a data set that included 19 trees and 179
individual RNA-seq libraries to evaluate different aspects
of temporal needle gene expression.

Individual tree mRNA-seq libraries from needles yielded
94.0–573.8 million reads, and individual de novo assemblies
using Trinity produced 47,976–126,355 components
200 bp or larger (Additional file 1). The number of assem-
bled Trinity transcriptome sequences and cumulative se-
quence length were positively and significantly correlated
with the number of input reads (r2 ≥ 0.92; Additional file 1).
Across all assemblies, the majority of Trinity components
(85.7%) showed a single subsequence, while the maximum
number of sequences per component in any library was 227.
A ‘pan-transcriptome’ reference was created using the
longest sequence from each transcript model in single-tree
de novo assemblies, followed by clustering to reduce allelic
and redundant sequences to one representative sequence.
This step reduced the pool of transcripts from 1.66 million
sequences from 19 individual-tree assemblies, to a
pan-transcriptome with 199,471 sequences.
Multiple sources of evidence were used to characterize

plant-derived transcripts for homologies and putative func-
tions (Additional file 1). BLASTX searches of the plant-
specific Mercator plant metabolic database [51, 52] identi-
fied homologies for 46,436 transcripts, while BLASTX and
TBLASTX searches of NCBI NR database identified tenta-
tive identities for 54,384 transcripts. Homology searches
against draft conifer genomes identified 102,714 homologs
from the Loblolly pine v. 1.0 reference genome, and
167,821 homologs to the Douglas-fir v. 0.5 draft assembly.
In total, these searches identified 173,882 transcripts (159.2
Mbp) as derived from Douglas-fir, with 143 originating
from the chloroplast genome, 196 from the mitochondrial

Fig. 1 Inputs for the diurnal and annual needle transcriptome study. a Douglas-fir branches, showing the location of sampled needles (red arrow).
b Annual environmental conditions and growth rhythm for trees used in this experiment. Shown are: upper panel, light conditions with photoperiod
(bar chart) and radiant exposure (blue line); middle panel, weather conditions with precipitation (bar chart) and temperature (high = red line; low = blue
line); lower panel, growth rhythm with terminal shoot growth (bar chart) and radial growth (blue line). Annual needle sample times are identified in the
lower panel using black triangles. The date of the diurnal study is identified as a grey triangle
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genome, and 173,544 originating from the nuclear genome.
Of the remaining 25,589 transcripts, 19,000 were positively
identified by BLAST as derived from foliar metaflora/meta-
fauna present on Douglas-fir needles, or contaminants from
the sampling/library construction process. A final list of
6589 transcripts could not be identified using BLAST
searches or searches of either draft gymnosperm genome
assembly; due to their uncertain origin, these transcripts
were omitted from subsequent analyses.

Fall diurnal transcriptome variation in Douglas-fir tracks
daily light/dark transitions
Experiments to detect diurnal cyclic transcriptome vari-
ation included six individuals (two sibs per family from
three families, sampled in September) collected over
twelve 4-h intervals (Additional file 1). After mapping
reads from individual diurnal libraries to the Douglas-fir
pan-transcriptome reference, 41,382 transcripts met our
threshold for analysis of diurnal cycling (median mapped
reads >5; Table 1, Additional file 3). Following DESeq
count normalization, JTK-Cycle identified 15,487 tran-
scripts as showing significant cyclic diurnal expression at
a false-discovery rate of 5% (q ≤ 0.05), and 12,042 tran-
scripts at a false-discovery rate of q ≤ 0.01.
The distribution of expression phase times (Fig. 2a)

across all high-confidence diurnal transcripts shows a pro-
nounced bimodal pattern, with the highest proportion of
genes reaching maximum transcript accumulation near
sunrise (ZT0 = clock hour 6:44 AM) and before sunset
(ZT = 12:50, or clock hour 19:34 PM). In total, 5698
(47.3%) of all diurnal transcripts reached phase within +/−
two hours of sunrise or sunset. Our high-confidence
diurnal transcripts include homologues to many of the
known core clock genes from angiosperm models [4, 7]
and the distantly related gymnosperm Cryptomeria japon-
ica [31] (Fig. 3; Table 2; Additional file 1). We compared
the timing of maximum expression for representative
clock and seasonal genes in Douglas-fir to values reported

for Arabidopsis and Cryptomeria. Transcripts encoding
homologs of circadian clock-associated1 (CCA1), crypto-
chrome1 (CRY1), constitutive photomorphogenic 1 (COP1),
vernalization insensitive 3 (VIN3), reveille 1 (RVE1), gigan-
tea (GI), timing of CAB expression 1 (TOC1), lux-
arrhythmo (LUX) and early flowering 4 (ELF4.3) all
reached maximum expression within 3 h of the reported
maximal expression for one or both of Arabidopsis and
Cryptomeria (Table 2). A smaller number of genes showed
pronounced differences in phase relative to Arabidopsis.
These include flowering locus T (FT) from Douglas-fir, late
elongated hypocotyl (LHY) from Douglas-fir and Crypto-
meria, and Zeitlupe (ZTL) from Douglas-fir and Crypto-
meria. These differences may be due to incorrect
assessments of orthology in gene families, differences in
analytical methods, or real differences in the timing of ex-
pression in gymnosperm and angiosperm clock genes. A
noteworthy finding is that a large proportion of high-
confidence diurnal cycling transcripts (38.4%; N = 4627)
have no homology to known proteins in Mercator and are
annotated as “not assigned.unknown” (Fig. 2a). This pro-
portion is similar to reports for diurnal transcripts from
the gymnosperm Cryptomeria japonica, where 40% could
not be identified or classified in BLAST searches [31]. In
combination, these studies indicate that many diurnally-
cycling transcripts from gymnosperms and angiosperms
have diverged to the point that homology cannot easily be
assessed. Alternatively, gymnosperms could possess novel
clock-dependent components (genes or non-coding RNAs)
that lack homologs in angiosperms.
From these 12,042 high-confidence fall diurnal tran-

scripts, we were able to assign Mercator metabolic terms to
7415 transcripts, and analyze these terms for overrepresen-
tation or underrepresentation by categorizing transcrip-
tional phases into bins representing four times of day:
‘sunrise’ (1916 transcripts), ‘midday’ (1333 transcripts), ‘sun-
set’ (2685 transcripts), and ‘midnight’ (1481 transcripts).
Across daily bins, we found evidence for overrepresentation
or underrepresentation in 15 Mercator metabolic pathways
(Fig. 4a; Additional file 4). Overrepresented terms at sunrise
include genes associated with light-responsive signaling
(e.g., phyB, cry1, glutamate receptor- and cyclic nucleotide-
gated ion channels proteins) and enzymes responsible
for co-factor biosynthesis (e.g., biotin [holocarboxylase
synthetase], thiamin [hydroxyethylthiazole kinase], CoA
[phosphopantothenoylcysteine synthetase]). Overrepresented
terms at midday include genes associated with protein
synthesis (40S and 60S ribosomal proteins), and carbohy-
drate, nitrate, nucleotide, and small ion transporters. At
sunset, overrepresented terms included diverse RNA
modifying pathways, including pentatricopeptide repeat
gene families (responsible for organelle RNA editing and
processing), MYB transcription factors, and RNA process-
ing genes (RNA pol I specific initiation factor RRN3;

Table 1 Numbers of transcripts from Douglas-fir showing
evidence of diurnal and annual cycling

TRANSCRIPTS

Total assembled 199,623

Total in genome 173,882

DIURNAL

Expressed (median > 5 counts) 41,382

Cyclic (q ≤ 0.05) 15,487

Cyclic high-confidence (q ≤ 0.01) 12,042

ANNUAL

Expressed (median > 5 counts) 36,145

Cyclic (q ≤ 0.05) 24,688

Cyclic high- confidence (q ≤ 0.01) 21,225
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transducing/WD40 repeat proteins; mRNA decapping
proteins; methyltransferases). Finally, overrepresented
terms at midnight include genes associated with biotic
stress (TIR-NBS-LRR proteins; LRR and NB-ARC pro-
teins; ADR1-like proteins), JUMONJI-like histone
demethylases known to play a role in the evening-phase of
the Arabidopsis circadian clock, and protein degradation
pathways based on ubiquitination/de-ubiquitination.

Annual transcriptome variation in Douglas-fir tracks
annual variation in photoperiod
Experiments to detect circannual variation included 5 indi-
viduals collected at 16 time points over 12 months, and the
data were median filtered, normalized by DESeq, averaged
by family, and then linearly interpolated to even sampling
dates (Additional file 1). After mapping reads from individ-
ual annual libraries to the pan-transcriptome reference,
36,145 transcripts met our threshold for analysis (Table 1).
Following DESeq count normalization, JTK-cycle identified
24,688 transcripts showing significant circannual expression
at a false-discovery rate of 5% (q ≤ 0.05). After imposing a
more stringent false-discovery correction (q ≤ 0.01), the list
contained 21,225 high-confidence circannual transcripts
(Table 1; Additional file 3).
The distribution of circannual expression phases

(Fig. 2b) for high-coverage transcripts also shows a pro-
nounced bimodal pattern, with the majority of transcripts
reaching maximum expression in one of two seasons: (a)
December through January, coinciding with winter dor-
mancy, maximum freeze tolerance, reduced metabolic ac-
tivity, and shortest photoperiods (day length ≤ 10.5 h); or
(b) June through July, coinciding with maximum shoot

growth, high metabolic activity, and longest photoperiods
(day length ≥ 14.5 h). In total, 10,326 (48.7%) of all cir-
cannual transcripts reached phase within +/− 20 days of
winter and summer solstices. Example transcripts showing
estimated phases for each month of the year are provided
in Fig. 5, and they are arranged in increasing order of lag
month (e.g., November through October, panels A – L).
Details for these transcripts are provided in Additional file 1.
Example transcripts reaching peak activity in short pho-
toperiods/winter include transcripts homologous to
genes known to play a role in winter adaptation and
cold tolerance in Arabidopsis (Fig. 5a, inducer of CBP
expression, ICE1), transcriptional regulation in dormancy
(Fig. 5b, mRNA adenosine methylase), and winter photo-
protection in conifers (Fig. 5c, early light inducible pro-
tein, ELIP1; [26]). Example transcripts reaching peak
activity in spring photoperiods include transcripts with
unknown functions (Fig. 5d), oxidoreductase and RNA-
binding activity (Fig. 5e), and mitochondrial transcription
termination factors implicated in adaptation to cold cli-
mates in conifers [68] (Fig. 5f). Example transcripts reach-
ing peak activity in long photoperiods/summer include
transcripts for a cysteine proteinase (Fig. 5g) and a pectin
acetylesterase (Fig. 5h) associated with drought responses
in Arabidopsis [69], and a multiprotein bridging factor
that responds to biotic and abiotic stresses, including heat
(Fig. 5i). Example transcripts reaching peak activity in fall
photoperiods include transcripts for an FMN-linked oxi-
doreductase (Fig. 5j) implicated in convergent adaptation
to cold climates [68], a chloroplast co-chaperonin (Fig. 5k)
associated with drought in Arabidopsis [69], and a CCCH-
type Zn-finger protein that is upregulated in October

Fig. 2 Frequency histograms of estimated phase times for transcripts showing cyclic expression patterns. a Histogram of phase for 12,042
transcripts showing significant diurnal cycling. Shown are counts per two hour interval, starting at clock hour 12:00 AM. b Histogram of phase for
21,225 transcripts showing significant annual cycling. Shown are transcript counts per one month interval, starting at November 1. In both plots,
counts of transcripts with Mercator definitions are shown with black fill, while transcripts lacking Mercator definitions are shown with grey fill
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(Fig. 5l). As we observed for diurnal transcripts,
36.3% (N = 7711) of the high-confidence annual cyc-
ling genes are “not assigned.unknown” in Mercator
(Fig. 2b), and they show no homology to proteins or
RNAs in GenBank.
Mercator terms were associated with 13,514 of the

21,225 high-confidence transcripts (excluding “not assigne-
d.unknown”), and these were analyzed for evidence of
Mercator term enrichment or depletion. Transcriptional
phases were divided into seasonal bins by photoperiod

(defined in Methods); bins included ‘short’ photoperiod
(5796 transcripts), ‘spring’ photoperiod (1466 transcripts);
‘long’ photoperiod (5073 transcripts); and ‘fall’ photoperiod
(1179 transcripts). Across seasonal bins, we found evidence
for over- or under-representation in 48 Mercator metabolic
pathways (Fig. 4b; Additional file 5). Pathways showing an
over-representation of phase values in short photoperiod
days (winter) were related primarily to biotic stress, signal-
ing, protein degradation and post-translational modifica-
tion, and RNA transcription in diverse regulatory genes

A B C

D E F

G H I

J K L

M N O

Fig. 3 Example expression profiles for transcripts exhibiting significant cyclic diurnal variation, ordered by phase. Gene expression (DESeq-normalized
counts per transcript) was estimated by RNA-seq from needle samples representing three families of trees at four hour intervals for two days. For each
gene, the Douglas-fir transcript name, putative gene name, and best BLAST match to Arabidopsis (prefix ‘at’) are provided. Lines connect the mean
expression for each family; error bars represent the SD for all replicates. Absence of shading indicates daylight hours, while shading indicates night
hours. Shown are transcripts reaching phase at 0:00 (a, b), 2:00 (c), 4:00 (d-f), 7:00 (g), 10:00 (h), 12:00 (i, j), 18:00 (k, l) and 20:00 (m-o)
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such as MAP kinases, RNA helicases, and proteins playing
a role in hormone signaling and transduction (e.g.,
auxin; DUF26). Pathways showing over-representation
of phases on long photoperiod days (summer) were related
primarily to organelle regulation (pentatricopeptide and
tetratricopeptide repeat protein families), photosynthesis-
related metabolism (photosynthesis light reaction; car-
bonic anhydrase; metal binding/storage), ribosomal pro-
tein synthesis (nuclear and organellar), redox/thioredoxin,
and stress from heat.
We used multiple regression analysis to test whether

three environmental factors – two week interval mean
photoperiod (in minutes, as second-order polynomial), two
week interval mean temperature (maximum °C), and two
week interval cumulative precipitation (in mm) – could pre-
dict the number of transcripts reaching phase over two week
periods across a complete year. Tests for multicollinearity in-
dicated a low to modest level of multicollinearity among the
environmental factors (variance inflation factor ≤ 2.82 for all
factors; Table 3). The results of the regression model indi-
cated the combined predictors explained 83.41% of the total
variance (adjusted R2 = 0.802, F4,21 = 26.38, p = 6.31e-08;
Table 3), with mean photoperiod (β = 8.468e-01, p = 1.25e-
07; Table 3) and mean maximum temperature (β = −3.739e-
01, p = 0.0206; Table 3) indicated as the most significant pre-
dictors. Mean cumulative precipitation variable accounted
for insignificant levels of variation (β = −9.424e-03,
p = 0.9435; Table 3). Photoperiod, temperature, and precipi-
tation have all been implicated as major drivers in seasonal

gene expression in different plant tissues [12, 34], but at the
scale of global transcription over a year, photoperiod is the
dominant driver of the timing of cyclic gene expression max-
ima in our study of Douglas-fir needles.

Generalizing annual transcriptome expression variation to
other conifers
To explore the generality of our circannual predictions,
we evaluated the timing and direction of annual transcript
accumulation (phase) from the perspective of two previ-
ously published studies of seasonal gene expression in
conifers: summer transcription in Douglas-fir, and fall
transcription in Sitka spruce. The recent study by Hess
et al. [33] identified six categories of ‘environmentally-re-
sponsive’ transcripts, and we used reciprocal BLAST
searches of both reference transcriptomes to identify 2278
transcripts common to both studies. These include 537
transcripts that are down-regulated when day length is
long (‘day length-down’), 332 transcripts up-regulated
when day length is long (‘day length-up’), 363 transcripts
down-regulated when temperature is high (‘temperature-
down’), 295 transcripts up-regulated when temperature is
high (‘temperature-up’), 271 transcripts down-regulated
when total available water is high (‘precipitation-down’),
and 480 transcripts up-regulated when total available
water is high (‘precipitation-up’) (Additional file 1).
The distribution of phase dates for each of the six

environmentally-responsive transcript categories was

Table 2 Diurnal and annual transcriptional phases for core clock genes in Douglas-fir needles, as compared to the angiosperm
model Arabidopsis and the gymnosperm Cryptomeria japonica

Gene Description Transcript or Locus Diurnal Phase (clock time)a Annual Phaseb

Douglas-fir Arabidopsis Cryptomeria Douglas-fir Arabidopsis Cryptomeria Experiment Day Month

RVE1 (myb-like factor) t005329 AT5G37260 Shoot-057-45 0:00 3:00 4:00 97 Feb

VIN3 (vernalization insensitive) t005024 AT5G57380 N/A 4:00 3:00 N/A 255 Jul

CCA1 (circadian-clock associated) t001299 AT1G01060 N/A 4:00 6:00 N/A n.s.c -

COP1 (constitutive photomorphogenic) t007671 AT4G11110 HI9HAF202BWYA2 7:00 7:00 8:00 85 Jan

CRY1 (cryptochrome) t007387 AT4G08920 AB894544 10:00 10:00 4:00 316 Sep

FT (flowering locus T) t021120 AT4G20370 N/A 12:00 0:00 N/A 12 Nov

ELF4.2 (early flowering 4) t027724 AT1G72630 N/A 12:00 15:00 N/A 255 Jul

LHY (late-elongated hypocotyl) t004201 AT2G46830 AB894539 18:00 8:00 4:00 n.s. -

GI (gigantea) t001582 AT1G22770 AB894538 18:00 20:00 16:00 97 Apr

ZTL (Zeitlupe/F-box domain) t005033 AT2G18915 AB894542 20:00 10:00 16:00 n.s. -

TOC1 (timing of CAB expression) t039766 AT5G60100 AB894541 20:00 19:00 20:00 n.s. -

LUX (myb-like transcription factor) t012828 AT5G59570 N/A 20:00 18:00 N/A n.s. -

ELF4.3 (early flowering 4) t029722 AT2G06255 N/A 20:00 20:00 N/A 249 Jul
aDouglas-fir diurnal phase values expressed as clock hours, where sunrise occurred at 6:44 AM, and the photoperiod was 12:50 in length. Arabidiopsis thaliana
phase estimates were reported as hours from ZT (lights on), based on a 12 h photoperiod [7]; to make units comparable, we added 7 h to Arabidiopsis phase
values to approximate sunrise (in clock hours) in our study. Cryptomeria japonica phase estimates were reported in clock hours [31]
bAnnual phase values are expressed in experiment days (days after 29-October)
cProfiles identified as not significantly rhythmic by JTK_CYCLE are noted “n.s”
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significantly different than the expected distribution for
all ‘environmentally-responsive’ transcripts (minimum
X2 = 36.041, 3 d.f., p ≤ 7.34e-8; Additional file 1). In nearly
all cases, the distribution of transcript phases (relative to
expected distribution; unfilled bars in Fig. 6b-d) are con-
sistent with their predicted environmentally-responsive
transcript category (filled bars, Fig. 6b-d) [33], and the sea-
sonal factors that are predicted to drive their expression
(Fig. 6a). For example, ‘day length-down’ transcripts are
predicted to be down-regulated when day length is long.
Our results show that there is a significant excess in the
number of transcripts reaching phase during the short
photoperiod season (Fig. 6b, upper panel), and a corre-
sponding deficiency in the number of transcripts reach-
ing phase during the long photoperiod season. This
trend is reversed for ‘day length-up’ transcripts (Fig. 6b,
lower panel); these are predicted to be up-regulated
when photoperiod is long, and our results show that
there is a significant excess of transcripts reaching
phase during the long photoperiod season, and a defi-
ciency in transcripts reaching phase during the short
photoperiod season. Similar trends are observed for
‘temperature-responsive’ transcripts, as ‘temperature-
down’ show a significant excess of transcripts reaching
phase in coldest months (short photoperiod; Fig. 6c,
upper panel), and ‘temperature-up’ show a significant
excess of transcripts reaching phase in warm months
(fall photoperiod; Fig. 6c, lower panel). ‘Precipitation-
responsive’ transcripts show a similar pattern, although
in this case the ‘precipitation-down’ category shows a
significant excess of transcripts reaching phase in the
driest months (fall photoperiod season; Fig. 6d, upper
panel), and ‘precipitation-up’ shows a significant excess
of transcripts reaching phase in the wettest months
(short photoperiod).
An important finding in our study is that a significant

proportion of transcripts reach peak accumulation during
the dormant period (e.g., Fig. 2). If this is a common
feature of conifer needle transcription, similar patterns of
up- and down-regulation should be observable in other
late season time-course studies of gene expression in
conifers. To evaluate the reproducibility of this pattern,
we selected a subset of dates from our annual study (17-
Aug-2011 and 7-Oct-2011) to compare with a microarray-

Fig. 4 a Mercator metabolic categories showing evidence of
significant enrichment (red) or depletion (blue) in the diurnal study.
Transcripts were sorted by phase into one of four time bins; ‘sunrise’
(4 – 10 am), ‘midday’ (10 am – 4 pm), ‘sunset’ (4 – 10 pm), and
‘midnight’ (10 pm – 4 am). Shading is scaled by the –log2 value of the
P-value, following an FDR correction of 0.05. b Metabolic pathways
showing significant enrichment (red) or depletion (blue) in four
photoperiod categories: short (5-Nov to 4-Feb), spring (5-Feb to 6-May),
long (7-May to 5-Aug), and fall (6-Aug to 4-Nov). Shading is scaled by
the –log2 value of the P-value, following an FDR correction of 0.05
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based study of needle gene expression in Sitka spruce
(Picea sitchensis) conducted at a similar time interval (30-
Aug, 18-Oct) in British Columbia, Canada [34]. From
these studies, we identified 11,582 transcripts that showed
reciprocal best BLASTN matches between the Douglas-fir
transcriptome and Sitka spruce clones used in microarray
design (Additional file 6). Out of this total, 760 transcripts
showed evidence of significant seasonal change in Sitka
Spruce (q ≤ 0.05; two-fold change [34]), and cyclic behav-
ior in Douglas-fir (q ≤ 0.01, JTK-cycle). The rank order of
fall:late summer gene expression ratios for these 760 tran-
scripts was more preserved than would be expected if
gene order was random (Kendall’s τ = 0.2901; z = 11.989;
p < 2.2e − 16), indicating that the direction of transcript
change (increasing, decreasing) and the relative magnitude

of transcript accumulation was more preserved than ex-
pected across these dates. Due to their differences, com-
parisons between microarray and RNA-seq data are
challenging within designed studies; for this reason, the
similarity between fall transcriptional responses in Picea
vs. Pseudotsuga should be considered provisional evidence
for a shared response to the onset of fall and short photo-
periods, one that is characterized by a significant increase
in transcript accumulation prior to the onset of dormancy.

Discussion
Perennial, evergreen needles are one of the key features
that distinguish nearly 700 species of conifers from
the tree model Populus and from other deciduous angio-
sperm trees. Over a calendar year, persistent leaves

Fig. 5 Example expression profiles for transcripts exhibiting significant cyclic annual variation, ordered by phase. Gene expression was estimated by
RNA-seq from needle samples collected from two families of trees at c. three week intervals for one year. For each transcript, the Douglas-fir transcript
name and best BLAST match to Arabidopsis (prefix ‘at’) are provided; genes lacking a BLAST match to the NCBI NR database are identified as ‘unknown’.
Lines connect the mean gene expression (DESeq-normalized counts per transcript) for each family; error bars represent the SD for all replicates. Shown
are transcripts reaching phase in in each experiment month, starting in November (a), continuing sequentially through December – September (b-k),
and ending in October (l)
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undergo transcriptional and metabolic shifts that allow
for photosynthesis when conditions are favorable (even
during winter), while providing conservative protection
from the damaging effects of winter cold during dor-
mancy [23, 70], and drought during seasonal dry periods
[21, 22]. By defining the complexity and contribution of
gene expression over the complete growth-dormancy
cycle, circannual studies like this provide a foundation
for identifying associations between the synchrony of
transcriptional change to seasonal events in climate or
phenology, and they offer a source of evidence for iden-
tifying genes/pathways that may contribute to adaptive
responses in forest trees to climate change.
Our results show that the timing of maximum transcript

accumulation in diurnally and circanually cyclic transcripts
from conifer needles is associated with the timing and
amount of light at both temporal scales. At a daily scale,
12,042, or 29%, of expressed diurnal transcripts showed a
significant diurnal cycle, with nearly one half of these diur-
nal transcripts achieving maximum mRNA accumulation
within +/− 2 h of sunrise or sunset. This pattern has been
shown in diverse plants and animals [5, 7], and is explained
as “expression anticipation” for the transition from dark to
light in the morning, and light to dark in the evening. We
found a high degree of concordance in the phase for these
genes in the conifers Douglas-fir and Cryptomeria (Table 2)
and the angiosperm Arabidopsis, which is striking given the
different methodologies used in these studies (e.g., microar-
rays vs. RNA-seq) and the organismal divergence included
in the comparison. A small number of genes – specifically,
FT, LHY, and ZTL – showed pronounced differences in
phase between these three taxa. These differences may be
due to incorrect assessments of orthology in gene families,
but in the case of FT and LHY, it may be due to divergent
gene functions in gymnosperms and angiosperms, as has
been previously suggested [14, 28]. The influence of light as

an entraining force of circadian cycles is well-known in
plants [1–4, 7, 8], and our analysis expands the list of
known circadian genes to a new lineage of gymnosperms.
It’s important to note that our circadian study was
performed near the autumnal equinox (September 7–8), so
it could represent a different transcript profile than those
represented in Cryptomeria [31], which were sampled
closer to the summer and winter solstices (July 30–31;
December 22–23). Given the strong circannual variation
observed in Douglas-fir (e.g., Fig. 2) and observations of
circadian dampening or arrest during winter dormancy in
Cryptomeria [31] and other organisms [71], ‘diurnal’
transcriptomes are likely to exhibit different cyclic behav-
iors and members under different seasonal conditions and
tissue sources. Expanding these comparisons to additional
tissues, seasons, and conifer species under standardized con-
ditions (age of tissue and plant; sampling interval; analytical
methods) with comparable gene expression detection
methods (e.g., RNA-seq) would make it possible to identify
essential circadian components in gymnosperm genomes, as
well as developmentally- or temporally-unique components.
At an annual scale, 21,225, or 58.7%, of expressed an-

nual transcripts showed significant circannual cycles,
with nearly half of all expressed transcripts achieving
maximum mRNA accumulation within +/− 20 days of
the shortest or longest photoperiod. Photoperiod is
known to play a crucial role in the timing of the onset of
dormancy, bud break and flowering in photoperiod-
sensitive plants [11, 14, 17, 72, 73], and photoperiod has
been shown to explain greater seasonal variation in
photosynthetic activity than temperature for many tree
species [74]. Given the reliability of light as an entraining
force for forecasting environmental change, photoperiod
is a common signal used by many trees for tracking sea-
sons at the molecular level [14, 72, 73], through interac-
tions with phytochromes, the constans and FT (or FT-

Table 3 Model summary for multiple regression analysis of relationship between the number of transcripts reaching maximum expression
(phase) and environmental predictors (photoperiod, maximum temperature, precipitation) over two week intervals for a full year

ANOVA df Sum of squares Mean of squares F Pr(>|t|)

photoperiod 2 27.03 13.51 49.29 1.168e-08

temperature 1 1.897 1.897 6.920 0.0156

precipitation 1 0.0014 0.0014 0.0051 0.9435

residuals 21 5.757 0.2741 NA NA

Coefficients VIF b Std. Err. β Std. Err. T value Pr(>|t|)

constant NA -1.307e + 00 1.967e-01 -1.130e-16 8.718e-02 −6.646 1.40e-06

photoperiod 2.531 2.667e-03 1.281e-03 2.945e-01 1.414e-01 2.082 0.0497

photoperiod2 1.494 8.037e-05 1.031e-05 8.468e-01 1.087e-01 7.793 1.25e-07

temperature 2.822 −4.886e-02 1.951e-02 −3.739e-01 1.494e-01 −2.503 0.0206

precipitation 2.186 −9.627e-03 1.343e-01 −9.424e-03 1.315e-01 −0.072 0.9435

R2 = 0.834; Adjusted R2 = 0.802; Residual standard error = 0.4445 (21 d.f.); F-statistic: 26.38 on 4 and 21 d.f., p-value = 6.31e-08

Cronn et al. BMC Genomics  (2017) 18:558 Page 13 of 18



like) module [11, 14, 75], and regulatory proteins that
control circadian expression and bud dormancy and re-
lease (e.g., apetala2/EBB1 [12]). Douglas-fir has been
characterized as exhibiting ‘photoperiod-sensitive’ and
‘photoperiod insensitive’ responses (summarized in [73]),
and our study of Douglas-fir annual transcription shows
a strong ‘photoperiod effect’, such that photoperiod is
the single strongest predictor of the number of genes
reaching peak expression throughout the year (Table 3).
At present, it’s not possible to determine the extent to
which this global circannual expression pattern is driven
by photoperiod, climate, or the photoperiod-sensitive
nature of the species. As with circadian studies, expand-
ing circannual studies to photoperiod-sensitive and in-
sensitive conifer species in diverse environments could

help to identify the essential and variable components of
a ‘core’ circannual clock.
Environmental cues like temperature and water availability

are known to modulate seasonal processes and gene expres-
sion [73]; in our study, temperature was a significant yet
weak predictor of the global number of genes reaching phase
(Table 3), and precipitation showed an insignificant relation-
ship to genes reaching phase. Genes responding to these cli-
matic factors may be less abundant in plant transcriptomes,
their activity may be temporally transient, or they may be
difficult to model using cyclic (cosine-like) functions. Popu-
lation sampling strategies like those used by Hess et al. [33]
may show the greatest power for identifying genes that re-
spond to secondary signals like temperature or water avail-
ability. Interestingly, estimates of annual phase from our

Fig. 6 Seasonal distributions of phase times for environmentally-responsive transcripts identified in Hess et al. [33]. a Box plots show the mean and
interquartile range for mean day length, mean maximum temperature, and cumulative precipitation for two-week intervals at our study site. These
three environmental factors are predicted to influence transcription in Douglas-fir. b-d) Seasonal distributions of predicted and observed numbers of
transcripts reaching maximum expression for each of the six environmentally-responsive classes identified in [33]. The predicted distribution (unfilled
bars) represents the proportion of transcripts for each season reaching maximum expression (phase), across all environmentally responsive transcripts
that show significant circannual cycles (N = 2278 transcripts). Observed distributions (filled bars) represent the proportion of transcripts for each season
reaching maximum expression for each category (e.g., ‘day length-down’). Categories showing a significant excess or deficit of transcripts relative to
expected proportions are identified by one or two asterisks (* = p ≤ 0.05; ** = p ≤ 0.01)
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study were generally congruent with classifications for
environmentally-responsive transcripts by Hess et al. [33]
(Fig. 6), as transcripts described as upregulated during
long photoperiods, high temperatures, and dry conditions
were enriched in our ‘long photoperiod’ (also hottest and
driest; Fig. 6a) season. Similarly, transcripts described as
downregulated during long photoperiods, high tempera-
tures, and dry conditions were enriched in our ‘short
photoperiod’ (also coolest and wettest; Fig. 6a) seasons.
Examples of transcripts meeting these predictions are
shown in Fig. 5a (predicted ‘day length-down’; [33]) and
Fig. 5i (predicted ‘temperature-up’; [33]).
While there is general agreement in the predicted ex-

pression patterns in these studies, it’s important to note
that a sizeable proportion of the ‘environmentally-re-
sponsive’ Douglas-fir transcriptome described by Hess
et al. [33] reaches maximum activity in seasons that are
contradictory to predictions. For example, 289 of the
537 (53.8%) “day length – down” transcripts reach max-
imum expression during the expected short photoperiod
season, but 114 (21.2%) reach maximum expression in
the unexpected long photoperiod season. Across all six
categories described by Hess et al. [33], we find that an
average of 19.2% of transcripts reach phase in the
opposing season predicted by their environmentally-
responsive categories. These discrepancies could be due
to analytical errors, genotype x environment interactions
imposed by different garden climates, or complex tran-
scription responses to seasonally-recurring stresses.
The entrainment of diurnal and circannual gene ex-

pression by light quality or day length in Douglas-fir is
intuitive, but the dramatic accumulation of transcripts at
the winter solstice presents something of a paradox; why
does transcript accumulation peak for such a high pro-
portion of the cyclic transcriptome during dormancy,
when metabolic activity is reduced and growth is
arrested? In western Oregon, Douglas-fir typically re-
mains photosynthetically active during the winter [22],
but seasonal transcription for protein synthesis, metab-
olism, and photosynthesis are underrepresented (Fig. 4).
Instead, Douglas-fir undergoes physiological changes
that result in maximum cold hardiness between Novem-
ber to early December [25], and this timing coincides
with the increase in genes achieving maximum tran-
script accumulation (e.g., Fig. 2b), and enrichment for
genes involved in stress responses, hormone transduc-
tion, and light signaling (Fig. 4). Transcription for many
genes and pathways are known to increase under short
days and cold temperatures in response to adverse envir-
onmental conditions [24, 26], such as temperature, os-
motic, drought, and light stress. The list of Douglas-fir
cyclic transcripts reaching maximum transcription in
winter includes genes implicated in cold acclimation of
Populus buds (e.g., early light-inducible proteins (ELIPs),

C-repeat binding factors, fatty acid desaturases, major carbo-
hydrate enzymes, LEA-like proteins, and heat shock proteins
[18]). Short day- and dormancy-induced transcriptional up-
regulation in needles appears extensive, and further effort is
required to determine how this seasonally-diverse transcript
pool coordinates the proximal demands of growth cessation,
preparation for winter stress, and establishment/mainten-
ance of dormancy and cold hardiness.

Conclusions
Conifers possess evergreen needles that sense and re-
spond to year-round environmental signals. In this
study, we used RNA-seq to monitor transcriptional ac-
tivity in Douglas-fir needles at daily and annual cycles,
and we found that gene expression is dependent on light
at both scales. At a daily scale, we identified 12,042 tran-
scripts that showed significant cyclic variation, with
nearly half of transcripts achieving maximum activity
+/− 2 h from sunrise or sunset. At an annual scale,
21,225 transcripts showed significant cyclic variation,
with nearly half of transcripts achieving maximum activ-
ity +/− 20 days from the winter or summer solstices.
Comparisons with diurnal and seasonal gene expression
studies with other conifers show a high degree of concord-
ance, suggesting that results from this study may be useful
for predicting the timing of transcription in other popula-
tions of Douglas-fir, and other species of genomically-
complex temperate zone gymnosperms such as spruce
[76, 77] and pine [57]. To aid in these comparisons, we
have made the daily and circannual transcriptional patterns
for Douglas-fir available for examination [78], and have
merged our estimates of predicted phase (circadian; cir-
cannual) with results from the related study of Hess et al.
[33] to provide a comprehensive list of temporally- and
environmentally-responsive transcripts (Additional file 7).
The combination of large genome size (~20 Gbp), high

transcriptional complexity [79, 80], genic redundancy,
and divergence from angiosperm models has made it dif-
ficult to infer gene function in conifers based on hom-
ology alone; for this reason, genetic-environmental and
genetic-phenotypic associations are being investigated in
many conifer species [68, 81]. Conifers lack tractable
models for reverse genetic manipulation, so context-
specific evidence offered by diurnal, seasonal, and cir-
cannual gene expression studies provide the insights into
the functional relevance of transcript accumulation, and
the seasonal context that genes and pathways are up-
and downregulated. A clearer understanding of role that
complex circannual transcription plays in physiological
and fitness responses will emerge as the developing
Douglas-fir genome [82] and other conifer genomes are
integrated with daily, seasonal, circannual, and tissue-
specific transcriptomic studies.
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Additional files

Additional file 1: Additional information on needle sampling methods,
original source locations for trees, the location of common gardens,
sampling intervals used for collections, individual tree sequencing library
summaries, and individual tree transcriptome summaries. The file can be
opened in Microsoft Word or any word processing program that accepts
rich text format. (DOCX 812 kb)

Additional file 2: Daily environmental data associated with experiment.
This file includes date (mm/dd/yyyy), experiment day, Julian day,
experiment week, experiment month, minimum air temperature (°C),
maximum air temperature (°C), mean daily air temperature (°C), daily
precipitation (mm), day length (h:m:s), and the daily sum of solar radiant
exposure (MJ/m2). The file can be opened in Microsoft EXCEL or any
program that accepts text as tab-separated values. (TSV 20 kb)

Additional file 3: Summary of JTK-Cycle inferred cycle properties for diurnal
and annual cyclic transcripts. The file can be opened in Microsoft EXCEL or
any program that accepts text as tab-separated values. (TSV 3802 kb)

Additional file 4: Summary of enriched and depleted Mercator
functional category terms for the diurnal study. The file can be opened in
Microsoft EXCEL. (XLSX 1514 kb)

Additional file 5: Summary of enriched and depleted Mercator
functional category terms for the annual study. The file can be opened in
Microsoft EXCEL. (XLSX 2602 kb)

Additional file 6: Summary of transcripts showing best reciprocal BLAST
match between Douglas-fir and Sitka spruce clones used in Holliday
et al., 2008, and data used for comparing ranked lists for Kendall’s Tau
test. The file can be opened in Microsoft EXCEL. (XLSX 335 kb)

Additional file 7: Summary of transcripts showing best reciprocal BLAST
match between Douglas-fir transcripts in Hess et al. 2016 and Douglas-fir
transcripts in this paper. The file can be opened in Microsoft EXCEL. (CSV 446 kb)
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