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Abstract

BEHAVIOR OF PETRIE LINES IN CERTAIN EDGE-TRANSITIVE GRAPHS

Ruby Chick

Thesis Chair: Stephen Graves, Ph.D.

The University of Texas at Tyler

July 2017

We survey the construction and classification of one-, two- and infinitely-ended mem-
bers of a class of highly symmetric, highly connected infinite graphs. In addition, we
pose a conjecture concerning the relationship between the Petrie lines and ends of some
infinitely-ended members of this class.
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Chapter 1

Introduction

Interest in infinite graph theory can be traced back to the 1936 publication of Dénes König’s
Theory of Finite and Infinite Graphs([Kö90]), an event which is widely believed to mark
the establishment of graph theory as a distinct discipline of mathematics. While many
have concerned themselves with extending the formulations of finite graph theory to the
infinite, it is often the case that infinite graphs are studied on their own. In 1964, Rudolf
Halin defined an end of an infinite graph to be an equivalence class of rays under a choice
equivalence relation ([Ha64]). We can describe an infinite graph by its number of ends.
The simple subgraphs of a graph can also be divided into equivalence classes, to be defined
fully in Chapter 3 of this thesis. In that chapter we also present Halin’s discovery of a one-
to-one correspondence between the ends of a graph and the equivalence classes of simple
subgraphs ([Ha73]).

We then present results of Jack Graver and Mark Watkins, who set out to find all mem-
bers of a class G of highly symmetric, highly connected graphs. Chapter 4 will reveal
the comprehensive classification of graphs in G by the local action of their automorphism
groups. In Chapters 6−8 we detail methods of construction for the one-, two- and infinitely-
ended members of this class. The method of construction for the one-ended graphs of G is
attributed to Branko Grünbaum and G.C. Shephard in their 1973 publication [GS73]. The
two-ended graphs, which take the form of quotient graphs of the integer lattice, were char-
acterized by Watkins in 1991 ([Wa91]). Graver and Watkins developed a method called
interleaving that produced the first known infinitely-ended members of G, first published in
1997 in [GW97].

Graver and Watkins also define a Petrie walk, sometimes called a zig-zag walk. Petrie
walks which are double rays are called Petrie lines. In Chapter 9 we present open problems
and conjectures concerning the relationship between the Petrie lines and the ends of an
infinitely-ended graph G in G.
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Chapter 2

Definitions and Preliminaries

A graphG is an ordered pair (V,E), where V is a set of vertices andE is a set of unordered
pairs of vertices, called edges. If e = {u, v} ∈ E we say that u and v are adjacent, that u
and v are neighbors, or that u and v are incident with e. The edge set and vertex set of a
graph G are denoted E(G) and V (G), respectively. The degree of a vertex v, denoted ρ(v),
is the number of neighbors of v. When V (G) is infinite, it is possible for vertices to have
infinite degree. We wish to exclude this possibility for the purposes of our discussion. A
graph G is locally finite if ρ(v) <∞ for all v ∈ V (G).

A graph can be drawn by representing each vertex as a point in the plane and each edge
as an arc joining incident vertices. A graph is planar if it can be drawn in such a way that
the edge-arcs admit no intersections. Such a representation of a planar graph is called a
plane graph.

We say that H = (V ′, E ′) is a subgraph of G = (V,E) if and only if V ′ ⊆ V and
E ′ ⊆ E. The induced subgraph of a set U ⊆ V of G is the subgraph whose edges {u, v}
are all such pairs with u, v ∈ U . Let H and K be infinite subgraphs of a graph G. The
subgraph H terminates in K if H \K is finite.

A walk is an ordered list of sequentially adjacent vertices. A subgraph H of a walk K
is called a subwalk ifH is also a walk. A path is a walk that has no repeated vertices. Often
we denote a walk W with both its vertices and the edges that join them, as follows:

W = x0, e1, x1, e2, x2, . . . , en−1, xn−1

A circuit is a walk x0, e1, x1, e2, . . . , en, xn satisfying x0 = xn and {x0, x1, . . . , xn−1}
are all distinct. The length of a path or walk is its number of edges. An infinite path U such
that ρ(v) = 2 for all v ∈ U is called a double ray. An infinite path v0, v1, v2, . . . such that
ρ(v0) = 1 and ρ(vi) = 2 when i > 0 is called a ray. If H is a ray or double ray and K ⊂ H
is a ray, then we say K is a subray of H.

The edges of a plane graph divide the plane into connected regions called faces. The set
of all faces of a plane graphGwill be denoted F (G). Given a face f ∈ F (G) the covalence
of f is the length of the circuit enclosing f , denoted ρ∗(f). If no such circuit exists then
we say the covalence of f is infinite. If a vertex v or an edge e lies on the circuit or path
around f then we say each of v and e are incident with f .

2
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Figure 2.1: A crossing of paths U and V .

Given a plane graph G we can construct the dual graph G∗. Let V (G∗) = F (G), and
define

E(G∗) = {{f, g} | f, g ∈ F (G) are incident with a common edge in G}

. If G ∼= G∗, then G is said to be self-dual.
A component is a subgraph K ⊆ G such that

(i) for all u, v ∈ K there exists a path from u to v, and
(ii) whenever w /∈ K there is no path from u to w for all u ∈ K.

If a graph has only one component, then it is said to be connected.
Let X = {u, x1, x2, . . . , xn, v} and Y = {u, y1, y2, . . . , ym, v} be two paths joining

vertices u and v. The paths X and Y are said to be internally disjoint if V (X) ∩ V (Y ) \
{u, v} = ∅. A graph G is k-connected if, for any pair of vertices u, v ∈ V (G), there are k
internally disjoint paths in G joining u and v. Let H ⊂ V (G). If G \H has more than one
component, then we call H a vertex cut-set of G. The connectivity K(G) of a graph G is
the size of the smallest vertex cut-set of G; the graph G is k-connected for any k ≤ K(G).

Let U and W be distinct paths in a plane graph G. Then U ∩W will consist of one
or more components, each of which will be paths. Let V = {x0, x1, . . . , xk} be one such
path. We will call V a crossing of U and W if

(i) neither x0 nor xk is 1-valent in U or W , and
(ii) in the clockwise labelings of the vertices around x0 and xk a vertex of V occurs after

a vertex of U , but before a vertex of W (or the order is reversed in both labelings).

Figure 2.1 depicts a crossing.
An automorphism of a graph G is a permutation φ of V (G) such that {u, v} ∈ E(G) if

and only if {φ(u), φ(v)} ∈ E(G). Up to isomorphism a graph is uniquely determined by
the pair (V,E). The set of all automorphisms of a graph G is denoted Aut(G) and forms
an algebraic group under function composition. We call Aut(G) the automorphism group
of G. Let G be a graph and φ ∈ Aut(G). Although φ acts on the vertices of G, φ induces a
well-defined permutation group on each of E(G) and F (G). For this reason we denote by
φ(e) and φ(f), the images of e ∈ E and f ∈ F under the induced permutation of E and F ,

3



respectively. A graph G = (V,E) is said to be edge-transitive if, for every pair of edges e1,
e2 ∈ E(G), there exists an automorphism φ ∈ Aut(G) such that φ(e1) = e2. Vertex- and
face-transitivity are defined similarly.

4



Let G = (V,E) be a locally finite, edge-transitive, planar graph. A walk

Π = . . . xi−2, ei−1, xi−1, ei, xi, ei+1, xi+1, . . .

in G with indices in Z or Zm for some m is called a Petrie walk if the following three
conditions are satisfied:

(i) Pairs of edges ei and ei+1 are incident to a common face fi for all i;
(ii) For each i the faces fi and fi+1 are distinct;

(iii) No proper subwalk of Π satisfies conditions (i) and (ii).

5



Chapter 3

Simple Subgraphs and Ends

The study of infinite graphs allows us to examine subgraphs which are themselves infinite.
There are often an uncountable number of these subgraphs, so it is useful to divide them
into equivalence classes. In this chapter we define equivalence relations on two types of
infinite subgraphs: rays and simple subgraphs. As discovered by Halin in his 1973 publica-
tion [Ha73], there is a fundamental correspondence between these two sets of equivalence
classes.

Let G be an infinite graph and U, V ⊂ G be rays. We define an equivalence relation
∼G on the rays of G by U ∼G V if there exists a ray W ⊂ G such that both U ∩W and
V ∩W are infinite. The equivalence classes under ∼G are called ends. A graph is k-ended
if it has exactly k ends.

Example 1.

1. If a graph G is itself a ray then G is one-ended. If G is a double ray then G is
two-ended.

2. If U and V are rays and U ∩ V is infinite, then U ∼G V . Conversely, if U and V
belong to different ends, then U ∩ V must be finite.

By definition alone it may appear that determining the equivalence of two rays requires
the discovery of a third ray. However, another characterization of ends reveals that this is
not the case. Instead we can consider the possible ways to “break up” an infinite graph into
more than one component by the removal of a finite number of vertices, thus separating
rays that belong to different ends.

Let G be a graph and U, V ⊂ G be rays. Suppose there is some finite T ⊂ G such that
U and V terminate in different components of G \ T . Then we say T separates U and V
and that T is an ends-separating subgraph of G. Furthermore, U ∼G V if and only if U
and V terminate in the same component of G \T for every finite subgraph T ⊂ G. That is,
it is impossible to separate U and V by removing a finite subgraph of G.

Example 2.

1. Let the integer grid be the graphGwhose vertices are the points (a, b) ∈ R2 such that
a, b ∈ Z and whose edges are all pairs of the form {(a, b), (a+1, b)} or {(a, b), (a, b+
1)}. For any finite subgraph T ⊂ G, the graph G \ T will be connected. Therefore,
G is one-ended.
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2. An infinite k-valent tree T has an uncountable number of ends. Let v0 be a vertex of
T . Let U and V be distinct rays whose only common vertex is v0. Then U and V
belong to distinct components of T \ v0 and thus different ends of T .

Now we define a simple subgraph, which is built upon the idea of breaking up a graph
into components. An infinite subgraph H of a graph G is simple if H terminates in exactly
one component of G \ T for each finite T ⊂ G. For example, in any infinite graph a ray is
a simple subgraph since the removal of a finite number of vertices will leave some subray
intact. In general, simple subgraphs need not be connected; a simple subgraph can in fact
be an infinite sequence of nonadjacent vertices.

If G \ T is connected for any finite T , then G will be simple in itself. The converse of
this statement is not necessarily true, however. If it is possible to divide G into more than
one component, then G is simple when exactly one of those components is infinite. Fur-
thermore, as proven by Halin in the following theorem, the removal of any finite subgraph
of G must only ever result in a finite number of components.

Theorem 1 (Theorem 1 in [Ha73]). G is simple in itself if and only if

1. G is one-ended and
2. for every finite T ⊂ G the graph G \ T has finitely many components.

Proof. If G is simple, then it is at most one-ended; otherwise if G has more than one end
then there exists some finite T ⊂ G that separates one or more (infinite) rays. Hence if we
can construct a ray in G then G will be one-ended.

Let v0 be an arbitrary vertex of G. Then the graph G \ v0 contains exactly one infinite
component C1 because G is simple. Since G is connected, we can find v1 ∈ C1 with
{v0, v1} ∈ E(G). Let C2 be the infinite component of C1 \ v1, and pick v2 such that
{v1, v2} ∈ E(G). Continuing in this fashion will produce a ray

v0, v1, v2, . . . .

Now suppose G is one-ended and that, for any finite T ⊂ G, the graph G \ T has a finite
number of components. Then G is infinite because it contains a ray. Let E be the end of
G. Choose an arbitrary finite subgraph T of G. Then there is exactly one component C of
G \ T in which all rays of E terminate. Now we wish to show that G \ C is finite. Toward
contradiction supposeG\C is infinite. Then since there are only finitely many components
of G \ T , there is an infinite component C ′ of G \ (T ∪ C). Let T ′ be a finite subgraph
of C ′. Then there are only finitely many components of C ′ \ T ′. Otherwise G \ (T ∪ T ′)
has infinitely many components. One of the components of C ′ \ T ′ must be infinite and
so by the method above we can find a ray in C ′, but then G has more than one end. This
is a contradiction of our initial assumption that G be one-ended. Therefore, G must be
simple.

Given a simple subgraph H of a graph G we can easily find many more simple sub-
graphs of G by looking within H . Let T be a finite subgraph of G. By definition, all but
finitely many vertices of H belong to exactly one component C of G \ T . If H ′ ⊂ H is
infinite, then only finitely many vertices of H ′ lie outside C, and thus H ′ also terminates
in C. By this reasoning any infinite subgraph H ′ of a simple subgraph H ⊂ G will also be
simple in G.

7



Proposition 1 (Proposition 1 in [Ha73]). If H is simple in G and H ′ ⊂ H is infinite, then
H ′ is simple in G.

Let G be a graph and let H and H ′ be simple subgraphs of G. We can define an
equivalence relation ≈G on the simple subgraphs of G by H ≈G H ′ if and only if H ∪H ′
is also simple in G. That is, H ≈G H ′ if and only if both H and H ′ terminate in the same
component of G\T for any finite T ⊂ G. In particular if H and H ′ are rays and H ∼G H ′,
then H ≈G H ′.

As it is defined ≈G relies upon the consideration of G \ T for every finite T ⊂ G. The
following theorem offers an alternate characterization of this equivalence relation. Two
simple subgraphs X and Y are equivalent under this relation if we can find an infinite set
of disjoint paths, each of which joins a vertex of X with a vertex of Y .

Proposition 2 (Proposition 5 in [Ha73]). Suppose X = (xi)
∞
i=1 and Y = (yi)

∞
i=1 are two

simple, countable subgraphs of G. Then X ≈G Y if and only if there exist infinitely many
disjoint paths {Pi}∞i=1 in G such that each Pi connects an xj ∈ X with a yk ∈ Y .

Proof. Let X and Y be simple subgraphs of G such that X ≈G Y and suppose {Pi}ni=1 is a
finite set of disjoint X, Y -paths in G. Then consider the subgraph K = G\ (P1∪P2∪ . . .∪
Pn). Since X ≈G Y , there exists a component C of K in which X and Y both terminate.
Choose Pn+1 in C. This path will be disjoint from each of P1, P2, . . . Pn; inductively we
can find infinitely many disjoint paths {Pi}∞i=1.

Suppose on the other hand that infinitely many such paths exist, and let T be a finite
subgraph of G. Then only finitely many paths Pi can have vertices in common with T , and
only finitely many pairs {xi, yj} can be separated by T . Thus there exist paths between
infinitely many pairs {xi, yj} in G \ T . It follows that X and Y terminate in the same
component of G \ T . Therefore X ≈G Y .

The rays of a graphG are connected one-way infinite paths. By comparison many of the
simple subgraphs of G may appear formless and scattered. In the following theorem Halin
shows that while a simple subgraph may be disconnected, there is always a one-ended tree
of which it is a subgraph.

Theorem 2 (Theorem 2 in [Ha73]). Let x1, x2, . . . be an infinite sequence of distinct ver-
tices of G. Then X = {x1, x2, . . .} is simple in G if and only if there exists a locally finite
one-ended tree H ⊆ G with X ⊆ V (H).

Proof. Suppose such a tree H exists. Then for each finite T ⊂ G there is exactly one
component of G \ T in which H terminates, and so H is simple in G. Thus X is also
simple in G.

Suppose X is simple in G. The desired tree will be constructed via a sequence of
nonempty disjoint finite subtrees H1, H2, . . . of G and edges e1, e2, . . . ∈ E(G) satisfying
the following:

(i) for all i, the edge ei connects a vertex of Hi with a vertex of Hi+1,

(ii) for every n, the vertices {x1, x2, . . . , xn} ⊆
n⋃
i=1

Hi,

8



(iii) for every n, G \
(

n⋃
i=1

Hi

)
has exactly one component Cn with Cn ∩X 6= ∅. Hence

since X is simple, Cn ∩X must be infinite.

Suppose such a tree

H =
∞⋃
i=1

Hi ∪ {e1, e2, . . .}

was constructed. Then H is at least one-ended, because a ray exists which contains of all
of the edges ei. Since the Hi’s were disjoint finite trees, any infinite connected subgraph of
H must contain all of the edges ei; hence any two distinct rays in H intersect at infinitely
many vertices and thus lie in the same end.

To construct this tree consider the subgraph G \ x1. Since X is simple there is exactly
one component C1 of G \ x1 in which X terminates, and V (X \ C1) is finite. Since G is
connected we can construct a finite tree H1 in G containing x1 and all vertices of X \ C1,
and there is an edge e1 connecting x1 with a vertex of C1. Let C2 be the component of
G \ (H1 ∪ {x2}) in which X terminates. The tree H2 is built by connecting x2 and all
vertices of X which lie outside C2. The edge e2 will join x2 and a vertex of C2. (Note that
if x2 ∈ H1, H2 will be an empty tree.)

Assume {Hi}ni=1 have been constructed and satisfy (i), (ii) and (iii). Let in be the
minimum integer i such that xi /∈ {Hi}ni=1. Then by condition (iii), xin is in the infinite
component Cn. Since G is connected, there exists an edge en between a vertex h of Hn

and a vertex c of Cn. In Cn we can find a path P joining xin and c. Since Cn is simple
in G there is exactly one infinite component Cn+1 of Cn \ P . Construct a finite tree Hn+1

satisfying the following conditions:

(i) Hn+1 lies in Cn,
(ii) P ⊆ Hn+1, and

(iii) Hn+1 contains all vertices of X that lie inside Cn \ Cn+1.

Now let en+1 be an edge connecting a vertex of P (and therefore Hn+1) with a vertex of
Cn+1.

The tree constructed thus establishes a relationship between the simple subgraphs of G
and the rays of G. For every simple subgraph there is an associated ray, and every ray is
itself a simple subgraph. Therefore we have a natural correspondence between the ends of
a graph and the equivalence classes under ≈G.

Proposition 3 (Proposition 4 in [Ha73]). There is a one-to-one correspondence between
ends of an infinite graph G and equivalence classes of simple subgraphs of G under ≈G.

This one-to-one correspondence motivates us to investigate the link between the ends of
a graph G and subgraphs of G of another variety. In Chapter 5, we define a type of double
ray called a Petrie line, and in Chapter 9 we present conjectures regarding the relationship
between the ends and Petrie lines of highly connected, highly symmetric graphs.

9



Chapter 4

Classification of Locally Finite, Planar, Edge-Transitive Graphs

While the results in Chapter 3 apply to all infinite graphs, we from this point forward
narrow our focus to a class of edge-transitive, highly connected graphs. In particular, the
class G consists of all graphs that are locally finite, planar, 3-connected and edge-transitive.
There are nine finite members of G. As proven by Halin and Jung and reported in [GW97],
the infinite members of G must possess exactly one, two or uncountable many ends. This
provides a natural categorization of the class G, which we use to organize our later chapters
detailing the construction of many of these graphs.

In this chapter we are interested in a larger class G ′′ that consists of all 2-connected,
edge-transitive plane graphs that are not circuits of odd length. We expose a key result by
Graver and Watkins, which provides a comprehensive classification of graphs in G ′′ by the
local action of their automorphism group. While representing the automorphism group of a
graphG ∈ G ′′ is potentially impossible, the symmetries ofG can be catalogued by studying
the local action of elements of Aut(G). We first consider the possible automorphisms that
stabilize a given edge, vertex, face or Petrie walk in a graph G ∈ G ′′. Then we present
a theorem by Graver and Watkins which states that only fourteen combinations of these
stabilizers are possible. Six of these classes are later determined to be empty.

To describe the stabilizers of the vertices, edges, and faces in a graph G, it is useful
to define a triplet (v, e, f), called a flag, where v ∈ V (G), e ∈ E(G) and f ∈ F (G) and
all are mutually incident. We say G is flag-transitive if for each pair of flags (v, e, f) and
(v′, e′, f ′) there exists a φ ∈ Aut(G) that sends (v, e, f) to (v′, e′, f ′).

Lemma 1 (Lemma 3.1 in [GW97]). LetG ∈ G ′′. Then each automorphism ofG is uniquely
determined by its action on any flag of G.

Proof. Suppose that φ, ψ ∈ Aut(G) and that both φ and ψ map the flag (v, e, f) to the
flag (v′, e′, f ′). Let σ = φ ◦ ψ−1 so that σ fixes (v, e, f). Then σ fixes the flag (v, e, f).
Fixing the edge e, the vertex v and the face f also fixes the other edge d incident with v
and f . Thus σ fixes the entire circuit that bounds f . Since G is a 2-connected plane graph,
σ must also fix the bounding circuits of all faces that share a common edge with f . By this
reasoning, all all vertices, edges and faces of the connected graph G must be fixed by σ.
Thus σ is the identity automorphism, and φ = ψ.

For a graph G ∈ G ′′, each edge is incident with exactly two faces and two vertices. Let
ρ0 and ρ1 be the degrees of the vertices incident with e, and let ρ∗0 and ρ∗1 be the covalences
of the faces incident with e. The edge-symbol of e is given by 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉. We say

G has edge-symbol 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉 if every edge of G has this edge-symbol, and in this

10
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Figure 4.1: The four flags at the edge e.

case G is edge-homogeneous. As each graph in G ′′ is edge-transitive, each is naturally
edge-homogeneous.

An edge e of a graph G ∈ G ′′ can be fixed by potentially four different automorphisms
ofG, which correspond to the four flags containing e (see Figure 4.1). Suppose e is incident
with vertices x and y and faces f and g. Then e will be fixed by the following theoretical
symmetries of G:

• ι, the identity map,
• λe, which maps (x, e, f) onto (y, e, f),
• τe, which maps (x, e, f) onto (x, e, g), and
• φe = λe ◦ τe, which maps (x, e, f) onto (y, e, g).

While each of these four maps will theoretically fix the edge e, they may not all be
present in the automorphism group of G. For example, if ρ0 6= ρ1, then neither λe nor φe
will be in Aut(G). The set of all automorphisms that fix e is a subgroup of Aut(G) called
the stabilizer of e, denoted stab(e). A graph G is flag-transitive if and only if stab(e) =
〈λe, φe〉, which is isomorphic to Z2 × Z2.

To fix a face f ∈ F (G) via a possible symmetry of G, we may fix a vertex v incident
with f while interchanging the two edges incident with both v and f . This map is denoted
θvf and is a reflective symmetry across a line of symmetry of f . Let

v0, e0, v1, e1, . . . , vn−1, en−1, v0

be the sequence of vertices and edges listed in cyclic order about f , where n = ρ∗(f). Then
f can also possibly be fixed by an automorphism σf , which maps the flag (xi, ei, f) to the
flag (xi+1, ei+1, f) for all i. The map σf corresponds to a rotation of G about the center of
f . The largest possible stabilizer of f , denoted stab(f), is 〈σf , θvf〉, which is isomorphic
to D2n, the dihedral group of order 2n. In some graphs, stab(f) will be isomorphic to
a proper subgroup of D2n, like in the case when ρ0 6= ρ1. In this case σf cannot be an
automorphism of G. However, σ2

f may be in Aut(G). If θvf ∈ Aut(G) for every incident
vertex-face pair (v, f), then G is called ordinary.

By a dual argument, the largest possible stabilizer of a vertex v, denoted stab(v), is
isomorphic to the dihedral group of order 2m, where m = ρ(v). The map θvf will fix v for
all faces f incident with v. If e0, e1, . . . , em−1 is the list of edges incident with v, listed in
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cyclic order, then we can fix v by mapping ei to ei+1 (modulo m) for each i via a rotation.
We will denote this possible symmetry σv. If σv ∈ Aut(G), then σmv = ι.

Let G be a graph. A walk

Π = . . . xi−2, ei−1, xi−1, ei, xi, ei+1, xi+1, . . .

in G with indices in Z or Zm for some m is called a Petrie walk if the following three
conditions are satisfied:

(i) Pairs of edges ei and ei+1 are incident to a common face fi for all i;
(ii) For each i the faces fi and fi+1 are distinct.

(iii) No proper subwalk of Π satisfies conditions (i) and (ii).

Let Π be a Petrie walk of a graph G ∈ G ′′, and write

Π = x−1, e0, x0, e1, . . . , xi−1, ei, xi, ei+1, . . .

Let γeiei+1
be the map that sends (xi, ei, fi) to (xi+2, ei+1, fi+1), as in Figure 4.2.

xi−1

ei
xi

ei+1

xi+1 γ(xi+1)

γ(ei+1)
γ(xi)

γ(ei)

γ(xi−1)

Figure 4.2: The action of γeiei+1
on a short segment of a Petrie walk. For the purpose of

brevity in the labeling, γeiei+1
is simply labelled as γ.

If γeiei+1
∈ Aut(G), then this automorphism fixes Π but does not fix any edges of

Π. Furthermore, the direction of increasing indices of Π and γeiei+1
(Π) will be oppositely

oriented. Therefore, the map γeiei+1
acts as a reflection composed with a translation along

the Petrie walk Π. Given an edge ei ∈ Π, the automorphism φei fixes ei and reverses the
direction of increasing indices along Π, acting as a rotation composed with a reflection. If
(v, f) is the vertex-face pair incident to both ei and ei+1 for some i, then θvf will also fix
Π. The following identities reveal the relationship between these maps:

θvf ◦ γeiei+1
◦ θvf = φei ◦ γeiei+1

◦ φei = γ−1
eiei+1

This is the group presentation of a dihedral group whose order is twice that of γeiei+1
. We

can write this group as either 〈θvf , γeiei+1
〉 or 〈φei , γeiei+1

〉.
The stabilizer of Π, denoted stab(Π), is a subgroup of 〈θvf , γeiei+1

〉. By construction
a given edge of G lies on at most two Petrie lines. Since G has exactly one edge orbit,
there are at most two orbits of Petrie walks under the action of Aut G. These are called the
Petrie-orbits of G.

The largest possible stabilizers of each of the edges, vertices, faces and Petrie walks are
shown in Table 4.1.
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Graph element Possible stabilizer
edge 〈τe, λe〉
vertex 〈θvf , σx〉
face 〈θvf , σf〉
Petrie walk 〈θvf , γeiei+1

〉 ∼= 〈φei , γeiei+1
〉

Table 4.1: The largest possible stabilizers of a given edge, vertex, face and Petrie walk of a
graph in G ′′

Given a graph G ∈ G ′′, the presence of certain stabilizers in Aut(G) can determine
the transitivity of the vertices, faces or Petrie walks of G. In this way, the local action of
Aut(G) sheds light on its global action. The particular automorphisms and the resulting
transitivity are presented in the following two lemmas.

Lemma 2 (Lemma 3.3 in [GW97]). Let G ∈ G ′′ and let (v, e, f) and (v, e′, f) denote the
two flags that are on both vertex v and face f . If σv ∈ Aut(G), then G is face-transitive;
if σf ∈ Aut(G), then G is vertex-transitive; if γee′ ∈ Aut(G), then G is both vertex- and
face-transitive.

A graph can also be Petrie-transitive. Let Π be a Petrie walk of a graph G ∈ G ′′. Then
the orbit of Π, also called a Petrie-orbit, is the set of all Petrie walks Ω ⊂ G such that
there exists some φ ∈ Aut(G) for which φ(Π) = Ω. Since G is edge-transitive, there is
exactly one edge orbit. Because of the way Petrie walks are constructed, each edge of G
lies on exactly two Petrie walks. Thus, there can be at most two Petrie-orbits of G. If G
only admits one Petrie-orbit, then G is Petrie-transitive.

Lemma 3 (Lemma 3.4 in [GW97]). If G ∈ G ′′, then Aut(G) acts on the set of Petrie
walks, and under this action there are at most two Petrie-orbits. Furthermore, G is Petrie-
transitive whenever Aut(G) includes an automorphism of the form σv, σf , λe or τe.

Graver and Watkins later prove the converse to the last statement of the above lemma.
In addition, they develop three more lemmas that indicate the presence of certain auto-
morphisms in Aut(G) if a graph G ∈ G ′′ is vertex-, face- or Petrie-transitive (Lemma A1
in [GW97]). This allows them to add particular automorphisms and rule out others when
finding the possible combinations of maps in Aut(G).

Given a graph G ∈ G ′′ we can find the stabilizer of each of the four graph elements in
Table 4.1. As listed by Graver and Watkins in [GW97], there are 14 possible combinations
of these stabilizers. In Table 4.2 we present a summarized version of the complete classifi-
cation of members of G ′′ by the local action of their automorphism group, including some
necessary restrictions on their edge-symbols.

Theorem 3 (Theorem 3.5 in [GW97]). LetG ∈ G ′′ have edge-symbol 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉. Then

at most 14 combinations of the edge-, vertex-, face- and Petrie-stabilizers in Aut(G) are
possible. These combinations, including edge-symbol rules, are tabulated below.

The authors describe their proof of this theorem as very technical in nature, as it ex-
hausts all four cases of stab(e) for e ∈ E(G), which corresponds to the four possible
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Type stab(e) stab(v) stab(f) stab(Π) Edge-symbol rules
1 〈τe, λe〉 〈σx, θvf 〉 〈σf , θvf 〉 〈γΠ, θvf 〉 ρ0 = ρ1 and ρ∗0 = ρ∗1

2 〈τe〉 〈σx, θvf 〉
〈
σ2
f , θvf

〉 〈
γ2

Π, θvf
〉

ρ0 6= ρ1 and ρ∗0 = ρ∗1 are even

2ex 〈τe〉
〈
σ2
x, τe

〉
〈σf 〉 〈γΠ〉 ρ0 = ρ1 are even and ρ∗0 = ρ∗1

2∗ 〈λe〉
〈
σ2
x, τe

〉
〈σf , θvf 〉

〈
γ2

Π, θvf
〉

ρ0 = ρ1 are even

2∗ex 〈λe〉 〈σx〉
〈
σ2
f , λe

〉
〈γΠ〉 ρ0 = ρ1 and ρ∗0 = ρ∗1 are even

2P 〈φe〉
〈
σ2
x, τe

〉 〈
σ2
f , θvf

〉
〈γΠ, θvf 〉

ρ0 = ρ1 are even and ρ∗0 = ρ∗1
are even

2P ex 〈φe〉 〈σx〉 〈σf 〉
〈
γ2

Π, φe
〉

ρ0 = ρ1 and ρ∗0 = ρ∗1

3 〈ι〉
〈
σ2
x, τe

〉 〈
σ2
f , θvf

〉 〈
γ2

Π, θvf
〉

ρ0, ρ1, ρ
∗
0 and ρ∗1 are all even

4 〈ι〉 〈σx〉 ,
〈
σ2
x, τe

〉 〈
σ4
f , θvf

〉 〈
γ4

Π, θvf
〉 At least one of ρ0, ρ1 is even,

and ρ∗0 = ρ∗1 ≡ 0 mod 4

5 〈ι〉 〈σx〉
〈
σ2
f

〉 〈
γ2

Π

〉
ρ∗0 = ρ∗1 are even

4∗ 〈ι〉
〈
σ4
x, θvf

〉
〈σf 〉 ,

〈
σ2
f , θvf

〉 〈
γ4

Π, θvf
〉 ρ0 = ρ1 ≡ 0 mod 4 and at

least one of ρ∗0, ρ
∗
1 is even

5∗ 〈ι〉
〈
σ2
x

〉
〈σf 〉

〈
γ2

Π

〉
ρ0 = ρ1 are even

4P 〈ι〉
〈
σ4
x, θvf

〉 〈
σ4
f , θvf

〉
〈γΠ〉 ,

〈
γ2

Π, θvf
〉

ρ0 = ρ1, ρ∗0 = ρ∗1 are all even

5P 〈ι〉
〈
σ2
x

〉 〈
σ2
f

〉
〈γΠ〉 ρ0 = ρ1, ρ∗0 = ρ∗1 are all even

Table 4.2: The 14 possible types of graph in the class G ′′

subgroups of Z2 × Z2. Each of these cases are then divided into subcases, depending on
the transitivity of the vertices, faces and Petrie walks of G.

This complete categorization of the members of G ′′ is often used by Graver and Watkins
to investigate other properties of these graphs, such as their Petrie type (defined in Chapter
5). In some proofs, they determine the interactions among a subgraph H of a graph G
and the automorphic images of H . In these instances, Theorem 3 provides the identity of
particular automorphisms that act on H .

In Chapter 6 of [GW97] the authors reveal a relationship between the number of ends
of a graph and its type under Theorem 3. In doing so, they found that five of the fourteen
classes are empty, as no graph has automorphisms with the desired combined structure.
As will be seen in Chapter 6, the type of a zero- or one-ended graph can be determined
by its edge-symbol. The two-ended graphs in G ′′ all possess the same edge-symbol and
have essentially the same form; therefore they are of exactly one type (see Chapter 7). The
conclusions about the infinitely-ended graphs follow conversely from results in Chapter 6
about one-ended graphs.

The class G ′ consists of the members of G ′′ with no 2-valent vertices. The following
theorem sorts the members of G ′ by their number of ends and then further by their type. To
extend the results to G ′′ the authors examine members of G ′′ \ G ′. A graph G ∈ G ′′ \ G ′
must have edge-symbol 〈2, ρ; ρ∗0, ρ

∗
1〉. Furthermore,Gmust belong to one of five subclasses

depending on the particular edge-symbol of G and other factors, such as the existence of
a unique graph in G ′ from which G can be constructed by the subdivision of edges. The
combination of these factors determines the type of G, and thus we can find the type of any
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graph in G ′′.

Theorem 4 (Theorem 6.5 in [GW97]). Let G ∈ G ′. If G is finite or 1-ended, then Aut G is
of type 1, 2, 2∗, or 3. If G is 2-ended, then Aut G is of type 2P . If G is infinitely-ended, then
Aut G is of type 2P , 3, 4, 4∗, 4P , or 5P .

Corollary 1 (Corollary 6.7 in [GW97]). If G ∈ G ′′, then Aut G is of type 1, 2, 2∗, 2P , 3, 4,
4∗, 4P or 5P .

In Chapter 11 of [GW97], the authors prove that only eight of the 14 possible types are
realizable as graphs in the class G. In particular, there does not exist a graph in this class
of type 5P . These eight types provide a manageable list of possibilities for the symmetric
properties of these infinite graphs.
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Chapter 5

Petrie Walks

Much like rays and simple subgraphs, Petrie walks are another type of subgraph of an
infinite graph G that indicate the properties and structure of G. Since there are an infinite
number of Petrie walks, we narrow our focus to the crossings of Petrie walks in local
sections of G. In order to discuss the crossings of Petrie walks, it is useful to create an
indexing which tracks the vertices, edges and faces incident to a Petrie line. Let Π be a
Petrie walk. We can write

Π = . . . xi−2, ei−1, xi−1, ei, xi, ei+1, xi+1, . . .

For each integer j let (vj, fj) be the vertex-face pair incident with edges ej and ej+1. When
traversing Π in the direction of increasing indices, if fj lies on the righthand side of ej
whenever j is even, then the indexing [v, e, f ] is called a righthand indexing of Π. The
lefthand indexing is the indexing that occurs if fj is on the lefthand side of ej as one moves
in the the direction of increasing indices along Π. Given a particular indexing of Π, we will
call the set of all edges with even indices the even edges of Π, denoted E0(Π). The odd
edges, or the edges with odd indices, will be denoted E1(Π).

This indexing translates over easily to the dual of a graph. If G ∈ G ′ and Π ⊂ G is
a Petrie walk, then we can construct the dual Petrie walk Π∗ ⊆ G∗ by interchanging the
symbols xi and fi in the righthand (or lefthand) indexing of Π. The vertices of this path
will now be labeled with {fi}. The edges ei and the faces xi will now satisfy the conditions
necessary for Π∗ to be a Petrie walk.

If one begins at an arbitrary edge e and then constructs all Petrie walks containing e by
adding the subsequent edge around either of the two faces incident to e, it is apparent that

1. every edge belongs to at most two Petrie walks, and
2. Petrie walks are allowed to cross themselves and/or one another.

In the following lemma, Graver and Watkins prove that there are rules that determine
how pairs Petrie walks can cross one another and how individual Petrie walks can be in-
dexed. By assigning indices to pairs of Petrie walks and ensuring that the conditions in
the definition of Petrie walk are satisfied, they find that crossings of Petrie walks consist of
exactly one edge.

Lemma 4 (Lemma 4.1 in [GW97]). Let G ∈ G ′, and let Π and Ω be distinct Petrie walks
in G.
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(a) The indexing [v, e, f ] is a righthand indexing of Π if and only if [f, e, v] is a lefthand
indexing of Π∗.

(b) The edge sets E0(Π) ∩ E0(Ω) = ∅ and E1(Π) ∩ E1(Ω) = ∅.
(c) Every edge common to Π and Ω belongs to a crossing of Π and Ω, and every crossing

of Π and Ω has exactly one edge; its indices have opposite parities on Π and Ω.
(d) The edge sets E0(Π)∩E1(Π) = ∅, i.e. each edge of Π is assigned exactly one index.

Proof. (a) Let [v, e, f ] be a righthand indexing of Π. Then the face f0 is to the right of e0

when moving in the direction of increasing indices along Π, and f0 is incident to both e0

and e1. Now in Π∗, e0 and e1 are both incident to the vertex labeled f0, which must be to
the right of the face now labeled v0. Therefore, the face v0 is on the left side of both e0 and
e1 when oriented in the direction of increasing vertices. Therefore, [f, e, v] is a lefthand
indexing of Π∗.

(b) Suppose ei ∈ Π and dj ∈ Ω with ei = dj ∈ G and i ≡ j mod 2. Then the faces fi
and gj are to the right of edges ei and dj in the direction of increasing indices. If fi = gj ,
then ei+1 = dj+1, and Π = Ω. Suppose fi 6= gj . Then either fi = gj−1 or fi = gj+1, and
thus either ei−1 = dj+1 or ei+1 = dj−1, which implies that Π = Ω. Since Π and Ω are
distinct, E0(Π) ∩ E0(Ω) = ∅. An identical argument shows that E1(Π) ∩ E1(Ω) = ∅.

(c) Now again suppose ei = dj for some ei ∈ Π, dj ∈ Ω. Then by (b), i and j must have
opposite parities, and the edges ei−1, ei+1, dj−1, dj+1 must all be distinct. Thus ei = dj is
a crossing of Π and Ω. This shows that every crossing of Π and Ω consists of exactly one
edge.

(d) Suppose e0 = ek ∈ Π, and k is odd. Assume that e0, e1, . . . , ek−1 are all distinct.
Then since e1 6= ek−1, it follows that Π is the only Petrie walk through e0. Since G is
connected and planar, for any d ∈ E(G) it is possible to find a path e0 = d0, . . . , dn = d
such that every pair of consecutive edges {di, di+1} is incident to a common face. Note that
this is similar to the condition necessary for a path to be a Petrie walk, but this particular
[d0, dn] path may contain three consecutive edges which are incident to a common face.
We can say that each edge pair {di, di+1} lies on some Petrie walk. In particular, the edges
d0, d1 lie on exactly one Petrie walk, namely Π (the unique Petrie walk containing d0).
By edge transitivity, Π must be the only Petrie walk containing d1, and so by induction,
d ∈ E(G) = E(Π). Therefore, each edge of G has two Π-indices of opposite parity, and
E0(Π) = E1(Π).

It also follows from edge transitivity that the two labels of a given edge of G are of the
form ej for some j and either ej−k or ej+k. Given a pair of edges ei and ei+1 it cannot be
the case that the alternative labels for these edges are of the form ej and ej+1 respectively,
for then i and j would have the same parity (by the definition of righthand indexing). Since
e0 = ek, it follows that ej = ej+k whenever j is even. Then when j is odd, ej = ej−k.

Thus the four edges e1 = e1−k, e−1 = e−1−k, ek+1 = e2k+1, ek−1 = e2k−1 are all
distinct, and so the single edge e0 = ek is a crossing of Π with itself. Since G is edge-
transitive, then every edge of G must be a crossing of Π with itself, and this crossing must
be traversed exactly once by Π in either direction.

See Figure 5.1, and consider the edges e−1 = e−k−1 and e1 = e−k+1. The edge e0 = ek
must occur after e−1 and before e1 in the listed sequence of Petrie edges. We can label the
vertices as in the picture so that this portion of Π can be listed as

17



r

t

x−1 x0

s

u

e−1 = e−k−1

ek+1 = e2k+1

e0 = ek

ek−1 = e2k−1

e1 = e−k+1

Figure 5.1: The crossing of Π with itself at e0 = ek.

Π = . . . r, e−1, x−1, e0, x0, e1, u, . . .

Now let us consider the indices of the Petrie walk near the edges labeled e−k−1 and
e−k+1. Then the edge e−k must be traversed after e−k−1 and before e−k+1. However, now
the direction of traversal must be opposite. Now this segment of Π is of the form

Π = . . . x−1, e−1−k, r, e−k, u, e1−k, x0, . . .

In particular, the edge e−k is incident with vertices r and u. Similarly, it can be shown that
the edge e2k must be incident to vertices s and t. This is impossible in any planar embedding
of G. Since we have arrived at a contradiction, it must be the case that E0(Π)∩E1(Π) = ∅,
and every edge of Π receives exactly one label under its righthand indexing.

There is an important consequence of these restrictions on Petrie walk crossings and the
uniqueness of indices along a given Petrie walk Π. Using the classification from Theorem
3, Graver and Watkins examined the crossings of Π with its automorphic images. They
found that a Petrie walk in a graph G ∈ G ′′ can assume one of two forms: a double ray or
a circuit of even length (Theorem 4.2 in [GW97]). The double-ray variety of Petrie walks
are called Petrie lines. Petrie walks that are circuits are called Petrie circuits.

In a given graph G if both Petrie-orbits consist of Petrie lines, G is said to be of line
type. An example of a graph that is of line type is the one-ended edge-homogeneous infinite
graph with edge-symbol 〈3, 3; 6, 6〉, depicted in Figure 5.2. If both orbits are Petrie circuits,
G is of circuit type, as shown in Figure 5.3. If G contains both Petrie lines and Petrie
circuits, G is of mixed type. An entire subclass of graphs in G of mixed type will be
presented in Chapters 7 and 8.

The Petrie walk crossings of a graph G ∈ G ′ can reveal the number of Petrie-orbits
in G. There are two configurations that indicate G is Petrie-transitive. The first is if G
admits pairwise crossings of three distinct Petrie walks. Then second is if G contains a pair
of Petrie walks that cross one another more than once. The following theorem and proof
detail these results.
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Figure 5.2: A local section of an edge-homogeneous graph of line type with edge-symbol
〈3, 3; 6, 6〉.

Figure 5.3: Part of an edge-homogeneous graph of circuit type with edge-symbol
〈3, 6; 4, 4〉.
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x−1

e0 = d1

x0

d2

f0

d0

e1

x1

e2

x2f1

. . .

dh+1

ek = dh

dh−1

or

dh−1

dh = ek

dh+1

k even k odd

Figure 5.4: The eight possible configurations of the pair of crossings of Π and Ω.

Theorem 5 (Theorem 4.3 in [GW97]). Let G ∈ G ′. If G contains either three distinct
Petrie walks, every two of which have a common edge, or two distinct Petrie walks that
have more than one common edge, then G is Petrie-transitive.

Proof. First, note that an edge e belongs to at most two Petrie walks. In the case that e
belongs to two distinct Petrie walks, either both Petrie walks are in the same orbit, or they
are in different orbits. Hence, by edge-transitivity there are at most two distinct Petrie orbits
in G. Now suppose toward contradiction that G contains three distinct Petrie walks, every
two of which have a common edge. If G were not Petrie-transitive, then each of these three
Petrie walks would belong to a distinct Petrie orbit, which is impossible. Thus G must be
Petrie-transitive.

Now let Π and Ω be distinct Petrie walks having at least two edges in common. Label
Π and Ω with righthand indexings [x, e, f ] and [y, d, g] respectively such that e0 = d1 and
ek = dh and so that k is the smallest possible index in all pairs of Petrie walks that cross.
Without loss of generality suppose 0 < k < h. Note that k > 1, since we have established
that Petrie walks must cross at exactly one edge.

Now suppose G is not Petrie-transitive. Then every edge induces two distinct Petrie
walks which belong to two distinct Petrie orbits. Choose ψ ∈Aut(G) such that φ(e0) = e1.
Then by assumption, ψ(Π) is not the other Petrie walk through e1, and so ψ must fix Π but
not Ω. Now we have three distinct Petrie walks Π, Ω and ψ(Ω). We know that Π and Ω
share a common edge and that Π = ψ(Π) and ψ(Ω) share a common edge. Since we have
assumed G is not Petrie-transitive, by the earlier part of this proof it follows that Ω and
ψ(Ω) do not share a common edge.

There are eight possible configurations of Π and Ω at their crossings e0 = d1 and
ek = dh. The (shortest) segment of Ω that connects d1 and dh contains either d0 or d2

and either dh−1 or dh+1 as shown in Figure 5.4. These four cases are treated differently
depending on whether k is either even or odd.

The remainder of the proof relies upon the fact that φ ∈ stab Π and thus can only
possibly be one of two automorphisms of G. Both cases are impossible due to the planarity
of G and the fact that Ω and φ(Ω) cannot cross. Now if φ is the automorphism θx0f0 , then
in all eight possible configurations of Π, the Petrie walk given by θx0f0(Ω) would cross Ω.
Therefore θx0f0 /∈ Aut(G). By Theorem 3 the automorphism γΠ must be in Aut(G). It is
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a rather tedious and technical matter to check that if Ω and γΠ(Ω) do not cross, then it is
impossible for d0 to connect to dh−1 or for d2 to join with dh+1 in any planar embedding.
Assume without loss of generality that d0 is joined with dh+1. If k > 2 then γ2

Π(Ω) and Ω
would be distinct, and they would cross.

Suppose k = 2. Then γ2
Π(d0) = dh+1 and γ2

Π(d1) = dh. Now that Ω and γΠ(Ω) agree
on two consecutive edges, it must be the case that Ω = γ2

Π(Ω), and thus x−1 = x3. This
implies that Π is a cycle of length 4.

Now if we follow the same logic by finding an element of stab Ω and examining the
action of this automorphism on Π, we can see that Ω must also be a Petrie circuit of length
4. Since Π and Ω were chosen arbitrarily, it follows that all Petrie walks in G are 4-cycles.
However, there is only one graph with this property: the tetrahedron, a finite graph which
is Petrie-transitive.

While the previous results concern Petrie walks in general, there are several findings
by Graver and Watkins which apply only to Petrie circuits. If two Petrie circuits have a
crossing, they must have an even number of crossings, and thus graphs of circuit type are
Petrie-transitive.

Corollary 2 (Corollary 4.4 in [GW97]). Let G ∈ G ′. All Petrie circuits in G belong to the
same Petrie-orbit; if G is of circuit type, then G is Petrie-transitive.

Lemma 5 (Lemma 6.1 in [GW97]). Let Π and Ω be two Petrie circuits ofG ∈ G ′ that cross.
Then one may label their common edges by c0, c1, . . . , cn = c0, where n is even, so that ci
and ci+1 are the edges of consecutive crossings along both Π and Ω for i = 0, . . . , n− 1.

While the statement of this lemma may appear obvious, it is the second part which is
not obviously true. For it may be the case that the sequence {c1, c2, c3, c4} appears in order
of consecutive crossings on Π, but when traveling along Ω the order of crossings may be
{c1, c3, c2, c4}. The lemma precludes this possibility. The order of crossings along Π must
also be the order of crossings along Ω. We now include a proof of this lemma.

Proof. Since each crossing consists of exactly one edge (by Lemma 4), we can label the
edges of the crossings along Π by c0, c1, . . . , cn = c0. Then Π \ {c1, c2, . . . , cn} consists
of n components which we will call segments. Since the edges ci represent crossings of Π,
these n components lie on alternating sides of Π. Since the [cn−1, c0]-segment of Ω must
lie on a particular side of Π, it follows that n is even.

Surely if n = 2, then c1 and c2 are consecutive crossings around each of Π and Ω
regardless of ordering. Then suppose n ≥ 4. Now call one side of Ω “inside” and the other
“outside.” Consider the set

C = {{ci, cj} | ci, cj are joined by a segment that lies outside Ω}
Choose a pair {ci, cj} ∈ C so that |i−j| mod n is minimal. Without loss of generality

we can assume that i = 0 and i < j ≤ n
4
. Since the [ci, cj]-segment of Ω lies on one

particular side of Π, there must be an even number of crossings along Π between ci and cj ,
and thus j is odd.

Suppose j ≥ 3. Then there exists a pair (k,m) such that 1 ≤ k,m ≤ j and the [ck, cm]
segment of Π lies outside Ω, contradicting the minimality of |i − j|. Thus c0 and c1 are
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consecutive on both Π and Ω. For a given i consider an automorphism which maps c0 onto
ci. This automorphism will either fix or interchange Π and Ω. Therefore ci and either ci−1

or ci+1 are consecutive crossings on both Π and Ω. If there exists a triplet ci−1, ci, ci+1 that
are consecutive on Ω, then by edge-transitivity, a map which sends ci to ci+1 must then send
ci+1 to either ci−1 or ci+2. By induction all crossings on Ω will be labeled consecutively.

We must now account for the possibility that for each i, the edges c2i and c2i+1 are
consecutive on Ω, but c2i and c2i−1 are not consecutive on Ω. The segments of Ω that join
consecutive crossings constitute exactly half of all the segments of Ω and thus must lie on
the same side of Ω. Without loss of generality, suppose these segments are outside Ω. Now
let

C ′ = {{ci, cj} | ci, cj are joined by a segment that lies inside Ω}.

Then choose a pair {ci, cj} ∈ C ′ that minimizes |i − j| mod n, and by the same rea-
soning applied to the pair chosen from C above, these crossings must occur consecutively
along Ω.

Suppose that a graph G in G ′′ is of mixed type. Given an edge e ∈ E(G), we have that
e lies on some Petrie line Π and some Petrie circuit Ω. By Lemma 4, Π and Ω must cross
exactly once at e. Therefore Ω separates two ends of Π, one which lies on the outside of
Ω and another which lies on the inside. When this occurs we say Ω is an ends-separating
circuit. Therefore G must have at least two ends.

Theorem 6 (Theorem 4.5 in [GW97]). All graphs in G ′′ of mixed type are multi-ended.

Graver and Watkins determine that Petrie circuits are shortest ends-separating circuits
in a multi-ended graph. The term “shortest” refers to the length of the circuit. In general,
the converse to Theorem 6 is not true; however by adding a few conditions, the authors were
able to use Theorem 3 to find symmetries that guarantee the existence of Petrie circuits in
a multi-ended graph. Chapters 7 and 8 provide specific examples of multi-ended graphs of
mixed type.

Theorem 7 (Theorem 5.3 in [GW97]). If G is a multi-ended graph in G ′ which is not of
type 4, 4∗, or 4P , then G contains a Petrie circuit; moreover, every Petrie circuit of G is a
shortest ends-separating circuit.

In the next chapter, we will relate some universal properties of graphs of circuit type.
These characteristics are a consequence of the above rules about Petrie circuit crossings.
These results will also be used in Chapter 8 to show that graphs constructed via interleaving
contain infinitely many ends.
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Chapter 6

One-Ended Members of G ′

For the remainder of this thesis we will be presenting methods for the construction of the
infinite members of G. While we know how to generate all of the one- and two-ended
graphs in G, algorithms to produce all infinitely-ended members of G are not presently
known. In this chapter we present a process that is used to produce all one-ended members
of the larger class G ′.

The class of one-ended, locally finite, edge-transitive infinite graphs was studied ex-
haustively by Grünbaum and Shepherd in the context of tiling theory ([GS97]). An edge-
homogeneous tiling can be identified uniquely (up to isomorphism) by an edge-symbol,
which is of the form 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉, as defined in Chapter 4. If these four elements satisfy

a set of conditions, then an edge-transitive graph with edge-symbol 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉 exists.

The following theorem provides these necessary conditions and describes a method for
constructing the desired edge-transitive graph.

Theorem 8 (Theorem 1 in [GS87]). A 3-connected edge-homogeneous planar graph G
with symbol 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉 exists if and only if ρ0, ρ1, ρ

∗
0, ρ
∗
1 are positive integers greater

than or equal to 3, and if one of the following four mutually exclusive conditions is satisfied:

(i) ρ0, ρ1, ρ
∗
0, ρ
∗
1 are all even;

(ii) ρ0 = ρ1 is even and at least one of ρ∗0, ρ
∗
1 is odd;

(iii) ρ∗0 = ρ∗1 is even and at least one of ρ0, ρ1 is odd;

(iv) ρ0 = ρ1, ρ
∗
0 = ρ∗1 and all are odd.

Moreover, each such edge-homogeneous graph is edge-transitive.

Proof. Let G be an edge-homogeneous graph with symbol 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉. The vertices

with valence ρ0 and ρ1 must alternate in cyclic order around any given face ofG. If ρ0 6= ρ1,
then both ρ∗0 and ρ∗1 must be even. Similarly, the covalences of the faces incident to a vertex
must alternate in cyclic order around the vertex, so that if ρ∗0 6= ρ∗1, then both ρ0 and ρ1 must
be even. If ρ0, ρ1, ρ

∗
0, ρ
∗
1 are all distinct, then they must all be even (Condition (i)).

Suppose ρ∗0 6= ρ∗1 and at least one of ρ∗0, ρ∗1 is odd. Then, in order to satisfy edge
homogeneity, it must be the case that ρ0 = ρ1 and both are even (Condition (ii)). Similarly,
if one of ρ0 6= ρ1 and at least one of ρ0, ρ1 is odd, then ρ∗0 = ρ∗1 and both are even (Condition
(iii)).

Now suppose ρ0 = ρ1 are both odd. Then ρ∗0 = ρ∗1 (Conditions (ii)-(iv)).
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Now suppose that any one of the conditions (i)-(iv) are satisfied by quantities ρ0, ρ1, ρ
∗
0, ρ
∗
1.

Then an edge-homogeneous graph with the given symbol 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉will be constructed.

Now let

s =
1

ρ0

+
1

ρ1

+
1

ρ∗0
+

1

ρ∗1

There are three cases.
If s > 1, then it can be shown that there are exactly nine solutions which satisfy (i)-(iv).

Each of these solutions generates a unique (up to isomorphism) finite edge-homogeneous
graph. Each of these nine graphs correspond to the edges and vertices of a convex polyhe-
dron in three-dimensional Euclidean space.

If s = 1 then there are exactly five distinct solutions which correspond to infinite edge-
homogeneous plane graphs that can be drawn so that their faces are regular polygons. Two
of these five graphs are shown in Figures 5 and 6. The remaining three are the graphs with
edge-symbols 〈3, 3; 6, 6〉 and 〈4, 4; 4, 4〉 and their duals. (The latter is self-dual).

If s < 1, then there are infinitely many solutions for 〈ρ0, ρ1; ρ∗0, ρ
∗
1〉 satisfying (i)-(iv).

The construction of these graphs will require the use of hyperbolic geometry, in particular
the Poincaré disk model of the hyperbolic plane H2, which can be represented in E2 as a
circular diskD whose boundary we will call C. Lines in H2 can be drawn as arcs of circles
in D which intersect C orthogonally. Angles are preserved in the homeomorphism which
maps E2 to the Poincaré disk model representation of H2.

In H2, it is possible to construct a quadrangle with any given set of internal angles
whose sum is less that 2π. Observe that since s < 1,

2π

ρ0

+
2π

ρ1

+
2π

ρ∗0
+

2π

ρ∗1
< 2π,

so we can construct a convex quadrangle Q in H2 whose internal angles are 2π
ρ0
, 2π
ρ∗0
, 2π
ρ1
, 2π
ρ∗1

listed in clockwise order starting at a vertex labeled A. The other vertices will be labeled
B,C,D in the same order, as shown in Figure 6.1.

Now suppose any of conditions (i), (ii), (iii) or (iv) are satisfied by ρ0, ρ1, ρ
∗
0, ρ
∗
1. Then

in the case that ρ∗0 = ρ∗1, it is possible to draw a line of symmetry through Q by bisecting
angles drawing the straight line BD, which bisects angles B and D. In this case, the
triangles BAD and BCD will be congruent.

In the case that ρ∗0 is even, it is possible to surround vertex A with ρ∗0 copies of Q by
setting Q = Q1, B = B1, C = C1, D = D1 then obtaining Q2 with similar labelings by
reflecting Q1 across the line AB1. The next quadrangle Q3 is produced by reflecting a copy
of Q2 across AD2. Continuing in such a fashion, Qi is the reflection of Qi−1 across the line
ABi−1 when i is odd and ADi−1 when i is even. In this way we can construct ρ∗0 abutting
copies of Q with common vertex A.

Now if ρ∗0 is odd, then necessarily ρ0 = ρ1, and trianglesABC andADC are congruent.
This congruence guarantees that rotation of Q1 about A by 2π

ρ∗0
radians will result in the

vertex D2 of quadrangle Q2 coinciding with B1. Therefore we can surround the vertex A
by ρ∗0 copies of Q in an edge-to-edge arrangement by rotating Q about A by angles 2πi

ρ1
,

i ∈ {1, 2, . . . , ρ∗0 − 1}.
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A

B

C

D

2π
ρ0

2π
ρ∗1

2π
ρ1

2π
ρ∗0

Figure 6.1: The quadrangle Q.

By following this process at the other vertices B, C and D, the quadrangle Q can be
surrounded completely by copies of itself. Each of these copies can then be surrounded,
and continuing inductively we obtain an infinite edge-to-edge tiling of H2 by copies of Q,
and following from the method of construction this tiling will be tile-transitive.

The representation of this tiling in the Poincaré disk model will be locally finite at
every point except along the boundary C. Any neighborhood of a point of C contains
infinitely many other points of C (we say such a point is an accumulation point). This does
not pose a problem for the eventual local finiteness of our constructed graph, because the
homeomorphism which maps the Poincare’ disk to E2 excludes the boundary C. If we
apply this homeomorphism to the hyperbolic tiling we have just constructed, we can obtain
an infinite tiling of E2 by quadrangles whose vertices have valences ρ0, ρ

∗
0, ρ1, ρ

∗
1 in cyclic

order, corresponding to the vertices A,B,C, and D respectively in the original quadrangle
Q. Let G be the plane graph whose vertices correspond to the vertices B and D in each
copy of Q and whose edges correspond to the lines BD in each copy of Q. The graph G is
the desired edge-transitive graph with edge-symbol 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉.

Now we have a method for constructing all one-ended members of G. Although it is
not immediately apparent, we also know how to construct all graphs in G of circuit type.

Graver and Watkins ([Gw97]) determine that all graphs in G ′ of circuit type have at most
one end and belong to a subclass with a particular family of edge-symbols. To show this the
authors first presented the following lemma. The proof of this lemma is another example
of the utility of Theorem 3. Rather than present the full rigorous proof, we include only
an initial excerpt, in order to demonstrate the type of deduction enabled by the complete
classification of graphs in G ′.

Lemma 6 (Lemma 6.2 in [GW97]). If G ∈ G ′ is of circuit type, then either γ2
Π ∈ Aut(G)

for every Petrie circuit Π of G or the edge-symbol of G or G∗ is 〈4, 4; 3, h〉 for some h ≥ 3.

Partial proof of Lemma 6: Suppose Π and Ω are distinct Petrie circuits of G that cross
one another. Let [v, e, f ] and [x, d, g] be righthand indexings of Π and Ω, respectively, so
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that e0 = d1 and ek = dm+1 are consecutive crossings on both Π and Ω. If γ2
Π /∈ Aut(G)

thenG is of type 4 or 4∗, and thus all edge-stabilizers are trivial. Furthermore exactly one of
the automorphisms θv0f0 and θv1f1 is in Aut(G). In the first case the [d1, dm+1]-segment of
Ω and its image under θv0f0 lie on the same side of Π and cross one another an odd number
of times. Since θv0f0 is a reflection, a given crossing will either be fixed or interchanged
with another crossing under the action of θv0f0 . It follows that one or more crossings (edges)
are fixed by θv0f0 . This contradicts the fact that all edge-stabilizers are trivial. Therefore
θv1f1 ∈ Aut(G); however, a similar argument yields another contradiction except in the
case that k = 3. Now by Theorem 3 the stabilizer of f0 must be 〈σf0〉, so G must be of type
4∗.

In the remainder of the proof, Graver and Watkins consider the possible planar config-
urations of Θ and Ω at their crossing. Since we now know the automorphism type of G,
the configuration must agree with the known identity of stab(e). This lemma, along with
the results presented in Chapter 5 of this thesis about crossings of Petrie circuits, is used
to prove that a graph G ∈ G ′ of circuit type is at most one-ended and has an edge-symbol
belonging to a particular family of edge-symbols.

Theorem 9 (Theorem 6.3 in [GW97]).

1. An infinite graph G ∈ G ′ is of circuit type if and only if G or G∗ has edge-symbol
〈4, 4; 3, h〉 with h ≥ 6.

2. Every graph in G ′ of circuit type has at most one end.

This brief chapter suffices to present all graphs in G ′ of circuit type and all one-ended
graphs in G ′. The remainder of this thesis will detail a description of all two-ended members
of G ′′ and methods for the construction of some infinitely-ended members of G. All graphs
from this point forward will be of mixed type.
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Chapter 7

Edge-Transitive Planar Strips

The presentation of the two-ended members of G ′′ will follow the work of Watkins in his
1991 publication [Wa91], where he characterized all 2-connected, 2-ended, edge-transitive
planar graphs. These graphs are a type of strip, which we will now define. For a subgraph
C of a graph G, let

n(C) = {v ∈ G | v is a neighbor of c for some c ∈ V (C)}
The neighborhood of C, denoted b(C), is the set of vertices n(C)\V (C). A connected

graph G is called a strip if there exists a connected C ⊆ V and an automorphism φ ∈
Aut(G) such that b(C) is nonempty and finite, φ(C ∪ b(C)) ⊆ C, and C \ φ(C) is finite.

Example 3. Let G be an infinite double ray, and write

G = . . . x−2, x−1, x0, x1, x2, . . .

Then let C be the ray x0, x1, x2, . . .. Then b(C) = {x−1}. If φ ∈ Aut(G) is any translation
of G along itself such that φ(x0) = xj and j > 0, then φ(C ∪{x−1}) ⊆ C, and C \φ(C) =
{x0, x1, . . . , xj−1}. Therefore G is a strip. Also note that G is two-ended.

A double-ray, while edge-transitive and two-ended, is only 1-connected. As detailed
by Watkins in [Wa91], there exists a class of planar strips that are 2-connected, 2-ended
and edge-transitive. This class comprises all two-ended members of G ′′. These graphs are
described in the following theorem.

Theorem 10 (Proposition 2.5 in [GW97]). For each k ≥ 2, there exists a unique two-ended
graph G ∈ G ′′ with edge-symbol 〈4, 4; 4, 4〉. It is the quotient graph of the planar tesse-
lation with edge-symbol 〈4, 4; 4, 4〉 (embedded as the integer lattice) by the identification
(x, y) ≡ (x+ k, y + k) for all (x, y) ∈ Z× Z.

For a given k ≥ 2, we can obtain a two-ended member of G ′′ by wrapping the integer
lattice around an infinitely long cylinder so that the vertices labeled (x, y) coincide with
(x + k, y + k) and are thus identified. Figure 7.1 depicts a local section of the quotient
graph described in the previous theorem for k = 3. The two vertices labeled (0, 0) are
identified in the quotient graph, as are all pairs of identically labeled vertices.

To see that these graphs are two-ended and of mixed type, consider a graph G as de-
scribed in Theorem 10. An example of a Petrie circuit Ω containing the origin is shown in
Figure 7.1. The Petrie line Π containing the origin is of the form

Π = . . . (i,−i+1), (i,−i), (i−1,−i), . . . , (1, 0), (0, 0), (0, 1), . . . , (−i, i−1), (−i, i), . . . ,
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(−3, 3) (−2, 3) (−1, 3) (0, 3) (1, 3) (2, 3)

(−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2)

(−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1,−1) (2,−1) (3,−1) (4,−1) (5,−1) (6,−1)

(0, 0)

(1,−1)

(2,−2)

(3,−3)

(4,−4)

Figure 7.1: A planar embedding of an edge-transitive strip obtained by the identification
(x, y) ≡ (x+ 4, y + 4) for all (x, y) ∈ Z× Z.

The graph G \ Ω consists of two infinite components. In fact, the removal of any finite
subgraph T results in at most two infinite components of G \ T , and thus G is two-ended.
Since we have constructed a Petrie circuit and a Petrie line, it follows that graphs in this
class of edge-transitive strips are of mixed type.
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Chapter 8

Infinitely-Ended Plane Graphs of Mixed Type

Prior to the publication of [GW97], even the existence of infinitely-ended members of
G had not been established. Graver and Watkins developed an inductive process called
interleaving that yields many of them. A method due to B. Mohar ([Mo06]), called tree
amalgamation, can also produce infinitely-ended members of G. In this chapter we present
the step-by-step methods of interleaving and tree amalgamation.

Modules

A graph Θ which is locally finite, 2-connected and edge-homogeneous with edge-symbol
〈2, ρ; ρ∗, α〉 is called a module if ρ, ρ∗ and α are all even and greater than 3. We will say that
two modules Θ0 and Θ1 with edge-symbols 〈2, ρ0, ρ

∗
0, α〉 and 〈2, ρ1, ρ

∗
1, α〉 are compatible

modules if ρ∗0 6= α and ρ∗1 6= α. Notice that graphs Θ0 and Θ1 both have faces with
covalence α. We will call these faces the Z-faces of Θ0 and Θ1. The circuit enclosing a
Z-face will be called a Z-boundary. The requirement that both ρ∗0 6= α and ρ∗1 6= α ensures
a bipartition of F (Θ0) and of F (Θ1), allowing us to easily find the Z-faces of a module.
See Figures 10 and 14 for examples of pairs of compatible modules whose Z-faces have
been shaded in gray.

By interleaving two compatible modules Θ0 and Θ1 with edge-symbols 〈2, ρ0; ρ∗0, α〉
and 〈2, ρ1; ρ∗1, α〉 respectively, we can obtain an infinitely-ended graph G ∈ G ′ with edge-
symbol 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉. By varying α,we could potentially construct multiple non-isomorphic

graphs with a given edge symbol. For this reason, we assign an extended edge-symbol
〈ρ0, ρ1; ρ∗0, ρ

∗
1;α′〉 to a graph attained by interleaving, where α′ is the length of a shortest

ends-separating circuit of G.

Interleaving: The Process

Let Θ0 and Θ1 be a pair of compatible modules. Initially, let G0 be a copy of Θ0. The
desired graph will be the limit graph, G =

⋃
Gi. Now to obtain the graph G1, for each

Z-face in G0 take a copy of Θ1. Identify the Z-boundary of each Z-face of G0 with a Z-
boundary of a copy of Θ1 so that every 2-valent vertex of G0 is identified with a ρ1-valent
vertex of a copy of Θ1 (and thus each ρ0-valent vertex of G0 is identified with a 2-valent
vertex of a copy of Θ1). We define the Z-faces of G1 to be the Z-faces in each embedded
copy of Θ1 whose boundaries were excluded from the identification step. Examples of
graphs G1 produced by the first step of interleaving can be seen in Figures 8.2, 8.3 and 8.6.
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∆0 ∆1

Figure 8.1: Compatible modules ∆0 and ∆1 with edge-symbols 〈2, 4; 4, 6〉 and 〈2, 4; 6, 6〉,
respectively.

Figure 8.2: The graph G1 obtained by interleaving ∆0 and ∆1 with Γ0
∼= ∆0.
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Figure 8.3: The graph G′1 obtained by interleaving compatible modules ∆0 and ∆1 with
G′0
∼= ∆1

The ith step of interleaving will produce a graph Gi−1, which will be a proper subgraph
of the graph Gi. Suppose i > 1 and that Gi−1 has already been constructed. Let i ≡ j
mod 2 and i − 1 ≡ k mod 2. Then the Z-faces of Gi−1 will be the Z-faces in each copy
of Θk whose boundaries were excluded from the indentification in step i−1 of interleaving.
Step i+ 1 is as follows: Identify each Z-boundary in Gi−1 with the Z-boundary of a copy
of Θj so that the 2-valent vertices of Θj are identified with the ρk-valent vertices of Gi−1.
Simultaneously, the ρj-valent vertices of Θj will be identified with the 2-valent vertices of
Gi−1. The resulting graph is Gi. Continue inductively, and let G be the limit graph

⋃
Gi.

Properties of Graphs Constructed by Interleaving

Let Gint be the class of all graphs which have been constructed by interleaving pairs of
compatible modules. Every graph G ∈ Gint possesses a list of properties, outlined in the
following theorem of Graver and Watkins. Most of these characteristics are inherited from
the compatible modules and are preserved during interleaving.

Lemma 7 (Lemma 3.1 in [GW97]). A graph G obtained by interleaving two compati-
ble modules Θ0 and Θ1 is locally finite, bipartite, 2-connected, multi-ended and edge-
homogeneous with extended edge-symbol 〈ρ0, ρ1; ρ∗0, ρ

∗
1;α′〉. Furthermore, the circuits in

G corresponding to the Z-boundaries of Θ0 and Θ1 are Petrie circuits of length α in G (by
Lemma 7.1, Watkins).

Proof. First we prove that G is bipartite and 2-connected. Since Θ0 and Θ1 are bipartite
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Figure 8.4: The graph G′2 obtained by interleaving ∆0 and ∆1 with G′0 ∼= ∆1
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Θ0 Θ1

Figure 8.5: Compatible modules Θ0 and Θ1 with edge-symbols 〈2, 4; 4, 8〉 and 〈2, 4; 6, 8〉
respectively.

graphs, neither module contains a circuit of odd length. The ith step of interleaving identi-
fies a circuit in Θ0 or Θ1 with a circuit in the graph Gi−1. By induction, the limit graph G
contains no circuit of odd length. Thus G is bipartite. Similarly, the connectivity of each
Gi is extended to G, since the degree of any vertex v ∈ V (Gi) is less than or equal to the
degree of the corresponding vertex v ∈ V (G).

To show G is edge-homogeneous, let e ∈ E(Gi) for some step i of interleaving. Then
e ∈ E(Gj) whenever j > i, and in each instance e has edge symbol 〈ρ0, ρ1; ρ∗0, ρ

∗
1〉. From

this, it straightforward to check that G is locally finite, since ρ(v) ∈ {ρ0, ρ1} for all v ∈
V (G).

We now demonstrate that the circuits in G corresponding to the Z-boundaries of Θ0

and Θ1 induce Petrie circuits of G. Consider such a circuit Ω in G. In particular, begin
with a vertex v0 ∈ Ω that corresponds to a 2-valent vertex in some copy of Θ0, which was
identified with a ρ1-valent vertex in some copy of Θ1. Let e0, e1 ∈ E(G) be the edges
incident to v0 which correspond to the unique pair of edges in Θ0 incident to v0. During the
interleaving process, a copy of Θ0 (or Θ1) was embedded into exactly one side of Ω, which
we will call the “inside”. Thus there is a unique face f0 that lies outside Ω and is incident
to both e0 and e1. Now since e0 and e1 are incident to a common face, there exists a Petrie
walk Π containing both e0 and e1. Furthermore, each edge must necessarily be incident
to distinct “inside” faces. Let v1 be the other (not v0) vertex on e1. Since v1 lies on Ω, v1

corresponds to a ρ0-valent vertex in Θ0 that was identified with a 2-valent vertex in Gi for
some i. It follows that v1 (and therefore e1) is incident to exactly one outside face f1. Let
e2 be other edge incident to both v1 and f1. Then e2 ∈ Π. Since all other faces incident
to e2 are inside faces, e2 lies on Ω. Continuing in this fashion, we will alternate between
vertices that correspond to 2-valent vertices in Θ0 (thus guaranteeing a unique inside face)
and vertices that correspond to 2-valent vertices in Gi (thus guaranteeing a unique outside
face). The edges traversed in the Petrie walk are exactly the edges of the Ω.

Thus the cycles in G corresponding to the Z-boundaries of Θ0 (or Θ1) induce Petrie
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Figure 8.6: The graph Γ1 obtained by interleaving compatible modules Θ0 and Θ1 with
Γ0
∼= Θ1.
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cylces in G. Consider a Petrie line Π in G which crosses Ω. Then G \ Ω contains two
components, each of which contains infinitely many vertices of Π. Therefore, G is multi-
ended.

The previous theorem by Graver and Watkins outlines some properties of members of
the class Gint. At the end of this chapter, we present a conjecture concerning the relationship
between the ends and the Petrie lines of such a graph G ∈ Gint. As stated by the authors
of [GW97], such a graph is of mixed type and has uncountably many ends. We will now
prove this statement.

Theorem 11. Let G ∈ Gint. Then G is of mixed type and has uncountably many ends.

Proof. By Theorem 9, since G is multi-ended and contains a Petrie circuit it must be of
mixed type. Let Ω0 and Ω1 be sets of vertices corresponding to distinct Petrie circuits of
G. Then G \ (Ω0 ∪Ω1) contains three infinite components: the component outside both Ω0

and Ω1 and the components inside each of Ω0 and Ω1. Therefore the number of ends in G
exceeds 2 and must therefore be uncountable (by theorems of R. Halin in [Ha73] and H.A.
Jung. in [Ju81]).

Tree Amalgamation

Tree amalgamation is a method developed by B. Mohar in [Mo06] for constructing infinitely-
ended graphs. The process produces a tree amalgamation of graphs G1 and G2 over a
connected infinite tree T .

Let p1, p2 be natural numbers. Then a (p1, p2)-semi-regular tree is an infinite tree T
satisfying the following conditions:

(i) for all v ∈ V (T ), ρ(v) ∈ {p1, p2};

(ii) when traversing any path P ⊂ T , the vertices of P alternate in degree.

For example, the (3,4)-semiregular tree is depicted in Figure 8.7.
To construct an infinitely-ended graph via tree amalgamation, we begin with a (p1, p2)-

semiregular tree T . Let Vi denote the set of all pi-valent vertices of T . Now we define
a map c, which assigns to each edge of T an ordered pair (k, l) satisfying the following
conditions:

(i) 0 ≤ k < p1,

(ii) 0 ≤ l < p2,

(iii) For each v ∈ Vi, all ith coordinates of the set {c(e) | e is incident with v} are distinct.

Under this labeling, the first coordinates of the edge labels whose respective edges are
incident with a common vertex v ∈ V1 will exhaust all values in {0, 1, . . . , p1}.

In addition to the infinite tree T , we require two graphsG1 andG2. We find two families
of subgraphs S = {Sk | 0 ≤ k < p1} of G1 and T = {Tl | 0 ≤ l < p2} of G2 such that all
subgraphs in S and T have the same cardinality.
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Figure 8.7: A local section of a (3,4)-semiregular tree

Next we define a set of identifying maps. For each label (k, l) define a bijection φkl :
V (Sk) → V (Tl). The label (k, l) determines the pair of subgraphs Sk and Tl that will be
identified in the upcoming identification step. The map φkl specifies the pairs of vertices of
Sk and Tl that will be identified.

Now we will assign to each vertex v ∈ V (T ) a copy of either G1 or G2. For each
v ∈ Vi, let Gv

i be a copy of Gi. Label the copies of Sk or Tl in Gv
i by Svk or T vl . Then take

the disjoint union of graphs Gv
i for all v ∈ V (T ).

We will join the graphs Gv
i by adding edges in the following way: For every edge

st ∈ E(T ), where s ∈ V1 and t ∈ V2 with c(st) = (k, l), identify each vertex x ∈ Ssk
with the vertex y = φkl(x) in T tl . The resulting graph Y is called the tree amalgamation of
graphs G1 and G2 over the connecting tree T .

Tree Amalgamation Meets Interleaving

A graph produced by tree amalgamation may not necessarily be possible to obtain via
interleaving. For example, if the identification step of tree amalgamation requires the iden-
tification of some circuit Sk with some tree Tl, then the resulting graph Y may not be
attainable via interleaving, since the identification step of interleaving identifies circuits
with circuits. However, it is possible to add extra conditions to the identifying maps used
in the tree amalgamation process so that the resulting graph is isomorphic to some graph
produced by interleaving.

First, we start with two compatible modules Θ0 and Θ1 with edge-symbols 〈2, ρ0; ρ∗0, α〉
and 〈2, ρ1; ρ∗1, α〉, respectively. Let pi be the number of Z-faces of Θi for i = 1, 2. Let

S = {Sk : 0 ≤ k < p0}

be the set of all Z-boundaries of Θ0 and let

T = {Tl : 0 ≤ l < p1}

be the set of all Z-boundaries of Θ1. Now let T be a (p0, p1)-semiregular tree whose edges
have been labeled (k, l) by a map c in accordance with the conditions outlined in the general
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procedure above. For i ∈ {0, 1}, let Vi be the set of all pi-valent vertices of T . For each
v ∈ Vi, take a copy of Θi.

To ensure that we obtain a graph G ∈ Gint, we must be careful with our identification
map. For each (k, l), we require that the bijective map φkl : V (Sk) → V (Tl) identifies the
ρ0-valent vertices of Sk with the 2-valent vertices of Tl (and thus the 2-valent vertices of Sk
will be identified with the ρ1-valent vertices of Tl.) By ensuring that this identification step
follows the rules of interleaving, the resulting tree amalgamation G belongs to Gint. This
was proved by Adam McCaffery in his 2009 dissertation.

Theorem 12 ([Mc09). ] The tree amalgamation Y of compatible modules Θ0 and Θ1 over
the connecting tree T by identifying maps which identify the appropriate vertices will be
isomorphic to the graph G obtained by interleaving Θ0 and Θ1.
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Chapter 9

Petrie Lines and Ends

In a graph G ∈ Gint, the presence of both an infinite number of ends and an infinite number
of Petrie lines motivates a natural question. Just as there was a one-to-one correspondence
between the equivalence classes of simple subgraphs and the ends of a graph, could there
perhaps exist such a relationship between the ends and Petrie lines? That is, could there be
a representative subray of a Petrie line for every end of an infinitely-ended graph in G?

While a natural question, it was quickly answered in the negative. We discovered a
graph G and subrays of two distinct Petrie lines of G that belong to the same end of G. We
concluded that there could not be a one-to-one correspondence between the ends and Petrie
lines of an arbitrary graph G ∈ Gint. Let Π and Ω be Petrie lines. We say Π and Ω are twin
Petrie lines of a graph G if there exist subrays Π′ ⊂ Π and Ω′ ⊂ Ω such that Π′ and Ω′

belong to the same end of G. Moreover, there is a sufficient condition on the form of the
edge-symbol which guarantees the existence of twin Petrie lines. The result requires that
the graph obtained is ordinary. The following lemma of [GW97] provides such ordinary
graphs.

Lemma 8 (Lemma 7.2 in [GW97]). Let Θ0 and Θ1 be compatible ordinary modules. Then
the graph G obtained by interleaving Θ0 and Θ1 is ordinary.

Proof. Let Gi−1 be the graph obtained by the ith step of interleaving. Since Θ0 is ordinary,
θvf ∈ Aut(Θ0) ∼= Aut(G0) for all incident vertex-face pairs (v, f) ∈ G0, and this auto-
morphism will permute the Z-faces of Θ0. A given automorphism θvf ∈ Aut(G0) can be
extended to G1 by finding an automorphism θxg ∈ Aut(Θ1) which will act on each copy
of Θ1 in G1 in such a way that the resulting graph is θvf (G1), where θvf ∈ Aut(G1). By
this reasoning, given any vertex-face pair (v, f) in a graph Gi, θvf is an automorphism of
Gi for all incident pair(v, f) ∈ Gi, and there exists an extension of θvf to Aut(Gi+1). By
induction, θvf ∈ Aut(G) for all incident vertex-face pairs (v, f) ∈ G.

Theorem 13. If G ∈ Gint is ordinary and has extended edge-symbol 〈4, 4; 4, k;m〉, then G
admits twin Petrie lines.

Proof. Fix a 4-covalent face f0 ∈ G. Choose consecutive edges e0 and e1 incident to f0 so
that f0 lies to the right of e0 when traversing the [e0, e1]-path, and so that the unique Petrie
walk Π containing both e0 and e1 is a Petrie line. Preserve the labels of e0, e1 and f0 and
let [v, e, f ] be a righthand indexing of Π. Let Π′ be a subray of Π whose indices are non-
negative. Then the ray Ω = θv1f0(Π

′) is a subray of the Petrie line θv1f0(Π). Furthermore,
we claim that Ω belongs to the same end as Π′. For all even i, the edge pairs {ei, ei+1} will
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be incident with a common 4-covalent face fi. The map θv1f0 will map each of these edge
pairs onto the other pair of edges incident with fi while fixing the vertices with odd indices
along Π. Thus when i is odd, θv1f0(xi) = xi. Therefore the rays Π′ and θv1f0(Π

′) have
infinitely many vertices in common and belong to the same end.

With these results, we have shown that not every end of a graph G ∈ Gint must possess
a unique representative subray of a Petrie line. However, could it be true that every end of
G contains at least one subray of a Petrie line? If so, for every pair of ends E1 and E2 of G,
can we find a two-ended Petrie line with subrays in both E1 and E2? That is, we wonder if
every pair of ends has a representative Petrie line.

In a plane graph G ∈ Gint, there are uncountably many pairs of ends. We can track the
rays (and therefore the ends) of G along the infinite connecting tree T used to construct the
tree amalgamationG. Each edge of T indicates the identification of a pair of Z-boundaries.
If U = {ui}∞i=1 is a ray of G, we can create an edge-sequence {ti}∞i=1 of T , where ti is the
edge of T whose corresponding identification resulted in the addition of ui to G. This
sequence of edges forms a path in T . Two rays U and V will belong to the same end of G
if and only if their corresponding edge-sequences belong to the same end of T .

We conjecture that the Petrie lines ofG induce edge-sequences that follow a predictable
pattern along the connecting tree T . For this reason, it is possible that there is a pair of ends
of G with no representative Petrie line. If the pair of ends strictly avoids the Petrie line
pattern, it may not be possible to find a Petrie line belonging to both ends.

Conjecture 1. There is a graph G with ends E1 and E2 such that no Petrie line belongs to
both E1 and E2.
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