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Cosmogenic 10Be and 36Cl Ages From Late Pleistocene Terminal Moraine 
Complexes in the Taylor River Drainage Basin, Central Colorado, U.S.A. 

Keith A. Brugger∗ 
Geology Discipline, University of Minnesota, Morris, Morris, MN   56267, 

U.S.A. 

Abstract 

Cosmogenic surface-exposure ages from boulders on a terminal moraine 

complex establish the timing of the local last glacial maximum (LGM) in the 

Taylor River drainage basin, central Colorado.  Five zero-erosion 10Be ages 

have a mean of 19.5 ± 1.8 ka while that for three 36Cl ages is 20.7 ± 2.3 ka.  

Corrections for modest rates (~1 mm ka-1) of boulder surface erosion result in 

individual and mean ages that are generally within 2% of their zero-erosion 

values.  Both the means and the range in ages of individual boulders are 

consistent with those reported for late Pleistocene moraines elsewhere in the 

Southern and Middle Rocky Mountains, and thus suggest local LGM glacier 

activity was regionally synchronous.  Two anomalously young (?) zero-erosion 
10Be ages (mean 14.4 ± 0.8 ka) from a second terminal moraine are tentatively 

attributed to the boulders having been melted out during a late phase of ice 

stagnation.   

 

1.  Introduction 

 With the development of cosmogenic radionuclide surface-exposure 

dating, the timing and duration of local last glacial maximums (LGM) in 

individual ranges of western North America are becoming better understood.  

However, the range of exposure ages typically obtained from a single moraine 

complex can and has been interpreted and/or explained in different ways (e.g., 

Gosse et al., 1995; Phillips et al., 1996; Licciardi et al., 2001; Putkonen and 

Swanson, 2003; Benson et al., 2005).  Such differences in interpretation add to 

current debates as to whether local LGM glacier advances and retreats were 

regionally synchronous (cf. Licciardi et al., 2004; Benson at al., 2005).  Non-
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synchronous LGM glacier behavior in particular has broader implications for 

late Pleistocene climate dynamics in western North America, implying that 

factors other than variations in insolation (i.e. Milankovitch forcing) may have 

played a role in driving advance and retreat (Clark and Bartlein, 1995; Hostetler 

and Clark, 1997; Thackray, 2001; Thackray et al., 2004; Licciardi et al. 2004). 

This paper presents the results of a pilot study wherein a limited number of 
10Be and 36Cl exposure ages were obtained from boulders on two, “Pinedale-

age” (sensu lato) terminal moraine complexes, and thus date the local LGM in 

the Taylor River drainage basin, central Colorado.  By increasing the 

geographic distribution of temporal records of glacial advances, the ages 

presented here will help resolve the issue of regional synchroneity of late 

Pleistocene alpine glacial advances and its implications for mechanisms of 

climate change.  Moreover, these ages more precisely constrain the timing of 

climate change inferred from local LGM equilibrium-line altitudes in the 

southern Sawatch Range and Elk Mountains (Brugger and Goldstein, 1999; 

Brugger, 2006). 

 

2.  Methods 

Rock samples were obtained from atop seven granite boulders on local 

LGM (known locally as Taylor River-age) terminal moraines in the Taylor 

River valley proper and Texas Creek (Fig 1).  Large boulders (2-4 m in the 

longest dimension) in excess of ~1 m in height (Table 1) were selected for 

sampling to minimize potential shielding by snow or sediment cover in the case 

of post-depositional exhumation (Putkonen and Swanson, 2003).  In addition, 

samples were taken from relatively flat boulder surfaces and away from edges 

and corners to minimize the effects of boulder geometry on in-situ cosmogenic 

nuclide production rates and/or neutron-loss effects (cf. Masarik and Weiler, 

2003).  The moraine in the Taylor River valley was deposited by the largest 

lobe of a glacier complex that covered about 215 km2 during its maximum 

extent (Brugger 2006).  The five boulders sampled here are located on 

relatively flat (therefore presumably stable) individual ridge crests nested 

within the moraine and far from valley walls.  Vegetation at these sites is sparse 
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and consists largely of grass and sagebrush communities; no trees are present.  

The coarse-grained texture of the granitic lithology makes them susceptible to 

weathering.  This texture also means that boulders did not striate or polish well 

during transport, and thus precludes using these criteria to evaluate the degree 

of post-depositional weathering.  Care was taken to avoid those surfaces that 

showed obvious signs of spalling or extensive weathering.  

The two boulders sampled at the Texas Creek location are on the proximal 

side of a terminal moraine constructed by a large valley glacier (Brugger and 

Goldstein, 1999).  Trees surround both sample localities, but the forest canopy 

is not very dense.  It should be noted that both boulders are some 800-1000 m 

upvalley from the most distal slope(s) of the moraine (Fig. 1c) and therefore 

might be associated with the initial retreat of the ice following the local LGM.  

These boulders also appeared more weathered than those sampled on the 

moraine in the Taylor valley.  Because of the limited number of samples that 

could be analyzed and the fact that all other large boulders examined on this 

moraine showed more obvious signs of spalling, fracture, and/or extensive 

weathering, these were the only samples collected here. 

Extraction of quartz for 10Be and various mineral phases (whole rock) for 
36Cl and subsequent chemical preparation of the samples were done at the 

Purdue Rare Isotope Measurement (PRIME) Lab using standard methodology 

(see for example Gosse and Phillips, 2001, and references therein). 

Geochemical analyses on those samples used for 36Cl dating (Table 2) were 

done using X-ray fluorescence for major oxides, inductively coupled plasma 

mass spectrometry for rare-earth elements, potassium, and calcium, and neutron 

activation analysis for boron and gadolinium.  10Be/9Be and 36Cl/37Cl ratios 

(Table 2) were measured using accelerator mass spectrometry (AMS; Muzikar 

et al., 2003) at PRIME Lab.  

10Be exposure ages are determined using a production rate of 5.1 ± 0.3 

atoms g -1 yr-1 at sea level and high latitude (SLHL; Stone, 2000).  Production 

rates for 36Cl are taken as 66.8 ± 10 and 154 ± 20 atoms g -1 yr-1 (SLHL) from 

the spallation of Ca and K (Phillips et al., 1996, 2001).  The somewhat larger 

uncertainties assigned to the latter reflect (but certainly do not encompass) the 
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wide range of production rates reported in the literature (cf. Swanson and 

Caffee, 2001; Gosse and Phillips, 2001 and references therein).  SLHL 

productions rates for 10Be and 36Cl are scaled to altitude and latitude following 

Stone (2000) and corrected for sample depth following Gosse and Phillips 

(2001).  A neutron attenuation length of 160 ± 10 g cm-2 is used and rock 

density is 2.65 g cm-3.  Calculations of 36Cl ages were facilitated using the 

spreadsheet program CHLOE (Phillips and Plummer, 1996).  Changes in 

production rates due to topographic shielding (Dunne et al., 1999) are 

negligible (<< 1%) at all sampling sites. Corrections for snow shielding and 

boulder-surface erosion are discussed subsequently.  No corrections are made 

for potential changes in production rates because of variations in the 

geomagnetic field through time.  

Historical meteorological data, snow course studies, and SNOTEL records 

from stations 5-10 km away from the sampling locations and at comparable 

elevations indicate that the modern maximum snowpack thickness is ~0.95 m 

(the winter mean is 0.36 m with an associated density of 0.24 g cm-3).  Pollen 

and plant macrofossils indicate, however, that modern climate in the region was 

established by about 2 ka and that slightly wetter conditions and/or higher 

winter precipitation generally prevailed between ~15 and 4 ka (Fall, 1997).  

Fall’s (1997) estimates of precipitation during this interval suggest an average 

roughly 15% greater than modern values.  After adjusting snowpack 

accordingly, shielding corrections are extremely small (0.997 – 1.000) and the 

resulting cosmogenic ages differ by <1% from their uncorrected values.  This 

implies that such corrections are insignificant even under the assumption of 

reasonable increases in snowfall for extended periods in the past.  Consequently 

they are not reported here.  

 
3.  Results and Discussion 

10Be and 36Cl ages are presented in Table 2 and represented schematically in 

Figure 2.  Zero-erosion 10Be ages for moraine boulders on the terminal moraine 

in the Taylor River valley range between 16.1 ± 1.0 and 20.8 ± 0.8 ka.  The 

uncertainties reported here reflect only those associated with the AMS 

measurements.  The mean, inversely weighted according to the uncertainty in 



10/3/06 BRUGGER:  Cosmogenic ages from late Pleistocene moraines 5 

SUBMITTED TO QUATERNARY SCIENCE REVIEWS 7/06 

each measurement, suggests an age of 19.5 ± 1.8 ka for this moraine.  Zero-

erosion 36Cl ages range from 18.2 ± 0.8 to 22.2 ± 1.0 ka, yielding a mean of 

20.7 ± 2.3 ka that is in excellent agreement with that for the 10Be ages.  

Uncertainties in the production rates cited in Section 2 result in zero-erosion 
10Be ages that are within ~5% and 36Cl ages within 7-10% of these values.  The 
10Be and 36Cl ages place the local LGM firmly in marine isotope stage 2 (~12 - 

24 ka).  The mean ages are also very consistent with those reported1 for LGM 

moraines in the San Juan Mountains (18.9 ± 1.6 36Cl ka) and the Front and Park 

Ranges (18.4 ± 1.4 36Cl ka) of Colorado (Benson et al., 2005), and in the Wind 

River Mountains of Wyoming (20.5 ± 1.8 10Be ka; Gosse et al., 1995).  

Similarly the range of cosmogenic ages found on the Taylor River valley 

moraine corresponds with those found in this broader region (respectively 16.6 

– 21.5, 16.5 – 20.9; and 17.5 – 24.0 ka), differences in nuclides 

notwithstanding. 

Cosmogenic ages were also calculated for different assumed rates of 

surface erosion on the boulders sampled (Table 2; Fig. 2).  Rates of continuous 

erosion are most probably close to 1 mm ka-1 based on weathering studies by 

Benedict (1993) in the nearby Front Range of Colorado where lithologies and 

climate are similar to those in the study area.  An upper limit of 5 mm ka-1 is 

probably reasonable even for instances of episodic fire-induced spalling 

(Zimmerman et al., 1994).  Erosion-corrected mean 10Be ages are ~4 and 9% 

older than the zero-erosion mean for 1 and 5 mm ka-1, respectively, and mean 
36Cl ages younger by 2-3%. 

With due consideration of AMS uncertainties, concordance of 10Be and 36Cl 

ages (Fig. 2b) is reasonably good for two samples (TVP00-1, 3).  Concordance 

is even more reasonable if one considers that the total precision in cosmogenic 

ages has been estimate to be about ±8% (Gosse and Phillips, 2001) and there 

remain other, unquantified sources of error.  These two samples might also 

                                                        
1Benson et al. (2005) used the same production rates for 36Cl as those used here.  10Be ages for 
the Wind River Range were recalculated from Gosse et al. (1995) with the parameters 
(productions rate, attenuation length, scalings, and so forth) used in this study and using the same 
subset included in Benson et al. (2005).  For comparison, Benson et al. (2005) report a mean of 
19.6 10Be ka for the Wind River samples obtained with a production rate of 5.4 atoms g-1 yr-1. 
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suggest that typical rates of boulder weathering are minimal in that concordance 

is better for low (say ≤ 1-2 mm ka-1) rates of erosion, consistent with Benedict’s 

(1993) work.  The discordance between 10Be and 36Cl ages for sample TVP00-4 

is difficult to explain in terms of inheritance and/or shielding because its 10Be 

age is the youngest of the boulders dated on this moraine while the 36Cl age is 

the oldest.  It could be reconciled with a high rate of surface erosion (~11 mm 

ka-1; Fig. 2b) for which the age becomes 19.1 ka.  Such a high rate seems 

unlikely, however, even for the case fire-induced spalling (Zimmerman et al., 

1994).  Moreover, field observations indicate that while some spalling is 

evident at its base, spalling is not unique to this boulder.  Nor is there anything 

peculiar about the geometry and/or surface texture (Birkeland and Noller, 2000) 

of this or any boulder that might indicate anything other than slower weathering 

processes (e.g. granular disintegration) dominated on the surfaces sampled.  

Therefore a more likely explanation is that the magnitude of discordance here is 

simply an artifact of the production rates used for 36Cl.  For example, the values 

given by Swanson and Caffee (2001) yield a zero-erosion age of 16.0 ka, a 28% 

reduction in this boulder’s apparent age.  In view of this and other 

disadvantages in using 36Cl (Gosse and Phillips, 2001) it seems prudent to 

assume the 10Be ages presented here are more representative of the true age of 

this moraine.  Finally, because of the uncertainties introduced by hypothetical 

erosion corrections, the complications of discordance, and the small number of 

samples, it is not possible to say with certainty whether ages vary 

systematically across the moraine surface.   

The two samples from the terminal moraine in Texas Creek have a mean 
10Be zero-erosion age of 14.4 ± 0.8 ka.  In view of the ages obtained in the 

Taylor River valley and within the region (e.g. Benson et al., 2004, 2005) these 

appear to be rather young.  Shielding by either snow and/or sediment is not 

thought to be a factor for these samples.  Modest rates of surface erosion of 1 

and 5 mm ka-1 increase the mean age to 14.5 ± 0.7 and 15.3 ± 0.8 respectively.  

As noted previously, however, the probability of spalling on these boulders is 

high and therefore a more rapid rate of erosion could be considered.  For 

example, using the rate (11 mm ka-1) required for concordance of 10Be and 36Cl 
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ages for TVP00-4 the mean age could be as old as 16.6 ± 0.9 ka.  Alternatively, 

given the locations of the boulders sampled their young ages might document a 

sustained interval of moraine construction.  More likely these ages reflect the 

slow down-wasting and late melt-out of debris from a stagnating ice margin.  

Brugger et al. (1988) suggested the latter scenario based on the abundance of 

ice disintegration features on this particular moraine and low driving stresses 

over the lower reach of a reconstruction of the Texas Creek glacier.  Ultimately 

these ambiguities need to be resolved before the validity and meaning of these 

ages can be assessed, but at present they can be taken as minimums for ice 

retreat in this valley. 

 
4.  Conclusions 

Cosmogenic 10Be and 36Cl ages for boulders on the terminal moraine 

complex in the Taylor River valley demonstrate that the local LGM occurred 

between 16.1 and 20.8 ka, and possibly as early as 22.2 ka if the oldest 36Cl age 

is included.  If this range represents an interval of moraine construction (e.g., 

Gosse et al. 1995), then its correspondence (within given uncertainties) with 

those found elsewhere in the Rocky Mountains of Colorado and Wyoming 

(Benson et al., 2005) suggest regional synchroneity of LGM glacial advances 

and/or retreats.  Barring the effects of shielding, the ages of the two youngest 

boulders (16.1 and 17.8 10Be ka, zero erosion) at the very least corroborate the 

conclusion reached by Benson et al. (2005) that regional deglaciation occurred 

at  ~16.8 ka (cf. Licciardi et al., 2004).   
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Table 1 
Sample locations and height with respect to moraine surface 

 Sample Latitude Longitude Elevation* Height** over Sample 
  (° N) (° W) (m) moraine surface thickness 
     (m) (cm) 
 
Taylor River valley LGM terminal moraine 

 TVP00-1 38.9126 106.5947 2950 1.75 2.0  

 TVP00-2 38.9138 106.5940 2950 0.90 2.5 

 TVP00-3 38.9171 106.5901 2960 1.75 2.0 

 TVP00-4 38.9170 106.5913 2955 1.50 2.0 

 TVP00-5 38.9157 106.5952 2955 2.00 1.75 

Texas Creek LGM terminal moraine 

 TCP00-1 38.8515 106.5488 2925 1.50 1.75 

 TCP00-2 38.8530 106.5507 2940 0.85 2.5 
* Elevation given to the nearest 5 m with a presumed accuracy of  ±10 m 

** Value given is to the nearest 0.05 m 
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Table 2 

Isotope ratios, pertinent whole rock geochemistry (where appropriate), and 10Be and 36Cl ages for the moraine boulders sampled 

Sample Sample 10Be/9Be* 36Cl/35Cl* 35Cl/37Cl SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 MnO TiO2 P2O5 Sum 
  weight (10-15) (10-15) (10-15)      (wt. %) 
  (g) 
 
TVP00-1 30.82 611 ± 24 718 ± 30 4.21 ± 0.07 62.72 16.22 2.59 1.44 2.94 5.25 5.67 0.10 1.02 0.53 98.48 

TVP00-2 30.72 559 ± 46 

TVP00-3 30.40 581 ± 27 632 ± 26 4.29 ± 0.05 66.32 15.96 2.58 0.91 3.07 4.96 3.50 0.07 0.72 0.20 98.29 

TVP00-4 32.56 518 ± 33 636 ± 27 3.76 ± 0.06 69.35 15.22 1.79 0.77 3.27 5.21 2.23 0.11 0.34 0.10 98.38 

TVP00-5 32.59 524 ± 80 

 

 

TCP00-1 59.61 907 ± 31 

TCP00-2 58.33 932 ± 29 
 
 
*Blank corrected values; blank ratios as follows: 10Be/9Be for TVP00 samples, 0.0 ± 2.6 x 10-15 (below detection); 10Be/9Be for TCP00 samples, 1.8 ± 1.5 x 
10-15; 36Cl/35Cl for TVP00 samples, 2.4 ± 3.5 x 10-15. 
 

 

 

 Sample Cl B Gd Carrier weights (mg) Zero-erosion age 1 mm ka-1 erosion age 5 mm ka-1 erosion age 
  (ppm) (ppm) (ppm) 10Be 36Cl 10Be 36Cl 10Be 36Cl 10Be 36Cl 
 
 TVP00-1 128 9 9 0.639 1.042 20.8 ± 0.8 22.0 ± 0.5 21.2 ± 0.9  21.6 ± 0.9 22.9 ± 1.0 21.0 ± 1.0 

 TVP00-2    0.630  18.9 ± 1.6  19.2 ± 1.6  20.6 ± 1.9 

 TVP00-3 124 <3 5 0.636 1.065 19.9 ± 0.9 18.2 ± 0.8 20.2 ± 1.0 17.8 ±0.8 21.7 ± 1.1 17.1 ± 0.7 

 TVP00-4 214 9 4 0.618 1.072 16.1 ± 1.0 22.2 ± 1.0 16.3 ± 1.0 21.4 ± 1.0 17.3 ± 1.2 19.8 ± 0.9 

 TVP00-5    0.625  17.8 ± 2.7  18.1 ± 2.8  19.3 ± 3.2  

  Weighed means     19.5 ± 1.8 20.7 ± 2.3 19.8 ± 1.9 20.2 ± 2.1 21.3 ± 2.2 20.1 ± 2.0 

 

TCP00-1    0.548  13.8 ± 0.5  14.0 ± 0.5  14.7 ± 0.5 

TCP00-2    0.557  14.9 ± 0.5  15.0 ± 0.5  15.8 ± 0.5 
 
  Weighed means    14.4 ± 0.8  14.5 ± 0.7  15.3 ± 0.8 
 

 
  

 

 



10/3/06 BRUGGER:  Cosmogenic ages from late Pleistocene moraines 12 

SUBMITTED TO QUATERNARY SCIENCE REVIEWS 7/06 

 

Figure Captions 

(Authors Note – The figures here should be of sufficient quality for review 
purposes.  The maps in Figures 1b and c will be reproduced at a higher 
resolution.  Both are sized in accordance with journal standards.) 

 

Figure 1.  (a) Map of the Taylor River drainage basin showing its location in 

central Colorado and the mapped LGM extent of glaciers.  Locations of 

boulders sampled on the terminal moraine complex in (b) the Taylor River 

valley and (c) Texas Creek. 

Figure 2.  (a) Schematic representation of cosmogenic 10Be and 36Cl ages 

showing the effects of different rates of boulder surface erosion.  (b) 

Concordance diagram for the three samples from which 10Be and 36Cl ages 

were obtained. Dashed diagonal line represents complete concordance.  

Erosion “trajectory” (arrows) shows the age relationships as a function of 

increasing boulder surface erosion.  Bold numbers are the value of erosion 

required for concordance.  Error bars reflect only uncertainties in the AMS 

analyses.  Extended error bars shown in gray for zero-erosion ages assume 

a total precision of 8%.   
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FIGURE 1 
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FIGURE 2 
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