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Abstract

Implementation and Performance Analysis of Long Term Evolution

using Software Defined Radio

KEDAR BHUSAL

Thesis Chair: Melvin Robinson, Ph.D.

The University of Texas at Tyler

July 2017

The overwhelming changes in the field of communication brought about need for high

data rates, which led to the development of a system known as Long Term Evolution

(LTE). LTE made good use of Orthogonal Frequency Division Multiplexing Access

(OFDMA) in its downlink and Single Carrier Frequency Division Multiplexing Access

(SCFDMA) in its uplink transmission because of their robust performance. These

multiple access techniques are the major focus of study in this thesis, with their

implementation in the LTE system.

GNU Radio is a software Defined Radio (SDR) platform. It comprises of C++

signal processing libraries. For user simplicity, it has graphical user interface (GUI)

known as GNU Radio Companion (GRC), to build a signal processing flow graph.

GRC translates any specific task flow graph to a python program which calls in-

built C++ signal processing blocks. By leveraging this feature and existing modules

in GRC, OFDMA and SCFDMA is implemented. In this study we made use of

existing OFDMA flow graph of GNU Radio to study the behavior of downlink and

general performing SCFDMA system was implemented with some modifications of

the existing GNU Radio blocks.

With the GNU Radio implementation, we tested the working mechanism of both

the systems. OFDMA is used in downlink for achieving high spectral efficiency and

xii



SCFDMA was introduced in uplink due to its low PAPR feature. These multiple

access schemes have to meet the requirement of high throughput with low BER and

PAPR, low delays and low complexity. In this thesis we are focused on evaluating

these multiple access techniques in terms of BER and PAPR with modulation tech-

niques like QPSK, 16-QAM and 64-QAM. Performance analysis part is performed in

MATLAB.
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Chapter One

Introduction

1.1 Introduction

Wireless communication has always been a topic of extensive research. This research

has helped the field to grow exponentially in both applications and societal benefits.

Due to better technologies it has also become affordable and reliable.

Wireless communication began when Marconi demonstrated the ability of radio to

continuously communicate with sailing ships in 1897. Subsequently wireless commu-

nication has been rapidly adopted throughout the world. In 1946, the first American

public mobile telephone service was introduced with high power transmitters and

large towers covering a distance of 50km. Since then, mobile telephone service has

seen enhancements in hardware and software and these have led to the development

of modern telephony systems like 3G, UMTS and ultimately 4G/LTE [1].

1.2 Wireless communication fundamentals

Source Transmitter Channel Receiver Destination

Figure 1.1: Block Diagram of Communication System

Figure 1.1 shows a block diagram of communication system. Wireless communica-

tion provides a medium to transmit message from one place to another. The user in

the source, sends the message from transmitter through the channel, to the receiver

for the destination user. A channel can be defined as the path in which signal is

transmitted from one place to another. In traditional wired communication systems,

a channel is a guided medium or wire whereas in a wireless communication system
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Figure 1.2: Multipath in wireless communication

a channel is unguided and uses electromagnetic waves to transmit messages. The

performance of wireless communication depends on the channel. The effects of a

channel and its realization is described in [2–5]. Unlike guided mediums, there are

certain disturbances in wireless communication which make the problem challenging

and interesting.

The path between the transmitter and receiver may vary in short span of time. It

can change from direct line of sight to one that takes several different paths caused by

obstruction such as buildings, trees or mountains. These disturbances are generally

reflection, diffraction and scattering. Reflection of a signal occurs when the signal

wave strikes a solid surface with size much longer than its wavelength, for example

a solid wall. Diffraction occurs when the signal strikes on the edges and corners

of a solid surfaces, like corners or edges of wall. When a signal travels through

a channel containing objects whose dimension is smaller than its wavelength, the

wave is scattered and the process is termed scattering. Reflection, diffraction and

scattering result in multipath propagation as in Figure 1.2 which is further responsible

for interference and fading. To be effective, wireless communication systems must be

designed to overcome to both interference and fading.

1.2.1 Interference

One of the major wireless communication problems is interference, which is broadly

defined as an unwanted modification of the signal as it traverses the path from the
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base station to the user equipment (path referred to as the downlink channel) or from

the user equipment to the base station (path referred to as the uplink channel). A

major form of interference results from electromagnetic field scattering, reflection and

refractions from building and other surrounding objects. This is known as multipath

interference and it manifests itself as Inter Symbol Interference at the receiver. When

the signal travels from multiple path, one of the signal at line of sight is received first

and then other signals from reflected path with certain delays. These reflected signal

affects the subsequent signal. This unwanted phenomena in wireless communication

system is defined as Inter Symbol Interference.

1.2.2 Fading

Fading is a phenomenon in which a wireless channel experiences variation of chan-

nel strength over time and frequency. To understand the relation between channel

and multipath fading, we need to understand few more concepts. When the User

Equipment (UE) is moving there will be change in frequency, known as Doppler shift

(or Doppler spread). In a multipath channel, the received signal is superposition of

all the signal waves; direct from line of sight and other reflected waves. When the

phase difference between received signals is an integer multiple of 2π, signal adds

constructively and if the phase difference is an odd integer multiple of π, signal add

destructively degrading the quality [2].

It is also important to understand measures of signals coherence. Considering the

time domain, the length of time that a channel’s impulse response is assumed to be

constant is termed coherence time. It can also be defined as the time in which the

channel interference changes from constructive to destructive or vice versa. Consid-

ering the frequency domain, the bandwidth in which a channel’s impulse response

is assumed to be constant is defined as coherence bandwidth. Considering the spa-

tial domain, the distance between the transmitter and receiver in which the channel

remains same is known as coherence distance. At receiver there is certain delay in

receiving these signals. The difference between the time delays along two signal path

is called delay spread which is the reciprocal of coherence bandwidth.

A wireless communication channel’s coherence time classifies the channel as either

fast or slow fading. If the coherence time is much shorter than the delay requirement,

the channel is called a fast fading channel and if the coherence time is longer than

the delay requirement, the channel is called a slow fading channel.

A wireless communication channel’s coherence bandwidth classifies the channel as

either flat fading or frequency selective fading. The channel is said to be flat fading,

3



if the bandwidth of input signal is much smaller than the coherence bandwidth of the

channel. A channel is said to be frequency selective fading, if input signal bandwidth

is much larger than the coherence bandwidth .

1.3 Evolution of Wireless Communication

The cellular wireless generation (G) is a term used to keep track of the development

of transmission technology that incorporates all the changes in its nature of service,

non-backward compatibility and introduction of newer frequency bands. Its evolution

is commonly referred to as 1G, 2G, 3G and 4G, with each generation spanning roughly

a decade. Each generation had different features, addressing different issues, following

different evolutionary paths to achieve the unified goal of achieving high efficiency

and performance [1].

1.3.1 First Generation (1G)

The first generation (1G) used analog communication techniques (analog FM or FD-

MA/FDD) typically for speech services. In 1979, Nippon Telephone and Telegraph

Company (NTT) implemented world’s first the cellular system in Japan that used 600

FM duplex channels (23kHz for each one-way link) in the 800MHz band. In 1981, the

Nordic mobile telephone system (NMT 450) introduced the cellular mobile services

in Europe for 450MHz band and used 25kHz channels. In 1983, AMPS became the

first cellular telephone system to start services in the US with 666 duplex channels

with 40MHz of spectrum in the 800MHz band. These systems were highly inefficient

in terms of frequency spectrum usage as the individual cells were large and provided

low capacity and the mobile devices were large and expensive.

1.3.2 Second Generation (2G)

Introduced in the early 1990s, the second generation standards used digital modu-

lation formats and TDMA/FDD and CDMA/FDD multiple access techniques. The

most popular standards include:

(i) Global System mobile (GSM) - Used TDMA standard; supported 8-time slotted

users for each 200kHz radio channel; popular in Europe, Asia, Australia, South

America and some parts of US.
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(ii) Interim Standard 136 (IS-136) - Used TDMA standard; supported 3 time slotted

users for each 30kHz radio channel; popular in North America, south America

and Australia.

(iii) Pacific Digital Cellular(PDC)- A Japanese TDMA standard; similar to IS-136.

(iv) Interim Standard 95 Code Division Multiple Access (IS-95 or cdmaOne)-Used

CDMA standard; supported up to 64 users that are orthogonally coded and sim-

ultaneously transmitted on each 1.25MHz channel; popular in North America,

Korea, Japan, China, South America and Australia.

While 2G offered higher spectrum-efficiency, better data services and advanced roam-

ing as compared to the 1G, it still could not support substantial data transmission

and speed. As a result, 2.5G devices were built by introducing the core network’s

packet switched domain and by modifying the air interface so that it could handle

both data and voice [6]. These provided upgrade options for each of the 2G stand-

ards: 3 for GSM (HSCSD, GPRS and EDGE) two of which also supported IS-136

and PDC (GPRS and EDGE) and 1 for IS-95(IS-95B).

1.3.3 Third Generation (3G)

In 3G systems, the air interface included extra optimization that were targeted at

data applications, which increased the average rate at which user could upload or

download information. The popular 3G technologies can be listed as:

(i) Universal Mobile Telecommunication System (UMTS): Most popular 3G system

is the UTMS, that was developed originally from GSM by completely changing

the technology used on the air interface while keeping the core network almost

unchanged and which went on to use the technology of high-speed packet access

(HSPA) for enhanced data application. The UTMS air-interface had two im-

plementations: Wideband code division multiple access (WCDMA) And Time

Division synchronous code division multiple access (TD-SCDMA). WCDMA se-

gregates the transmissions from base station and mobiles by means of frequency

division duplex, while TD-SCDMA uses time division duplex. WCDMA uses a

wide bandwidth of 5MHz and TD-SCDMA uses 1.6MHz only.

(ii) CDMA2000 1x radio transmission technology (1xRTT): CDMA2000 (1xRTT)

was developed from IS-95 originally that was further upgraded to cdma2000

high-rate packet data(HRPD) or evolution data optimized(EV-DO), that used

similar techniques as HSPA.
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(iii) Worldwide Interoperability for Microwave Access(WiMAX): WiMAX was de-

veloped by IEEE under IEEE standard 802.16 and different from other 3G sys-

tems. In 2004, Third Generation Partnership Project (3GPP) began to study

into long term evolution of UMTS by modifying its architecture that resulted

in the LTE systems.

1.3.4 Fourth Generation (4G)

The International Telecommunication Union (ITU) published a set of requirements

for 4G under the name of International Mobile Telecommunications (IMT)-Advanced

that specifies that the, peak data rate of compatible system should be at least

600Mbps on the downlink and 270Mbps on the uplink, in the bandwidth of 40MHz.

Two systems met these requirements namely: LTE- Advanced and WiMAX 2.0. Al-

though, LTE and WiMAX 1.0 were both much advanced than other 3G systems,

these were considered as 3.9G due to the ITU guidelines. However, ITU later started

accepting these as a part of the 4G systems.

1.4 Motivation

In mobile communication, LTE is the latest technology to provide connectivity and

advanced services [7]. LTE achieves higher peak data rates up to 50 Mbps in uplink

and 100 Mbps in downlink with scalable bandwidth and better spectral efficiency.

All of this is achieved with using OFDMA for the downlink and SCFDMA for the

uplink.

Another important development in the field of communication is Software Defined

Radio (SDR). As a result of rapid adoption and growth, operators upgrade their

hardware with every generation of wireless communication. In many cases, these

upgrades require complete modification of the existing devices. This is costly and

constraints researchers, service providers and end-users. To address this limitation,

the concept of Software Defined Radio [8] was introduced, which reduces the need

of hardware replacement for each upgrade, which made it more affordable. Merely

changing the source is sufficient for and upgrade. As a result, SDR seems to have a

promising future in the field of wireless communication.

SDR has gained popularity in recent years and has been used as very efficient

and cost-effective means of studying several wireless technologies. It has allowed

researchers to implement wireless systems with greater flexibility and freedom [9].

By combining LTE and SDR technologies, we can analyze the performance of both
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OFDMA and SCFDMA in terms of the key metrics PAPR and BER. PAPR is defined

as the ratio of peak signal power to the average signal power and BER is used to assess

the quality of the received signal.

The study of PAPR is important as it has it impacts on the overall power effi-

ciency of the system. It is also required to design RF transmitter power as power

amplifier at transmitter should be operated within the range of linearity to ensure

the removal/reduction of quantization noise.

BER, a measure of the quality of the received signal, is expressed in terms of Signal

to Noise Ratio (SNR) which is the ratio of signal power to the noise power in the

frequency range of operation. Generally, higher SNR values result in lower BER and

the system performance is said to better. Therefore, study of BER is used in wireless

communication system to determine the likelihood of receiving correct data.

SDR provides us with the toolkit to analyze these data over various constraints;

it lets us manipulate various parameters to study the behavior of any system. SDR

will be handy even as we move to 5G.

1.5 Organization of Thesis

This thesis use GNU Radio to study performance of a simulated LTE system. Chapter

2 provides background on the LTE (Long Term Evolution) system of wireless com-

munication. In Chapter 3, we introduce software defined radio (SDR), outline its

benefits and cover some modern implementations. In Chapter 4, we discuss one im-

plementation of software defined radio: GNU Radio, which is the major platform for

this research. In Chapter 5, we implement an LTE uplink and downlink system and

measure the performance of a data transmission system. The performance metrics are

probability of error at a given bit rate (BER) and the Signal-to-Noise Ratio (SNR).

Despite all of its advantages, OFDMA it is said to have high PAPR which is over-

come by SCFDMA. Accordingly, we investigate the BER performance of OFDMA

and SCFDMA systems as well we will compare the PAPR between these two systems

used in LTE. Finally, in Chapter 6, we conclude and present ideas for future work.
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Chapter Two

Long Term Evolution (LTE)

2.1 Overview

Officially known as evolved packed system (EPS), LTE is a colloquial term used for

the system with two parts namely: system architecture evolution (SAE) and long

term evolution (LTE). SAE covered the core network whereas the LTE covered the

radio access network, air interface and mobile [2]. The Third Generation Partnership

Project (3GPP) produced specifications for LTE and is also responsible for manage-

ment of its successive versions and releases, as shown in Figure 2.1, which ensured

system compatibility and added functionality.

The 3GPP requirements LTE, dealing with air interface, specifies that it has to

deliver peak data rates of 100Mbps and 50Mbps respectively in downlink and uplink.

Also, it has to deal with the latency, for voice related applications. The time taken

for data to reach user equipment from fixed transmitter should be less than 5ms,

provided that the air interface is not congested. Mobile phones can operate either in

active mode or stand by mode and the switching time from standby state to active

state after user intervention should be less than 100ms. In addition to LTE, 3GPP

specifies SAE as a IP-based architecture which is required to support IP version 4,

IP version 6 or dual stack IPV4/IPV6. The main component of SAE is Evolved

Packet Core (EPC). EPC provide users always on connectivity by setting up a basic

IP connection as long as it is on in the network. EPC is responsible for controlling the

data rate, error rate and the data stream delays. Also, it is responsible for handover

between LTE and earlier 2G and 3G technologies.

LTE has demonstrated its importance as a versatile technology that meets the

requirement set by 3GPP. LTE can be deployed in flexible carrier bandwidths from

1.4MHz up to 20MHz. LTE also support different modes of operation, Time Division

Duplex (TDD) or Frequency Division Duplex (FDD). LTE has been able to provide
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Figure 2.1: 3GPP release timeline

better, faster service to users whereas flexibility and efficiency of LTE has established

itself as a choice to network operators.

2.2 LTE Downlink

LTE or the E-UTRAN (Evolved Universal Terrestrial Access Network), introduced

in 3GPP R8, is the access part of EPS. The main advantage of an LTE network

is high spectral efficiency, high peak data rates, short round trip time as well as

flexibility in frequency and bandwidth. LTE downlink is based on OFDMA (Or-

thogonal Frequency Division Multiple Access). OFDMA in combination with higher

order modulation (up to 64QAM), large bandwidths (up to 20MHz) and spatial mul-

tiplexing in the downlink (up to 4x4) is able to achieve high data rates. The highest

theoretical peak data rate on the transport channel is 75 Mbps in the uplink, and

in the downlink, using spatial multiplexing, the rate can be as high as 300 Mbps.

For the uplink SCFDMA (Single Carrier Frequency Division Multiple Access) also

known as DFT (Discrete Fourier Transform) spread OFDMA is used [10]. SCFDMA

has inherited most of the OFDMA features and additionally overcomes the major

drawback of OFDMA to obtain a low PAPR. SCFDMA is preferred in uplink due to

low PAPR which secures low power consumption in the user devices.

LTE transmission on downlink is based on OFDM as it can transmit data with

large number of parallel, narrowband subcarriers along with the property of being

resilient to the slowly fading channel. The transmitted symbols are based on time-
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Table 2.1: LTE Downlink Configuration

Transmission Bandwidth (MHz) 1.25 2.5 5 10 15 20
Slot duration ms 0.5
Sub-Carrier spacing (kHz) 15
Number of RBs 6 12 25 50 75 100
FFT Size 128 256 512 1024 1536 2048
Number of occupied subcarriers 72 180 300 600 900 1200

Figure 2.2: LTE downlink physical resource based on OFDM [11]

frequency grid. Resource Element (RE) is one modulation symbol on one subcarrier,

which are combined to Resource Blocks (RBs) that are composed of twelve consec-

utive subcarriers and six or seven OFDM symbols as illustrated in Figure 2.2. The

number of OFDM symbols depends on the length of Cyclic Prefix (CP) i.e. normal or

extended. The LTE downlink configuration based on bandwidth and RBs are shown

in Table 2.1.

Figure 2.3 shows an LTE transmission frame. The duration of each frame is 10ms

that is composed of ten sub-frames. These sub-frames include two slots with each

of six or seven OFDM symbols depending on the length of cyclic prefix (normal or

extended). If we assume normal CP mode, then each slot will have seven OFDM

symbols and each sub-frame will have 14 OFDM symbols which sums up to 140

OFDM symbols in a frame. The total number of subcarriers is dependent on the
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Figure 2.3: LTE Downlink Frame Structure

available bandwidth as listed in Table 2.1 which was taken from [12]. As explained,

all the LTE downlink systems are based on OFDM, we will further explain OFDM

transmission and reception.

2.3 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a multicarrier modulation technique commonly used in communication

systems that require high data rates. This is due to its robustness in multipath

propagation. OFDM is a parallel transmission scheme, where a high-rate serial data

stream is split into a set of low-rate sub streams, each of which are modulated on a

separate subcarrier. The bandwidth of the sub-carriers becomes small compared with

the coherence bandwidth of the channel; that is, the individual sub-carriers experience

flat fading, which allows for simple equalization. This implies that the symbol period

of the sub streams is long when compared to the delay spread of the radio channel.

By selecting a set of carrier frequencies that are orthogonal, high spectral efficiency

is obtained because the spectra of the sub-carriers overlap, while mutual influence

among the sub-carriers can be avoided by introducing a guard period known by cyclic

prefix [13]. Figure 2.4 shows the block diagram of OFDMA. In OFDM transmission

first a sequence of QAM or PSK symbols with a symbol time are converted from

serial to parallel. Each of N symbols from serial to parallel conversion is carried out

by different sub-carrier. Let Xi[k] denote the ith transmitted symbol at kth subcarrier

where i ∈ Z+ and k ∈ {0, 1, 2, . . . , N − 1}. As the symbols are converted from serial

11



Figure 2.4: Block Diagram of OFDMA

to parallel the transmission time for N symbols is extended such that Tsym = NTs ,

where Tsym is the length of a single OFDM symbol. Let ψi,k(t) denote the ith OFDM

signal at the kth subcarrier, then,

ψi,k(t) =

ej2πfk(t−iTsym) 0 < t ≤ Tsym

0 elsewhere
(2.1)

The passband and baseband OFDM signal in continuous time domain can be ex-

pressed as

x1(t) = Re

{
1

Tsym

∞∑
i=0

N−1∑
k=0

Xi[k]ψi,k(t)

}
(2.2)

and

x1(t) =
∞∑
i=0

N−1∑
k=0

Xi[k]ej2πfk(t−Tsym) (2.3)

When the continuous time based OFDM signal in equation (2.3) is sampled at

t = iTsym + nTs with fk =
k

Tsym
, the results will be

x1[n] =
N−1∑
k=0

Xi[k]ej2πkn/N (2.4)

for n ∈ {0, 1, . . . , N − 1}
Now, consider the received baseband OFDM symbol as,

yi(t) =
N−1∑
k=0

Xi[k]ej2πfk(t−iTsym), iTsym < t ≤ iTsym + nTs (2.5)

Two signals are defined to be orthogonal if the integral of their product over their

fundamental period is zero [14]. Using this feature of OFDM symbol Xi[k] can be
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reconstructed as follows:

Yi[k] =
1

Tsym

∫ ∞
−∞

yi(t)e
−j2πkfk(t−iTsym) dt (2.6)

=
1

Tsym

∫ ∞
−∞

{
N−1∑
m=0

Xi[m]ej2πfm(t−iTsym)

}
e−j2πkfk(t−iTsym) dt

=
N−1∑
m=0

Xi[m]

{
1

Tsym

∫ Tsym

0

ej2π(fm−fk)(t−iTsym)

}
= Xi[k]

In the above realization, the effects of channel and noise are not considered. Let

{yi[n]}N−1n=0 be the sample values of the received OFDM yi(t) at t = iTsym + nTs.

Then, following the steps as in (2.6),

Yi[k] =
N−1∑
n=0

yi[n]e−
j2πkn
N (2.7)

=
N−1∑
n=0

{
1

N

N−1∑
n=0

Xi[m]e
j2πmn
N

}
e−

j2πkn
N

=
1

N

N−1∑
n=0

N−1∑
m=0

Xi[m]ej2π(m−k)n/N = Xi[k]

Equation (2.4) is the N-point inverse Discrete Fourier Transform (IDFT) and (2.7)

gives the Discrete Fourier Transform (DFT). The DFT correlates each input signal

with the set of orthogonal sinusoids. If the input signal has some energy at a cer-

tain frequency k, it will be reflected at the correlation of the input signal and this

frequency, that is, in the value of spectrum for frequency . It means that the DFT con-

verts the time domain representation of the signal to the frequency domain. Whereas,

the IDFT converts signal spectrum, that is, frequency domain signal representation

to the time domain [15].

Thus, the OFDM system can be explained as such: modulated signal is passed to

serial-to-parallel converter which is input (frequency domain) for the IFFT block that

converts it to time domain blocks of symbols X[n]. These symbols are transmitted

over the channel. At receiver the time domain symbol is passed through the FFT

block which transforms to frequency domain and Y [k] is obtained after parallel-serial

processing. If the channel is noiseless the Y [k] coincides with X[k]. Figure 2.5

shows the OFDM system. But in wireless communication the presence of multipath

channel introduces ISI and ICI. When the received OFDM symbol is distorted by

the previously transmitted symbol, then the interference is known as ISI. Another

interference ICI occurs in such a way that the sub carrier may lose their orthogonality.
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Figure 2.5: OFDM System

Figure 2.6: OFDM Symbol with CP

To overcome this problem, a guard interval of length Tg > Tc is added at the beginning

of each symbol where T > Tc is the channel time. The guard period (Cyclic Prefix)

is generated by duplicating the last Tg length of the symbol as shown in figure Figure

2.6.

2.4 LTE Uplink

In LTE uplink, transmission power consumption in UE terminals is a major concern.

Despite all the benefits of OFDM, the high PAPR limits its use in uplink transmission.

SC-FDM, a modified version of OFDM is introduced in uplink. It has similar through

put performance and complexity as in OFDM along with an advantage of low PAPR

[16]. Similar to downlink, uplink transmissions are segmented into frames. Each

frames consists of two sub frames which is further divided into two slots of 0.5ms

length. These slot contains 7 SCFDM symbols with normal CP. The generic frame

structure for SC-FDMA is shown in Figure 2.7 and the generic slot structure with

normal cyclic prefix is shown in Figure 2.8 [17]. The LTE uplink configuration is

shown in Table 2.2.
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Figure 2.7: Uplink (SCFDMA) frame structure

Figure 2.8: SCFDMA slot structure

Table 2.2: LTE Uplink Parameters for SC-FDMA Transmission

Transmission Bandwidth (MHz) 1.25 2.5 5 10 15 20
Slot duration (ms) 0.5
CP duration (ms/no. of subcarri-
ers)

3.65/7 or
7.81/15

3.65/7
or
7.81/15

3.65/7
or
7.81/15

3.65/7
or
7.81/15

3.65/7
or
7.81/15

3.65/7
or
7.81/15

Long Block (LB) size

ms 66.67
Occupied Subcarriers 75 150 300 600 900 1200
FFT 128 256 512 1024 1536 2048

Short Block (SB) size

ms 33.33
Occupied Subcarriers 38 75 150 300 450 600
FFT 64 128 256 512 1024
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Figure 2.9: Block Diagram of SC-FDMA

2.5 Single Carrier Frequency Division Multiplexing Access

SCFDMA is a multiple access technique that is built over OFDM modulation with

addition of a new DFT block before subcarrier mapping. A typical OFDM system uses

a large number of subcarriers contributing to a high PAPR, a major factor that led to

the development of SCFDMA, in which the overall transmit signal is a single signal,

which results in a low PAPR. SCFDMA is an extension of Single Carrier, Frequency

Domain Equalizer (SC-FDE) system that provides low PAPR due to single carrier

modulation at the transmitter, robustness to spectral null, lower sensitivity to carrier

frequency offset, and lower complexity at the transmitter which benefit the mobile

terminal in cellular uplink communications [18].

In SCFDMA, as in the block diagram shown in Figure 2.9, time domain data sym-

bols are transformed to frequency domain by DFT before going through OFDMA

modulation [18]. So, the only difference of SCFDMA from OFDM is the DFT block

because of which it is also known as DFT-OFDM. The transmitter of SCFDMA mod-

ulated symbols are grouped into blocks each containing N symbols. These symbols

are transformed into frequency domain by performing N -point DFT. Each of the

outputs obtained from N -point DFT are mapped to one of the M(M > N) ortho-

gonal sub carriers. M-point IDFT is performed to convert to a time domain signal.

Let Q be the maximum number of users that can transmit without any co-channel

interference then the output block size is given by M = QN . The transmitted then

adds CP to prevent the signal from interference.

At the receiver side, the reverse operations is performed. First, CP is removed

and the signal is transformed into frequency domain by performing M-point DFT.

After subcarrier de-mapping the equalized symbols are transformed back into the

time domain with N-point IDFT after which decoding and detection occurs to get

the transmitted signal.
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Figure 2.10: SCFDMA transmitter showing localized and distributed subcarrier map-
ping

In SCFDMA the transmission of subcarriers can be carried out in two ways; loc-

alized subcarrier mapping (referred to as Localized (L) - FDMA) and distributed

subcarrier mapping (referred to as Distributed (D) - FDMA). In the LFDMA mode,

the consecutive subcarriers are occupied by the DFT outputs of the input data and

in DFDMA mode, DFT outputs are distributed in subcarriers over the entire band-

width with zeroes assigned to the unused subcarriers. Interleaved FDMA (IFDMA) is

a special case of SCFDMA in DFDMA mode where the subcarriers are at equidistant

and without using DFT and IDFT, the transmitter can modulate the signal strictly

in the time domain, which makes it very efficient [19]. Figure 2.10 shows an SCF-

DMA transmitter with localized and distribute sub carrier mapping and Figure 2.11

shows the concept of subcarrier mapping in the frequency domain with an example

of 3 users, 12 subcarriers, and 4 subcarriers per user.
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Figure 2.11: Subcarrier allocation methods for multiple users (3 users, 12 subcarriers,
and 4 subcarriers per user)
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Chapter Three

Software Defined Radio Background

3.1 Introduction

The term “Software Radio” was first coined by E-systems (now Raytheon) in a com-

pany newsletter in 1984. Then in 1991, DARPA’S SPEAKeasy became the first

military program that required its physical layer components to be implemented in

software. However, it was in 1992 that the very first paper on Software Radio was

published at IEEE National Telesystems Conference by Joseph Mitola. His paper

“Software Radio: Survey, Critical Analysis and Future Directions”, was so well re-

ceived that he is often referred to as the Godfather of Software Radio and is credited

to have coined the term “Software radio” despite the term being used by E-systems

previously for a prototype of a receiver [20].

Wireless innovation forum defined SDR as “Radio in which some or all, of the

physical layer functions are software defined” [21]. In brief ITU has defined SDR

as “A radio transmitter and/or receiver employing a technology that allows the RF

operating parameters including, but not limited to, frequency range, modulation

type, or output power to be set or altered by software, excluding changes to operating

parameters which occur during the normal pre-installed and predetermined operation

of a radio according to a system specification or standard” [22].

The SDR Forum, currently known by Wireless Innovation Forum, a non-profit

corporation that has been set up for development, deployment and use of open ar-

chitectures for advanced wireless systems, have also developed a 5 tier definition of

SDR [23] which are summarized in Table 3.1 below.

3.2 Evolution of SDR

SDR as we know today is convergence of various contemporary technologies that were

developed independently adding up to become one of the most remarkable break-
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Table 3.1: SDR Forum tier definitions

Tier Name Description

0 Hardware Radio (HR) Baseline radio with fixed functionality
1 Software-controlled radio (SCR) The radio’s signal path is implemented using

application-specific hardware, i.e., the signal
path is essentially fixed. A software interface
may allow certain parameters, e.g., transmit
power, frequency, etc., to be changed in soft-
ware.

2 Software defined radio (SDR) Much of the waveform, e.g., frequency, mod-
ulation/demodulation, security, etc., is per-
formed in software. Thus, the signal path
can, with reason, be reconfigured in soft-
ware without requiring any hardware modi-
fications. For the foreseeable future, the fre-
quency bands supported may be constrained
by the RF front-end.

3 Ideal software radio (ISR) Compared to a ’standard’ SDR, an ISR im-
plements much more of the signal path in the
digital domain. Ultimately, programmabil-
ity extends to the entire system with ana-
logue/digital conversion only at the antenna,
speaker and microphones.

4 Ultimate software radio (USR) The USR represents the ’blue-sky’ vision of
SDR. It accepts fully programmable traffic
and control information, supports operation
over a broad range of frequencies and can
switch from one air-interface/application to
another in milliseconds.

throughs in the history of radio communication. The first major contribution was

marked by development of Digital Signal Processing (DSP) techniques that basically

helped conversion of analog signal processes to digital processes. Newer techniques

were being developed within the DSP industry as well as separately by developers

who were developing software tools to provide modeling of the complex algorithms.

The Semiconductor industry also kept pace with these developments and provided

with matched computational performance for radio modulation and demodulation

to use digital signal processes. These developments caused exploration of various

machine learning techniques to help improve machine behavior, which were all some-

how helpful in evolution of the present day SDR. Furthermore, computer networking
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Figure 3.1: SDR Timeline [24]

techniques were being developed commercially which soon evolved to wireless net-

working. Hence, we arrived to the era of SDR, which served as platform for first

adaptive radios then cognitive radios, all using digital signal processors and general

purpose processors built in silicon [24].

SDR software defines the properties of carrier frequency, signal bandwidth, modula-

tion, network access, cryptography, forward error correction coding and source coding

of voice, video or data. It is highly versatile and cost effective general purpose device

since the same radio tuner and processors can be used to implement many waveforms

at many frequencies and can be easily upgraded with new software for new waveforms

and new applications. However, in 1987, what is believed to be the first SDR device

was built when Air Force Rome Labs (AFRL) funded the integrated communications,

navigation, and identification architecture (ICNIA), a programmable modem, which

was a single box that housed a collection of single purpose radios. Then in 1990 AFRL

and Defense Advanced Research Projects Agency (DARPA) collectively funded the

SPEAKeasy I and SPEAKeasy II programs were the next major events in the history

of SDR.

SPEAKeasy I was heavily built radio that included a software programmable cryp-

tography chip called Cypress, with software cryptography developed by Motorola.

SPEAKeasy I demonstrated that a completely software programmable radio was in

fact possible and made way for SPEAKeasy II. SPEAKeasy II was portable sized and

gained popularity as the first SDR to include programmable voice coder, vocoder. It
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was capable of handling different kinds of waveforms due to sufficient analog and DSP

resources and was constructed using standardized commercial off-the-shelf (COTS)

components which made it popular in defense equipment. SPEAKeasy II was so pop-

ular in the defense sector that it was used to create the US Navy’s digital modular

radio (DMR). DMR was a four channel full duplex SDR which could be remotely con-

trolled over Ethernet using Simple Network Management Protocol (SNMP). Both the

SPEAKeasy II and DMR had their importance to demonstrate that it was possible

to disintegrate the dependency of software on hardware components and vice versa

and could be developed independently. The modern SDR comprises of very advance

features capable of doing a great deal of computation. The SDR forum played a very

critical role in overall development of the field. SDR forum was founded in 1996 by

Wayne Bosner of AFRL to standardize SDR hardware and software for industries. It

was also important in standardizing porting software across various hardware plat-

forms, defining interfaces for multiple hardware vendors and facilitate integration of

software components from multiple vendors.

3.3 Features of SDR

The ongoing research and developments on SDR has proved it to be largely useful.

It seems to be widely applicable in various fields of communication because of its

features. Some of the generalized features are listed below.

3.3.1 Flexibility

With increased performance in PCs several tasks could be performed simultaneously.

This contributed in the progress of the SDR, making it more flexible, as all the

parameters of the system are configured on software unlike the traditional hardware

methods. It makes easier to use the similar hardware for different purpose by just

changing the guiding software.

3.3.2 Reliability

All the operations are done in software. Once compiled, there are little chance of

breakdown of software when compared to traditional hardware which makes the sys-

tem reliable. In case of error, it can simply be fixed with the modification of inherent

software.
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3.3.3 Consistency and Stability of Parameters

Hardware and its performance are susceptible to the constraints such as weather

condition and aging whereas SDR seems to be consistent, stable and unaffected to

these constraints.

3.3.4 Upgradability

Upgrades are always possible with the changes or updates being in the software only,

which is cheaper and less time consuming than the hardware upgrades.

3.3.5 Reusability

Reusability is inherent feature of SDRs. The software programs are highly compatible

in similar hardware to perform similar operations, saving time and money.

3.3.6 Re-Configurability

The scope of tasks to be performed by SDR might differ with requirement of the

users which might change at any time. This can be achieved by simple modification

in software only which makes the system re-configurable.

3.3.7 Enhanced Functionality

With the control of software, it is much easier to provide an easy Graphical User

Interface (GUI) to control and verify the performance of a system. For one, SDR

platforms provides the functionality to incorporate newly introduced complex modu-

lation modes, making way for future technologies to use it, when needed, for various

aspects of design and development. All these features can be achieved using a general

purpose computer which is cheaper and provides all the functionality required.

3.3.8 Lower Cost

Change of hardware components become unnecessary since all the changes are being

carried out on software. The upgrades might also be less costly and latest technologies

could be employed in low budget projects as well.
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3.4 Uses/Benefits of SDR

Traditional hardware based radio with low flexibility and higher cost can be easily re-

placed with flexible, efficient and inexpensive SDR providing multiband, multimode,

multicarrier and variable bandwidth characteristics. SDR provides the software con-

trol of variety of modulation making it usable on varieties of application. Its benefits

can be classified for the following:

3.4.1 For Manufacturers

For manufacturers, research and development takes considerable time and effort.

With reduced hardware, they can devote most of their resources to software de-

velopment which is reusable and reconfigurable as required. This saves a lot of time

and resources and can be done in a stepwise process by fixing bugs and proceeding

to new steps. Once developed it is much easier to do a mass production. Even more,

SDR helps them in providing after sales support as it can be done remotely thus

reducing the time and maintenance cost.

3.4.2 For Network Operators/Radio Service Provider

The main advantage of SDR for operators is that, they can roll out their services

within short period of time with reduced cost in logistics and implementation. Also,

the radio parameters are software configurable which helps in rapid development and

upgrades that are mainly advantageous over the costly base stations.

3.4.3 For User/Subscriber

End users can have two-way communication with whom they want and in any com-

munication systems. Also, they can have the possibility to change the carrier and take

advantage of worldwide mobility. Even the end user terminals can be reconfigured

according to the needs. However, the usage can best also be summarized with the

Figure 3.2 below.
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Figure 3.2: Multidimensional Aspects of Software Defined Radio
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Chapter Four

GNU Radio

4.1 Introduction

GNU Radio is an evolving open source development toolkit and is used for signal

processing. It is a powerful SDR platform with many signal processing and general

purpose blocks used in radio systems. Filters, decoders, modulators, encoders are

some commonly used blocks in GNU. The GNU Radio applications use both the

Python and C++ , where each serve different purposes. GNU Radio applications

are primarily written using the Python whereas C++ is used to create the complex

signal processing blocks. The connection between these two different programming

language is made possible with the use of SWIG (Simplified Wrapper and Interface

Generator), an open source software which generates a ‘glue code’ that enables calling

C++ functions from a Python programming language. Figure 4.1 gives a clear picture

of organization of data flow on GNU Radio.

GNU Radio is based on flow graphs and blocks concept. Blocks are basic operation

units that process continuous data streams and each block has a number of input and

output ports. There are different types of blocks already available and a new block

can also be created if required. The flow graphs are the composed of different blocks

through which the data flows. It means different blocks are arranged and connected

like a path of signal flow. These flow graphs can be written in either C++ or Python.

Each of these flow graphs require one source and sink for successful execution.

4.2 GNU Radio Companion

GNU Radio Companion (GRC) is a GUI tool for creating signal flow graphs and gen-

erating flow-graph source code [25]. GRC makes it easier to use GNU Radio features

with reduced programming but the degrees of freedom is certainly compromised when

compared to programming. On the other hand, it provides some variable blocks that
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Figure 4.1: GNU Radio Block Diagram

can be used to pass variable values and also import some Python functions. GRC is

bundled with GNU Radio source and uses Cheetah templates to generate the Python

source code for the flow graph. It can generate source code for WX GUI, Qt and

non-GUI flow graphs as well as hierarchical blocks. It can also extract documentation

for gnu radio blocks from Doxygen-related XML files and also provides the definition

for the blocks present on GNU Radio. GRC can create hierarchical blocks out of built

in blocks and even lets us perform actions like enable, disable, cut, paste etc. GRC

comes to be handier as it can show the errors on the flow graphs before execution.

Figure 4.2 is the picture of the working area of the GNU Radio Companion. The

big central area is for creating the flow graph and is known as workspace. On the side

there are list of blocks, a library, that can be used to create a flow graph. On the top

it has toolbar to perform the desired actions and in the bottom pane is the terminal,

that shows the related messages that could be the output or any errors/warnings.

4.3 Components of GNU Radio Companion

Below are the components of GRC (GNU Radio Companion)

1. Flow Graph: GRC comprises of a scrollable window for creating an intercon-

nection of signal processing blocks known as flow graph.

2. Signal Blocks: These are the signal processing blocks in the flow graph. They
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Figure 4.2: GNU Radio Companion

appear as rectangular blocks in the GRC with individual labels (comprising of

name and list of parameters) and can be a filter, an adder, a source or a sink.

3. Parameters: Parameters are the input to the function performed by the signal

blocks. Displayed below the label, a parameter can be a sampling rate, gain or

a flag.

4. Sockets: Each signal block has certain inputs and outputs associated with it

that are known as sockets. They appear as small rectangle attached to the

signal block and has a label that indicates its function.

5. Connections: An input socket and an output socket are joined using connec-

tions that are represented by a simple line between the sockets in the GRC. A

connection needs to be made within same data types.

6. Variables: It is simply a value or a number that can be accessed by all the

elements of the flow graph. These could be used to define the value of certain

parameter or could be used as a range of values to be dynamically changed to

observe certain characteristics while the flow graph is running.
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Chapter Five

System Implementation and Performance Analysis

Previous chapters described the theory of LTE uplink and downlink and described

GNU Radio as well. This chapter will be focused on the implementation in GNU Ra-

dio. Also, we compare performance between OFDMA and SCFDMA using measures

BER and PAPR.

5.1 Implementation of OFDM

Figure 5.1 shows the flow graph of OFDMA implemented on GNU Radio. Various

blocks are used to perform transmission and reception. All the blocks used in the

flow graph are described in this chapter. File Source block reads raw data values in

binary format from the specified file. File saved with randomly generated sequence of

0s and 1s using random source generator provided in GNU Radio is used as input to

this source. There are several virtual sinks used to connect the flow graphs virtually.

These blocks are handy to make the flow graph tidy. All other major blocks are

explained as follows:

1. Stream to Tagged Stream: This built in block of GNU Radio converts regular

stream into a tagged stream. It adds length tags in regular intervals of stream.

2. Stream CRC32: The tagged stream of signal is passed to this block which

generates and adds 4-byte Cyclic Redundancy Check (CRC) to the end of the

data packets.

3. Protocol Formatter: This block is used to generate a packet header. The packet

header contains packet length (12 bits), packet ID (12 bits) and 8 bit CRC at the

end. Bits 0-11 gives the packet length, bits 12-23 indicates the header number

and bits 24-31 is an 8-bit CRC.
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4. Repack Bits: As the name suggests, this block repacks k bit from input stream

into l bits of output stream where k and l can have values within [1,8]. In this

thesis, the header bits are mapped using BPSK and payload bit are mapped

using QPSK. So, this block converts every 1 bit into an integer from 0 to 1 is

BPSK and every 2 bits into an integer from 0 to 3 in QPSK used for header

and payload respectively.

5. Chunks to Symbol: This block maps a stream of unpacked symbols indexes to

stream of float or complex points. For the header bits, the integer from 0 to 1

are mapped to BPSK symbol and for the payload bits, the integer from 0 to 3

are mapped to QPSK symbols.

6. Tagged Stream Mux: This built-in block is used to merge two inputs namely

header bits and payload bits. Basically this block takes N streams of input with

certain packet length tags and outputs a signal with new tag which is sum of

all individual tags (of input stream).

7. OFDM Carrier Allocator: This block is used to create a frequency domain

OFDM symbols which is input to the IFFT. This block also adds pilot symbols

to each subcarrier. Also, two synchronization words for timing synchronization

and frequency offset estimation are added in this block.

8. FFT: With this block FFT operation is performed to change the symbols from

time domain to frequency domain and vice versa. If reverse FFT (IFFT) is

performed, then the frequency domain signal is transformed to time domain

and if forward FFT is performed then the time domain symbols are transformed

into frequency domain symbols.

9. OFDM Cyclic Prefixer: This block adds CP to the symbol. The length of CP is

defined as quarter of FFT length (which is equal to the number of subcarriers).

10. Schmidl&Cox OFDM Synchronization: This is built in block in GNU Radio

based on theory defined in [26] used for signal synchronization and frequency

correction. In order to detect the start symbol of a packet transmitted, this

block relies on the frame equalizer which calculates the timing metric, determ-

ines the start of the packet and informs next block with a trigger.

11. Header/Payload Demux: This block plays major role in receiver end of OFDM

system. It plays vital role in detecting header stream and payload stream.
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Based on the trigger from Schmidl&Cox OFDM Synch block it will first detect

the outer header format. Then it will use the parsed outer header information

to detect the payload data.

12. OFDM Channel Estimation: This block is used to estimate frequency offset and

channel taps. The output of this block is a data symbol without synchronization

words which are send to other blocks by tags.

13. OFDM Frame Equalizer: This block performs equalization on a tagged OFDM

frame. One connected in the flow of header stream equalizes the outer header

stream and passes symbols to serializer while the other one connected to the

payload stream flow graph does the task of separating the packet corresponding

to the respective subcarriers. After this block, OFDM symbols are equalized

and frequency corrected.

14. OFDM Serializer: This block is used to convert parallel stream of data to serial.

15. Packet Header Parser: This block can be compared as inverse to the packet

header generator block. The output of this block is not the stream of data but

is a smart pointer dictionary used to figure out the index of subcarriers with

the same packet ID.

5.2 Implementation of SCFDMA

Figure 5.2 shows SCFDMA implementation in GNU Radio. As SCFDMA is modified

from OFDMA, only few other blocks are added to complete the implementation.

There is additional FFT and IFFT block (as described in theory with FFT size

N < M). SCFDMA Carrier Allocator block is a block that performs similar task

as in OFDMA but it does not add pilot symbols, pilot carriers and synchronization

words. Basically, it is used to map serial data to parallel. The block SCFDMA

Interleaver plays a vital role in distributing the data symbol to larger set of subcarrier

which is based on distributed mapping. Another additional block is SCFDMA frame

equalizer block used for frame equalization and symbol decision block is used to

convert complex signal to binary to prepare it for constellation mapping.

5.3 Performance Simulation

Theoretically, OFDMA and SCFDMA are quite effective in supporting the LTE re-

quirements. However, to verify the robustness of these systems perform different
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Figure 5.1: OFDMA Implementation In GNU Radio
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Figure 5.2: SCFDMA Implementation in GNU Radio
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tests using GNU Radio and to support the results we performed those simulations in

MATLAB as well.

5.3.1 Performance in Different Channel Models

In simple terms, wireless channels can be defined as a path through which wireless

signal travels from transmitter to the receiver by means of electromagnetic radiation.

It is simply taken as the medium to transport, however, it is necessary to know the

complexity comprised in the channel to successfully decode the information at the

receiver. As channels are not solid medium, there are lots of obstructions basically

known by multipath effect, shadowing effect and time varying characteristics. To

distinguish the fading characteristics of the channel, particularly two distinct scen-

arios are taken in to consideration. The slow fading channel in which the channel

stays the same (random value) over the entire time-scale of communication and the

fast fading channel, where the channel varies significantly over the time scale of com-

munication [2]. It is a general practice in wireless communication to perform the

performance measure in these fading channel comparing with the non-faded Addit-

ive White Gaussian Noise (AWGN) channel. To demonstrate the multipath fading,

Rayleigh and Rician distribution can be considered to model a channel. GNU Ra-

dio consists of Rayleigh and Rician fading model blocks based on Random Walk

Process [27], as informed in documentation tab of the block.

1. AWGN Channel: AWGN is the most common channel model used in wireless

communication. In an AWGN channel, the signal is degraded by white noise η

which has a constant spectral density and a Gaussian distribution of amplitude.

The Gaussian distribution has a probability density function (pdf) given by [28]

P (r) =
1√

2πσ2
exp

(
− r2

2σ2

)
(5.1)

where σ2 is is the variance of Gaussian Random Process.

In AWGN, the signal at the receiver is the total of transmit signal and noise,

where the noise is statistically independent of the signal.

2. Rayleigh Channel: It is commonly used to describe the statistical time vary-

ing nature of the received envelope of a flat fading signal, or the envelope of an

individual multipath component [1]. This channel model represents the signal

transmission in environment with no line of sight (LOS) between transmitter
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and receiver, that is common in heavily-built urban environment. The pdf for

Rayleigh channel is given by

P (r) =
r

σ2
exp

(
− r2

2σ2

)
(5.2)

where 0 ≤ r ≤ ∞ is envelope amplitude of received signal

3. Rician Channel: If there is a presence of strong dominant signal component,

like LOS, then the channel model is described as Rician Channel. It is similar

to Rayleigh channel except the LOS path of signal. The Rician distribution is

given by [2]

P (r) =
r

σ2
exp

(
−r

2 + A2

2σ2

)
I0

(
Ar

σ2

)
(5.3)

Where A denotes peak amplitude of dominant signal and A, r ≥ 0. The Rician

distribution commonly described by Rician Factor, K is gives by

K =
A2

2σ2
(5.4)

K(dB) = 10 log10

A2

2σ2
(5.5)

Figure 5.3 shows the power spectral density (PSD) plot of OFDMA in AWGN channel.

PSD is the frequency response of a periodic or random signal and tells us where the

average power is distributed as a function of frequency [29]. Figure 5.3 (a) is the

signal received at receiver when the noise is 0dB and Figure 5.3 (b) is when the noise

is 10dB. From these two figures we observe that as the noise amplitude increases,

there is degradation in received spectrum amplitude. It means that, as the signal

transmits from transmitter to receiver, it degrades with the increase in separation

distance between them. As shown in Figure 5.4 SCFDMA performs similarly to

OFDMA.

Figure 5.5 and Figure 5.6 shows the performance of OFDMA and SCFDMA re-

spectively in Rayleigh fading distribution with normalized Doppler of 0.1 and 1.

Several test between 0.1 and 1 were performed for each system. It is clear that in

both the techniques, OFDMA and SCFDMA, the amplitude of the signal at receiver

remained same. Figure 5.7 and Figure 5.8, represents OFDMA and SCFDMA signal

that are passed through Rician Channel with Rician Factor (k) having values 0 and

5 and normalized maximum doppler of 0.1 and 1 in both the cases. It is seen that

they have similar performance in any scenarios. This demonstrates the robustness of

OFDMA and SCFDMA in the fading channel.
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Figure 5.3: OFDMA in AWGN Channel

Figure 5.4: SCFDMA in AWGN Channel

5.3.2 Peak to Average Power Ratio

The PAPR occurs when in a multicarrier system the different sub-carriers are out

of phase with each other. At each instant they are different with respect to each

other at different phase values. When all the points achieve the maximum value

simultaneously; this will cause the output envelope to suddenly shoot up which causes

a ‘peak’ in the output envelope. Thus the ratio of peak signal power over the average

signal power is defined as PAPR [30]. Mathematically it is expressed as

PAPR =
max |x(t)|2

E[|x(t)|2]
(5.6)

where |x(t)| is the magnitude of x(t) and E[.] denotes the expectation operator. The

cumulative distribution function (CDF) of the PAPR is one of the most frequently

used performance measures for PAPR reduction techniques. The complementary
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Figure 5.5: OFDMA in Rayleigh Channel

Figure 5.6: SCFDMA in Rayleigh Channel

CDF (CCDF) is commonly used instead of the CDF itself. The CCDF of the PAPR

denotes the probability that the PAPR of a data block exceeds a given threshold [31].

The CDF of the amplitude of the signal is given by,

F (z) = 1− e−z (5.7)

The CCDF measures the probability of signal PAPR exceeding certain threshold.

Thus the CCDF of the PAPR of a data block is given by [31],

P (PAPR > z) = 1− P (PAPR ≤ z) = 1− F (z)N (5.8)

= 1− (1− e−z)N
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Figure 5.7: OFDMA in Rician Channel

5.3.3 Effect of PAPR

The major effect of PAPR is reduction of overall power efficiency of the system. The

RF power amplifiers at the Transmitter should be operated specifically within a large

range of linearity, since the signal in the non-linear region suffers major distortion

leading to intermodulation amongst the subcarriers and out of band radiation. This,

however cannot be sustainable for wireless communication as it reduces the power

efficiency of the overall system. Additionally, the ADCs or DACs also need to be

operated in a wide working range in order to ensure elimination or reduction of any

quantization noise, which again increases the complexity of the system which is highly

undesirable. Despite the fact that a lot of techniques were proposed over the years

for reduction of PAPR in OFDMA, none were successful in providing any significant

results.
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Figure 5.8: SCFDMA in Rician Channel

5.3.4 Comparison of PAPR between OFDMA and SCFDMA

From Figure 5.9 and Figure 5.10, we can observe that the peak power of an OFDMA

system is much greater than the average power of the system, whereas the maximum

peak power of SCFDMA system is within a close range of the average power. This

proves that the SCFDMA system has less PAPR than OFDMA system. To clarify

this, we have simulated the system in MATLAB with following parameters shown in

Table 5.1.

Simulation is performed with various types of modulation techniques along with

different number of subcarriers. In every simulation results it is clearly visible that

the PAPR of SCFDMA is better than the PAPR of OFDMA.
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Figure 5.9: Scope Plot of transmitted OFDMA Signal

Figure 5.10: Scope Plot of transmitted SCFDMA Signal

Table 5.1: Parameters used during simulation for PAPR Comparison

Number of total Subcarrier (M) 256/512 Oversampling Factor 4
Data Block Size (N) 64 Number of Iterations 1000
System Bandwidth 5MHz

Modulation Format
QPSK

16 QAM
64 QAM
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Figure 5.11: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
QPSK Modulation (M = 256, N = 64).
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Figure 5.12: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
16QAM Modulation (M = 256, N = 64).
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Figure 5.13: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
64QAM Modulation (M = 256, N = 64).
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Figure 5.14: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
QPSK Modulation (M = 512, N = 64).
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Figure 5.15: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
16QAM Modulation (M = 512, N = 64).
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Figure 5.16: Comparison between CCDF of PAPR for OFDMA & SCFDMA with
64QAM Modulation (M = 512, N = 64).
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5.3.5 BER Analysis between OFDMA and SCFDMA

Bit Error Rate (BER) is a performance parameter used to assess data quality of a

transmitted signal in wireless communication system. It is responsible for assessing

the performance of an overall system and is inclusive of transmitter, receiver and

the medium of transmission and when in operation. BER can be defined as rate at

which error occurs in a transmission system; which is simply a measure of received

bits that may have suffered deterioration/degradation mainly due noise and changes

in propagation path. Mathematically

BER =
Bits in Error

Total Bits Received
(5.9)

With the context of BER, Signal to Noise Ratio (SNR) is also considered. SNR is

the ratio of signal power to the noise power in the frequency range of the operation.

Noise power is due to unwanted signals present in the environment. BER is inversely

related to SNR. Thus a system with high Signal to Noise ratio (SNR) will have a

very low BER and vice versa. SNR is commonly used to evaluate the quality of a

communication link and is expressed as

SNR = 10 log10

Signal Power

Noise Power
(5.10)

BER is often expressed in terms of
Eb
N0

, Energy per bit to Noise power spectral

density ratio, also known as SNR per bit which is used to compare BER of digital

system without taking bandwidth into consideration. Eb represents the energy in

one bit and N0 refers to the noise power spectral density (or noise power in 1Hz

bandwidth). Like BER it is dimensionless.

Figure 5.17 shows the BER performance of OFDMA, LFDMA and IFDMA and as

expected, in AWGN channel without multipath fading all of them exhibit the same

characteristics. Figure 5.18 and Figure 5.19 compares BER performance between

OFDMA, IFDMA and LFDMA with QPSK modulation in Pedestrian A channel

and Vehicular A channel with the parameters provided in Table 5.2 and Table 5.3

respectively.

From both figures, we can see that the IFDMA has a better performance com-

pared to LFDMA and OFDMA. In Pedestrian A channel all 3 techniques seem to

be performing with same characteristics however with the increase in SNR, IFDMA

and LFDMA seems to perform better than OFDMA. In Vehicular A channel OFDM

has better performance than SCFDMA techniques initially, however with higher SNR

IFDMA shows the better performance. So, in terms of BER, it can be considered
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Table 5.2: Pedestrian test environment tapped-delay-line parameters

Tap
Channel A

Doppler Spectrum
Relative Delay (ms) Average Power (dB)

1 0 0 Classic
2 110 -9.7 Classic
3 190 -19.2 Classic
4 410 -22.8 Classic

Table 5.3: Vehicular test environment tapped-delay-line parameters

Tap
Channel A

Doppler Spectrum
Relative Delay (ms) Average Power (dB)

1 0 0 Classic
2 310 -1.0 Classic
3 710 -9.0 Classic
4 1090 -10.0 Classic
5 1730 -15.0 Classic
6 2510 -20.0 Classic

that, in most of the scenarios, IFDMA has better performance over OFDMA and

LFDMA.
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Figure 5.17: BER comparison between OFDMA, IFDMA and LFDMA with QPSK
modulation in AWGN Channel
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Figure 5.18: BER comparison between OFDMA, IFDMA and LFDMA with QPSK
modulation in Pedestrian A Channel
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Figure 5.19: BER comparison between OFDMA, IFDMA and LFDMA with QPSK
modulation in Vehicular A Channel
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Chapter Six

Conclusion and Future work

In this thesis, GNU radio was implemented to see the working mechanism of an LTE

system. GNU Radio system and their built in blocks were very useful to implement

OFDMA in downlink and SC-FDMA in the uplink. We used GNU Radio to observe

transmission and reception of randomly generated data on downlink and uplink, which

proved that the system can be used as a real world implementation platform along

with some SDR hardware like USRP [32]. The major advantage of GNU Radio is

the use of powerful digital signal processing methods, complex control routines and

others to obtain advanced radio systems. But there are limited resources to learn the

implementation techniques and requires a lot of learning and programming to seek

the full advantage of GNU Radio. Despite the challenges, use of GNU Radio and its

community is increasing and being an open source software, it is likely that there will

be a lot of contribution to the system by different enthusiasts and researchers in the

future.

OFDMA provides a high data rate with high levels of spectral efficiency mitigating

the effect of ISI and ICI with the use of CP. Despite this, it can be seen that it

suffers from high PAPR problem which is a crucial element in the uplink channel.

To overcome this, SC-FDMA was introduced in the uplink design. As seen from the

Figure 5.9 and Figure 5.10, the output of OFDM transmitted signal has a peak nearby

1.7 and average values below 0.5 whereas in SC-FDMA transmitted signal its always

within the same range, which illustrates the PAPR range in OFDMA and SC-FDMA.

To visualize even more, we compared PAPR between OFDMA and SC-FDMA with

different modulation scheme and with different number of subcarriers to see the effect

on systems implemented using the MATLAB. It is verified that the OFDMA system

is more susceptible to PAPR problem.

As there is a heavy burden to programming in the system to make it perfect, we

tried to simulate and compare BER performance of OFDMA and SC-FDMA in a
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MATLAB environment. It is seen that the performance of OFMDA along with SC-

FDMA types (IFDMA and LFDMA), they have the similar range of performance in

terms of BER. So, it is clear that the LTE system has made good use of both the

system in its uplink and downlink to provide user with uninterrupted services with

higher data rates.

The system is implemented in GRC and is working well, next is to use it along with

SDR to transmit and receive data. With this, various link level data can be evaluated

which helps to learn the effect for multipath fading in real world environment. Fur-

thermore, enhancement can be made on the system to make it better by upgrading

the equalizer block to support soft decision instead of hard decision which will help to

better visualize constellation plots at the receiver and add some blocks with adaptive

feature that can calculate the delay parameter in the system to implement bit error

testing
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Appendix A: GNU Radio Companion Code Example

A.1 Example Hello World Program on GNU Radio Companion

The Hello world program form GNU Radio is a dial tone generator and a FM receiver.

Figure A.1 shows the flow graph of dial tone generator on GRC and Listing A.1 shows

the respective Python code generated by GRC after successful execution. The flow

graph contains two signal source, one noise source, an adder connected to audio sink

for output. It also has variable blocks used to define the sampling rate and two WX

GUI slider blocks.

Here two signal source produces a sound (cosine waveform) with frequency of 350Hz

and 440Hz respectively which is then added with Gaussian noise produced by the noise

source. The resulting signal from the adder is passed in the audio sink to play the

dial tone from the speakers.

The variable blocks are used to define the value at one point that can be accessed

by all the elements of the flow graph there after. And the sliders are used to test the

output at different values. These blocks are created to make GRC more flexible.

Figure A.1: Dial tone generator implementation on GRC
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1 #!/usr/bin/env python2

2 # -*- coding: utf -8 -*-

3 ##################################################

4 # GNU Radio Python Flow Graph

5 # Title: Dial Tone Generator

6 # Generated: Thu Jan 6 00:08:16 2017

7 ##################################################

8

9 if __name__ == ’__main__ ’:

10 import ctypes

11 import sys

12 if sys.platform.startswith(’linux ’):

13 try:

14 x11 = ctypes.cdll.LoadLibrary(’libX11.so ’)

15 x11.XInitThreads ()

16 except:

17 print "Warning: failed to XInitThreads ()"

18

19 from gnuradio import analog

20 from gnuradio import audio

21 from gnuradio import blocks

22 from gnuradio import eng_notation

23 from gnuradio import gr

24 from gnuradio.eng_option import eng_option

25 from gnuradio.filter import firdes

26 from gnuradio.wxgui import forms

27 from grc_gnuradio import wxgui as grc_wxgui

28 from optparse import OptionParser

29 import wx

30

31

32 class dial_tone(grc_wxgui.top_block_gui):

33

34 def __init__(self):

35 grc_wxgui.top_block_gui.__init__(self , title ="Dial Tone

Generator ")

36 _icon_path = "/usr/share/icons/hicolor /32x32/apps/gnuradio -

grc.png"

37 self.SetIcon(wx.Icon(_icon_path , wx.BITMAP_TYPE_ANY))

38

39 ##################################################

40 # Variables

41 ##################################################
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42 self.samp_rate = samp_rate = 32000

43 self.noise = noise = 0.005

44 self.ampl = ampl = 0.4

45

46 ##################################################

47 # Blocks

48 ##################################################

49 _noise_sizer = wx.BoxSizer(wx.VERTICAL)

50 self._noise_text_box = forms.text_box(

51 parent=self.GetWin (),

52 sizer=_noise_sizer ,

53 value=self.noise ,

54 callback=self.set_noise ,

55 label=’Noise ’,

56 converter=forms.float_converter (),

57 proportion =0,

58 )

59 self._noise_slider = forms.slider(

60 parent=self.GetWin (),

61 sizer=_noise_sizer ,

62 value=self.noise ,

63 callback=self.set_noise ,

64 minimum=0,

65 maximum =0.2,

66 num_steps =100,

67 style=wx.SL_HORIZONTAL ,

68 cast=float ,

69 proportion =1,

70 )

71 self.GridAdd(_noise_sizer , 1, 0, 1, 2)

72 _ampl_sizer = wx.BoxSizer(wx.VERTICAL)

73 self._ampl_text_box = forms.text_box(

74 parent=self.GetWin (),

75 sizer=_ampl_sizer ,

76 value=self.ampl ,

77 callback=self.set_ampl ,

78 label=’Volume ’,

79 converter=forms.float_converter (),

80 proportion =0,

81 )

82 self._ampl_slider = forms.slider(

83 parent=self.GetWin (),

84 sizer=_ampl_sizer ,
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85 value=self.ampl ,

86 callback=self.set_ampl ,

87 minimum=0,

88 maximum =.5,

89 num_steps =100,

90 style=wx.SL_HORIZONTAL ,

91 cast=float ,

92 proportion =1,

93 )

94 self.GridAdd(_ampl_sizer , 0, 0, 1, 2)

95 self.blocks_add_xx_0 = blocks.add_vff (1)

96 self.audio_sink_0 = audio.sink(samp_rate , ’’, True)

97 self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate ,

analog.GR_COS_WAVE , 440, 1, 0)

98 self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate ,

analog.GR_COS_WAVE , 350, ampl , 0)

99 self.analog_noise_source_x_0 = analog.noise_source_f(analog.

GR_GAUSSIAN , noise , 42)

100

101 ##################################################

102 # Connections

103 ##################################################

104 self.connect ((self.analog_noise_source_x_0 , 0), (self.

blocks_add_xx_0 , 2))

105 self.connect ((self.analog_sig_source_x_0 , 0), (self.

blocks_add_xx_0 , 0))

106 self.connect ((self.analog_sig_source_x_1 , 0), (self.

blocks_add_xx_0 , 1))

107 self.connect ((self.blocks_add_xx_0 , 0), (self.audio_sink_0 ,

0))

108

109 def get_samp_rate(self):

110 return self.samp_rate

111

112 def set_samp_rate(self , samp_rate):

113 self.samp_rate = samp_rate

114 self.analog_sig_source_x_1.set_sampling_freq(self.samp_rate)

115 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

116

117 def get_noise(self):

118 return self.noise

119

120 def set_noise(self , noise):
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121 self.noise = noise

122 self._noise_slider.set_value(self.noise)

123 self._noise_text_box.set_value(self.noise)

124 self.analog_noise_source_x_0.set_amplitude(self.noise)

125

126 def get_ampl(self):

127 return self.ampl

128

129 def set_ampl(self , ampl):

130 self.ampl = ampl

131 self._ampl_slider.set_value(self.ampl)

132 self._ampl_text_box.set_value(self.ampl)

133 self.analog_sig_source_x_0.set_amplitude(self.ampl)

134

135

136 def main(top_block_cls=dial_tone , options=None):

137

138 tb = top_block_cls ()

139 tb.Start(True)

140 tb.Wait()

141

142

143 if __name__ == ’__main__ ’:

144 main()

Listing A.1: GRC Generated Python Code

A.2 Creating a New Block

For creating a new block, it is necessary to create a new module. To create an Out

of Tree (OOT) module, GNU Radio provides a tool namely gr modtool which is

also referred as the Swiss Army knife of module editing. It is a template that helps

developer to focus into DSP (or the desired tasks) coding by reducing the work like

boilerplate coding, makefile editing, etc. It is available in GNU Radio source tree

and is installed by default [33]. Block coding guides with naming conventions used

in GNU Radio can be accessed from [34].

To create a block lets start by creating a new module named gr-myModule which

computes square of an input signal such that y[n] = x2[n].

$ gr modtool newmod myModule After successful execution of above code in

terminal, it creates a new folder name gr-myModtool with all the files and folders
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required to create a new block. We will change the directory to gr-myModule and

call following code.

$ gr modtool add -t general square ff The code tells to add a type general

block with a name square ff. As the block operates on float input and output ff is

added at the name to provide meaning of the name. Next, the terminal will ask for the

block arguments, type of programming language to use (either Python or C++) and

whether we want to add the test QA codes for Python and C++. Once it is completed,

the time is to modify the signal processing blocks in the file square ff impl.cc and

square ff impl.h located under lib folder. Also, myModule square ff.xml file in grc

folder needs to be modified to make it available in GRC. For this example, there is no

need to change the header file square ff impl.hh. The modified file square ff impl.cc

is shown in Appendix B.

The modifications are made in the hints provided by the gr modtool. Hints are

shown with a symbol . The main operation is performed within the for loop present

in where *in pointer multiply with itself to produce an output, pointed by the *out

pointer. To make the module ready for GRC, modifications made in the myMod-

ule square ff.xml file is shown below.

<?xml version="1.0"?>

<block>

<name>square_ff</name>

<key>myModule_square_ff</key>

<category>[myModule]</category>

<import>import myModule</import>

<make>myModule.square_ff()</make>

<sink>

<name>in</name>

<type>float</type>

</sink>

<source>

<name>out</name>

<type>float</type>

</source>

</block>

After the programming stuffs, new module can be added to GRC with following
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commands.

mkdir build # We’re currently in the module’s top directory

cd build/

cmake ../ # Tell CMake that all its config files are one dir up

make

sudo make install

sudo ldconfig

It will create the build folder and compile the blocks within that folder. If there is

any error in C++ file, then it will be displayed at this time. If QA is setup at the

time of instantiating a new block, we can test and make necessary correction until

there is no errors before running the command sudo make install. Our new block is

successfully added in GRC and a flow graph and obtained output is shown in Figure

A.2 and Figure A.3 respectively.

Figure A.2: Demonstration of new block in GRC
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Figure A.3: Result obtained by new block (square of triangular wave)
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Appendix B: GNU Radio sample C++ program

/* -*- c++ -*- */

/*

* Copyright 2017 <+YOU OR YOUR COMPANY+>.

*

* This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published

by

* the Free Software Foundation; either version 3, or (at your

option)

* any later version.

*

* This software is distributed in the hope that it will be useful ,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this software; see the file COPYING. If not , write to

* the Free Software Foundation , Inc., 51 Franklin Street ,

* Boston , MA 02110 -1301 , USA.

*/

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "square_ff_impl.h"

namespace gr {

namespace myModule {

square_ff ::sptr

square_ff ::make()

{

return gnuradio :: get_initial_sptr

(new square_ff_impl ());

}

/*
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* The private constructor

*/

square_ff_impl :: square_ff_impl ()

: gr::block (" square_ff",

gr:: io_signature ::make(1, 1, sizeof(float)), // input

signature (no.of inputs)

gr:: io_signature ::make(1, 1, sizeof(float))) // output

signature (no.of outputs)

{}

/*

* Our virtual destructor.

*/

square_ff_impl ::~ square_ff_impl ()

{

}

void

square_ff_impl :: forecast (int noutput_items , gr_vector_int &

ninput_items_required)

{

ninput_items_required [0] = noutput_items;

}

int

square_ff_impl :: general_work (int noutput_items ,

gr_vector_int &ninput_items ,

gr_vector_const_void_star &input_items ,

gr_vector_void_star &output_items)

{

const float *in = (const float *) input_items [0];

float *out = (float *) output_items [0];

// Do <+signal processing+>

for (int i = 0; i<noutput_items; i++){

out[i] = in[i] * in[i];

}

// Tell runtime system how many input items we consumed on

// each input stream.

consume_each (noutput_items);

// Tell runtime system how many output items we produced.
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return noutput_items;

}

} /* namespace myModule */

} /* namespace gr */

63


	University of Texas at Tyler
	Scholar Works at UT Tyler
	Fall 10-31-2017

	IMPLEMENTATION AND PERFORMANCE ANALYSIS OF LONG TERM EVOLUTION USING SOFTWARE DEFINED RADIO
	Kedar Bhusal
	Recommended Citation


	tmp.1509994470.pdf.Z_s6L

