
University of Minnesota Morris Digital Well
University of Minnesota Morris Digital Well

Faculty Working Papers Scholarship

2007

Enumerating Building Block Semantics in Genetic
Programming
Nicholas Freitag McPhee

Brian Ohs

Tyler Hutchinson

Follow this and additional works at: http://digitalcommons.morris.umn.edu/fac_work

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Scholarship at University of Minnesota Morris Digital Well. It has been accepted for
inclusion in Faculty Working Papers by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please
contact skulann@morris.umn.edu.

Recommended Citation
McPhee, Nicholas Freitag; Ohs, Brian; and Hutchinson, Tyler, "Enumerating Building Block Semantics in Genetic Programming"
(2007). Faculty Working Papers. Paper 10.
http://digitalcommons.morris.umn.edu/fac_work/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota, Morris (UMM): Digital Well

https://core.ac.uk/display/235245589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.morris.umn.edu?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/fac_work?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/facschol?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/fac_work?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/fac_work/10?utm_source=digitalcommons.morris.umn.edu%2Ffac_work%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu


Working Paper Series
Enumerating building block semantics 

in genetic programming
Nicholas Freitag McPhee

Professor  of  Computer Science

Brian Ohs
Student

Tyler Hutchison
Student

Faculty Center for Learning and Teaching
Rodney A. Briggs Library

Volume 3 Number 1
2007

Faculty and Student Research

University of  Minnesota, Morris
600 East 4th Street
Morris, MN  56267



Copyright © 2007 by original author(s).  All rights reserved.

Faculty Center for Learning and Teaching
	 Engin Sungur, Director
	 Linda Pederson, Executive Administrative Specialist
Rodney A. Briggs Library
	 LeAnn Dean, Director
	 Peter Bremer, Reference Coordinator
	 Matt Conner, Instruction Coordinator
	 Steven Gross, Archivist
	 Michele Lubbers, Digital Services Coordinator
	 Shannon Shi, Cataloging Coordinator
	
	

Working Paper Series
Volume 3 Number 1
2007

Faculty Center for Learning and Teaching
Rodney A. Briggs Library
University of Minnesota, Morris

This Working Paper Series allows the broader dissemination of  the scholarship of  the University of  Minnesota-Morris 
Faculty, staff,  and students.  It is hoped that this Series will create a broader and much more accessible forum within the 
borderless academic community, and will further stimulate  constructive dialogues among the scholar-teachers at large.

	



Enumerating building block semantics in 
genetic programming

Nicholas Freitag McPhee
Professor of  Computer Science

Brian Ohs
Student

Tyler Hutchison
Student

University of  Minnesota, Morris
Morris, MN  56267, USA

Working Paper Volume 3, Number 1

Copyright©2007 by Nicholas Freitag McPhee, Brian Ohs, Tyler Hutchison
All right reserved.



Enumerating building block semantics

in genetic programming

Nicholas Freitag McPhee Brian Ohs Tyler Hutchison
Division of Science and Mathematics

University of Minnesota, Morris
600 E. 4th Street
Morris, Minnesota

USA - 56267
{mcphee,ohsx0004,hutc0125}@morris.umn.edu

November 16, 2007

Abstract

This report provides a collection of definitions for the semantics of
subtrees and contexts as manipulated by standard sub-tree crossover in
genetic programming (GP). These definitions allow us to completely and
compactly describe the exact semantics of the components manipulated
by sub-tree crossover, and the semantic results of those interactions. Sub-
sequent work shows how these definitions can be used to collect valuable
data about the available diversity in a GP population and the opportuni-
ties available to sub-tree crossover.

1 Introduction

Like most evolutionary computation recombination operators, genetic program-
ming (GP) sub-tree crossover takes components from two parents (syntax trees)
and combines them to produce a new offspring. In sub-tree crossover we con-
struct a new offspring C by replacing a randomly chosen sub-tree from parent
A with a random sub-tree from parent B (see Figure 1). To understand the
possibilities afforded by sub-tree crossover, we need to be able to characterize
which sub-trees can be chosen from B, and where they can go in A.

The power of sub-tree crossover resides in its ability to effectively combine
components that will generate new and better trees, thereby giving the evolu-
tionary process a gradient it can capitalize on. Conversely this is also its flaw,
as it is just as capable of producing a genetic mule as a gem. It would thus be
valuable to be able to describe the semantics of tree components in a way which
allows us to accurately and completely describe the semantic effects of sub-tree
crossover.
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Figure 1: A randomly selected subtree from B is inserted randomly into A,
replacing the existing subtree at the point of insertion. The circles nodes are
internal (function) nodes, the triangles represent arbitrary subtrees, and the
cloud shapes represent subtrees directly involved in the crossover operation.

To help simplify the discussion, we define a context to be a tree with some
specific (but arbitrary) subtree removed (e.g., Fig 2).1 Given this definition,
describing the semantic effects of sub-tree crossover reduces to describing the
semantics of sub-trees (e.g., Fig 1), the semantics of contexts, and their inter-
actions.

Throughout this paper we’re going to focus on the boolean domain, i.e.,
trees that represent boolean functions. It is valuable to work in a small (fi-
nite) domain, because it becomes much easier to compute and catalogue the
complete semantics of the sub-trees and contexts involved. These ideas can be
extended to other finite domains fairly easily, but the combinatorics will become
computationally prohibitive quite quickly.

Sec 2 discusses how to completely describe the semantics of a subtree by enu-
merating its values over the set of inputs. We are able to do this for every subtree
in the population. Sec 3 describes the semantics of a context independent the se-
mantics of the subtree which will be substituted at the point of insertion. Sec 4
gives several examples and semantic descriptions of subtrees/contexts. Sec 5
shows how we can describe the effects of a sub-tree crossover using semantics,
without knowledge of the underlying stuctural or syntactic properties of the
trees involved. Sec 6 discusses some limitations of the method from Sec 5, due

1This is similar to a tree schema with one ‘#’ leaf symbol from [1]. A schema, however,
represents a set of trees, whereas for us a context is simply a syntactic construct.
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Figure 2: The (“#”) symbol represents the unknown branch of the subtree.

x y (and x y) (or x y) (nand x y) (nor x y)
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0

Table 1: The (sub)tree semantics for four boolean functions. In a finite (e.g.,
boolean) domain we can fully characterize the semantics of a (sub)tree by enu-
merating the values of a tree (i.e., a function) on all its possible inputs. Here we
list the semantics for the four boolean functions used in this study; for example,
the semantics of (and x y) can be represented with the string “0001”.

to a rapidly increasing search space size, and we provide some conclusions in
Sec 7.

2 Semantics of subtrees

Following the ideas presented by Poli and Page in sub-machine code GP [4], we
can completely specify the semantics of a (sub)tree by enumerating its value
across every possible set of input values. Table 1, for example, enumerates all
the possible inputs and outputs for four common binary functions, taking “0”
to be false and “1” to be true. The essential observation by Poli and Page was
that instead of seeing, e.g., the third column as four applications of and, we can
instead see it as a single application of a function that maps 2 strings of 4 bits
(“0011” and “0101”) to an output string (“0001”) that represents the bitwise
conjunction of the two input strings. Thus the semantics of the tree “(and x
y)” can be completely and precisely represented by “0001”. Similarly we can
represent the semantics of any subtree by enumerating its values over all the
possible inputs.

This allows for a complete characterization of the semantics of any boolean

3
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(sub)tree. Assume that two trees S0 and S1 have the same semantics, and tree
T contains S0 as a sub-tree. We can then replace the occurrance of S0 in T with
S1, and the semantics of T will remain unchanged. S0 and S1 may have very
different syntactic structures, yet as long as they provide the same semantic
contribution to the semantics of tree T , the semantics of T will not be changed.

This compact representation allows us to enumerate the semantics of all
the sub-trees in a given population. We can then explore this distribution of
sub-tree semantics to better understand the possibilities available to sub-tree
crossover.

As a notational device in our tree diagrams we will typically associate the
semantics string of a subtree with the edge extending up from the root of the
subtree, as is done in Figure 2.

3 Semantics of contexts

Being able to enumerate the semantics of all the sub-trees in the population is
arguably the simple half of characterizing the semantics of sub-tree crossover.
The somewhat more interesting part is characterizing the semantics of contexts,
i.e., trees with one missing sub-tree representing the contribution of the root
parent in sub-tree crossover.

In general we won’t know the semantics of a tree with an unspecified sub-
tree, since the details of that subtree will usually affect the semantics of the
entire tree. Some contexts, however, depend less on the details of their open
subtree than others. The context (and false #) (the left diagram in Figure 3)
is always going to return false, regardless of which subtree we insert for the
“#”. Further, we know from experience that genetic programming has strong
tendencies towards the creation of such contexts [3, 2, 1].

We refer to a context as being fixed for a particular set of inputs (or a
particular position when using strings to represent semantics) if the value of that
context is completely determined (in the boolean case, either true or false)
regardless of what subtree is inserted at the open node (“#”). We define the
entire context to be fixed if it is fixed for every possible input (or at every
position).

In the boolean domain the semantics of a context depends on the details
of the inserted subtree in a systematic manner. Consider, for example, the
context (and true #) (the left diagram in Figure 4). Here the value of this
context will be the same as the value of whatever subtree we insert for the
“#” since true ∧ x = x. We will denote the semantics in such a case with a
“+”, indicating that the value of the subtree passes through unchanged. The
alternative case is represented by a context like (nand 1 #) (the right diagram
in Figure 4). Here ¬(true ∧ x) = false ∨ ¬x = ¬x, so the value of the context
is going to be the negation of the value returned by the inserted subtree. We
will use a “-” to denote the semantics in this case. (Section 4 provides several
examples in more detail.)

While the interactions between contexts and subtrees can be quite complex,
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Figure 3: These contexts have a determined output. That is, they do not derive
any part of their meaning from the inserted subtree (“#”).
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Figure 4: These contexts do not have a determined output, so their semantics
will be different given a different set of inputs.

in the case of boolean functions there are only four options for a context on a
specific set of inputs:

• The semantic value of the context is “0”, regardless of the details of the
inserted subtree. See Figure 3 (a) for an example.

• The semantic value of the context is “1”, regardless of the details of the
inserted subtree. See Figure 3 (b) for an example.

• The semantic value of the context is the same as the semantic value of the
inserted subtree on those inputs; we denote this with a “+”. See Figure 4
(a) for an example.

• The semantic value of the context is the logical negation of the semantic
value of the inserted subtree on those inputs; we denote this with a “-”.
See Figure 4 (b) for an example.

One other difference between subtree semantics and context semantics is
which components need to be taken into consideration when computing the
semantics. In the case of subtree semantics, the semantics are a function of
the (boolean) operator and the value of its arguments; they are completely
independent of where that subtree might be located. In the case of context
semantics, the case is slightly more complex. While we associate the semantics
with the edge going down to the insertion point, they are still a function of the
entire tree around that point. In particular they depend on three things (see
Fig. 5):

5
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Figure 5: An illustration of the interaction of the different components in com-
puting the context semantics. Here we have a tree with some subtree removed
(the insertion point, indicated by the “#” in the lower right). g is the parent
node of the insertion point, and x represents the other argument of g (i.e., the
sibling subtree of the insertion point). Note that x is not necessarily a leaf but
can represent an arbitrarily complex node. The semantics of this context is then
a function of the specific operator g, the semantics of the context obtained by
removing the subtree rooted at g, and the subtree semantics of x.

• The operator g immediately above the insertion point.

• The semantics of the context obtained by removing the subtree rooted at
g (the “Parent semantics” in Figure 5).

• The subtree semantics of the other argument (x) of the operator g (the
“Arg semantics” in Figure 5).

The one exception is when the insertion point (“#”) is in fact the root of the
context, in which case there is no parent node. In this case the context semantics
are simply defined to be “+” since the value returned by the tree is going to be
the value of the inserted subtree.

Table 2 enumerates the cases for the boolean functions and and or. Table 3
enumerates the cases for the boolean functions nand and nor. In the last line
of Table 3, for example, if the parent semantics of a nand node is “-”, and the
argument semantics of the sibling is “1”, then the context semantics is “+”.

Unlike the subtree case (Table 1), we can’t simply read the context semantics
off these tables. Instead the tables enumerate the cases necessary to compute
the context semantics for each of the 2N possible input values (assuming N
input variables).

Notationally it is convenient to associate context semantics with the edge
extending down to the insertion point (i.e., the “#” symbol), as this allows us to
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Parent Arg
semantics semantics (x) (and x #) (or x #)

0 0 0 0
0 1 0 0
1 0 1 1
1 1 1 1
+ 0 0 +
+ 1 + 1
- 0 1 -
- 1 - 0

Table 2: The context semantics for and and or. See the text for details.

Parent Arg
semantics semantics (x) (nand x #) (nor x #)

0 0 0 0
0 1 0 0
1 0 1 1
1 1 1 1
+ 0 1 -
+ 1 - 0
- 0 0 +
- 1 + 1

Table 3: The context semantics for nand and nor. See the text for details.
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Figure 6: A sample syntax tree showing both subtree and context semantics.
The arrows pointing upward are the semantics of the subtree below them, e.g.,
the semantics of (or x y) is “0111”. The arrows pointing downward are the
semantics of the context obtained by removing the subtree below the arrow,
e.g., the semantics of (and # (nor x y)) is “+000”. See Sec 4 for details.

indicate the semantics of all the possible contexts in a tree on a single diagram
as is done in Figure 6. It’s important to realize, however, that even though they
are attached to specific edges, these semantics describe the entire context, i.e.,
the entire tree minus the subtree below the edge in question.

4 Examples

In this section we will go over some examples of the computation of both subtree
and context semantics in more detail.

As our first example, consider the tree in Figure 6. If we remove (or x
y) we obtain the context C = (and # (nor x y)). The subtree semantics of
(nor x y) is “1000”; this means (nor x y) will return true when both x and
y are false, and false in the other three cases. Because the root of C is an and
node, the value of C is guaranteed to be false for those last three possible inputs
regardless of what subtree we insert as the left argument of the root node. Thus
the semantics for this context are completely determined for these last three
input cases. What then about the first input, where both x and y are false? In
that case the value of C is going to be affected by the value of the subtree at
“#”, but in a very specific way, namely the value of C on those inputs will be
equal to the value of the inserted subtree on those inputs, denoted with a “+”.
Thus the semantics of the context C are “+000”.

As a second example, consider again the tree in Fig. 6, but this time with the
rightmost x removed, yielding the context C ′ = (and (or x y) (nor # y)).
The subtree semantics of the rightmost y is “0101”, and the context semantics

8
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of (and (or x y) #) is “0+++”. These semantics, combined with those of the
nor function (Table 3), yield an overall context semantics for C ′ of “00-0”. This
means that C ′ will yield false in all cases except when x is true and y is false,
regardless of what subtree is inserted in place of the “#”. If, however, x is true
and y is false, the value of C ′ will be the logical negation of the value of the
inserted subtree.

5 Semantic effect of sub-tree crossover

Given these definitions, we can compute the (semantic) results of an application
of sub-tree crossover using only the semantics of the sub-tree and context and
without any knowledge of the structural or syntactic properties of the trees
involved.

As an example, consider a crossover where (or x y) in the tree in Figure 6
is replaced by (nand x y). Thus the context is (and # (nor x y)), with se-
mantics “+000”, and the sub-tree to be inserted is (nand x y), with semantics
“1110”. We can, then, compute the semantics of the new tree (and (nand x
y) (nor x y)) entirely via a combination of the semantics of the components
with no reference to syntax of the new tree. In particular, the context seman-
tics (“+000”) provide the value of the new tree (“0”) for the last three input
cases, regardless of the inserted subtree. Since the first character in the context
semantics is “+”, the value of the new tree for the first input case will be the
value of the inserted subtree for that case, or (in our example) “1”. Thus the
resulting semantics for the new tree are “1000”, meaning that the tree returns
true for the first input case (where x and y are both false), and false in all other
cases. Note that both the context and inserted sub-tree in this example could
have been much more structurally complex, but as long as they had the same
semantics the semantic result would have been the same.

In general we can compute the semantics of trees generated via sub-tree
crossover by simply combining the semantics of the context and the inserted
sub-tree as above. Fixed positions in the context semantics remain fixed at
those values, and non-fixed positions take on either the value (for “+”) or the
negated value (for “-”) of the inserted sub-tree at that position.

6 Context semantics and search space size

Assume we have N binary inputs. Then there are 2N possible input patterns.
The semantics of a boolean function of N inputs can be represented by a string
of 2N output bits. Subtree semantics are binary strings of length 2N , so there
are 2(2N ) possible subtree semantics. Since context semantics are based on an
alphabet of four characters, there exist 4(2N ) possible context semantics.

For a six-bit problem, for example, there are over 1038 possible contexts,
showing that any reasonably sized population is only able to explore a very
limited subset of this extremely large search space. Since the size of both the

9
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subtree and context search spaces are doubly exponential in the number of
inputs, this disparity between the search space size and number of subtrees and
contexts in the population will continue to increase as the number of inputs
rises.

7 Conclusions

In this report we extended Poli and Page’s ideas from sub-machine code GP [4]
to provide the ideas of both sub-tree and context semantics. These provide a
compact and exact mechanism for describing the semantics of the components
used in sub-tree crossover and its results.

These definitions give us a useful mechanism for studying sub-tree crossover
and its effects. These ideas could also be used to define crossover in new ways,
where we see individuals in a population not as syntax trees, but instead as
collections of semantics. Sub-tree crossover then becomes a process whereby
semantics are chosen from the two parent trees, and combined to generate the
semantics for the resulting offspring.

Note, however, that these ideas only work on small, finite domains such as
boolean functions, making them perhaps better suited for theoretical investiga-
tions than production systems.
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