
Scholarly Horizons: University of Minnesota, Morris
Undergraduate Journal

Volume 3 | Issue 1 Article 5

2016

Rowhammering: a physical approach to gaining
unauthorized access
Niccolas A. Ricci
University of Minnesota, Morris

Follow this and additional works at: http://digitalcommons.morris.umn.edu/horizons

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by University of Minnesota Morris Digital Well. It has been accepted for inclusion in Scholarly
Horizons: University of Minnesota, Morris Undergraduate Journal by an authorized administrator of University of Minnesota Morris Digital Well. For
more information, please contact skulann@morris.umn.edu.

Recommended Citation
Ricci, Niccolas A. (2016) "Rowhammering: a physical approach to gaining unauthorized access," Scholarly Horizons: University of
Minnesota, Morris Undergraduate Journal: Vol. 3: Iss. 1, Article 5.
Available at: http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota, Morris (UMM): Digital Well

https://core.ac.uk/display/235249131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol3?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol3/iss1?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu


Rowhammering: a physical approach to gaining
unauthorized access

Niccolas A. Ricci
Division of Computer Science

University of Minnesota, Morris
Morris, Minnesota, USA 56267
ricc0082@morris.umn.edu

ABSTRACT
As the information density of DRAM increases, the prob-
lems faced by natural decay and cell leakage have become
increasingly prevalent. As cells become more closely packed
they may leak their charge into adjacent cells, changing their
state, and producing memory error. Researchers attempted
to intentionally produce memory error by repeatedly access-
ing cell rows adjacent to each other, a technique which was
later labeled “rowhammering”. Breakthroughs in research
demonstrate working examples of a rowhammer used to ex-
ploit memory for unauthorized access. In this paper, I will
describe various approaches to rowhammering, discuss po-
tential approaches for protection, and will demonstrate some
of the methods described herein.

Keywords
Rowhammer, DRAM, Rowhammer.js, Side-channel attacks,
Privilege escalation

1. INTRODUCTION
Cells, known within computer science as bits, store all

information within memory. Over time, Dynamic Random
Access Memory (DRAM) has scaled towards greater infor-
mation density, which decreases the distance between cells.
Although information density is beneficial for reducing the
cost-per-bit of memory [7], there are side-effects for placing
cells within close proximity. As the distance between cells
become less than 100 nanometers they experience the short
channel effect [6]. The short channel effect, within memory,
will cause cells to leak their charge at an accelerated rate (i.e.
change their bit-state), and reduce their threshold voltage.
Threshold voltage determines the voltage differential needed
to create a conducting path between a source and a drain
terminal. Within DRAM, a source and drain terminal would
be two separate cells; with a reduced threshold voltage, two
cells may experience electromagnetic coupling. When elec-

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2015 Morris, MN.

tromagnetic coupling occurs, the charge of coupled cells is
“shared”, and their charge attempts to equalize [7, 6].

Issues involving the density of DRAM have been known
since the first commercial DRAM chip [7]. In 2014, Yoong
Kim et al [7] showed that through frequently alternating the
charge of specific memory locations, electromagnetic cou-
pling can be used intentionally to affect the charge of ad-
jacent cells [7]. The effect that Yoong et al demonstrate
has been dubbed “rowhammer”, and is a form of attack on a
physical system. However, the exploits used within Yoong et
al‘s paper are written in assembly, and use commands that
a would-be attacker would not have access to [3]. Rowham-
mering has since been researched in more detail, and has
been shown to work without the use of assembly [3, 2, 11].

In this paper, I will detail a variety of methods used to
successfully execute rowhammering. I will begin with Yoong
et al‘s approach in Section 3, followed by more applied meth-
ods of rowhammering in Sections 3.1 and 3.2. Afterwards
I will discuss detected vulnerabilities in Section 3.3, leading
into potential solutions to rowhammering as proposed by
Yoong et al in Section 3.4.

2. BACKGROUND

2.1 DRAM
Dynamic random-access memory (DRAM) is a system of

capacitors which is used to store information. Capacitors,
cells, and bits, all refer to the same thing, and can be used
interchangeably. A DRAM system can consist of single or
multiple channels. Channels are the means of communica-
tion between DRAM and the memory controller, described
in Section 2.2. The physical “stick” of memory is plugged
into the motherboard through Dual Inline Memory Modules
(DIMMs). Each DIMM contains ranks, placed on either
side of the physical stick of DRAM. Each rank is comprised
of chips, and each chip contains around 8 banks. Inside
of each bank is a composition of cells structured as a two-
dimensional array of cell rows [7, 3]. In order to better
visualize the structural hierarchy of a DIMM see Figure 1.
Each bank has row buffer, which is used as a temporary stor-
age for all read and write operations. Operations within the
row buffer are conducted by the memory controller, both of
which are described in Section 2.2.

Information within DRAM is comprised entirely by the
charge of capacitor cells, which makes it a much faster way
to read and write information than a hard drive. The state

1

Ricci: Rowhammering: a physical approach to gaining unauthorized access

Published by University of Minnesota Morris Digital Well, 2016



Figure 1: My graph of a DIMM. Ranks 0 and 1 are
placed on opposite sides of the memory stick.

of a capacitor cell is determined by its voltage: If a cell is at
half capacity or more it is in the 1 state, if a cell is at less
than half capacity it is a 0. Cell charge can be thought of like
a bucket full of water, where the water represents how many
electrons are within a capacitor. In order to determine the
charge of a row of cells, all cells within a row are collapsed
into the memory buffer (the row of buckets is poured into
a temporary row of buckets). The voltage (fullness) of each
capacitor determines its state. Since the only moving com-
ponents within DRAM are electrons, operations in memory
happen within nanoseconds.

Due to how closely packed together capacitor cells are
within DRAM, cells experience the short channel effect, which
a cell‘s charge will leak. This is called natural decay. In or-
der to combat this, every cell has its charge refreshed at rate
greater than the rate of natural decay [7, 6, 1]. The short
channel effect also reduces the voltage differential, which will
cause each cells to “share” their charge with adjacent cells.
If a conducting path is made between two cells, the charge of
the two cells will change. If a cell‘s charge has a great enough
change, its bit-state will change. In other words, the buckets
have tiny holes which drain into a system of pipes leading
to all other buckets. Over time, the water pressure will try
to equalize within a row of buckets, making “full” buckets
leak their volume into adjacent empty buckets. Thus, when
measured, buckets which were meant to be full might not
be, and buckets which weren’t meant to be full might be.
In order to retain which buckets are supposed to be full, all
buckets need to be refilled at a rate faster than they leak.
Thus, to combat both natural decay and charge leakage, the
memory controller refreshes the charge of a row of cells at a
rate faster than either phenomenon [7, 6].

2.2 Memory Controller
All operations within memory are conducted by the mem-

ory controller, and take place within the memory buffer.
The most fundamental function of a memory controller is to
read the states of each cell, and write any changes to a cell‘s
charge. Read and write operations are done as follows:

• Open a row: Transfer information to the bank‘s row-
buffer (i.e. copy the cell row into the buffer).

• Read states and write changes: interpret state, en-
code any changes (i.e. preform any changes within the
buffer, then copy the array back to the original row).

• Close row: clear buffer.

Reading cell rows is destructive; when a cell row has its
charge measured, the charge of each cell is lost (or destroyed).
In order to preserve the state of the cell row, each cells charge
within the row is copied into the buffer, then copied back
into the original cell row. Note that any changes within a
row of memory are made after reading a row, and are ap-
plied within the buffer before being written to the original
cell row. [7, 5]

The process of copying out and copying back in will “re-
fresh” the charge of a cell row. In other words, the buckets
full of water will be poured into a temporary row of buckets
within the buffer, buckets measured to be half full or more
will be filled to capacity within the buffer, and finally poured
back into their original buckets. Cell rows are usually not
accessed frequently enough to completely hinder the affects
natural decay and cell leakage. In order to retain the states
of cells, the memory controller will preform “dummy” oper-
ations on each row. In other words, the memory controller
will frequently open each row and then close them, without
making any changes to the copied row within the buffer.

As memory becomes more dense, the leakage will happen
at an accelerated rate. Likewise, when more states within a
cell row are “full”, there will be more possibilities for elec-
tromagnetic coupling. Thus, the memory controller has to
refresh more frequently when more capacitor cells are full,
and when cells are in closer proximity. [7, 6]

The rowhammer attack is made possible through the short
channel effect phenomenon. Rowhammering, in effect, ex-
acerbates the leakage of charge within cells to intentionally
alter the state of adjacent cell rows [6].

3. ROWHAMMMERING
Manufacturers of DRAM have known of rowhammering

since at least 2012. Initially, it was used as a quality assur-
ance test for DRAM. There is cost to refreshing, so upon
discovering the problem manufacturers worked to find the
minimum refresh frequency necessary in order for a 0% prob-
ability of a bit being flipped by mistake as a result of the
short channel effect [3]. Since the discovery of rowhammer-
ing, the question arose if it could be used to deliberately
change the charge of cell rows without accessing them. Re-
searchers Yoong Kim et al from Carnegie Mellon University
demonstrated that they were able to deliberately induce bit
flips in their paper Flipping bits in memory without accessing
them: an experimental study of DRAM disturbance errors.
Yoong et al show that they were able to induce “disturbance
errors” (flipped bits) through their algorithm Code1a (see
Algorithm 1).

2

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3 [2016], Iss. 1, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5



Algorithm 1 Code1a

1: mov (X), %eax // Read from address X
2: mov (Y), %ebx // Read from address Y
3: clflush (X) // Flush cache for address X
4: clflush (Y) // Flush cache for address Y
5: mfence
6: jmp code1a.

Code1a will perform all actions on every data access. At
steps (1) and (2) the addresses for the rows X and Y are
read and filled with data. (3) and (4) run clflush, which will
flush data from the cache. The cache is a small amount of
memory that the CPU uses for efficient repeat instructions,
and must be flushed in order to force the CPU to grab the
next memory access from the DRAM and not the cache [10].
The mfence command at (5) is stated to ensure that the data
within rows X and Y is removed. (6) shows a call to the
code1a itself, which starts another iteration of the program.
Yoong et al found that when they ran their algorithm on a
single row no disturbance errors were produced, they labeled
this algorithm as Code1b.

Algorithm 2 Code1b

1: mov (X)
2: clflush (X)
3: mfence
4: jmp code1a.

Yoong et al discovered that not only must their be two
rows, X and Y must map to different rows within the same
memory bank [7]. Outside of the research by Yoong et al,
it was discovered that rowhammering is much more effective
when the victim cell row is directly in between two rows
that are being being hammered: the victim row X, which
is the row intended to be exploited, has bits flipped more
frequently when rows X+1 (the row above) and X-1 (the
row below) are being hammered. This process was labeled
“double-sided hammering” [2]. In order to better visualize
the process, look to Figure 2. In Figure 2, as the number of
activations are increased, more cells within the victim cell
row will have their bit-states flipped.

Double-sided rowhammering is effective, but the effective-
ness of rowhammering overall is limited by the refresh rate
of the memory controller, and by the maximum number of
operations that can be conducted within a set amount of
time. Rowhammering happens at the time in between when
the memory controller refreshes cells. So, if the memory
does not allow a sufficient amount of operations in between
each cell refresh, then rowhammering will not occur.

In the article Architectural Support for Mitigating Row
Hammering in DRAM Memories, by Dae-Hyun Kim et al.,
the formula for a successful rowhammer is given as:

Ileak−RH = α · Ileak−GB . (1)

Where I leak is the leakage current : the rate at which a cell
will leak its charge. GB is the guard-band, a scalar, or a
constant multiplier, that multiplies the base memory refresh
rate for extra security. The guard-band is chosen by manu-
facturers as a safety precaution in order to ensure cell leak-

Figure 2: Double-sided hammering [6].

age does not cause cells to lose their bit-state naturally. α
is the hammering rate, which works as a scalar multiplying
the natural leakage current with a guard-band: I leak-GB . So,
the guard-band (GB) reduces the rate of natural leakage to
a new rate I leak-GB , which is multiplied by the hammering
rate α, to give the increased leakage of a cell under rowham-
mering I leak-RH . [6]

In order to calculate the increased leakage, we will first
need the formula for the leakage current (Ileak ), which is
given as:

Ileak =
Q

t
=
C · V
t
⇒ C · V = Ileak · t (2)

where C is the capacitance of a cell, i.e. the maximum capac-
ity of a cell. V is the “driving voltage”, or how much voltage
is being applied to a capacitor in order to fill it to capaci-
tance. Q represents the total charge of a capacitor when at
capacitance (C · V) [1]. Finally, t represents a period of
time. The maximum amount of rowhammering which can
be applied over a time period t, is called the rowhammering
threshold (RHth). [6]

RHth =
β − 1

α− 1
×Mmax, (3)

β represents the reduced leakage current after the guard-
band is applied. α again, represents the scalar multiplier
to the natural leakage current. And M max is the maximum
operations within the memory over the time period given.
In order to better understand these formulas, consider an
example of the equation:

RHth@64 ms =
β − 1

α− 1
× 1.3 M. (4)

This represents the rowhammering threshold within 64 mil-
liseconds. There are 1.3 million total possible operations in
this time period. α has a range in value from 4.0 to 11.7.
At α = 11, and β = 2, the rowhammering threshold will be
1/10 × 1.3M = 130,000 possible hammers. [6]

Though, as mentioned before, the maximum possible ham-
mers is not the only factor into successful rowhammering:
the location of X and Y directly affect the success rate. In
the proof-of-concept testing that was conducted by Yoong
et al, the researchers specifically chose where to conduct the
rowhammer test. In other words, they had the knowledge of
where X and Y were within a bank. By default, they were
satisfying the “two rows, same bank” constraint. Whereas,
to someone wanting to run rowhammering as a exploitation
tool, this information will not be known. Yoong et al de-
scribe that there are techniques an attacker could use in

3

Ricci: Rowhammering: a physical approach to gaining unauthorized access

Published by University of Minnesota Morris Digital Well, 2016



order to learn where they are within memory, and state fur-
ther that the task is for future researchers. Google Project
Zero took on this task. [4]

3.1 Google Project Zero
Mark Seaborn from Google Project Zero in his blog post

Exploiting the DRAM rowhammer bug to gain kernel privi-
leges describes how the use of the Native Client within the
Google Chrome web browser can allow a would-be attacker
to gain information about where a cell row is within a bank
of memory. Which means, if two rows are chosen at ran-
dom within an allotted block of memory, their addresses
can be compared, and if they point to the same bank then
the rowhammer can be conducted successfully. [2]

The rowhammering algorithm that Seaborn uses is a mod-
ified version of Yoong et al.

Algorithm 3 Code1a (Modified)

1: mov (X), %eax // Read from address X
2: mov (Y), %ebx // Read from address Y
3: clflush (X) // Flush cache for address X
4: clflush (Y) // Flush cache for address Y
5: jmp code1a.

Within their testing, they found that the use of the pro-
cedure mfence actually reduced the amount of bits flipped,
and so they removed it from their algorithm. [2]

In order to satisfy the “two rows same bank” requirement,
Seaborn chose to pick memory pairs at random. In order to
do so, their algorithm would need access to a memory block.
So, first, they would allocate a large block of memory (1GB)
then would pick pairs at random within the allocated block.
Their test machine had 16 DRAM banks, made of 2 DIMMS
each with 8 banks, which gave them a 1/16 chance of two
rows being within the same bank if chosen at random on
every iteration of Code1a. [2]

The odds of being within the same cell row are high enough
even when chosen at random. As mentioned in the previ-
ous section, the chances of producing a bit flip are greatly
increased by having two rows adjacent to the victim row, it
was Seaborn who discovered this (see Figure 2). In some
cases, double-sided hammering was necessary to induce any
flip at all, which led them to find more solutions to the dif-
ferent row same bank constraint.

Another method for causing bit flips was explored through
“escaping the sandbox” of the Native Client within chrome
[2]. The Native Client works as a buffer for a browser and
a machine for low level scripts. The sandbox allows a web-
site to use low-level code to increase the efficiency of a web
program. For the sake of security, the sandbox will run the
low-level code, measure its effects, and deem them to be safe
or unsafe. If deemed safe, chrome will execute the program
on the machine, otherwise it will prevent any further actions.
Since the sandbox allows the use of low-level code, low level
procedures like clflush, and mov, can be run. Therefore,
Seaborn ran his Code1a within the sandbox.

In order to find a victim cell row, Seaborn maps a large
block of memory with the linux command mmap(). With
mmap(), the entire memory block is allocated without inter-
ruptions, i.e. no other applications have memory addresses

Computer Iterations time bit flipped?

eva01 340 2838 sec yes

multivac 326 359 sec yes

falcon 3979 4092 sec yes

tang 1873 >3 hours no

zytel 13638 >3 hours no

reliant 1824 >3 hours no

neoprene 1670 >3 hours no

mylar 7541 >3 hours no

cobar 6253 >3 hours no

acrylic 5819 >3 hours no

tedlar 6124 >3 hours no

rynite 120619 >3 hours no

Table 1: Table of Seaborn’s rowhammer test.sh run
on University of Minnesota Morris machines

inside the mapped block. Allocations without interruptions
are crucial for rowhammering, as at least three rows in se-
quence are necessary for double sided hammering a victim
row. After the large block allocation, a random pair would
be selected and hammered. If there any errors were found,
a victim row has been discovered, otherwise mmap() is run
again. Once a victim is exposed, careful rowhammering can
be done in order to grant write access to their block of mem-
ory. The specifics of how write access is granted was not
included, likely for security purposes.

Seaborn has given public access to his rowhammer test on
GitHub. The rowhammer test does not grant itself kernel
privileges, but instead tests the vulnerability of the DRAM
where it is being executed. I ran the test on twelve different
machines within a computer lab of the University of Min-
nesota Morris. Three of the twelve machines produced bit
flips. A table detailing the results of this test is shown above
on Table 1.

Within the list of possible routes for conducting the rowham-
mer exploit, Seaborn describes how it may be possible to
induce a rowhammer without low-level operations. If this
is possible, Seaborn states it could be a serious issue, as bit
flips could be generated on the open web with JavaScript.
Three months later, Daniel Grus, Clémentine Maurice, and
Stefan Mangard, published their paper Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript, fea-
turing a rowhammer exploit done within Javascript.

3.2 Rowhammer.js
The first thing to note about the uniqueness of rowham-

mer.js is that JavaScript does not have virtual addresses or
pointers. This means, for a rowhammer to be conducted
within the JavaScript language, none of the techniques used
by Yoong et al and Seaborn can be used; Javascript does
not allow the assembly within Code1a. Instead, in order
to induce a rowhammer, Daniel Gruss et al use JavaScript
typed arrays running inside Firefox 39 on Linux. [3]

4

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3 [2016], Iss. 1, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5



Figure 3: Figure depicting flip rates of methods
within [3].

Gruss et al state how large typed arrays in Firefox are
“allocated on anonymous 2MB pages” otherwise known as
large pages [3]. Since JavaScript does not allow assembly,
Gruss et al developed a tool to monitor the time it takes for
JavaScript to allocate large pages. They use this information
to determine the offset of the physical memory (e.g. the
distance from the start of the memory allocation). Next,
using the offset information, their program will determine
which indices should be hammered. Grus et al states that
in a large page the allocation will be divided into “16 row
offsets of size 128kb” [3]. Not all rows within the allocation
can be hammered, as they may not have two neighboring
cell rows: one atop and one below. Therefore, within an
offset of size 16, there will be 14 possible row offsets to be
hammered. These are the only two steps necessary in order
to induce a rowhammer through JavaScript. [3]

As shown in Figure 3, Gruss et al uses three variations
of the rowhammer exploit: the “Flush” rowhammer emu-
lated Code1a within Yoong et al‘s publication, “Evict (Na-
tive)” a rowhammer using native procedures, and “Evict
(JavaScript)” the JavaScript rowhammer using the methods
described above. Figure 3 illustrates that the clflush method
is the best overall. However, the native and JavaScript
rowhammers still produce a significant number of bit flips,
and the difference between them is negligible.

Gruss et al mentioned that in future work, rowhammer.js
may be able to simulate a sandbox escape akin to what
Seaborn has demonstrated. The result of Gruss et al‘s work
may be cause for alarm as it produces the first ever remote
access rowhammer attack. Since it has been demonstrated
that remote rowhammering is possible within the most com-
mon language used on webpages, an“[arbitrarily] large num-
ber of victim machines” could simultaneously and stealthily
be hammered [3].

3.3 Vulnerabilities
Since Yoong et al‘s publication, many different researchers

have implemented a working rowhammer through many dif-
ferent methods. Research into rowhammering has provided
an insight into what causes some machines to be more vul-
nerable than others.

First and foremost, the refresh rate within the memory
controller plays a crucial role to the success rate of a rowham-
mer [7, 6, 3, 2, 4]. Increasing the refresh rate does pro-

vide more security, however rowhammering is still possi-
ble. Seaborn states his suspicion that DRAM manufacturers
have already increased the refresh rate of their memory con-
trollers in a silent update. While conducting his research, he
updated a specific brand laptop that he was testing, which
resulted in a reduced speed of rowhammering [2]. Note how-
ever that the speed was only reduced, the rowhammering on
those machines would still occur, just at a slower rate.

Mobile technology is a field in which rowhammering re-
mains untested. Manufacturers of mobile devices place in-
formation density as one of their top priorities. These types
of devices also trend towards a reduced size. As a result,
mobile devices may always be a high priority target for a
rowhammer attack. [8]

3.4 Potential Solutions
Six potential solutions to rowhammering are given by Yoong

Kim et al.:

1. Make better chips. (Improve circuitry)

As Yoong et all state themselves, the solution does not scale
into the future as we’re always seeking memory to be more
dense. Furthermore, this would do nothing to resolve the
currently existing chips, some of which are likely to remain
in use beyond the next decade.

2. Correct errors. (ECC modules)

ECC modules fix single-bit error through the use of a par-
ity. Parity, in memory, is an extra chip that checks for errors
during read and write operations. ECC modules are used
when single bit errors are not tolerable, such as for scientific
research. Unfortunately, they are expensive and are there-
fore not applicable to consumer products, nor the bottom-
line for large companies. ECC modules would reduce the
frequency of rowhammering, but the problem would persist
despite the decreased probability of a successful attack.

3. Refresh all rows frequently.

Even doubling the refresh rate within the memory controller
would not reduce the probability of a rowhammer to 0. In
order to reach a 0% probability, the refresh rate would need
to be increased to 8 times its current value [3, 7]. As of
now, DRAM is busy refreshing 4.5% of the time, at 8 times
this value the memory controller would be refreshing values
36% of the time [3, 7]. While rows are being refreshed,
their values cannot be read, which means DRAM would be
reduced to 64% efficiency, and as a result of constant re-
freshing would consume more power.

4. Retire cells (manufacturer). Before DRAM
chips are sold, the manufacturer could identify
victim cells and re-map them to spare cells

Yoong et al contest this solution by describing how it may
take several days per chip to be thoroughly tested during
manufacturing. Worse still, even if all victim cells were dis-
covered, there may not be enough space to relocate them.

5. Retire cells (end-user). The end-users them-
selves could test the modules and employ system-
level techniques for handling DRAM reliability
problems.

5

Ricci: Rowhammering: a physical approach to gaining unauthorized access

Published by University of Minnesota Morris Digital Well, 2016



End users cannot be expected to know – or learn – how to
do this; even those who know about an existing security issue
may not bother to update their BIOS. In order to illustrate
this point, consider how in a study by [9], it was found that
only 30% of Windows systems are up-to-date [3].

6. Identify “hot” rows and refresh neighbors.
“PARA”

Yoong et al present a system titled “PARA”, which could
be implemented within the memory controller. Under the
PARA system, each time a cell row is opened all adjacent
rows have a low probability of being refreshed. Therefore,
during hammering, since rows are being opened and closed
repeatedly (labeled “hot” rows), the victim rows would have
a high chance of also being refreshed. Although the PARA
system – or similar systems – might actually work, they have
not yet been implemented. PARA will need to be shown to
work before it can be stated to be an actual solution.

Gruss et al considered the PARA solution, and state their
critique that, like many proposed solutions, PARA could
only be implemented in future DRAM chips, and would pro-
vide no benefit to the millions DRAM chips within currently
existing computers.

4. CONCLUSION
The trend towards information density continues today

as we move toward more applications of mobile computers,
and wearable tech. For this reason, the rowhammer attack is
likely to persist until a practical solution, if any, is shown to
work. Although rowhammering has been known to exist for
over three years, the most significant research has been con-
ducted within the last 6 months. The research community
has shown an increased interest, which may give an increased
exposure to the attack. If the interest persists there will be
more opportunities for new researchers to provide solutions
to the issue.

Rowhammering used for exploitative purposes appears to
be nascent. As the work from Seaborn shows, the bug can be
used for privilege escalation on existing systems. With the
advent of remote JavaScript rowhammering, malicious web-
sites could use embedded JavaScript to induce the rowham-
mering exploit for privilege escalation on an arbitrarily large
number of persons.

Most of the solutions being presented rely on hardware up-
dates for machines. In the event that a preventative solution
within hardware is discovered, there are millions of existing
machines that will remain vulnerable until replaced. Until
any solution to rowhammering is discovered, malicious use
of the exploit is a cause for concern, as there are no means
of protection from it.

5. ACKNOWLEDGEMENTS
Peter Dolan for working with me on the electronic en-

gineering. Kevin Arhelger and Leonid Scott for providing
insightful feedback. Thomas Hagen for being my “rubber
ducky”. Haley Gill for assisting in editorial work.

6. REFERENCES
[1] J. Becker. Capacitors and dielectrics (insulators) -

chapter 24., 2009. [Online; accessed 7-November-2015].

[2] Google. Exploiting the DRAM rowhammer bug to
gain kernel privileges, 2015. [Online; accessed
6-November-2015].

[3] D. Gruss, C. Maurice, and S. Mangard.
Rowhammer.js: a remote software-induced fault attack
in javascript. arXiv preprint arXiv:1507.06955, 2015.

[4] R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C.
Lin. Alternate hammering test for application-specific
drams and an industrial case study. In Proceedings of
the 49th Annual Design Automation Conference, DAC
’12, pages 1012–1017, New York, NY, USA, 2012.
ACM.

[5] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. SIGARCH Comput. Archit. News,
36(3):39–50, June 2008.

[6] D.-H. Kim, P. Nair, and M. Qureshi. Architectural
support for mitigating row hammering in dram
memories. Computer Architecture Letters, 14(1):9–12,
Jan 2015.

[7] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in
memory without accessing them: An experimental
study of dram disturbance errors. SIGARCH Comput.
Archit. News, 42(3):361–372, June 2014.

[8] A. F. Nishad Herath. These are Not Your Grand
Daddy’s CPU Performance Counters, 2015. [Online;
accessed 8-November-2015].

[9] OPSWAT. Antivirus and Operating System Report:
October 2014, 2015. [Online; accessed
8-November-2015].

[10] M. Rouse. Cache memory definition, 2014. [Online;
accessed 6-November-2015].

[11] M. Seaborn. How physical addresses map to rows and
banks in DRAM, 2015. [Online; accessed
6-November-2015].

6

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 3 [2016], Iss. 1, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol3/iss1/5


	Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal
	2016

	Rowhammering: a physical approach to gaining unauthorized access
	Niccolas A. Ricci
	Recommended Citation


	tmp.1455304942.pdf.rT2ic

