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ABSTRACT
This paper provides an overview of the processes involved
in detecting and removing cracks from digitized works of
art. Specific attention is given to the crack detection phase
as completed through the use of morphological operations.
Mathematical morphology is an area of set theory applicable
to image processing, and therefore lends itself effectively to
the digital art restoration process.

Keywords
mathematical morphology, edge detection, crack detection,
crack removal, inpainting, digital art restoration

1. INTRODUCTION
The restoration of paintings and other works of art is an

important aspect in preserving objects of artistic, cultural,
or historic significance. However, this is also an expensive,
demanding, and time-consuming process reserved for the
abilities of specialists [8]. For this reason, the process of dig-
ital art restoration has been developed, which provides both
a comparatively inexpensive alternative and a nondestruc-
tive tool to be used in the planning of physical restoration.
Additionally, digital art restoration allows art historians an
approximation of the initial form of a work [10].

While there are many forms of damage a piece of art may
accumulate over time, one of the most common deteriora-
tions is cracking. These cracks, or craquelure, may form as
a result of climate, drying, or mechanical factors [3, 4, 10].
This paper examines the detection and removal of cracks
from pieces of digitized art. The main emphasis is on the
detection phase, as carried out by mathematical morphol-
ogy, which is a method of image processing based in set
theory.

This paper breaks the digital art restoration process into
three steps: edge detection, crack detection, and crack re-
moval. Section 2 covers edge detection by examining an
optimal edge detector known as the Canny edge detection
algorithm. Section 3 provides an examination of the four

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, April 2014 Morris, MN.

basic morphological operators of erosion, dilation, opening,
and closing. This information is necessary for understanding
Section 4, which covers crack detection, and is the main fo-
cus of this paper. Section 5 wraps up the digital art restora-
tion process in covering the crack removal process (known
as inpainting). The remaining sections provide a summary.
Section 6 reviews the results obtained by various methods
of digital art restoration, again with a specific focus on the
success of various morphological operators in the crack de-
tection stage, and Section 7 provides a summary of the infor-
mation provided in this paper, as well as discusses possible
further areas of interest and study.

2. EDGE DETECTION
Edges within a digitalized work of art are boundaries be-

tween areas of varying intensity. In other words, an edge
occurs where there is “a jump in intensity from one pixel
to the next” [6]. Intensity, in art, is defined as brightness
or dullness of a color; the brighter the color, the higher its
intensity. For example, in greyscale images, white has the
highest intensity and black has the lowest intensity.

Edge detection is actually not necessary to the crack de-
tection and removal process, and does not rely on mathemat-
ical morphology. However, this paper provides a brief dis-
cussion of the process for two reasons. The first is that edge
detection provides the advantage of reducing the amount of
data to be processed while still preserving the necessary edge
information. The second is that the choice of whether or not
edge detection is used affects the morphological filters used
later in the crack detection and removal process [6]. While
there are several possible methods of edge detection, this
paper will examine the Canny algorithm [2, 6].

The Canny algorithm is based upon three criteria, which
are as follows [2, 6]:

1. Accuracy - The edge detection algorithm should have
a low error rate. This implies that there should be
neither false positives (edges detected where they do
not exist) nor false negatives (edges not detected where
they do exist).

2. Localization - The edge detection algorithm should
minimize the distance between the edge detected and
the actual edge.

3. Uniqueness - The edge detection algorithm should have
only one response to a single edge pixel.

In order to fulfill these criteria, the Canny algorithm first
uses a Gaussian filter to smooth the image. This is achieved
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by sliding a convolution mask over each pixel in turn, blend-
ing each into the surrounding pixels. The complete result is
a slightly blurred version of the original image with no iso-
lated, “noisy” pixels (pixels that exhibit a significant jump
in intensity from all surrounding pixels) [2, 6].

Having eliminated noise, the algorithm then takes the gra-
dient of the image. An image gradient is a map of the direc-
tional changes in intensity within an image. The gradient is
then used to locate regions where there are significant jumps
in intensity. The regions identified here are then searched
for local maximum. All non-maximum pixels are set to zero.
In the final step, the Canny algorithm further refines the
detected edges by comparing the remaining pixels to two
thresholds. If the intensity of a pixel falls below the low
threshold, it is set to zero. If the intensity of a pixel falls
above the high threshold, it is set to one (made an edge). If
the intensity of a pixel falls between the two thresholds, it
is set to one if at least one adjacent pixel has an intensity
above the high threshold, and set to zero otherwise [6]. The
result of the Canny algorithm is a binary image depicting
the edges of the initial input image.

3. MORPHOLOGICAL OPERATIONS
Following optional edge detection is crack detection, the

focus of this paper. However, in order to understand this
stage, it is first necessary to describe the basic principles of
mathematical morphology. Typically, morphology is used in
processing binary (black and white) images, although there
are also variations used for greyscale images. This paper
will examine both variations. Morphological functions take
two inputs. The first input is the image to be processed.
In binary morphology, the input image is divided into fore-
ground (typically white) and background (typically black)
regions. In greyscale morphology, the image is treated as
a three-dimensional object, where higher areas are brighter
(white) and lower areas are darker (black). The second input
is a structuring element, a (typically small, in comparison
to the image) set of coordinate points. An example of a
3x3 square structuring element with the origin located at
the center in comparison to a 20x30 binary image is pre-
sented in Figure 1. The structuring element is then used to
modify the input image. The image that results from the
morphological operation is determined by the shape, size,
and point of origin of the structuring element [1, 5, 7, 9].
Subsections 3.1, 3.2, 3.3, and 3.4 explain the fundamental
operations of mathematical morphology.

3.1 Erosion
Erosion of an image strips away a layer of pixels from

the boundaries of foreground regions, and is denoted by the
equation

g = f 	 s

where g is the resulting image, f is the original image, and
s is the structuring element. The symbol 	 indicates ero-
sion [1, 5].

In binary erosion, erosion is accomplished by placing the
origin of the structuring element over every pixel of the fore-
ground regions in turn. If every point within the structuring
element is in line with a foreground pixel, the foreground
pixel lined up with the origin of the structuring element is
left unchanged. If at least one point within the structuring
element is in line with a background pixel, then the pixel

 

A

B

C

D

Figure 1: Structuring Element (letter marks origin):
A: contained in foreground region. B: intersecting
foreground and background regions, origin in fore-
ground region. C: contained in background region.
D: intersecting foreground and background regions,
origin in background region.

 

Figure 2: Binary Erosion: Left: Original Image.
Center: Erosion Marked. Right: Results of Erosion.

lined up with the origin of the structuring element is con-
verted to a background pixel [9]. An example of binary
erosion on a 20x30 image using a 3x3 square structuring el-
ement with the origin located at the center is presented in
Figure 2.

Greyscale erosion follows the same basic pattern, but is
somewhat more complex. Recall that in greyscale morphol-
ogy, the image is viewed as a three-dimensional object, with
“hills” corresponding to higher intensities and “valleys” indi-
cating lower intensities. Here, the origin of the structuring
element is aligned with a pixel within the object. If ev-
ery point within the structuring element is at the intensity
of the origin or higher, the pixel aligned with the origin is
left unchanged. If at least one point within the structuring
element is at a lower intensity, the pixel aligned with the ori-
gin of the structuring element is set to the lowest intensity
within the structuring element. This process is repeated for
every pixel within the object [7, 9]. An example of greyscale
erosion performed on a cross-section of a 32x11 image using
a 3x3 square structuring element with the origin located at
the center is presented in Figure 3.

3.2 Dilation
Dilation of an image adds a layer of pixels to the bound-

aries of foreground regions, and is denoted by the equation

g = f ⊕ s

where the symbol ⊕ indicates dilation [1, 5].
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Figure 3: Greyscale Erosion: Top: Original Image.
Center Left: Cross-Section of Image Surface. Center
Center: Erosion Marked. Center Right: Erosion of
Surface. Bottom: Results of Erosion.

 

Figure 4: Binary Dilation: Left: Original Image.
Center: Dilation Marked. Right: Results of Dila-
tion.

In binary dilation, this is accomplished by placing the ori-
gin of the structuring element over every pixel of the back-
ground regions in turn. If every point within the structuring
element is in line with a background pixel, the background
pixel lined up with the origin of the structuring element is
left unchanged. If at least one point within the structuring
element is in line with a foreground pixel, then the pixel lined
up with the origin of the structuring element is converted to
a foreground pixel [9]. An example of binary dilation on a
20x30 image using a 3x3 square structuring element with the
origin located at the center is presented in Figure 4. It is also
perhaps worth noting that the dilation of foreground regions
is equivalent to the erosion (discussed in Subsection 3.1) of
background regions, and the erosion of foreground regions is
equivalent to the dilation of background regions [9].

Like greyscale erosion, greyscale dilation is a more com-
plex variation on its binary counterpart. Once again, the ori-
gin of the structuring element is aligned with a pixel within
the three-dimensional object that represents the original im-
age. If every point within the structuring element is at the
intensity of the origin or higher, the object is left unchanged.
If at least one point within the structuring element is at
a lower intensity, all pixels of lower intensity aligned with
points within the structuring element are set to the inten-
sity of the pixel aligned with the origin. This process is
repeated for every pixel within the object [7, 9]. An exam-
ple of greyscale dilation performed on a cross-section of a
32x11 image using a 3x3 square structuring element with
the origin located at the center is presented in Figure 5.

3.3 Opening
The opening of an image is an erosion followed by a dila-

 
 

     
 

 

Figure 5: Greyscale Dilation: Top: Original Image.
Center Left: Cross-Section of Image Surface. Center
Center: Dilation Marked. Center Right: Dilation of
Surface. Bottom: Results of Dilation.

 

Figure 6: Opening: Left: Original Image. Second
from Left: Erosion Marked. Center: Results of Ero-
sion. Second from Right: Dilation Marked. Right:
Results of Dilation (Opening Complete).

tion, and is denoted by the equation

g = f ◦ s = (f 	 s) ⊕ s

where the symbol ◦ indicates opening [1, 5]. Similar to ero-
sion, opening strips away foreground pixels at the bound-
aries of foreground regions, but is less destructive of the ini-
tial foreground regions than erosion. Opening is therefore
typically used to preserve foreground regions with a similar
size and shape to the structuring element, while removing or
reducing other foreground regions [9]. An example of binary
opening on a 20x30 image using a 3x3 square structuring
element with the origin located at the center is presented in
Figure 6.

The greyscale opening of an image also consists of an ero-
sion followed by a dilation. In this situation, however, both
the erosion and dilation are greyscale rather than binary [7].

3.4 Closing
The closing of an image is a dilation followed by an ero-

sion, and is denoted by the equation

g = f • s = (f ⊕ s) 	 s

where the symbol • indicates closing [1, 5]. Similar to di-
lation, closing adds foreground pixels at the boundaries of
foreground regions, but is less destructive of the initial back-
ground regions than dilation. Closing is therefore typically
used to preserve background regions with a similar size and
shape to the structuring element, while removing or reduc-
ing other background regions [9]. An example of binary clos-
ing on a 20x30 image using a 3x3 square structuring element
with the origin located at the center is presented in Figure 7.
Similar to the relationship between erosion and dilation, the
closing of foreground regions is equivalent to the opening of
background regions, and the opening of foreground regions
is equivalent to the closing of background regions. [9].
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Figure 7: Closing: Left: Original Image. Second
from Left: Dilation Marked. Center: Results of Di-
lation. Second from Right: Erosion Marked. Right:
Results of Erosion (Closing Complete).

The greyscale closing of an image also consists of a dilation
followed by an erosion. And again, as in greyscale opening,
both the dilation and erosion operations are greyscale in-
stead binary [7].

4. METHODS OF CRACK DETECTION
The next step in the crack detection and removal process

(following optional edge detection) is crack detection. This
section will discuss the application of various morphological
filters to this problem.

4.1 Top-Hat Transform
The morphological filter most frequently used for detect-

ing cracks within digitalized works of art is the top-hat trans-
form. There are two variations on this filter, the black top-
hat transform and white top-hat transform, which will be
discussed in Subsections 4.1.1 and 4.1.2 respectively.

4.1.1 Black Top-Hat
The black top-hat transform (also referred to as the clos-

ing top-hat transform) is used for detecting darker details on
a lighter background within greyscale images [3, 10]. This
transform is defined as the difference in pixel intensity be-
tween the closing of the original image by a specified struc-
turing element and the original image itself, and is denoted
by the equation

BTH = (f • s) − f

where f is the original image and s is the structuring ele-
ment. This transformation produces a greyscale image with
the desired details enhanced.

4.1.2 White Top-Hat
The white top-hat transform (also referred to as the open-

ing top-hat transform or, sometimes, the bottom-hat trans-
form), is used for detecting lighter details on a darker back-
ground within greyscale images [3, 10]. This transform is
defined as the difference in pixel intensity between the orig-
inal image itself and the opening of the original image by a
specified structuring element, and is denoted by the equation

WTH = f − (f ◦ s)

where f is the original image and s is the structuring ele-
ment. Like its counterpart, this transformation produces a
greyscale image with the desired details enhanced.

4.1.3 Multiscale Top-Hat
Subsections 4.1.1 and 4.1.2 explain classical top-hat trans-

forms. While these are popular and frequently used, they

are not perfect. Paintings often contain details (such as fine
brush strokes) which are misinterpreted as cracks by these
filters. The multiscale morphological top-hat transform may
be used to counteract this, as well as to detect cracks of vary-
ing sizes [3]. This transformation is executed by performing
a series of classical top-hat transforms with structuring ele-
ments of various shapes and sizes (Cornelis et al implement
structuring elements “ranging from 3x3 to nxn pixels, where
n depends on the width of the crack to be detected”[3]). The
resulting images, or crack maps, are then further processed
to remove isolated groups of pixels and bridge pixel gaps.

At this point, the crack maps are combined in order to
build one final, comprehensive crack map. Cornelis et al
accomplish this by first combining the crack maps derived
from the three smallest structuring elements (the finer, thin-
ner cracks) in what is referred to as the base map [3]. From
here, the crack maps derived from the larger structuring ele-
ments (the coarser, heavier cracks) are layered onto the base
map. This is done by only adding those coarser cracks which
are connected to the finer cracks of the base map. The re-
sulting final crack map both contains cracks of a variety of
scales and reduces the occurrence of false positives [3].

4.2 Alternative Methods
While the top-hat method is the most common morpho-

logical filter applied to the problem of crack detection in
digital art restoration, there are other methods of finding a
solution. Karianakis and Maragos present one such alter-
native in their digital restoration of prehistoric Theran wall
paintings [8].

In the method implemented by Karianakis and Maragos,
the process begins by setting a threshold. If the variation
in the intensity of one pixel from its neighbors exceeds the
threshold, it is determined to be part of a crack. All other
pixels are considered genuine. At this point, morphologi-
cal closing is applied to the binary image obtained from the
previous step. This groups isolated crack pixels, and re-
moves some of the discoloration that may be found around
the edges of cracks (this may be a result of light reflecting
off paint ridges, or accidental removal of paint during any
previous cleaning process [3]). The result is the binary mask
of cracks [8].

Karianakis and Maragos then return again to the original
input image. From this image, the Canny edge detection
algorithm (described in Section 2) is used to obtain a binary
mask of all edge pixels (both cracks and actual edges within
the original painting). Morphological dilation is then applied
to the edge mask in order to group any isolated pixels [8].

At this point, Karianakis and Maragos now have two bi-
nary masks: the crack mask obtained by thresholding, and
the edge map obtained by the Canny edge detection algo-
rithm. These two masks are then joined, and the resulting
binary mask is then iteratively eroded until immediately be-
fore a certain percentage of edge information is lost. This
process results in a smoother crack mask and, depending on
how much edge information is lost, reduces the likelihood of
false positives [8].

5. INPAINTING
The final stage in the digital art restoration process is

crack removal, frequently referred to as inpainting. As with
edge detection, inpainting does not rely upon mathemati-
cal morphology. It is discussed here in order to provide a
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more complete understanding of the digital art restoration
process. As with crack detection, there are many potential
solutions to the crack removal process. This section will
examine the method described by Spagnolo and Somma in
their study [10].

In this method, the original input image is broken down
into regions, which are further divided into neighborhoods
(Spagnolo and Somma define 5x5 pixel neighborhoods and
100x100 pixel regions [10]). From the previous crack detec-
tion step, the defective pixels are already known. From this
information, it is now possible to proceed with the inpaint-
ing process [10].

The first step is to select a defective pixel i, and to de-
termine its context. The context of a defective pixel i con-
sists of all the non-defective pixels in the neighborhood of i.
From here, all other neighborhoods in the region containing i
(neighborhoods containing defective pixels are excluded) are
examined in order to determine which neighborhood in the
region is most similar to the context of the defective pixel
i. This is done by computing the sum of squared differences
between the context of i and the corresponding pixels in the
neighborhoods within the region of i. In this situation, the
sum of squared differences is defined as the average of the
change in intensity between corresponding pixels squared.
The neighborhood with the lowest sum of squared differ-
ences is determined to be most similar to the context of
i [10].

If the sum of squared differences for this similar neighbor-
hood is below a set threshold (that is, if the neighborhood
is determined not only to be the most similar to the context
of i, but also similar enough to be an acceptable match),
the defective pixels within the neighborhood of i (including
i itself) are replaced by the corresponding pixels from the
“matched” neighborhood. If the sum of squared differences
is above the threshold, i is replaced with the median value
of the non-defective pixels within its neighborhood. This
process is repeated for every defective pixel [10].

6. RESULTS
The final result of the crack detection and removal pro-

cess depends significantly on the effectiveness of the crack
detection method implemented. The results of crack detec-
tion may be broken down into four categories, which are as
follows [4]:

• True Positives - Cracks detected where they do exist.

• False Positives - Cracks detected where they do not
exist.

• True Negatives - Cracks not detected where they do
not exist.

• False Negatives - Cracks not detected where they do
exist.

One way of evaluating the effectiveness of a particular
crack detection algorithm is to determine the occurrences of
these various results. Effective algorithms will produce both
high rates of true positives and true negatives and low rates
of false positives and false negatives, while less effective al-
gorithms will produce low rates of true positives and true
negatives, high rates of false positives and false negatives,
or a combination of both. There are two methods of sim-
plifying this process. The first is to use these categories to

determine false positive rate and true positive rate, respec-
tively denoted by the following equations [4]:

FP = fp/(fp + tn)

TP = tp/(tp + fn)

where tp is the number of true positives, fp the number of
false positives, tn the number of true negatives, and fn the
number of false negatives. The second option is to determine
precision (fraction of retrieved instances that are relevant)
and recall (fraction of relevant instances that are retrieved),
respectively denoted by the following equations [8]:

P = tp/(tp + fp)

R = tp/(tp + fn)

Note that recall is identical to the true positive rate. Subsec-
tions 6.1 and 6.2 will examine the effectiveness of the various
methods of crack detection discussed in Section 4.

6.1 Top-Hat Transform Results
The black top-hat transform and white top-hat transform,

discussed in Sections 4.1.1 and 4.1.2 respectively, were im-
plemented in the methodology of Desai et al [4]. Prior to
crack detection, Desai et al first classified images into three
categories: crack thickness, number of cracks, and crack con-
nectivity. In their study, they report both a maximum true
positive rate of 0.98 and minimum false positive rate of 0.02
for those images classified by number of cracks. The max-
imum true positive occurred for images with a moderate
number of cracks, while the minimum false positive was ob-
tained from images determined to contain a low number of
cracks. On the opposite end of the spectrum, crack connec-
tivity produced both a minimum true positive rate of 0.86
and a maximum false positive rate of 0.124. Both occurred
for images with less crack connectivity [4].

Cornelis et al also made use of the black and white top-hat
transforms in their methodology [3]. However, while Desai
et al used the classical implementation of these algorithms,
Cornelis et al instead used the more involved multiscale vari-
ation described in Subsubsection 4.1.3 [3, 4]. While Cornelis
et al do not provide any statistical data on the success of
their algorithm, they do claim that in their restoration of
the digitized Ghent Altarpiece, the multiscale top-hat trans-
form successfully omitted painting details (such as letters
in a book) from the final crack map. These details would
otherwise have been determined to be cracks by the clas-
sical implementation of the black and white top-hat trans-
forms [3].

6.2 Alternative Method Results
In comparison, the alternative methodology implemented

by Karianakis and Maragos produced significantly different
results [8]. As previously discussed in Subsection 4.2, the
combined edge and crack masks were eroded until a cer-
tain amount of edge information was lost. The efficiency
of the method relied heavily on the amount of information
loss that was permitted. In the case that only 1% of edge
information was discarded, the algorithm resulted in a recall
of about 0.932, but a precision of only 0.497. As more edge
information is lost, the recall decreases while the precision
increases. For example, when 70% of the edge information
is lost, the algorithm reported a recall of only 0.53, but an
improved precision of 0.704 [8].
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Method Classification tp fn tn fp TP (or R) FP P

Top-Hat Transform

Crack Thickness - Thin 220 30 230 20 0.880 0.080 0.917
Crack Thickness - Medium 232 18 231 19 0.928 0.076 0.924
Crack Thickness - Thick 235 15 238 12 0.940 0.048 0.951
Number of Cracks - Few 242 8 245 5 0.968 0.020 0.980
Number of Cracks - Medium 245 5 241 9 0.980 0.036 0.965
Number of Cracks - Many 243 7 243 7 0.972 0.028 0.972
Crack Connectivity - Low 215 35 219 31 0.860 0.124 0.874
Crack Connectivity - High 218 32 221 29 0.872 0.116 0.883

Alternative Method
Edge Information Lost - 1% - - - - 0.932 - 0.497
Edge Information Lost - 30% - - - - 0.857 - 0.594
Edge Information Lost - 70% - - - - 0.530 - 0.704

Table 1: Crack Detection Results by Methodology: data specified in text emphasized, modified from [4, 8].
tp and fn total 500, same for tn and fp.

The statistics reported are summarized in Table 1. While
the true positive rate, or recall, recorded by Karianakis and
Maragos is proportional to that of the top-hat transform
when the percentage of edge information lost is low, the
alternative very quickly losses any comparability as the per-
centage of edge information lost increases. And while the
precision does increase as edge information is lost, even the
highest precision demonstrated by the alternative does not
compare with the precision of the top-hat transform. It
is therefore reasonable to conclude that the top-hat trans-
form, in both its classical and multiscale forms, significantly
outperforms the alternative implemented by Karianakis and
Maragos.

7. CONCLUSIONS
This paper has examined digital art restoration by break-

ing this process down into three primary components: edge
detection, crack detection, and crack removal (inpainting),
with a specific focus on the crack detection phase as com-
pleted using morphological operations. A comparison of the
two methodologies discussed demonstrates that the top-hat
transform in both its classical and multiscale implementa-
tions tends to perform with greater consistency and accuracy
under various experimental circumstances than the alterna-
tive presented by Karianakis and Maragos.

The focus of this paper was quite specifically on the effec-
tiveness of applying morphological filters to the crack detec-
tion stage of the digital art restoration process. However,
other methods of crack detection exist, and it could prove
interesting to examine the efficiency of these alternatives as
opposed to mathematical morphology. Yet another option
would be to examine the effect of various methods of either
edge detection or inpainting (as opposed to crack detection)
on the final results of the digital art restoration process.

Finally, while it has been demonstrated that there are
many and varied effective methods of crack detection and
removal, cracks are only one form of defect that may be
encountered in the digital art restoration process. Areas
for further study include the detection and removal of dust,
scratches, fading, and missing sections from digitalized works
of art [10].
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A. Pižurica, L. Platǐsa, J. Cornelis, M. Martens, M. D.
Mey, and I. Daubechies. Crack detection and
inpainting for virtual restoration of paintings: The
case of the ghent altarpiece. Signal Processing,
93(3):605 – 619, 2013. Image Processing for Digital
Art Work.

[4] S. Desai, K. Horadi, P. Navaneet, B. Niriksha, and
V. Siddeshvar. Detection and removal of cracks from
digitized paintings and images by user intervention. In
Advanced Computing, Networking and Security
(ADCONS), 2013 2nd International Conference on,
pages 51–55, Dec 2013.

[5] N. Efford. Digital image processing: a practical
introduction using Java. Addison-Wesley, 2000.

[6] B. Green. Canny edge detection tutorial. Available at
http://dasl.mem.drexel.edu/alumni/bGreen
/www.pages.drexel.edu/ weg22/can tut.html.

[7] R. Haralick, S. R. Sternberg, and X. Zhuang. Image
analysis using mathematical morphology. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, PAMI-9(4):532–550, July 1987.

[8] N. Karianakis and P. Maragos. An integrated system
for digital restoration of prehistoric theran wall
paintings. In Digital Signal Processing (DSP), 2013
18th International Conference on, pages 1–6, July
2013.

[9] A. W. R. Fisher, S. Perkins and E. Wolfart.
Morphology. Available at
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm.

[10] G. S. Spagnolo and F. Somma. Virtual restoration of
cracks in digitized image of paintings. Journal of
Physics: Conference Series, 249(1):012059, 2010.

6

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 1 [2014], Iss. 2, Art. 6

http://digitalcommons.morris.umn.edu/horizons/vol1/iss2/6


	Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal
	2014

	Morphological Operations Applied to Digital Art Restoration
	M. Kirbie Dramdahl
	Recommended Citation


	tmp.1407431203.pdf.f5mcO

