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ABSTRACT

We explore different methods of data mining in the field of
aviation and their effectiveness. The field of aviation is al-
ways searching for new ways to improve safety. However, due
to the large amounts of aviation data collected daily, parsing
through it all by hand would be impossible. Because of this,
problems are often found by investigating accidents. With
the relatively new field of data mining we are able to parse
through an otherwise unmanageable amount of data to find
patterns and anomalies that indicate potential incidents be-
fore they happen. The data mining methods outlined in this
paper include Multiple Kernel Learning algorithms, Hidden
Markov Models, Hidden Semi-Markov Models, and Natural
Language Processing.

Keywords

Aviation, Data Mining, Multiple Kernel Learning, Hidden
Markov Model, Hidden Semi-Markov Model, Natural Lan-
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1. INTRODUCTION

On January 31st, 2000 a plane travelling from Puerto Val-
larta, Mexico to Seattle, Washington dove from 18,000 feet
into the Pacific Ocean, losing 89 lives. The cause of this
accident was found to be “a loss of airplane pitch control
resulting from the in-flight failure of the horizontal stabi-
lizer trim system jackscrew assembly’s acme nut threads.
The thread failure was caused by excessive wear resulting
from Alaska Airlines’ insufficient lubrication of the jackscrew
assembly”[2]. The cause of this accident was predictable
through analysis of flight data recordings. There are many
other incidents that would also be preventable through anal-
ysis of the flight data recordings.

Data mining is a broad field of data science that was de-
veloped to make predictions on future data based on pat-
terns found in collected data. Finding patterns in aviation
data manually is impracticable due to the mass amount of
data produced every day. Data mining has been able to
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start addressing this problem. Although they are not yet
optimized for mining of aviation data in their current state,
some common data mining methods, such as kernel meth-
ods, text classification, and Hidden Semi-Markov Models,
are being explored. Kernel techniques have been largely de-
veloped around either discrete or continuous data. This lim-
itation makes it unsuited for use on the combined discrete
and continuous data collected in aviation. Hidden Markov
Models are limited to analyzing sequences without the abil-
ity to take into account the duration of actions. Aviation
incident reports often contain a small amount of informa-
tion per report, while current methods of text classification
requires large amounts of descriptive data. Although these
approaches are not optimal for aviation data, we can use
these concepts to produce new approaches for data mining.

In section 2 of this paper we will be explaining the con-
cepts necessary to understand the approaches to aviation
data mining outlined in sections 3 and 4. In section 3,
three different methods of data mining in aviation will be
introduced, and the methods explained. The first of these
three methods is data mining using Multiple Kernel Learn-
ing, which finds patterns in combined discrete and contin-
uous data. The second of the three methods compares the
effectiveness of the Hidden Markov Model versus the Hid-
den Semi-Markov Model in detecting anomalies. The third
method analyzes the effectiveness of a text classification al-
gorithm. Section 4 will discuss the relative success found in
the results of these methods, and section 5 will summarize
the effectiveness of the methods.

2. BACKGROUND

To discuss several methods of data mining used in aviation
today, we need to understand several data mining concepts.
These concepts include supervised, semi-supervised, and un-
supervised learning; text classification; Natural Language
Processing (NLP); Support Vector Machines (SVMs); Hid-
den Markov Models (HMMs); Hidden Semi-Markov Models
(HSMMs); and kernels. To summarize, we classify the data
by searching for key words in text (NLP), by finding clus-
ters of data (kernels), or by observing the probability of a
sequence of events (HMMs and HSMMs).

2.1 Aviation Data

We show implementation of these methods on three types
of aviation data in this paper. The first is Flight Record-
ing Data collected by the flight data recorder. The flight
data recorder is informally known as the black box. Planes
equipped with flight recording data typically record up to
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500 variables of data per second for the duration the plane is
being operated [2]. Some of the variables described in these
flight data recordings are time, altitude, vertical accelera-
tion, and heading [1]. Some of these variables are discrete
and some are continuous.

The second type of data is synthetic data. This is data
generated with flight anomalies intentionally placed in the
data to test the abilities of the algorithms to recognize the
anomaly. These anomalies are referred to as dispersed anoma-
lies. These anomalies may be an unconventional sequence
of events, an unusual duration between events, etc. Some of
the synthetic data used in this paper is data generated from
a robust flight simulator, FlightGear. The FlightGear simu-
lator is often used in the aviation industry and in academia
due to its accuracy [6].

The third type of data is aviation incident reports. These
reports do not have any strict conventions, do not require
pilots to use specific terms, and include narratives. Since
this data is not uniform, we must find a method to determine
the relevant and important data.

2.2 Labels and Labeled Data

A label is a descriptive word assigned to data based on
some property of the data. The labels in this paper are
called shaping factors, or shapers, of an aviation incident.
Examples of shapers in an aviation incident might include
illness, hazardous environment, a distracted pilot, etc.

2.3 Supervised, Semi-Supervised, and Unsu-
pervised Learning

There are many methods of finding a function to describe
data. This function is commonly called the model, as it is
made to model some set of data. Three such methods in-
clude supervised, semi-supervised, and unsupervised learn-
ing. Supervised learning uses labeled data to form the func-
tion. Semi-supervised learning uses some labeled data along
with some unlabeled data to form the function. Unsuper-
vised learning uses no labeled data to form the function. The
term supervised in this context means that the labels for the
data have already been found and are being used to con-
struct the new model in a somewhat predictable way. The
set of data used in supervised and semi-supervised learning
is called the training set.

2.4 Natural Language Processing

Natural Language Processing (NLP) is a field of computer
science focused on gathering meaningful data from text gen-
erated by humans. Aviation incident reports are not uni-
form, as they are filled out by humans. To get meaningful
data from these reports, we first have to identify the overall
picture of the data. This process is called text classification.
Text classification is a general term and there are several dif-
ferent methods of text classification. The research outlined
in this paper classifies text by using some prelabeled incident
reports. Using the reports and the shapers associated with
these reports, we can then find words in the reports that
are commonly associated with a shaper. These words are
referred to as expanders. While these expanders are being
found, we can label unlabeled reports that are likely to be
associated with a shaper if it contains a minimum number
of expanders.

http://digitalcommons.morris.umn.edu/horizons/vol2/iss1/3

2.5 Kernels and Support Vector Machines

A Support Vector Machine (SVM) classifies new data into
one of two categories. This data is represented by vectors
which are denoted by an arrow over a variable. It does this
by separating the data with a hyperplane. A hyperplane is
a line/plane of regression that best separates the two cate-
gories of data. This hyperplane is constructed by the SVM.
For example, the hyperplane in Figure 1 is the line separat-
ing the two clusters. Sometimes, an SVM is unable to pro-
duce a hyperplane. When this is the case, a kernel trick is
used. A kernel trick maps the plane into a higher dimension
so that a hyperplane may be found by the SVM [Figure 2].
The hyperplane in the left image of Figure 3 is the plane
separating the two clusters, it is then shown mapped back
into two dimensions in the right image of Figure 3. These
clusters are considered labeled after the hyperplane is con-
structed. The label is determined by the location of the data
point relative to the hyperplane. A kernel is a function used
to find the similarity between unlabeled data and the data
points, and label it accordingly.
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Figure 1: Linearly separable data [4].
15
10 S »
0.5 tl R : o
ol et 10 by
g g - .
A =08
‘. ettt St 1
05 s N 021
S A0 —
-1.0 e 0 o579 O
ylabel 1.01.0 X label
15

A5 1.0 -05 xlabel 05 10 1.5

Figure 2: In the case of non-linearly separable data,
we can use a kernel trick to map the data to a higher
dimension [4].
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Figure 3: Once the data is mapped to a higher di-
mension, we find a hyperplane to separate it [4].
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2.6 Hidden Markov Models (HMM) and Hid-
den Semi-Markov Models (HSMM)

To understand Hidden Markov Models we must first un-
derstand Markov chains. A Markov chain is a sequence of
states such that the probability of a transition from one state
to the next is dependent on the current state. A Markov
chain in aviation would be the probability of going from one
maneuver to the next (e.g. the pilot is more likely to stop
the aircraft after touching down than stopping the aircraft
after taking off.)

An HMM is a hidden Markov chain (the x level in Fig-
ure 4) with observable states (the o level in Figure 4) that al-
low us to infer the most probable state of the Markov chain.
In the instance of aviation, the Markov chain is hidden as
we are measuring the maneuvers of the aircraft, x;, based
on the inputs of the pilot, o;. For instance, the pilot turning
the yoke to the left, pulling the yoke back slightly, and ap-
plying left rudder would be the observable state, o, and the
hidden state would be the aircraft turning to the left, x;.

Figure 4: An example of a Hidden Markov Model
with state transition probabilities ommitted [6].

An HSMM is an HMM that accounts for the change of
transition probabilities between states over the duration of
a state. This is necessary since the duration between actions
could possibly classify the pattern as anomalous. An abnor-
mally long time between a plane touching down and the
plane stopping is an example of a sequence that is anoma-

lous due to duration.

Figure 5: An example of a Hidden Semi-Markov

Model with state transition probabilities ommit-
ted [6].

3. METHODS

Next, we will explore different methods of data mining
being used in the aviation industry today. Two of the three

methods search for anomalies in flight recording data. Anoma-

lous data in this context is defined as “unusual order of ac-
tions, unusual duration between actions, forgotten actions,
etc”[6].

Published by University of Minnesota Morris Digital Well, 2015

3.1 Data Mining Flight Recording Data Using
Multiple Kernel Learning

As discussed earlier in the background section 2.1, the
data to be analyzed can be a mixture of discrete and contin-
uous data. To find anomalies in such mixed data, we must
introduce Multiple Kernel Learning (MKL) methods. Using
multiple kernel learning allows us to analyze discrete and
continuous data simultaneously.

The kernels for discrete and continuous data are combined
using the function:

k(3,7 5) =nKa(T3, 7 5) + (1 —m)Ke(T4, T5)

In this function Kq is the kernel over discrete sequences,
and K. is the kernel over continuous sequences. The con-
stant n is the weight of the kernel which was 0.5 for this
research [2]. We use the following function to determine the
discrete kernel:

Ku(T0.75) = |LCS(Z 3, T ;)|

A /lyilyj

The value of Kg is equal to the length of the Longest
Common Subsequence (LCS) of two sequences divided by
the square root of the product of the two sequences length
(Lc). Consider an example of an LCS made from nonsensical
data:

ABB CBB AC

ABABAACB

ABBAC

The LCS is found by using the Hunt-Szymanski algorithm,
which is explained in greater detail in [3].

We use the same function to find the continuous kernel,
but we first preprocess the continuous data to make it dis-
crete. To do this, a variant of the Sample Aggregate ap-
proXimation (SAX) representation was used on the data.
To get the SAX representation, we find the averages of set
intervals along the time series. An example of this is shown
in Figure 6.

C
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Figure 6: The SAX representation of data. This con-
tinuous time series was translated to the sequence
baabccbe [5].

To be able to test the effectiveness of the MKL approach,
the Orca and SequenceMiner algorithms were used as a base-
line. The Orca algorithm specializes mainly in the finding
of patterns in continuous data. SequenceMiner finds pat-
terns in discrete data [2]. To initially test the Multiple
Kernel Anomaly Detection (MKAD) algorithm, data was
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generated with 12 pre-determined anomalies. Of these 12
pre-determined anomalies, 3 were continuous, and 9 were
discrete. On the generated data, Orca was unable to detect
any discrete faults, but did detect every continuous fault;
SequenceMiner was able to detect 89% of discrete faults,
but no continuous faults; and the MKL method was able to
detect all of both types of faults.

The real world data analyzed using the Multiple Kernel
Anomaly Detection method was a set of 3500 flights con-
sisting of 160 parameters, sampled once per second for an
average flight duration of 1.7 hours [2].

3.2 Data Mining Flight Recorder Data using
HMM and HSMM

Hidden Markov Models and Hidden Semi-Markov Mod-
els are analyzed in this paper to gauge their effectiveness
in finding anomalous patterns in flight recording data. As
discussed earlier, HMMs have a distinct disadvantage versus
HSMMs, as HSMMs have the ability to account for duration
of states, whereas HMMs do not.

The two methods use a dataset of “110 landings under reg-
ular operating conditions” from a flight simulator to define
normal operation. This data came from a flight simulator
called FlightGear, which is introduced in Section 2.1 [6]. For
these simulations, there were 12 discrete pilot commands
being recorded. Five different types of anomalous landings
were then created using FlightGear:

1. Throttle is kept constant and flaps are not put down.
The rest of flight is the same as in normal case.

2. No initial throttle increase, the rest of operation is nor-
mal.

3. The flight is similar to normal, except that the flaps
are not put down.

4. At the end of the flight the brakes are not applied, the
rest of operation is normal.

5. Pilot overshoots the airport runway and lands some-
where behind it.

Each of those scenarios were repeated 10 times for 50
anomalous scenarios.

The log of the probability of a sequence divided by the
length of the sequence was then found to determine the like-
lihood of a the sequence. If a sequence of states were found
to be anomalous, the probability of each state, given the se-
quence of states before it, was used to find the anomalous
state [6].

A simple set of synthetic data was used to check that the
HSMM was able to detect anomalous state durations and
HMM was not. This data set had 25 sequences with nor-
mal duration between states, and 25 of the same sequences,
but with abnormal duration between states. The ability of
HSMM to detect anomalous state durations can be seen in
Figure 7.

To interpret a Receiving Operating Characteristic (ROC)
curve, one must know that as the line is followed from (0, 0)

o (1, 1), the threshold is being changed for how the data is
classified. The knotted line depicts the ability of HSMM to
detect anomalous state durations. Since the area under the
knotted line approaches the coordinate (0, 1), we can see

http://digitalcommons.morris.umn.edu/horizons/vol2/iss1/3

that HSMM has a threshold value that will produce mini-
mal false positives and catch most true positives. However,
the solid line shows that HMM is fairly unreliable at any
threshold level.

ROC curve
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Figure 7: Detection of anomalous state duration of
HMM and HSMM [6].

3.3 Data Mining Aviation Incident Reports

Conventional methods of text classification are found in-
effective when used on aviation incident reports [8]. This
is due to the limited amount of information given on each
incident report. An especially difficult task is the classifica-
tion of minority classes due to the limited number of sam-
ples available for training. A minority class is a cause that
accounts for less than 10% of the incidents. This paper ex-
plores the use of a semi-supervised bootstrapping algorithm
produced to more effectively label causes in aviation incident
reports with an emphasis on minority classes.

The aviation incident reports for this section came from
the Aviation Safety Reporting System (ASRS) database [8].
There are 14 potential labels (or causes of the incident) for
the data. These labels are called shapers. Examples of
these shapers are familiarity, physical environment, phys-
ical factors, preoccupation, and psychological pressure [§].
To assign shapers to incident reports, algorithms commonly
search for words, referred to as expanders, which are indica-
tive of certain labels.

The data taken from the ASRS database includes descrip-
tions and opinions of the persons filing the incident report.
These descriptions and opinions are written out in abbre-
viated words and often contain improper grammar. This
data must be preprocessed to be able to be processed by the
algorithms. To do this, the abbreviations are mapped to
their expanded forms. For example, “HAD BEEN CLRED
FOR APCH BY ZOA AND HAD BEEN HANDED OFF
TO SANTA ROSA TWR” expanded to “had been cleared
for approach by ZOA and had been handed off to santa rosa
tower” [8].

Once the data is finished being preprocessed, it can be
run through the baseline software and the bootstrapping
algorithm. This bootstrapping algorithm is able to classify
the text by adding key words (expanders) from pre-labeled
data to a set. It then checks to see if the reports being
labeled have more than 3 words from the set of key words.
If the report being labeled has 3 or more words in common
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Table 1: Positive and Negative Expanders [8].

Shaping Factor Positive Expanders

Negative Expanders

Familiarity

unfamiliar, layout, unfamiliarity, rely

Physical Environment | cloud, snow, ice, wind

Physical Factors

fatigue, tire, night, rest, hotel, awake, sleep, sick | declare, emergency, advisory, separation

diversion, alternate

Preoccupation distract, preoccupied, awareness, situational, | declare, ice, snow, crash, fire, rescue, anti,
task, interrupt, focus, eye, configure, sleep smoke
Pressure bad, decision, extend, fuel, calculate, reserve,

with that set, it is labeled with the shaper associated with
the expanders. For example, if the bootstrapping algorithm
is labeling reports with the Preoccupation label using the
set of positive expanders in Table 1, and an unlabeled report
contains the words “awareness”, “task”, “eye”, and “smoke”,
it would label this report with the Preoccupation shaper
regardless of any negative expander.

Train(P,N,U.k)
Inputs:
P: positively labeled training examples of shaper «
N negatively labeled training examples of shaper =
U set of unlabeled narratives in corpus
k: number of bootstrapping iterations
PW — 10
NW — 0
fori=0tok —1do
if |[P| > |N| then
[P, PW]| — ExzpandTrainingSet(P,N,U, PW)
else
[N, NW] «—EzpandI'rainingSet(N, P,U NW)
end if
end for

ExpandT'rainingSet(A, B, U, W)
Inputs:
A, B, U: narrative sets
W unigram feature set
for j=1to4do
t— argmax;gw (log(%))
[ C(t, X): number of narratives in X containing ¢
W — Wu{t}
end for
return [A U S(W, U), W]
/I'S(W,U): narratives in U containing > 3 words in W

Figure 8: The bootstrapping algorithm [8].

The bootstrapping algorithm [Figure 8] takes several in-
puts. These inputs consist of a set of positively labeled train-
ing examples of a shaper, a set of negatively labeled training
examples of a shaper, a set of unlabeled narratives, and the
number of bootstrapping iterations (k). Positive examples
of a shaper are narratives which contain words that indicate
that shaper, negative examples of a shaper are narratives
that include words that indicate that the shaper is not ap-
propriate for said narratives. To find more expanders, two
empty data sets are initialized, one for positive expanders,
one for negative expanders. The algorithm then iterates the
ExpandTrainingSet function k times. In these iterations, if
the size of the set of positively labeled training examples is

Published by University of Minnesota Morris Digital Well, 2015

larger than the size of the set of negatively labeled training
examples, a new positive expander is found and vice versa.

In the second function of the algorithm, ExpandTrain-
ingSet, 4 new expanders are found. The inputs for this
function are the narrative sets of the positive and negative
shaper examples in their respective variable (A or B depen-
dent on the size of the narrative sets), the set of narratives
not assigned a shaper, and a unigram feature set: a set of
positive or negative expanders (dependent on the sizes of the
positive and negative narrative sets). Expanders are found
by finding the log of the number of narratives in one set
(P or N) containing a word, t, divided by the number of
narratives in the other set containing the word, t, for every
word. The maximum value of these values is then found. If
expanding the positively labeled training examples, the pos-
itive narrative set is used in the numerator, and the negative
narrative set is used in the denominator, and vice versa for
expanding the negatively labeled training examples. If this
word is not already an expander, it is added to the set of
expanders. After the 4 new expanders are found, all of the
unlabeled narratives that contain more than 3 words in the
list of relevant expanders are added to the relevant list of
labeled training examples.

To use the semi-supervised bootstrapping algorithm, some
data must already be labeled. To initially label a test set of
incident reports, two graduate students not affiliated with
the research labeled 1,333 randomly selected reports from
the ASRS database.

The reports are then classified by a pre-existing software
package called LIBSVM to have a baseline to which we may
compare the bootstrapping algorithm.

4. RESULTS

In this section we discuss the outcomes of the three meth-
ods compared to their respective baselines.

4.1 Multiple Kernel Learning

The data of concern in the set of 3500 flights were the
points below 10,000 feet mean sea level (MSL). The flight
data of these flights was passed through an algorithm to rid
the set of flights where the sensors or sensor values were un-
reasonable, likely due to noise or other malfunctions. This
left 2500 of the original 3500 flights for analysis. To find a
training set for the algorithm from these 2500 flights, “an
aggressive data quality filter was applied to the remaining
flights”, which returned “approximately 500 flights” [2]. Of
the 2500 flights, 227 flights were found to be anomalous by
the MKAD method. Of these 227 anomalous flights, 19 were
discrete, 94 were continuous, and 114 were heterogeneous
(discrete and continuous). Table 2 shows the results from
the multiple kernel method research, the overlap between
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this multiple kernel method and the baselines. Multiple ker-
nel learning for heterogeneous anomaly detection suggest the
MKAD approach was able to detect anomalies indicated by
both discrete and continuous data more effectively than the
baseline methods based on this overlap.

. Overlap of anomalous flights

Algorithms p(with MKAD) &
Discrete | Continuous | Heterogeneous
0] 21% 59% 34%
S 53% 0% 54%
0&S 58% 59% 67%
MKAD 19 94 114
Table 2: Overlap between MKAD approach and

baselines. The baselines are represented by O for
Orca and S for SequenceMiner. The values of O &
S are the union of their anomalous sets [2].

4.2 HMMs and HSMMs

Overall, of the scenarios listed in section 3.2, HSMM per-
formed better on scenarios 1 and 2, and performed simi-
larly to HMM on scenarios 3, 4, and 5. While the authors
of the paper discussed possible methods to further improve
anomaly detection using a HSMM, the result confirms the
relevance and importance of an algorithm that takes dura-
tion of states into account.

4.3 Semi-Supervised Bootstrapping Algorithm

A sample of the words indicative of certain labels, or ex-
panders, found when the bootstrapping algorithm was run
on the set of incident reports may be found in Table 1.
We can get an idea of the effectiveness of the bootstrap-
ping algorithm based on the expanders. In a table from
Semi-Supervised Cause Identification from Awviation Safety
Reports, 1.8% of the reports were annotated with the ‘Pres-
sure’ shaper. Even with the small percentage of the data
set having a cause of pressure it is easy to see how the pos-
itive expanders shown in the table can indicate pressure as
a cause leading to the incident.

The bootstrapping algorithm’s effectiveness was measured
by F-measure. An F-measure is the combination of precision
and recall. Precision is the fraction of reports accurately
assigned a shaper, recall is the fraction of the reports for
a shaper that were properly labeled. The bootstrapping
Algorithms’ F-measure yielded “a relative error reduction of
6.3% in F-measure over a purely supervised baseline when
applied to the minority classes” [8].

5. CONCLUSION

Techniques in data mining show signs of improving the
ability to detect anomalies in aviation data. We are now
able to detect heterogeneous anomalies in data, where be-
fore we were only able to find either discrete or continuous
anomalies. To do this we use Multiple Kernel Learning. We
have learned that a Hidden Semi-Markov Model approach
to detecting anomalies is favorable over a Hidden Markov
Model approach. This is due to Hidden Semi-Markov Mod-
els having the ability to model the probability of sequences
with the duration of states having significance. Lastly, we
have looked at a new text classification approach to effec-
tively identifying causes in aviation incident reports with an

http://digitalcommons.morris.umn.edu/horizons/vol2/iss1/3

emphasis on minority causes. To accomplish this, the boot-
strapping algorithm was used to find causes based on key
words contained in the aviation reports. Some continuing
problems which have yet to be addressed in the field of data
mining of aviation data include:

e Overly generalized data in incident reports, making
cause identification a difficult task

e Providing a simple way for these methods to be de-
ployed

e Linking reports between other data (e.g. linking inci-
dent report to aircraft maintenance records) [7].
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